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A STATISTICAL ESTIMATE OF RELATIVE DISTRIBUTION OF 
EXTREME SHEAR IN A TALL BUILDING 

1. Introduction 

SUBJECTED TO RANDOM 
EARTHQUAKE SHOCKS 

by 

T. P. Tung and N. M. Newmark 

University of Illinois 

On account of the irregularity of the ground motions in an earth-

quake and of their consequences on structures, a statistical approach has 

been suggested for analyz ing the earthquake response of structures, even 

though the process is known mathematically as "non-stationary. n In the 

present paper. the method of random walks is used to obtain a frequency 

distribution function for the story shear developed at different levels of 

a tall building simulated by a tall uniform shear beam. Later a normal 

distribution is suggested for transforming the discrete distribution to 

a continuous one. 

The lacking of a statistical analysis of the ground motion in 

an earthquake prevents the direct assessment of the base shear acting on 

the foundation of a buildingj however, the relative shear at different 

stories can be estimated. This information is believed to be helpful in 

achieving a unified aseismic design of tall buildings. The relative 

distribution of shear is found to be parabolic with respect to the height 

of the structure, which agrees with an early observation. (1) 

(l)EmiliO Rosenblueth, rIA Basis for Aseismic Design of Structures. t! 

Ph.D. Thesis, University of Illinois, 1951. 
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2. Uniform Shear Beam As A Model 

For analyzing the dynamic response of a tall building, a tall uniform 

shear beam has been assumed as an idealized model. One obvious advantage of 

the simulation is the simple equation of motion to be dealt With:(2) 

(2-1) 

where 

a = stiffness per u:n:i.t height 

~ = mass per unit height 

t = time 

y = lateral deflection 

x = elevation above ground 

and the subscripts x or t indicate differentiation with respect to the 

variable indicated. The boundary conditions are that y at x = 0 should be 

equal to the ground motion at a:ny time.? and y ~ a measure of shear, should 
x 

be zero, at the top of the beam. 

Equation (2-1), known as a one dimensional wave equation, has 

been solved explicitly as a sum of two parts 

y = FI (x + vt) + F2 (x ... vt) 

where V =~ is the velocity of propagation of a disturbance along the 

beam. The second part represents a forward wave starting at the base and 

propagating toward the top, and the ~irst part represents a wa~e 

(2) 
Westergaard, H. M., "Earthquake-Shock Transmission In Tall Buildings," 
Eng. News-Record, Ill, 30 NOVo 1933, p. 654-656. 
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moving from the top to the base~ or in most cases, a reflected wave. Thus, 

the solution, at any time; for aDY pOir,t on the beam, can be obtained if 

proper "steps are taken in ascertaining the value for the functions~ 

F{x ± vt), from the given initial conditions. 

If a unit pulse is applied at the base, then because of the 

lateral displacement of the beam, a shear is set up in the beam with a 

magnitude equal to ~ ~ until a reflected wave coming down from the 

top of the beam nullifies the shearu Nevertheless, the stage of zero 

shear remains only until a second shear wave coming up from the base, in 

order to fUlfill the boundary condition at the base, leaves a shear acting 

opposite to the direction of the first shear. As this process proceeds 

indefinitel~, the shear at any po~ut on the beam changes its direction 

alternately but with an intermitten:t lull of a certain length of time 

between the changeso 

Figure 1 schematically illustrates the propagation of shear at 

different heights 0 The length of lull is obviously linearly proportional 

to the height of the point under consideration. 

3 . A Random Walk Problem 

For making a statistical estimate, the ground motion of an earth

quake which shocks the foundation of the structure is assumed to involve 

a large number of random pulses each with equal order of magnitude 0 As a 

result, the state of shear in the structQ~e will be the net effect of the 

shear waves due to the random pulses, traveling from the base to the top, 

and reflecting bac.k to the base 0 When the pulses are traveling along the 

beam, this bears some resemblance to a problem of a random walk in which "a 
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particle may move forward or backward) or may stand still on a line, according 

to specified probabilities. The distance transversed after a large number of 

moves may represent the state of shear at certain points of the beam, the 

base of which has been subjected to a large number of shock pulses. 

Figure 2 shows a two-dimensional plan on which the particle moves. 

In each trial it must move upward one upj.t, but it may also move one unit 

either to the right~ or to the lefto This means the particle may move 

diagonally upward to the right or leftJ or it malf move vertically one unit~ 

but it can never move downward. The probability Pl that the particle may 

take a move to the right represents the chance, at any time during the 

traveling of a single shear wave, of obtaining a positive shear at the 

observed point; P2' for a move to the leftj a negative shear; and q, for a 

straight vertical move, no shear at the observed pOint. Therefore, in view 

of Fig. 1, and because the durations for positive and negative shears are 

equal in one cycle, one finds the result ~ 

and 

= duration of positive shear in one cycle 
period of one cycle 

q=l .... 2p 

= p 

Obviously in the case of a uniform shear beam, p is zero at the top of the 

beam, and 1/2 at the base, and varies linearly throughout the height of the 

structure. 

After N number of moves the position of the particle will be 

N units above the initial horizontal axis, and .M units to the right. 

The probability that the particle will move M units after making N trials, 
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then, represents the chance that the observed point will get a shear of 

magnitude M after the foundation has been shocked by N pulseso For 

evaluating the probability, assume that among the N moves, there are i 

units to the right; j, to the le.ft; and k» vertical moves. Then the 
.. k 

probability for the occurrence o~ such an event is p~pJq 0 Since there 

is no restriction imposed on the order of occurrence of the individual 

events, the compound probability should be the sum of those of the 

individual trials, namely, 

P(M,N) = I N! (3-l) i! j !k! 

subject to the conditions that 

N=i+j+k (3-2) 

M = i - j (3-3) 

This is a multi-normal distribution. It can be shown that its asymptotic 

form will tend to be normal, in view of the Central Limit Theorem. 

Making use of Eqs. (3-2) and (3-3), one may reduce Eqo (3-1) to 

N-k k 
o P q (3-4) 

in which k takes on all integral. values from 0 to (N-M)/2, if' N and M are 

both even; but it will be 1,3, 5, ..... N-M if N is even, and M oddo 

Equation (3 ... 4) is not a series but a polynomial. For the sake of studying 

the probability an asymptotic form would be easy to deal with. By 

.factoriZing pNN! one obtains another expression for t~e probability P(M,N). 



for M odd 
N-IMI 

2 

Nt N 
" p P(M,N) = I 

(2r)! (N;M _ r)~ (N;M ~ r)! 

for M even 

N .... M 

P(M,N) = L 
k=1,p3,95"" 

Nu N 
o p 

6. 

2r 
(9.) ; 
P 

(3-5a ) 

(3-5b) 

Rearranging the expression shows that the polynomial can be 

represented by a hypergeometric function F: 

(3-6) 

N-l~M 3 9. 2 J 
-- ; _0 (-) :; m = "odd 

2 2' 2p . 

By one of the transformation rules it has been found that 

N ... M 

[ 
N4M N-M 1 q 2 J [ q 2 J·-'.2 [ N-+M F - - ... - . - . (-) = 1... (~) . F 1 + --- . 
2' 2 '2' 2p .2p 2" 



7· 

and 

N~M 

F [-
2 J = [1 ~ 

- 2 

[1 N-l-+M N ... l ... M 2.. (~p) (9:...)2 J F +!!:! N-l-M 
2 ' ,'" 2 

; 
2 ' 2p 2 ' 2 

; 

_ 1 J (3-1) , 

The right-hand members can. be recognized as the standard form of Legendre 

Polynomials 0 

40 Asymptotic Expre~sion of the Distribution Functions. 

The Legendre polYnomials of higher orders are not easy to work 

with when they involve large numbers of terms as in the present case. An 

asymptotic expression will be useful in interpreting the result without 

sacrificing accuracy, as N takes on large values. 

It is known that the distribution function will tend to be normal 

as N takes on large values. This has been clearly shown, for p = 1/2, in 

Chandrasekhar's paper. (3) For illustrative purposes it is shown herein 

also for p = 1/4 and q = 1/20 For M an even numberJ 

P(M,N) F (.... N+M" N-M: 
2 ~ """2" (4 ... 1) 

{3 )Chandrasekhar J S., 7tStochastic Problems in Physics and Astronomy, n 

Reviews of Modern Physics, Vol 0 153 Noo 10 January 1943" 

3 . 
2 ~ 
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Since q/2p = 1, one could make use of the £ollowing identity that 

Then, by means of Sterling~ s formula;1 
\ 

In (z co ~) In (z ... 1) "" z + 1 + ~~ + 0 (12) 
z 

a simple asymptotic form is derived for P(M,N) 

P(M,N) rv_l _ exp (- ~) 
-Jiii( 

when N > > 10 

8. 

(4-2) 

(4-3) 

(4 .. 4) 

With the same manip~ation one will get the identical result 

when M takes on odd values, as one would expectc 

Equation (4 ... 4) shows that the distribution function is an even 

function in M. It follows directly that the mean is zero. This agrees 

perfectly with physical intuition that the probability o£ getting a 

same as that of getting a negative shear of 

the same order o£ magnitudeo 

Nevertheless, a comparison between Eq. (4-4) and Eq. (12) in 

Chandrasekhar!s paper shows that not only the derived distribution 

functions are of normal type, but also the ratio of the variances is 

1/2. This implies that the ratio of the standard deviations is l/~. 

Therefore, the comparison of standard deviations which will give a direct 



appraisal of expected extreme shear at different story heights may be 

achieved by comparing the distribution functions when M is taken as zero. 

This simplifies the algebraic manipulations to the extent that watson's 

asymptotic formula(4) can be utilized; otherwise a revision of the formula 

which is beyond the scope of the present study would have to be madeo 

Upon taking M = 0, the first of Eqo (3-6) is then reduced to 

P(O,N) (4"'5) 

For the stories below the midheight of the building, in which q < 2pJ the 

following transformation rule for the hypergeometrical series is valid. 

By means of the Watson and Sterling formulas, on taking 

+ (L) 
2 

1 
~= 

2I;! = cosh £ 
1 _ (L)2 

2p 

one can arrive at the following simplified version 

, N+l 
e .. 2"" r(~), 

1/2' .+ ° 
(!) 
2 

. (N + ~)£/2 -(N + ~)£/2 cosh (.N~2l)S/2 
e + e 
-~;=:=:;=;:=---- = --;::=;:'::::;::;:;=-

-}2 cosh s/2 -Vcosh s/2 

(4-6) 

.{ 4)Hobson, Earnest Williams, Theory of Ellipsoidal Harmonics and Spherical 
, Harmonics, p. 307, Formula B. 
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Denoting 

0'1/2 = standard deviation ~or p = 1/2 

0' = standard deviation ~or 0 < P < 1/2 

one obtains immediately the ratio of the standard deviations as 

-N 
= (2p ) 

cosh ! cosh (N +~) ! 

~ ( 4p )N 2 jeosh s/2 
-s s/4 = = ,J2:P" .( 4-7) 

1 + e e 

The same result can be obtained for the probability with which the 

particle walking randomly makes an odd number o~ horizontal units ~ter N 

moves. Since the reduction of a distribution function to its asymptotic 

form is essentially a mathematical manipulation, settingM = 0 in the 

second of Eqs. (3-6)7 which is only valid for M odd, is legitimate. 

Similarly, for the distribution function of the probable shear 

in the upper half of the building, with 1/2 ~ q ~ 1 and 1/4 ~p > 0 a 

like expression is derived~ 

N/2 

P(O,N) = I 
T.=o 

This form is used in order that the argument of the hypergeometric function 

will not become infinitely large. Upon similar manipulation,' using the 

Sterling and watson formulas, and an asymptotic expression for the Legendre 
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polynomial, it is found that 

N~l 

[ 
2-" [ 2 -: 2 

F -:' - N;l ; l ; (~) J = l - (~) J F (l + ~ , l;N ; l ; It> (4-9) 

where 

Then 

[ 
N 1-N 

F 1+ 2 '2;1 

(4-10) 

The above expression agrees with the following observations, (1) 

as 2p/q becomes very small or nearly vanishes J the distribution function should 

reduce to the &-fUnction; hence F becomes infinitely large; (2) when 2p/q is 

taken as 1, one obtains Eq. (4-4) since 

2 (N-1J'2 eN~/2 I 2 

(1 + cosh ~) ~ N -SJ-'n-b-(l-+-e--""7-"~""') 
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~e ratio of standard deviations., Dp is again found to be 

(4-11) 

5 . Estimate of Extreme Shear 

In practical. design of buildings, the designer usually chooses 

the section of the members of the structure to meet the most probable 

maximum load under different combinations of loading conditionso But for 

economical reasons, a maximum but improbable loading is usually ignored or 

considered with certain reservationso The concept of using factors of safety 

in designing is, in effect, a probabilistic approach 0 The expected loading 

is so proportioned that weight factors are assigned to different loads in 

a wB¥ similar to the computation of expectation of a random variable.? in 

which probabilities serve the function of weight factorso Therefore the 

extreme shear at different floor levels and its distribution, become the 

center of interesto 

The previous analysis has shown that as N becomes large the 

distribution function of the probability that the random walker moves 

M units after N moves, tends to be normal j and the expected value of M 

is zero since the walk is symmetric 0 The implication of the results 

indicates that the dynamic shear; a random variable in the present 

analysis, at different heights of the building possesses a normal 

distribution with a zero mean J hence the dispersion of the trials will 

be of interest 0 
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For a random variable x with a normal distribution,the distribution 

of its extreme value in a population o.f n samples has been derived, (5) from 

which the expectation E{x) and variance Vex) 0.1' the extreme value can be 

calculated 

[ 
lnln n + In 4:1! + 2C (1) J .... 

E{x) = M + cr --I2ln n "" + 0 In n 
2 .v'2ln n 

(J2 2 
V{x) = --- (~) + 0 (~2 ) 

2ln n 0 In n 
(5-1) 

where 

n is the number of samples 

m is the mean of the random variable 

(J is the standard deviation 

C is the Euler Constanta 

For a distribution with zero mean~ the expected extreme shear 

is~ therefore~ directly proportional to the cr of the parental nor.mal 

distributiono 

Since a statistical an~sis of the ground motion is not available, 

the expected extreme base shear (p = 1/2) can not be evaluated. However, 

the ratio D in Eqo (4""7) can reveal, nonetheless, that the ratio of expected 

extreme shear at different heights to the maximum base shear varies 

parabolically with-the height. Based on this theory a unified aseismic 

design may be achieved if the ~istribution of maximum dynamic shear at 

different story heights is assumed to vary parabo1icallyo 

(5)cra.mer~ H~rMathematical Methods of Statistics;' Princeton University Press, 
1951, ppo 375-7. 
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