
i
i

“output” — 2021/7/7 — 15:22 — page 1 — #1 i
i

i
i

i
i

Width-Based Planning and Learning

Miquel Junyent Barbany

DOCTORAL THESIS UPF / 2021

THESIS SUPERVISORS

Dr. Anders Jonsson
Dr. Vicenç Gómez

Dept. of Information and Communication Technologies

i
i

“output” — 2021/7/7 — 15:22 — page 2 — #2 i
i

i
i

i
i

i
i

“output” — 2021/7/7 — 15:22 — page i — #3 i
i

i
i

i
i

Creative Commons Attribution-ShareAlike 4.0 International License

You are free to copy and redistribute the material in any medium or format, remix, trans-

form, and build upon the material for any purpose, even commercially. The licensor cannot

revoke these freedoms as long as you follow the license terms. Under the following terms: a)

Attribution – You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that suggests

the licensor endorses you or your use. b) ShareAlike – If you remix, transform, or build upon

the material, you must distribute your contributions under the same license as the original. No

additional restrictions — You may not apply legal terms or technological measures that legally

restrict others from doing anything the license permits. The complete terms of the license can

be found at: http://creativecommons.org/licenses/by-sa/4.0/legalcode

i

https://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/legalcode

i
i

“output” — 2021/7/7 — 15:22 — page ii — #4 i
i

i
i

i
i

i
i

“output” — 2021/7/7 — 15:22 — page iii — #5 i
i

i
i

i
i

Al meu pare.

iii

i
i

“output” — 2021/7/7 — 15:22 — page iv — #6 i
i

i
i

i
i

i
i

“output” — 2021/7/7 — 15:22 — page v — #7 i
i

i
i

i
i

Abstract

Optimal sequential decision making is a fundamental problem to many di-
verse fields. In recent years, Reinforcement Learning (RL) methods have
experienced unprecedented success, largely enabled by the use of deep
learning models, reaching human-level performance in several domains,
such as the Atari video games or the ancient game of Go. In contrast
to the RL approach in which the agent learns a policy from environment
interaction samples, ignoring the structure of the problem, the planning
approach for decision making assumes known models for the agent’s goals
and domain dynamics, and focuses on determining how the agent should
behave to achieve its objectives. Current planners are able to solve prob-
lem instances involving huge state spaces by precisely exploiting the prob-
lem structure that is defined in the state-action model.

In this work we combine the two approaches, leveraging fast and com-
pact policies from learning methods and the capacity to perform looka-
heads in combinatorial problems from planning methods. In particular,
we focus on a family of planners called width-based planners, that has
demonstrated great success in recent years due to its ability to scale in-
dependently of the size of the state space. The basic algorithm, Iter-
ated Width (IW), was originally proposed for classical planning problems,
where a model for state transitions and goals, represented by sets of atoms,
is fully determined. Nevertheless, width-based planners do not require a
fully defined model of the environment, and can be used with simulators.
For instance, they have been recently applied in pixel domains such as the
Atari games.

Despite its success, IW is purely exploratory, and does not leverage
past reward information. Furthermore, it requires the state to be factored

v

i
i

“output” — 2021/7/7 — 15:22 — page vi — #8 i
i

i
i

i
i

into features that need to be pre-defined for the particular task. Moreover,
running the algorithm with a width larger than 1 in practice is usually
computationally intractable, prohibiting IW from solving higher width
problems.

We begin this dissertation by studying the complexity of width-based
methods when the state space is defined by multivalued features, as in the
RL setting, instead of Boolean atoms. We provide a tight upper bound
on the amount of nodes expanded by IW, as well as overall algorithmic
complexity results. In order to deal with more challenging problems (i.e.,
those with a width higher than 1), we present a hierarchical algorithm that
plans at two levels of abstraction. A high-level planner uses abstract fea-
tures that are incrementally discovered from low-level pruning decisions.
We illustrate this algorithm in classical planning PDDL domains as well
as in pixel-based simulator domains. In classical planning, we show how
IW(1) at two levels of abstraction can solve problems of width 2.

To leverage past reward information, we extend width-based planning
by incorporating an explicit policy in the action selection mechanism. Our
method, called π-IW, interleaves width-based planning and policy learning
using the state-actions visited by the planner. The policy estimate takes
the form of a neural network and is in turn used to guide the planning
step, thus reinforcing promising paths. Notably, the representation learned
by the neural network can be used as a feature space for the width-based
planner without degrading its performance, thus removing the requirement
of pre-defined features for the planner. We compare π-IW with previous
width-based methods and with AlphaZero, a method that also interleaves
planning and learning, in simple environments, and show that π-IW has
superior performance. We also show that the π-IW algorithm outperforms
previous width-based methods in the pixel setting of Atari games suite.
Finally, we show that the proposed hierarchical IW can be seamlessly
integrated with our policy learning scheme, resulting in an algorithm that
outperforms flat IW-based planners in Atari games with sparse rewards.

vi

i
i

“output” — 2021/7/7 — 15:22 — page vii — #9 i
i

i
i

i
i

Resum

La presa seqüencial de decisions òptimes és un problema fonamental en
diversos camps. En els últims anys, els mètodes d’aprenentatge per reforç
(RL) han experimentat un èxit sense precedents, en gran part gràcies a
l’ús de models d’aprenentatge profund, aconseguint un rendiment a nivell
humà en diversos dominis, com els videojocs d’Atari o l’antic joc de Go.
En contrast amb l’enfocament de RL, on l’agent aprèn una poĺıtica a partir
de mostres d’interacció amb l’entorn, ignorant l’estructura del problema,
l’enfocament de planificació assumeix models coneguts per als objectius
de l’agent i la dinàmica del domini, i es basa en determinar com ha de
comportar-se l’agent per aconseguir els seus objectius. Els planificadors
actuals són capaços de resoldre problemes que involucren grans espais
d’estats precisament explotant l’estructura del problema, definida en el
model estat-acció.

En aquest treball combinem els dos enfocaments, aprofitant poĺıtiques
ràpides i compactes dels mètodes d’aprenentatge i la capacitat de fer
cerques en problemes combinatoris dels mètodes de planificació. En par-
ticular, ens enfoquem en una famı́lia de planificadors basats en el width
(ample), que han tingut molt èxit en els últims anys gràcies a que la seva
escalabilitat és independent de la mida de l’espai d’estats. L’algorisme
bàsic, Iterated Width (IW), es va proposar originalment per problemes
de planificació clàssica, on el model de transicions d’estat i objectius ve
completament determinat, representat per conjunts d’àtoms. No obstant,
els planificadors basats en width no requereixen un model de l’entorn com-
pletament definit i es poden utilitzar amb simuladors. Per exemple, s’han
aplicat recentment a dominis gràfics com els jocs d’Atari.

Malgrat el seu èxit, IW és un algorisme purament exploratori i no

vii

i
i

“output” — 2021/7/7 — 15:22 — page viii — #10 i
i

i
i

i
i

aprofita la informació de recompenses anteriors. A més, requereix que
l’estat estigui factoritzat en caracteŕıstiques, que han de predefinirse per
a la tasca en concret. A més, executar l’algorisme amb un width superior
a 1 sol ser computacionalment intractable a la pràctica, el que impedeix
que IW resolgui problemes de width superior.

Comencem aquesta tesi estudiant la complexitat dels mètodes basats
en width quan l’espai d’estats està definit per caracteŕıstiques multivalor,
com en els problemes de RL, en lloc d’àtoms booleans. Proporcionem un
ĺımit superior més prećıs en la quantitat de nodes expandits per IW, aix́ı
com resultats generals de complexitat algoŕısmica. Per fer front a prob-
lemes més complexos (és a dir, aquells amb un width superior a 1), pre-
sentem un algorisme jeràrquic que planifica en dos nivells d’abstracció. El
planificador d’alt nivell utilitza caracteŕıstiques abstractes que es van de-
scobrint gradualment a partir de decisions de poda en l’arbre de baix nivell.
Il·lustrem aquest algorisme en dominis PDDL de planificació clàssica, aix́ı
com en dominis de simuladors gràfics. En planificació clàssica, mostrem
com IW(1) en dos nivells d’abstracció pot resoldre problemes de width 2.

Per aprofitar la informació de recompenses passades, incorporem una
poĺıtica expĺıcita en el mecanisme de selecció d’accions. El nostre mètode,
anomenat π-IW, intercala la planificació basada en width i l’aprenentatge
de la poĺıtica usant les accions visitades pel planificador. Representem la
poĺıtica amb una xarxa neuronal que, al seu torn, s’utilitza per guiar la
planificació, reforçant aix́ı camins prometedors. A més, la representació
apresa per la xarxa neuronal es pot utilitzar com a caracteŕıstiques per
al planificador sense degradar el seu rendiment, eliminant aix́ı el requisit
d’usar caracteŕıstiques predefinides. Comparem π-IW amb mètodes ante-
riors basats en width i amb AlphaZero, un mètode que també intercala
planificació i aprenentatge, i mostrem que π-IW té un rendiment superior
en entorns simples. També mostrem que l’algorisme π-IW supera altres
mètodes basats en width en els jocs d’Atari. Finalment, mostrem que el
mètode IW jeràrquic proposat pot integrar-se fàcilment amb el nostre es-
quema d’aprenentatge de la poĺıtica, donant com a resultat un algorisme
que supera els planificadors no jeràrquics basats en IW en els jocs d’Atari
amb recompenses distants.

viii

i
i

“output” — 2021/7/7 — 15:22 — page ix — #11 i
i

i
i

i
i

Resumen

La toma secuencial de decisiones óptimas es un problema fundamental
en diversos campos. En los últimos años, los métodos de aprendizaje
por refuerzo (RL) han experimentado un éxito sin precedentes, en gran
parte gracias al uso de modelos de aprendizaje profundo, alcanzando un
rendimiento a nivel humano en varios dominios, como los videojuegos de
Atari o el antiguo juego de Go. En contraste con el enfoque de RL, donde
el agente aprende una poĺıtica a partir de muestras de interacción con el
entorno, ignorando la estructura del problema, el enfoque de planificación
asume modelos conocidos para los objetivos del agente y la dinámica del
dominio, y se basa en determinar cómo debe comportarse el agente para
lograr sus objetivos. Los planificadores actuales son capaces de resolver
problemas que involucran grandes espacios de estados precisamente ex-
plotando la estructura del problema, definida en el modelo estado-acción.

En este trabajo combinamos los dos enfoques, aprovechando poĺıticas
rápidas y compactas de los métodos de aprendizaje y la capacidad de
realizar búsquedas en problemas combinatorios de los métodos de plan-
ificación. En particular, nos enfocamos en una familia de planificadores
basados en el width (ancho), que han demostrado un gran éxito en los
últimos años debido a que su escalabilidad es independiente del tamaño del
espacio de estados. El algoritmo básico, Iterated Width (IW), se propuso
originalmente para problemas de planificación clásica, donde el modelo de
transiciones de estado y objetivos viene completamente determinado, rep-
resentado por conjuntos de átomos. Sin embargo, los planificadores basa-
dos en width no requieren un modelo del entorno completamente definido
y se pueden utilizar con simuladores. Por ejemplo, se han aplicado recien-
temente en dominios gráficos como los juegos de Atari.

ix

i
i

“output” — 2021/7/7 — 15:22 — page x — #12 i
i

i
i

i
i

A pesar de su éxito, IW es un algoritmo puramente exploratorio y no
aprovecha la información de recompensas anteriores. Además, requiere
que el estado esté factorizado en caracteŕısticas, que deben predefinirse
para la tarea en concreto. Además, ejecutar el algoritmo con un width
superior a 1 suele ser computacionalmente intratable en la práctica, lo que
impide que IW resuelva problemas de width superior.

Empezamos esta tesis estudiando la complejidad de los métodos basa-
dos en width cuando el espacio de estados está definido por caracteŕısticas
multivalor, como en los problemas de RL, en lugar de átomos booleanos.
Proporcionamos un ĺımite superior más preciso en la cantidad de no-
dos expandidos por IW, aśı como resultados generales de complejidad
algoŕıtmica. Para hacer frente a problemas más complejos (es decir, aque-
llos con un width superior a 1), presentamos un algoritmo jerárquico que
planifica en dos niveles de abstracción. El planificador de alto nivel utiliza
caracteŕısticas abstractas que se van descubriendo gradualmente a partir
de decisiones de poda en el árbol de bajo nivel. Ilustramos este algoritmo
en dominios PDDL de planificación clásica, aśı como en dominios de sim-
uladores gráficos. En planificación clásica, mostramos cómo IW(1) en dos
niveles de abstracción puede resolver problemas de width 2.

Para aprovechar la información de recompensas pasadas, incorporamos
una poĺıtica expĺıcita en el mecanismo de selección de acciones. Nuestro
método, llamado π-IW, intercala la planificación basada en width y el
aprendizaje de la poĺıtica usando las acciones visitadas por el planificador.
Representamos la poĺıtica con una red neuronal que, a su vez, se utiliza
para guiar la planificación, reforzando aśı caminos prometedores. Además,
la representación aprendida por la red neuronal se puede utilizar como car-
acteŕısticas para el planificador sin degradar su rendimiento, eliminando
aśı el requisito de usar caracteŕısticas predefinidas. Comparamos π-IW
con métodos anteriores basados en width y con AlphaZero, un método que
también intercala planificación y aprendizaje, y mostramos que π-IW tiene
un rendimiento superior en entornos simples. También mostramos que el
algoritmo π-IW supera otros métodos basados en width en los juegos de
Atari. Finalmente, mostramos que el IW jerárquico propuesto puede inte-
grarse fácilmente con nuestro esquema de aprendizaje de la poĺıtica, dando
como resultado un algoritmo que supera a los planificadores no jerárquicos
basados en IW en los juegos de Atari con recompensas distantes.

x

i
i

“output” — 2021/7/7 — 15:22 — page xi — #13 i
i

i
i

i
i

Contents

Abstract v

Resum vii

Resumen ix

List of Figures xiv

List of Tables xvii

List of Algorithms xviii

1 Introduction 1

1.1 Planning and Learning . 2

1.2 System 1 and System 2 . 3

1.3 Sparse Rewards . 4

1.4 Width-Based Planning . 5

1.5 Goals and Thesis Structure 6

I Background 9

2 Planning in Reinforcement Learning 11

2.1 Markov Decision Processes 11

2.2 Models and Simulators . 13

2.3 Reinforcement Learning . 15

2.4 Online Replanning . 18

2.4.1 Monte-Carlo Tree Search 19

2.4.2 UCT . 20

xi

i
i

“output” — 2021/7/7 — 15:22 — page xii — #14 i
i

i
i

i
i

2.5 The Atari 2600 Benchmark 20

2.6 Deep Reinforcement Learning 23

2.6.1 Deep Learning . 23

2.6.2 Deep Q-Learning . 25

2.6.3 Playing Atari with Shallow Reinforcement Learning 28

2.7 AlphaGo: MCTS with Deep Neural Networks 29

2.7.1 Training Pipeline . 31

2.7.2 Search . 32

2.8 Policy Iteration MCTS . 33

2.8.1 AlphaGo Zero . 33

2.8.2 AlphaZero . 35

2.8.3 MuZero . 36

3 Width-Based Planning 39

3.1 The Classical Planning Model 39

3.1.1 Classical Planning Problems as MDPs 40

3.1.2 Factored Representation 41

3.2 Iterated Width . 42

3.2.1 Problem Width . 45

3.2.2 Width of Single-Atom Goal Problems 47

3.2.3 Serialized IW . 48

3.3 Best-First Width Search: Beyond Pure Exploration 49

3.4 Width-Based Planning in MDPs 52

3.5 Rollout IW . 54

3.5.1 Results in Atari Games 59

II Planning 61

4 Complexity of IW 63

4.1 Expanded Nodes . 64

4.2 Novelty Check and Update 69

4.2.1 Checking only features that change 71

5 Hierarchical Iterated Width 73

5.1 A Hierarchical Approach to Blind Search 73

5.2 Hierarchical Width . 74

xii

i
i

“output” — 2021/7/7 — 15:22 — page xiii — #15 i
i

i
i

i
i

5.3 Connections to Related Work 78
5.4 Incremental Hierarchical IW (IHIW) 79

5.4.1 Discovering High-Level Features 79
5.4.2 An incremental approach 80

5.5 Experiments in Classical Planning 82

III Learning 85

6 Policy-Guided Iterated Width 87
6.1 Policy-Guided Iterated Width (π-IW) 87

6.1.1 Planning Step . 88
6.1.2 Action Execution Step 89
6.1.3 Learning Step . 90

6.2 Dynamic Features . 91
6.3 Experiments . 91

6.3.1 π-IW Can Reduce the Width of a Problem 92
6.3.2 π-IW Improves MCTS Exploration 94
6.3.3 π-IW on Atari Games 98

7 Hierarchical π-IW 101
7.1 Improvements to π-IW . 101
7.2 Learning with Hierarchy . 103

7.2.1 Count-Based Rollout IW 103
7.2.2 Policy-Guided Hierarchical IW (π-HIW) 105

7.3 π-HIW in Pixel-Based Testbeds 106
7.3.1 Gridworld Environments 107
7.3.2 Atari Games . 109

8 Conclusions 113
8.1 Future Perspectives . 115

Bibliography 118

xiii

i
i

“output” — 2021/7/7 — 15:22 — page xiv — #16 i
i

i
i

i
i

i
i

“output” — 2021/7/7 — 15:22 — page xv — #17 i
i

i
i

i
i

List of Figures

2.1 Screenshots of four Atari 2600 games. 21

2.2 Representation of the Deep Q-network. 26

2.3 B-PROST features in the game of Space Invaders. 28

2.4 MuZero recurrent neural network representation. 37

3.1 Example run of IW(1) at depth 1. 44

3.2 BrFS expansion to illustrate width notion. 46

4.1 Comparison between bounds N(n, d, k), dk
(
n
k

)
, and (nd)k. . 68

4.2 Number of tuples that IW(k) checks and updates. 70

5.1 Illustrative example of an HIW(2, 1) search. 75

5.2 Navigation problem examples to illustrate splitting features:
corridor and maze. 76

5.3 Comparison of HIW(1, 1) and IW(2) in an MDP with split-
ting features. 77

5.4 Illustration of IHIW tree restructure after finding a new
high-level feature. 82

6.1 Snapshot of three versions of the key-door maze. 92

6.2 Feature learning in the corridor task. 93

6.3 Performance comparison of width-based planers and Alp-
haZero in simple sparse reward tasks 96

6.4 Visited states comparison between π-IW(1)-Basic, π-IW(1)-
Dynamic, and AlphaZero. 97

7.1 Illustration of reward propagation and action execution in
a hierarchical search. 106

xv

i
i

“output” — 2021/7/7 — 15:22 — page xvi — #18 i
i

i
i

i
i

7.2 Snapshots of the larger gridworld environments. 107
7.3 Comparison between π-IW, π-IW+, and π-HIW(1, 1) with

different discretizations in the gridworld environments. . . . 108
7.4 Downsampling of a frame in Montezuma’s Revenge. 109
7.5 Performance of π-IW, π-IW+ and π-HIW in the Atari game

Montezuma’s Revenge. 110
7.6 Relative improvement of π-HIW over π-IW in the Atari suite.111

xvi

i
i

“output” — 2021/7/7 — 15:22 — page xvii — #19 i
i

i
i

i
i

List of Tables

2.1 Results of Sarsa(λ) with Basic and RAM features, BFS and
UCT in 5 Atari games, from Bellemare et al. (2013). 22

3.1 Summary of IW results in single-atom goal benchmarks
(Lipovetzky and Geffner 2012). 48

3.2 Summary of Rollout IW(1) results (Bandres, Bonet, and
Geffner 2018). 60

4.1 Example for the N(n, d, k) recursive formula. 65

5.1 Results of IW(1), IW(2), and IHIW(1, 1) in 35 classical
planning domains. 84

6.1 Hyperparameters used for π-IW and AlphaZero. 95
6.2 Scores of width-based methods in 54 Atari games. 99

7.1 Comparison of π-IW(1), π-IW(1)+ and π-HIW(n, 1) over
53 Atari games. Best score given in bold. 112

xvii

i
i

“output” — 2021/7/7 — 15:22 — page xviii — #20 i
i

i
i

i
i

i
i

“output” — 2021/7/7 — 15:22 — page xix — #21 i
i

i
i

i
i

List of Algorithms

3.1 Rollout IW(k) . 56
3.2 Depth-based novelty check and update 58

5.1 Method for finding high-level features 80
5.2 Incremental Hierarchical IW Search 81

7.1 Count-Based Rollout IW . 104

xix

i
i

“output” — 2021/7/7 — 15:22 — page xx — #22 i
i

i
i

i
i

i
i

“output” — 2021/7/7 — 15:22 — page 1 — #23 i
i

i
i

i
i

Chapter 1

Introduction

Futurists have always envisioned a world where artificial intelligent agents
would relieve managers and professionals from realising certain tasks. Such
autonomous agents focus on solving sequential decision making problems,
where successive decisions are made in a dynamic environment in order
to meet a certain goal or criteria. For instance, in the city of Barcelona,
water is automatically distributed through the drainage network among
different tanks, minimizing flooding in periods of heavy rain (Garćıa et
al. 2015). A similar approach can be found in power grid management
(Mohsenian-Rad et al. 2010), and wind energy conversion (Yaramasu and
Wu 2016). Traffic light control (Arel et al. 2010), route planning in trans-
portation networks (Bast et al. 2016; Flórez et al. 2011), battery usage
(Fox, Long, and Magazzeni 2011), and resource management in computer
clusters (Mao et al. 2016) are all examples of optimal decision strategies.
Solutions to sequential decision making problems go far beyond system
control. For instance, they have also been used in news recommenda-
tions (Zheng et al. 2018), to optimize chemical reactions (Zhou, Li, and
Zare 2017), or to automatically design the physical layout of computer
chips (Mirhoseini et al. 2021). The endless list of examples will definitely
continue growing in the near future, for instance in the field of robotics
(Kober, Bagnell, and Peters 2013; Levine et al. 2016) or with self-driving
cars (Paden et al. 2016).

1

i
i

“output” — 2021/7/7 — 15:22 — page 2 — #24 i
i

i
i

i
i

1.1 Planning and Learning

We distinguish two types of methods that provide solutions to sequential
decision making problems, depending on whether the decision has been
computed before or at decision time (Bertsekas 2019):

• Offline methods: where a decision is determined by a policy or deci-
sion strategy that has been learned from past experience, which can
either be stored in memory or obtained by a fast function evaluation.

• Online methods: where a decision (and possibly the whole sequence
of decisions) is computed at the moment it is required. In this case,
the solution is usually computed within a certain computational bud-
get, such as a time limit.

Learning methods fall within the first category: a policy is learned
either from expert decisions, as in imitation learning (Guo et al. 2014;
Ross, Gordon, and Bagnell 2011), or by step-by-step interaction with the
environment, as in reinforcement learning (RL) (Sutton and Barto 2018).
In the RL setting, the desirability of actions and their effects is usually
encoded in a reward function, and the objective of the agent is to find a
policy that maximizes some measure of expected cumulative future reward.
Often, an estimate of this future reward measure, the value function, is
learned alongside or as a substitute of the policy. RL algorithms are
usually model-free, i.e., they do not assume a model of the dynamics or
the reward function. Instead, they rely entirely on samples from these
functions.

On the second category we find planning methods, which compute a
sequence of actions that aim to drive the system from an initial to a goal
state, ideally through the shortest path, by foreseeing and choosing from
many possibilities. In that regard, and differently from RL methods, a
model of the environment dynamics, actions, and goals is usually assumed
to be known, and is often exploited to derive heuristics that help in solving
problems with huge state spaces (Geffner and Bonet 2013).

During the last decade, a great deal of the progress in artificial intel-
ligence have been on account of deep learning methods, which has been
driven by an exponential increase in data availability and computational
resources, combined with advances in powerful function approximation

2

i
i

“output” — 2021/7/7 — 15:22 — page 3 — #25 i
i

i
i

i
i

techniques. Reinforcement learning has been no exception: it has expe-
rienced unprecedented success in the recent years by leveraging function
approximation of key components (e.g., the policy or value function) on
deep learning models (Arulkumaran et al. 2017; Li 2018). One advantage
of such models is that they are trained end-to-end, producing automatic
feature extraction in high-dimensional domains. This has allowed major
achievements such as reaching human-level performance in Atari video-
games (Mnih et al. 2015) or beating the world-champion in the ancient
game of Go (Silver et al. 2016).

The policies produced by RL methods, including the ones in the form
of deep learning models, are fast to evaluate but specific to a problem
instance. On the other hand, planning methods are not tied to a specific
instance, but they are slow because actions are computed online.

1.2 System 1 and System 2

The learning and planning approaches (or offline and online methods, in
general) are akin to the two processes that are used in psychology to
describe judgement and decision making: System 1 and System 2 (Kah-
neman 2011)1. System 1 is fast, unconscious and effortless, and provides
answers from associations that have been constructed with experience,
as well as from innate skills that we share with other animals. On the
other hand, System 2 is slow, effortful, and requires attention. It provides
with answers produced after an analytical process. The parallelism with
planning and learning is direct: learned policies represent System 1, since
they are based on associations from experience and can provide a fast an-
swer. Contrarily, planners represent System 2 since they provide a slower,
more “deliberate” solution by looking ahead, discerning between multiple
possible answers.

“Thinking” is usually understood as the result of System 2. However,
System 2 heavily relies on System 1 to develop a well-thought answer.
The latter provides with impressions, intuitions, intentions and feelings
that are used by System 2 as heuristics during the analytical process. At
the same time, System 2 can change biases, misconceptions or mistakes

1The relation to System 1 and System 2 is borrowed from Hector Geffner’s talk at
IJCAI-ECAI 2018.

3

i
i

“output” — 2021/7/7 — 15:22 — page 4 — #26 i
i

i
i

i
i

produced by System 1 up to some extent by rearranging associations. The
division of labor between the two systems is highly efficient: it minimizes
effort and optimizes performance.

Planning and learning have been mostly used separately as two differ-
ent solutions to rather similar problems. However, planning alone with
short computational limits may provide poor solutions. Similarly, relying
entirely on a possibly inaccurate learned estimate may also result in bad
decisions. The combination of the two: thinking ahead before taking a de-
cision, and using learned heuristics and beliefs, seems a plausible approach
to provide an informed answer, as the insights from the two system theory
suggest.

A natural way to combine planning and learning is to treat the plan-
ner as a “teacher” that provides correct transitions that are used to learn
a policy, as in imitation learning (Guo et al. 2014; Ross, Gordon, and
Bagnell 2011). A prominent example of this approach is AlphaGo (Silver
et al. 2016), which achieved superhuman performance in the game of Go
by combining supervised learning from expert moves and self-play. Alp-
haZero (Silver et al. 2018), a version of the same algorithm that learns
solely from self-play, has outperformed previous variants, also showing
stunning results in Chess and Shogi (Silver et al. 2018). The latest ver-
sion, MuZero (Schrittwieser et al. 2020), learns a model of the environ-
ment dynamics, and shows competitive performance with AlphaZero in
the mentioned games as well as impressive results in the Atari bench-
mark. However, it fails to obtain a positive score in challenging sparse
reward games such as Venture, Pitfall, or Montezuma’s Revenge.

1.3 Sparse Rewards

Sparse or delayed reward tasks are those that require a long sequence of
non-rewarded actions before a highly rewarded state is found. Finding
such a long sequence of actions requires efficient exploration techniques,
which is a central research topic in both planning and reinforcement learn-
ing.

One way to incentivize safe online exploration in RL is by adding an
explicit bonus in the objective or the reward function. This approach is
known under different names, e.g., reward shaping (Ng, Harada, and Rus-

4

i
i

“output” — 2021/7/7 — 15:22 — page 5 — #27 i
i

i
i

i
i

sell 1999), optimism in the face of uncertainty (Kearns and Singh 2002),
intrinsic motivation (Chentanez, Barto, and Singh 2005), curiosity-driven
RL (Pathak et al. 2017; Still and Precup 2012), pseudo-counts (Belle-
mare et al. 2016), or entropy-regularized MDPs (Neu, Gómez, and Jonsson
2017). An alternative approach introduces noise directly in the parameter
space of the learned policy or value function (Fortunato et al. 2018; Plap-
pert et al. 2018). While these approaches offer significant improvements
over classical exploration techniques such as ε-greedy or Boltzmann explo-
ration, none of them makes explicit use of the representation of the state,
which is treated as a black box.

Typical sparse reward tasks are those that are goal-oriented, with a
reward function that does not provide any guidance toward the goal (e.g.,
the agent only receives a reward when achieving the goal). Planning meth-
ods precisely aim at finding a sequence of actions that lead the agent from
an initial to a goal state. Current planners are able to solve problem in-
stances involving huge state spaces by precisely exploiting the problem
structure that is defined in the state-action model. However, many plan-
ning techniques highly rely on the state-action model to derive heuristics,
and are therefore not akin to the RL setting.

1.4 Width-Based Planning

Iterated Width (IW) (Lipovetzky and Geffner 2012) is a search algo-
rithm that makes use of the state space feature representation to perform
structured exploration. The original IW algorithm consists of successive
breadth-first searches in which states are pruned if they fail to meet a
novelty criterion. In particular, IW(k) only considers k features at a time,
and prunes those states for which all combinations of k features are made
true in previously generated states. As a consequence, IW(k) runs in time
and space that are exponential in k, but independent of the size of the
state space.

In contrast with many planning approaches, width-based planners do
not require a model of the internal state-action dynamics, and can be used
with simulators (Frances et al. 2017). While originally proposed for clas-
sical planning problems, i.e., deterministic, goal-driven problems with a
fully defined model, width-based planners have evolved closer to the RL

5

i
i

“output” — 2021/7/7 — 15:22 — page 6 — #28 i
i

i
i

i
i

setting, and have been recently applied to the Arcade Learning Environ-
ment (Bellemare et al. 2013). First, the internal RAM state was used as
features, achieving remarkable results (Lipovetzky, Ramirez, and Geffner
2015), and more recently a rollout version of the algorithm reached compa-
rable results with learning methods in almost real-time, using pixel-based
features (Bandres, Bonet, and Geffner 2018). These methods, however,
are purely exploratory, and do not exploit past reward experience. The
combination with learning methods could potentially redress this short-
coming.

In practice, IW is mostly used with k = 1 with complexity linear
in the number of features (Bandres, Bonet, and Geffner 2018; Dittadi,
Drachmann, and Bolander 2021; Geffner and Geffner 2015; Ramirez et
al. 2018). In many challenging problems, even k = 2 with quadratic
complexity is unfeasible (Geffner and Geffner 2015). Finding ways to run
IW with an effective larger value of k while keeping a low complexity can
further extend the applicability of this class of planners.

The use of hierarchies in planning has proven to be a very success-
ful way for significantly reducing the computational cost of finding good
plans. Traditional methods include Hierarchical Task Networks (Currie
and Tate 1991; Erol, Hendler, and Nau 1996), macro-actions (Fikes, Hart,
and Nilsson 1972; Korf 1985), and state abstraction methods (Knoblock
1990; Sacerdoti 1974). Hierarchical planning can lead to exponential gains
in complexity by exploiting the structure of a problem involving a reduced
subset of the state components.

1.5 Goals and Thesis Structure

The general aim of this thesis is to combine the power of structured ex-
ploration of width-based planning with a learning approach that provides
information from past experience. We wish to apply such a combination
to pixel-based, sparse reward tasks. We hypothesize that hierarchies can
aid the search in tasks that suppose a major challenge.

The dissertation is structured in three main parts: Background (Chap-
ters 2 and 3), Planning (Chapters 4 and 5), and Learning (Chapters 6 and 7).
In the first part we introduce the methods on which our work is based on,
as well as recent related work. In the second part, we detail our contri-

6

i
i

“output” — 2021/7/7 — 15:22 — page 7 — #29 i
i

i
i

i
i

butions to width-based planning, without any learning involved. In the
third part, we integrate width-based planning with policy learning, and
assess our methods experimentally.

I Background

• In Chapter 2 we cover the background in planning from a reinforce-
ment learning (RL) perspective. We define Markov decision processes
(MDP) as general models for sequential decision making problems,
followed by methods that provide solutions to them such as RL meth-
ods and Monte-Carlo Tree Search (MCTS), as well as the latest ad-
vances when combined with deep learning models (e.g., DQN and
AlphaZero).

• In Chapter 3 we summarize previous work in width-based planning.
We begin by describing the classical planning setting, connecting it to
the MDP formulation. Then, we describe the basic Iterated Width
(IW) algorithm as well as many subsequent improvements such as
Best-First Width Search and Rollout IW.

II Planning

• In Chapter 4, we analyze the complexity of the IW(k) algorithm
when the state space is represented by a set of multi-valued features
(as it is common in MDPs), and relate the complexity results to the
ones that appear in the literature, which assume that the state is
represented by a set of atoms (prevalent in classical planning).

• In Chapter 5, we describe our hierarchical planning approach for
blind-search methods. We detail the implications to the problem
width when using IW at different levels of abstraction, and provide
an algorithm that discovers high-level features incrementally. We
show theoretically and experimentally in classical planning problems
that the width of a problem can be reduced when the appropriate
high-level features are used.

III Learning

• In Chapter 6, we present π-IW: an algorithm that combines width-
based planning and learning. We learn a compact policy in the form

7

i
i

“output” — 2021/7/7 — 15:22 — page 8 — #30 i
i

i
i

i
i

of a neural network that guides the search, resulting in an informed
IW search. Moreover, we leverage the representation capabilities of
deep learning to automatically extract features for IW, waiving the
need to predefine them. We show that our approach outperforms
MCTS methods in simple sparse reward domains as well as previous
width-based planners in the Atari benchmark.

• In Chapter 7, we integrate our hierarchical and policy guidance ap-
proaches to tackle more complex tasks. We describe a new high-level
width-based planner, and show how the hierarchical version is suit-
able for sparser reward tasks, achieving a positive score in the famous
Atari game Montezuma’s Revenge.

Finally, we present our conclusions and future perspectives in Chap-
ter 8. The order in which chapters are presented, motivated by our sep-
aration of contributions into the two parts for greater clarity, is different
to their chronological order. The work of this thesis has been presented
in the following conferences:

• Preliminary results of Chapter 6: ICML / IJCAI / AAMAS 2018
Workshop on Planning and Learning (Junyent, Jonsson, and Gómez
2018)

• Chapter 6: International Conference on Automated Planning and
Scheduling (ICAPS) 2019 (Junyent, Jonsson, and Gómez 2019)

• Chapters 4 (sec 4.1), 5 and 7: ICAPS 2021 (Junyent, Gómez, and
Jonsson 2021)

8

i
i

“output” — 2021/7/7 — 15:22 — page 9 — #31 i
i

i
i

i
i

Part I

Background

9

i
i

“output” — 2021/7/7 — 15:22 — page 10 — #32 i
i

i
i

i
i

i
i

“output” — 2021/7/7 — 15:22 — page 11 — #33 i
i

i
i

i
i

Chapter 2

Planning in Reinforcement
Learning

2.1 Markov Decision Processes

Definition 1. A Markov decision process (MDP) can be modeled as a
tuple M = 〈S,A, P, r〉, where:

• S is a finite set of states,

• A is a finite set of actions,

• P : S × A → ∆(S) is a transition function that maps state-action
pairs to probability distributions over next states,

• r : S × A → R is a reward function that maps states and actions to
real-valued rewards.

Here, we use ∆(X) := {µ ∈ R|X | :
∑

x µ(x) = 1, µ(x) ≥ 0 (∀x ∈ X)} to
denote the probability simplex over a set X , i.e. the set of all probability
distributions on X .

At each time step t, the agent observes state st ∈ S and selects an
action at ∈ A, which leads the environment to a new state st+1 ∈ S,
and the agent receives a reward rt+1 ∈ R. The next state st+1 is sampled
following the probability distribution P (st, at), while rt+1 is a sample from
the underlying reward distribution such that E [rt+1] = r(st, at). The state

11

i
i

“output” — 2021/7/7 — 15:22 — page 12 — #34 i
i

i
i

i
i

and the reward at time step t are solely defined by functions of the state
and action at the previous time step, known as the Markov property, and
allows the agent to take decisions based on the current observed state.

The aim of the agent is to compute a decision strategy or policy π :
S → ∆(A), i.e. a mapping from states to probability distributions over
actions, that maximizes some measure of expected future reward. The
expected future reward associated with policy π is governed by a value
function V π, defined in each state s as

V π(s) = Eπ

[∞∑
t=0

γtr(St, At)

∣∣∣∣∣S0 = s

]
. (2.1)

Here, St and At are random variables representing the state and action at
time t, respectively, satisfying At ∼ π(St) and St+1 ∼ P (St, At) for each
t ≥ 0, and γ ∈ (0, 1] is a discount factor.

This value function considers the case of never-ending or continuing
tasks, since the final time step is ∞. However, there are tasks with a
natural ending, for instance when a goal is reached. In this case, it is
common to run different instances of the same task iteratively, presumably
with different initial conditions. We call each iteration an episode and such
tasks episodic tasks. The states where the task ends are called terminal
states, and in this dissertation we consider them to have value zero by
definition. For the purpose of having a common notation with continuing
tasks, terminal states are considered to be absorbing, i.e. states that only
transition to themselves, generating rewards of zero.

A fundamental property of value functions, exploited by many RL
algorithms, is that they can be expressed as a recursive function that
depicts the relation between the value of a state and the values of its
successors, known as the Bellman equation:

V π(s) = Eπ

[
r(St, At) + γV π(St+1)

∣∣∣∣∣St = s

]
, (2.2)

where, again, the expectation is on both the policy and the transition
function, such that At ∼ π(St) and St+1 ∼ P (St, At), and the infinite sum
of Equation 2.1 can be obtained by unrolling Equation 2.2.

12

i
i

“output” — 2021/7/7 — 15:22 — page 13 — #35 i
i

i
i

i
i

Many algorithms learn an action-value function Qπ(s, a) instead, that
denotes the value of taking an action a in state s under policy π:

Qπ(s, a) = Eπ

[∞∑
t=0

γtr(St, At)

∣∣∣∣∣S0 = s,A0 = a

]
(2.3)

= Eπ

[
r(St, At) + γV (St+1)

∣∣∣∣∣St = s,At = a

]
. (2.4)

The optimal value function V ∗ is given by V ∗(s) = maxπ V
π(s) for all

s ∈ S, and the optimal action-value function Q∗ is consequently specified
by Q∗(s, a) = maxπ Q

π(s, a) for all state-action pairs s ∈ S, a ∈ A. The
optimal policy π∗ is then given by the argument achieving these maxi-
mums, i.e., π∗ = arg maxπ V

π = arg maxπ Q
π.

The agent usually keeps an estimate of the optimal policy or value
function (either V ∗ or Q∗). For large state spaces, it is common to define
these estimates on a set of variables or features F , instead of states. For
simplicity, and without loss of generality, we assume that each feature has
the same domain D, e.g., binary (D = {0, 1}) or real-valued (D = R).
States are mapped onto feature vectors using a function φ : S → D|F|.
For each feature f ∈ F and state s ∈ S, let φ(s)[f] ∈ D be the value that
s assigns to f .

2.2 Models and Simulators

There is a variety of methods that provide solutions to MDPs. One way to
classify these methods is by the amount of information that they require
from the environment. For instance, we may need to know the transition
probabilities and the reward function explicitly, or samples from these
functions may be sufficient. We distinguish four different cases:

1. Explicit models or distribution models (Sutton and Barto 2018),
where the transition function P (s, a) and the reward function r(s, a)
are known.

2. Generative models or simulators (Kearns, Mansour, and Ng 2002),
also called sample models (Sutton and Barto 2018), that given an

13

i
i

“output” — 2021/7/7 — 15:22 — page 14 — #36 i
i

i
i

i
i

arbitrary state-action pair (s, a) return a randomly sampled next
state and reward. Compared to the previous type, generative models
are black box models, since the internal dynamics are unknown.

3. Resettable simulators, where at each step, the agent applies an action
for the current simulator state, and receives in turn a randomly sam-
pled next state and reward. Optionally, the state of the simulator
can be restored to a previously visited state, from which the simu-
lation continues. In that regard, a state is typically retrieved and
saved for later use (e.g., a checkpoint in a video game). In contrast
with generative simulators, the state cannot be arbitrary chosen.

4. Episodic simulators, where random samples of next states and re-
wards are generated sequentially, without the possibility of resetting
the simulator state. The only requirement is that it should allow
restarting (i.e., resetting the simulator state to an initial state to
begin a new episode).

Note that each type requires less information from the environment.
An explicit model can be turned into a generative model by sampling
from the distributions, and calling a generative simulator repeatedly with
the state produced at the previous time step yields a resettable simulator
(since seen states can be reused). Finally, ignoring the possibility to reset
states in a resettable simulator results in an episodic simulator. Thus,
methods suitable for one type are also suitable for all previous types.

Methods that require a model (explicit or generative) are usually clas-
sified as planning methods, since the model can be used to look ahead
and pre-compute a plan of action. For instance, dynamic programming
algorithms use the transition and reward functions to compute the ex-
pectation in Equation 2.2, to find π∗ and/or V ∗. Blind-search methods
do not require an explicit model or any domain information, but can still
perform a lookahead by sampling from a generative or resettable simula-
tor. Resettable simulators are mostly suitable for rollout algorithms, that
produce entire trajectories to estimate V π. Finally, reinforcement learning
algorithms learn an estimate of the optimal policy or value function by
interacting with the environment, and therefore only require an episodic
simulator.

14

i
i

“output” — 2021/7/7 — 15:22 — page 15 — #37 i
i

i
i

i
i

2.3 Reinforcement Learning

Many methods that provide solutions to MDPs fall within the scope of a
policy iteration scheme, which is a general approach for learning the op-
timal policy or value function. It consists of two processes that are alter-
nated until convergence: policy evaluation, that aims at making the value
function consistent with the current policy, and policy improvement, which
improves the policy by making it greedy with respect to the current value
function. The original algorithm, in the context of dynamic programming,
performs policy evaluation by iteratively applying the Bellman equation
to all states in S until convergence. It thus requires an explicit model,
since the transition probabilities and the true reward mean are needed to
compute the expectation in Equation 2.2. The policy is then improved by
defining it as the greedy action with respect to the current value function,
for all states in S, and the overall process restarts. Many methods, such
as value iteration, improve π(s) immediately after the value function has
been updated for state s, instead of waiting for the policy evaluation step
to converge to V π. This is also the case for the methods we describe next.
Apart from requiring a distributional model at hand, dynamic program-
ming algorithms are computationally expensive, with a complexity that
grows linearly in the number of states (and exponential in the number of
features).

Reinforcement learning (RL) algorithms typically assume that the tran-
sition and reward functions are unknown to the agent, and rely on a sim-
ulator that provides samples of these functions. Moreover, although RL
methods rely on the same principles as dynamic programming methods,
they are generally more computationally efficient. A typical policy evalu-
ation approach in value-based RL methods is to keep an estimate V̂ that
is iteratively improved towards V π by applying the update:

V̂ (St)← V̂ (St) + αt

[
Yt − V̂ (St)

]
, (2.5)

where Yt is the target made up of reward samples Rt (and often the value
prediction of a future state, e.g., V̂ (St+1)) used to improve the prediction
V̂ (St), and αt ∈ [0, 1] is a learning rate parameter. The same update can
be built for Qπ.

Monte-Carlo (MC) methods learn V π by averaging sample returns.

15

i
i

“output” — 2021/7/7 — 15:22 — page 16 — #38 i
i

i
i

i
i

The return Zt is defined as the cumulative sum of rewards over the cur-
rent trajectory, i.e., Zt =

∑∞
t=0 γ

tRt. Thus, MC methods learn the value
function approximating Equation 2.1 by replacing the expectation with the
empirical mean, i.e., setting Yt = Zt and applying updates with many in-
stances of Zt. On the other hand, Temporal Difference (TD) methods take
advantage of the Bellman equation to update V̂ . For instance, a one-step
update uses Yt = Rt+1 +γV̂ (St+1) as target for V̂ (St), bootstrapping from
the current value estimate at time step t + 1. TD methods are typically
preferred over MC methods since the update can be performed without
waiting until the end of the episode. Nevertheless, the one-step TD target,
while presenting a low variance, is biased towards the bootstrapped value.
In contrast, MC methods are unbiased (since V π = Eπ [Zt]), but present
a high variance.

Following a policy iteration scheme, the update in Equation 2.5 is
generally combined with a policy improvement step by defining the policy
toward greediness with respect to the value function. In that regard,
the action-value Qπ is usually learned instead of V π, since it allows to
define the policy over the value function without requiring the transition
function. This approach converges to π∗ and Q∗ if the following conditions
are satisfied: all states are visited an infinite number of times, the policy
converges in the limit to the greedy policy, and αt is decayed appropriately,
satisfying

∑
t αt =∞ and

∑
t α

2
t <∞ (e.g., αt = 1/t). A typical approach

is to use a soft-greedy policy. For instance, the ε-greedy strategy selects a
greedy action with probability 1− ε and a random action with probability
ε, where ε can be decayed to zero.

The Sarsa algorithm applies the TD update defined above, with Yt =
Rt+1 +γQ̂(St+1, At+1), selecting actions with respect to Q̂ in a soft-greedy
style. The algorithm can be extended to n-step returns, i.e., unrolling
Q̂(St+1, At+1) for n steps, and using

∑n−1
i

[
γiRt+i

]
+ γnQ̂(St+n, At+n)

as target. Here, the parameter n can be thought of as a bias-variance
tradeoff. A special case is Sarsa(λ), that uses a weighted average of n-step
returns, according to an exponentially decaying parameter λ. Sarsa is an
on-policy method, since it interacts with the environment with the same
policy that it is learning. The off-policy version, called Q-learning, uses
Rt + γmaxa Q̂(St+1, a) as target in order to improve the prediction from
the current most valuable next action.

16

i
i

“output” — 2021/7/7 — 15:22 — page 17 — #39 i
i

i
i

i
i

These methods store each action-value in a vector of |S| × |A| entries,
which is usually unfeasible for environments with a large state or action
space. In these cases, the state is often represented by a set of features F ,
and the action-value function is approximated using a vector of weights ϕ
that is combined with state feature valuations, producing an estimate of
Q which we denote by Q̂ϕ. The weights ϕ are then learned by gradient
descent. For instance, one-step Sarsa uses the following update:

ϕ← ϕ+ αt

[
Rt + γQ̂ϕ(St+1, At+1)− Q̂ϕ(St, At)

]
∇ϕQ̂ϕ(St, At). (2.6)

The gradient is only computed on the prediction Q̂ϕ(St, At), and not on
the next state action-value, which is part of the target. Off-policy methods
can also be used with function approximation, but they do not converge
as robustly as on-policy learning, specially when approximated with a
non-linear model. In Section 2.6 we describe DQN, an algorithm that
effectively applies Q-learning with non-linear function approximation.

Policy gradient methods directly learn a parameterized policy. They
are based on the policy gradient theorem, that states that:

∇θJ(θ) = Eπ̂θ
[
∇θ log π̂θ(St, At)Q

π̂θ(St, At)
]

(2.7)

where θ are the parameters of the policy, and J is the RL objective, e.g.,
J = V π̂θ(S0) for the episodic setting. The theorem can also be general-
ized to include an arbitrary baseline b(St), so that

(
Qπ̂θ(St, At)− b(St)

)
is used as the policy performance measure, instead of Qπ̂θ(St, At). When
replacing the expectation with the empirical mean, different policy gra-
dient algorithms emerge by using one estimate of Qπ̂θ(St, At) or another.
For instance, the REINFORCE algorithm uses the Monte-Carlo return Zt,
possibly truncated at some given horizon. Although actions are no longer
based on the action-value estimate, a value function V̂ϕ may still be learned
to evaluate the policy. This family of algorithms, known as actor-critic
methods, uses a TD target as an estimate of Qπ̂θ(St, At), for example the
one-step version uses Rt + γV̂ϕ(St+1), or Rt + γV̂ϕ(St+1)− V̂ϕ(St) in case
that the value function is used as the baseline. In off-policy learning,
when samples are taken from a behavioral policy πb (i.e., the one used to
apply actions) that is different from π̂θ, the magnitude of Qπ̂θ is usually
corrected with an importance sampling factor of the form 1

πb(At|St) .

17

i
i

“output” — 2021/7/7 — 15:22 — page 18 — #40 i
i

i
i

i
i

2.4 Online Replanning

The reinforcement learning methods presented so far rely on samples from
a continuous stream of data, and are thus akin to episodic simulators. In
this section, we present a family of methods that do not learn from ex-
perience, but instead select an action by looking ahead into the future,
considering multiple paths, hence requiring a generative or resettable sim-
ulator. These methods are known as planning at decision time algorithms
(Sutton and Barto 2018) or online replanning methods (Bertsekas 2019).

In online replanning, the policy π(s) is computed online for each state
St = s at run time, i.e., most of the computation is performed just after
the current state St is known. The process has an anytime behavior, i.e.,
it can be stopped at any time, although usually it is run until some com-
putational budget is exhausted, and returns the best sequence of actions
so far. Then, the first action is applied, the rest are usually discarded,
and the process restarts from the next state St+1.

This procedure results in a closed-loop policy (since the plan is recom-
puted for each St), in contrast to regular planning, where the solution is a
whole sequence of actions that are applied in an open-loop manner. Some
algorithms compute a new plan at regular intervals, and apply more than
one action from the computed sequence at each step in order to reduce the
computation costs. This approach of selecting actions is slower compared
to methods that use a previously learned compact policy, but works right
out of the box, without requiring any training. These methods are highly
related to Model Predictive Control (MPC) (Camacho and Alba 2013),
where the control signal at a state St is optimized for a given model and
time window. In MPC, however, we assume a white-box model at hand
(e.g., the differential equations governing the dynamic system), to which
different optimization methods can be applied.

Planning algorithms usually work with deterministic processes. This
is the case for our work as well. Throughout this dissertation, we consider
deterministic Markov Decision processes, where there is no randomness
source in the transition and reward functions. Therefore, P (s, a) is 1 for
some next state s′ and 0 at all other possible states S \ {s′}, and rt+1 is
equal to r(st, at). In this case, the transition function is usually defined
to directly map states into next states. We define such a function as
T : S ×A → S. Note that the stochastic setting could still be considered

18

i
i

“output” — 2021/7/7 — 15:22 — page 19 — #41 i
i

i
i

i
i

by simply treating the sampling procedure as if it was encapsulated in T ,
such that s′ = T (s, a) ∼ P (s, a).

2.4.1 Monte-Carlo Tree Search

Monte-Carlo Tree Search is a best-first search method that aims to find
the most promising action to take from the current state s (Browne et al.
2012). This is achieved by iteratively building a partial search tree to
estimate the action values of s, which is represented by the root node. At
each iteration, the most promising node is selected and expanded. The
selection process is based on randomized exploration, being purely random
at the beginning and becoming more informed at each iteration, based on
statistics gathered from different simulations. An iteration consists of four
steps:

1. Selection: Starting at the root node, which represents the current
state of the environment, the search tree is traversed by successively
selecting child nodes according to a tree policy (or selection policy).
The traversal stops when a state-action pair (s, a) is encountered,
such that the successor state s′ = T (s, a) is not in the tree. The tree
policy only selects expandable nodes. A node is expandable if it is
non-terminal and not all of its successors have been generated.

2. Expansion: A successor node belonging to an unexplored action is
added to the tree. It is also possible to find implementations where
more than one successor node is generated, or where the expansion
step is performed at regular intervals.

3. Simulation: A simulation of the complete episode is run from the
generated node, or from the selected node in case the expansion
step is skipped, by applying actions according to a rollout policy
(also called default policy). The states and actions visited by the
rollout policy are only used to generate an outcome of the simulated
episode (e.g. win/loss or cumulative reward), and therefore are not
saved.

4. Backpropagation: The simulation result is backpropagated through
the branch from the newly generated (or selected) node to the root.

19

i
i

“output” — 2021/7/7 — 15:22 — page 20 — #42 i
i

i
i

i
i

The statistics of each node of the branch are updated, which will in
turn inform future tree policy decisions.

The process continues until some computational budget is exhausted,
at which point the most promising action for the root node is selected and
applied in the environment. The selection criteria for this action may vary
among different implementations, for instance we can choose the one with
higher value, or the one with higher visit counts in order to avoid outliers.
Then, the whole process restarts from the next state, which becomes the
root node. Often, the tree from the previous search is reused by keeping
the subtree containing all descendants from the applied action.

2.4.2 UCT

MCTS crucially relies on its tree policy to select promising nodes. In or-
der to balance exploration and exploitation, Kocsis and Szepesvári (2006)
proposed to use UCB1 (Auer, Cesa-Bianchi, and Fischer 2002), an upper
confidence bound designed for multiarmed bandit problems, resulting in
the Upper Confidence bounds applied to Trees (UCT) algorithm. In UCT,
a child node is selected following:

arg max
s′

W (s′)

N(s′)
+ 2Cp

√
2 lnN(s)

N(s′)
,

evaluated on all possible next states s′ = T (s, a), for a ∈ A(s). Here N(s)
is the number of times state s has been visited, and W (s′) is the sum
of the rewards obtained from all simulated trajectories so far containing
state s′. The left term encourages exploitation, since it is the average
reward from s′. On the other hand, the right term encourages exploration
of less visited nodes, which is controlled by a constant Cp > 0. N(s′) = 0
yields a UCT value of ∞, which ensures that unvisited children nodes are
considered at least once.

2.5 The Atari 2600 Benchmark

The Arcade Learning Environment (ALE) (Bellemare et al. 2013) has
become a standard benchmark for comparing reinforcement learning al-
gorithms. It consists of a collection of some of the Atari 2600 arcade

20

i
i

“output” — 2021/7/7 — 15:22 — page 21 — #43 i
i

i
i

i
i

Figure 2.1: Screenshots of four Atari 2600 games. From left to right:
Pong, Space Invaders, Breakout and Ms. Pac-man.

video games that became massively popular during the 1980s. Some well-
known games include Ms. Pac-man, Pong, Breakout, and Space Invaders,
for which we show example screenshots in Figure 2.5.

The game screen observation is 160 pixels wide and 210 pixels high,
with 128 possible colors. There are 18 possible actions with deterministic
effects: the combination of a two-axes joystick with three different posi-
tions per axis and a single button. The internal game state is represented
by a RAM vector of 128 bytes that is also optionally accessible to the
agent. ALE is a resettable simulator, since it allows to save and restore
the internal state at any time, but has been mostly used as an episodic
simulator. The platform is actually challenging for planning algorithms,
where exhaustive search is prohibitive (e.g., one second of simulation, with
18 actions at 60 frames per second requires 1860 ≈ 1075 steps).

Bellemare et al. (2013) present results for the learning and the planning
settings. In the learning setting, they use Sarsa(λ) with linear function
approximation, and propose several feature sets that are computed from
the game screen. For instance, the Basic set of features encodes color
positions in a subsampled grid of 16×14 tiles, without taking into account
the game background. Other feature sets include pair-wise combinations of
Basic features, position and velocity inference of objects, locally sensitive
hashing, or the bits of the internal RAM state. In Table 2.1 we show
results of Sarsa(λ) with Basic and RAM features in 5 games. In the
planning setting, the authors provide results of BFS and UCT (columns
4-5). In the latter, duplicate states are detected and pruned. We observe
that UCT clearly outperforms BFS and the learning algorithms, while

21

i
i

“output” — 2021/7/7 — 15:22 — page 22 — #44 i
i

i
i

i
i

Game Basic RAM BFS UCT

Asterix 862.3 943.0 2135.7 290700.0
Beam Rider 929.4 729.8 693.5 6624.6
Freeway 11.3 19.1 0.0 0.4
Seaquest 579.0 593.7 288.0 5132.4
Space Invaders 203.6 226.5 112.2 2718.0

Table 2.1: Results of Sarsa(λ) with Basic and RAM features, BFS and
UCT in 5 Atari games, from Bellemare et al. (2013).

using Basic or RAM features with Sarsa(λ) produce similar results. In a
later work, Lipovetzky, Ramirez, and Geffner (2015) take into account the
bit correlations and report better results using the RAM bytes as features
in the planning setting (see Section 3.4).

ALE has become popular due to the rise of deep reinforcement learning
methods, which we describe in the next section, where agents are trained
end-to-end, i.e., the game screen is provided as input to the agent and
features are automatically extracted. Because of this popularity, there
have been some well established common practises (Machado et al. 2018).
For instance, to reduce complexity, an action is applied repeatedly for
some steps and all intermediate frames are ignored. This is known as
frameskipping, and the frameskip value is determined by the amount of
frames skipped minus 1 (i.e., with a frameskip of 1 no frame is actually
skipped). The length of the episodes is usually limited to 18,000 frames
(corresponding to 5 minutes of gameplay at 60 frames per second). In
our work we use a frameskip of 15 and also limit the episode length to
18,000 frames. Other more interceding practices that we do not use in our
work include ending the episode when losing a life (sometimes giving a
negative reward) or using a specific subset of actions for a game. Finally,
Henderson et al. (2018) report significantly different results of deep RL
methods by varying random seeds, which suggest that some results may
not be reliable or even that random seeds could be optimized.

There are many other popular benchmarks apart from ALE. For in-
stance, Minecraft, where the agent has to navigate through a world made
of 3D blocks (Guss et al. 2019). Typical goals are to find special blocks
or move to a certain position. A similar game is Deepmind Lab (Beattie

22

i
i

“output” — 2021/7/7 — 15:22 — page 23 — #45 i
i

i
i

i
i

et al. 2016), that consists of customizable 3D labyrinths. Another popular
simulator is the Open Racing Car Simulator, known as TORCS (Wymann
et al. 2014), where the reward is typically related to the speed that the
agent achieves. In ViZDoom, the goal of the agent is to navigate the en-
vironment to find ammunition and shoot enemies (Kempka et al. 2016).
Animal AI is a collection of tasks inspired by animal behaviors (Crosby
et al. 2020). MuJoCo, Multi-Joint dynamics with Contact (Todorov, Erez,
and Tassa 2012), is a physics simulator commonly used as a continuous
action space environment, with popular tasks that range from the classic
inverted pendulum to making a humanoid walk. Finally, OpenAI Gym is
a widely used platform that collects some of these environments such as
ALE, Doom and many other games (Brockman et al. 2016).

2.6 Deep Reinforcement Learning

The combination of reinforcement learning methods with deep learning
models has led to unprecedented success in the recent years. Deep re-
inforcement learning methods (Arulkumaran et al. 2017; Li 2018) have
reached super-human performance in many domains, such as the Atari
games (Mnih et al. 2015), the game of Go (Silver et al. 2017) or in robotics
(Levine et al. 2016). In the next section we briefly introduce the common
building blocks of deep learning models.

2.6.1 Deep Learning

A feedforward deep neural network (Goodfellow, Bengio, and Courville
2016), or simply a neural network (NN), defines an input-output mapping.
It is composed of an input layer, one or more hidden layers, and an output
layer, where the depth stands for the amount of layers. Each layer consists
of units that process the output of the previous layer. There is a variety of
layer types, the most common being the fully connected layer, where each
unit is connected to all units from the previous layer. The processing at
each unit is a weighted sum of the unit outputs at which it is connected,
plus a non-linear function such as logistic, tanh or the rectified linear
unit (ReLU). The computation goes forward, from input to output, to
produce a result that is compared with a desired output in an error or loss

23

i
i

“output” — 2021/7/7 — 15:22 — page 24 — #46 i
i

i
i

i
i

function, which usually includes a regularization term to avoid overfitting
to the training data. The gradient of the loss with respect to the weights is
computed and flows backward, so that the weights are updated to minimize
the loss function. Adaptive gradient descent techniques are usually used,
such as RMSProp, Adagrad or Adam. Computations are usually performed
in specialized hardware such as Graphic Processing Units (GPU) using
automatic differentiation software, e.g., Tensorflow (Abadi et al. 2016) or
PyTorch (Paszke et al. 2019).

Convolutional neural networks (CNN) are designed to process data
with a grid-like topology, e.g., time-series (1D grids) or images (2D grids).
They consist of convolutional layers, pooling layers and fully connected
layers. Convolutional layer units perform a weighted average localized
on a small part of the grid, by applying a kernel or filter whose weights
are shared among units. Pooling layers perform similar operations (e.g.,
average or max) that are constant, i.e., without any learnable weight.
Recurrent neural networks (RNN) are used to process sequential data such
as speech and language. RNNs replicate the network structure for as many
time-steps as necessary, sharing weights among all time-steps. Long short
term memory (LSTM) layers consist of gating mechanisms that control
the information flow through recurrent units.

Other types of layers are designed to make training more efficient. For
example, batch normalization layers help to stabilize training by normal-
izing the output with the mean and variance of the current batch of inputs
to the layer. Residual networks learn residual functions by including short-
cut connections between layers, which serve to ease training of very deep
networks.

Deep neural networks automatically learn representations from raw
high-dimensional inputs, recovering patterns that compose different sig-
nals, such as edges or parts of objects in images. Deep learning models
have demonstrated to be extremely successful, achieving state-of-the-art
performance in many domains such as image classification and segmen-
tation, object detection, text generation, translation, and many more,
including reinforcement learning, which we contemplate in the next sec-
tions.

24

i
i

“output” — 2021/7/7 — 15:22 — page 25 — #47 i
i

i
i

i
i

2.6.2 Deep Q-Learning

Q-learning with function approximation is known to be unstable or even to
diverge (Baird 1995). This may become even more evident when the model
is non-linear, such as a neural network. In particular, we can identify three
problems when combining Q-learning and deep learning (Mnih et al. 2015):

1. High data correlation, since training data is generated sequentially
by the agent-environment interaction.

2. Continuous changes in the data distribution, because the policy that
generates the data is changing.

3. Using a non-constant target: the same network produces both the
Q estimate and its target, which changes during training.

Mnih et al. (2013) overcomes the first problem by storing trajectories
in a buffer D, called experience replay, so that at every training iteration,
a randomly shuffled batch of samples is drawn. Later, Mnih et al. (2015)
tackles 2-3 by using a stationary target. For that, a copy of the NN
that approximates Q with parameters from a previous iteration is used to
provide the target value. The algorithm then minimizes the following loss
function:

E(s,a,r,s′,d)∼U(D)

[(
r + γ(1− d) max

a′
Q̂θ−(s′, a′)− Q̂θ(s, a)

)2
]
, (2.8)

where d is the done signal that indicates whether s′ is terminal, θ are the
weights of the network representing the current action-value estimate, and
θ− are the weights of the target network, which are fixed to a previous
snapshot of θ that gets updated at regular intervals.

This leads to human-level performance in many of the Atari 2600
games, training a different neural network for each game. The input to
the network are the last four gray-scale frames, given as an image with
four channels, fed into a convolutional neural network in order to capture
spatio-temporal features such as the movement of the ball in “Pong” or
“Breakout”. The output is a vector representing the value of each action
for the input state. We illustrate the neural network structure in Fig-
ure 2.2, which consists of convolutional layers followed by fully connected

25

i
i

“output” — 2021/7/7 — 15:22 — page 26 — #48 i
i

i
i

i
i

4x84x84

16 filters 8x8

256 units

Input layer

Convolutional
layer with ReLU

Convolutional
layer with ReLU

Fully connected
layer with ReLU

Softmax
output layer

32 filters 4x4
18 units

Figure 2.2: Representation of the neural network used in Mnih et al.
(2013). The NN used in Mnih et al. (2015) contains an additional convo-
lutional layer and an extra fully connected layer with 512 units.

layers. The authors used one-step Q-learning with an ε-greedy policy.
The network was trained for 200 million frames in a GPU, taking about
8 days of computation, evaluating every million frames, and storing the
best resulting parameters.

There are many follow-up papers that extend the DQN algorithm.
Double-DQN (Van Hasselt, Guez, and Silver 2016) aims at correcting
overoptimism in the action-value prediction with a target that selects the
next action from the current Q estimate: r+γQ̂θ−(s′, arg maxa′ Q̂θ(s

′, a′)).
The dueling architecture (Wang et al. 2016) separates the NN into two
streams, one for predicting V (s), and another for predicting the advan-
tage A(s, a) of each action, such that Q(s, a) = V (s) + A(s, a). Schaul
et al. (2016) draw the experience batches from the replay memory with
different priority measures. To improve exploration, noise can be added
to the parameters of the NN (Fortunato et al. 2018; Plappert et al. 2018).
Performance is also boosted by learning the reward distribution instead of
the mean (Bellemare, Dabney, and Munos 2017; Dabney et al. 2018a,b).
All aforementioned techniques are combined into one single agent in Rain-
bow (Hessel et al. 2018). Hester et al. (2018) improves DQN with ex-
pert demonstrations. Finally, Hausknecht and Stone (2015) introduce an
LSTM layer and show similar results to DQN with only one frame as in-

26

i
i

“output” — 2021/7/7 — 15:22 — page 27 — #49 i
i

i
i

i
i

put. Kapturowski et al. (2018) further combines LSTM with distributed
training in the R2D2 method, which is later improved in Agent57 (Puig-
domènech Badia et al. 2020) by introducing UCB-based intrinsic moti-
vation exploration, that led to super-human performance in all 57 Atari
games for the first time.

DQN, as any other value-based method, relies on approximating the
action-value function in order to derive a policy. Learning this function
might be a lot more difficult than directly learning the policy. For in-
stance, in robotic grasping, an agent may learn to close the end effec-
tor properly, while learning the value of different closings may be much
complicated. Moreover, computing arg maxaQ(s, a) with continuous or
high-dimensional action spaces is a challenging task.

Many works use a deep learning model to directly learn the policy.
Trust region policy optimization (TRPO) and proximal policy optimiza-
tion (PPO) (Schulman et al. 2015, 2017) constrain a stochastic policy to
change slowly by ensuring a small Kullback–Leibler divergence. A variant
of TRPO with bias correction is applied in actor-critic with experience
replay (ACER) (Wang et al. 2017). Asynchronous advantage actor-critic,
or A3C (Mnih et al. 2016), maintains several parallel actors learning an
entropy-regularized policy that make asynchronous updates to shared NN
parameters. Acting and learning is separated in IMPALA (Espeholt et
al. 2018), while soft actor-critic (SAC) (Haarnoja et al. 2018) incorpo-
rates policy entropy into the reward function. Deep deterministic policy
gradient (DDPG) (Lillicrap et al. 2016) directly outputs the most promis-
ing action together with its value, which makes it suitable for continuous
tasks. DDPG has also been extended to handle multiple agents (Lowe
et al. 2017), to use parameter perturbation (Plappert et al. 2018), to learn
the reward distribution (Barth-Maron et al. 2018), and to handle overes-
timation bias (Fujimoto, Hoof, and Meger 2018).

Finally, there are many other approaches that depart from model-free
RL which also use deep learning models. For instance, I2A (Racanière
et al. 2017), that learns a model of the environment, Go-Explore (Ecoffet
et al. 2019, 2021), which makes use of a resettable simulator to explore
previously abandoned but promising paths, or MCTS methods such as
AlphaGo, AlphaZero and MuZero, described in Sections 2.7 and 2.8.

27

i
i

“output” — 2021/7/7 — 15:22 — page 28 — #50 i
i

i
i

i
i

Basic

offset

t t-5

offset

B-PROS

B-PROT

Observed image

Figure 2.3: B-PROST features in the game of Space Invaders. Adapted
from The Success of DQN Explained by “Shallow” Reinforcement Learn-
ing, Amii News.

2.6.3 Playing Atari with Shallow Reinforcement Learning

The neural network of DQN is trained end-to-end, i.e., features are auto-
matically extracted from input images and are learned to maximize state-
action values. Liang et al. (2016) aim at discerning which representational
biases encoded in the network architecture are key to the success of DQN.
They identify two main aspects: spatial invariance from the convolutional
layers and the use of non-Markovian information induced by stacking sev-
eral frames together. To produce a feature set with such characteristics,
they extended the Basic features proposed by Bellemare et al. (2013),
producing the B-PROST features.

The B-PROST features are computed as follows. First, the image
background is removed from the current frame. The background of each
game is pre-computed offline, from 18,000 observations collected from hu-
man played trajectories. Then, the image is divided in 16× 14 tiles, from
which three sets of binary features are extracted:

• Basic features: whether or not a color is present in a tile. Since the
color palette consists of 128 colors, there are 16× 14× 128 = 28,672

28

i
i

“output” — 2021/7/7 — 15:22 — page 29 — #51 i
i

i
i

i
i

Basic features that can take values in {0, 1}.

• Basic Pair-wise Relative Offsets in Space (B-PROS): whether or not
a pair of colors is present for each spatial relation between tiles. They
are inspired by the convolutional operation, and intuitively they cap-
ture information like “there is a yellow pixel three tiles below a red
pixel”. There are

(
(16× 2− 1)× (14× 2− 1)× 1282 − 128

)
/2 +

128 = 6,856,832 B-PROS features after eliminating redundancy.

• Basic Pair-wise Relative Offsets in Time (B-PROT): whether or not
a pair of colors is present for each spatial relation when compar-
ing the current image with the one of the last decision point (e.g.,
five steps in the past). It captures the temporal relation introduced
by the usual practise of stacking several frames and giving them as
input to the neural network, with the intention to account for non-
Markovian environments. There are (16× 2− 1) × (14× 2− 1) ×
1282 = 13,713,408 B-PROT features (in this case there are no re-
dundant offsets).

Figure 2.3 shows the discretization of an image of the Space Invaders
Atari game into the Basic, B-PROS and B-PROT features. The union of
these three sets form the B-PROST feature set, which consists of a total
of 20,598,848 binary features.

With the aim of detecting objects, Liang et al. (2016) defined an-
other set of features called Blob-PROST, where groups of contiguous pixels
(blobs) are considered, forming the spatial and temporal relations with the
blob centroid points. With these enhanced features, the authors propose
to use Sarsa(λ) with a linear model and an ε-greedy exploration strategy.
The result is an algorithm that is competitive with DQN while using linear
regression to encode the Q function.

2.7 AlphaGo: MCTS with Deep Neural Networks

Deep learning models have also been successfully exploited by MCTS
methods. Silver et al. (2016) proposed to use different neural networks
to reduce the effective depth and breadth of the search tree. In particular,
a distinct neural network is used at each stage of the search:

29

i
i

“output” — 2021/7/7 — 15:22 — page 30 — #52 i
i

i
i

i
i

1. Selection: a policy network pσ is used to provide prior probabilities.

2. Expansion: a rather small linear policy network pτ decides which
action to expand.

3. Simulation: a similar network pπ is used for fast rollout evaluations.

4. Backpropagation: a value network vθ also evaluates leaf nodes.

The networks pσ and vθ have the same structure, with the only dif-
ference being that the last layer produces a single prediction value for vθ,
and a probability distribution for pσ, where the latter consists in a soft-
max layer with as many outputs as possible actions. The input for both
networks consists of 49 binary feature planes of size 19×19 resulting from
preprocessing the state. The board positions are encoded into 3 feature
planes, corresponding to the player stones, the opponent stones and empty
slots. The other 46 planes correspond to specific game information such
as how many opponent stones would be captured, how many turns have
passed since a move was played, or whether or not a basic known sequence
of moves can be successfully performed.

The network structure of pσ consists of 12 convolutional hidden layers
with 192 filters and a ReLU as activation function, the first layer with
a filter size of 5 × 5 and the rest with 3 × 3, and a convolutional output
layer with a 1×1 filter followed by a softmax function. The value function
has 2 extra convolutional hidden layers and an extra fully connected layer
with 256 rectifier units. The output layer is a fully connected layer with
a single tanh unit.

The rollout policy pπ and the tree policy pτ are smaller, linear networks
with different inputs than the feature planes described above. Compared
to pσ, the rollout policy pπ has a lower accuracy predicting expert moves
(24.2% vs 55.7% after training) but produces a result faster (2µs vs 3ms).
The input to the rollout policy pπ consists of 109,747 handcrafted binary
features that encode local information of specific stone patterns centered
on the given action, involving the previous and current moves. These
features also encode other information such as whether a move saves stones
from being captured or not. The tree policy pτ receives the same binary
patterns as pπ plus 32,242 extra patterns, and both networks output a

30

i
i

“output” — 2021/7/7 — 15:22 — page 31 — #53 i
i

i
i

i
i

probability distribution over all possible actions produced by a softmax
layer.

2.7.1 Training Pipeline

The training pipeline of AlphaGo consists of three phases. First, the
policy network pσ is trained through supervised learning (SL) to classify
board positions from a dataset of expert moves. The dataset consists of
29.4 million moves extracted from 160,000 expert player games, that are
augmented by considering all eight reflections and rotations. Training is
done through stochastic gradient ascent by maximizing the likelihood of
selecting move a in state s:

∆σ ∝ ∂ log pσ(a | s)
∂σ

.

The smaller policy pπ is trained similarly from the 8 million positions.
The second phase consists in improving the policy network pσ by policy
gradient reinforcement learning (RL). At the beginning of this phase, a
copy of pσ is made, generating a new neural network with the same struc-
ture pρ, where the parameters ρ are initialized to σ, i.e., the ones resulting
from the SL phase. The reason is that pσ is later used in MCTS for action
selection, while the improved version pρ is used to train the value network
in the third phase. The second phase then consists in playing games be-
tween the current policy network pρ and the one of a randomly selected
previous iteration, which prevents overfitting the current policy. Weights
ρ are trained through stochastic gradient ascent to maximize the expected
outcome:

∆ρ ∝ ∂ log pρ(at | st)
∂ρ

zt,

where zt is the terminal reward at the end of the game (+1 for winning
and −1 for losing).

Finally, the last phase of the training pipeline involves learning to
predict the outcome z of the policy network pρ. According to Silver et al.
(2016), the reason for not learning to predict the value from the dataset of
expert moves is that positions of the same game share the same outcome
z while being highly correlated. The authors report that vθ trained from
this dataset resulted in overfitting. Instead, they generated a new dataset

31

i
i

“output” — 2021/7/7 — 15:22 — page 32 — #54 i
i

i
i

i
i

with 30 new million positions by self-play using pρ, each position extracted
from a different game.

The value network is trained by gradient descent to minimize the mean
squared error (MSE) between the outcome z and the corresponding pre-
dicted value vθ(s):

∆ρ ∝ ∂vθ(s)

∂ρ
(z − vθ(s)).

2.7.2 Search

Each edge of MCTS, corresponding to taking an action a at a state s,
stores a set of statistics {P,Nv, Nr,Wv,Wr, Q}, where P (s, a) is the prior
probability of taking action a in state s, and Wv(s, a) and Wr(s, a) are the
sum of Monte-Carlo action-value estimates over Nv(s, a) and Nr(s, a) leaf
evaluations, respectively. Specifically, Wv and Nv are evaluations from
the value network vθ, while Wr and Nr are evaluations from running the
rollout policy pπ. The reason for having two separate counts Nv and Nr is
that Wv and Wr are updated asynchronously. To exploit Go symmetries,
the prior P (s, a) is initialized by applying a randomly chosen reflection
or rotation d in a dihedral group of 8 symmetries before evaluating the
policy network, such that P (s, a) = d−1(pσ(a | d(s))). At each time step t,
MCTS selects nodes according to at = arg maxaQ(st, a) + u(st, a), where
u(st, a) is computed using a variant of the pUCT algorithm (Rosin 2011):

Q(s, a) = (1− λ)
Wv(s, a)

Nv(s, a)
+ λ

Wr(s, a)

Nr(s, a)
,

u(s, a) = cpuctP (s, a)

√∑
bNr(s, b)

1 +Nr(s, a)
,

with Q(st, a) being an average of the outcomes resulting from rollouts
and evaluations of the value network, weigthed by a parameter λ. During
rollouts, actions are chosen using both the rollout policy pπ and a hash
table that accumulates moves played by MCTS.

As previously mentioned, MCTS is implemented in an asynchronous
distributed manner. There is a master machine that runs the main search,
many remote CPUs running rollouts, and many GPUs evaluating the pol-
icy and value networks pσ and vθ. Note that the RL policy network pρ

32

i
i

“output” — 2021/7/7 — 15:22 — page 33 — #55 i
i

i
i

i
i

is only used for policy evaluation, and is not used in the search, where
the SL policy network pσ is used instead. However, the outcome of pρ
is approximated by the value network vθ. Finally, the expansion step of
MCTS is only performed at regular intervals, when the visit count Nr(s, a)
exceeds a given threshold.

Once the search budget is exhausted, AlphaGo selects the action with
maximum visit count, and the search tree is reused for subsequent time
steps, i.e., the child node corresponding to the played action becomes the
new root node, and the subtree below this child node is kept, retaining all
its statistics, while the rest is discarded. AlphaGo resigns if maxaQ(s, a) <
−0.8, corresponding to an estimated 10% probability of winning the game.

2.8 Policy Iteration MCTS

In this section, we describe three relevant works. First, Silver et al. (2017)
presented AlphaGo Zero, an algorithm that defeats its predecesor Al-
phaGo and is trained solely by self-play, without any information from
expert players. Then, Silver et al. (2018) further generalized the AlphaGo
Zero approach, removing handcrafted, domain-specific knowledge to pro-
duce a competitive algorithm in many domains, called AlphaZero. Finally,
Schrittwieser et al. (2020) presents a version of the algorithm that is suit-
able for episodic simulators, where MCTS is run on a learned state-action
model.

2.8.1 AlphaGo Zero

AlphaGo distinguishes two phases: a training phase, where the policy and
value models are pretrained using expert data and reinforcement learn-
ing, and a search phase, were the the models are exploited to guide the
search. AlphaGo Zero (Silver et al. 2017) mixes the two phases instead,
so that the policy and value estimates are continuously improved with
the experience generated by MCTS, and does not use any expert data.
In particular, AlphaGo Zero uses a single neural network with two out-
puts that, given a state, produces both the policy and the value estimates
(p, v) such that (d−1(p), v) = fθ(d(s)), where d is, once more, a randomly
sampled symmetry function. Then, p and v are used to aid MCTS in

33

i
i

“output” — 2021/7/7 — 15:22 — page 34 — #56 i
i

i
i

i
i

a similar manner to AlphaGo. A key difference, though, is that the pa-
rameters θ are randomly initialized and improved from the data produced
by the tree search. MCTS outputs action probabilities π that result in
stronger moves than the ones of p. MCTS can then be seen as a policy
improvement operator, while the value output by fθ can be interpreted as
a policy evaluation operator. These operators are then used repeatedly in
a policy iteration procedure: the neural network parameters θ are updated
to match more closely the improved action probabilities and the win/loss
outcome (π, z) produced by the search. More precisely, fθ is trained by
stochastic gradient descent to minimize the loss function:

L = (z − v)2 − πT log p+ c`2‖θ‖2

where ` is the loss function over a single datapoint (π, z) and the gradient
is actually computed over a minibatch of policy and value targets, sampled
from an experience replay buffer. Once more, the experience replay buffer
is augmented to take into account all 8 symmetries.

MCTS is also simpler than its predecessor: there are no rollouts. In-
stead, AlphaGo Zero relies on its value function entirely to evaluate leaf
nodes. Thus, each time a new state s is generated, fθ(s) is evaluated
producing the value estimate, that is backed up along the trajectory. The
set of statistics is simpler in this case: {P,N,W,Q}. The selection step is
similar to AlphaGo, selecting actions according to:

at = arg max
a

Q(st, a) + u(st, a),

Q(s, a) =
W (s, a)

N(s, a)
,

u(s, a) = cpuctP (s, a)

√∑
bN(s, b)

1 +N(s, a)
.

Other differences with AlphaGo include that leaf nodes are always
expanded (instead of when a certain visit threshold is reached) and that
threads are synchronised, waiting for the neural network evaluation instead
of performing asynchronous evaluation and backups. Moreover, additional
exploration is achieved by adding Dirichlet noise to the prior probabilities
in the root node s0, P (s0, a) = (1 − ε)pa + εna where n ∼ Dir(0.03) and
ε = 0.25. Finally, AlphaGo Zero resigns if both the root value and its

34

i
i

“output” — 2021/7/7 — 15:22 — page 35 — #57 i
i

i
i

i
i

best child value are lower than a certain threshold. The neural network
structure is also different from AlphaGo. It consists of 40 residual blocks
each composed by two ReLU convolutional layers of 256 filters with batch
normalization, followed by a shortcut connection that adds the input to
the block output. The network is finally divided into two heads, one
for the value and another for the policy, with 3 and 2 additional layers,
respectively.

When the computational budget is consumed, the action with highest
visit counts is selected according to π(a | s0) = N(s0, a)1/τ/

∑
bN(s0, b)

1/τ ,
similar to AlphaGo. However, for the first 30 moves, τ is set to 1 to ensure
that a diverse set of positions is selected. Then it is changed to a small
constant, τ → 0, to select the most visited action for the rest of the game.

AlphaGo Zero is trained by self-play against its best-performing neural
network parameters from all previous iterations. After 1,000 steps, the
current network is evaluated by playing 400 games against the previous
best network, using τ → 0. If the current network wins by a margin of
at least 55%, then it becomes the best network and is subsequently used
for self-play. The network that defeated its predecessor AlphaGo, winning
100− 0, was trained during 40 days.

2.8.2 AlphaZero

AlphaZero (Silver et al. 2018) is a generalization of AlphaGo Zero to
other two-player domains that results in a simpler approach, removing
domain-specific knowledge. For instance, board positions are no longer
transformed using rotation or reflection symmetries, either to augment
the training dataset or before they are evaluated by the neural network.
AlphaZero demonstrates state-of-the-art performance in the game of Go
compared to a 3-day training version of its predecessor, AlphaGo Zero,
as well as in Shogi and Chess compared to the world-champion programs
Elmo and Stockfish.

The input features to the neural network is a binary tensor of size
N ×N × (MT +L): a concatenation of T sets of M planes of size N ×N
representing the board positions of the last T time steps, with M planes
per time step, one per piece type. The additional L planes denote the
player’s color, total move count, and other special rules. The output
representing the policy also consists of a stack of N ×N planes that varies

35

i
i

“output” — 2021/7/7 — 15:22 — page 36 — #58 i
i

i
i

i
i

among games. For instance, the policy in chess is represented by a 8×8×73
tensor encoding the probability distribution over 4672 possible moves.

Its predecessor AlphaGo Zero is trained by self-play against its best-
performing neural network parameters from all previous iterations. This
requires an evaluation step to determine whether the current neural net-
work outperforms the best-performing version by a sufficient margin. Al-
phaZero, instead, maintains a single neural network which is updated con-
tinually, and self-play games are generated using the latest parameters of
the neural network, removing the evaluation step to select the best param-
eters. The result is a simpler algorithm that can be applied to a variety
of games.

2.8.3 MuZero

The MCTS methods presented so far consider that either an explicit model
or a resettable simulator is available. Schrittwieser et al. (2020) further
generalizes AlphaZero to episodic simulators, i.e., to simulators without
the capacity to rewind to a previously seen state, by learning a model of
the environment. To avoid any confusion, in this section we use observa-
tion to refer to the state produced by the actual simulator, which need to
be distinguished from the hidden states produced by the model, that we
denote by state embedding, or simply by embedding. The resulting algo-
rithm, called MuZero, relies on a recurrent neural network that produces
modelled trajectories given two arrays: the observations produced so far
by the simulator, and the actions that we wish to try in the model. There
is a single neural network, with parameters θ, that can be decomposed
into three functions:

• An encoder hθ, that produces a state embedding from an array of
observations.

• A dynamics model gθ, that maps state embeddings and actions to
next state embeddings and rewards.

• An actor-critic model fθ, that maps a state embedding into a policy
and a value estimate.

A representation of the neural network with its three functions is given
in Figure 2.4. The functions are related as follows. First, the array of past

36

i
i

“output” — 2021/7/7 — 15:22 — page 37 — #59 i
i

i
i

i
i

...

...

...

...

...

Figure 2.4: MuZero recurrent neural network representation. Information
flows from bottom to top (output sequence) and from left to right (recur-
rent state). The depth of the model trajectory is given by supperscript
numbers, and are to be distinguished from the time step of interaction
with the simulator (denoted by an subscript). For simplicity, subscripts t
in the model trajectory are omitted.

observations is encoded into an embedding et = hθ(o0, . . . , ot) using the
encoder network, where o0, . . . , ot are the observations up to the current
time step t. Then, the embedding et is used to initialize the recurrent
state of the dynamics network gθ. At this point, gθ is ready to produce
a sequence of rewards and next state embeddings given the sequence of
actions resulting from the MCTS selection phase. For each generated
embedding, the actor-critic model fθ is evaluated to produce a policy and
value estimate, that will be in turn used in the action selection process,
similarly to AlphaZero. Note that the embeddings generated correspond
to the recurrent state of the overall neural network.

MCTS keeps statistics {N(s, a), Q(s, a), P (s, a), R(s, a), S(s, a)}, where
sk+1 = S(sk, ak) and rk+1 = R(sk, ak) are the state and reward com-
puted using gθ, and N , Q, P are the visit counts, the average value,
and the policy, respectively, computed similarly as in AlphaZero. Differ-
ently from previous works, Q values are normalized before being used in
the action selection phase, where an action ak is selected according to
arg maxa [Q(s, a) + U(s, a)], with the exploration factor U(s, a) being:

37

i
i

“output” — 2021/7/7 — 15:22 — page 38 — #60 i
i

i
i

i
i

U(s, a) = P (s, a) ·
√∑

bN(s, b)

1 +N(s, a)

(
c1 + log

(∑
bN(s, b) + c2 + 1

c2

))
.

Instead of producing a scalar for the value and the reward, the neural
network output consists in a softmax layer that produces a vector of size
601, where each position of the vector represents a discrete support for
every integer in [−300, 300]. A scalar x is then represented by a vector
filled with zeros except in two positions: the two adjacent supports bxc
and dxe, that contain values p ∈ [0, 1] and (1− p), respectively, such that
x = p·bxc+(1−p)dxe. Here, b·c : R→ Z and d·e : R→ Z are the floor and
ceil functions, that map a real-valued number x to the highest integer that
is lower or equal to x, and to the lowest integer that is higher or equal to x,
respectively. The output vectors of the neural network for the value and
the reward are linearly combined with the integer vector (−300, . . . , 300)
to produce the scalars rk and vk. Similarly, the targets for the value and
the reward are converted to their vector representations before their loss
functions are evaluated. The loss function for a data-point collected at
time step t is as follows:

Lt(θ) =
K∑
k=0

(
π>t+k log pkt + ψ(yt+k)

> log vkt + ψ(ut+k)
> log rkt

)
+ c`2‖θ‖,

where yt can be either the n-step or Monte-Carlo return, and φ(·) is the
vector mapping described above. Here, we follow the notation of Schrit-
twieser et al. (2020) and denote the reward received from the environment
by ut to distinguish it from the reward rk generated by the model.

MuZero is trained and executed in a massively parallel computing en-
vironment: several actors playing against many instances of the same en-
vironment sharing the neural network parameters and replay buffer. The
results reported show that, after 1M training steps, MuZero reaches the
performance of AlphaZero in Chess, Shogi and Go, and clearly outper-
forms the model-free method R2D2 (Kapturowski et al. 2018) in Atari.

38

i
i

“output” — 2021/7/7 — 15:22 — page 39 — #61 i
i

i
i

i
i

Chapter 3

Width-Based Planning

3.1 The Classical Planning Model

In this section, we start by defining the classical planning model (Geffner
and Bonet 2013), which we then encapsulate into a deterministic Markov
decision process. Finally, we describe the standard factored representa-
tion for classical planning, the STRIPS model, and its generalization to
multivalued features.

Definition 2. A classical planning model is defined by the tuple C =
〈S,A, s0,SG, A, T, c〉, where:

• S is a finite set of states,

• A is a finite set of actions,

• s0 ∈ S is an initial state,

• SG ⊆ S is a set of goal states,

• A(s) ⊆ A is a set of applicable actions in each state s ∈ S,

• T is a deterministic transition function that maps state-action pairs
to next states: s′ = T (s, a), a ∈ A(s),

Starting from the initial state s0, the goal of the planner is to generate a
plan Π = a0, a1, . . . , an−1, consisting of a sequence of actions that generate

39

i
i

“output” — 2021/7/7 — 15:22 — page 40 — #62 i
i

i
i

i
i

a state trajectory s1, . . . , sn such that si+1 = T (si, ai) for all i = 0, . . . , n−
1, and sn ∈ SG. The plan Π represents an open-loop controller that
solves the classical planning problem, i.e., the solution consists of a fixed
sequence of actions that is computed once, where actions do not depend
on the observed states as in the closed-loop policies seen in the previous
chapter. Optionally, classical planning problems can have a non-negative
function c(s, a) representing the cost of applying action a in state s. If
no such function is provided, actions are assumed to have unit cost. The
solution is Π optimal if it represents the shortest path to achieve the goal,
i.e., if the cumulative cost

∑
i c(si, ai) is minimized.

3.1.1 Classical Planning Problems as MDPs

We can use deterministic Markov Decision Processes to model goal-directed
planning tasks. For that, we need to draw a correspondence from the ele-
ments of C to the elements of the tuple that defines a deterministic MDP
M = 〈S,A, T, r〉. Note that we have reused notation for those elements
with a direct equivalence, i.e., the state space S, the action space A, the
initial state s0 and the deterministic transition function T . To model the
reward function, we choose to define it as follows:

r(s, a) =

{
1, if s′ = T (s, a) ∈ SG
0, otherwise

In words, a reward is received only when a transition to a goal state occurs.
Here, action costs are considered to be 0, and in order to ensure that the
shortest path is the one with maximum cumulative sum of rewards, we
define the discount factor γ to be strictly lower than 1. Furthermore, we
make each goal state sG ∈ SG absorbing by defining the transition function
at each sG as T (sG, a) = sG for each action a ∈ A(sG). Hence an optimal
policy attempts to reach any goal state as quickly as possible and then
stay there.

In MDPs, the size of the state space is usually too large to be repre-
sented explicitly, and a set of features F is typically used to represent it.
This is also the case for classical planning, where it is common to use a
factored representation, which we detail next.

40

i
i

“output” — 2021/7/7 — 15:22 — page 41 — #63 i
i

i
i

i
i

3.1.2 Factored Representation

One of the most simple and common representations is known as STRIPS
(Fikes and Nilsson 1971), where the state space is factored into Boolean
variables, called predicates, atoms, facts, or fluents, that express whether
a proposition about the environment holds in a given state.

Definition 3. A planning problem in STRIPS is defined as a tuple P =
〈P,A, I,G〉 where

• P is a finite set of atoms,

• A is a finite set of operators or actions,

• I ⊆ P represents the initial state,

• G ⊆ P represents the goal.

A classical planning problem is encoded in STRIPS as follows. A state
s is represented by a non-empty subset of atoms in P, i.e., propositions
about the environment that are true, while atoms that are not in s are as-
sumed to be false. The state space S then becomes the possible collections
of atoms over P. Hence, there are 2|P|−1 possible states, where |P| is the
number of atoms of the problem, considering that a state contains at least
one atom. The initial state s0 is encoded by atoms in I, and the set of
goal states is induced by the partial state G, such that SG = {s | G ⊆ s}.

Each action a ∈ A is represented by three sets of atoms over P, called
Precondition, Add, and Delete lists, which are denoted by Pre(a), Add(a),
and Del(a), respectively. The applicable actions in a state s, a ∈ A(s), are
the ones in A with Pre(a) ⊆ s. The state transition function is defined as
s′ = T (s, a) = (s \Del(a)) ∪ Add(a), so that atoms in Del(a) are deleted
from s and atoms in Add(a) are added, producing the next state s′.

The Planning Domain Definition Language (PDDL) (McDermott et
al. 1998), employed in the International Planning Competitions (IPC)
(McDermott 2000), is a language reminiscent of Lisp that has been widely
used to encode STRIPS problems. Problems in PDDL consist of two
parts: a domain and an instance file. The domain defines the actions
using schemas, which describe the preconditions and effects over generic
variables, that are later replaced with specific objects. On the other hand,

41

i
i

“output” — 2021/7/7 — 15:22 — page 42 — #64 i
i

i
i

i
i

the instance describes these specific objects, as well as the atoms in I and
G, that represent the initial state and the set of goal states, respectively.

For MDPs, we defined a factorization of the state space using a set
of features F with an arbitrary domain size |D|. In STRIPS we can also
accommodate variables that are not Boolean. In general, if f ∈ F is a
multivalued variable or feature with domain D, we can define propositions
such as “f = v” for each value v ∈ D. This extension is used in other
formulations, e.g., in SAS+ (Bäckström and Nebel 1995). The set of atoms
is then defined as P = F × D. Note that in this case each state contains
exactly |F| atoms, instead of being a collection of atoms of arbitrary size.
Here we use a common domain D for simplicity, which can be finite or
not, but we can extend the formulation to the case where each feature f
has a different domain Df without loss of generality.

Note that this formulation also holds for binary domains, where we can
explicitly indicate the values “f = true” or “f = false” for each variable.
In fact, there are many extensions of STRIPS that accommodate negative
atoms, e.g., propositional STRIPS with negative atoms (PSN) (Bäckström
1995). Let us denote the multivalued features formulation with proposi-
tions of the type “f = v” as PF , and use Ptrue for the regular binary
formulation where the state is a collection of true propositions, and other
missing atoms are assumed to be false. For binary domains, we distin-
guish these two formulations explicitly because using one or the other will
affect the output of our algorithms (see Section 3.2) and their complexity
(see Chapter 4). In the next section we describe Iterated Width, a search
algorithm that makes use of the state factorization to structure the search.

3.2 Iterated Width

Iterated Width (IW) is a forward search algorithm originally developed
for goal-directed planning problems with deterministic actions (Lipovet-
zky and Geffner 2012). It requires the state space to be factored into a set
of atoms P, and exploits the structure of the state space defined by P to
explore efficiently. Here, we consider the generic formulation PF defined
above, and for simplicity assume that the set of atoms is built from mul-
tivalued features F with a common domain D, e.g., binary (D = {0, 1}),
integer (D = Z) or real-valued (D = R).

42

i
i

“output” — 2021/7/7 — 15:22 — page 43 — #65 i
i

i
i

i
i

The IW algorithm consists of a sequence of calls to the procedures
IW(k), for k = 0, 1, 2, . . ., until the problem is solved or k exceeds |F|.
Each call IW(k) performs a standard breadth-first search (BrFS) from a
given initial state s0, pruning states that are not novel. The variable k is
called the width of the breadth-first search.

Definition 4. A state s is considered novel for width k if any tuple of
size k of atoms in s appears for the first time in the search.

Hence, when a new state s is generated, IW(k) contemplates all k-
tuples of atoms in s and, if all the tuples appear in previously generated
states, the state s is pruned. Otherwise, it is added to the OPEN list, i.e.,
the list of nodes to be expanded. The breadth-first search thus expands a
number of nodes that is exponential in the width parameter k. Note that
for k = 0 no state is considered novel, and IW(0) only solves a problem
if the initial state is a goal state. We next define the novelty of a state,
which is a quantity induced from the previous definition:

Definition 5. The novelty of a state s, denoted as w(s), is the minimum
k that makes s novel in an IW(k) search, for k = 1, . . . , |F|. If s is not
novel for any k, then w(s) = |F|+ 1.

Although w(s) may be a quantity of interest, it can be expensive
to compute since it requires to iterate through all feature tuples of size
1, ..., |F| until one that makes the state novel is found. In practice, either
w(s) is computed until a maximum value k, and the novelty of states that
are not novel for such k is set to |F|+1, or it is not computed at all. IW(k)
usually checks whether the state is novel or not for the current k, i.e., we
are interested in novel(s, k) = (w(s) <= k) where novel(s, k) is either true
or false, without computing the exact novelty measure w(s). Note that all
iterations to check tuples of lower size than k can be skipped, since any
tuple of atoms is contained in another tuple of larger size. Thus, a state
that is novel for width i will also be novel for width k, for i < k. This
notion of state novelty has been extended in many follow-up works (Ban-
dres, Bonet, and Geffner 2018; Lipovetzky and Geffner 2017a; Shleyfman,
Tuisov, and Domshlak 2016), as we describe in the next sections.

Example. In Figure 3.1 we illustrate IW(k) using a small example that
involves three binary features (i.e. D = {0, 1}) and four actions. Here, we

43

i
i

“output” — 2021/7/7 — 15:22 — page 44 — #66 i
i

i
i

i
i

Figure 3.1: Example run of IW(1) at depth 1. States, expanded left to
right, are represented by their feature vectors, and actions correspond to
edges.

show an IW(1) execution until depth 1, i.e., only the initial state s0 is ex-
panded, which is represented by the feature vector (f0, f1, f2) = (0, 0, 0).
Assume that breadth-first search expands the states in the order left-to-
right. Since k = 1, we look at whether individual feature values appear for
the first time in the search. State s1 generates two new feature values: f0

and f2 have value 1, and therefore the state is not pruned. State s2 does
not generate any new feature values, and is thus pruned. State s3 is novel
since it assigns 1 to f1 for the first time, while s4 is pruned. The algo-
rithm would continue expanding the nodes that have not been pruned in a
breath-first manner until all nodes are pruned or the goal state is reached.
If we run IW(2) instead, state s2 would not be pruned, since the tuple
(f0 = 1, f2 = 0) appears for the first time in the search. When considering
width k = 3, no states would be pruned since all triplets of features are
different. In general, IW(k) is equivalent to a BrFS with duplicate state
detection when k = |F|.

The pruning mechanism of IW is directly affected by how the state
space is factorized. For instance, in the previous example with binary
features we have considered the STRIPS formulation for multivalued vari-
ables PF . This formulation with D = {0, 1} actually generates a different
IW(k) search tree than when considering the regular formulation for bi-
nary domains Ptrue. The reason is that, when using PF , features that are
false also contribute to the novelty test, which is not the case in Ptrue. As
a side note, the example shown in Figure 3.1 cannot be represented by
Ptrue as is, since the root node would be the empty set of atoms, which
is not allowed by the STRIPS formulation. Ptrue is used in most works

44

i
i

“output” — 2021/7/7 — 15:22 — page 45 — #67 i
i

i
i

i
i

where IW is applied to classical planning problems, since they are defined
in PDDL. In this work, we only consider Ptrue when the environment is
defined in PDDL (as in Chapter 5), and the multivalued variable formu-
lation otherwise, even if the features are binary. In Chapter 4, we discuss
the implications in algorithmic complexity of using one formulation or the
other.

The IW algorithm is sound and complete, i.e., it outputs a valid solu-
tion if there is one. However, the resulting plan may not be optimal, i.e.,
it may not be the shortest path. Nevertheless, IW(k) is guaranteed to be
optimal for a certain value of k = w. This value w is called the problem
width, which we describe in the next section. The reason why IW does
not always output an optimal solution is because the sequence of calls to
IW(k) may solve the problem (optimally or not) before reaching k = w.

3.2.1 Problem Width

IW(k) eventually traverses the entire state space when k is large enough.
The traversal depends on two components:

• The set of features F that defines how the states are structured.

• An ordering O(s) that defines in which order the available actions
A(s) are taken for each state s that is being expanded. This ordering
is usually random, producing different results for different IW(k)
calls.

As previously mentioned, whether or not IW(k) is guaranteed to solve
a given problem P optimally depends on the underlying notion of problem
width that we define next. Here, we borrow the definition from Bonet and
Geffner (2021), which is based on tuple sequences, instead of using the
original one that is defined over graphs of tuples (Lipovetzky and Geffner
2012).

Definition 6. The width of a solvable problem P , denoted as w(P), is
the minimum k for which there is a sequence of atom tuples t0, t1, . . . , tm,
each with at most k atoms, such that:

1. t0 is true in the initial state of P

45

i
i

“output” — 2021/7/7 — 15:22 — page 46 — #68 i
i

i
i

i
i

Figure 3.2: Example of a full tree expanded as in BrFS with three binary
features and two actions to illustrate the notion of width. The goal state
is s4.

2. any optimal plan for ti can be extended into an optimal plan for ti+1

by adding a single action, i = 1, . . . ,m− 1

3. any optimal plan for tm is an optimal plan for P

If P is unsolvable, then w(P) = |F|+ 1.

The tuples ti that satisfy the above conditions (and therefore are part
of an optimal trajectory) can be thought of stepping stones or subgoals
that need to be achieved at each step. The maximum size of these tuples,
w(P), bounds the size of the search space, and therefore w(P) can be
considered a measure of problem complexity. For problems whose width
is bounded by k, IW(k) is guaranteed to find an optimal solution (i.e. the
shortest path), if there exists one, in time that is exponential in k.

It is important to note that the definition above requires that any
optimal plan for ti should be part of an optimal plan for tj , where i < j.
Take the example of Figure 3.2, that shows states represented by their
feature vectors expanded by BrFS, and consider width k = 1. We look at a
sequence of tuples (in this case single atoms, since k = 1) of the trajectory
that leads to the goal state, given by the optimal plan Π = 〈a1, a2〉. Take
the atom f1 = 1, which is the one that changes from s0 to s1. At depth
1, both states s1 and s2 appear with f1 = 1, and therefore there are two
optimal plans for reaching such atom: Π1 = a1 and Π2 = a2. However,

46

i
i

“output” — 2021/7/7 — 15:22 — page 47 — #69 i
i

i
i

i
i

only Π1 is part of Π, and the second condition is therefore not satisfied. In
fact, this problem has width 2, and the tuple (f1 = 1, f3 = 0) satisfies the
condition. Note that the optimal plan Π can be obtained from an IW(1)
search, with ordering O(s) = 〈a1, a2〉, i.e. for a given state s, a1 will be
applied before a2. However, IW(1) with the order of actions reversed will
prune s1 and will not solve the problem.

We could thus define w(P) as the minimum k for which P can be
solved by IW(k) in all possible orderings O(s) used to apply actions when
expanding each state s. Let us define the effective width, that may vary
among IW searches depending on the ordering used in the search (which
is usually random):

Definition 7. The effective width of a problem P , denoted as we(P), is
the minimum k for which P can be solved by a specific IW search, i.e., by
the procedures IW (k) for k = 1, 2, . . ., with a specific ordering O.

The effective width is then the minimum state novelty required to
solve the problem for a specific IW search. While obtaining the width of
a problem is hard, the effective width can be a good approximation of the
actual width, and can be obtained by running IW. Note that we(P) is
actually a lower bound on the actual width w(P), since an IW(k) search
may solve a problem P while k < w(P). Interestingly, most classical
planning domains present a low width, at least when their goal consists of
a single atom, and in practice can be solved in linear or quadratic time.

3.2.2 Width of Single-Atom Goal Problems

Lipovetzky and Geffner (2012) showed that most classical planning prob-
lems turn out to have a very small width when the goal consists of a
single atom. The authors actually proved that the domains Blocks, Lo-
gistics and n-puzzle have a bounded width, independent of the problem
size and initial state when considering one goal atom. They also experi-
mentally showed that, in practice, most benchmarks present an effective
width of 1 or 2 when |G| = 1. The experiment consisted in applying
IW(1) and IW(2) in single-atom goal instances of 37 benchmarks from the
International Planning Competitions (IPC), prior to 2012. To generate
single-atom goal instances, each IPC instance with G goal atoms was di-
vided into G instances with one goal atom, producing a total of 37,921

47

i
i

“output” — 2021/7/7 — 15:22 — page 48 — #70 i
i

i
i

i
i

Effective width # Domains # Inst. Inst. IW(1) Inst. IW(2)

we(D) = 1 4 24,382 100% 100%
we(D) = 2 22 9,916 30.6% 100%
we(D) > 2 11 3,623 26.8% 60.5%

Total 37 37,921 37.0% 88.2%

Table 3.1: IW results in single-atom goal benchmarks (summary of Table 1
of Lipovetzky and Geffner (2012)). Domains are classified by their effective
width, i.e., according to the minimum k for which IW(k) solves all the
given instances of the domain in this experiment. Most of the instances
of we(D) = 1 come from the domain VisitAll (21,859).

instances. The authors reported the amount of instances solved by IW(k)
with k = 1 and k = 2, as well as the amount of unsolved instances for
which k > 2 is necessary.

We show a summary of the results in Table 3.1. Here, we classify
each domain D by whether all its instances are solved by IW (1), IW (2)
or whether it requires k > 2. We refer to this quantity as the effective
width of the domain, we(D), for the provided set of domain instances for
this experiment. We observe that IW(1) is able to solve all instances in 4
domains, while IW(2) remarkably solves 26 out of 37 domains. Moreover,
IW(1) solves more than a quarter of instances from domains with we > 1.
For IW(2), the percentage of instances solved from domains with higher
effective width grows to 60.5%. In general, IW(2) can solve almost 9 out
of 10 instances, which means that we only go beyond quadratic time in
11.8% of the cases.

3.2.3 Serialized IW

The results in single atom goal instances, where most domains present a
low width, suggest that the complexity of classical planning benchmarks
comes from the conjunction of goal atoms. Serialized IW (SIW) is a hill
climbing algorithm that consists of a series of IW searches. At each iter-
ation i, SIW runs an IW search until at least one new goal atom is true.
It keeps a set Gi of goal atoms that have been achieved such that, at each
iteration, a new goal atom is achieved while preserving the ones obtained
in previous iterations: Gi ⊂ Gi+1 ⊆ G, starting with G0 = ∅. The initial

48

i
i

“output” — 2021/7/7 — 15:22 — page 49 — #71 i
i

i
i

i
i

state for the IW search at each iteration i becomes the state where Gi−1

is achieved, i.e., when at least one new goal atom is achieved in a state
sGi , SIW starts a new IW search at iteration i + 1 with sGi as the initial
state. The initial state at iteration i = 1 is sG0 = s0, and SIW stops when
all goal atoms have been achieved, i.e., when Gi = G.

There are several variations of SIW which include using a counter of
goal atoms still to be achieved #g(s) = |{p | p ∈ G \ s}|, and whenever
a new minimum of #g(s) is reached, a new IW search starts (Bonet and
Geffner 2021). Note that in this version there is no requirement of Gi ⊂
Gi+1, but rather |Gi| < |Gi+1|. In contrast with IW, SIW is incomplete,
since the subgoals need to be achieved monotonically, and even if there is
such a goal-monotonic path, SIW may not be able to find it because it is
greedy, i.e., it commits to the first newly achieved goal atom not present
in the current Gi. Nevertheless, experimental results show that SIW is
competitive with planners that exploit goal information, like the ones we
describe in the next section.

3.3 Best-First Width Search: Beyond Pure Ex-
ploration

Although Iterated Width performs remarkably well in problems where the
goal consists of a single atom, it does not match the performance of state-
of-the-art planners in instances with |G| > 1. This is mainly because IW
is a pure exploration method that does not make use of goal information
and does not exploit the state-action model.

Best-first search (BFS) algorithms explore a graph by expanding the
most promising node at each time, according to an evaluation function.
When the evaluation function is given by a heuristic, i.e., an approxima-
tion of the cost to the goal, we refer to such algorithms as greedy best-first
search methods (GBFS). Usually, several heuristics are taken into consid-
eration with lexicographic preferences, e.g., if we choose nodes according
to heuristics 〈h1, h2, h3〉, then the node with the lowest value of h1 will be
selected, breaking ties with the value of h2, and then with h3.

In classical planning, state-of-the-art planners use heuristics derived
from the STRIPS state-action model definition. Some examples of heuris-
tics that have proved to be successful are given next:

49

i
i

“output” — 2021/7/7 — 15:22 — page 50 — #72 i
i

i
i

i
i

• The additive heuristic hadd (Bonet and Geffner 2001), where two
functions are defined, cx(s, x) and cX (s,X), that represent the cost
to achieve an atom x and a set of atoms X = {x1, ..., xm}, respec-
tively, from state s. The core assumption is that the cost of reaching
a set of atoms X is estimated as the sum of the costs to achieve each
atom in X , i.e., cX (s,X) =

∑m
i=1 cx(s, xi), and each individual atom

cost cx(s, x) is in turn recursively computed using cX . Then, the
heuristic is defined as the estimated cost to get to the set of atoms
representing the goal state, hadd = cX (s,G).

• The relaxed planning graph heuristic hff (Hoffmann and Nebel 2001),
where a delete-free relaxed plan is computed, i.e., a plan Πd where
the delete effects Del(o) of each operator o are ignored, and therefore
each state s in the relaxed problem accumulates all previously seen
atoms in the trajectory from s0 to s. Then, the cost to the goal is
estimated by the number of actions of the computed plan, hff = |Πd|.

• The landmarks heuristic, hL (Richter, Helmert, and Westphal 2008),
that computes a set of landmarks or subgoals from the relaxed plan,
and estimates the goal distance by the number of landmarks left.

In order to provide a planner that competes with state-of-the-art plan-
ners, Lipovetzky and Geffner (2012) presented a GBFS algorithm that
combines the novelty measure with goal-directed heuristics. Note that
BFS using state novelty w(s) as an evaluation function is equivalent to
IW, since it expands nodes with novelty 1 first, then novelty 2, and so
on, while avoiding the repeated work of each IW(k). Nevertheless, as
we discussed before, computing w(s) may be expensive, and it is usually
computed up to a certain k.

In particular, Lipovetzky and Geffner (2012) use as heuristic a linear
combination of state novelty with an indicator function of whether the
action leading to such state is helpful. Helpful actions are the ones that
are useful to reach a goal atom in the relaxed plan (Hoffmann and Nebel
2001). Ties are broken with the number of goal atoms left, denoted by
#g(s), and then with hadd. The result is a planner that achieves state-of-
the-art performance.

The possibilities of using state novelty as a heuristic are further ex-
plored in Lipovetzky and Geffner (2017a), focusing on GBFS algorithms

50

i
i

“output” — 2021/7/7 — 15:22 — page 51 — #73 i
i

i
i

i
i

that make use of state novelty as a heuristic, which they call Best-First
Width Search (BFWS) methods. They empirically show in classical plan-
ning benchmarks that using the novelty measure as the main heuris-
tic consistently increases the planner performance (in this case, without
combining it with helpful actions). For instance, BFWS(〈w, hadd〉) and
BFWS(〈w, hff〉) solve roughly twice as many instances, in less time (on
average), as their GBFS versions (i.e. using hadd and hff alone, without
any novelty measure). Here, the evaluation order of the heuristic functions
is left to right.

Lipovetzky and Geffner (2017a) extend the notion of novelty to handle
subproblems defined by heuristic valuations (or by any given collection of
functions) as follows.

Definition 8. Given a set of functions h1, . . . hm, a state s is novel for
width w if there exists a tuple t that appears for the first time among the
previously generated states s′ that have the same function values, i.e., with
hi(s) = hi(s

′) for i = 1, . . .m.

We use wh1,...hm to explicitly denote that the novelty measure considers
the subspace induced by the values of functions h1, . . . , hm. For instance,
IW(k) with w#g would need to keep a different novelty table for each set
of states with the same number of goal atoms, and would prune states
with all k-tuples of features appearing in previously seen states that have
the same number of goal atoms.

Note that the set of functions used in the novelty measure can be differ-
ent from the list of heuristic functions f taken into account by BFWS(f).
In fact, one of the best performing planners in Lipovetzky and Geffner
(2017a) is BFWS(f5), where f5 = 〈w#r,#g,#g〉. Here #g(s) and #r(s)
are two counters representing the number of atoms of sets G and R that
are contained in s, respectively. G is the set of goal atoms, and R is a set
of relevant atoms that capture potential subgoals not explicit in G. More
precisely, R is the union of all atoms collected along the last relaxed plan
that has been computed. In BFWS(f5), a new relaxed plan is computed
every time the goal counter decreases.

BFWS(f5) matches the performance of state-of-the-art planners, while
a more sophisticated version, Dual-BFWS, clearly outperforms all previ-
ous planners. As the name suggests, it consists of two consecutive searches.

51

i
i

“output” — 2021/7/7 — 15:22 — page 52 — #74 i
i

i
i

i
i

First, an incomplete version of BFWS(f5) that prunes nodes with novelty
greater than 1. Then a BFWS(f4), with f4 = 〈whL,hff

, hL, hff〉. The incom-
plete version of BFWS(f5) is further explored in Lipovetzky and Geffner
(2017b).

Frances et al. (2017) generalized BFWS(f5) by considering other sets of
relevant atoms R that do not require to compute a relaxed plan, and that
do not require the state-action model, in general. Their best-performing
planner uses a set of atoms R = R∗G extracted from an initial IW(1)
search. For those problems where it is not too computationally expensive,
IW(2) is run instead. Specifically, R∗G is the set of atoms collected from
all the trajectories in the IW(1) (or IW(2)) search tree that lead to states
containing at least one goal atom. The counter #r is then computed
from R∗G, and the novelty test considers the subspace induced by both #r
and #g. Following BFWS(f5), the search selects nodes according to the
heuristic w#r,#g breaking ties with #g.

The resulting planner, which they call BFWS(R∗G), compares well with
BFWS(f5). Importantly, it does not require the state-action model at
any time, and is appropriate to be used with simulators. This approach,
however, cannot be directly used in the MDP setting, since it requires to
know the goal representation in advance to compute the heuristic R∗G.

3.4 Width-Based Planning in MDPs

Several extensions of the original IW algorithm have been developed over
the last years, as the ones described in the previous section. One line
of research has focused on the popular Atari 2600 benchmark (Bellemare
et al. 2013), predominantly in the online replanning setting, where actions
are selected after a lookahead.

Lipovetzky, Ramirez, and Geffner (2015) extended the original IW
algorithm to deterministic MDPs by associating a reward R(s) to each
state s during search, equivalent to the reward

∑d−1
t=0 γ

trt+1 accumulated
on the path from s0 to Sd = s, where d is the depth of s in the search
tree. Here, the discount factor γ has the effect of favoring earlier rewards.
After the search completes, the state s∗ with highest cumulative reward
R(s∗) that has been generated but not pruned by IW is identified. Then,
the first action on the path from s0 to s∗ is applied, similarly to MCTS.

52

i
i

“output” — 2021/7/7 — 15:22 — page 53 — #75 i
i

i
i

i
i

Instead of dealing with the game image, the internal state of the ALE
simulator is used to represent the state, namely the RAM bytes, resulting
in |F| = 128 features with domain size |D| = 256. The authors state
that the bit correlations are important, and that using the individual bits
instead (|F| = 1024, |D| = 2) would result in poor results for IW(1).

Their results show that IW(1) outperforms UCT in 31 out of 54 games.
Both planners use a planning horizon of 150,000 frames, distributed in
500 rollouts of depth 300 in the case of UCT, and are restricted to a
maximum search depth of 1,500 nodes. In IW(1), however, a frameskip
of 5 is used, resulting in a budget of 30, 000 nodes, whereas in UCT no
frame is skipped (i.e., frameskip of 1; each frame is assigned to one node).
The maximum episode duration for both algorithms is 18,000 frames as is
common practice in ALE.

All algorithms reuse frames generated in previous searches, i.e., the
subtree of the previous lookahead rooted at the selected child s′ is kept,
while all siblings of s′ and their descendants are discarded. This is common
practice in online replanning for deterministic problems, which we refer
to as subtree caching. Such reused frames are not counted in the budget
for the subsequent search. In addition, cached states are ignored for the
computation of the novelty of new states, i.e., we start each search with
an empty novelty table, that is not re-initialized with the atom tuples of
the cached states.

Shleyfman, Tuisov, and Domshlak (2016) introduced prioritized-IW
(p-IW), modifying the online replanning version of IW in two ways: chang-
ing the novelty measure, and using a novelty queue that breaks ties with
rewards. Their novelty measure is as follows:

Definition 9. A state s is considered novel for width k if there exists a
tuple of atoms t of size k in s such that the cumulative reward R(s) is
higher than the one previously recorded for t.

Thus, in this case, the novelty table keeps the highest cumulative re-
ward so far, denoted as r̂(t), for each possible tuple of atoms t (initially
r̂(t) = −∞ for all tuples t), and considers a state novel if R(s) > r̂(t).
Then, it updates the novelty table with r̂(t) = max {R(s), r̂(t)}. With this
modification, the cumulative reward directly affects the pruning mecha-
nism, ensuring that p-IW(k) will never prune a state where R(s) is the
highest seen so far, which may be the case for IW(k).

53

i
i

“output” — 2021/7/7 — 15:22 — page 54 — #76 i
i

i
i

i
i

The second modification involves the order in which states in the
OPEN queue are selected for expansion. Instead of using a first in first
out (FIFO) queue, p-IW(k) uses a priority queue, where states are ex-
panded by depth (to maintain the BrFS expansion) and ties are broken
by cumulative reward. Jinnai and Fukunaga (2017) further extended p-IW
by learning to avoid actions that lead to the same successor state. Both
considerably outperform IW in the RAM setting of the Atari suite.

The literature revised so far contemplates a deterministic setting, which
is also the case in our work. To the best of our knowledge, there are no
works where width-based planning is applied to the stochastic version of
the Atari games (Machado et al. 2018). Geffner and Geffner (2015), how-
ever, present results of IW in the General Video-Game AI competition
(GVG-AI) benchmarks, where the state space is represented by an engi-
neered set of atoms P, and actions consist of procedures with stochastic
outcomes. To handle stochasticity, the possible actions at each state are
applied many times and labelled as either safe or unsafe. Safe actions are
those that have minimum risk of the avatar dying when applied. Unsafe
actions are then considered as not applicable.

Apart from IW(1) and IW(2), the authors also present results in a
mixture between the two, which they call IW(3/2), that consists in con-
templating tuples of size 2 only for a subset of atoms. Specifically, they
consider all pairs of atoms where one is a proposition about the avatar
(i.e., the agent). The results show that IW(1) clearly outperforms other
algorithms such as MCTS, even with a very small time budget (40ms).
When a slightly larger budget is allowed (300ms or 1s), IW(3/2) performs
the best in a subset of the games, scaling better than IW(2), similar to
IW(1). In the next section, we describe an extension of IW that is suitable
for very small planning horizons.

3.5 Rollout IW

Bandres, Bonet, and Geffner (2018) introduced a Rollout version of IW
that is equivalent to IW but presents a better anytime behavior in the
presence of sparse rewards, i.e., it produces a similar result to that of IW
without time limitations, and returns a better result when interrupted
promptly. The algorithm constructs the IW search tree in a depth-first

54

i
i

“output” — 2021/7/7 — 15:22 — page 55 — #77 i
i

i
i

i
i

manner, by repeatedly generating trajectories. However, it maintains the
width notion by keeping track of the minimum depth at which each tuple
of features is found, and generalizes the notion of novelty accordingly.

Definition 10. A newly generated state s is considered novel for width k
if any tuple of size k of atoms in s appears at a lower depth than previously
recorded.

The main difference with IW is that only one action is applied in each
state, generating trajectories instead of fully expanding nodes in a breadth-
first manner. Instead of keeping an OPEN list of nodes that need to be
expanded, the algorithm repeatedly traverses the search tree, revisiting
partially expanded nodes, and generating successor nodes when necessary.
In order to only keep expanding non-pruned nodes, and therefore maintain
the width notion, the algorithm distinguishes between two types of nodes
in the search tree: solved and unsolved nodes. Solved nodes are those that
do not need to be visited anymore, either because they have been pruned
or because all of their successors have already been generated and solved,
i.e., all actions have been applied and lead to solved successor nodes.

The tree traversal is done by choosing actions at random among those
that do not lead to solved nodes. At each step, the simulator is called
depending on whether or not the successor for the chosen action at a
given node is already present in the tree. In order to prune nodes that are
not novel, a novelty table D keeps track of the depths at which all tuples of
features are encountered. We then compare the depth d of a node n to all
its feature tuples of size w, and if d is lower than the depths D[t] previously
recorded at the novelty table for some tuple t, then n is considered novel.
When revisiting unsolved nodes of the search tree, we also need to check
that they are still novel before continuing the traversal. In that case, we
will find a tuple t that has depth equal to D[f]. The original algorithm
distinguishes four cases to determine whether a rollout continues or not,
given a node n with depth d (Bandres, Bonet, and Geffner 2018):

• Case 1: if node n is new in the tree and makes some tuple t of features
in n true, with d < D[t], update novelty table and continue rollout.

• Case 2: if node n is new in the tree but d ≥ D[t] for each tuple t of
features in n, terminate rollout.

55

i
i

“output” — 2021/7/7 — 15:22 — page 56 — #78 i
i

i
i

i
i

Algorithm 3.1 Rollout IW(k)

function Lookahead(tree, k)
Initialize labels(tree)
D := Novelty table()
while within budget and ¬tree.root.solved do

n, a := Select(tree.root, D, k)
if a 6= ⊥ then

Rollout(n, a, D, k)

function Select(n, D, k)
loop

novel := Check novelty(D, k, n.atoms, n.depth)
if is terminal(n) or ¬novel then

Solve and propagate label(n)
return n, ⊥

a := Sample action(n)
if n[a] in tree then

n := n[a]
else

return n, a

function Rollout(n, a, D, k)
while within budget do

n := Successor(n, a)
n.solved := false
novel := Check and update novelty(D, k, n.atoms, n.depth)
if is terminal(n) or ¬novel then

Solve and propagate label(n)
return

a := Sample action(n)

56

i
i

“output” — 2021/7/7 — 15:22 — page 57 — #79 i
i

i
i

i
i

• Case 3: if node n is already in the tree but all feature tuples of n
are recorded at a lower depth, d > D[t], terminate rollout.

• Case 4: if node n is already in the tree and makes some tuple true
with d = D[t], continue rollout.

The Rollout IW algorithm repeatedly selects a node-action pair (n, a)
that has not yet been expanded, and then performs a rollout from (n, a).
In the original pseudocode, however, the selection and rollout phases are
intertwined. In this work, we split the pseudocode presented in Bandres,
Bonet, and Geffner (2018) into three distinct functions: Lookahead, Se-
lect, and Rollout, which are detailed in Algorithm 3.1. The main function
Lookahead iteratively interleaves calls of Select and Rollout, which contem-
plate cases 3-4 and 1-2, respectively. Select samples actions to traverse
the tree until a node-action pair (n, a) is reached such that there is no suc-
cessor in the tree for (n, a). For that, it relies on function Sample action
to select actions at random from those that do not lead to solved nodes
(i.e., either they lead to unsolved nodes or to nodes not yet generated).
Rollout then samples actions starting from (n, a), calling the Successor
function to generate new nodes that are added to the search tree, until a
state is reached that is either terminal or not novel. At that point, the
final node is marked as solved and the process restarts until all nodes have
been solved or a maximum budget of time or nodes is exhausted.

Pruning is done in both the Select and Rollout functions. Select only
needs to check the novelty table but does not need to update it. On the
other hand, the Rollout function checks the novelty table and updates it
with the feature tuples of all newly generated nodes that have a lower
depth than previously recorded. The pseudocode reported in Bandres,
Bonet, and Geffner (2018) does not update the novelty table with features
of terminal nodes. This is an algorithm design choice, which we have not
seen to have an effect on performance. In our experiments in Chapter
6, we use Rollout IW as is detailed in Algorithm 3.1, which updates the
novelty table with terminal node features (i.e., we perform the novelty
check and update as soon as the successor state is generated).

We detail both functions for checking and updating the novelty table
with feature tuple depths in Algorithm 3.2. Every time a node is labelled
as solved, we try to propagate the label along the branch to the root

57

i
i

“output” — 2021/7/7 — 15:22 — page 58 — #80 i
i

i
i

i
i

Algorithm 3.2 Depth-based novelty check and update

function Check novelty(D, k, atoms, d)
for t in Combinations(atoms, k) do

if d ≤ D[t] then
return true

return false

function Check and update novelty(D, k, atoms, d)
novel := false
for t in Combinations(atoms, k) do

if d < D[t] then
D[t] := d
novel := true

return novel

(in function Solve and propagate label). Each node of the branch will be
solved if all of its children have been generated (i.e., all available actions
have been tried) and appear as solved. Thus, the label propagation stops
when at least one child has not yet been solved. With subtree caching, all
nodes of the cached tree are initially marked as not solved, except for the
ones that are terminal. This is done by function Initialize labels.

There is a subtle difference between the exploration performed in Roll-
out IW and IW, even when enough time is given. The pruning mechanism
of IW depends on the ordering in which actions are applied when expand-
ing nodes. Thus, a tuple t of features that appears twice at the same
depth will only make novel the state that has been generated first. How-
ever, Rollout IW may keep more than one node unsolved due to the same
tuple t. This is because there may be several nodes at the same depth
that satisfy the condition d = D[t]. Although this condition will only be
checked for unsolved nodes, there may be nodes that were novel at gener-
ation due to other tuples different than t, and were therefore not marked
as solved. If those tuples were later found at a lower depth, such nodes
would still be considered novel at the selection phase due to tuple t.

Rollout IW is the first width-based algorithm that unties the order
of generating states from the novelty test. This actually allows for many
new width-based algorithms that generate nodes in different orders and

58

i
i

“output” — 2021/7/7 — 15:22 — page 59 — #81 i
i

i
i

i
i

use the functions in Algorithm 3.2 to check and update the depth-based
novelty table. For example, in Chapter 5 we present an algorithm based
on Rollout IW that uses this novelty test. Note, however, that Rollout
IW needs to perform many novelty checks, compared to IW, because the
order is not breadth-first. In Chapter 4, we analyse the complexity of just
checking, or checking and updating the novelty table.

3.5.1 Results in Atari Games

Compared to IW, the rollout version has a better anytime behavior. This
becomes very convenient in simulator environments such as the Atari
games, where the algorithm is applied iteratively in an online replanning
manner. Bandres, Bonet, and Geffner (2018) provide results in Atari
games in almost real time, using a budget of 0.5 seconds for planning in
each iteration, that compares well with previous approaches. For the first
time, visual features extracted from the game images are used, which are
arguably more complex and less informative than the internal RAM state
of the game used in previous approaches. Specifically, the features used
are the B-PROST features, described in Section 2.6.3, which consists of
a total of 20,598,848 binary features. In this case, Blob-PROST features
also described in Liang et al. (2016), that aim at detecting objects, were
not considered for the Rollout IW experiments.

Bandres, Bonet, and Geffner (2018) presented results in 58 Atari games
for IW(1) and Rollout IW(1) with B-PROST features, using a frameskip
of 15 frames, and time budgets of 0.5 and 32 seconds. They compare their
approach to IW(1) using RAM features (Lipovetzky, Ramirez, and Geffner
2015), which used a budget of 30,000 nodes and a frameskip of 5, DQN, and
human scores (Mnih et al. 2015). For Rollout IW, the authors consider
two extensions, which they call Risk Aversion (RA) and Risk Aversion
with Subscoring (RAS). In the risk aversion scenario, negative rewards
are multiplied by a large constant α = 50,000 and a high negative reward
of −10α is given when the agent loses a life. Inspired by the serialization
of goals, the subscoring approach also considers many novelty tables, and
each state s is considered novel by looking up the value in the i-th novelty
table, where i is obtained depending on the cumulative reward of the

59

i
i

“output” — 2021/7/7 — 15:22 — page 60 — #82 i
i

i
i

i
i

Algorithm Features Budget ≥ Human

DQN - - 46.9%
Sarsa Blob-PROST - 36.7%

IW(1) RAM 15,000 nodes 77.6%

IW(1)

B-PROST

0.5s

14.2%
Rollout IW(1) 38.7%
RA Rollout IW(1) 44.8%
RAS Rollout IW(1) 51.0%
IW(1)

32s

44.8%
Rollout IW(1) 69.3%
RA Rollout IW(1) 71.4%
RAS Rollout IW(1) 75.5%

Table 3.2: Summary of Tables 1 and 2 from Bandres, Bonet, and Geffner
(2018). The first two rows are results of reinforcement learning methods
(Liang et al. 2016; Mnih et al. 2015) and the third row belongs to IW(1)
with RAM features (Lipovetzky, Ramirez, and Geffner 2015).

trajectory from the root to s, R(s), as follows:

i =

0, for R(s) ≤ 0

blog2(R(s))c, for 0 < R(s) < 1

blog2(R(s)) + 1c, for 1 ≤ R(s)

where b·c : R→ Z, once more, is the floor function.
Table 3.2 shows a summary of the results. The rollout version clearly

outperforms IW(1) with both time budgets, achieving a higher score than
the one reported by a human player in almost 70% of the games, with the
larger budget. Interestingly, it performs comparably to RL methods only
using 0.5s of budget, even when using a simpler set of features, although
risk aversion is needed to match the performance of DQN. The version
of the algorithm with risk aversion and subscoring, with 32 seconds of
budget, is able to match the score of IW(1) with RAM features, which
is remarkable since the later uses the internal simulator state as features
and a bigger budget. Nevertheless, when we compare the absolute scores
of both algorithms (instead of the relative score compared to a human
player) we find that IW(1) outperforms Rollout IW in 34 out of 51 games.

60

i
i

“output” — 2021/7/7 — 15:22 — page 61 — #83 i
i

i
i

i
i

Part II

Planning

61

i
i

“output” — 2021/7/7 — 15:22 — page 62 — #84 i
i

i
i

i
i

i
i

“output” — 2021/7/7 — 15:22 — page 63 — #85 i
i

i
i

i
i

Chapter 4

Complexity of IW

IW(k) involves two main loops: an outer loop that expands states, and
an inner loop for the novelty check. Let N be a bound on the number of
(novel) states expanded by IW(k), and C a bound on the number of checks
to the novelty table performed for each generated state. Let b bound the
number of actions applicable at each state. Then, bN is a bound on
the number of states generated by IW(k), and the overall complexity is
bounded by bNC.

There are well-known results regarding the complexity of IW(k) given
the atoms of the problem P. The number of (novel) nodes expanded by
IW(k) is bounded by N = |P|k, while at each node generation at most

C =
(|P|
k

)
tuples of atoms are checked, which is also bounded by |P|k.

Therefore, IW(k) runs in time O(b|P|2k). Furthermore, if the novelty

table is a perfect hash, it requires at most
(|P|
k

)
= O(|P|k) memory space.

When using the formulation P = F×D, we can get tighter bounds than
the ones presented above. This is because atoms resulting from different
values of the same feature cannot be found at the same time. We divide
this Chapter in two sections. First, we provide a tighter bound on the
number of expanded states N . Then, we discuss the role of the novelty
check C when using features, the impact it has on the overall complexity
when a short planning horizon is considered, and when rollouts are used
instead of BrFS. We end the Chapter providing a lower and an upper
bound on C.

63

i
i

“output” — 2021/7/7 — 15:22 — page 64 — #86 i
i

i
i

i
i

4.1 Expanded Nodes

In this section we provide a tighter upper bound on the number of states
N expanded by IW(k). We use n = |F| to denote the number of features,
and d = |D| to denote the domain size. The existing complexity result
with atoms composed by features that we know of is based on |P| = nd,
yielding that IW(k) expands at most (nd)k nodes (Lipovetzky, Ramirez,
and Geffner 2015). Bandres, Bonet, and Geffner (2018) give a bound based
on the number of features, but do not take into account the domain size.

Proposition 1. Let N(n, d, k) denote the maximum number of novel
states visited by IW(k) for a given pair (n, d). Then, N(n, d, k) is given
by the recursive formula

N(n, d, 0) = 1,

N(n, d, n) = dn,

N(n, d, k) = N(n− 1, d, k) + (d− 1) ·N(n− 1, d, k − 1).

There are two base cases: k = 0, in which case no state is novel apart
from s0, i.e., N(n, d, 0) = 1, and k = n, in which case all states are
novel, i.e., N(n, d, n) = dn. The intuition for the recursion is as follows.
Consider the case where IW(k) visits the maximum number of states.
Given a feature f ∈ F , we can partition the subset of novel states into
two subsets:

• Sf : states that are novel solely due to tuples that include f .

• S¬f : states that are novel (in part) due to tuples that exclude f .

The initial state s0 is included in S¬f , since it is novel due to all features.
Since f is irrelevant in S¬f , IW(k) would consider novel the same states
in this group even if we removed f . Thus, the maximum amount of novel
states in S¬f is N(n− 1, d, k). Regarding Sf , we can further divide it into
d− 1 subsets, each corresponding to a value of f different from its initial
value v0 = φ(s0)[f]. In each subset, since the value of f is the same, the
novelty test can be simplified to checking tuples of size k − 1 of features
different than f . Therefore, the maximum number of novel states in Sf is
given by (d− 1) ·N(n− 1, d, k − 1).

64

i
i

“output” — 2021/7/7 — 15:22 — page 65 — #87 i
i

i
i

i
i

It is important to note that we are not decomposing the problem into
multiple subproblems with one less feature, where we could apply many
IW searches, but rather using a divide and conquer strategy to recursively
define an upper bound on the number of novel states in each subset. If
n > k > 0, the maximum number of novel states that can be produced by
an IW(k) search in a problem with n features is the same as the maximum
number of novel states generated in d IW searches in some other problem
with n − 1 features: (d − 1) times the one of IW(k − 1) plus the one of
IW(k).

(f0, f1, f2, f3) f0f1 f0f2 f0f3 f1f2 f1f3 f2f3

S¬f0

(0, 0, 0, 0) 00 00 00 00 00 00
(0, 0, 0, 1) 00 00 01 00 01 01
(0, 0, 1, 1) 00 01 01 01 01 11
(0, 0, 1, 0) 00 01 00 01 00 10
(0, 1, 1, 0) 01 01 00 11 10 10
(0, 1, 1, 1) 01 01 01 11 11 11
(0, 1, 0, 1) 01 00 01 10 11 01
(0, 1, 0, 0) 01 00 00 10 10 00

Sf0

(1, 1, 0, 0) 11 10 10 10 10 00
(1, 1, 0, 1) 11 10 11 10 11 01
(1, 1, 1, 1) 11 11 11 11 11 11
(1, 1, 1, 0) 11 11 10 11 10 10

(1, 0, 1, 0) 10 11 10 01 00 10
(1, 0, 1, 1) 10 11 11 01 01 11
(1, 0, 0, 1) 10 10 11 00 01 01
(1, 0, 0, 0) 10 10 10 00 00 00

Table 4.1: List of all possible dn states, with n = 4 features and domain
size d = 2. We list them in Gray code (i.e., only one bit changing at a
time) and consider this as the order of expansion of IW(2), ensuring the
worst case scenario where the maximum number of states are considered
novel. The last column shows the tuple combinations taken into account
in the novelty test. Novel states and the feature tuples that make them
novel are shown in bold. Values of f0 and tuples that are irrelevant for
the novelty test in subsets S¬f0 and Sf0 are shown in gray.

65

i
i

“output” — 2021/7/7 — 15:22 — page 66 — #88 i
i

i
i

i
i

In the worst case, all states in S¬f present the same value in feature
f , i.e., the one appearing in the initial state v0, otherwise |Sf | would not
be maximal. The intuition is that, to produce the maximum number of
novel states, all feature values of f need to be key, at some point, to make
a state novel. This is the case in the example that we show in Table 4.1,
where all dn states are visited by IW(2) in such an order that only one
feature changes at a time. In this case, the problem has n = 4 features
with domain size d = 2, but such list of Gray code states can be generated
for any pair (n, d) (Guan 1998).

If we take f = f0, we observe that the first 7 states are novel, in part,
due to tuples of features f1, f2, and f3, and therefore belong to S¬f0 .
Indeed, they can be counted using N(n− 1, d, k) = N(4− 1, 2, 2):

N(3, 2, 2) = N(3− 1, 2, 2) + (2− 1) ·N(3− 1, 2, 1)

= 22 +N(2, 2, 1)

= 22 +N(2− 1, 2, 1) + (2− 1) ·N(2− 1, 2, 0)

= 22 + 21 + 1 = 7.

The last 4 novel states are novel exclusively due to tuples containing
f0 (Sf0), and can be counted using (d− 1) ·N(n− 1, d, k− 1) = 1 ·N(4−
1, 2, 2− 1):

N(3, 2, 1) = N(3− 1, 2, 1) + (2− 1) ·N(3− 1, 2, 0)

= N(2, 2, 1) + 1

= N(2− 1, 2, 1) + (2− 1) ·N(2− 1, 2, 0) + 1

= 21 + 1 + 1 = 4.

Theorem 1. For n features of size d, the maximum number of novel states
visited by IW(k), 0 ≤ k < n, is

N(n, d, k) =

k∑
i=0

[(
n− 1− i
k − i

)
di(d− 1)k−i

]
.

Proof. The proof is by induction on pairs of integers (n, k). The base case is
given by (n, 0), in which case we have

N(n, d, 0) =

0∑
i=0

[(
n− 1− i

0− i

)
d0(d− 1)0−i

]
=

(
n− 1

0

)
d0(d− 1)0 = 1.

66

i
i

“output” — 2021/7/7 — 15:22 — page 67 — #89 i
i

i
i

i
i

For (n, k) such that 0 < k < n − 1, by hypothesis of induction we assume that
Theorem 1 holds for (n−1, k−1) and (n−1, k). Applying the recursive definition
yields

N(n, d, k) = (d− 1)N(n− 1, d, k − 1) +N(n− 1, d, k)

= (d− 1)

k−1∑
i=0

[(
n− 2− i
k − 1− i

)
di(d− 1)k−1−i

]

+

k∑
i=0

[(
n− 2− i
k − i

)
di(d− 1)k−i

]

=

k−1∑
i=0

[((
n− 2− i
k − 1− i

)
+

(
n− 2− i
k − i

))
di(d− 1)k−i

]
+

(
n− 2− k

0

)
dk(d− 1)0

=

k−1∑
i=0

[(
n− 1− i
k − i

)
di(d− 1)k−i

]
+

(
n− 1− k

0

)
dk(d− 1)0

=

k∑
i=0

[(
n− 1− i
k − i

)
di(d− 1)k−i

]
.

Here, we used the identities
(
n−1
m−1

)
+
(
n−1
m

)
=
(
n
m

)
, 0 < m < n, and

(
n
0

)
= 1 =(

n+1
0

)
.

For (n, k) such that k = n − 1, by hypothesis of induction we assume that
Theorem 1 holds for (n− 1, k − 1). Applying the recursive definition yields

N(n, d, k) = (d− 1)N(n− 1, d, k − 1) +N(n− 1, d, k)

= (d− 1)

k−1∑
i=0

[(
n− 2− i
k − 1− i

)
di(d− 1)k−1−i

]
+ dk

=

k−1∑
i=0

[(
n− 1− i
k − i

)
di(d− 1)k−i

]
+

(
n− 1− k

0

)
dk(d− 1)0

=

k∑
i=0

[(
n− 1− i
k − i

)
di(d− 1)k−i

]
.

Here, we used the definition N(n − 1, d, k) = N(k, d, k) = dk and the identity(
n
n

)
= 1 =

(
n+1
n+1

)
, which is applicable since (k − 1 − i) = (n − 1 − 1 − i) =

(n− 2− i).

67

i
i

“output” — 2021/7/7 — 15:22 — page 68 — #90 i
i

i
i

i
i

0 10 20 30 40 50
#Features n

106

108

1010

n [5,50], d=10, k=4

N
Nc
Nb

0 10 20 30 40 50
#Values per feature d

106

108

1010

1012

1014
n=50, d [2,50], k=4

0 10 20 30 40 50
Width k

10 4

1021

1046

1071

1096

10121

n=50, d=10, k [1,50]

Figure 4.1: Comparison example between N(n, d, k), its succinct upper
bound Nc = dk

(
n
k

)
, and the baseline Nb = (nd)k. Plots from left to right

vary n, d, and k, respectively. The y axis shows the number of states for
the given parameters (n, d, k).

To obtain a more concise upper bound on N , we can write

N(n, d, k) =
k∑
i=0

[(
n− 1− i
k − i

)
di(d− 1)k−i

]

≤ dk
k∑
i=0

(
n− 1− i
k − i

)
= dk

k∑
i=0

(
n− k − 1 + i

i

)
= dk

(
n

k

)
.

where equality only holds for the case k = 0. In this case, we used iden-
tities

(
m
r

)
=
(
m
m−r

)
and

∑m
i=0

(
r+i
i

)
=
(
r+m+1
m

)
. The original bound can

be obtained by approximating the binomial coefficient as an exponential
dk
(
n
k

)
≤ dknk = (nd)k.

Figure 4.1 shows a comparison example between N(n, d, k), its com-
pact version Nc = dk

(
n
k

)
, and the (loose) baseline bound Nb = (nd)k. In

particular, we compare N , Nc, and Nb in three plots where, from left to
right, we vary parameters n, d, and k individually, while leaving the rest
fixed. First, we observe that the difference between N and its compact
version Nc is not significant compared to the baseline, in all three plots.
The left-most plot shows a constant difference of two orders of magnitude
between Nb and our tighter bounds N and Nc for this particular example,
where the number of features varies from 1 to 50, each feature can take 10
values, and we are considering width k = 4. If we compare N and Nc we

68

i
i

“output” — 2021/7/7 — 15:22 — page 69 — #91 i
i

i
i

i
i

observe a slight increasing difference due to the term −1 that we ignored
in the process to obtain the compact bound. If we vary d instead (middle
plot), with n = 50 features, we see a difference between 1 and 3 orders of
magnitude between Nb and N . In this case, the small difference between
N and Nc reduces when increasing d. When varying k (right-most plot),
the difference between Nb and our two bounds N and Nc grows exponen-
tially. Here, the difference between N and Nc gets to almost two orders
of magnitude, which is not significant when compared to the baseline.

4.2 Novelty Check and Update

In this section we discuss the impact of the second bound C on the overall
bound bNC. The novelty check for width k of a state s consists of many
look-ups to the novelty table and, if there is one tuple of atoms in s
that does not appear in the table, the state is considered novel. The
novelty table is then updated with all the newly seen atom tuples in s.
If we consider Ptrue, where states are collections of propositions of the
environment that are true, then there are at most C =

(|P|
k

)
atom tuples.

On the other hand, when considering PF , since the atoms are restricted
to one value per feature, there are C =

(
n
k

)
possible tuples to be checked,

where n = |F|.
When considering a problem with binary features, using PF or Ptrue

(i.e., explicitly stating false statements or not, respectively) makes a dif-
ference in the output of IW(k), as discussed in Chapter 3, but also in the
complexity of checking and updating the novelty table. Using Ptrue results
in a quicker novelty check and update, since only a fraction of the possible
atoms are checked (those that are true). Moreover, in practise, the num-
ber of atoms used to represent each state is small compared to |P|. This is
because the dynamics of the environment forbid two atoms from appearing
simultaneously, e.g., in Blocksworld, if one object is being held, no other
object can be held. In order to get a novelty check nearly as efficient with
PF , atoms that cannot appear simultaneously should be encoded into the
domain of the same feature, e.g., a feature that tells us which block is be-
ing held instead of having a binary feature for each block. In other words,
using Ptrue does not affect the novelty check complexity (assuming that
the number of true atoms is small), while in PF it is important how the

69

i
i

“output” — 2021/7/7 — 15:22 — page 70 — #92 i
i

i
i

i
i

0 5 10 15 20
Width

100

101

102

103

104

105

Tu

pl
es

n=1
n=2
n=5
n=10
n=20

0 20 40 60 80 100
Features

101

104

107

1010

1013

1016

1019

Tu

pl
es

w=1
w=2
w=5
w=10
w=20

Figure 4.2: Number of tuples that IW(k) checks and updates in a problem,
varying the width k for different number of features (left), and varying the
number of features n for different widths (right).

features are defined (since all of them will be checked).

Note that checking the novelty in PF takes at most
(
n
k

)
look-ups, while

updating the novelty table takes exactly
(
n
k

)
. The reason is that finding one

novel tuple is enough to tell that a state is novel, and therefore the novelty
check loop can stop at that point. In contrast, all new tuples need to be
recorded to update the novelty table. Usually, both check and update
operations are done at the same time. The complexity for checking and
updating the novelty table then grows asymptotically at a rate Θ

(
nk
)
,

since
(
n
k

)
is bounded by nk. The overall complexity bound for IW(k)

when using PF is bNC = bN(n, d, k)
(
n
k

)
, which is in turn upper-bounded

by bdk
(
n
k

)2
or b(dn2)k. Note that even this last (loose) bound is tighter,

by a factor d, than the one considering |Ptrue| = nd, as in Lipovetzky,
Ramirez, and Geffner (2015), which gives b(dn)2k.

In terms of novelty check and update, having a high width may actually
imply a low complexity, depending on the amount of features n. For
instance, checking and updating the novelty table in IW(n) is quicker than
in IW(1). The reason is that there is only a single tuple to be checked
at each state when k = n, compared to n tuples when k = 1. In general,
the complexity has a bell shape when increasing k, given by the binomial
coefficient

(
n
k

)
. This is illustrated in Figure 4.2 for some examples of n,

varying k < n. The right plot shows the effect of increasing the amount
of features for some fixed widths. No matter how informative such new

70

i
i

“output” — 2021/7/7 — 15:22 — page 71 — #93 i
i

i
i

i
i

features are, they will have an impact on the complexity. It is therefore
not desirable to have redundant features, even though the result of IW(k)
would be the same with or without them. As discussed above, in terms of
novelty check, it is preferable to introduce new feature values instead of
new features, since the bound is linear in d but quadratic in n.

The impact of the novelty check and update is more notorious in the
online replanning setting, since only a fraction of the state space that
IW(k) can explore is actually visited. In this case, the amount of expanded
nodes N becomes bounded by the planning budget B, resulting in the
overall complexity bound bBC. Here, C plays a bigger role than initially
presumed, assuming B < N . This is aggravated in Rollout IW. Since
nodes are not expanded as in BrFS, the novelty of all revisited states needs
to be rechecked at every traversal to maintain the notion of width. Then,
the complexity of Rollout IW becomes O

(
b(dn3)k

)
(Bandres, Bonet, and

Geffner 2018), which is worse by a factor of nk, compared to IW. All this
motivates the use of width k = n later in Chapter 6, where we plan at
two levels of abstraction, and use Rollout IW(n) to explore the high-level
state space at a low cost. This way of planning hierarchically is described
in the next Chapter.

4.2.1 Checking only features that change

The novelty check and update can be optimized by only checking tuples
with features that have changed in a transition s′ = T (s, a) (Bonet and
Geffner 2021), i.e., tuples that contain features in s′ that have a different
value from its parent state s. In STRIPS, it is easy to check for new
atoms: they are given by the Add(a) list. In other formulations, we may
need to iterate over the state atoms or the feature vector. However, this
extra step may pay off, as we analyze next.

Theorem 2. When ignoring tuples of unchanged features, the amount of
feature tuples checked in IW(k) grows asymptotically at a rate of at least
O(nk−1) and at most O(nk).

Proof. Let c denote the features that changed value, and u denote the
unchanged features, such that n = c + u. Then, for width k, c < k and

71

i
i

“output” — 2021/7/7 — 15:22 — page 72 — #94 i
i

i
i

i
i

u < k, we have that the amount of tuples to be checked is(
c+ u

k

)
−
(
u

k

)
=

k∑
i=0

(
c

i

)
·
(

u

k − i

)
−
(
u

k

)
=

k∑
i=1

(
c

i

)
·
(

u

k − i

)
, (4.1)

where the first equality follows from applying Vandermonde’s identity.
From Equation 4.1 we observe that the complexity is O(ck + cuk−1).
When only checking tuples of features that have changed, we have that
the amount of feature tuples to be checked is lower-bounded by

(
n−1
k−1

)
=

O(nk−1) (in the case that only one feature has changed) and upper-
bounded by

(
n
k

)
= O(nk) (in the case that all features have changed).

If we consider that c is bounded by a constant, then the complex-
ity of checking and updating the novelty table grows asymptotically at
a rate O(uk−1) = O(nk−1). When using Ptrue, the complexity becomes
O(|P|k−1) under the same assumption, as described by Bonet and Geffner
(2021).

72

i
i

“output” — 2021/7/7 — 15:22 — page 73 — #95 i
i

i
i

i
i

Chapter 5

Hierarchical Iterated Width

In this chapter, we present our hierarchical approach to width-based plan-
ning. We start by defining a simple algorithm for hierarchical blind search.
Then, we consider using width-based planners at two levels of abstraction,
and show its effect on the width compared to planning at a single level,
drawing connections with related work. Finally, we present a method to
discover high-level features incrementally, that we test in classical planning
domains.

For simplicity, and without loss of generality, we assume a two-level
hierarchy: a high level (h) and a low level (`). Each level is defined by
its own feature set (Fh and F`, with domains Dh and D`, respectively)

and feature mapping (φh : S → D|Fh|h and φ` : S → D|F`|` , respectively).
Each state s maps to a high-level state sh = φh(s) and a low-level state
s` = φ`(s).

5.1 A Hierarchical Approach to Blind Search

Blind search methods require two components: a successor function, that
given a state and an action returns a successor state (e.g. a simulator),
and a stopping condition, that will stop the search, for instance, when the
goal is reached or after a budget is exhausted. In order to have different
search levels, we modify these two components as follows:

• High-level successor function: Each call to this function triggers

73

i
i

“output” — 2021/7/7 — 15:22 — page 74 — #96 i
i

i
i

i
i

a low level search, that runs until a new high-level state is found
(i.e., a state s that maps to a different φh(s)).

• Low-level stopping condition: When a different high-level state
is encountered, the search is stopped, returning control to the high-
level planner. This stopping condition is added to the existing stop-
ping conditions.

The control goes back and forth between the high and low-level plan-
ners. Each time that the high-level successor function is called, the ac-
cording low-level search is resumed, generating new states until a new
high-level state is found. We achieve this by storing a low-level search
tree for each high-level state. If the low-level search terminates without
finding a new high-level state, the high-level successor function returns
null, and the high-level state is marked as expanded. The high-level plan-
ner will only generate successors from non-expanded high-level states, and
can resume search from any state by retrieving it from memory.

The proposed framework allows many levels of abstraction, as well as
the possibility to have different search methods at each level. For instance,
we could have a breadth-first search at the high level and a depth-first
search at the low level, or combine different width-based search methods.

5.2 Hierarchical Width

The framework in the previous section partitions the states into subsets
based on high-level features. To plan over the subsets, we can use any
width-based search method as a high-level planner. For instance, we can
apply IW(2) at the high level and IW(1) at the low level. An example
representation of this hierarchical search, which we denote by HIW(2, 1)
is given in Figure 5.1. In general, we call HIW(kh, k`) the hierarchical
combination of two IW searches, where kh is the width at the high-level
and k` the width at the low level. We next define a type of high-level
feature that we call splitting, and compare HIW with flat IW, showing the
effect of the hierarchy on the width of the problem.

Definition 11. A high-level feature f ∈ Fh is splitting if, for each value
v ∈ Dh, the states of the induced subset {s ∈ S : φh(s)[f] = v} and their
edges form a connected graph.

74

i
i

“output” — 2021/7/7 — 15:22 — page 75 — #97 i
i

i
i

i
i

IW(1) IW(1)

IW(1)
IW(2)

Figure 5.1: Illustrative example of HIW(2, 1). Each high-level node of the
IW(2) search (in blue), contains a low-level IW(1) search tree (in black).

Example: consider a simple problem, depicted in Figure 5.2 (left), where
an agent needs to move along a corridor of length L, pick up a key, and go
back along the same path to open a door. We can describe this problem
using two features: p (the position) and h (whether or not the key is held).
Initially p = 0 and h = 0. The goal is p = 0 and h = 1. If h ∈ Fh, then
h is splitting: when h is false, the agent can still visit all the positions of
the corridor, and likewise when h is true. In Figure 5.2 (right) we show
a similar problem in 2D. Let us split the space of positions, which in this
case we represent with two features (px, py), into two tiles. Then, let us
define a feature t ∈ {0, 1} that tells us whether the agent is in one tile or
the other. If we take the dashed line in blue to define such tiles, then t
is splitting, since the agent can visit all positions of the same tile without
needing to move to the other tile. Note that not all possible positions
(px, py) need to be reachable from each value v of feature t (as it is the
case of the corridor example), rather, all positions (px, py) in the subspace
t = v need to be reachable from a state of the same subspace, for all
v ∈ {0, 1}. If we take the dashed line in red to define the tiles instead, the
wall (in gray) prevents the agent from moving from the lower to the upper
positions of the left tile, and thus t would not be splitting in this case.

Theorem 3. If all features in Fh are splitting, HIW(kh, k`) is equivalent
to a restricted version of IW(kh + k`) with tuples of kh features from Fh
and k` features from F`.

75

i
i

“output” — 2021/7/7 — 15:22 — page 76 — #98 i
i

i
i

i
i

Figure 5.2: Navigation problem examples to illustrate splitting features,
where an agent needs to pick up a key to open a door. Left: corridor
example (1D). Right: 2D example with a wall represented by the rectangle
in gray. The dashed lines represent possible ways of splitting the 2D state
space.

Proof. Since each feature in Fh is splitting, when we apply IW(k`) in a
high-level state sh, the subset of states induced by sh is connected. Since
the restricted version of IW(kh + k`) considers exactly k` features in F`,
it will explore the same low-level states as IW(k`). At the high-level, the
restricted version of IW(kh + k`) considers exactly kh features in Fh, so
it will explore the same high-level states as IW(kh). Since the tuples in
IW(kh+k`) involve features in both Fh and F`, each state in the low-level
search of a new high-level state is novel. Hence HIW(kh, k`) explores the
same states as the restricted version of IW(kh + k`).

Example: The corridor example of Figure 5.2 with features p and h has
width 2, since IW needs to keep track of the key and visited position jointly
to be able to reach the goal. This example can be solved by HIW(1, 1)
using Fh = {h} and F` = {p}, after two low-level searches (one for h = 0
and one for h = 1), and visits the same states as IW(2).

Theorem 3 compares HIW(kh, k`) to flat IW(kh + k`) when all the
features in Fh are splitting. However, this is not a necessary condition for
HIW(kh, k`) to solve problems of width k`+kh. Without splitting features,
HIW will not generate the same nodes as the restricted version of IW,
but may still find the goal. We empirically show this in the experiments
section.

Notice that HIW may not generate the states in the same order than

76

i
i

“output” — 2021/7/7 — 15:22 — page 77 — #99 i
i

i
i

i
i

Figure 5.3: Example of MDP with two splitting features where HIW(1, 1)
and IW(2) visit the state space in a different order.

the restricted flat version. For instance, consider the MDP example shown
in Figure 5.3, where the state space is described by two features, (h, `),
with domains {0, 1} and {0, 1, 2, 3}, respectively. In this case, both fea-
tures are splitting, since states with h = 0 (i.e., s0, s1, s2, and s3) and
states with ` = 0 (i.e., s0 and s4) are connected, and all other feature
values appear in a single state. Let us select feature h as the high-level
feature. Because h is splitting, HIW(1, 1) will visit the whole state space.
However, the order at which states are visited is determined by the high-
level splitting: s0, s1, s2, s3 for the high-level state represented by h = 0,
and s4 for h = 1. If we run flat IW(2) instead, s3 will be visited at depth 3
instead of at depth 4. Finally, note that in this case an IW(1) search would
be sufficient to explore the state space, because the subspace induced by
h = 1 consists of a single state.

Theorem 4. Let nh = |Fh| and dh = |Dh| be the number of high-level
features and domain sizes, and define (n`, d`) analogously. The maxi-
mum number of novel states expanded by HIW(kh, k`) is N(nh, dh, kh) ·
N(n`, d`, k`).

Proof. At the high level, HIW(kh, k`) applies IW(kh), which expands a
maximum of N(nh, dh, kh) novel high-level states due to Theorem 1. For
each novel high-level state, HIW(kh, k`) applies IW(k`), which expands a
maximum of N(n`, d`, k`) novel low-level states.

Note that the maximum number of novel states expanded by the un-
restricted version of IW(kh + k`) on the feature set F = Fh ∪ F` is
N(nh + n`,max(dh, d`), kh + k`), which is much larger, in general, than
N(nh, dh, kh) ·N(n`, d`, k`).

77

i
i

“output” — 2021/7/7 — 15:22 — page 78 — #100 i
i

i
i

i
i

Example: The RAM memory in Atari, used in Lipovetzky, Ramirez, and
Geffner (2015), consists of n = 128 features with d = 256 values. For
IW(2), an upper bound on the number of novel states is N(n, d, w) ∼
5 · 108. If we identify a splitting feature and define nh = 1, n` = 127, and
kh = k` = 1, the upper bound due to Theorems 2 and 3 is N(nh, d, kh) ·
N(n`, d, k`) ∼ 8 · 106, an improvement of almost two orders of magnitude.

5.3 Connections to Related Work

Planning with IW at different levels of abstraction in the presented hier-
archical framework has an effect on the width required to solve a problem.
If the high-level features are chosen correctly, the problem is effectively
decomposed into subproblems that can be solved using a lower width
than the one initially required (i.e., using the flat version). Decompos-
ing the problem and running IW in the resulting subproblems is not a
new concept. For instance, Serialized IW (SIW) performs a sequence of
IW searches, starting a new search each time the number of unachieved
goal atoms #g decreases. To draw a connection with our method, let us
consider #g as a high-level feature. HIW would then generate a tree where
each high-level node corresponds to a search for a different value of #g.
Note that here #g is a special feature that tracks the minimum amount of
unachieved goal atoms so far (i.e., #g only changes when a state that has
more goal atoms than the low-level root node is generated). In this case,
a particular instance of SIW would correspond to a trajectory of the HIW
tree. Note that the high-level pruning of HIW would favor trajectories
where #g decreases more abruptly.

The decomposition exploited by HIW and SIW can also be achieved in
a single search. Best-First Width Search (BFWS) methods consider a dif-
ferent novelty table depending on the valuation of a given set of functions.
A similar approach is taken in Rollout IW by using subscoring, where a
different novelty table is used depending on the obtained reward. In order
to relate HIW and BFWS, let us consider the high-level feature mappings
as the functions used to determine the novelty test in BFWS, which we
denote by wFh . In this case, a BFWS(wFh) search (i.e., where no other
heuristic is used to break ties with the novelty test wFh) would be similar
to some extent to the one produced by HIW. However, there is one im-

78

i
i

“output” — 2021/7/7 — 15:22 — page 79 — #101 i
i

i
i

i
i

portant difference: once more, the tree produced by BFWS would not be
affected by the high-level pruning as in HIW. In the case of HIW, a state
with new low-level feature tuples would not be explored if its high-level
feature tuples have already appeared before in the high-level search. In
contrast, BFWS would consider novel all states with newly seen low-level
feature tuples. This is also the case for Rollout IW or any other (flat)
width-based search algorithm that uses multiple novelty tables.

Theorem 3 relates HIW(kh, k`) with a restricted version of IW(kh+k`).
The restricted flat IW works with all features Fh ∪F`, but only considers
tuples composed by kh features of Fh and k` features of F`. Thus, the
higher width kh+k` is only effective between high- and low-level features.
Geffner and Geffner (2015) also take into account tuples of higher size for
a certain type of features. More precisely, in a variant of the algorithm
called IW(3/2), they run IW(1) including also tuples of size 2 whenever
one of the features is related to the game avatar. HIW(1, 1) has a similar
effect to IW(3/2) in the presence of splitting features, although one central
difference is, again, the high-level pruning.

5.4 Incremental Hierarchical IW (IHIW)

In classical planning, the states are defined by a set of atoms and, although
one atom may be more informative than others, there is no hierarchical
structure. In this section, we present a simple method for identifying
relevant features that may split the state space. Then, we introduce an
algorithm that performs a sequence of hierarchical searches, using the
aforementioned method to discover new high-level feature candidates at
each step. In the experiments section, we test the algorithm in a range of
classical planning domains.

5.4.1 Discovering High-Level Features

Consider a search tree generated by IW(1) for a problem of width 2. Is it
possible to identify features that split the state space, so that the problem
can be solved by HIW(1, 1)? In this section, we present a simple method
for detecting candidate abstract features from a set of features F .

We consider all trajectories in the tree and hypothesize that a feature

79

i
i

“output” — 2021/7/7 — 15:22 — page 80 — #102 i
i

i
i

i
i

Algorithm 5.1 Method for finding high-level features

Input: node n
N = ∅
if IsLeaf(n) & Depth(n) > 2 then

P = Atoms(n) ∩ Atoms(Parent(n)) . common atoms
if |P | < |Atoms(n)| then . ensure different state

b = Branch(tree, n) . get branch root→n

B =
Depth(n)−2⋃

i=1
Atoms(b[i]) . all branch atoms

N = P −B . keep (branch) novel atoms

return N

that changes only once before a trajectory is pruned is a good candidate
for a high-level feature. Consider again the corridor example in which an
agent has to use a key to open a door. IW(1) prunes any trajectory that
repeats a position p, and will not solve the problem. However, feature h
splits the state space into two sub-problems: reaching the key (h=false),
and going back to the door (h=true).

We can detect high-level features using the method detailed in Algo-
rithm 5.1. For each pruned leaf node, we retrieve the features that are
shared with its parent that have not appeared in that branch before. The
intuition is that when a splitting feature f changes value, from v0 to v1,
the next state is likely to be pruned by IW(1), since v1 has just been ob-
served for f , and all other features may have been visited when f took
value v0.

5.4.2 An incremental approach

A simple algorithm that takes advantage of the previous method would
be:

1. Perform an IW(1) search, if the goal is found, return.

2. Run Algorithm 5.1 on the IW(1) tree to find high-level features.

3. Run HIW(1, 1) with the discovered high-level features.

80

i
i

“output” — 2021/7/7 — 15:22 — page 81 — #103 i
i

i
i

i
i

Algorithm 5.2 Incremental Hierarchical IW Search

Initialize: H = ∅, P = List(), solved = false
while not solved do

pruned, solved = HIW(wh, wl)
if not solved then

Append(P , pruned)
while H == ∅ do

if P is empty then
return

n = Pop(P) . Sample pruned node
H = FindAbstractFeatures(n) . Algorithm 5.1

h = Pop(H) . Sample candidate atom
RestructureTree(h) . Create high-level nodes

This algorithm actually finds promising candidate features for small
problems. For instance, it can solve the simple corridor example. However,
it fails on more complex problems, possibly because a single IW(1) search
may not be sufficient to visit states that contain relevant features.

To address this, we propose a slightly more sophisticated approach,
Incremental HIW (Algorithm 5.2), that runs a series of HIW searches. It
maintains a set of high-level feature candidates H, exploits one feature
candidate at a time, and discovers new relevant features when necessary.
First, we run HIW(1, 1), which is equivalent to IW(1) since we start with
H = ∅. While the task is not solved, we randomly sample a pruned node
and update H using Algorithm 5.1. We may repeat this operation until
new feature candidates are found or there are no more pruned nodes to
sample from, in which case we stop the search. Then, a feature candidate
is sampled from H, and the current search tree is restructured accordingly,
in order to reuse the tree in the subsequent search.

Restructuring the tree mainly involves two operations: detaching sub-
trees at the low level and inserting new nodes at the high level. We
illustrate this process with an example in Figure 5.4 where, after a new
high-level feature is added, low-level nodes marked in blue present a differ-
ent value for such feature compared to their root node, and are therefore
detached from their tree to form a new high-level node, that is inserted in

81

i
i

“output” — 2021/7/7 — 15:22 — page 82 — #104 i
i

i
i

i
i

Figure 5.4: Illustration of IHIW tree restructure after adding a new high-
level feature. Nodes filled in blue have a different high-level feature value
than their root node. Novelty tables of the low-level searches of the result-
ing nodes (marked in green) need to be reset before resuming the search.

the high-level tree. Note that the inserted node does not need to be a leaf
node as in this example, and we may need to insert several nodes at once.
Although this process may seem costly, both operations consist of mod-
ifying the data structure, while leaving the data untouched. Modifying
a search tree, however, implies that the associated novelty table cannot
be reused. Thus, we generate a new novelty table, if necessary, when the
according tree search is resumed.

5.5 Experiments in Classical Planning

In this section, we evaluate experimentally the proposed hierarchical ap-
proach. We address the following questions:

• In practice, can HIW(1, 1) solve problems of width 2?

• Can Algorithm 5.1 find good high-level feature candidates?

• Is IHIW(1, 1) a good alternative to IW(2)?

82

i
i

“output” — 2021/7/7 — 15:22 — page 83 — #105 i
i

i
i

i
i

Lipovetzky and Geffner (2012) empirically showed that most classical
planning problems with atomic goals present a low width. In Table 5.1,
we reproduce such results, and compare them to our algorithm. The ta-
ble consists of 36 domains from the International Planning Competitions,
prior to 2012. For each domain, we show the amount of single goal in-
stances (I), generated by splitting each instance with G goal atoms into G
single goal instances. Columns 3-11 show the amount of instances solved
(C), together with the average number of nodes (N) and time (T) per
solved instance, for IW(1), IW(2) and IHIW(1, 1). Here, IHIW(1, 1) con-
sists of two standard IW(1) searches, one at each level of abstraction. All
algorithms have a planning budget of 10,000 nodes.

In some domains, IW(1) has greater coverage than IW(2), e.g., in
Woodworking. This is because we set a budget of 10K nodes, and IW(2)
may exhaust the budget before finding the goal. We observe that IHIW(1, 1)
outperforms IW(1) in all but five domains, where they perform exactly the
same: Barman, OpenStacks, Parking, Scannalyzer and Woodworking. Be-
sides, there are two domains, Storage and VisitAll, where both reach the
maximum coverage. Compared to IW(2), IHIW(1, 1) covers more or the
same number of instances in 24 out of 36 domains. In 12 cases the average
number of nodes per solved instance is lower in IHIW(1,1) than in IW(2),
and in 18 cases IHIW(1,1) solved it faster.

Note that Table 5.1 only reports the average time for solved instances.
Thus, we may find that IHIW(1,1) is quicker than IW(2) even when solving
more instances. In fact, there are only three domains in which IHIW(1,1)
has a higher average time than IW(2) (Elevator, Transport, and Visi-
tAll), but the average time for IHIW(1,1) is actually computed over more
instances (those that have been solved) than the one of IW(2) (e.g., in
VisitAll, the 1.83s in average of IHIW(1,1) are over all instances, and
therefore cannot be fairly compared to the 1.34s IW(2), that are over only
16.9% of the instances).

With these results we can conclude that HIW(1, 1) can solve problems
of width 2 in practice, and that Algorithm 5.1 is a good approach to iden-
tify promising high-level features. Finally, we can state that IHIW(1, 1) is
an efficient alternative to IW(2).

83

i
i

“output” — 2021/7/7 — 15:22 — page 84 — #106 i
i

i
i

i
i

Domain I
IW(1) IW(2) IHIW(1, 1)

C N T C N T C N T
8puzzle 32 40.6 34 0.00 100 475 0.04 100 137 0.01
Barman 232 9.1 215 0.02 9.1 215 0.13 9.1 215 0.02
Blocks World 302 37.4 91 0.01 79.5 1696 0.23 96.4 869 0.06
Cybersecurity 86 65.1 64 0.01 65.1 64 0.22 67.4 158 0.02
Depots 189 10.6 494 0.28 23.8 2393 1.58 28.0 2268 0.97
Driverlog 259 44.0 996 0.12 53.3 1249 0.18 62.9 1085 0.11
Elevator 510 0.0 - - 11.4 5875 1.38 16.9 4752 1.79
Ferry 8 0.0 - - 100 10 0.00 100 11 0.00
Floortile 538 96.3 515 0.04 93.5 1115 0.63 99.3 567 0.04
Freecell* 68 8.8 192 0.14 22.1 3558 4.00 19.1 504 0.48
Grid 19 5.3 2 0.00 36.8 2071 6.45 15.8 1244 2.51
Gripper 460 0.0 - - 100 3355 1.70 100 2140 0.36
Logistics 249 18.1 2 0.00 100 763 0.16 28.5 87 0.01
Miconic 2325 0.0 - - 0.0 - - 100 2751 0.24
Mprime 50 8.0 2 0.01 18.0 3316 0.75 20.0 2600 0.48
Mystery 45 8.9 2 0.01 37.8 1200 0.57 31.1 1903 0.37
NoMystery 210 0.0 - - 80.0 1917 1.61 24.8 1487 1.22
OpenStacks* 455 0.0 - - 0.0 - - 0.0 - -
OpenStacks6 1230 5.1 176 0.20 14.2 2637 11.46 13.8 2332 0.37
PSRsmall 316 89.9 2 0.00 92.1 2 0.00 94.0 3 0.00
ParcPrinter 990 85.6 195 0.01 84.6 695 0.63 92.0 464 0.03
Parking 540 66.3 2770 2.28 65.2 2963 5.79 66.3 2770 2.27
Pegsol 990 92.6 4 0.00 100 9 0.01 97.8 7 0.00
Pipes-NoTan 259 45.6 299 0.08 55.6 1937 0.85 57.5 683 0.17
Rovers* 488 31.6 2520 0.37 23.2 2504 1.59 35.2 2576 0.37
Satellite* 1324 5.7 367 0.19 7.2 675 0.23 7.9 1433 0.22
Scanalyzer 648 99.1 370 0.29 96.6 322 0.66 99.1 370 0.28
Sokoban 154 35.1 37 0.01 74.0 1049 5.36 40.3 84 0.01
Storage 240 100 327 1.87 100 1035 15.76 100 327 1.88
Tpp* 118 0.0 - - 44.9 3313 26.01 35.6 1476 0.19
Transport 330 0.0 - - 11.8 3765 1.20 18.5 4230 1.96
Trucks 345 0.0 - - 11.6 5158 0.77 1.7 3342 0.47
Visitall 21880 100 2918 1.83 16.9 2912 1.34 100 2918 1.83
Woodworking 1801 91.6 1110 0.29 88.3 1063 3.43 91.6 1110 0.29
Zeno 219 21.0 10 0.00 36.5 1740 0.18 29.2 1035 0.10

7 17 24 12 18

Table 5.1: Results of IW(1), IW(2), and IHIW(1, 1) in 35 classical planning
domains. Column I shows the number of single goal instances. Columns 3-
11 show the coverage (C) in percentage (best in bold), the average amount
of expanded nodes (N), and the average time (T) in seconds, for each
algorithm. In blue: IHIW(1,1) with lower N or T than IW(2). In domains
with *, not all instances were evaluated due to time or memory constraints.

84

i
i

“output” — 2021/7/7 — 15:22 — page 85 — #107 i
i

i
i

i
i

Part III

Learning

85

i
i

“output” — 2021/7/7 — 15:22 — page 86 — #108 i
i

i
i

i
i

i
i

“output” — 2021/7/7 — 15:22 — page 87 — #109 i
i

i
i

i
i

Chapter 6

Policy-Guided Iterated
Width

In spite of its success, IW does not learn from experience, so its perfor-
mance does not improve over time. When expanding a node, IW generates
all possible states, one per action. The recently proposed Rollout IW al-
gorithm (Bandres, Bonet, and Geffner 2018) generates whole branches by
expanding one state per node, but selects actions randomly. Even though
both algorithms favor novel states with previously unseen feature values,
random action selection does not take into account previous experience
and results in uninformed exploration. As a result, reaching a distant
reward in a specific search may be arbitrary.

We begin this chapter by presenting a modified version of Rollout
IW that uses a policy estimate, modelled using a neural network (NN),
for action selection. We then present a novel approach to feature selection
that uses the node activation of the neural network as features. Finally, we
evaluate our algorithm experimentally in simple sparse reward problems
as well as in the Atari benchmark.

6.1 Policy-Guided Iterated Width (π-IW)

We now present our algorithm, Policy-Guided Iterated Width (π-IW), that
enhances Rollout IW by incorporating an action selection policy, resulting
in an informed IW search. More precisely, we leverage the exploration

87

i
i

“output” — 2021/7/7 — 15:22 — page 88 — #110 i
i

i
i

i
i

capacity of IW to train a policy estimate π̂θ, which is used in turn to guide
subsequent search. We consider tuples of size 1, i.e., IW(1), which keeps
planning tractable. Similar to Rollout IW, π-IW requires both a resettable
simulator, that provides the successor of a state s, and a representation
of s in terms of features F . Also, π-IW operates in an online replanning
scheme, i.e., at each time-step, a planning step is followed by an action
execution step. Importantly, the online replanning setting allows us to
solve problems of width higher than one, since we reinitialize the novelty
table at each planning step.

Below we describe the two basic steps of the π-IW algorithm, and
present a mechanism for extracting a feature space from the policy π̂θ.
This second use of the policy is beneficial if no feature representation is
initially available.

6.1.1 Planning Step

The planning step of π-IW is very similar to Rollout IW, which we briefly
outline here for clarity. In Algorithm 3.1, we chose to restructure the orig-
inal pseudocode of Bandres, Bonet, and Geffner (2018) into three main
functions: Lookahead, Select, Rollout. The function Lookahead iteratively
alternates calls of Select and Rollout until a computational budget is ex-
hausted or the root node is solved. Select samples actions to traverse the
tree until a state-action pair (n, a) is reached that has not yet been ex-
panded. Then, Rollout samples actions starting from (n, a) until a state is
reached that is either terminal or not novel. At that point, the final node
is marked as solved and the process restarts. Following Bandres, Bonet,
and Geffner (2018), a state is considered novel if one of its atoms is true at
a smaller depth than the one registered so far in the novelty table. A node
that was already in the tree will not be pruned if its depth is exactly equal
to the one in the novelty table for one of its atoms. This corresponds to
functions Check novelty and Check and update novelty of Algorithm 3.2.

The only difference between Rollout IW and π-IW is how the function
Sample action is defined. In the original Rollout IW, Sample action re-
turns an action sampled with uniform probability, whereas π-IW uses a
softmax policy π̂θ(a|sn) ∝ exp (ha(sn, θ)/τ), where ha, a ∈ A, are the out-
put logits of the neural network and τ is a temperature parameter. Our
planning step thus becomes the original Rollout IW in the limit τ → ∞.

88

i
i

“output” — 2021/7/7 — 15:22 — page 89 — #111 i
i

i
i

i
i

Just as in Rollout IW, actions that lead to nodes labelled as solved should
not be considered. Thus, we set probability π̂θ(a|sn) = 0 for each solved
action a and normalize π̂θ over the remaining actions before sampling.

Every time a node is labelled as solved, we try to propagate the label
along the branch to the root (function Solve and propagate label of Algo-
rithm 3.1). Each node of the branch will be marked as solved if all of
its children appear as solved. Thus, the propagation of the label stops
when at least one child has not yet been pruned. In the case of caching
the subtree of the previous plan, which is the case in our experiments, all
nodes of the cached tree are initially marked as not solved, except for the
ones that are terminal (function Initialize labels).

6.1.2 Action Execution Step

Once the tree has been generated, the discounted rewards are backprop-
agated to the root: Ri = ri + γmaxj∈children(i)Rj . In general, a policy
πt(·|st) can be induced from the returns at the root node by applying
another softmax function, although in our experiments we applied the
deterministic version (with τ → 0), that we define as follows:

π(a|st) =

{
1/m, for R(st, a) = maxbR(st, b)

0, otherwise

where m is the amount of entries that present maximum return, i.e., the
amount of actions a that satisfy R(st, a) = maxbR(st, b). Note that in
the case that m = 1, the result is a deterministic policy (i.e., one entry
has probability one and the rest have probability zero), whereas in the
case m > 1 πt is a stochastic policy. A clear example is when all entries
present the same return (e.g., zero, when no reward at all is found), in
which case the resulting policy is the uniform policy. Sampling from this
policy is similar to taking the argument that achieves the maximum. The
reason for not using the argmax function, however, is that it is usually
implemented deterministically (e.g., by choosing the index of the first
entry that matches the maximum value), and using a stochastic policy
in cases where m > 1 is crucial to ensure a proper exploration.

The current root state st is stored together with the target policy in
an experience replay dataset to train the model in a supervised manner.

89

i
i

“output” — 2021/7/7 — 15:22 — page 90 — #112 i
i

i
i

i
i

Finally, a new root is selected from the nodes at depth 1 by selecting an
action at ∼ πt(·|st), and the resulting subtree is kept for the next planning
step. In previous work, it has been argued that not adding cached nodes to
the novelty table of the subsequent search increases exploration and hence
performance (Lipovetzky, Ramirez, and Geffner 2015). However, in our
experiments, we found that including feature tuples from cached nodes in
the novelty table actually boosted the performance in sparse reward tasks,
which are precisely the tasks that require more exploration. Therefore, we
reinitialize the novelty table with nodes from the cached tree before each
search (this is done in function Initialize labels). For that, cached nodes
are revisited in the order they were generated, and their feature tuples are
added to the novelty table. Note that cached nodes will contain outdated
information. We did not find this to have a great impact on performance.
If that would ever become an issue, one possibility could be to rerun the
model on all nodes of the tree at regular intervals (this is not done in our
experiments).

6.1.3 Learning Step

In this step, we use the policy extracted from the search tree as a target
policy to train the policy estimate π̂θ. As previously mentioned, transi-
tions consisting of a state and a tree policy 〈s, π〉 are stored in an experi-
ence replay dataset D. The learning step consists in performing stochastic
gradient descent on a randomly sampled a batch B of these transitions.
We use the cross-entropy error between the induced target policy πi(·|si)
and the current policy estimate π̂θ(·|si) to update the policy parameters
θ, defining a loss function

L(θ) =

|B|∑
i

−πt(·|si)> log π̂θ(·|si) + c`2‖θ‖2,

where the last term is an `-2 regularization term to avoid overfitting and
help convergence, weighted by hyperparamter c`2.

The planning and learning steps can be run in parallel, as in AlphaZero,
or sequentially. For simplicity, in our experiments we choose the latter,
sampling a batch of transitions at each iteration. We keep a maximum of
|D| transitions, discarding outdated transitions in a FIFO manner.

90

i
i

“output” — 2021/7/7 — 15:22 — page 91 — #113 i
i

i
i

i
i

6.2 Dynamic Features

The quality of the transitions recorded by IW greatly depends on the
feature set F used to define the novelty of states. For example, even though
IW has been applied directly to visual (pixel) features (Bandres, Bonet,
and Geffner 2018), it tends to work best when the features are symbolic,
e.g., when the RAM state is used as a feature vector (Lipovetzky, Ramirez,
and Geffner 2015). Symbolic features make planning more effective, since
the width of a problem is effectively reduced by the information encoded
in the features. However, how to automatically learn powerful features for
this type of structured exploration is an open challenge.

Unlike previous width-based methods, π-IW can use the representation
learned by the policy NN to define a feature space, as in representation
learning (Goodfellow, Bengio, and Courville 2016). With this dependence,
the behavior of IW effectively changes when interleaving policy updates
with runs of IW. If appropriately defined, these features should help to
distinguish between important parts of the state space. In this work, we
extract F from the last hidden layer of the NN. In particular, we use the
output of the rectified linear units that we subsequently discretize in the
simplest way, resulting in binary features (0 for zero outputs and 1 for
positive outputs).

6.3 Experiments

In this section, we evaluate the performance of Policy-Guided Iterated-
Width (π-IW) in different settings. First, we consider a simple problem
where we compare our method against AlphaZero and current width-based
methods. Second, we present results in the Atari 2600 testbed. The
following questions are addressed:

• How do the different types of exploration (structured for π-IW and
unstructured for MCTS) affect the performance of both algorithms?

• What is the benefit of learning a policy to guide the IW planner?

• Are the learned (dynamic) features effective? Is it possible to learn
them without degrading the performance?

91

i
i

“output” — 2021/7/7 — 15:22 — page 92 — #114 i
i

i
i

i
i

Figure 6.1: Snapshot of three versions of the maze. The blue, red and
green squares represent the agent, the key and the door, respectively.

To answer the previous questions, we use a simple pixel-based ver-
sion of the corridor and maze environment of Figure 5.2, where an agent
(represented by a blue square) has to navigate to first pick up a key (red
square) and then go through a door (green square). An episode terminates
with a reward of +1 when the goal is accomplished, with a reward of −1
when a wall is hit, or with no reward after a maximum of 200 steps is
reached. Intermediate states are not rewarded (including picking up the
key), which makes the the problem more challenging. The observation is
an 84 × 84 RGB image and possible actions are no-op, going up, down,
left or right. See Figure 6.1 for an example.

We first analyze π-IW using static (pre-defined) and dynamic (learned)
features. For the first case, we take the set of Basic features (Bellemare
et al. 2013) described in Section 2.6.3, where the input image is divided in
tiles and an atom, represented by a tuple (i, j, c), is true if color c appears
in the tile (i, j). In our simple environment, we make the tiles coincide
with the grid, and there is no background subtraction. We call this variant
π-IW(1)-Basic. For the second case, we take the (discretized) outputs of
the last hidden layer of the policy network as binary feature vectors. We
call this variant π-IW(1)-Dynamic.

6.3.1 π-IW Can Reduce the Width of a Problem

Our first example is the simple corridor task, where the agent is located
between a key and a door (see Figure 6.2). Using the Basic features, this
problem has width 2, since the agent needs to keep track of the paired
features having the key (final position in blue/black or red) and visited
position (color blue or other) jointly. Therefore, it is not solvable by

92

i
i

“output” — 2021/7/7 — 15:22 — page 93 — #115 i
i

i
i

i
i

Figure 6.2: Feature learning in the corridor task. Left: from top to bottom,
states expanded by π-IW(1) in one planning step once the policy has been
trained. Right: subset of learned features for each state. Novel features
at each step are marked in red.

93

i
i

“output” — 2021/7/7 — 15:22 — page 94 — #116 i
i

i
i

i
i

IW(1) in the classical (offline) setting, i.e., in one planning step. However,
in the online replanning setting, where novelty tables are reset after each
action execution step, the task is solvable by IW(1). We are interested in
analyzing the behavior of π-IW using dynamic features.

As expected, one planning step of π-IW using the set of Basic features
does not reach the goal, and results in a trajectory pruned at s8, two
steps after picking up the key. Similarly, π-IW(1)-Dynamic is unable to
generate the optimal plan in its first planning step, since the initial features
are uninformed. However, using a sufficient number of features (13 binary
features in this example), after learning, π-IW(1)-Dynamic solves the task
using a single (offline) planning step in five out of five cases. This shows
that the problem width is reduced from 2 to 1 in the learned representation
of the policy. This is remarkable, since there is no explicit term in the loss
function that encourages the policy to generate such a representation.

6.3.2 π-IW Improves MCTS Exploration

We now compare the two π-IW variants with current width-based methods
and AlphaZero (Silver et al. 2018) in a more complex task. We consider
three variants of the maze, with increasing difficulty, shown in Figure
6.1. Although AlphaZero was originally designed for two-player, zero-sum
games, it can be easily extended to the MDP setting. Each time a node
n is generated, the statistics Wm of all nodes in the trajectory from the
root to n are updated with the value of n. Since in the MDP setting there
are rewards in the intermediate edges, we update Wm with the discounted
sum of rewards of all edges between nodes m and n, including the value
of n (e.g. W1 ←W1 + r1 + γr2 + γ2v3).

AlphaZero controls the balance between exploration and exploitation
by a parameter puct together with a temperature parameter in the target
policy τ , similar to ours. In the original paper, τ is set to 1 for a few
steps at the beginning of every episode, and then it is changed to an
infinitesimal temperature τ = ε for the rest of the game (Silver et al.
2017). Nevertheless, we achieved better results in our experiments with
AlphaZero using τ = 1 for the entire episode.

Both π-IW and AlphaZero algorithms share the same NN architecture
and hyperparameters, specified in Table 6.1. We use two convolutional and
two fully connected layers as in Mnih et al. (2013) (see Figure 2.2), which

94

i
i

“output” — 2021/7/7 — 15:22 — page 95 — #117 i
i

i
i

i
i

Hyperparameter Value Algorithm

Discount factor 0.99 Both
Batch size 32 Both
Learning rate 0.0005 Both
Clip gradient norm 40 Both
RMSProp decay 0.99 Both
RMSProp epsilon 0.1 Both
Tree budget nodes 50 Both
Dataset size |D| 103 Both
L2 reg. loss factor 10−3 Both
Tree policy temp. τ 1 Both
puct 0.5 AlphaZero
Diritchlet noise α 0.03 AlphaZero
Noise factor 0.25 AlphaZero
Value loss factor 1 AlphaZero

Table 6.1: Hyperparameters used for π-IW and AlphaZero.

are trained using the non-centered version of the RMSProp algorithm.
All hyperparameters of AlphaZero and π-IW have been optimized for the
second version of the game, with two walls.

Figure 6.3 shows results comparing π-IW against existing width-based
algorithms and AlphaZero for the three mazes (we also performed exper-
iments using different random configurations of the walls and the results
remained consistent). The top row shows the average reward as a func-
tion of the number of interactions with the environment. As expected, the
number of interactions required to solve the problem increases with the
level of difficulty. While π-IW variants reach top performance in less than
2 · 105 interactions in the first and the second versions of the game, they
require nearly 106 to fully solve the third version.

The performance of the two other width-based algorithms (IW and
Rollout IW) is independent of the number of interactions. These algo-
rithms, despite using the structured exploration of IW, are limited to
width 1 and do not learn from previous visited states. Consequently, only
in a very few cases (depending on the tie breaking, basically), they find

95

i
i

“output” — 2021/7/7 — 15:22 — page 96 — #118 i
i

i
i

i
i

AlphaZero
π-IW(1) Basic
π-IW(1) Dynamic
IW(1) Basic
Rollout IW(1) Basic

Figure 6.3: Performance in terms of reward (left column) and transitions
per episode (right column) of width-based planners and AlphaZero in the
three simple mazes (from top to bottom: 1, 2, and 3 walls, respectively).
Plots are averages over 5 runs and shades show the minimum and maxi-
mum values. Results of IW and Rollout IW are averages over 100 runs.

96

i
i

“output” — 2021/7/7 — 15:22 — page 97 — #119 i
i

i
i

i
i

Figure 6.4: Three illustrative examples of visited states (in yellow) during
one planning step before learning: π-IW(1)-Basic (left), π-IW(1)-Dynamic
(middle), and AlphaZero (right). The π-IW variants explore a larger re-
gion of the state space than AlphaZero.

the correct sequence of actions. Finally, AlphaZero shows less stable be-
havior and is unable to solve the most difficult scenario (rightmost plot).
Comparing the two π-IW variants we observe few differences. This is re-
markable, since it indicates that in this simple maze the features used by
IW can be learned easily from scratch.

Figure 6.3 (bottom row) compares the number of steps per episode as
a function of the number of interactions. For all versions of the game, we
observe a decreasing trend in the π-IW variants until the optimal policy
is learned. In this case, episodes require progressively fewer steps because
the learned policy converges to the optimal one. The convergence occurs
in alignment with the reward per episode (top row) and again, we observe
no significant difference between π-IW(1)-Basic and π-IW(1)-Dynamic.
In contrast, AlphaZero shows a more irregular behavior. In the hardest
instance, it ends up hitting a wall most of the time.

To illustrate the benefits of the structured exploration of π-IW com-
pared to MCTS, we analyze the sample trajectories from the different
algorithms after the first planning step, before any learning. We calculate
the length of the trajectories (removing repeated states). On average, Al-
phaZero produces a tree whose longest trajectory is 3.83 (stdev = 2.15).
On the other hand, the longest trajectories of π-IW are 7.3 (stdev = 2.5)
and 7.02 (stdev = 2.25), respectively for Basic and dynamic features (av-
erages over 100 runs). Figure 6.4 illustrates this. Although there is no
guidance towards rewarding states for any of the three algorithms (since
the NNs have not been trained yet), π-IW reaches deeper parts of the state
space than AlphaZero thanks to the structured exploration. As before, we

97

i
i

“output” — 2021/7/7 — 15:22 — page 98 — #120 i
i

i
i

i
i

do not observe significant differences between using handcrafted features
or the ones extracted from the NN.

From these results we can draw the following conclusions. First, exist-
ing width-based algorithms can be significantly improved by incorporating
a guiding policy, as in π-IW. Second, we have shown that for this simple
problem, a small set of features can be effectively learned without de-
grading the performance of π-IW. Finally, π-IW outperforms AlphaZero
because it uses the structure of the state to explore more systematically
and reach deeper states. In contrast, the exploration of MCTS needs to
go through an optimal branch several times to increase its probability for
action selection, since the policy estimate is based on counts.

6.3.3 π-IW on Atari Games

We end this experimental section presenting results of π-IW(1)-Dynamic
on the pixel setting of the Atari suite. The aim of this section is to
compare the performance of π-IW on a more challenging benchmark with
existing width-based algorithms that use (predefined) pixel-based features.
In particular, we consider IW and Rollout IW from Bandres, Bonet, and
Geffner (2018). We do not provide results of AlphaZero in this benchmark,
since our preliminary analysis showed poor performance, and the amount
of hyperparameters to tune is considerably higher compared to π-IW.

We focus on a similar setting as in Bandres, Bonet, and Geffner (2018),
where a short budget is given to the planner, although we do not aim to
plan in real time. In our case, we set the budget of expanded nodes
to 100, resulting in approximately one second per transition, considering
both planning and learning steps. Note that this budget is very small
compared to existing RAM-based methods, that allow 30,000 expanded
nodes at each step (Lipovetzky, Ramirez, and Geffner 2015; Shleyfman,
Tuisov, and Domshlak 2016).

Table 6.2 shows results in 54 Atari games (pixel setting) comparing π-
IW using dynamic features with IW and Rollout IW using the B-PROST
feature set. Results of π-IW are an average of the performance in the
last 10 episodes of 5 independent runs, and results of IW and Rollout IW
are taken from Bandres, Bonet, and Geffner (2018). All hyperparameters
are kept the same as in Table 6.1 except for tree budget = 100, |D| =
104, τ = 0.5, and frameskip = 15. The inputs of the NN are the last 4

98

i
i

“output” — 2021/7/7 — 15:22 — page 99 — #121 i
i

i
i

i
i

Game IW 0.5s IW 32s Rollout IW 0.5s Rollout IW 32s π-IW #100
Alien 1316.0 14010.0 4238.0 6896.0 3969.8
Amidar 48.0 1043.2 659.8 1698.6 950.4
Assault 268.8 336.0 285.6 319.2 1574.9
Asterix 1350.0 262500.0 45780.0 66100.0 346409.1
Asteroids 840.0 7630.0 4344.0 7258.0 1368.5
Atlantis 33160.0 82060.0 64200.0 151120.0 106212.6
Bank Heist 24.0 739.0 272.0 865.0 567.2
Battle zone 6800.0 14800.0 39600.0 414000.0 69659.4
Beam rider 715.2 1530.4 2188.0 2464.8 3313.1
Berzerk 280.0 1318.0 644.0 862.0 1548.2
Bowling 30.6 49.2 47.6 45.8 26.3
Boxing 99.4 79.0 75.4 79.4 99.9
Breakout 1.6 56.0 82.4 36.0 92.1
Centipede 88890.0 143275.4 36980.2 65162.6 126488.4
Chopper command 1760.0 1800.0 2920.0 5800.0 11187.4
Crazy climber 16780.0 44340.0 39220.0 43960.0 161192.0
Demon attack 106.0 23619.0 2780.0 9996.0 26881.1
Double dunk -22.0 -22.4 3.6 20.0 4.7
Enduro 2.6 229.2 169.4 359.4 506.6
Fishing derby -83.8 -39.0 -68.0 -16.2 8.9
Freeway 0.6 25.0 2.8 12.6 0.3
Frostbite 106.0 182.0 220.0 5484.0 270.0
Gopher 1036.0 18472.0 7216.0 13176.0 18025.9
Gravitar 380.0 1630.0 1630.0 3700.0 1876.8
HERO 2034.0 7432.0 13709.0 28260.0 36443.7
Ice hockey -13.6 -7.0 -6.0 6.6 -11.7
James bond 007 40.0 180.0 450.0 22250.0 43.2
Kangaroo 160.0 3820.0 1080.0 5780.0 1847.5
Krull 3206.8 5611.8 1892.8 1151.2 8343.3
Kung-fu master 440.0 8980.0 2080.0 14920.0 41609.0
Montezuma’s revenge 0.0 0.0 0.0 0.0 0.0
Ms. Pac-man 2578.0 20622.8 9178.4 19667.0 14726.3
Name this game 7070.0 13478.0 6226.0 5980.0 12734.8
Phoenix 1266.0 5550.0 5750.0 7636.0 5905.1
Pitfall! -8.6 -92.2 -81.4 -130.8 -214.8
Pong -20.8 0.8 -7.4 17.6 -20.4
Private eye 2690.8 -526.4 -322.0 3157.2 452.4
Q*bert 515.0 16505.0 3375.0 8390.0 32529.6
Road Runner 200.0 0.0 2360.0 37080.0 38764.8
Robotank 3.2 32.8 31.0 52.6 15.7
Seaquest 168.0 356.0 980.0 10932.0 5916.1
Skiing -16511.0 -15962.0 -15738.8 -16477.0 -19188.3
Solaris 1356.0 2300.0 700.0 1040.0 3048.8
Space invaders 280.0 1963.0 2628.0 1980.0 2694.1
Stargunner 840.0 1340.0 13360.0 15640.0 1381.2
Tennis -23.4 -22.2 -18.6 -2.2 -23.7
Time pilot 2360.0 5740.0 7640.0 8140.0 16099.9
Tutankham 71.2 172.4 128.4 184.0 216.7
Up’n down 928.0 62378.0 36236.0 44306.0 107757.5
Venture 0.0 240.0 0.0 80.0 0.0
Video pinball 28706.4 441094.2 203765.4 382294.8 514012.5
Wizard of wor 5660.0 115980.0 37220.0 73820.0 76533.2
Yars’ revenge 6352.6 10808.2 5225.4 9866.4 102183.7
Zaxxon 0.0 15080.0 9280.0 22880.0 22905.7
best 1 10 1 17 24

Table 6.2: Scores of width-based methods in 54 Atari games.

99

i
i

“output” — 2021/7/7 — 15:22 — page 100 — #122 i
i

i
i

i
i

grayscale frames stacked to form a 4-channel image. Results of π-IW are
an average of the last 10 episodes for 5 runs with different random seeds.
Performance is measured after 20M generated nodes, i.e., interactions with
the simulator (excluding skipped frames).1

First, if we compare π-IW against the methods that use a budget of
0.5 seconds (2nd and 4th columns vs 6th column), we observe that π-
IW systematically outperforms both IW and rollout variants (see values
in blue). Only in 13 games is either IW or Rollout IW better than our
method, and only in five cases are both better. This shows that better
performance can indeed be achieved at the cost of training the policy and
learning the features.

Second, we observe (in bold) that π-IW outperforms all other methods
in 24 games, and performance is comparable to the non-guided approaches
in most other games (3rd and 5th columns vs 6th column). Remark-
ably, this is achieved with significantly less computational budget (ap-
proximately 30 times less) and without the need of predefined features.

These results suggest that a guiding policy can be beneficial, not only
in terms of computational budget, but also in terms of the learned repre-
sentation (in our case, the simple discretized features of the hidden layer)
that can be directly exploited by the IW planner.

1The results initially published for π-IW in Junyent, Jonsson, and Gómez (2019)
were partially affected by input noise due to a software bug (frames were incorrectly
stacked after resetting the simulator to a previously seen state). Table 6.2 shows results
with the bug amended. Since experiments are computationally expensive, we decided
to rerun them with half the total interactions budget (20M instead of 40M). Despite the
budget reduction, results of Table 6.2 are arguably better than those initially published.

100

i
i

“output” — 2021/7/7 — 15:22 — page 101 — #123 i
i

i
i

i
i

Chapter 7

Hierarchical π-IW

The π-IW algorithm introduced in Chapter 6, effectively combines plan-
ning and learning by learning a policy π from the rewards observed in the
IW tree, and uses π to guide future searches. However, in sparse-reward
tasks, IW(1) may not reach any reward, especially when the planning hori-
zon is too short. First, we extend the original π-IW in two ways: adding
a better tie breaking mechanism, and a value function estimate. Then,
we present a width-based method for high-level search that selects nodes
according to visitation counts. Finally, we combine our hierarchical ap-
proach with policy guidance, resulting in the π-HIW algorithm, that we
test in gridworld environments with sparser rewards as well as in the Atari
suite.

7.1 Improvements to π-IW

The π-IW algorithm introduced in Chapter 6, effectively combines plan-
ning and learning by learning a policy π from the rewards observed in the
IW tree, and uses π to guide future searches. However, in sparse-reward
tasks, IW(1) may not reach any reward, especially when the planning hori-
zon is too short. Here we extend the original π-IW in two ways: adding a
better tie breaking mechanism, and a value function estimate. In experi-
ments, we call this version π-IW+.

When no reward is found during planning, the target policy for the
learning step becomes the uniform distribution, and π-IW behaves as Roll-

101

i
i

“output” — 2021/7/7 — 15:22 — page 102 — #124 i
i

i
i

i
i

out IW. In this case, π-IW may take a step towards a region of the search
tree with low node count, and presumably with less novel states, losing
valuable structure information provided by the IW search. To avoid that,
we modify the target policy of π-IW to use the node counts in the search
tree for tie-breaking (i.e., the amount of descendants per action at the root
node). The new target policy takes the form πtarget ∝ πrewards · πcounts,
where the product is element-wise, and πcounts is a softmax distribution:

πcounts(a|s) =
exp (1/(τc(s, a) + 1))∑

a′∈A exp (c(s, a′))

where τ is a temperature parameter and c(s, a) is the amount of nodes in
the subtree of action a. The temperature parameter for πrewards, which
is also defined as a softmax distribution but proportional to the returns
R(s, a), is typically close to zero to ensure a greedy target policy. There-
fore, by performing the product, we achieve the effect of tie-breaking,
especially if the temperature parameter for the counts is some orders of
magnitude higher than the one for the rewards.

This tie-breaking may help finding deeper rewards. However, π-IW
will not exploit this information in subsequent episodes, since πtarget is
still based on the rewards of the current planning horizon. To amend this,
we learn a value function, which we combine with the observed rewards to
generate a better estimate of πrewards. When backpropagating the rewards
from the leaves to the root, we take the maximum between the observed
rewards and our value estimate.

To learn the parameterized policy estimate π̂θ, we take the same ap-
proach as before, using the cross-entropy loss to update the parameters
θ, with the only difference being that target policy now uses visitation
counts for tie-breaking. To learn the value function, we take a similar
approach to MuZero (Schrittwieser et al. 2020) and use a support vector
to represent the value function, that we also learn with the cross-entropy
loss function. We keep using the Monte-Carlo return zt as target instead
of an n-step return as in MuZero. The overall loss is:

L = −πtarget
t (·|st)> log π̂θ(·|st)− ψ(zt)

> log(v̂θ) + c`2‖θ‖2, (7.1)

where ψ(·) : R → [0, 1]xsup is a mapping from Monte-Carlo returns zt to
their vector representations of |xsup|= 601 integer supports, as described
in Section 2.8.3, and once more the last term is an `-2 regularization term.

102

i
i

“output” — 2021/7/7 — 15:22 — page 103 — #125 i
i

i
i

i
i

7.2 Learning with Hierarchy

In this section we show how to combine Hierarchical IW (HIW) with
our learning-based approach that uses a policy to direct search. First,
we define a variation of Rollout IW for the high-level search. Then, we
outline the aspects that need to be considered when using HIW in an
online replanning setting.

7.2.1 Count-Based Rollout IW

Rollout IW(k) performs breadth-first search implicitly, from independent
rollout trajectories. It maintains the notion of width by modifying the
definition of novelty: a state s is considered novel if any w-tuple of features
of s has not appeared at a lower depth. With this, the authors achieve an
algorithm that is equivalent to IW(k), but with better anytime behavior.
This novelty measure actually allows for many width-based algorithms,
since it unties the order of expanding nodes from the novelty test.

In our hierarchical framework, a subset of states is encapsulated under
the same high-level state (i.e., a set of high-level features). Selecting one
high-level state or another directly determines which low-level states are
generated. In order to balance exploration within high-level states, we ex-
tend Rollout IW with a selection method that depends on state visitation
counts.

Our method, named Count-Based Rollout IW, is detailed in Algo-
rithm 7.1. Similar to Rollout IW, it consists of two phases, node selection
and rollout, that are iteratively called in function Lookahead. Differently
from Rollout IW, we keep a list of OPEN nodes O (i.e., nodes that have
not been pruned and need to be expanded), and we remove nodes from
O whenever they need to be pruned, i.e., when a new node at a lower
depth is generated such that it makes deeper nodes not novel anymore.
The list of OPEN nodes is initialized with the root node and all unpruned
cached nodes, in the case we are caching nodes from previous searches.
Apart from O, we keep two mappings: N and C. N maps feature tuples
to novel nodes, and is used for pruning, while C maps feature vectors to
visit counts, and is used in the selection phase. N is initially empty, and
C defaults to zero for all new feature vectors, and is reset to a new empty
mapping at every episode.

103

i
i

“output” — 2021/7/7 — 15:22 — page 104 — #126 i
i

i
i

i
i

Algorithm 7.1 Count-Based Rollout IW

initialize O: list of open nodes
initialize N : mapping from tuples to novel nodes
initialize C: mapping from feature vectors to counts
initialize D: depth-based novelty table

function Lookahead(O, N , C, D)
while not StopCondition() and not IsEmpty(O) do

n = Select(O, C)
Rollout(n, O, N , C, D)

function Select(O, C)
c = GetCounts(O, C) . Get feature counts of nodes in O
p ∝ exp (1/τ(c+ 1))
n = Sample(O, p)
return n

function Rollout(n, O, N , C, D)
while not StopCondition() do

C[n.features]++
s = Successor(n)
if s == null then

Remove(n, O) . Remove if n has been fully expanded
return

s.T = CheckUpdateNovelty(D, s.features, s.depth)
if IsEmpty(s.T) or IsTerminal(s) then

return
PruneOther(s, O, N)
Append(O, n) . Add node to OPEN list
n = s

function PruneOther(n, O, N)
for t in n.T do

o = N [t] . Get previous node that had t as novel tuple
Remove(t, o.T) . Remove t from its novel tuples list
if IsEmpty(o.T) then . If o has no more novel tuples

PruneSubtree(o, O) . Remove o and its descendants from O

N [t] = n . Set n as the node that is novel due to tuple t

104

i
i

“output” — 2021/7/7 — 15:22 — page 105 — #127 i
i

i
i

i
i

In function Select, a node n from O is selected according to a softmax
probability distribution inversely proportional to the visitation counts of
its feature vector, stored in mapping C. Then, a rollout is performed from
n, generating a new successor node s at each iteration, until one that does
not pass the novelty test is found. In this case, instead of returning a
Boolean value, the novelty test function returns a set of novel tuples T .
If the set is empty, then the node should not be added to the list of open
nodes O, and a new node should be selected. If the set is not empty, we
add the newly generated node s to the open list. We also store its novel
tuples to recheck its novelty in subsequent iterations.

For each new novel node n, with novel tuples n.T , there may be other
nodes deeper in the tree that were initially novel due to one or more tuples
of T , which may need to be pruned. This is done in function PruneOther.
We identify such nodes with N , that maps feature tuples to unpruned
nodes. Then, for each tuple t ∈ n.T , we can check which other node
o = N [t] was novel due to t, and remove t from its set of novel nodes
o.T . In the case the set becomes empty, then we should prune the node,
removing it from the open list, together with its descendants. This is
done in function PruneSubtree, which traverses the subtree rooted at o in
a breadth-first manner removing all visited nodes from the open list O.

When pruning a node n, we leave the visitation count for the feature
vector of n untouched. Thus, a new node with the same feature mapping
generated at a lower depth will be selected according to the existing visi-
tation count. With this, we ensure a balance between different high-level
states.

7.2.2 Policy-Guided Hierarchical IW (π-HIW)

Hierarchical IW can be straightforwardly used for online replanning. At
each step, we sample an action a ∼ πtarget ∝ πrewards ·πcounts. To generate
πrewards, we need to backpropagate the rewards through the hierarchical
tree. Starting from the high-level leaf nodes, we first backpropagate the
rewards of the associated low-level trees. Then, to propagate this return
between two high-level nodes, we feed it to the corresponding low-level
leaf nodes of the high-level parent, and repeat until we reach the high-
level root. See Figure 7.1 (left) for an illustration. To generate πcounts, we
backpropagate the counts in a similar manner.

105

i
i

“output” — 2021/7/7 — 15:22 — page 106 — #128 i
i

i
i

i
i

R

R

R R

R

Figure 7.1: Illustration of reward propagation and action execution in a
hierarchical search. Dashed lines represent low-level connections between
leaves of the high-level parent nodes and roots of their high-level children.
Left: rewards are propagated from the leaves to the root and through the
low-level connections. Right: when the selected action (in green) is taken,
nodes in gray become unreachable and can be discarded.

After executing an action a, we cache the resulting subtree for sub-
sequent searches, similar to previous work. In this case, we need to take
into account that some high-level states will not be reachable anymore,
and we should thus remove them from the high-level tree before resuming
the search. This is illustrated in Figure 7.1 (right), where the left high-
level node together with its low-level tree is discarded (shown in gray) due
to an action taken inside the high-level root node.

7.3 π-HIW in Pixel-Based Testbeds

In this section, we test our approach, π-HIW, in pixel-based gridworld
environments and Atari games. We use two levels of abstraction: the
high-level planner is Count-based Rollout IW (Algorithm 7.1) and the
low-level planner is π-IW+ (i.e., Rollout IW guided by the current policy
estimate). The set of abstract features φh(s) consists of a discretization of
the image, similar to the one used in Go-Explore (Ecoffet et al. 2019, 2021),
where the image is divided into tiles and the mean pixel value of each tile is
taken as the feature value. Usually, this is further quantized into a smaller
subset (e.g. 8 pixel values). For the low-level set of features, we follow our

106

i
i

“output” — 2021/7/7 — 15:22 — page 107 — #129 i
i

i
i

i
i

Figure 7.2: Snapshots of the two larger gridworld environments. Colors
blue, red, green and gray represent the agent, key, door, and walls, respec-
tively. The optimal policy takes 36 and 62 steps for the smaller (left) and
larger (right) tasks, respectively.

previous approach and define φ`(s) as the boolean discretization of h(s),
where h is the last layer of the neural network representing π̂θ.

7.3.1 Gridworld Environments

We test our algorithm in two gridworld environments depicted in Figure
7.2. The setting is similar to the one of Section 6.3.2, but with larger
environments and therefore sparser rewards. The agent (blue square) is
rewarded with +1 only when the door (green square) is reached while
holding the key (red square). Any other state has a reward of 0, except
if the agent hits a wall in which case the reward is −1. We also end the
episode after 200 and 500 steps for the smaller and larger environment,
respectively. Once more, the observation is a 84×84×3 image and possible
actions are {no-op, up, down, left, right}.

We compare our hierarchical approach, π-HIW(1, 1), to two baselines:
π-IW, and the modified version, which we call π-IW+, that uses a value
estimate and the subtree size for tie-breaking. For the latter, we use a
temperature of 1 to generate πcounts. In order to bound the memory used
by the planner, we set a maximum of 5000 nodes that we keep in memory
per step. The visitation count temperature used by the high-level planner
(Algorithm 7.1) is set to 0.005. All other hyperparameters are the same
as in Section 6.3.2.

Figure 7.3 shows results for both environments. We observe that π-IW

107

i
i

“output” — 2021/7/7 — 15:22 — page 108 — #130 i
i

i
i

i
i

0.0 0.2 0.4 0.6 0.8 1.0
Environment interactions 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Small task

0.0 0.2 0.4 0.6 0.8 1.0
Environment interactions 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Large task
π-IW
π-IW+

π-HIW 2x2
π-HIW 3x3

π-HIW 4x4
π-HIW 5x5

Figure 7.3: Comparison between π-IW, π-IW+, and π-HIW(1, 1) with
different discretizations in the gridworld environments.

does not perform well in these larger environments, obtaining a reward
close to zero in both tasks. π-IW+ takes advantage of the value func-
tion and the tie-breaking counts and learns to solve the first task, while
achieving a mean score of 0.5 for the second one in 106 interactions with
the environment. For the hierarchical version, which also includes the
aforementioned modifications, we report results of π-HIW(1, 1) using dif-
ferent number of tiles in φh(s), and 256 values per tile. We observe how,
for the smaller task, 2x2 tiles is enough to get a good performance, similar
to the baseline π-IW+, and the performance degrades when increasing the
number of tiles. In the larger task, π-HIW(1, 1) outperforms the baseline,
but it needs at least 4x4 tiles to perform well.

108

i
i

“output” — 2021/7/7 — 15:22 — page 109 — #131 i
i

i
i

i
i

Figure 7.4: Downsampling of a frame in the game Montezuma’s Revenge.
After converting the image to grayscale, the regions formed by a 8 × 11
grid are averaged and subsampled, from 128 to 32 pixel values.

7.3.2 Atari Games

We finish this section with a set of experiments using the Atari simulator.
In this case, we do not optimize the hyper-parameters and define Fh using
32 pixels values and 8 × 11 tiles. An example of this downsampling is
given in Figure 7.4 Moreover, we use width kh = n = |Fh| at the high
level, i.e., π-HIW(n, 1). Even though IW(n) explores the entire high-level
state space, there is a single combination of n features, which makes the
novelty check efficient. In the original IW algorithm, IW(n) is equivalent
to a breadth-first search without state duplicates. Nevertheless, we use
Count-Based Rollout IW, described in Algorithm 7.1. With this, we aim
to achieve effective widths larger than 2.

Figure 7.6 shows a comparison between π-HIW(n, 1) and π-IW using
the same setup as in Section 6.3.3. Relative improvement is computed as
(sπ-HIW − srand)/(sπ-IW − srand), where sπ-IW and sπ-HIW are the scores
of the flat and hierarchical versions, respectively, and srand is the score
of a random agent taken from Wang et al. (2016). In the game Skiing,
sπ-IW < srand, and therefore the relative improvement of π-HIW is not
shown. All scores are shown in Table 7.3.2 except for the game Freeway,
because the simulator was excessively slow compared to other games. Since
π-HIW includes the improvements described in Section 7.1, we also present
results of π-IW+ (i.e, the flat version with a value estimate and counts for
breaking ties) in Table 7.3.2 for comparison.

109

i
i

“output” — 2021/7/7 — 15:22 — page 110 — #132 i
i

i
i

i
i

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment interactions 1e7

0
1000
2000
3000
4000
5000
6000
7000

Re
wa

rd

-IW
-IW+
-HIW

Figure 7.5: Performance of π-IW, π-IW+ and π-HIW in the Atari game
Montezuma’s Revenge. Average over 5 runs with different random seeds.
Shades show the maximum and minimum values.

We observe that π-HIW improves over its predecessor π-IW in 28
games. Interestingly, games consisting of an agent moving in a fixed
background present the best results e.g., James Bond, Private Eye, Pong,
Frostbite, Chopper Command, etc. Within this type of games, π-HIW re-
markably achieves a positive score in hard exploration games such as Mon-
tezuma’s Revenge and Venture, a score not yet reported for any width-
based planner (in Figure 7.6, the improvement for these games is ∞).
Figure 7.5 shows the learning curve in the game of Montezuma’s Revenge.

We also see an improvement in games with a moving background where
the agent stays at a fixed position of the screen, for instance in Battle
zone, Beam Rider, Road Runner, or Time Pilot. However, the size of the
downsampling plays a big role. For instance, we find that performance
drops in shooting games where the bullet is very small such as in Wizard
of Wor, Asteroids, or Fishing derby, and specially if there is no agent
moving as in Atlantis. We also observe poor performance in fight games
where the agent may occupy many tiles, as in Boxing and Kung-fu master,
or in noisy games (e.g., constantly changing background) as in Enduro and
Krull. Finally, we can conclude that these results confirm that π-HIW can
benefit from the state abstractions provided by a simple downsampling of
the image, specially in navigation games.

110

i
i

“output” — 2021/7/7 — 15:22 — page 111 — #133 i
i

i
i

i
i

2 0 2 4 6 8 10
Atlantis
Boxing
Enduro

Seaquest
Wizard of wor

Asterix
Ms. Pac-man
Video pinball

Krull
Fishing derby

Asteroids
Kung-fu master

Gravitar
Demon attack
Crazy climber

Robotank
Centipede

Name this game
Up'n down

Gopher
Bank Heist
Tutankham

Zaxxon
Double dunk

HERO
Space invaders

Amidar
Alien

Q*bert
Solaris

Phoenix
Assault

Yars' revenge
Stargunner

Road Runner
Time pilot
Breakout
Kangaroo

Beam rider
Battle zone

Berzerk
Ice hockey

Chopper command
Pitfall!

Bowling
Tennis

Frostbite
Pong

Private eye
James bond 007

Venture
Montezuma's revenge

50 1000.0 0.2 0.4 0.6 0.8 1.0
Relative improvement

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.6: Relative improvement of π-HIW over π-IW in the Atari suite.

111

i
i

“output” — 2021/7/7 — 15:22 — page 112 — #134 i
i

i
i

i
i

Game π-IW(1) π-IW(1)+ π-HIW(n, 1)
Alien 3969.78 2585.77 4609.18
Amidar 950.45 374.20 1076.17
Assault 1574.91 922.30 2344.28
Asterix 346409.11 247063.36 90017.25
Asteroids 1368.55 1490.87 990.95
Atlantis 106212.63 143177.73 17539.22
Bank Heist 567.16 256.29 501.68
Battle zone 69659.40 30848.95 309137.79
Beam rider 3313.11 8428.96 11931.41
Berzerk 1548.23 960.03 7417.26
Bowling 26.28 78.18 50.09
Boxing 99.88 88.19 6.81
Breakout 92.07 107.64 252.88
Centipede 126488.35 141070.19 80685.48
Chopper command 11187.44 3431.74 70787.12
Crazy climber 161192.01 138648.58 102205.99
Demon attack 26881.13 35022.64 16007.64
Double dunk 4.68 -16.80 3.51
Enduro 506.59 63.83 44.47
Fishing derby 8.89 -28.02 -53.76
Frostbite 270.00 1636.51 7242.60
Gopher 18025.91 7061.76 15001.18
Gravitar 1876.80 1532.33 1154.01
HERO 36443.73 22097.39 36231.21
Ice hockey -9.66 -4.02 -2.36
James bond 007 43.20 205.91 1380.13
Kangaroo 1847.46 2918.98 6861.57
Krull 8343.30 13014.77 4121.81
Kung-fu master 41609.03 24871.94 20680.65
Montezuma’s revenge 0.00 810.49 5275.89
Ms. Pac-man 14726.33 5916.86 4523.47
Name this game 12734.85 18167.55 9977.12
Phoenix 5905.12 7647.67 7508.63
Pitfall! -214.75 -2.46 -128.82
Pong -20.42 2.14 -9.70
Private eye 452.40 1766.13 29548.76
Q*bert 32529.60 23337.90 40449.72
Road Runner 38764.81 43813.29 87953.53
Robotank 15.66 9.68 10.63
Seaquest 5916.05 559.28 867.51
Skiing -19188.32 -13852.04 -15417.86
Solaris 3048.78 1832.93 3524.69
Space invaders 2694.09 1622.49 2946.18
Stargunner 1381.24 1642.82 1864.64
Tennis -23.67 -8.26 -20.00
Time pilot 16099.92 11126.86 34610.25
Tutankham 216.67 181.44 199.06
Up’n down 107757.51 59497.75 80991.07
Venture 0.00 15.68 10.73
Video pinball 514012.51 387308.60 184720.01
Wizard of wor 76533.18 30383.68 12027.43
Yars’ revenge 102183.67 64544.51 159496.20
Zaxxon 22905.73 10159.01 21135.58
best 19 14 21

Table 7.1: Comparison of π-IW(1), π-IW(1)+ and π-HIW(n, 1) over 53
Atari games. Best score given in bold.

112

i
i

“output” — 2021/7/7 — 15:22 — page 113 — #135 i
i

i
i

i
i

Chapter 8

Conclusions

First, we have provided new complexity bounds regarding the amount
of nodes expanded by IW and its novelty check when the state space is
represented by multivalued features, as it is common in the MDP setting.
The use of IW with multivalued features is not new (Bandres, Bonet,
and Geffner 2018; Lipovetzky, Ramirez, and Geffner 2015; Ramirez et
al. 2018), but the complexity results are usually directly taken from the
classical planning setting, where the state space is factored into a set of
atoms, instead. Our recursive formula to count the maximum amount of
novel states, given in Proposition 1, is based on two basic premises: two
feature values cannot appear simultaneously, and a feature value appears
in many tuples at the same time.

The recursion supposes a divide and conquer strategy for counting
novel states, where we divide states into two groups (the two terms of
the recursion): those that are novel exclusively due to one feature, and
those partially due to other features. In Theorem 1, we provide a general
(non-recursive) formula for counting novel states, and show that it can
differ many orders of magnitude from previous bounds which are based
on atoms that do not consider feature value constraints. We have also
discussed the implications of the novelty check and update in the overall
IW(k) complexity, providing upper and lower complexity bounds when
only features that change are checked.

We have presented a hierarchical approach to blind search. Our method
uses different feature mappings to create several levels of abstraction, al-

113

i
i

“output” — 2021/7/7 — 15:22 — page 114 — #136 i
i

i
i

i
i

lowing different search algorithms at different levels of the planning hi-
erarchy. Specifically, we propose to use Iterated Width at two levels,
resulting in the hierarchical search algorithm HIW(kh, k`). We show that
HIW(kh, k`) can solve problems of width kh + k` with the right choice of
high-level features, effectively reducing the algorithm complexity.

When high-level features are not provided, we show that they can
be extracted from a previous IW search. Our method for finding ab-
stract features extracts feature candidates from pruned branches of the
IW search tree that meet a certain criteria. We combine this automatic
feature extraction approach with an incremental method that performs
HIW searches, discovering new high-level features at each iteration. We
test our approach in classical planning benchmarks, showing that our in-
cremental HIW(1, 1) algorithm outperforms IW(2) in domains with goals
consisting of a single atom. Specifically, our approach presents a bet-
ter anytime behavior than IW(2), solving more instances while generally
expanding less nodes and taking less time. This shows the power of hier-
archies to reduce search complexity.

In the third part of the dissertation, we have presented π-IW, an algo-
rithm that effectively combines width-based planning and learning. Our
approach learns a compact policy using the exploration power of IW(1),
which helps reaching distant high-reward states. We use the transitions
recorded by IW(1) to train a policy in the form of a neural network.
Simultaneously, the search is informed by the current policy estimate, re-
inforcing promising paths. We have shown that the learned representation
by the policy network can be used as a feature space for IW, removing the
need of pre-defined features. Interestingly, π-IW can even learn represen-
tations that reduce the width of a task.

Our algorithm operates in a similar manner to AlphaZero, except that
the exploration relies on the pruning mechanism of IW, it does not keep
a value estimate (in our first approach), and the target policy is based on
observed rewards rather than visitation counts. Compared to AlphaZero
and previous width-based methods, π-IW has superior performance in
simple sparse reward environments. In the Atari 2600 benchmark, π-
IW achieves a similar performance to Rollout IW with a much smaller
planning budget and without the need to provide pre-defined features.
Our first approach, however, is not able to achieve a positive score in very

114

i
i

“output” — 2021/7/7 — 15:22 — page 115 — #137 i
i

i
i

i
i

challenging tasks such as Montezuma’s Revenge.

We improve our algorithm by learning a value function that is used to
augment the policy target with distant reward information. Furthermore,
we take advantage of the IW structured exploration when no rewards
are present by breaking ties with state visit counts, effectively caching
branches with a higher number of states for the subsequent search. With
this improvements, π-IW is able to achieve a positive score in Montezuma’s
Revenge.

Finally, we show that our policy learning and guidance scheme can be
seeamlessly integrated with the proposed hierarchical approach. For the
high-level search, we have presented a novel width-based algorithm that
selects nodes according to a visitation count, leveraging the depth-based
novelty tables from Rollout IW. The algorithm favors newly generated
nodes (as in Rollout IW) and, in contrast with previous algorithms that
select already visited nodes at random, it maintains a balance to revisit
already generated nodes. In contrast with other algorithms, it does not
use the tree structure to select a new node.

In experiments, we show that features extracted from a simple grid
downsampling can boost performance in navigation tasks, where π-HIW
outperforms the flat version when we make the reward sparser. In Atari
games, because of the downsampled high-level features, our method presents
the best improvements on tasks that consist of either an agent moving in
a fixed background, or a moving background with the agent in a fixed po-
sition. Among these games, we find Montezuma’s Revenge, where π-HIW
improves over the value-based flat version by a factor of five.

8.1 Future Perspectives

The algorithms that we have presented contemplate environments where
actions have deterministic effects. However, many processes are stochastic.
In the future, we would like to bring width-based planning methods closer
to the RL setting by allowing stochastic state transitions. If IW(1) can
successfully explore stochastic domains, then our approach for training a
policy as well as the presented hierarchical framework should still apply.
As discussed in Section 3.4, width-based algorithms have already been
applied in stochastic domains, but the approach is based on applying

115

i
i

“output” — 2021/7/7 — 15:22 — page 116 — #138 i
i

i
i

i
i

an action several times in order to gather statistics before generating a
node (Geffner and Geffner 2015). Another approach would be to not
reuse cached nodes for the subsequent search so that noise is cancelled
out throughout the online replanning. However, in situations with small
computational budgets, both approaches would perform poorly, and we
think that further research on this direction is necessary.

Width-based planning algorithms as well as Monte-Carlo tree search
methods require a resettable simulator. Although this is a milder re-
quirement than assuming explicit models at hand, as in most planning
algorithms, it makes online replanning methods less appealing than RL
algorithms. One line of research would be to explore the performance of
width-based methods with a learned model, similar to the approach of
MuZero (Schrittwieser et al. 2020). Another aspect from AlphaZero and
MuZero that could be incorporated to our algorithms is to distribute learn-
ing across many machines, as well as to produce experience by interacting
with many instances of the same environment concurrently.

Together with our policy learning scheme, we propose to automatically
extract the feature set from the last hidden layer of the neural network.
There have been other approaches that learn features for IW. For instance,
Dittadi, Drachmann, and Bolander (2021) use the states generated by an
initial IW search with B-PROST features to train a variational autoen-
coder. Then, they use the learned features in a second search, achieving
better results than in the initial one. The main drawback of their approach
is that features still need to be specified in the first search. A promising
line of research would be to train the autoencoder online. For instance,
we could start with the random features produced by the neural network
(initialized with random parameters), as in our approach, and train the
autoencoder with experience from the same search. This would waive the
need of predefining any features, or perform an initial search. Here, we
could add our policy guidance mechanism, and even combine features ex-
tracted from the policy with features generated by the autoencoder. Both
approaches should learn different types of features: we should expect au-
toencoder features to capture information about objects in the image, and
policy features to capture goal-related information. For instance, in the
game of Pong, the ball represents a very small part of the image, and may
not have a big impact in autoencoder features. However, it is key for the

116

i
i

“output” — 2021/7/7 — 15:22 — page 117 — #139 i
i

i
i

i
i

policy, and therefore should be highly represented by the policy features.
All these approaches for learning features are generic, and do not take

into account how they are used in the IW search. A very promising re-
search line is how to actively learn features that reduce the width of the
problem. In our approach, this is a consequence of the policy learning, but
there is no term in the loss function that encourages this behavior. How
to define such a loss term is still an open question. We believe that learn-
ing such width-reduction features would definitely boost the potential of
width-based methods.

In our hierarchical approach, the levels of abstraction are determined
by different feature sets. In Atari games, for instance, we use features
extracted from a simple downsampling, and show that these features help
in navigation games. However, this is not a general approach, and ideally,
we wish to not have to predefine the high-level feature set. The quality of
the features at the high level has a direct impact on the low level searches,
and therefore on the overall performance of our algorithm. Although we
provide an algorithm to identify promising high-level feature candidates,
looking at those that may be splitting and hopefully reduce the problem
width, how to integrate this or any other approach to identify features
with online learning is still an open research question that we would like
to explore in the future.

Finally, IW relies on the notion of state novelty to perform structured
exploration. Recent RL methods have proposed to exploit other notions
of novelty for systematic exploration (Bellemare et al. 2016; Martin et al.
2017; Ostrovski et al. 2017). In these approaches, an RL agent is rewarded
when it faces novel experience. Burda et al. (2019) presents what has been
known as the noisy TV problem, where a TV showing random noisy images
attracts the attention of the agent forever, that becomes a “couch potato”,
and fails to make any progress. In this scenario, IW would dedicate a huge
amount of resources exploring the noisy TV. In fact, this may happen with
any feature that is not controllable, i.e., that the agent cannot modify with
its actions. Thus, it would be desirable to identify such features, in order
to concentrate exploration in controllable regions of the state space. One
possibility would be to use extract such information from a learned model,
or to use the already generated states as a heuristic of whether or not a
certain feature can be changed by an action.

117

i
i

“output” — 2021/7/7 — 15:22 — page 118 — #140 i
i

i
i

i
i

i
i

“output” — 2021/7/7 — 15:22 — page 119 — #141 i
i

i
i

i
i

Bibliography

Abadi, Mart́ın et al. (2016). “TensorFlow: A System for Large-Scale Ma-
chine Learning”. In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). Savannah, GA, pp. 265–283.

Arel, Itamar et al. (2010). “Reinforcement learning-based multi-agent sys-
tem for network traffic signal control”. In: IET Intelligent Transport
Systems 4.2, pp. 128–135.

Arulkumaran, Kai et al. (2017). “Deep reinforcement learning: A brief
survey”. In: IEEE Signal Processing Magazine 34.6, pp. 26–38.

Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer (2002). “Finite-time
analysis of the multiarmed bandit problem”. In: Machine learning 47.2,
pp. 235–256.

Bäckström, Christer (1995). “Expressive equivalence of planning for-
malisms”. In: Artificial Intelligence 76.1-2, pp. 17–34.

Bäckström, Christer and Bernhard Nebel (1995). “Complexity results for
SAS+ planning”. In: Computational Intelligence 11.4, pp. 625–655.

Baird, Leemon (1995). “Residual algorithms: Reinforcement learning with
function approximation”. In: Machine Learning Proceedings 1995,
pp. 30–37.

Bandres, Wilmer, Blai Bonet, and Hector Geffner (2018). “Planning With
Pixels in (Almost) Real Time”. In: Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence.

Barth-Maron, Gabriel et al. (2018). “Distributed Distributional Deter-
ministic Policy Gradients”. In: International Conference on Learning
Representations.

Bast, Hannah et al. (2016). “Route planning in transportation networks”.
In: Algorithm engineering, pp. 19–80.

119

i
i

“output” — 2021/7/7 — 15:22 — page 120 — #142 i
i

i
i

i
i

Beattie, Charles et al. (2016). “Deepmind lab”. In: arXiv preprint
arXiv:1612.03801.

Bellemare, Marc G, Will Dabney, and Rémi Munos (2017). “A distribu-
tional perspective on reinforcement learning”. In: International Con-
ference on Machine Learning. PMLR, pp. 449–458.

Bellemare, Marc G et al. (2013). “The arcade learning environment: An
evaluation platform for general agents”. In: Journal of Artificial Intel-
ligence Research 47, pp. 253–279.

Bellemare, Marc G et al. (2016). “Unifying Count-Based Exploration and
Intrinsic Motivation”. In: Advances in Neural Information Processing
Systems. Im, pp. 1–26.

Bertsekas, Dimitri P (2019). Reinforcement learning and optimal control.
Bonet, Blai and Héctor Geffner (2001). “Planning as heuristic search”. In:

Artificial Intelligence 129.1-2, pp. 5–33.
Bonet, Blai and Hector Geffner (2021). “General Policies, Representations,

and Planning Width”. In: Proc. AAAI.
Brockman, Greg et al. (2016). OpenAI Gym. eprint: arXiv:1606.01540.
Browne, Cameron B et al. (2012). “A survey of monte carlo tree search

methods”. In: IEEE Transactions on Computational Intelligence and
AI in games 4.1, pp. 1–43.

Burda, Yuri et al. (2019). “Exploration by random network distillation”.
In: International Conference on Learning Representations.

Camacho, Eduardo F and Carlos Bordons Alba (2013). Model predictive
control.

Chentanez, Nuttapong, Andrew G. Barto, and Satinder P. Singh (2005).
“Intrinsically Motivated Reinforcement Learning”. In: Advances in
Neural Information Processing Systems 17. Ed. by L. K. Saul, Y. Weiss,
and L. Bottou, pp. 1281–1288.

Crosby, Matthew et al. (2020). “The Animal-AI Testbed and Competi-
tion”. In: Proceedings of the NeurIPS 2019 Competition and Demon-
stration Track. Ed. by Hugo Jair Escalante and Raia Hadsell. Vol. 123.
Proceedings of Machine Learning Research, pp. 164–176.

Currie, Ken and Austin Tate (1991). “O-Plan: the open planning archi-
tecture”. In: Artificial intelligence 52.1, pp. 49–86.

120

arXiv:1606.01540

i
i

“output” — 2021/7/7 — 15:22 — page 121 — #143 i
i

i
i

i
i

Dabney, Will et al. (2018a). “Distributional reinforcement learning with
quantile regression”. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence. Vol. 32. 1.

Dabney, Will et al. (2018b). “Implicit quantile networks for distribu-
tional reinforcement learning”. In: International conference on ma-
chine learning. PMLR, pp. 1096–1105.

Dittadi, Andrea, Frederik K. Drachmann, and Thomas Bolander (2021).
“Planning from Pixels in Atari with Learned Symbolic Representa-
tions”. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence 35.6, pp. 4941–4949.

Ecoffet, Adrien et al. (2019). “Go-explore: a new approach for hard-
exploration problems”. In: arXiv preprint arXiv:1901.10995.

Ecoffet, Adrien et al. (2021). “First return, then explore”. In: Nature
590.7847, pp. 580–586.

Erol, Kutluhan, James Hendler, and Dana S Nau (1996). “Complexity
results for HTN planning”. In: Annals of Mathematics and Artificial
Intelligence 18.1, pp. 69–93.

Espeholt, Lasse et al. (2018). “Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures”. In: International
Conference on Machine Learning. PMLR, pp. 1407–1416.

Fikes, Richard E, Peter E Hart, and Nils J Nilsson (1972). “Learning
and executing generalized robot plans”. In: Artificial intelligence 3,
pp. 251–288.

Fikes, Richard E. and Nils J. Nilsson (1971). “Strips: A new approach to
the application of theorem proving to problem solving”. In: Artificial
Intelligence 2.3, pp. 189–208. doi: https://doi.org/10.1016/0004-
3702(71)90010-5.

Flórez, José et al. (2011). “Planning multi-modal transportation prob-
lems”. In: Proceedings of the International Conference on Automated
Planning and Scheduling. Vol. 21. 1.

Fortunato, Meire et al. (2018). “Noisy Networks For Exploration”. In:
International Conference on Learning Representations.

Fox, Maria, Derek Long, and Daniele Magazzeni (2011). “Automatic con-
struction of efficient multiple battery usage policies”. In: Proceedings of
the International Conference on Automated Planning and Scheduling.
Vol. 21. 1.

121

https://doi.org/https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/https://doi.org/10.1016/0004-3702(71)90010-5

i
i

“output” — 2021/7/7 — 15:22 — page 122 — #144 i
i

i
i

i
i

Frances, Guillem et al. (2017). “Purely declarative action descriptions
are overrated: Classical planning with simulators”. In: IJCAI 2017.
Twenty-Sixth International Joint Conference on Artificial Intelligence;
2017 Aug 19-25; Melbourne, Australia.[California]: IJCAI; 2017. p.
4294-301.

Fujimoto, Scott, Herke Hoof, and David Meger (2018). “Addressing func-
tion approximation error in actor-critic methods”. In: International
Conference on Machine Learning. PMLR, pp. 1587–1596.

Garćıa, L. et al. (2015). “Modeling and real-time control of urban drainage
systems: A review”. In: Advances in Water Resources 85, pp. 120–132.
doi: https://doi.org/10.1016/j.advwatres.2015.08.007.

Geffner, Hector and Blai Bonet (2013). A Concise Introduction to Models
and Methods for Automated Planning.

Geffner, Tomas and Hector Geffner (2015). “Width-based planning for
general video-game playing”. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Entertainment.
Vol. 11. 1.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learn-
ing.

Guan, Dah-Jyh (1998). “Generalized Gray codes with applications”. In:
Proceedings of the National Science Council, Republic of China. Part
A, Physical science and engineering 22.6, pp. 841–848.

Guo, Xiaoxiao et al. (2014). “Deep Learning for Real-Time Atari Game
Play Using Offline Monte-Carlo Tree Search Planning”. In: Advances
in Neural Information Processing Systems. Ed. by Z. Ghahramani et
al. Vol. 27.

Guss, William H. et al. (2019). “MineRL: A Large-Scale Dataset of
Minecraft Demonstrations”. In: Twenty-Eighth International Joint
Conference on Artificial Intelligence.

Haarnoja, Tuomas et al. (2018). “Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor”. In: In-
ternational Conference on Machine Learning. PMLR, pp. 1861–1870.

Hausknecht, Matthew and Peter Stone (2015). “Deep Recurrent Q-
Learning for Partially Observable MDPs”. In: AAAI Fall Sympo-
sium on Sequential Decision Making for Intelligent Agents (AAAI-
SDMIA15).

122

https://doi.org/https://doi.org/10.1016/j.advwatres.2015.08.007

i
i

“output” — 2021/7/7 — 15:22 — page 123 — #145 i
i

i
i

i
i

Henderson, Peter et al. (2018). “Deep reinforcement learning that mat-
ters”. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. Vol. 32. 1.

Hessel, Matteo et al. (2018). “Rainbow: Combining improvements in deep
reinforcement learning”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 32. 1.

Hester, Todd et al. (2018). “Deep q-learning from demonstrations”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32.
1.

Hoffmann, Jörg and Bernhard Nebel (2001). “The FF planning system:
Fast plan generation through heuristic search”. In: Journal of Artificial
Intelligence Research 14, pp. 253–302.

Jinnai, Yuu and Alex S Fukunaga (2017). “Learning to Prune Dominated
Action Sequences in Online Black-Box Planning”. In: AAAI Confer-
ence on Artificial Intelligence.

Junyent, Miquel, Vicenç Gómez, and Anders Jonsson (2021). “Hierar-
chical Width-Based Planning and Learning”. In: Proceedings of the
31st International Conference on Automated Planning and Schedul-
ing. Vol. 31. ICAPS, pp. 519–527.

Junyent, Miquel, Anders Jonsson, and Vicenç Gómez (2018). Improving
width-based planning with compact policies. ICML / IJCAI / AAMAS
Workshop on Planning and Learning.

Junyent, Miquel, Anders Jonsson, and Vicenç Gómez (2019). “Deep Poli-
cies for Width-Based Planning in Pixel Domains”. In: Proceedings
of the 29th International Conference on Automated Planning and
Scheduling. Vol. 29. ICAPS, pp. 646–654.

Kahneman, Daniel (2011). Thinking, fast and slow.
Kapturowski, Steven et al. (2018). “Recurrent experience replay in dis-

tributed reinforcement learning”. In: International conference on learn-
ing representations.

Kearns, Michael, Yishay Mansour, and Andrew Y Ng (2002). “A sparse
sampling algorithm for near-optimal planning in large Markov decision
processes”. In: Machine learning 49.2, pp. 193–208.

Kearns, Michael and Satinder Singh (2002). “Near-optimal reinforcement
learning in polynomial time”. In: Machine learning 49.2-3, pp. 209–
232.

123

i
i

“output” — 2021/7/7 — 15:22 — page 124 — #146 i
i

i
i

i
i

Kempka, Michal et al. (2016). “ViZDoom: A Doom-based AI research
platform for visual reinforcement learning”. In: 2016 IEEE Conference
on Computational Intelligence and Games (CIG), pp. 1–8. doi: 10.
1109/CIG.2016.7860433.

Knoblock, Craig A. (1990). “Learning Abstraction Hierarchies for Prob-
lem Solving”. In: Proceedings of the Eighth National Conference on
Artificial Intelligence - Volume 2, pp. 923–928.

Kober, Jens, J Andrew Bagnell, and Jan Peters (2013). “Reinforcement
learning in robotics: A survey”. In: The International Journal of
Robotics Research 32.11, pp. 1238–1274.

Kocsis, Levente and Csaba Szepesvári (2006). “Bandit based monte-carlo
planning”. In: European conference on machine learning. Springer,
pp. 282–293.

Korf, Richard E (1985). “Macro-operators: A weak method for learning”.
In: Artificial intelligence 26.1, pp. 35–77.

Levine, Sergey et al. (2016). “End-to-End Training of Deep Visuomotor
Policies”. In: Journal of Machine Learning Research 17.39, pp. 1–40.

Li, Yuxi (2018). “Deep reinforcement learning”. In: arXiv preprint
arXiv:1810.06339.

Liang, Yitao et al. (2016). “State of the Art Control of Atari Games Using
Shallow Reinforcement Learning”. In: Proceedings of the 2016 Inter-
national Conference on Autonomous Agents and Multiagent Systems
Aamas, pp. 485–493.

Lillicrap, Timothy P. et al. (2016). “Continuous control with deep rein-
forcement learning.” In: ICLR.

Lipovetzky, Nir and Hector Geffner (2012). “Width and Serialization of
Classical Planning Problems”. In: Proceedings of the 20th European
Conference on Artificial Intelligence, pp. 540–545.

Lipovetzky, Nir and Hector Geffner (2017a). “Best-first width search: Ex-
ploration and exploitation in classical planning”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 31. 1.

Lipovetzky, Nir and Hector Geffner (2017b). “A polynomial planning algo-
rithm that beats LAMA and FF”. In: Proceedings of the International
Conference on Automated Planning and Scheduling. Vol. 27. 1.

Lipovetzky, Nir, Miquel Ramirez, and Hector Geffner (2015). “Classi-
cal Planning with Simulators: Results on the Atari Video Games.”

124

https://doi.org/10.1109/CIG.2016.7860433
https://doi.org/10.1109/CIG.2016.7860433

i
i

“output” — 2021/7/7 — 15:22 — page 125 — #147 i
i

i
i

i
i

In: International Joint Conference on Artificial Intelligence. Vol. 15,
pp. 1610–1616.

Lowe, Ryan et al. (2017). “Multi-Agent Actor-Critic for Mixed
Cooperative-Competitive Environments”. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems.
NIPS’17. Red Hook, NY, USA, pp. 6382–6393.

Machado, Marlos C et al. (2018). “Revisiting the arcade learning environ-
ment: Evaluation protocols and open problems for general agents”. In:
Journal of Artificial Intelligence Research 61, pp. 523–562.

Mao, Hongzi et al. (2016). “Resource management with deep reinforcement
learning”. In: Proceedings of the 15th ACM workshop on hot topics in
networks, pp. 50–56.

Martin, Jarryd et al. (2017). “Count-Based Exploration in Feature Space
for Reinforcement Learning”. In: International Joint Conference on
Artificial Intelligence.

McDermott, Drew (2000). “The 1998 AI Planning Systems Competition”.
In: AI Magazine 21.2, p. 35. doi: 10.1609/aimag.v21i2.1506.

McDermott, Drew et al. (1998). PDDL - The Planning Domain Definition
Language. Tech. rep. CVC TR-98-003/DCS TR-1165. Yale Center for
Computational Vision and Control.

Mirhoseini, Azalia et al. (2021). “A graph placement methodology for fast
chip design”. In: Nature 594.7862, pp. 207–212.

Mnih, Volodymyr et al. (2013). “Playing Atari With Deep Reinforcement
Learning”. In: NIPS Deep Learning Workshop.

Mnih, Volodymyr et al. (2015). “Human-level control through deep rein-
forcement learning”. In: Nature 518.7540, pp. 529–533.

Mnih, Volodymyr et al. (2016). “Asynchronous methods for deep rein-
forcement learning”. In: International conference on machine learning.
PMLR, pp. 1928–1937.

Mohsenian-Rad, Amir-Hamed et al. (2010). “Autonomous Demand-Side
Management Based on Game-Theoretic Energy Consumption Schedul-
ing for the Future Smart Grid”. In: IEEE Transactions on Smart Grid
1.3, pp. 320–331. doi: 10.1109/TSG.2010.2089069.

Neu, Gergely, Vicenç Gómez, and Anders Jonsson (2017). “A Unified View
of Entropy-Regularized Markov Decision Processes”. In: Deep Rein-
forcement Learning Symposium, NIPS.

125

https://doi.org/10.1609/aimag.v21i2.1506
https://doi.org/10.1109/TSG.2010.2089069

i
i

“output” — 2021/7/7 — 15:22 — page 126 — #148 i
i

i
i

i
i

Ng, Andrew Y, Daishi Harada, and Stuart Russell (1999). “Policy invari-
ance under reward transformations: Theory and application to reward
shaping”. In:

Ostrovski, Georg et al. (2017). “Count-Based Exploration with Neural
Density Models”. In: Proceedings of the 34th International Conference
on Machine Learning. Vol. 70, pp. 2721–2730.

Paden, Brian et al. (2016). “A Survey of Motion Planning and Control
Techniques for Self-Driving Urban Vehicles”. In: IEEE Transactions on
Intelligent Vehicles 1.1, pp. 33–55. doi: 10.1109/TIV.2016.2578706.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-
Performance Deep Learning Library”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by H. Wallach et al. Vol. 32.

Pathak, Deepak et al. (2017). “Curiosity-driven exploration by self-
supervised prediction”. In: International Conference on Machine
Learning. PMLR, pp. 2778–2787.

Plappert, Matthias et al. (2018). “Parameter Space Noise for Exploration”.
In: International Conference on Learning Representations.

Puigdomènech Badia, Adrià et al. (2020). “Agent57: Outperforming the
atari human benchmark”. In: International Conference on Machine
Learning. PMLR, pp. 507–517.

Racanière, Sébastien et al. (2017). “Imagination-augmented agents for
deep reinforcement learning”. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems, pp. 5694–5705.

Ramirez, Miquel et al. (2018). “Integrated Hybrid Planning and Pro-
grammed Control for Real Time UAV Maneuvering”. In: Proceedings
of the 17th International Conference on Autonomous Agents and Mul-
tiAgent Systems, pp. 1318–1326.

Richter, Silvia, Malte Helmert, and Matthias Westphal (2008). “Land-
marks Revisited.” In: AAAI. Vol. 8, pp. 975–982.

Rosin, Christopher D (2011). “Multi-armed bandits with episode context”.
In: Annals of Mathematics and Artificial Intelligence 61.3, pp. 203–
230.

Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell (2011). “A reduc-
tion of imitation learning and structured prediction to no-regret online
learning”. In: Proceedings of the fourteenth international conference on
artificial intelligence and statistics. JMLR, pp. 627–635.

126

https://doi.org/10.1109/TIV.2016.2578706

i
i

“output” — 2021/7/7 — 15:22 — page 127 — #149 i
i

i
i

i
i

Sacerdoti, Earl D (1974). “Planning in a hierarchy of abstraction spaces”.
In: Artificial intelligence 5.2, pp. 115–135.

Schaul, Tom et al. (2016). “Prioritized Experience Replay”. In: Interna-
tional Conference on Learning Representations. Puerto Rico.

Schrittwieser, Julian et al. (2020). “Mastering atari, go, chess and shogi
by planning with a learned model”. In: Nature 588.7839, pp. 604–609.

Schulman, John et al. (2015). “Trust region policy optimization”. In: In-
ternational conference on machine learning. PMLR, pp. 1889–1897.

Schulman, John et al. (2017). “Proximal policy optimization algorithms”.
In: arXiv preprint arXiv:1707.06347.

Shleyfman, Alexander, Alexander Tuisov, and Carmel Domshlak (2016).
“Blind Search for Atari-Like Online Planning Revisited”. In: Interna-
tional Joint Conference on Artificial Intelligence, pp. 3251–3257.

Silver, David et al. (2016). “Mastering the game of Go with deep neural
networks and tree search”. In: nature 529.7587, pp. 484–489.

Silver, David et al. (2017). “Mastering the game of go without human
knowledge”. In: nature 550.7676, pp. 354–359.

Silver, David et al. (2018). “A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play”. In: Science
362.6419, pp. 1140–1144. doi: 10.1126/science.aar6404.

Still, Susanne and Doina Precup (2012). “An information-theoretic ap-
proach to curiosity-driven reinforcement learning”. In: Theory in Bio-
sciences 131.3, pp. 139–148.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning:
An introduction.

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “MuJoCo: A
physics engine for model-based control”. In: 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 5026–5033.
doi: 10.1109/IROS.2012.6386109.

Van Hasselt, Hado, Arthur Guez, and David Silver (2016). “Deep reinforce-
ment learning with double q-learning”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 30. 1.

Wang, Ziyu et al. (2016). “Dueling network architectures for deep rein-
forcement learning”. In: International conference on machine learning.
PMLR, pp. 1995–2003.

127

https://doi.org/10.1126/science.aar6404
https://doi.org/10.1109/IROS.2012.6386109

i
i

“output” — 2021/7/7 — 15:22 — page 128 — #150 i
i

i
i

i
i

Wang, Ziyu et al. (2017). “Sample Efficient Actor-Critic with Experience
Replay”. In: 5th International Conference on Learning Representa-
tions, ICLR 2017.

Wymann, Bernhard et al. (2014). TORCS, The Open Racing Car Simu-
lator. http://www.torcs.org.

Yaramasu, Venkata and Bin Wu (2016). Model predictive control of wind
energy conversion systems.

Zheng, Guanjie et al. (2018). “DRN: A deep reinforcement learning frame-
work for news recommendation”. In: Proceedings of the 2018 World
Wide Web Conference, pp. 167–176.

Zhou, Zhenpeng, Xiaocheng Li, and Richard N Zare (2017). “Optimizing
chemical reactions with deep reinforcement learning”. In: ACS central
science 3.12, pp. 1337–1344.

128

	Abstract
	Resum
	Resumen
	List of Figures
	List of Tables
	List of Algorithms
	 Introduction
	Planning and Learning
	System 1 and System 2
	Sparse Rewards
	Width-Based Planning
	Goals and Thesis Structure

	I Background
	 Planning in Reinforcement Learning
	Markov Decision Processes
	Models and Simulators
	Reinforcement Learning
	Online Replanning
	Monte-Carlo Tree Search
	UCT

	The Atari 2600 Benchmark
	Deep Reinforcement Learning
	Deep Learning
	Deep Q-Learning
	Playing Atari with Shallow Reinforcement Learning

	AlphaGo: MCTS with Deep Neural Networks
	Training Pipeline
	Search

	Policy Iteration MCTS
	AlphaGo Zero
	AlphaZero
	MuZero

	 Width-Based Planning
	The Classical Planning Model
	Classical Planning Problems as MDPs
	Factored Representation

	Iterated Width
	Problem Width
	Width of Single-Atom Goal Problems
	Serialized IW

	Best-First Width Search: Beyond Pure Exploration
	Width-Based Planning in MDPs
	Rollout IW
	Results in Atari Games

	II Planning
	 Complexity of IW
	Expanded Nodes
	Novelty Check and Update
	Checking only features that change

	 Hierarchical Iterated Width
	A Hierarchical Approach to Blind Search
	Hierarchical Width
	Connections to Related Work
	Incremental Hierarchical IW (IHIW)
	Discovering High-Level Features
	An incremental approach

	Experiments in Classical Planning

	III Learning
	 Policy-Guided Iterated Width
	Policy-Guided Iterated Width (-IW)
	Planning Step
	Action Execution Step
	Learning Step

	Dynamic Features
	Experiments
	-IW Can Reduce the Width of a Problem
	-IW Improves MCTS Exploration
	-IW on Atari Games

	 Hierarchical -IW
	Improvements to -IW
	Learning with Hierarchy
	Count-Based Rollout IW
	Policy-Guided Hierarchical IW (-HIW)

	-HIW in Pixel-Based Testbeds
	Gridworld Environments
	Atari Games

	 Conclusions
	Future Perspectives

	Bibliography

