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Summary 

In recent years, the interest in developing biosensors for the detection and monitoring of low 

molecular weight targets is increased. These small molecules play important roles in human 

health, environmental, food, and biomedical field, including different groups such as 

antibiotics, toxin, ions, drugs, steroids, and different chemicals. In this thesis work we studied 

and evaluate the possible novel methods of detection for two different small molecules, 

tetrodotoxin, part of marine toxins and nandrolone, an anabolic steroid. 

Tetrodotoxin (TTX) is a paralytic marine neurotoxin causing seafood poisoning after the 

ingestion of contaminated marine food such as puffer fish and shellfish. Its paralytic toxic 

effects derive from its selective binding to voltage-gated sodium channels and ultimately 

interfering with neural transmission. Symptoms of TTX intoxication include numbness 

sensation in the mouth, headache, vomiting, muscle weakness, and even fatal respiratory or 

heart failure. Puffer fish poisoning is typical of warm waters and was regarded as a problem 

confined to Asian countries, but in recent years, TTX has been reported and detected in 

seafood in many different European countries including Spain, Greece, United Kingdom, 

France and Italy. The hight toxicity and the increase incidence requires fast and cost-effective 

detection techniques. 

The second target that we studied, nandrolone, is an androgenic anabolic steroid (AAS) 

functioning as a growth promoting agent which helps to gain muscle weight. Its AAS 

properties have let to its exploitation as a doping agent in sports and horse racing, whereas 

it is also used as an animal feed additive on the other hand, several studies report the 

presence of nandrolone in dietary supplements as a cross-contaminant and consumption of 

such supplements could lead to accidental doping. Adverse side effects are associated with 

nandrolone accumulation in the body such as endocrine, cardiovascular, skin and psychiatric 

disorders. It is therefore evident that monitoring the presence of nandrolone in human and 

animal biological fluids, meat products and nutritional supplements is essential to protect 

public health and discourage doping practices in sports.  

For both types of these molecules, liquid or gas chromatography-mass spectroscopy is 

routinely used for laboratory-based analysis of field samples. Competitive immunoassays 

have also been developed and are available in the market for their detection. Aptamers are 

biorecognition molecules considered as alternative to antibodies which are suitable for the 

detection of any type of target and have great potential in analytical applications. They are 

artificial synthetic nucleic acids (RNA/DNA) that bind specifically to their target, and they are 

selected through an in vitro iterative process called Systematic Evolution of Ligands by 

Exponential enrichment (SELEX). The development of aptamers for small molecules is a 

challenging task, especially when you deal with small molecules as they lack the multiple 

binding sites in their structures. Although, in our work we sought to develop novel aptamers 

binding to TTX and Nandrolone and exploit them for their detection in different assays. 

For TTX aptamers identification was used a variation of SELEX suitable for small molecules 

(Capture-SELEX), while nandrolone aptamers were identified using a classical SELEX 
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process with nandrolone-Sepharose resin. Both selections were done in combination with 

high-throughput Next Generation Sequencing and binding properties of the selected 

aptamers were characterized. 

Finally for the best identified aptamer 2 different types of assays were developed. For TTX 

was developed a highly sensitive and user-friendly antibody-aptamer sandwich dipstick 

format assay which was successfully applied for the detection of TTX in puffer fish extracts. 

For Nandrolone a label-free colorimetric assay was finally developed using the aptamer for 

its detection based on gold nanoparticles and their aggregation in the presence of target 

molecules after salt addition. 

In my thesis it is discussed the general objectives and subobjectives of this work. Chapter 1 

includes a detailed introduction of the state of art of the research area. It provides a brief 

information about aptamers and their methods of selection against different types of small 

molecules by using different types of selection. Moreover, is given a general view of different 

types of aptasensor used for small molecules detection.  

The detailed selection process of the TTX aptamers isolation is detailed in Chapter 2. Capture 

SELEX is implemented for immobilizing ssDNA on the surface of streptavidin magnetic beads 

and TTX target is free in the solution throughout selection process. The affinity of the selected 

aptamers was confirmed by two different methodologies, APAA and Bead-ELAA. Finally, one 

of the aptamer selected was used hybrid antibody-aptamer sandwich assay for TTX detection 

in puffer fish extracts. 

Chapter 3 describes the proof of concept of a highly specific and sensitive dipstick format 

assay for point of care devices, and its application in real puffer fish sample detection 

including gonads, muscle, skin and liver extracts. Finally, the specificity of this format was 

also evaluated, by analyzing the interference of other marine toxins which can be present in 

the same sample. 

In Chapter 4 is reported the selection performed for the identification of nandrolone aptamers 

and their characterization of the binding properties. Moreover, an easy and rapid colorimetric 

assay was developed for nandrolone detection using the adsorption of aptamer on gold 

nanoparticle which prevent their aggregation, while in the presence of nandrolone, aptamer 

is bind to nandrolone and gold nanoparticles aggregate after the salt addition. 

 

Resum 

L’interès per la detecció de molècules amb un baix pes molecular s’ha incrementat els darrers 

anys. Monitoritzar els nivells de molècules petites amb activitat biològica, com ara els 

antibiòtics, toxines, marcadors moleculars, ions metàl·lics, medicaments i esteroides entre 

altres, es molt important en el camp de la biomedicina, la monitorització ambiental i el control 

i la seguretat alimentària. Els assajos analítics i els biosensors amb alta sensibilitat, 

especificitat, assequibles i portàtils capaços de detectar aquest tipus de molècules petites 

son necessaris per a assegurar la salut pública. En aquesta tesis, s’han escollit dues 

molècules diana: la tetrodotoxina (toxina marina) i la nandrolona (esteroide anabòlic). 
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La Tetrodotoxina (TTX) es una neurotoxina marina paralitzant que pot causar intoxicació 

alimentària després d’ingerir aliments contaminats com ara el peix globus o mariscs. Els seus 

efectes tòxics es deriven de la seva afinitat als canals de sodi cel·lulars, interferint amb la 

transmissió neuronal. Els símptomes per intoxicació amb TTX inclouen sensació de 

adormiment de la boca, mal de cap, vòmits, debilitat muscular, i fins i tot aturades càrdio-

respiratòries. La intoxicació per la ingesta de peix globus es comuna en aigües càlides i ha 

estat típicament un problema associat als països asiàtics. No obstant, i en els darrers anys, 

s’han detectat aliments marins contaminats amb TTX en diferents països Europeus, incloent 

Espanya, Grècia, El Regne Unit, França i Itàlia. La gran toxicitat i l’augment en la incidència 

d’intoxicacions per TTX requereix tècniques de detecció ràpides i assequibles. 
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Chapter 1 

1.1 Aptamers as biorecognition molecules 

 

Molecular recognition is a specific biological interaction between two or more molecules 

which exhibit molecular complementarity via non-covalent bonding including hydrogen 

bonding, hydrophobic forces1, van der Waals forces, π-π interactions, and electrostatic 

interactions2. At the cellular level, these molecular recognition or binding events may occur 

between proteins and small molecules to induce signalling processes3, between proteins and 

nucleic acids, such as in DNA/histone interactions4, and between nucleic acids and small 

molecules, such as those displayed by riboswitches5. Taking advantages of these recognition 

principles, researchers have developed target detection methods as well as therapeutics for 

countless diseases. While antibodies have been the gold standard for recognition for several 

decades, aptamers are emerging as an attractive alternative for the specific detection of a 

wide range of target molecules. 

 

Aptamers are a class of single-stranded DNA (ssDNA) or RNA oligonucleotides, which form 

three-dimensional structures enabling their specific binding with a target. Aptamers are 

selected from large library pools using an iterative selection process termed Systematic 

Evolution of Ligands by Exponential Enrichment (SELEX). The word aptamer stems from the 

Latin “aptus”-meaning “to fit”, and the Greek word “meros”-meaning “part”. Aptamers were 

first reported by Ellington & Szostak and Tuerk & Gold, who independently developed 

techniques to select RNA aptamers against specific organic dyes and T4 DNA polymerase, 

respectively6,7 and since then there has been an exponential growth in the number of 

publications detailing the selection and applications of aptamers (Figure 1.1). 
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Figure 1.1. Number of publications as a function of the years involving the research in aptamers. (Data extracted 

from PubMed). 
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The ability of aptamers to fold into distinct 3D conformations characterised by stems, loops, 

hairpins, bulges, triplexes, and quadruplexes facilitates the high affinity binding and selectivity 

to their target (Figure 1.2). Aptamers bind selectively to their target through intermolecular 

interactions, such as van der Waals forces, hydrogen bonding, electrostatic interactions 

between charged groups, and π-π stacking of “flat-structured” aromatic moieties8, which 

allow them to interact with a wide variety of target molecules from single molecules to 

complex target mixtures or even whole cells with dissociation constants (KD) typically in the 

low nanomolar range, comparable to those observed for monoclonal antibodies9. 

 

 

Figure 1.2. (A) stem-loop/ bulge (RNA ligand for ATP), (B) G-quartet (DNA ligand for thrombin), (C) Pseudoknot 

(RNA ligand for HIV-1 reverse transcriptase), (D) hairpin (RNA ligand for Bacteriophage T4 polymerase)10. 

 

1.1.1 Aptamers versus antibodies 

 

Aptamers possess similar affinity and specificity as monoclonal antibodies. Despite that, they 

offer multiple advantages including a relative ease of large-scale synthesis at affordable costs 

with no batch-to-batch variation, physical stability, and facile chemical modification11,12 (Table 

1.1). Aptamers can be selected against toxic and non-immunogenic compounds, whereas 

antibodies cannot be developed due to lethal damage of these toxic molecules on the host 

animals prior to the production of antibodies. Further, the production of these antibodies, 

requires sacrificing the host animal and in addition, antibodies are relatively expensive 

compared to aptamers13.  On the other hand, aptamers are not immunogenic or toxic in in 

vivo levels as nucleic acids are not typically recognised by the human immune system as 

foreign agents14,15. Pegaptanib, the first aptamer approved by the US Food and Drug 

Administration agency (FDA) against wet Age-related Macular Degeneration (AMD) 

displayed no immunogenicity in either preclinical evaluation in animals or clinical trials in 

patients16. Due to their relatively small sizes, even compared to antibodies, aptamers can 

penetrate easily through tissues and even cells17. Aptamers have binding affinities that are 

comparable to, and in some examples, even surpass those of monoclonal antibodies. Due to 

the inclusion of counter selection steps in SELEX they are inherently extremely specific, as 

demonstrated by the theophylline aptamer developed by Jenison et al., which showed an 

affinity for its cognate ligand that is 10,000-fold higher than that for caffeine, which differs 

from theophylline by only a single methyl group at nitrogen atom N-718. The arginine aptamer 
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developed by Geiger et al. showed a 12,000 fold stronger affinity with L-arginine than with D-

arginine19. These properties position aptamers as ideal candidates for therapeutics and 

diagnostics. 

 

Furthermore, once the aptamers sequence is identified, they can be synthesized with high 

purity, reproducibly and at a relatively low cost as compared to antibodies (Table 1.1). 

Aptamers can be easily chemically modified with various chemical tags including 

fluorescence probes, quenchers, electrochemical indicators, nanoparticles, or enzymes. 

These modifications can allow the immobilization of aptamers on various solid supports, 

provide stability against nucleases, and allow the incorporation of labels for use in various 

methods of detection.  

 

Table 1.1. Characteristics for antibodies and aptamers. 
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1.1.2 Disadvantages of aptamers 

 

Nowadays, a large number of aptamers have been selected and exploited in different 

applications for a wide range of targets as bacteria/pathogens20,21, proteins22, toxins23, 

viruses19, cells24, and tissues25. However, the process of aptamer production, SELEX, is still 

a long labour-intensive, repetitive process that requires trained personnel. Robots have been 

developed for the automation of SELEX, but conditions and parameters (selection buffer, pH, 

concentrations), need to be optimized per each specific target. Notably, at the in vitro level, 

the rate of the successful selection of the aptamers does not exceed 30%26.  

 

Aptamers, despite displaying high specificity in in vitro levels, may fail to efficiently bind to the 

specific target when used in vivo. This drawback arises due to their specific chemistry which 

renders them hydrophilic. In addition, non-modified RNA aptamers particularly, can degrade 

in the presence of nucleases circulating in blood. A possible solution to overcome this 

drawback is linked to the modification in the DNA or RNA backbone or modified nucleotides27. 

Nevertheless, one should account for the fact that aptamer modifications are sequence-

dependent, and may affect the folding and formation of the structures of aptamers, resulting 

in a loss of their functions28. Meanwhile, drawbacks may arise also from their compositions. 

Aptamers are typically composed of four nucleic acids, resulting in a lower diversity of 

secondary and tertiary structures, whose environment-dependent functionalities add to the 

limitations. To overcome this, modified nucleotides can be incorporated to increase the 

chemical diversity and rigidity of the aptamers29. Aptamers are also characterised by a short 

in vivo circulating half-time followed by rapid renal clearance. For this reason, aptamers are 

combined with polyethylene glycol (PEG), in order to increase the hydrodynamic/molecular 

weight of aptamers above the renal filtration cut off30. 

 

Considering the widespread application of aptamers in biosensors and diagnostic reagents, 

it is predicted that aptamers are one of the fastest-growing biotechnology areas in diagnostics 

and therapeutics31. A comprehensive description of the future perspectives of aptamers was 

published by Research and Markets32 in a report entitled “Global aptamers market-

segmented by type of products and applications-growth, trends and forecasts (2018-2023)”. 

They reported the potential advantages  of aptamers over antibodies in the fields of 

therapeutics and diagnostics and the market value is estimated to reach 401.30 billion $ in 

2023 and is expected to register a compound annual growth rate of 17.89% during the 

forecast period 2018 to 202332. 

 

SELEX process 

 

As stated above, the standard procedure to synthesize and identify aptamers is known as 

‘Systematic Evolution of Ligands by Exponential Enrichment’ (SELEX). Target-binding 

oligonucleotides are selected from a random library pool of different oligonucleotides (1013-

1015) through reiterative cycles of affinity separation and amplification7,33.  
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Standard SELEX consist of the following five main steps:  

a) designing an aptamer library pool; 

b) performing the SELEX cycle/round; 

c) monitoring the SELEX progression; 

d) cloning of the enriched library and sequencing of selection rounds for characterization 

and structural analyses 

e) characterisation of aptamer candidates. 

 

These steps are generally applicable to most aptamer selections. In general, aptamer 

sequences can be obtained with high affinity and specificity after 8-20 rounds of screening. 

SELEX typically also includes negative and  counter selection steps, to eliminate matrix 

binders and sequences that binding to potential interferents, respectively34–36. 

 

1.1.1 Designing the library pool 

 

The starting point of the SELEX process is a chemically synthesized random library. This 

library consists of random ssDNA sequences (1015 molecules). Most libraries are designed 

to be around 70-120 bases in length with a central random region of 20-80 random bases, 

flanked by two fixed sequences, (17-21 bases), that provide primer hybridization sites for 

PCR amplification, ssDNA production and enzyme digestion (Figure 1.3)37. An aptamer 

library is chemically synthesised by multiple couplings of adenine (A), thymine (T), guanine 

(G) and cytosine (C) through phosphonamidite chemistry38. This random region should 

contain all four bases in an equal distribution. Many researchers reported that an equal 

distribution increases the sequence space and consequently an enhanced possibility to 

select aptamers with the desired binding properties39.  

 

Amplification of the oligonucleotide random library at the beginning and throughout SELEX 

is of considerable importance, as the correct choice of library and efficient PCR amplification 

of the random library contribute to the success of aptamer selection. The diversity within the 

library is determined by the length of the random core region. Generally, as the length of the 

random region increases, the structural diversity within the library also increases. This 

increase in diversity allows for the presence of more complex 3D structures, which are more 

likely to have high-affinity moieties40. 

 

Modified nucleotides can not only improve the nuclease resistance and thermal stability of 

aptamers structure, but also contribute to the diversity of the library. Some nucleotide 

modifications include the modification of pyrimidines at the 5’ position with I, Br, Cl, NH3 and 

N3 and the 2’ position with NH2, F and OCH3
41 and with NH3, F or 2-OCH3 groups42, 2’ 

fluoropyrimidines43,44, 2’ O-methyl nucleotides45,46, position 5 of pyrimidines47 and position 4 

of pyrimidines using thiol UTP and CTP48. 
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The primer binding regions should not contain regions of internal complementary sequences 

in order to avoid hairpin structures and primer-dimer formation49. Some strategies purposely 

avoid the primer binding regions being part of the target binding sequence, such as tailored50 

and dual SELEX51. These strategies use conserved sequences (7-10 nucleotides), which are 

sequestered by self-complementary sequences, thus minimizing the risk that they become 

part of the target binding motif. An alternative strategy is primer-free DNA aptamer 

selection52, which employs endonuclease cleavage of the doubled stranded DNA template. 

The library is reconstituted after selection by ligation with primer annealing sites. This protocol 

was used to isolate aptamers against HIV reverse transcriptase53. 

 

A further important parameter to consider is the size of the target molecule. The molecular 

size difference between proteins such as bovine serum albumin (66 kD) and small 

molecules such as cocaine (0.30 kD) is broad. Therefore, the surface area available for an 

aptamer to interact with the target varies significantly between different classes of molecules. 

An appropriate length of the random region should strike a balance between the structural 

diversity required for selecting high affinity aptamers and an appropriate surface coverage of 

the target molecule54. Increasingly, the design of an aptamer library is driven by the structural 

traits of its cognate target. This may incorporate the application of computational analyses of 

aptamer-target interactions55. Furthermore, when designing an aptamer library, the random 

core region can be either a complete randomisation or a partial (doped) randomisation56.  

Based on the critical motif responsible for binding with the target molecule, a doped aptamer 

library can be synthesised to reselect optimal aptamers, with the aim of improving their affinity 

and specificity to the target57,58. 

 

Finally, an aptamer library in-solution normally forms energy efficient secondary structures 

by self-folding and this may obstruct the availability of nucleotide bases to interact with the 

target molecule59. To overcome this, the aptamer library at the start of every SELEX round is 

normally heat-denatured13,60. Following this heat denaturing process, the linearised 

oligonucleotides can interact more freely with the target molecule. 

 

 

Figure 1.3. A schematic diagram of ssDNA oligonucleotide. 
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1.2.2 Selection rounds of SELEX 

 

Each SELEX round or cycle involves 5 important steps (Figure 1.4):  

a) co-incubation of library pool with the target of interest to form nucleic acid-target 

complexes,  

b) partition of unbound sequences from the bound sequence-target complex, 

c) Elution of the bound sequences, 

d) amplification of the eluted sequences,  

e) preparation of the enriched ssDNA sequences for the next round of SELEX. 

 

 

Figure 1.4. Schematic overview of SELEX cycle. 

 

1.2.2.1 Co-incubation 

The first step of SELEX process is the incubation of the library pool with the target in an 

appropriate buffer solution and with the proper incubation conditions. Binding of an aptamer 

with the target relies on electrostatic, H-bonds, hydrophilic or π-π stacking interaction, which 

cause the conformational change within the aptamer by forming different 3D structures 

aiming the binding to the target61. Determining the appropriate in vitro conditions is guided 

primarily by the final planned application of the aptamer. It is generally recommended that 
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these conditions remain constant throughout the selection process so optimal binding 

efficiency can be achieved. 

This aptamer-target binding can be affected by physicochemical properties such as 

temperature, pH, and ionic strength62. Nevertheless, ionic composition i.e. sodium (Na+), 

magnesium (Mg2+), calcium (Ca2+) and potassium (K+) of the buffering system can strongly 

affect the oligonucleotide 3D structure63. Nucleic acids are polyanionic molecules and 

negative-negative charge repulsion may inhibit the formation of complex structures and thus 

impede binding with the target without the presence of these counterions. For instance, the 

divalent ions Mg2+ and Ca2+ can influence the degree of DNA folding. A study from Carothers 

et al.64 indicated that carrying out SELEX under low Mg2+ concentrations (1-2,5 mM), 

increased the stringency of selection, leading to the production of high-affinity binding 

aptamers. Other ions such as Na+ are effective in neutralizing negative charges of the 

phosphate molecules on the DNA backbone. Cruz-Aguado and Penner23 demonstrated that 

the binding affinity of the aptamer selected against ochratoxin (OTA), was increased in the 

presence of Ca2+ ions. 

G-rich aptamers that form G-quadruplexes (G4) have several advantages compared to 

unstructured sequences. They are thermodynamically and chemically stable and resistant to 

serum nucleases and they have twice negatively charged density per unit length as compared 

to duplex DNA65. A number of G-rich aptamers have been developed, such as the thrombin 

binding aptamer66, as well as aptamers selected against hematoporphyrin67, and HIV-1 

integrase68. The generation of these aptamers was performed in the presence of K+ in the 

buffer solution, as K+ is required to stabilise G-rich sequences to fold into the G4. 

 

1.2.2.2 Partition 

 

The partition step is the most critical step of SELEX and involves the separation of bound 

sequences to the target from weakly or unbound sequences. There are numerous methods 

for performing this phase, and one of the first methods used was separation via nitrocellulose 

membrane of controlled pore sizes, where nucleic acid sequences bound to the target cannot 

pass through these pores, whereas unbound sequences pass through69. However, in 

membrane SELEX there is a high degree of non-specific binding of the nucleic acid 

sequences to the membrane itself, and thus other strategies were pursued. 

 

The use of affinity columns where the target molecule was immobilised via covalent 

interactions has been widely reported70,71where partitioning is effectively achieved via elution 

of the unbound sequences, followed by release of the bound sequences using affinity elution 

or pH change72. Ciesiolka et al.  performed the selection of Zn2+ binding aptamer by immobilization 

of  metal ion on iminodiacetic acid group-Sepharose column73. 

Microtiter plates have also been used for target immobilisation, where the target is 

immobilised on the surface of the wells of the microtiter plate (polystyrene/streptavidin-

coated/maleimide activated/amine activated), and partitioning is achieved via removal of the 

supernatant following incubation of the library with the immobilised target. The advantage of 

microtiter plates is that a fresh aliquot of target is used every cycle of SELEX, avoiding 
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problems of denaturation/desorption of the target during the SELEX process. Examples of 

this include the selection of aptamers for Trichomonas vaginalis74 and shiga toxin75. 

One of the most commonly used methods for partitioning is the use of magnetic beads. As 

with the microtiter plates, there are a wide range of magnetic beads of diverse sizes ranging 

from nanometre to micrometre, with different functionalities e.g. carboxyl, amine, maleimide, 

streptavidin, Ni2+. There are multiple examples of this type of partitioning, including cholera 

toxin76,okadaic acid77, testosterone78,histamine79,estradiol, progesterone, testosterone80. 

 

Electrophoresis-based partition methods have been used to identify aptamers binders to 

proteins such as IgE81, neuropeptide Y82, and Muts protein83. Electrophoresis-based 

partitioning take advantage of the size-based difference in mobility of an analyte when an 

electrical field is applied, thus facilitating separation of target bound and unbound sequences.  

However, this method of partitioning is only useful for large molecules as efficient separation 

is generally not feasible with small molecules. 

 

Whilst some of the above techniques can be used for partitioning when carrying out SELEX 

against small molecules, immobilisation can be challenging as few binding sites are available 

and can also result in a conformational change in the structure of the target.  However, there 

are many examples of SELEX carried out via immobilisation of the small molecule target, as 

detailed in Section 1.4. 

 

Apart from these conventional methods ,other partitioning techniques have been reported 

,such as the use of affinity tags84, centrifugation85, flow cytometry86, and electrophoretic 

mobility shift assays87. Several of these partitioning methods for aptamer selection have been 

reviewed in detail by Gopinath et al.88. Further emerging techniques for effective partitioning 

when carrying out SELEX against small molecules include that of capture SELEX, where the 

library rather than the target is immobilised, and GO-SELEX, where a graphene oxide matrix 

has a high affinity for the single stranded sequences not bound to the target.  These 

approaches are explained in further detail in Section 1.4. 

 

The use of negative and counter SELEX steps is routinely used. Negative SELEX involves 

incubation of the nucleic acid library with the matrix to be used for partitioning e.g., 

nitrocellulose membrane, microtiter plates, magnetic beads, affinity columns, and this step 

removes any matrix binders. Counter SELEX is carried out after negative SELEX and 

involves incubation with molecules that could potentially interfere in the final application of 

the aptamer. Counter SELEX can be carried out sequentially with each of these potentially 

interferents79, or with a combination of them together78,89. This ability to eliminate binders to 

closely related structures/potential interferents facilitates a careful tuning of the specificity of 

the aptamer, which is not possible with antibodies, where the antibodies generated are 

dependent on the physiological response of the animal host. 

 

1.2.2.3 Elution 

 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR TOOLS FOR THE RAPID AND COST-EFFECTIVE DETECTION OF SMALL MOLECULES 
Xhensila Shkembi 



24 
 

Following removal of the unbound part of the library, bound oligonucleotides are generally 

eluted from the ssDNA/target complex. Interactions between the bound sequences and the 

target of interest are noncovalent in nature, and so several methods are possible for eluting 

these sequences. Methods used for elution include heat treatment76,90, affinity elution91, 

changes in ionic strength or pH of, and the use of denaturing substances such sodium 

dodecyl sulfate (SDS), ethylenediaminetetraacetic acid (EDTA), NaOH and urea, to disrupt 

hydrophobic stacking of DNA bases or chelation of aptamer-target complexes19,69,91.It is also 

worth noting that complete elution of bound sequences may not always be achievable. Some 

sequences possessing extremely high affinity to the target molecule are often difficult to elute, 

and can be lost during elution92. 

 

An alternative strategy for obtaining bound sequences is to use aptamer-target complexes 

directly as the template for PCR amplification, providing the binding complexes do not 

interfere with the Taq polymerase used in PCR. This strategy has been applied successfully 

in generating histamine-specific aptamers79,progresterone and estradiol aptamer80,and 

testosterone aptamer78. In this approach, the bound target aptamers dissociate from the 

aptamer-bound matrix during the denaturation step of the PCR cycle, and become freely 

available for primers to bind, thereby initiating the amplification process.  

 

1.2.2.4 Amplification 

 

The isolated oligonucleotides molecules are subsequently amplified to increase the enriched 

amount of selected aptamer. An effective SELEX procedure must be accompanied by 

efficient PCR amplification to obtain the proper length of amplicons and to retain those 

sequences that form stable secondary structures during the cycles of amplification in order 

to obtain high-affinity aptamers. The most conventional and effective technique for the 

amplification process is done by performing polymerase chain reaction for the ssDNA 

selected or reverse transcription-PCR for RNA sequences after the elution step. When using 

PCR for the aptamer selection, the random DNA or RNA is used as PCR template, and the 

diversity of template sequences can cause non-specific by-products amplicons during PCR 

due to stem-loop secondary structures formation of GC regions. These structures can 

promote polymerase jumping during PCR and generate PCR products of smaller sizes and 

thus prevent evolution to the desired aptamer sequence and structure93,94. 

 

Although optimising PCR conditions, such as primer concentration, annealing temperature, 

and the number of amplification cycles can, moderately, reduce the amount of PCR by-

product formation, it is not always effective. One of the common methods to improve the PCR 

amplification is the addition of DMSO, betadine, glycerol, or formamide to the reaction 

mixture76,95. Moreover, some advanced PCR techniques, such as real-time PCR and 

emulsion PCR have been used in SELEX96,97. Real-time PCR allows the detection of 

amplification in real time by introducing a fluorescent dye such as SYBR green. As SYBR 

green dye binds to double stranded DNA, the intensity of the fluorescent emission increases 

as the reaction progresses98. Other approaches used in RT-PCR include the use of molecular 
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beacons, Taqman probes and Light-cycler probes.  The use of RT-PCR is useful as it avoids 

the over amplification, which sometimes can form PCR by-products, reducing the efficiency 

of aptamer enrichment99.  

 

1.2.2.5 Preparation of single-stranded DNA 

 

In final step of normal PCR, the final product obtained is double stranded DNA (dsDNA), thus 

requiring the generation of single stranded DNA prior to the next cycle of SELEX. One of 

most commonly used methods for the generation of single stranded is the use of biotinylated 

forward or reverse primers, resulting in a biotinylated amplicon, and streptavidin coated 

magnetic beads62-64. The biotinylated dsDNA binds to the streptavidin magnetic beads, the 

duplex is then denatured via low/high pH or heating, and following magnetic separation, the 

unlabelled strand for use in the next cycle of SELEX is found in the supernatant. An 

alternative approach for the generation of ssDNA is the use of asymmetric PCR, which 

exploits a huge excess of one primer over the other, resulting in a mixture of single and double 

stranded DNA.  Following amplification, these are separated using gel electrophoresis and 

the single stranded DNA is excised from the gel and purified68,69.  The use of enzymes of 

exonucleases such as lambda exonucleases49,100 and T7 Gene 6 exonuclease101 is another 

alternative. During PCR amplification, a 5’-phosphate group is incorporated into one strand 

of the dsDNA by using a 5’-phosphorylated primer. Lambda exonuclease transforms dsDNA 

into ssDNA through digestion from the end containing 5’-phosphate, preferentially digesting 

one strand.   Finally, based separation methods can be used, where DNA strands of unequal 

size are produced as a result of chemical or structural modifications of one of the PCR 

primers. The incorporation of a chemical spacer such as hexaethylene glycol (HEGL)102; 

constrained Nucleic Acids (CNA)103 or a GC-rich stem loop structure104  at the 5′ end of the 

primer and downstream of poly-nucleotide extension, act as terminators of DNA 

polymerization. This leads to the production of a PCR amplicon that is partially double 

stranded, with two strands of unequal size that can be separated using gel electrophoresis.  

 

1.1.2 Monitoring of SELEX process 

 

Monitoring of the aptamer’s evolution is critical to ensure the selection of target-specific 

aptamers and to determine if the conditions used during SELEX are appropriate. These 

methods can be classified as direct and indirect methods. In direct methods the evolution of 

aptamers is evaluated in each round using techniques such as surface plasmon resonance 

(SPR), filter-binding assay, enzyme-linked oligonucleotide assay (ELONA), electrophoretic 

mobility shift assay (EMSA), and fluorescence-activated cell sorting (FACS)105–109. 

 

Indirect methods for monitoring SELEX mostly rely on assessing the gradual reduction of the 

sequence diversity of aptamer pools. The advances in next-generation sequencing have 

provided the possibility of massive parallelised sequencing of aptamer populations of each 

round during the selection process110. Moreover, the diversity and structure of aptamer 
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populations can be monitored by methods such as denaturing HPLC, melting and remelting 

curve analysis in real-time PCR-restriction, fragment length polymorphism (PCR-RFLP), and 

nuclear magnetic resonance (NMR)110–114. In comparison with other methods, real-time PCR, 

allows the detection of very low amount of eluted ssDNA. Nevertheless, due to the 

heterogeneity of the SELEX library, particular optimization of different significant parameters 

is crucial to minimize by-product formation during the amplification step. In addition, this 

technique does not provide information regarding changes of binding affinity during selection 

rounds.  In other approaches Eastern and dot blot techniques can be used by combining 

nitrocellulose membrane and the nucleic acids that are modified with a fluorophore or biotin 

molecule115,116. 

In an affinity column-based SELEX, affinity column elution is used to monitor the evolution of 

SELEX73,117,118. In this approach, the target is bound on the column, and the nucleic acids 

are labelled with a radioisotope or fluorescent tag. The amount of nucleic acids eluted is 

analysed and compared with the amount of nucleic acids added to the column, and good 

evolution would result in less and less labelled nucleic acids eluting from the column.  

 

1.1.3 Cloning and sequencing 

 

After several selection rounds of SELEX when the affinity saturation of an enriched library 

has been achieved, previously the final oligonucleotide pool was cloned into bacterial vectors 

and individual colonies (30-100) and Sanger-sequencing carried out to119. However 

nowadays, next generation sequence (NGS) is widely used, and this enables the sequencing 

and analyses of thousands of sequences instead of just a hundred. Subsequently the 

identified sequences of each individual aptamer can be evaluated and analysed using 

bioinformatic tools such as Galaxy, Clustal Omega, AptaSuite and Geneious120–123. The data 

from each pool of the selection rounds are then compared and analysed, with the aim of 

finding the sequences with high affinity and specificity for the target.  The identified sequences 

can also be evaluated using mFold program to predict their two-dimensional (2D) 

structures124, that can be further analysed to identify key motifs that are potentially critical for 

aptamer-target interaction. 

 

1.2.5 The characterization and validation of selected aptamers  

 

Following sequencing, the next step is the characterization and validation of the selected 

aptamer candidatess, including (a) assessing binding affinity and specificity of each 

sequence, (b) determining KD values, and (c) confirming in-solution binding capability. 

Aptamer candidates can be chemically synthesised and modified to perform target binding 

assays. Once the binding assays are completed, the binding affinity of each aptamer is 

ranked, and aptamers with low affinity are excluded from further studies.  The KD values of 

the high affinity aptamers are determined to evaluate the strength of aptamer-target 

interactions and can vary from µM to pM range. The KD is calculated as the value that 

describes the ratio of unbound and bound aptamers, expressed in molar units (M). In order 

to determine the KD value, the concentration of one of the two variables (i.e. aptamer or target 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR TOOLS FOR THE RAPID AND COST-EFFECTIVE DETECTION OF SMALL MOLECULES 
Xhensila Shkembi 



27 
 

molecule) is kept constant while the other is successively varied, followed by the 

measurement of the amount of aptamer-target complexes formed over a range of starting 

concentrations. General methods used for determining the KD value include: (a) surface 

plasmon resonance (SPR)118, (b) enzyme Linked Aptamer Assay (ELONA)125, (c) fluorescent 

binding assay90, (d) MicroScale Thermophoresis (MST), and Equilibrium filtration or 

dialysis19,126. More details per each of the techniques can be found in Section 1.5. 

 

Different types of SELEX 

 

In the past 30 years, the selection of aptamers has been achieved for a variety of different 

molecules, with applications in biology, chemistry, medicine, bioinformatics, environment, 

and food safety sciences. However, the efficiency of conventional SELEX in the discovery of 

aptamers is sometimes more challenging in terms of its cost effectiveness, limited partition 

capability and target limitations. In the first work, Ellington and Szostak et al. and Tuerk and 

Gold et al.6,7 used nitrocellulose filters, affinity columns and gel columns for the separation of 

complex and the unbound sequences. Since that time, various modifications of SELEX have 

been developed (Table 1.2). 

 

To date, more than 32 kinds of SELEX variations have been introduced, however, a standard 

SELEX protocol suitable for all targets or the experimental settings does not exist127. 

Significant improvements have been achieved in some critical points of SELEX: the design 

of the nucleic acid library (e.g. chemical modifications, high fidelity-SELEX, genomic-

SELEX)128, target preparation (e.g. cell-SELEX)129, library/target co-incubation (e.g. atomic 

force microscopy SELEX, capture SELEX)130, complex separation (e.g. capillary 

electrophoresis-SELEX, magnetic bead-SELEX, graphene oxide-SELEX (GO-SELEX), SPR-

SELEX, on-chip SELEX)131,132, PCR amplification (e.g. real time-PCR, emulsion PCR, digital 

PCR)133, sequencing methods (high throughput sequencing-SELEX)134 and entirely novel 

SELEX protocols (in vivo SELEX, robotic SELEX and in silico SELEX)131. 

 

Although the main principles of the SELEX process remain the same, these variants have 

greatly improved the initial SELEX, resulting in more effective methods for the selection of 

aptamers.  

 

1.3.1 CE-SELEX 

 

Capillary electrophoresis (CE) SELEX was firstly introduced in 2004 by Mendonsa et al.81,135, 

who selected an aptamer against human Immunoglobulin E (IgE). CE is a separation 

technique that separates the charged molecules based on size due to their different rates of 

migration in an electric field136. CE-SELEX uses this mechanism in order to differentiate the 

target bound oligonucleotides from the unbound oligonucleotides due to the difference in their 

electrophoretic mobility, which makes it a very efficient separation method37. Regardless of 

their size the nonbinding sequences migrate through the capillary with the same mobility and 
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are collected separately from the target-sequence complex. In the next step the bound 

sequences are amplified, purified and ssDNA generated for use in the next selection round138.  

This method enables the selection of optimal candidates with high affinity and specificity, and 

can  markedly reduce the required number selection rounds138. The efficiency and simplicity 

of the selection is attributed to some advantages of this method; (a) as some of the targets 

are rare or expensive CE-SELEX require less sample and use of reagents139; (b) both target 

and sequences are free in solution (not bound on any support matrix), and in this way their 

natural structure is maintained when they bind to the nucleic acids140; (c) CE is not just a 

separation tool, but also an analytical technique, which can monitor the sequence enrichment 

and quality in every selection round. Tang et al.141 compared the selection efficiency using 

CE and affinity chromatography, CE showed two-fold improvement of nearly 87.2% binding 

while affinity chromatography with only 38.5%141. CE-SELEX has been used for aptamer 

generation against several targets, achieving low nanomolar dissociation constants141, but 

has a significant limitation in that the target should be large to allow for efficient separation 

between bound and unbound sequences. Yang et al. did, however, perform a CE-SELEX 

against porphyrin (580 kD), but the selection was not as effective as that achieved with larger 

targets173. 

 

In order to improve the selection procedure and to avoid PCR amplification, an alternative 

CE-based method, called non-SELEX, selects an aptamer without amplification; e.g. non-

Equilibrium Capillary Electrophoresis of Equilibrium Mixtures (NECEEM)142, equilibrium 

capillary electrophoresis of equilibrium mixtures (ECEEM)83,143. In ECEEM the components 

of the equilibrium mixture, which is injected into a capillary prefilled, are separated by capillary 

electrophoresis while equilibrium mixture is maintained between the target and the aptamers. 

Here differences in aptamer KD, results in different fractions of aptamers migration with 

different mobilities. This SELEX technique collected these different fractions and generated 

smart aptamers with different and predefined KD values in only three rounds of selection. 

However, CE-SELEX displays some drawbacks, for example, a very small amount of library 

is allowed to be injected to maintain an adequate resolution. This small quantity limits the 

number of sequences that can be assessed. Further drawbacks are related to the fraction 

collection as the abundance of aptamers in early rounds is often below the limit of detection 

and variability in mobilities requires collection windows to be adjusted. To overcome the 

relatively limited size of the library135 (1012 sequences), Jing et al.144 modified this method 

by using micro Free Flow Electrophoresis (µFFE), where the starting library reaches up to 

1014.  

 

1.3.2 Microfluidic SELEX 

 

Combing conventional SELEX with microfluidics, Hybarger et al.145 developed a fully 

automated system called Microfluidic SELEX (M-SELEX) for the selection of an RNA aptamer 

against lysosome. In contrast with conventional SELEX cycle, using the microfluidic chip 

facilitated the achievement of each SELEX cycle in just an hour, whilst also requiring less 
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sample and reagents.  Luo et al.146, combined magnetic bead SELEX with microfluidics in a 

continuous-flow magnetic activated chip-based separation, for aptamer selection against the 

recombinant botulinium neurotoxin. This aptamer showed high affinity but the aggregation of 

magnetic beads in the microchannel resulted in low aptamer purity and recovery. To 

overcome these disadvantages Qian et al.147, improved the process by integrating 

ferromagnetic structures in the microfluid channel chip, resulting in a successful aptamer 

selection against streptavidin.  An alternative microfluidic SELEX method was suggested by 

Park et al.148 to obtain a prostate-specific antigen-binding aptamer based on an 

acoustophoresis technique using a nanos porous sol-gel microarray material. M-SELEX has 

become a versatile and automated method for the rapid generation of aptamers and recently 

other modified techniques have been established to enhance the efficiency of the selected 

aptamers, including protein microarray-microfluidic chip SELEX149, capillary electrophoresis 

microfluidic SELEX139, and bead-based microfluidic SELEX150. A new platform integrating 

magnetic separation, micropumps, micromixers and temperature control systems for 

enzymatic amplification reactions for aptamers against the influenza A/H1N1 virus was 

recently reported151. 

 

1.3.3 High-throughput Sequencing SELEX 

 

In conventional SELEX the method to identify the individual sequencies of the enriched 

libraries was based on Sanger sequencing analysis. However, in most cases the final library 

consists of thousands of sequences, making it difficult to identify the best aptamer. In addition, 

the best sequences with highest affinity and specificity, are not always those with the highest 

frequencies and thus it is important to apply clustering of related sequences.  High-

throughput-sequencing (HTS) was recently introduced to SELEX, facilitating the sequencing 

of the library through the selection rounds152. Hence, the enriched sequences are visible in 

earlier rounds giving information about the evolution of SELEX. Using HTS, the huge amount 

of raw data from sequencing is analysed in terms of counting sequences and ranking them 

in order of frequency. These sequences can be analysed, ranked, and filtered by cut-off read 

numbers to select candidate aptamers for further testing. Additionally, the use of bioinformatic 

tools can facilitate the characterization of aptamers, structure prediction, aptamer-target 

interaction 153. Since the first HTS performed on 2010 by Cho et al.152, several aptamers 

against different targets have been selected using this approach24,121,154,155. 

 

1.3.4 In vivo SELEX 

 

Aptamers selected in vitro sometimes may not be functional in vivo due to localised 

environment conditions such as temperature, ion atmosphere, pH, and other variables, that 

determine the affinity and specificity of the aptamer.  To address this, researchers have 

developed an in vivo-based SELEX method to select tissue-penetrating aptamers directly 

within animal models. Mi et al.156 performed whole-organism in vivo SELEX in a model of 

intrahepatic colorectal cancer (CRC) metastases. After 14 rounds of selection collecting the 

aptamer that bound to liver metastases, they generated an aptamer that bound to oncogenic 
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helicase p68.  In another work Chen et al. identified an aptamer capable of crossing the blood 

brain barrier157. Despite the fact that these examples demonstrate the successful generation 

of aptamers using live animal model, still, the main concern is that nucleic acids are 

susceptible to enzymatic degradation. Moreover, when aptamers are injected systematically, 

elimination through the liver and clearance in the kidney is inevitable. 

 

1.3.5 Cell SELEX 

 

Cell-SELEX employs whole live cells as targets. As in conventional SELEX even here two 

types of screening are done, the oligonucleotide library is primarily incubated with non-target 

cells (counter SELEX) and then with the target cells (positive SELEX).  Compared to in vitro 

SELEX, in cell SELEX molecular targets are in their native conformation and different 

receptors molecules can be screened simultaneously. Cell SELEX was first published in 2003 

by Daniels et al.158 where they successfully selected an aptamer against tenascin-C using a 

glioblastoma-derived cell line, U251. Ara et al.159 successfully screened tumour cell surface 

antigen aptamers, that can be used as molecular and diagnostic markers as well as for cancer 

treatment. Lin et al generated an aptamer that can distinguish the glioma cells from the 

human astrocytes160. Several other cell SELEX-based studies have been published such as 

TECS SELEX161, FACS-SELEX129,162, 3D cell SELEX163, cell internalization SELEX164,165.  

Currently, cell-SELEX is mainly used for cancer-related biomarkers. In general, cell-SELEX 

requires a higher number of cycles,  and is considerably longer than conventional SELEX 

and there is a risk of failure due to the damage of fragile cells166. 

 
Table 1.2. List of some modified SELEX methods which are commonly used. 

Method  Advantages Limitations Ref. 

Nitrocellulose 

filter binding 

SELEX 

Relative ease of selection 

No special equipment 

required 

Equilibrium, in solution 

aptamer-target binding 

Potential for parallel 

aptamer selections for 

multiple targets 

Can be used as medium-

throughput binding assay 

Large number of selections rounds necessary 

(8–20 rounds) 

Relative abundance and rapid enrichment of 

filter-binding aptamers 

High amount of non-specific binding of library to 

membrane 
 

167 

Bead-based 

SELEX 

Applicable to most targets 

(small-molecules, 

peptides, proteins, and 

cells) 

Potential for serial and 

parallel aptamer 

selections for multiple 

targets 

Rapid selection of 

aptamers (1-6 rounds of 

selection) 

Target or aptamer immobilization: restricted 

interaction surface 

Nonequilibrium, flow binding (if used with fluidic 

devices) 

Fabrication of fluidic devices, and electronic 

instruments and flow pumps required for operation 

Density-dependent co-operativity for non-specific 

interactions  

168 
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Equilibrium, in-solution 

binding 

Ease in fine-tuning 

selection stringency 

Microfluidic 

SELEX 

Potential for serial and/or 

parallel aptamer 

selections for multiple 

targets 

Both equilibrium, in-

solution and 

nonequilibrium, flow 

binding systems are 

available 

Rapid selection of 

aptamers (1–6 rounds of 

selection) 

Target immobilization or encapsulation required 

Fabrication of fluidic devices, and electronic 

instruments and flow pumps required for operation 

169 

Microarray 

SELEX 

Equilibrium binding with 

in-solution target and 

immobilized 

aptamer 

Can be used as a large-

scale binding assay 

 

Limited capacity for aptamer library (<105 

sequences) 

Currently limited to ssDNA aptamers 

Aptamer sequences need to be pre-determined 

(designed or derived from a pre-selected aptamer 

library) 

Relatively large number of selection rounds are 

necessary (~9 rounds) 

Costly and time consuming due to fabrication of a 

microarray with different sequences unique for each 

target 

Single target selections 

Prone to artifactual results due to design of 

sequences 

Requires microarray scanner to measure binding 

170 

Microscopic 

SELEX 

Single-round selection 

reported 

Limited capacity for aptamer library (<108 

sequences) 

Requires expensive and specialized instrument 

(i.e., Atomic Force Microscopy system) 

Immobilization of either target or aptamer is 

required 

Non-equilibrium binding 

171 

Cell SELEX Biomarker discovery 

Therapeutic potential of 

selected aptamers 

Target in native state 

Selection against cell 

Restricted to molecules presented on cell surface 

Prone to artifacts due to dead cells in population 

Target(s) of the selected aptamers are unknown 

Selection of aptamers to an unintended target is 

very likely 

109 

In vivo SELEX Selection of in vivo 

functional aptamers 

Limited capacity for aptamer library (~104 

sequences) 

Relatively large number of selection rounds are 

necessary (up to 14 rounds) 

Selection of aptamers to an unintended target is 

very likely 

172 
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Small molecule 

SELEX 

Equilibrium, in solution 

binding 

No immobilization of 

small-molecule target 

Complications of aptamer capture sequence within 

aptamer library random region 

Relatively large number of selection rounds are 

necessary (~13 rounds) 

Depends on target binding-induced conformational 

change on aptamer for its release 

 

Capillary 

electrophoresis 

SELEX 

Separate aptamers-target 

complexes from free 

aptamers according to 

their electrophoretic 

mobility with capillary 

electrophoresis 

Could effectively identify 

high affinity aptamers in 

few rounds 

Restricted to targets that cause a shift in aptamer 

electrophoretic mobility pattern 

138 

Capillary 

Electrophoresis 

SELEX 

Equilibrium, in-solution 

binding 

Rapid partitioning of 

target-bound and 

unbound aptamers 

Limited capacity for aptamer library (~1012 

sequences) 

Restricted to targets that cause an electrophoretic 

shift on nucleic acid aptamers 

Capillary-electrophoresis instrument or fabrication 

of micro-electrophoresis devices are required 

173 

In silico SELEX Could be used to predict 

aptamer affinity, 

specificity, 3D structure 

and aptamer-target 

interaction by computer 

prior to experimental 

characterizations 

Employ computational 

docking 

Small size of starting library  

Complex computational methods and programs 

166 

 

 

1.4 SELEX type focused more on small molecules 

 

1.4.1 Problems associated with small- molecule binding aptamers 

 

As can be seen in Figure 1.5 only 19% of existing aptamers have been generated for small 

molecules targets. Originally SELEX was presented as a very effective methodology for the 

selection of aptamers for small molecules. However, other larger targets such as proteins or 

cells have more functional groups and structural motifs, implicating higher probability for the 

successful selection of aptamers with high affinity and specificity. On the other hand, small 

molecules play important roles in many fields and the demand for their detection is of 

increasing interest. These molecules include cell signalling molecules, toxins, drugs, heavy 

metals, antibiotics, ions, and pesticides97–100. 
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Figure 1.5. A chart that represents the selected aptamer per each target type174. 

 

Considering their importance conventional SELEX protocols have been modified to develop 

new and improved protocols aimed at the successful selection of specific aptamers against 

small molecules, and approaches where target small molecules have been immobilised on 

diverse matrices (Table 1.3) as well as approaches where the target small molecules are free 

in solution, have been developed. In the case of small molecules, the number of functional 

groups is limited, and when the selection is not performed with the target free in the solution, 

one of its functional groups will have to be used for the immobilization, thus potentially 

decreasing the amount of possible interaction with the aptamer candidate. Moreover, the 

binding of the target to the matrix for the selection is often carried out in a conjugate form 

rather than for the target alone, and this can negatively affect the applications when the target 

is free in the solution. For example, the aptamer selected for sulforhodamine, displayed 

weaker binding to the target when in solution compared to when the target was immobilized 

on the matrix used for the selection175.  In some other studies, the pool library is exposed to 

target, linked to protein carrier molecules such as bovine serum albumin (BSA), ovalbumin 

(OVA), and keyhole limpet hemocyanin (KLH)176. However, this promotes the aptamer 

selection against a conjugate or linker molecule rather than the unmodified original target.  

To overcome these disadvantages, alternative SELEX methodologies have been developed, 

such as GO-SELEX177 and capture SELEX178, where the target does not need to be 

immobilised. 

3%
7%

19%

71%

Virus Cell Small molecules Proteins
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Table 1.3. Commercially available chemically modified matrixes used for the immobilization of small molecules 

for their aptamer selection. 

Chemical moiety of 

ligand 

Matrix chemistry Magnetic bead Agarose 

COOH CHO hydrazine  Adipic acid dihydrazide Agarose 

COOH CHO (EAH 

Sepharose only) 

amine M-270 Amine EAH Sepharose 4B 

Affi-Gel 102 Gel 

CH sepharose 4B 

Carboxy Link Coupling Resin 

NH2 aldehyde  AminoLink PlusCoupling Resin 

AminoLink Coupling Resin 

NH2 cyanogen bromide  CNBr-Activated Sepharose 4B 

CNBr-Activated Sepharose 6 

MB 

NH2 N-hydroxy succinimide 

(NHS) 

 NHS-Activated Sepharose E 

Fast Flow 

Affi-Gel 10 

Affi-Gel 15 

Pierce NHS-Activated Agarose 

NH2 N-nucleophiles carbonyl diimidazole  Pierce CDI activated Agarose 

Resin 

NH2 SH tosylactivated M-280 

Tosylactivated 

MyOne 

Tosylactivated 

 

NH2 SH (Dynabeads 

only) 

Carboxylic acid M-270 

CarboxylicAcid 

MyOne 

CarboxylicAcid 

ECH Sepharose 4B 

NH2 SH OH 

(Sepharose only) 

epoxy M-270 epoxy Epoxy-Activated Sepharose 6B 

SH iodacetyl  SulfoLink Coupling Resin 

SH heavy metal ions 

alkyl and aryl 

thiol  Activated Thiol Sepharose 4B 

Halides addition to 

C=O C=C N=N 

  Thiopropyl Sepharose 6B 

 

 

1.4.2 Magnetic beads-based SELEX 

 

One of the main challenges of performing SELEX with a small molecule target is the 

partitioning of bound and unbound sequences. Magnetic beads are the most widely used 

solid matrix for the selection of aptamers against small molecules, that simplify the separation 
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process of target-ssDNA and unbound-ssDNA through the aid of a magnet rack. These beads 

are super magnetic spherical polymers with a uniform size and a define surface allowing a 

variety of chemistries for the coupling reaction with different molecules (Table 1.3). The use 

of magnetic beads reduces the volumes needed to perform aptamer selection, additionally, 

since magnetic beads are thermally, they can be used directly in PCR to amplify the target 

bund DNA, avoiding any potential loss of sequences during elution. Many different aptamers 

have been selected against small molecules using magnetic beads. Kiani et al.179 have used 

streptavidin-coated magnetic beads to isolate digoxin aptamer, Duan et al.180 and Mairal et 

al.,79 used carboxylic beads for chloramphenicol and histamine aptamer isolation, 

respectively. Bruno and Kiel et al.76 and Lin et al.77 have used tosylactivated magnetic beads 

for the selection of an aptamer against biotoxin and okadaic acid-mAb respectively. 

 

Figure 1.6. Schematic representation of Magnetic bead-based SELEX. 

 

Briefly, as in SELEX with large molecules, the first step involves the immobilization of the 

target molecule through interaction of functional groups on the bead surface and the 

functional group of the target (Figure 1.6). Sequences that bind the target are separated from 

those they do not bind via multiple washes whilst the magnetic beads are separated from the 

supernatant by placing close to magnetic stand. The sequences are amplified for the next 

cycle of SELEX. As previously mentioned, a critical component of SELEX to increase the 

aptamer specificity, is the introduction of negative and counter selection steps. Negative 
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selection is the selection against non-target components that are present in the target 

sample, such components include selection buffer and unmodified matrix (naked or activated 

magnetic beads). Counter selection is performed against molecules structurally similar to the 

target, as well as potential interferents that may be present in the sample where the aptamer 

will finally be applied. 

 

An interesting one-pot SELEX approach was developed by Jauset-Rubio et al.80 using the 

benefits of counter-SELEX and next generatin sequencing for the simultaneous identification 

of aptamers against the steroids estradiol, progesterone, and testosterone. Results of binding 

studies showed nanomolar affinity of the aptamers toward the specific targets, with 

reasonable specificity given the structural similarity of the target molecules. 

 

1.4.3 GO-SELEX 

 

Graphene oxide (GO), chemically exfoliated from oxidized graphite, is considered as a 

promising material for SELEX for small molecules.  The novel approach of using GO in 

SELEX was first described by Park et al.177 who selected an aptamer against the Nampt 

protein. In principle, oligonucleotides are bound to the GO surface through π-π stacking 

interactions between the nucleobases and sp2 atoms of GO. Adsorption of dsDNA on GO is 

very weak due to the shielding of nucleobases by the phosphate backbone, whilst ssDNA 

binds very strongly181. In one approach, the oligonucleotides of a random library are adsorbed 

on GO and incubated with the target, and high affinity binders are desorbed from the GO and 

then extracted, amplified, and subsequently re-adsorbed to the GO for the next round of 

SELEX.  Another approach is where the target is pre-incubated with the ssDNA/RNA library, 

and following incubation, added to the GO, and the unbound ssDNA binds to the GO, and 

centrifugation used to separate the GO-bound ssDNA from the target bound ssDNA.  

Alternatively, a combination of these approaches can be used, where the library is primarily 

incubated with the counter targets, and then added to the GO. ssDNA bound to the target is 

separated from the ssDNA bound to the GO via centrifugation, and the target is then added 

to the GO, and high affinity binders are desorbed from the GO via interaction with the target 

molecule (Figure 1.7). 
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Figure 1.2. Schematic representation of GO-SELEX. 

 

Nguyen et al.182 developed multiple GO-SELEX selection of aptamers against different types 

of pesticides; tebuconazole, inabenfide, and mefenacet.  In another selection done by Gu et 

al.183, three different screening processes were used to obtain aptamers against okadaic acid 

(OA). In the first step the ssDNA was firstly incubated with the target (OA) than with GO. In 

latest rounds a negative selection step was introduced in order to disqualify weakly bound 

ssDNA. Moreover, they performed an important step for increasing the aptamer specificity, 

which is the involvement of counter molecules which may co-exist with the target in a 

heterogeneous environment. In this work, the Kd values for aptamer selected against 

Okadaic acid were slightly lower than that of the aptamer screened by Eissa et al.184, who 

used immobilized okadaic magnetic beads for the aptamer selection. Comparing these 2 

types of selection,  the use of graphene oxide method allows the target to be free in the 

solution throughout the selection, enhancing the successful application of these aptamers in 

detecting contaminated samples with OA in its native conformation state183. 

Another successful aptamer selected using GO SELEX, was against the mycotoxins, patulin 

(PAT),185 and T-2 toxin186.  
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1.4.4 Capture SELEX 

 

Capture SELEX was originally designed by Stoltenburg et al.178, and in this approach the 

library rather than the target molecule is immobilised.   The nucleic acids used in the library 

generally have the format of fixed sequence for primer binding (20-25nt), random sequences 

(30-40nt), fixed docking probe sequence (8-12nt), random sequences (5-20nt), fixed 

sequence for primer binding (20-25nt). As always, the library is amplified and ssDNA 

generated, and the generated ssDNA is then immobilised onto a solid matrix such as 

agarose187 or magnetic beads178 (Figure 1.8). Streptavidin coated beads are normally used, 

and these are functionalised with a biotinylated probe complementary to the docking probe, 

thus achieving immobilisation of the library. Pre-elution and background elution steps are 

sued to remove any unbound or weakly bound sequences.  A counter SELEX step can then 

be introduced, incubating the functionalised beads with the counter molecules.  Sequences 

with affinity to the counter molecules are displaced and this displaced DNA separated, and 

the beads then incubated with the target molecule.  Sequences with affinity to the target 

molecule are effectively displaced, and this displaced DNA is then amplified, ssDNA 

generated and again immobilised on a fresh set of beads, and the process repeated until 

evolution has been completed (Figure 1.8). 

 

 

Figure 1.8. Schematic representation of Capture-SELEX. 
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In the case of agarose beads the library usually needs to be packed in an affinity 

chromatography column, and the target-binding-library need to be separated using 

centrifugation, which is not as gentle as separation through the magnetic rack in the case of 

magnetic beads. However, the cleaning process of magnetic beads is laborious, and if the 

cleaning is incomplete, some non-specific library sequences may remain.  

 

Capture SELEX facilitates immobilisation-free SELEX and has been used successfully to 

select both DNA and RNA aptamers against small molecules188, including cadmium189, 

penicillin190, quinolone191, lipopolysaccharide192, amongst others (Table 1.4). However, 

capture SELEX requires careful optimisation of experimental conditions such as buffer 

composition, temperature and time of incubation130, and typically requires a high number of 

cycles to complete evolution. 

 

Table 1.4. Example of different specific aptamers selected via Capture SELEX. 

Aptamer targets Target type Library sequence (5’ to 13’)  KD Ref. 

ATP, GTP Phosphate 

compounds 

CCTGCCACGCTCCGCAAGCTT-N10-

CTGCAGCGATTCTTGATCG-N20- 

TAAGCTTGGCACCCGCATCGT 

N.A 193 

Zinc Metal ions CATCAGTTAGTCATTACGCTTACG-N50- 

ATTGTGAAGTCGTGTCCCTATAGTGAGTCG

TATTAGAA 

15 𝜇M 194 

Human α-

thrombin 

Serine 

protease 

Forward PCR prime site-N17-

TTTTGTGGGTAGGGCGGGTTGGTTTT-N17- 

Reverse PCR prime site 

70 nM 195 

Acetamiprid Pesticide CCTGCCACGCTCCGCAAGCTT-N10-

CTGCAGCGATTCTTGATCG-N20- 

TAAGCTTGGCACCCGCATCGT 

4.98 𝜇M 196 

Kanamycin A Aminoglycosid

e antibiotic 

ATACCAGCTTATTCAATT-N10-

TGAGGCTCGATC-N40- 

AGATAGTAAGTGCAATCT 

3.9 𝜇M 178 

Phorate, 

profenofos, 

isocarbophos 

and 

omethoateas 

Organophosp

horus 

pesticides 

CCTGCCACGCTCCGCAAGCTT-N10-

CTGCAGCGATTC-TTGATCG-N20-

TAAGCTTGGCACCCGCATCGT 

0.8-2.5 

𝜇M 

187 

Cadmium Toxic metal ACCGACCGTGCTGGACTCT-N30-

AGTATGAGCGAGCGTTGCG 

34.5 nM 189 

Cortisol Glucocorticoid 

hormone 

GAATGGATCCACATCCATGG-N40- 

TTCACTGCAGACTTGACGAAGCTTGACGAA 

6.9  

2.8 𝜇M 

197 

Tobramycin Aminoglycosid

e antibiotics 

GGAATGGATCCACATCTACGA-N60-

TTCACTGCAGACTTGACGAA 

200 nM 198 

Quinolones Antibiotics ATACCAGCTTATTCAATT-N10-

TGAGGCTCGATC-N40- 

ACAATCGTAATCAGTTAG 

0.1-56.9 

nM 

191 

Clenbuterol 

hydrochloride 

β-agonist AGCAGCACAGAGGTCAGATG-N40-

CCTATGCGTGCTACCGTGAA 

76.61  

12.70 

nM 

199 
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Lipopolysacchari

des 

Outer 

membranes of 

Gram negative 

bacteria 

ATAGGAGTCACGACGACCAG-N40-

TATGTGCGTCTACCTCTTGA 

102  

17 nM 

192 

Ractopamine β-adrenergic 

agonists 

AGCAGCACAGAGGTCAGATG-N40-

CCTATGCGTGCTACCGTGAA 

54.22  

8.02 nM 

200 

Vanillin Flavoring CGACCAGCTCATTCCTCA-N10-

GGAGTCTCGATG-N40- 

GGATCCGAGCTCACCAGTC 

(9  3) × 

10-7 M 

201 

Penicillin β-lactam 

antibiotics 

GGGAGGACGAAGCGGAAC-N10-

TGAGGCTCGATC-N40- 

CAGAAGACACGCCCGACA 

0.4-

1000 μg 

L-1 

190 

Atrazine Herbicide TGTACCGTCTGAGCGATTCGTAC-N34-

AGCCAGTCAGTGTTAAGGAGTGC 

3.7 nM 202 

Zearalenone Nonsteroidal 

estrogenic 

mycotoxin 

ATACCAGCTTATTCAATT-N10-

TGAGGCTCGATC-N40- 

ACAATCGTAATCAGTTAG 

15.2  

3.4 nM 

203 

Spermine Polyamine AGCAGCACAGAGGTCAGATG-N40-

CCTATGCGTGCTACCGTGAA 

9.648  

0.896 

nM 

204 

Paromomycin Aminoglycosid

e antibiotic 

GGGCACUCCA AGCUAGAUCUACCGGU-

N40-CUACUGGCUUCUA-N10- 

AAAAUGGCUAGCAAAGGAGAAGAACUUUU

CACU 

20 nM 205 

Di(2-ethylhexyl) 

phthalate 

Plasticizer ATTGGCACTCCACGCATAGG-N40-

CCTATGCGTGCTACCGTGAA 

2.26  

0.06 nM 

206 

 

Characterization of aptamers for small molecules 

 

Following completion of SELEX, next generation sequencing and bioinformation data 

analysis, the best aptamer candidates are selected and chemically synthesised for the further 

analyses.  

 

The assays that are currently used for the characterisation of aptamers against small 

molecules include the apta-PCR affinity assay (APAA), enzyme linked aptamer assay 

(ELAA), surface plasmon resonance (SPR), isothermal titration colorimetry (ITC), capillary 

electrophoresis (CE), and AuNPs colorimetric assay. Each of these assays have some 

limitations and are not suitable for every target. Furthermore, the successful performance in 

one assay does not guarantee their functionality in another one. In the work of McKeague et 

al.207, an inconsistency in the binding affinities in different assays tested when using the same 

aptamer for ochratoxin A (OTA) detection was observed.  

 

1.5.1 Enzyme linked aptamer assay (ELAA) 

 

Enzyme linked aptamer assay (ELAA) is an alternative of the conventional enzyme linked 

immunosorbent assay (ELISA) where antibodies are replaced with aptamers as 

biorecognition element. In some studies both bead and plate-ELAA approaches have been 
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used80. In most cases, this assay is performed by coating a fixed amount of target on a 

microtiter plate or magnetic beads, followed by the incubation with a range of concentrations 

of biotinylated aptamer candidates. Following thorough washing to remove any unbound 

aptamers streptavidin-horse radish peroxidase (SA-HRP) is added, and after a further 

washing, the enzyme substrate 3,3′,5,5′-Tetramethylbenzidine (TMB) is added followed by 

acid, and the generated colour measured. A binding isotherm is platted and the KD value 

elucidated from the plot. ELAA assay has not only been utilised to determine the KD values 

for different molecules125,208, but has also been used in many bioanalytical applications for 

the target-specific detection of okadaic acid183, steroids80,dopamine209, OTA210,and 

deoxynivalenol (DON)211. However, the assay procedure usually involves multiple binding 

and washing steps, which can be time consuming. 

 

1.5.2 Surface plasmon resonance (SPR) 

 

SPR technology offers label-free detection and real time quantitative analysis and provides 

binding constant determination212. Briefly, when polarized light strikes an electrically 

conducted surface of a metal (gold or silver), at a particular angle, it can excite electrons on 

the metal surface, causing an electro density wave to propagate along the surface.  

Bioreceptors can be immobilised on the metal surface directly via chemisorption or on 

polymer coated metals via chemical crosslinking, and the change in the plasmons resonance 

upon interaction between the immobilised bioreceptor and its cognate target, measured.  

SPR has been used extensively to monitor evolution and for the determination of KD for a 

wide range of molecules including vascular endothelial growth factor213,tubulin214, thrombin 

and thyroid transcription factor 195, prostate-specific antigen215, and retinol binding protein 

4216, and has also found application for small molecules, including kanamycin B217, codein218, 

S-adenosyl-l-homocysteine219, adenosine and alpha toxin220. 

 

Because of the low refractive change index of the molecule interaction of some small 

molecules, it is difficult to detect these interactions only by conventional SPR techniques and 

AuNPs have been combined with SPR sensor for adenosine detectio221, whilst Luo et al. 

developed a method using the salt-induced AuNPs aggregation and SPR for bisphenol A 

detection222.  Although SPR is useful tool that shows in real time the binding kinetics of the 

interaction, the instrumentation associated with SPR technology is quite expensive and 

needs trained personnel, which narrows its use in many laboratories. 

 

1.5.3 Microscale Thermophoresis (MST) 

 

MST is another useful method for the characterisation and determination of the interaction 

between aptamers and small molecules. MST measures the motion of molecules along 

microscopic temperature gradients and detects changes in their molecular size, charge, and 

hydration shell when the target is bound to the aptamer. The thermophoretic movement is 

measured in thin glass capillaries through µm sized temperature gradients.  Entzian and 

Schubert223 used this method to determine the KD of an adenosine triphosphate (ATP) 
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aptamer using a range of aptamer concentrations from pM to mM and the KD was found to 

be 34.4±4.4 µM . MST is a useful immobilization-free technique that can be used with small 

molecules, such as 17β estradiol224, testosterone78.   

 

1.5.4 Apta-PCR affinity assay (APPA) 

 

Apta-PCR Affinity Assay (APPA) is a simple method based on the PCR amplification of an 

aptamer that is bound to the target molecule, which in turn is immobilized on the surface of 

the matrix and offers rapid information regarding the affinity and specificity of studied 

aptamers. The use of this assay for analysing aptamer small molecule interactions has 

already been demonstrated78,224. In this assay the target is immobilised on a solid matrix 

(magnetic beads), usually the same one that is used during the selection process or a 

different one to demonstrate the absence of matrix participation in the binding event80. The 

process is followed by the incubation with different concentrations of unmodified aptamer, 

PCR amplification of the complex bead-target-aptamer, followed by gel electrophoresis. The 

intensity of the bands is measured using Image J, and isotherm plotted and used to determine 

the KD. 

 

1.5.5 Isothermal Titration Calorimetry (ITC) 

 

Isothermal Titration Calorimetry (ITC) is a widely used biophysical technique used for the 

measurement of affinity based on the enthalpies of affinity interactions225. ITC determines the 

enthalpy change occurring upon molecular interaction at a constant temperature where only 

the thermal effect is measured.  ITC provides the stoichiometry of interaction and a set of 

thermodynamic binding parameters: the equilibrium binding constant (KD) and the change in 

enthalpy (ΔH) and entropy (ΔS) of the binding. One of drawbacks limiting the use of ITC is 

the need for a high amount of the interacting materials, and, furthermore, these molecules 

need to be soluble in water and stable in the solution. 

ITC has been used for analysing large molecules like thrombin226 but recently it has been 

used for characterisation of the specificity of an aptamer selected against cocaine, measuring 

the interaction between the aptamer and cocaine and its metabolites, ecgonine, benzoyl 

ecgonine, ecgonine methyl ester and norcocain227. 

 

1.5.6 Biolayer interferometry (BLI) 

 

An interesting real-time optical analytical method for characterizing the binding of aptamer 

with small molecules is biolayer interferometry (BLI)228. BLI signal is based on target 

conformation, hydration, and dipole moment using a microfluidic chip, a charge coupled 

device (CCD) array, and a helium-neon laser. This method uses fibre optic biosensors to 

monitor changes in the optical thickness of the sensor layer that occur with biological binding 

events. Briefly, the laser irradiates the sample, the beam is reflected and refracted within the 

channel followed by detection with the CCD array, interaction between aptamer and the 
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molecule, causes a wavelength shift in the interference spectrum of the reflected light229.  In 

recent years BLI has been used for quantitative determination of KD for proteins230 as well as 

with small molecules including toxins229,antibiotics tenofovir, ampicillin, tetracycline231, 

hormone norepinephirine232,233, and dinophysistoxin-1234.  

 

1.5.7 Equilibrium filtration or dialysis 

 

Equilibrium filtration or dialysis has been demonstrated as a very useful method to study the 

affinity of aptamers for small molecules. In both approaches, a target and its aptamer are 

mixed in a series of microfuge tubes, in which the amount of aptamer is kept constant, but 

the amount of target is linearly increased until the samples reach equilibrium. Thereafter, 

separation of aptamer-target complexes from unbound target molecules is performed by 

applying a molecular weight cut-off membrane such as a size exclusion filter or a dialysis 

chamber. Both methods utilise radio-isotope labelled target molecule, and the exact amount 

of unbound target is quantified by measuring the amount of radioactivity inside the filter or 

dialysis chamber using a scintillation counter235. Since input concentrations of the aptamer 

and target analyte are known, a series of numbers that describes the amount of aptamer 

bound at each target concentration can be calculated in order to determine the binding 

capacity of the aptamer. 

Equilibrium-based methods have been applied in many aptamer studies, messenger 

adenosine 3',5'-cyclic monophosphate (cAMP-1)126, analysing L-arginine specific aptamer19. 

However, equilibrium-based methods assume free movement of small molecules across a 

membrane, which may not always be the case for some molecules, such as ATP. A study by 

Huizenga and Szostak demonstrated an incomplete passing of ATP through the 

membrane236. Moreover, both methods utilise radioisotope labelled targets, thus a radio-

isotope certified laboratory is required to undertake these assays which is not always 

available. 

 

1.5.8 Fluorescent binding assay 

 

Mann et al.90 described fluorescent binding assays for the selection of ethanolamine-binding 

aptamers.  The assay utilises convenient chemical synthesis and modification of 

oligonucleotides. By labelling an aptamer with a fluorophore, such as FAM237, Alexa 488238 

or Cy3239, quantification of aptamers can be achieved through the measurement of 

fluorescent intensity. The assay requires the immobilisation of a target molecule to a solid 

support (i.e. polystyrene microtiter plates, magnetic beads, agarose beads and sepharose 

beads). Then, a constant amount of the immobilised target can be incubated with a range of 

fluorophore-labelled aptamer concentrations. Following incubation, any excess unbound 

aptamers are removed by multiple washing steps, and bound aptamers are then eluted from 

aptamer-target complexes using denaturing substances such as SDS, EDTA or urea. 

Fluorescent intensity of the eluted aptamers can then be determined by fluorometry using 

appropriate excitation and emission wavelengths corresponding to the fluorophore used for 

aptamer labelling, followed by the calculation of saturation curves by using fluorophore 
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calibration plots. Due to simplicity, low cost, and user-friendly features, the method has been 

used to determine the binding features for aptamers targeting small molecules such as, 

chloramphenicol240, L-tryptophan241, polychlorinated biphenyls242, and okadaic acid184. 

 

Aptamer-based biosensors  

 

Thousands of DNA or RNA aptamers have been identified for various targets, such as 

proteins, peptides, amino acids, antibiotics, viruses, whole or part of cells, metal ions, and 

even small chemicals, with high specificity and affinity, and they have been applied in 

therapeutics and analysis243.  

A biosensor is an analytical device that detects changes in biological processes and converts 

them into an electrical signal by using as recognition element enzymes, antibodies, nucleic 

acids or aptamers. An aptasensor is a class of biosensor where the biological recognition 

element is a DNA or RNA aptamer, in which the aptamer recognizes the molecular target 

against which it was previously in vitro selected. The aptamer-target reaction is independent 

of both the type of detection system and the kind of transducer employed. Aptasensors can 

be easily multiplexed to detect a variety of aptamer-target reactions simultaneously244. 

According to their transducing element biosensors can be divided into (a) optical 

transduction, (b) electrochemical detection and (c) mass sensitive detection. Several 

aptasensors for the detection of different targets ranging from small ion molecules to large 

proteins have been reported, using optical transduction, mass-sensitive or electrochemical 

detection245,246. Within the following section, examples of aptasensors that have been 

developed for the detection of small molecules are detailed. 

 

1.6.1 Optical-based aptasensors 

 

Because of their chemical and physical properties, ability to absorb and scattered the light 

with high efficiency in a wide range of colours, AuNPs are widely used as labels in sensing. 

Moreover, the phenomena of physical or chemical adsorption between aptamers and AuNPs 

has been very well studied247,248.  

 

In gold nanoparticle aggregration colorimetric assays, the aptamer is adsorbed onto the 

surface of AuNPs thus preventing their aggregation and maintaining the red colour of non-

aggregated gold nanoparticles. Upon the target introduction, the aptamers are displaced from 

the surface of the AuNPs, and following addition of salt, the AuNPs aggregate, resulting in a 

change in colour to blue-purple249. 

This technique has been widely used for detection of different small molecules including 

histamine250, metal ions, Hg2+ 251, cocaine252, theophylline253, aminoglycosides254, 

serotonin255, malathion pesticide256, streptomycin detection in blood serum and milk257, 
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Ochratoxin A in red wine, as well as cocaine in spiked synthetic urine and saliva, 

respectively258.  

AuNPs are very effective quenchers of fluorescence, and Chen et al. exploited this for the 

determination of Kanamycin A in milk samples. Dye-labelled aptamer was adsorbed onto the 

surface of AuNPs resulting in fluorescence quenching. Upon addition of Kanamycin A, the 

dye-labelled aptamer was displaced from the surface of AuNPs and the recovery of 

fluorescence intensity259. 

AuNPs have also been used to enhance the sensitivity and selectivity of the resonance 

scattering (RS) in detection of tetracycline in milk260,and  metal ions261. In this work, an 

aptamer-modified nanogold resonance scattering (RS) probe (AussDNA) is used for the 

detection of Hg2+. In principle, in the presence of Hg2+, nanogold particles aggregate to large 

nanogold clusters, generating a linear increase of RS intensity at 540 nm. Whenever the large 

nanogold clusters are removed by membrane filtration, the excess AussDNA in the filtrate 

solution exhibits a catalytic effect on the new Cu2O particle reaction between NH2OH and 

Cu2+-EDTA complex at 60 °C. In the addition of Hg2+, the excess AussDNA is decreased, 

resulting in the decrease of Cu2O particle RS intensity at 602 nm in a linear response to Hg2+ 

concentration in the range of 0.1-400 nM, with a detection limit of 0.03 nM Hg2+
 
261

. 

Overall, the aforementioned studies demonstrate AuNPs aptasensors are suitable for the on-

site detection of small molecules, due to its excellent simplicity, but its accuracy and 

reproducibility is slightly low, because the interaction between aptamers and AuNPs is rather 

delicate depending on the sensing environments. Therefore, this method is more for 

qualitative rather than quantitative analysis. Another limitation of AuNP-based colorimetric 

assays is the tendency of AuNPs to aggregate non-specifically in the presence of salt and 

other molecules present in the complex biological fluids 248,262. 

Other types of optical aptasensors require conjugation of the aptamer with and optically active 

molecule. Applying fluorescent probes such as quantum dots (QDs), nanoclusters, carbon, 

and fluorescent dyes, which show enhanced or quenched fluorescence intensity along with 

the binding between aptamers and their targets, fluorescent aptasensors achieve quantitative 

determination of target molecules based on the variation of fluorescence signal intensity263.  

GO is one of quencher nanomaterials that has the capability to capture the radiative energy 

emitted by the fluorophores. Using this advantage, Wang et al.264 developed an experiment 

where simultaneous labelled aptamer with two different fluorophores were used for the 

detection of two different mycotoxins, ochratoxin and zearalenone. In the presence of the 

dual targets, the labelled aptamers were released, and form GO and the fluorescence in 

different length were measured. In other studies the combination of the fluorescent dye FAM 

with magnetic reduced GO also exhibits excellent sensitivity and has been applied to the 

detection of patulin265, deoxynivalenol211, and cylindrospermopsin266. Apart from GO, 

molybdenum carbide nanotubes are used for the fluorescence quenching is bisphenol A 

detection267. A simple ratiometric fluorescent sensing platform was proposed by Ahmadi et 

al.268 for detection of patulin using target-induced strand displacement composed of two 

fluorescent dyes, FAM and Carboxytetramethylrhodamine (TAMRA). 

Sabet et al.269 apply a fluorescence quenching-based method, in which aptamer-conjugated 

quantum dots (QDs) are adsorbed to AuNPs, thus quenching the fluorescence of the QDs, 

which is restored upon addition of AFB1 due to displacement of the aptamers from the 
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AuNPs.  Wang et al.270 developed FRET aptasensor for the simultaneous determination of 

AFB1 and FB1 levels using quantum dots with different emission peaks (GQDs and RQDs) 

and magnetic GO/Fe3O4 as the single acceptor.  

Wu et al.271 use two pyrenes molecules instead of one so to increase the fluorescence 

intensity in cocaine detection. The cocaine aptamer was split in 2 parts, each of them labelled 

with a pyrene, and the binding was measured by time-resolved fluorescence.  

SPR technology is commonly utilised for the study of molecular binding interactions between 

free analyte molecules in solution and probe molecules which are linked to or immobilised 

onto the sensor surface in real time272–274. Although SPR has been widely used in biological 

analytes it is still a challenge for its detection of small biomolecules as the binding of small 

molecules with its aptamer causes too little change in refractive index for detection. In order 

to overcome this drawback, AuNPs have been combined with SPR aptasensor to enhance 

the signal, as in the case of adenosine detection which produce a detection range from 1x 

10-9 to 1x 10-6 M221. Additionally, a GO-AuNPs composites SPR aptasensor in combination 

with a split aptamer was used for signal amplification in adenosine detection275.  

 

1.6.2 Electrochemical aptasensors 

 

Electrochemical aptasensors are classified in impedimetric, amperometric/voltammetric, and 

potentiometric sensors, and have been demonstrated to be useful tools for detection of 

biological small molecules including neurotransmitters, metabolites, vitamins, amino acids, 

dietary minerals246, antibiotics276–278, mycotoxin279, and alkaline metals280. In order to 

enhance the specificity and sensitivity of the electrochemical aptasensors for small 

molecules, nanomaterials such as are carbon nanotubes (CNTs), graphene, quantum dots 

(QDs), conducting polymers (CPs), and metal nanoparticles (MNPs),and AuNPs281. For 

example, incorporation of AuNPs can assist in improving their electrochemical signal in using 

two different approaches. The first approach is the enlargement of electrode surface by 

attachment of AuNPs on electrode, which might increase the amount of capture probes on 

electrode thus the electrochemical signal intensity can be enhanced.  

Several electrochemical aptasensors have been developed for the detection of cocaine282. Li 

and co-workers developed a sensitive electrochemical aptasensor for cocaine detection 

using AuNPs self-assembled on a gold electrode283. Following the same principle Zhu et 

al.284, reported kanamycin detection conducting polymer-Au nanocomposite on screen-

printed electrode (SPE). In another study AuNP was combined with multiwalled carbon-

nanotubes-reduced graphene oxide nanoribbon for the detection of insecticide acetamiprid 

in soil, water and food samples through impedimetric aptasensor285. Omidina et al.286 

developed an aptasensor for phenylalanine detection using the electrochemical transduction 

method where 5-thiol-terminated aptamer is covalently attached onto a gold electrode. Other 

examples include 17β-estradiol detection287, l-histidine based on the switching structure of 

aptamer and gold nanoparticles-graphene nanosheets (GNPs-GNSs) composite288. 

Other studies were focused on the detection of neurotransmitters such as serotonin289. The 

aptamer which was previously immobilized on a gold electrode through gold-thiol binding was 
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labelled my methylene blue in two different positions, where the aptasensor intermediate-

labelled methylene site has the higher response in comparison to terminal methylene labelled 

site.  

Cyclic voltammetry and electrochemical impedance spectroscopy were used for measuring 

the aptasensor signal in every step. Dopamine detection has been studied in different 

aptasensors290. An amperometric aptasensor for dopamine was fabricated on the basis of 

the electrostatic interactions between a negatively charged RNA specific aptamer and a 

positively charged cysteamine-modified gold electrode291. Moreover, the aptasensor 

specificity and stability when use in serum ,was improved via regulating the electrostatic 

immobilization of the aptamer in the next work from the same group292. 

 

1.7 Lateral flow aptamer assays 

 

The majority of before mention techniques require trained personnel, expensive 

instrumentation and are often laboratory based, limiting their use at point of care settings. In 

recent years, lateral flow assays (LFA) have gained significant attention due to their ease of 

use and high sensitivity. LFAs were first reported in 1956 by Plotz and Singer, and since then, 

hundreds of LFAs have been developed for the detection of a wide range of targets as it is 

summarized in Table 1.6. 

 

Low development costs and ease of production of LFAs have resulted in the expansion of its 

applications to multiple fields in which rapid tests are required (Table 1.5). LFA is a paper 

based platform composed of a membrane such as nitrocellulose, which consists of a sample 

pad, conjugate pad, test and control line, and the absorbance pad, all assembled on a plastic 

backing pad which provides mechanical support293. LFA is based on affinity interaction, the 

sample is added to the sample pad and later migrates towards the conjugation pad via 

capillary action. The liquid in the sample hydrates a detection label in the pad consisting of a 

molecular recognition element (antibody or aptamer) coupled to a reporter molecule, which 

is always present in excess amount. If the target is present, it will form a complex that results 

in an appropriate response on the test line, while a response on the control line indicates the 

proper liquid flow through the strip. The read-out, represented by the lines appearing with 

different intensities, can be assessed by eye or using a dedicated reader294,295. 

Although there are different applications of LFA for different targets, still, the device has a 

complex architecture, and many critical elements need to be considered during instrumental 

design to improve the sensitivity and the cost of the format.  

 

Table 1.5. The advantages and limitations of lateral flow assay. 

Advantages Limitations 

Low cost Speed of capillary action cannot be controlled 

Fast analysis of results Generally qualitative or semi-quantitative 

User-friendly Batch reproducibility can vary 

Microfluidic Cross-reactivity can occur 
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Generally, does not require sample 

pre-treatment 

Hook effect 

No or little requirement for electricity Can be difficult to construct a successful conjugate 

Wide range of applications Optimization is difficult 

Can be multiplexed  

 

 

Different lateral flow assay formats have been reported exploiting aptamers as the bio affinity 

element as detailed below. 

 

1.7.1 Sandwich aptamer lateral flow assay  

 

The sandwich assay format is the most commonly used format for testing large molecules, 

which have multiple binding sites, and can exploit dual aptamers, a combination of antibodies 

and aptamer or split aptamer. 

a) Sandwich aptamer lateral flow assay using pair of aptamers 

Ahmad Raston et al.296 used the vaspin dual aptamer (V1 and V49) in the paired aptamers 

lateral flow assay format, by using a AuNPs-secondary aptamer (V49) aptamer as a reporter 

molecule. The streptavidin-biotinylated aptamer V1 was used in test lined while the 

streptavidin-biotinylated complementary sequence to V49 aptamer was immobilized on the 

control line. In the presence of vaspin, the complex between the target and V491-AuNPs is 

captured by the V1 aptamer immobilised on the test line and a red band is observed. For the 

control experiment, complementary V49 aptamer on the control zone will capture the 

remaining AuNPs-V49 aptamer resulting in a second red band, the control line, 

demonstrating that the assay was working properly. Other examples of targets analysed in 

sandwich assay format, with some differences in bioconjugate preparation, are Ramon 

cancer cells297 and arboviruses, including the Chikungunya and the Tick-borne encephalitis 

virus298. 

b)  Sandwich aptamer lateral flow assay using split aptamer 

To overcome the absence of dual aptamers in LFA development, sandwich assay format 

using split aptamer fragments is used as an alternative solution. Zhu et al.299 developed this 

novel assay by using two DNA probes that only assemble in the presence of the target ATP. 

One thiolated split aptamer (aptamer part 1) was chemisorbed on AuNPs and the other split 

aptamer was biotinylated (aptamer part 2) and immobilised on the nitrocellulose membrane 

by streptavidin-biotin interactions. DNA probe complementary to the aptamer part 1 AuNP 

bioconjugate was immobilised (DNA1) on the control line. In the presence of ATP, a complex 

between aptamer part 1AuNP/ATP/biotinylated aptamer part 2 was formed on the test line 

giving a red band. Excess aptamer part 1 AuNP was captured on the control line by 

hybridisation with DNA1. 

c) Sandwich aptamer lateral flow assay using a combination of antibodies and aptamers 
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As dual aptamer selection can be challenging for some types of molecules, especially those 

with limited binding domains for aptamer binding, a different approach of sandwich assay 

consists in combination of 2 different biorecognition molecules, antibodies and aptamer, that 

bind to different sites of the target. One example is the detection of salivary a-amylase (sAA). 

In this case, AMYm1 aptamer was modified with biotin and linked to streptavidin-AuNPs 

(aptamer-Biotin-SA-AuNP). On the test line anti-sAA antibody was immobilised and sAA 

protein was immobilised on the control line. In the presence of sAA, the complex between the 

target and aptamer-Biotin-SA-AuNP was captured by the antibody immobilised on the test 

line and the excess of bio conjugate (aptamer-Biotin-SA-AuNP) was captured on the control 

line, resulting in two red bands. In the absence of target, the bioconjugate was captured on 

the control line and only one band was observed300. 

 

1.7.2 Competitive lateral flow aptamer assay 

 

As low molecular weight molecules often lack a second binding site for the use of sandwich 

format, competition or inhibition assays are mostly used for their detection293,301. Differently 

from the sandwich format, in competition assay the presence of control and test line indicate 

the absence of the target, while the presence of only control line indicates the presence of 

the target. In the case of competitive LFAs, a decreasing intensity of the band at the test line 

with increasing concentration of the target analyte in the sample is observed. In competitive 

assays two different scenarios are employed, in the first, target in the sample solution that 

will be analysed will compete with the immobilized target on the test line for binding to AuNPs-

aptamer conjugate302, in the second scenario, DNA, partially complementary to the aptamer-

AuNP conjugate, is immobilised on the test line and competes against the target analyte to 

bind to the gold nanoparticle labelled aptamer303. Various solutions have been proposed for 

the control line including the inclusion of additional bases to the aptamer for subsequent 

hybridisation with the complementary to these bases immobilised at the control line. 

Moreover, a great importance should be given to the design of the DNA probe. If the 

sequence of the DNA probe is too short, the binding affinity to the aptamer can be weak, and 

this can lead to problems with specificity. Conversely, if the DNA probe is too long, the binding 

affinity can be too strong, resulting in reduced competition. 

A simple and sensitive aptamer-based lateral flow test strip for zearalenone (ZEN) was 

successfully developed by Wu et al.304 using the competitive format. Under the optimized 

conditions, the visual limit of detection of the strip was as low as 20 ng/mL. This format was 

based on the competition between the complementary sequence DNA1 on the test line and 

ZEN in the sample for binding to AuNPs-Aptamer. In the absence of ZEN, AuNPs-Aptamer 

is bind through complementary base pairing to DNA 1 on the test line and DNA 2 on the 

control line, resulting in two red lines. When ZEN is present, the complex AuNPs-Aptamer 

preferentially binds to ZEN and as result the test line is decreased or diminished. Other 

examples of small molecule application in lateral flow are summarized in Table 1.6. 
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Table 1.6. Aptamers in lateral flow (adapted from reference 324) 

 

Target LOD Format Test line Control line Bioconjugate Ref. 

Adenosine/Cocain

e 

20 M 

Adenosine 

10 M 

cocaine 

Direct assay 

(2 AuNP-

conjugates) 

SA - AuNPs-DNA 1 + 

Biotin-DNA 

2-AuNPs-DNA 2 

+Aptamer 

305 

Aflatoxin B1 

(AFB1) 

0.32 nM Competitive 

assay 

SA Anti-Cy5 antibody - 306 

Arbovirus 

(Chikungunya 

virus and TBEV) 

- Sandwich assay 

(Pair of 

aptamers) 

SA-biotin-

aptamer 

- AuNPs-SA-biotin-

DNA 

complementary 

298 

ATP 0.5 M Sandwich assay 

(Split aptamer) 

SA-biotin-split 

aptamer 2 

SA-biotin DNA 

probe 

AuNPs-split 

aptamer 1 

299 

ATP 69 M Competition 

assay 

Aptamer gated 

silica 

nanoparticles 

loaded 

rhodamine B 

dye 

Mutated aptamer 

gated 

nanoparticles 

loaded rhodamine 

B dye 

- 307 

E. coli O157:H7 10 CFU/mL Strand 

displacement 

amplification 

assay 

SA-Biotin-DNA 

probe 

SA-Biotin-DNA 

probe 

AuNPs-DNA probe 308 

E.coli O157:H7 3000 live 

cells 

Sandwich assay Amino-aptamer 

2 

Anti-digoxigenin 

antibody 

QD-aptamer 1-

digoxigenin 

309 

E.coli 8739 6000 live 

cells 

Sandwich assay Amino-aptamer 

2 

Anti-digoxigenin 

antibody 

QD-aptamer 1-

digoxigenin 

309 

IgE 0.7 pM Sandwich assay Anti-IgE 

antibody 

Anti-M13 antibody Aptamer-phage 310 

Ochratoxin A 

(OTA) 

4.7 nM Competitive 

assay 

SA-biotin-cDNA SA-biotin-poly T QD-aptamer 303 

Ochratoxin A 

(OTA) 

2.48 nM; 

0.45 nM 

(strip reader) 

Competitive 

assay 

SA-biotin-cDNA SA-biotin-poly T AuNPs-aptamer 311 

Ochratoxin A 

(OTA) in 

Astragalus 

membranaceus 

2.48 nM Competitive 

assay 

SA-biotin-cDNA SA-biotin-poly A AuNPs-aptamer 312 

Ramos cells 4000 Ramos 

cells 

visual and 

800 

Ramos cells 

in strip 

Sandwich assay 

(Pair of 

aptamers) 

SA-biotin-TE02 

aptamer 

SA-biotin-Control 

DNA 

AuNPs-aptamer 297 

Salivary a-

amilase (sAA) 

- Sandwich assay 

(Antibody/aptam

er pair) 

Anti-sAA 

antibody 

sAA protein AuNPs-SA-biotin-

aptamer 

300 

Salmonella 

enteritidis 

101 CFU/ml Strand 

displacement 

SA-Biotin-DNA 

probe 

SA-Biotin-DNA 

probe 

AuNPs-DNA probe 313 
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amplification 

assay 

Thrombin 2.5 nM Sandwich assay 

(Pair of 

aptamers) 

SA-biotin-

aptamer 

SA-biotin-DNA 

complementary 

primary aptamer 

AuNPs-primary 

aptamer 

314 

Thrombin 0.25 nM Sandwich assay 

(2 AuNPs-

conjugates) 

Anti-thrombin 

antibody 

SA-biotin-poly A AuNPs-DNA 1/DNA 

2-AuNPs-Aptamer 

315 

Thrombin 6.4 pM 

visual; 4.9 

pM 

strip reader 

Aptamer-

cleavage + 

enzymatic 

reaction 

SA SA-Biotin-cDNA 1 AuNPs-DNA 

1/Biotin-DNA 

2-AuNPs-HRP 

316 

Vaspin 0.137 nM Sandwich assay 

(Pair of 

aptamers) 

SA-biotin-

aptamer 

SA-biotin-DNA 

complementary 

aptamer 

AuNPs-aptamer 296 

-conglutin 55 pM Competitive 

assay 

-conglutin SA-biotin full DNA 

complementary 

aptamer 

AuNPs-aptamer 302 

-conglutin 9 fM Competitive 

assay + 

recombinase 

polymerase 

amplification 

SA-Biotin-DNA 

probe 

SA-biotin-DNA 

probe 

AuNPs-DNA probe 302 

Cortisol 2.7 nM Lateral flow Immobilized 

cysteamine 

Cysteamine AuNPs-aptamer 317 

Zearalenone 20 ng/mL Competitive 

assay 

SA-DNA1 SA-DNA2 AuNPs-aptamer 304 

Dopamine 50 ng/mL Lateral flow SA-Biotin-DNA 

probe 

Streptavidin-DNA AuNPs-aptamer 318 

Ochratoxin A 1 ng/mL Lateral flow SA-Biotin-DNA 

probe 

Streptavidin-DNA AuNPs-aptamer 312 

HER2 10 nM Lateral flow SA-Biotin-DNA 

probe 

SA-DNA probe AuNPs-aptamer 319 

Ampicillin 185 mg/L Competitive 

assay 

Biotin-CRP  α-mouse antibody AuNPs-aptamer 320 

Creatine kinase 

MB 

0.63 ng/mL Fluorometric 

lateral flow 

assay 

Streptavidin-

C.Apt.21 

Streptavidin-DNA 

probe 

SA-

fluoresencemicropa

rticles-C.Apt.30 

321 

Kanamycin 50 nM Competitive 

assay 

Streptavidin-

biotin-capDNA1 

Streptavidin-biotin-

capDNA2 

AuNPs-DNA1 322 

Mercury 0.13 ng/mL Competitive 

assay 

Fluoresence 

microspheres-

BSA 

Fluoresence 

microspheres-BSA 

AuNPs-aptamer 323 
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Chapter 2 

 

Abstract 

The marine toxin tetrodotoxin (TTX) poses a great risk to public health safety due to 

its severe paralytic effects after ingestion. Seafood poisoning caused by the 

consumption of contaminated marine species like puffer fish expanding in non-

endemic areas has increased the need for fast and reliable detection of the toxin to 

effectively implement prevention strategies. Liquid chromatography-mass 

spectrometry is considered as the most accurate method whereas competitive 

immunoassays have also been reported. In this work, we sought to develop an 

aptamer-based assay for the rapid, sensitive and cost-effective detection of TTX 

detection in puffer fish. Using capture-SELEX combined with Next Generation 

Sequencing, novel aptamers were identified, and their binding properties were 

evaluated Finally, a highly sensitive and user-friendly hybrid antibody-aptamer 

sandwich assay was developed with superior performance compared to several 

assays reported in the literature and commercial immunoassay kits. The assay was 

successfully applied to the quantification of TTX in puffer fish extracts, and the results 

obtained correlated very well with a competitive magnetic bead-based immunoassay 

performed in parallel for comparison. This is one of the very few works reported in the 

literature of such hybrid assays for small molecule analytes whose compatibility with 

field samples is also demonstrated. Ongoing work is focused on the development of a 

lateral flow assay exploiting this sandwich format which will facilitate the rapid on-site 

screening of samples.  

 

 

2.1. Introduction 

 

Tetrodotoxin (TTX) is a very potent neurotoxin produced by marine bacteria and it is 

associated with severe seafood poisoning after consumption of puffer fish 

(Tetraodontidae family)1. Its paralytic toxic effects derive from its selective binding to 

voltage-gated sodium channels and ultimately interfering with neural transmission2. 

Symptoms of TTX intoxication include numbness sensation in the mouth, headache, 

vomiting and muscle weakness3, and fatal respiratory or heart failure have also been 

reported4. This low molecular weight toxin (319.3 g/mol) was originally isolated from 

puffer fish in 19095,6 and was later also found in other marine7 and terrestrial8 species. 

Even though it was initially believed that TTX was produced by the pufferfish itself, 

marine bacterial species have been postulated to be able to produce TTX9 suggesting 

that symbiotic marine bacteria could be the primary source of TTX that bioaccumulates 

in puffer fish and other marine species, and finally reaches humans through the food 

chain. As recently reported, there are more than 30 different bacteria genera capable 
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of producing TTX that have been isolated among which the most common is Vibrio 

sp.10. To date, however, there is still some discussion regarding the pathway of TTX 

bioaccumulation in marine ecosystems11. 

Puffer fish poisoning is typical of warm waters and was regarded as a problem confined 

to Asian countries1,12, including Thailand5, Taiwan13, Singapore14, Cambodia15, 

Bangladesh16, India17,18. However, toxic puffer fish species have expanded to other 

regions, and there have been an increasing number of reports of incidences in the 

Mediterranean Sea, which has been attributed to the opening of the Suez Canal (the 

‘Lessepsian migration’), which resulted in the migration of species from the Red Sea 

to colonize the Mediterranean Sea19–22, the Aegean Sea23, the Adriatic Sea24, Oman25 

and there have also been reports of the incidence of tetrodotoxin in Australia26, and 

the United States27, highlighting the widespread distribution of the toxin.  

Additionally, TTX has been recently found in shellfish, particularly in European 

countries such as the United Kingdom28, Greece29, the Netherlands30, Spain31, Italy32, 

and France33, although usually at very low concentrations. Therefore, it is now 

considered that TTX poses a major food safety risk even in non-endemic areas. 

TTX is highly toxic. Puffer fish poisonings have revealed that ingestion of 0.18–0.2 mg 

of TTX might be near the minimum dose for developing TTX symptoms and 2 mg is a 

lethal dose34. In Japan, where puffer fish is considered a delicacy and highly consumed 

despite its potential toxicity, a limit of 2 mg TTX equiv./kg has been used as a criterion 

to judge the acceptability of puffer fish as food35 and a guide with the edible parts and 

species of puffer fish that are allowed for consumption has been published36. In USA, 

strong restrictions exist for the import of pufferfish (FDA,2017)37. In Europe, fish of the 

family Tetraodontidae and products derived from them must not be placed on the 

markets (EC (European Commission), 2004a; 2004b)38,39. Regarding shellfish, no 

regulation exists. Nevertheless, the European Food Safety Authority (EFSA) has 

recently published that concentrations below 44 μg of TTX equiv./kg shellfish meat do 

not result in adverse effects in humans34. 

There are about 30 TTX analogues40. Toxicity equivalency factors (TEFs) for these 

TTX analogues are essential for the evaluation of relative risk but, unfortunately, 

information on relative potencies of TTXs is limited. Although the use of different cell 

lines in toxicity assays has been questioned, it is evident that most analogues are much 

less toxic than TTX41,42 Additionally, the parent TTX is usually the most abundant34.  

Bioassays, instrumental analysis and immunological methods are typically employed 

to detect TTXs in field samples, based on the toxic effects, physicochemical properties 

and antigenic specificity of the toxin, respectively43. Ethical concerns and low specificity 

of the mouse bioassay, the most frequently used method, encouraged the 

development of alternative strategies. Liquid chromatography coupled with mass 

spectrometry (LC-MS/MS)28,29 has been widely exploited for TTX detection and it 

provides more sensitive, specific, and accurate results than bioassays. However, 

instrumental analysis techniques are expensive, time consuming, labor intensive and 

require sample pretreatment, trained personnel and significant laboratory 
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infrastructure. Immunological methods such as ELISA using specific TTX antibodies 

can provide quantitative and sensitive detection44,45 and commercial ELISA kits are 

readily available. The small size of TTX requires the use of hapten-carrier protein 

bioconjugates for antibody development, requiring careful consideration in the 

preparation of these bioconjugates.  The development of antibody pairs for sandwich 

assay development is hindered by the small size of the TTX, thus requiring the design 

of competitive assays46,47. Competitive immunoassays are more difficult to optimize, 

and the preparation of toxin-reporter molecule conjugates required for some types of 

immunoassays can also be challenging43. Nevertheless, antibody-based biosensors 

have been reported and are particularly useful for rapid screening purposes48–50.  

Aptamers are biorecognition molecules considered as alternative to antibodies which 

are suitable for the detection of virtually any type of target51–53. Aptamers are single-

stranded synthetic oligonucleotides which can bind their target molecule with high 

affinity and specificity owing to the specific structural conformations they adopt. 

Systematic Evolution of Ligands by Exponential enrichment, commonly known as 

SELEX, was developed for the generation of aptamers and it is based on iterative 

rounds of binding, partitioning and amplification54,55. Compared to antibodies, 

aptamers show several advantages for biosensing applications including in vitro 

selection, the possibility to bind any kind of target, high affinity and specificity, 

reproducible chemical synthesis, stability at various environmental conditions, 

reversible denaturation, and easy site-directed modification51,53.  

The development of aptamers for small molecules is a challenging task52,56. One of the 

main hurdles is target immobilization on a solid matrix to allow selection through 

traditional SELEX approaches. Altering the native structure of the target to facilitate 

immobilization can prevent the aptamer from binding to the target in solution in its 

natural form, and an absence of functional groups can completely hinder 

immobilization as the small size of the targets also limits the availability of binding sites. 

An alternative selection strategy, termed capture-SELEX, based on library 

immobilization and use of the target in solution, was first reported by Stoltenburg et 

al.57. This approach is ideal for small molecules since the target molecule can be used 

in solution, and the potential structure-switching properties of the selected aptamers 

can be exploited for characterization and assay development52,56. The capture-SELEX 

strategy has been successfully used for several targets including aminoglycoside 

antibiotics57, cadmium58, penicillin59, quinolone60, and lipopolysaccharides61.  

The path from aptamer discovery to assay development for small molecules is not 

trivial. The usual format is competitive assays which can be difficult to develop as 

discussed earlier in the case of antibodies. Sandwich assays are hindered by the small 

size of the targets and to the best of our knowledge, no sandwich aptamer assays have 

been reported for small molecules. Alternatively, split aptamers can be generated and 

have been exploited in a sandwich format for the detection of small molecules62. 

However, the trial-and-error nature of the process of generating split aptamers, 

possibly resulting in lower binding affinities of the individual fragments and further 
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requirements for modifications are among the factors discouraging researchers from 

undertaking this complex and costly task. In fact, to date, split aptamers have only 

been reported for 15 small molecules62. Hybrid antibody-aptamer sandwich systems 

on the other hand have emerged as an attractive alternative offering the best of both 

antibody and aptamer biorecognition molecules, together with the advantages of 

sandwich assays63. Even though several examples have been reported for the 

detection of protein targets using such hybrid systems, only a handful of examples 

exist for small molecules, including trinitrotoluene64, tetracycline65 and aflatoxin B166.  

Two TTX aptamers have been reported, the first one by Shao et al.67, who did not 

provide details regarding the selection process or the aptamer affinity, and the second 

by Gu et al.68 who used a variation of the capture-SELEX strategy with magnetic 

reduced graphene oxide to immobilize the ssDNA library and identified a TTX aptamer 

with high affinity (KD of 44 nM). In this work we sought to apply the capture-SELEX 

strategy to develop novel TTX-binding aptamers and apply them for the detection of 

the toxin in puffer fish. Two selections were performed in parallel, using two different 

types of streptavidin-magnetic beads to facilitate library immobilization. Next 

Generation Sequencing of various pools from the selections enabled the identification 

of aptamer candidates and different approaches were used to evaluate their binding 

properties. Finally, a highly sensitive hybrid antibody-aptamer sandwich assay was 

developed and successfully exploited for the detection of TTX in puffer fish.  

 

2.2. Experimental section 

 

2.2.1. Materials 

 

Tetrodotoxin of 98.8% purity (TTX) was purchased from Tocris Bioscience (Bristol, UK) 

and Latoxan (Valence, France) and standard solutions at 1 mg/mL were prepared in 

0.1 M sodium acetate buffer pH 4.8. Certified reference materials of saxitoxin (STX) 

and domoic acid (DA) were obtained from the National Research Council of Canada 

(NRC, Halifax, Canada). The mouse monoclonal anti-TTX antibody (CABT-L3089, CD 

Creative Diagnostics) was obtained from Deltaclon S.L. (Spain). Sulfo-NHS-acetate, 

maleimide-activated microplate strip wells, Dynabeads M-270 streptavidin magnetic 

beads (Dynabeads SA-MB; 10 mg/mL, 2.8 μm diameter, 200 pmol biotinylated 

oligonucleotide/mg particles binding capacity), DreamTaq DNA polymerase and 

lambda exonuclease were from Fisher Scientific (Spain). The DNA purification kits 

(Oligo Clean & Concentrator kit and DNA Clean & Concentrator kit) were from Ecogen 

(Spain). Okadaic acid potassium salt (OA) from Prorocentrum concavum, 11-amino-1-

undecanethiol hydrochloride (MUAM), cysteamine, L-arginine, 1,6-anhydro-β-D-

mannopyranose and streptavidin-horseradish peroxidase (SA-HRP) were purchased 

from Merck (Spain). Maleimide-activated magnetic beads (30 μm diameter, protein 

binding capacity ≥ 15 mg/ml) were from Cube Biotech (Germany) and SiMAG-

streptavidin magnetic beads (SiMAG SA-MB; 10 mg/mL, 1 μm diameter, 80 – 200 pmol 
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biotinylated oligonucleotide/mg particles binding capacity) from Chemicell (Germany). 

Streptavidin-polyHRP80 (SA-pHRP) was from Bionova (Spain) and the TMB Super 

Sensitive One Component HRP Microwell Substrate from Surmodics (USA). All 

oligonucleotides were synthesized by Biomers.net (Germany).  

 

2.2.2. Capture-SELEX process 

 

The library used for the selection was based on a previous report (5’-ATACCA 

GCTTAT TCAATT-N10-TGAGGC TCGATC-N40-AGATAG TAAGTG CAATCT-3’)32. 

The docking site (5’- TGAGGCTCGATC-3’, 12 nucleotides) was flanked by two 

random regions of 10 and 40 nucleotides. Library immobilization on streptavidin-

magnetic beads (SA-MB) was achieved via hybridization of a docking probe (5’-biotin-

TEG-GTC-HEGL-GATCGAGCCTCA-3’, where TEG and HEGL are triethyleneglycol 

and hexanethyleneglycol spacers, respectively) with the docking site of the library. Two 

different types of SA-MB beads were used for two parallel selections, the Dynabeads 

M-270 streptavidin and the SiMAG-streptavidin. The binding buffer used was PBS with 

1.5 mM MgCl2. A total of 23 selection rounds were performed using the TTX precursors 

L-arginine and 1,6-anhydro-β-D-mannopyranose as counter selection molecules 

during the last six rounds. Detailed description of the selections performed can be 

found in the Supplementary Information.  

 

2.2.3. Next Generation Sequencing (NGS) and data analysis 

 

Different rounds from the selections were chosen for NGS. Target elution fractions 

from rounds 6, 9, 16, 23 and counter elution fraction from round 23 for both selections 

were individually amplified with different forward primers (containing distinct barcode 

sequences) and a common reverse primer. The resulting dsDNA for each round was 

column-purified and sequenced using Ion Torrent NGS. The fastaq raw data was 

imported into the Galaxy web server (https://usegalaxy.org/) and the quality of the data 

was evaluated with the “FASTQC” tool which also provided general statistics. The 

format of the data was converted to fasta and datasets containing only library-length 

sequences (90-110 bp) were created. Each dataset was finally collapsed to identify 

unique sequences within the first megabyte of data. The 100 most abundant 

sequences from all the datasets were compared to identify the ones preferentially 

enriched in the target pools. Multiple sequence alignments were performed with Clustal 

Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) to determine sequence families, 

while sequence motif analysis was performed using MEME (https://meme-

suite.org/meme/tools/meme). Ten aptamer candidates were finally selected, five from 

each selection, for further characterization.  
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2.2.4. Determination of affinity dissociation constants (KD)  

 

Apta-PCR Affinity Assay (APAA)69 The APAA was performed using TTX immobilized 

on maleimide-activated magnetic beads (TTX-beads) in combination with unmodified 

aptamer sequences. The preparation of the TTX-beads is described in the 

Supplementary Information. For the binding studies, 50 µL of different concentrations 

of each aptamer (up to 600 nM in binding buffer) were incubated with 2 µL of the TTX-

beads for 30 min under rotation at ambient temperature. The supernatants were 

discarded, the beads were washed three times with 100 µL of PBS with 0.05% v/v 

Tween-20 (PBST) and finally re-suspended with 20 µL of binding buffer. Bound 

sequences were detected after PCR amplification using library-specific primers and 

agarose gel electrophoresis. Analysis was performed in duplicate for each 

concentration. The intensity of the DNA bands was estimated with the ImageJ software 

and the Gel Analysis option, plotted against aptamer concentration using GraphPad 

Prism 6 software and the KD of each aptamer was finally determined using the “One 

site Specific binding with Hill slope” model.   

Bead-Enzyme Linked Aptamer Assay (Bead-ELAA)70 TTX-beads were used in 

combination with 5’-biotin-modified aptamers. TTX-beads (2 µL) were mixed with 

different concentrations of each biotinylated aptamer in binding buffer (50 µL of up to 

450 nM) and incubated for 30 min at ambient temperature under rotation. The 

supernatants were discarded, and the beads were washed three times with 100 µL of 

PBST. Next, 50 µL of 50 ng/mL of SA-pHRP in PBST were added and incubated for 

20 min. After a final washing step (five times with 100 µL of PBST), 50 µL of TMB 

substrate were added, and following a brief incubation at room temperature, an equal 

volume of 1 M H2SO4 was added to stop color development. The supernatants were 

separated from the beads using a magnet, transferred to a 96-well microtiter plate and 

the absorbance was recorded at 450 nm. The KD of the aptamers were calculated as 

described above. All measurements were carried out in duplicate. 

 

2.2.5. Hybrid antibody-aptamer sandwich assay for TTX determination 

 

A sandwich assay was developed using an antibody for capture and an aptamer for 

detection of TTX. Specifically, 50 µL of 5 μg/mL anti-TTX monoclonal antibody in 50 

mM carbonate buffer pH 9.4 were used to coat the wells of a MaxiSorp immunoassay 

plate overnight at 4°C. The wells were washed three times with 200 µL of PBST, 

followed by blocking with 200 µL of 1% w/v BSA in PBST for 30 min. The wells were 

washed again and incubated with 50 µL of different concentrations of TTX in PBS for 

1 h. After washing, 50 µL of 500 nM biotinylated aptamer in binding buffer were added 

and let to incubate for 1 h, followed by washing. Fifty microliters of 100 ng/mL SA-HRP 

in PBST were then added, followed by a final incubation of 30 min and washing. TMB 

substrate (50 µL) was added and color development proceeded for 6 min. Sulfuric acid 

(50 µL of 1 M) was added to stop color development and the absorbance was recorded 
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at 450 nm. All incubation steps were performed at ambient temperature (22 – 25 °C) 

unless stated otherwise. All five aptamer candidates were initially screened in 

combination with the antibody at a constant TTX concentration (32 µg/mL = 100 mM) 

and the aptamer providing the highest signal was chosen for the final assay. A 

calibration curve was constructed using serial 2-fold dilutions of TTX in the range of 

0.039 – 40 ng/mL (0.12 – 125 nM). Duplicate measurements were performed, and the 

data was fitted to a four-parameter sigmoidal model using Graph Pad Prism 6 software. 

The limit of detection (LOD) was interpolated from the curve as the bottom of the fitted 

curve plus three times its standard deviation (bottom + 3xSDbottom). The precision of 

the assay was evaluated using duplicate measurements of different concentrations of 

TTX analyzed on four different days. The inter-assay coefficients of variation (% CV) 

were calculated as the standard deviation for each measurement divided by the 

average. The cross-reactivity of the assay with possibly interfering marine toxins such 

as domoic acid, okadaic acid and saxitoxin was finally studied under the conditions 

detailed above using each toxin at 40 ng/mL.  

 

2.2.6. Fish samples and TTXs extraction 

 

Fish extracts were obtained from a previous work71. One oceanic puffer fish 

(Lagocephalus lagocephalus, Linnaeus, 1758) (TTX-free individual) and one silver-

cheeked toadfish (Lagocephalus sceleratus, Gmelin, 1789) (TTX-containing individual) 

were caught in 2014 in Alicante (Spain). Puffer fishes were dissected, and gonads, 

liver, skin and muscle were retrieved. A double TTX extraction was performed with 

0.1% v/v acetic acid as previously described71. Extracts were obtained at a tissue 

concentration of 200 mg equiv./mL. 

 

2.2.7. Detection of TTX in puffer fish 

 

The compatibility of the hybrid sandwich assay with field sample analysis was initially 

evaluated with a spiking experiment. The TTX-free extracts from the L. lagocephalus 

puffer fish organs (gonads, liver, skin and muscle) were spiked with TTX at 1.5 ng/mL 

and recoveries were calculated after interpolation in the TTX calibration curve 

constructed in PBS buffer as detailed above. The L. sceleratus TTX-containing fish 

extracts were then analyzed. The amount of TTX in these extracts was calculated after 

interpolation in the calibration curve constructed in PBS and also in calibration curves 

constructed in parallel using the respective extracts from the TTX-free L. lagocephalus 

puffer fish. The extracts were diluted 1/1000 with PBS for all experiments. For 

comparison, the extracts were also analyzed with a magnetic bead-based competitive 

immunoassay as detailed in the Supplementary Information. 
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2.3. Results and Discussion  

 

2.3.1. Selections 

 

TTX is a very small molecule with only one (amine) functional group (Figure 2.1A). Its 

covalent linking to a solid matrix to facilitate the partitioning of bound from unbound 

sequences with traditional aptamer selection approaches would significantly alter its 

structure and possibly complicate the recognition of the native molecule by the 

aptamers. Capture-SELEX was thus considered as the most appropriate selection 

strategy using the ssDNA library immobilized on magnetic beads and the target in 

solution, rendering the whole molecule accessible for aptamer binding. The design of 

the ssDNA library was based on a previous report57. Besides the primer annealing 

sites, the library contained two random regions separated by a docking sequence, 

which provided an immobilization site to streptavidin magnetic beads through its 

hybridization with a complementary biotinylated docking probe. Previous studies 

exploiting the capture-SELEX strategy reported the use of Dynabeads M-270 SA-

MB59,60 and the library design from the original study57. Different affinity media like 

streptavidin agarose beads and home-made avidin-magnetic beads were reported in 

other studies, in combination with libraries containing only one random region whose 

immobilization was achieved via a biotinylated complementary to one of the primer 

annealing sites58,61. The distribution of the random sequences on the SA-MB, which 

could be partially determined by the availability of immobilization sites on the beads 

and the specific three-dimensional structures of the sequences, could potentially affect 

the evolution of a selection based on the capture-SELEX strategy. In this work, two 

different types of streptavidin-magnetic beads were used to perform two parallel 

selections. Even though Dynabeads and SiMAG SA-MB differ in size (2.8 µm and 1 

µm, respectively), their maximum binding capacity is almost identical. Taking into 

consideration the higher cost of the Dynabeads SA-MB as compared to the SiMAG 

ones, selections with both bead types were performed in an effort to reduce the overall 

selection costs and investigate the effect of the properties of the beads on their 

performance for capture-SELEX applications. 

Two selections were performed using the conditions summarized in Table S1 (SI). 

Starting with 500 μM of TTX and 2 h incubation steps (background and target elution 

steps), the gradual decrease of TTX concentration and duration of the incubation steps 

led to the completion of the selections after 23 rounds using 50 μM of TTX and 30 min 

incubations. TTX precursors L-arginine and 1,6-anhydro-β-D-mannopyranose72 were 

added as counter selection molecules during the last seven selection rounds to 

improve the specificity of the selected sequences (Figure 2.1A). The evolution of the 

selections was monitored by PCR amplification of the background and target elution 

fractions (Figure 2.1B). Interestingly, when Dynabeads SA-MB were used, few 

sequences eluted in the presence of buffer alone resulting in lower intensity bands 

after PCR amplification, as opposed to SiMAG beads. This could be a consequence 

of a better distribution of the docking probe on the larger surface of the Dynabeads 
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facilitating a more efficient hybridization of the random sequences. By the end of the 

selections, where both the TTX concentration and incubation times were decreased 

10-fold and 4-fold, respectively, as compared to the initial conditions, the pool from the 

Dynabeads selection appeared to be more enriched in TTX-specific sequences than 

the SiMAG one. 

 

 

 

Figure 2.1. Selection of TTX-binding aptamers. (A) Structures of the target TTX (upper panel) and the 

counter selection molecules (lower panel). (B) Evolution of the selections using Dynabeads and SiMAG 

SA-MB. DNA eluting in the presence of buffer alone or TTX under the specific conditions from the 

selected rounds was detected after PCR amplification. 

 

2.3.2. NGS and identification of aptamer candidates 

 

High-throughput sequence analysis of multiple rounds from each selection was 

performed using Ion Torrent NGS. Five rounds were chosen from each selection, and 

these were rounds 6, 9, 16, 23 and 23-counter (Figure 2.1B). Rounds 6 and 16 were 

chosen because they were performed before a significant change in selection 

conditions such as duration of incubation steps (2 h in round 6 → 1 h in round 7) or the 

concentration of TTX (100 μM in round 16 → 50 μM in round 17). Additionally, in round 

9, a significant enrichment in target-eluting sequences was observed by pilot PCR, 

especially when Dynabeads SA-MB were employed. Finally, round 23 was chosen as 

the last selection round. A comprehensive bioinformatics analysis was carried out 

using various tools from Galaxy webserver and other servers as detailed in the 

experimental section. General statistics can be found in Table 2.1.  
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Table 2.1. NGS data analysis of selected pools from the two selections. 

Selection round Total sequences % GC 
Sequences 

90 – 110 bp 

% Unique 

sequences 

(a) Selection with Dynabeads SA-MB 

D6 43,188 42 41,225 99,5 

D9 228,862 42 206,990 98,0 

D16 82,059 43 76,140 78,2 

D23 32,789 41 31,207 62,8 

D23-counter 36,727 41 34,937 60,8 

(b) Selection with SiMAG SA-MB 

C6 46,902 43 45,334 99,4 

C9 54,139 42 50,880 99,2 

C16 72,199 42 68,414 95,8 

C23 81,705 41 58,299 73,7 

C23-counter 111,076 41 76,770 71,5 

 

Enrichment was observed by the end of both selections. The pools in round 6 were 

highly diverse containing more than 99% of unique sequences. By the end of round 23 

though, the percentage of unique sequences decreased to 62.8% and 73.7% for the 

Dynabeads and SiMAG SA-MB selections, respectively. Furthermore, the enrichment 

of the counter selection pools from the last round for both selections was very similar 

to the respective target pools from the same rounds. Interestingly, faster enrichment 

was achieved when Dynabeads SA-MB were used as by round 16 the percentage of 

unique sequences dropped to 78.2% whereas it was 95.8% for the selection with the 

SiMAG beads. Favorable orientation and spacing between sequences on the 

Dynabeads SA-MB could potentially contribute to faster evolution.  

Comparison of the composition of the target and counter selection pools in rounds 23 

revealed the presence of most of the sequences in both datasets. This finding was not 

surprising since the counter selection molecules used were structurally almost identical 

to parts of the TTX molecule. Nevertheless, it was considered that sequences with 

lower affinity binding to small parts of the target structure could be eliminated during 

the successive rounds of counter selection/target selection. The evolution of the 20 

most enriched sequences (highest counts per million, CPM) in the target pool datasets 

from rounds 23 was monitored and their distribution in the pools from rounds 16, 23 

and 23-counter is shown in Table S2.2. A few sequences appeared to have been 
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selectively enriched in the TTX pools as compared to the counter selection pools and 

these were included in the analysis. Rounds 6 and 9 were excluded since low 

enrichment was observed. 

A 7 to 89-fold enrichment was observed for the sequences selected with Dynabeads 

SA-MB which was calculated as the ratio of abundance in round 23 to round 16. The 

selection performed with the SiMAG beads exhibited 2 to 73-fold enrichment. This data 

again demonstrates that the Dynabeads-based selection appears to be more 

successful with a higher enrichment of selected sequences. A direct comparison of the 

datasets from the last selection rounds with TTX and the counter selection molecules 

revealed that the top 20 sequences were slightly more abundant in the counter 

selection dataset than in the target dataset when Dynabeads were used (Figure S2.1). 

The opposite was observed for the SiMAG-based selection (Figure S2.2). Notably, 

sequences selected with one type of beads were not found in the pools from the 

selection conducted with the other type of beads. Despite theoretically starting from 

the same initial library, and using the same selection conditions, each of the SELEX 

evolved differently, resulting in different sequences being selected, depending on the 

beads used for library immobilization. This can be explained in part, to be due to the 

fact that even though the starting aliquots are taken from the same initial library, each 

aliquot can contain a different combination of diverse sequences. Additionally, the size 

and nature of the beads can affect the number of docking probes, and thus individual 

sequences of the immobilized library, captured on its surface, and this can affect the 

accessibility of the target to the individual sequences. 

Multiple sequence alignment of the 100 most abundant sequences in rounds 23 from 

both selections was also performed to identify possible sequence families. As can be 

seen in Figure S2.3 for the selection carried out with the Dynabeads, only one major 

cluster was observed and it contained the most abundant sequence in this dataset, 

identified as sequence 1, which constitutes 2.1% of the total unique sequences (Table 

S2). The second and third most abundant sequences, identified as sequences 2 and 

3, were encountered at lower percentages (1.1 and 0.9%, respectively), did not appear 

to belong to any family. Only one major sequence family was also observed in the 

dataset from the SiMAG beads selection (Figure S2.4), containing the second most 

abundant sequence (sequence 2 at 1.8%). The first and third most enriched sequences 

(2.3 and 1.3%) do not appear to belong to any cluster.  

The three most enriched sequences from the two selections were ultimately chosen 

for further characterization. These were annotated as D1, D2 and D3 for the 

Dynabeads and C1, C2 and C3 for the SiMAG selections. Additionally, two sequences 

identified in the two datasets from rounds 23 with preferential abundance in the target 

pools compared to the counter target pools (sequences 21 and 22 in Table S2.2 and 

Figures S2.3 and S2.4) were also selected and were annotated as D4, D5, C4 and C5. 

The sequences of all aptamer candidates are shown in Table S2.3. 
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2.3.3. Screening of the aptamer candidates  

 

The ten selected aptamer candidates were initially evaluated under conditions 

mimicking the selection process to choose the most promising ones for further 

analysis. Each aptamer was immobilized on SA-MB via hybridization to biotinylated 

docking probe. Aptamer displacing to the solution after incubation with TTX was 

detected after PCR amplification and agarose gel electrophoresis as detailed in the 

Supplementary Information. Whilst displacement was observed for all the aptamer 

candidates, significant displacement in the presence of TTX was observed for aptamer 

candidates D3, D4, D5, C2 and C3 which were finally chosen for further evaluation 

(Figure S2.5). Moreover, the ssDNA-folding was observed in the predicted structures 

of the five selected TTX aptamers shown in Figure S2.7, using M-fold program 

(http://www.unafold.org/mfold/applications/dna-folding-form.php.).  

 

2.3.4. Binding properties of the aptamer candidates 

 

Characterization of the binding properties of aptamers for small molecular weight 

targets like TTX using classical methods is usually hindered by the size of the 

molecules. A variety of approaches have been reported for affinity studies52,73, 

including microscale thermophoresis74,75 and isothermal titration calorimetry49 but 

these require specialized equipment not typically. Our group has previously reported 

the use of magnetic beads for the immobilization of small molecule targets and 

detection of aptamer binding by PCR and colorimetry69,70,75. We have developed 

microtiter plate-based assays using long-chain crosslinkers to spatially separate the 

target from the plate surface and facilitate aptamer binding69,70, and also used gold 

nanoparticle aggregation assays76. These methods are easy to perform and require 

material and equipment found in almost any laboratory.  

For the TTX aptamers, three of these methods were exploited. The calculated KD 

values are shown in Table 2.2 and the respective binding curves in Figure S2.6. For 

APAA, TTX was immobilized on magnetic beads whereas bound unmodified aptamer 

was detected after PCR amplification and gel electrophoresis. All aptamers 

demonstrated similar binding affinities with affinity dissociation constants in the range 

of 73 – 114 nM. Aptamers C2 and C3 selected using the SiMAG SA-MB showed 

slightly better KD values compared to the ones selected with the Dynabeads SA-MB 

(D3, D4 and D5). Biotinylated aptamers were used for bead-ELAA in combination with 

TTX immobilized on magnetic beads. Colorimetric detection of bound aptamers was 

achieved using SA-pHRP and TMB substrate. As with APAA, all KD values determined 

with bead-ELAA were calculated in the low nanomolar range (7 – 89 nM).  
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Table 2.2. Affinity dissociation constants of the aptamer candidates determined by APAA and bead-

ELAA. 

Aptamer 

APAA Bead-ELAA 

K
D
 (nM) R

2
 K

D
 (nM) R

2
 

D3 103 ± 24 0.9780 7 ± 1 0.9915 

D4  96 ± 16 0.9827 29 ± 13 0.9811 

D5 114 ± 46 0.9435 89 ± 58 0.9570 

C2 77 ± 6 0.9729 25 ± 6 0.9859 

C3  73 ± 12 0.9659 29 ± 7 0.9829 

 

 

2.3.5. TTX detection with a hybrid antibody-aptamer sandwich assay 

 

Once the binding properties of the five aptamer candidates were verified, the final 

objective was to design an aptamer assay for the detection of TTX in relevant samples. 

Detection of small molecules is usually accomplished with competitive-type assays 

since the size of the targets usually does not permit the simultaneous binding of more 

than one biorecognition elements. We have previously demonstrated competitive 

assays using the small molecule target immobilized on magnetic beads69 or on 

microplate wells70, and here we pursued a robust hybrid antibody-aptamer sandwich 

microtiter plate assay. It was hypothesized that the unique cage-like structure of TTX 

could potentially allow the formation of an antibody-TTX-aptamer complex enabling the 

detection of TTX with a sandwich assay. Even though hybrid antibody-aptamer assays 

have been reported before for high molecular weight targets like proteins and cells63, 

examples for small molecule targets are rare. Nevertheless, these assays are very 

attractive because they combine the advantages of both types of biorecognition 

elements while at the same time providing the sensitivity/specificity of sandwich assay 

formats. Using a monoclonal anti-TTX IgG antibody to coat the wells of a microtiter 

immunoplate, the five TTX aptamers were initially screened in order to choose the most 

suitable one for sandwich assay development. Indeed, all aptamers were able to form 

a sandwich with the antibody and allow the detection of TTX (Figure S2.8). Aptamer 

D3 however was by far the most successful one leading to more than 2-fold higher 

signal compared to the signals obtained with the other aptamers and it was chosen for 

final assay development. The sensitivity of the hybrid assay employing the monoclonal 

TTX antibody for capture and the D3 aptamer for detection was then evaluated at 

concentrations of TTX ranging from 39 pg/mL – 40 ng/mL, equivalent to 122 pM – 125 

nM. The assay was very sensitive with an LOD of 310 pg/mL (970 pM) and EC50 of 

1.1 ng/mL or 3.4 nM (Figure 2.2A). Using TTX samples analyzed on different days, 

average inter-assay coefficients of variation (CV) of less than 5% were calculated, 
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demonstrating the high precision of the assay (Table S2.4). Finally, the high specificity 

of the assay was exhibited by the absence of interference from other marine toxins 

such as domoic acid (DA), okadaic acid (OA) or saxitoxin (STX) the latter sometimes 

simultaneously present in puffer fish77 or shellfish32 (Figure 2.2B). Various assays and 

biosensors have been reported in the literature for the detection of TTX and some are 

summarized in Table S5. To date, the two previously published TTX aptamers have 

been exploited for the development of fluorescence68,76,78, fluorescence combined with 

amplification53 and electrochemical79 assays and the LODs achieved ranged from 

0.265 pg/mL to 319 ng/mL. Competitive immunoassays have also been reported using 

monoclonal TTX antibodies49,50,80 and their sensitivity was 0.3 – 2.5 ng/mL. The 

performance of the assay developed in this work is therefore superior or at least 

comparable with many of the previously published assays employing aptamers or 

antibodies. Very importantly, the majority of previously reported assays are quite 

complicated to perform as opposed to the simple sandwich assay demonstrated in this 

work. Commercial TTX kits are available, and they are based on competitive 

immunoassays. Examples include the microplate kits from CD Creative Diagnostics 

and United Biotechnology with LODs of 1 – 10 ng/mL as well as the rapid lateral flow 

tests from CD Creative Diagnostics and UNIBIOTEST with a sensitivity of 0.1 – 2 

µg/mL. It is thus evident that the hybrid antibody-aptamer format of the assay described 

herein has great potential for use in lateral flow tests, facilitating the facile and rapid 

on-site detection of TTX in field samples especially when combined with a simple 

method for sample preparation. It is also one of the rare examples of such hybrid 

assays for the detection of a small molecular weight analyte since there are reports for 

only three other targets, trinitrotoluene64, tetracycline65 and aflatoxin B166. 

 

 

 

 

Figure 2.2. Hybrid antibody-aptamer assay for the detection of TTX. (A) TTX calibration curve with the 

monoclonal IgG antibody-D3 aptamer pair. (B) Specificity of the assay.  
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2.3.6. Application of the assay to puffer fish analysis 

 

The hybrid antibody-aptamer sandwich assay was finally employed for the analysis of 

field samples. Extracts from different tissues (gonads, liver, skin and muscle) of a L. 

lagocephalus puffer fish were prepared as controls since our previous report showed 

the absence of TTX in these tissues71. The extracts were diluted, spiked with TTX and 

analyzed with the assay as explained in the Experimental Section. As shown in Table 

3, excellent recoveries were achieved in the range of 93.5 – 109.1%, thus 

demonstrating the absence of matrix effects and the compatibility of the assay with 

such samples. Extracts from tissues of a L. sceleratus puffer fish previously shown to 

contain high levels of TTXs71 were then analyzed. Since TTX may co-exist with several 

other naturally occurring TTX analogues, the hybrid sandwich assay is expected to 

provide a global TTX response (TTXs) depending on the specificity of both antibody 

and aptamer. The TTXs content was determined using calibration curves constructed 

both in PBS (afterwards applying the corresponding recovery factor) and in the 

respective tissue extract from the TTX-free puffer fish. As expected, TTXs contents 

with both strategies were very similar. High TTXs levels were observed, especially in 

the gonads and liver tissues where TTXs usually bioaccumulate (Table 2.3). The TTXs 

content in these tissues were 2.5 – 5-fold higher than the permissible levels in Japan 

(2 mg TTXs/kg). For comparison, the samples were analyzed in parallel with a 

competitive magnetic bead-based ELISA (detailed in the SI) which was previously 

developed and exploited a different monoclonal antibody23,81. Some differences were 

observed, which may derive from the specificity of the assays towards the different 

TTX analogues. It is necessary to take into account that the cross-reactivity factors for 

the different TTX analogues may vary according to the biorecognition molecule (which 

in the case of the hybrid sandwich assay are both the antibody and the aptamer) and 

also the format of the assay. Nevertheless, comparable results were obtained with both 

methods. Very good correlation was also observed with previous analysis carried out 

with LC-MS/MS71, the TTXs contents trend in the different tissues being the same: 

gonads > liver > skin > mussel (Table S6). The establishment of the cross-reactivity 

factors for the different TTX analogues present in these tissues would facilitate the 

comparison with LC-MS/MS results. However, pure TTX analogues are not 

commercially available, and their production is not an easy task. The elucidation of the 

TEFs alongside the cross-reactivity factors, which ideally should be similar, would 

certainly contribute to better manage the TTX risk. 
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Table 2.3. Detection of TTX in puffer fish extracts. Recovery (%) of TTX spiked in diluted extracts from 

a TTX-free fish (L. lagocephalus). TTXs content (mg TTX equiv./kg of tissue) in extracts from a TTX-

containing fish (L. sceleratus) were determined using calibration curves constructed in PBS buffer and 

in the respective extract from the TTX-free fish. 

Tissue 
% TTX recovery  

(L. lagocephalus) 

TTXs content (L. sceleratus) 

(mg TTX equiv./ kg) 

Hybrid antibody-aptamer 

sandwich assay Competitive magnetic 

bead ELISA 
PBS Extract 

Gonads 109.1 9.46 9.94 5.24 

Liver 93.5 5.99 5.01 2.84 

Skin 107.7 0.98 1.28 0.19 

Muscle 96.3 0.86 0.82 0.42 

 

 

 

2.4 Conclusions 

 

TTX has emerged as a major food hazard because of its high neurotoxicity and its 

presence in seafoods found not only in Asian but also European waters. Traditionally, 

bioassays have been used to detect TTX, however instrumental analysis using liquid 

chromatography in combination with mass spectrometry is currently employed for 

monitoring of field samples. Microplate immunoassays and antibody-based biosensors 

can also provide the required sensitivity and specificity, provided that highly specific 

antibodies are used. Aptamers are cost-effective alternatives to monoclonal antibodies 

and since their discovery in the early 1990s, they have been used for the detection of 

not only large targets such as cells and proteins but also small molecular weight targets 

like toxins. To date, only two TTX specific aptamers have been reported and have been 

exploited for the development of fluorescence and electrochemical assays, which are 

quite elaborate and are not compatible with rapid and facile on-site analysis and have 

not been employed for the analysis of field samples. In this work, capture-SELEX 

technology in combination with high-throughput NGS analysis was exploited for the 

discovery of novel TTX aptamers. Assays using magnetic beads were developed for 

the verification of the binding properties of the selected aptamer candidates which 

exhibited KD values in the low nanomolar range. The specific properties of the 

streptavidin magnetic beads used to immobilize the library and perform the two parallel 

selections appeared to affect the speed of evolution and the enrichment achieved even 

though the binding properties of the selected aptamers were not significantly affected. 
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Finally, a simple hybrid antibody-aptamer sandwich assay was demonstrated with high 

sensitivity, precision and specificity. Its sensitivity was superior or at least comparable 

to commercial kits based on competitive immunoassays and other existing aptamer 

and antibody-based assays and biosensors. The excellent performance of the assay 

was further demonstrated by the reliable determination of TTXs levels in puffer fish 

with an excellent degree of correlation with measurements obtained with a competitive 

magnetic bead-based immunoassay and liquid chromatography-mass spectrometry. 

This is the first demonstration of an assay employing an aptamer for the detection of 

TTX in puffer fish, and, in general, is one of the very few examples reported in the 

literature of such hybrid antibody-aptamer sandwich assay for small molecular weight 

analytes. The sandwich format of the assay is particularly attractive and ongoing work 

is focused on its transfer to a lateral flow assay to allow the rapid and facile analysis of 

samples at the point-of-need. The evaluation of cross-reactivity factors for different 

TTX analogues with this hybrid antibody-aptamer assay as well as its applicability to 

the analysis of shellfish, where the detection of lower TTXs contents is pursued, is also 

in progress.  
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2.6 Supplementary information 

 

2.6.1. Selection process 

 

For library immobilization on magnetic beads, the biotinylated docking probe was first 

captured on the streptavidin magnetic beads (SA-MB) according to the manufacturer’s 

instructions, using a 1.5-fold molar excess of the docking probe over the theoretical 
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binding capacity of the beads. The library and the subsequent pools, prepared in 

binding buffer (BB, PBS with 1.5 mM MgCl2), were annealed (2 min at 95ºC and slow 

cooling to 4ºC) and then incubated overnight at 22ºC under rotation for immobilization 

on the SA-MB/docking probe complexes. For the first round, 100 μL of SA-MB were 

used for the immobilization of 0.2 nmol of the library whereas for subsequent rounds, 

20 – 40 μL of SA-MB were required according to the amount of ssDNA pool prepared 

at the end of each round. Unbound oligonucleotides were removed by extensive 

washing of the beads (5 x 500 μL of binding buffer) and the SA-MB/docking 

probe/library complexes were finally resuspended with binding buffer to 10 mg/mL. 

Selection was initiated with a temperature pre-elution step for 15 min at 28ºC under 

gentle agitation. After removal of the supernatant, the beads were resuspended in the 

same volume of binding buffer and a background elution step was performed. Finally, 

the beads were resuspended in the same volume of binding buffer containing 

tetrodotoxin for the target elution step, which was performed under the same conditions 

as the background elution to select sequences eluting in the presence of the target 

molecule. During the last six rounds, tetrodotoxin precursors L-arginine and 1,6-

anhydro-beta-d-mannopyranose were included during the background elution step as 

counter-selection molecules. A total of 23 rounds were performed and the specific 

conditions used for each round are shown in Table S2.1 (Supplementary Information). 

The supernatants from the three elution steps were collected via magnetic separation 

and were used for pilot PCR experiments to monitor the progress of the selections. To 

this end, 2 μL of each fraction (pre-elution, background elution and target elution) were 

added to 10 µL of PCR master mix containing library-specific forward and 

phosphorylated reverse primers. Pilot PCR was performed using an initial denaturation 

step of 2 min at 95°C followed by 6 – 16 cycles of (15 sec at 95°C, 15 sec at 55°C, 30 

sec at 72°C). For the preparation of ssDNA for succeeding rounds, PCR reactions were 

performed using the optimal number of amplification cycles found by pilot PCR, 

followed by asymmetric PCR and lambda exonuclease digestion. For asymmetric 

PCR, the PCR master mix contained only the forward primer and 20 µL of PCR reaction 

per 100 µL of master mix and amplification was performed for 12 cycles. Remaining 

dsDNA in the asymmetric PCR reaction was digested by lambda exonuclease for 1.5 

h at 37°C, followed by enzyme deactivation for 10 min at 80ºC and column purification 

of the generated ssDNA for use in subsequent rounds of selection.  
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Table S2.1. Conditions used for the selections. 

Selection round Duration* (min) Tetrodotoxin (µM) Counter-selection 

R1 – R4 120 500 no 

R5 120 100 no 

R6 120 100 no 

R7 – R13 60 100 no 

R14 – R16 30 100 no 

R17 – R23 30 50 yes ** 

 

* background, counter and target elution steps 

** L-arginine and 1,6-anhydro-β-D-mannopyranose 

 

2.6.2. NGS analysis 

 

Table S2.2 Distribution (%) of highly abundant sequences in the different pools from the two selections. 

Sequences were ranked according to their abundance in the TTX pool from round 23.  

Sequence 
Dynabeads SA-MB SiMAG SA-MB 

R23 R23-counter R16 R23 R23-counter R16 

Most 

abundant 

1 2.125 2.373 0.095 2.321 1.438 0.041 

2 1.138 1.351 0.063 1.825 1.478 0.061 

3 0.884 0.873 0.197 1.308 1.062 0.040 

4 0.477 0.492 0.016 0.985 0.841 0.014 

5 0.436 0.435 0.137 0.768 0.371 0.020 

6 0.359 0.381 0.051 0.666 0.448 0.009 

7 0.314 0.321 0.035 0.535 0.474 0.056 

8 0.311 0.332 0.034 0.459 0.363 0.017 

9 0.285 0.366 0.007 0.359 0.259 0.005 

10 0.263 0.298 0.012 0.354 0.284 0.034 
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11 0.250 0.289 0.102 0.277 0.211 0.012 

12 0.244 0.384 0.007 0.270 0.231 0.003 

13 0.228 0.335 0.007 0.268 0.175 0.000 

14 0.224 0.226 0.009 0.235 0.109 0.011 

15 0.192 0.163 0.003 0.228 0.135 0.002 

16 0.192 0.160 0.028 0.191 0.165 0.000 

17 0.179 0.232 0.003 0.184 0.122 0.026 

18 0.179 0.169 0.060 0.184 0.150 0.023 

19 0.176 0.166 0.009 0.163 0.126 0.006 

20 0.176 0.143 0.021 0.158 0.113 0.008 

More 

abundant in 

target pool 

21 0.087 0.031 0.007 0.028 0.007 0.000 

22 0.026 0.000 0.000 0.026 0.005 0.000 

 

 

Figure S2.1. Abundance of highly abundant sequences in the last selection round of the target and 

counter selection molecules pools using Dynabeads SA-MB for library immobilization 
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Figure S2.2. Abundance of highly abundant sequences in the last selection round of the target and 

counter selection molecules pools using SiMAG SA-MB for library immobilization. 
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       Forward primer                               Docking site                                                                                                Reverse primer 
     ATACCAGCTTATTCAATT          TGAGGCTCGATC                                        AGATAGTAAGTGCAATCT 

  46 ATACCAGCTTATTCAATTTCAAGCGGTTTGAGGCTCAATCAAGGTTAGAAAGAGAGTA--TTGTGAGTATAGAATATGGCGAGATAGTAAGTGCAATCT  

  35 ATACCAGCTTATTCAATTTAGCGGGGAGTGAGACTCGATCGTGACGGCGATCAAAGGATAGTATGAAAGTCAAATGAGGTGAGATAGTAAGTGCAATCT  

  63 ATACCAGCTTATTCAATTTGCGGGGATATGAGGCTTGATCTGCGTAAGCGATGG-TGAAAGTTTTAATTTTATTAGAGGTGAGATAGTAAGTGCAATCT  

  76 ATACCAGCTTATTCAATTTCGGGAGATATAAGGCTCGATTAATGCGAAAGAAAT-GACAGCGTATAAGGTAAAAAGGGGCGAGATAGTAAGTGCAATCT  

  84 ATACCAGCTTATTCAATTTCGAGAGGTATGAGACTCGATCAAACTGAGAAGCAG-TTCAAGTTAGGCCAAAAAATGAGGTGAGATAGTAAGTGCAATCT  

   4 ATACCAGCTTATTCAATTTCAAGATGTATGAGGCTCGATCCTGTGGAGAGAGTG-TATAAGTATGATAATTCAGAGAGGGGAGATAGTAAGTGCAATCT  

  82 ATACCAGCTTATTCAATTTCAAGCAACATGAGGCTCGATCAGGTCGAAAGACAC-TGGATCGTTGATAGTATAAAGAGGGGAGATAGTAAGTGCAATCT  

  17 ATACCAGCTTATTCAATTTCAACACAAATGGGGCTCGATCTAGGATCGAGATGT-AGCTGTATAAAAAA-ACAGAGGCGAGAGATAGTAAGTGCAATCT  

  22 ATACCAGCTTATTCAATTTCAACACAAATGGGGCTCGATCTAGGATCGAGATGT-AGCTGTATAAAAAAAACAGAGGCGAGAGATAGTAAGTGCAATCT  

  77 ATACCAGCTTATTCAATTTCCAGGAATATGAGGCTCGATCAAGCGCGTATGTGC-AGCTTGATATAAAAAGAAAAGAGGTGAGATAGTAAGTGCAATCT  

  41 ATACCAGCTTATTCAATTTGAAGGTAGGTGAGGCTCGATCCGTTTCGGATAACG-AGGAAAAATCTTGAAAAAAAGAGGTGAGATAGTAAGTGCAATCT  

  81 ATACCAGCTTATTCAATTTGAACGGTAGTGAGGCTCGATCGGTAGCGATAGCAG-GGTCTAAAGCTGTTTAACAAGAGGGGAGATAGTAAGTGCAATCT  

  75 ATACCAGCTTATTCAATTTAAGAGGGGATGAGGCTCGATCAGCCAGGGAACTGA-TCGAAAAAAAGGGAGGGTCGTATACAAGATAGTAAGTGCAATCT  

  30 ATACCAGCTTATTCAATTTAAGCGGGAGTGAGGCTCGATCGGCCGGATAAGGGC-GTGACGGGAAAATTAAGTATGGGGCAAGATAGTAAGTGCAATCT  

  57 ATACCAGCTTATTCAATTTGAGGTGGGATGAGGCTCGATCGAGGGACTAGGAAC-GAGAGAAGAGGAATAAAGTTAAGGCGAGATAGTAAGTGCAATCT  

  96 ATACCAGCTTATTCAATTTGGGGTGGGATGAGGCTCGGTCGATAGACTAATAAT-AATATAGGAAGAATGGTTTAGAGGCAAGATAGTAAGTGCAATCT  

  95 ATACCAGCTTATTCAATTTGGAGGAGAATGAGGCTTGATCAAAATAGACATAAT-AAAAATGAGGCGTAATCAAAAGGGAGAGATAGTAAGTGCAATCT  

  58 ATACCAGCTTATTCAATTTCAAAGAAGGTGAGGTTCGATCCGAGGGGAACCGGG-AACGAGTAGAATATATAAAAGAGGCGAGATAGTAAGTGCAATCT  

   9 ATACCAGCTTATTCAATTTGGGGCGGGATGAGGCTTGATCCAAAGCGAAACAAA-AAGGGCAGTAGCGTAACAAAAAGGCGAGATAGTAAGTGCAATCT  

  59 ATACCAGCTTATTCAATTTGGTGGAAAGTGAGGCTCGATCCGAAACGTAGCGAT-GAGGAGAGAAGATTAAAGAAGAGGGGAGATAGTAAGTGCAATCT  

  33 ATACCAGCTTATTCAATTTCGAAGGGGTTGAGGCTCGATCGTAAGATTAACAGC-AGAGGAGAATAAAGCGTCGTGAGGGGAGATAGTAAGTGCAATCT  

  52 ATACCAGCTTATTCAATTTCAGCGGGGATGAGGCTTGATCTTAGATCGATGAGT-AGTACAAACAAGTCTCAAAAGAGGGGAGATAGTAAGTGCAATCT  

  61 ATACCAGCTTATTCAATTTGAGCAGGGATGAGGCTCGATCATAGCGCTAAGGCA-TGATCAGCTGAGAAAACAATGAGGGGAGATAGTAAGTGCAATCT  

   6 ATACCAGCTTATTCAATTTCAAGTGGGATGAGGCCCGATCAGGAGTTAAAAGTG-TGGA-ATAAAGGGGAGATATGAGACGAGATAGTAAGTGCAATCT  

  56 ATACCAGCTTATTCAATTTGGCAGATATTGAGGCTCGATCAACAGCGGTATCCA-TGATGAGATAATGGAAAAGAGGCCCGAGATAGTAAGTGCAATCT  

  12 ATACCAGCTTATTCAATTTGACAAAGTGTGGGGCTCGATCAGAGAATGAATTAT-AGCGGGATGTGAGGCGAAACAAGGGGAGATAGTAAGTGCAATCT  

  97 ATACCAGCTTATTCAATTTGTCAGAGATTGAGGCTCGATCTAACAGGGTGAGGA-AAGCTGTAAGAAAAAGTAGGGGCTCGAGATAGTAAGTGCAATCT  

  40 ATACCAGCTTATTCAATTTCGGGATAAATGAGGTTCGATCTTATGTAGTAAATA-TAGATACAGTAGGTAAAAATGAGGAGAGATAGTAAGTGCAATCT  

  36 ATACCAGCTTATTCAATTTCAAGGGAAGTGAGGCTCGATCCAAAGCTGTAAAAG-AACCAACCGGAGGTTATCGTGAGGGGAGATAGTAAGTGCAATCT  

  98 ATACCAGCTTATTCAATTTGAAGGCATATGAGGCTCGAAAACAAAAAGTAGAAG-AAGAA------AGTGGGAATGAGGGGAGATAGTAAGTGCAATCT  

  93 ATACCAGCTTATTCAATTTGAAGGCATATGAGGCTCGAAAACAAAAAGTAGAAG-AAGGA------AGTGGAAATGAGGGGAGATAGTAAGTGCAATCT  

  80 ATACCAGCTTATTCAATTTGAAGGCATATGAGGCTCGAAAGCAAAAAGTAGAAG-AAGAA------AGTGGAAATGAGGGGAGATAGTAAGTGCAATCT  

  68 ATACCAGCTTATTCAATTTGAAGGCATATGAGGCTCGAAAACAAAAGGTAGAAG-AAGAA------AGTGGAAATGAGGGGAGATAGTAAGTGCAATCT  

  54 ATACCAGCTTATTCAATTTGAAGGCATATGAGGCTCGAAAACGAAAAGTAGAAG-AAGAA------AGTGGAAATGAGGGGAGATAGTAAGTGCAATCT  

  39 ATACCAGCTTATTCAATTTGAAGGCATATGAGGCTCGAAAACAAAAAGTAGGAG-AAGAA------AGTGGAAATGAGGGGAGATAGTAAGTGCAATCT  

   1 ATACCAGCTTATTCAATTTGAAGGCATATGAGGCTCGAAAACAAAAAGTAGAAG-AAGAA------AGTGGAAATGAGGGGAGATAGTAAGTGCAATCT  

  15 ATACCAGCTTATTCAATTTGAAGGCATATGAGGCTCGAAAACAAGAAGTAGAAG-AAGAA------AGTGGAAATGAGGGGAGATAGTAAGTGCAATCT  

  53 ATACCAGCTTATTCAATTTGCGAGTAAGTGAGGCCCGATCTAATAGGTGTTATG-AAAGAGAAAAAAAGATATAGGAGGTGAGATAGTAAGTGCAATCT  

  62 ATACCAGCTTATTCAATTTGACAAGAAGTGAGGCTCGATCGAAGAATTGAACGG-TAAGGTGAGGATGTAAATATGAGGGGAGATAGTAAGTGCAATCT  

  34 ATACCAGCTTATTCAATTTGAGAAACGGTGAGGCTCGATCTGACGAATGTCAGG-AAAAGCAAGTAAAGAAAGATGAGGGGAGATAGTAAGTGCAATCT  

  66 ATACCAGCTTATTCAATTTGACGCACTGTGGGGCTCGATCATAAGGAAGTAAGG-AGAATGAAGGAATAAAACATGAGGTGAGATAGTAAGTGCAATCT  

  86 ATACCAGCTTATTCAATTTGGAGAGATATGAGGTTCGATTGAGAAGAAAAGTAAATGATGTAAAAG-AGGCAGAAGAGGTGAGATAGTAAGTGCAATCT  

  71 ATACCAGCTTATTCAATTTGCGGGGACATGAGGCTCGATCGCGACGGAGTGCGAGTGTTGGATTAT-AGGTAGTAGAGGCAAGATAGTAAGTGCAATCT  

  10 ATACCAGCTTATTCAATTTGAGGATGAGTGAGGTTCGATCTAAAATAAAAGAGTGGTTAAATAGTA-GAAATAGAAGGGCGAGATAGTAAGTGCAATCT  

  99 ATACCAGCTTATTCAATTTGAGGTGGAATGAGGCTCGATCTCGGATAAGGAATAGGCAAAAGTTAA-AAGATAGTGAGGCAAGATAGTAAGTGCAATCT  

  72 ATACCAGCTTATTCAATTTGAAAGCGTGTGAGGCTCAATCGAAACTACTAGGAACAGAATTTAAAG-AAAAATCCAAGGCGAGATAGTAAGTGCAATCT  

  47 ATACCAGCTTATTCAATTTCAACGGAAGTGAGGCTCGATCCATAGAGAGTAAATGGGTGGGGTATA-CAGAAATGAAGGCGAGATAGTAAGTGCAATCT  

  89 ATACCAGCTTATTCAATTTCAAAGGAAGTGAGGTTCGATCAAATAAAACCAAAACCCGAAGGGAAG-TGGAAAACAAGGCGAGATAGTAAGTGCAATCT  

  26 ATACCAGCTTATTCAATTTGACCGTGAGTGGGCTC-GATCATTACACAGGGAAGATAAAGCGCAGG-TGACATGAGAGGCGAGATAGTAAGTGCAATCT  

  20 ATACCAGCTTATTCAATTTGCGGGGATTTGAGGCTCAATCATGTATATGTCATAAGAAGGGTCGTA-TCAATTTAGTGGTGAGATAGTAAGTGCAATCT  

  87 ATACCAGCTTATTCAATTTGAGGAGATTTGAGGCTCGATCAAGTATTGACGATAATGCGGGATAAT-GAGATAATGAGGGGAGATAGTAAGTGCAATCT  

   5 ATACCAGCTTATTCAATTTGAAAGCGTATGAGGCTCAATCCCGTTAATCGTATTAACATATCACTA-ATTAAATAAAGGCGAGATAGTAAGTGCAATCT  

  79 ATACCAGCTTATTCAATTTCGGGAAAAGTAAGGCTCGATCATAATCAGAGATGGAAAGAAATAATA-TGAGGCTAAATGGGAGATAGTAAGTGCAATCT  

  14 ATACCAGCTTATTCAATTTGCGTAGGG-ATGGCTC-GATCTACAGAGGAATAAAGCGTAAATGAGA-GTATAAATGAGGGGAGATAGTAAGTGCAATCT  

  90 ATACCAGCTTATTCAATTTGCGTAGGGATGGGCTC-GATCTACAGAGGAATAAAGCGTAAATGAGA-GTATAAATGAGGGGAGATAGTAAGTGCAATCT  

  94 ATACCAGCTTATTCAATTTGGAGGCAGGTGAGACTCGATCAGAAGCAAACAAGATATTAAAAGGTA-AGTAACAAGGCTCGAGATAGTAAGTGCAATCT  

  74 ATACCAGCTTATTCAATTTGCGGTAGTGTGAGGCTCAATCCAAGGTGCATAGGAAATAAAGGATCC-ACAGAAGTAAGGCGAGATAGTAAGTGCAATCT  

  19 ATACCAGCTTATTCAATTTCAGAAATAATGAGGCTTGATCGGAAAAGAATGTTAGGTGAGATGTAA-AAGAGGCCAAATAGAGATAGTAAGTGCAATCT  

  65 ATACCAGCTTATTCAATTTCAGGAAGCGTGAGGCTCGAGTATAAGGATGACAAAAAGA------GA-GAATATTAGGGCGAAGATAGTAAGTGCAATCT  

  85 ATACCAGCTTATTCAATTTGAGGCGGGTTGAGGCCGATCA-TAGTAGCTAGAAAGAAAGAATAAAA-CAAAATTCGAGGGGAGATAGTAAGTGCAATCT  

  37 ATACCAGCTTATTCAATTTCGACAAGAATGAGGCTCAATCACTAAAACATCTTGAAGGCTACGTCA-AAGAAAAAAGGGCGAGATAGTAAGTGCAATCT  

 100 ATACCAGCTTATTCAATTTGCGGGAAAGTGAGGCCCGATCATGGGAAATTTATTCAAAGCAACGGA-AAAGAAATATGGCGAGATAGTAAGTGCAATCT  

  73 ATACCAGCTTATTCAATTTGAGGAAGGGTGAGGCTCAATCAAATAAGGAGCTTCATGAAAGGTGTA-AATACAAAGAGGCGAGATAGTAAGTGCAATCT  

  55 ATACCAGCTTATTCAATTTGGCGGGGTGTGAGGTTCGATCTGGTAGATCCAGAAATTGGTATAGAA-GATAAATGAGGTGAAGATAGTAAGTGCAATCT  

  11 ATACCAGCTTATTCAATTTGCGGCAGGGTGAGGCTCGATCCGGATCCGGGTCGACAAAAGACAATA-AGAAAAATCAGGCGAGATAGTAAGTGCAATCT  

   7 ATACCAGCTTATTCAATTTCAGGGATTATGAGGCTCAATCAAATAAATAGAGAAAAGAAAGAAACG-ATATATGAGGGTCGAGATAGTAAGTGCAATCT  

  38 ATACCAGCTTATTCAATTTGAGCGGGAATGAGGTC-GATCAGAAGATTAGTAAAAGAAGAATAAGG-ACGTAAAAGGGGCGAGATAGTAAGTGCAATCT  

   8 ATACCAGCTTATTCAATTTGGCGGGGTGTGAGGCTCGATCCACCGGATCGGATATAACCTATAAAA-A-AGTGAGAAGGCGAGATAGTAAGTGCAATCT  

  67 ATACCAGCTTATTCAATTTGGCGGGGTGTGAGGCTCGATCCACCGGATCGGATATAACCTATAAAA-AAAGTGAGAAGGCGAGATAGTAAGTGCAATCT  

  29 ATACCAGCTTATTCAATTTGAGGGATTATGAGGCTCGATCATTTAAGCGAAGGATGAACGAAAGTA-AAGAAAAAAGGGCGAGATAGTAAGTGCAATCT  

  21 ATACCAGCTTATTCAATTTGAGGGGGGATGAGGCTCGATCAGAGAATTGGGGAAAGTACGTAAATG-ATAAAATGAGGGTGAGATAGTAAGTGCAATCT  

  44 ATACCAGCTTATTCAATTTGGAGGGACATGAGGCTCGATCGGAGAAATTGGGGCTAGGGTAGAAAG-AACAAAAGGAGGTGAGATAGTAAGTGCAATCT  

  60 ATACCAGCTTATTCAATTTGCGGGGAGATGAGGCTCGATCGGCGGAGTGGGGCCGATCACAAAGAT-GGACATATTAATGGAGATAGTAAGTGCAATCT  

  24 ATACCAGCTTATTCAATTTAGCGGGGGGAGAGGCTCGATCGCGGGGACGGCGCAGAGAGTAAATTA-CAATAAAGGAGGTGAGATAGTAAGTGCAATCT  

  50 ATACCAGCTTATTCAATTTCATGGGGGATGAGGCTCAATCATAGGACTGAACAAAATAGTAAGGTA-GGCAAGATCAGGTGAGATAGTAAGTGCAATCT  

   3 ATACCAGCTTATTCAATTTAATGCGGGGTGAGGCTCAATCAAGGAAAGATATAAGTAAGCAAAAAG-GTCAAACAAGGGCGAGATAGTAAGTGCAATCT  

  31 ATACCAGCTTATTCAATTTAATGCGGGGTGAGGCTCAATCAAGGGAAGATATAAGTAAGCAAAAAG-GTCAAACAAGGGCGAGATAGTAAGTGCAATCT  

  45 ATACCAGCTTATTCAATTTGACGAAAGTTGAGGCTCGATCGGTGTGAGATCGATTAATAATAAGCA-GTTGAGGAAGGGCGAGATAGTAAGTGCAATCT  

  83 ATACCAGCTTATTCAATTTGAAGAGAACCGAGGCTCGATCAACAGTGAGACGAGAAATGATGCTGT-ATTTATTAAGGGCGAGATAGTAAGTGCAATCT  

  32 ATACCAGCTTATTCAATTTGAAAGCGTATGGGGCTCGATAAAGTGTATCAAAGGGTAAACAAATA--TTAAGTGAGAGGGGAGATAGTAAGTGCAATCT  

  92 ATACCAGCTTATTCAATTTGGGGTGGGTTGAGGCTCGATCGACAGATCGTAAAAACGTAAAATAAA-GAGGCTAGTCGTGGAGATAGTAAGTGCAATCT  
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Figure S2.3. Multiple sequence alignment of the 100 most abundant sequences in the TTX target pool 

from round 23 of the selection performed with the Dynabeads SA-MB. Identical bases are shaded, and 

the three most enriched sequences selected for characterization are in boxes. 

 

 

 

 

 

 

 

 

 

 

 

 

       Forward primer                               Docking site                                                                                                Reverse primer 
     ATACCAGCTTATTCAATT          TGAGGCTCGATC                                        AGATAGTAAGTGCAATCT 

  23 ATACCAGCTTATTCAATTTCGGGGGTTCTGAGGCTCAATCAAAAGAAAGGATACTGTGTACAGTTT-GTAGAGAAAAGGCGAGATAGTAAGTGCAATCT  

  91 ATACCAGCTTATTCAATTTCAGGGGGTATGAGGCCCGATCAAGATACGAGATAAAAACAGAGGTAA-GAGCAAGGAGGCCAAGATAGTAAGTGCAATCT  

  42 ATACCAGCTTATTCAATTTGCGGCGGGATGAGGTCGATCAGGCAGAATCTGACGAAGGCAAA--TGCGGAAAAAAGAGGCGAGATAGTAAGTGCAATCT  

  13 ATACCAGCTTATTCAATTTCAGCGGAAGTGAGGCTCGATCAAGGGCTGGGACATCAAATATAATAA-GTATTAGAGAGGGGAGATAGTAAGTGCAATCT  

  88 ATACCAGCTTATTCAATTTAAGTAAGCGTGAGGCTCGGTTAGAAAAAATAGACAAGAAA--------ATTTCAGAGAGGGGAGATAGTAAGTGCAATCT  

  64 ATACCAGCTTATTCAATTTGGCAAGAAGTGAGGATCGATCAAAAAATTACAAGTGTTAAAAAGAAG-AAAGAGTGAGGTGAAGATAGTAAGTGCAATCT  

  18 ATACCAGCTTATTCAATTTGAGGTGGAATGAGGCTCGATCATAGATCGGGTTGGCAAGAACAAAGT-GATAGGGAGAGGGGAGATAGTAAGTGCAATCT  

  49 ATACCAGCTTATTCAATTTCAGGGGGTATGAGGCTCGATCCGCAAGGCAGGACGAGTGTAAGTAA--TACAAAAAGAGGTGAGATAGTAAGTGCAATCT  

  70 ATACCAGCTTATTCAATTTCAGGGAGGTTGAGGCTCGATCTGGGAAAACGTAGGCTTTAAGCGAAG-GTATGAAAGAGGGGAGATAGTAAGTGCAATCT  

  27 ATACCAGCTTATTCAATTTGACGGGACATGAGGCTCGATCCACAGAAGGGTGGAATATGCGTAGTT-AGAGTAAAGAGGGGAGATAGTAAGTGCAATCT  

  69 ATACCAGCTTATTCAATTTGAGGAGGTATGTGGCTCGATCAGAATTGCGAATCAGGGAGCAAAAA--ATCAAGGAGAGGGGAGATAGTAAGTGCAATCT  

  48 ATACCAGCTTATTCAATTTCACCGGATGTGAGGCTCGATCTTCAAAAGGTGGGGAAAGCGGAGAAG-TATGGAAAGAGGTGAGATAGTAAGTGCAATCT  

  16 ATACCAGCTTATTCAATTTGGCGGGGAGTGAGGCTCAATCATACCAAGGAAATCATGACAAAAAAG-CTAAATGATGGGCGAGATAGTAAGTGCAATCT  

   2 ATACCAGCTTATTCAATTTGAGAAGCGTTGAGGCCCGATCAAAAGTGTAGAAAAGGGGAAAAGAAG-GAAACAAAGAGGGGAGATAGTAAGTGCAATCT  

  43 ATACCAGCTTATTCAATTTGAGCGGGGATGAGGTTCGATCAAGCAACAAGAATAACAAAGGAGC---AAAAATATGGGGGGAGATAGTAAGTGCAATCT  

  25 ATACCAGCTTATTCAATTTGAGGTACCATGAGGCTCGATCGGGACCATAGTGAAGCTGAGGTTAAA-TAAGAAATGAGGGGAGATAGTAAGTGCAATCT  

  51 ATACCAGCTTATTCAATTTGAATGGGGATAAGGCTCGATCACCAACAGAGACTGATAGAGTAAAAG-TATAAAATGAGGGGAGATAGTAAGTGCAATCT  

  28 ATACCAGCTTATTCAATTTGACGGGGTATGAGGCTCGATCAGGCAATAAGCGCGATGTAGAAAAAAA-AGAATGAGAGGGGAGATAGTAAGTGCAATCT  

  78 ATACCAGCTTATTCAATTTGACGGGGTATGAGGCTCGATCAGGCAATAAGCGCGATGTAGAAAAAAAAAGAATGAGAGGGGAGATAGTAAGTGCAATCT 
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       Forward primer                               Docking site                                                                                                Reverse primer 
     ATACCAGCTTATTCAATT          TGAGGCTCGATC                                        AGATAGTAAGTGCAATCT 

  92 ATACCAGCTTATTCAATTTGTAGGAGAGTAGGCTCGATCAATAAAAAAAATAGGAATGTATATAATTATTTAAGTAGGGGAGATAGTAAGTGCAATCT  

   3 ATACCAGCTTATTCAATTTGAGGAAC-ATGAGGCTCGATCCTATATAGAGATGACGAAGAATGATAGAAAGCGTAGGTGAAGATAGTAAGTGCAATCT  

  15 ATACCAGCTTATTCAATTTGAGGAAC-ATGAGGCTCGATCCTATATAGAGATGACGAAGAATGATAGAAAGCGTAGGTGGAGATAGTAAGTGCAATCT  

   7 ATACCAGCTTATTCAATTTGTAGAATATTAAGGCTCGATCTAAAATGAAATATAGGAAGAATATATAATGATATTAATGGAGATAGTAAGTGCAATCT  

  35 ATACCAGCTTATTCAATTTGAAAGAATATGAGGCTCGATAAACAGTAGAAAATAATTA-A--GTAAGAATTAAAGTTGTAAGATAGTAAGTGCAATCT  

  44 ATACCAGCTTATTCAATTTGAGAAA-TATGAGGCTC-GATAAAAAATAATAGTATAGA-AATATATAAAGTGGTATTTTGAGATAGTAAGTGCAATCT  

  39 ATACCAGCTTATTCAATTTGAGAAAATATGAGGCTCGATAA--AAATAATAGTATAGA-AATATATAAAGTGGTATTTTGAGATAGTAAGTGCAATCT  

   5 ATACCAGCTTATTCAATTTGAGAAAATATGAGGCTCGATAAAAAAATAATAGTATAGA-AATATATAAAGTGGTATTTTGAGATAGTAAGTGCAATCT  

 100 ATACCAGCTTATTCAATTTGAGAAAATATGAGGCTCGATAAA-AAATAATAATATAGA-AATATATAAAGTGGTATTTTGAGATAGTAAGTGCAATCT  

  59 ATACCAGCTTATTCAATTTGAGAAAATATGAGGCTCGATAAA-AAATAATAGTATAGA-AATATATAAAGTGGTATTTTAAGATAGTAAGTGCAATCT  

  58 ATACCAGCTTATTCAATTTGAGAAAATATGAGGCTCGATAAA-AAATAATAGTATAGA-AATATATAAAGTGATATTTTGAGATAGTAAGTGCAATCT  

   2 ATACCAGCTTATTCAATTTGAGAAAATATGAGGCTCGATAAA-AAATAATAGTATAGA-AATATATAAAGTGGTATTTTGAGATAGTAAGTGCAATCT  

  25 ATACCAGCTTATTCAATTTGAGAAAATATGAGGCTCGATAAA-AAATAATAGTATAGA-AATATATAAAGTAGTATTTTGAGATAGTAAGTGCAATCT  

  81 ATACCAGCTTATTCAATTTCAACGGGAGTGAGGCTCGATCTGGGATGATAAGTGACCCT-TGTAACTTATCTTATAGGGGAGATAGTAAGTGCAATCT  

   9 ATACCAGCTTATTCAATTTGAGGGGGGATGAGGCTCGATCTTGCCTGTAAGGTTATTAA-TCAACCTCGGATGTGCTGGGAGATAGTAAGTGCAATCT  

  30 ATACCAGCTTATTCAATTTCAGGTAAGGTGAGGCTCGATCAGTTTGAAGACCTGGGTGAATCAAGAGCTGTATAAAGGTGAGATAGTAAGTGCAATCT  

  22 ATACCAGCTTATTCAATTTGGCGAAACATGAGGCTCGATCCTATAAAGAGGTCGCAGGA-GTTGTAATATCAAGATGGGGAGATAGTAAGTGCAATCT  

  43 ATACCAGCTTATTCAATTTCAGGGTTGGTGAGGCTCGATCGGGGATAAGCGTAGGTGAAATAAGGGTTAACAAATAGTGGAGATAGTAAGTGCAATCT  

  29 ATACCAGCTTATTCAATTTGAGGGCAGATGAGGCTCGATCTTATATGTCA-ACATGGCCGGATATATAATTAAGCGTGGGAGATAGTAAGTGCAATCT  

  45 ATACCAGCTTATTCAATTTGAGGGTAGATGAGGCTCGATCATGGTAAAGGGTCGTGAGAATTGATACTCATAAGCGTGGGAGATAGTAAGTGCAATCT  

  69 ATACCAGCTTATTCAATTTCACAAAGGATGAGGCTCGATCGTAAAGTAAAGTGGGATTTTAAGCGCAGGAAAACAGGAGGAGATAGTAAGTGCAATCT  

  71 ATACCAGCTTATTCAATTTGCGTGAGAATGAGGCTCGATCTAAATAACAAGAAGGGAATTTGGCGTGGATAATGAGGTCAAGATAGTAAGTGCAATCT  

  84 ATACCAGCTTATTCAATTTCCGGGAAAGTGAGGCTCGATCAATATACAAAAGGGATGACTAGGCGTAGGTAGTGAGTTCGAGATAGTAAGTGCAATCT  

  33 ATACCAGCTTATTCAATTTGAGAGGCACTGAGGCTCGATCACAGATAAGGGTGCCGGAGAAATGA-GGTTGGCGTGGGTGAGATAGTAAGTGCAATCT  

  66 ATACCAGCTTATTCAATTTGAGGGGGGATGAGGCTCGATCATGTATTAAAGCGTCGGTTTAAGGTAGGAGAGATAAGTAGAGATAGTAAGTGCAATCT  

  75 ATACCAGCTTATTCAATTTGAGGAGGGATGAGGCTCGATCAAGATAGGGTAAAGTGGCGCCCTTAAGATAAATCCGGACGAGATAGTAAGTGCAATCT  

  16 ATACCAGCTTATTCAATTTGACGGCAAATGAGGCTCGATCCAGGAAAGGGACGTCGTGTAAATTGAGATGTTATGTTGGGAGATAGTAAGTGCAATCT  

  21 ATACCAGCTTATTCAATTTGACGGGCAATGAGGCTCGATCAAGTAAGAAGAACGTCGGGAGGTTAAGAGGGGATTATGTGAGATAGTAAGTGCAATCT  

  55 ATACCAGCTTATTCAATTTGCGGGGATGTGAGGCTCGATCCGACGGGACGTTTACTGTTGAAATGTGAACGTGGGAGGTGAGATAGTAAGTGCAATCT  

  93 ATACCAGCTTATTCAATTTGGGCGGGGATGAGGCTCGATCTTACGGATCGTGTATTATGCATAATTTAATGAGGAAGGGGAGATAGTAAGTGCAATCT  

  18 ATACCAGCTTATTCAATTTAAGCGGGGATGAGGCTCGATCTATACGCAAAAACCGGCATGGGTGTCAGAATAGAGACTCGAGATAGTAAGTGCAATCT  

  57 ATACCAGCTTATTCAATTTAAGCGGGGATGAGGCTCGATCAGTACAGGACACAAAGGTAAAATGTGTAACGTGGGACTGGAGATAGTAAGTGCAATCT  

  61 ATACCAGCTTATTCAATTTAAGGTGGGATGAGGCTCGATCAACGGATAATATCATTGACGTGGTT-CGTATAGAGAGACGAGATAGTAAGTGCAATCT  

  47 ATACCAGCTTATTCAATTTAAGCGGGGATGAGGCTCGATCTGAGGAGAAACAATTAGAGGAATTGTTGGTGTATGGGTCGAGATAGTAAGTGCAATCT  

  63 ATACCAGCTTATTCAATTTAAGCGGGGATGAGGCTCGATCCGCAAAAGGATAAAGATCATGGACG-TTGTGGTAGGGTCGAGATAGTAAGTGCAATCT  

  94 ATACCAGCTTATTCAATTTCACATGGTTTGAGGCTCGATCCCATGGTCAGTAAAGGGGAATTGTTCGAGAGGATGCTGGGAGATAGTAAGTGCAATCT  

  26 ATACCAGCTTATTCAATTTCACAAATGTTGAGGCTCGATCTAAAGATGCAGAAGGGGACATTGGAAAGACCGGGGCTGGGAGATAGTAAGTGCAATCT  

  51 ATACCAGCTTATTCAATTTCAGAAGCAGTGAGGCTCGATCAACCGGTGGAGACGGTATATTAATAATGCGATGGGCTGGGAGATAGTAAGTGCAATCT  

  60 ATACCAGCTTATTCAATTTGGGGGCATGTGAGGCTCGATCGTTGGAAATAGGTTAACGAATTAGTGATTAGGAGGCTGGGAGATAGTAAGTGCAATCT  

  99 ATACCAGCTTATTCAATTTGAGGGGACGTGAGGCTCGATCATGGAAAGACGGC-TTCGAGCAGTTGATTAAAGGCCTGGGAGATAGTAAGTGCAATCT  

  37 ATACCAGCTTATTCAATTTCACGGGCATTGAGGCTCGATCGTTATTATTGGCCAAGAGAGGAATTGGAGTTCAAGATGGGAGATAGTAAGTGCAATCT  

  80 ATACCAGCTTATTCAATTTGGAGGGGAGTGAGGCTCGATCAAAAGTATTGGCGATATACAGAAATGAATGTCAAAGCGGGAGATAGTAAGTGCAATCT  

  41 ATACCAGCTTATTCAATTTGAAGGTGTGTGAGGCTCGATCAGATATAACTACACAGCGAGAGAAGGATGTAAAAGAGGGGAGATAGTAAGTGCAATCT  

  87 ATACCAGCTTATTCAATTTGAACAACGGTGAGGCTCGATCTAGATTTAGGTCTGGGT-GAATTGACATGACATTGCTGGGAGATAGTAAGTGCAATCT  

  14 ATACCAGCTTATTCAATTTCCAAGACGATGAGGCTCGATCAAATAGGAGATGGATGTGGGAGGAGAATAGTGAAGCTGGGAGATAGTAAGTGCAATCT  

  78 ATACCAGCTTATTCAATTTCCAAGACGATGAGGCTCGATCAAATAGGAGATGGATGTGGGAGGAGAATAGTGAGGCTGGGAGATAGTAAGTGCAATCT  

  73 ATACCAGCTTATTCAATTTGCACGACGGTGAGGCTCGATCGAGTGTAGTAATAAGGGAGTCTGGAGAGACAATGGCTGGGAGATAGTAAGTGCAATCT  

   4 ATACCAGCTTATTCAATTTGACAGAAGATGAGGCTCGATCAAGATATGTCATGAAGGAGGATTGGGATAAAACAGCTGGGAGATAGTAAGTGCAATCT  

  90 ATACCAGCTTATTCAATTTGACAGAAGATGAGGCTCGATCAAGATATGTCGTGAAGGAGGATTGGGATAAAACAGCTGGGAGATAGTAAGTGCAATCT  

  85 ATACCAGCTTATTCAATTTGACGGAAACTGAGGCTCGATCTACTAGGAGTTGACGGAGACACTAAGAATAGGGCAAAGGGAGATAGTAAGTGCAATCT  

  11 ATACCAGCTTATTCAATTTCACGGGTGGTGAGGCTCGATCAAAAGGTCTATATCACGTGGGAGAAGAAG-AAGTAATGGGAGATAGTAAGTGCAATCT  

  62 ATACCAGCTTATTCAATTTGACGGGGAATGAGGCTCGATCTGCAGGAAGATATAGGTCCGGAGAAAGGTAAGTCAATGGGAGATAGTAAGTGCAATCT  

  38 ATACCAGCTTATTCAATTTCAGCGAACGTGAGGCTCGATCCAACTGATAGAAGGTGTGATGGATATTGATGAAAGCGGGGAGATAGTAAGTGCAATCT  

  76 ATACCAGCTTATTCAATTTCAAATAACGTGAGGCTCGATCGGTATTCCATTAGGTGATTTGGAAGGGATTTAAAGCGGGGAGATAGTAAGTGCAATCT  

  34 ATACCAGCTTATTCAATTTGAGTAGACTTGAGGCTCGATCAGTAAACAGGATTAACGAGTGTAATAGGCGCAGTATGGGGAGATAGTAAGTGCAATCT  

  24 ATACCAGCTTATTCAATTTGAATAGACATGAGGCTCGATCTTAATAAAGTGAGTACTAGAGGATTGAATGCAAAGATGGGAGATAGTAAGTGCAATCT  

  28 ATACCAGCTTATTCAATTTGAAGAGACTTGAGGCTCGATCTAATTAACTAATGTGTCTGAGAAGAAGATATAGCAAAGGGAGATAGTAAGTGCAATCT  

  10 ATACCAGCTTATTCAATTTCAAGCGGGATGAGGTCGATCAGTAAAGCTCAGTAGATAT-CTACAAGGTGTATGTAGGGCGAGATAGTAAGTGCAATCT  

  31 ATACCAGCTTATTCAATTTGACAGAAGGTGAGGCTCGATCATAGGTGTAGGAAAGTAGATAGGAAACACCGCAAGCTGGGAGATAGTAAGTGCAATCT  

  48 ATACCAGCTTATTCAATTTGAACGGACGTGAGGCTCGATCATAGAAGTAGGGAGAAAGATATTGGAAGCATATAGGGAGGAGATAGTAAGTGCAATCT  

  53 ATACCAGCTTATTCAATTTCAAGCGAGGTGAGGCTCGATCAGTGGAGCGGGCAAGAAATTATAAGAAGGAGAAGAGGACGAGATAGTAAGTGCAATCT  

  86 ATACCAGCTTATTCAATTTCACGAGTGATGAGGCTCGATCGGTGTAAGAAGTCACGTAGTTCAAATGAATGCGGGCTGGGAGATAGTAAGTGCAATCT  

  91 ATACCAGCTTATTCAATTTAAGATGGGATGAGGCTCGATCGGAGTTAGTTGGAACCAAGGGCGAAGATAGAGTTGGAGGGAGATAGTAAGTGCAATCT  

  79 ATACCAGCTTATTCAATTTGAGTGGAAGTGAGGCTCGATCGTAGGAATTCTGACAATCGGTTTAAGGAACACAAGCGGGGAGATAGTAAGTGCAATCT  

  72 ATACCAGCTTATTCAATTTCGCGTAGGATGAGGCTCGATCATAGTGAAAGTGCTTAAGAGGAATGGGGACACCTGCTGGGAGATAGTAAGTGCAATCT  

  82 ATACCAGCTTATTCAATTTGAGACAACTTGAGGCTCGATCGCAACTATAGTGAAGTGTTGTTGAAGAATCCTCAGGTGGGAGATAGTAAGTGCAATCT  

  12 ATACCAGCTTATTCAATTTCAAGCAAAATGAGGCTCGATCAATAAGAGTGTGTGCGCGGTAAATTGGGTAGGGGGCTGGGAGATAGTAAGTGCAATCT  

  23 ATACCAGCTTATTCAATTTGAGACAAAATGAGGCTCGATCCGGAAATATGTGAAGGCTAGAAGAGAATGTTATAGCTGGGAGATAGTAAGTGCAATCT  

  20 ATACCAGCTTATTCAATTTGACGGGCAATGAGGCTCGATCGTGTAAAAAACGGAGAACTACGAGGAAGCAAAAGGTATGGAGATAGTAAGTGCAATCT  

  49 ATACCAGCTTATTCAATTTGGCGGGAAATGAGACTCGATCGGGTTACGATAAAAGATGAAAGTACAAGAAAAATAAGGCGAGATAGTAAGTGCAATCT  

  77 ATACCAGCTTATTCAATTTGGGCAAGCATGAGGCTCGATCTATTGGAAACTTGAACCGGGTT-AGAAAAAGGATGCTGGGAGATAGTAAGTGCAATCT  

  17 ATACCAGCTTATTCAATTTCAACGGGACTGAGGCTCGATCTGAATAAAAGCGCAGTAGGCATGAAAAGATAAATGAGGAGAGATAGTAAGTGCAATCT  

  98 ATACCAGCTTATTCAATTTGAAGAGGAATGAGGCTCGATCCCCAAATAAGCGCAGGTGAAGTAAAATGGAAAGACAATCGAGATAGTAAGTGCAATCT  

  27 ATACCAGCTTATTCAATTTGAAGGAAGTTGAGGCTCGATCCATAAATCCGTCCTGAAGAAAT-GAACGCATAGGGCTGGGAGATAGTAAGTGCAATCT  

  68 ATACCAGCTTATTCAATTTGACAGACAATGAGGCTCGATCTGGGAAAGGATGTCCAAAGGGTTGAATGGTTTGAAGCGGGAGATAGTAAGTGCAATCT  

  42 ATACCAGCTTATTCAATTTCCCGGAGTATGAGGCTCGATCTCTTGGGTAGTTGCGTAGGGCAGGAAGAATAGGCGCAGTGAGATAGTAAGTGCAATCT  

  19 ATACCAGCTTATTCAATTTGGCGGGGACTGAGGCTCGATCTGGAAAGGGGACCCTAAGAAGATGAATGATAAGAGCGGGGAGATAGTAAGTGCAATCT  

  64 ATACCAGCTTATTCAATTTGAGAGGAGGTGAGGCTCGATCTAAAAGTGATAAGGAACGAGAAGGGAACAAAGCCGTGGGGAGATAGTAAGTGCAATCT  

   8 ATACCAGCTTATTCAATTTGAGGGATACTGAGGCTCGATCTTAATGGGAGTAGCGTGCAGAATTGATAGGAAGAGCGGGGAGATAGTAAGTGCAATCT  
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Figure S2.4. Multiple sequence alignment of the 100 most abundant sequences in the TTX target pool 

from round 23 of the selection performed with the SiMAG SA-MB. Identical bases are shaded and the 

three most enriched sequences selected for characterization are in boxes. 

 

 

 

Table S2.3. Sequences of the selected aptamer candidates. D sequences were identified from the 

selection with Dynabeads and C sequences with the SiMAG SA-MB. 

ID Sequence (5’-3’) Length (nt) GC (%) 

D1 

ATACCAGCTTATTCAATTTGAAGGCATATGAGGCTCGAAAACAAA

AAGTAGAAGAAGAAAGTGGAAATGAGGGGAGATAGTAAGTGCAA

TCT 

92 37.0 

D2 

ATACCAGCTTATTCAATTTGAGAAGCGTTGAGGCCCGATCAAAAG

TGTAGAAAAGGGGAAAAGAAGGAAACAAAGAGGGGAGATAGTAA

GTGCAATCT 

98 40.8 

D3 

ATACCAGCTTATTCAATTTAATGCGGGGTGAGGCTCAATCAAGGA

AAGATATAAGTAAGCAAAAAGGTCAAACAAGGGCGAGATAGTAA

GTGCAATCT 

98 38.8 

D4 

ATACCAGCTTATTCAATTTGAGGAGGTATGTGGCTCGATCAGAAT

TGCGAATCAGGGAGCAAAAAATCAAGGAGAGGGGAGATAGTAAG

TGCAATCT 

97 42.3 

D5 

ATACCAGCTTATTCAATTTGAGCGTGGGTGAGGCTTGATCCGAG

GGTAGTTAGCGTAGCGAAGGAAGAAAAAAAGAGGGGAGATAGTA

AGTGCAATCT 

98 44.9 

C1 

ATACCAGCTTATTCAATTTGAGGAGGAGTGAGGCTCGATCAATAA

TTGTACGCTCTGACGAGGGTGATGTGTGTCTGGGAGATAGTAAG

TGCAATCT 

97 44.3 

        Forward primer                             Docking site                                                                                                Reverse primer 
     ATACCAGCTTATTCAATT          TGAGGCTCGATC                                        AGATAGTAAGTGCAATCT 

   6 ATACCAGCTTATTCAATTTGAGGGGACGTGAGGCTCGATCTAAAAGGAAGTAGGACACAAGAGGATGAATTCGAGCAGGGAGATAGTAAGTGCAATCT  

  13 ATACCAGCTTATTCAATTTGAGGGGACGTGAGGCTCGATCTAAAAGGAAGTAGGACACAAGAGGATGAATTCGAGCGGGGAGATAGTAAGTGCAATCT  

  36 ATACCAGCTTATTCAATTTGAGGACGTGTGAGGCTCGATCACATTAATAGTCCGAGTTCGCAATCAAGTAATATGAGGGGAGATAGTAAGTGCAATCT  

  89 ATACCAGCTTATTCAATTTGACACGGATTGAGGCTCGATCAAACGTTTGACATTAAGTGTAGTAGTGATAGTTAGGTGGGAGATAGTAAGTGCAATCT  

  88 ATACCAGCTTATTCAATTTGGCGACAGGTGAGGCTCGATCAGTAAAGTATGTAAGACCGAATTCGTAAACAAAGGCTGGGAGATAGTAAGTGCAATCT  

   1 ATACCAGCTTATTCAATTTGAGGAGGAGTGAGGCTCGATCAATAATTGTACGCTC-TGACGAGGGTGATGTGTGTCTGGGAGATAGTAAGTGCAATCT  

  83 ATACCAGCTTATTCAATTCGAGGAGGAGTGAGGCTCGATCAATAATTGTACGCTC-TGACGAGGGTGATGTGTGTCTGGGAGATAGTAAGTGCAATCT  

  40 ATACCAGCTTATTCAATTTGAGGACAAGTGAGGCTCGATCTATATCTTCGTCGCGGACGAGAAGGGGAAATGGGATAGGGAGATAGTAAGTGCAATCT  

  46 ATACCAGCTTATTCAATTTGTAGACCGGTGAGGCTCGATCAGGAAAGGGATAGGGATAAAGAAGGAAATAACAAGCGGGGAGATAGTAAGTGCAATCT  

  67 ATACCAGCTTATTCAATTTGAGGACCGATGAGGCTCGATCAGGATTTTAGCAAGGAATGAGAATGTGAAACAAAGTGGGGAGATAGTAAGTGCAATCT  

  50 ATACCAGCTTATTCAATTTCAAGGAGATTGAGGCTCGATTTATTTAAATTAAAATAGTATTATTATAACAAAAGTATTAGAGATAGTAAGTGCAATCT  

  52 ATACCAGCTTATTCAATTTGAAGACCGATGAGGCTCGATCAGTTTAGGTTCGTCTTCATCTTTGAATATTAGGGGCTGGGAGATAGTAAGTGCAATCT  

  74 ATACCAGCTTATTCAATTTCCCGATGAATGAGGCTCGATCAATTTAGTACATCGGAACCAAGTGAAAATGTAAAGCGGGGAGATAGTAAGTGCAATCT  

  96 ATACCAGCTTATTCAATTTCACGGAGTATGAGGCTCGATCAAGTTATTAGTGGGGAAATTGACAGCTGTGGAAAAAGAGGAGATAGTAAGTGCAATCT  

  54 ATACCAGCTTATTCAATTTGAGACATGTTGAGGCTCGATCAATACAAATCATAGTCATCGGATGAGAAATAAGTAGGGAGAGATAGTAAGTGCAATCT  

  32 ATACCAGCTTATTCAATTTGAGATGGCTTGAGGCTCGATCGTTTAGTGGACATATCGATAAATTGAGTGTGAAAGCGGGGAGATAGTAAGTGCAATCT  

  97 ATACCAGCTTATTCAATTTACCGGGAGTTGAGGCTCGATCAATTAAGTAGACTACGGATGAAAGTATAGTTGGAGCTGGGAGATAGTAAGTGCAATCT  

  95 ATACCAGCTTATTCAATTTGGCGAAGGGTGAGGCTCGATCAAAGAATGCCGGAAAAAAGTGAAGTAAGAAGGGATAGGGGAGATAGTAAGTGCAATCT  

  56 ATACCAGCTTATTCAATTTCAAGGGAGTTGAGGCTCGATCAAGCAAAAATGACTAGGAGTAATGTCATAAGGTATAGGGGAGATAGTAAGTGCAATCT  

  65 ATACCAGCTTATTCAATTTGAGGGATGTTGAGGCTCGATCCTGGGCTGGGAAAAAGGATACCGTACAAGGTAAGGTGGCGAGATAGTAAGTGCAATCT  

  70 ATACCAGCTTATTCAATTTGACGGAGGTTGAGGCTCGATCAAGGATAAGGAGTGAGGAGAAATGTTAAACTAGGGTAGGGAGATAGTAAGTGCAATCT 
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C2 

ATACCAGCTTATTCAATTTGAGAAAATATGAGGCTCGATAAAAAAT

AATAGTATAGAAATATATAAAGTGGTATTTTGAGATAGTAAGTGCA

ATCT 

96 26.0 

C3 

ATACCAGCTTATTCAATTTGAGGAACATGAGGCTCGATCCTATAT

AGAGATGACGAAGAATGATAGAAAGCGTAGGTGAAGATAGTAAG

TGCAATCT 

97 38.1 

C4 

ATACCAGCTTATTCAATTTCACGGGGGGTGAGGCTCGATCTGTAA

TTAAGAGTGCAAGGGGAAGTGAGATGAAAGTTGGGAGATAGTAA

GTGCAATCT 

98 43.9 

C5 

ATACCAGCTTATTCAATTTGAGGCGAGGTGAGGCTCGATCAATAG

AAAAACCGAGGCGAAAATGAGAAAAAGGGACTGGGAGATAGTAA

GTGCAATCT 

98 42.9 

 

 

2.6.3. Characterization of aptamer candidates 

 

 

2.6.3.1 Immobilization of TTX on magnetic beads for affinity assays 

 

TTX was immobilized on magnetic as follows: maleimide-activated magnetic beads (10 

µL of 250 mg/mL suspension) were washed with washing buffer (PBST: 0.1 M PBS, 

0.05 % v/v Tween-20, pH 7.2), resuspended in 500 µL of 1 mM MUAM in binding buffer 

(0.1 M PBS, pH 7.2, 10 % v/v ethanol) and incubated for 3 h at room temperature under 

tilt rotation. The beads were washed again with PBST, followed by resuspension with 

500 µL of TTX (25 µg/mL in 0.1 M PBS, 10 % v/v formaldehyde). After overnight 

incubation at ambient temperature (22-25ºC) under tilt rotation, the beads were 

washed again and blocked with 500 µL of sulfo-NHS-acetate (1 mM in 0.1 M PBS) for 

1 h. After a final washing step, the TTX-beads were resuspended in 100 µL of PBS 

(final suspension of 25 mg/mL). Immobilization of TTX on the beads was verified with 

a bead-ELISA using a monoclonal anti-TTX antibody as described previously1. 

   

2.6.3.2 Initial screening of the aptamer candidates 

 

A displacement assay was designed to screen the aptamer candidates under 

conditions similar to the ones used during the selection process. Specifically, SiMAG 

SA-MB/docking probe complexes were prepared as described in the “Capture-SELEX 

process” section of the manuscript and used to immobilize the individual aptamer 

candidates (100 nM). The aptamer-magnetic beads were then incubated with TTX (1 

µM) or binding buffer alone for 30 min at room temperature under tilt rotation. The 

supernatant was recovered by magnetic separation and was used for PCR 
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amplification to detect eluted sequences. The PCR reactions were analyzed by 

agarose gel electrophoresis as shown in Figure S2.5. The candidates preferentially 

eluting in the presence of TTX compared to buffer alone were selected for 

characterization of their binding properties. 

 

 

 

Figure S2.5. Screening of the aptamer candidates with a displacement assay. Aptamer candidates 

immobilized on docking probe-streptavidin magnetic beads complexes were incubated with 100 µM TTX 

(+) or only binding buffer (-). Aptamer displacing to the solution was detected by PCR amplification and 

agarose gel electrophoresis. ntc: PCR no template control. 

 

 

Figure S2.6. Binding curves of the aptamers determined by (A) APAA and (B) bead-ELAA  
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Figure S2.7. Predicted structures of the five selected TTX aptamers. 

 

2.6.4. TTX detection 
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Figure S2.8. Screening of antibody-aptamer pairs for sandwich assay development. 
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Table S2.4. Hybrid antibody-aptamer assay precision. Inter-assay coefficients of variation (% CV) were 

calculated from duplicate samples using solutions of different TTX concentration measured on four 

different days (n=4).  

 

 

 

2.6.4.1 Magnetic bead-based colorimetric immunoassay for TTX detection 

 

The MB-based colorimetric immunoassay protocol was similar to that described2 and 

optimized3 in our previous works. Briefly: (1) 10 μL of maleimide-activated MBs were 

rinsed three times with washing buffer (0.1 M PBS, 0.05 % v/v Tween−20, pH 7.2) 

under vigorous mixing; (2) 1 mL of 1 mM cysteamine in binding buffer (0.1 M PBS, 10 

mM EDTA, pH 7.2) was added and incubated for 2 h at room temperature; (3) after 

washing, 1 mL of TTX solution (25 μg/mL) in binding buffer containing 10 % v/v 

formaldehyde was added and incubated overnight at 4°C; (4) the washed TTX-coated 

MBs were resuspended in 1 mL of binding buffer. When amounts of MB varied, 

volumes were adjusted proportionally. Once the MB-TTX conjugate had been 

prepared, (5) 200 μL of the conjugate was taken, the supernatant was removed and 

100 μL of the TTX standard solution or fish extract and 100 μL of anti-TTX mAb at 

1/2000 dilution in 1 % w/v BSA-binding buffer were added and incubated for 30 min at 

room temperature; (6) after washing, 200 μL of 1/1000 IgG-HRP dilution in 1 % w/v 

BSA-binding buffer was incubated for 30 min at room temperature; (7) the washed 

immunocomplex was resuspended in 200 μL of binding buffer; (8) 50 μL of 

immunocomplex was transferred to a new tube and after supernatant removal, 125 μL 

of TMB liquid substrate was added and incubated for 10 min; (9) the tube was placed 

Sample
Concentration 

(ng/mL)
MV ± SD % CV

Average % 

CV

2.420 ± 0.077 3.2

2.416 ± 0.003 0.1

2.357 ± 0.069 2.9

2.334 ± 0.112 4.8

1.371 ± 0.064 4.9

1.702 ± 0.007 0.4

1.219 ± 0.057 4.7

1.615 ± 0.055 3.4

0.443 ± 0.009 2.0

0.782 ± 0.014 1.8

0.361 ± 0.002 0.5

0.436 ± 0.056 12.8

0.157 ± 0.001 0.6

0.160 ± 0.011 6.7

0.095 ± 0.004 4.1

0.145 ± 0.000 0.2

4 2.9

1.25

0.625

0.3125

0.039

1 2.8

2 3.3

3 4.3
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on the magnetic separation stand and 100 μL of TMB liquid substrate was collected 

for colorimetric measurement at 620 nm in a microtiter plate. All incubation steps were 

performed under agitation. Measurements were performed in triplicate. 

 

 

 

 

Table S2.5. Assays and biosensors reported in the literature for TTX detection. 

Platform Sensitivity (LOD) Reference 

Fluorescence assay with aptamer 1 µM (319 ng/mL) 4 

Electrochemical impedance spectroscopy biosensor with 

aptamer immobilized on glassy carbon electrode 
200 pg/mL 5 

Fluorescence assay with aptamer and berberine 0.074 nM (24 pg/mL) 6 

Fluorescence assay with aptamer, berberine and 

exonuclease I 
11 pM (3.5 pg/mL) 7 

Fluorescence assay with FAM-labeled aptamer and 

magnetic reduced graphene oxide 
1.21 ng/mL 8 

Competitive assay with aptamer immobilized on magnetic 

beads, strand displacement amplification with catalytic 

hairpin assembly and fluorescence detection 

0.265 pg/mL 9 

Microplate competitive immunoassay 2.28 ng/mL 10 

Competitive planar wavelength immunosensor 2.5 ng/mL 11 

Inhibition immunoassay with surface plasmon resonance 

sensor 
0.3 ng/mL 12 

Hybrid antibody-aptamer sandwich assay 310 pg/mL (970 pM) This work 

 

 

Table S2.6. TTX and analogues contents (mg TTX or analogue/kg tissue) in L. sceleratus by LC-MS/MS. 

 

 

 TTX 4-epiTTX 
11-norTTX-

6(R)-ol 

11-norTTX-

6(S)-ol 

4,9-

anhydroTTX 

5-

deoxyTTX 

11-

deoxyTTX 

5,11-

dideoxyTTX/ 

6,11-

dideoxyTTX 

5,6,11-

trideoxyTTX 

Gonads 21.8 4.3 1.1 16.3 0.5 0.9 1.1 0.4 94.3 

Liver 2.3 0.7 0.3 1.3 0.2 - 0.2 0.2 12.4 

Skin 1.2 0.3 0.1 1.1 - - 0.1 - 1.8 

Muscle 0.7 0.3 0.2 0.6 0.1 - 0.1 0.1 1.2 
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Chapter 3 

 
Abstract 

 

Tetrodotoxin (TTX), is a low molecular weight, highly toxic neurotoxin found in 

pufferfish and various shellfish.  Here we describe the development of a dipstick for 

the sensitive detection of tetrodotoxin (TTX) in puffer fish.  The dipstick exploits a hybrid 

sandwich assay, using a monoclonal antibody generated against TTX as the capture 

molecule immobilized on the test line and a gold nanoparticle functionalized aptamer 

as the reporter molecule, with an oligonucleotide complementary to the aptamer 

sequence immobilized on the control line.  The dipstick is highly sensitive and 

reproducible, capable of detecting as low as 3ng/mL TTX, with the assay completed 

within 20 minutes.  The specificity of the assay was demonstrated by a complete lack 

of interaction with other marine toxins such as domoic acid (DA), okadaic acid (OA) or 

saxitoxin (STX). The excellent performance of the dipstick was further demonstrated 

by the reliable determination of TTXs levels in puffer fish extracts (gonads, muscle, 

liver, and skin) with the results obtained in agreement with measurements obtained 

with a competitive magnetic bead-based immunoassay and liquid chromatography-

mass spectrometry. The developed dipstick is the first example of a sandwich assay 

based rapid test for the detection of TTX in pufferfish, as well as being the first to use 

an aptamer, and furthermore a hybrid aptamer-antibody sandwich. 

 

 

3.1. Introduction 

 

Tetrodotoxin (TTX) is a neurotoxin with a low-molecular weight of approximately 

319.27 g/mol 1 that is found and associated with a variety of species including puffer 

fish, octopuses, seashells, and xanthid crabs 2. Beside this, TTX has been reported in 

terrestrial species including newts, frogs and toads 3,4. Its paralytic toxic effects derive 

from its selective binding to voltage-gated sodium channels, thereby blocking the 

generation of neuronal action potentials and impulse conduction. Even a low dose of 

TTX poising results in severe neurological symptoms including ataxia, cardiac 

arrhythmias, seizures, respiratory failure, and death 5,6. The toxin is approximately 

1200 times more poisonous than cyanide 7. 

Although TTX-poisoning is typical of warm waters and it was regarded as a problem 

confined to Asian countries, in the last decade, due to the worldwide increase in water 

temperature 8,9, TTX has been found also in the European waters through the possible 

migration of these toxic species from the Red Sea to Mediterranean Sea through the 

Suez Canal (Lessepsian migration) 10. TTX has been detected in seafood harvested in 

the United Kingdom, Portugal, Spain, Greece and the Netherlands 10–12. 
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Different approaches are used for TTX detection based on the physicochemical 

properties of the toxin, its antigen specificity and neurotoxic effect. The initial method 

used for TTX detection was the mouse bioassay (MBA). A mouse bioassay (MBA) 

involves aliquots of sample extract being injected into mice and the median death times 

used to calculate the toxicity (in mouse units; MU) 13. MBA has frequently been used 

but due to a lack of specificity and high individual variability across experimental 

animals, the method suffers from accuracy, and furthermore due to ethical concerns, 

it is banned in most developed countries 14, Moreover, positive results could also be 

caused by the presence of saxitoxin-group toxins as both exhibit the same 

symptomology in mice. The tissue culture bioassay (TCBA) was thus developed as an 

alternative to MBA 15. 

Currently, liquid chromatography (LC) is widely used for the analysis of TTX, with the 

LC being combined with  fluorescence detection (HPLC-FLD) 16, or tandem mass 

spectrometry (LC-MS/MS) 9,17. These chromatographic methods are more sensitive, 

specific, and accurate than the bioassays, but they are time and solvent-consuming, 

labor-intensive and cannot be employed at the point-of-need. 

Enzyme-Linked Immunosorbent Assays (ELISA) using antibodies against TTX, which 

provide quantitative and sensitive detection have been developed 18,19. ELISA kits are 

now commercially available and mainly exploit indirect competitive assay formats, with 

immobilized BSA-TTX 20,21.  Antibodies against TTX have also been exploited in 

diverse assays and sensor formats and can potentially be used for rapid screening 

purposes 22–24. Immunochromatographic assays exploiting gold nanoparticles 

(AuNPs), have garnered increasing attention due to their advantages in terms of 

sensitivity, rapidity, portability, robustness and ease-of-use. Thattiyaphong et al., 

proposed a rapid test for the detection of TTX in pufferfish tissues, using a BSA-TTX 

conjugate immobilized at the test line and a monoclonal antibody labelled with AuNPs 

and a competitive assay format, with the higher the level of TTX in the sample the 

lower the intensity of the band at the test line. The assay was successfully applied to 

the analysis of samples from 750 pufferfish, achieving 94.0% sensitivity and 92.4% 

specificity, as compared to LC/MS-MS 25.  Subsequently Shen et al., described a rapid 

test for the detection of TTX, which was coined a “turn-on competitive, lateral-flow 

immunochromatographic strip”. Monoclonal antibodies against TTX were labelled with 

gold nanoflowers, whilst at the test line there was a mixture of BSA-TTX and BSA 

linked with quantum dots (BSA-QD), and just BSA-QD at the control line. In the 

absence of TTX in the sample, the gold labelled antibodies bound at both the test and 

control line, with the gold label acting to quench the fluorescence of the QD. Thus, in 

this approach, increasing levels of TTX resulted in an increasing intensity of the band 

at the test line, a preferred approach in rapid tests in general.  Using spiked pufferfish 

muscle samples, a good degree of correlation was achieved with a commercial ELISA 

test kit 18Li et al., produced their own monoclonal antibodies and pursued an approach 

similar to that of Thattiyaphong, using AuNP labelled monoclonal antibody and a BSA-

TTX bioconjugate, achieving a detection limit of 10 ng/mL. Using spiked crucian and 

clam matrices, a reasonable degree of correlation was observed with LC/MS-MS 28. 
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Whilst the results obtained with these rapid tests are very positive, competitive 

immunoassays are more difficult to optimize, and the preparation of toxin-reporter 

molecule conjugates, required for some types of immunoassays, can also be 

challenging 14. Sandwich assays are more robust, with all reagents in excess, and due 

to this have longer shelf-lives, and often are more sensitive and specific.  

Aptamers are single-stranded, synthetic oligonucleotides (DNA or RNA) which fold into 

3-dimensional shapes capable of binding non-covalently and with high affinity to a 

target molecule. They are generated through the process known as Systematic 

Evolution of Ligands by Exponential enrichment (SELEX) 26. The SELEX method is a 

repetitive process allowing the identification of unique RNA/DNA molecules from 

thousands of random oligonucleotides that bind to the target molecule with high affinity 

and specificity. Once the SELEX process is complete, the aptamer sequence can be 

validated, and unlimited amounts of the aptamer can be subsequently prepared using 

chemical synthesis.  

 

Aptamers have been successfully applied as an alternative to antibodies in lateral flow 

assays 30,31, and whilst there are several examples of lateral flow assays using dual 

aptamers for the detection of target molecules in sandwich formats32-38, or using split-

aptamer formats 39. Whilst aptamers have been selected against many small 

molecules, it is not trivial to identify dual aptamers that bind to different sites of a small 

target molecule, which have limited binding domains for aptamer recognition. To 

address this issue, the possibility of using split aptamers 40 or hybrid antibody-aptamer 

assays for the detection of small molecules has been reported 41-43. 

 

We recently selected high affinity aptamers against TTX and demonstrated that the 

unique cage-like structure of TTX facilitated the formation of an antibody-TTX-aptamer 

complex enabling the detection of TTX with a sandwich assay 44. Here we report the 

implementation of the developed sandwich assay in a dipstick format for the detection 

of TTX in puffer fish.  The tests is based on the use of a capture monoclonal antibody 

immobilized at the test line, and a AuNP labelled aptamer as the reporter molecule, 

with an oligonucleotide sequence partially complementary to the aptamer sequence 

immobilised at the control line. The dipstick was applied to the detection of a range of 

concentrations of TTX and the approximate detection limit established. The 

reproducibility of the dipstick performance was investigated, and the assay applied to 

the analysis of potentially interfering marine toxins.  Finally, the assay was used for the 

detection of TTX in extracts from contaminated and noncontaminated puffer fish. 

 

 

3.2. Materials and methods 

 

3.2.1. Chemicals and reagents 
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Tetrodotoxin (TTX) was purchased from Latoxan (Valence, France) and standard 

solutions at 1 mg/mL were prepared in 0.1 M sodium acetate buffer pH 4.8. Certified 

reference materials of saxitoxin (STX) and domoic acid (DA) were obtained from the 

National Research Council of Canada (NRC, Halifax, Canada). Okadaic acid 

potassium salt (OA) was from Prorocentrum concavum. The mouse monoclonal anti-

TTX antibody (CABT-L3089, CD Creative Diagnostics) was obtained from Deltaclon 

S.L. (Spain), and Streptavidin (Streptomyces avidinii) were purchased from Merck 

(Spain). All oligonucleotides were synthesized by Biomers.net (Germany).  

 

3.2.2 Oligonucleotide sequences 

 

Biotin-modified TTX aptamer: 

5’-biotin-ATA CCA GCT TAT TCA ATT TAA TGC GGG GTG AGG CTC AAT CAA 

GGA AAG ATA TAA GTA AGC AAA AAG GTC AAA CAA GGG CG AGAT AGT AAG 

TGC AAT CT-3’ 

Aminated-modified reverse primer: 

5’-NH2-TTTTTTTTTTTTTTAGA TTG CAC TTA CTA TC T-3’ 

The specific TTX aptamer sequence had previously been chosen as the best aptamer, 

in terms of specificity and affinity, from an in-house capture SELEX previously carried 

out 27. This selected aptamer was biotinylated and linked to streptavidin coated gold 

nanoparticles (described below). The oligonucleotide sequence immobilized at the 

control line was partially complementary to the selected aptamer sequence. 

 

3.2.3 Development of the dipstick assay for TTX 

 

The strip was constructed using 3 different components: the nitrocellulose membrane 

(FF120HP Whatman, Germany), the PVC backing card, and the absorbent pad 

(Whatman, England). The test and control lines were manually placed on the 

nitrocellulose membrane using an Eppendorf tip containing the biomolecule to be 

deposited. Aminated reverse primer sequence (100 µM diluted in water) was linked via 

ultraviolet (UV) cross-linking to the control line on the nitrocellulose via exposure to 

254 nm wavelength for 15 minutes. Monoclonal antibody generated against TTX (1.5 

mg/mL in PBS) was immobilized on test line via adsorption at 37 ᴏC for 2 hours. 

Blocking of the nitrocellulose membrane was achieved using 5% w/v skimmed milk 

powder, 0.5% v/v Empigen detergent, and carbonate buffer (200 mM, pH 9.4) for 15 

min, under rotation conditions. The membrane was then left to dry at 37ᴏC for 

approximately 2 h and then assembled with the backing card, with the absorbent pad 

overlapping the nitrocellulose membrane by 2mm to ensure correct wicking. Following 

assembly, the strips were placed in a sealed bag containing dessicant and then stored 

in the fridge until use. 
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3.2.4 Preparation of gold nanoparticle labelled reporter aptamer conjugates 

 

Gold nanoparticles (AuNPs) with an optical density of 1 and a diameter of 40 nm were 

mixed with Streptavidin (SA) and concentrated to OD-50 for use with the aptamer 

reporter molecules in the dipstick assay. Streptavidin, (12.5 µL of 5 mg/mL in PBS) 

was primarily incubated with 5 mL AuNP solution for 30 min under tilt rotation at room 

temperature (RT), followed by the addition of 500 µL (10% BSA w/v), for 30 min under 

tilt rotation at RT for AuNPs blocking. After the blocking step, the conjugate was 

washed 3 times by centrifugation and resuspension using Buffer A (boric acid 

(100mM), sucrose and bovine serum albumin (BSA)), each step for 30 min, in 

centrifuge at 15000 rpm, at 4 ᴏC. Finally the conjugate was resuspended in the Buffer 

A and stored at 4oC until use. UV-Vis measurement confirmed the formation of the 

complex between -AuNPs and SA and the concentration of the conjugate to have an 

OD of 50. 

 

3.2.5 Calibration Curve 

 

The dipstick assay optimized in this work was evaluated by testing a range of TTX 

standard solutions at concentrations of 200, 100, 50, 25, 12.5, 6.2, 3.1, 1.5, and 0.7 

ng/mL prepared in PBS, and for the control strip was used just PBS buffer. After the 

preparation of all the strips (as described above), in a parallel experiment were used 

20 strips for analysis of each TTX concentration in duplicate samples. In the first step, 

dipstick was dip in a well containing 20 µL of TTX (200-0.7 ng/mL) in PBS. 

Subsequently, after all TTX solution run through the membrane, the strip was transfer 

to a new well containing 20 µL of 2 µM biotinylated aptamer in Binding buffer (PBS with 

1.5 mM MgCl2). In the third step, all the strips were dipped in 20 µL AuNPs-SA 

conjugate (OD-10) prepared in PBS-Tween and let to run until all the solution in the 

well was absorbed. Finally, a washing step of the strips with 20 µL PBS-Tween was 

performed and picture of all strips (duplicate samples) was capture using a 

Smartphone camera. 

 

 

3.2.6 Sensitivity and specificity of the dipstick assay 

 

The specificity of the dipstick assay was evaluated by the analysis of other potentially 

interfering marine toxins including domoic acid (DA), okadaic acid (OA) or saxitoxin 

(STX) which can be potentially co-detected in pufferfish. All toxins were analyzed at 50 

ng/mL concentration and the image per each strip was captured by a Smartphone 

camera. 
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3.2.7 Fish extracts for TTX detection 

 

For the validation of the dipstick assay, extracts from 2 different species were analysed, 

an oceanic puffer fish (Lagocephalus lagocephalus, Linnaeus, 1758) (TTX-free) and a 

silver-cheeked toadfish (Lagocephalus sceleratus, Gmelin, 1789) (TTX-contaminated). 

Puffer fish were dissected, and the gonads, liver, skin and muscle were retrieved (45). 

A double TTX extraction was performed with 0.1% v/v acetic acid as previously 

described 28. Extracts were obtained at a tissue concentration of 200 mg equiv./mL. 

 

 

3.3. Results and discussions 

 

3.3.1 Optimization of the dipstick assay 

 

For the optimization of the dipstick assay, experimental parameters such as DNA 

length on control line, TTX antibody concentration, TTX concentration and the OD of 

AuNPs-SA were investigated. The TTX aptamer that we used was selected from the 

Capture-SELEX selection 44 by immobilization of ssDNA on streptavidin magnetic 

beads through the aid of a bio-docking probe complementary to ssDNA sequences by 

12 nucleotides 44. Using this advantage, aminated docking probe was linked via UV 

cross-linking to the nitrocellulose membrane for the control line, aiming its 

complementary binding to TTX aptamer. The length of the complementary DNA probe 

is a key factor as it can affect the interaction with the aptamer. If the sequence of the 

DNA probe is too short, the complementary hybridization to the aptamer can be weak, 

conversely, if the DNA probe is too long, the complementary hybridization can be too 

strong, resulting in false-positive results 29. As the complementary region between the 

aptamer and the docking probe was only 12 bases, in this experiment, TTX aptamer 

didn’t bind to the docking probe, so no control line was observed (Figure 3.2A). In the 

next experiment, aminated reverse primer complementary to TTX aptamer was linked 

via UV cross-linking to the nitrocellulose membrane. There is a perfect hybridization 

between the amine-reverse primer and the bio-aptamer for TTX (Figure 3.2B). After 

this, the next step was the preparation of the dipstick membrane with the amine-

reverse primer and TTX-Antibody. Different concentrations and solution volumes were 

used to obtain the best spots on the test line, but in later experiment we used a line 

form instead of the spot one. For paper-based assays, the most common 

immobilization method is direct, physical adsorption of the affinity reagent to the assay 

nitrocellulose membrane. As it is shown in Figure 3.3 the spots diameter differs in size 

between DNA probe and TTX antibody. This difference comes as these molecules are 

quite different, one is a DNA and the other one a protein, consequently the adsorption 

through the membrane will be different. 
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Scheme 3.1. Schematic illustration of the dipstick assay for the simple and rapid detection of TTX. (A) 

Structure of the dipstick strip (B) TTX present in the sample is capture by monoclonal TTX antibody in 

the test line where later is captured by biotinylated aptamer and AuNPs-SA, while the excess of biotin-

aptamer and SA-AuNPs is captured through complementary hybridization on reverse primer 

immobilized in the control line, resulting in two red lines. (C) When TTX is not present, there is no binding 

on monoclonal TTX antibody on the test line and the biotin-aptamer with AuNPs-SA run along the 

nitrocellulose membrane by capillary action and are captured by the reverse primer immobilized on the 

control line resulting in one red line.   Dipstick assay results for positive tests (left) and for negative test 

(right).  
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Figure 3.1. UV-visible spectrum of pure AuNPs and 

AuNPs-SA conjugate 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

Figure 3.2. Optimization of control line DNA probe. In this experiment 0.4 µL (100 

µM) of each aminated probe was directly immobilized on control line via UV-

crosslinking (A) Using aminated docking probe. and (B) Using aminated reverse 

prime. 

.  

 

 

 

 

The dipstick assay developed in this work, was based on a sandwich assay using an 

immobilized monoclonal anti-TTX antibody as a capture molecule and a AuNP-labelled 

aptamer as a reporter molecule (Scheme 3.1).  

For optimization of the dipstick parameters, the dipstick was first dipped in a well of a 

microtiter plate, containing TTX standards where complete wicking of the membrane 

is observed. The dipstick was then placed in a microtiter well containing the AuNP-

labelled reporter aptamer that wicks across the membrane, forming complexes at the 

test line (in the case of the presence of TTX) and at the control line.  

To elucidate the optimal parameters of the AuNPs-SA conjugate, three different OD 

(10, 15, 20) were tested using different concentrations of target TTX (0-1-10-100 

ng/mL). As can be seen in Figure 3.3 the intensity of the test and control lines for the 

same target concentration using aptamer-AuNP bioconjugates of different OD, are 

very similar and there was no significant increase in the line intensity, and an OD of 10 

for AuNPs-SA-aptamer conjugate was considered optimal and used in all further 

experiments.  
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Figure 3.3. Optimization of AuNPs-SA OD in dipstick format for control and test line.Three different OD 

(10,15,20) of AuNPs-SA were analyzed in order to obtain the best visual intensity spot on the test and 

control line. Moreover, to increase the specificity of the dipstick format 2 different concentration of 

monoclonal TTX antibody were tested, 0.4 uL (of 1.5mg/mL stock) (left) and 0.5 uL (of 1.5mg/mL 

stock)(right).As it is shown here there is no significant difference between the different OD used for the 

same concentration of TTX samples, but there is an improvement of the assay sensitivity when using 

higher volume of monoclonal TTX antibody. 

 

In order to test the sensitivity of the assay, a wide range of TTX concentrations (0−200 

ng/mL) was analyzed using 1 in 2 dilutions of TTX concentration. With all 

concentrations tested, a red colour of deep intensity was observed at the control line, 

inidicative of a successful wicking across the nitrocellulose membrane and 

hybridization of the oligonucleotide at the control line with the aptamer-AuNP 

conjugate. As the dipstick assay is based on a sandwich format, the intensity of the 

band at the control line is directly proportional to the concentration of the TTX. A 

Smartphone camera was used to take an image of all the strips and the colour of the 

red bands can easily be seen by the naked eye (Figure 3.4). 
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Figure 3.4. Image of the dipstick strips demonstrate the sensitivity of the assay using a range of TTX 

concentration starting from 200 ng/ml to 0.7 ng/mL using 1 in 2 dilutions and the control strip (0 ng/mL 

TTX) step. 

 

3.3.2 Cross-reactivity studies. 

 

The specificity of the assay was evaluated using 50 ng/mL of each of domoic acid (DA), 

okadaic acid (OA) and saxitoxin (STX). In this study saxitoxin is the most relevant as 

this toxin is often found with tetrodotoxin in pufferfish, and as it is hydrophilic, is often 

co-extracted with the tetrodotoxin and is also a neurotoxin.  Okadaic acid, a diarrhetic 

toxin, can also be found in pufferfish, but as it is lipophilic, it would possible not be 

extracted using the method of extraction for tetrodotoxin, and is thus not expected to 

be as potentially problematic in terms of false positives, as saxitoxin. Due to the high 

specificity of the hybrid aptamer-antibody sandwich, no cross-reactivity, or non-specific 

binding with the other marine toxins studied, was observed (Figure 4.5) 

 

 
 
Figure 4.5. Cross-reactivity experiment for the dipstick experiment using 4 different marine toxins (OA, 

STX, DA, and TTX). 

 

 

 

3.3.2 Analysis of TTX in puffer fish samples 

 

The dipstick was finally employed for the analysis of fish samples. Extracts from 

different tissues (gonads, liver, skin and muscle) of Lagocephalus lagocephalus, 

Linnaeus, 1758 (TTX-free) and one silver-cheeked toadfish, Lagocephalus sceleratus, 

Gmelin, 1789 (TTX-containing) were diluted 1 in 25in PBS. As can be seen in Figure 

6 the developed dipstick was able to detect TTX in all four positive extracts whilst giving 

no false positives with the negative extracts, highlighting not only the absence of any 

matrix effects, but also the sensitivity of the dipstick for the detection of TTX in 

pufferfish (Figure 4.6). 
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Figure 4.6. The successful application of the dipstick assay was evaluated by analysing 4 different fish 

extracts, gonads (G), liver (L), skin (S), and muscle (M). 

 

 

 

 

3.4. Conclusions  

 

To best of our knowledge, we have presented the first report of a dipstick based on a 

hybrid antibody-aptamer for the detection of TTX in extracts from puffer fish. The ease-

of-use and high-sensitivity of this paper-based format facilitates the rapid, on-site, cost-

effective detection of TTX in field samples. The developed dipstick was demonstrated 

to be specific, able to detect as low as 3ng/mL, with the assay being complete within 

20 minutes and with no need for trained personnel. Ongoing work is focused on 

integrating the dipstick into an integrated lateral flow assay, evaluating the long-term 

stability of this LFA and the optimal storage conditions, and developing a facile and 

rapid methodology for the extraction of TTX from pufferfish, in order to realise a rapid 

test that can truly be deployed to and implemented at the point-of-need. 
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Chapter 4 

 

Abstract 

The illicit use of anabolic androgenic steroids (AAS) as performance-enhancing drugs 

remains a global issue threatening not only the credibility of competitive sports but also public 

health because of the well-documented adverse effects they elicit. Despite the existence of 

strict rules and continuous anti-doping controls, doping scandals continue to surface, 

suggesting that the fight against doping is far from over. AAS abuse however is not restricted 

only to professional sports, but it also extends to recreational athletes and adolescents as 

well as in livestock production as growth-promoting agents. Testosterone and nandrolone are 

among the AAS most frequently exploited for these purposes. Gas chromatography-mass 

spectrometry is the reference method for AAS detection, but it is strictly laboratory-based and 

cannot be performed on-site. The great potential of aptamers in bioanalytical applications 

and specifically for the development of simple biosensors suitable for on-site analysis has 

been well demonstrated. In this report, we describe the selection and identification of 

aptamers binding nandrolone exhibiting affinity dissociation constants in the low nanomolar 

range and cross-reactivity with testosterone. A label-free colorimetric assay was finally 

developed using one of these novel aptamers for AAS detection based on gold nanoparticles 

and their aggregation in the presence of target molecules after salt addition. The assay could 

be deployed for rapid on-site screening of suspicious samples and provide qualitative visual 

results with a red to purple/blue color change to indicate the presence of both nandrolone 

and testosterone as doping biomarkers.  

 

4. 1. Introduction 

Anabolic androgenic steroids (AAS) are synthetic derivatives of testosterone, the main male 

sex hormone, with clinical and illicit uses. Their anabolic effects are related to their ability to 

increase lean body mass, muscle size and strength, and to improve protein and bone 

metabolism1. On the other hand, their androgenic properties cause masculinization. 

Clinically, AAS, and especially testosterone, have been traditionally prescribed to treat male 

hypogonadism2. However, the potential benefits of their anabolic properties to certain patient 

populations have encouraged the therapeutic use of AAS for several conditions including 

growth impairment, infertility and depression as well as to treat cachexia related to chronic 

diseases such as HIV, burns, renal failure, pulmonary disorders, muscular dystrophies, 

breast cancer and anemia3-6. Unfortunately, the illicit use of AAS as performance-

enhancement drugs, a practice commonly known as doping, has also been known for many 

decades1. Doping has been reported among not only competing athletes but also amateurs 

and recreational athletes as well as adolescents with the main objective to increase muscle 

mass and improve bodily appearance4, 7, 8. However, a plethora of adverse effects have been 

associated with AAS use/abuse including hypertension, hepatic damages, reproductive 

disorders as well as neuropsychiatric and behavioral disorders1, 4, 8. The use of AAS is 

prohibited in professional sports and the World Anti-Doping Agency (WADA) publishes a 
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yearly list with prohibited substances, in- and out-of-competition, in an effort to contain the 

abuse9.  

Nandrolone is among these substances whose use in sports as well as in horse racing is 

prohibited at all times10. Nandrolone (19-nortestosterone) is a synthetic testosterone 

analogue and one of the most frequently abused AAS together with testosterone, stanozolol 

and methandienone7,8. Its anabolic properties though are more potent than those of 

testosterone, since it exhibits an anabolic:androgenic ratio of 10 compared to 1 for 

testosterone1,11. Besides its potential therapeutic uses as an AAS, nandrolone has also been 

used as a growth promoting agent in livestock intended for human consumption12,13. Its use 

however for this purpose is banned in the EU14. On the other hand, several studies report the 

presence of nandrolone in dietary supplements as a cross-contaminant and consumption of 

such supplements could lead to accidental doping15-17. It is therefore evident that monitoring 

the presence of nandrolone in human and animal biological fluids, meat products and 

nutritional supplements is essential to protect public health and discourage doping practices 

in sports. 

According to WADA regulations, gas chromatography-mass spectrometry (GC-MS) and gas 

chromatography-isotope ratio mass spectrometry (GC-IRMS) are the official methods for the 

detection of endogenous (such as testosterone)18 and exogenous AAS (like nandrolone)19, 

respectively. Indeed, gas chromatography combined with mass spectrometry has been 

widely exploited in the literature as well to analyze different types of samples potentially 

containing AAS16, 20-23. The use of other techniques has also been reported, such as ultra-

high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) 

which is garnering increased interest24,25, high-performance thin-layer chromatography 

(HPTLC)-densitometry26 and nuclear magnetic resonance (NMR)27. These techniques, even 

though highly accurate, are expensive and laboratory-based requiring significant 

infrastructure, specific equipment and trained personnel. Immunoassays have also been 

developed as simpler, lower cost and more user-friendly alternatives to the above-mentioned 

techniques10, 28-32. Due to the small size of the steroids, the ELISAs are typically performed 

in an indirect competitive format, and they require the preparation of haptens for animal 

immunization and antibody production or for signal generation. Depending on their specific 

design, ELISAs can be very sensitive with limits of detection (LOD) in the (sub)nanomolar 

range. For example, an LOD of 4 pg/mL ( 15 pM) was reported when a linker-optimized 

biotin derivative of nandrolone was used in conjunction with avidin as an immobilized 

competitor32. ELISA kits are also available in the market for various AAS with LODs in the 

low picomolar range. The high sensitivity and specificity demonstrated by immunoassays 

emphasize the potential of biorecognition molecules in AAS detection and their compatibility 

with anti-doping drug testing. 

Aptamers are biorecognition molecules considered as the chemical alternatives to antibodies. 

They are single stranded DNA or RNA molecules with specific three-dimensional structures 

able to bind their cognate targets with high affinity and specificity. Starting from highly diverse 

oligonucleotide libraries, specific sequences binding to target molecules are identified using 

an in vitro repetitive process called Systematic Evolution of Ligands by Exponential 
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Enrichment (SELEX)33,34. Advantages of aptamers such as facile and reproducible chemical 

synthesis, straightforward modification, reversible denaturation, small size and stability have 

expanded their application to bioanalytical applications for the detection of a plethora of 

targets35 including small molecules36. In fact, there are a few reports in the literature regarding 

the selection of aptamers binding steroids, such as estradiol37-39, progesterone39, 40, cortisol41 

and testosterone39,42. There is no report though demonstrating the selection of aptamers 

binding nandrolone. There is only one study in which a previously reported estradiol aptamer 

was split in two fragments and repurposed for the detection of nandrolone in a sandwich 

fluorescence resonance energy transfer (FRET) assay43. In this work, we describe the first 

selection designed for the identification of nandrolone aptamers. Using Next Generation 

Sequencing to analyze the last selection round, aptamer candidates were selected and their 

binding affinity for nandrolone was verified using different assays. Finally, a homogenous 

colorimetric assay was developed using gold nanoparticles (AuNPs) with a red-to-blue color 

change to indicate the presence of nandrolone as a proof-of-concept of an assay suitable for 

fast screening of suspicious samples. 

 

 

4. 2. Experimental 

 

4. 2. 1 Materials 

Nandrolone (NAND), trenbolone (TREN), 17β-estradiol (ESTR), 17β-estradiol-6-one 6-(O-

carboxymethyloxime) (ESTR-CMO), progesterone (PROG), progesterone-3-(O-

carboxymethyl)oxime (PROG-CMO), testosterone (TEST), testosterone-3-(O-

carboxymethyl)oxime (TEST-CMO), 11-amino-1-undecanethiol hydrochloride (MUAM), O-

(carboxymethyl)hydroxylamine hemihydrochloride and rabbit anti-mouse-HRP conjugate 

were purchased from Merck (Spain). Nortestosterone Sepharose 6B (10-14 μmole/mL, 

NAND-resin) was obtained from Polysciences (Germany). Epoxy-activated sepharose 6B, 1-

ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC), N-hydroxysuccinimide 

(NHS), sulfo-NHS-acetate, maleimide-activated microtiter plates, DreamTaq DNA 

polymerase and lambda exonuclease were from Fisher Scientific (Spain). The DNA 

purification kits (Oligo Clean & Concentrator kit and DNA Clean & Concentrator kit) were from 

Zymo Research (supplied by Ecogen, Spain). Monoclonal antibodies to ESTR (clone 9F9), 

PROG (clone 9F44) and TEST (clone 5E801) were provided from US Biological Life Sciences 

(acquired through VWR, Spain). Streptavidin-polyHRP80 was purchased from SDT-

Reagents (supplied by Bionova, Spain) and TMB Super Sensitive One Component HRP 

Microwell Substrate from Surmodics (USA). The ssDNA library (5’-

TAGGGAAGAGAAGGACATATGAT-N40-TTGACTAGTACATGACCACTTGA-3’, 86 nt) was 

obtained from TriLink Biotechnologies (USA) whereas all other oligonucleotides were 

synthesized by Biomers.net (Germany). All other reagents were obtained from Fisher 

Scientific (Spain), Scharlau (Spain) and Sigma (Spain). MilliQ-grade water was used for all 

experiments. 
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4. 2. 2 In vitro selection 

Commercially available nandrolone sepharose 6B resin (NAND-resin) was used for the 

positive selection. Epoxy-activated sepharose 6B was used to prepare control-resin for the 

negative selection and counter-selection resins with each of the four counter selection 

steroids (PROG, ESTR, TEST, TREN) as detailed in the Supplementary Information. For the 

first round, 300 pmol of the ssDNA library containing a 40 nucleotide-long random region was 

dissolved in 100 μL of selection buffer (10 mM Tris-HCl pH 7.5, 100 mM NaCl, 2 mM MgCl2), 

heated for 5 min at 95 ºC and cooled slowly to room temperature. The ssDNA library was 

then transferred to a microspin column containing 20 μL of the NAND-resin to perform the 

first selection round. For the second and third rounds, the ssDNA pool was first incubated 

with 20 μL of control-resin before incubation with the NAND-resin. Rounds 4 – 7 were 

performed with sequential incubations with the control-resin, PROG-resin, ESTR-resin, 

TEST-resin, TREN-resin and finally the NAND-resin. All selection rounds were performed 

using 30 min incubation steps at room temperature under rotation. For the counter selection 

steps, 20 μL of each resin was used for round 4 whereas 10 μL were used for rounds 5 – 7. 

At the end of each selection round, unbound sequences from each resin were removed by 

centrifugation for 30 sec at 10,000 rpm followed by washing four times with 400 μL of water 

and four times with 400 μL of selection buffer. The resins were resuspended in 50 μL of water 

and stored for further experiments, whereas ssDNA bound on the NAND-resin was used for 

the preparation of ssDNA for succeeding rounds. This was achieved by the amplification of 

resin-bound sequences using library-specific forward and phosphorylated reverse primers 

and a combination of asymmetric PCR with lambda exonuclease digestion. The evolution of 

the selection was monitored during the selection by PCR to ensure enrichment in sequences 

binding the target NAND-resin. After PCR amplification of resin-bound sequences and 

agarose gel electrophoresis, the intensity of the bands was estimated with the ImageJ 

software using the gel analysis option. 

 

4. 2.3 Next Generation Sequencing (NGS) and identification of aptamer candidates 

The ssDNA pool from the last selection round (round 7) was amplified and sequenced by Ion 

Torrent Next Generation Sequencing (Centre for Omic Sciences, Eurecat Technology 

Centre, Reus, Spain). The Galaxy web server was used for the analysis of the raw data. The 

length of the sequences was constrained to library-length (80 – 95 nt) and the filtered 

sequences were collapsed in order to identify unique sequences. The 100 most abundant 

sequences were aligned for the identification of sequence families using the Clustal Omega 

multiple sequence alignment tool (https://www.ebi.ac.uk/Tools/msa/clustalo/). Sequence 

motifs within these sequences were also identified using the MEME tool (https://meme-

suite.org/meme/tools/meme). The UNAFold webserver was finally used to predict potential 

secondary structures of the selected aptamer candidates adjusting the conditions to the ones 

used during selection (100 mM NaCl, 2 mM MgCl2, 25ºC) and the RNAComposer 3D 
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modeling server (http://rnacomposer.cs.put.poznan.pl/) to build three-dimensional models of 

aptamers. 

 

4. 2. 4 Apta-PCR affinity assay (APAA) 

The binding properties of the aptamer candidates were first evaluated by APAA. To this end, 

nandrolone was immobilized on magnetic beads (NAND-beads) as described in the 

Electronic Supplementary Material (ESM). NAND-beads (1.5 μL of 30 mg/mL) were 

incubated with 50 μL of the desired concentration of each aptamer candidate (10 nM down 

to 15.6 pM performing serial two-fold dilutions in selection buffer) for 30 min at room 

temperature under rotation. The beads were thoroughly washed with selection buffer and 

finally resuspended in 10 μL of water. The amount of bound aptamer was determined after 

PCR amplification, agarose gel electrophoresis and analysis of the intensity of the bands 

using the ImageJ program and the gel analysis option. Duplicate measurements were 

performed for all samples. The relative band intensities were plotted against the aptamer 

concentration using the GraphPad software. The “One site - specific binding with Hill slope” 

model was finally used to construct the binding curves and calculate the affinity dissociation 

constants (KD).     

 

4. 2. 5 Bead-Enzyme Linked Aptamer Assay (bead-ELAA) 

NAND-beads (1.5 μL of 30 mg/mL) were incubated with 50 μL of each biotinylated aptamer 

candidate (100 nM down to 6.4 pM performing serial five-fold dilutions in selection buffer) for 

15 min at room temperature under rotation. For the motif sequence, a range of concentrations 

from 400 nM to 1.6 nM were prepared with serial two-fold dilutions. The beads were washed 

with PBS containing 0.05 % Tween-20 (PBST), resuspended in 50 μL of 0.05 μg/mL 

streptavidin-polyHRP in PBST and incubated for 15 min. Finally, the beads were thoroughly 

washed with PBST and resuspendend in 50 μL of TMB substrate solution. Color development 

was terminated by the addition of 50 μL of 1 M H2SO4 and absorbance was read at 450 nm. 

The KD values were calculated as described above in the “APAA” section, by plotting the 

absorbance at 450 nm against aptamer concentration. Duplicate samples were analyzed for 

each concentration. To evaluate the specificity of the aptamers, 2 μL of each bead type 

(NAND-beads, TEST-beads, TREN-beads, PROG-beads, ESTR-beads or control-beads, 

prepared as detailed in the ESM) were incubated with 50 μL of 0.5 nM of Nand1 or Nand2 

aptamer, 1 nM of Nand3 aptamer or 100 nM of the motif sequence in binding buffer for 30 

min at room temperature under rotation. Detection of bound aptamers was performed as 

described above. 

 

4. 2. 6 Enzyme Linked Aptamer Assay (ELAA) 

For this assay, nandrolone was immobilized on microtiter plates as detailed in the ESM 

employing maleimide activated microplates and MUAM crosslinker. Solutions with different 

concentrations of the biotinylated aptamers (50 μL of 20 nM down to 10 pM, two-fold serial 
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dilutions in selection buffer) were added to the wells and incubated for 15 min at room 

temperature under mild agitation and then washed with PBST. Then, 50 μL of 0.05 μg/mL 

streptavidin-polyHRP in PBST were added for another 15-min incubation. The wells were 

finally washed with PBST and 50 μL of TMB solution were added, followed by the addition of 

50 μL of 1 M H2SO4 after approximately 5 min to stop color development. Absorbance was 

read at 450 nm and the KD values were determined as described above.   

 

4. 2. 7 Gold nanoparticles (AuNPs)-aptamer assay for NAND detection  

AuNPs (diameter of  16 nm) were synthesized with the sodium citrate reduction method as 

previously described [44]. AuNPs (50 μL of OD 2) were incubated with the aptamer (15 μL) 

for 30 min under rotation at room temperature. Then, 10 μL of solutions containing different 

concentrations of NAND were added and the mixtures were incubated further for 15 min. 

Finally, 25 μL of NaCl were added and after 1 min, the spectra of the samples were acquired 

in the range of 350 – 750 nm. The concentrations of the aptamer and NaCl in the final 100 

μL mixtures were initially optimized in the absence of NAND, using the aptamer at 0 – 300 

nM and NaCl at 0 – 200 mM. A narrower range of concentrations of the aptamer (100 – 200 

nM) and NaCl (50 – 150 mM) was then studied in the absence and presence of NAND (200 

M). Optimized conditions were finally used for the construction of a calibration curve using 

NAND in the range of 0.2 – 200 M. The absorbance ratio of aggregated/dispersed AuNPs 

was plotted against the logarithm of NAND concentration using the GraphPad Prism software 

and a four-parameter sigmoidal model was used to fit the data. The limit of detection (LOD), 

defined as the bottom of the fitted curve plus three times its standard deviation (bottom + 

3xSDbottom), was finally calculated after interpolation from the calibration curve.  

 

4. 3. Results and Discussion 

 

4. 3. 1 Selection process 

The selection of nandrolone aptamers was based on the use of nandrolone-sepharose affinity 

resin (NAND-resin) and a highly diverse ssDNA library with a 40 nucleotide-long random 

region. The selection was completed in seven rounds and a summary of the conditions used 

can be seen in Figure 4. 1A. Commercially available NAND-resin was employed for the 

positive selections, whereas control sepharose resin was used for the negative selections as 

well as for the preparation of counter selection resins with each of the four counter-SELEX 

molecules, progesterone (PROG), estradiol (ESTR), testosterone (TEST) and trenbolone 

(TREN). The structures of the target nandrolone and the other steroids used in the selection 

can be seen in Figure S4.1 of the ESM. The immobilization of these steroids on sepharose 

resin is described in the ESM (Figure S4.2). For the first round, the ssDNA library was 

incubated with the NAND-resin (Figure S4.1B) and bound sequences were amplified and 

used for the preparation of ssDNA for the next round. For the second round, the ssDNA pool 

prepared from the first round was first incubated with the control-resin to remove any 
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sequences binding non-specifically to the matrix (sepharose resin). Unbound ssDNA was 

recovered and incubated with the NAND-resin for the positive selection. The amount of 

target-bound sequences during the second round decreased compared to the first one as a 

consequence of the negative selection which effectively removed part of the ssDNA pool 

interacting non-specifically with the control-resin (Figure 4.1B). After completion of the third 

round, which was performed in the same way as the second one, the ssDNA pool appeared 

to be enriched in NAND-resin-binding sequences with insignificant binding to the control-

resin. Counter selection molecules were thus introduced in the following selection round 3. 

After a negative selection step, sequential incubations with the PROG-resin, ESTR-resin, 

TEST-resin and TREN-resin were performed for counter-SELEX followed by the positive 

selection with the NAND-resin. This procedure was followed for rounds 4 – 7, with the only 

difference being the use of less resin per counter selection molecule in rounds 5 – 7 

compared to round 4 (Figure 4.1A). By the final round 7, PCR amplification of bound 

sequences to each resin type followed by agarose gel electrophoresis showed the specific 

binding of the enriched ssDNA pool to the NAND-resin and no binding to the other steroid-

resins (Figure 4.1C).  

 

Figure 4.1. Selection strategy and evolution of the process. (A) Conditions used for SELEX. (B) Evolution of 

the selection. (C) Specificity of the last selection round.   

 

4. 3. 2 NGS and identification of aptamer candidates 

The last selection round was analyzed by Ion Torrent Next Generation Sequencing to identify 

aptamer candidates. The raw data was imported in the Galaxy webserver and the length of 
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sequences was constrained to library length (80 – 95 nt) to remove artefacts resulting from 

PCR amplification and sequencing. Unique sequences were then identified after collapsing 

the filtered dataset. Out of the 117225 total reads, 54.5 % were sequences with library length 

and approximately half of those (51.5 %) were unique (Figure 4.2A). The ranking and copy 

number of the 100 most abundant unique sequences, corresponding to 16.3 % of the total 

unique sequences (Figure 4.2B), can be found in Table S1. The next step was to perform 

multiple sequence alignment of these 100 sequences using Clustal Omega as well as 

analyze them with MEME for sequence motif discovery. No sequence families were identified 

as it can be seen in Figure S4.3. Interestingly, a short sequence motif of 11 nt was identified 

in 52 of the 100 most abundant unique sequences (Figure S4.3 and S4.4). It was also found 

in 50 % of the 500 most over-represented sequences (data not shown). The first three most 

abundant sequences were denoted as Nand1, Nand2 and Nand3 and they constituted 5.9, 

4.1 and 3.9 %, respectively of the top 100 most over-represented sequences dataset (Figure 

4.2B). These sequences together with the sequence motif were finally chosen for further 

characterization and their sequences can be found in Table S4.2.  

 

 

Figure 4.2. NGS analysis of round 7 from the nandrolone selection. (A) General statistics. (B) Composition of 

the top 100 most abundant unique sequences. 

 

4. 3. 3 Affinity and specificity of the aptamers 

Once the aptamer candidates were identified, different assays were performed to evaluate 

their binding properties. APAA, bead-ELAA and ELAA were employed, based on the use of 

magnetic beads and maleimide-activated microtiter plates to immobilize nandrolone. We 

have previously reported the use of these three assays for the characterization of aptamers 

binding to small molecules like steroids [39, 42, 45] and biogenic amines [46]. They are easy 

to perform in any laboratory as opposed to more sophisticated methods like MicroScale 

Thermophoresis (MST) and isothermal titration calorimetry (ITC) which require special 

equipment and trained personnel. For APAA and bead-ELAA, a carboxyl-derivative of 

nandrolone (NAND-CMO) was directly conjugated to magnetic beads. The beads were 

modified with amine groups through a short hydrophilic linker and cross-linking was achieved 

using classic carbodiimide chemistry via EDC/NHS. On the other hand, an 11 carbon-long 

crosslinker (MUAM) was used as a spacer to facilitate the immobilization of NAND-CMO on 

maleimide-activated microtiter plates and perform the ELAA. For APAA, unmodified aptamers 

were used whereas biotinylated aptamers (with a biotin added to the 5’ end of the aptamers) 
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were required for bead-ELAA and ELAA. The binding curves of the aptamers obtained from 

each of the assays are shown in Figure 4.3A-C and the affinity dissociation constants (KDs) 

in Figure 4.3D. All three assays verified the high binding affinity of the three full length 

aptamers (Nand1, Nand2 and Nand3) with KDs in the low (sub)nanomolar range. The use of 

different surfaces for NAND immobilization, the length of the spacer used to spatially separate 

NAND from the surface, or the modification of the aptamers did not appear to affect their 

binding properties.  

   

 

Figure 4.3. Evaluation of the affinity of the aptamer candidates for nandrolone. Binding curves obtained by (A) 

APAA, (B) bead-ELAA and (C) ELAA. (D) Affinity dissociation constants. 

 

The motif, which is present in the sequences of the Nand2 and Nand3 candidates but not in 

Nand1, was analyzed next (Figure S4.5). A DNA-based spacer (T15) was introduced at the 

5’-end of this 11-mer motif sequence to provide more structural flexibility and prevent any 

potential interference of the biotin added to facilitated detection on NAND-motif complex 

formation. A KD of 27 nM was calculated for the motif by bead-ELAA (Figure 4.3B and 4.3D). 

As mentioned earlier, this sequence was found in 52 % of the top 100 and in half of the top 

500 sequences from the last selection round, indicating that the selection process resulted in 

the enrichment of this sequence as a NAND binding motif. Considering the small size of the 

steroids, a binding pocket formed in a three-dimensional structure of the motif predicted using 

the RNAComposer webserver could potentially accommodate NAND binding (Figure S4.6).  

The specificity of the aptamers was finally studied by bead-ELAA. This assay is very easy to 

perform and is quite useful in evaluating the binding properties of aptamers. It must be 

commented though that variations in the immobilization level of each steroid on the magnetic 

beads could potentially affect the accuracy of the assay when evaluating aptamer specificity. 

Naturally occurring steroids like testosterone, progesterone and estradiol, as well as the 

synthetic anabolic steroid trenbolone were immobilized on magnetic beads and bound 

aptamers were detected via the biotin modification introduced at the 5’ end of the aptamers 
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as detailed earlier. As shown in Figure 4.4, the three full-length aptamers as well as the motif 

showed preferential binding to both NAND and TEST, while lower binding was observed to 

the other steroids. Certain level of cross-reactivity of the aptamers with other steroids is 

reasonable considering the extremely high structural similarities these molecules exhibit 

(Figure S4.1). Regardless, taking into account that PROG and ESTR are encountered in low 

(sub)nanomolar concentrations in biological samples, their presence is not expected to affect 

the analysis of doping-related samples.  

 

 

Figure 4.4 Specificity of the aptamers using bead-ELAA. 

 

4. 3. 4 AuNP-aptamer assay for NAND detection 

A label-free colorimetric assay employing the Nand3 aptamer and gold nanoparticles 

(AuNPs) was finally designed for the detection of NAND and its principle is demonstrated in 

Fig. 5A. The negatively charged ssDNA (unmodified) aptamer is adsorbed on the surface of 

the AuNPs, resulting in the stabilization of the particles and prevention of aggregation after 

the addition of NaCl salt and the increase of the ionic strength of the suspension. The AuNPs 

are thus maintained well-dispersed and exhibit their characteristic red wine color. When the 

target molecule is added to the suspension though, the folding of the aptamer changes 

provoking its desorption from the particles and displacement to the solution phase to bind the 

target. In this case, when salt is added, the AuNPs aggregate since their surface is no longer 

protected by the aptamer and the color of the suspension changes to purple/blue. This assay 

has been widely exploited for small molecule detection because of the several advantages it 

provides; it is facile and rapid, provides a clear visual result with a red-to-purple/blue color 

change to indicate target presence, does not require any labels to generate signal, the 

aptamer is used unmodified (thus maintaining its binding properties) and as a homogenous 

assay performed in a single tube does not require any separation/washing steps44, 47, 48. 

There are already a few studies in the literature using this assay for steroid detection, such 

as cortisol41, estradiol49 and progesterone50.  
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Figure 4.5. AuNP-aptamer assay for NAND detection. (A) Principle of the assay. (B) Representative spectra of 

samples containing different concentrations of NAND. (C) Calibration curve for NAND quantification. 

 

Herein we sought to apply the novel aptamers to NAND detection using this AuNP-based 

assay. The concentrations of the Nand3 aptamer, which was chosen for assay development, 

and NaCl were optimized to enhance assay performance. Initially the assay was performed 

without NAND to evaluate the conditions providing better discrimination of the AuNPs with 

and without aptamer. These were found to be 100 – 200 nM of Nand3 aptamer and 50 – 150 

mM of NaCl (Fig. S7A). These conditions were further explored in the presence of NAND 

which was better detected after the addition of 75 mM and 100 mM of NaCl (Fig. S7B). The 

sensitivity of the assay was then evaluated for different combinations of concentrations of 

aptamer and NaCl. As shown in Table S3, 200 nM of Nand3 aptamer with 100 mM NaCl was 

the most successful combination resulting in the lowest limit of detection (LOD of 1.1 μM) and 

wider span (absorbance ratio of aggregated to dispersed AuNPs), which can improve the 

analytical sensitivity of the assay. Representative images of samples containing increasing 

concentrations of NAND showing the red-to-purple/blue color change can be found in Fig. 

S8. Finally, a range of NAND concentrations (0.2 – 200 μM) were analyzed with the assay 

under the optimized conditions. The spectra acquired are shown in Fig. 5B and the calibration 

curve constructed using the absorbance ratios of aggregated to dispersed AuNPs in Fig. 5C. 

The LOD of the assay was calculated at 1.4 μM NAND. The relatively low sensitivity of the 

assay might be attributed to the length of the aptamer (86 nt) limiting its efficient displacement 

to the solution phase. Truncation of the aptamer to remove non-essential bases could 
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potentially improve assay performance, a strategy previously demonstrated for a bisphenol 

A aptamer51. In that work, > 250-fold improvement of the LOD was achieved with an 

equivalent AuNP-based assay when the aptamer length was reduced from 63 nt to 38 nt. 

Additionally, removing certain parts of the sequence potentially forming secondary structures 

with low free energy could also improve the assay sensitivity as shown previously for an 

estradiol aptamer 52. Truncations were not pursued in this work as this process was not within 

the scope of the study. The alternative use of the short 11-mer motif sequence for this assay 

was evaluated. However, it was not considered compatible since high concentrations of the 

sequence were required to efficiently protect the particles from salt-induced aggregation 

which are expected to decrease assay sensitivity (data not shown). As mentioned earlier, 

there is only one study in the literature demonstrating the use of an aptamer for nandrolone 

detection43. Using a split estradiol aptamer modified with a fluorophore and a quencher in 

each fragment, a FRET assay was developed with an LOD of 5 μM. The sensitivity of the 

assay developed in this work is in the same low micromolar range as the one previously 

described. Even though not optimal, the assay can serve as an example of an aptamer-based 

rapid homogenous assay suitable for on-site monitoring of AAS levels in suspicious samples.  

 

4. 5. Conclusions 

 

Doping refers to the illicit use of prohibited substances with the objective of gaining 

competitive advantage especially in professional sports. Anabolic androgenic steroids (AAS) 

are one category of these substances including testosterone and one of its synthetic 

derivatives called nandrolone. AAS abuse though poses serious health concerns because of 

the numerous adverse effects they can cause, and international organizations are dedicated 

to improving global monitoring and prevention strategies to manage the problem. Even 

though highly sensitive gas chromatographic-mass spectroscopic methods have been 

established for the specific detection of these substances, they are limited to laboratory use 

and they cannot be deployed on-site for fast screening of suspicious samples. The numerous 

advantages of aptamers as alternative biorecognition elements successfully applied for the 

detection of a plethora of small molecules make them particularly attractive for the 

development of an assay for AAS detection suitable for on-site analysis. In this work, we 

report the first selection performed for the identification of nandrolone aptamers assisted by 

next generation sequencing. Three aptamer candidates and a highly enriched 11-mer 

sequence motif were chosen for characterization and their specific binding to nandrolone was 

verified with different assays. Their affinity dissociation constants were calculated in the low 

(sub)nanomolar range, and all sequences exhibited cross-reactivity with testosterone but not 

with other potentially interfering steroids. Finally, a facile and rapid colorimetric assay was 

developed as a proof-of-concept employing one of the full-length aptamers and gold 

nanoparticles, allowing the detection of 1.4 μM of nandrolone. Considering the high cross-

reactivity of the novel nandrolone aptamers with testosterone, the assay could serve as a 

simple on-site screening tool with the red-to-purple/blue color change to indicate the potential 

presence of both nandrolone and testosterone in the sample as doping biomarkers. 
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Nandrolone can only be found in a sample when it is administered exogenously (doping) 

whereas > 0.7 μM (200 ng/mL) of testosterone in urine samples are considered suspicious 

for doping according to WADA regulations. Taking into account that the normal endogenous 

levels of testosterone are low (< 42 nM) and are not expected to interfere with the assay, only 

samples with significantly higher amounts of the two AAS can produce a positive result and 

suggest doping practices. Further analysis by GC-MS/GS-IRMS can finally confirm the 

steroid(s) in the sample, their concentration and source. Future work will focus on the 

improvement of the sensitivity of the assay (e.g. by aptamer truncation and/or splitting) and 

evaluation of its performance with appropriate real samples. 
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4.6 Supplementary information 

 

4.6.1. Materials and methods 

4.6.1.1 Structures of the molecules 

 
 

Figure S4.1. Structures of the steroids used in this work. (A) The target steroid nandrolone. (B) Nandrolone-

sepharose® 6B resin used for SELEX. (C) Other steroids used for counter-SELEX. The asterisks () denote 

the carbon atoms on the steroid structures carrying the carboxymethyloxime (CMO) modification facilitating 

steroid immobilization on amine-modified magnetic beads.   

 

4.6.1.2 Preparation of carboxymethyloxime (CMO) derivatives of steroids 

 

Carboxymethyloxime derivatives of nandrolone (NAND) and trenbolone (TREN) were prepared 

according to a previous report 1. Briefly, each steroid (100 mg) and O-(carboxymethyl) 

hydroxylamine hemihydrochloride (113 mg) were dissolved in 10.2 mL of anhydrous pyridine 

under argon atmosphere and the mixtures were heated at 50ºC for two days. Pyridine was then 

removed under vacuum and the crude solids were dissolved in a mixture of ethyl acetate and 

water (20 mL each). Following, HCl (10 %) was added until pH 1 was achieved yielding two 

phases. The lower ethyl acetate layers were separated and washed two times with water (20 mL 

per wash) and then dried over sodium sulfate. Finally, they were filtered and concentrated under 

vacuum yielding light yellow solids.  
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4.6.1.3 Preparation of sepharose media for negative and counter selection steps 

 

Epoxy-activated sepharose 6B resin ( 143 mg) was transferred in a micro-spin column and 

washed three times with water (1 mL per wash) by resuspending the resin in the appropriate 

volume followed by centrifugation for 30 sec at 10,000 rpm. Next, the resin was resuspended in 

30 µL of 25 mg/mL of each steroid solution [progesterone (PROG), estradiol (ESTR), testosterone 

(TEST) or trenbolone (TREN), prepared in DMSO] and 470 µL of PBS for the preparation of the 

counter-selection media or in plain coupling buffer for the negative selection resin (control-resin). 

The resins were incubated overnight at room temperature under rotation, followed by washing and 

blocking of any remaining active groups with 1 mM of sulfo-NHS-acetate in PBS for 2 h at room 

temperature under rotation. Finally, the resins were washed with water and resuspended in 2 mL 

of water. The immobilization of the steroids on the resins was confirmed by bead-ELISA. 

Specifically, 50 µL of each steroid-sepharose resin were incubated with 50 µL of 5 µg/mL of the 

respective steroid antibody in PBS for 30 min at room temperature under rotation. The TEST 

antibody was used to detect both TEST and TREN. The resins were washed three times with 200 

µL of water, resuspended in 50 µL of rabbit anti-mouse-HRP antibody conjugate ( 3 µg/mL) in 

PBST followed by a 30-minute incubation at room temperature under rotation. Finally, the resins 

were washed and resuspended in 50 µL of TMB solution. After 2 minutes, color development was 

stopped by the addition of 50 µL of 1 M H2SO4 and absorbance of the supernatants was read at 

450 nm. The results are shown in Figure S4.2. 

 

 
 

Figure S4.2. Confirmation of the immobilization of various steroids on sepharose resin. 

 

4.6.1.4 Preparation of steroid-magnetic beads  
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Immobilization of steroids on magnetic beads was performed as previously described [2]. 

Amine-activated magnetic beads (200 µL of Dynabeads M-270 Amine, 30 mg/mL) were 

washed with 100 mM MES pH 5.3 and then resuspended in 40 µL of 25 mg/mL NAND-

CMO, TEST-CMO, TREN-CMO, PROG-CMO or ESTR-CMO (in DMSO), 40 µL of 10 

mg/mL EDC, 40 µL of 75 mg/mL NHS, 80 µL of 100 mM MES pH 5.3 and 10 µL of ethanol. 

The suspensions were incubated overnight at room temperature under rotation. The 

beads were then washed with PBS and blocked with 5 % skim milk in PBST for 1 h at 

room temperature under rotation. Finally, the beads were blocked with 1 mM sulfo-NHS-

acetate in PBS for 1 h, washed with PBST and resuspended in 200 µL of PBS. The 

control-beads were prepared in the same manner by using only DMSO instead of the 

steroid. The modified magnetic beads were kept at 4ºC until use. The immobilization of 

the steroids on the magnetic beads was verified by bead-ELISA as detailed above for the 

sepharose resins. The ESTR antibody was used for the detection of ESTR and NAND, 

the TEST antibody for TEST and TREN and the PROG antibody for PROG. 

4.6.1.5 Immobilization of nandrolone on microtiter plates for binding studies 

 

The preparation of nandrolone-functionalized microtiter plates was based on a previous 

report [3]. Maleimide-activated microtiter plate strips were washed with PBS and then 

incubated with 50 μL of 100 μM of 11-amino-1-undecanethiol hydrochloride (MUAM, in 

PBS) overnight at 4ºC. The plates were washed with PBS and 50 μL of a mixture of NDR-

CMO (300 μM, in PBS), EDC (4 mM, equivalent to 0.62 mg/mL) and NHS (1 mM, 

equivalent to 0.115 mg/mL) was added to the wells and let to incubate for 3 h at room 

temperature. After washing, any remaining active groups were blocked with 50 μL of sulfo-

NHS-acetate (1 mM in PBS) for 1 h. The plates were finally washed with PBS and kept 

dry at 4ºC until use.  

 

 

4.6. 2. Next Generation Sequencing for aptamer identification 
 

Table S4.1 Abundance (%) of the 100 most over-represented unique sequences. 

Sequence % Sequence % Sequence % Sequence % 

1 5,94 26 1,08 51 0,73 76 0,58 

2 4,07 27 1,05 52 0,71 77 0,58 

3 3,86 28 1,05 53 0,71 78 0,54 
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4 2,56 29 1,01 54 0,71 79 0,54 

5 2,11 30 0,99 55 0,69 80 0,52 

6 2,04 31 0,97 56 0,69 81 0,52 

7 1,96 32 0,97 57 0,69 82 0,50 

8 1,89 33 0,95 58 0,69 83 0,50 

9 1,87 34 0,93 59 0,67 84 0,50 

10 1,87 35 0,91 60 0,67 85 0,50 

11 1,85 36 0,91 61 0,65 86 0,50 

12 1,76 37 0,91 62 0,63 87 0,50 

13 1,66 38 0,91 63 0,63 88 0,49 

14 1,51 39 0,90 64 0,63 89 0,49 

15 1,49 40 0,90 65 0,63 90 0,49 

16 1,46 41 0,86 66 0,63 91 0,49 

17 1,34 42 0,86 67 0,63 92 0,47 

18 1,31 43 0,82 68 0,63 93 0,47 

19 1,31 44 0,82 69 0,62 94 0,47 

20 1,31 45 0,80 70 0,60 95 0,47 

21 1,19 46 0,78 71 0,60 96 0,45 

22 1,19 47 0,77 72 0,60 97 0,45 

23 1,18 48 0,77 73 0,60 98 0,45 

24 1,16 49 0,75 74 0,60 99 0,45 

25 1,10 50 0,75 75 0,58 100 0,45 

 

 

Figure S4.3. Multiple sequence alignment of the 100 most abundant unique sequences of library-length (80 

– 95 bp) using Clustal Omega 4. The first number denotes the ranking of the sequence and the second one 

the number of copies. The common sequence motif is underlined. 
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Figure S4.4. Sequence motif encountered in 52 % of the 100 most abundant sequences using the MEME 

tool of the MEME Suite 5.  

 

 
 

4.6.3. Aptamer characterization 
 

Table S4.2 Sequences of the selected aptamer candidates and the motif sequence. 

 
Sequence (5’ to 3’) 

Length 

(nt) 

Nand1 
TAGGGAAGAGAAGGACATATGATGTCTTCACTGTATGCTATACGCATTACTCC

CTAAGTGGCATTGACTAGTACATGACCACTTGA 
86 

Nand2 
TAGGGAAGAGAAGGACATATGATGGCCACGTTAGTTTCTCTGACCGACAATT

ACAAGTGTCAGTTGACTAGTACATGACCACTTGA 
86 

Nand3 
TAGGGAAGAGAAGGACATATGATGTCAAATGTGGAACATTTCTTCTCTGACCA

TCGGTGGCGCTTGACTAGTACATGACCACTTGA 
86 

Motif CTTCTCTGACC 11 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR TOOLS FOR THE RAPID AND COST-EFFECTIVE DETECTION OF SMALL MOLECULES 
Xhensila Shkembi 



 
 

 

 

146 

 
 

 

 
 

Figure S4.5. Secondary structures of the nandrolone aptamer candidates predicted by the UNAFold 

webserver [6] (100 mM NaCl and 2 mM MgCl2, at 25ºC). The sequence motif encountered in Nand2 and 

Nand3 sequences is boxed. 

 

 

 

 
Figure S4.6. Predicted structure of the motif sequence and comparison of its size with NAND. The motif 

structure was predicted with the RNAComposer webserver 7. 
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4.6.4 AuNPs-aptamer assay for NAND detection 

 

 
 

Figure S4.7. Optimization of Nand3 aptamer and NaCl concentrations. (A) Nand3 aptamer (0 – 300 nM) 

was used in combination with NaCl (0 – 200 mM) in the absence of NAND. (B) The aptamer (100 and 200 

nM) was used in combination with NaCl (50 – 150 mM) in the absence and presence of NAND (200 μM). 

 

Table S4.3 Sensitivity of the AuNP-aptamer assay for NAND detection using different concentrations of 

aptamer and NaCl. 

Nand3 aptamer 

(nM) 
75 mM NaCl 100 mM NaCl 

LOD (μM) R
2

 Span LOD (μM) R
2

 Span 
100 3.4 0.9810 0.62 0.8 0.9935 0.41 
150 3.5 0.9868 0.81 4.8 0.9701 0.42 
200 13.4 * 0.9834 na 1.1 0.9940 0.50 

* ambiguous fit of the calibration curve; n.a.: not available 

 

 

Figure S4.8. Color change of samples containing increasing concentration of nandrolone analyzed with the 

AuNPs-Nand3 aptamer assay. 
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