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Abstract  

Photovoltaic technology is one of the most promising clean, renewable 

energy sources to reduce the environmental impacts of fossil fuels over 

the last decades. In this context, perovskites are a recently developed 

new photovoltaic material, which have drawn important attention due 

to their ability to achieve very high efficiencies. However, the large-scale 

industrial application of perovskite solar cells stays in the background of 

silicon-based solar cells, because of their dramatically shorter lifetime 

under operating conditions. The charge selective layers play a crucial role 

in the rapid rise in device performance and stability of perovskite solar 

cells. Recently, the application of self-assembled monolayers as charge 

selective layers in perovskite solar cells has gained tremendous attention, 

owing to advantages like cost-effectiveness, stability, and the absence of 

additives.  

The aim of this thesis is to design and synthesise novel molecules able to 

form self-assembled monolayers that act as hole selective materials in 

perovskite solar cells for achieving high power conversion efficiency and 

exceptionally durable operational lifetime. To determine the real 

working conditions of complete devices, custom-built high throughput 

ageing setup is used. This ageing setup estimates the energy output of a 

solar cell in operation by obtaining the accurate efficiency value from the 

maximum power point.   

Moreover, charge selective layers are responsible for the transport of 

photogenerated charges out of the solar cell and are in intimate contact 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



vi 
 

with the perovskite absorber. For that reason, the carrier recombination 

order in the newly synthesized Lewis base-made interlayer and in the 

self-assembled monolayer are investigated in functional devices, using 

advanced characterisation techniques, such as photo-induced charge 

extraction, photo-induced transient photovoltage, photo-induced 

transient photocurrent, and differential capacitance.   
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Resumen 

La tecnología fotovoltaica es una de las fuentes de energía limpia y 

renovable más prometedoras para reducir el impacto ambiental de los 

combustibles fósiles en las últimas décadas. En este contexto, las 

perovskitas son un material cuya aplicación en dispositivos fotovoltaicos 

ha atraído recientemente una atención importante debido a su capacidad 

para lograr eficiencias muy elevadas. Sin embargo, la aplicación 

industrial a gran escala de las celdas solares de perovskita está menos 

desarrollada con respecto a las celdas solares basadas en silicio, debido a 

que su vida útil es más corta en condiciones operativas. Las capas de 

carga selectiva juegan un papel crucial en el rápido aumento del 

rendimiento del dispositivo y la estabilidad de las celdas solares de 

perovskita. Recientemente, la aplicación de moléculas capaces de formar 

monocapas autoensambladas que funcionan como capas selectivas de 

carga en celdas solares de perovskita han demostrado su potencial 

debido a las ventajas que proporcionan como la rentabilidad, la 

estabilidad y la ausencia de aditivos. 

El objetivo de esta tesis es el diseño y síntesis de moléculas novedosas 

capaces de formar monocapas autoensambladas que funcionen como 

capas selectivas de huecos en celdas solares de perovskita para lograr una 

alta eficiencia de conversión de energía y una vida útil excepcionalmente 

larga. Para determinar las condiciones de trabajo reales de los 

dispositivos, se ha utilizado una configuración de medida del tiempo de 

vida de alto rendimiento hecha a medida. Esta configuración estima la 
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producción de energía de una celda solar en funcionamiento al obtener 

el valor de eficiencia preciso en el punto de máxima potencia. 

Además, las capas selectivas de carga son responsables de transportar 

fuera de la celda solar las cargas fotogeneradas, y están en íntimo 

contacto con la capa de perovskita. Por esta razón, se ha investigado el 

orden de recombinación en la capa intermedia formada por una base de 

Lewis y en la monocapa autoensamblada en un dispositivo funcional, 

utilizando técnicas de caracterización avanzadas, como extracción de 

carga fotoinducida, fotovoltaje transitorio fotoinducido, fotocorriente 

transitoria fotoinducida y capacitancia diferencial. 
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Resum 

La tecnologia fotovoltaica és una de les fonts d'energia neta i renovable 

més prometedores per reduir l’impacte ambiental dels combustibles 

fòssils en les últimes dècades. En aquest context, les perovskites són un 

material que ha atret recentment una atenció important a causa de la 

seva capacitat per aconseguir eficiències de conversió molt elevades. No 

obstant, l'aplicació industrial a gran escala de les cel·les solars de 

perovskita està menys desenvolupada respecte a les cel·les solars basades 

en silici, per la seva vida útil extremadament més curta en condicions 

funcionals. Les capes de càrrega selectiva juguen un paper crucial en el 

ràpid augment del rendiment del dispositiu i en l'estabilitat de les cel·les 

solars de perovskita. Recentment, l'aplicació de monocapes auto-

assemblades formades per molècules orgàniques que funcionen com a 

capes selectives de càrrega en cel·les solars de perovskita ha atret una 

gran atenció a causa d’avantatges com la rendibilitat, l'estabilitat i 

l'absència d'additius. 

L'objectiu d'aquesta tesi és el disseny i la síntesi de noves molècules que 

formen monocapes auto-assemblades que funcionin com a capes 

selectives de buits en cel·les solars de perovskita per aconseguir una 

eficiència de conversió alta d'energia i una vida útil excepcionalment 

llarga. Per determinar les condicions de treball reals dels dispositius, 

s'utilitza una configuració de mida d'envelliment d'alt rendiment feta a 

mida. Aquesta configuració estima la producció d'energia d'una cel·la 

solar en funcionament a l'obtenir el valor d'eficiència precís en el punt 

de màxima potència. 
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A més, les capes selectives de càrrega són responsables de transportar 

fora de la cel·la solar les càrregues fotogeneradas, i estan en íntim 

contacte amb la capa de perovskita. Per aquesta raó, s'ha investigat 

l'ordre de recombinació en la capa intermèdia formada per una base de 

Lewis i en la monocapa auto-assemblada en un dispositiu funcional, 

utilitzant tècniques de caracterització avançades com extracció de 

càrrega fotoinduïda, fotovoltaje transitori fotoinduït, fotocorrent 

transitòria fotoinduïda i capacitància diferencial. 
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In the last centuries, the depletion of fossil fuel reserves and increasing 

environmental pollution has urged attention toward alternative, 

renewable energy sources. Fossil fuels are used as main sources of heat 

and energy around the World and these burnt fossil fuels increase the 

amount of carbon dioxide which is a highly potent greenhouse gas.1,2 

Greenhouse gases trap heat in the atmosphere which causes extreme 

weather events such as drought, flooding, etc.3 To have a viable World, 

we should take an action like having durable renewable energy sources 

and environmentally consumption cycles. Renewable energy will play a 

vital role in the decarbonisation of our energy systems in the coming 

decades. For instance, hydropower (15%), wind energy (8%), and solar 

energy (2%) make up to one-fourth of the year energy production. Solar 

energy is one of the viable sources, and capable enough to fully cover the 

electricity demand around the globe. For instance, if all incoming light 

is absorbed, its total yearly energy consumption is around 150 TWh.4,5  

First-generation conventional silicon-based photovoltaic (PV) 

technology is one of the key players in the field for large area static solar 

harvesting. It has been developed and commercialized for several years 

because of its advantages such as having a long-term stability. On the 

other hand, because of its intrinsic properties, Si-based PV has several 

disadvantages such as a low absorption coefficient due to its indirect 

bandgap, and high production cost. Silicon-based solar panels need to be 

made of pure material that causes to have the cost-intensive 

manufacturing process. Further, because of low absorption, the absorber 

needs to be in hundreds of micrometres thick, which makes them rigid 

and unsuitable for flexible solar panels.6,7  
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Over the last three decades, many emerging types of PV technologies 

that are focused on the production of thin and flexible devices have 

attracted notable attention and are being developed. The advantages of 

emerging photovoltaic technologies are plentiful and employ 

inexpensive materials; they can be a solution-processible for low-cost 

energy production and flexible surfaces in the future, reducing the 

production costs of large-scale print applications, enabling the global 

transition to a carbon-free society. 

Grätzel and co-workers reported a low-cost solar cell, which is named as 

dye-sensitised solar cells (DSSCs) and have its place in the thin-film solar 

cell group in 1991. It is a photoelectrochemical system and based on a 

light-absorbing organic or organometallic dye as the sensitizer and redox 

electrolyte.8 Lately, Yao et al. have also shown a record power conversion 

efficiency (PCE) of 13% based on dithienopicenocarbazole organic dye.9 

Nonetheless, DSSCs have instability problems like leakage and corrosion 

issues by reason of the redox electrolyte. These disadvantages are 

important roadblocks for influencing their commercialization.10  

In the attempts to increase the PCE of DSSCs, an enormous development 

in PCE has been reached by switching traditional dyes to organic-

inorganic hybrid perovskite material. It was soon realised that the 

perovskite can be an independent solar absorber similar to the inorganic 

PV material. Since the first report in 2009, perovskite solar cells (PSCs) 

have rapidly become the hottest topic in photovoltaics due to their 

outstanding optoelectronic properties.11 Fast development of device 

engineering allowed to prepare solar cells with PCE from 9% to over 25% 
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within ten years, already exceeding those of commercialized 

polycrystalline silicon solar cells.12 

1.1. Perovskite Solar Cells 

The term "perovskite" is attributed to the crystal structure of calcium 

titanate (CaTiO3), discovered in 1839 by the German mineralogist Gustav 

Rose and named in honour of the Russian mineralogist Lev Perovski. It 

gives its name to the class of compounds with the same type of crystalline 

structure represented by the general formula ABX3. Figure 1.1 illustrates 

the perovskite structure, where A can be a small monovalent organic 

molecule such as methylammonium (CH3NH3
+, MA) or formamidinium 

(NH2=CH3NH2
+, FA) or cations like Rb+, and Cs+, B is a divalent cation 

(Pb2+, Ge2+, and Sn2+) and X stands for halide anion (I-, Br-, or Cl-). As it 

can be seen in Figure 1.1, the A cation is 12-fold coordinated by the X 

anion in a cuboctahedral arrangement and the B cation is 6-fold 

coordinated by X in an octahedral configuration. The shown crystalline 

structure represents the most common orthorhombic structure, where 

the lattice constants (a, b, c) all have different lengths (a ≠ b ≠ c ≠ a). The 

Goldschmidt tolerance factor (t)13 has been used to significantly predict 

the stability of perovskite structure based only on the chemical formula 

ABX3, as the following equation:  

𝑡 =
𝑟𝐴+𝑟𝑋

√2(𝑟𝐵+𝑟𝑋)
   Equation 1.1  

where rA, rB and rX is the ionic radius of the corresponding ions on A,B, 

and X-sites. A perfect packed structure corresponds to t = 1.0 and only a 
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tolerance factor in the range 0.8 < t < 1.0 occurs. They could be distorted 

due to bending of the BX6 octahedral and lowering of the symmetry, 

although in the lower part of this range. If t > 1, the A-site cation is larger, 

preventing it from forming the perovskite, which is photoactive, and if 

t<0.8, the cation is smaller, again frequently causing alternative 

structures.14  

The organic–inorganic hybrid halide-based perovskites were commonly 

studied in the 1990s for the application in transistor technology and 

light-emitting diodes, due to their outstanding optoelectronic properties 

and solution processability. This material attracted later important 

attention for its application in photovoltaic devices owing to its low 

exciton binding energy, high absorption coefficient, long charge carrier 

lifetime, diffusion length, and tuneable bandgap. Even though hybrid 

lead halide perovskites have been known to have a superior charge 

transporting property for over a decade, Miyasaka and co-workers 

published the first work with the perovskite as absorbing material in the 

photovoltaic cell in 2009.11 Here, they have used two different metal 

halide perovskite nanocrystals, CH3NH3PbBr3 (MAPbBr3) and 

CH3NH3PbI3 (MAPbI3, MAPI), as absorbing materials. Especially, MAPI 

shows superior optoelectronic properties because it covers nearly all the 

visible region with a bandgap of 1.54 eV, corresponding to an absorption 

onset of about 800 nm.11  
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Figure 1.1. Perovskite lattice representations, following the ABX3 chemical 
formula. Note that the shown crystalline structure represents the most 
general orthorhombic structure.  

Still, despite having remarkable progress on the PSC efficiency, its long-

term stability is one of the main roadblocks towards industrialization. 

First of all, the halide perovskite layer stability enhancement is essential 

to improve all device's stability. To achieve this goal, more complex 

multi-cation and mixed-anion composited perovskite absorber layers are 

investigated. In 2016, Saliba and co-workers achieved great improvement 

in stability and reproducibility by the incorporation of Cs+.15 After that, 

Cs0.1(MA0.15FA0.85)0.9Pb(I0.85Br0.15)3 (CsFAMA) composition turned out to 

be a standard intrinsic semiconductor in perovskite solar cells for 

achieving high PCE and long-term stability.   

1.1.1. Perovskite Device Architectures and 

Operating Mechanisms 

The PSCs have mainly five components: (1) a metal-based cathode or 

anode, (2) a hole selective layer (HSL), (3) perovskite absorber layer, (4) 

A

B

X

a

b

c
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an electron selective layer (ESL), and (5) transparent conductive oxide 

(TCO). The charge selective layers play a crucial role in the photovoltaic 

performance of the PSC. When an n-type semiconductor is deposited 

onto the TCO, the device configuration is denoted as a planar or 

mesoporous n–i–p type (conventional) PSC. In contrast, when a p-type 

organic semiconductor thin film is deposited onto the TCO, the solar cell 

configuration is denoted as a planar p–i–n type (inverted) perovskite 

solar cell. Schematic illustration of the above-mentioned perovskite 

device architectures is shown in Figure 1.2. 

 

Figure 1.2. Typical three sandwiched structures of the PSCs. The compact 
ESL and HSL are used in planar p-i-n and n-i-p structures, the bilayer of 
compact and mesoporous material consists of the ESL in mesoporous n-i-
p device structure, respectively.  

Firstly, the perovskite layer absorbs photons and generates excitons 

(electron-hole pairs) during exposure to sunlight. These excitons can 

become free carriers (free electrons and holes) to produce a current. The 

carrier diffusion distance and lifetime are dependent on the perovskite 

material's low carrier recombination probabilities. For instance, MAPI 
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perovskite's carrier diffusion distance is at least 100 nm and longer than 

1 μm for MAPbI3-xClx.16,17 The lifetime and long diffusion distance of 

carriers are the main reason for the excellent performance of the PSC. 

Subsequently, these free holes and electrons are collected by the HSL and 

the ESL. The holes are transferred from the perovskite layer to HSL, 

which is finally collected by the metal electrode. Meanwhile, the 

electrons are transferred to the ESL and collected by TCO. After all, the 

photocurrent is generated in the outer circuit by connecting the TCO 

and the metal electrode in n-i-p architecture perovskite solar cells. 

 

Figure 1.3. Schematic diagram illustration of energy levels and transport 
processes of holes and electrons in an n-i-p architecture perovskite solar 
cell.  

In 2014, Marchioro et al. assumed that the electrons and holes can be 

extracted at the two heterojunction interfaces of ESL/perovskite and 

HSL/perovskite, followed by electrons injecting into ESL (process (i)) 

and holes injecting into HSL (process (ii)) to achieve charge transport.18 

Simultaneously, a series of behaviours that are detrimental to the cell’s 

performance, such as exciton annihilation (process (iii)), 
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photoluminescence, or non-radiative recombination, as well as reverse 

transmission of electrons and holes (process (iv) and (v)) and 

recombination at the ESL/HSL interface (process (vi)) will also occur. All 

transport processes of electrons and holes in an HSL/perovskite/ESL cell 

are shown in Figure 1.3. 

In order to achieve high performance from photovoltaic devices, the 

extraction of photogenerated charge carriers is all-important, therefore, 

it is necessary to use charge selective contacts, hole and/or electron 

transport materials to facilitate moving the carrier to the corresponding 

electrode. The energy levels alignment of charge selective contacts with 

the perovskite absorber layer should be considered when deciding the 

device architecture. For instance, in the case of the HSLs, it is interesting 

to have a higher lowest unoccupied molecular orbital (LUMO) level that 

will act as an electron blocking layer while a lower highest occupied 

molecular orbital (HOMO) level that will effectively extract holes from 

the perovskite absorber layer in p-i-n configuration PSCs. 19 Even if, the 

favourable HSL has energy offset between the perovskite valence band 

maximum (VBM) and HOMO level of the HSL for hole injection, it will 

introduce a non-radiative recombination component that will alter the 

final device open-circuit voltage (VOC).20  

In this section, the recombination of charge carrier types will be 

explained. Long carrier lifetimes are desirable to obtain highly efficient 

device performance, for this reason, the charge carrier recombination in 

perovskite devices has a very important role. The photoexcitation carrier 

density rules the predominant recombination mechanism. For instance, 
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while trap-assisted recombination will be dominating at low carrier 

densities (<1015 cm-3), the band-to-band bimolecular recombination will 

be the dominant recombination mechanism after all the trap states are 

filled at intermediate carrier densities (1015-1017 cm-3). Furthermore, the 

dominant recombination mechanism will be Auger recombination at 

even higher carrier densities. All the recombination mechanism types are 

illustrated in Figure 1.4.  

 

Figure 1.4. Schematic illustration of recombination mechanism types in 
PSCs. a) Trap-assisted non-radiative recombination. b) Band-to-band 
bimolecular radiative recombination. c) Auger recombination. 

Trap-Assisted Non-Radiative Recombination  

Trap-assisted recombination occurs when an electron falls into a trap 

state, which is an energy level within the bandgap. When the electron 

occupies the trap state, another electron cannot fill this trap, and the 

occupying electron moves into an empty VB state in a second step, in 

that way the recombination process is completed.21 This process can be 

thought of as a two-stage transition of an electron from the CB to the VB, 
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or the destruction of the electron and hole that meet each other in the 

trap. This process is also referred as Shockley-Read-Hall (SRH) 

recombination.22,23  

Perovskite solar cells combine their high carrier mobility with long 

carrier lifetimes and high radiation efficiency. However, full devices 

suffer from significant trap-assisted recombination losses that limit their 

VOC to values well below the Shockley-Queisser limit.24 Solar cells 

operate in the low carrier density regime where trap-assisted 

recombination is predominant at 1 Sun conditions. These traps states are 

caused by point defects of the perovskite lattice or the presence of a 

foreign atom.  

Hence, most of the research groups focused on the passivation of the trap 

states. The main focus was to reduce trap-assisted recombination at 

defects in the perovskite bulk or grain boundaries. Indeed, significant 

improvements have been made through improved perovskite fabrication 

schemes for increasing particle size, improving crystallinity, and the 

invention of multiplication and/or multihalide formulations.25 In 

addition, their studies confirmed that surface recombination is more 

important than recombination within crystalline particles and at inner 

grain boundaries.  

Molecular modifiers are one of the most common application to 

passivate the surface traps. Guo and co-workers managed to decrease the 

trap densities in both grain interior and at the boundaries by using a 

bifunctional Lewis base additive, resulting in an enhanced carrier 

lifetime. In this study, the champion PCE of the MAPI-based device is 
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enhanced from ~16% to ~18% upon an optimised addition of IT-4F.26 It 

is made of carbonyl (C=O), cyano (C≡N) and thiophene groups, which 

are reported to be excellent passivating agents. Carbonyl and cyano 

groups (Lewis bases) act as electron-withdrawing end groups that can 

effectively passivate the trap state at the surface and grain boundaries of 

perovskite thin films through Lewis acid-base reaction with the under-

coordinated Pb2+.27,28 

Band-to-band bimolecular radiative recombination 

Band-to-band radiative recombination occurs when the state changes 

from an electron CB state to the empty VB state associated with the hole. 

This band-to-band transition is typically also a direct radiation transition 

in bandgap semiconductors.21,29 The radiative recombination is equal to 

the carrier generation, following the principle of detailed balance.30 If we 

consider this situation in terms of perovskite devices, high radiative 

recombination rates will be expected due to its strong absorption 

feature.29,31 Moreover, the charge carrier diffusion lengths were 

calculated in the micron regime, which is larger than the average 

thickness of perovskite solar cell devices using a thin layer of around 500-

600 nm.32 Having a higher absorption coefficient is significantly 

advantageous for photovoltaic devices operating in a low carrier density 

regime, even if they have high radiative recombination rates.31 

Auger recombination 

Auger recombination is a process where an electron and a hole are 

recombined in the transition from band-to-band, but now the resulting 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



 Introduction 

13 
 

energy is given to another electron or hole. The incorporation of a third 

particle affects the recombination rate, so Auger recombination is 

different than band-to-band recombination. Most likely, this process is 

also supported by the phonon through the absorption or emission of 

phonons.33,34 

For solar cell application, Auger recombination is of little importance 

compared to carrier recombination rates, as it only works in high carrier 

density regimes (> 1017 cm-3). 

1.1.1.1. Perovskite Absorber  

The main component is a metal halide perovskite layer in all possible 

device configurations for absorbing the photons and producing free 

carriers. The perovskite layer's fascinating optoelectronic properties, 

simple manufacturability, and low-cost precursors caused it to get 

attention in solar cell applications. The bandgap of perovskite materials 

for the engineering material properties and especially for solar cell 

applications has recently been realized by changing the material 

composition. These perovskites can be processed by numerous 

techniques and have an adjustable bandgap of about 1.2 to 3.0 eV by 

replacing the aforementioned cations,35 metals,36,37 or halides.38 In the 

meantime, the wide bandgap makes perovskites desirable for different 

applications such as laser,39 light-emitting devices,40 photodetectors,41 

etc. This also provides a variety of options for photovoltaic applications. 

MAPI is the simplest and most studied one lead-based perovskite which 

can achieve band gaps between 1.55 and 1.62 eV. It is nearly ideal for 
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single-junction thin-film photovoltaic technology. To use a small 

amount of Sn in Sn/Pb metal mixtures can be an option to achieve the 

Schockley-Quessier optimum for single-junction at 1.42 eV. The 

Schockley-Quessier limit asserts the maximum achievable efficiency is 

intrinsically limited to 31% due to thermalisation and transmission 

losses.42 The tuneable bandgap of the perovskite enables it to be 

incorporated into tandem devices (with multiple solar cells either in 

series or in parallel connection). Here, a tandem solar cell design that 

consists in a plurality of absorber cells stacked horizontally is 

implemented to absorb a larger portion of the solar spectrum and 

accordingly provide higher PCEs. For example, PSCs can be the top cell 

in a perovskite/Si tandem. A recent world record on the monolithic 

perovskite/Si tandem reached the efficiency of 29.5% PCE.43 

Recently, the triple cation perovskite layer that consists of Cs+ cation 

becomes a standard absorber, having higher PCE and longer stability 

while comparing with MAPI as mentioned in the previous section. Cs+ is 

a large, non-radioactive, and stable monovalent cation. Notably, the 

CsFAMA layer has a black phase at room temperature without any 

additional annealing step. In other words, the perovskite crystallization 

starts with the photoactive black phase. Matsui and co-workers 

demonstrated unannealed CsFAMA triple cation perovskite cell PCE can 

reach PCE of 18%.44 

1.1.1.2. Working Electrodes 

Transparent conducting oxide materials are commonly used for 

developing various transparent devices in optoelectronic systems. Based 
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on the device architecture of perovskite solar cells, usually used TCO 

materials are indium-doped tin oxide (ITO) and fluorine-doped tin oxide 

(FTO). ITO and FTO are n-type degenerate semiconductors with a wide 

bandgap (≥ 3 eV).45 These materials are highly transparent in the visible 

spectrum region, relatively stable under atmospheric conditions, 

chemically inert, provide low reflection and absorption in the visible 

region, and provide excellent electrical conductivity when it is coated on 

glass or plastic substrate.46 FTO is especially preferred as a TCO in n-i-p 

architecture PSCs due to its high temperature resistance and affordable 

price than ITO.47  

1.1.1.3. Back Metal Contacts  

Metal-based contacts are a required layer to complete the photovoltaic 

device and an internal circuit. The metal contacts are mostly deposited 

by thermal evaporation and their process details are explained in Chapter 

2. Universally, gold or silver are preferred as a back contact metal in n-i-

p architecture PSCs due to their high work function and inertness. 

Nevertheless, gold is an extremely expensive metal when is compared to 

other alternative metals. Besides, it might interpenetrate through the 

HSL and interact with perovskite causing degradation in short-term 

studies.48 In the section on the stability of perovskite devices, the effect 

of the metal selection on perovskite device stability will be explained. 

1.1.1.4. Buffer Layer in inverted PSCs 

Bathocuproine (BCP) has been usually applied as a buffer layer in 

inverted p-i-n configuration of the PSCs due to the formation of ohmic 
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contact between the electrode and the ESL and the reduction of 

interfacial charge recombination (Figure 1.5).49  

 

Figure 1.5. Molecular Structure of BCP. 

Chen and co-workers have demonstrated that the thickness of the BCP 

buffer layer plays a critical role in charge accumulation, which leads to 

degradation of the perovskite device performance. Furthermore, they 

have shown that optimised thin BCP layer (5 nm) between PCBM and 

silver cathode cause to have smaller series resistance (RS) owing to the 

formation of better ohmic contact and  larger shunt resistance due to 

decrease of interfacial recombination.50  

1.1.1.5. Charge Selective Materials 

High-efficiency PSCs are typically designed with an organometal halide 

perovskite–infiltrated mesostructured as a light absorber and charge 

carrier, sandwiched between a p-type electron-blocking HSL and an n-

type hole-blocking ESL (Figure 1.2). Both charge selective materials play 

a critical role in achieving the highest device performance for PSCs, and 

only these materials allow an efficient charge separation in the complete 

photovoltaic devices. These materials assist to (i) tune the work function 
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of the electrode to promote ohmic contact at the electrode interface and 

absorber layer; (ii) determine the polarity of the device; (iii) enhance the 

selectivity toward holes or electrons while blocking the other and 

minimizing charge carrier recombination at the interfaces; (iv) increase 

light-harvesting; (v) improve device stability. This section will explain 

which kind of commercial charge selective material is preferred to 

achieve highly efficient and stable perovskite devices.   

Commercial Electron-Selective Hole-Blocking Materials 

The electron-selective materials are mainly responsible for the selective 

extraction of electrons at the anode contact and block holes from 

recombination with injected electrons in the n-i-p architecture PSCs. For 

that reason, an ESL should have lower LUMO than the perovskite layer 

to satisfy band alignment with the perovskite layer (Figure 1.3.). 

Additionally, it must have high transmittance in the ultraviolet and 

visible radiation (UV-vis) region, allowing more photons to pass through, 

and be absorbed easily by the perovskite layer.  

The ESL can be mainly categorised into three types: organic, inorganic, 

and composite ESLs. In a classic conventional perovskite device 

configuration, compact TiO2 (c-TiO2) and mesoporous TiO2 (m-TiO2) are 

the most commonly used inorganic ESLs. It is believed that the metal 

oxide scaffold provides an effective n-doping in this infiltered layer, 

resulting in a suitable n-type/intrinsic homogenization within the 

perovskite layer.51 The c-TiO2 blocking layer is usually deposited using a 

spray-pyrolysis method or spin-coating technique. The m-TiO2 scaffold 

layer is always deposited by spin-coater nowadays. Optimum infiltration 
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of the perovskite layer into the pores of the m-TiO2 is desirable to achieve 

a highly efficient perovskite device. In the meantime, the thickness of the 

ESL is critical for complete perovskite device performance. Kim and co-

workers demonstrated that while the thickness of the TiO2 increases, the 

fill factor (FF) and the VOC decreases dramatically.52  

Although being commonly used as ESL, TiO2 also has some 

disadvantages that could possibly lead to ohmic losses or non-ideal space 

charge distribution with PSCs. Pathak and co-workers managed to 

improve electron conductivity and forthright VOC of the TiO2 by 

aluminium doping, reducing the number of sub-bandgap states of TiO2. 

Recently, Giordano and co-workers used lithium salt to dope m-TiO2, 

and they have demonstrated that the Li-doped TiO2 electrodes exhibit 

superior electronic properties due to reducing electronic trap states 

enabling faster electron transport.53 The lithium salt is generally used as 

a chemical dopant in the organic hole selective layer in the conventional 

structure of PSCs, and it has a positive influence on the hysteresis effect 

and the photovoltaic performance of the PSCs in a short time due to 

improved electronic properties.54 The hysteresis effect is basically 

described as the difference between the PCE of forward scan (from short 

circuit current to forward bias, 0 V → VOC) and reverse scan (from 

forward bias to short circuit, VOC → 0 V) in current density-voltage (J-V) 

curves which are reported firstly by Snaith and co-workers in 2014.55 

Detailed information on the hysteresis effect will be given in the 

following chapter.  
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Unlike the inorganic ESL, the variety of the organic ESL are fewer in the 

literature for now. C60, indene-C60 bisadduct (ICBA), and phenyl-C61-

butaric acid methyl ester (PCBM) are commonly employed in the 

inverted configuration as organic ESL. On the contrary to inorganic ESL, 

the LUMO energy level must be lower than the perovskite layer to satisfy 

energy alignment. While C60 passivates the grain boundaries and 

surfaces of the perovskite films, PCBM allows device structure on flexible 

substrates owing to solubility in a common solvent.56 

Commercial Hole-Selective Electron-Blocking Materials 

An ideal HSL needs to fulfil general requirements to work properly in 

PSCs, such as (i) good hole mobility (ideally higher than 10-3 cm2/Vs), (ii) 

well-matched HOMO energy level, (iii) good solubility and film-forming 

properties, (iv) excellent thermal and photochemical stability.57 Similar 

to its counterpart ESL, the HSL can be divided into two types: organic 

and inorganic HSLs. Most of the widely used electron-selective materials 

have a conduction band (or an electron affinity) energy around 4 eV. On 

the other hand, almost all hole-selective materials have an ionization 

potential, which varies considerably and has an effect on the open-circuit 

voltage (VOC).58,59 Additionally, hole selective layers lead to determine 

the crystal properties of the perovskite absorber layer by changing the 

wettability of the TCO in p-i-n type PSCs.60 

In this thesis work, only commercial organic HSL are used as a reference. 

In a typical PSCs, the most widely used organic hole selective materials 

are polymers such as PTAA [(poly[bis(4-phenyl)(2,4,6-trimethyl-

phenyl)amine],24 PEDOT:PSS [poly(3,4-
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ethylenedioxythiophene):poly(styrenesulfonate)]61 and/or low 

molecular weight molecules such as Spiro-OMeTAD (2,2',7,7'-

Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene) (Figure 

1.6).62 PTAA layer is widely used as a HSL in p-i-n PSCs, owing to its 

hydrophobic properties which increase perovskite grain size and directly 

affecting the performance of the perovskite devices.24 Yet, the PTAA is a 

polymer-based hole selective material that means controlling its 

molecular weight will be a challenge. Additionally, it is high-priced, and 

not stable in ambient conditions.63 PEDOT:PSS is one of the most 

common HSL in p-i-n PSCs and optoelectronic devices.  Despite its 

superb optoelectronic properties, the acidity of PEDOT:PSS poses a 

fundamental threat to the long-term stability of the devices.61 A huge 

number of inorganic alternatives to PEDOT:PSS are investigated, like 

nickel-based or copper-based semiconductors.64  

To date, Spiro-OMeTAD has been the best molecule so far to make 

reproducible and highly efficient n-i-p PSCs. The molecular structure 

consists of two arylamine moieties linked in a 90° angle, with a Spiro 

central core in order to enhance its glass transition temperature (Tg) to 

improve its charge transport properties.65 In addition, the oxidation 

potential is controlled by the inclusion of methoxy substituents (-OCH3) 

in diphenylamine moieties. These methoxy substituents initially act as 

an electron-withdrawing group under an inductive effect but due to the 

resonance stabilization influence, methoxy substituents present an 

electron-donating characteristic.66 
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Figure 1.6. Chemical structures of Spiro-OMeTAD, PTAA, and 
PEDOT:PSS. 

However, Spiro-OMeTAD has an expensive processing costs due to the 

complicated synthesis steps and required high purification methods.67 A 

huge number of research studies have been done in the molecular design 

and synthesis route of new charge selective materials, to achieve high 

efficiency, low-cost fabrication, and long-term stability in the completed 

devices. 

Chemical Doping  

Chemical doping is a crucial method to achieve a high device efficiency 

by increasing the conductivity, controlling the energy levels, and 

reducing ohmic losses in HSLs and injection barriers at the interface with 

the electrodes in n-i-p architecture perovskite solar cells.68,69 The basic 

principle of chemical doping is that additional mobile charge carriers are 

produced in organic semiconductors by electron donors or acceptors. 

There are two different kinds of doping materials used in the literature 

which are named n-type and p-type dopants. n-type dopant donates 

electrons to the LUMO of an intrinsic semiconductor and p-type dopant 
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removes electrons from the HOMO to generate holes of it.70–72 This 

means that introducing additional charge carriers, holes, or electrons in 

an organic semiconductor results in higher conductivity. The basic 

requirement for an effective doping process is the proper electron affinity 

of the additive with respect to the energy levels of an organic 

semiconductor. 

 

Figure 1.7. Chemical structures of the LiFTSI, tBP, and FK209 Co(III)TFSI. 

The hole selective layer of PSCs is heavily doped with p-type dopants to 

provide the electrical conductivity required for commercially available 

Spiro-OMeTAD and other wide-bandgap HSLs. The most commonly 

used p-type dopants are 4-tert-butylpyridine (tBP),73 Lithium 

bis(trifluoromethanesulfonyl)imide (LiTFSI),74 and tris(2-(1H-pyrazol-1-

yl)-4-tert-butylpyridine)cobalt(III) tri[bis (trifluoromethane) 

sulfonimide] (FK209 Co(III)TFSI)75 in PSCs (Figure 1.7). Nevertheless, 

the use of dopants in HSLs has a negative effect on the stability of the 

entire device. The hygroscopic nature of the lithium salts causes to have 
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highly hydrophilic HSLs, and FK209 Co(III)TFSI shows a tendency 

towards chemical degradation.54,76  

1.2. Non-commercial Organic Hole 

Selective Molecules 

In this section, the synthesised organic hole selective materials will be 

discussed and compared with the most common commercially available 

hole selective material in terms of the optoelectronic properties and 

device performances.  

1.2.1. Truxene Based Hole Selective Small 

Molecules  

10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene (truxene) is a planar 

heptacyclic polyarene structure that is obtained by trimerization  of 

indan-1-0ne (Figure 1.8).77 After its first reported synthesis in 1894, 

truxene and its derivatives have been utilized in many applications such 

as lasers,78 liquid crystals,79 organic light-emitting diodes,80 and 

photovoltaics81, due to the possibility and diversity of peripheral 

functionalization. The solubility of the molecule is a key factor in 

solution-processed PSCs. In 2003, Cao and co-workers synthesized the 

first hexa-alkylated and highly soluble truxene derivatives which 

received attention as a star shape core for synthesizing newly charge 

selective materials in PSCs.82  
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Figure 1.8. Chemical structure of the truxene core and Trux-OMeTAD.  

After its first reported synthesis with alkyl chain for increasing solubility, 

Huang and co-workers designed a new truxene derivative with arylamine 

terminal moiety and hexyl side-chain.81 They demonstrated that this new 

truxene based small molecule (Trux-OMeTAD) with planar, rigid, and 

fully conjugated molecular geometry, showed excellent hole mobility 

when it is compared with Spiro-OMeTAD in the p-i-n architecture 

perovskite solar cells (Figure 1.8). Trux-OMeTAD has shown the PCEs 

of around 18% due to its excellent hole mobility and proper surface 

energy. Moreover, truxene core ensures to show good thermal stability, 

with the decomposition temperatures (Tdes) above 400 °C, at the 5% 

weight loss. The thermal behaviour of the charge selective layer is a 

crucial factor because of the annealing process of the intrinsic layer in p-

i-n type perovskite solar cells. The hole selective layer's decomposition 

temperature should be higher than 100 °C to get rid of decomposed 

material under the perovskite layer during the annealing process, if not 
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it will cause a negative effect on the performance of the completed 

devices. Furthermore, truxene molecular structure and their molecular 

shape allow their deposition at the surface of the perovskite in face-to-

surface configuration with strong interaction with the perovskite 

semiconductor surface. A similar approach has been observed for 

graphene oxide layers.83 

 

 

Figure 1.9. Chemical structures of M115, M116, M117, and M118. 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



 Introduction 

26 
 

Wang and co-workers reported the application of four new truxene-

based hole transporting materials in p-i-n architecture perovskite solar 

cells (Figure 1.9). These new hole selective materials had a higher 

photovoltaic performance with a PCE of 17.1% and better stability than 

PEDOT:PSS-based devices. They tested the devices with different hole 

selective layers under UV radiation (254 nm), which is one of the major 

reasons for the decomposition of the perovskite film in ambient air.84 

While the PEDOT:PSS-based device's PCE decreased dramatically, the 

truxene-based devices exhibited strong stability under UV radiation. The 

T80 (time until the cell reaches 80% of its initial efficiency) of the M118-

based cell is 80 min. Compared to truxene-based cells, the PEDOT:PSS-

based cell gradually decreases until they reach 80% of initial PCE at 

around 20 minutes. The p-type semiconductor plays a critical role in 

protecting the perovskite film from sunlight.85 

1.2.2. Molecular Engineering of Self-Assembled 

Hole Selective Molecules 

The application of self-assembled monolayers (SAMs) has gained 

tremendous attention lastly as a charge selective layer in photovoltaic 

devices, owing to advantages like a low price, stability, and additive-

free.61,86,87 The SAMs application, a smarter way of forming very thin and 

highly ordered layers, is to apply molecules that bind to a surface in the 

process of self-assembly due to a certain affinity to the surface of a 

functional group. The first publication of the preparation of a self-

assembled monolayer on top of the metal surface was published by 

Zisman and co-workers in 1946.88 SAMs ensure a new perspective to 
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increase fundamental understanding of self-organisation, structure-

property relationships, and interfacial phenomena. Typically, SAMs are 

formed by three main moieties: an anchoring moiety that ensures the 

connection of the molecule to the surface via chemical bonding, a spacer 

moiety that determines the packing geometry, and a terminal moiety 

that alters the interfacial properties (Figure 1.10).89 Besides, each part of 

SAMs provides unique properties, and the design of them is quite virtual 

to align their intended properties. In this section, each part of SAMs will 

be explained by giving examples from literature to make comprehensible 

the scope of this thesis. 

 

Figure 1.10. Schematic representation of three main moieties of SAM. 

The Role of the Anchor Moieties in Self-Assembled Monolayers 

The anchoring moiety is the part of the SAM that is responsible for its 

attachment to specific substrate's surface. An ideal molecular anchor 

moiety is required to provide the following characteristics: reproducible 

and well-defined binding, long stretching distance and suitable high 

junction formation probability, and small contact resistance.90 There are 

several anchoring groups available that bind to specific substrates, giving 
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to the users the option to choose the type of electrode and molecule 

suitable for their purpose. The most widely researched class of SAMs has 

common anchor moieties such as thiols, silanes, phosphoric acid, and 

carboxylic acid, and boronic acid, which reacts with metal oxide surface 

and chemically bonds to this surface. The anchor moiety changes the 

electronic states and stabilizes the specific surface by chemically binding 

to the surface atoms. This type of interaction also determines the 

coverage rate of SAMs across the specific surface. Chemical reactions are 

usually dominated by reactions of Lewis acidic character, O2- species 

(Lewis basic), and/or -OH groups at metal oxide surfaces, allowing for 

multiple reactivity forms. The -OH groups have an amphoteric character 

and a tendency to react via condensation and/or hydrogen-bonding 

mechanisms as illustrated in Figure 1.11a. However, different anchor 

moieties have different bonding strengths and contact geometries, which 

significantly affect the load-bearing properties of the molecular links. 

Carboxylic acids are the most commonly used functional group owing to 

readily accessible and available precursors for attaching molecules to 

metal oxide surfaces in photovoltaic applications.91 Yet, carboxylic acids 

tend to dissociate from the metal oxide surface under certain conditions, 

including exposure to aqueous and alkaline electrolytes.92 However, 

silanes also have major drawbacks: they can be difficult to synthesize and 

isolate, they are sensitive to moisture, and can easily condense on their 

own (because of the favourable energy of formation for the Si-O-Si 

linkage). In addition, they present difficulties in experimental 

application and decomposition during storage.93 To find an alternative 

solution to these troublesome situations, phosphoric acid is one of the 
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popular acid moieties among others, and it binds highly to the metal 

oxide surface as it has more -OH moieties than a carboxylic acid. The 

presence of the -OH group is the key factor in covalent bond formation 

and three oxygen atoms for covalent binding of the phosphoric acid to 

metal oxide surface in either monodentate, bidentate, or tridentate 

modes. Furthermore, the synthesis and purification of phosphoric acids 

are mostly easy, they can be stored in ambient conditions without 

undergoing self-condensation reactions unlike silanes.94 Figure 1.11b 

shows the several types of bonding accepted for carboxylates, 

phosphonates and siloxyl groups on metal oxide surfaces.  

 

Figure 1.11. Schematic representation of a) the reaction mechanism 
between a carboxylic acid binding group and metal oxide b) the different 
anchor moieties binding modes. 

In 2013, Brennan and co-workers systematically compared porphyrin 

derivatives with different anchor moieties to investigate their 

performance in photoelectrochemical cells. They functionalised a tetra-

arylphorphyrin dye with silatrane (Zn-TTP-sil), phosphoric acid (Zn-

TTP-PO3H2), and carboxylic acid (Zn-TTP-COOH) anchor moieties and 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



 Introduction 

30 
 

used them to attach the sensitizer on metal oxide surfaces in DSSCs 

(Figure 1.12). While all porphyrin derivatives with different anchor 

groups showed similar photophysical properties, the short-circuit 

current and the power conversion efficiency of the cell based on 

carboxylic acid had nearly twice compared to the phosphoric acid and 

silatrane linkers. They proposed that the carboxylic acid bearing 

sensitizer covers better the metal oxide surface and increases the light 

absorption which increases twice times the solar conversion efficiency.91 

 

Figure 1.12. Molecular structure of tetra-arylphorphyrin derivative with 
different anchor moieties.91 

In another study about anchor moieties of SAMs, Tao and co-workers 

comprehensively compared the conductance of aliphatic molecular wires 

with anchoring groups (-COOH, -SH, and -NH2), showing a decrease in 

the following order: Au-SH > Au-NH2 > Au-COOH.95 They also 

demonstrated that the contact resistance is highly sensitive to the anchor 

moieties of SAMs, which varies in the order of Au-SH > Au-NH2 > Au-

COOH, however, the decay constant is weakly dependent on the anchor 

moieties. Moreover, they attributed their observations to the different 

electronic couplings between the molecules and the electrodes and the 
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alignment of the molecular energy levels relative to the Fermi energy 

level of the electrodes introduced by the different anchor moieties. 

Furthermore, they found that the binding strength information varies in 

the order of Au-SH > Au-NH2 > Au-COOH by measuring the average 

length over which one can stretch each molecular junction until it 

breaks.90 

The Role of the Spacer Moieties in Self-Assembled Monolayers 

The spacer moiety is the backbone of the SAMs and forms a bridge 

between the anchor and terminal moieties. The length of the backbone 

plays a critical role to do electronically isolation from one contact to 

another. Moreover, spacer moiety affects the final packing of the 

structure by interacting laterally between molecules during the self-

assembly process. The electronic structure of the spacer group controls 

the attenuation rate of the load transfer. For instance, the attenuation 

coefficient of the conjugated backbone is significantly lower than that of 

unconjugated backbones.96 Furthermore, spacer moiety can be modified 

to align the energy levels of small molecules that will be used in PSCs as 

charge selective layers. In 2018, our group firstly demonstrated that 

triphenylamine-based SAMs can be used as a HSLs instead of 

PEDOT:PSS in p-i-n configuration PSCs. In this study, two new SAMs 

showed remarkable PCE due to having good hole extraction properties 

of triphenylamine (TPA) spacer. The best cell based on TPA showed 

remarkable PCE (15.9%) with a FF 77%, VOC 1.06 V and JSC of 19.4 mA/cm2, 

and the best performing MC-43 based on cell show PCE (17.3%) with a 

FF of 80%, VOC of 1.07 and JSC of 20.3 mA/cm2 (Figure 1.13).61  
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Figure 1.13. The molecular structures of MC-43, TPA, and V1036. 

Simultaneously, Magomedov and co-workers reported a new molecule 

as a self-assembled HSL in p-i-n configuration PSCs. Carbazole and 

diphenylamine are selected as a spacer moieties to improve its hole 

transporting properties and phosphoric acid moiety is selected to attach 

the SAM on top of the ITO surface. They also demonstrated that the 

addition of a small molecule can have a positive impact on the overall 

performance of SAM based PSCs, reaching a PCE of 17.8% for a V1036-

based device (Figure 1.13).87  

On the other hand, the spacer can be also designed with electron 

transporting units such as fullerene, naphthalimide derivatives to 

improve the performance of PSCs. Fullerene is an excellent electron 

transporting unit and passivates the interface of n-type/perovskite 

layers. Consequently, fullerene boosts the charge extraction and 

decreases the electrical instability of the device.  In the previous work, 

Wojciechowski and co-workers used fullerene derivatives (C60-SAM) on 

top of the TiO2 to reduce the hysteresis of PSCs in 2014 (Figure 1.13). 

They observed slow electron transfer from perovskite to a TiO2 that is 

the reason for the anomalous J-V hysteresis (see for details on hysteresis 
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section 1.1.1.5). The chemisorption of molecules onto the TiO2 assisted 

the electron transfer, which made the interface with the perovskite 

during the photovoltaic process. The fullerene-based n-type SAM 

improved the PCE up to 17.3% with a considerably reduced hysteresis.97 

In subsequent studies, the fullerene derivatives are modified with -CN 

group (1 and 2, Figure 1.14) to increase their passivation effect on the 

interface of perovskite and improve the PCE of PSCs.98   

 

Figure 1.14. The molecular structures of fullerene derivatives. 

Li and co-workers explored a series of naphthalimide derivatives (PN-P, 

TN-P, and NDI-P) to construct ESL via a chemical adsorption (Figure 

1.15). The naphthalimide-based self-assembled n-type molecules 

remarkably increased the photovoltaic performance of PSCs, by having 

suitable LUMO energy levels as an ESL. They obtained the best result 

from NDI-P based devices reaches a PCE of 16%, that was the best result 

among non-fullerene ESL based n-i-p configuration PSCs.99  

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



 Introduction 

34 
 

 

Figure 1.15. The molecular structure of naphthalimide derivatives.  

Phthalocyanine Based Self-Assembled Hole Selective Small 

Molecule  

Phthalocyanines (Pcs) are planar aromatic macrocycles and consist of 

four isoindole units. These units are presenting an 18 π-electron aromatic 

cloud delocalised over an arrangement of alternated nitrogen and carbon 

atoms (Figure 1.16). The physical properties of phthalocyanines can be 

tuned by putting more than 70 central metals with replacing the two 

hydrogen atoms and a variety of substituents can be integrated. 

Phthalocyanines mostly show a Q-bands (typically centred at 620-700 

nm) in the visible region of the absorption spectra. For these reasons, 

phthalocyanines have been an important trade product for many years 

as dyestuffs for textiles and inks. Additionally, Pcs have excellent 

electronic and optical properties that arise from their electronic 

delocalization and make these compounds applicable in different fields 

of materials science and particularly promising as hole selective material 

in photovoltaic applications.  

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



 Introduction 

35 
 

 

Figure 1.16. Chemical structure of the phthalocyanine and TT1. 

Torres and co-workers focused on constructing multifunctional Pc-

based donor-acceptor hybrids in which the complementary electroactive 

constituents are connected through a variety of covalent or 

supramolecular junctions.100–102 In previous studies, zinc Pcs showed that 

the control over the formation of molecular aggregates onto the 

semiconductor nanoparticles which is crucial to have moderate 

efficiencies. However, Pcs have an excellent absorption in the near-IR 

region and their UV-vis spectra contain an optical window in the visible 

region that could allow their use in combination with a suitable dye to 

achieve panchromatic sensitization of the mesoporous photoelectrode. 

To avoid the formation of molecular aggregation onto semiconductor 

nanoparticles, they synthesised a tri-tert-butyl-substituted zinc Pc which 

adjusts the excited states to allow directionality of the charge transfer 

from the LUMO of the dye to the Titanium 3d orbital.103 In 2007, Cid and 

co-workers synthesised a novel zinc carboxyphthalocynanine (TT1) 

which was substituted with tert-butyl group, to achieve increased power 
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conversion efficiency with its highly solubility in organic solvents, and 

its push-pull character that induces directionality in the excited state of 

the zinc Pc. They demonstrated the efficient electron injection of zinc 

Pc, which had a record efficiency for near-IR DSSCs under standard 

illumination conditions with yield 80% IPCE. Additionally, the 

combination of two dyes with complementary spectra achieved higher 

efficiency by taking advantage of the optical properties of the zinc Pc in 

DSSCs.104 

The Role of the Terminal Moieties in Self-Assembled Monolayers 

The terminal moieties play the most significant role in determining the 

perovskite solar cell performance, among other parts of SAMs. Due to 

the ionic nature of the perovskite layer, producing the various chemical 

interactions with different functional groups will be easier.  For that 

reason, the suitable terminal group can provide a variety of functions 

through synthetic chemistry; wherein such functional groups can, in 

turn, significantly alter the wettability of the top layer, facilitating 

deposition of the forthcoming layer through both dipolar and dispersive 

interactions,105 further affecting the crystallinity,60 morphology and 

energy level offset.106,107 Terminal groups currently under investigation 

include amino,108 ammonium chloride,109 ammonium iodide, thiol,110 

hydrogen,111 hydrocarbons, benzene, pyridine,112 bromo, chloro,111 

fluoro,113 cyanide, and C60.97  

To demonstrate the interfacial chemical interactions of terminal 

moieties with perovskite layer, Zuo and co-workers systematically 

investigated functionalised benzoic acid derivatives (BA-SAM, PA-SAM, 
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CBA-SAM, ABBA-SAM, and C3-SAM) on top of the SnO2 (Figure 1.17). 

They observed that the chemical interactions are the predominant factor 

controlling the interfacial optoelectronic properties, due to the PSCs 

performance an opposite trend to that of the energy level alignment 

theory. Moreover, they demonstrated that the proper interfacial 

interactions can significantly reduce trap state density and assist 

interfacial transfer. With the use of 4-pyridinecarboxylic acid-based SAM 

(PA-SAM), the resulting perovskite solar cell exhibits remarkable 

improvements to reach the highest efficiency of 18.8%, resulting in a 10% 

increase compared to those without SAMs.114 

 

Figure 1.17. The molecular structures of benzoic acid-based SAMs and C3-
SAM.  

The SAMs are generally utilised to modify the inorganic charge selective 

materials such as TiO2, SnO2, and NiO2 for improving their film quality 

and performance in PSCs. For instance, Wang and co-workers 

suppressed the drawbacks of NiO2 in completed devices, they used a 

series of benzoic acid SAMs to passivate the surface defects of the NiOx 

nanoparticles (Figure 1.18). They found that the 4-boromobenzoic acid-

based (Br-BA) effectively passivate the surface between perovskite and 

NiOx nanoparticles, reducing the trap-assisted recombination, 

minimizing the energy offset, and enhancing the perovskite 
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crystallisation by changing the HSL surface wettability. As a result of all 

these improvements, the PCE of PSCs is increased up to 18.4% with Br-

BA-based SAMs, exceeding the control device PCE (15.5%).111  

 

Figure 1.18. The molecular structure of a series of benzoic acid SAMs. 

As we mentioned in the previous paragraph, the terminal group of SAMs 

also determines the wettability of the substrates that significantly 

enhance the crystalline properties of the perovskite layer. Han and co-

workers demonstrated that when increase the ratio of methoxy group, 

the PCE of perovskite device is improved from 12.6% to 13.75% by 

effectively inducing dipole moment; in particular, TMBA  gave a larger 

work function shift of ZnO ETL compared with MBA and DMBA.115 

TMBA effectively boosted the built-in voltage of PSCs, which resulted in 

an improved electron transfer from the active layer to the ETL and a 

higher open-circuit voltage (Figure 1.19).    
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Figure 1.19. The molecular structures of different positioned methoxy 
group based benzoic acid SAM derivatives. 

1.3. Stability of Perovskite Devices and 

Charge Selective Layers 

Over the past few years, metal halide PSCs have quickly become the 

hottest topic in photovoltaics, and the fast development of device 

engineering has allowed the preparation of solar cells with PCE over 25%, 

surpassing commercial thin film PV technologies. Still, large-scale 

industrial application of PSCs faces the challenge of long-term stability 

as the initial efficiency of PSCs drops rapidly under operating conditions 

like biases, light, atmospheric exposure, etc. Some designs have been 

aimed at fabricating more stable PSCs, such as two-dimensional 

perovskite,116 all-inorganic perovskite,117 additives,118 and interfacial 

engineering in recent times.119 Nowadays, available technologies are 

relatively stable for more than 20 years, and they are feasible for large-

scale energy production with similar performance.  

The thin film PV technology can be assumed ready for large-scale 

industrial application after passing severe testing protocols. This 

procedure mainly includes an efficiency test under standard testing 
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control (STC) where cells are illuminated by 1000 W/m2 with AM 1.5 G 

solar spectrum at 25 °C. Here, the initial efficiency of the PV cells is 

obtained from a current density-voltage (J-V) scan under STC. However, 

all the PV parameters of the PSCs depends on the scan rates, pre-bias, 

and device's temperature.120–122 Therefore, it is significant to ensure 

detailed test conditions of J-V measurement for PSCs and complete 

device J-V characterisation with a stabilized power output achieved by 

the maximum power point (MPP) tracking.123  

Initially, the power output is measured by the algorithm which applies 

the maximum power point voltage (VMMP) from previous or initial J-V 

scan. Then, it increases/decreases the applied voltage and calculates the 

power difference, if the power output increases, it will continue to 

increase/decrease the applied voltage and reverse is true. Ultimately, the 

applied voltage alters around VMMP. MPP curves of PSCs can reach a 

quasi-steady state that can be considered as the stabilized efficiency of 

the device, during a short time (usually between 2 and 5 minutes), 

assuming that the degradation is insignificant. 124–126 Consequently, MPP 

represents the real working conditions that ensure to estimate the energy 

output of a solar cell in operation by obtaining the accurate efficiency 

value from MPP.   

On the other side, an outdoor test is an obligation for PV technology to 

start being sold commercially. In addition, it is necessary to estimate 

energy efficiency and payback time in this test. Therefore, one of the 

most important steps is to establish a standardized protocol for stability 
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testing of PSCs, including MPP tracking with defined day/night cycles, 

dark storage lifetime, damp heat testing and outdoor testing.127 

It is well known that PSCs are highly susceptible to external stressors, 

which can be divided into five categories: atmospheric water and oxygen 

stability, thermal stability, light stability, electric field stability, and 

mechanical stability. First of all, oxygen and moisture resistances are a 

huge concern for PV technologies because of the oxidization of some 

components with water and O2 in PV panels. They are also a threat for 

PSCs in most cases and the encapsulation technique can be used with 

PSCs, also commercialized PV technologies need proper 

encapsulation.128 Moisture is known to degrade the perovskite layer even 

when it is encapsulated.38,129 Additionally, encapsulation can be prone to 

cracking and edge leakage. When the MAPI layer is exposed to water, it 

decomposes into HI, CH3NH2 and PbI2 and H2O (Equation 1.2).130 In 

contrast, small water addition into perovskite precursors or exposure to 

moisture during the crystallization process has been shown to be 

beneficial.131,132 Wu and co-workers demonstrated that water molecules 

could promote homogenous nucleation and preferable crystallinity in 

the MAPI layer during annealing.131 However, it is essential to prepare 

solar cells to have an inherent resistance to moisture ingress. 

𝐶𝐻3𝑁𝐻3𝑃𝑏𝐼3
𝐻2𝑂
↔  𝐶𝐻3𝑁𝐻2 + 𝐻𝐼 + 𝑃𝑏𝐼2 Equation 1.2 

4𝐻𝐼 + 𝑂2 ↔ 2𝐼2 + 2𝐻2𝑂 

2𝐻𝐼
ℎ𝜐
↔𝐻2 + 𝐼2 
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Besides degradation caused by water, perovskite can also degrade when 

in contact with atmospheric condition. Specially, when oxygen is 

combined with light, it causes fast degradation in PSCs.133 Aristidou and 

co-workers suggested an oxygen-induced degradation pathway of MAPI 

layer through the deprotonation of methylammonium (MA) where 

methylamine gas and PbI2 are formed (Eq. 1.3).134 Moreover, photo-

excited electrons are accepted by oxygen molecules that are energetically 

favourable to light and possibly lead to the formation of superoxide 

species (O2
-) found in iodide vacation sites. The superoxide anions then 

deprotonate the MA cations and decompose the material, moreover, this 

decomposition happens faster in the smaller crystal size.134,135 Also, Alsari 

and co-workers showed that although the rate of degradation is lower 

compared to MAPI, defect-assisted oxygen and light-induced 

degradation are detected in mixed cations [FA0.83Cs0.17Pb(I0.8Br0.2)3].136 

𝐶𝐻3𝑁𝐻3𝑃𝑏𝐼3 +
1

4
𝑂2
−
𝑑𝑒𝑝𝑟𝑜𝑡𝑜𝑛𝑎𝑡𝑖𝑜𝑛
→           𝐶𝐻3𝑁𝐻2 + 𝑃𝑏𝐼2 +

1

2
𝐼2 +

1

2
𝐻2𝑂 Eq. 1.3 

It is found that in the operating temperature range of -40 ° C to 85 ° C, a 

significant change in the PV performance of PSCs, depending on the 

operating temperature, occurred. Schwenzer and co-workers showed 

that the actual temperature cycle of the device (40 °C to 55 ° C) reduces 

the MAPI-based PSCs faster than keeping the device temperature at 25 ° 

C.137  In 2016, it was proven that MAPI had lower chemical stability 

against external environmental factors and easily forms 

methylammonium iodide (MAI) and PbI2.138 The perovskite layer made 

up of only inorganic materials shows better thermal stability, comparing 

with the organohalide perovskite layer.139 
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MAPI degrades under illumination in the presence of oxygen as 

explained above. However, unlike the mechanism describe before, light 

induces degradation that may occur even in the absence of oxygen.140,141 

Jemli and co-workers highlighted that photons excite ´Pb+…I0´ complex 

which energetically tends to form the reactive I2 and Pb2+ under 

illumination. Then, the oxygen and water diffused from the external 

environment into the perovskite layer can react with unstable lead 

species and this process will eventually produce PbI2 and MA, causing 

damages to the perovskite crystals.141  

Under the operation condition, perovskite absorber layer is subjected to 

an electric field. As all ionic species in the perovskite layer can potentially 

migrate in response to external electric fields.142 For instance, cations can 

move quite easily through the cavity of the octahedral lattice of PbI6
4- in 

the perovskite structure, leading to lattice distortions and contractions, 

and eventually degrading the material.143  

As mentioned at the beginning of this Chapter, a perovskite layer is 

typically sandwiched between an electron selective layer and a hole 

selective layer to achieve high PCE from PSCs. Not only perovskite 

absorber can have intrinsic problem, but the charge selective layers can 

be the reason behind failure of the devices.  A notable example is TiO2, 

which is the first ESL implemented from DSSC to PSCs. Here, the surface 

of TiO2 includes many oxygen vacancies that behave as electron donors 

that can react with atmospheric oxygen forming O2
- anions and Ti4+ 

complexes. Under UV light exposure, the excited holes in TiO2 can 

recombine with the adsorbed oxygen regions, leaving free electrons 
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which can eventually recombine with holes in the HSL and reduce charge 

extraction. Accordingly, TiO2 is left with unfilled, immobile deep 

electron traps, quickly degrading the performance of PSCs over time, 

especially after several hours of full sunlight exposure.144 

In the p-i-n configuration perovskite device, the degradation of PCBM 

has been observed under exposure to water and oxygen. To overcome 

this problem, ZnO has been deposited on top of the PCBM as a buffer 

layer for improving the stability of the device.145 Even though inorganic 

charge selective layers are more stable than organic layers, the difference 

in the crystal structures and thermal expansion coefficients can create 

undesirable deep traps at the interfaces and also create cracks in the films 

during operating conditions.146  

Organic hole selective layers such as PTAA, Spiro-OMeTAD and their 

derivatives are commonly utilized to achieve highly efficient PSCs. 

However, the solution-processed Spiro-OMeTAD layer is porous, which 

leads to the penetration of oxygen and water inside the perovskite layer. 

Additionally, the LiTFSI salt is one of the chemical dopants most 

commonly used in PTAA and Spiro-OMeTAD to improve their charge 

selective properties, as mentioned in previous section. However, the 

LiTFSI salt has a hygroscopic nature and accelerates the moisture 

degradation of PSCs.146 Therefore, there have been many research effort 

to overwhelm this problem like improving organic charge selective 

layer's conductivity without the use of dopants and etc.147,148 PEDOT:PSS 

is also another commonly used HSL and it has a hygroscopic character 

which can take up water in the atmosphere and reduces the stability of 
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PV device.149 New organic and/or inorganic materials should be worked 

on to overcome these problems mentioned above. 

It is particularly important to use top metal contacts for effective charge 

collection, and their good energy alignment with the contact layers and 

the perovskite absorbent layer for high efficiency. Aluminium is used in 

a variety of PV applications due to its affordability and accessibility. 

However, water and/or oxygen can diffuse within the pores of the 

aluminium layer in the ambient environment. Thereafter, aluminium 

will be oxidized, and a metal oxide layer will be formed with the organic 

layer in the interface because of its high reactivity. As a result of this, this 

metal oxide layer is an insulator and thus degrades the performance of 

solar cells.150 Most of the common metal contact can interact with 

perovskite causing degradation such as silver, gold, etc.48 In contrast, 

copper-based devices show better air stability, the copper layer retains 

its colour when stored for up to one month under atmospheric 

conditions.151,152 The migration of the mobile iodine anions can be the 

main reason for metal contact degradation when considering the metal 

contact mechanism.153 One way to solve the metal contact degradation 

can be to replace metal electrodes completely with carbon-based 

electrodes, nonetheless, so far the completed device efficiency is lower 

than metal contact employed PSCs.154 
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1.4. Motivation and Aim of the Thesis 

In this section, the objective and motivation of this thesis will be 

explained briefly for each chapter.  

The motivation of this thesis is to demonstrate the potential of low 

molecular weight small molecules as charge selective contacts or 

interfacial layers in perovskite solar cells and their influence on 

performance and stability. As described before, the application of these 

types of molecules in PSC has scarcely been reported, there are only a 

few examples and none of them are related to stability issues, as 

indicated in the bibliography of this thesis. Thus, we have selected and 

examined the activity of organic groups that are commonly used in 

photovoltaic applications like truxene, phthalocyanine, carbazoles, 

triphenyl, and diphenyl amines. In the following paragraphs, we describe 

the specific aims of each chapter that are related to the main objective of 

this thesis.  

Chapter 1 presents fundamental knowledge of perovskite-based 

photovoltaic devices and a brief summary about each part that made the 

perovskite solar cells. The commercial and non-commercial charge 

selective layers which are used to achieve high efficiency and stable 

photovoltaic devices are compared by giving references from the 

literature.  

Chapter 2 describes the experimental procedures, methods and 

techniques that are carried out to prove the synthesised molecule 

structures in this thesis. The general instrumentation and all the 
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characterisation techniques employed in this thesis are described in 

detail. Moreover, the fabrication process of different types of perovskite-

based solar cells are explained and the advanced characterisation 

techniques which are used in these devices are given.    

Chapter 3 gives the detailed synthesis and characterisation of the new 

Truxene-based Lewis based interfacial layer (Trux-FPy) (Scheme 3.1 in 

Chapter 3) for PSC application. The interfacial layer properties of Trux-

FPy are determined by UV-vis spectroscopy, to investigate its 

supramolecular interactions with the uncoordinated lead ions. Spiro-

OMeTAD is used as an HSL in n-i-p configuration PSCs due to its energy 

level is suitable with interfacial layer. To understand carrier 

recombination and ion migration in perovskite solar cells, the advanced 

characterisation techniques (PI-CE, PI-TPV, and PI-TPC) are performed.  

Chapter 4 introduces the novel synthetic pathway of TT1 (Scheme 4.1 in 

Chapter 4), achieving high yield with ZnO catalyst. We utilised it as a 

self-assembled hole selective monolayer in p-i-n configuration PSCs to 

find an alternative material to PEDOT:PSS. The SAMs are characterised 

by contact angle measurement and UV-vis spectroscopy, showing their 

hole selective layer properties, and proving their existence on the metal 

surface before complete devices. After that, we used advanced 

optoelectronic transient techniques in completed PSCs to figure out the 

processes that govern the final open-circuit voltage.  

Chapter 5 is focused on the long-term stability of PSCs based on SAMs. 

Two new carboxylic acid-based self-assembled small molecules are 

designed, synthesised, and characterised to achieve high PCE and stable 
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devices. Then, XPS and UPS measurements are performed to verify the 

ester bond on the metal oxide surface and determine the HOMO/EF 

levels to figure out their charge selective properties. In the second part 

of this work, in collaboration with Prof. Antonio Abate and Dr. Nga 

Phung from HZB, as part of my short-term research stay, we fabricated 

CsFAMA-based PSCs with SAMs and monitored the long-term device 

stability by MPP tracking.  

In the next chapter, Chapter 6, the terminal group of SAMs are 

investigated in a similar device structure (Chapter 5). Three 

triphenylamine-based SAMs are employed to understand their effect on 

the crystallinity and/or morphology of the perovskite layer, the device 

performance and stability. All the device fabrication and 

characterisations of the SAMs are done in collaboration with HZB. 

Chapter 7 details the synthesis and characterisation of the three novels 

HSLs derived from truxene with electron donor properties named 

EADR01, EA01, and EA02 (Scheme 7.2). Based on their optical and 

electrochemical properties, they were suitable for use in PSCs. We 

employed HSL as a charge selective layer in n-i-p configuration devices 

and compared them with Spiro-OMeTAD. Their data are reported as 

preliminary results. 

Chapter 8 describes the conclusions of the obtained results from the 

previous chapters.    
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2.1. Introduction 

In this Chapter, the general experimental procedures, the 

characterisation techniques of new organic semiconductor molecules, 

the fabrication and photovoltaic characterisation of the perovskite solar 

cells will be explained.  

In the first section, the general instrumentation and characterisation 

techniques (structural, thermal, optical, photoelectrical, etc.) are 

summarised, which are used for demonstrating that the newly 

synthesised organic small molecules are suitable candidates for this 

thesis scopes. Moreover, the device characterization techniques and 

stabilization procedures that are applied to the completed PSCs will be 

described. 

In the second section, the deposition techniques are explained for each 

active layer used in the n-i-p and p-i-n configurations of the PSCs. Since 

critical points exist in every layer of the PSC structure, we reveal the 

experimental part we used in detail to get devices with very high 

performances and make them reproducible.  

In the third section, there is a thorough description of the preferred 

commercial or synthesized inorganic and organic molecules as charge 

selective contacts or buffer layers and how they are deposited inside of 

the PSCs to achieve this thesis's goal. 

In the last section of this chapter, the optoelectronic photo-induced 

transient techniques will be explained.  
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2.2. Organic Syntheses of Small 

Molecules  

The specific synthesis of the molecules is described at the corresponding 

chapter. A general description of the reagents and characterisation is 

given in this chapter. 

2.2.1. General Reagents and Solvents 

All the chemical reagents used in this thesis are purchased from major 

commercial suppliers (TCI, Sigma Aldrich, Alfa Aesar, MERCK, 

Fluorochem, Dyenamo, Lumtec, and abcr gmbh). The chemical reagents 

are used directly without further purification unless otherwise 

mentioned. All oxygen and moisture sensitive reactions are performed 

under argon atmosphere using glassware flame-dried under high-

vacuum (~10-2 mbar) backfilled with Argon. Tetrahydrofuran (THF) and 

toluene are dried over metallic sodium/benzophenone and freshly 

distilled prior to use, while common solvents are used without drying 

procedure. The course of the reactions is checked by thin layer 

chromatography (TLC) on Merck KGaA pre-coated TLC Silica gel 60 F254 

aluminium sheets and visualised with a UV lamp (254 nm or 356 nm). All 

extracts are dried over powdered magnesium sulfate (MgSO4) and 

sodium sulfate (Na2SO4) and solvents excess are removed by rotary 

evaporation under low pressure. The column chromatography is 

performed using Silicycle UltraPure SilicaFlash P60, 40-63 μm (230-400 

mesh). Patterned ITO and FTO coated glass sheets are purchased from 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



 Experimental Procedures and Methods 

52 
 

Automatic Research GmbH and Xinyan Technology Ltd, with a 

resistance of 15 Ω per square. 

2.3. General Instrumentation and 

Characterisation 

In this part, the methods and techniques that are used in this thesis 

experiments are explained.  

2.3.1. Structural Characterisation 

1H and 13C Nuclear Magnetic Resonance Spectroscopy   

1H and 13C Nuclear Magnetic Resonance (NMR) spectra are recorded on 

a Bruker Avance 400 (400 MHz for 1H and 100 MHz for 13C) and 500 (500 

MHz for 1H and 125 MHz for 13C) spectrometer at room temperature. All 

the data are given as chemical shifts in δ, reported in ppm, measured 

using deuterated solvents, and referenced to the residual solvent signal. 

All NMR data is reported as the s (singlet), d (doublet), doublet of 

doublets (dd), t (triplet), doublet of triplets (dt), q (quartet), m 

(multiplet), brs (broad singlet); coupling constants, J, in Hz.  

High-Resolution Mass Spectra  

High-Resolution Mass Spectra (HR-MS) is recorded on a Waters LCT 

Premier liquid chromatography couple Time-of-Flight mass 

spectrometer (HPLC/MS-TOF) using electrospray ionization (ESI) as an 

ionization mode. Matrix-assisted laser desorption/ionization (MALDI), 
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and matrix-assisted laser desorption/ionization time-of-flight (MALDI-

TOF) mass spectrometry are recorded on a Bruker Autoflex.  

2.3.2. Thermal Measurements 

Thermogravimetric analysis  

Thermogravimetric analysis (TGA) gives information on the rate and the 

mass change of a sample as a function of temperature under 

programmed conditions. For instance, temperature conditions can affect 

changes in the sample mass. TGA is mostly used for knowing certain 

thermal events such as decomposition temperature (Tdes), oxidation, and 

reduction, etc.155 In this work, the decomposition temperature will be 

considered an important parameter for HSLs which are deposited before 

the perovskite layer and will resist to the annealing process of the 

perovskite layer in p-i-n type perovskite devices. 

TGA data are collected in a TGA/SDTA851 Mettler Toledo equipment. 

The degradation temperatures are examined between 30 °C and 600 °C 

from 5% weight loss at 10 °C/min under N2 atmosphere.  

Differential Scanning Calorimetry  

Differential Scanning Calorimetry (DSC) is the most often used thermal 

analysis method due to its speed, simplicity, and availability. Basically, 

the instrument measures the difference in the heat flow between the 

reference and the sample. DSC provides information about chemical and 

physical changes of material for determining the melting point (Tm), 

glass transition (Tg), and crystallization (Tc) values in Figure 2.1.156 In 
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addition, this information consists of endothermic and exothermic 

processes, or changes in the heat capacity.157   

 

Figure 2.1. Example of a differential thermogram showing the changes 
that can be encountered in semiconductor materials.  

DSC information is recorded using a DSC822e Mettler Toledo 

calorimeter at the following conditions: 10 °C/min, N2 atmosphere. Tm, 

Tg, Tc temperatures of specimen are obtained from 30 °C to 450 °C 

performing three reversible cycles in N2 atmosphere.   

2.3.3. Optical Characterisations 

Ultraviolet-visible spectroscopy  

Ultraviolet-visible (UV-vis) spectroscopy is used to get the absorbance 

spectra of a compound in a solution or a solid-state film. Mainly, the 

electrons are excited from the ground state to the first singlet state of the 

material by the absorbance of light energy or electromagnetic radiation. 

The UV-vis region is comprised of a wavelength range from 200 nm to 
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800 nm.158 UV-vis spectra are recorded on Shimadzu UV spectrometer 

1700 with an optical range between 190 and 1100 nm.  

All solution absorption measurements are performed in 

dichloromethane (DCM), chloroform (CF) and toluene with a 1 cm 

optical path length quartz cuvettes at room temperature in air.  

Steady-State Fluorescence Emission 

Steady-state fluorescence emission (PL) spectra are recorded on Horiba 

Jobin Yvon Lrd. with a PMT (UV-vis) and InGaAs (NIR) detectors that 

allow fluorescence measurements in the wavelengths range from 250 to 

1600 nm at room temperature. In this thesis, the measured PL spectra 

has a peak around 760 nm for lead halide perovskite materials which can 

be shifted depending on the perovskite composition.  

Estimation of the optical bandgap 

The energy of the optical bandgap (𝐸𝑔) is calculated accordingly to the 

Equation 2.1:  

𝐸𝑔 =
1242

𝜆𝑎.𝑒.
   Equation 2.1 

where λa.e. is the absorption edge wavelength onset,159 and its value is 

taken from the intersection of the normalized absorption and emission 

spectra recorded with a concentration of about 10-5 M.  
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2.3.4. Contact Angle Measurements 

Contact angles can be used to characterise the surface properties of the 

transparent conductive oxide in its as-manufactured state. Therefore, it 

is important, in perovskite solar cell studies, to produce solid surfaces of 

sufficient quality. The contact angles precisely reflect the interaction 

between the liquid and the solid. Basically, the contact angle is defined 

by measuring the angle between the surface and the tangent of the drop 

surface at the contact.160  

 

Figure 2.2. Illustration of the measurement of the contact angle formed 
by a water droplet on top of surfaces with different properties. 

As it is shown in Figure 2.2, when the liquid is strongly attracted to the 

solid surface, the droplet will spread out on the solid surface 

(hydrophilic) and the contact angle will be lower than 30°. Less 

hydrophilic surfaces will have a contact angle up and about 90°. The 

super-hydrophobic surface will be larger than 90° and the droplet will 

not spread out at all.161  

Contact angle measurements are carried out with a Kruss Drop Shape 

Analysis System DSA25 using deionised water as a solvent.  

Water
Water

Water

Contact angle < 30° Contact angle ca. 90° Contact angle > 90°
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2.3.5. Electrochemical Characterisations  

Cyclic voltammetry  

Cyclic voltammetry (CV) measurements are carried out by a three-

electrode assembly cell connected to a CH Instruments© 600c 

potentiostat/galvanostat. Three-electrode cells are the most used setup 

in electrochemical studies, particularly when the cell resistance is 

relatively high. In this design, the potential of the working electrode is 

monitored in relation to the reference potential, the current passes 

between a separate counter electrode and the working electrode. To 

minimize solution resistance in the cell, the reference electrode is placed 

as close as possible to the working electrode.162,163 Three-electrode cell is 

equipped with a glassy carbon as working electrode, platinum as 

counter-electrode, and an Ag/AgCl as a reference electrode (non-aqua, 

in 3M potassium chloride) in acetonitrile (ACN) solution at a 

concentration of 0.5 mM. The supporting electrolyte is a 0.1 M solution 

of tetrabutylammonium hexafluorophosphate (TBAPF6). All potentials 

are corrected against Fc/Fc+ (Eferr). The cyclic voltammograms are 

measured with a scan rate of 100 mV/s at room temperature. 

Solution-based CV experiments are used to determine the relative 

molecular reduction potential (1/2Ered) and oxidation potential (1/2Eox), 

1/2Eox is ultimately related to the ionization energy; where 1/2Eox= HOMO 

for organic semiconductor, VBM for inorganic semiconductor, 1/2Ered = 

LUMO for organic semiconductor, conduction band maximum (CBM) 

for inorganic semiconductor. These levels are used to determine the 

electronic band gap (𝐸𝑔
𝑒𝑙) of semiconductors.  
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𝐸𝐻𝑂𝑀𝑂 = −(4.8 − 𝐸𝑓𝑒𝑟𝑟+
1

2Eox) Equation 2.2 

𝐸𝐿𝑈𝑀𝑂 = −(4.8 − 𝐸𝑓𝑒𝑟𝑟−
1

2Ered) Equation 2.3 

𝐸𝑔
𝑒𝑙 = 𝐸𝐻𝑂𝑀𝑂 − 𝐸𝐿𝑈𝑀𝑂   Equation 2.4 

Empirical equations are used for calculating HOMO/VBM, LUMO/CBM 

energy levels and the electronic band which is dependent on the used 

cell such as the electrodes, solvents, etc.163,164 For this reason, the 

estimated values in this thesis have been referenced to standard 

materials. 

Ultraviolet Photoelectron Spectroscopy 

Ultraviolet Photoelectron spectroscopy (UPS) is one of the conventional 

methods to determine the ionization energy, which is equal to the 

HOMO level of the organic semiconductor. In UPS, the ultraviolet light 

impacts a thin film of the sample that ejects electron from its surface. 

The electron's kinetic energy varies according to its molecular orbital 

(MO), and the sum of the absolute value of the electron kinetic energy 

and its orbital potential energy is equal to the photon energy.165 The 

highest kinetic energy belongs to the electron from the HOMO: 

𝐸𝑘 = ℎ𝑣 − 𝐸𝐻𝑂𝑀𝑂  Equation 2.5  

where 𝐸𝑘  is the highest kinetic energy of the electron, ℎ𝑣 is the energy of 

the ultraviolet photon.166 If we compare UPS with CV, the estimation of 

the HOMO level of the molecule is more confident in UPS than solution-

based CV experiments. In CV measurements, due to certain solvent-
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solute interactions in solutions, affecting dissolving energy, it can alter 

the nature (and hence energy) of the low-lying excited states of dissolved 

molecules.167 

UPS measurements are done, employing He I radiation (hν = 21.22 eV) 

from a He discharge lamp yielding the energy offset of the HOMO from 

the Fermi energy level (EF). For the UPS measurements the samples are 

biased with -15 V versus ground to facilitate the emission of the 

secondary electrons. 

2.3.6. X-ray Measurements 

X-ray Diffraction  

When X-rays interact with a crystalline material, consistent elastic 

scattering, also called diffracted light, can be emitted. Elastic X-ray 

scattering can be accurately described in terms of classical 

electromagnetic theory. An electron in an alternating electromagnetic 

field oscillates with the same frequency as the field. When an X-ray beam 

hits an atom, the electrons in the atom begin to oscillate at the same 

frequency as the incident beam and emit electromagnetic radiation. The 

sum of these radiations is described as the scattering power of an atom.168  

The atoms are formed in a well-ordered structure in a crystalline material 

and repeated through the material.  The X-ray Diffraction (XRD) pattern 

can be used to identify the material due to its uniqueness and it is mostly 

collected using grazing incidence XRD (GIXRD). The GIXRD uses a quite 

small incidence angle which is fixed during the measurement so that the 
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probing volume is mainly within the thin film. Additionally, the total 

diffraction volume is larger due to a long pathway of X-ray in the 

specimen at a small incidence angle which improves the statistic of the 

measurements.169   

XRD measurements are performed in air with the PANalytical X'Pert Pro 

MPD (multi-purpose diffractometer) using grazing incidence geometry. 

GIXRD patterns are collected with a step size of 0.02 degree, for 6 

seconds each step. 

X-ray Photoelectron Spectroscopy  

Surface analysis by X-ray photoelectron spectroscopy (XPS) is achieved 

by irradiating a specimen with monoenergetic soft X-rays and analysing 

the energy of the detected electrons. Mg Kα (1253.6 eV) or Al Kα (1486.6 

eV) X-rays are commonly applied in the literature. These photons have 

limited penetrating power in a solid on the order of 1-10 nm. The X-rays 

interact with atoms and cause electrons to be emitted by the 

photoelectric effect in the surface region. The photoelectric effect can be 

described as the electrons that can be ejected from the surface of the 

metal when light shines on a metal. The emitted photoelectron is the 

result of complete transfer of the X-ray energy to a core level electron. 

The kinetic energy of the emitted electrons can be estimated by: 

𝐸𝑘𝑖𝑛 = ℎ𝜗 − 𝐵𝐸 − 𝛷𝑠   Equation 2.6 

where h𝜗 is the energy of the photon, BE is the binding energy of the 

electron, and 𝛷𝑠 is the work function of the material.  
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The spectrum is acquired as a plot of the number of detected electrons 

per energy interval versus their kinetic energy. Each element has a 

unique spectrum, and the binding energy of photoelectrons will not 

change when different X-ray sources are applied. The spectrum derived 

from a mixture of elements is roughly the sum of the peaks of the 

individual components. Since the mean free path of electrons in solids is 

exceedingly small, the detected electrons originated from only the top 

few atomic layers, making XPS a unique surface-sensitive technique for 

chemical analysis.170,171  

To study the chemical state of the atoms of the compounds XPS 

measurements are performed using Mg Kα radiation (hν = 1253.6 eV, P = 

150 W) to excite the photoelectrons with a XR50 (SPECS) X-ray source. 

It houses a CLAM 4 (VG) electron analyser for photoemission (PES) 

spectroscopy. The measurements are carried out in the CISSY ultra-high 

vacuum apparatus (p < 2×10-8 mbar). The X-ray source and the analyser 

are arranged under a fixed 54° “magic” angle. More details on the setup 

are available elsewhere.172  

The XPS spectra are corrected for charging by referencing the 4f 

transition of a gold reference to 84.0 eV. The spectra are then analysed 

by subtracting a Shirley-type background approximation and fitting 

Voigt-type peaks173 to the remaining signal. The Lorentzian FWHM is 

constrained to 0.6 eV while the Gaussian FWHM is allowed to float 

within a range of 0.7-1.2 eV. The peak centres are constrained to value 

ranges to prevent overlapping or peaks exchanging positions, but care is 
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taken not to allow values to run into the constraining limits. Peak areas 

are constrained to only assume values ≥ 0. 

2.3.7. Photoelectrical Measurements 

Space-Charge Limited Current Method 

The charge carrier mobility of HSLs is measured by the space-charge 

limited current (SCLC) method. SCLC method is applied to only p-type 

materials sandwiched between the contacts. The device structure is 

basically ITO/PEDOT:PSS/HSL/Au. The current density-voltage curve is 

measured and the concentration of charge carriers and the electric field 

in the device estimated by the mobility of the holes, instead of by the 

recombination of the holes. The measured data is fitted in the SCLS 

regime using Mott-Gurney law shown in Figure 2.3 and Equation 

2.7.174,175  

𝐽𝑆𝐶𝐿𝐶 =
9

8
𝜀0𝜀𝑟𝜇

𝑉𝑒𝑓𝑓

𝑑3
   Equation 2.7 

Here, µ is the mobility of HSL, d is the thickness of HSL, 𝑉𝑒𝑓𝑓 is the 

applied voltage (from 1 to 5 V) and 𝜀0𝜀𝑟  is the dielectric constant which 

has a value of 3 for organic semiconductors, according to the literature.176 

The HSL thickness is usually fixed around 100 nm and the films are 

deposited via spin-coating. The PEDOT:PSS layers are deposited onto 

cleaned and treated ITO substrates via spin coating as described in the 

section 2.5.2. of this Chapter. The data are recorded with a Keithley 2612A 

by sweeping from 1 to 5 V at a scan rate of 40 mV/s.  
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Figure 2.3. SCLC measurement of the HSLs used in Chapter 7. The data is 
fitted to the Equation 2.7 which is shown as a black line for each HSLs.  

2.3.8. Scanning Electron Microscopy 

The morphology of the perovskite layer and completed perovskite device 

layers are viewed by using Scanning Electron Microscope (SEM) and 

Environmental Scanning Electron Microscopy (ESEM), respectively. The 

SEM principally detects a secondary electron between the electron beam 

and the electrons of the sample with high acceleration voltage as shown 

in Figure 2.4. The secondary electrons are expelled from the material’s 

atom and are recorded as an image due to the high primary electron 

beam hitting the sample under vacuum. The different topologies of the 

sample cause various contrast colours for the final image. For instance, 

heavy atoms can deflect electrons strongly and they appear much 

brighter in the image. Additionally, the backscattered electron detector 

can deliver the crystal orientation of the sample obeying Bragg's law 
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giving Kikuchi patterns. Finally, SEM detectors use a semiconductor or a 

scintillation to detect the electrons from the specimen which are 

converted to photons then to an electric signal.177 

 

Figure 2.4. Schematic representation of the basic SEM 

The SEM images are acquired with Hitachi S4100 at 30k magnification. 

The voltages used for SEM is 5 keV. 

2.3.9. Atomic Force Microscope  

Atomic Force Microscopy (AFM), which is used to get images of the 

surface of the films, is based on van der Waals interaction between the 

surface of the material and tip junction, capillary forces, covalent forces, 

electrostatic forces, common repulsive interaction forces, the van der 
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Waals, etc. interaction triggers a force gradient that adjusts the 

oscillation. While the tip scans across the surface of the specimen, the 

surface topography can be mapped by continually altering the mean level 

position in order to maintain a fixed tip-sample interaction. The force 

regimes can be categorized into three imaging modes: contact AFM (the 

tip uses a continuous force ~ 1-1000 nN normal to the surface of the 

specimen); intermittent contact AFM (an oscillating tip-cantilever is 

carried close to the specimen so that it more aggressively strikes or gently 

taps); and noncontact AFM (a tip oscillates with a much smaller 

magnitude and never contacts the surface of the specimen, certainly 

interacting via Van der Waals forces instead).177 

AFM images are obtained with a Pico SPM II instrument and the tip is in 

the noncontact mode. The images are processed with the WSxM 

software. 

2.3.10. Photophysical Measurements 

Time-Correlated Single Photon Counting Measurements  

Time-correlated single-photon counting (TCSPC) is a common 

technique for fluorescence lifetime measurements which is based on the 

detection of single emitted photons over the time of the luminescence 

decay.178 The technique provides information about the possible paths of 

the radiative recombination of a semiconductor. If the semiconductor 

absorbs a photon, the electron will be excited from its ground state 

(HOMO/VBM) to higher excited states (LUMO/CBM). In the end, this 

electron will be recombined radiatively to its ground state by the 
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emission of photons that depend on the band-gap energy of the 

semiconductors.179  

Lifetime measurements are performed on an Edinburgh Instruments 

LifeSpec-II based on the TCSPC technique, equipped with a PMT 

detector, double subtractive monochromator, and 470 nm picosecond 

pulsed diode laser source. All perovskite films are protected with 

poly(methyl methacrylate) PMMA (~30 nm) to do measurements in the 

ambient condition. In this thesis, all time resolved photoluminescence 

(TRPL) decays have been fitted to a biexponential decay with following 

equation: 

 𝑦 = 𝐴1 exp (−
𝑡

𝜏1
) + 𝐴2 exp (−

𝑡

𝜏2
)   Equation 2.8 

where Ai is an amplitude, 𝜏𝑖 is characteristic decay lifetime.180  

2.3.11. Characterisation Techniques of Perovskite 

Devices 

In this section, the employed characterisation techniques for completed 

perovskite devices will be explained. The evaluation of the photovoltaic 

parameters and the calculation of the power conversion efficiency of the 

perovskite devices will be defined. 

Calculation of the Power Conversion Efficiency by Current 

Density-Voltage Scan 

The Current Density-Voltage measurement is the most important 

technique for determining power conversion efficiency (PCE) of the 
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perovskite devices. The PCE is the ratio between the incident light power 

density and the maximum electrical power output under standard test 

conditions (STC) (1000 W/cm2, AM 1.5 G and at 25 °C) as described in IEC 

60904-3.181 The PCE of solar cells is determined with measurement of the 

photocurrent by scanning the bias potential. It is mainly calculated from 

the current density-voltage (J-V) curve under 1 Sun STC, using a solar 

simulator (ABET 11000 Sun 2000) calibrated with a Fraunhofer ISE Si 

photodiode. These STCs correlate to the solar radiation spectrum at mid-

latitudes, corresponding to the solar spectrum at a solar zenith angle of 

48.2°.182 The results are expressed as a current density – voltage (J-V) 

curve and the ratio of the maximum output power (PMax) to the 

irradiation intensity is described as the power conversion efficiency (η) 

(Equation 2.9).  

𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=
𝐽𝑆𝐶𝑉𝑂𝐶𝐹𝐹

𝑃𝑖𝑛
  Equation 2.9 

The photovoltaic parameters for both reverse and forward scan 

conditions short-circuit current density (JSC), open-circuit voltage (VOC), 

fill factor (FF), power conversion efficiency (η) can be extracted from the 

J-V curves (Figure 2.5). The JSC value can be determined when the 

voltage is zero in the cell, and it depends on directly the active area of 

the cell. In the opposite situation, while the current density is zero in the 

cell, the VOC value can be determined. The FF value is the ratio between 

the maximum power output (JMP x VMP) and the outcome of JSC and VOC 

(Equation 2.10).  

𝐹𝐹 =
𝐽𝑀𝑃𝑉𝑀𝑃

𝐽𝑆𝐶𝑉𝑂𝐶
   Equation 2.10 
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The J-V curves can be obtained with two different scan sweeps; forward 

is called when scan sweep is from JSC to VOC, the reverse is called when 

scan sweep is from VOC to JSC. Generally, in n-i-p configuration perovskite 

devices, to perform the J-V measurement in both scan sweep showed 

characteristic difference which is called hysteresis. This will be explained 

in the following section.   

 

Figure 2.5. Example of a typical J-V curve of a perovskite solar cell 
highlighting the JSC, VOC, current and voltage at maximum power (JMP and 
VMP, respectively), and FF. 

The scan rate is 100 mV/s starting from forward scan using Keithley 

Model 2612A as a voltage source. The opposite scan sweep of forward is 

defined as reverse. 
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The Open-Circuit Voltage and Short-Circuit Current Density 

Stabilization 

The short-circuit current density (JSC) and the open-circuit voltage (VOC) 

stabilisation time are especially useful because the n-i-p configuration 

has high hysteresis. Hysteresis is described as slow rise in VOC that is 

associated with the ionic movements within the perovskite. The detailed 

description of the hysteresis is mentioned in the following section.   

The stabilization measurements are employed while the cell is in open-

circuit and dark conditions. The cell is illuminated after a few seconds 

from dark to one sun condition and the evolution of the JSC or the VOC 

growth is recorded.  

External Quantum Efficiency Measurement  

The external quantum efficiency (EQE), alternatively called the incident-

photon-to-current-efficiency (IPCE), is described as the ratio between 

the number of electrons generated and the number of incident photons, 

considering one photon generates one electron-hole pair (this means 

that up and down-conversion absorber can have, theoretically, and EQE 

of greater than 100%). The essential requirement of any good solar cell is 

that light with energy above the bandgap can be absorbed and 

photogenerated carriers can be extracted. Experimentally, the light from 

a broadband light source, often a Xenon lamp, is chopped and selected 

through a monochromator to generate single wavelength light source. 

The number of generated electrons is recorded per each wavelength.  

EQE can be calculated by following equation: 
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𝐸𝑄𝐸 =
ℎ𝑣𝐽𝑆𝐶

𝐼𝑖𝑛𝑒
   Equation 2.11 

where JSC is the short circuit current density, hv is the photon energy, Iin 

is the incident light intensity and e is the absolute value of electron 

charge. The cell is kept at short-circuit condition, and the current 

through the cell is measured with a source meter for each wavelength. 

Since the EQE is the spectral response of the cell, it can be used to 

calculate the integrated JSC,EQE of the cell under illumination and with 

following equation 2.12:  

𝐽𝑆𝐶,𝐸𝑄𝐸 = ∫𝑞𝐸𝑄𝐸(𝜆)𝑆(𝜆)𝑑𝜆  Equation 2.12  

where S(λ) is photons per seconds. The short-circuit current density is 

generally measured from the J-V curve, which is defined as JSC,JV under 

the solar simulator (Figure 2.6). The integrated short-circuit current 

density, is defined as JSC,EQE, is calculated by setup uses a Xe lamp in 

combination with a monochromator as light source. Typically, the JSC,EQE 

is relatively lower (10-20%) than the JSC,JV for PSCs.  
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Figure 2.6. Example of the J-V curve and EQE spectrum of a PSC.  

EQE measurement is recorded by an Oriel Instruments QEPVSI-b 

system with a Xenon lamp (Newport 300 W). The white light is chopped 

at a frequency of 78 Hz by a Newport Cornerstone 260 monochromator. 

Before each measurement, a Si diode with a known spectrum is used as 

reference. The response from the solar cells is measured with a Stanford 

Research SR830 Lock-In amplifier and evaluated by a commercial 

software named TracQ. 

Open-Circuit Voltage and Short-Circuit Current Dependency on 

Light Intensity  

The different light intensities are employed to determine the VOC and JSC 

dependence with light intensity (Φ) using different optical filters. These 

filters fix the intensity of the light that will pass through to the device 
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from the light source. The different J-V curves are obtained from same 

device under different light intensities as shown in Figure 2.7.  

 

Figure 2.7. The J-V curves of the device with Spiro-OMETAD under 
different light intensities on reverse condition. 

The VOC and JSC values are extracted at each light intensity from the JV 

curves of the device. For the case of the JSC dependence with light 

intensity, the JSC is fitted to a power law dependence (JSCαΦα), and it is 

possible to estimate if there are photocurrent losses under short circuit 

conditions. Ideally, there are no photocurrent losses under short circuit 

conditions, if α is equal to 1 (Figure 2.8b). On the other side, for the case 

of the VOC dependence with light intensity, the ideality factor (nid) can 

be calculated which shows how much the device differs from the ideal 

diode behaviour. The ideal factor value can be between 1 and 2; when the 

ideal factor is equal to 1, it means band-to-band recombination and if the 

nid is equal to 2 which is means the SRH recombination or trap mediated 
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is predominant (Figure 2.8a). The non-ideal diode equation including 

the net current (J) is in Equation 2.13. 

𝐽 = 𝐽𝑆𝐶 − 𝐽0 (𝑒
𝑞𝑉

𝑛𝑖𝑑𝐾𝐵𝑇 − 1)  Equation 2.13 

where 𝐽0 is a constant, KB is the Boltzmann constant, q is the elementary 

charge, and T is the device temperature. J value will be equal to zero 

while the device at open-circuit condition, so Equation 2.8. can be 

converted to Equation 2.14. 

𝐽𝑆𝐶 = 𝐽0 (𝑒
𝑞𝑉𝑂𝐶
𝑛𝑖𝑑𝐾𝐵𝑇 − 1)  Equation 2.14 

 

 

Figure 2.8. Estimation of the a) The ideal factor and b) The JSC dependence 
with light intensity obtained from the reverse JV curves on Figure 2.7. 

In addition, the ideality factor (nid) can be derived from the JSC linear 

increment linearly with the light intensity through Equation 2.15.  

𝑉𝑂𝐶 =
𝐾𝐵𝑇

𝑛𝑖𝑑𝑞
𝐼𝑛𝛷  Equation 2.15 

10 100

1

10

 Spiro-OMeTAD

C
u

rr
e

n
t 

D
e

n
s

it
y

 (
m

A
/c

m
2
)

Irradiance (mW/cm2)

a= 0.965

0 20 40 60 80 100
0.9

0.95

1

1.05

nid= 1.78

Spiro-OMeTAD 

V
o

lt
a

g
e

 (
V

)

Irradiance (mW/cm2)

a) b)

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



 Experimental Procedures and Methods 

74 
 

Hysteresis Index 

Hysteresis Index (HI) is fundamentally described as the discrepancy 

between the two scanned efficiencies, which in turn are derived from the 

JSC, VOC, and FF of the forward scan (V ≤ 0 to V ≥ VOC) and the reverse 

scan (V≥ VOC to V ≤ 0) (Figure 2.9).55,183,184 HI value can be calculated by 

the following formula: 

𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 𝐼𝑛𝑑𝑒𝑥 =
𝑃𝐶𝐸 (𝑟𝑒𝑣𝑒𝑟𝑠𝑒)−𝑃𝐶𝐸 (𝑓𝑜𝑟𝑤𝑎𝑟𝑑)

𝑃𝐶𝐸 (𝑟𝑒𝑣𝑒𝑟𝑠𝑒)
 Equation 2.16 

Hysteresis in PSCs is an epiphenomenon caused by the presence of both 

surface charge recombination and/or mobile ionic species.185,186 From 

early studies, it has been assumed that ion migration is a possible cause 

of the slow response; others are ferroelectricity and charge carrier 

trapping.55 Afterward, several studies have proven the ion migration 

hypothesis by modelling and microscopic simulations.187,188  
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Figure 2.9. Example of the hysteresis index having the difference at scan 
direction of the n-i-p architecture perovskite solar cell.   

Hysteresis is one of the obstacles to determine the actual power 

conversion efficiency of perovskite solar cells. For that reason, many 

papers assert to increase the device performance by reducing the HI. 

However, the perovskite solar cell is a dynamic system in nature that is 

responsive to illumination and external field. In other words, in response 

to an external field, the mobile ions will react slowly than the voltage 

sweep, i.e., the changes in the internal field, which adjusts the ion 

distribution in the absorber. Remarkably, the p-i-n structured device of 

PSCs have generally a negligible HI when compared to the n-i-p 

structured device. The most popular explanation for this is associated 

with ion movement stabilization. The commonly used fullerene in p-i-n 

structure has been hypothesised to passivate perovskite film's pinholes 

and grain boundaries.189 Mobile ions in the perovskite film interact with 
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fullerene small molecules to form a fullerene halide radical, which is 

supposed to stabilize electrostatic properties, suppress the electric field 

prompted anion migration that could possibly cause hysteresis, and thus 

ensure no hysteresis.189,190 Hence, it is consensual to report not only the 

J-V scans of PSCs, but also the quasi-steady state efficiency, i.e., holding 

the device at approximately the maximum power point voltage and 

letting the photocurrent stabilise to determine a steady-state 

efficiency.183  

2.3.12. Maximum Power Point Tracking of 

Perovskite Solar Cells 

A custom-built high-throughput Ageing Setup is used for the ageing test 

of perovskite solar cells (Figure 2.10).126 Each cell is individually 

maximum power point (MPP) tracked by the use of special electronics. 

A perturb and observe191 algorithm with a voltage step-width of 0.01 V 

and a delay time of 1 s is applied to track the MPP. PCEMPP tracking values 

are automatically recorded for all cells every 2 minutes and normalised 

to the starting value. During the tracking, the active area is touching a 

heat pad to ensure direct thermal coupling and Peltier-elements are used 

for cooling and keep the cells at 25 °C continuously.  
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Figure 2.10. Picture of the custom-built high-throughput Ageing Setup 

MPP tracking of devices is performed without encapsulation and under 

a continuous flow of nitrogen in a closed box. A metal-halide lamp with 

H2 filter is used as a light source with 100 mW/cm2 intensity. A 

comparison of the spectrum of the light source with H2 filter to AM 1.5 

G is shown in Figure 2.11a. 

A metal-halide 
lamp 

A temperature 
controller 

Keithley 

An airtight customized 
sample holder
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Figure 2.11. a) Spectrum distribution of the lamp used for MPP tracking 
ageing test of perovskite solar cells. b) Transmittance spectra of the UV-
blocking foil as named Mitsui KFU15. 

The light source intensity is actively controlled using a silicon 

irradiation-sensor which is itself calibrated using a Silicon reference. For 

experiments with UV-filter, the UV-blocking foil “KFU15” by Mitsui is 

used to block UV light with wavelengths below 380 nm. The 

transmittance of the UV-blocking foil (in text named UV filter) is shown 

in Figure 2.11b. The light source intensity reaching the solar cells tested 

with UV-filter is measured to be approximately 80 mW/cm2 due to the 

filter and its diffusing properties. The ageing test is in accordance with 

the ISOS-L-1l protocol. The UV-induced degradation is carried out with 

a Vilber Lourmat VL-6.L lamp. The power of the UV tube is 6 Watt. All 

HSLs deposited ITO substrates have been exposed to 365 nm for 30 

minutes before perovskite deposition. 
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2.4. Deposition Techniques of Active 

Layers 

In this section, the experiment procedure of the deposition techniques 

will be described for each active layer in PSCs.  

2.4.1. Spin-coating  

The spin-coating has been used for the deposition of thin films for several 

decades in organic and inorganic photovoltaic devices. A classic process 

involves depositing a small amount of a fluid solution onto the centre of 

the substrate and then spinning the substrate at high speed. Centripetal 

acceleration will cause the solution to spread to, and eventually off, the 

edge of the substrate leaving a thin film of the solution on the surface of 

the substrate. In the end, the final thickness of the film will depend on 

the nature of the solution (viscosity, surface tension, drying rate, etc.). 

The speed unit of this process is revolutions per minute (rpm) which 

means the number of turns in one minute. The coated film properties 

can be affected by the acceleration of the substrate towards the final 

speed. Particularly, it is important to precisely control acceleration since 

the solution begins to dry during the first part of the spin cycle. In the 

first few seconds of the spin-coating process, 50% of the solvents in the 

solution will be lost to evaporation in some processes.192  

Spin-coating deposition (Figure 2.12) produces uniform SAMs by a 

simple process where the SAM molecules are first spread over the surface 

at a certain speed and then rinsed by spin-coater to remove the 
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remaining extra molecules. The spin-coating method is the most used 

one to prepare planar PSCs due to its convenient and fast deposition 

feature. 

 

Figure 2.12. Illustration of the spin-coating method for SAMs. 

The optimised spin-coating process is used for all type of the perovskite 

layer, some of HSLs and ESLs are reported later in this Chapter (Figure 

2.13).  

 

Figure 2.13. Picture of the spin coater which is used for depositing active 
layers in PSCs 
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2.4.2. Dip-coating 

Dip-coating is the most widely used technique for laboratory 

applications which is fundamentally based on simple processing, low 

cost, and high coating quality between the available deposition 

techniques. Dip-coating indicates the deposition of a wet liquid film by 

the withdrawal of a substrate from a liquid coating medium. The wet 

chemical sol-gel processing paves the way for all kinds of coating 

materials due to the versatility and ease of liquid film deposition 

techniques. Liquid film deposition techniques involve the application of 

a liquid precursor film on a substrate which then is converted to the 

desired coating material in the following post-treatment step.193 

Dip-coating method (Figure 2.14) is usually applied to mesoporous 

surfaces and refers to the immersion of the surface in a solution of SAMs 

where the molecule absorbs chemically. Absorption can be controlled by 

adjusting solvent, concentration, immersion time, and speed. The extra 

molecules are later rinsed with solvent by spin coating.  
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Figure 2.14. Illustration of the dip-coating method for SAMs. 

In this thesis work, we have used the designed glass beaker which is 

resized for our substrate's sizes (Figure 2.15). This designed beaker 

ensures the cleaned substrates are immersed vertically in the precursor 

solution that has a cap to protect the concentration of the solution 

during the dip-coating process. The UV-O3 treated ITO covered 

substrates are immersed in the solution of the SASM during optimised 

time at room temperature. After the dip-coating process, the substrates 

are rinsed with the same solvent to get rid of the non-attached molecules 

or excess molecules from SAM covered surface and they are dried via 

spin-coating at 3000 rpm for 30 sec. All dip-coating and post-treatment 

processes are done in a glovebox for protecting the monolayer surface 

before depositing the perovskite layer. The self-assembled monolayers 

are stable on the ITO surface in the nitrogen filled glovebox for one week. 
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Figure 2.15. Picture of the dip-coating beaker. 

2.4.3. Aerosol Spray Pyrolysis  

In the aerosol spray pyrolysis (ASP), usually a series of liquid droplets 

splash onto the substrates dragged by a gas flow from a beaker 

containing the source solution, the temperature evaporates the residual 

solvents, leaving a dry precipitate where a chemical reaction occurs. Yet, 

the thermodynamic properties of the source solution which contains the 

intended material will determine whether the initial droplets certainly 

splash the substrates.194,195 ASP has a number of positive features. For 

instance, relatively pure particles in the submicron range and a wide 

range of chemical compositions can be produced including complex, 

multi-component systems. Additionally, each droplet performs as a 

microreactor in which the constituents are mixed on the atomic level 

thus particle homogeneity is expected. The method has the potential for 

the continuous creation of particles in one step.196 ASP method is only 

applied for having a homogeneous c-TiO2 layer on top of the FTO 

substrates (Figure 2.16). Its detailed procedure is explained in the 

section 2.5.4 of this Chapter.  
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Figure 2.16. Picture of the aerosol spray method  

2.4.4. Vacuum Thermal Evaporation  

The deposition technique of the vacuum thermal evaporation involves 

heating until evaporation of the material to be deposited is achieved. The 

material vapour eventually condenses in form of the thin film on the cold 

substrate surface. The ultra-high vacuum is usually around 9x10-7 mbar 

and 2x10-6 mbar.  During the metal or organic material evaporation, a 

high voltage is passing through a tungsten metal boat or a high 

temperature crucible, respectively that is filled with the material to be 

deposited. The substrates are placed upside down (looking at the 

direction of evaporation) in a substrate holder and protected by a 

deposition shutter that is in the open position during evaporation 

process as shown in Figure 2.17a. The metals can be evaporated by 

deposition controller with manual or automatic program and the model 

of the metal evaporator is INFICON SQC-310C (Figure 2.17b). The 

organic materials are evaporated by deposition controller with only 
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manual program and the model of the controller is CreaPhys GmbH CU 

103 (Figure 2.17c).  

 

Figure 2.17. Picture of a) the different parts of evaporator b) the metal 
deposition controller and c) the organic deposition controller   

2.5. Fabrication of Perovskite Solar 

Cells 

In this section, two different kinds of PSC structures will be described as 

two of the most employed architectures for achieving high and stable 

devices. The architecture designs are illustrated in Figure 2.18. In this 

thesis, the novel hole selective layers are employed for both 

architectures. The deposition procedures of each layer for both types of 

device structures are mentioned in detail.   
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Figure 2.18. Schematic illustration of the layers involved in the two most 
typical PSCs structures a) p-i-n planar and b) n-i-p mesoscopic  

2.5.1. Cleaning of the Transparent Conducting 

Oxides Covered Glass Substrates  

For both type of PSCs, we have used general cleaning method for all ITO 

and FTO covered glass substrates. The cleaning of the substrates is 

crucial to avoid oily impurities and dusts which can cause unfavourable 

consequences for the final performance of the perovskite solar cells.  

The patterned ITO/FTO glass substrates are cleaned for 15 minutes with 

Mucasol 2% solution in deionised water, acetone, and isopropanol in an 

ultrasonic bath, respectively at 50 °C. After physical cleaning, the cleaned 

layers are dried well before treated in a UV-O3 cleaner for 15 min. After 

UV-O3 treatment, the ITO/FTO substrates are immediately used in the 

next step or transferred to N2 filled glovebox if the next step should be 

done in an inert atmosphere. 

Perovskite

Glass/ITO

SAM

C60/BCP
Cu

Glass/FTO

ETM

a) b)

Perovskite 

Spiro-OMETAD

Au
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2.5.2. Hole Selective Layers  

We have used just organic commercially available HSLs for comparing 

with our synthesised small molecules in this thesis. Spiro-OMeTAD, 

PEDOT:PSS and PTAA are used as a reference HSL in Chapter 3 & 

Chapter 7, Chapter 4 and Chapter 5 & Chapter 6, respectively.  

The PEDOT:PSS is a well-known HSL for organic and lead halide 

perovskite photovoltaic devices. The drawbacks and the advantages of it 

are explained in Chapter 1. The PEDOT:PSS layer is coated via spin-

coating onto the UV-O3 treated ITO by using a two-step method (1st step; 

4500 rpm. 30 seconds and 2nd step; 3500 rpm. 30 seconds). The final 

thickness of PEDOT:PSS is around 35 nm after the annealing process at 

130 °C for 30 min. The deposition and annealing steps of PEDOT:PSS are 

employed in the clean room to remove residual water from surface. After 

this step, the substrates are directly transferred to a glovebox for 

depositing the perovskite layer.  

In recent years, PTAA is the most common HSL in the p-i-n 

configuration of PSCs because it gives higher PCE compared to 

PEDOT:PSS. PTAA's HSL properties are mentioned with instances from 

literature in Chapter 1. To make PTAA layers, PTAA is dissolved at a 

concentration of 2 mg/mL in dry toluene. The deposition of PTAA layer 

is performed by spin-coating at 5000 rpm for 30 seconds and then 

annealed at 100 °C for 10 minutes. The solution preparation and 

deposition steps of PTAA are done in the N2-filled glovebox due to its 

oxygen and humidity sensitivity. The thickness of PTAA layer (10 nm) is 

an important parameter for having favourable wettability in order to 
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achieve the perovskite layer without pinholes onto the PTAA layers. 

Additionally, PTAA can be used as a HSL in n-i-p configuration of the 

PSCs instead of Spiro-OMETAD.  

Spiro-OMeTAD is the most celebrated HSL in n-i-p configuration of the 

PSCs which is deposited on top of the perovskite layer as mentioned in 

Chapter 1. A 60 mM Spiro-OMeTAD solution in chlorobenzene is doped 

with dopants such as tBP, LiTFSI, and FK 209 Co(III)TFSI to enhance its 

HSL properties. The molar ratio of the solution is 1 Spiro-OMeTAD: 3.3 

tBP:0.5 LiTFSI (from a 1.8 M stock solution in ACN): 0.05 FK 209 

Co(III)TFSI (from a 0.25 M stock solution in ACN). After added all the 

dopants to the Spiro-OMeTAD solution, a PTFE (0.2 μm) filter is used 

for eliminating aggregations or not solved materials before spin-coating 

process. After deposition of the Spiro-OMeTAD layer, all substrates are 

transferred to the dry box with a 10% relative humidity, and they are 

stored there overnight. The FTO side of the substrates is cleaned to avoid 

a short circuit after metal deposition. A sharp razor and a cotton swap 

with DMF are used just before metal contact deposition.  

Deposition Methods of Self-Assembled Small Molecules  

Most of the self-assembled small molecules (SASM) are usually easily 

soluble in non-halogenated organic solvents for using dip-coating and 

spin-coating deposition methods. In addition, SASM solution 

temperature is raised up to 60 ˚C for increasing solubility in non-

halogenated organic solvents before the dip-coating or spin-coating 

processes.  
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Deposition of Self-Assembled Small Molecules by Dip-Coating 

The general molarity of SASM is approximately 0.1 mM for dip-coating 

method. The treated ITO substrates are fully submerged in the solutions 

for dip-coating method. After 4 hours of dipping, the SASM-HSL films 

onto ITO substrates are dried from excess solution. Afterwards, 500 µL 

of fresh anhydrous solvent, the same one used for preparing SASM 

solution, are poured onto SASM-HSL covered ITO, followed by spin 

coating at 3000 rpm for 30 s. This washing step is a necessary and easy 

way for removing non-bonded SASMs from metal oxide surfaces. 

Self-Assembled Small Molecules Deposition by Spin-Coating 

The general molarity of SASM is around 1 mM in solvents for spin-

coating. EADR04 did not show good results with the spin-coating 

method due to its low solubility. The precursor solution is filtered with 

the PTFE (0.2 μm) filter to eliminate aggregates or insoluble materials 

before spin-coating. 

For the spin-coating method, 100 µL of the SAM solution is 

homogeneously poured onto the UV-O3 treated ITO and deposited by 

spin-coating at 3000 rpm for 30 seconds. The washing step or any post-

treatment as thermal annealing is not applied after deposition of SASM 

by spin-coating.  
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2.5.3. Perovskite Layers 

One-Step MAPI Deposition for n-i-p Structure 

All perovskite solutions are prepared in a N2-filled glovebox. The n-i-p 

configuration PSCs based on MAPI perovskite and prepared with one-

step deposition technique in Chapter 3. The concentration of the MAPI 

solution is 1.25 M. To prepare the solution, first, the required amount of 

PbI2 is weighed and dissolved in DMSO. To increase the solubility of the 

lead salt, we heat the solution up at 150 °C for 10 minutes. Then, the 

solution is cooled down to room temperature and the methylammonium 

iodide (MAI) is added.  

It is especially important to control the atmosphere and the solvent 

vapours inside the glovebox. Hence, the work is carried out with a 

continuous N2 flow that removes the dimethyl sulfoxide (DMSO) 

vapours. 

The deposition of the perovskite solution is carried out using the 

antisolvent treatment. First, 40 μl of the perovskite solution is spin-

coated with a two-step program. First, 1000 rpm for 10 s using an 

acceleration of 500 rpm, and then 4000 rpm for 30 s with an acceleration 

of 500 rpm. 10 seconds before the spinning process ends, 100 μl of 

chlorobenzene is spin-coated right on the centre of the spinning 

substrate. The films are annealed for 45 minutes at 100 °C. 
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Two-Step MAPI Deposition for p-i-n Structure 

The p-i-n configuration PSCs are based on MAPI composition and 

prepared with a two-step deposition technique in Chapter 4. In the first 

step, 80 μl of 1M filtered PbI2 in a mixture of anhydrous DMF:DMSO (9:1; 

v:v) is deposited on top of HTMs for 90 seconds. In the second step, 100 

μL of 0.32 M filtered MAI in anhydrous isopropanol is statically dripped 

onto the PbI2 coated substrate during the last 30 seconds of the spinning. 

PbI2 solution is stirred at 50 ˚C for 1 hour. All the solutions are filtered 

with a PTFE filter (0.22 μm). When the coated process is over, the 

substrates are directly moved onto a hotplate and are annealed for 10 min 

at 100 ˚C. The perovskite layer thickness is around 350 nm. 

CsFAMA Perovskite Deposition for p-i-n Structure  

The triple cation perovskite [(Cs0.05FA0.79MA0.16Pb(I0.84Br0.16)3] onwards 

labelled as CsFAMA, is prepared according to M. Saliba et al.15 procedure, 

what refers to using an anti-solvent deposition technique for p-i-n 

configuration (see Chapter 5 and 6). Briefly, PbBr2 (1.5 M) and PbI2 (1.5  

M) are dissolved in a mixture of anhydrous dimethylformamide (DMF): 

dimethyl sulfoxide (DMSO) (4:1 volume ratio) and added to 

formamidinium iodide (1.09:1 molar ratio) and methylammonium 

bromide (1.09:1 molar ratio) powders respectively, to obtain MAPbBr3 

and FAPbI3 solutions with a final concentration of 1.24 M. These two 

solutions are then mixed in a 17:83 volume ratio. Finally, the cesium 

cation is added from a 1.5 M CsI solution in DMSO in a 5:95 volume ratio. 

The perovskite solution is spin-coated on top of the HTM layer using the 

following program: 4000 rpm (5 s acceleration) for 35 s (program’s total 
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time is 40 s). After 25 s, 250 μl of anisole is dropped on the spinning 

substrate to promote fast solvent-removal forming a smooth and 

compact layer. After the spin-coating program, the perovskite-coated 

sample is annealed at 100 °C for 60 min. 

CsFAMA Perovskite Deposition for n-i-p Structure 

The CsFAMA [(Cs0.05FA0.79MA0.16Pb(I0.84Br0.16)3] layer is prepared with an 

anti-solvent deposition technique for n-i-p configuration (Chapter 7). 

Firstly, PbBr2 (1.5 M) and PbI2 (1.5 M) are dissolved in a mixture of 

anhydrous DMF:DMSO (4:1 volume ratio) and added to formamidinium 

iodide (1.09:1 molar ratio) and methylammonium bromide (1.09:1 molar 

ratio) powders respectively, to obtain MAPbBr3 and FAPbI3 solutions 

with a final concentration of 1.24 M. These two solutions are then mixed 

in a 17:83 volume ratio. Secondly, the cesium cation is added from a 1.5 

M CsI solution in DMSO in a 5:95 volume ratio. The perovskite solution 

is spin-coated on top of the HSL using the following 2 step program: first 

is at 2000 rpm/s with 2000 rpm/s acceleration for 12 seconds, the second 

one is 6000 rpm/s with 2000 rpm/s acceleration for 23 seconds 

(program’s total time is 35 s). After 30 s, 300 μl of anisole is dropped on 

the spinning substrate to promote fast solvent-removal forming a 

smooth and compact layer. After the spin-coating program, the 

perovskite-coated sample is annealed at 100 °C for 60 minutes. 
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2.5.4. Electron Selective Layers  

The Compact TiO2 Layer Prepared by Spin-Coating 

The compact TiO2 layer is deposited by spin-coating on top of the UV-

O3 treated FTO. A 0.3 M titanium diisopropoxide bis(acetylacetonate) 

(75 wt.% in isopropanol) (Ti(iPrO)2(acac)2) solution is prepared in dry 

isopropanol. The solution is deposited onto the FTO substrates and the 

compact TiO2 layer is formed on it by spin-coating at 4000 rpm for 25 

seconds with an acceleration of 1000 rpm/s. The coated substrates are 

pre-annealed at 125 °C for 5 minutes right after the spin-coating process. 

Then, the pre-annealed substrates are transferred into a hot plate and 

sintered at 450 °C for 30 minutes.  

The Compact TiO2 Layer Prepared by Spray Pyrolysis 

A compact TiO2 layer is deposited by aerosol spray pyrolysis using 

oxygen as a carrier gas as mentioned in the section of deposition 

techniques of active layers. The precursor solution of the compact TiO2 

film is prepared using 0.480 mL of acetylacetone, 0.720 mL of 

(Ti(iPrO)2(acac)2) (75 wt.% in isopropanol) and 10.8 mL of absolute 

ethanol (EtOH). The total amount (12 mL) of the precursor solution is 

sufficient for 24 substrates. After UV-O3 treatment, the substrates are 

heated to 450 °C and kept at this temperature for 15 min. Once the 

deposition of the compact TiO2 by aerosol spray pyrolysis is over, the 

substrates are sintered at the same temperature for 30 minutes. The 

whole precursor solution is sprayed from the substrates at a distance of 
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20 cm with an inclination of 45 degrees, with at least 20 seconds of delay 

between each spray cycle.  

The Mesoporous TiO2 Layer Deposited by Spin-Coating  

The mesoporous TiO2 is deposited on top of the compact TiO2 by spin-

coating at 4000 rpm for 10 second and 2000 rpm acceleration. The 

solution of the TiO2 paste (30 nrd) is prepared using 0.3 g per 2 mL of 

absolute ethanol (125 mg/mL) and the paste is well dissolved under 

stirring. The dispersed solution of the mesoporous TiO2 should be 

prepared at least one day before use and can be kept under stirring all 

the time. The coated substrates are pre-annealed at 125 °C for 5 minutes 

right after the spin-coating process. Then, the pre-annealed substrates 

are transferred into a hot plate and sintered at 450 °C for 30 minutes. The 

final thickness of the mesoporous TiO2 is around 150-200 nm.  

Lithium Surface Treatment by Spin-Coating 

Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is deposited onto 

the TiO2 covered substrates just before the deposition of the perovskite 

layer for the studies in Chapter 7. Its positive effect on the hysteresis and 

the photovoltaic performance of the PSCs are explicated in Chapter 1. 

The concentration of the LiFTSI solution is 3 mM. The required amount 

of LiFTSI salt is dissolved in acetonitrile. The LiFTSI layers are prepared 

by spin-coating at 3000 rpm/s for 10 sec and 1000 rpm/s acceleration. The 

coated substrates are pre-annealed at 100 °C for 5 minutes right after the 

spin-coating process. Later, the pre-annealed substrates are transferred 

into a hot plate and sintered at 450 °C for 30 minutes. 
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The TiCl4 Post Treatment Achieved by Chemical Bath Deposition  

This treatment is applied right after the deposition of the compact TiO2 

which is deposited by spin-coating for the studies in Chapter 3. Once the 

compact TiO2 covered substrates are cold down to room temperature, 

they are dipped into a 40 mM TiCI4 solution at 70 °C for 30 minutes. 

Then, the immersed substrates are rinsed with DI water and ethanol and 

dried with a compressed air. If the mesoporous TiO2 is deposited right 

after this step, the calcination is not needed. If the substrates will be 

stored for the following step, the sintering step will be repeated at 450 °C 

for 30 minutes. 

The Carbon 60 and Bathocuproine Layer by Thermal Evaporation  

Carbon 60 (C60) is preferred as an ESL in the p-i-n configuration of the 

PSCs as described in Chapters 4, 5 and 6. 23 nm of C60 are evaporated 

on top of perovskite layer with rate of 0.5-0.2 Å/s. The BCP is evaporated 

on top of the C60 layer as a buffer layer with an optimised thickness of 9 

nm.  

2.5.5. Metal Electrodes  

The metal electrode is deposited onto the different active layers for 

completing the perovskite solar cells. Gold (80 nm), silver (100 nm) or 

copper (100 nm) are deposited using thermal evaporation under ultra-

high vacuum (1x10-6 mbar). To define the active area of the cells, a pattern 

mask is used during metal evaporation. The active area of the cell is 0.09 

cm2 in Chapters 3, 4 and 7. The active area of the cell is 0.16 cm2 in 
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Chapters 5 and 6. All the metal electrodes are evaporated with rate lower 

than 1 Å/s. 

2.6. Optoelectronic Transient 

Techniques 

In this section, the optoelectronic transient techniques, such as photo-

induced charge extraction (PI-CE), photo-induced transient 

photovoltage (PI-TPV), and photo-induced transient photocurrent (PI-

TPC) will be described. These techniques give useful information about 

carrier transport, accumulation, and recombination kinetics in 

completed devices. Doing measurements with completed devices offers 

the advantage of having comparable results of devices operating under 

practical conditions which is of outmost importance to understand the 

behaviour of PSCs. The photovoltaic performance of the PSCs can be 

affected by light soaking and the application of a voltage bias is 

mentioned in Chapter 1. 

2.6.1. Photo-Induced Charge Extraction  

Photo-induced charge extraction (PI-CE) is one of the techniques that is 

carried out under operational conditions and it is designed to measure 

the stored charge in the solar cell.197 Here, the solar cell's VOC is stabilised 

in the J-V curve at one point under illumination and the stabilization of 

VOC can take time due to the presence of mobile ions in the completed 

PSCs, as explained in Chapter 1. Then, the solar cell is switched to the 

short circuit through a small and known resistance (50 Ω) and the light 
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source is simultaneously switched off after VOC is balanced. After 

stabilisation, there is a current transient owing to the solar cell 

discharged through the contacts .198,199  

Schematic diagram of charge extraction measurement is illustrated in 

Figure 2.14a. To be examined, the solar cell is positioned ahead of a 

white LED (LED from LUXEON Lumileds and powered by an Aim-TTi 

PLH120-P power supply) and the intensity of the white LED can be 

regulated to determine the VOC of the solar cell. In the first 

microseconds, most of the free charges flow through the resistor to 

create a current, and a voltage drops within it. An oscilloscope 

(Yokogawa DLM2052 with an internal resistance of 1 MΩ) is connected 

to the solar cell to measure the transient voltage over time. 

 

Figure 2.19. Schematic diagram of a) PI-CE measurement b) PI-CE 
measurement process. 

An important issue to be addressed here is that CE extracts all the kinds 

of charges like ionic, carriers, and geometrical charges which are present 

at the device at a given voltage. For that reason, charge extraction must 
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be faster than the carrier recombination to prevent charge losses before 

the solar cell is short-circuited.200 

Ohm's law can be used to estimate the charge in the solar cell integrating 

the transient voltage over time as shown in Figure 2.19b and Equation 

2.17: 

𝑄 =
1

𝑅
∫ 𝑉(t)𝑑𝑡
𝑡=𝑡

𝑡=0
  Equation 2.17 

Where Q is the charge, R is the small resistance (50 Ω), and V (t) is the 

voltage at a given time. The example reported in Figure 2.20 has two 

different regions; the linear part that belongs to the linear dependence 

which is already defined in perovskite solar cells as geometrical 

capacitance (Cgeo), and the exponential part that is related with the 

chemical capacitance in the solar cell.201,202 

 

Figure 2.20. Total charge density (symbolised line) at different VOC which 
includes carriers in the contacts and bulk. Charge density (solid line) at 
different light bias without Cgeo represents only the experimental part of 
the fits: y = BeCx (chemical capacitance).   
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In solar cells, the accumulation of charges within the electrodes and the 

selective contacts is defined as Cgeo. Geometrical capacitance follows a 

parallel plate capacitor model: 

𝑄 = 𝐶𝑔𝑒𝑜𝑉 =
𝜀0𝜀𝑟𝐴

𝑑
𝑉   Equation 2.18 

where A is the active area of the plate of the capacitor, ε0 is the electric 

constant, εr is the relative permittivity, and d is the distance between the 

two plates.  

On the contrary, the selective contact is drained at higher illumination 

and the charges start accumulating in the perovskite bulk giving rise to 

the chemical capacitance. The charge extracted follows the Maxwell-

Boltzmann distribution: 

𝑄 = 𝑄0 [exp (
𝑞𝑉

𝑚𝐾𝐵𝑇
) − 1]  Equation 2.19 

where KBT/q is the thermal voltage, 𝑄0 is the charge density and m is a 

factor related with the deviation from the thermal voltage.203 We obtain 

zero charge for zero voltage with the subtraction of 1 to the exponential 

factor.204,205 Finally, we obtain an expression for the charge extraction as 

a function of the voltage when Equation 2.18 and Equation 2.19 are 

combined (Equation 2.20):  

𝑄 = 𝐶𝑔𝑒𝑜𝑉 + 𝑄0 [exp (
𝑞𝑉

𝑚𝐾𝐵𝑇
) − 1]  Equation 2.20 
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2.6.2. Photo-Induced Transient Photovoltage 

Photo-induced transient photovoltage (PI-TPV) is a time-resolved 

technique that has been applied in photovoltaic devices to study carrier 

recombination processes.206,207 In this technique, the photovoltaic 

device, which is in open-circuit, is excited by a fast and small 

perturbation of incoming light that can be directly associated to a small 

perturbation of the quasi-Fermi level.208 To perform PI-TPV, the 

photovoltaic device is held at an open-circuit under a continuous light 

source to probe the recombination lifetime under working conditions 

which also promotes a constant and stabilised VOC. The device is kept at 

an open circuit, the current could not flow through the contacts while it 

is connected to an oscilloscope that can register the changes in voltage 

in overtime as shown in Figure 2.21a. When the VOC is stabilised, the 

device is excited with a short-lived laser pulse which causes the 

generation of a small perturbation of the VOC, as represented in Figure 

2.21b.   

 

Figure 2.21.  Schematic diagram of a) photo-induced transient 
photovoltage (PI-TPV) measurement b) PI-TPV measurement process. 
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A nanosecond nitrogen laser (PTI GL-3300) has been used to allow us to 

control excitation wavelength using different organic dyes. For this 

thesis studies, the emission of Rhodamine 6G (R6G) at 590 nm is 

employed as an excitation wavelength. An analogue function generator 

(Aim-TTi TG330) has been used to trigger the pulse that generates a 

square wave pulse with a duration of 1.5 ns. A semi-transparent optical 

filter has been used to adjust the intensity of the laser pulse to validate a 

small perturbation regime. The extra carriers produced by the laser pulse 

are forced to recombine since the device is in open circuit conditions and 

cannot be extracted, this leads to the registration of the transient respect 

to the initial VOC. It is possible to compare a small perturbation lifetime 

(τΔn) with VOC (Figure 2.21b): 

𝜏𝛥𝑛 = 𝜏𝛥𝑛0𝑒𝑥𝑝 (−
𝑞𝑉𝑂𝐶

Ɵ𝐾𝐵𝑇
)  Equation 2.21 

where 𝜏𝛥𝑛0 is the equilibrium carrier lifetime, Ɵ is the deviation from the 

thermal voltage (KBT/q). In Figure 2.22a, the τΔn is obtained from the 

monoexponentially fitting of the photo-induced transient decay which is 

directly associated with the recombination rate.  
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Figure 2.22. Example of a) the intensity of the small perturbation (ΔV) 
and the small perturbation lifetime (τΔn) decay extracted from PI-TPV b) 
plot of the τΔn as a function of the different light bias applied (symbolised 
line) and the exponential fit to Equation 2.21 (solid line). 

2.6.3. Photo-Induced Transient Photocurrent and 

Differential Capacitance  

The photo-induced transient photocurrent (PI-TPC) measurement setup 

is quite similar to the PI-TPV measurement setup, except that the device 

is kept in short-circuit conditions and is connected to a small resistance 

(50 Ω). In principle, this technique allows us to predict the extra carriers 

generated by the small perturbation induced via the laser pulse 

(ΔQ).198,209 The laser pulse creates a small perturbation in the device 

current measured in the oscilloscope as a voltage drop across the resistor 

that is easily converted into a transient current using Ohm's law. The 

amount of the charges generated by the nitrogen laser pulse are 

measured and integrated over time with this transient current as shown 

in Figure 2.23.  
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Figure 2.23. PI-TPC measurement processes  

On the other hand, the PI-TPC technique has limitations since it is only 

valid when charge carrier losses are insignificant under short circuit 

conditions, hence the charge collection process is not affected by carrier 

recombination. Three different measurements need to be checked to 

prove it:  

Firstly, the JSC dependence of the device with the light intensity which is 

defined in this Chapter's section 2.3.11 must fit a power law. This means 

that there is no significant carrier loss in a short circuit. Secondly, the PI-

TPC decays must be similar under different light irradiation conditions; 

this means the charges generated by the laser pulse must be independent 

of the background light intensity. Lastly, carrier collection must be faster 

than carrier recombination; this means the PI-TPC decay is faster than 

the PI-TPV decay. The PI-TPC technique can be used to estimate the 

charge density in the device via the differential capacitance (DiffCap) 

method, if all these requirements are fulfilled. DiffCap method is used to 

estimate the charge density in the device and mainly combines the data 

acquired from PI-TPV and PI-TPC measurements.209 From PI-TPV 
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technique we obtain the intensity of the perturbation generated by the 

laser pulse at every light intensity (ΔV). From PI-TPC technique we 

estimate the created charges by the laser pulse (ΔQ), which should be 

the same at different light intensities, as we have already mentioned. 

Then, DiffCap permits us to calculate the capacitance of the device at 

different light biases through Equation 2.22. 

𝐶(𝑉𝑂𝐶) =
 𝑄

 𝑉
   Equation 2.22 

In DiffCap method, two different regimes are noticed which are 

described in the PI-CE (see section 2.6.1.). When the contacts are drained 

with charges, they start accumulating in the perovskite bulk, giving rise 

to a chemical capacitance resulting in an exponential trend.210 After all, 

when we take an integration of DiffCap at every voltage by using 

Equation 2.17., it gives us an estimation of the stored charges in the 

device. The stored charges in the device can be correlated with the 

increasing voltage using Equation 2.20. 

𝑄(𝑉𝑂𝐶) = ∫ 𝐶(𝑉𝑂𝐶)𝑑𝑉𝑂𝐶
𝑉𝑂𝐶
0

 Equation 2.23 

In addition, if we compare the obtained small perturbation lifetime from 

the PI-TPV experiments with the obtained charge density from the CE or 

DiffCap tests, this comparison allows us to make a fair assessment 

between different devices. Moreover,  from this experiment, the 

recombination order (δ) can be acquired allowing us to calculate the 

total carrier lifetime (τ).211,212 Initially, to acquire the recombination 

order, the values of a small perturbation lifetime around 1 sun should be 

compared and fitted with a power law dependence:  
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𝜏 𝑛 = 𝜏 𝑛0 (
𝑄

𝑄0
)
−𝜆

  Equation 2.24 

where 𝜏 𝑛0 is the equilibrium small perturbation lifetime, 𝑄0 is the 

charge density, λ is a parameter which describes the slope of the power 

law and is correlated with the recombination order as δ=λ+1.211 We have 

subtracted the value of Cgeo while using the charge density to study the 

processes in the bulk of the perovskite.  

Ultimately, the recombination order (τ=𝜏 𝑛·δ) can be used for converting 

the small perturbation lifetime (𝜏 𝑛) to the total carrier lifetime (δ).211  

Herewith, it is possible to acquire a significant comparison of the 

recombination rates between different devices from the total carrier 

lifetime values. 
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Truxene Derivatives as Lewis 

Base Interlayers in Perovskite 

Solar Cells 

 

 

This chapter is based on the published work: Aktas, E. et al. 

Supramolecular Coordination of Pb2+ Defects in Hybrid Lead Halide 

Perovskite Films Using Truxene Derivatives as Lewis Base Interlayers. 

ChemPhysChem 20, 2702–2711 (2019).213 
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3.1. Abstract  

Truxene derivatives are good candidates for the passivation of defects 

when deposited onto hybrid lead halide perovskite thin films owing to 

their molecular structure and properties. Moreover, their semiconductor 

characteristics can be tailored through the modification of their chemical 

structure, which allows -upon light irradiation- the interfacial charge 

transfer between the perovskite film and the truxene molecules. In this 

chapter, we investigated the use of the molecules as surface passivation 

agents and their effect in completed solar cells. We observed that these 

molecules reduce the nonradiative carrier recombination dynamics in 

the perovskite thin film through the supramolecular complex formation 

between the truxene molecule and the Pb2+ defects at the perovskite 

surface. Interestingly, this supramolecular complexation neither affect 

the carrier recombination kinetics nor the carriers collection but induced 

noticeable hysteresis on the photocurrent versus voltage curves of the 

solar cells under 1 sun illumination. 

3.2. Introduction  

The passivation of defects is one of the keys to increase the solar cell 

efficiency in inorganic or hybrid photoactive thin films. The defects 

induce a change in the solar cell voltage reducing the energetic difference 

between the quasi-Fermi levels because of an increase of the carrier 

recombination and the solar cell photocurrent, because less photo-

generated carriers are extracted. Lately, in hybrid lead halide perovskite 
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materials, many research groups have started to study the effect of 

molecules, as additives, to reduce the presence of surface defects. 

The truxene scaffold has an excellent thermal stability; a must when 

incorporated into organic electronic devices.214,215 Their molecular 

structure allows their deposition at the surface of the perovskite in face-

to-surface configuration with strong interaction with the perovskite 

semiconductor surface. A similar approach has been observed for 

graphene oxide layers.83 Moreover, the introduction of 3-fluoropyridine 

substituents will act as a Lewis base to passivate the non-coordinated 

Pb2+ ions present at the surface of the perovskite. 

In this work, we synthesised a new truxene derivative, 4,4’,4’’-

(5,5,10,10,15,15-hexahexyl-10,15-dihydro-5H-diindeno[1,2-a:1’,2’2-

c]fluorine-2,7,12-triyl)tris(3-fluoripyridine) (Trux-FPy). We evaluated its 

optical and electronic properties for PSCs. Furthermore, we do have 

deposited a thin film of Trux-FPy on top of the MAPI hybrid perovskite 

and studied its role as a Lewis base to passivate perovskite defects. 

Finally, we measured the performance of completed perovskite solar 

cells and the effect of the Trux-FPy thin film as interfacial layer between 

the perovskite and the hole selective material.  

 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



 Truxene Derivatives as Lewis Base Interlayers in Perovskite Solar 
Cells 

110 
 

3.3. Results and Discussions 

3.3.1. Design and synthesis  

The syntheses of 1a, 1b, and 1 is carried out following the scientific 

literature. Our 1H and 13C NMR data were in good agreement with those 

values previously reported.81,216,217 The truxene core (1a) is first 

synthesised through the condensation of 1-indanone in acetic acid 

(AcOH) and concentrated hydrochloric acid (HCI). Then, alkylation 

reaction is carried out with 1-bromohexane (CH3(CH2)5Br) and  tBuOK in 

THF to increase truxene core (1b) solubility. The bromination reaction of 

truxene core is performed with dibromine (Br2), iron(III) chloride (FeCl3) 

in CF, resulting in 1 in 93% yield. The 3-fluoro-4-pyridine is then 

introduced by the Suzuki cross coupling reaction with sodium carbonate 

(Na2CO3) and tetrakis(triphenylphosphine)palladium(0) [Pd(PPh3)4] in 

dry THF, resulting in Trux-FPy in 46% yield. The detailed syntheses 

procedure is described in section 3.5 and the syntheses pathway is shown 

in Scheme 3.1. 
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Scheme 3.1. Synthetic route for the Trux-FPy. (i) AcOH, HCI (ii) tBuOK, 
CH3(CH2)5Br, THF (iii) FeCl3, Br2, CHCl3 (iv) 3-fluoro-4-pyridine boronic 
acid pinacol ester, Na2CO3, Pd(PPh3)4, dry THF. 

3.3.2. Thermal, Optical, and Electrochemical 

Properties 

In this section, the main properties of Trux-FPy as an interlayer material 

will be discussed to understand whether they are good candidates for use 

in perovskite solar cells. 

The thermal behaviour of Trux-FPy is analysed by TGA and DSC  

measurements. All the recorded data are shown in Table 3.1. The 

decomposition temperature (Tdes) is determined around 404 °C for Trux-
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FPy which is slightly lower than the employed hole selective layer that is 

Spiro-OMeTAD (424 °C).218 High decomposition temperature is required 

for charge selective and/or interfaces layers when the photovoltaic 

device needs a high-temperature fabrication process. The TGA curve for 

Trux-FPy is shown in Figure 3.1a. 

 

Figure 3.1. The analysis of a) TGA and b) DSC for Trux-FPy. 

The chemical and physical changes of Trux-FPy under high temperature 

is determined by DSC. The melting and/or crystallisation peak is not 

observed during the first and second heating cycles. In the third heating 

cycle, the Tg value is determined for Trux-FPy around 150 °C as shown in 

Figure 3.1b. 

Table 3.1. Thermal properties of Trux-FPy.  

Small Molecule Tdes (°C) [a]
 Tg (°C) [b] 

Trux-FPy 404 150 

[a] Decomposition temperature determined from TGA (5 % weight loss). [b] Glass transition 

temperature determined from the third cycle of DSC. All experiments are carried out under N2 

atmosphere, scan rate of 10 °C/min. 
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The Trux-FPy showed reversible oxidation and reduction processes 

(Figure 3.2) in solution. The oxidation waves of Trux-FPy are determined 

at +1.20 V and +0.95 V vs Ag/Ag+ reference electrode in the oxidation 

process (Figure 3.2a). Likewise, the Trux-FPy showed reversible 

reduction waves at -1.92 V and -1.85 V versus Ag/Ag+ reference electrode 

(Figure 3.2b). We have estimated the energies for the HOMO and the 

LUMO energy levels using Fc/Fc+ as an internal reference electrode.164 

The results are -5.37 eV and -2.42 eV, respectively. All the relevant 

electrochemical parameters are listed in Table 3.2. 

Attending to the energy values given for the MAPI CB and VB of -5.43 eV 

and -3.90 eV219 the Trux-FPy has a very low energy offset (Eoffset) for the 

hole transfer, Eoffset=0.07 eV. Such Eoffset will suffice, as shown later, to 

allow carrier transport to the HSL, the Spiro-OMeTAD.  

Once the electrochemical characteristics of the Trux-FPy are measured, 

we turned onto the optical measurements. Figure 3.2c illustrates the 

UV-visible absorption spectra for the Trux-FPy in solution and in thin 

film.  
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Figure 3.2. a) The oxidation waves b) The reduction waves. Single scan 
cyclic voltammogram of Trux-FPy on glassy-carbon electrode in 0.1 M 
TBAPF6/ACN solution. Absorption (solid lines) and emission (dashed 
lines) spectra of Trux-FPy in CHCl3 and thin film.  

 

The Trux-FPy film does not show a noticeable new absorption band that 

may correspond to intermolecular interactions as shown in Figure 3.2c. 

Nonetheless, the main band in the UV region (λmax= 340 nm) is slightly 

red shifted, which indicates the formation of molecular aggregates. 

Notwithstanding the featureless UV-visible spectra, the fluorescence 

emission spectra, on the contrary, shows remarkable fine structure with 

a visible shoulder centred λem= 460 nm, which agrees with the presence 

of intermolecular interactions accounting for the existence of molecular 

aggregates. 
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Table 3.2. Optical and energetic properties of the Trux-FPy in solution. 

Small 
Molecule 

λabs. 

(nm) 

λem. 

(nm) 

λa.e. 

(nm) 

Eg
opt.  

(eV) 

1/2EOx 

(V) 

1/2ERed 

(V) 

HOMO 

(eV) 

LUMO 

(eV) 

Trux-FPy 335 395/415/ 

440 

365 3.40 1.20/ 

0.95 

1.92/ 

1.85 

-5.37 -2.42 

 

3.3.3. Photophysical and Photovoltaic Properties 

of Perovskite-Based Devices 

The deposition of Trux-FPy, using the spin-coating technique, on top of 

a MAPI perovskite thin film shows modest quenching of the fluorescence 

emission (Figure 3.3a), which indicates that due to the rather small Eoffset 

between MAPI and Trux-FPy the interfacial hole transfer process is not 

efficient. Importantly, when Trux-FPy is used as an interfacial layer 

between MAPI and the Spiro-OMeTAD, the quenching process 

approaches unit yield, which implies outstanding interfacial charge 

transfer between the MAPI film and the Spiro-OMeTAD through the 

interfacial layer of Trux-FPy. It is important to highlight that the 

interfacial layer of Trux-FPy between MAPI and the Spiro-OMeTAD has 

a thickness of 5 nm approximately, which is thin enough to allow charge 

transport through it. 
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Figure 3.3. a) Luminescence emission band upon excitation at λex=435 nm 
at room temperature for the MAPI/PMMA (total thickness of 450–500 
nm), the MAPI/Trux-FPy (thickness of Trux-FPy ≈5 nm) and MAPI/Trux-
FPy/Spiro-OMeTAD (total thickness of Trux-FPy/Spiro-OMeTAD= 150–
200 nm) b) Normalized luminescence emission decays (λex=470 nm) 
measured at room temperature for MAPI/PMMA, MAPI/Spiro-OMETAD, 
MAPI/Trux-FPy, and MAPI/Trux-FPy/Spiro-OMETAD on glass substrate. 

 

Also, we focus on the role of Trux-FPy in the passivation of the Lewis acid 

sites that act as traps for free carriers at the MAPI film surface, as we have 

previously hypothesised. Figure 3.3b shows the luminescence emission 

decays recorded at room temperature, using the time correlated single 

photon-counting technique, using the same films as in Figure 3.3a 

Moreover, we have also added the MAPI/Spiro-OMeTAD thin film for 

comparison purposes. The MAPI films are coated with PMMA with 

encapsulating purposes.220 

TRPL decays show two different decay profiles. The faster decay is being 

assigned to trap filling whereas the slower decay corresponds to the 

bimolecular recombination. TRPL decays are fitted to a biexponential 

decay as mentioned in Chapter 2.  The results of the fitting are shown in 

Table 3.3, obtaining a lifetime τ1=69 ns and τ1=53 ns for MAPI/PMMA 
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and MAPI/Trux-FPy samples, respectively. This kinetics, associated with 

trap filling, shows us the role of Trux-FPy, passivating traps on the 

perovskite surface, as it takes shorter times to be filled. It is also 

interesting the analysis of the lifetime τ2, which we already have assigned 

to bimolecular recombination in the perovskite. With values of 268 ns 

and 346 ns for MAPI/PMMA and MAPI/Trux-FPy respectively, it 

represents a direct evidence of the passivation effect of Trux-FPy layer, 

indeed. 

Table 3.3. Fitting values obtained from the de-convolution of the 
luminescence decays in Figure 3.3b. 

Films τ1   
(ns) 

τ2      
(ns) 

MAPI/PMMA 69 268 

MAPI/Spiro-OMETAD 5 21 

MAPI/Trux-FPy 53 346 

MAPI/Trux-FPy/Spiro-OMETAD 5 16 

 

The passivation of Lewis acid sites at the surface of the MAPI perovskite 

leads to an improvement of the carrier’s lifetime. This improvement is 

not seen, however, in the steady state luminescence emission 

represented in Figure 3.3a as an increase in the perovskite emission 

quantum yield due to the effective but not efficient interfacial charge 

transfer between the MAPI film and the Trux-FPy film. Moreover, in 

good agreement with Figure 3.3a, the luminescence decay for the sample 
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MAPI/Trux-FPy/spiro-OMeTAD shows efficient quenching and much 

faster decay kinetics.  

We moved one-step further and fabricated solar cells to proof if the 

passivation of the surface defects using the Trux-FPy interfacial layer 

results also beneficial in a complete device. 

 

Figure 3.4. J-V curves a) the MAPI/Spiro-OMeTAD b) the MAPI/Trux-
FPy/Spiro-OMeTAD solar cells when illuminated under sun simulated 1 
sun conditions (100 mW/cm2 1.5 AM G). 

Figure 3.4 illustrates the measured J-V curves for the best MAPI/Trux-

FPy/spiro-OMeTAD and the MAPI/spiro-OMeTAD used as a reference. 

At first glance, the use of Trux-FPy as interfacial layer, although achieved 

the passivation of the MAPI surface as shown in Figure 3.4a, does not 

improve noticeably the solar cell efficiency. A more detailed statistical 

study also supports this observation (Figure 3.5). 
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Figure 3.5. Device performance statistic for different sets of devices 
employing MAPI/Trux-FPy/Spiro-OMETAD and MAPI/Spiro-OMETAD 
sun simulated irradiated conditions at 1 sun a) VOC, b) JSC, c) FF, and d) 
PCE.  

We would like to highlight that even in the best case for the MAPI/Trux-

FPy/Spiro-OMeTAD solar cells there are minor differences between the 

forward and the reverse J-V curve. This difference accounts for the 

hysteresis process that has been largely discussed in Chapter 2 for hybrid 

lead halide perovskites. 

In this case the reference sample, measured under identical conditions, 

shows negligible hysteresis, which leads us to think that the observed 

differences are due to the presence of the Trux-FPy interlayer. A first 

hypothesis is that due to the low Eoffset between the MAPI film and the 

Trux-FPy film, the latter results in a practical barrier that hampers the 
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efficient transport of charges and will result in the accumulation of 

electronic holes and ionic species at the interface between the MAPI film 

and the Trux-FPy film. Hence, further studies, in complete devices under 

operando conditions, are carried out to analyse if the losses in efficiency 

are related to carrier losses due to interfacial recombination processes. 

Figure 3.6 illustrates the changes in open circuit voltage (VOC) and short-

circuit current upon illumination. 

 

Figure 3.6. Light Intensity vs a) VOC, and b) JSC. 

As can be seen in Figure 3.6, there is a substantial difference between 

the values for the MAPI/Trux-FPy/spiro-OMeTAD and the MAPI/spiro-

OMeTAD. Those values correspond to the fitting as shown in section 

2.3.11. 

In non-ionic solar cells, values close to unity (kT/q) indicate that the 

bimolecular recombination is the dominant process. However, for values 

higher than 1 (1.7–1.8 for the MAPI/Spiro-OMeTAD and 2.4 for 

MAPI/Trux-FPy/Spiro-OMeTAD) it indicates that there are other 

parallel processes that occur during illumination. One of these is the 
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reorganisation of ions at the perovskite solar cell, which has been 

demonstrated to play a role in the final VOC of the solar cell.120,221 

The major dependence of VOC on irradiance and the higher slope value 

for MAPI/Trux-FPy/Spiro-OMeTAD based perovskite solar cells implies 

that these processes have a greater impact when the Trux-FPy layer is 

present, which agrees with the greater hysteresis observed in Figure 3.4. 

Moreover, the analysis of the slope of the JSC versus light illumination 

intensity gives similar values close to unity, which implies that carrier 

recombination at short circuit is negligible. The J-V curves measured to 

obtain these values at different light intensities are shown in Figures 3.7. 

 

Figure 3.7. J-V curves of a) Trux-FPy/Spiro-OMeTAD forward, b) Trux-
FPy/Spiro-OMeTAD reverse, c) Spiro-OMeTAD forward and d) Spiro-
OMeTAD reverse based devices at different light intensities. From these J-
V curves, it is derived the values for JSC and VOC dependence with the light 
intensity. 
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We decided to focus more in depth on the Lewis base properties of the 

Trux-FPy and carried out a titration experiment using PbI2 and the Trux-

FPy molecule in solution. As can be seen in Figure 3.8a, upon addition 

of increasing amounts of Trux-FPy an isosbestic point appears at λ=350 

nm, which is indicative of a supramolecular interaction between the 

Trux-FPy and the Pb2+ ions. Moreover, the new supramolecular complex 

has a maximum absorption band at 325 nm, which is 10 nm blue shifted 

with respect to the Trux-FPy main absorption band in the UV. Figure 

3.8b shows the electrostatic potential (ESP) surface calculated at DFT 

level for a methyl derivative of Trux-FPy. 

 

Figure 3.8. a) UV-visible spectra of the titration experiment using 3 mL of 
a 0.1 mM solution of PbI2 in dimethylformamide in a quartz cuvette and 
increasing concentration of Trux-FPy from a stock solution of 0.05 mM in 
chloroform. b) Electrostatic potential surface of a methylated model of the 
Trux-FPy molecule. 

The molecule shows a planar π-conjugated core where the largest 

negative charges are localised on the pyridinic N atoms (density in red) 

and the F atoms (density in yellow). Hence, those N atoms are expected 

to coordinate the Pb2+ uncoordinated atoms at the perovskite surface 
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through Lewis acid-Lewis base supramolecular interactions, which is in 

good agreement with the experiment shown in Figure 3.8a. 

3.3.4. Charge storage and recombination using 

optoelectronic transient techniques 

We have discussed that techniques such as PI-CE and PI-TPV, developed 

to study DSSC and OSC (organic solar cells), can be particularly useful to 

understand carrier recombination and ion migration in perovskite solar 

cells in Chapter 2. In this work, we do have used PI-CE and PI-TPV to 

measure the above-mentioned solar cell properties. Figure 3.9 shows the 

PI-CE and PI-TPV decays obtained under 1 sun illumination conditions 

for two of the best solar cells fabricated in this work. 

As can be observed in Figure 3.9, the photo-induced carrier 

recombination at 1 sun measured using PI-TPV and the PI-CE decays are 

similar in both perovskite solar cells. Hence, we can conclude that the 

differences in the device performance are not due to the carrier 

recombination or the carrier extraction.  
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Figure 3.9. The decays at 1 sun for the PI-CE and the PI-TPV a) Spiro-
OMETAD, and b) Trux-FPy/Spiro-OMETAD. c) the normalized PI-TPV 
decays comparison for both solar cells. d) the normalized PI-CE decays 
comparison for both solar cells. 

To further confirm this experimental observation, we measured the 

interfacial carrier recombination kinetics at different charge obtained at 

different light bias (different VOC because of different light irradiation 

intensities) in Figure 3.10. In Figure 3.11, we show the dependence of 

carrier lifetime at different light bias and the carrier density at different 

light bias. 
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Figure 3.10. Carrier lifetime vs charge obtained for different light bias for 
MAPI/Trux-FPy/Spiro-OMeTAD (green) and MAPI/Spiro-OMeTAD 
(blue). 

As illustrated in Figure 3.10, for charge values corresponding to light 

irradiation intensity close to 1 sun the carrier lifetime is alike and, 

moreover, the slope of the curves is also close in units, which implies that 

the interfacial carrier recombination order is very much close. Thus, our 

first hypothesis that the possible accumulation of ions is responsible for 

the observed hysteresis is not accurate. Nonetheless, considering the 

spectroscopic data, it results evident that the Trux-FPy do passivate the 

defects in the perovskite thin film. 
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Figure 3.11. a) The Carrier lifetime as a function of the photovoltage 
generated in the devices. b) Carrier density obtained at different 
photovoltage using the PI-CE technique. 
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3.4. Conclusions  

We have designed and synthesised an organic semiconducting molecule 

with truxene core. The molecule, Trux-FPy, is intended to contain 

peripheral moieties that can work as Lewis bases to passivate surface 

defects in lead halide perovskite originated by the non-coordinated lead. 

Those surface defects act as traps for carriers and increase the carrier 

recombination, which, in overall, limits the solar cell efficiency. The 

Trux-FPy is fully electrochemically and optically characterised, and it is 

found that, upon deposition on top of the MAPI thin film, the Trux-FPy 

thin film decreases the number of defects at the MAPI surface increasing 

its luminescence lifetime. Moreover, the Trux-FPy thin film is capable of 

carrying out interfacial charge transfer processes with the MAPI thin film 

upon illumination, which leads us to incorporate the Trux-FPy as 

interfacial layer.  

Once incorporated as an interfacial layer between the MAPI film and the 

HTM spiro-OMeTAD film, the best solar cells matched the efficiency of 

those standards prepared using only Spiro-OMeTAD. Nonetheless, the 

presence of hysteresis in the J-V curves for the Trux-FPy containing solar 

cells is noticed.  

An analysis in depth of the MAPI/Trux-FPy/spiro-OMeTAD solar cells 

using PI-CE and PI-TPV techniques determines that the interfacial 

carrier recombination processes in these devices are not affected by the 

presence of the Trux-FPy interfacial layer. Nevertheless, the Trux-FPy 

interfacial layer does have supramolecular interactions with the 
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uncoordinated lead ions. Our results show the potential of surface 

supramolecular interactions between the perovskite semiconductor and 

intermediate layers to decrease the uncoordinated site defects, which are 

the cause negative effects in the perovskite solar cells performance. 
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3.5. Synthetic Methods and Procedures  

10,15-Dihydro-5H-diindeno(1,2-a;1’,2’-

c)fluorene (1a) 

1-Indanone (0.5 g, 10.6 mmol) is dissolved in 

acetic acid (10.0 mL), and then concentrated 

hydrochloric acid (5.0 mL) is added. The 

solution is heated to 120 °C and refluxed 

overnight. The hot mixture is poured into saturated sodium carbonate 

aqueous solution (100.0 mL) with ice and stirred for 1 h. The yellow 

precipitate is filtered and washed with acetone (50.0 mL) and ethanol 

(50.0 mL) to give an off-white powder 1a. (0.8 g, 64 % isolated yield).  

1H NMR (500 MHz, CDCl3) δ (ppm) 7.97 (d, J=7.6 Hz, 3H), 7.71 (d, J=7.4 

Hz, 3H), 7.50 (t, J=6.8, 3H), 7.40 (t, J=7.4, 3H), 4.29 (s, 6H).  

13C NMR (101 MHz, CDCl3) δ (ppm) 143.8, 141.7, 137.1, 135.3, 126.9, 126.3, 

125.1, 121.9, 36.6. 

5,5,10,10,15,15-Hex(1-hexyl) 10,15-
Dihydro-5H-diindeno(1,2-a;1’,2’ 
c)fluorene (1b) 

To a suspension of 1a (0.5 g, 1.5 mmol) and 

tBuOK (5.7 g, 51.0 mmol) in dry THF (50.0 

mL) 1-bromohexane (3.2 mL, 22.5 mmol) is 

added at room temperature under argon 

atmosphere. The resulting suspension is heated at 70 °C and stirred 

overnight. The solid material in the reaction mixture is removed through 
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filtration and washed with hexane (100.0 mL). The filtrate part is 

concentrated down under reduced pressure and the resulting oil is 

dissolved in hexane (50.0 mL). The mixture is washed with 0.2 M HCl 

(25.0 mL) and saturated NaHCO3 (50.0 mL). The organic layer is dried 

over MgSO4 and concentrated in vacuo. Then, the residue is purified by 

silica column chromatography using hexane as eluent to afford the target 

compound 1b as off-white powder (0.85 g, 67% isolated yield).  

1H NMR (400 MHz, CDCl3) δ (ppm) 8.42 (d, J=7.5 Hz, 3H), 7.54–7.48 (m, 

3H), 7.46–7.35 (m, 6H), 3.19–2.89 (m, 6H), 2.27–1.98 (m, 6H), 1.09–0.78 

(m, 36H), 0.64 (t, J=7.1 Hz, 18H), 0.61–0.50 (m, 12H).  

13C NMR (101 MHz, CDCl3) δ (ppm) 153.6, 144.8, 140.3, 138.4, 126.3, 125.9, 

124.6, 122.1, 55.6, 37.0, 31.5, 29.5, 23.9, 22.3, 13.9. 

2,7,12-Tribromo-5,5,10,10,15,15-
hexahexyl-10,15-dihydro-5-H-
diindeno[1,2-a:1’,2’-c]fluorene (1) 

To a solution of compound 1b (0.83 g, 

0.98 mmol) in chloroform (8.0 mL) 

FeCl3 (2.0 mg, 0.012 mmol) is added as 

catalyst. A solution of bromine (0.2 mL, 

3.43 mmol) in chloroform (2.0 mL) is 

added dropwise under stirring at 0 °C. 

The mixture is allowed to warm to room temperature and stirred 

overnight. Then, a saturated Na2SO3 aqueous solution (20.0 mL) is added 

to remove excess bromine. The mixture is extracted with chloroform 

(3x50.0 mL), and the combined organic phases are dried over MgSO4. 
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After the solvent is removed, the yellow residue is recrystallised from 

ethanol to yield the compound 1 as an off-white powder (0.99 g, 93 % 

isolated yield).  

1H NMR (400 MHz, CDCl3) δ (ppm) 8.17 (d, J=8.5 Hz, 3H), 7.56 (d, J=2.0 

Hz, 3H), 7.51 (dd, J=8.4, 2.0 Hz, 3H), 2.93–2.72 (m, 6H), 2.10–1.92 (m, 6H), 

0.99–0.77 (m, 36H), 0.62 (t, J=7.1 Hz, 18H), 0.51–0.36 (m, 12H).  

13C NMR (101 MHz, CDCl3) δ (ppm) 155.9, 144.9, 138.9, 137.6, 129.4, 125.9, 

125.5, 121.0, 56.0, 36.8, 31.4, 29.4, 23.9, 22.2, 13.9. 

4,4’,4’’-(5,5,10,10,15,15-Hexahexyl-10,15-

dihydro-5H-diindeno [1,2-a:1’,2’-

c]fluorene-2,7,12-triyl)tris(3-

fluoropyridine) (Trux-FPy) 

In a 50 mL two-neck round bottom flask 1 

(0.25 g, 0.23 mmol), 3- fluoro-4-pyridine 

boronic acid pinacol ester (0.30 g, 1.38 

mmol) is added and the system is purged 

with argon for 30 minutes. Then, freshly dried THF (15.0 mL) and Na2CO3 

solution (2 M, 2.0 mL) are added to the medium. Finally, Pd(PPh3)4 

(20.0%, 53.0 mg) is added as catalyst and the reaction temperature is set 

to 80 °C and stirred overnight. After the solvent is removed in vacuo, 

chloroform (50.0 mL) is added to the crude product and the mixture is 

washed with brine (2×50.0 mL) and water (2×50.0 mL) until a clear 

solution is obtained. The organic layer is dried over anhydrous MgSO4, 

filtered and concentrated in vacuo. Finally, the residue is purified by 
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silica column chromatography using Hexane: Ethyl acetate (2:1) as 

elution solvents. Precipitation from methanol yielded Trux-FPy as off-

white powder (0.12 g, 46% isolated yield).  

1H NMR (400 MHz, CDCl3) δ (ppm) 8.61 (d, J=2.6 Hz, 3H), 8.54 (dd, J=4.9, 

0.8 Hz, 3H), 8.49 (d, J=8.3 Hz, 3H), 7.76 (d, J= 1.7 Hz, 3H), 7.72 (d, J=8.2 

Hz, 3H), 7.58 (dd, J=6.8, 5.0 Hz, 3H), 3.06–2.93 (m, 6H), 2.25–2.11 (m, 6H), 

1.02–0.80 (m, 36H), 0.68–0.51 (m, 30H).  

13C NMR (101 MHz, CDCl3) δ (ppm) 154.1, 146.4, 146.0, 141.2, 139.3, 139.0, 

137.9, 136.2, 131.0, 127.0, 124.9, 124.1, 122.7, 56.0, 37.0, 31.4, 29.4, 24.0, 22.2, 

13.8.  

Calcd. for C78H96F3N3
+, (M+): 1131.7551; found: 1131.7544 (0.6 ppm).  

Anal. Calcd. for C78H96F3N3: C, 82.71; H, 8.54; N, 3.71. Found: C, 82.62; H, 

9.00; N, 3.65. 
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Phthalocyanine as a Hole 

Transporting Material in 

Perovskite Solar Cells 

 

 

This chapter is based on the published work: Aktas, E. et al. Self-

assembled Zn Phthalocyanine as a robust p-type selective contact in 

Hybrid Lead Halide Perovskite Solar Cells. Nanoscale Horizons 2020,5, 

1415-1419.222  
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4.1. Abstract  

The use of self-assembled monolayers as selective charge extracting 

layers in perovskite solar cells is a great approach to replace the 

commonly used charge selective contacts, as they can easily modify the 

interface to enhance the final solar cell performance. Here, we report a 

novel synthetic approach of the commonly known zinc phthalocyanine 

(ZnPc) molecule TT1, widely employed in DSSCs and previously used in 

perovskite solar cells. TT1 is used as a p-type selective contact, and it 

demonstrates its ability to form SAM on top of the ITO transparent 

electrode, obtaining higher efficiencies compared to PEDOT:PSS based 

perovskite solar cells.  

4.2. Introduction  

In this work, we employ zinc phthalocyanine with carboxylic acid TT1 as 

p-type selective contact deposited as a SAM in inverted perovskite solar 

cells. TT1 is a well-known phthalocyanine, widely used in DSSC and that 

has demonstrated its facility to attach to metallic oxides,223 such as ITO. 

Additionally, it has also been employed in perovskite solar cells as a thin 

film on top of the mixed-ion perovskite layer. Zhang and co-workers 

reported that the optimised concentration of TT1 and chemical dopant 

showed reproducible efficiency of up to 13.7%.224 Here, using a novel 

synthetic route, we use for the first time TT1 as a p-type contact using 

the SAM approach. TT1 already provides tri-tert-butyl groups at the 

periphery of the moieties, which prevents the formation of molecular 

aggregates. We obtain efficient perovskite solar cells, and we investigate 
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the origin of such differences, which accounts for differences in 

energetics rather than recombination kinetics. 

4.3. Results and Discussions  

4.3.1. Design and Synthesis  

In this study, we developed the first direct transformation of hydroxyl 

methyl phthalocyanine into its corresponding carboxyl derivative (TT1) 

catalysed by ZnO in high yield (Scheme 4.1). The dehydrogenation of 

hydroxy methyl phthalocyanine is performed in zinc oxide (ZnO) and 

potassium hydroxide (KOH) solution in mesitylene to yield TT1 in 96% 

yield and hydrogen gas as the only by-product. The final compound (TT1) 

is fully characterised by 1H NMR, LC/Mass, and MALDI-TOF-MS.  

 

 

Scheme 4.1. Synthetic pathway of TT1 
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The catalytically active species in the solution is believed to be the 

corresponding zinc alkoxide from the reaction of alcohol with ZnO and 

KOH. Degradation of alkoxide resulted in Zinc hydride and the 

corresponding aldehyde. The aldehyde can transfer to the carboxylate 

and the starting alcohol by either a Cannizzaro reaction or a Tishchenko 

reaction in the presence of KOH.225 

 

Figure 4.1. Reaction mechanism of TT1 

 

4.3.2. Optical and Electrochemical Properties  

Figure 4.2 illustrates the energy levels of the different materials used in 

the device and compares the differences between the p-type selective 

contacts. All energy values have been previously reported in the scientific 

literature.223 
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Figure 4.2. Energy level diagram of the different materials used in the 
fabrication of the MAPI. 

At first sight, the deeper HOMO energy value for TT1 would be 

responsible for the gain in VOC registered in the solar cells. Thus, the 

differences in VOC could be explained by the differences in energetics 

between the PEDOT:PSS and the TT1 molecule in section 4.3.4. The 

optical absorption spectra of TT1 in IPA and thin film are exhibited in 

Figure 4.3. To demonstrate the existence of TT1 after dip-coating 

deposition on top of the ITO surface, we recorded the optical absorption 

spectra of bare ITO and TT1 deposited ITO. We have observed the 

characteristic absorption peak of TT1 at 620 nm and 700 nm. The 

existence of SAMs is generally proven by UPS measurements (for details 

see section 2.3.6), unfortunately, we could not access this equipment 

during this thesis. UV-vis is more easily accessible and gives information 

about the metal surface in short time.  
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Figure 4.3. Left, UV-visible spectrum of TT1 in IPA (TT1=0.01 mM) and 
deposited in a cover slide glass as thin film (film thickness of ~30 nm). 
Right, UV-vis absorbance (a) and difference (b) spectra of ITO and 
ITO/TT1 as thin film (TT1 is deposited as a self-assembled monolayer on 
ITO). 

After proving the existence of the TT1 on the ITO surface, we investigated 

the wettability of the ITO surface after dip-coating deposition TT1. We 

used applicatory contact angle measurement for determining the TT1-

covered surface wettability which is applied with water (see for details 

section 2.3.4). The water contact angle of TT1 on ITO is 76 ° that ensures 

a miscible interface for the MAPI perovskite two-step solution process. 

In other words, TT1 provides a hydrophilic surface that means the droplet 

will spread out at all  and the perovskite layer will be pinhole-free.60  
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Figure 4.4. Contact angle measurements on the (a) bare ITO surface, (b) 
ITO/TT1 surface.  

To examine the effect of the hole selective layer's wettability on 

perovskite films, perovskite layers grown on HSLs, and bare ITO are 

characterised by SEM and AFM.  As can be seen in Figure 4.5 and Figure 

4.7, a closer look to the hybrid lead halide perovskite thin film grown 

onto the TT1 SAM or the PEDOT:PSS polymer layer did not show any 

relevant difference, resulting in high quality perovskite films.  

Figure 4.6 shows the cross-sectional full device, where the perovskite 

thin films are uniform with a thickness of approximately 350 nm. 

Additionally, it is possible to identify the PEDOT:PSS layer and its 

thickness of around 35 nm.  
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Figure 4.5. Top view ESEM pictures of (a) ITO/MAPI, (b) 

ITO/PEDOT:PSS/MAPI and (c) ITO/TT1/MAPI. 
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Figure 4.6. Cross-section ESEM pictures of different architectures 
employed in this study with (a) ITO/MAPI/C60/Ag, (b) 
ITO/PEDOT:PSS/MAPI/C60/Ag and (c) ITO/TT1/MAPI/C60/Ag. 
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Figure 4.7. Topographical atomic force microscopy (AFM) pictures of (a) 
TT1/ITO, (b) PEDOT:PSS/ITO, (c) MAPI/ITO, (d) MAPI/PEDOT:PSS/ITO 
and (e) MAPI/TT1/ITO electrodes. The scale bar is 1 μm. 

4.3.3. Photovoltaic Properties of Perovskite-Based 

Devices  

The state-of-the-art device structure with ITO/HTMs/MAPI/C60/Ag 

sandwich architecture is used in this study.61 PEDOT:PSS is deposited on 

top of the UV-O3 treated ITO substrates using spin-coating deposition 

method and after the annealing process is applied to these layers at 130 

°C for 30 min. to get rid of residual solvent (see for details section 2.5.2). 

TT1 is easily soluble in nonhalogenated solvents, and the substrates are 

dipped in the 0.3 mM TT1 solution in IPA for 4 h at room temperature. 

After that, the TT1 deposited substrates are rinsed with IPA (100 μl) by 

spin-coater (see for details section 2.4.2). Then, the perovskite (MAPI or 
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CsFAMA) layer is placed on top of the HTMs (see for details section 

2.5.3), and the substrates are annealed at 100 °C for 10 min. By following 

perovskite layer deposition, C60 (30 nm) is thermally evaporated as an 

electron selective layer in order to passivate the grain boundaries and 

surfaces of perovskite films.56 Finally, to complete the devices, silver (100 

nm) is thermally evaporated under high vacuum (9x10-7 mbar). 

The photovoltaic performance of the devices is measured under AM 1.5 

G conditions, J-V curves are recorded by applying a forward and reverse 

bias with a scan rate of 40 mV/s. Figure 4.8 shows the J–V curves for 

perovskite solar cells made using PEDOT:PSS, an ionic polymer, used as 

our reference, and TT1 SAMs. As can be seen, both devices show 

negligible hysteresis and TT1 based solar cells show larger VOC. In fact, 

the measured voltage is substantially larger than the VOC measured for 

perovskite solar cells using a thin film of TT1 as the HTM.  
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Figure 4.8. J-V curves of the champion devices using TT1 (Blue) and 
Pedot:PSS (Cyan) as p-type selective contacts measured under 1 Sun 
conditions (100 mW/cm2, AM 1.5G) with a scan rate of 0.04 V/s. Both 
forward (forward, from 0 V to 1.2 V, dashed lines) and reverse (reverse, 
from 1.2 V to 0 V, solid lines) measurements are shown. 

 

Of utmost importance is the fact that, on average, TT1 based perovskite 

solar cells always show better device performance than PEDOT:PSS due 

to having higher VOC (Figure 4.9). The statistical distribution of the cell 

parameters is achieved from more than 20 devices (Table 4.1).  
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Figure 4.9. Statistical distribution of the photovoltaic parameters with 
different p-type materials, TT1 (blue) and PEDOT:PSS (cyan) @1 sun (100 
mW/cm2, AM 1.5 G) conditions with a scan rate of 0.04 V/s. 
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Table 4.1. Photovoltaic parameters with the standard deviation from the 
devices using PEDOT:PSS and TT1 as HTMs. 

HTMs Scan 

Direction 

 JSC  

(mA/cm2) 

VOC 

(V) 

FF 

(%) 

PCE 

(%) 

PEDOT:

PSS 

forward  17.17 

±1.5 

0.967 

±0.05 

69.9 

±1.0 

11.62 

±2.09 (13.71) 

reverse  17.04 

±1.7 

0.984 

±0.04 

72.6 

±0.8 

12.18 

±1.5 (13.68) 

TT1 forward  17.85 

±1.0 

1.045 

±0.01 

68.7 

±0.6 

12.89 

±1.96 (14.85) 

reverse  17.92 

±1.0 

1.049 

±0.01 

69.7 

±0.5 

13.11 

±1.0 (14.11) 

 

In this thesis, we also have employed triple cation perovskite (onwards 

labelled as CsFAMA) absorbers with TT1 in p-i-n type perovskite devices. 

CsFAMA is preferred as an absorber, owing to giving higher device 

performance.15 However, TT1 showed underperformance in comparison 

to MAPI due to having lower VOC while having better FF as shown in 

Figure 4.10. 
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Figure 4.10. J-V curves for the ITO/TT1/CsFAMA/C60/BCP/Ag solar cells 
when illuminated under sun simulated 1 sun conditions (100 mW/cm2, 1.5 
AM G). 

Charge selective layers play a vital role on power conversion efficiency 

and stability of the perovskite devices (see for details 1.1.1.5). After having 

sufficient power conversion efficiency from TT1 and PEDOT:PSS without 

dopant, to investigate the role of charge selective layer on short-term 

perovskite device stability, the maximum VOC and JSC point tracking to 

the best devices is performed for 2 min. We could not observe any 

significant decrease in VOC and JSC values of the completed device over 

time.  
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Figure 4.11. a) VOC and b) JSC stability of the best devices when illuminated 
under sun simulated 1 sun conditions (100 mW/cm2, 1.5 AM G) for 1 
minute. 

4.3.4. Charge storage and recombination using 

optoelectronic transient techniques  

We carried out transient optoelectronic techniques under operando 

conditions in order to study the origin of the differences observed in the 

VOC between both p-type contacts when used in complete devices. The 

use of transient optoelectronic techniques, such as photo-induced 

transient photovoltage (PI-TPV), photo-induced transient photocurrent 

(PI-TPC), or differential capacitance (DiffCap) has been demonstrated as 

a useful approach to study charge recombination and charge storage on 

operating devices. In this case, we will use these techniques to study what 

is the origin of the differences observed on the VOC, if they are related to 

changes in the energetics, or, if this is associated with different carrier 

kinetics25,198,226 The description of the techniques and data treatment can 

be found in section 2.6. 
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The DiffCap measurements agree with the differences in energy between 

the PEDOT:PSS film and the TT1 SAM with a shift of the exponential 

curves registered for different voltages close to the maxVOC corresponding 

to 1 sun irradiation. Two different regimes are observed in Figure 4.12. 

First, a constant part, related to the geometric capacitance in the device, 

related to the charges stored in the contacts and electrodes.201,202 The 

second regime, the exponential part, is related to the chemical 

capacitance. Once the contacts are depleted with charges, they start 

accumulating in the bulk of the perovskite.201 The difference between 

both exponential curves is ~100 mV, in good agreement with the 

experimental values recorded for the devices at 1 sun (TT1Voc = 1.05 V and 

PEDOT:PSSVoc = 0.98 V). In this case, the differences in the exponential tail 

are what we expected. The VOC will increment with the quasi-Fermi level 

splitting (QFLS) with the light bias until the contacts are depleted with 

charges, therefore we expect that the QFLS will be also correlated with 

the HOMO values of the p-type selective contacts. A higher QFLS is 

expected for TT1, which is confirmed by the differences observed in 

Figure 4.12. 
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Figure 4.12. (a) The DiffCap measurements after the subtraction of the 
solar cells Cgeo and (b) Total charge density (symbolised) at different VOC 
which includes carriers in the contacts and bulk. Charge density (solid) at 
different light bias without Cgeo represent only the experimental part of the 
fits: y=BeCx (chemical capacitance). 

 

Once the differences in the DiffCap measurements are registered we 

turned on the analysis of the carrier recombination dynamics in these 

devices. The TPV decays are registered under the same illumination 

conditions used for the DiffCap. Figure 4.13 illustrates the differences in 

carrier recombination kinetics for both types of solar cells studied in this 

work. The measured kinetics are fitted to Equation 2.24 in the section 

2.6. 
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Figure 4.13. Carrier lifetime at the different charge measured from the 
exponential part of the measurements shown in Figure 4.12. The solid 
lines correspond to the fittings to Equation 2.24. 

 

From the fitting to Equation 2.24, described in the section 2.6, we 

obtained a carrier recombination order δ of 1.90 and 1.94 for PEDOT:PSS 

and for the TT1 based devices, respectively. Although we found that 

PEDOT:PSS presents slower recombination dynamics compared to TT1, 

the δ values confirm our hypothesis; the differences in VOC observed 

between inverted MAPI solar cells, using fullerene as an n-type selective 

contact and PEDOT:PSS or TT1 SAMs as a p-type selective contact, are 

due to the difference in energetics and not due to different carrier 

recombination kinetics. 
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4.4. Conclusions 

We developed a highly efficient synthesis of benchmark phthalocyanine 

TT1, and we have demonstrated that TT1 SAMs can be used as efficient 

p-type selective contacts without annealing treatment in MAPI 

perovskite solar cells achieving efficiencies close to 15% at 1 sun under 

sun-simulated light (1.5 AM G spectra). The devices show voltages over 1 

V due to the correct alignment of the HOMO energy level with the MAPI 

perovskite VB. In contrast, PEDOT:PSS devices, used as a control, show 

lower VOC due to higher HOMO energy values. The measured device 

capacitance, as well as the evaluation of the carrier recombination order 

under operando conditions, supported the observation that the VOC 

differences are due to the differences in HOMO energy value and not 

due to faster or slower carrier recombination dynamics at the solar cells. 

These results shown herein open new avenues for the use of robust 

molecules such as phthalocyanines and porphyrins as efficient p-type 

SAM contacts in thin film solar cells. 
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4.5. Synthetic Method and Procedure 

Zinc oxide (0.4 mg, 0.005 mmol) and 

potassium hydroxide (2.8 mg, 0.05 

mmol) are placed in an oven-dried 

tube, which is placed in a Radley 

carousel. The tube is three times 

subjected to vacuum and then 

nitrogen gas. Vacuum is applied again, 

and the carousel heated to 170 °C for 1 

h. Then the tube is refilled with 

nitrogen gas. Anhydrous and degassed mesitylene (1 mL) is added by 

syringe and the mixture heated to reflux. Hydroxyl derivative 

phthalocyanine 1 (0.05 mmol, 40 mg) that previously is dissolved in 

degassed mesitylene (1 mL) is added dropwise by syringe, and the 

reaction is stirring under a flow of nitrogen for 24 h at 170 °C. The mixture 

is cooled down to room temperature and the mesitylene is evaporated 

under vacuum. The precipitate is acidified with (2 mL) 16% aqueous 

hydrochloric acid. The aqueous layer is extracted with ethyl acetate (3x5 

mL). The combined organic layers are dried over sodium sulfate and 

concentrated in vacuum to give the TT1 as a pure compound in 96 % 

yield (38 mg).  

1H NMR (400 MHz, DMSO) δ = 9.48- 9.28 (m, 8H), 8.33-8.25 (m, 4H), 

1.83 – 1.76 (brs, 27H) ppm.  

MALDI-TOF m/z calc. for C45H40N8O2Zn+(M+): 790.24; found: 789.60. 
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Carbazole Based Self-

Assembled Hole-Selective 

Monolayer for Ultra-Stable and 

Highly Efficient Perovskite 

Solar Cells 

 

This chapter is based on the published work: Aktas, E. et al. 

Understanding the perovskite/self-assembled selective contact interface 

for ultra-stable and highly efficient p–i–n perovskite solar cells. Energy 

& Environmental Science 2021227 
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5.1. Abstract  

The current perovskite solar cell efficiency is close to silicon PV record 

values. Yet, the roadblock for industrialization of this technology is its 

stability. The stability of the solar cell not only depends on the stability 

of the perovskite material itself, but also notably on its contact layers and 

their interface with the perovskite, which plays a paramount role. This 

study rationalizes the design of new molecules to form self-assembled 

monolayers as hole-selective contacts. The new molecules increased the 

stability of perovskite solar cells to maintain 80% of its initial PCE of 21% 

for 250 h at 85 °C under 1 sun. The excellent charge collection property 

as well as a perovskite passivation effect enable the highly stable and 

efficient devices demonstrating the vast potential of this new type of 

contacts in photovoltaic application. 

5.2. Introduction  

In a short 10 years learning curve, perovskite solar cell (PSCs) efficiency 

reached over 25% from an initial 3.8%. Yet, despite having extraordinary 

progress on the device’s efficiency, halide perovskite’s long-term stability 

is one of the main roadblocks towards its industrialization. To improve 

the device's stability, not only the intrinsic stability enhancement of 

halide perovskite is essential, but also the stability of the device contact 

layers plays a crucial role. Highly priced organic charge selective 

materials drive the research to look for new organic conjugated 

molecules like self-assembled monolayers (SAMs), which have been 

applied before in organic-based optoelectronic devices.228 Recently, 
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SAMs have been used as charge selective contacts for PSCs and the power 

conversion efficiency has rapidly achieved to 21% under standard 

measurement conditions.113 

In this study, we designed and synthesized two new carbazole based self-

assembled molecules for HSLs in p-i-n solar cells. We demonstrated 

stable efficiency above 21% delivering a solar cell open-circuit voltage 

(VOC) of 1.19 V for a perovskite bandgap of 1.63 eV using these two SAMs. 

Remarkably, solar cells retain 80% of its initial conversion efficiency after 

250 h maximum power point tracking under one sun AM 1.5 G 

illumination at 85 °C. These results are a new milestone for the 

development of a new class of hole selective materials in PSCs, which 

exhibits at the same time high efficiency and stability, which is 

paramount for the necessary transfer to industrial applications. 

5.3. Results and Discussions  

5.3.1. Design and Syntheses 

The synthesis of 3,6-bis(2,4-dimethoxyphenyl)-9H-carbazole is 

performed as our previously reported study.229 4-(3,6-bis(2,4-

dimethoxyphenyl)-9H-carbazol-9-yl)benzoate (EADR03-COOEt) and 4'-

(3,6-bis(2,4-dimethoxyphenyl)-9H-carbazol-9-yl)-[1,1'-biphenyl]-4-

carboxylate (EADR04-COOMe) are synthesized through palladium-

catalyzed Buchwald-Hartwig cross-coupling reaction using 

tris(dibenzylideneacetone)dipalladium(0) [Pd2(dba)3], tri-tert-

butylphosphine tetrafluoroborate [(tert-Bu)3P], sodium tert-butoxide 
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(tert-BuO-Na+). The pure compound of EADR03 and EADR04 are 

hydrolysed by potassium hydroxide in solvent mixture of 

methanol:tetrahydrofuran under reflux condition. The molecule 

structures of synthesized compound are confirmed by means of 1H and 

13C NMR, HR-MS and Elemental Analysis. Structures of the synthesized 

compounds are confirmed by means of 1H and 13C NMR spectroscopy. 

 

Scheme 5.1. Synthesis pathway of SAMs; a) 
Tris(dibenzylideneacetone)dipalladium(0) (0.10 equiv.), tri-tert-
butylphosphine tetrafluoroborate (0.20 equiv.), sodium tert-butoxide (1.1 
equiv.), dry Toluene (10.0 mL), Argon, 115 °C, 24 h b) potassium hydroxide 
(10 equiv.), solvent mixture of methanol: tetrahydrofuran (1:1, v:v), 85 °C, 
24 h. 
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Scheme 5.1. shows the synthesis pathway of the new SAMs, where 4-(3,6-

bis(2,4-dimethoxyphenyl)-9H-carbazol-9-yl)benzoic acid (EADR03) and 

4'-(3,6-bis(2,4-dimethoxyphenyl)-9H-carbazol-9-yl)-[1,1'-biphenyl]-4-

carboxylic acid (EADR04) have a carbazole moiety as electron donor 

unit.230 On the one hand, such a carbazole chemical group has electron-

rich block properties, which leads to increase PCE up to 18% in PSCs.231–

233 Subsequent electron-rich groups are mainly added as substituents in 

the carbazole moiety to align the energy levels with the perovskite 

material and increase its solubility in common organic solvents. On the 

other hand, the substituted position for the photo-active conjugated 

phenyl benzene plays a critical role in the electron-donating effect. For 

instance, if the methoxy groups are only located at the meta-position, it 

will have an electron-withdrawing effect.234 Nevertheless, if it is only 

positioned at the ortho-position, it will twist the phenyl ring out of the 

plane, causing the undesired steric effect.235 For these reasons, the 1,3-

dimethoxybenzene is chosen as a substituent for carbazole moiety. The 

synthetic details are given in the synthetic methods and procedures part 

of this chapter. 

5.3.2. Thermal, Optical, Electrochemical, And 

Photophysical Properties of SAMs and 

Perovskite Layer  

The thermal behaviour of EADR03 and EADR04 is analysed by DSC and 

TGA (Figure 5.1 and Table 5.1). The TGA showed remarkably high 

thermal stability with decomposition temperature (Tdes) (5% weight loss) 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



 Carbazole Based Self-Assembled Hole-Selective Monolayer for 
Ultra-Stable and Highly Efficient Perovskite Solar Cells 

160 
 

for EADR04 (354 °C) than EADR03 (180 °C). Likewise, DSC confirmed 

that the glass transition temperature (Tg) during the first cycle for 

EADR03 and the second cycle for EAD04 is 173 °C and 354 °C, 

respectively. Both of SAMs might exist in both amorphous and semi-

crystalline state that consisted uniform films of them while annealing 

perovskite layer. In the following section, the effect of thermal 

behaviours of SAMs on the stability of completed device will be 

discussed.  

 

Figure 5.1. a) TGA analysis of EADR03 and EADR04. DSC analysis of b) 
EADR03, and c) EADR04. 
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Table 5.1.  Thermal properties of EADR03 and EADR04. 

HTMs Tdes (°C) [a]
 Tg (°C) [b] 

EADR03 180 173 

EADR04 354 354 

[a] Decomposition temperature determined from TGA (5 % weight loss). [b] Glass transition 
temperature determined from the first and second cycle of DSC. All experiments are carried out 
under N2 atmosphere, scan rate of 10 °C/min. 

We examined the atomic bonds of SAMs onto the metal oxide surface 

using XPS. The spectra are analysed as described in the appendix (Table 

A.1). The C1s spectra, are decomposed into 4 peaks assigned to C-C or C-

H at 284.6 eV (284.7 eV), to C-O at 286.0 eV (285.9 eV), COOCH bonds 

at 287.0 eV (287.0 eV), and to O-C=O bonds at 288.5 eV (289.1 eV) for 

EADR03 (EADR04) (Figure 5.2a and c respectively).236,237 The [C-O] / [C-

C + C-O] area ratios amount to 25% for EADR03 and 30% for EADR04. 

From the structure formulae, one would expect 15% for EADR03 and 12% 

for EADR04 ignoring attenuation due to inelastic electron scattering. 

The evident excess in C-O bonds is likely caused by solvent residues. It 

is worth noting that the bare ITO surface also exhibits C1s peaks situated 

at 284.9 eV, 285.8 eV, 287.0 eV, and 289.1 eV (Figure A.60a). These 

carbon contributions are presumably largely residues from the cleaning 

procedure. The O1s region, Figure 5.2d and f exhibit peaks belonging to 

In-O at 530.1 eV, to surface hydroxides at 530.9 eV (530.8 eV), to C=O at 

532.8 eV (532.8 eV) and to C-O at 533.1 eV (533.2 eV) for EADR03 

(EADR04) in the O1s spectra.238,239 The bare ITO substrate also showed 

four components: 530.3 eV (InSnO), 530.8 eV, 531.8 eV, and 532.9 eV (see 
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Figure A.60b), where the carbon compounds are again presumably 

cleaning residues. 

 

Figure 5.2. The XPS high-resolution survey spectra of a) C1s b) O1s for 
ITO/EADR03 and c) C1s, d) O1s for ITO/EADR04. 

The formation of ester bonds demonstrates bonding between the carbon 

atom of carboxylic acid and the oxygen atom of the hydroxyl group on 

ITO or to solvent residues.240 Moreover, we observe a much weaker 

signal of this characteristic ester bond in C1s and O1s spectra of a bare 

ITO in these regions, which further points to the presence of SAMs on 

ITO (Figure A.61). The N1s spectra show the same peak position of ca. 

400 eV for both SAMs, indicating the presence of the C-N bond in the 

structure (Figure A.61c). These are a strong hint to the presence of SAMs 

on the ITO substrate. 
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To prove the suitable energetic properties as hole selective material for 

PSCs, we performed UPS on SAM layer attached to ITO substrate similar 

to what is used in the device. Here, ITO coated glasses are homogenously 

covered with SAMs by dipping method. The condensation reaction 

occurs between the carboxylic acid (-COOH) anchor group of SAMs and 

the surface hydroxyl group (-OH) of metal oxide to give ester (O-C=O) 

type linkages,91,241 which result in the formation of a monolayer of SAM 

on the ITO. The optical bandgap of SAMs is estimated from the 

absorption edge wavelength (λa.e.) using UV-vis measurement242 (Figure 

5.3 and Table 5.2). From UPS measurement and optical bandgap we 

calculate the position of the SAM’ LUMO. The valence band onset and 

the EF value EADR03 and EADR04 are schematically displayed in Figure 

5.7. In this study, we employed the triple cation perovskite 

(Cs0.05FA0.79MA0.16Pb(I0.84Br0.16)3 onwards labelled as CsFAMA) as the 

absorber layer adapted from Saliba et al.243 The energetic properties of 

PTAA, used as a reference, and CsFAMA are obtained from the literature 

and all values reference to the vacuum level.244 SAMs exhibits better 

electron blocking character than PTAA due to the carbazole unit in small 

molecule backbone that increases the LUMO level while works as 

efficient hole extraction layers. 
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Figure 5.3. Absorption (solid lines) and emission (dashed lines) spectra of 
EADR03 and EADR04. 

Table 5.2. Optical and energetic properties of small molecules. 

 

 

 

 

 

 

 

SAMs λabs.   

(nm) 

λem. 

(nm) 

λa.e. 

(nm) 

Eg
opt. 

(eV) 

LUMO 

(eV) 

EADR03 300/345 425 378 3.28 1.77 

EADR04 290/335 430 374 3.31 1.74 
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Additionally, we designed the SAM molecules with 1,3-

dimethoxybenzene moiety acting as a terminal group that provides a 

miscible interface for the perovskite one-step solution process. A 

miscible interface ensures a homogenous and compact perovskite film.245 

To determine the surface wettability, contact angle measurements are 

performed on bare ITO and p-type materials deposited on ITO. The 

contacting angles of the water on bare ITO, PTAA, EADR03 and EADR04 

are 8.13˚, 88.15, 50.19˚ and 51.63, respectively (Figure 5.4). PTAA layer 

shows a higher hydrophobicity than the SAMs in agreement with the 

previous report,246 leading to a poor wetting for perovskite solution on 

PTAA.  

 

 

Figure 5.4. Contact angle measurements on the bare ITO, ITO/PTAA, 
ITO/EADR03 and ITO/EADR04 surfaces.   
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We note that in the XRD patterns (Figure 5.5), though there is no 

detectable peak shift or peak broadening in the perovskite phase, 

however, there is a noticeable more pronounced PbI2 phase in the 

perovskite on PTAA than on SAMs. This higher PbI2 content is also 

visible in the SEM images as bright small grain on the surface (Figure 

5.6). Although it has been reported that excess PbI2 in the perovskite can 

improve the device performance, a recent report has shown that higher 

PbI2 consisted perovskite can lead to lower stability in devices due to the 

formation of metallic Pb, which can be the origin of non-radiative 

recombination centers,247 which will be discussed in details in the 

following section.  

 

Figure 5.5. X-ray diffraction patterns of perovskite layers grown on bare 
ITO, ITO/PTAA, ITO/EADR03 and ITO/ EADR04. The patterns are well in 
agreement with literature containing similar perovskite compounds. 
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Figure 5.6. Scanning electron microscopic images of cross-sectional full 
device of a) PTAA, b) EADR03 and c) EADR04 employed planar PiN 
perovskite solar cells; and top view of perovskite layers grown on d) 
ITO/PTAA, e) ITO/EADR03 and f) ITO/EADR04. All scale bars are 800 
nm. 
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5.3.3. Spectroscopy, Photovoltaic Properties and 

Device Stability Investigation of Perovskite-

Based Devices  

 

Figure 5.7. Energy alignment of different layers. The band edge positions 
of SAMs, PTAA and CsFAMA layer’s from UPS measurements in the 
schematic representation. Note that the SAM layer’s values (EADR03 and 
EADR04) are measured with UPS (Figure A.66 showed UPS spectra) (see 
for details section 2.3). Before UPS measurement, the ITO substrate is 
treated with UV-Ozone to ensure similarity with used substrates in 
devices. 

 

To understand the charge transfer property of these new SAMs as HSLs 

for PSCs, we performed TRPL using λ=470nm as excitation wavelength 

as shown in Figure 5.8. The traces exhibit two different decay profiles 

fitted to a bi-exponential function as previously reported.213,248,249 SAM-

based perovskite films show initial fast decay that can be assigned to trap 
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filling, while the slower decay most likely corresponds to the bimolecular 

recombination. The lifetimes τ1 of EADR03, EADR04, PTAA and the 

perovskite are 15 ns, 9 ns, 2 ns and 7 ns, respectively, and the lifetimes τ2 

calculated are 158 ns, 106 ns, 12 ns and 83 ns for EADR03, EADR04, PTAA 

and the perovskite, respectively (Table 5.3). Interestingly, in Figure 

5.8b, the luminescence decay of perovskite layers on SAMs shows 

efficient quenching that supports their efficient hole transporting 

character compared to PTAA. Not only that we have evidence of a faster 

charge extraction using SAM compared to PTAA, but the increased PL 

yield can also indicate interfacial passivation effect250 compared to PTAA 

sample shown in Figure 5.8c similar to reported carbazole based 

polymer.251 
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Figure 5.8. Luminescence emission decays (λex=470 nm) measured for a) 
2000 ns and b) 250 ns for CsFAMA/PMMA, the PTAA/CsFAMA/PMMA, 
EADR03/CsFAMA and EADR04/CsFAMA/PMMA on ITO coated glass 
substrate at room temperature. c)Luminescence emission band upon 
excitation at λex=470 nm for the CsFAMA/PMMA, the 
PTAA/CsFAMA/PMMA, EADR03/CsFAMA and 
EADR04/CsFAMA/PMMA (total thickness of 550-600 nm) at room 
temperature. 
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Table 5.3. Fitting values are obtained from the de-convolution of the 
luminescence decays in Figure 5.8b. 

Films τ1                        

(ns) 

τ2             

(ns) 

CsFAMA/PMMA 7 83 

PTAA/CsFAMA/PMMA 2 12 

EADR03/CsFAMA/PMMA 15 158 

EADR04/CsFAMA/PMMA 9 106 

 

We employed in this study the state-of-the-art device architecture with 

ITO/ SAM or PTAA/CsFAMA/C60/BCP/Cu sandwich architecture in 

Figure 2.18.252 Cesium-containing triple cation perovskite (CsFAMA) is 

deposited on top of the HSLs using the one-step method. Afterwards, 

C60, an electron selective layer, is thermally evaporated on top of the 

perovskite layer. The fullerene C60 has excellent electron-extraction 

properties in photovoltaic devices. Thus, it is preferred for the electron 

transport layer.253 Lastly, a BCP buffer layer and copper (Cu) electrode 

are evaporated to complete the device. SAMs are generally deposited on 

metal oxide surface as a monolayer through a variety of methods like 

solution assisted self-assembly (dip-coating), vapour deposition and 

spin-coating method.239 Here, we used the paradigmatic PTAA as our 

baseline to determine the performance of cells with SAMs. PTAA is not 

only widely used in p-i-n PSCs as polymeric HSL, which can be coated 

into a thin homogenous layer from solution and show higher than 18% 
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PCEs.24,254,255 Detailed fabrication process of perovskite solar cells is 

presented in the Chapter 2. 

The choice of solvent is the first step and critical step for SAMs to have a 

well-organised interface between SAMs and perovskite absorber. Here, 

the design of EADR03 and EADR04 consists of carboxylic acid moiety on 

the molecule backbone, which makes the molecules soluble in non-

halogenated solvents as EtOH and IPA. The devices with SAMs as HSLs 

show statistically better performance with IPA using the dipping method 

compared to ethanol (Figure 5.9 and Figure 5.10). The best PV 

parameters of solvent optimisation are summarised in Table 5.4. 

Consequently, we achieve more than 20% PCE with dipping method with 

EADR03 as the HSL, whereas spin coating method only has a maximum 

of 17% (Figure 5.11 and Figure 5.12). The best device parameters of 

EADR03 with different deposition methods are shown in Table 5.5. On 

the other hand, EADR04 is not suitable for spin-coating methods 

because of solubility problems.  
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Figure 5. 9. Device performance statistic total 30 devices from EADR03 in 
different solvents in the devices a) PCE, b) VOC, c) JSC, d) FF. 

 

We note that here the dipping method is preferable due to lower 

solubility of the molecules in alcohol. Nonetheless, the solubility is not 

the only deciding factor for device performance. The molecules have 

excellent solubility in toluene, yet the devices using this solvent exhibit 

unsatisfactory performance (Table 5.4). The reason behind the different 

behaviour is beyond the scope of this study and will require further 

research. 
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Figure 5.10. Device performance statistic over 10 devices per conditions 
from EADR04 in different solvents in the devices a) PCE, b) VOC, c) JSC, d) 
FF.  
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Table 5.4. Best photovoltaic parameters from EADR03 and EADR04 in 
different solvents. 

SAMs Solvents Scan 

Direction 

PCE 

(%) 

V
OC

 

(mV) 

JSC 

(mA/cm
2
) 

FF 

(%) 

EADR03 IPA forward 20.4 1127 22.6 80 

reverse 20.5 1132 22.6 80 

EADR03 EtOH forward 19.4 1130 21.7 79 

reverse 19.2 1132 21.7 78 

EADR03 Toluene forward 13.3 993 21.9 61 

reverse 13.9 1006 21.9 63 

EADR04 IPA forward 20.6 1140 22.6 80 

reverse 20.4 1143 22.6 79 

EADR04 EtOH forward 15.9 1038 20.7 74 

reverse 17.6 1083 21.1 77 

EADR04 Toluene forward 14.1 1025 22.2 62 

reverse 14.3 1037 22.2 62 
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Figure 5.11. Best J-V curves from EADR03 with different deposition 
methods. 
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Figure 5.12. Device performance statistic total 30 devices using different 
deposition methods of EADR03 in the devices a) PCE, b) VOC, c) JSC, d) FF. 
Forward and reverse scan value plotting together.  
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Table 5.5. Photovoltaic parameters from EADR03 with different 
deposition methods. 

SAM Deposition 
Method 

Solvents Scan 
Direction 

PCE 

(%) 

V
OC

 

(mV) 

JSC 

(mA/c

m
2
) 

FF 

(%) 

EADR03 Dip-coating IPA forward 20.4 1127 22.6 80 

reverse 20.5 1132 22.6 80 

EADR03 Spin-
Coating 

IPA forward 17.5 1084 21.5 75 

reverse 17.7 1096 21.5 75 

EADR03 Spin-
Coating 

EtOH forward 15.9 1041 21.2 72 

reverse 16.9 1074 21.2 74 

 

Figure 5.13 shows the J-V scans of the best devices with PTAA, EADR03 

and EADR04 measured at a scan rate of 100 mV/s from forward to reverse 

bias. MPP tracks of the best devices are placed in Figure 5.13b. MPP-

tracked efficiencies are comparable with the respective J-V values, which 

is expected from the negligible hysteresis. A statistical distribution of the 

cell parameters is achieved from more than 15 devices for each HSLs in 

Figure 5.13a showing systematically higher performance of SAM based 

cells compared to PTAA. The best PCE of EADR03 and EADR04 is 20.5% 

and 20.6% surpassing PTAA cells’ best value of 18.9%. Remarkably, the 

VOC values of SAM-based devices demonstrate more than 1.1 V and the 

FF values >80 %. The superior electron blocking of SAM compared to 

PTAA is attributed to the higher VOC and FF values of EADR03 and 

EADR04 compared to PTAA. Specifically, the voltage of SAM-based 
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devices is approximately 150 mV larger than that of PTAA. This device 

performance improvement is not directly correlated to the HOMO level 

of the material as PTAA has a deeper HOMO level compared to SAMs 

(Figure 5.7): instead, SAM as a material, which can have both efficient 

charge transport and passivation effect, results in this improvement. We 

emphasize that we achieve this desirable property of a contact layer 

without the use of dopants, which has been shown to degrade the 

perovskite layer.256 Our result resonates with the conclusion of Al-

Ashouri et al.244 on phosphonic anchor SAMs. These results establish the 

tremendous promising benefit of SAM as an attractive class of material 

for selective layers realized in both perovskite and organic PV.61,222,257 
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Figure 5.13. a) Device performance statistic with different hole selective 
layers. b) Best J-V curves from PTAA, EADR03 and EADR04 with quasi-
steady state efficiency. c) Corresponding external quantum efficiency 
curves which show integrated current density in agreement with values 
from J-V measurement. 
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In addition, the J-V scan of SAM-HSL based full device showed a lower 

leakage current in place of PTAA under dark conditions in Figure 5.15. 

Low dark current also indicates a high density of SAM on ITO. The 

integrated JSC of the best devices from EQE integration is shown in 

Figure 5.13c. A higher current density is also achieved thanks to less 

parasitic absorption of SAM compared to PTAA in the short wavelength 

range similar to phosphonic SAMs developed for the same device 

architecture.87 Integrated JSC values have a negligible difference (~1 

mA/cm2) with the JSC values gained from the J-V scans for the best device. 

The devices with the SAMs as HSLs show minor HI55,183 between reverse 

and forward J-V scans. All photovoltaic parameters of the best devices 

are provided in Table 5.6. 
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Figure 5.14. a) Device performance statistic total of 50 devices from PTAA, 
EADR03 and EADR04 with LiF. b) Best J-V curves from PTAA, EADR03 
and EADR04 with LiF and anti-reflection coating in the devices with quasi-
steady state efficiency. c) Corresponding external quantum efficiency 
curves which show integrated current density in agreement with values 
from J-V measurement with anti-reflection coating. 
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As we have demonstrated the good passivation effect of SAM on the 

interface between perovskite and the HSLs compared to the commonly 

used polymer PTAA, the other interface with electron selective layer is 

equally important. It has been reported that the interfacial 

recombination at perovskite/C60 dominates the losses in voltage of this 

device architecture and it can be improved by an ultrathin passivation 

layer of LiF (~1 nm).252 In this study, we used the same approached to 

enhance further the final VOC of the device, reaching 1.19 V with 1.63 eV 

bandgap perovskite with EADR03 based cells. Table 5.6 summarizes the 

champion devices in this study. As shown in Table 5.6, the improvement 

brought from LiF is higher in SAM-based devices compared to PTAA-

based ones (Figure 5.16). This can be attributed to slightly higher PbI2 

content on the surface of the perovskite grown on PTAA than SAM 

(shown as bright grain in SEM images – Figure 5.6). The presence of PbI2 

on the surface can partially reduce the interfacial recombination at 

perovskite/C60 because of its wide bandgap.258 With the improvement 

from LiF (the VOC increases for more than 50 mV) and an anti-reflection 

coating, the SAM-based device reached more than quasi-steady-state 

21% for the EADR03 cell and 20.7% for EADR04 after 2 minutes of MPP 

tracking (Figure 5.14b). 
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Figure 5.15. Dark J-V curves of the hole selective contacts. 
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Table 5.6. Photovoltaic parameters of the best performing devices based 
on different HSLs with and without LiF and anti-reflection coating with a 
scan speed of 100 mV/s. 

HSLs LiF ARC Integrated 
JSC  (mA/cm2) 

JSC 

(mA/cm
2
) 

VOC 

(mV) 
FF 

(%) 
PCE 
(%) 

HI 
(%) 

PTAA No No 21.2 21.9 1098 79 18.9 -0.01 

PTAA Yes No 21.0 21.4 1124 78 18.8 0.06 

PTAA Yes Yes 21.7 22.0 1105 78 18.9 0.00 

EADR03 No No 22.1 22.6 1132 80 20.5 0.00 

EADR03 Yes No 21.2 21.9 1186 79 20.5 0.03 

EADR03 Yes Yes 21.9 22.9 1156 80 21.2 0.00 

EADR04 No No 21.6 22.6 1140 80 20.6 -0.01 

EADR04 Yes No 21.0 22.2 1177 80 20.9 0.03 

EADR04 Yes Yes 21.8 22.6 1164 80 21.0 0.00 
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Figure 5.16. a) Best J-V curves from PTAA, EADR03 and EADR04 with LiF. 
b) Quasi-steady state efficiency of charge selective contacts with LiF 
employed perovskite solar cells. c) Corresponding external quantum 
efficiency curves which shows integrated current density in agreement 
with values from J-V measurement with LiF. 
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Figure 5.17. Device performance statistic total 25 devices from PTAA, 
EADR03 and EADR04 with LiF and antireflection coating in the devices a) 
PCE, b) VOC, c) JSC, d) FF. 

Perovskite-based PV has reached 25.5% certified PCE and surpassed the 

conventional PV thin-film technologies and approaching the state-of-

the-art silicon single-junction solar cell.12 However, to integrate into the 

PV industry, perovskite’s lack of stability is the main problem to tackle 

in the field.259 Here, we use a high through-put ageing setup, which can 

track hundreds of devices at once. We compared the stability of PTAA 

with EADR03 and EADR04 cells in the continuous MPP in one sun 

illumination. As can be seen in Figure 5.18a, the PTAA cells rapidly lost 

more than 15% of its initial PCE after 24 hours of MPP tracking. 

Meanwhile, the SAMs based devices exhibit excellent higher stability 
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(note that the curves are averaged from different devices and show 

statistical values rather than only best device). 

 

Figure 5.18. Long-term continuous maximum power point tracking a) 
EADR03, EADR04 and PTAA based devices with BCP at 25 degree Celsius. 
b) EADR04 with BCP at 85 degree Celsius. c) EADR03 and EADR04 based 
devices with UV filter (cut-off at 350 nm at 25 degree Celsius. Note that the 
values are averaged from different devices from different batches. All the 
measurements are done in an N2 atmosphere without encapsulation. d) 
Best J-V curves from PTAA and EADR03 with and without UV light 
exposition (365 nm) for 30 minutes, prior to perovskite layer fabrication. 

The EADR04 cells, though showing a fast drop in the first few hours, 

regain its initial efficiency and retain 95% of the initial efficiency after 

150 h of continuous MPP tracking before they have a declining trend. We 

extrapolate this trend and estimate the T80 (time until the cell reaches 

80% of its initial efficiency) to result in a more than 800 hours T80 for 
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EADR04 cells. Compared to EADR04 cells, the EADR03 cells gradually 

decrease until they reach 80% of initial PCE at around 180 h (as can also 

be seen in Table 5.7). This trend is more evident when the EADR04 cells 

are aged at an elevated temperature of 85 °C (Figure 5.18b) where the 

cells retain 80% of its initial efficiency for approximately 250 h 

continuous MPP tracking. This difference between the two SAMs can be 

attributed to the structure of the molecules. As can be seen in Figure 5.1, 

EADR04 has higher decomposition temperature compared to EADR03 

thanks to the extra phenyl in the linkage group (chain) between 

anchoring group and functional group. Note that the thermogravimetry 

indicates the decomposition temperatures (180 °C for EADR03 and 354 

°C for EADR04), which is indeed not the same temperature as the 

operational conditions. However, thermogravimetry can still indicate 

the resiliency of the molecules at high temperature and long-time 

operation conditions. Similar to our observation, Li et al. has reported 

that different conjugated side-chain polymers have higher thermal 

stability.260 
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Table 5.7. Estimated T80 of the p-i-n perovskite solar cell with different 
HSLs from the MPP traces with and without UV filter. 

HSLs Initial 
PCE      
(%) 

Ageing Temperature and 
Illumination 

Tracking 
Time   

(h) 

Estimated 
T80

                 
(h) 

PTAA 18.5 25 °C, metal-halide lamp, 100 
mW/cm2 

250 81 

EADR03 19.3 25 °C, metal-halide lamp, 100 
mW/cm2 

250 183 

EADR03 19.9 25 °C, metal-halide lamp with 
UV filter, 100 mW/cm2 

250 1574 

EADR04 17.9 25 °C, metal-halide lamp, 100 
mW/cm2 

250 872 

EADR04 19.9 25 °C, metal-halide lamp with 
UV filter, 100 mW/cm2 

250 2086 

EADR04 20.1 85 °C, metal-halide lamp, 100 
mW/cm2 

350 242 

PTAA* 16 25 °C, White LED, 100 mW/cm2 170 9,000 

*The selected report has similar device architecture in inert gas conditions and room temperature. 

 

We attribute this encouraging improvement in the stability of SAMs as 

HSLs compared to PTAA to the excellent stability of SAMs in UV light. 

Indeed, when we expose PTAA layers to the UV light for 30 minutes prior 

to perovskite deposition, the device exhibits lower JSC whereas UV light 

has negligible effect on EADR03 (as can be seen in Figure 5.18d and 

Table 5.8). This is more evidenced in the device statistic shown in Figure 

5.19 where PTAA cells loss on average more than 1 mA/cm2 after UV 

exposure. We emphasize that even without any UV light stress on the 
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perovskite absorber layer, the UV light has a detrimental effect on PTAA 

in contrast to the SAMs whose devices did not show this behaviour.  The 

UV-induced degradation in PTAA is very likely due to the breaking of 

carbon bonds in the aromatic rings into smaller fragments.261 In addition, 

polymers have been reported to undergo the photochemical pathway in 

which the polymer hydrocarbon chain can break down into free radicals 

in the presence of oxygen. This UV-photochemical can severely 

deteriorate polymeric material properties.262 This also indicates a 

potential degradation pathway of polymer HSLs in ambient air that is 

undesirable for PSCs application. Notably, a bulk of PTAA (~ 10 nm) and 

a single molecular layer (1-3 nm) might not be directly comparable in this 

study. The UV absorption of the SAM layer is negligible compared to the 

PTTA layer. We do expect that absorption of PTAA layer about 1 order of 

magnitude higher than SAM layer if we only consider the thicknesses of 

the two layers. 
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Figure 5.19. Device performance statistic total of 25 devices from PTAA 
and EADR03 with and without UV light exposition. 

Therefore, the defects that the UV absorption may create are more likely 

to impact the PTAA layer than the SAM layer. However, the PTAA layer 

thickness directly affects the FF and VOC parameters of PSCs which are 

discussed earlier by Stolterfoht and co-workers in 2017. They have 

demonstrated that diluted PTAA solution leads to having an incomplete 

coverage of ITO, decreasing the selectivity of the PTAA layer under the 

perovskite layer.24 We note that high stability of PTAA in n-i-p cells has 

been reported,263 nonetheless, in n-i-p structure, the UV photons are 

absorbed in the n-type and perovskite absorber layers before reaching 

PTAA. 
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In this work, we have significantly higher intensity in the range of 300-

500 nm with the used lamp for ageing measurements compared to global 

AM 1.5 spectrum (Figure 2.11a in Chapter 2). Hence, the measurement 

condition accelerates the UV-induced PTAA degradation, which can be 

the reason behind the lower stability of our PTAA p-i-n cells compared 

to reported values in the literature (Table 5.7). Moreover, this is also an 

accelerating ageing measurement for perovskite. The instability of 

perovskite under UV light has been widely reported,264,265 mostly because 

of the photochemical degradation of PbI2 into metallic lead Pb0 forming 

non-radiative recombination centers, reducing the cells’ efficiency.266 

We used a UV filter (cut-off at 350 nm) to improve the lifetime of the 

devices (Figure 5.18c). Although we still have a significantly higher 

intensity of the simulated spectrum in 350-500 nm region compared to 

global AM 1.5 (Figure 2.11b in Chapter 2), we do see a considerable 

enhancement of the cells’ lifetimes as can be seen in Table 5.7 (we note 

that the light intensity is lower than one sun illumination). The EADR04 

cells’ T80 reaches more than 2000 h. Therefore, the reported values in 

Table 5.7 are an underestimation of the cells’ potential in this study. 
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Table 5.8. Photovoltaic parameters of the best performing devices based 
on different HSLs with and without UV light exposition with a scan speed 
of 100 mV/s. 

HSLs UV light JSC  

(mA/cm
2
) 

VOC 

(mV) 
FF 

(%) 
PCE 
(%) 

HI (%) 

PTAA No 21.9 1128 74 18.3 0.02 

PTAA Yes 21.0 1119 76 17.8 0.03 

EADR03 No 21.7 1110 79 19.0 0.05 

EADR03 Yes 21.9 1100 79 19.0 0.04 

 

We acknowledge that at elevated temperatures, the metal electrode such 

as gold can interact with perovskite causing degradation.48 However, 

copper has been shown to be stable when used in combination with 

perovskite, and the degradation using copper is due to presence of 

moisture and oxygen and the potential oxidation products (e.g. Cu(OH)2 

or CuOX).152 Our study on device stability has been done on inert 

atmosphere to avoid this particular degradation pathway. 
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Figure 5.20. Long-term continuous maximum power point tracking a) 
EADR03 and EADR04 based devices with UV Filter and SnO2 at 25 °C. b) 
EADR04 based devices with BCP and SnO2 at 85 °C. Note that the values 
are averaged from different devices from different batches. All the 
measurements are done in an N2 atmosphere without encapsulation. 

Recent report by Zheng et al. showed that BCP can have low thermal 

stability due to its crystallisation at high temperature (>80 °C).267 Here, 

to test whether changing buffer layer to an inorganic material can avoid 

the further degradation, we used SnO2 instead of BCP. This enhanced the 

stability of the device at 25 °C, but not at higher temperature as can be 

seen in Figure 5.20 and Table 9. This excludes the degradation pathway 

due to thermal instability of BCP. 
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Table 5.9. Estimated T80 of the p-i-n perovskite solar cell with EADR03 and 
EADR04, BCP and SnO2 from the MPP traces with and without UV filter 
at different temperatures. 

SAMs UV 

Filter 

BCP SnO2 Initial 

PCE 

(%) 

Ageing 

Temperature 

and 

Illumination 

Tracking 

Time      

(h) 

Estimated 

T80              

(h) 

EADR03 Yes No Yes 18.9 25 °C, metal-

halide lamp, 

100 mW/cm2 

500 1383 

EADR04 Yes No Yes 19.4 25 °C, metal-

halide lamp, 

100 mW/cm2 

500 3582 

EADR04 No Yes No 20.1 85 °C, metal-

halide lamp, 

100 mW/cm2 

250 242 

EADR04 No No Yes 19.9 85 °C, metal-

halide lamp, 

100 mW/cm2 

225 106 
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5.4. Conclusions 

This study demonstrates the importance of the molecular design when 

using SAMs as selective contacts in perovskite solar cells. The SAMs have 

become the approach to achieve high solar-to-energy conversion 

efficiencies and, herein, we show that SAMs can lead to remarkable 

stable solar cells. In our study, we use both carbazole and methoxy 

moieties as electron donors for efficient charge selection, good electron 

blocking properties and surface passivation of the perovskite. Moreover, 

the 1,3-dimethoxybenzene terminal group of the molecule is compatible 

with perovskite formation resulting in a smooth and compact perovskite 

film. This design enables the perovskite cells reaching more than 21% 

stabilized efficiency and, most importantly, the monolayer-based devices 

exhibit superior stability compared to PTAA based cells, which are the 

current standard for perovskite solar cells approaching silicon PV values. 

We demonstrated that stabilizing the perovskite/SAMs interface is the 

way to commercialize perovskite solar cells. 
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5.5. Synthetic Methods and Procedures 

Ethyl 4-(3,6-bis(2,4-

dimethoxyphenyl)-9H-carbazol-9-

yl)benzoate (EADR03-COOEt) 

A mixture of ethyl 4-bromobenzoate 

(0.25 mg, 1.09 mmol), 3,6-bis(2,4-

dimethoxyphenyl)-9H-carbazole (0.53 

mg, 1.20 mmol), Pd2(dba)3 (0.10 mg 0.11 

mmol), tri-tert-butylphosphine 

tetrafluoroborate (0.063 mg, 0.22 mmol), sodium tert-butoxide (0.11 mg, 

1.2 mmol) are dissolved in 10.0 mL freshly dried toluene in a 25.0 mL two-

neck flask under argon atmosphere. The system is purged with argon for 

30 minutes. Then, the mixture is refluxed at 115 °C overnight. The 

reaction is gradually cooled to room temperature and the solution is 

concentrated under vacuum. A brine solution (200.0 mL) is added and 

the solution is extracted with ethyl acetate (EtOAc) (2x100.0 mL). The 

combined extracts are dried over anhydrous magnesium sulphate, 

filtered and concentrated under vacuum. The compound is purified by 

column chromatography (Hexane:EtOAc, 5:1, v:v) and obtained yellow 

liquid (430 mg, 68% yield).  

1H NMR (400 MHz, CDCl3) δ 8.30 (ppm) (d, J = 8.5 Hz, 2H), 8.23 (dd, J = 

1.7, 0.7 Hz, 2H), 7.72 (d, J = 8.6 Hz, 2H), 7.57 (dd, J = 8.5, 1.7 Hz, 2H), 7.49 

(dd, J = 8.5, 0.7 Hz, 2H), 7.36 (d, J = 8.9 Hz, 2H), 6.64 – 6.58 (m, 4H), 4.46 

(q, J = 7.1 Hz, 2H), 3.88 (s, 6H), 3.82 (s, 6H), 1.45 (t, J = 7.1 Hz, 3H).  
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13C NMR (101 MHz, CDCl3) δ (ppm) 166.00, 160.05, 157.54, 142.22, 139.44, 

131.54, 131.32, 130.87, 128.78, 127.93, 126.15, 124.17, 124.02, 121.27, 109.22, 

104.67, 99.11, 61.22, 55.67, 55.48, 14.21. 

4-(3,6-bis(2,4-dimethoxyphenyl)-9H-

carbazol-9-yl)benzoic acid 

(EADR03)  

An aqueous solution of KOH (382 mg, 

6.80 mmol) is added to 4-(3,6-bis(2,4-

dimethoxyphenyl)-9H-carbazol-9-

yl)benzoate (400 mg, 0.68 mmol). 

Then, to this aqueous phase, a 

methanol and tetrahydrofuran (1:1) 

mixture is added to maintain complete dissolution at 85 °C. The mixture 

is refluxed at 85 °C overnight. The reaction is gradually cooled to room 

temperature and the solution is concentrated under vacuum. 200.0 mL 

of water is added, and the resulting aqua layer is treated with 2M HCl to 

obtain an off-white colour, which is filtered and dried under vacuum, to 

afford 4-(3,6-bis(2,4-dimethoxyphenyl)-9H-carbazol-9-yl)benzoic acid 

(340 mg, 89% yield).  

1H NMR (400 MHz, DMSO) δ (ppm) 8.28 (d, J = 1.7 Hz, 2H), 8.25 (d, J = 

8.6 Hz, 2H), 7.84 (d, J = 8.5 Hz, 2H), 7.54 (dd, J = 8.6, 1.6 Hz, 2H), 7.50 (d, 

J = 8.5 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 6.70 (d, J = 2.4 Hz, 2H), 6.66 (dd, 

J = 8.4, 2.4 Hz, 2H), 3.83 (s, 6H), 3.79 (s, 6H).  
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13C NMR (101 MHz, DMSO) δ (ppm) 167.24, 160.26, 157.64, 141.52, 139.08, 

131.79, 131.69, 131.25, 129.70, 128.51, 126.55, 123.67, 123.49, 121.42, 109.70, 

105.77, 99.43, 56.05, 55.75. 

ESI-MS m/z calc. for C35H28NO6
- (M-): 558.1922; found: 558.1912.  

Elemental Anal. calcd. for C35H29NO6: C, 75.12; H, 5.22; N, 2.50. Found: C, 

70.21; H, 4.90; N, 2.2 

Methyl 4'-(3,6-bis(2,4-

dimethoxyphenyl)-9H-carbazol-9-yl)-

[1,1'-biphenyl]-4-carboxylate (EADR04-

COOMe) 

A mixture of methyl 4'-bromo-[1,1'-

biphenyl]-4-carboxylate (0.25 mg, 0.85 

mmol), 3,6-bis(2,4-dimethoxyphenyl)-

9H-carbazole (0.45 mg, 1.03 mmol), 

Pd2(dba)3 (0.16 mg 0.17 mmol), tri-tert-

butylphosphine tetrafluoroborate (0.10 

mg, 0.34 mmol), sodium tert-butoxide (0.09 mg, 0.94 mmol) are 

dissolved in 15.0 mL freshly dried toluene in a 50.0 mL two-neck flask 

under argon atmosphere. The system is purged with argon for 30 

minutes. Then, the mixture is refluxed at 115 °C overnight. The reaction 

is gradually cooled to room temperature and the solution is concentrated 

under vacuum. A brine solution (200.0 mL) is added, and the solution is 

extracted with ethyl acetate (EtOAc) (2x100.0 mL). The combined 

extracts are dried over anhydrous magnesium sulphate, filtered, and 
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concentrated under vacuum. The compound is purified by column 

chromatography (Hexane:EtOAc, 2:1, v:v) and recrystallised is performed 

in EtOH to give light yellow colour crystals (300 mg, 53%).  

1H NMR (400 MHz, CDCl3) δ (ppm) 8.26 (dd, J = 1.7, 0.7 Hz, 2H), 8.20 – 

8.17 (m, 2H), 7.87 (d, J = 8.5 Hz, 2H), 7.80 – 7.76 (m, 2H), 7.73 (d, J = 8.5 

Hz, 2H), 7.58 (dd, J = 8.5, 1.7 Hz, 2H), 7.50 (dd, J = 8.5, 0.7 Hz, 2H), 7.38 

(d, J = 9.0 Hz, 2H), 6.65 – 6.60 (m, 4H), 3.98 (s, 3H), 3.88 (s, 6H), 3.83 (s, 

6H).  

13C NMR (101 MHz, CDCl3) δ (ppm) 166.96, 160.01, 157.56, 144.71, 139.92, 

138.74, 138.04, 131.57, 130.47, 130.30, 129.21, 128.69, 127.82, 127.24, 127.04, 

124.35, 123.76, 121.24, 109.24, 104.69, 99.14, 55.68, 55.66, 55.48, 55.46, 52.20. 

4'-(3,6-bis(2,4-dimethoxyphenyl)-9H-

carbazol-9-yl)-[1,1'-biphenyl]-4-

carboxylic acid (EADR04) 

 An aqueous solution of KOH (0.30 mg, 

4.60 mmol) is added to methyl 4'-(3,6-

bis(2,4-dimethoxyphenyl)-9H-carbazol-

9-yl)-[1,1'-biphenyl]-4-carboxylate 

(EADR04-COOMe) (0.30 mg, 0.46 mmol). 

Then, to this aqueous phase, a methanol 

and tetrahydrofuran (1:1) mixture is added 

to maintain complete dissolution at 85 °C. The mixture is refluxed at 85 

°C overnight. The reaction is gradually cooled to room temperature and 

the solution is concentrated under vacuum. 200.0 mL of water is added, 
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and the resulting aqua layer is acidified with 2M HCl. Then, the crude 

product is purified with flash chromatography (140 mg, 48% yield).  

1H NMR (400 MHz, DMSO) δ (ppm) 13.04 (s, 1H), 8.29 (d, J = 1.7 Hz, 2H), 

8.09 (dd, J = 10.8, 8.5 Hz, 4H), 7.96 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 8.6 Hz, 

2H), 7.54 (dd, J = 8.6, 1.7 Hz, 2H), 7.51 – 7.46 (m, 2H), 7.38 – 7.29 (m, 2H), 

6.74 – 6.64 (m, 4H), 3.83 (s, 6H), 3.80 (s, 6H).  

13C NMR (101 MHz, DMSO) δ (ppm) 167.57, 160.23, 157.66, 143.86, 139.52, 

138.36, 137.63, 137.61, 131.69, 130.91, 130.57, 129.17, 128.42, 127.45, 127.38, 

123.64, 123.45, 121.43, 109.61, 105.76, 99.47, 56.07, 56.02, 55.76, 55.72, 40.64, 

40.43, 40.22, 40.01, 39.80, 39.59, 39.38. 

ESI-MS m/z calc. for C41H32NO6
- (M-):634.2235; found: 634.2246.  

Elemental Anal. calcd. for C41H33NO6: C, 77.46; H, 5.23; N, 2.20. Found: 

C, 74.22; H, 5.38; N, 2.23. 
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6.1. Abstract  

Recent application of self-assembled monolayers as a charge selective 

layers in perovskite solar cells has gained tremendous attention. Highly 

efficient and stable devices have been released with stand-alone SAMs 

binding on ITO substrates, however, further understanding about the 

effect of the structure of SAM on PSCs is required. Herein, three 

triphenylamine-based self-assembled hole selective small molecules 

have been synthesized by placing different positioned dimethoxy phenyl 

substituents. They have been effectively employed in p-i-n configuration 

PSCs and the highest power conversion efficiency of 19.8% is comparable 

with commercially available materials due to their cost-effectiveness and 

reproducibility. This study gives an insight into the fundamental 

understanding of self-organisation, structure-property relationships, 

and interfacial phenomena. The para-&ortho- positioned substituents 

induce larger perovskite grain size that permit to obtain higher power 

conversion efficiency. 

6.2. Introduction  

SAMs are typically made of an anchoring group that connects the small 

molecules to the conductive oxide surface via chemical bonding, a spacer 

that controls the packing geometry, and a terminal group that adjusts 

the surface and interface properties.113,268,269 The control of interface 

properties has drawn attention due to improving the charge extraction 

with better energy alignment and reduced trap density in recent  
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times.112,270 Moreover, the terminal group determines the wettability of 

the SAMs which directly affects the grain size and grain boundaries of 

the perovskite layer. The most ordinarily used terminal groups are 

pyridines, thiols, or cyano groups for adjusting the work function and 

passivating the perovskite layer.271,272 Furthermore, the presence of 

methoxy groups in SAMs makes wetting surfaces that ensure excellent 

covering and reproducibility of the perovskite layer, while PTAA is 

hydrophobic. 

The main purpose of our previous study (Chapter 5) was to investigate 

the effect of the spacer moiety of SAMs on the thermal stability of the 

PSCs. We demonstrated that the PTAA layer-based devices exhibited 

inferior stability compared to SAMs.227 In this study, triphenylamine 

(TPA) moiety is selected as a spacer, which are drawn attention due to 

their good thermal and morphological stabile properties in PSCs.273 

When the Tg of HSLs are higher than the operating temperature, higher 

molecular motion and transition to the crystalline state are minimized. 

In the opposite case, this leads to the formation of grain boundaries 

between the crystal, which might trap charge carriers and eventually 

result in degradation of device performance.274,275 Besides, TPA exhibits 

a good electron donor unit property with two key properties: easy 

oxidizability of the amine nitrogen atom and the ability to carry positive 

charge efficiently.276 Having high Tg and low ionization potentials are 

important for HSL-based extremely stable and efficient PSCs.277 

Herein, we investigate how the methoxy (-OMe) group positions in TPA-

based SAMs affect the electronic properties, the perovskite solar cell  
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performance, and stability. According to the literature, the methoxy 

group presents electron-withdrawing properties due to its inductive 

effect. Hammett demonstrated that the substitution position can 

introduce electron-donating or electron-withdrawing properties in the 

para-&meta-positions, respectively, while the ortho-position causes a 

more steric hindrance.278 Also, Seok and co-workers revealed that the 

different arrangement of the methoxy groups affects the energy of the 

highest occupied molecular orbital (HOMO) and the lowest unoccupied 

molecular orbital (LUMO). The lower LUMO energy behaviours as an 

electron blocking layer increases fill factor (FF) while causing high shunt 

resistance and low series resistance.234  

In this work, the -OMe substituents are positioned in TPA-based small 

molecule structure on para-&ortho- (RC24), ortho-&meta- (RC25), and 

para-&meta- (RC34) and their structure-activity relationships as the HSL 

are explored in PSCs. We aim to prove which substitution positions could 

give a suitable energy level to ensure high PSCs performance, likewise, 

changing the wettability of the HSLs and increasing the grain size of 

perovskite. The three SAMs have provided highly reproducible PCE 

above 19.5% at one sun AM 1.5 G illumination. This study demonstrates 

that the -OMe groups' position affects the PSCs performance and quasi-

steady-state efficiency, and the para-&ortho- positions ensure the best 

performance within the other positions. 
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6.3. Results and Discussion  

6.3.1. Synthesise of Self-Assembled Monolayers 

Scheme 6.1 shows the syntheses pathway of the new TPA-based SAMs, 

where 4-(bis(2',4'-dimethoxy-[1,1'-biphenyl]-4-yl)amino)benzoic acid 

(RC24), 4-(bis(2',5'-dimethoxy-[1,1'-biphenyl]-4-yl)amino)benzoic acid 

(RC25) and 4-(bis(3',4'-dimethoxy-[1,1'-biphenyl]-4-yl)amino)benzoic acid 

(RC34) have a TPA moiety as an electron donor unit. TPA based self-

assembled moieties are modified with  dimethoxyphenyl substituents 

due to assisting in lowering the oxidation potential and increasing the 

solubility of the molecules.273 The dimethoxyphenyl substituents are 

placed in para-&ortho-, ortho-&meta-, and para-&meta- positions as a 

terminal group. The methoxy substituent position's alignment mainly 

affects the work function, photophysical and surface properties of the 

molecule, which are crucially important for the perovskite device 

performance. The carboxylic acid is preferred as anchoring to increase 

the coverage ratio of SAMs along the ITO surface and stabilise this 

surface by chemically attaching to the -OH group.61 The synthetic details 

of the TPA-based SAMs are presented in the section 6.5. 
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Scheme 6.1. Synthetic pathway of RC24, RC25, and RC34 

6.3.2. Thermal, Optical, Electrochemical, And 

Photophysical Properties of SAMs and 

Perovskite layers 

TPA-based SAMs exhibit good thermal and morphological stability 

under device fabricating and operating conditions. The thermal 

behaviour of RC24, RC25 and RC34 is analysed by DSC and TGA (see 

Table 6.1, Figure 6.1). TGA showed remarkably high thermal stability 

with decomposition temperatures (5% weight loss) at 347 °C, 383 °C, and 

386 °C for RC24, RC25 and RC34, respectively. Likewise, DSC confirmed 

elevated Tg during the third heating cycle for RC24, RC25 and RC34 at 115 

°C, 224°C, 193 °C, respectively. The fact that TPA-based SAMs exist in 

both amorphous and semi-crystalline state may explain their uniform 

coating when annealing the perovskite films at 100 °C.233 
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Figure 6.1. a) TGA analysis of RC24, RC25, and RC34. DSC analysis of b) 
RC24, c) RC25, and d) RC34. 

 

Table 6.1. Thermal properties of RC24, RC25, and RC34. 

HTMs Tdes (°C) [a]
 Tg (°C) [b] 

RC24 115 347 

RC25 224 383 

RC34 193 386 

[a] Decomposition temperature determined from TGA (5 % weight loss). [b] Glass transition 
temperature determined from the third cycle of DSC. All experiments are carried out under N2 
atmosphere, scan rate of 10 °C/min. 
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Initially, we have demonstrated that the TPA-based SAMs are well 

attached to the -OH group of the ITO by chemically attaching to the 

surface atom using XPS (see for details section 2.3.6). The chemical 

reaction between the anchor group (carboxylic acid, phosphoric acid, 

etc.) and the surface group (-OH) of the metal oxide can be defined as a 

condensation reaction that produces ester-type linkages (O-C=O).89,91,222 

In the case of the TPA derivatives, the C1s spectra of the surface are 

decomposed into four peaks assigned to C-H and C-C bonds at 284.7 eV, 

284.8 eV and 284.5 eV, to C-O bonds at 285.7 eV, 285.8 eV and 285.6 eV, 

to O-C=O att. bonds at 286.7 eV, 286.8 eV and 286.6 eV, and to O-C=O 

bonds at 288.9 eV, 289.1 eV and 289.0 eV for RC24, RC25 and RC34, 

respectively (Figure 6.2).171,236 The O1s spectra decomposed into four 

peaks are assigned to In-O bond at 530.0 eV, to surface hydroxides at 

530.9 eV, to the C=O bond at 531.8 eV for all SAMs and to the  C-O bond 

at 533.1 eV for RC24 and 533.0 eV for RC25 and RC34.239 The bare ITO 

surface exhibits common C1s and O1s peaks while comparing with SAM 

deposited ITO surface, which is shown in Figure A63 and Figure A64 

that can be caused by solvent residues from the cleaning procedure as 

observed in the previous study. The summarised fitting data of the C1s 

and O1s spectrum are given in Table A.2. 
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Figure 6.2. The XPS high-resolution survey spectra of C1s and O1s for 
RC24, RC25 and RC34. 

After assigning the chemical bonds of the SAMs on the ITO surface, we 

have investigated the energetic properties of them to demonstrate their 

hole selective properties for PSCs. Herein, we have chosen the 

Cs0.05FA0.79MA0.16Pb(I0.84Br0.16)3 (onwards labelled as CsFAMA) 

perovskite as an absorber layer, owing to having higher device 

performance and stability, inducing highly uniform perovskite grains 

and increasing device reproducibility.15 TPA-based SAM’s LUMO energy 

levels are calculated by utilising the optical bandgap which is estimated 

from the λa.e. using UV-vis measurement (Figure 6.3 and Table 6.2).242 

The VBM and the EF values of RC24, RC25, RC34, and CsFAMA 

perovskite are determined by UPS (Figure A65) and schematically 

displayed in Figure 6.8 and all values refer to the vacuum level.279 The 

RC34 with para-&meta- positioned -OMe substituents exhibits slightly 

lower oxidation potential as a result of inductive effect of substituent 
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position and it has better electron blocking character than RC24 and 

RC25, owing to higher LUMO energy level (Figure 6.8).  

 

Figure 6.3. Absorption (solid lines) and emission (dashed lines) spectra of 
RC24,RC25 and RC34. 

 

Table 6.2. Optical and energetic properties of RC24, RC25 and RC34. 
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RC24 330 430 377 3.29 1.84 

RC25 335 390/345 370 3.35 1.88 

RC34 338 385/335 372 3.34 1.74 
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To understand the role of different positioned terminal groups on top of 

the ITO surface, we focused on surface's wettability after the deposition 

SAMs. We used contact angle measurement for determining the SAMs-

covered ITO surface wettability, performed with water (see for details 

section 2.3.4). The -OMe group's position influence the hydrophobicity 

of SAMs being as follows: RC34 < RC25 < RC24. The para-&ortho- 

positions gives a contact angle of 42.0°, the ortho-&meta- positions of 

38.3° and the para-&meta- positions of 32.3° (Figure 6.4). In this work, 

the terminal group of the SAMs 1,3-dimethoxybenzene ensures a miscible 

interface for the CsFAMA perovskite one-step solution process. A 

miscible interface provides a compact and homogenous film and 

reproducibility of devices. On the other hand, the differently positioned 

dimethoxyphenyl substituents in TPA-based SAMs strongly affect the 

morphology of the obtained perovskite films. 

 

 

Figure 6.4. Contact angle measurements on the RC24, RC25, and RC34 
surfaces. 
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To examine the effect of the substitution position on perovskite films, 

perovskite layers grown on SAMs are characterised by SEM, and the 

related grain size distributions are estimated as listed in Table 6.5. 

Figure 6.5 shows the full cross-sectional device, the surface morphology, 

and grain size distribution of the perovskite thin film grown on SAMs. 

Initially, the perovskite thin films are uniform, covering the entire 

substrates, and pinhole-free. Therefore, the bright small grains can be 

assigned as PbI2 due to excess content in the perovskite thin film that 

can improve the device performance as reported in previous 

studies.247,280 The perovskite thin layer grown on RC24, with the para-

&ortho- positioned dimethoxyphenyl substituents, produced larger 

crystal grains and fewer grain boundaries, while the average grain size 

was estimated to be around 385±106 nm for RC24, 357±185 nm for RC25, 

and 301±85 nm for RC34.  

 

Figure 6.5. Scanning electron microscopic images of cross-sectional full 
device of a)RC24, b)RC25 and c) RC34 employed planar PiN perovskite 
solar cells; and top view of perovskite layers grown on d)ITO/RC24, 
e)ITO/RC25 and f) ITO/RC34. All scale bars are 800 nm. 
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However, we acknowledge that SEM images are inadequate to identify 

the perovskite grain,281 thus, to further confirm the crystal size of the 

perovskite layers on different SAMs, we performed Le Bail analysis on 

the XRD patterns of perovskite layers (fitted patterns can be found in 

Figure A67).282 The domain size of the perovskite can be quantified by 

the Lorentzian contribution to the peak broadening of the perovskite 

diffracted peaks in the XRD patterns (Figure 6.7). Le Bail analysis 

demonstrates that RC24-based perovskite exhibits the largest domain 

size (approximately 100 nm), whereas RC35 domain size is 70 nm in 

agreement with SEM images. We note that the domain is the largest unit 

of the same orientation of perovskite unit cells and grain can consist of 

multiple domains of perovskite. More importantly, the SEM cross-

sectional images of RC25 and RC34 in Figure 6.5 indicate small grains at 

the interface of SAM/perovskite and grain boundaries in the vertical 

direction whereas the perovskite layer grown on RC24 has monolithic 

grain. This can affect the charge transport and device's performance in a 

quasi-steady-state condition, as discussed in the later section.  

 

Figure 6.6. The grain size distribution of the perovskite thin films based 
on RC24, RC25, and RC34. 

 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



 Triphenylamine Based Self-Assembled Hole Selective Monolayers 
with Different Positioned Terminal Group in Perovskite Solar 
Cells 

216 
 

By combining the average grain size with the hydrophobicity discussed 

previously (RC34 < RC25 < RC24), it is becoming evident that these two 

parameters correlate. Concisely, the position of a suitable substituent is 

critical to the formation of uniform perovskite films with large grain 

sizes, what do directly affect the perovskite device performance. 

Additionally, the large grain size is vital for perovskite solar cells due to 

transporting/collecting charge carriers efficiently and reducing charge 

recombination.60 

 

Figure 6.7. X-ray diffraction patterns of perovskite layers grown on bare 
ITO, ITO/RC24, ITO/RC25, and ITO/RC34. The patterns are well in 
agreement with literature containing similar perovskite compounds. 
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6.3.3. Spectroscopy, Photovoltaic Properties and 

Device Stability Investigation of Perovskite-

Based Devices  

 

Figure 6.8. Energy alignment of different layers. The band edge positions 
of SAMs, PTAA and CsFAMA layers are estimated from UPS 
measurements in the schematic representation. Note that the SAM layers’ 
values (RC24, RC25 and RC34) are measured with UPS (Figure A.65 shows 
UPS spectra). Before UPS measurement, the ITO substrate is treated with 
UV-Ozone to ensure similarity with used substrates in devices. 

Figure 6.9a shows the photoluminescence spectrum of the CsFAMA film 

in a variety of bilayer configurations, including ITO/CsFAMA, 

ITO/RC24/CsFAMA, ITO/RC25/CsFAMA, and ITO/RC34/CsFAMA. The 

photoluminescence peak at 750 nm is entirely reliable with previous 

reports of emission from CsFAMA,283 and the spectral position of the 

emission is stable among all the samples. Moreover, there is a substantial 

quenching effect when the CsFAMA perovskite is placed in contact with 

SAMs. The different positions methoxy-substituted SAMs have similar 
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efficient quenching showing their efficient hole transporting character. 

Additionally, we used TRPL to investigate the radiative recombination 

dynamics using λex= 470 nm as excitation wavelength as shown in Figure 

6.9b, which is acquired with TCSPC technique. Here, two different decay 

profiles for RC24 and one decay profile for RC25 and RC34 which are 

fitted to a bi-exponential function (see for details section 2.3.10) as earlier 

studies. The slower decay can be corresponded to the bimolecular 

recombination, while the fast decay likely corresponds to trap filling for 

SAM-based perovskite films. The lifetimes τ1 obtained are 21 ns, 20 ns, 17 

ns, and 19 ns for the CsFAMA perovskite, RC24, RC25, and RC34, 

respectively, while the lifetimes τ2 of the CsFAMA perovskite, RC24, 

RC25, and RC34 are 122 ns, 130 ns, 115 ns, and 107 ns, respectively (Table 

6.3). The lifetime τ1 is assigned to trap filling that shows us the 

passivating trap role of SAMs in contact with the perovskite surface to 

take shorter times to be filled. Excitingly, RC24 possessed an interfacial 

passivation effect250 due to the increased PL yield related to the Lewis 

base molecule TPA284, while RC25 and RC34 do not. The presence of the 

Lewis acid-base interactions between amino groups in TPA and the 

positively charged defects, as under-coordinated Pb2+ in the perovskite, 

passivate surface defects and significantly decrease the nonradiative 

recombination in perovskite films.213,285,286 We fabricated perovskite solar 

cells to move one step further and to investigate the influence of 

differently positioned dimethoxy substituents in SAMs on the power 

conversion efficiency and stability. 
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Figure 6.9. a) Luminescence emission band upon excitation at λex=470 nm 
for the CsFAMA/PMMA, RC24/CsFAMA/PMMA, RC25/CsFAMA/PMMA 
and RC34/CsFAMA/PMMA (total thickness of 550-600 nm) at room 
temperature. b) Luminescence emission decays (λex=470 nm) measured for 
1000 ns for CsFAMA/PMMA, RC24/CsFAMA/PMMA, 
RC25/CsFAMA/PMMA and RC34/CsFAMA/PMMA on ITO coated glass 
substrate at room temperature.  

Table 6.3. Fitting values are obtained from the de-convolution of the 
luminescence decays in Figure 6.9b. 

Films τ1           
(ns) 

τ2           
(ns) 

CsFAMA/PMMA 21 112 

RC24/CsFAMA/PMMA 20 130 

RC25/CsFAMA/PMMA 17 115 

RC34/CsFAMA/PMMA 19 107 

 

The state-of-the-art device structure with 

ITO/SAM/CsFAMA/C60/BCP/Cu sandwich architecture is used in this 

study, shown in Figure 2.18.15 TPA-based SAMs are deposited on top of 
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the UV-O3 treated ITO substrates using the dip-coating deposition 

process. Then, the perovskite (CsFAMA) layer is placed on top of the 

SAMs using the one-step method. By following perovskite layer 

deposition, C60 is thermally evaporated as an electron selective layer to 

passivate the grain boundaries and surfaces of perovskite films.56,287 

Afterwards, a thin layer of BCP is evaporated on top of the electron 

selective layer as a buffer layer for eliminating charge accumulation at 

the C60/BCP/Cu interfaces.288 A 100 nm Cu electrode is evaporated to 

complete the device. The section 2.5 gives all the fabrication processes of 

the perovskite solar cells. 

All SAMs are deposited on top of the ITO substrates using a dip-coating 

method which is the most applied method for having a well-organised 

interface under the perovskite absorber. The non-attached molecules 

could be eliminated with the used solvent by rinsing or an ultrasonic 

cleaning bath. A dip-coating method could be optimised by using non-

halogenated solvents thanks to the anchor group of SAMs. In this study, 

the most commonly non-halogenated solvents are used for optimising 

the effect of SAM layers on the performance of the perovskite solar cells. 

The statically better performance of the perovskite devices with higher 

FF and JSC are showed with EtOH (Figure 6.10). The best photovoltaic 

parameters of the solvent optimisation for each SAMs are summed up in 

Table 6.4, where the FF values of the RC24 have a significantly narrower 

distribution comparing to RC25 and RC34.  
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Figure 6.10. Device performance statistic total 50 devices from RC24, 
RC25 and RC34 in different solvents in the devices a) VOC, b) PCE, c) JSC, d) 
FF.  
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Table 6.4. Photovoltaic parameters of the best performing devices based 
on different hole selective layers in different solvents and with a scan speed 
of 100 mV/s. 

SAMs Solvents Scan 
Direction 

JSC 

(mA/cm
2
) 

V
OC 

(mV) 

FF 
(%) 

PCE 
(%) 

RC-24 EtOH forward -22.3 1118 79 19.7 

reverse -22.3 1123 79 19.8 

RC-24 IPA forward -22.4 1108 77 19.1 

reverse -22.4 1115 77 19.2 

RC-24 Toluene forward 22.2 1102 76 18.6 

reverse -22.2 1127 77 19.3 

RC-25 EtOH forward -22.1 1101 79 19.2 

reverse -22.1 1116 79 19.6 

RC-25 IPA forward -21.9 1127 79 19.4 

reverse -21.9 1132 79 19.5 

RC-25 Toluene forward -22.0 1102 75 18.3 

reverse -22.0 1125 77 18.9 

RC-34 EtOH forward -22.5 1101 79 19.6 

reverse -22.5 1109 79 19.7 

RC-34 IPA forward -21.9 1124 77 19.1 

reverse -21.9 1123 76 18.8 

RC-34 Toluene forward -22.7 1121 73 18.7 

reverse -22.7 1126 75 19.1 
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The best device's J-V with RC24, RC25, and RC34 measured at a scan rate 

of 100 mV/s are shown in Figure 6.11a. Specifically, the VOC of the RC24 

SAM-based device is approximately 17 mV larger than RC25 and RC34 

SAM-based devices while the scan direction is from VOC to JSC. An and 

co-workers demonstrated that with increasing average grain size, the 

VOC could be significantly enhanced by over 200 mV with a slight 

increase in FF.289 The best PCE of RC24, RC25 and RC34 is 19.8%, 19.6%, 

and 19.7%, surpassing the commercially available HSLs from literature. 

 

Figure 6.11. a) Best J-V curves from RC24, RC25, and RC34 in EtOH. b) 
Corresponding external quantum efficiency curves which shows integrated 
current density in agreement with values from J-V measurement. c) Quasi-
steady state efficiency of best RC24, RC25, and RC34. d) Dark J-V curves of 
the hole selective contact. 
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In Figure 6.11d, the J-V scan of SAMs-HSL based full device indicated a 

similar lower leakage current under dark conditions. A low dark current 

is one of the proofs to show a high density of SAMs on ITO surfaces. EQE 

is done to understand how efficiently a perovskite layer transforms light 

into the current.290 The integrated JSC,EQE of the best devices is close to 

the JSC,J-V , as shown in in Figure 6.11b, and the devices show insignificant 

HI between reverse and forward J-V scans. The best devices photovoltaic 

parameters are listed in Table 6.5. 

To understand the effect of a differently positioned methoxy substituent 

in SAMs with short-term perovskite device stability, maximum power 

point (MPP) tracks of the best devices are performed. After the first J-V 

scan, MPP tracks are made where RC25 and RC34 display a significantly 

lower performance than RC24. Expectedly, RC24, RC25, and RC34 based 

perovskite cells lost around 3%, 4%, and 5% of their initial PCE after 120 

seconds of MPP tracking, respectively as can be seen in Figure 6.11c. In 

addition, RC25 and RC34 devices exhibit a significant burn-in loss in the 

first few seconds in MPP and continue to decrease afterwards. On the 

contrary, the ortho-&para-position substituted RC24 devices show a 

more stable MPP output. This can be attributed to its higher 

hydrophobicity (water contact angle 42.0°).291 Moreover, previous report 

shows that mobile ions in the perovskite layers can be trapped at the 

grain boundaries, resulting in a longer transient in device response.292,293 

Thus, lower grain boundary densities in perovskite grown on RC24 could 

contribute as well to a slower decay slope seen in MPP tracking (Figure 

6.11c). 
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Figure 6.12. Device performance statistic total 40 devices from in EtOH in 
the devices a) PCE, b) VOC, c) JSC, d) FF. 

 

Table 6.5. Photovoltaic parameters of the best performing devices based 
on TPA-base self-assembled hole selective monolayers with a scan speed of 
100 mV/s. 

SAMs Average 

Grain Size 

(nm) 

 JSC,EQE 

(mA/cm2) 

JSC,J-V 

(mA/cm
2
) 

V
OC 

(mV) 

FF 

(%) 

PC 

(%) 

HI 

(%) 

RC-24 385±106 21.5 -22.3 1123 79 19.8 0.00 

RC-25 357±185 21.4 -22.1 1116 79 19.6 0.02 

RC-34 301±85 21.3 -22.5 1109 79 19.7 0.00 
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6.4. Conclusions 

In conclusion, we synthesised and characterised three new self-

assembled hole selective monolayers for application in p-i-n perovskite 

devices. TPA based SAMs are demonstrated to be effective in enhancing 

the efficiency of perovskite devices to 19.8%. Our results provide a simple 

molecule design strategy for achieving the reduced hysteresis and the 

highly efficient perovskite devices. As we mentioned earlier, the -OMe 

group's existence increases the wettability of the metal oxide substrates, 

although their position as a terminal group directly might affect the 

device performance by increasing grain size and decreasing the grain 

boundary density in the perovskite layer. The reduced grain boundaries 

improve the crystal quality of the perovskite, furthermore, it decreases 

the hysteresis and increases the PCE of the perovskite device. This study 

provides new guidelines to understand the importance of the molecule 

design of the charge selective contact and their role in the efficiency and 

stability of the PSCs. 
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6.5. Synthetic Methods and Procedures 

4-[Bis(4-bromophenyl)amino]benzaldehyde 

(2)  

4,4′-Dibromotri-phenylamine (3 g, 7.44 mmol) 

is dissolved in anhydrous DMF (15 mL) at 0 °C. 

To this mixture, POCl3 (17.39 mL, 186 mmol) 

was slowly added. The mixture is heated to 90 

°C for 1 h under argon atmosphere. After cooling to room temperature, 

the mixture was poured into ice water and aqueous NaOH is then added 

to the mixture. The mixture is stirred for 1 h and then filtered. The yellow 

precipitate is washed with excess cold water and dried under vacuum. 

The crude product is purified by column chromatography on SiO2 with 

dichloromethane (DCM) as the eluent to give 2 (3.05 g, 7.07 mmol, 95 %) 

as a yellow solid.  

1H NMR (500 MHz, CD2Cl2, 25°C) δ (ppm) 9.82 (s, 1 H), 7.71 (d, J = 8.56 

Hz, 2 H), 7.46 (d, J = 8.64 Hz, 4 H), 7.04 (m, 6 H). 

13C NMR (126 MHz, CDCl3 ,25 °C) δ (ppm) 190.17, 152.30, 145.14, 132.82, 

131.12, 130.25, 127.49,120.41, 117.82. 
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4-[Bis(2′,4′-dimethoxy-[1,1′-

biphenyl]-4-

yl)amino]benzaldehyde 

(RC24-CHO) 

In a Schlenk flask charged with 

Ar atmosphere, compound 2(3 

g, 6.96 mmol), 2-(2,4- dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (5.50 g, 20.84 mmol) and Pd(PPh3)4 (0.86 g,0.744 mmol) 

are dissolved in freshly dried THF (50 mL). To this mixture, K3PO4 (59.5 

mL, 0.5 M in H2O) is added. The reaction mixture is degassed three times 

using freezethaw cycles and then the reaction mixture is stirred at 50 °C 

for 14 h. After cooling to room temperature, distilled water is added and 

the mixture is extracted with DCM three times. The combined organic 

extracts are dried withanhydrous MgSO4, and the solvent is evaporated 

under vacuum.The crude product is purified by column chromatography 

over silica gel with DCM as the eluent and subsequent recrystallisation 

in ethanol to give RC24-CHO (3.42 g, 6.27 mmol, 90 %) as a yellow solid. 

1HNMR (500 MHz, CDCl3, 25°C) δ (ppm) 9.84 (s, 1 H), 7.70 (d, J = 8.51 

Hz,2 H), 7.49 (d, J = 8.40 Hz, 4 H), 7.27 (d, J = 8.50 Hz, 2 H), 7.20 (d, J 

=8.35 Hz, 4 H), 7.10 (d, J = 8.55 Hz, 2 H), 6.60 (m, 4 H), 3.85 (s, 6 H),3.83 

(s, 6 H). 

13C NMR (126 MHz, CDCl3, 25°C) δ (ppm) 190.44, 160.37, 157.44, 153.47, 

144.31, 135.13, 131.30, 131.14, 130.57, 128.96,125.82, 122.62, 119.43, 104.73, 

99.03, 55.53, 55.44.  
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MS (ESI):m/z calculated for C35H31NNaO5
+: 568.2094; found: 568.2096. 

4-(bis(2',5'-dimethoxy-[1,1'-

biphenyl]-4-

yl)amino)benzaldehyde (RC25-

CHO) 

The desired product is yellow in 

colour. The yield of the product is 85 

%. 

1H NMR (500 MHz, CD2Cl2, 25°C) δ 

(ppm) 9.85 (s, 1H), 7.75 (d, J = 8.78 Hz, 2H), 7.59 (d, J = 8.83 Hz, 4H), 7.29 

(d, J = 8.81 Hz, 4H), 7.17 (d, J = 8.82 Hz, 2H), 6.99-6.96 (m, 4H), 6.91-6.88 

(m, 2H), 3.83 (s, 6H), 3.82 (s, 6H).  

13C NMR (126 MHz, CD2Cl2, 25°C) δ (ppm) 190.13, 153.84, 153.17, 150.74, 

144.94, 135.27, 131.06, 130.75, 130.50, 129.34, 125.73, 119.52, 116.41, 113.07, 

112.53, 56.03, and 55.67. 

4-(bis(3',4'-dimethoxy-[1,1'-

biphenyl]-4-

yl)amino)benzaldehyde (RC34-

CHO) 

The desired product is yellow in 

colour. The yield of the product is 

85 %. 

1H NMR (500 MHz, CD2Cl2, 25°C) δ (ppm) 9.85 (s, 1H), 7.74 (d, J = 8.60 

Hz, 2H), 7.61 (d, J = 8.40 Hz, 4H), 7.30 (d, J = 8.40 Hz, 4H), 7.20 (dd, J = 
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8.20 Hz, J = 1.83 Hz, 2H), 7.16-7.14 (m, 4H), 6.99(d, J = 8.30 Hz, 2H), 3.84 

(s, 6H), 3.82 (s, 6H).  

13C NMR (126 MHz, CD2Cl2, 25°C) δ (ppm) 190.41, 153.08, 149.47, 148.96, 

144.91, 137.70, 133.07, 131.08, 129.40, 127.87, 126.43, 119.54, 119.03, 111.83, 

110.38, and 55.86. 

General procedure for the preparation of SAM's  

The corresponding aldehyde (0.275 mmol) is dissolved in an acetone and 

DI water (v/v 6/0.3 mL) mixture and heated to 50 °C. To this reaction 

mixture, potassium permanganate (0.412 mmol) is added, and the 

resulting reaction mixture is heated to reflux for 10 min (consumption of 

starting material is monitored by thin layer chromatography). Acetone is 

then evaporated, and water (10 mL) is added to the mixture. The crude 

mixture is centrifuged, and aqueous layer is then acidified with 2 M HCl 

until precipitation. The precipitate is filtered, washed with water 

followed by diethyl ether. Recrystallisation of the precipitate in 

DCM/Cyclohexane gave the desired product. 

4-(bis(2',4'-dimethoxy-[1,1'-

biphenyl]-4-

yl)amino)benzoic acid (RC24)  

The desired product is white in 

colour. The yield of the product 

is 60 %. 
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1H NMR (500 MHz, DMSO, 25°C) δ (ppm) 12.44 (s, 1 H), 7.80 (d, J = 8.65 

Hz, 2H), 7.47 (d, J = 8.35 Hz, 4H), 7.25 (d, J = 8.35 Hz, 2H), 7.16 (d, J = 8.35 

Hz, 4H), 6.94 (d, J = 8.65 Hz, 2H), 6.66 (d, J = 1.75 Hz, 2H), 6.61 (dd, J = 

8.40 Hz, J = 1.90, 2H), 3.80 (s, 6H), 3.78 (s, 6H).  

13C NMR (126 MHz, DMSO, 25°C) δ (ppm) 167.45, 160.51, 157.56, 151.75, 

144.68, 134.91, 131.37, 131.28, 130.92, 125.82, 122.01, 119.42, 105.82, 99.38, 

55.99, 55.73. 

Mass (ESI), (m/z) calculated for C35H30NO6
-: 560.2079; found: 560.2087. 

4-(bis(2',5'-dimethoxy-[1,1'-

biphenyl]-4-yl)amino)benzoic acid 

(RC25) 

The desired product is pale yellow in 

colour. The yield of the product is 65 %. 

1H NMR (500 MHz, DMSO, 25°C) δ 

(ppm): 12.49 (s, 1 H), 7.79 (d, J = 8.75 Hz, 2H), 7.51 (d, J = 8.55 Hz, 4H), 

7.15 (d, J = 8.55 Hz, 4H), 7.01 (d, J = 7.75 Hz, 2H), 6.94 (d, J = 8.80 Hz, 2H), 

6.87-6.85 (m, 4H), 3.71 (s, 6H), 3.69 (s, 6H).  

13C NMR (126 MHz, DMSO, 25°C) δ (ppm): 167.78, 154.18, 152.01, 151.08, 

145.66, 135.09, 131.77, 131.52, 130.54, 126.02, 123.55, 120.32, 116.60, 114.29, 

113.87, 56.85, and 56.26.   

Mass (ESI), (m/z) calculated for C35H30NO6
-: 560.2079; found: 560.2068. 
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4-(bis(3',4'-dimethoxy-[1,1'-

biphenyl]-4-yl)amino)benzoic 

acid (RC34)  

The desired product is pale yellow 

in colour. The yield of the product 

is 58 %. 

1H NMR (500 MHz, DMSO, 25°C) δ (ppm): 12.51 (s, 1 H), 7.79 (d, J = 8.85 

Hz, 2H), 7.63 (d, J = 8.70 Hz, 4H), 7.19-7.15 (m, 8H), 6.99 (d, J = 7.75 Hz, 

2H), 6.95 (d, J = 8.85 Hz, 2H), 3.80 (s, 6H), 3.75 (s, 6H). 

13C NMR (126 MHz, DMSO, 25°C) δ (ppm): 167.77, 151.90, 149.90, 149.26, 

145.63, 137.24, 133.06, 131.75, 128.58, 126.72, 123.53, 120.29, 119.43, 113.05, 

111.09, and 56.39.  

Mass (ESI), (m/z) calculated for C35H30NO6
-: 560.2079; found: 560.2072. 
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7.1. Abstract  

Herein we present a new structural design of hole selective molecules, 

named EADR01, EA01, and EA02, which consists of truxene core with 

carbazole diamine terminal groups and hexyl sidechains. These small 

molecules exhibit good thermal stability and appropriated oxidation 

properties. Perovskite solar cells fabricated using the n-i-p configuration 

with EA01 as HSL, show a maximum PCE of 16.7%.   

7.2. Introduction  

In this study, truxene core is preferred due to its exceptional solubility, 

the ease with which it may be modified, and high thermal stability.215 It 

can be coupled with carbazole and diphenylamine derivatives to tune the 

HOMO energy levels of small molecules for extracting charges efficiently 

from perovskite absorber layer. Carbazole and triphenylamine are 

selected as donor strength moieties, the logical trend is the following 

carbazole < triphenylamine, due to possibility of compensating for the 

photogenerated charge with phenyl rings surrounding the nitrogen 

atom.294 The electron-rich group is attached to carbazole and 

triphenylamine derivatives for improving their electron donor 

ability.232,273 Dimethoxy and methyl units are positioned at para-&ortho- 

positions on the phenyl group owing to enhance electron-donating 

effect. Moreover, methoxy moieties enhance the solubility of small 

molecules in organic solvents. In the previous Chapter, we investigated 

the role of the substituent group position on the PSCs performance. In 

this chapter, we followed the same strategy when we decided about the 
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substituent position in the small molecule structures, to have a suitable 

electron donor moiety in HSLs.  

We designed and synthesised new three truxene-based hole selective 

molecules and characterised their thermal, optical, electrochemical and 

photophysical properties. Furthermore, we employed them as a hole 

selective molecules in n-i-p configuration PSCs for achieving highly 

efficient and stable devices.   

7.3. Results and Discussion 

7.3.1. Design and Syntheses  

Three new truxene and carbazole-based small molecules are synthesised 

to achieve highly thermal stable hole selective molecules to have durable 

PSCs. The syntheses of carbazole substituent moieties are shown in 

Scheme 7.1. The synthesis of 1 is detailed in section 3.5 of Chapter 3. The 

moieties named Carbazole-DMP,62 Carbazole-DAMP, and Carbazole-

DAP are synthesised by Stille cross coupling reaction with tri-tert-

butylphosphine tetrafluoroborate [(t-Bu)3PH.BF4], 

tris(dibenzylideneacetone)dipalladium(0) [Pd2(dba)3], and sodium-tert-

butoxide in dry toluene, resulting in EADR01, EA01, and EA02 in 47%, 

74% and 74% yield, respectively. The detailed syntheses procedure is 

described in section 7.5 and the syntheses pathway is shown in Scheme 

7.2.  
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Scheme 7. 1.  Syntheses pathway of Carbazole-DAMP and Carbazole-DAP 
i) NBS (2 equiv.), DMF, 0 °C, 3h; ii) 4-(dimethylamino)pyridine (0.2 equiv.), 
di-tert-butyl decarbonate (1.5 equiv.), dry THF, 85 ˚C, 3h; iii) bis(4-
methoxyphenyl)amine (2.1 equiv.), sodium-tert-butoxide, tri-tert-
butylphosphonium tetrafluoroborate (20%), 
tris(dibenzylideneacetone)dipalladium(0) (10%), dry toluene, overnight; 
iv) di-p-tolylamine (2.1 equiv.), sodium tert-butoxide (3 equiv.), sodium-
tert-butoxide, tri-tert-butylphosphonium tetrafluoroborate (20%), 
tris(dibenzylideneacetone)dipalladium(0) (10%), dry toluene, overnight; v) 
potassium tert-butoxide (3 equiv.), toluene:EtOH (3:1 v:v), overnight. 
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Scheme 7.2. Syntheses pathway of EADR01, EA01 and EA02. 

 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



 Truxene Derivatives as Hole Transporting Materials in Perovskite 
Solar Cells 

238 
 

7.3.2. Thermal, Optical, Electrochemical, and 

Photophysical Properties 

The thermal behaviour of truxene-based small molecules are determined 

by TGA and DSC measurements. The summarised recorded data are 

given in Table 7.1. The Tdes is observed around 428 °C, 414 °C, and 416 °C 

for EADR01, EA01, and EA02, respectively. The TGA curves of truxene-

based small molecules are shown in Figure 7.1. Generally, truxene-based 

small molecules exhibit good thermal stability, starting to decompose 

(5% weight loss under N2 atmosphere) at temperatures above 400 °C. 

 

Figure 7.1. a) TGA analysis of EADR01, EA01, and EA02. DSC analysis of 
b) EADR01, c) EA01, and d) EA02. 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



 Truxene Derivatives as Hole Transporting Materials in Perovskite 
Solar Cells 

239 
 

To determine the chemical and physical changes of truxene-based small 

molecules, the DSC measurement is performed. The melting and/or 

crystallisation peak is noted from the first heating cycle, where the Tg 

values determined for EADR01, EA01, and EA02 are 165 °C, 160 °C, and  

125 °C, respectively, as shown in Figure 7.1 and Table 7.1. The sharp 

endothermic peak that indicates the melting point is not observed, 

however, a small amount of truxene-based small molecule melts during 

first cycle. These small molecules can be good candidates as charge 

selective molecule in PSCs, having stable thermal character at high 

temperature. 

As mentioned in Chapter 6, the thermal behaviour of HSL plays a critical 

role in PSCs since their molecular motion and transition to the 

crystalline state are affected by operating temperatures (>85 °C).295 

Having high resistance to elevated temperatures, these HSL-based PSCs 

should be highly stable and efficient.  

Table 7.1. Thermal properties of EADR01, EA01 and EA02.   

HTMs T
des

(°C) [a] T
g
 (°C) [b] 

EADR01 428 165 

EA01 414 160 

EA02 416 125 

[a] Decomposition temperature determined from TGA (5 % weight loss). [b] Glass transition 
temperature determined from the first cycle of DSC. All experiments are carried out under N2 
atmosphere, scan rate of 10 °C/min. 
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The UV-vis absorption spectra of truxene-based small molecules show 

two absorption peaks positioned at 306/350 nm, 310/375 nm, and 330/360 

nm for EADr01, EA01 and EA02, respectively. These peaks are observed 

in the UV region and correspond to π-π* transitions and extended π-

conjugated system, that in the case of EA01 and EA02 showed a red shift 

due to having diphenylamine moiety.296  

 

Figure 7.2. Absorption (solid lines) and emission (dashed lines) spectra of 
EADR01, EA01 and EA02 in solution. 

 

The PL spectra exhibit one single peak for all the small molecules at 385 

nm, 426 nm, and 416 for EADR01, EA01, and EA02 respectively, when 

small molecules are excited in solution at the absorption maximum 

wavelengths. The optical bandgaps of truxene-based small molecules are 

estimated from the λa.e. using UV-vis measurement (Figure 7.2 and 

Table 7.2).  
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Table 7.2. Optical properties of EADR01, EA01, and EA02. 

Small 
Molecule 

λabs. 

(nm) 
λem. 

(nm) 
λa.e. 

(nm) 
Eg

opt 

(eV) 

EADR01 306/350 385 368 3.37 

EA01 310/375 456 426 2.91 

EA02 330/360 440 416 2.98 

 

The LUMO energy levels of the small molecules are calculated from CV 

and UV-vis measurements by estimating their electronic and optical 

bandgap (as calculated in Chapter 5 and 6).242 As shown in Figure 7.3, 

EA01, and EA02 exhibit three reversible oxidation waves while EADR01 

has two reversible oxidation wave, with the first Ep-doping
p values of 1.20 

V, 0.59 V and 0.73 V versus vacuum, respectively. The first two oxidation 

waves of EA01 and EA02 are assigned to a sequential extraction from 

diphenylamine unit, corresponding mainly to one- and one-electron 

processes.294 None of the small molecules show a reduction peak due to 

their electron-donating properties. The estimated LUMO energy levels 

are found to be -2.00 eV, -1.88 eV and -1.52 eV, respectively for EADR01, 

EA01 and EA02. 

In general, the corresponding HOMO energy levels of EADR01, EA01, and 

EA02 are higher than the VBM of the CsFAMA perovskite absorber, so 

these molecules are more suitable for the hole selective layer in PSCs. 

However, when we compare their HOMO energy levels with Spiro-

OMeTAD, EADR01 presents the deepest HOMO energy level while EA01 

and EA02 have the highest. The coherent energy alignment between the 
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perovskite layer and HSLs is critical for charge transport, extraction, and 

interface recombination and profoundly the performance of PSCs.297 

Despite all the advantages that the CsFAMA absorber has, it can be 

replaced with a different type of perovskite absorber to avoid mismatch 

in further studies, as it has HOMO energy level differences of more than 

0.5 eV with EA01. On the other side, EA01 and EA02 have higher LUMO 

energy levels than EADR01 and Spiro-OMeTAD, which gives them 

electron blocking capability. 

 

Figure 7.3. Cyclic voltammetry of EADR01, EA01, and EA02, measured 
using ferrocene as an internal reference.   
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Table 7.3. Optical and energetic properties of truxene-based small 
molecules. 

Small 

Molecule 

E
p-doping

p
 

(V) 

E
p-dedoping

p
  

(V) 

HOMO  

(eV) 

LUMO 

(eV) 

E
g

opt. 

(eV) 

EADR01 1.20/1.48 1.07/1.32 -5.38 2.00 3.37 

EA01 0.59/0.79 0.52/0.72 -4.80 1.88 2.91 

EA02 0.73/1.00 0.66/0.94 -4.95 1.52 2.97 

 

The hole mobilities of the HSLs are determined using the SCLC method, 

briefly explained in Chapter 2. We employed the state-of-the-art device 

architecture with ITO/PEDOT:PSS/HSLs/Au, using one electrode hole-

injection creating an ohmic contact to determine the device 

performance. In other words, the recombination processes do not 

contribute to the device performance, however, the mobility, electric 

field and concentration of charges become the determinant factors. The 

calculation of the hole mobility values is explained in section 2.3.7.  

The hole mobility values of EA01 and Spiro-OMeTAD are summarised in 

Table 7.4, and the obtained values are calculated from multiple devices 

(4 diodes) without chemical dopants in Figure 2.3. EADR01 and EA02 

showed poor hole mobility and they could not stand the measurement 

conditions. The hole mobility of HSLs is determined at high voltages (> 

2 V), the small molecule and metal contact probably could not resist 
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these conditions and the active area of EADR01 and EA02 is damaged. 

EA01 and Spiro-OMeTAD based devices are shown in Figure 7.4.  

 

Figure 7.4. Picture of an only-hole device fabricated with EADR01 (left) 
and Spiro-OMeTAD (right) for hole mobility measurements without 
chemical dopants. 

Table 7.4. Hole mobility values for EA01 and Spiro-OMeTAD without 
chemical dopants. 

 EADR01 EA01 EA02 Spiro-
OMeTAD 

μ x10-4 

(cm2/Vs) 

- 0.47 - 3.55 

 

After completing their photoelectrical characterisation, we employed 

them in n-i-p configuration PSCs to study their performance as hole 

selective layer. 
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7.3.3. Photovoltaic Properties of Perovskite-Based 

Devices 

 

Figure 7.5. Energy alignment of the related materials in the n-i-p 
configuration perovskite solar cells. The band edge positions of EADR01, 
EA01 and EA02 layers from CV measurements in the schematic 
representation. Note that the CsFAMA, TiO2, FTO and Au layer values are 
reported from literature.  

The HOMO and VBM values of EADR01, EA01, AE02 and the other 

materials are schematically displayed in Figure 7.5.298 In order to 

determine the capability of these new hole selective materials as HSL 

with chemical dopants on top of the perovskite layer, the 

photoluminescence spectrum of the perovskite and perovskite/HSL 

films are performed. Figure 7.6a shows the PL of the perovskite film in 

a variety of bilayer configurations, including CsFAMA/PMMA, 

CsFAMA/Spiro-OMeTAD, CsFAMA/EADR01, CsFAMA/EA01, and 

CsFAMA/EA02. The typical photoluminescence peak of CsFAMA is 

observed at 750 nm what completely agrees with previous reports.243 

Upon the deposition of HSLs on top of the perovskite layer, we noted 

that the PL intensities are quenched except for EADR01. Remarkably, 
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EA01 shows a significantly larger PL quenching in comparison to EA02. 

The larger PL quenching value of the HSL-coated perovskite layer with 

respect to the bare perovskite layer demonstrates a more efficient hole 

extraction process at the perovskite-HSL interface. Spiro-OMeTAD still 

exhibits a larger PL quenching than truxene-based HSLs.  

 

Figure 7.6. a) Luminescence emission band upon excitation at λex=470 nm 
for CsFAMA/PMMA, CsFAMA/Spiro-OMeTAD, CsFAMA/EADR01, 
CsFAMA/EA01, and CsFAMA/EA02 (total thickness of 550-600 nm) at 
room temperature. b) Luminescence emission decays (λex=470 nm) 
measured for 1000 ns for the CsFAMA/PMMA, CsFAMA/Spiro-OMeTAD, 
CsFAMA/EADR01, CsFAMA/EA01, and CsFAMA/EA02 on FTO coated 
glass substrate at room temperature. 

Additionally, to understand the carrier dynamics of perovskite thin films 

incorporating HSLs, we performed TCSPC measurement. All films are 

deposited on top of the glass and bare perovskite thin film is protected 

with PMMA layer. The TCSPC spectra are measured upon 470 nm 

excitation wavelength and plotted in Figure 7.6b. The TCSPC spectra are 

fitted according to the stretched exponential decay function (see for 

details section 2.3.10). Among the HSLs, EA01 has a slightly similar 

lifetime as Spiro-OMeTAD, while EADR01 and EA02 have longer 

lifetimes. Interestingly, EADR01 had just two different decay profile and 
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its slower decay can be assigned to the bimolecular recombination, while 

the fast decay likely corresponds to trap filling for EA01 covered 

perovskite films that have been observed in Chapter 5 and 6 as well. The 

calculated lifetimes τ1 (τ2) of perovskite with and without HSLs are 

summarised in Table 7.5.  

Table 7.5. Fitting values are obtained from the de-convolution of the 
luminescence decays in Figure 7.4b. 

Films τ1           
(ns) 

τ2           
(ns) 

CsFAMA/PMMA 32 1760 

CsFAMA/Spiro-OMeTAD 5 - 

CsFAMA/EADR01 16 1533 

CsFAMA/EA01 6 244 

CsFAMA/EA02 13 181 

 

The state-of-the-art device structure with FTO/m-TiO2/c-

mTiO2/LiTFSI/CsFAMA/HSLs/Au sandwich architecture is used in this 

study.255 m-TiO2 and c-TiO2 layers are deposited on top of the UV-O3 

treated FTO substrates using spin-coating process. Then, LiTFSI thin 

layer is placed by spin-coater to dope the TiO2 right before CsFAMA 

perovskite deposition. The one-step deposition technique is used to 

deposit perovskite layer on top of the ESLs. Later, HSLs are deposited on 

top of the annealed perovskite layer using dynamic spin-coating process. 

For preliminary studies, we have used the optimal concentration for 

Spiro-OMeTAD is 28.4 mM255 and HSLs are 15 mM and the speed of the 
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deposition, 1800 rpm 200 acceleration for 30s. The optimised  HSLs are 

doped with chemical dopants to improve their p-type properties (see 

section 2.5 for detailed fabrication processes of the PSCs). They are 

doped using 53.7 mol% of LiTFSI, 333.2 mol% of tBP and 9.8 mol% of 

Co(II)TFSI. For instance, LiTFSI improve the hole mobility of Spiro-

OMeTAD, Li+ react with oxygen and Spiro-OMeTAD to facilitate the 

formation of oxidized Spiro-OMeTAD, while the TFSI- stabilises the 

oxidised Spiro-OMeTAD.299 To complete the device, a layer of 80 nm 

gold is evaporated using thermal evaporator under ultra-high vacuum 

(1x10-6 mbar).  

The preliminary studies of small molecules optimisation are carried out 

by preparing devices under the same conditions with Spiro-OMeTAD as 

HSL reference but changing the molarity of EADR01, EA01, and EA02. 

The optimised molarity of small molecules for hole mobility studies is 

used to have suitable film thickness. While EA01 had a good performance 

with 20 mM, EADR01 and EA02 did not permit an efficient hole injection 

from perovskite in pre-studies due to having a lower HOMO energy level 

than EA01. EA01 showed a lower performance than Spiro-OMeTAD with 

low FF and VOC. Figure 7.7 shows the current density versus voltage (J-

V) scans of the best devices with Spiro-OMeTAD and EA01 measured at 

a scan rate of 40 mV/s from forward to reverse bias. The photovoltaic 

data are summarised in Table 7.6. 

For further studies, to improve the device performance of EA01 in n-i-p 

configuration PSCs, the molarity of the EAo1 solution will be changed 

and it will be prepared without chemical dopant to obtain stable PSCs. 
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EADR01 and EA02 will be used as a HSL in p-i-n configuration PSCs and 

their long-term stability performance will be tested.  

 

Figure 7.7. Best J-V curve of the preliminary studies of Spiro-OMeTAD and 
EA01 in n-i-p configuration PSCs with chemical dopants.  

 

Table 7.6. The preliminary studies photovoltaic device parameters from 
Spiro-OMeTAD and EA01 in different solvents. 

HSLs Molarity 
(mM) 

Scan 
Direction 

JSC 

(mA/cm
2
) 

V
OC 

(mV) 

FF 
(%) 

PCE 
(%) 

HI 
(%) 

Spiro-
OMeTAD 

28.4 forward 23.4 1132 74 19.7 0.02 

reverse 23.5 1130 76 20.3 

EA01 20 forward 22.8 1108 62 15.7 0.06 

reverse 22.9 1107 66 16.7 
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7.4. Conclusion 

In this work, we synthesised new three truxene-based molecules with 

different electron donating moieties. Their thermal, optical, and 

electrochemical characterisations are carried out by TGA, DSC, UV-vis, 

PL, and CV, respectively. The charge transfer properties of truxene-based 

small molecules are determined with TCSPC measurements. After 

determining the charge selective properties of small molecules, they 

have been employed as HSL in n-i-p configuration PSCs. For pre-work 

studies, the triple cation perovskite layer is used as an absorber and 

Spiro-OMeTAD is used as a reference HSL. We have obtained 

comparable PCE result just from EA01 with ~17%, while Spiro-OMeTAD 

has >20%. In further studies, different EA01 molarities will be used in 

order to optimise the film thickness and see if it is possible to obtain 

better performance from the EA01 layer. After that, we will do further 

characterisation on the completed devices to figure out the role of a 

thermal stable small molecule (EA01) on long-term device stability.  
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7.5. Synthetic Method and Procedures 

3,6-dibromo-9H-carbazole (Carbazole-Br) 

A solution of N-bromosuccinimide (NBS) (6.40 g, 

35.88 mmol, 2 equiv.) in 15.0 mL DMF is added 

dropwise with stirring 9H-carbazole (3.00 g, 17.94 mmol, 1 equiv.) in 20.0 

mL DMF with ice bath. After for 3 h, the reaction mixture is poured into 

250.0 mL ice water, and the crude product is collected by filtration to 

give beige powder. Recrystallisation from H2O/EtOH to afford beige 

powder (4.60 g, 80% yield).   

1H NMR (400 MHz, DMSO) δ 11.60 (s, 1H), 8.43 (d, J = 2.0 Hz, 1H), 7.54 

(dd, J = 8.6, 2.0 Hz, 1H), 7.48 (d, J = 8.6 Hz, 1H). 

3,6-dibromo-9h-carbazole-9-carboxylate 

(Carbazole-Boc) 

3,6-Dibromo-9H-Carbazole (0.50 g, 1.54 mmol, 1 

equiv.) and di-tert-butyl dicarbonate (0.50 g, 2.3o 

mmol, 1.5 equiv.) are dissolved in freshly dried 

THF (15.0 mL) with stirring. 4-

(dimethylamino)pyridine (0.04 g, 0.31 mmol, 0.2 equiv.) is dissolved in 

different  one-necked round bottomed flask and the solution is added to 

the solution dropwise. Then the reaction mixture is heated to 85 ˚C to 

reflux for 3h with stirring. After cooling, the solvent is removed under 

reduced pressure. The crude product is filtered through a pad of silica 

gel using dichloromethane as the eluent and concentrated in vacuo 

(0.53g, 81% yield).  
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1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 8.9 Hz, 2H), 8.03 (d, J = 2.0 Hz, 

2H), 7.57 (dd, J = 8.9, 2.1 Hz, 2H), 1.75 (s, 9H).  

13C NMR (101 MHz, CDCl3) δ 150.47, 137.50, 130.52, 126.30, 122.60, 117.86, 

116.40, 84.84, 28.34. 

3,6-bis(bis(4-

methoxyphenyl)amino)-

9h-carbazole-9H-

carboxylate (Carbazole-

Boc-DAMP) 

To a two-necked round 

bottomed flask, tert-butyl 3,6-dibromo-9h-carbazole-9-carboxylate (0.50 

g, 1.17 mmol, 1 equiv.), bis(4-methoxyphenyl)amine (0.57 g, 2.46 mmol, 

2.1 mmol) and sodium tert-butoxide (0.34 g, 3.49 mmol, 3 equiv.) and 

freshly distilled toluene (15.0 mL) are added. The solution is bubbled 

with argon for 30 min. and then [(t-Bu)3PH.BF4)] (0.07 g, 0.23 mmol, 

20%) and [Pd2(dba)3] (0.11 g, 0.12 mmol, 10%) are added one portion. The 

reaction mixture is heated to reflux  overnight under argon. After 

cooling, the reaction is poured into water, extracted with toluene and 

brine. The solvent is concentrated in vacuo. The combined extracts are 

dried over anhydrous MgSO4, filtered and concentrated under vacuum. 

The compound is purified by column chromatography (Hexane:EtOAc, 

10:1, v:v).  Recrystallisation is performed in hexane to give a white solid 

(0.45 g, 58% yield).  
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1H NMR (400 MHz, DMSO) δ 8.06 (d, J = 9.0 Hz, 2H), 7.46 (d, J = 2.5 Hz, 

2H), 7.03 (dd, J = 9.0, 2.4 Hz, 2H), 6.93 – 6.79 (m, 16H), 3.70 (s, 12H), 1.66 

(s, 9H).  

13C NMR (101 MHz, DMSO) δ 155.33, 150.58, 144.62, 141.71, 133.95, 126.34, 

125.36, 123.78, 117.28, 115.29, 114.27, 84.25, 55.65, 28.27. 

N3,N3,N6,N6-tetrakis(4-

methoxyphenyl)-9H-

carbazole-3,6-diamine 

(Carbazole-DAMP) 

To a 250.0 mL two-necked 

round-bottom flask, 

compound tert-butyl 3,6-bis(bis(4-methoxyphenyl)amino)-9h-

carbazole-9H-carboxylate (0.50 g, 0.69 mmol, 1 equiv.), potassium tert-

butoxide (0.24 g, 2.08 mmol, 3 equiv.) and 60.0 mL dry toluene and 20.0 

mL absolute ethanol are added. The temperature of reaction mixture is 

heated to 85 ˚C to reflux overnight. After cooling, the solution is poured 

into water and extracted with ethyl acetate (3x50 mL). The combined 

organic phase is dried over anhydrous Na2SO4 and concentrated in 

vacuo. Recrystallisation is performed in methanol to give a light green 

colour solid (0.42g, 97% yield). 

1H NMR (400 MHz, DMSO) δ 11.15 (s, 1H), 7.64 (d, J = 2.2 Hz, 2H), 7.40 

(d, J = 8.6 Hz, 2H), 7.06 (dd, J = 8.6, 2.2 Hz, 2H), 6.88 – 6.77 (m, 16H), 

3.69 (s, 12H).  
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13C NMR (101 MHz, DMSO) δ 154.56, 142.68, 140.17, 137.57, 124.95, 124.04, 

123.55, 117.42, 115.08, 112.45, 55.65. 

3,6-bis(di-p-tolylamino)-9H-

carbazole-9-carboxylate 

(Carbazole-Boc-DAP) 

To a two-necked round bottomed 

flask, tert-butyl 3,6-dibromo-9h-

carbazole-9-carboxylate (1.75 g, 4.11 

mmol, 1 equiv.), di-p-tolylamine (1.70 g, 8.64 mmol, 2.1 mmol) and 

sodium tert-butoxide (1.12 g, 12.29 mmol, 3 equiv.) and freshly distilled 

toluene (50.0 mL) are added. The solution is bubbled with argon for 30 

min. and then [(t-Bu)3PH.BF4)] (0.24 g, 0.82 mmol, 20%) and [Pd2(dba)3] 

(0.38 g, 0.42 mmol, 10%) are added one portion. The reaction mixture is 

heated to reflux overnight under argon. After cooling, the reaction is 

poured into water, extracted with toluene and brine. The solvent is 

concentrated in vacuo. The combined extracts are dried over anhydrous 

magnesium sulfate, filtered and concentrated under vacuum. The 

compound is purified by column chromatography (Hexane:EtOAc, 5:1, 

v:v). Recrystallisation is performed in hexane to give a green solid (1.60 

g, 59% yield).   

1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 8.9 Hz, 2H), 7.55 (d, J = 2.3 Hz, 

2H), 7.19 (dd, J = 9.0, 2.3 Hz, 8H), 7.05 (d, J = 7.7 Hz, 8H), 6.97 (d, J = 8.4 

Hz, 8H), 2.32 (s, 12H), 1.74 (s, 9H).  
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13C NMR (101 MHz, CDCl3) δ 145.93, 143.73, 134.95, 131.59, 129.79, 126.62, 

124.99, 123.40, 117.04, 115.93, 83.70, 28.37, 20.74.  

Calc. for C45H43N3O2
+. (M+.):680.3247; found: 680.3253.   

N3,N3,N6,N6-tetra-p-tolyl-

9H-carbazole-3,6-diamine 

(Carbazole-DAP) 

To a 250.0 mL two-necked 

round-bottom flask, compound 

tert-butyl 3,6-bis(di-p-

tolylamino)-9H-carbazole-9-carboxylate (1.60 g, 2.43 mmol, 1 equiv.), 

potassium tert-butoxide (0.82 g, 7.30 mmol, 3 equiv.) and 60.0 mL dry 

toluene and 20.0 mL absolute EtOH are added. The temperature of 

reaction mixture is heated to 85 ˚C to reflux overnight. After cooling, the 

solution is poured into water and extracted with ethyl acetate (3X100 

mL). The combined organic phase is dried over anhydrous Na2SO4 and 

concentrated in vacuo. Recrystallisation is performed in methanol to give 

a dark green colour solid (1.31 g, 97% yield).  

1H NMR (400 MHz, Acetone) δ 10.33 (s, 1H), 7.74 (d, J = 2.1 Hz, 2H), 7.49 

(d, J = 8.6 Hz, 2H), 7.17 (dd, J = 8.6, 2.1 Hz, 2H), 7.03 (d, J = 8.3 Hz, 8H), 

6.90 (d, J = 8.4 Hz, 8H), 2.25 (s, 12H).  

13C NMR (101 MHz, Acetone) δ 146.62, 140.05, 137.79, 130.58, 129.54, 125.31, 

123.87, 122.53, 117.96, 111.88, 19.77. 
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9,9',9''-(5,5,10,10,15,15-

hexahexyl-10,15-dihydro-

5H-diindeno[1,2-a:1',2'-

c]fluorene-2,7,12-

triyl)tris(3,6-bis(2,4-

dimethoxyphenyl)-9H-

carbazole) (EADR01) 

A mixture of 2,7,12-

tribromo-5,5,10,10,15,15-

hexahexyl-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorine (1) (0.25 g, 

0.23 mmol), 3,6-bis(2,4-dimethoxyphenyl)-9H-carbazole (Carbazole-

DMP) (0.40 g, 0.89 mmol), Pd2(dba)3 (0.02 g 0.02 mmol), tri-tert-

butylphosphine tetrafluoroborate (0.012 g, 0.02 mmol), sodium tert-

butoxide (0.086 g, 0.89 mmol) are dissolved in 20.0 mL freshly dried 

toluene in a 50.0 mL two-neck flask under argon atmosphere. The system 

is purged with argon for 30 minutes. Then, the mixture is refluxed at 115 

°C for two days. After 48 h, the reaction is gradually cooled to room 

temperature and the solution is concentrated under vacuum. A brine 

solution (100.0 mL) is added, and the solution is extracted with EtOAc 

(2x100 mL). The combined extracts are dried over anhydrous Na2SO4, 

filtered and concentrated under vacuum. The compound is purified by 

column chromatography (Hexane: EtOAc, 2:1, v:v). Recrystallisation is 

performed in hexane to give a beige colour solid (235 mg, 47% yield).  

1H NMR (400 MHz, Chloroform-d) δ 8.63 (d, J = 8.5 Hz, 3H), 8.32 (dd, J = 

1.7, 0.7 Hz, 6H), 7.80 (d, J = 2.1 Hz, 3H), 7.76 – 7.70 (m, 3H), 7.68 – 7.59 
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(m, 12H), 7.43 (d, J = 9.0 Hz, 6H), 6.70 – 6.63 (m, 12H), 3.92 (s, 18H), 3.88 

(s, 18H), 3.19 – 3.08 (m, 6H), 2.28 – 2.18 (m, 6H), 1.09 (dt, J = 17.7, 5.3 Hz, 

36H), 0.74 (t, J = 6.8 Hz, 18H).  

13C NMR (101 MHz, CDCl3) δ 160.00, 157.59, 155.61, 145.47, 140.15, 139.02, 

138.12, 136.43, 131.59, 130.30, 127.75, 125.77, 124.45, 123.72, 121.28, 109.35, 

104.69, 99.14, 56.12, 55.68, 55.49, 37.00, 31.59, 29.50, 24.13, 22.38, 14.03.  

MALDI-TOF m/z calc. for C147H159N3O12
+(M+): 2158.1918; found: 2158.1896.  

Elemental Anal. calcd. for C147H159N3O12: C, 81.75; H, 7.42; N, 1.95. Found: 

C, 81.25; H, 7.45; N, 1.92. 

9,9',9''-(5,5,10,10,15,15-

hexahexyl-10,15-dihydro-5H-

diindeno[1,2-a:1',2'-

c]fluorene-2,7,12-

triyl)tris(N3,N3,N6,N6-

tetrakis(4-methoxyphenyl)-

9H-carbazole-3,6-diamine) 

(EA01) 

A mixture of 2,7,12-tribromo-

5,5,10,10,15,15-hexahexyl-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorine 

(1) (0.30 g, 0.27 mmol, 1 equiv.), N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-

9H-carbazole-3,6-diamine (Carbazole-DAMP) 0.65 g, 1.05 mmol, 3.9 

equiv.), Pd2(dba)3 (0.05 mg 20%), tri-tert-butylphosphine 

tetrafluoroborate (0.03 mg, 40%), sodium tert-butoxide (0.10 mg, 1.05 

mmol, 3.9 equiv.) are dissolved in 20.0 mL freshly dried toluene in a 100.0 
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mL two-neck flask under argon atmosphere. The system is purged with 

argon for 1 hour. Then, the mixture is refluxed at 115 °C overnight. The 

reaction is cooled to the room temperature and concentrated under 

vacuum. The concentrated solution is extracted with ethyl acetate 

(EtOAc) (2x100 mL). The combined extracts are dried over anhydrous 

Na2SO4, filtered and concentrated under vacuum. The compound is 

purified by column chromatography (Hexane:EtOAc, 4:1, v:v). 

Recrystallisation is performed in hexane to give a light green solid (0.56 

g, 74 % yield).  

1H NMR (500 MHz, DMSO) δ 8.57 (d, J = 8.6 Hz, 3H), 7.81 (d, J = 2.0 Hz, 

3H), 7.71 (s, 6H), 7.68 – 7.62 (m, 3H), 7.29 (d, J = 8.8 Hz, 6H), 7.08 (d, J = 

8.8 Hz, 6H), 6.91 (d, J = 8.4 Hz, 24H), 6.81 (d, J = 8.8 Hz, 24H), 3.70 (s, 

36H), 3.02 – 2.96 (m, 6H), 2.30 – 2.21 (m, 6H), 0.98 – 0.85 (m, 36H), 0.54 

(t, 18H).   

Calc. for C183H189N9O12
+. (M+.): 2704.4450; found: 2704.4458.   

Elemental Anal. calcd. for C183H189N9O12: C, 81.21; H, 7.04; N, 4.66. Found: 

C, 80.94; H, 7.16; N, 4.60. 
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9,9',9''-(5,5,10,10,15,15-hexahexyl-

10,15-dihydro-5H-diindeno[1,2-

a:1',2'-c]fluorene-2,7,12-

triyl)tris(N3,N3,N6,N6-tetra-p-

tolyl-9H-carbazole-3,6-

diamine) (EA02) 

A mixture of 2,7,12-tribromo-

5,5,10,10,15,15-hexahexyl-10,15-

dihydro-5H-diindeno[1,2-a:1',2'-

c]fluorine (1) (0.30 g, 0.27 mmol, 1 equiv.), N3,N3,N6,N6-tetra-p-tolyl-

9H-carbazole-3,6-diamine (Carbazole-DAP) (0.48 g, 0.87 mmol, 3.1 

equiv.), Pd2(dba)3 (0.05 mg 20%), tri-tert-butylphosphine 

tetrafluoroborate (0.03 mg, 40%), sodium tert-butoxide (0.10 mg, 1.05 

mmol, 3.9 equiv.) are dissolved in 20.0 mL freshly dried toluene in a 100.0 

mL two-neck flask under argon atmosphere. The system is purged with 

argon for 1 hour. Then, the mixture is refluxed at 115 °C overnight. The 

reaction is cooled to the room temperature and concentrated under 

vacuum. The concentrated solution is extracted with EtOAc (2x200 mL). 

The combined extracts are dried over anhydrous Na2SO4, filtered and 

concentrated under vacuum. Recrystallisation is performed in hexane to 

give a light grey solid (0.50 g, 74 % yield).  

1H NMR (500 MHz, DMSO) δ 8.62 (d, J = 8.6 Hz, 3H), 7.84 (d, J = 2.2 Hz, 

9H), 7.70 (dd, J = 8.4, 2.1 Hz, 3H), 7.35 (d, J = 8.7 Hz, 6H), 7.17 (dd, J = 8.7, 

2.2 Hz, 6H), 7.05 (d, J = 8.1 Hz, 24H), 6.90 (d, J = 8.5 Hz, 24H), 3.10 – 2.98 
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(m, 6H), 2.35 – 2.27 (m, 6H), 2.25 (s, 36H), 1.04 – 0.87 (m, 36H), 0.82 – 

0.66 (m, 12H), 0.58 (t, J = 6.9 Hz, 18H).   

Calc. for [C183H189N9
+.],[M+.]: 2512.5060; found: 2512.5087.  

Elemental Anal. calcd. for C183H189N9: C, 87.41; H, 7.58; N, 5.01. Found: C, 

85.25; H, 7.71; N, 4.69. 
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The general aim of this thesis was to analyse the potential and improve 

the efficiency and long-term stability of PCS with an interfacial layer and 

self-assembled small molecules. To achieve these goals, the designs, 

syntheses, and characterisations of new truxene & Lewis base-based 

interfacial layer, self-assembled hole selective small molecules, and 

truxene-based p-type small molecules have been described with their 

photovoltaic applications in PSCs.  

Moreover, we have demonstrated that the use of photo-induced 

transient optoelectronic techniques, such as PI-TPV, PI-TPC, and PI-CE 

is extremely useful for obtaining the information about the charge carrier 

recombination in PSCs. Additionally, we carried out MMP tracking to 

measure the stability of the perovskite-based devices at the real working 

conditions and reported these data from multiple diodes for giving 

average T80% values.  

In this section, the general conclusion of this thesis will be explained 

briefly for each chapter. 

In Chapter 3, we designed and synthesised a new Lewis base based on a 

truxene core interfacial small molecule to passivate surface defects in the 

MAPI perovskite layer, specifically the non-coordinated lead. The 

truxene-based small molecule decreased the number of defects at the 

MAPI surface, increasing luminescence lifetime by carrying out 

interfacial charge transfer processes with the MAPI thin film upon 

illumination. Moreover, we improved the potential of Trux-FPy 

interfacial layer in lead-based perovskite device by showing its 

interaction with the uncoordinated lead ions by using UV-vis absorption. 
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However, the Trux-FPy interfacial layer did not ensure improvement in 

the interfacial carrier recombination processes as expected, when PI-CE, 

PI-TPV and PI-TPC techniques are applied to the completed perovskite 

device.  

In Chapter 4, we used TT1 as a self-assembled hole-transporting 

monolayer in p-i-n configuration PSCs. In this study, TT1 is synthesised 

by using a novel synthetic route to increase the yield of phthalocyanine 

derivative. Then, TT1 is used as a self-assembled hole selective monolayer 

in MAPI PSCs with PCE close to 15%, while PEDOT:PSS-based PSCs' PCE  

is close to 14% at 1 sun illumination conditions. We observed that TT1-

based perovskite devices showed higher VOC than PEDOT:PSS, due to 

having higher HOMO energy values. To support our results, we 

measured the differential capacitance of the complete devices, including 

the evaluation of the carrier recombination order under operando 

conditions. We concluded that, the differences observed in the VOC value 

might be attributed on the variations in HOMO energy values and not 

due to differences in charge carrier recombination at the device. As a 

consequence, using phthalocyanine derivative as SAMs in perovskite 

devices can give a new perspective to design a new charge selective layer 

for PSCs.  

In Chapter 5, we demonstrated that the molecular design of the SAMs 

as a charge selective layer is an important key for having stable and 

efficient PSCs. We designed carbazole-based small molecule (EADR03) 

with benzoic acid substituent because of its good electron donor 

properties and passivating effects on the perovskite surface. This small 
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molecule is modified with an extra phenyl ring (EADR04) for increasing 

the decomposition temperature of the small molecule, increasing the 

device stability at 85 °C. Additionally, the 1,3-dimethoxybenzene is added 

to these molecules to promote a hydrophilic surface once the SAMs are 

deposited and thus, obtaining more homogenous and compact 

perovskite film. The perovskite devices based on EADR03 and EADR04 

exhibited excellent PCE over 21% when compared to PTAA based cells. 

Moreover, the EADR04 based devices T80% reached more than 2000 h. 

We have shown that, after proper optimisation, the SAMs enhanced 

tremendously the long-term stability of the completed perovskite 

devices. 

In Chapter 6, the perovskite-based device optimisation and 

performance using three new SAMs based on triphenylamine core 

synthesised had been described. The optimisation process indicated that 

the selection of different solvents used for the dip-coating process of 

SAMs deposition plays a critical role in the device performance. We 

found that the methoxy group position affects the wettability, 

consequently increasing the average grain size and decrease the grain 

boundaries density in the perovskite layer. The perovskite device 

performance with triphenylamine-based SAMs have the best PCE is 

19.8%, 19.6%, and 19.7% for a terminated dimethoxy group at position 

para-&ortho- (RC24), ortho-&meta- (RC25), and para-&meta- (RC34), 

respectively. Moreover, we demonstrated that the terminal moieties 

impact the stability of the device and RC24, RC25, and RC34 based 

perovskite cells that lose around 3%, 4%, and 5% of their initial PCE after 

120 seconds. 
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In Chapter 7, we report the design and synthesis of three new truxene-

based charge selective small molecules terminated with carbazole and 

diphenylamine-based electron-donating moieties. They are 

characterised thermally, optically, and electrochemically and their 

charge transfer properties are determined with TCSPC measurements. 

After having strong evidence about their hole selective properties, they 

have been employed as HSL in n-i-p configuration PSCs. For preliminary 

studies, the triple cation perovskite layer is used as an absorber, and 

Spiro-OMeTAD is used as a reference HSL. We obtained a good 

photovoltaic performance from EA01 PCE of ~17%, while Spiro-OMeTAD 

PCE is more than >20%. Unfortunately, EADR01 and EA02 did not show 

interesting results when applied with the same conditions studied for 

EA01. In future studies, we will change the thickness of HSLs by playing 

with the solution concentration of small molecules or chemical dopants 

to obtain better performance from HSLs. Moreover, we will replace the 

CsFAMA with another perovskite composition for having better energy 

alignment with HSLs. In addition, the role of the thermally stable small 

molecules in the long-term device stability of PSCs will be checked. 
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Appendix  

1H/13C NMR Spectra 

 

Figure A1. 1H NMR spectrum of compound 1a 
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Figure A2. 13 C NMR spectrum of compound 1a 

 

 

Figure A3. 1H NMR spectrum of compound 1b 
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Figure A4. 13C NMR spectrum of compound 1b 

 

 

Figure A5. 1H NMR spectrum of compound 1 
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Figure A6. 13C NMR spectrum of compound 1 

 

 

Figure A7. 1H NMR spectrum of compound Trux-FPy 
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Figure A8. 13C NMR spectrum of compound Trux-FPy 

 

 

Figure A9. 1H NMR of TT1 
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Figure A10. 1H NMR spectrum of EADR03-COOEt 

 

Figure A11. 13C NMR spectrum of EADR03-COOEt 
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Figure A12. 1H NMR spectrum of EADR03 

 

Figure A13. 13C NMR spectrum of EADR03 
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Figure A14. 1H NMR spectrum of EADR04-COOMe 

 

Figure A15. 13C NMR spectrum of EADR04-COOMe 
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Figure A16. 1H NMR spectrum of EADR04 

 

Figure A17. 13C NMR spectrum of EADR04 
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Figure A18. 1H NMR of 3,6-Dibromo-9H-Carbazole 
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Figure A19. 1H NMR of tert-butyl 3,6-dibromo-9h-carbazole-9-
carboxylate (Carbazole-Boc) 

 

Figure A20. 13C NMR of tert-butyl 3,6-dibromo-9h-carbazole-9-
carboxylate (Carbazole-Boc) 
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Figure A21. 1H NMR of tert-butyl 3,6-bis(bis(4-methoxyphenyl)amino)-
9h-carbazole-9H-carboxylate (Carbazole-Boc-DAMP) 

 

Figure A22. 13C NMR of tert-butyl 3,6-bis(bis(4-methoxyphenyl)amino)-
9h-carbazole-9H-carboxylate (Carbazole-Boc-DAMP) 
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Figure A23. 1H NMR of N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9H-
carbazole-3,6-diamine (Carbazole-DAMP) 

 

Figure A24. 13C NMR of N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9H-
carbazole-3,6-diamine (Carbazole-DAMP) 
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Figure A25. 1H NMR of tert-butyl 3,6-bis(di-p-tolylamino)-9H-carbazole-
9-carboxylate (Carbazole-Boc-DAP) 

 

Figure A26. 13C NMR of tert-butyl 3,6-bis(di-p-tolylamino)-9H-
carbazole-9-carboxylate (Carbazole-Boc-DAP) 
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Figure A27. 1H NMR of N3,N3,N6,N6-tetra-p-tolyl-9H-carbazole-3,6-
diamine (Carbazole-DAP) 

 

Figure A28. 13C NMR of N3,N3,N6,N6-tetra-p-tolyl-9H-carbazole-3,6-
diamine (Carbazole-DAP) 
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Figure A29. 1H NMR spectrum of EADR01 

 

Figure A30. 13C NMR spectrum of EADR01 
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Figure A31. 1H NMR of 9,9',9''-(5,5,10,10,15,15-hexahexyl-10,15-dihydro-5H-
diindeno[1,2-a:1',2'-c]fluorene-2,7,12-triyl)tris(N3,N3,N6,N6-tetrakis(4-
methoxyphenyl)-9H-carbazole-3,6-diamine) (EA01) 
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Figure A32. 1H NMR of 9,9',9''-(5,5,10,10,15,15-hexahexyl-10,15-dihydro-5H-

diindeno[1,2-a:1',2'-c]fluorene-2,7,12-triyl)tris(N3,N3,N6,N6-tetra-p-tolyl-

9H-carbazole-3,6-diamine) (EA02) 

 

Figure A33. 1H NMR spectra of RC25-CHO in CD2Cl2. *Residual solvent 
peaks. 
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Figure A34. 13C NMR spectra of RC25-CHO in CD2Cl2. *Residual solvent 
peaks. 

 

Figure A35. 1H NMR spectra of RC34-CHO in CD2Cl2. *Residual solvent 
peaks. 
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Figure A36. 13C NMR spectra of RC34-CHO in CD2Cl2. *Residual solvent 
peaks. 

 

Figure A37. 1H NMR spectra of RC24 in DMSO-d6. *Residual solvent 
peaks. 
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Figure A38. 13C NMR spectra of RC24 in DMSO-d6. *Residual solvent 
peaks. 

 

Figure A39. 1H NMR spectra of RC25 in DMSO-d6. *Residual solvent 
peaks. 
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Figure A40. 13C NMR spectra of RC25 in DMSO-d6. *Residual solvent 
peaks. 

 

Figure A41. 1H NMR spectra of RC34 in DMSO-d6. *Residual solvent 
peaks. 
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Figure A42. 13C NMR spectra of RC34 in DMSO-d6. *Residual solvent 
peaks. 

MS Spectra 

 

Figure A43. MALDI-TOF-MS spectra in wide and narrow mass ranges of 
Trux-FPy 
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Figure A44. LC-Mass of TT1 in ACN 

 

Figure A45. The MALDI-TOF-MS of TT1 on ground steel plate. 
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Figure A46. ESI-MS of EADR03 
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Figure A47. ESI-MS of EADR04 
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Figure A48. ESI-mass spectra of RC24 

 

 

 

Figure A49. ESI-mass spectra of RC25 
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Figure A50. ESI-mass spectra of RC34 

 

 

Figure A51. MALDI-TOF-MS spectra in wide and narrow mass ranges of 
EADR01 
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Figure A52. MALDI-TOF-MS spectra in wide and narrow mass ranges of 
EA01 

 

Figure A53. MALDI-TOF-MS spectra in wide and narrow mass ranges of 
EA02 
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IR Spectra 

 

Figure A54. ATR-IR spectrum of RC24-CHO 

 

 

Figure A55. ATR-IR spectrum of RC24 
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Figure A56. ATR-IR spectrum of RC25-CHO 

 

 

Figure A57. ATR-IR spectrum of RC25 
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Figure A58. ATR-IR spectrum of RC34-CHO 

 

 

Figure A59. ATR-IR spectrum of RC34 
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Figure A60. The XPS high-resolution survey spectra of a) C1s and b) O1s 
for UV-Ozone treated ITO. 

 

Figure A61. The X-ray photoelectron spectroscopy at the a) C1s and b) O1s 
c) N1s regions of ITO glass with and without EAR03 and EADR04. The bare 

UNIVERSITAT ROVIRA I VIRGILI 
LOW-MOLECULAR WEIGHT MOLECULES AS SELECTIVE CONTACTS FOR PEROVSKITE SOLAR CELLS 
Ece Aktaş 
 



 Appendix 

330 
 

ITO has residual signals in these regions due to transferring samples 
between glovebox. 

 

Figure A62. The In peaks of the ITO substrates with and without EADR03 
and EADR04, which are measured using XPS after finishing the UPS 
measurement. 

Table A. 1. Fit results for the C1s and O1s regions 

ITO C1s 

Peak BE (eV) 
Intensity 

(a.u.) 

Gaussian 
FWHM 

(eV) 

Lorentzian 
FWHM (eV) 

Total 
FWHM 

(eV) 

C-C/C-H 284.9 2959 0.6 1.20 1.55 

C-O 285.8 1701 0.6 1.20 1.55 

O-C=O 
att. 

287.0 482 0.6 1.20 1.48 

O-C=O 289.1 635 0.6 1.20 1.55 
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ITO O1s 

Peak BE (eV) 
intensity 

(a.u.) 

Gaussian 
FWHM 

(eV) 

Lorentzian 
FWHM 

(eV) 

Total 
FWHM 

(eV) 

ITO 530.1 34747 0.6 0.95 1.31 

hydroxides 530.8 29983 0.6 1.07 1.43 

C=O 531.8 18990 0.6 1.20 1.55 

C-O 532.9 5591 0.6 1.20 1.55 

 

EADR03 C1s 

Peak BE (eV) 
Intensity 

(a.u.) 

Gaussian 
FWHM 

(eV) 

Lorentzian 
FWHM (eV) 

Total 
FWHM 

(eV) 

C-C/C-H 284.6 14194 0.6 1.10 1.45 

C-O 286.0 4712 0.6 1.20 1.55 

O-C=O 
att. 

287.0 1438 0.6 0.94 1.30 

O-C=O 288.5 120 0.6 0.80 1.17 
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EADR03 O1s 

Peak BE (eV) 
Intensity 

(a.u.) 

Gaussian 
FWHM 

(eV) 

Lorentzian 
FWHM 

(eV) 

Total 
FWHM 

(eV) 

ITO 530.1 25875 0.6 1.04 1.40 

hydroxides 530.9 18607 0.6 1.20 1.55 

C=O 531.8 8765 0.6 1.20 1.55 

C-O 533.1 7968 0.6 1.16 1.51 

 

EADR04 C1s 

Peak BE (eV) Intensity 
(a.u.) 

Gaussian 
FWHM 

(eV) 

Lorentzian 
FWHM (eV) 

Total 
FWHM 

(eV) 

C-C/C-H 284.7 17351 0.6 1.05 1.41 

C-O 285.9 7293 0.6 1.20 1.55 

O-C=O 
att. 

287.0 2340 0.6 0.87 1.24 

O-C=O 289.2 636 0.6 1.08 1.44 
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EADR04 O1s 

Peak BE (eV) 
Intensity 

(a.u.) 

Gaussian 
FWHM 

(eV) 

Lorentzian 
FWHM 

(eV) 

Total 
FWHM 

(eV) 

ITO 530.1 15265 0.6 0.96 1.32 

hydroxides 530.8 17432 0.6 1.20 1.55 

C=O 531.9 7454 0.6 1.20 1.55 

C-O 533.2 10129 0.6 1.20 1.55 

 

 

 

Figure A63. The X-ray photoelectron spectroscopy at the a) C1s and b) O1s 
of ITO glass with and without RC24, RC25 and RC34. The bare ITO has 
residual signals in these regions due to transferring samples between 
glovebox. 
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Figure A64. The In peaks of the bare ITO glass, ITO/RC24, ITO/RC25 and 
ITO/RC34 substrates, which are measured using XPS after finishing the 
UPS measurement. 

 

 

Figure A65. Ultra-violet photoelectron spectra (UPS) of the SAMs on ITO 
a) the work function and b) valence band onset values are extracted for the 
energy band edge diagram in Fig. 1b of the main text (the excitation energy 
is 21.22 eV). 
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Figure A66. UPS of the SAMs on ITO a) the work function and b) valence 
band onset values are extracted for the energy band edge diagram in Fig. 
1b of the main text (the excitation energy is 21.22 eV). 

Table A.2. The summarised fitting data for the C1s and O1s regions. 

RC24 C1s 

Peak BE (eV) 
Intensity 

(a.u.) 
Gaussian 

FWHM (eV) 
Lorentzian 
FWHM (eV) 

Total 
FWHM 

(eV) 

C-C/C-H 284.7 1604 0.6 1.20 1.46 

C-O 285.7 475 0.6 1.20 1.46 

O-C=O 
att. 286.7 337 0.6 1.20 1.46 

O-C=O 288.9 93 0.6 1.20 1.46 
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RC24 O1s 

Peak BE (eV) 
Intensity 

(a.u.) 

Gaussian 
FWHM 

(eV) 

Lorentzian 
FWHM (eV) 

Total 
FWHM 

(eV) 

ITO 530.0 1518 0.6 1.20 1.46 

hydroxides 530.9 663 0.6 1.20 1.46 

C=O 531.8 296 0.6 1.20 1.46 

C-O 533.1 200 0.6 1.20 1.46 

RC25 C1s 

Peak BE (eV) 
Intensity 

(a.u.) 
Gaussian 

FWHM (eV) 
Lorentzian 
FWHM (eV) 

Total 
FWHM 

(eV) 

C-C/C-H 284.8 1521 0.6 1.20 1.46 

C-O 285.8 556 0.6 1.20 1.46 

O-C=O 
att. 286.8 322 0.6 1.20 1.46 

O-C=O 289.1 67 0.6 1.20 1.46 

RC25 O1s 

Peak BE (eV) 
Intensity 

(a.u.) 

Gaussian 
FWHM 

(eV) 

Lorentzian 
FWHM (eV) 

Total 
FWHM 

(eV) 

ITO 530.0 1431 0.6 1.20 1.46 

hydroxides 530.9 642 0.6 1.20 1.46 

C=O 531.8 295 0.6 1.20 1.46 

C-O 533.0 189 0.6 1.20 1.46 
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RC34 C1s 

Peak BE (eV) 
Intensity 

(a.u.) 
Gaussian 

FWHM (eV) 
Lorentzian 
FWHM (eV) 

Total 
FWHM 

(eV) 

C-C/C-H 284.5 3100 0.6 1.20 1.46 

C-O 285.6 1100 0.6 1.20 1.46 

O-C=O 
att. 286.6 773 0.6 1.20 1.46 

O-C=O 289.0 212 0.6 1.20 1.46 

RC34 O1s 

Peak BE (eV) 
Intensity 

(a.u.) 

Gaussian 
FWHM 

(eV) 

Lorentzian 
FWHM (eV) 

Total 
FWHM 

(eV) 

ITO 530.0 1377 0.6 1.20 1.46 

hydroxides 530.9 790 0.6 1.20 1.46 

C=O 531.8 309 0.6 1.20 1.46 

C-O 533.0 260 0.6 1.20 1.46 
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Figure A67. Le-Bail refinement from a laboratory XRD pattern at RT of 
perovskite layers grown on bare ITO, ITO/RC24, ITO/RC25, and 
ITO/RC34. 
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