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Abstract

Automated decision making systems are relied on in increasingly diverse and critical settings.
Human users expect such systems to improve or augment their own decision making in complex
scenarios, in real time, often across distributed networks of devices. This thesis studies binary
decision making systems of two forms. The first system is built from a reciprocal chain, a sta-
tistical model able to capture the intentional behaviour of targets moving through a statespace,
such as moving towards a destination state. The first part of the thesis questions the utility
of this higher level information in a tracking problem where the system must decide whether
a target exists or not. The contributions of this study characterise the benefits to be expected
from reciprocal chains for tracking, using statistical tools and a novel simulation environment
that provides relevant numerical experiments. Real world decision making systems often com-
bine statistical models, such as the reciprocal chain, with the second type of system studied
in this thesis, a neural network. In the tracking context, a neural network typically forms the
object detection system. However, the power consumption and memory usage of state of the
art neural networks makes their use on small devices infeasible. This motivates the study of
binary neural networks in the second part of the thesis. Such networks use less memory and are
efficient to run, compared to standard full precision networks. However, their optimisation is
difficult, due to the non-differentiable functions involved. Several algorithms elect to optimise
surrogate networks that are differentiable and correspond in some way to the original binary net-
work. Unfortunately, the many choices involved in the algorithm design are poorly understood.
The second part of the thesis questions the role of parameter initialisation in the optimisation
of binary neural networks. Borrowing analytic tools from statistical physics, it is possible to
characterise the typical behaviour of a range of algorithms at initialisation precisely, by studying
how input signals propagate through these networks on average. This theoretical development
also yields practical outcomes, providing scales that limit network depth and suggesting new
initialisation methods for binary neural networks.
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Chapter 1

General introduction

1.1 Motivation

This thesis is concerned with the study of automated decision making systems, and is divided into
two parts. The first part, consisting of chapters 2 and 3, considers a statistical model, known
as a reciprocal chain, used in a problem of target tracking. The specific problem considered
is the case of targets whose dynamics depend not only on local constraints, such as physical
obstacles, but also on higher levels of behaviour, such as an intention to proceed to a destination.
Reciprocal chains are proposed as a model able to capture this sort of behaviour, and this claim
is investigated. The second part of the thesis, consisting of chapters 4 through 8, studies large
multi-layer neural networks used for generic classification tasks in a supervised learning context,
in the difficult case that the parameters are constrained to have low precision. A theoretical study
of new algorithms is presented, with experimental results on real data testing the theoretical
predictions. As with any body of work, this thesis can be placed both within a domain of
application, or a domain of knowledge, such as an established discipline. The two parts of the
thesis are motivated by considering both perspectives.

In terms of a domain of application, modern target tracking systems are a prime example
of large scale autonomous decision making systems which motivate both parts of the thesis.
Tracking problems are widespread through many applications including automatic surveillance,
vehicle navigation, video labelling, human-computer interaction and activity recognition. Fur-
thermore, human users expect such systems to improve or augment their decision making in real
time and for increasingly complex scenarios. The key concept motivating both reciprocal chain
models and low-precision neural networks is the idea of computing “at the edge”. This term
refers to the notion that the data generated by a network of devices will be “stored, processed,
analysed, and acted upon locally”, close to or at the edge of the network of devices [1]. The need
for such systems will increase with higher throughput of data, necessitating the move away from
the paradigm of cloud computing [2], where data is relayed for central processing by a remote
data centre, towards processing at the edge.

This thesis argues that target trackers based on models like reciprocal chains, and low-
precision neural networks for object detection, are examples of new automated decision making
systems that enable increasingly advanced computation and decision making at the edge. A
target tracker based on reciprocal chains is an example of what could be called a “meta-level
tracker”, processing higher level information about targets. It is therefore envisaged that recip-
rocal chains could be suited for local, autonomous decision making, and outline examples under

1



2 Chapter 1. General introduction

a more detailed overview of modern tracking systems, in Section 1.2. Neural networks have
proven to be highly successful at a range of tasks, but most prominently in the classification of
objects in natural images [3]. Thus they have found widespread use within tracking systems.
Most commonly, neural networks form the basis of object detectors in visual tracking, however
they are often costly in terms of run-time or power consumption. It is therefore desirable to
devise low precision variants of neural networks, in particular binary networks. The thesis also
discusses the role of neural networks and hardware considerations within tracking systems in
more detail in Section 1.2.

A second line of motivation for this thesis comes from taking an academic perspective on
the work, which places the thesis within a discipline. The emerging field of “machine learning”,
which could be described as algorithmic decision making under uncertainty, is currently seeing
the interaction of several established disciplines, including for example statistics, optimisation,
control theory and computer vision, to name but a few. Both parts of the thesis can be comfort-
ably placed in this new discipline. In the remainder of this opening motivational statement, both
parts of the thesis are described in this context, touching on statistics and statistical learning
theory, stochastic control theory, dynamical systems and optimisation.

From a statistical decision making point of view, the first part considers a problem of binary
decision making assuming knowledge of the data generation model, in particular the reciprocal
chain model for target dynamics. The second part of the thesis removes the assumption of
this knowledge, and instead studies an algorithmic “learning” approach to decision making
based on neural network models, in a supervised learning context. The two approaches can be
distinguished as using, respectively, generative and discriminative models, each of which has
advantages and disadvantages. Generative models typically have the advantage of being “more
understandable” to the human user of such an automated decision making system, although
they are seen as less flexible and more tedious to design. On the other hand, discriminative
models, in particular neural networks, are flexible and relatively easy to deploy, but can appear
as “black boxes” and as such may not leave a user confident in their decision making. Modern
decision making systems will require elements of both modelling approaches. Indeed, as will be
seen in the next section’s overview of tracking systems, using both approaches in combination
is common practice. The specific problems this thesis studies are illustrative of the differences
in the modelling approaches, and the contributions made both improve the capabilities and the
understanding of systems built from both models.

Decision making based on generative models, while purportedly more understandable, carries
its own risks. In particular, if the assumed model does not accurately represent the phenomena
of interest. This can be partially addressed through a higher level model selection inference
steps, although this is generally computationally difficult. For reciprocal chain models, one can
consider their validity by comparing them to alternative models of higher order target dynamics.
Arguably the most common idea is to considering an “agent” that exists in a statespace, equipped
with certain goals or objectives to achieve over some time frame. A mathematical formulation
of this idea is known as a Markov decision process [4], which is generally considered by cognitive
scientists as a useful model of human agency [5]. In such a model, the dynamics of the state
evolution depends not only on the environment but also the actions or control the agent exerts,
with the actions selected according to some rule, or policy. This thesis argues that reciprocal
chains can capture qualitatively similar dynamics to those based on Markov decision process
models of agency, without the additional framework of decision making that leads to an agent
taking actions. It is also possible to formally relate reciprocal chains, in special cases, to a class
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of Markov decision processes studied under the title of path integral or Kullback-Liebler control
theory.

Discriminative models, such as neural networks, are optimised to make decisions without
knowledge of the data generation model. For an image classification task, the basic process of
“training” refers to the adaptation of the network parameters so as to correctly classify a finite
set of appropriately labelled images, known as the training set. Eventually the network “learns”
to make correct decisions on unseen data according to some rule. Formally, this rule corresponds
to a decision boundary in the high dimensional feature space of images. Practically, this means
that the network may generalise well from its training set to unseen data, assuming that the
network is presented with data generated in the same manner, or distribution, both at training
and test time.

Since the parameters of a neural network are not related to any causal model of the data
generation process, as in a generative model, some users are concerned with a lack of interpretable
processing when using networks with millions of parameters. However, this may not be crucial
if neural networks are well understood, in terms of their training processes and generalisation
error, as function of the data structure and the algorithm design. The second part of the
thesis contributes toward building an understanding of the training process of neural networks.
In particular, the role of initialisation in algorithms used to optimise networks with binary
parameters is investigated. The theoretical analysis enables a concrete understanding of how to
initialise the various algorithms, and suggests new algorithm designs.

The principal utility of a binary neural network, as mentioned, is the efficiency at run time,
in terms of power consumption and computation speed, allowing for computing “at the edge”,
on low power devices. The downside to such potential benefits is the increased difficulty of
the optimisation problem, since the standard continuous optimisation techniques developed for
neural networks are not directly applicable. A broad class of algorithms for optimising binary
neural networks take the route of appropriately defining each binary variable as a stochastic
variable. Based on various approximations and leveraging the stochasticity, it is possible to
derive continuous surrogate networks that are open to continuous optimisation methods. How-
ever, the various approximations are not well understood, in terms of specific implementation
or comparison.

The second part of the thesis therefore develops and studies both new and existing algorithms
for the optimisation of several continuous surrogates. The main theoretical contribution is the
analytic treatment of the typical behaviour of such algorithms at initialisation. This is achieved
based on a so called dynamic mean field theory, developed within the field of statistical physics.
The application to neural networks amounts to studying how signals propagate through such
networks on average, and is equivalent to controlling properties of the input-output Jacobian
matrix of the network. The results of this analysis are a set of recursive equations governing the
signal propagation, from which depth scales are derived that limit the maximum trainable depth
of the networks. This thesis sets out to use this theory to study the hyper-parameter initialisation
of these surrogates, and to categorise the networks based on the initialisation properties.

The idea of studying typical behaviour, rather than, for example, worst case behaviour, is
borrowed from the discipline of statistical physics. Given that many of the theoretical and
conceptual advances in neural network theory, including for the binary counterparts, have been
advanced using tools from statistical physics, a significant proportion of the thesis discusses
some of the fundamental ideas of this discipline. Indeed, the overall thrust of the second part
of the thesis aims for a unified discussion of the various disciplines that come into play when
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considering the design of neural network type decision making systems.

Several of the chapters of this thesis have led to publishable works, which are as follows.

Journal publications:

“Track extraction with hidden reciprocal chains” G. Stamatescu, L. B. White, R. Bruce-Doust,
IEEE Transactions on Automatic Control 63 (4), 1097-1104, 2017.

Conference publications:

“Critical initialisation in continuous approximations of binary neural networks” G. Stamatescu,
F. Gerace, C. Lucibello, I. Fuss, L. White. International Conference on Learning Representa-
tions 2020

“Multi-camera tracking of intelligent targets with Hidden Reciprocal Chains”, G. Stamatescu,
A. Dick, L. B. White, 2015 International Conference on Digital Image Computing: Techniques
and Applications (DICTA).

1.2 Modern tracking systems

This section provides a detailed description of modern tracking systems, the domain of appli-
cation which motivates the study of both reciprocal chains and binary neural networks. This
overview considers three elements that largely determine the design and performance of a track-
ing system. The first is the sensor information available in the particular tracking setting. This
refers to both the sensor type, for example video camera tracking with colour information, as
well as the average size of the targets, potentially measured in number of pixels. The second
element is the target tracker design itself, meaning the various methods of data processing that
take raw inputs and eventually produce information displayed to a human analyst. The third
element includes the fundamental challenges faced by any tracking system, that are largely in-
sensitive to the tracking setting or methodology. Given this overview, the role that could be
played by reciprocal chains and low-precision neural networks is discussed, motivated by the
advent of computing “at the edge” [1].

Sensor information is a principal determinant of the data processing and analysis methods
that a tracking system will employ. Although many types of sensors exist, including radar and
sonar, for the purpose of the subsequent discussion, only the case of visual tracking is considered.
Within visual tracking, a range of different measurement quality can be produced. In particular,
one can consider the gradual transition from object tracking to point target tracking, where
under different conditions this may correspond to moving from many pixels per target to only
a few pixels. Depending on where along this spectrum the sensor measurements sit, different
methodologies will be more suitable for tracking.

In general, the primary components of a visual tracking system will include an object de-
tector, appearance detector, motion model and state estimation algorithm, and finally data
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association algorithm. Many successful object and appearance detectors are formed from neu-
ral networks, with a variety of different designs possible. Given a target’s state, referring to a
combination of its position and velocity, the motion models are used by the state estimation
algorithm to predict the next state, for the data association step. Note that state estimation
algorithms are typically of the Kalman filter type, with a standard Newtonian motion model
being assumed. The data association algorithm attempts to correctly associate the set of simul-
taneous detections (within a frame) with a number of existing tracks (eg. from the previous
frame). Of course, it is possible for new targets to appear and existing targets to disappear
during the course of a video stream.

Thus a central task for a tracking system is to correctly identify targets of interest from
background noise, or “clutter”, meaning spurious measurements not originating from targets. In
addition to this, a system may be required to track “online”, meaning that it uses measurements
only up until the current time to produce estimates. Otherwise, it may be “offline”, processing
a batch of data over some time interval. The subsequent discussion considers only the online
tracking problem. This is appropriate the discussion is quite general and online tracking places
an emphasis on the speed of the overall decision making system, a theme in line with processing
“at the edge”.

As a starting point, assume it is possible to produce object detections of high quality from
the input data. In this context, a popular approach to visual tracking is known as “track-by-
detect”. This paradigm essentially relies on appearance models to successfully identify targets
consistently from frame to frame, or camera to camera. If this is possible, the challenges of data
association are largely bypassed. A recent example of a system built to operate under these
assumptions is the SORT algorithm [6], which combines a neural network based object detector
with a simple Kalman filter as its state estimation algorithm, and performs the data association
only from frame to frame using a greedy search based on the Hungarian algorithm [7].

A neural network based object detector can be built in a variety of ways, and many “meta-
architectures” exist [8], but a key ingredient is the so called “backbone” neural network. The
backbone is typically a large neural network specialised for image classification, and a prominent
example are so-called convolutional neural networks (CNNs) [3]. The backbone network is
trained on a large training set of images not related directly to the camera scenes the tracker is
applied to. The various meta-architectures then apply this backbone to classify different parts
of a frame from the camera, with differences arising in the approaches toward scanning the
frame. Due to the numerous convolutions performed by deep CNNs, for the problem of online
or real-time tracking, the run-time of the object detectors can become an issue. Generally,
smaller neural networks and less complex meta-architectures will have shorter run-time (as well
as power consumption), at the expense of detection performance.

As the sensor information reduces, for example if the number of pixels per target decreases, in
general the tracking algorithm will increasingly rely on spatio-temporal information to perform
data association. This information is derived from the target motion model. In the visual
tracking context, recent trackers have revisited earlier data association algorithms [9], including
for example joint probabilistic data association [10] or the multiple hypothesis tracking algorithm
[11], the latter of which is based on a Bayesian approach to data association. In the case that
a data association algorithm relies purely on spatio-temporal information for the estimation of
correct tracks, this method is referred to as “track-before-detect”.

Several fundamental challenges within the problem of data association are have been alluded
to throughout the discussion so far. A central issue is the combinatorial nature of reasoning
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about multiple targets over some length of time, under uncertainty. Problems of temporary
target occlusion, or emergence and disappearance of targets, that is, an time varying number of
targets, compound these issues further. For a comprehensive discussion see [9].

Reciprocal chains were introduced in the previous section as statistical models that may be
able to capture higher level target dynamics, such as moving through a statespace towards a
destination. Within a tracking system, one can envisage reciprocal chains playing the role of
a “meta-level” tracker. In this thesis, meta-level tracking refers to the estimation of quantities
more complex than just position and velocity, relevant to targets whose dynamics that are not
simply those described by, for example, Newtonian mechanics. Human motion is of course a
prime example of generally non-Newtonian motion; people change direction at will, and an
outside observer has no reason to believe a person will continue in a direction simply based on
their current position and speed. It is argued throughout the thesis that meta-level trackers
may serve two complementary roles; improving track estimates, and identifying behaviours of
interest.

The first part of the thesis shows that reciprocal chains can improve track estimates and
target confirmation, via simulation studies in novel environment models that include clutter.
The second potential role of meta-level trackers, the identification of behaviours of interest is a
direct extension to the contributions of the first part of the thesis. In the context of computing
at the edge this idea is particularly attractive. Consider a surveillance task over a network
of cameras, and suppose a meta-level tracker is able to determine that a target is behaving for
instance in anomalous way. One can envisage a protocol where the meta-level tracker will decide
locally (for example, at the camera site) to flag an analyst and direct other cameras towards the
scene of interest. Furthermore, this local decision making may decide to direct higher quality
video stream from the local camera to the cloud for central processing. This scenario may be
beneficial in systems where bandwidth is limited, or the local data processing is constrained but
central processing is not.

As discussed, modern visual tracking systems often employ neural network based image
classifiers as “backbones” for the basis of object detectors with some meta-architecture, often
also another neural network [8]. In the context of edge processing, the neural network designs
that achieve the best results for image recognition, as an example, are both memory and power
hungry, as well as often being slow to run. The general rule appears to be, the larger the
network, the more accurate and the slower it will be, as evidenced by open, online benchmarking
initiatives, eg. [12].

There is of course always some trade-off between an object detector’s speed and accuracy, and
much engineering effort is being devoted to designing specialised hardware to alleviate this issues
for machine learning algorithms, and deep learning in particular [13]. Concurrently, however,
there is interest in designing new algorithms that produce neural networks with better run-
time and power consumption, without sacrificing accuracy. Low-precision networks of course
reduce memory constraints, but networks with almost exclusively binary parameters also produce
significant speed gains. A recent algorithm, XNOR-Networks [14], found that for a particular
image classification neural network the evaluation time was decreased by a factor of 58, meaning
it is feasible to run neural networks on CPU, as well as GPU hardware. In future, customised
hardware will improve this run-time, as well as power consumption [13].
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1.3 Introduction to decision making with statistical models

Automated decision making systems are becoming relied upon across increasingly diverse appli-
cations in society. Research fields such as “machine learning” and “artificial intelligence” aim to
develop algorithms that are able to handle large, complex data sets and produce decisions that
replace, or at least augment, human decision making. Successful algorithms that have garnered
the most publicity, and arguably attention from researchers, rely on what are known as dis-
criminative models. Since these models do not attempt to describe the data generation process
with statistical model, they have been considered less “interpretable” by human users. In some
contexts modelling the data generation process may not make sense. For example, modelling
the generation process for natural images, as captured by a physical camera, may not give the
interpretability apparently sought by practitioners, or users, from automated decision making
systems.

In other cases however, modelling the data generation process is a quite a natural idea. For
instance, if presented with a sequence of observations of an individual in some environment,
then a human tasked with making predictions about future behaviour may attempt to consider,
amongst other things, the beliefs and intentions of the individual. In cognitive science, the idea
that part of an individual’s social intelligence is to consider another individual’s state of mind,
is referred to as having a theory of mind [15].

A prominent mathematical model of agency is known as a Markov decision process (MDP)
[4]. In this dynamic model, an agent exists within some environment which evolves according
to some possibly random dynamics, which depend on the current state and the actions of the
agent at each time. The agent is typically modelled as having some cost associated with their
state and actions, and the objective is to find a policy to act under which would minimise the
cost, over some time horizon, in some appropriate way. This could mean an average cost for the
time horizon, where the averaging might consider “all possible” random events.

In observing an agent in some environment, the task of inferring the policy or goals of an
agent from observations is known as inverse planning. In the last ten years, cognitive scientists
have found experimental evidence in support of the idea that humans, at least approximately,
perform inverse planning via a rational inference method codified as statistical Bayesian inference
[5]. In the paper “action understanding as inverse planning” [5], human subjects were asked to
predict the destinations of computer simulated targets in a 2D grid-world. The predictions of
the subjects matched those of the Bayesian inference method, assuming an MDP agent model,
across a range of differently encoded behaviours.

Optimal Bayesian inference requires the typically intractable computation of a posterior
distribution, over either latent variables or parameters. In a tracking scenario, if one assumes
knowledge of a simple model of target dynamics, then a standard inference task over latent
variables includes, for example, state estimation. If, however, a target’s dynamics were modelled
as evolving according to an unknown MDP, the inference task also involves an inverse planning
problem. Specifically, the determination of the policy the target is behaving according to, based
on noisy observations. Thus in a Bayesian inference setting, the posterior distribution is defined
over a much larger space, corresponding to a product of states, time and the space of policies.
In this part of the thesis, a simpler model of intention is considered for the problem of tracking
a target in an environment, with some intention to proceed toward a destination.

The specific class of models studied in this thesis, reciprocal models, are able to embody
an idea of “source-destination awareness” (e.g. [16], [17],[18]). This is achieved via an imposed
statistical relationship between the target’s initial and terminal states, which can in turn place
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higher weight on proceeding through a statespace in specific manners. In subsequent chapters
it is outlined how reciprocal models relate directly to conditional processes such as Markov or
Brownian bridges, and in turn certain classes of MDPs.

1.3.1 Key questions and contributions

The key questions driving chapters 2 and 3 are, respectively,

Key questions:

• How suitable are reciprocal chain models are suitable for the modelling and tracking of
targets whose dynamics correspond to what one would recognise as exhibiting intent?

• What tracking benefit is obtained from using such “higher level” information?

In chapter 2, first the background theory for reciprocal chains is reviewed. After this a
discussion of issues around the application of reciprocal chain models is presented, which is
relevant to their suitability for modelling and tracking of targets which exhibit some kind of
intent. A particular issue of focus is the fixed time interval nature of the model. In order to
specify a joint distribution over start and end points of a target trajectory, one must know the
time over which trajectories occur, or at least a number of “events” which define the time indices
corresponding to target measurement. Following this discussion new Markov models are derived
that can be compared qualitatively to Markov decision process models.

In chapter 3 the problem of track extraction is considered. Explicitly, the problem is to
confirm target existence, or otherwise, in a set of observations of uncertain origin. Typically
target models assume the Markov property, which is appropriate for kinematic motion on short
time scales, however may not be adequate when considering a target’s behaviour on longer time
scales. In applications where targets are tracked on longer time scales through road networks, or
camera networks [19], a two-scale approach may be used. On the first scale, a Markovian model
may specify, in a statistical sense, “fast time” target behaviour according to the nature of the
specific road the target traverses. A second scale “slow time” model may subsequently be used
to characterise the global behaviour of the target as it traverses the network. Markov random
walk models are generally not suitable in this case (e.g. [20], [21] [16]). It is argued that a
reciprocal model, operating at this higher level of abstraction may be more appropriate, but less
complex than a MDP model of agency. Simulation examples are presented which show that the
additional model information contained in a reciprocal chain, measured in terms of Kullback-
Leibler divergence, improves detection performance when compared to Markov models similar
to those used in Kalman filtering.

The contributions made in chapters 2 and 3 can be summarised as follows,

Key contributions:

• The development of a track extraction algorithm by constructing a likelihood ratio test,
with likelihoods obtained from recently developed normalised hidden reciprocal chain filters

• The systematic investigation of the extent to which the joint endpoints distribution of
reciprocal chains affect tracking performance

• The construction of a novel simulation environment for numerical tests of the algorithms
and claims described
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1.4 Introduction to decision making with neural models

The field of machine learning has seen a great deal of success and focus in the last decade,
and much of this owed to the impressive performance of neural networks [3]. Recast as ‘deep
learning’, neural networks have achieved excellent results on traditional image recognition tasks,
such as prediction of class labels, as well as seeing application to areas such as speech recog-
nition and translation, and reinforcement learning problems, where they are used for function
approximation as part of a model free reinforcement learning framework [22]. As argued in the
previously, the use of generative models for certain information processing tasks is not always
efficient nor necessary. Discriminative models, on the other hand, offer flexible and powerful
alternatives, albeit with less “interpretability”, though this point is debated by practitioners
within the neural network field [22]. Neural networks are currently one of the most celebrated
example of a discriminative model.

A neural network is composed of multiple processing layers, with each layer consisting of
N “neurons” and an N × N matrix of “weights”, with the number N varying from layer to
layer, in general. Each neuron is some continuous non-linear function, taking as input a lin-
ear combination of the neurons in the previously layer, weighted by a column of the weight
matrices. The weights are altered by a gradient descent algorithm, implemented efficiently as
“backpropagation” using specialised hardware [3].

The uptake of neural networks in more applications and domains is in large part limited by
the memory and computational power needs of these systems. As an example, one of the early
image recognition neural networks which is credited with sparking the most recent interest in
these models, has 61M parameters, totalling 249MB of memory, and and performs 1.5×109 high
precision operations to classify one image [23]. Therefore, while neural networks perform well
on expensive, GPU-based machines [3], there is clearly a practical need to reduce these memory
and computational requirements.

The focus of this part of the thesis is the optimisation of low precision neural networks,
specifically networks with binary neurons and weights. The problem of constraining the optimi-
sation or “learning” process itself to consist of only low precision operations is not considered.
However, this is a problem receiving considerable interest [24], [25], in no small part due to the
promise of learning on-chip. With this said, restricting attention, within this thesis, to algo-
rithms for training binary neural networks is still a difficult and worthwhile task, and yet still
in its infancy, from a theoretical perspective.

Interestingly, the problem of learning the parameters of a neural network when its weights
and neurons are constrained to be discrete is a unique problem in the sense that it has begun
to see the two fields of machine learning and statistical physics meet. The machine learning
community, motivated largely by the potential applications, has an interest in developing new
algorithms for training large low precision neural networks that maintain the performance close
to that of the continuous network counterparts. Statistical physicists, on the other hand, have
studied the problem for the single-layer perceptron or logistic regression for decades. Applying
sophisticated mathematical techniques they have produced fascinating phenomenological de-
scriptions of algorithmic and learning processes, with applications emerging for both machine
learning and neuroscience. Both communities bring important tools and insights to bear on the
problem, and in considering both and attempting to place the various approaches in a unified
frame will bear fruit, in terms of new algorithms and theory.

An important example of the two communities meeting in the study of neural networks,
and of direct relevance to the work presented in this thesis, is the theory of neural network



10 Chapter 1. General introduction

initialisation. The current, impressive performance of standard continuous neural networks was
for many years limited by poor initialisation of the continuous network weights [26], [27]. The
theory behind popular initialisation schemes [27] was developed only recently in a series of
papers [26], [28], [29]. This work revealed that poor initialisation limits the trainable depth of
the network, and thus their expressive power [28], and also the speed with which they could
be trained [30]. The contributions of these authors, both analytic and experimental, have been
guided by work from the statistical physics community, relying on what is known as dynamic
mean field theory [31]. The results have been extended and refined, and are considered a
cornerstone of the theory for gradient-based neural network optimisation algorithms.

In the case of neural networks with binary variables, it is not obvious how to apply a gradient
based optimisation algorithm to minimise a cost function involving discontinuous neurons and
weights. A Bayesian approach, on the other hand, has no difficulty in handling discrete variables,
generally speaking. However, to date, even approximate Bayesian “message passing” algorithms
do not scale to large neural networks and datasets [32].

The most successful approaches for deep binary neural networks have opted to train discrete
variable networks directly via backpropagation on a differentiable surrogate network, attaining
excellent performance [33], [23]. A key to this approach is in defining an appropriate surrogate
network as an approximation to the discrete model, and various algorithms have been proposed.
The algorithms under focus in chapters 4 through 8 are those which consider stochastic binary
neural networks, leveraging the stochastic nature of the neurons and weights to “smooth out”
the discontinuities, in a more principled manner than more heuristic alternatives [23].

1.4.1 Key questions and contributions

The contributions of chapters 4 through 8, concerning the application of gradient based algo-
rithms to optimising binary neural networks, are motivated by the following key questions,

Key questions:

• What are the relationships between the various binary neural network algorithms in the
literature?

• What are the relationships between Bayesian approaches to the binary neural network
problem and the non-Bayesian approaches to learning stochastic binary neural networks?

• Is initialisation an important aspect for these binary neural network algorithms (more
specifically, the surrogate networks), given that this is a crucial element for training stan-
dard continuous networks? If so, how should one initialise these algorithms?

• What are the relationships between binary and continuous neural networks, optimised for
a given learning problem?

The questions above arise from what is arguably a lack of coherence in the literature, coin-
cident with little theoretical study of the algorithms currently being deployed to train binary
neural networks. Chapters 4 through 8 make important contributions to the literature on bi-
nary neural networks, by beginning to frame the learning problem in a way that unifies much
of the current, disparate literature. From this more coherent framework, new algorithms are
introduced, and a theoretical analysis of several algorithms, at initialisation, is presented.
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The work of unifying the framework for the binary neural network learning problem begins
in chapters 4 and 5, by outlining the various choices involved in the construction of the algo-
rithms. This includes for example the choices of binary neural network model (eg. choosing
binary neurons or weights, or both), the method used to adapt its parameters (such as choosing
an optimisation objective function), the approximations that render the objective function dif-
ferentiable, and by extension define the continuous surrogate network. In the process, a Markov
chain representation of stochastic binary neural networks is developed. From this basis it is pos-
sible to re-derive both existing surrogate networks more cleanly, and introduce new surrogates.
The various heuristics borrowed from standard continuous neural networks are also discussed,
since these may improve the performance of the continuous surrogates.

Chapter 6 makes another contribution toward a more unified framework for learning bi-
nary neural networks by arguing, as many have previously, that statistical physics can assist in
studying algorithms, whether explicitly Bayesian or gradient based. Over the last two centuries,
statistical physics has been an exploratory scientific discipline with a history of interacting ex-
perimental and theoretical progress. From this rich history, one can find suggestions for the
relevant questions to ask (eg. which quantities are of interest), and how one might go about
answering them (eg. how to calculate the various quantities). Furthermore, from this point
it is possible to run experiments that measure the suggested quantities of interest and thus
empirically test the corresponding theory developed.

The ideas borrowed from statistical physics are compelling, but are also of course an arbitrary
choice from which to “unify” the various algorithms and methods. Other researchers may of
course prefer points of view from different disciplines. For this reason, where possible connections
are highlighted that have been made between the ideas in play here and those in the fields of
statistical estimation, continuous optimisation theory and differential geometry.

Chapters 7 and 8, elucidate the important role of parameter initialisation in the surrogate
networks, by extending the dynamic mean field formalism [31] to several of the binary neural
network algorithms presented. The principal analytic results are the derivation of sets of coupled
scalar equations describing how input signals propagate through a given surrogate network. From
these equations depth scales are derived that limit the maximum trainable depth of the networks.
For some models, these depth scales diverge under so called critical initialisation, while for other
models it is proven that there is no divergence. Moreover, it is predicted theoretically and
confirmed numerically, whether a parameter initialising scheme will successfully attain good
training performance. This includes the schemes used in standard continuous networks and
simply applied to the mean values of the stochastic binary weights.

These contributions are important as they begin to fill two gaps in the literature on neural
networks. The first directly addresses the currently limited understanding of binary network
algorithms, in terms of the conditions under which they should be expected to perform well, and
in comparison with one another. To date, the initialisation of binary neural network algorithms
have not been studied. The work here is important for understanding and developing successful
binary neural network algorithms. The second gap that the contributions here begin to address
is the lack of understanding of the relationships between binary and continuous weight neural
networks, as well as their stochastic counterparts.

In conclusion, the key contributions of chapters 4 through 8 can be summarised as follows,
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Key contributions:

• The presentation of a unified framework for learning binary neural networks, including
optimisation objective functions and principled approximations therein

• The development of new Markov chain representations for stochastic binary networks

• The development of new gradient based algorithms

• The theoretical study of the developed algorithms at initialisation, based on the Gaussian
central limit theorem

1.5 Outline of chapters

Chapter 2 begins with a review and general discussion of Markov and reciprocal chains for meta-
level tracking. This includes both the relevant background theory for reciprocal chains, and new
contributions dealing with the fixed interval nature of these models, and proposing alternatives.
Specifically, new infinite horizon models are derived, and compared with the Markov decision
process models of agency.

Chapter 3 presents the main contributions of the first part of the thesis, as published in [34],
relating to the problem of track extraction. The final concluding remarks and a discussion of
future prospects, are deferred until chapter 9.

Chapter 4 first describes the problem of statistical learning, which is the objective for any
learning system. This is followed by a summary of the essential elements to standard neural
networks used in the classification setting. Specific mention is made of the particular issues that
motivate second order optimisation methods and careful parameter initialisation.

Chapter 5 presents the problem of learning multi-layer stochastic binary neural networks,
outlining the optimisation problem which includes the gradient approximation and estimation
that effectively yields the various continuous surrogate models. Existing and new surrogate
models are presented, and discuss some qualitative similarities and differences, thus providing a
more unified view of the literature on direct optimisation of binary neural networks.

Chapter 6 introduces the basic concepts of statistical physics, many of which underpin the
technical contributions. The examples discussed in this chapter also serve to review the recent
theoretical literature concerning the binary perceptron.

Chapter 7 begins with a derivation of the coupled scalar equations for a class of deterministic
surrogate network presented in chapter 5. Numerical simulations and experimental results are
presented which confirm the predictions of the mean field theory. The focus is first on surro-
gates for networks with stochastic binary weights and neurons. Also investigated is the role of
the underlying stochasticity of the neuron slope, and the form of the non-linearity, by finding
numerically the ‘edges of chaos’ where in the hyper-parameter space. This relates directly to
the choice of binary neuron noise model (in its latent variable interpretation). This chapter also
presents the results for cases of continuous weights.

Chapter 8 presents the corresponding analysis for the Monte Carlo based surrogate, which
is referred to as the ‘perturbed’ surrogate. This chapter also presents the analogous dynamic
mean field theory for deterministic and stochastic binary networks, results that may provide
insight into the relationship between the surrogate and binary networks.

The thesis is concluded in chapter 9. The conclusion presents a summary of results of the
thesis, as well as a discussion of avenues for future research.



Chapter 2

Stochastic processes for meta-level
tracking

This chapter presents a review and discussion of stochastic processes that, when interpreted as
models of target dynamics, correspond to targets which exhibit “destination awareness”. This
notion, which one can consider to be the progress of a target toward a terminal state, from some
initial state, is an example of the behaviour a meta-level tracker may incorporate into its target
model.

Conditional Markov processes are first discussed, followed by a description of the construction
of reciprocal chains, both of which are stochastic processes defined on a fixed time interval.
Following this new infinite-horizon, time-invariant Markov chains are presented, motivated by
the idea of a model of destination awareness without the fixed time interval constraint. This
contribution, which is exploratory in nature, points to interesting connections to the stochastic
optimal control literature, specifically of a class of problems studied under the title of path
integral control or Kullback-Leibler control theory.

2.1 Destination awareness and conditional processes

There have been a range of approaches to incorporating available a priori information about
terminal states within the class of Markov models, both at the estimation stage and in the
target dynamics model itself. In both approaches, the methods amount to “back propagating”
the influence of a future state value or distribution by appropriate conditioning.

For example in [35], [36], a priori destination information is incorporated via a corrective
term into the state update of continuous-time Gauss-Markov processes. The well known Markov
bridge [37] incorporates information about a single fixed destination (such as a scheduled stop).
In [37] and [38] this was generalised to specifying an a priori distribution for a future time of the
state process (such as the notion that vehicles enter and leave the field of view at its borders),
creating a new Markovian process referred to as a Schrödinger bridge. From a modelling point
of view, source-destination awareness is taken to mean that the initial and final target states
may have an arbitrary joint probability distribution and that target dynamics are therefore
anticipative, reflecting the intention of the target to move towards its destination. The specified
probabilistic dependence between future and past states corresponds to a class of models known
as reciprocal processes.

Reciprocal processes were studied in detail by [37] in a general setting, and subsequently by
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[39] who considered the realisation and state estimation problem for the Gaussian discrete index
parameter case. There are many other related works which are summarised in [40]. Reciprocal
chains (RCs) are finite state RP, and hidden reciprocal chains (HRCs) are stochastic processes
generated from an RC via some noisy and/or incomplete observation mechanism, analogous to
hidden Markov chains (HMCs). These observations may have continuous or finite states, also
like HMCs. Finite state models are preferred for the usual reasons such as the ability to easily
incorporate state space constraints (obviously important in the ground target tracking example)
and abstract state attributes. Naturally, one needs to be aware of the potential for significant
computational complexity likely to arise in estimation algorithms derived from these models.

A brief recount the development of inference of HRCs is as follows; un-normalised optimal
filters/smoothers for HRC were derived using a Bayesian approach in [40]. Normalised filters
and smoothers were developed in [41], [42], which also considered incorporating “waypoints” on
the target trajectory. Maximum likelihood estimation of state sequences for HRC was presented
in [43]. In [17] destination aware tracking based on HRC was first proposed, but the RC models
tested, being pinned to a single destination, remained in the Markov class.

2.2 Reciprocal Models

This section provides definitions for Markov and Schrödinger bridges, reciprocal chains, as well
as providing a concise summary of the Markov bridge construction of a RC as outlined in [40].
The cases when a reciprocal chain satisfies the Markov are described, and the concept of a
reciprocal class is introduced in a natural way, by considering the Kullback-Leibler divergence
between processes on an interval.

2.2.1 Conditioning a Markov Chain on the Future

A Markov bridge (MB) is formed by taking a reference Markov process Zt, t = 0, . . . , T , for some
fixed T ≥ 2, and conditioning it on taking a fixed value for ZT . A rigorous description of this
notion, in continuous time, is provided in [44]. For clarity of exposition, assume the reference
process has time homogeneous transitions. Specifically, let A denote the time homogeneous
transition probability matrix for the reference Markov chain (MC) Zt, taking values on a finite
state space S = {1, . . . , N}, where N ≥ 2, and let the entries of the matrix be Ai,j = P(Zt+1 =
j|Zt = i), which are all assumed to be strictly positive. This assumption may be relaxed by
considering questions of state reachability for MB, an issue which is beyond the scope of this
thesis. The MB transition probabilities are constructed by applying Bayes rule as shown in [40],

Bk
i,j(t) = P(Zt+1 = j|Zt = i, ZT = k)

=
Ai,j (AT−(t+1))j,k

(AT−t)i,k
, (2.1)

for t = 0, . . . , T − 2. The Schrödinger bridge (SB) is the time-inhomogeneous Markov process
that attains a specified marginal distribution at its initial and final times , and which has
transition probabilities, i.e. ‘dynamics’, closest, in some sense, to the specified a priori dynamics
of the reference process (see [45] for a finite-state proof). The “measure” of closeness used is
the Kullback-Leibler (KL) divergence [46], defined for discrete distributions P (X = x) and



2.2. Reciprocal Models 15

Q(X = x), with the same (finite) sample space x ∈ S is defined as,

KL[P (X)‖Q(X)] =
∑
x∈S

P (X = x) log
P (X = x)

Q(X = x)
(2.2)

The KL divergence is not of course a distance in the technical sense, since it is symmetric. Note
that KL divergence is finite under certain conditions. For example, one condition is that the
support of P (X) is contained within the support of Q(X), see [46] for details. Other conditions
pertain to the behaviour of the moments of the distributions, relating to heavy tail phenomena
of the densities. This is not an issue in the discrete spaces considered here, where the condition
on the support of P (X) is sufficient to guarantee finite divergence.

The following construction of the SB originates from Schrödinger’s idea of minimising the KL
divergence, although not set out explicitly in these terms, since his work pre-dates Kullback and
Liebler’s paper by 20 years, as well as being contemporary to Kolmogorov’s work on probability
(see [45] for a relevant discussion). The original idea was formalised by [37], and recently
specialised for the discrete-state setting in [45]. With A as before, let Xt be the Schrödinger
bridge of Zt with marginal distributions (row vectors) π0 and πT on X0 and XT respectively.
Let ψ0, ψT be the N dimensional positive row vectors that are solutions of the following coupled
equations

πT = ψT ◦ ψ0A
T , π0 = ψ0 ◦ ψT

(
A′
)T

(2.3)

where ◦ is the element-wise product and A′ denotes the transpose of A. Existence and uniqueness
of solutions is proven in [45]. Define the positive row vectors ψt = ψT (A′)(T−t), then the
transition probabilities of the SB are given by

Si,j(t) = P(Xt+1 = j|Xt = i) = Ai,j
ψt+1(j)

ψt(i)
. (2.4)

2.2.2 Reciprocal Chains

A reciprocal process is a generalisation of the SB allowing any source-destination relationship,
as described in [37]. It can also be derived from a reference Markov process by fixing the start
and end points of the reference process and allowing them to vary according to an arbitrary
joint distribution. The new process generated by this method is generally not Markov, however
all Markov processes are reciprocal [37]. Formally, for a random process {Xt} indexed by
t ∈ {0, 1, . . . , T} for some fixed integer T ≥ 2 the process {Xt} is said to be reciprocal [37], if

P(Xt|Xs,∀ s 6= t) = P(Xt|Xt−1, Xt+1) , (2.5)

for each t = 1, . . . , T − 1. Thus Xt is conditionally independent of X0, . . . , Xt−2, Xt+2, . . . , XT

given its neighbours Xt−1 and Xt+1. The reciprocal model is specified by the set of three-point
transition functions (2.5) together with the given joint distribution on the end points P(X0, XT ).
Denote the three-point transition functions in (2.5) by

Qi,j,k(t) = P(Xt = j|Xt−1 = i,Xt+1 = k), (2.6)

for i, j, k ∈ S, t = 1, . . . , T − 1. As in the Markov bridge case (2.1), the three-point transition
functions of a RC derived from a reference Markov chain are given via Bayes rule,

Qi,j,k(t) =
Ai,j Aj,k∑N
`=1Ai,`A`,k

,
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and the end-points distribution is denoted by

Πi,j = P(X0 = i,XT = j), i, j ∈ S . (2.7)

Pinning the end point of a RC generates a Markov bridge, a property that allows for the causal
representation and thus processing of RC [40]. Considering the joint distribution of the states of
a RC and using direct Bayes’ conditioning and (2.5), the relevance of Markov bridges becomes
apparent,

P(X0, ..., XT ) = P(X0, XT )
T−1∏
t=1

P(Xt|Xt−1, XT ). (2.8)

The terms contained within the product in (2.8) are the state transitions for a MB pinned at
XT . Thus any RC may be viewed as a mixture over a set of N MBs1. More precisely, any RC
is uniquely specified by the finite set of MBs with probability transition matrices given by (2.1)
and initial distributions πki for each final state k, given by the conditional distribution

πki (0) = P(X0 = i|XT = k) =
Πi,k∑N
j=1 Πj,k

. (2.9)

The process for generating a sample path of this RC is to draw the initial and final points X0

and XT from Π, which specifies the MB transitions corresponding to XT = k. The sample path
is then constructed in the standard way for a MC, starting from X0 using the transitions (2.1).

An alternative formulation for a RC can be posed in terms of a finite set of N Schrödinger
bridges by pinning the initial state rather than the final state. The Schrödinger bridge corre-
sponding to a particular state (X0 = i) can be constructed by specifiying the final distribution
to be attained,

πik(T ) = P(XT = k|X0 = i) =
Πi,k∑N
j=1 Πi,j

. (2.10)

Sample paths can also be generated using this formulation, identically as for MBs 2. This
alternative formulation of a RC as a mixture of Schrödinger bridges highlights that a reciprocal
target’s dynamics depend not only on its current state, but also on its final and initial states.
This idea is discussed at length in [48], where the author considers the “forgetting” properties
of reciprocal chains as a function of the time between the initial and terminal states, using
appropriately defined mathematical tools.

A RC on a finite interval remains Markov when its joint endpoints distribution (2.7) factorises
according to,

Π = diag(λT ) AT diag(λ0). (2.11)

This result was established in full generality in [37] and includes the Markov bridge as a special
case. An example of a non-Markov RC model is that of a target that returns to its origin by

1It is also possible to consider the compound process {Xt, XT } of a RC, which is Markov [47].
2However it requires solving the system of non-linear equations (2.3) in order to determine the transition

probabilities, thus only the MB approach is used
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time T , which is referred to in this thesis as a loitering RC. This can be modelled via the joint
end-points distribution

ΠLRC = P(X0 = i,XT = j) =

{
pr(i) i = j
0 i 6= j.

(2.12)

where pr(i) is the probability of starting and returning to a particular state, and
∑N

i=1 pr(i) = 1.
It is well known in the literature on Schrödinger bridges [45], [38] that the KL divergence

between any two processes with the same three-point dynamics reduces to the KL divergence
between the joint endpoints distributions. Explicitly, for two distributions P1 and P2 defined
over the set of all possible trajectories through the statespace, X = {X0, . . . , XT },

KL[P1(X )‖P2(X )]=KL[P1(X0, XT )‖P2(X0, XT )] (2.13)

This result can be established using (2.8), and holds for non-Markov processes. Since the
endpoints distribution encodes source-destination awareness, one can evaluate the difference
between models for target dynamics by evaluating the KL divergence between their endpoint
distributions (2.13). This will be used in Section 3.4.

2.3 Models on infinite horizons

A reasonable criticism of reciprocal chain models for tracking is that they require a pre-determined
fixed time interval, or fixed number of events such as a target sighting, in order to model a tar-
get’s behaviour. In modelling an intention to proceed to a destination, this fixed time appears
unrealistic, since different individuals with different “velocities” (or local dynamics) may still
have the same destination, despite arriving at different times.

A Markov decision process (MDP) is commonly defined on an infinite horizon. Furthermore,
a terminal or destination state can be encoded for the agent whose dynamics the MDP describes.
This can be achieved if an agent’s cost function penalises the agent for every time step spent
away from the terminal state. The resulting dynamics, formed by an agent behaving according
to an “optimal policy” [4], will typically mean that, for suitable state spaces and dynamics,
most agents will reach their destination at an average time, assuming some dispersion if the
environment dynamics are stochastic.

This sort of model is more appealing from the point of view of modelling human behaviour
since it appears more realistic for the aforementioned reasons. However, in order to avoid the “full
blown” MDP model of agency, there is an alternative for the infinite horizon case. It is possible
to derive, from a Markov bridge or reciprocal chain, time-homogeneous Markov approximations.
The following section presents derivations of these approximations, and following this briefly
present some simulations to compare the models.

2.3.1 Markov Approximations to RC Models

This section presents the exact analytical expressions for the Markov chains which best ap-
proximate a non-Markov RC, in terms of minimising the Kullback-Leibler divergence between
the joint probability distributions of the processes. Henceforth when referring to the ‘closest’
Markov approximation, it is meant in this sense.

The first result is an expression for the closest time-inhomogeneous MC approximation to
an RC, meaning the transition probabilities are time dependent. While this does not change
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the fixed time interval nature of the process, this derivation can be used to find the closest
time-homogeneous MC approximation to an RC. Specifically, this homogeneous process can be
seen as the time average of the closest in homogeneous MC.

Time-inhomogeneous MC Approximation

Now consider the KL divergence between an RC with joint distribution p(x0, . . . xT ) and a
stationary MC with joint distribution q(x0, . . . xT ).

D(p‖q) =
∑
X
p(X ) log

p(X )

q(X )

=
∑
X
p(X ) log p(X )−

∑
X
p(X ) log q(X )

The first term is simply the entropy of the RC as before, so all that remains is to calculate the
cross entropy term. While the MB characterisation can also be used for a MC, one can simply
use the standard chain rule for Markov chains. Thus one obtains, for the cross entropy term,

Hp,q
X = −

∑
X
p(X ) log q(X )

= −
∑
x0,xT

p(x0, xT ) log q(x0)

+
∑
x0,xT

p(x0, xT )

(∑
x1

p(x1|x0, xT ) log q(x1|x0)

+
T−2∑
t=1

∑
xt

p(xt|x0, xT )
∑
xt+1

p(xt+1|xt, xT ) log q(xt+1|xt)

+
∑
xT−1

p(xT−1|x0, xT ) log q(xT |xT−1)

)
(2.14)

The next step is to formulate the Lagrangian to minimise this divergence with respect to the
transitions of q(x0, . . . , xt), which are denoted as Mij(t). The constraint is simply that the
Mij(t) = q(xt+1 = j|xt = i) be valid Markov transitions, that is, that the probabilities are
non-negative and sum to one.

L = D(p‖q) +
∑
m,t

λm,t(
∑
n=1

Mm,n(t)− 1).

Then

∂L
∂Mij(t)

=
∂Hp,q
X

∂Mij(t)
+ λi,t

From (2.14)

∂ log q(xt+1 = j|xt = i)

∂Mij(t)
=
∂ logMij(t)

∂Mij(t)
=

1

Mij(t)
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Then, for 0 < t < T − 1, the cross entropy term in the minimisation step becomes

∂Hp,q
X

∂Mij(t)
=−

∑
x0,xT

p(x0, xT )p(xit|x0, xT )p(xjt+1|x
i
t, xT )

1

Mij(t)

=− 1

Mij(t)

∑
xT

p(xjt+1|x
i
t, xT )

∑
x0

p(xit, x0, xT )

=− 1

Mij(t)

∑
xT

p(xjt+1|x
i
t, xT )p(xit, xT )

=− 1

Mij(t)
p(xjt+1|x

i
t)p(x

i
t)

The notation xit is used to denote xt = i for shorthand. The same expressions for Mij(t) is
obtained at t = 0 and t = T − 1. Setting the partial derivatives of the Lagrangian to zero,

Mij(t) =
p(xt+1 = j|xt = i)p(xt = i)

λi,t

and by enforcing the constraint,

λi,t = p(xt = i)

Therefore it can be shown that,

Mij(t) = p(xt+1 = j|xt = i), (2.15)

which are the two point transitions of the RC, a result which makes intuitive sense. In the
special case of a RC constructed with an endpoint distribution resulting in the process being
Markov, then the derived expression will reduce to the underlying Markov transitions, meaning
the divergence will be equal to zero. A relevant discussion of the relationship between reciprocal
and Markov processes, in terms of a comparisons of the influence of endpoints distribution on
the dynamics is presented in [48].

Time-homogeneous Markov Chain Approximation

Consider now the case of finding a homogeneous approximation to any RC. It is possible to
extend the analysis from above as follows. In this case Mij(t) = Aij , ∀ t, and with corresponding
constraints on Aij , the Lagrangian is now

L = D(p‖q) +
∑
m

λm(
∑
n=1

Am,n − 1)

Taking again partial derivatives, and noting that once more the minimisation is only over
the cross entropy terms,
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∂L
∂Aij

=
∂D(p‖q)
∂Aij

+
∂
∑

m λm(
∑

n=1Am,n − 1)

∂Aij

=−
∑
x0,xT

p(x0, xT )
T−1∑
t=1

p(xit|x0, xT )p(xjt+1|x
i
t, xT )

1

Aij

+
∑
xT

p(xi0, xT )p(xj1|x
i
0, xT )

1

Aij
+ λi

=− 1

Aij

T−1∑
t=1

p(xjt+1|x
i
t)p(x

i
t) + p(xj1|x

i
0)p(xi0) + λi

=− 1

Aij

T−1∑
t=0

p(xjt+1|x
i
t)p(x

i
t) + λi

Again setting the partial derivatives of the Lagrangian to zero, it follows that

Aij =

∑T−1
t=0 p(xt+1 = j|xt = i)p(xt = i)

λi
,

and by evaluating the constraint,

λi =
T−1∑
t=0

p(xt = i),

It is clear that the Lagrange multipliers λi are a time-average of the marginals of state i.
Explicitly,

Aij =
T−1∑
t=0

p(xt+1 = j|xt = i)
p(xt = i)∑T−1
s=0 p(xs = i)

(2.16)

This result builds nicely on the previous result, since the homogeneous transitions probabilities
are clearly a time average of the inhomogeneous transition probabilities p(xt + 1 = j|xt = i),
weighted by a time average of the probability of being in state xt = i.

2.4 Numerical examples

This section presents a short numerical investigation whose purpose is to advance the qualitative
discussion of infinite-horizon alternatives to reciprocal chain models, which nonetheless retain
an intention proceed to a destination. In order to first get a better sense of the dynamics of the
Markov bridge as compared to the homogeneous Markov chain, Figure 2.1 present several sample
paths in a one dimensional statespace. for a state space with N = 10 states, the Markov bridge
is defined to terminate in state S = 10 in time T = 20 steps, assuming some base dynamics. The
time-homogeneous Markov chain, with dynamics as derived above, observes some dispersion in
its ‘hitting times’ of state S = 10, though clearly the dynamics have a ‘drift’ toward this state.
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Figure 2.1: Sample paths: Markov bridge model (blue lines). Time-homogeneous Markov chain.

It is interesting to compare a time-homogeneous Markov chain constructed in this way to the
resulting process from a Markov decision process acting under an optimal policy [4]. In Figure
2.2 the optimal policy for a two dimensional “grid-world” environment is shown, where the cost
is the number of steps taken before reaching the goal state. The illustrated policy is optimal in a
deterministic (noiseless) environment, or in a stochastic environment with isotropic noise in the
dynamics between states. In the case of a the Markov transition matrix for a one dimensional
state space (ie. a walk along the natural numbers), both the stochastic transition matrices for
the MDP and time-homogeneous Markov chain are presented in Figure 2.3.

A sensible question is to ask what kind of tracking performance such a Markov model would
achieve for a non-Markovian target, such as a target modelled by a reciprocal model. An in
depth numerical study is warranted, guided once again by considering the KL divergence between
oath distributions, taking into account the lack of a fixed time interval in the time-homogeneous
Markov chain.
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Figure 2.2: Gridworld solution: An example of an optimal policy in the “grid world” toy model.

Figure 2.3: Stochastic transition matrices: MDP (left), time-homogeneous Markov chain (right).
The transition probabilities are qualitatively very similar.
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2.5 Chapter conclusion

This chapter considered stochastic processes, both Markov and reciprocal, that correspond to
targets which exhibit “destination awareness”. The discussion began with the Markov and
Schrödinger bridge models, from which reciprocal chains may be constructed. Following this
new infinite-horizon (or time-invariant) Markov chains were presented, motivated by the idea of
a model of destination awareness without the fixed time interval constraint. The developments
in this second section point to similarities, on a qualitative level, between reciprocal processes
generally and Markov decision processes. In certain special cases, the relationships can be made
exact.

The connection between Schrödinger bridges and stochastic optimal control problems is well
established [49]. The original Schrödinger problem, in continuous time and state, ie. a diffussion
process, was formally related to a stochastic optimal control problem with quadratic control
costs and a final time constraint. The optimal control u∗(x, t) for this problem can be related
to the positive function defined earlier, ψ(x, t) adapted to the continuous time and state case,
as shown in [49]. Equivalence of this problem to the minimum Kullback-Liebler divergence over
distributions over paths are also illuminated. This point formally links the Schrödinger problem
to wider classes of control problems, known variously as path integral control or Kullback-Liebler
control problems [50],[51], [52].



Chapter 3

Track Extraction

This chapter develops track extraction algorithms for tracking with reciprocal chains. Track
extraction (TE) [53], [54] is a statistical hypothesis test used to determine whether some subset
of a given set of sensor measurements originate from a moving target, as opposed to arising
from false-alarm (clutter) returns. TE is a useful procedure when individual clutter and target
returns are otherwise indistinct. More specifically, whereas standard multiple hypothesis track-
ing algorithms confirm or delete individual candidate tracks based on their individual likelihood
[55], TE algorithms use the entire set of observations to decide whether a target exists by con-
sidering, in a Bayesian sense, all possible trajectories consistent with a given statistical model of
the target dynamics. If a target is detected, state estimates (e.g. location) can then be formed,
using the a posteriori probabilities associated with the Bayesian filter (or smoother).

TE is therefore also a detection process, with its own quantities such as detection and false
alarm probabilities, but it works on a higher level of abstraction than a detector applied to
each sensor measurement, because it considers the likelihoods of target trajectories rather than
individual point detections. Thus TE is an example of a meta-level tracker function as discussed
in the introduction, in particular the overview of tracking systems in subsection 1.2.

The contributions made in this chapter are motivated in particular by answering the questions
of whether and to what extent modelling the source-destination awareness of a target can improve
track extraction, as a function of the parameters of a HRC model. Particular use is made of the
Kullback-Leibler (KL) divergence between stochastic processes which are defined to belong to
the same reciprocal class, that is, Markov and non-Markov processes with the same reciprocal
(acausal) dynamics [38]. The KL divergence of two such models reduces to the divergence
of the models’ endpoints distributions. This result guides the numerical simulations and the
descriptions of the potential benefits of HRC for tracking. As with most finite data, non-linear
inference problems, it is infeasible to obtain a priori performance metrics, so instead numerical
simulations are used to study the performance of the new algorithms proposed here.

Since the aim is to capture more complex target behaviour than simple Newtonian motion
models, it makes sense to formulate a simulation setting corresponding to domains where target
intent is relevant. Thus a contribution of this chapter is to introduce an observation model
for the discrete space that includes “clutter”, meaning observations of uncertain origin. This
framework is significant since it is a logical step before considering multi-target tracking. In
summary, this chapter makes the following contributions:

• Develops a track extraction algorithm by constructing a likelihood ratio test, with likeli-
hoods obtained from recently developed normalised hidden reciprocal chain filters

24
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• Investigates systematically the extent to which the joint endpoints distribution of reciprocal
chains affect tracking performance

• Constructs a novel simulation environment for numerical tests of the algorithms and claims
described

3.1 Track Extraction for Reciprocal Chains

The following two examples further motivate the idea of considering entire track trajectories.
The first is of tracking a target through a camera network, and the second is of tracking a vehicle
through a road network. Consider a target moving through a camera network, assuming it has
been identified by a low level object detectors as being in a particular camera’s view. For the
task of tracking this target through the network, certain schemes attempt to build a 3D model of
the world and then tracking the object with a 3D Kalman filter [56]. Other methods simply use
a 2D motion model in the image plane and based on camera topology assist the object detector
in matching targets. These methods tend to work best in camera networks with overlapping
cameras. In networks with only some or no overlapping cameras, solving inter-camera tracking
has seen focus from probabilistic or statistical methods. These methods are underscored by the
principle that by accumulating evidence of movement patterns one can learn and use the camera
network topology in some way [57], [58], [59]. In [58] the acitivity topology is estimated, which
essentially considers the chance of moving between any two cameras. In [57] the movement of
targets within and between cameras is modelled with a Markov chain, and a stochastic transition
matrix is trained from a series of observations. The hidden reciprocal chain (HRC) model can
be thought of as an extension to this Markov chain motion model, altering the dynamics to
incorporate initial and destination states for various trajectories.

As a second example, consider a ground vehicle that is being tracked through a road network
by a single airborne radar, which, after preprocessing, passes point estimates of uncertain origin
to a tracker [60]. In reality, the target vehicle’s motion is highly constrained by the nature of
the road network, while still proceeding through the network with a typically pre-determined
destination. In such an application, of tracking a vehicle on a road, a two-scale approach may
be used, where a Markovian model specifies (in a statistical sense) “fast time” local vehicle
dynamics, according to the nature of the specific road the target traverses. A second “slow
time” model may be used to characterise the global behaviour of the target as it traverses the
road network. Markov random walk models are generally not suitable in this case (e.g. [20],
[21] [16]), and a model with a higher level of abstraction may be more appropriate. Note that
for the camera network model, a two-scale approach may also be appropriate, especially in the
case of a network with non-overlapping cameras.

Therefore the choice of a target dynamic model, or class of such models, is an important part
of track extraction algorithm design, which necessarily operates at a higher level of abstraction,
since it considers entire trajectories. The remainder of this chapter develops TE algorithms based
on reciprocal models. As discussed, these models are generally non-Markovian and embody
the idea of “source-destination awareness” (e.g. [16], [17], [18]) where an imposed statistical
relationship between the target’s original and final states can place higher weight on proceeding
through the network in a specific manner.

The track extraction framework employed is similar to that in [53], with three key differences.
Firstly, optimal Bayesian estimation is employed over a finite statespace, rather than a continu-
ous space; secondly the process considered exists on a fixed interval; and thirdly, the likelihood
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ratio test here has a single threshold, though it could be formulated as the sequential probability
ratio test of [53] which has two thresholds. Track extraction deals with two types of uncertainty,
false alarms - detections that originate from “clutter”, and sensor noise which degrades position
estimates. This could include the effect of quantisation of measurements associated with the
finite states. In section V of [53], signal-strength information is used and improves the track
extraction performance, but here any explicit notion of SNR and signal amplitude is removed,
in order to emphasise the role of the model in differentiating clutter from target detections.
Instead, the association between observation and the source of the detection is treated proba-
bilistically, via an observation likelihood function and a priori probabilities over false alarms.
An observation model representative of the track extraction regime is developed and tested.
There is at most one target during the tracking interval. Multiple detections are allowed at each
time, with at most one due to the target. A dynamic model of the target is constructed which
also includes the global source-destination attributes. The likelihood associated with a given set
of detections is evaluated using the class of normalised hidden reciprocal chain (HRC) filters.
This likelihood is used to construct the track extraction algorithm based on a likelihood ratio
test (LRT).

3.2 Estimation for Markov Process Models

This section reviews hidden Markov models (HMMs) and the associated optimal Bayesian es-
timation algorithms for filtering. This review is worthwhile since the hidden reciprocal chain
filters are built in a special way, from a set of N distinct HMM filters. Only filtering and not
offline smoothing is considered since the detectors derived for the track extraction algorithms
require only filtering algorithms. Details on the smoothing problem can be located in [61], for
example.

HMM State Estimation

The dynamics of a Markov Chain (MC), denoted Xt, are specified by its initial and transition
probabilities,

πi(0) = P {X0 = i}
Ai,j(t) = P {Xt+1 = j|Xt = i} , (3.1)

for i, j = 1, . . . , N and t = 0, . . . , T − 1. See [44] for a complete presentation of the details. The
observation likelihoods satisfy the conditional independence property

P {Y0, . . . , YT |X0, . . . , XT } =
T∏
t=0

P {Yt|Xt} . (3.2)

The evaluated (conditional) observation densities are denoted by Ci(t) = P {Yt|Xt = i} for
t = 0, . . . , T and i = 1, . . . , N . These terms are also sometimes referred to as observation
likelihoods.

Two fundamental problems are state estimation, where one seeks estimates of the state at a
time t of the system of interest, based on the measurements; and parameter estimation, where
one seeks to estimate the parameters which define the system. In this thesis knowledge of the
parameters is assumed, whether the model is Markov or reciprocal. Parameter estimation is
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a difficult but studied problem in the HMC literature, but as yet unexplored in the reciprocal
literature.

State Estimation for HMCs - filtering

The optimal filtering problem involves determination of the a posteriori state probabilities,

αt|t(i) = P {Xt = i|Y0, . . . , Yt} (3.3)

for each t = 0, . . . T . Assuming one can compute the vector α t|t from the observations Y0, . . . , Yt,
then the information available at time t is Y0, . . . , Yt, and α 0|0, . . . , α t|t.

Upon receiving the subsequent measurement, Yt+1, the aim is to compute α t+1|t+1 from the
available information. The Markovian property of the state process makes it possible to write
α t+1|t+1 as a function of the previous estimate α t|t and the new measurement Yt+1 as follows.
Consider (using Bayes’ rule and the HMM properties),

αt+1|t+1(i) = P {Xt+1 = i|Y0, . . . , Yt+1}

=
P {Xt+1 = i, Y0, . . . , Yt+1}

P {Y0, . . . , Yt+1}

=
P {Yt+1|Xt+1 = i} P {Xt+1 = i, Y0, . . . , Yt}

P {Y0, . . . , Yt+1}

=
P {Yt+1|Xt+1 = i}
P {Y0, . . . , Yt+1}

N∑
j=1

P {Xt = j,Xt+1 = i, Y0, . . . , Yt}

=
Ci(t+ 1)

P {Y0, . . . , Yt+1}

N∑
j=1

P {Xt+1 = i|Xt = j} P {Xt = j, Y0, . . . , Yt}

=
Ci(t+ 1)

P {Yt+1|Y0, . . . , Yt}

N∑
j=1

P {Xt+1 = i|Xt = j} P {Xt = j|Y0, . . . , Yt}

=
Ci(t+ 1)

P {Yt+1|Y0, . . . , Yt}

N∑
j=1

Aj,i(t) αt|t(j) . (3.4)

Let gt = P {Yt+1|Y0, . . . , Yt}, then (3.4) becomes

αt+1|t+1(i) =
Ci(t+ 1)

gt

N∑
j=1

Aj,i(t) αt|t(j) , (3.5)

where the normalisation quantity

gt =

N∑
i=1

Ci(t+ 1)

N∑
j=1

Aj,i(t) αt|t(j) , (3.6)

can be used for the formation of a detector, as is shown in later sections. The filters are initialised
according to

α0|0(i) = P {X0 = i|Y0} =
P {Y0|X0 = i} P {X0 = i}

g0

=
C0(i) π0(i)

g0
,
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where the normalisation constant is given by

g0 = P {Y0} =

N∑
i=1

C0(i) π0(i) .

In order to compute all the filtered quantities, O(N2T ) calculations are required [62]. Typically,
normalisation is not needed for estimation problems. A prime example is maximum a posteriori
probability (MAP) estimation, where the most likely state is selected as the state estimate at
a given time. However, as will be shown, for a detection problem such as track extraction, the
normalisation constant provides the likelihood of a sequence of observations, forming the basis
of the detector.

3.2.1 Optimal Filtering for Hidden Reciprocal Chains (HRCs)

Hidden reciprocal chains (HRC) can be thought of as being the analogue to hidden Markov
chains. This idea is reviewed in this section, after which the optimal filters for the estimation
of the state sequence of a HRC and evaluation of the likelihood of a HRC observation sequence
are presented. The algorithms for filtering and smoothing for (partially observed) discrete
state reciprocal processes were first proposed in [40], and these methods form the basis for the
algorithms to be described in subsequent chapters. The normalised filters presented here were
appeared first in [41], as well as [19], but not in the context of a detection problem such as track
extraction.

Hidden Reciprocal Chains

Suppose that the RC X = {X0, , . . . , XT } is observed via the observation process Y = {Y0, . . . , YT }.
Assume that the observation at time t given the state Xt is conditionally independent of Xτ

and Yτ , τ 6= t. This conditional independence implies that

P(Y0, . . . , YT |X0, . . . , XT ) =
T∏
t=0

P(Yt|Xt). (3.7)

The process Y is called a hidden reciprocal chain (HRC) because the property (3.7) is analogous
to the usual assumption made for hidden Markov chains. In (3.7) the terms P(Yt|Xt = i)
are the conditional observation densities of the HRC. The observations may be either discrete
or continuous random variables defined on an appropriate probability space, where one would
define a parametrised probability density function or probability mass function, respectively.

Optimal HRC Filters

Consider a HRC Y with state X , known MB transition probability matricesBk
i,j(t), t = 0, . . . , T−

2. Given a sequence of observations, {Y0, . . . , YT }, the optimal filter, in the Bayesian sense,
computes the a posteriori probabilities (APP)

qi(t) =: P(Xt = i|Y0, . . . , Yt) , (3.8)
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for each t = 0, . . . , T , and each i = 1, . . . , N . These probabilities can be calculated for t =
0, . . . , T − 1 via

qi(t) =

N∑
k=1

P(Xt = i,XT = k|Y0, . . . , Yt) =

N∑
k=1

qki (t) ,

applying the law of total probability. It has been shown that the joint process (Xt, XT ) is Markov
[41], therefore analogously to the hidden Markov model filter, it is easily shown via Bayes’ rule
that qki (t) can be evaluated recursively, for t = 1, . . . , T − 1 by

qki (t) =
Ci(t)

∑N
j=1B

k
j,i(t− 1) qkj (t− 1)

h(t)
, (3.9)

where the normalising term is

h(t) = P(Yt|Y0, . . . , Yt−1)

=
N∑

i,k=1

Ci(t)
N∑
j=1

Bk
j,i(t− 1) qkj (t− 1) .

and the terms Ci(t), t = 0, . . . , T, i = 1, . . . , N are the evaluated conditional obervation densities
in (3.7). Initialisation at t = 0 is via

qki (0) =
Ci(0) Πi,k

h(0)
,

where h(0) = P(Y0) =
∑N

i,k=1Ci(Y0) Πi,k. The APP for the final point follows also from Bayes’
rule

qi(T ) =
Ci(T )

∑N
k=1 q

i
k(T − 1)

h(T )

where h(T ) =
∑N

i,k=1Ci(T ) qik(T − 1). The overall computational cost of the above filtering

recursions is O(N3T ) compared to O(N2T ) for a HMC filter.
For the detection task, it is common practice to take the logarithm of the evaluated obser-

vation density, which can be obtained from the normalisation terms as follows,

log P(Y0, . . . , YT ) =
T∑
t=0

log h(t) (3.10)

This approach avoids any potential numerical underflow issues which might arise if the un-
normalised MB filters as defined in [40] were used. A track extraction algorithm can be obtained
by comparing the log sequence likelihood to a threshold, as shown in sub-section 3.4.

3.3 Observation Model

In this section the novel observation model is defined. This model allows the incorporation of
multiple observations in each time epoch t. Such a model may reflect the use of multiple sensors
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or multiple sensor modes (e.g. hyper-spectral sensors, multi-mode radars), and also allows the
multiple sensor measurements at each time to be recorded asynchronously.Also included are
clutter (background noise and interference) in the observation model as well as sensor noise
and errors. Such a model also applies to the ground vehicle tracking problem mentioned in
the introduction, which is used as an illustrative example. It is assumed here that at most
one target is either present for the whole processing interval t = 0, . . . , T . This might be a
natural assumption for the application considered, or in multi-target problems, “gating” may
be used to separate multiple targets as a pre-processing step. This thesis doesn’t consider the
problem of multiple targets, although it is a natural extension of the current work, albeit one
with considerable challenges from a computational point of view.

At each time t, a vector Yt =
(
y1
t , . . . y

M
t

)
is produced by the sensor system, where M ≥ 1 is

a given integer (for instance the number of sensors), and is assumed constant (although this can
be generalised to make M time-varying) and each component ymt is a noisy version of a possible
target or clutter (false return) state. More complicated mappings from states to observations
are also possible as for the general HMC model. It is assumed each ymt is a real valued vector
quantity (corresponding to a two dimensional position). The ordering of the components of Yt
may be arbitrary under the sensor model considered (e.g. enabling the modelling of asynchronous
measurements or transmission of measurements over a network). It is convenient to define a
sequence of random variables {a0, . . . , aT }, called association variables, each taking values in the
set {0, 1, . . . ,M}, where form = 1, . . . ,M , at = m if and only if the measurement ymt corresponds
to a true target detection, the remainder being clutter returns. The outcome at = 0 means that
no target is detected by any sensor at time t thus all M components of Yt correspond to clutter
detections. In the absence of additional a priori information, the sequence at is assumed to be
independent and identically distributed (i.i.d.), and is also independent of the state sequence
Xt. This assumption is typically an approximation, e.g. if no target is present for all t, then
clearly at = 0 for all t with probability one, and thus at is then a dependent sequence. The a
priori probability distribution for at are denoted by

P(at = i) = λi, i ∈ {0, ...,M} . (3.11)

It is assumed that these quantities can be determined from the sensor and target models. The
clutter, as seen by each sensor mode, is modelled by the random process U = {Umt : t = 0, . . . , T,m = 1, . . . ,M},
taking values in S, which are assumed i.i.d. across both t and m. Additionally, all U it are as-
sumed independent of the target state when it is present. Let Ut =

(
U1
t , . . . , U

M
t

)
denote the

vector of clutter random variables at time t. The sensor signal model is assumed to have the
conditional independence property

Γ)

U=
∏T
t=0

∏M
m=0 P (ymt |Xt, at, Ut) ,
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which generalises (3.7). Let

dm(t) = P (ymt |at = 0) = EU {P (ymt |Ut, at = 0)} ,
c̃mi (t) = P (ymt |Xt = i, at = m)

= EU {P (ymt |Ut, Xt = i, at = m)} ,
cmi,`(t) = P (ymt |Xt = i, at = `)

= EU {P (ymt |Ut, Xt = i, at = `)} , (3.12)

where EU denotes expectation with respect to the common prior distribution on the clutter
process, which is assumed known. Note that when at = 0, there’s no dependence on a target
state Xt because no target is present in this case.

The observation vector likelihood Ci(t) = P(Yt|Xt = i) can thus be obtained by applying
total probability and then conditioning over the at yielding

P (ymt |Xt = i) =

M∑
`=1,`6=m

λ` ci,`(t) + λm c̃
m
i (t) + λ0 d

m(t).

Then Ci(t) =
∏M
m=1 P (ymt |Xt = i) using the conditional independence of the ymt . Numerical

examples of the multiple observation model above will be used in sec. 3.5.
To make this sensor modelling concept more concrete, it is useful to return to the ground

target tracking example. Consider a scenario where the radar system supplies the TE detector
with M measurements, ymt at each time t, being locations in two dimensions where target
and/or clutter returns originate. The two-dimensional field of view of the surveillance system
is divided into a grid of N cells which is determined by the road network (e.g. [18]). These
are the target/clutter states. It is assumed that if a target is present then it is represented by
one and only one of the measurements terms (i.e. yatt ). Given models of the sensor processing,
clutter, target return (when present) and sensor noise (including state quantisation noise), the
quantities in Eqn. (3.12) and thus the Ci(t) terms can, in principle, be determined. Note that
the complexity of the HRC filter for the general case (M > 1) is O(N3T ) +O(M2N2T ), where
the latter term is the burden of computing the observation densities for the list of M observations
at each time t. If M << N , the complexity of the filter is dominated by the term O(N3T ).

3.4 Track Extraction Detectors

The observation model along with the associated filter enables the investigation of potential track
extraction (TE) benefits from incorporating source-destination awareness into a detector’s target
model. A track extraction detector is defined as a test with two competing hypotheses. Based
on the filter derived in sec. 3.2.1, the likelihood ratio tests (LRT) are formulated, which express
how many times more likely the data are under one model than the other. Since an analytic
form for the probability distribution of the sequence log likelihood under the null or alternative
hypotheses cannot be found analytically in general, numerical approaches are required in order
to sensibly set the detection threshold. The simulations implement and assume uniform priors
over the hypotheses. In practice these priors could be set by the analyst based on empirical
observations from data or prior knowledge.

The null hypothesis is that the observations are all clutter generated (λ0 = 1). The alterna-
tive hypothesis presumes there is a target, and over many realisations one can expect to receive
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target generated observations at a rate (1− λ0) :

H0 : λ0 = 1, (no target present)

H1 : λ0 < 1, (a target is present).

If the target dynamics correspond to a reciprocal target, this detector is called a reciprocal de-
tector.It is sensible to also form a detector where the alternative hypothesis instead has sequence
log likelihood obtained from a standard HMC filter. The Markovian target dynamics considered
are either those of the reference MC, or of the Schrödinger bridge with dynamics given by equa-
tion (2.4). This alternative detector is called a Markov detector if the reference Markov process
is used to model dynamics, or, alternatively, a Schrödinger detector if a SB is used. Since the
observations Yt are independent under H0, the observation log likelihood for the null hypothesis
is given by

log P (Y|H0) =

T∑
t=0

log P (Yt|H0) =

T∑
t=0

M∑
m=1

log dm(t).

To formulate the LRT for the reciprocal TE detector, the observation log likelihood under HR

is computed using the HRC filter as described in sec. 3.2.1. The LRT for Markov and SB TE
detectors under the relevant alternative hypothesis is determined using the appropriate HMC
filters.

The performance of all of the detectors and filters considered depends on the ability of the
underlying target model to accurately describe the dynamics of the target model in the generated
data. It would be expected that the HRC based detector should perform best since it is matched
to the data. However, the error of unmatched models relative to the matched RC model may
be small. In general this will depend of course on the difference between the underlying target
models, which is measured via the KL divergence between the distribution over trajectories
which reduces to those of the endpoints as described in sec. 2.2.2. Therefore the numerical
studies have focused on the parameters of the endpoints distribution, and suggest an empirical
relationship of the form

Difference in Detection Error = f(KL(ΠData||ΠTracker))

where f(·) is some monotonically increasing function, and the tracker’s joint distribution may
not be matched to that of the data. The difference in detection error is taken to be given by the
difference in the “area under the curve” (AUC) of the receiver operator characteristic (ROC)
curve for each detector, which can be thought of as a measure of quality of a detector [63].

3.5 Numerical Examples

The simulations presented in this section compare the HRC tracker (filter and detector) to
trackers based on a Hidden Markov chain (HMC) and based on a Schrödinger bridge, which is
henceforth called a Hidden Schrödinger Chain (HSC) tracker. In all simulations the target tra-
jectory data is generated according to a RC target model, constructed from a reference Markov
process, equipped with a distribution Π. All the trackers use target models with dynamics
derived from the reference process. The trackers’ models therefore differ only in terms of the
statistical characterisation of the end-points (and thus their dynamics). The HMC has only
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initial state distribution π0 equal to the marginal distribution of Π at the initial time. The HSC,
which attempts to incorporate source-destination information in a model that remains Markov,
is supplied with both initial and final marginals of Π, that is π0 and πT .

Two HRC trackers are considered, one with joint distribution matched to the RC generating
the data, and another unmatched. This latter prompts the introduction of a notion of an
”uninformative” joint distribution for a non-Markov RC, one whose marginals match the known
marginals π0 and πT , but places uniform weighting over destinations for a given source. This is
realised by simply taking the outer product of the true marginals. Therefore, the mismatched
model has a joint endpoints distribution that factorises into the product of its marginals, but
not in such a way that is Markov, see equation (2.11).

3.6 Simulation Design

To represent a typical road network, states take values on a regular two-dimensional 8×8 cellular
“gridworld”. The reference process is a one-step Markovian random walk model, parametrised
by the probability of remaining in a cell pR and equal probabilities of moving to the neighbouring
cells (states). Note that neighbouring cells include those on the diagonal, meaning the random
walk is ‘8-connected’, rather than 4-connected. Jumps outside the gridworld are not permitted
(although this can be included e.g. [19]). Figure 3.1 shows two sample trajectories. Both
targets have the same source-destination pairs (encoded via Π) and dynamics built from the
same Markov reference process.
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Figure 3.1: Source destination aware trajectories: The paths of 2 RC targets which cross the
8 × 8 lattice from (1, 1) to (8, 8). The green marker (top left) denotes the origin state of any
realisation. Each trajectory corresponds to that of a Markov bridge with a fixed start, the
simplest type of destination awareness. The red target has T = 12 steps to reach state (8, 8),
while the blue has T = 32.

In order to generate an observation sequence, the independent clutter process U1
t uniformly

distributed on the state space is also realised (in the case M = 1, and similarly for M > 1).
A sensor detection in the observation sequence is obtained by adding zero-mean Gaussian noise
to the centre coordinates of the cell that the target or clutter is in at time t. This illustrative
choice can easily be generalised. The added Gaussian noise has equal variance σ2 in the x and
y directions with the x and y components of the noise being statistically independent.
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The specific distributions Π for the RC used to generate data are mixtures of the form

ΠRC = αΠCRC + (1− α)ΠLRC , (3.13)

where α ∈ [0, 1], LRC is a loitering RC as defined in sec. 2.2.2, and CRC is a crossing RC, one
which a target crosses the gridworld from any corner to its opposite corner, as in Figure 3.1.
Therefore as simulations are conducted with different α, it is possible to test the hypothesis that
increasing KL divergence results in an increasing drop in performance from the HMC tracker
with respect to the matched model.

3.6.1 Results

Detection results are presented using receiver operator characteristic (ROC) curves to begin
with in Figure 3.2, which plot the estimated probability of detection PD against the estimated
probability of false alarm PF as the LRT detection threshold is varied. Simulations include
realisations of both hypotheses in equal number, RC target present and no target present,
reflecting the uniform priors chosen, P (H0) = P (H1) = 0.5. The detectors perform the LRT
using the uniform priors, equal penalties for incorrect decisions and no penalties for correct
decisions, that is, a minimum error probability test.

To begin with, the single observation scenario is considered, with a clutter rate λ0 = 50%,
while α is increased from zero to one. One should expect to see the error of the unmatched
models increase with α, which is indeed observed in Figure 3.2. The general multi-observation
case produces similar results, except that the performance of all the trackers degraded, but with
the reciprocal trackers degrading less than other trackers. The filtering example of Figure 3.3,
corresponds to α = 1, and a consideration of only CRC targets in the multiple observation
scenario with M = 5. In this case 1 − λ0 represents the probability the target is indirectly
observed, which is set to 75%. Thus in the multi-observation case, M hits are observed at each
time, but occasionally none of the hits will correspond to a target. The performance of the filters
is measured by the RMSE associated with the conditional mean estimates of target location.

The phenomenon of increasing performance of HRC over alternative (more poorly matched)
models as tracking conditions worsen was observed for increasing sensor detector noise variance
σ2, clutter rate λ0 and number of sensor hits M . In Figure ?? the effect of increasing M on the
trackers’ filtering performance is shown, since the effect on the ROC curves is negligible. The
x-axis plots different sequence lengths, and the y-axis plots the difference in average-per-sample
RMSE (over the interval). Note that the benefit of HRC over HMC decreases with increasing
sequence length T , as reported earlier [40].

3.6.2 Discussion

The results show that the HRC tracker, which is matched to the model generating realisations,
performs best when compared to the Markov trackers, as expected. Furthermore the monotonic
relationship between difference in detection error and KL divergence is strongly supported, as
shown in Figure 3.4. The HMC and HSC results reveal that although the SB model incorporates
more future information than the Markov model, it can perform no better. A reason for this is
that the SB construction introduces source destination pairs having non-zero probability despite
these pairs having zero probability for the HRC. A second reason is that the clutter observation
model allows the HSC tracker to confidently assign measurements to clutter. If for example the
RC is a loitering target that loiters uniformly across the statespace, i.e. pr(i) = 1/N in (2.12),



3.6. Simulation Design 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

 

 

Matched HRC Detector

Unmatched Uniform HRC

HMC Detector

HSC Detector

Figure 3.2: Single Observation Detection Results: ROC curve for a single observation system
with clutter rate λ0 = 0.5 and sensor detection noise σ2 = 1. The RC has interval length T = 16,
and α = 1.
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Figure 3.3: Multiple Observation Filtering: (a) Estimated RMSE of the Conditional Mean for
each of the trackers with the target observed for the fraction 1 − λ0 = 0.5, sensor detector
noise of σ2 = 1, T = 16, and α = 1, meaning one can expect the HRC trackers to perform
best. (b) Difference in the Estimated Sequence RMSE (in dB) of the Conditional Mean between
the matched HRC and the reference HMC trackers. The target was observed for the fraction
λ0 = 0.5, and sensor detector noise of σ2 = 1 . The interval lengths increasing from T = 8 to
18, and α = 1, meaning one can expect the HRC trackers to perform best.

the marginals passed to the SB will be uniform, and the HSC tracker will ‘expect’ trajectories
between any two states. Thus for highly constrained target motion, which is often the case
in practice, RC models appear to outperform SB models even though both models have the
same marginal distributions on the end-points. In particular, the strong performance of the
unmatched HRC in the detection task is noteworthy, despite also having access to only initial
and final distributions.

The poorer HSC result can be further understood by considering the illustrative example in
Figure 3.5 which shows a crossing target’s path X , a noiseless path of the “sensor” detections
(target and clutter origins), the observations Y and the HSC filter’s maximum a posteriori
probability (MAP) estimates. The majority of the HSC estimates are focused around the starting
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Figure 3.4: ∆AUC vs. KL Divergence: Error of unmatched HMC with reference process as
target model, taken to be area between ROC curves of matched HRC and ROC curves of HMC
(∆AUC). Estimates for in a single observation scenario, with λ0 = 0.5, σ2 = 1, T = 16 as α
increases.
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Figure 3.5: HSC predicting incorrect trajectory: A target’s path from (1, 1) to (8, 8) (dotted
black line), with sensor detections (black points) and the HSC filter MAP estimates (green), for
a crossing RC (α = 1) with T = 16. At time t = 9 the filter determines that the measurement
sequence has higher likelihood with a trajectory of (1, 1) to (8, 8).

vertex (1, 1), since under its model it is possible for a target to start and end at the same location,
until at time t = 9 the filter determines that the measurement sequence has a higher likelihood
with a trajectory of (1, 1) to (8, 8). This effect corresponds to Figure 3.3, where the RMSE in
the HSC conditional mean estimates decreases close to T .
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3.7 Chapter conclusion

This part of the thesis has considered a non-Markovian target dynamic model called a reciprocal
chain (RC), which is able to incorporate a simple notion of intent. The potential of this model
to improve the tracking performance over alternative Markov models was studied. A reciprocal
chain can be constructed from a Markov chain (MC) reference process together with a joint
endpoints distribution which models the source-destination awareness of a target. A track
extraction scenario was proposed, with an observation model in which multiple observations
could be generated by a single target or clutter. Normalised hidden RC (HRC) filters were
reviewed and observation models and corresponding likelihood based detectors were constructed
for the track extraction context.

Numerical simulations of targets on a cellular gridworld, with states as cells, and dynamics re-
stricted to one-step walks over cells were developed. HRC filters and detectors were constructed,
one with a target model matching that which generated the data, and another unmatched HRC
with endpoints distribution replaced by the product of the marginals of the data generating
model. These two HRC models were compared via numerical simulations to both a HMC
tracker with the reference process as its target model, and a tracker based on the Schrödinger
bridge, which models some destination information.

An important insight drawn from these numerical simulations was that the error of the
unmatched models, constructed from the same reference process, can be related to the Kullback-
Leibler divergence of the joint endpoints distributions between the unmatched model and that
which is generating the data. An important secondary insight is that the Schrödinger bridge
tracker, despite having correct initial and final marginals pre-specified, can in fact perform worse
than a Markov tracker using only the reference process. This supports the main result, which
claims that HRC better model source-destination awareness than HMC or HSC. In particular,
the results reveal that for reasonable groundtruth trajectories, and access limited to only the
initial and final marginals, the reciprocal model appears to be more robust to modelling errors
than the Schrödinger bridge tracker.

A natural extension to the single target tracking problem is of course to consider multi-target
tracking problem. For Bayes optimal inference, the computational complexity is a significant
obstacle, due to the combinatorial explosion with the number of targets M (under all possible
orderings of at least M measurements, at each time over a finite set of observations T ). This issue
is compounded further in the case of reciprocal models where the dependence on the state space
size N is cubic. Approximate inference techniques, such as particle filtering (or smoothing), are
then required, possibly in combination with various “pruning” heuristics to reduce the number of
possible targets and tracks. The difficulties in applying Bayes optimal inference, in combination
with a model that attempts to model a more complex data generation process, motivates many
researchers to consider discriminative models for tracking. A popular discriminative model, a
neural network, is studied in the remaining chapters of the thesis.



Chapter 4

Statistical learning with neural
networks

This chapter presents the background material for statistical learning algorithms for binary
neural networks. The aim of the chapter is that a reader with some familiarity with statistics,
optimisation or machine learning will be able to read this section and appreciate the various
ingredients that go into the design of the current state of the art algorithms. The chapter
begins with a review of statistical learning problems, quickly specialising to the problem of
binary parameters. In the process the relationships to traditional statistical estimation are
discussed. Following this, continuous optimisation techniques are reviewed for large multi-layer
neural networks. This helps to inform a reader of the problems one can expect to encounter in
the binary case.

The contribution of this chapter is the presentation of diverse background material that
intersects on the problem of statistical learning with binary neural networks. The material
presented here is known, but to the best available knowledge has not been presented together in
this way. As such, this is a useful contribution, since the literature relating to the binary neural
network learning problem is disconnected. In summary, this chapter achieves the following,

• Introduces the background for statistical learning problems that one may attempt to solve
using neural networks (continuous or binary), focusing on generic classification problems
in a supervised setting

• Argues that the standard problem that neural networks solve is empirical risk minimisation
(ERM) with a convex surrogate loss, and subsequently identifies agreement between ERM
with Bayesian approaches, and the special cases of maximum likelihood estimation, for
the logistic regression problem

• Defines standard continuous neural network models and the stochastic gradient methods
used for optimisation of the convex surrogate ERM objective. Presents some basic intuition
on the impact of second order properties of the loss surface on the optimality of the gradient
based optimisation process

38
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4.1 Statistical learning

This chapter begins with a general introduction to what will be referred to as “statistical learn-
ing”. This is considered to be a set of problems that share many similarities to those in statistics
and optimisation, to name just two fields. However, there are important differences as well. In
particular, the dimensionality of the data is large, and the number of parameters are typically of
the same order as the number of data points. This differs from traditional statistics in particular,
where methods rely on the assumption that the number of data points grows asymptotically,
while the number of parameters of the model remains fixed. In order to tether the discussion, ex-
amples will be kept simple and relevant to neural networks, in particular binary neural networks
where possible.

Consider the logistic regression conditional probability model in a supervised setting [64].
Assume the dataset is a finite set of independently and identically distributed (i.i.d.) samples
from some unknown distribution, which is denoted as D = {xm, ym}Mm=1 with y ∈ {+1,−1}
and xm ∈ RN vector valued in general. In a supervised setting, the task amounts to finding a
conditional model of the data, which can be written as a conditional probability distribution
p(y|x). The standard logistic regression model has parameters which are referred to as weights
wi parameterising the conditional model of the data,

p(y = 1|x = x;w) =
1

1 + exp(−
∑

iwixi)
(4.1)

where random variables are denoted with bold font. The aim of “learning” is to determine these
weights by some automatic method. Consider maximum likelihood and Bayesian estimation
[65], two approaches usually pitted against one another in traditional statistics. The maximum
likelihood objective to be maximised is the log likelihood of the data,

log p(D;w) =

M∑
m=1

log p(ym|xm, w) (4.2)

where the likelihood L(w;D) = p(D;w) is a function from the parameter space to the real
numbers, relating the parameters to the data, in particular, expressing which parameter values
are more plausible. This objective is differentiable in the case where the wi are continuous, it is
plain that this is not the case when restricted to binary values.

Bayesian estimation, on the other hand, aims to find the posterior distribution over the
weights w given the data given a prior p(w) which can encode the binary constraints,

p(w|D) =

∏M
m=1 p(y

m|xm,w)p(w)

p(D)
(4.3)

Unfortunately, computing the partition function, or normalisation constant Z = P (D) is in-
tractable. This is because it is defined by the multi-dimensional integral

p(D) =

∫
dw

M∏
m=1

p(ym|xm,w)p(w), (4.4)

which either has no closed form solution, or is computational intractable to evaluate. Therefore,
approximations are needed. This difficulty has motivated the development of approximate mes-
sage passing algorithms which attempt to approximate the posterior that is otherwise intractable
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to compute. Message passing algorithms have been derived for the binary weight case [32],[66]
but these algorithms fail to scale to large neural networks, where the number of parameters and
data points are large. The first reason for this failure to scale is the sheer size of the probabilis-
tic graphical model which corresponds to the variables under the posterior distribution to be
calculated [67]. Despite message passing algorithms like belief propagation scaling linearly with
the number of edges, which is otherwise efficient, for large networks and datasets this number is
easily in the billions [68]. The second reason behind the lack of scalability is that the graphical
model does not have the form of a tree, meaning that it contains many loops and therefore
requiring many iterations for an algorithm such as loopy belief propagation converge.

The Bayesian picture can be extended, as is well known in statistics, to form a hierarchical
Bayesian model, where a parameterised prior distribution has a (hyper-) prior over its own
parameters [69]. This is the statistical setting that most popular gradient algorithms for binary
weight neural networks could be couched. Henceforth, the binary weights will be denoted1 as
si. Then, for instance, if some distribution for the binary weights p(s; θ) is assumed, with some
parameters θ, then one objective that could be optimised is the log marginal likelihood,

log p(D; θ) =
∑
m

logEp(s;θ)p(ym|xm, s) (4.5)

where the notation Ep(s;θ)[f(s)] =
∑

s f(s)p(s; θ) defines the expectation of a function f(s) of
the weights. This objective can be viewed as the formal starting point for several of the current
most popular approximations from which gradient descent algorithms can be derived, by taking
the gradient with respect to each parameter θ.

The steps leading to the current state of the art gradient algorithms will be outlined more
carefully in subsequent chapters, but essentially the next key step is to model the binary random
variables as independent, and then approximate them in some way with continuous random
variables. The most common approach is to apply the central limit theorem to the linear
combination input to the logistic regression or “local field” h =

∑
i sixi ∼ N (µ, σ2). The

mean and variance of this Gaussian are then functions of each individual θi that controls the
distribution over each weight si. Following this Gaussian assumption, an estimate of the gradient
at a particular value of θi can be derived.

In the statistics literature the use of the objective (4.5), to set the hyperparameters θ, is
known as type II maximum likelihood, or an empirical Bayesian method [69] [70] . In machine
learning, the objective is called the evidence [71]. In this thesis it is argued that this is just one
frame from which to view these methods. A possibly more compelling view is around empirical
and expected risk minimisation. This alternative does not assume any particular model of the
data. Instead the average performance of a classifier under a given loss function, under the
empirical and “true” data distribution is studied.

One might be inclined to ask what the Bayesian, and non-Bayesian approaches of estimation
have to do with each other or indeed the problem of learning a classifier from a finite dataset?
This is a good question. A satisfactory answer is to consider the supervised learning classification
problem from the perspective of decision theory. This helps to separate the definition and mod-
elling of the problem, from the statistical estimation and subsequent approximations that lead
to algorithms for learning the binary weights. In taking a step back to discuss decision theory,
this will lead quite sensibly to the ideas of expected and empirical risk minimisation mentioned,

1The choice of the letter ‘s’ for the binary weight si follows a convention in physics, where one usually considers
binary spins
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which are arguably better suited to describing the large scale gradient learning methods [72].
Following this high level discussion the thesis will move on to the specific approximations to
derive gradient based binary neural network algorithms.

4.1.1 Binary classification by learning from data

A classification problem is defined on an input space X , corresponding to input data, and an
output space Y corresponding to labels. In the binary classification case, Y = {+1,−1}. It
is assumed that there exists some joint distribution p(xy) over X × Y that generates a finite
dataset, D = {xm, ym}Mm=1. A classifier is a function φ : X → Y, that takes an input and
predicts the label of the output. The task of supervised learning, in the classification context,
is to find a good classifier given only the dataset D, assumed to be sampled i.i.d. from the joint
p(x,y).

In order to measure the quality of any given classifier, it makes sense to consider some kind
of cost or loss function associated with any decision. A sensible loss function therefore measures
how different a predicted label ŷ = φ(x) is from the true label y, given some input. A common
or “natural” loss is the the so called 0− 1 loss,

L(φ(x), y) = I{y 6= φ(x)} (4.6)

where I is the indicator function. The statistical risk of a given classifier ŷ = φ(x) with this
particular loss function, is defined as:

R(φ) = Ep(x,y)L(φ(x),y) (4.7)

The performance of the best possible classifier is known as the (optimal) Bayes’ risk. For
the 0 − 1 loss function, such a classifier will minimise the probability of error on new data. A
particular classifier that attains Bayes’ risk is known as the Bayes classifier

φ∗(x) = 2I{η(x) > 0.5} − 1 (4.8)

where η(x) = Py|x(y = 1|x = x) is the evaluated conditional probability distribution for y given
x = x. More precisely, φ∗(x) is a (possibly non-unique) minimum of the statistical risk (4.7).

Now that the classification problem is defined, it makes sense to discuss the aspect of
modelling the data. In Bayesian decision theory, as one might guess, the objective is to ob-
tain the Bayes classifier via Bayesian methods. If one assumes knowledge of the form of the
joint distribution, one can estimate the posterior over the parameters given the finite dataset
D = {xm, ym}Mm=1. For a new input data point xM+1, one can apply Bayes’ rule and obtain a
Bayesian classifier,

p(y|x = xM+1) =
p(x = xM+1,y)

p(x = xM+1)
=

∫
p(x = xM+1,y|θ)p(θ|D)

p(x = xM+1)
(4.9)

where it is assumed that the joint probability distribution over the data is parameterised by
some θ, and p(θ|D) is the posterior over the parameters2. Modelling concerns the specifica-
tion of p(x,y|θ), where one can distinguish between generative and discriminative modelling
approaches.

2Note that θ is used for parameters within more general discussion, and w is used for the weights when
discussing neural networks.
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A generative model aims to model the generation of the data x, via p(x,y) = p(x|y; θ)p(y; θ),
where the prior on class membership probabilities is given by p(y; θ) (with dependence on the
model parameters θ in general). In the discriminative approach3, the practitioner chooses the
form of the conditional probability distribution p(y = 1|x = x; θ), and ignores any estimation of
p(x). A common approach is to model this conditional distribution via a linear combination of
the data x, passed through a logistic function, as in (4.1). In this case the classifier corresponding
to this conditional distribution is

φ(x) = arg max
y

p(y = y|x = x;w) = arg max
y

1

1 + exp(−y
∑

iwixi)
(4.10)

where the parameters are considered to be the weights, θ = {wi}Ni=1. Note that the linear
combination in the above expression is known as a linear discriminant in this context, since the
vector of weights {wi}Ni=1 defines a linear decision boundary [65]. Determining the parameters
of a classifier when the wi are continuous can be cast as the logistic regression problem, common
to statistics [65].

There is a special case for generative classifiers under the assumption that p(x|y; θ) is in
an exponential family. This assumption results in the conditional likelihood p(y|x = x) taking
the form of a logistic function of a linear combination of the input’s elements. That is, one can
make a connection to logistic regression. This connection is discussed extensively in [64]. Of
course, with either generative or discriminative models, the decision theoretic approach demands
statistical estimation of the unknown parameters. The advantage of Bayesian approaches over
non-Bayesian ones, assuming the joint model correctly represents the underlying data distribu-
tion, is extensively discussed in decision theory texts [69], [70].

4.1.2 Bayesian and non-Bayesian estimation

In the context of the supervised binary classification problem above, it makes sense to discuss
the relationship between Bayesian and non-Bayesian estimation methods, with an interest in
binary weight constraints kept in mind. The non-Bayesian methods considered in this thesis
are maximum likelihood and what is commonly referred to as empirical Bayes methods. Note
that choosing to use a particular estimation approach is independent of whether or not there a
hierarchical model, with hyperparameters, has been assumed.

It is well known that calculating the posterior distribution is typically intractable, so approx-
imate Bayesian methods are used in practice. At an extreme end of the scale, one can obtain
point estimates for parameters in a Bayesian frame, and this is known as maximum a posteriori
probability (MAP) estimation, defined as

θMAP = arg max
θ

log p(θ|D) = arg max
θ

log

∏M
i=1 p(y

m|xm, θ)p(θ)
p(D)

(4.11)

∝
M∑
m=1

log p(ym|xm, θ) + log p(θ) (4.12)

The above expression relates to a common relationship reported in machine learning material
that essentially argues that “MAP estimation is equivalent to regularised maximum likelihood”
[71]. The term R(θ) = log p(θ) corresponds in this context to what is commonly called a

3Non-probabilistic approaches such as SVMs and other margin based techniques are ignored in this discussion.



4.1. Statistical learning 43

regulariser. Generally, regularisation can mean either the addition information in order to solve
an ill-posed problem (such as a least squares problem involving singular matrices), or the addition
of information to prevent overfitting [73]. In the present context, the regulariser corresponds to
the latter case. It is clear that a maximum likelihood objective including a regulariser R(θ) can
be equivalent to MAP estimation. For example a `2 penalty corresponds to placing a zero mean
Gaussian prior on the parameters, via the term log p(θ).

A “more Bayesian” approach aims to approximate the posterior, and the two most popular
approaches are Monte Carlo simulation or variational approximations. This chapter ignores the
former, and focuses on the latter for several reasons. First, it is quite popular in the neural
network literature, second it is fundamentally an optimisation problem, and finally it has been
applied to the binary weight perceptron problem with success [32], [66]. It is worth mentioning
there has been justifiable confusion in the machine learning binary neural network literature
over which algorithms are Bayesian or not, since certain variational algorithms closely resemble
the empirical Bayesian approaches [33], [74].

4.1.3 Variational approximations to Bayesian estimation

A variational approach to Bayesian estimation attempts to find a tractable proxy q(θ) to the
true posterior p(θ|D), selecting a good approximation by minimising a distance measure between
the two distributions. The most common distance measure is the Kullback-Liebler divergence,

KL(q||p) =

∫
q(θ) log

q(θ)

p(θ|D)
dθ (4.13)

In machine learning the above divergence, with q as the first argument, is known as “variational
Bayes” KL divergence, and is used because the expectation should be tractable given a tractable
choice of q. As argued in [66] this choice cannot be used in the case of binary weights, since this
divergence may not be defined, for example if q(θ) 6= 0 and p(θ) = 0 for some θ. An alternative
choice for the binary weight problem is the “reverse”, KL(p||q). Of course, the expectation over
p is intractable to compute, and so the alternative is to minimise this divergence locally, leading
to message passing algorithms such as expectation propagation. See [66] for a comprehensive
review.

The most common choice for the approximating distribution q(θ) is what is known as the
mean field approximation, a fully factorised model:

q(θ) =
∏
i

qi(θi) (4.14)

In the case of binary weights si, each factor is a Bernoulli distribution, with some parameter θi
that controls the probability that the weight is +1 or −1. This is the choice used in the best
performing message passing algorithms for the binary perceptron, including belief propagation
[32] and expectation propagation [66]. This mean field approximate posterior is the same choice
as in the hierarchical models used in several of the most common gradient algorithms, which is
identified here as optimising empirical Bayes objectives.

4.1.4 Empirical Bayes optimisation

In the case of binary weights si, the hierarchical model can be written as follows

p(y|x; θ) =
∑
s

p(y|x, s)p(s; θ) = Ep(s;θ)p(y|x, s) (4.15)
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where the sum is over all possible values s = {si}Ni=1. As stated, the most common model choice
for the binary weights is the mean field assumption, p(s|θ) =

∏
i p(si|θi). The most common

objective used to optimise the binary weight models is the log marginal likelihood,

log p(y|x, θ) = log
∑
s

p(y|x, s)
∏
i

p(si; θi) = logEp(si|θi)p(y|x, s) (4.16)

The marginal likelihood is also known as the model evidence, following [71]. The mean field
model of the binary weights opens the door to simple approximations that then yield a differen-
tiable objective function when applied within the marginal likelihood. These approximations are
detailed in the next section. Of course, the marginal likelihood is just one objective that could
be used to choose the hyperparameters w in the hierarchical model. The following subsections
present a framework that handles this question in a particularly pleasing way.

4.1.5 Expected and Empirical Risk minimisation

The “statistical learning theory” proposed by Vapnik [75] and others, which is advocated in
machine learning by [72], agrees with decision theory in that the optimal risk is the Bayes risk
and the Bayes’ classifier is one particular classifier that attains this performance. Where this
school of thought deviates is that it makes no assumptions on the form of the joint distribution
Pxy. Instead, this theory considers the role of a classifier’s “function class” C to be of prime
importance. More generally, the theory views the process of determining a classifier φ(x) from
the data as a stochastic process itself.

Under statistical learning theory, the only access to the joint distribution is the finite data
set D. In general, no assumptions on the form or type of distribution are made, though it is
assumed the data is sampled independently and identically. The function class C is typically
assumed to be restricted in the sense that it may or may not be sufficiently “rich” to attain
the optimal Bayes risk. The idea that the process of determining the classifier is random sits
naturally across the algorithmic approaches to learning, especially optimisation algorithms such
as stochastic gradient descent (SGD) as in [72]. To illustrate, the statistical risk from this view
is defined as a conditional expectation:

R(φ) = Ep(x,y)[L(φ(x),y)|φ] (4.17)

where the conditional statement is to ensure the definition is sensible even if φ(·) is itself random.
Thus expected risk is the expectation over the possibly random learning process that determines
φ,

Expected Risk = E
[
Ep(x,y)[L(φ(x),y)|φ]

]
= E[L(φ(x),y)] (4.18)

The empirical risk is of course the empirical estimate of the expected risk4, over the data D.
The purpose of the statistical learning theory of Vapnik, and related theories, is to relate the
minimisation of the empirical risk to the expected risk, given D, a class of functions C and a
process of determining a classifier.

4Somewhat confusingly, this is the same as an empirical estimate of the statistical risk defined in (4.7)
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4.1.6 Convex surrogates

As stated at the beginning of this section, the common choice for the loss function for binary
classification is the 0−1 loss (4.6). In an equally sensible approach, one can place gradient based
learning under the umbrella of empirical risk minimisation by replacing the 0 − 1 loss with a
convex, possibly differentiable, surrogate loss. This will obviously have statistical consequences,
and surrogate losses that are upper bounds for the 0 − 1 loss have been studied thoroughly in
recent years [76],[77].

Of particular interest is the logistic loss surrogate for a classifier φ(x) = sign(f(x)).∑
m

I{ym 6= φ(xm)} ≈
∑
m

log(1 + exp(−ymf(xm))) (4.19)

Consider the case that the discriminant f(x) is linear, that is f(x) =
∑

iwixi. If the aim is
to minimise the empirical risk using this differentiable, convex loss one obtains the negative
log-likelihood objective that is minimised for logistic regression, corresponding of course to a
maximum likelihood approach.

Equally, one can consider empirical risk minimisation under the constraint of binary weights
as well. It is convenient to start by defining the classifier in terms of the following expectation
over some stochastic binary weights,

φ(x) = arg max
y

p(y|x = x; θ) = arg max
y

Ep(s;θ)[p(y|x = x, s)] (4.20)

If this classifier is evaluated via its empirical risk under a logistic loss, this corresponds to
minimising a negative log marginal likelihood of a hierarchical model,

−
∑
m

log p(y|x = x; θ) = −
∑
m

logEp(s;θ)[p(ym|x = xm, s)] (4.21)

= −
∑
m

logEp(s;θ)[
1

1 + exp(−ym
∑

i six
m
i )

] (4.22)

Alternatively one might define the empirical risk in no connection to the marginal likelihood,
but still have a classifier with stochastic weights. A empirical risk objective that works in
accordance with this might instead take the average over weights outside the log∑

m

Ep(s;θ)[log
(
1 + exp(−ym

∑
i

six
m
i )
)
] (4.23)

It is possible to connect these two expressions in one framework via the theory of risk sensitive
optimisation.

4.1.7 Risk sensitive optimisation

Consider the problem of minimising the expectation over variable s, Ep(s;θ)[L(s)], with respect
to some parameters θ, for a given loss function L(s). The risk sensitive generalisation is given
by,

Fβ(θ) = − 1

β
log

∫
p(s; θ)e−βL(s)ds (4.24)
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where β controls whether the objective is risk averse or risk seeking. See [78] for a simple,
intuitive introduction to these notions. One can illustrate what is meant by risk averse or
seeking by expanding Fβ for small β,

Fβ(θ) ≈ E[L(s)]− βV[L(s)] (4.25)

where V[L(s)] is the variance of the loss. So if β < 0 the objective Fβ will be risk averse, since
it tries to minimise the variance in the loss as well as the first moment. If β > 0 the objective
is risk taking.

For the case of the stochastic binary weight logistic regression model, L(s) = log p(y|x, s), it
is possible to identify β = 1 with the marginal log likelihood, and β = 0 with the risk neutral
cost. Note that the risk sensitivity is with respect to the stochastic binary weights, and not the
random data.

What is interesting is the clear similarity between the quenched and annealed averages in
statistical mechanics, which is reviewed in Chapter 6. It is beyond the scope of this thesis to
describe with confidence the physical correspondence of the two expressions for each value of
β. Speculatively, for β = 0 the objective Fβ may correspond to a physical system where the
stochastic binary weights si fluctuate on a similar time scale to the “couplings” between weights,
induced by the data points (xm, ym). For β = 1 this might correspond to the weights fluctuating
at a higher rate than the couplings.

4.2 Continuous optimisation of neural networks

Neural networks have risen to prominence in the past decade, with impressive performance in
image recognition and new domains [3]. The literature on this topic is vast, therefore the scope is
limited to produce a “shortest path” to understanding the optimisation of binary weight neural
networks.

The chapter begins by defining a neural network and its optimisation objective, in light of the
previous section on statistical learning. The workhorse of neural networks or “deep learning” is
arguably stochastic gradient descent algorithm (SGD), which optimises the objective by adapting
the weights or parameters of the network. Although much can be said for the methods collected
under the name “backpropagation” which enables the efficient application to very large models
and datasets [3], these are not fundamental to explaining the success of deep neural network, such
as their generalisation performance. Since the algorithms presented in this thesis are also based
on SGD to optimise binary weight networks, via continuous surrogate models, it is sensible
to consider some of the fundamental problems that can be encountered when attempting to
optimise standard neural networks. This will inform readers of the problems to expect in the
binary case.

The view presented of the optimisation of neural networks, the basic elements of SGD and
its obstacles, largely follows [72]. This comprehensive review concerns optimisation methods for
large datasets, providing a treatment both rigorous and intuitive.

4.2.1 Neural networks

A neural network is typically defined as a deterministic non-linear function. The most common
model is the multi-layer feedforward type, and the most basic “architecture” of this type is
the fully-connected model. The network is composed of N ` × N `−1 weight matrices W ` and
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bias vectors b` in each layer ` ∈ {0, . . . , L}, with elements W `
ij ∈ R and b`i ∈ R. Given an

M−dimensional input vector x0 ∈ RM , the network is defined in terms of the following vector
equations,

x` = φ`(h`cts), h`cts = W `x`−1 + b` (4.26)

where the pointwise non-linearity is, for example, φ`(·) = tanh(·), and the (vector of) neurons
of the network are defined as the outputs of the non-linearities, x` = φ`(W `x`−1 + b`), as is
standard. The term h`cts is referred to as the pre-activation field. The overall neural network
function can be written in a way that makes its concatenated form more clear:

f(x0;W, b)) = WLφL(WL−1φL−2(· · ·φ1(W 1x0 + b1)) + bL−1) + bL (4.27)

The network training is the process of adapting of the weights and biases so as to minimise
a loss function. In the supervised learning setting this is the sum of the individual losses of the
network to the target ym:

LD(f ;W, b) =
∑
µ∈D

`(yµ, f(xµ;W, b)) =
∑
µ∈D

log p(yµ = f(xµ;W, b)) (4.28)

As discussed, it is possible to interpret the loss function `(·) as a log-likelihood of a data point,
and the weights and biases as the parameters which one might try to estimate via a maximum
likelihood method. However in this thesis LD is isntead recognised as the Empirical Risk,
following [72]. Modern neural networks are trained by stochastic gradient descent, that is, some
variant of the original Robbins-Monro “stochastic approximation” algorithm [72].

4.2.2 Optimisation objective

Consider again the supervised learning problem, defined on an input space X and output space
Y of labels, with some joint distribution pxy over X ×Y. Given a finite dataset D = {xi, yi}Mi=1,
which is assumed to be sampled i.i.d. from the joint Pxy, and a neural network of a given
architecture and set of weights {W}, the optimisation objective minimised by neural networks
is the empirical risk

Empirical Risk: RM (W ) =
1

M

M∑
m=1

`(f(xm;W ), ym) (4.29)

where `(·, ·) is a continuous, differentiable loss function. For convenience the loss per example
is defined via the notation

`m(W ) := `(f(xm;W ), ym) (4.30)

Again, when interested in classification, this would likely a be a surrogate to the 0− 1 loss. In
minimising the empirical risk, ideally one would minimise the expected risk.

The choices of surrogate losses that are common have been reported to not have a large
impact on the statistical properties of the resulting classifiers, in the sense that a classifier which
minimises the expected risk with the surrogate loss will also minimise the 0−1 loss [76]. However
the choice will affect the optimisation process, and therefore the typical minima attained in the
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first place. In the context of neural networks, the combination of the loss, the neural network
function and the stochastic gradient descent method have led to remarkable performance in
terms of the expected risk. Explanations to this phenomena leads one to attempt to bound
the expected risk in the sense of [75]. This is the subject of current research, where the first
non-vacuous bounds were only established recently [79].

4.2.3 Stochastic gradient methods

The most basic stochastic gradient method selects one example pair at each iteration k and
updates the weights Wk, all written as a single vector, according to

Wk+1 = Wk − α∇Wk
`mk(Wk) (4.31)

where mk corresponds to the seed selecting the pair (xk, yk), and α is the step size or learning
rate. This is referred to as an online update. The full batch method calculates the gradient over
the dataset D, that is ∇Wk

RM (Wk).
Implementations of SGD for large neural networks utilise “mini-batches” which, as the name

suggests, selects a random subset of the data Sk ⊂ {1, . . . ,M} and performs the update

Wk+1 = Wk − α
∑
i∈Sk

∇`i(Wk) (4.32)

One reason practitioners have historically opted for mini-batch SGD is due to computational
constraints. Usually the datasets are so large that computing the gradient over the full batch of
data is costly, and also unnecessary if many of the data points share similarities.

In the non-convex optimisation setting, it is known that algorithms with some level of noise
can assist in finding “better minima” or regions of the parameter space corresponding to lower
loss values, in a similar vein to simulated annealing. In recent years, in the search for explanations
of the success of deep learning, more sophisticated arguments have been made as to how the
non-isotropic noise of mini-batch SGD contributes to the low expected risk obtained by these
models [80], [79].

For more detailed motivation of using mini-batches, both intuitive, practical and theoretical,
pleaserefer to [72].

4.2.4 Second order properties

There are two issues with the SGD algorithm commonly identified [72]. The first is the noisy
estimates of the true full batch gradient, which essentially prevent the algorithm from converging
to a final solution. This chapter closes by focusing on another common issue, arising from non-
linearities of the function being optimised, and the subsequent ill-conditioning of the gradient
process.

The motivation for considering second order properties of gradient descent can be understood
by investigating what happens in the full batch (ie. noiseless) case, when the loss surface is
approximately a quadratic well. Suppose the weights are given by Wk, and the step direction
and size is given by αg where α is the learning rate (step size) and g = ∂`(W )

∂W |W=Wk
the gradient

at Wk. The update will be of the form Wk+1 = Wk − αgk.
Consider the Taylor expansion of the loss function to second order, about the new point Wk:

`(W ) ≈ `(Wk) + (W −Wk)
T g +

1

2
(W −Wk)

TH(W −Wk) (4.33)
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where H is the matrix of second order partial derivatives, known as the Hessian matrix. Sub-
stituting now W = Wk − αg into this expression,

`(Wk − αg) ≈ `(Wk)− αgT g +
1

2
α2gTHg (4.34)

The three terms in this expression are the original function value, the expected improvement
due to the slope of the function and the correction for curvature of the function. Notice that
when α is too large, the value of the loss function can actually increase.

The optimal learning rate can likewise be obtained by first differentiating (4.33) with respect
to Wk,

∂`(W )

∂Wk
=
∂`(Wk)

∂Wk
+ (W −Wk)

TH (4.35)

with the second order term disappearing since it is constant for a quadratic loss. Letting W =
Wmin and setting this expression to zero, one finds5

Wmin = Wk −H−1∂`(Wk)

∂Wk
(4.36)

Thus the optimal step size for each parameter depends on the curvature of the loss.
This approach is the basis of a Newton-type optimisation scheme. In general, the loss

functions are of course not quadratic in the weights, but the idea is that the functions may be
well approximated by quadratics at least locally. Therefore, the conditioning of the problem,
meaning the ratio of largest to smallest eigenvalues of the Hessian, does indeed have an impact
on the optimisation process. This has been confirmed for standard neural networks [81], and
this thesis makes some inroads to filling out this picture for binary neural network algorithms.

4.2.5 Decomposition of the Hessian

The Hessian of a neural network admits a specific decomposition for the case of a K − class
classification problem. To reveal this decomposition, consider a “final layer” to a neural network,
known as the the softmax output, interpreted as providing a probabilistic classifier. So, the loss
function is given by

`(f(xm,W ), ym) = − log p(y|f(xm,W )) (4.37)

where p(y = k|f(xm,W )) =
exp

(
hk(xm,W )

)∑K
k′=1 exp

(
hk′(xm,W )

) (4.38)

By the chain rule, the Jacobian matrix (of first order partial derivatives) can be written as
J = J`,hJh,w. In this notation J`,h represents the Jacobian of the loss `(·) with respect to the
vector of output fields hk(xm,W ), and Jh,w the Jacobian of the fields with respect to all weights
of the network.

In turn, the Hessian of the network can be written out by applying the product rule to this
Jacobian decomposition,

H =
∂

∂ ~w
(J`,hJh,w) = J ′h,wH`,hJh,w +

K∑
k′=1

(J`,h)k′Hhk′ ,w (4.39)

5Note that ∂`(W )
∂Wk Wmin

= 0 by definition.
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The Hessian matrices HL,h and Hhk,w can be defined similarly, in correspondence with the Ja-
cobian.

The reason for writing down this decomposition is that the technical contributions of this
thesis concern the Jacobian of the network at initialisation, and the effect this has on the
trainability of a deep binary neural network. From the second order optimisation perspective, it
can be seen immediately that the surface at the initial point will depend on the conditioning of
the Jacobian, via this decomposition of the Hessian. In controlling the Jacobian, it is possible
to control the Hessian at initialisation.

4.3 Chapter conclusion

This chapter has reviewed the commonly presented approaches to statistical leaning, with partic-
ular focus on the problem of learning neural networks with binary parameter constraints. While
other approaches may exist, especially in the optimisation literature, the material presented is
encountered most commonly in the machine learning literature. In the next chapter the problem
of both binary weights and neurons is considered.

The overall contribution of this chapter, as discussed in the introduction, is the clarification
of the various approaches to selecting an optimisation objective for a neural network with binary
parameters. This is a significant contribution, since the machine learning literature often presents
presents an objective without discussion or comparison. On occasion, this has led to confusion,
with some algorithms being described as Bayesian, due to the problem considering stochastic
binary parameters, or weights. The next chapter presents some examples of this.



Chapter 5

Optimising neural networks with
binary weights and neurons

This chapter outlines the specific approximations that yield differentiable surrogate neural net-
works that, when optimised, yield binary neural networks that “solve” the original statistical
learning problem. More specifically, this chapter shows how to apply various principled and
heuristic approximations to the empirical risk objective function for stochastic binary neural
networks, which involves an expectation over the stochastic binary variables to produce various
surrogates.

The chapter begins by clearly defining deterministic and stochastic binary networks. This
includes the case of binary weights and continuous neurons, and the case that both weights
and neurons are binary. The basic ideas of gradient approximation and estimation are then
summarised. A heuristic from the machine learning community known as the “Straight-Through
estimator” is also presented. This heuristic has been proposed with little justification, yet
appears to work well in practice.

Following this, several approximations used for multi-layer stochastic binary neural networks
are presented. The approximations yield what will be referred to in this thesis as surrogate
networks, that are differentiable. The chapter focuses on two approaches based on Gaussian
approximations, deriving the surrogates with the help of a novel Markov chain representation
of stochastic neural networks.

The first approximation yields a deterministic surrogate, and the other remains stochastic,
which is referred to as the “perturbed” surrogate. In the latter case an algorithm for the case
of both stochastic binary weights and neurons, which is new. Also presented is a new surrogate
based on what is known as the “concrete” gradient estimator.

The contributions of this chapter are both the presentation of new algorithms, as well as tak-
ing a step toward unifying the presentation of algorithms for optimising binary neural networks,
similar to the previous chapter. In summary, this chapter makes the following contributions,

• Presents several gradient approximations and estimators for functions involving discrete,
stochastic variables, based on either the Gaussian central limit theorem (CLT), or heuristics

• Presents derivations for surrogate networks by starting with a novel Markov chain repre-
sentation of a stochastic neural network. This starting point encompasses all stochastic
binary neural network surrogates
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• Presents a clear derivation of a deterministic surrogate network based on Gaussian central
limit assumptions and analytic integration. This surrogate can be developed from a range
of neuron noise models, including logistic or Gaussian (probit) models, as well as simple
deterministic sign(·) neuron

• Presents the derivation of a so called “perturbed” surrogate, based on Gaussian central
limit assumptions and a single Monte Carlo sampling step. This includes a formulation
with stochastic neurons, an unexplored algorithm and thus a new contribution in itself

• Defines clean notation the recursive forward propagation equations for the Gaussian based
surrogate networks that reveal some similarities to standard neural networks

• Proposes a new heuristic approximation based on the concrete estimator for discrete
stochastic variables. This approximation is related qualitatively to the perturbed sur-
rogate.

5.1 Binary neural networks

5.1.1 Deterministic binary neural networks

First recall the conventions adopted in this thesis. A neural network model is composed of
N ` ×N `−1 weight matrices W ` and bias vectors b` in each layer ` ∈ {1, . . . , L}, with elements
W `
ij ∈ R and b`i ∈ R. Given an input vector x0 ∈ RN0 , the network is defined in terms of the

following vector equations,

x` = φ`(h`cts), h`cts = W `x`−1 + b` (5.1)

where the pointwise non-linearity is for example φ`(·) = tanh(·).
A deterministic binary neural network simply has weights W `

ij ∈ {±1} and φ`(·) = sign(·),
and otherwise the same propagation equations. Of course, this is not differentiable, thus it
is common practice to define stochastic binary variables in order to smooth out the non-
differentiable network. The product of training a surrogate of a stochastic binary network
is ideally a deterministic binary network that is able to generalise from its training set. It is pos-
sible to also use the stochastic binary network, but this is not as computationally advantageous
in standard hardware.

5.1.2 Stochastic binary neural networks

In stochastic binary neural networks, the weight matrices are denoted as S` with all weights1

S`ij ∈ {±1} being independently sampled binary variables with probability is controlled by the

mean M `
ij = ES`ij . Neuron activation in this model are also binary random variables, due to

pre-activation stochasticity and to inherent noise. In this chapter parameterised neurons are
considered, such that the mean activation conditioned on the pre-activation is given by some
function taking values in [−1, 1], i.e. E[x`i |h`i ] = φ(h`i), for example φ(·) = tanh(·). The
propagation rules for the stochastic network are written as follows:

S` ∼ p( • ;M `); h` =
1√
N `−1

S`x`−1 + b`; x` ∼ p( • ;φ(h`)) (5.2)

1Random variables are denoted with bold font.
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Notice that the distribution of x` factorizes when conditioning on x`−1, as p(x`+1|x`) =
∏
i p(x

`+1
i |x`,S`i).

The form of the neuron’s mean function φ(·) depends on the underlying noise model. A binary
random variable x ∈ {±1} with x ∼ p(x; θ) can be expressed via its latent variable formulation
x = sign(θ + αL). In this form θ is referred to as a “natural” parameter, and the term L is
a latent random noise, whose cumulative distribution function σ(·) determines the form of the
non-linearity since φ(·) = 2σ(·) − 1. In general the form of φ(·) will impact on the surrogates’
performance, including within and beyond the mean field description presented here. However,
a result from the analysis in Chapter 7 is that choosing a deterministic binary neuron, ie. the
sign(·) function, or a stochastic binary neuron, produces the same signal propagation equations,
up to a scaling constant.

5.2 Gradient estimators and approximations

Recall that in the stochastic binary learning problem defined here, the following expected loss
function is considered,

L(M, b) = − 1

P

P∑
µ=1

logES,x p(yµ |xµ,S,x, b), (5.3)

For simplicity, consider the term in the logarithm for some arbitrary cost C(s), Ep(s;θ)[C(s, θ)]
that is to be minimised via a gradient descent procedure. C(s, θ) is a cost function with two
types of dependence on the parameter θ. The explicit dependence of the cost on parameters θ
is known as a pathwise dependence. In contrast, the cost depends implicitly on θ through the
random variable s. This is said to be a dependence in distribution or in measure. Writing down
the gradient of this expression with respect to θ,

∂Ep(S;θ)[C(S, θ)]

∂θ
= Ep(S;θ)

∂C(S, θ)

∂θ
+

∫
C(S, θ)

∂p(S; θ)

∂θ
dS (5.4)

The first term is a pathwise gradient estimator, which can be estimated via Monte Carlo
simulation. The second term can be problematic, but one possibility is to form the following
estimator by application of the reverse chain rule to the logarithm function,∫

C(S, θ)
∂p(S; θ)

∂θ
dθ =

∫
C(S, θ)

∂ log p(S; θ)

∂θ
p(S; θ)dS (5.5)

This is known variously as the score function estimator, the likelihood ratio method [82] or
REINFORCE estimator [83]. From this point, it is possible to again use Monte Carlo estimates.
This is an unbiased estimator of the gradient, but unfortunately it suffers from impractically
high variance, so in general a pathwise estimator is preferred. Obtaining a pathwise estimator
is possible if the random variable is “reparameterisable”, meaning that it is possible to rewrite
the random variable to change a cost function’s dependence on a parameter to a pathwise
dependence.

A prime example are random variables with location-scale distributions, such as the Gaus-
sian. Explicitly, it is possible to write a one dimensional Gaussian variable h ∼ N (µ, σ2) as
h = µ+ σε where ε ∼ N (0, 1). Thus a distributional dependence can be turned into a pathwise
dependence

Ep(h;µ,σ2)C(h) = Ep(ε)C(µ+ σε) (5.6)
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This is the key “trick” used to obtain practical low variance estimators. Of course, this repa-
rameterisation trick does not work for discrete variables directly, and so some approximations
are needed to move from discrete to continuous variables.

5.2.1 A heuristic: “straight through estimator”

A popular heuristic proposed by the machine learning community [84] and used most widely
[23], is the so called “straight-through estimator”. The approximation defines the derivative for
the sign function f(z) = sign(z)as follows,

g(z) =

{
1 if |z| < 1

0 else
(5.7)

Of course, the derivative of f(z) = sign(z) would have an impulse at the origin, and so this
“approximation” is something In the application to neural networks, every weight of the network
W `
ij is then passed through the sign(·) function. Likewise, each neuron has as activation function

the sign(·) function as well. Thus, on the “forward pass” the network is entirely binary during
training, but has derivatives defined “synthetically”.

It is not clear why this heuristic is an “estimator”, since the original presentations did not
discuss what is being estimated. Theoretical explanations for this approach are lacking to date,
despite the heuristic’s apparent success [23]. In Chapter 8 the signal propagation properties of
binary networks are studied, which is relevant for the forward pass defined in this approach.

5.3 Differentiable surrogate networks

The idea behind several recent papers [33], [85], [86], [74] is to adapt the mean of the binary
stochastic weights, with the stochastic model essentially used to “smooth out” the discrete vari-
ables and arrive at a differentiable function, open to the application of continuous optimisation
techniques. In this chapter now derive both the deterministic surrogate and local reparamteri-
zation trick based surrogates, in a common framework. Once again, a supervised classification
task is considered, with training set D = {xµ, yµ}Pµ=1, with yµ the label. A loss function is
defined in order to train the surrogate model as follows,

L(M, b) = − 1

P

P∑
µ=1

logES,x p(yµ |xµ,S,x, b), (5.8)

For a given input xµ and a realization of weights, neuron activations and biases in all layers,
denoted by (S,x, b), the stochastic neural network produces a probability distribution over the
classes. Expectations over weights and activations are given by the mean values, ES` = M ` and
E[x`|h`] = φ(h`).

The starting point for the derivations comes from rewriting the expectation (5.8) as the
marginalization of a Markov chain, with layers indexes corresponding to time indices ` ∈
{1, . . . , L}.
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Markov chain representation of stochastic neural network:

ES,x p(yµ |xµ,S, b,x) =
∑

S,x :x0=xµ

p(yµ |xL)

L∏
`=1

p(x` |x`−1,S`) p(S`;M `)

=
∑

SL,xL−1

p(yµ
∣∣SL,xL−1)p(SL)

∑
SL−1,xL−2

p(xL−1|xL−2,SL−1)p(SL−1) · · ·
∑
S1

p(x1|xµ,S1)p(S1)

(5.9)

where in the second line the dependence on M ` is dropped from the notation for p(S`;M `), for
brevity. Therefore, for a stochastic network the forward pass consists in the propagation of the
joint distribution of layer activations, p(x` |xµ), according to the Markov chain. The explicit
dependence on the initial input xµ is also dropped from now on.

In what follows φ(h`) will denote the average value of x` according to p(x`). The first step
to obtaining a differentiable surrogate is to introduce continuous random variables. By taking
the limit of large layer width and appealling to the central limit theorem, the field h` can be
modelled as Gaussian, with mean h̄` and covariance matrix Σ`.

Assumption 1: (CLT for stochastic binary networks) In the large N limit, under
the Lyapunov central limit theorem, the field h` = 1√

N`−1
S`x`−1 + b` converges to a Gaussian

random variable with mean h̄`i = 1√
N`−1

∑
jM

`
ijφ(h`−1

j ) + b`i and covariance matrix Σ` with

diagonal Σ`
ii = 1

N`−1

∑
j 1− (M `

ijφ(h`−1
j ))2.

While this assumption holds true for large enough networks, due to S` and x`−1 indepen-
dency, the Assumption 2 below, is stronger and tipically holds only at initialization.

Assumption 2: (correlations are zero)
The independence of the pre-activation field h` between any two dimensions is assumed.

Specifically the covariance Σ = Cov(h`,h`) is assumed to be well approximated by Σ`
MF (φ(h`−1)),

with MF denoting the mean field (factorized) assumption, where(
Σ`
MF (x)

)
ii′

= δii′
1

N `−1

∑
j

1− (M `
ijφ(h`−1

j ))2 (5.10)

This assumption approximately holds assuming the neurons in each layer are not strongly corre-
lated. In the first layer this is certainly true, since the input neurons are not random variables2.
In subsequent layers, since the fields h`i and h`j share stochastic neurons from the previous layer,
this cannot be assumed to be true. It is expected that this correlation will not play a significant
role, since the weights act to decorrelate the fields, and the neurons are independently sampled.
However, the choice of surrogate influences the level of dependence. The sampling procedure
used within the local reparametrization trick reduces correlations since variables are sampled,
while the deterministic surrogate entirely discards them.

The surrogate network, studied in the remainder of this chapter, is obtained by successively
approximating the marginal distributions, p(x`) =

∫
dh` p(x`|h`) ≈ p̂(x`), starting from the

first layer. Such an approximation can be achieved by either (i) marginalising over the Gaussian

2In this case the variance is actually 1
N`−1

∑
j

(
1− (M1

ij)
2
)
(xµ,j)

2.
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field using analytic integration, or (ii) sampling from the Gaussian (or some other approximating
distribution). After this, the approximation p̂(x`i) is used to form the Gaussian approximation
for the next layer, and so on.

5.3.1 Deterministic surrogate

The analytic integration can be performed based on the analytic form of p(x`+1
i |h`) = σ(x`ih

`
i),

with σ(·) a sigmoidal function. In the case that σ(·) is the Gaussian CDF, one obtains p̂(x`i)
exactly by the Gaussian integral of the Gaussian cumulative distribution function,

p̂(x`i) =

∫
dh σ(x`ih)N (h ; h̄`i ,Σ

`
MF,ii) = Φ(

h̄`i

(1 + Σ`
MF )

1/2
ii

x`i) (5.11)

Since the approximation starts from the first layer, all random variables are marginalised out,
and thus h̄`i has no dependence on random h`−1

j via the neuron means φ(h`) as in Assumption 1.

Instead, there is a dependence on means x̄` = Eh`E
[
x` |h`

]
= Eh` φ(h`). Thus it is convenient

to define the mean under p̂(x`i) as ϕ`(h̄, σ2) =
∫
dh φ`(h)N (h ; h̄, σ2). In the case that σ(·) is

the Gaussian CDF, then ϕ`(·) is the error function.
Finally, the forward pass can be expressed as

x̄` = ϕ`(h`) h` = (1 + Σ`
MF )−

1
2 h̄` h̄` =

1√
N `−1

M `x̄`−1 + b`, (5.12)

This is a more general formulation than that in [33], which considered sign activations, which is
obtained in the appendices as a special case. Furthermore, in all implementations the algorithms

“backpropagate” through the variance terms Σ
− 1

2
MF , which were ignored in the previous work of

[33]. Note that the derivation here is simpler as well, not requiring complicated Bayesian message
passing arguments, and approximations therein.

Integrating over stochastic or deterministic binary neurons

This section carefully steps through the deterministic surrogate approximation in greater detail.
The form of each neuron’s probability distribution depends on the underlying noise model. As
described in the previous section for the “concrete” approximation, one can express a Bernoulli
random variable S ∈ {±1} with S ∼ p(S; θ) as,

S = sign(θ + αL) (5.13)

In this form θ is referred to as a “natural” parameter, from the statistics literature on
exponential families [87]. The term L is a latent random noise, which determines the form of
the probability distribution. It makes sense to also introduce a scaling α to control the variance
of the noise, so that as α→ 0 the neuron becomes a deterministic sign function.

Letting α = 1 for simplicity, one can see that the probability of the Bernoulli variable taking
a positive value is

p(S = +1) =

∫ −θ
−∞

p(L)dL (5.14)

where p(L) is the known probability density function for the noise L. The two common choices of
noise models are Gaussian or logistic noise. The Gaussian of course has shifted and scaled erf(·)
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function as its cumulative distribution. The logistic random variable has the classic “sigmoid”
or logistic function as its CDF, σ(z) = 1

1+e−z .

Thus, the probability of a the variable being positive is a function of the CDF. In the
Gaussian case, this is Φ(θ). By symmetry, the probability of p(S = −1) = Φ(−θ). Thus, the
probability distribution for the Bernoulli random variable in general is the CDF of the noise L,
and one can write p(S) = Φ(Sθ). In the logistic noise case p(S) = σ(Sθ).

For the stochastic neurons, the natural parameter is the incoming field h`i =
∑

j S`i,jx
`−1
j +b`i .

Assuming this is approximately Gaussian in the large layer width limit, one can successively
marginalise over the stochastic inputs to each neuron, calculating an approximation of each
neuron’s probability distribution, p̂(x`i). This approximation is then used in the central limit
theorem for the next layer, and so on.

For the case of neurons with latent Gaussian noise as part of the Bernoulli model, the
integration over the pre-activation field (assumed to be Gaussian) is exact. Explicitly,

p(x`i) =
∑
x`−1

∑
S`

p(x`i |x`−1,S`)p(S`−1)p̂(x`)

≈
∫

Φ(x`ih
`
i)N (h`i |h̄`i , (Σ`

MF )ii)

= Φ

(
h̄`i√

1 + 2(Σ`
MF )ii

x`i

)
:= p̂(x`i) (5.15)

where Φ(·) is the CDF of the Gaussian distribution. Again ΣMF denotes the mean field ap-
proximation to the covariance between the stochastic binary pre-activations. The Gaussian
expectation of the Gaussian CDF is a known result, which is stated in more generality in the
next section, where neurons with logistic noise are also considered

This new approximate probability distribution p̂(x`i) can then used as part of the Gaussian
CLT applied at the next layer, since it determines the means of the neurons in the next layer,

x̄` = Eh` φ(h`) = 2Φ

(
h̄`i√

1 + (Σ`
MF )ii

x`i

)
− 1 := ϕ(h`) (5.16)

Following these steps from layer to layer, it is clear approximate means for the neurons are
being propagated forwards, combined non-linearly with the means of the weights. Given the
approximately analytically integrated loss function, it is possible to perform gradient descent
with respect to the means and biases, M `

ij and b`i .

In the case of deterministic sign() neurons a particularly simple expression is obtained. In this
case the “probability” of a neuron taking, for instance, positive is just Heaviside step function
of the incoming field. Denoting the Heaviside with Θ(·), one obtains

p(x`i) =
∑
x`−1

∑
S`

p(x`i |x`−1,S`)p(S`−1)p̂(x`−1)

≈
∫

Θ(x`ih
`
i)N (h`i |h̄`i , (Σ`

MF )ii)

≈ Φ

(
h̄`i

(Σ`
MF )

− 1
2

ii

x`i

)
:= p̂(x`i) (5.17)
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The network forward equations can be written out for the case of deterministic binary neu-
rons, since it is a particularly elegant result. In general,

x̄`i = ϕ(η h`), h`= Σ
− 1

2
MF h̄

`, h̄` = M `x`−1 + b` (5.18)

where ϕ(·) = erf(·) is the mean of the next layer of neurons, being a scaled and shifted version
of the neuron’s noise model CDF. The constant is η = 1√

2
, standard for the Gaussian CDF to

error functin conversion.

Approximate Gaussian integration of sigmoidal functions

This section presents the approximate integration of stochastic neurons with logistic noise as part
of their latent variable models. The logistic case is an approximation built on the Gaussian case,
motivated by approximating the logistic CDF with the Gaussian CDF. The reason to use logistic
CDFs, rather than just considering latent Gaussian noise models which integrate exactly, is not
justified in any rigorous or experimental way. Any such analysis would likely consider the effect
of the tails of the logistic versus the Gaussian distributions, where the logistic tails are much
heavier than those of the Gaussian. One historic reason for considering the logistic function
is the prevalence of logistic-type functions (such as tanh(·)) in the neural network literature.
The computational cost of evaluating either logistic or error functions is similar, so there is no
motivation from the efficiency side. Instead it seems a historic preference to have logistic type
functions used with neural networks. The effects of each function are investigated more closely
in Chapter 7.

As seen in the previous subsection, the integration over the analytic probability distribution
for each neuron gave a function which enables the calculation neuron means in the next layer.
It makes sense then to directly calculate the expression for the means.

The Gaussian integral of the Gaussian CDF was used in the previous section to derive the
exact probability distribution for the Bernoulli neuron in the next layer. The result is well
known, and can be stated in generality as follows,

∫ ∞
−∞

Φ(ay)
e−

(y−x)2

2σ2

√
2πσ2

dy = Φ(
x√

1 + a2σ2
) (5.19)

A logistic noise Bernoulli neuron can be calculated using this result as well. The idea
is to approximate the logistic noise with a suitably scaled Gaussian noise. However, since
the overall network approximation results in propagating means from layer to layer, one can
equivalently approximate the means, replacing tanh(·) with the erf function. Specifically, given

f(x;α) = tanh( xα), an approximation is g(x;α) = erf(
√
π

2α x), by requiring equality of derivatives
at the origin. In order to establish this, consider

f ′(0;α) = (1− tanh2(0/α)
1

α
=

1

α
(5.20)

and

d erf(x;σ)

dx
|x=0 =

2√
πσ2

e−x
2/σ2 |x=0 =

2√
πσ2

(5.21)

Equating these, gives σ2 = 4α2

π , thus σ = 2α√
π

.
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The approximate integral over the Bernoulli neuron mean is then

∫ ∞
−∞

f(y;α)
e−

(y−x)2

2σ2

√
2πσ2

dy ≈
∫ ∞
−∞

erf(

√
π

2α
y)
e−

(y−x)2

2σ2

√
2πσ2

dy (5.22)

= erf(

√
π

2αγ
x) (5.23)

with γ =

√
1 +

πσ2

2α2
(5.24)

If desired, this can be approximated again with a tanh(·) using the tanh(·) to erf(·) approximation
in reverse. The scale parameter of this tanh(·) will be α2 = π

4αγ . If α = 1 as is standard, then

erf(

√
π

2γ
x) ≈ tanh(

πx

4γ
) (5.25)

5.3.2 Perturbed surrogate

This section presents a Monte Carlo based approximation which produces what is referred to in
this thesis the perturbed surrogate model. The approximation is known as a pathwise estimator
for a gradient, as reviewed earlier.

A pathwise estimator can be formed by rewriting the incoming Gaussian field h ∼ N (µ,Σ)
as h = µ +

√
Σ ε where ε ∼ N (0, I). Thus expectations over h can be written as expectations

over ε and approximated by sampling. The resulting network is thus differentiable, albeit not
deterministic. The forward propagation equations for this surrogate are

x̄` = φ`(h`), h` =
1√
N `−1

M `x̄`−1 + b` +
√

Σ`
MF (x̄`−1) ε` (5.26)

This approximation, known in the machine learning as the local reparameterisation trick [88]
has been previously used to obtain differentiable surrogates for binary networks. The authors of
[86] considered only the case of stochastic binary weights, since they did not write the network
as a Markov chain. [74] considered stochastic binary weights and neurons, but relied on other
approximations to deal with the neurons, having not used the Markov chain representation.

The basic idea of this approximation, of reparameterising the Gaussian field and taking a
Monte Carlo sample, was used in both [86], [74]. However, it is important to note that in [86] the
neurons were deterministic and continuous, not binary. Also, in [74] the neurons were sampled
using the concrete approximation detailed in the next section. Note that by sampling neurons,
the subsequent fields have no correlations amongst neurons. This was not remarked upon in
these papers.

Perturbed surrogate for stochastic binary weights and continuous neurons

In the case that the stochastic binary network has continuous neurons and stochastic binary
weights, it is possible to follow a similar derivation using the Markov chain representation in
conjunction with the reparameterisation trick. The Markov chain over the fields can be written
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directly in this case, and in the second line make use of the CLT directly to write integrals

ES,x p(yµ |xµ,S, b) =
∑

S,x0=xµ

p(yµ |hL;ML)
L∏
`=1

p(h` |h`−1;M `)

≈
∫
dhL

p(yµ
∣∣hL)

∫
dhL−1

p(hL|hL−1)· · ·
∫
dh1

p(h2|h1)p(h1;xµ) (5.27)

where again the dependence on M ` has been dropped from the notation in the second layer,
for brevity. Applying the reparameterisation trick as before one obtains the same forward
propagation equations but with a different variance along the diagonal of the covariance matrix,

x̄` = φ`(h`), h` =
1√
N `−1

M `x̄`−1 + b` +
√

Σ`
MF (x̄`−1) ε`, (5.28)

where (
Σ`
MF (x)

)
ii′

= δii′
1

N `−1

∑
j

(
1− (M `

ij)
2
)
φ2(h`−1

j )) (5.29)

The reason for a different variance term is that, once sampled, h` is no longer a random variable,
thus the neurons are not either.

5.3.3 Concrete surrogates

An alternative, heuristic approximation for stochastic binary neural networks also exists, that
is not based on the central limit theorem, but still yielding a stochastic networl similar to the
perturbed surrogate. The idea was originally developed simultaneously by [89] and [90], and
is referred to as a “concrete” (continuous-discrete) approximation, or the “Gumbel-softmax”
approximation. In the binary case, the approximation starts by rewriting a Bernoulli random
variable Si ∈ {±1} with Si ∼ p(Si; θi) as,

Si = sign(θi + Li) (5.30)

where Li is typically a logistic random variable. This is a well known formulation in statistics,
referred to as the latent variable model for logistic regression. If Li is a Guassian random
variable, this would correspond to a latent variable model for probit regression.

In order to obtain a continuous approximation is to then approximate the sign(·) function
with a smooth sigmoidal-type function, such as tanh(·). In the machine learning literature
replacing the discontinuous function by the smoother alternative is sometimes referred to as a
“relaxation”.

Both [89] and [90] introduce a temperature parameter λ to control the relaxation,

si ≈ tanh(
1

λ
(θi + Li)) (5.31)

so that when λ→ 0, the approximation becomes exact.
An extension introduced in [91] is based on the realisation that as λ→∞ the approximation

tends to 0. Instead, one might want the approximation to tend to the mean of si, that is
Mi = tanh(θi). One possible parameterisation given by [91] is

Si ≈ tanh(
1

λ

λ2 + λ+ 1

λ+ 1
θi +

1

λ
Li) (5.32)
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by inspection this satisfies the limit that as λ → ∞ the approximation approaches Mi. This
second parameterisation (5.32), is termed mean concrete, whereas the previous parameterisation
(5.31) is referred to as naive concrete.

The application of the concrete approximation to multilayer networks is straightforward.
The forward propagation equations can be written for each neuron, in the naive concrete case,
as

x`i = φ`(h`i), h`i =
∑
j

tanh(θ`ij +
1

λ
L`ij)φ(h`−1 +

1

λ
L`j) + b`i (5.33)

Perturbed means as a simplifying picture

One might be interested in asking if there is any relationship between the Gaussian and the new
concrete approximations, since both take discrete random variables into a continuous space. To
this end, let’s consider the mean concrete approximation in a high temperature region λ >> 1
and expand tanh(·) to first order in small 1

λ ,

tanh(
1

λ

λ2 + λ+ 1

λ+ 1
θi +

1

λ
Li) ≈ tanh(θi +

1

λ
Li) ≈ tanh(θi) + (1− tanh2(θi))

1

λ
Li (5.34)

This reveals that for high temperature, the mean concrete approximation replaces each weight
with its mean plus some perturbation 1

λLi that is scaled by the variance of the weight, since
V(si) = 1− tanh2(θi).

It is clarifying to write down side by side the Gaussian and the high-temperature mean
concrete approximations to the input fields h =

∑
i sixi,

(Gaussian) h ≈
∑
i

Mixi + ε

√∑
i(1−m2

i )x
2
i (5.35)

(Mean Concrete) h ≈
∑
i

Mixi +
∑
i

(1−m2
i )xi

1

λ
Li (5.36)

So it can be clearly seen that the mean-concrete approximation, at high temperature, can be
written as a mean field h̄ =

∑
iMixi perturbed by some random quantity related to the variance

of the underlying weights, similar to the Gaussian CLT based approximation.

Following this line of thinking, that these continuous approximations to stochastic binary
weights essentially perturb a mean input field, can lead one to the work around “noisy” training
of neural networks. Some of the early work considered the effect of noise added to the weights
[92] or inputs xi [93] and proceeded to expand the cost function in the perturbation.

A deeper investigation of the relationship between the two approximations is left for future
work, however some comments can be made here on some differences. Clearly, in the Gaussian
case there is no explicit temperature λ. One could say its temperature is “baked in”, since it is
deterministically given by the variance of the underlying Bernoulli weights. As a consequence,
the perturbations to each weight in the Gaussian case are all perfectly correlated, whereas in
the concrete case, the perturbations are independent. A second difference between the approx-
imations is that the concrete algorithms have perturbations in the natural parameter space, so
that θ is perturbed. The Gaussian case has perturbations of the means Mi instead.
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5.4 Chapter conclusion

This chapter has presented approximations to derive continuous surrogate neural networks from
the principled expected cost objective function, with expectation in terms of stochastic weights
and neurons. Based on this expectation, and the layerwise processing of neural networks, it
is possible to write the expectation as a series of nested conditional expectations, similar to a
Markov chain, with layers corresponding to time indices.

From the Markov chain representation, it is possible to derive any of the more principled
surrogates existing in the literature. It was also possible to derive new surrogates, in particular
the Gaussian based “perturbed” surrogate. This involved Monte Carlo sampling of a Gaussian
distribution assumed under the central limit theorem. A surrogate based on a non-Gaussian
approximation known as the “concrete” estimator was also derived.

Apart from the new surrogates presented, the contributions of this chapter are significant
since they result in the organisation of existing approximations from the literature. A discussion
of qualitative similarities and differences between the approximations was offered in the final
sections of the chapter as well. This provides a more coherent view of the algorithms currently
being deployed, which should inform both future theoretical and practical work.



Chapter 6

A statistical physics description of
machine learning

The theoretical contributions of Chapters 7 and 8, concerning multi-layer binary networks and
their optimisation algorithms, have been inspired by recent theoretical work on continuous net-
works rooted in the statistical physics literature. This chapter aims to introduce someone familiar
with statistics or optimisation to the basic concepts of statistical physics that may be relevant
to the analysis of algorithms and learning systems. The utility of this Chapter is that it enables
and encourages communication of ideas between different disciplines.

The long established analogy between physical and learning systems is discussed using the
complementary examples of simple magnetic systems and the simplest single-layer neural net-
work, known as the perceptron. This chapter considers perceptrons with both continuous and
binary weights. The binary perceptron is of course the basic ‘building block’ from which a bi-
nary neural network may be constructed. As it turns out, simple as the binary perceptron may
be to define, it exhibits a rich phenomenology when considered as a physical system. There-
fore it motivates an introduction to the concepts of equilibrium states, phase transitions and
non-equilibrium dynamics, which can provide useful tools and language for understanding the
behaviour of algorithms. The progression toward these increasingly advanced concepts of sta-
tistical physics are part of an underlying trend in the study of complex learning systems.

This chapter is not crucial for the reading of the Chapters 7 and 8, but provides a reader
with an introduction to their background literature and terminology. This includes the so-
called dynamic mean field theory, as well as the more recent theoretical advances on the binary
perceptron, both of which originally developed in the field of disordered systems. The chapter
concludes with a discussion of the meeting of these two ideas in this thesis, and future prospects.
In summary, this chapter achieves the following:

• Describes the established analogy between physical systems and learning systems, studied
through the lens of statistical physics

• Introduces the central ideas of statistical physics, including the notion of the equilibrium
state of a system, which has helped to characterise the solution space for single layer neural
networks, with both continuous and binary weights

• Argues that the equilibrium description serves as a good reference distribution by which
to describe the typical solutions found by algorithms

63
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• Reviews recent literature that suggests successful binary network algorithms find solu-
tions that are atypical according to the equilibrium description, suggesting the algorithm
dynamics are out-of-equilibrium

• Introduces and defines language that will be used in subsequent chapters, such as typical-
ity, self-averaging behaviour, mean field theory, dynamic and static random variables, and
disordered systems

• Recounts the recent results describing the geometry of solutions of the binary perceptron,
and the dynamics of multi-layer continuous neural networks

6.1 Introduction

In the past two decades, continuous multi-layer neural networks have emerged as models that are
able to achieve high performance on tasks, such as image classification, that were previously con-
sidered very difficult. As discussed in the preceding chapters, the basic algorithm and workhorse
of these models is stochastic gradient descent. This algorithm adapts the parameters or weights
of a neural network by taking small steps in directions which locally minimise a cost function of
the training data and parameters. It is not yet understood why the gradient based algorithms,
coupled with a range of heuristic design choices, are so successful. The central mystery appears
to be that the networks are able to overfit random data, but when applied to real datasets, they
do not overfit. This is also true of the algorithms for multi-layer binary networks, where further
approximations and heuristics are required, and yet performance is still maintained.

The simplest neural network is the continuous weight perceptron, closely related to logistic
regression in statistics. The essential task a perceptron performs is to define a linear separating
plane which successfully separates M input vectors {xµ}Mµ=1 of dimension N , into their respective
classes yµ ∈ ±1. The perceptron and the various algorithms used to train it are well understood
theoretically. The binary weight counterpart however remains a challenge for practitioners and
theoreticians alike.

Arguably, the underlying difficulty for practitioners is that the binary perceptron is an NP-
hard combinatorial optimisation problem. This means that in the worst case the number of
elementary computational operations needed to find a solution is expected to grow exponentially
with the dimension of the problem N . This corresponds to performing an extensive check over
all possible assignments for the weights, starting from some random initial state. Practically,
this means a Monte Carlo algorithm such as simulated annealing is ineffective for this problem.

In the last 10 years however, several heuristically modified Bayesian and non-Bayesian al-
gorithms have been found to solve large instances of the problem in polynomial time. This
suggests that the worst case picture of computational hardness is too pessimistic. Instead,
physicists have attempted to consider how algorithms typically behave. From this perspective,
the theoretical understanding of the dynamical behaviour of these heuristic algorithms has seen
significant progress.

The starting point for the use of statistical physics in understanding these algorithms arises
from not considering any particular realisation of the data and algorithm, but instead considering
an ensemble. A statistical ensemble of systems is composed of many systems, that are all
constructed alike. Each element of an ensemble is a replica of the system of interest that
is in one of the states that is accessible to it. For a large system, the fluctuations due to
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particular realisations of the data and other stochastic elements of the algorithm are ‘averaged
out’, similarly to the central limit theorem, from which typical behaviours emerge.

6.2 What is statistical physics?

Statistical physics is a body of knowledge that deals with large systems of elements (such as parti-
cles, magnets or molecules) that interact according to simple microscopic laws. For large enough
systems, from the complex microscopic dynamics there often emerges universal, deterministic
macroscopic behaviour. The philosophy of statistical mechanics is guided by this observation.
Any ambition to solve such systems at microscopic level is abandoned, since the complexity of
the system makes it too difficult. Motivated by the complexity, a probabilistic description of the
microscopic dynamics is proposed (reasonably so, if not rigorously) and from these dynamics it
is possible to calculate laws describing some suitably chosen macroscopic variables.

The experience of the last 150 years serves as a guide to choosing the correct macroscopic
variables and the relevant mathematical subtleties and irrelevant ones; indeed, in moving from
microscopic to macroscopic laws, physicists often consider statistical mechanics as a set of clever
ways to do the bookkeeping of probabilities. In a later section probability theory, in particular
the theory of large deviations, will be used to define or derive the basic concepts and quantities
of statistical mechanics from first principles, thereby making the bookkeeping precise.

A system has microstates ω = (ω1, . . . , ωN ) with ωi describing the state of the ith particle,
with some state dynamics assumed. Modern statistical mechanics has evolved to distinguish
two types of systems, equilibrium and non-equilibrium. The two systems, and the corresponding
theories, can be broadly distinguished by whether time plays a role. The equilibrium picture
describes static random variables, meaning there is no dependence on time, generally because it
is assumed that transient effects have played out, after waiting a long time. The non-equilibrium
picture describes dynamic random variables whose properties, either macroscopic or microscopic,
depend explicitly on time, though exceptions exist.

The algorithmic setting might seem to be quite far removed from real world systems of
interacting particles. In the analogy for learning systems, the parameters or weights correspond
to particles, the interactions are defined by practitioners (for example via an algorithm), and
the macroscopic variables of interest could be the generalisation error of a class of algorithms,
as compared to the average energy or pressure of a physical system.

Interactions between weights can be introduced in two ways. The first is by defining an algo-
rithm or a rule for updating weights to ‘solve’ the learning problem. This corresponds to directly
defining the dynamics of the particles in time. A second way to introduce interactions leaves
the dynamics unspecified, instead defining a set of constraints corresponding to the learning
problem, typically encoded via a cost function. This cost function is interpreted as the energy
function of a system in thermodynamic equilibrium. In this case, the dynamics are not specified,
since various dynamics can lead to equilibrium.

This second formulation has the advantage that it allows the learning problem to be studied
with some form of generality, not having to specify an algorithm. As will be shown however, suc-
cessful algorithms for some of the more difficult binary systems may not correspond to dynamics
that agree with an equilibrium picture. Interestingly, this formulation introduces ideas from the
field of disordered systems, where particles are ‘frustrated’ due to competing and contradictory
interactions which are random. In the learning problem, the constraints are the interactions and
the data playing the role of disorder, which will be explained in detail. A real world example
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of a disordered system is a glass. The fascinating properties of glassy materials is that they
are technically relaxing towards their equilibrium state but get stuck in metastable states for
extremely long periods of time. For the algorithmic picture, disordered systems and all the tools
and techniques developed, provides a window into the out of equilibrium phenomena of learn-
ing systems, from the viewpoint of equilibrium thermodynamics, where analytical calculation of
macroscopic quantities, such as generalisation error, are possible.

For either type of system statistical mechanics can explain the existence of phases, based on
the macroscopic variables chosen. For example water can be found in the common phases of
matter (solid, liquid and gas). Based on an appropriate choice of macroscopic variables, precise
predictions about phase transitions can be made. For example, given atmospheric pressure it is
possible to calculate for water the temperature at which an abrupt transition occurs as liquid
turns to gas. Or, for example, it is possible to calculate the temperature at which a continuous
transition occurs for a ferromagnetic material with two states +1 and −1, where despite having
only local interactions, the system fluctuates on all length scales between positive and negative
magnetic states. The case of continuous phase transitions is referred to as the subject of critical
phenomena, and holds a special place in statistical mechanics, partially because of the theoretical
tools which deal with it, but also because of the universality of the behaviour: many of the
properties observed are system independent. Indeed, the analogy of phase transitions can apply
to many learning systems, in particular those which have a correspondence to disordered systems.

6.3 Equilibrium and non-equilibrium systems

Equilibrium statistical mechanics considers thermodynamic ensembles over the space of all pos-
sible microstates P (ω) that are interpreted as the stationary distribution of the microscopic
dynamics. Associated with these ensembles are equilibrium states that are stable against small
perturbations and can be described by having recourse to a few macroscopic or “coarse-grained”
variables called macrostates. A macrostate is a function MN (ω) of the microstates. If P (ω) is a
valid thermodynamic ensemble, then the distribution of the macrostate P (MN ) becomes highly
concentrated around its most probable or typical values as N increases. These values are called
the equilibrium states of MN .

This limiting behaviour is described precisely by the theory of large deviations [94], which
generalises the Central Limit Theorem and the Law of Large Numbers. A distribution is said
to satisfy a large deviation principle if the limit

lim
N→∞

− 1

N
logP (MN = m) = I(a) (6.1)

exists. The decay function defined by this limit is called the rate function, and the factor N
is the speed of the large deviation principle (for some distributions one may need to divide by
N2, or some other function of N). The limit as N goes to infinity is called the thermodynamic
limit. The large deviation principle essentially says that the distribution decays to zero with N ,
so that approximately,

P (MN = m) ≈ eNI(a) (6.2)

The theory of large deviations can be used to describe the concentration of measure of distri-
butions in equilibrium systems, where it can be shown the rate function I(a) is related (via a
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Legendre transform) to the free energy of the system. The equilibrium picture, including the
free energy, is examined in the next section.

The non-equilibrium case considers systems that can be modelled by Markov processes, as
follows. Denote the state of the system at time t by ωt. Then for a trajectory {ω0:T } with
assumed discrete time steps {0, 1, 2, . . . , T}, the distribution over the trajectory factorises as

P (ω0:T ) = P (ωT |ωT−1)P (ωT−1|ωT−2)...P (ω1|ω0)P (ω0) (6.3)

the dependence of the next state on only the previous state is known as the Markov property.
Large deviations play a central role in non-equilibrium systems, for a discussion see [95].

Equilibrium and non-equilibrium systems can be distinguished by considering trajectories of
the systems in time. A necessary condition for a system to be an equilibrium system is that
its dynamics are time-reversible. This means that for a given trajectory ω0:t = {ω0, ω1, . . . , ωt}
then the time-reversed trajectory ωt:0 is equally likely under P (ω). An equivalent mathematical
definition of reversibility is that the dynamics satisfy the conditions of detailed balance. What
this property suggests is that there is no preferred direction between the trajectory and its
time-reversed version.

A system which does not satisfy this condition is a non-equilibrium system1. However, to say
that a system is an equilibrium system is different to saying a system in a state of equilibrium.
Examples of equilibrium systems that can be out of equilibrium include the relaxation (fast or
slow) toward the stationary distribution from some initial state, or perturbations about equilib-
rium. Glasses, which satisfy detailed balance and have equilibrium distributions, nevertheless
exhibit a phenomena termed aging. This means that the approach to equilibrium becomes slower
as time increases.

6.4 Equilibrium formulation of learning problems

As mentioned, it is possible to study learning systems without specifying an algorithm. This is
useful, as one can study a system with some degree of generality, provided the learning problem
can be written as an optimisation problem of some cost function. In this case, it is perfectly
acceptable to interpret the cost function as the energy function, or Hamiltonian, of a system in
thermodynamic equilibrium. Note that any arbitrary algorithm dynamics which minimise a cost
function do not necessarily have a stationary distribution that is the same as the equilibrium
distribution corresponding to that cost function2.

Consider now the following formulation of the perceptron problem as a system in thermo-
dynamic equilibrium. This formulation holds for binary or continuous weights. Following this
walk through, a discussion will be presented, about how to calculate answers to questions about
macroscopic variables, such as the generalisation error, or whether solutions exist for a random
instance of the problem. As a necessity, this discussion will lead directly to the field of disordered
systems.

Assume a finite data set made of pairs, sampled i.i.d, D = {xm, ym}Mm=1 with labels y ∈
{+1,−1} and inputs xm ∈ RN vector valued in general. The standard perceptron model has
continuous parameters which are referred to as weights wi, and computes for each data point m

1Non-equilibrium systems may have stationary distributions but these are generally much more complicated
than those for equilibrium systems

2In fact, certain dynamics may not have stationary distributions at all.
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the linear combination

hm =
∑
i

wixi (6.4)

Algorithms for the perceptron attempt to adapt the weights such that each input is labelled
correctly, so that ymhm > 0 for all m ∈ D. To this end, a cost is assigned for the data set, a
possible choice is a simple count of the number of errors

ED(w) =

M∑
m=1

Θ(−ym
∑
i

wixi) (6.5)

where Θ() is the Heaviside step function. This is the 0 − 1 loss, a sensible choice and the first
loss encountered in any decision theory course (Bayesian and non-Bayesian).

There exist several possible thermodynamic ensembles in statistical mechanics. One partic-
ular ensemble, which provides powerful analytic techniques, is known as the canonical ensemble.
This is a heuristic motivated by considering a system whose energy fluctuates but its average is
constrained by being in contact with a system so large that its temperature remains constant
3. The canonical ensemble and the useful expressions for various quantities it provides, can
be codified by the minimum free energy principle. In the canonical setting, this free energy is
known as the Helmholtz free energy, which takes the form

G(p) = −
∑
w

p(w)E(w) +
1

β

∑
w

p(w) log p(w) (6.6)

and which is to be minimised over the space of distributions p. One can see that the Helmholtz
free energy presents a trade off between the energy of the system, and the entropy. The
Boltzmann-Gibbs distribution is the unique minimum in this space of distributions and has
the following form,

pβ(w) =
1

Z(β; {xi, yi}i)
exp(−βED(w))p0(w) (6.7)

This distribution should be familiar to practitioners who have encountered the simulated
annealing algorithm for optimisation, with lower energy regions of weight space or ‘states’ hav-
ing greater probabilistic weight. The partition function Z(β; {xi, yi}i) depends on both the
inverse ‘temperature’ β and the realisation of the training data. Note that including β controls
the roughness of the distribution, allowing for interpolation between β = 0, corresponding to
a uniform distribution, and β = ∞ a distribution concentrated on the regions of weight space
corresponding to zero errors, or ‘ground states’ in statistical physics terminology.

A connection to Bayesian statistics

It is possible to make a connection here to Bayesian statistics, since there is a sense in which
β = 0 corresponds to having only prior information since the Boltzmann-Gibbs distribution

3The approach is heuristic in that it is not derived from a more fundamental argument regarding microscopic
dynamics, but its description of standard quantities agree with more fundamental ensembles in the large system
limit, at least under certain conditions [94]
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reduces to the prior, and for β = ∞ the regions of zero error is reminiscent of the regions of
maximum likelihood. Given a model of the likelihood of the data p(y|x,w), one can rewrite
posterior,

pβ(w|{y, x}) =
1

Z
pβ(y|x,w)p0(w) =

1

Z
exp(−β(− log p(y|x,w)))p0(w) (6.8)

The perceptron as written before in Equation 6.5 is not a posterior with any recognisable
likelihood, thus the connection to Bayesian logistic regression is not clean. However, what is
important is to recognise that either the posterior with known likelihood, or the Boltzmann-
Gibbs distribution defined in Equation 6.7 are simply assigning probability mass over the solution
space.

This might leave the reader wondering whether any assignment is arbitrary, or which might
be more appropriate. The first reason that so much attention has been paid to the 0 − 1 loss,
or Heaviside function, is that in the low temperature limit when all mass is put on solutions, it
can determine whether solutions exist at all for typical instances of certain learning problems.
As discussed in chapter 4, concerning particularly Empirical Risk Minimisation, for classifiers
trained to minimise the 0− 1 loss, the optimal classifier minimises the probability of error. For
these reasons, the 0 − 1 loss is a good choice for a reference Boltzmann distribution, by which
one can judge the effects of other costs and other algorithmic design choices.

6.4.1 Macroscopic variables from thermodynamic potentials

Expressions for macroscopic variables of interest can be obtained from thermodynamic poten-
tials. Thermodynamic potentials are functions of the inverse temperature β, and often other
parameters that define the energy function. Properties of the Boltzmann distribution can be
summarised through the potentials, usually by taking derivatives. An important potential is the
canonical free energy of a system

F (β) = − 1

β
logZ(β) (6.9)

From this, two more thermodynamic potentials can be found, the average energy 〈E(w)〉
and canonical entropy S(β), by taking derivatives of the F (β),

〈E(w)〉 =
∂
(
βF (β)

)
∂β

, S(β) = β2∂
2F (β)

∂β2
(6.10)

where the expectation with respect to the Boltzmann distribution is denoted using angular
brackets, 〈A(w)〉 =

∑
w A(w)p(w).

6.5 Mean field theory

The idea that matter exists in phases has been touched on already, such as the well known phases
that water can take, depending on the temperature, pressure and other external conditions. The
macroscopic properties of each phase differ widely due to these conditions. In order to investigate
such sharp changes in the states of materials, physicists study simple models of interacting many-
body systems. The Ising model is one of the simplest of such systems, and represents magnet
spins on a regular lattice. While it is not intended to explain the phase transition of water,
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the arguments developed contain the standard theory to describe the essential features of phase
transitions.

After defining the Ising model, it is possible to introduce mean field theory. Mean field theory
is an approximation that allows for simple, analytic calculations of averages that are intractable
under the Boltzmann distribution of the system. As a consequence, analytic expressions are
obtained for the free energy of the system in terms of what physicists refer to as order parameters.
These parameters represent, as the name suggest, an ordering property of the system. In the
Ising magnet case, this is the average magnetisation. As discussed, one of the principles of
statistical mechanics is that the free energy of the system is minimised in thermal equilibrium.
This holds equally for a mean field model as well. Furthermore, when expressed in terms of
order parameters, the free energy can predict whether a model undergoes a phase transition.
Whether the mean field model accurately predicts the properties of the original system being
approximated is an important question, which is discuss.

Learning systems, when formulated as systems in thermodynamic equilibrium, are more
complex than the simple Ising model. As seen in the perceptron example, there is a source of
randomness in the interactions, generated by the data. This randomness allows for the analogy
between learning systems in thermal equilibrium and the mean field theory of disordered systems.
The Ising model with disorder is known as a spin glass, where the couplings Jij are random
variables, for example they could be Gaussian distributed.

Along with the disorder of the interaction, another fundamental feature of spin glasses is
that of frustration. This is a situation in which the structure of the couplings of a particular
realisation of the system are such that it is impossible to satisfy all constraints simultaneously.
A simple example is of three spins, with pairwise couplings, and the sign of the product of
the couplings is negative. By careful consideration, one finds that there will be no unique
ground state with all couplings satisfied. The mean field theories of disordered systems seek to
explain the properties of such systems, where the free energy has many valleys, corresponding
to metastable states.

6.5.1 The Ising model

The Ising model considers a set of sites indexed by the integers from 1 to N . A variable Si
is assigned to each site i, and the Ising spin corresponds to a binary value Si = ±1. It can
be helpful to consider the problem of magnetism, especially throughout the remainder of this
chapter, in which Si represents whether the microscopic magnetic moment is pointing up or
down.

The interaction between two sites (ij), or the bond, is denoted as Jij . In the Ising model
sites interact only with their nearest neighbours on a lattice, a set denoted as N (i) for site i. The
interaction is uniform for all pairs, Jij = J , meaning the interaction is uniform across the lattice
and symmetric between any two pairs. The energy of an interaction is simply −JSiSj . So, in
the case that Si = Sj the energy is −J , and is J otherwise. Thus, if J > 0 the aligned case is
more stable than the anti-aligned case, since it has lower energy. Once again, in the magnetism
problem the alignment corresponds to the spins being up or down simultaneously. This positive
interaction is called a ferromagnetic interaction, and can lead to macroscopic magnetism (ie.
ferromagnetism).

The total energy function of the system includes all of these interaction terms, as well as self
interaction terms −hSi, for some external “field” h. This allows one to write down the energy
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function, or Hamiltonian, as,

H = −J
∑

(ij)∈B

SiSj − h
N∑
i=1

Si (6.11)

where the sum is over all bonds, denoted by the set B. The postulates of statistical mechanics
suggest to write down the Boltzmann distribution for the Hamiltonian,

Pβ(S) =
1

Z(β)
e−βH (6.12)

where S = {Si} denotes the set of all spin states, or configurations, and e−βH is the Boltzmann
factor.

In order to get some intuition for the model, it can help to consider a model of dynamics. A
model of dynamics which satisfies detailed balance and attains asymptotically the Boltzmann
distribution are known as Glauber dynamics. The dynamics are Markov, for those readers
familiar with random processes, and operate by sequential updates of the spins, randomly across
the lattice, using conditional probabilities to flip the spins. A computer simulation of an Ising
model with Glauber dynamics would proceed according to the following algorithm:

1. Initialise all spins si randomly. Then, repeat the following two steps:

2. Choose site j at random. Calculate the field at site j:

hj = J
∑

i∈N (j)

sjSi − hsj (6.13)

3. Update site j from sj → −sj with probability:

p(sj → −sj) =
1

2
(1 + sj tanh(βhj)) (6.14)

The form of this probability is derived from the Boltzmann factor. Implemented in this
way on a computer, Glauber dynamics allow a practitioner to (asymptotically) sample from the
Boltzmann distribution. This sampling procedure is known as Gibbs sampling or heat bath
sampling, in computer science.

From the Boltzmann distribution it is possible to compute the expectations of any physical
quantity. One such expectation is the magnetisation of the system, which characterises the
macroscopic properties of the Ising model,

m =
1

N

〈 N∑
i=1

Si

〉
Pβ(S).

(6.15)

The magnetisation measures the total ordering of the system (ignoring fluctuations over time,
as is appropriate in a system that is in equilibrium). In this context, the magnetisation is an
example of what physicists refer to as an order parameter, which are variables that indicate
whether a system is in an ordered state. In the ferromagnetic case, an ordered state corresponds
to the spins aligning, whereas if there are equal numbers of aligned and anti-aligned spins, there
is an absence of any order.
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Once again, it is usually very difficult to carry out the sum over 2N terms appearing in the
partition function,

Z(β) =
∑
S1=±1

∑
S2=±1

...
∑

SN=±1

e−βH =
∑
S
e−βH . (6.16)

Therefore, one must resort to approximations in order to calculate expectations. A simple
approximation widely used is mean field theory (MFT).

6.5.2 Mean field theory of the Ising model

A mean field theory aims to replace all the interactions or the “field”, felt by a body at one site,
with an effective or average field. Effective field theories begin by writing the fields in terms of
order parameters and their fluctuations, which in the Ising model is taken to be the magnetisa-
tion. The simplest mean field theory thus replaces the true local field with the magnetisation
m, ignoring fluctuations.

A derivation of the mean field approximation to the system is now presented. This deriva-
tion is common in the physics literature, being based on a local perturbative expansion. An
alternative derivation, left to the appendix, reveals the global nature of the approximation. In
physicists language it is a (global) variational approach that considers a Gibbs free energy. It
should be familiar, having been touched on in the variational Bayesian approximations in [Sec-
tion]. Thus, readers with experience in statistical inference may feel more comfortable with this
approach, since the Gibbs free energy can be identified as a Kullback-Liebler divergence between
the true distribution and a mean field approximation.

The perturbative approach begins by writing the spin at a site as the magnetisation plus
some local fluctuation, Si = m+ δSi, where by definition δSi := Si −m. From this the effective
Hamiltonian can be derived,

H = −J
∑

(ij)∈B

(m+ δSi)(m+ δSj)− h
N∑
i=1

Si (6.17)

= −Jm2NB − Jm
∑
(ij)

(δSi + δSj)− h
N∑
i=1

Si (6.18)

where the magnitude of the cross terms δSiδSj are assumed to be negligibly small (also note
that any correlations between spins are ignored in this approach). The above expression can be
simplified to give the mean field Hamiltonian,

HMF = −Jm2NB − Jmz
∑
i

δSi − h
∑
i

Si (6.19)

= −Jm2NB − (Jmz
∑
i

+h)
∑
i

Si (6.20)

where the sum is over sites instead of pairs, identifying z as the number of bonds emanating from
a site. The mean field Hamiltonian can be used to define a different Boltzmann type distribution,
but of a system of non-interacting particles. What the approximation buys, first of all, is the
ability to calculate expectations more readily. The partition function is easily computed, for
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example,

ZMF (β) =
∑
S
e−βHMF = e−βNBJm

2{2 cosh(β[Jmz + h])}N (6.21)

Of particular interest is the local magnetisation of a site Si under this new mean field Boltz-
mann distribution. Since one would like the original system and its mean field approximation
to be consistent at this level, the local average of the spin is equated to the global average
magnetisation,

m =
∑
S
Si
e−βHMF

ZMF
= tanh(β[Jmz + h])} (6.22)

This is known as the equation of state, or the Callen equation. This equation can be solved
graphically to obtain a solution for m, which depends of course on the inverse temperature β.
The equations of state plotted in Figure 6.1 suggest the presence of a phase transition in the
model, as the inverse temperature is varied. After some point βc, the magnetisation moves away
from zero, and the system spontaneously magnetises.

m

y

y=m

T<Tc

T>Tc

Figure 6.1: Graphical plot of the Callen equation for different temperatures around the critical
temperature Tc. If T > Tc, the only solution is m = 0. If T < Tc, there is a non-zero solution.

For systems where the bonds are not uniform across the lattice, a set of mean field equations
are obtained. In this general case the approximation will have a mean for each site mi, and the
equations are often solved by iteration until all are consistent. For this reason, mean field theory
is often referred to as a self-consistent field theory.
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m

F(m)

T<Tc

T>Tc

Figure 6.2: The mean field free energy of the Ising model, as a function of the order parameter,
the average magnetisation m, for different temperatures T . Below the critical temperature Tc,
the system will spontaneously magnetise into either a positive or negative spin state.

The mean field free energy about the transition temperature is illustrated in Figure 6.2. Thus,
the mean field approximation provides another example of the utility of free energy functions
in describing the behaviour of a system. The free energy analytically reveals the change in the
order parameters as the temperature is changed, which is referred to as a control parameter.
Specifically, as written by Nishimori [96]:

“ The coefficient of m2 changes sign at βc. The minima of the free energy are located at
m 6= 0 when β > βc, and at m = 0 if β < βc. The statistical-mechanical average of a physical
quantity obtained from the Boltzmann distribution corresponds to its value at the state that
minimises the free energy (the thermal equilibrium state). Thus, the magnetisation in thermal
equilibrium vanishes above the critical temperature, and is non-vanishing below it.”

A reader may wonder how accurate the predictions from mean field theory are for the Ising
model. The answer is that it correctly predicts the existence of phase transitions, but does not
accurately predict the critical temperature βc = 1

Tc
.

However, there do exist models where mean field theory is exact. An important example
is known as the Curie-Weiss model, a version of the Ising model where the interactions have
infinite-range. The mean field free energy agrees in this case with the analytic solution for
the free energy [67]. In the more difficult analysis of disordered systems, such as spin glasses,
physicists have thus turned to infinite range models with the expectation that mean field theory
will also be exact for these more complex magnetic systems. Hence, the Curie-Weiss model is
an important model in this regard.



6.6. Disordered systems 75

6.6 Disordered systems

Systems such as the Ising model have various levels of order, and corresponding disorder, in
the spins of the system. If the temperature of the system is high, all the spins flip close to
independently, and the order parameter, in this case the magnetisation, is zero. The field
of disordered systems [67] introduces a different notion of disorder; one of randomness in the
interactions between particles.

In physical materials, disorder can occur by diluting a magnetic material such as Manganese
into a noble metal such as Copper, thus spacing the magnetic atoms at random distances. The
introduction of randomness via the geometry is known as structural disorder. This chapter
focused on a simpler type of system known as a spin glass. These materials are more like the
Ising model than the structural glasses, but have their disorder directly introduced into the
couplings Jij . For example, distributed according to a zero mean Gaussian.

Interesting behaviour can occur in such materials depending on how the time scale of a
fluctuation of the disordered interaction, τdis compares to the timescale of the experimental
observation τexp. In the case when the observation time is much longer τexp >> τdis, the disorder
does not produce interesting behaviour. In the case of the Ising spins, similar behaviour to the
standard ferromagnetic model is obtained. This is referred to as annealed disorder.

If however the observation time is much less than the typical time for a fluctuation of the
random interactions, τdis >> τexp, then fascinating behaviour can be observed, such as glassy
dynamics. This is referred to as quenched disorder. A spin glass is an example of a model
with quenched disorder, as the couplings Jij are random but fixed, while the spins are free to
fluctuate.

The terms annealed and quenched are borrowed from the picture of a metal heated in a forge.
Initially, one might have a piece of metal in equilibrium with the forge. In cooling it slowly, for
example by reducing the heat of the forge, the temperature is being annealed. If instead the
metal is plunged into water, it rapidly cools and is said to be quenched.

Quenched disorder creates frustration between the interactions: it becomes impossible to
satisfy all the couplings simultaneously, as is possible for a ferromagnetic system. Frustration
exists, formally, if for there exists any loop in the graph of connected spins for which the product
of the couplings Jij is negative. In such a loop, if one starts by fixing any one of the spins, and
the proceeds to fix subsequent spins to satisfy the couplings, then it is guaranteed to return
and flip the original spin. Thus, for any system that is not a tree, frustration will exist (with
probability one).

Frustration, in its turn, is the source of the metastable states that riddle the energy landscape
of spin glasses. For a low enough temperature, an Ising model with disorder will undergo a phase
transition to a spin glass phase, similar to the way the Ising model undergoes a transition from
a paramagnet to a ferromagnet.

Of relevance to the continuous and binary perceptron, and neural networks more generally,
is a mean field theory developed for an infinite range spin glass known as the Sherrington-
Kirkpatrick (SK) model,

H =
∑
i<j

JijSiSj − h
N∑
i=1

Si (6.23)

where the notation i < j denotes all spin pairs, and the couplings are drawn as Jij ∼ N (0, 1).
The solution of this model, via mean field theory, is extremely difficult and there exist various
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approaches. It has taken well over 30 years to prove the validity of the solutions rigorously.
The results will be outlined qualitatively, particular those which are relevant to the dynamics of
algorithms.

Although the infinite range Ising models (spin glass or not) are seen as first approximations
to the short range systems that physicists are interested in, this is not the case for learning
systems. The perceptron, when formulated as an equilibrium system, corresponds to infinite
range, or fully connected models.

6.6.1 Static theory: averaging the free energy over the disorder

As usual, the target of any efforts to describe a system in thermodynamic equilibrium is the
canonical free energy of the system. However, for disordered systems each instance of the system,
corresponding to a realisation of the random couplings Jij , will of course be different. Recall the
fundamental motivation of statistical mechanics, where for large systems there is an expectation
that typical behaviours can emerge. Under such settings, one tries to find the typical free energy
function. It so happens that the free energy is a self-averaging quantity, meaning its typical and
average values coincide,

F = − 1

β

〈
logZ(β; Jij)

〉
P (J)

(6.24)

where the average is over all the independently drawn couplings Jij ∼ P (J) that define the
Hamiltonian. The average of the logarithm, known as the quenched average, is difficult to
calculate. A simple alternative is to average the partition function Z(β; Jij),

Fa = − 1

β
log
〈
Z(β; Jij)

〉
P (J)

(6.25)

Considering this expression, where the couplings and the spins are being averaged together (in-
terchangeably), one realises this corresponds physically to the spins and couplings fluctuating on
the same time scale. Hence this calculation is known as the annealed average. Unfortunately, the
annealed computation does not give the typical values of interested, except as an approximation
in the high temperature regime. The reason is that although for many functions of random
variables the average and typical coincide, this is not the case for a product of independent
random variables. A prominent example is the partition function,

Z(β; Jij) =
∑
S
e−βH (6.26)

where the sum in the SK model’s Hamiltonian Equation 6.23 can be written as a product, given
that is in the exponential [67]. In the large N limit, the product in fact tends to a log-Normal
distribution, which is heavy tailed. There exist more physical arguments for averaging the free
energy and not the partition function [97], but a simple one is that in taking the logarithm of
the product one obtains a sum of independent random variables. This of course know converges
to a Gaussian, where the typical and average values agree.

Unfortunately, there are great difficulties in calculating the free energy, being an average
of the logarithm of the partition function. Over the course of the last 40 years, physicists
have attempted the calculation via a range of techniques, including the cavity method, TAP
equations, dynamic generating functionals, or a generally non-rigorous procedure known as the
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replica trick [98]. The general picture that has emerged from this vast program is complex to
describe, and is summarised in various texts [98], [96], [99]. For the purposes of the current
thesis, and in particular the discussion of simple learning systems, the most distinctive picture
from these analyses is the behaviour of the free energy function in the thermodynamic limit of
these disordered systems.

m

F(m)

Figure 6.3: Illustration of the multi-valley structure of the free energy of the SK model, F (M).
In the thermodynamic limit, the energetic barriers diverge, meaning the systems will remain
trapped in some subset of the configurations (sometimes termed a pure state, or ergodic com-
ponent, depending on the situation).

For systems with frustration, such as the SK model, the system in the thermodynamic
limit undergoes ergodicity breaking as the temperature is lowered. This corresponds to the
state space of the spins breaking up into ergodic components, including both ground states and
metastable states from which they cannot escape (these are collectively referred to as “pure”
states [99]). The nature of the ergodicity breaking depends on the model considered. The SK
model undergoes continuous ergodicity breaking, where each pure state continuous to break into
further pure states as the temperature is lowered continuously. An illustration is provided in
Figure 6.3, where a multi-valley structure of the free energy can be seen.

Other magnetic models exhibit more sudden ergodicity breaking transitions, and some none
at all. The next section considers the perceptron, which can be cast as a disordered system. As
described, in the continuous weight case there is no ergodicity breaking, whereas in the binary
case the ergodicity breaks suddenly.
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6.6.2 Equilibrium analysis of the continuous perceptron

The formulation of the perceptron problem, for both binary and continuous weights, as an
equilibrium system with disorder, was first established by Gardner. A series of fundamental
papers posited an equilibrium system with the weights as particles and the 0− 1 cost function
defining the energy, as before. The papers considered the volume of solutions compatible with
the patterns, or “version space”,

Ω0({xm, ym}αNm=1) :=

∫
dµ(w)

αN∏
m=1

Θ(ym
N∑
i=1

wix
m
i ) (6.27)

This is equivalent to the the partition function at zero temperature,

Ω0({xm, ym}αNm=1) = lim
β→∞

Z(β) = lim
β→∞

∫
dµ(w)e−β

∑αN
m=1 Θ(−ym

∑N
i=1 wix

m
i ) (6.28)

and is also equivalent to the canonical entropy in the zero temperature limit, Ω0 = limβ→∞ S(β).

The system has quenched disorder, due to the fixed data for any given instance of the
problem. Thus, to study the thermodynamic picture the quenched averages must be computed.
Assuming Gaussian distributed inputs xi and random labels yi, with the number of patterns M
in constant proportion to the input dimension N , α = M

N , it is possible to calculate the typical
volume, or the typical free energy of the system at finite temperature. The technique used is
the replica method, as for the SK model.

The results for the continuous weight perceptron are as follows. In the zero temperature
limit, which studies the capacity of the problem, the critical capacity of the system is found
to be αc = 2. This agrees with an older result by Cover using simpler geometric arguments.
Furthermore, for a load α < αc, the ground states of the free energy form a connected and convex
subspace, at zero temperature and above. This means that suitable equilibrium dynamics at
finite temperature, such as Langevin dynamics, will relax to the equilibrium distribution, and
there is no ergodicity breaking. The finite temperature T > 0 case, with load greater than
the capacity α > αc, results in the ‘full-RSB’ effects, similar to that of the SK model. This is
detailed in [100].

6.6.3 Equilibrium analysis of the binary perceptron

The thermodynamic analysis for the binary perceptron is strikingly different to that of the
continuous perceptron. Following Gardner’s initial work on the binary perceptron [101], which
did not yield a conclusive answer for the capacity, a subsequent study [102] obtained a critical
capacity of αc = 0.833, by the replica method. This result remains unproven, however numerical
simulations support this number, as well as other non-rigorous techniques being in agreement
[100].

Beyond the critical capacity, beyond which no solutions exist, the study of [102] suggested
that the equilibrium system formed from the binary perceptron exhibits ergodicity breaking.
More specifically, in a finite temperature analysis T > 0, the Boltzmann-Gibbs distribution can
be written as a convex combination,

P (s) =
∑
γ

ωγPγ(s) (6.29)
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where it is understood each Pγ(s) is a Boltzmann-Gibbs distribution over the weights in some
separated, pure states of the weight space denoted by γ. The statistical weight of a pure state
is given by ωγ [Spin glasses for pedestrians].

This total freezing can be contrasted to the progressive structural phase transitions that
occur for random constraint satisfaction problems (CSPs). In the last 20 years, the finer details
of the transitions in the solution space have emerged, with benefits to the understanding of
which classes of algorithms are able to find solutions, and to the design of better algorithms. A
simplified pictorial representation of the transitions is usually as given in Figure 6.4.

Figure 6.4: Progressive break-up of solutions for constraint satisfaction problems, with
αdynamical ≤ αcondensation ≤ αrigidity ≤ αfreezing ≤ αS . The binary perceptron is exotic, in the
sense that the transitions occur simultaneously, with the problem always in the frozen phase.
Figure taken from [103]

Based on the typical equilibrium analysis, it has emerged that the binary perceptron, for
T = 0, is always in a hard phase [104]. This means that αdynamical = αcondensation = αrigidty =
αfreezing = 0, that is, the problem is always frozen, unlike most other CSPs. Complementary
finite temperature T > 0 studies [105] have agreed with this picture. The analysis of [104], which
studied the local geometry of solutions, furthermore showed that the solutions are separated by
a Hamming distance of order N .

The product of all these analyses, and much of the experimental evidence, suggests that
finding solutions reliably would be computationally very difficult, in line with the NP nature of
the problem. However, the above picture only true for equilibrium algorithms, and not for those
with some element of the algorithm driving them out of equilibrium.

6.7 Out-of-equilibrium algorithm dynamics

This final section describex at a high level some of the efforts of statistical physicists in building
a theoretical understanding of learning processes in the binary perceptron and deep continuous
neural networks. From this selective review of recent and historic progress, it is apparent that
an understanding of deep binary neural network learning processes, at least using the tools of
statistical physics, is in its infancy. Indeed, the contributions made in thesis provide some of
the first advances toward solving this difficult problem.

6.7.1 Static picture of binary perceptron dynamics

In the last 10 years algorithms have been developed which are able to solve the binary perceptron
problem effectively and efficiently. For relatively large systems, for example with input dimension
N = 2000, heuristic algorithms have found solutions even for loads α ≈ 0.80, close to the
apparent capacity of the binary perceptron [32].
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The binary perceptron’s equilibrium landscape of isolated solutions, separated by large Ham-
ming distance, is at odds with these empirical results for heuristic algorithms. Therefore, the
algorithms which are reliably finding solutions quickly must have have some components in their
design which drives the dynamics out of equilibrium.

In order to gain some insight into the algorithm dynamics, one might ask what kind of
characteristics the solutions have that these algorithms find. This is a common question posed
and solved by statistical physicists [67]. For instance, one might wonder whether the solutions
are typical equilibrium solutions, that is, isolated and frozen. The answer, it turns out, is
no. The solutions these algorithms find instead they belong to large connected clusters of
unfrozen solutions [106]. Remarkably, they are not numerically dominant, thus the equilibrium
measures used in calculations under the static theory are blind to the existence of these rare but
algorithmically accessible solutions.

A recent approach to describing these algorithm dynamics introduces an effective loss surface
called the local entropy [106]. This surface is smoother than the original, by emphasising the
statistical weight of solutions with nearby solutions. The local entropy idea allows for the
comparison of various algorithm design choices in a more systematic way; it is possible to
estimate a quantity that measures an algorithm’s “local entropy”. Naturally, those algorithms
with higher local entropy are able to reach these rare, unfrozen solutions. This includes both
the modified message passing algorithms [32] as well as the gradient descent based method [85],
both of whose dynamics take place in an auxiliary parameter space.

6.7.2 Dynamics of deep continuous networks

Multi-layer neural networks are more complex than the single layer perceptron both in terms of
the many modifications and heuristics used in practice, as well as in their analysis. As described
by the authors in [107], in terms of a theoretical analysis of such learning systems,

“A theory of deep network entails two dynamical processes. One is the dynamics of weight
matrices during learning. This problem is challenging even for linear architectures and progress
has been made recently on this front (see e.g. [26]). The other dynamical process is the prop-
agation of the signal and the information it carries through the nonlinear feedforward stages
”

Accepting this argument, then understanding the learning processes of neural networks
amounts at least to an understanding of the interaction of these two dynamical processes. Several
papers in recent times have made progress on this understanding.

The seminal work of [26] can largely be credited with re-opening the field of study into the
second dynamical system, that is, of signal propagation through non-linear neural networks,
at initialisation. However the work of [26] actually studied the interaction of both dynamical
processes for the simpler case of deep linear networks. Despite the overall computation of a linear
network reducing to simple linear regression, the study found complex non-linear dynamics of
the weight matrices evolving under gradient descent. The reason for this unexpected complexity
was due to the dynamical evolution of signals through the network, in particular the attenuation
at larger depths.

Considering the system at initialisation is both practically important, but also analytically
helpful since it allows for the application of what is known as a dynamic mean field theory [31].
However, [26] did not delve into this underlying theory, assuming its application to be justified.
In its essence the paper [26] studied the spectral properties of the “end-to-end” Jacobian matrix
of neural networks, and devised initialisation schemes for standard non-linear networks aimed at
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keeping the Jacobian spectrum well conditioned (eg. having its singular values close to the unit
circle). In terms of the dynamical evolution of the weight matrices under gradient descent, the
impact of different design choices by the practitioner and the data distribution, amongst other
things, will be captured by the spectral properties of the Jacobian.

The study of the Jacobian matrix of neural networks at initialisation has since been carried
much further. One strand of research has taken to the task of obtaining analytic control over
the entire spectrum using tools from random matrix theory [81], [30], whereas another strand
has applied the same ideas to understand more sophisticated neural network architectures and
heuristics [29], [108], [109].

Two promising contributions in the study of the Jacobian, not at initialisation, have been
[110] and [80]. In [110] the authors considered again deep linear networks, but instead considered
the generalisation properties of the system, revealing once more the impact of the spectral
properties of the Jacobian and its interaction with the data covariance matrix. In [80] studied
the evolution of the gradient process, monitoring the Jacobian, and identified that the process
typically converges to limit cycles. Interestingly, similar work [111] has deep connections to the
local entropy theory of [106] developed in the context of the binary perceptron. inspired rigorous
work on generalisation error bounds [79].

A different thread of research, with a stronger physics flavour, was revived in its application
to neural networks by [26]. This thread focuses on the assumptions and construction of the
dynamic mean field theory in describing the propagation of signals at initialisation. Dynamic
mean field theory itself originates from the spin glass literature, from an attempt to study the
Sherrington-Kirkpatrick spin glass model in the 1980s [112]. The method is thus well understood,
and it is possible to derive the approximation from a considerably more general path integral
approach, as described recently [31], [113]. This more general approach allows for the calculation
of different quantities to what the standard theory provides, as well as corrections accounting
for finite size effects (since the network size is far from the thermodynamic limit). Note that
the path integral approach is rooted in non-equilibrium statistical physics, with applications
to critical phenomena [31]. Another possible approach to generalising the dynamic mean field
theory was presented in [114], which is based on effective field theories and renormalisation
group methods in statistical physics. Such methods find their origin in the study of critical
phenomena.

It is important to note that the idea of studying random neural networks originates in work
by Amari [115], who subsequently applied ideas from differential geometry to clarify some of the
mathematical aspects of the mean field dynamical system [116]. Similar work that is not rooted
in statistical physics, but which also analyses the dynamical system properties and its mean
field assumptions includes [117], [118]. These papers also provide more advanced control over
the mean field approximations, also providing, for example, corrections for finite size effects.
Both papers discussed in more detail in Chapter 7.

6.8 Chapter conclusion

This chapter has presented a discussion of ideas in statistical physics that underpin much of
the work on statistical learning theory of both continuous and binary neural networks. While
presented at a high level by necessity, the introduction to the concepts and language is important
since the analysis of algorithms using these ideas has seen recent success, the remainder of the
thesis notwithstanding.
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The final two chapters of this thesis concern themselves with developing a theoretical un-
derstanding of gradient based algorithms for binary neural networks. As for the continuous
case, there are two dynamical processes under consideration. One process corresponds to the
gradient descent dynamics in an auxiliary parameter space, which is related in some way to
the binary weight space of the network. The other dynamical process is the propagation of
signals through the network, or in the case of the auxiliary parameters, through the network’s
continuous surrogate.

Therefore the technical contribution of the remaining chapters begin with the application of
dynamic mean field theory to the stochastic binary networks and continuous surrogate models, in
the spirit of [28] and [29]. This is an important and necessary step toward a better understanding
of the dynamical processes occurring in the optimisation processes for binary neural networks.
As discussed in the concluding remarks of Chapter 9, the interaction of the binary model and
its surrogate, as observed via its training and generalisation performance, leaves many mysteries
to consider. It is expected that in making progress toward uncovering the answers, many of the
ideas presented at length in this chapter will necessarily intersect.



Chapter 7

Signal propagation in deterministic
surrogates

This Chapter studies the deterministic Gaussian surrogate model of neural networks as presented
in Chapter 5, for networks with stochastic binary weights and stochastic or deterministic binary
neurons. The primary contribution is to successfully apply, in the spirit of [28], a mean field
theory to analyse this surrogate network. The application hinges on the use of self-averaging
arguments [98]. The recursive scalar equations which govern signal propagation in randomly
initialised networks are derived. This derivation reveals that regardless of whether the surrogate
is derived from a network with deterministic or stochastic binary neurons, the equations are the
same, up to a constant scaling.

It is demonstrated via simulation that the recursive equations accurately describe the be-
haviour of randomly initialised networks, confirming the self-averaging properties. From the
equations the depth scales that limit the maximum trainable depth are also derived. The max-
imum depth increases as the networks are initialised closer to criticality, similarly to standard
neural networks.

The depths scale show that, contrary to common intuition, for networks with stochastic
binary neurons, the means of the stochastic binary weights should be initialised towards the
upper bounds (±1) for deeper networks to be trainable, that is, with broken symmetry. It is
demonstrated experimentally that trainability is indeed delivered with this initialisation, making
it possible to train deeper stochastic binary neural networks.

This chapter also discusses the alternative perspective to signal propagation, as first estab-
lished in [26], that this study is equivalent to controlling the singular value distribution of the
input-output Jacobian matrix of the neural network [81] [30], specifically its mean. While for
standard continuous neural networks the mean squared singular value of the Jacobian is directly
related to the derivative of the correlation recursion equation, in the Gaussian based approxima-
tion this is not so. It is shown that in this case the derivative calculated is only an approximation
of the Jacobian mean squared singular value. However, it is also shown that the approximation
error approaches zero as the layer width diverges.

Following the presentation of the basic signal propagation theory, including experimental
results, the theory is refined in line with more recent literature. Similarly to [118], the edges of
chaos conditions of the deterministic Gaussian surrogate are also derived. In the case an edge
does exist, the final equations are solved numerically to obtain the edge in the hyper-parameter
space.

83
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In summary this chapter makes the following contributions:

• Reviews the signal propagation theory for standard continuous networks

• Derives recursive signal propagation equations, and depth scales describing trainability for
a deterministic surrogate model, based on the deterministic Gaussian based approximation

• Demonstrates that in the mean-field limit the signal propagation equations for the deter-
ministic surrogate model are invariant to the choice of stochastic or deterministic binary
neurons, up to a constant scaling

• Presents experimental results confirming the accuracy of mean field description of the
surrogate model and its predictions suggesting new initialisation schemes and limits on
the trainable depth

• Derives analogous equations for signal propagation in deterministic surrogate networks for
those with stochastic binary weights and neurons (or deterministic binary neurons)

• Determines numerically the edges of chaos for the deterministic surrogate

7.1 Background: standard continuous networks

To begin with, the basic formalism developed in [28] is reviewed. A more current discussion of
the literature on signal propagation will be disucssed in the next chapter. Assume the weights
of a standard continuous network are initialised with W `

ij ∼ N (0, σ2
w), biases b` ∼ N (0, σ2

b ), and

input signal x0
a has zero mean Ex0 = 0 and variance E[x0

a · x0
a] = q0

aa, and with a denoting a
particular input pattern. As before, the signal propagates via equation (5.1) from layer to layer.

The particular mean field approximation used here replaces each element in the pre-activation
field h`i by a Gaussian random variable whose moments are matched. Therefor the variance
q`aa = 1

N`

∑
i(h

`
i;a)

2 is computed from layer to layer, starting from a particular input x0
a. Likewise

the covariance between the pre-activations q`ab = 1
N`

∑
i h

`
i;ah

`
i;b is calculated from layer to layer,

given two different inputs x0
a and x0

b with known covariance q0
ab. As explained in [28], assuming

the independence within a layer; Eh`i;ah`j;a = q`aaδij and Eh`i;ah`j;b = q`abδij , it is possible to derive
recurrence relations from layer to layer

q`aa = σ2
w

∫
Dzφ2(

√
q`−1
aa z) + σ2

b

:= σ2
wEφ2(h`−1

j,a ) + σ2
b (7.1)

with Dz = dz√
2π
e−

z2

2 the standard Gaussian measure. The recursion for the covariance is given

by

q`ab = σ2
w

∫
Dz1Dz2φ(ua)φ(ub) + σ2

b

:= σ2
wE
[
φ(h`−1

j,a )φ(h`−1
j,b )

]
+ σ2

b (7.2)

where

ua=

√
q`−1
aa z1, ub=

√
q`−1
bb

(
c`−1
ab z1 +

√
1− (c`−1

ab )2 z2

)
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and c`ab is identified as the correlation in layer `. Arguably the most important quantity is the
the slope of the correlation recursion equation or mapping from layer to layer, denoted as χ,
which is given by:

χ =
∂c`ab
∂c`−1

ab

= σ2
w

∫
Dz1Dz2φ

′(ua)φ
′(ub) (7.3)

At the fixed point c∗ = 1, the slope χ is denoted with the subscript χ1. As discussed [28],
when χ1 = 1, correlations can propagate to arbitrary depth.

Definition 1: (edge of chaos) The edge of chaos (or critical initialisations) are the points
(σ2
b , σ

2
w) corresponding to χ1 = 1.

Furthermore, χ1 is equivalent to the mean square singular value of the Jacobian matrix for a

single layer Jij =
∂h`i
∂h`−1

j

, as explained in [28]. Therefore controlling χ1 will prevent the gradients

from either vanishing or growing exponentially with depth.

7.2 Theoretical results

7.2.1 Forward signal propagation for deterministic Gaussian-binary networks

It is assumed that at initialisation the deterministic surrogate model has its binary weight means
M `
ij drawn independently and identically from a distribution P (M), with mean zero and variance

of the means given by σ2
m. For instance, a valid distribution could be a clipped Gaussian1, or

another stochastic binary variable, for example P (M) = 1
2δ(M + σm) + 1

2δ(M − σm), whose
variance is σ2

m. The biases at initialization are distributed as b` ∼ N (0, σ2
b ).

In the stochastic binary neuron case the field is given by

h`i =
1√
2

∑
jM

`
ijϕ(h`−1

j ) +
√
N `−1 b`i

1 + 2
√∑

j [1− (M `
ij)

2ϕ2(h`−1
j )]

(7.4)

which can be read from the Eq. 5.33.
Note in the first layer the denominator expression differs since in the first level of mean field

analysis the inputs are not considered random (since a supervised learning setting is considered).
As in the continuous case the variance q`aa = 1

N`

∑
i(h

`
i;a)

2 and covariance Eh`i;ah`j;b = q`abδij are
computed from layer to layer via recursive formulae. The key to the derivation is recognising
that the denominator is a self-averaging quantity [98]. Under this assumption, the denominator
is replaced with its mean,

lim
N→∞

1

N

∑
j

1− (M `
ij)

2ϕ2(h`−1
i ) (7.5)

= 1− E[(M `
ij)

2ϕ2(h`−1
i )] (7.6)

= 1− σ2
mEϕ2(hl−1

j,a ) (7.7)

where the property that the M `
ij and h`−1

i are each i.i.d. independent random variables at initial-
isation have been used [98]. The assumption is empirically verified in the numerical simulations
section.

1That is, sample from a Gaussian then pass the sample through a function bounded on the interval [−1, 1].
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Following this self-averaging argument, expectations can be taken more readily, as follows.

q`aa = E(h`i)
2 =

1

2

∑
jM

`
ijϕ(h`−1

i ) + b`i

1 + 2
∑

j [1− (M `
ij)

2ϕ2(h`−1
i )]

(7.8)

=
1

2

N(σ2
mEϕ2(hl−1

j,a ) + σ2
b )

1 + 2(N −Nσ2
mEϕ2(hl−1

j,a ))
(7.9)

=
1

2

σ2
mEϕ2(hl−1

j,a ) + σ2
b

2(1− σ2
mEϕ2(hl−1

j,a ))
(7.10)

For more details consult the appendices. By similar steps, it can be shown in the deterministic
binary neuron case the same expression is obtained, albeit with a different scaling constant.
This can be easily seen by inspection of the field term in the deterministic neuron case,

h`i =
1√
2

∑
jM

`
ijϕ(h`−1

i ) + b`i√∑
j [1− (M `

ij)
2ϕ2(h`−1

i )]
(7.11)

In either case, using the derived expression for q`aa, the correlation recursion can be written as

c`ab =
1√
q`aaq

`
bb

σ2
mEϕ(hl−1

j,a )ϕ(hl−1
j,b ) + σ2

b

1− σ2
mEϕ2(hl−1

j,a )
(7.12)

The slope of the correlation mapping from layer to layer, when the normalized length of each
input is at its fixed point q`aa = q`bb = q∗(σm, σb), denoted as χ, is given by:

χ =
∂c`ab
∂c`−1

ab

=
1 + q∗

1 + σ2
b

σ2
m

∫
Dz1Dz2ϕ

′(ua)ϕ
′(ub) (7.13)

where ua and ub are defined exactly as in the continuous case. Refer to the appendices for full
details of the derivations. As in the standard continuous case, within several layers the variance
approaches its asymptotic value, thus qaa = qbb for two different inputs. This approximation is
justified based on simulations. The recursive equations derived for this model and the continuous
neural network are qualitatively similar, and by observation allow for the calculation of depth
scales, just as in the continuous case [29].

7.2.2 Asymptotic expansions and depth scales

In the continuous case, the system approaches criticality as χ approaches 1, and thus the rate of
convergence to any fixed point slows. The depth scales, as derived in [29] provide a quantitative
indicator to the number of layers correlations will survive for, and thus how trainable a network
is. It is shown here that similar depth scales can be derived for these Gaussian-binary networks.

According to [29] it should hold asymptotically that |q`aa − q∗| ∼ exp(− `
ξq

) and |c`ab − c∗| ∼
exp(− `

ξc
) for sufficiently large ` (the network depth), where ξq and ξc define the depth scales

over which the variance and correlations of signals may propagate. Writing q`aa = q∗ + ε`, it is
shown in the appendix that:

ε`+1 =
ε`

1 + q∗
[
χ1 +

1 + q∗

1 + σ2
b

σ2
w

∫
Dzϕ′′(

√
q∗ z)ϕ(

√
q∗ z)

]
+O((ε`)2) (7.14)
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One can similarly expand for the correlation c`ab = c∗ + ε`, and if it is assumed that q`aa = q∗,
then

ε`+1 = ε`
[ 1 + q∗

1 + σ2
b

σ2
m

∫
Dzϕ′(u1)ϕ′(u2)

]
+O((ε`)2) (7.15)

The depth scales of interest are given by the log ratio log ε`+1

ε`
,

ξ−1
q = log(1 + q∗)

− log
[
χ1 +

1 + q∗

1 + σ2
b

σ2
m

∫
Dzϕ′′(

√
q∗ z)ϕ(

√
q∗ z)

]
(7.16)

ξ−1
c = − log

[ 1 + q∗

1 + σ2
b

σ2
m

∫
Dzϕ′(u1)ϕ′(u2)

]
= − logχ (7.17)

The arguments used in the original derivation [29] carry over to the Gaussian-binary case in a
straightforward manner, albeit with more tedious algebra.

7.2.3 Jacobian mean squared singular value and mean field gradient back-
propagation

As mentioned in the introduction to this Chapter, an equivalent perspective on this work is
that controlling the forward propagation dynamics corresponds to controlling the mean squared
singular value of the input-output Jacobain matrix of the entire network. This is because the
input-output Jacobain matrix can be decomposed into the product of the single layer Jacobian
matrices,

J =
L∏
`=1

J `, J `ij =
∂h`i,a

∂h`−1
j,a

(7.18)

In standard networks, the single layer Jacobian mean squared singular value is equal to the
derivative of the correlation mapping χ as established in [28],

Eu,W `,h`
||J `u||22
||u||22

= χ (7.19)

where the average is over the weights, Gaussian distribution of h`−1
i and a random perturbation

u. For the Gaussian model studied here this is not true, and corrections must be made to
calculate the true mean squared singular value. This can be seen by observing the terms arising
from denominator of the pre-activation field2,

J `ij =
∂h`i,a

∂h`−1
j,a

=
∂

∂h`j

(
h̄`i,a√
Σ`
ii

)

= ϕ′(h`i,a)
[ M `

ij√
Σ`
ii

+ (M `
ij)

2
h̄`i,a

(Σ`
ii)

3/2
ϕ(h`i,a)

]
(7.20)

2The ‘mean field’ notation is dropped from ΣMF for readability.
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Since Σii is a quantity that scales with the layer width N`, it is clear that when squared quantities
are considered, such as the mean squared singular value, the second term due to the derivative
of the denominator will vanish in the large layer width limit. Thus the mean squared singular
value of the single layer Jacobian approaches χ. As such, the rest of this section proceeds as if
χ is the exact quantity to be controlled.

The analysis involved in determining whether the mean squared singular value is well ap-
proximated by χ essentially goes through the mean field gradient backpropagation theory as
described in [29]. This idea provides complementary depth scales for gradient signals travelling
backwards. The next section moves on to simulations of random networks, verifying that the
theory accurately predicts the average behaviour of randomly initialised networks.

7.2.4 Simulations

In Figure 7.1 it is seen that the average behaviour of random networks are well predicted
by the mean field theory. The estimates of the variance and correlation from simulations of
random neural networks provided some input signals are plotted. The dotted lines correspond
to empirical means, the shaded area corresponds to one standard deviation, and solid lines are
the theoretical prediction. Strong agreement is seen in both the variance and correlation plots.

Finally, in Figure 7.2 the variance and correlation depth scales are presented, as functions of
σm, with different curves corresponding to different values of the bias variance σb. It is clear that
similarly to continuous networks, σb and σm compete to effect the depth scale, which appears to
only diverge with σm → 1. Notice that contrary to standard networks where σb is scaled within
one order of magnitude, σb must be changed across orders of magnitude to produce an effect,
due to the scaling with the width of the network. Importantly, it is seen that the depth scale
appears to only diverge as σ2

m approaches one value, whereas for continuous networks there are
a continuous range of such points. This edge of chaos is studied more carefully in section 7.4.

7.2.5 Remark: Valdity of the CLT for the first level of mean field

A legitimate immediate concern with initialisations that send σ2
m → 1 may be that the binary

stochastic weights S`ij are no longer stochastic, and that the variance of the Gaussian under
the central limit theorem would no longer be correct. First recall the CLT’s variance is given
by Var(h`SB) =

∑
j(1 − m2

jx
2
j ). If the means mj → ±1 then variance is equal in value to∑

jm
2
j (1 − x2

j ), which is the central limit variance in the case of only Bernoulli neurons at
initialisation. Therefore, the applicability of the CLT is invariant to the stochasticity of the
weights. This is not so of course if both neurons and weights are deterministic, for example if
neurons are just tanh() functions.

7.3 Experimental results

This section presents experimental tests of the mean field theory’s predictions, by training
networks to overfit a dataset in the supervised learning setting, having arbitrary depth and
different initialisations. The performance of the networks is studied for various network depths
and different mean variances σ2

m ∈ [0, 1), fixing the bias variance to be close to zero, σ2
b = 10−20.

Both the continuous surrogate network and its binary network counterparts are evaluated.
These include both the deterministic binary network and the stochastic binary network. In the
deterministic binary case each binary weight is taken to be the sign of the mean, §ij = sign(Mij)
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Figure 7.1: Dynamics of the variance and correlation maps, with simulations of a network of
widthN = 1000, 50 realisations, for various hyperparameter settings: σ2

m ∈ {0.2, 0.5, 0.99} (blue,
green and red respectively). (a) variance evolution, (b) correlation evolution. (c) correlation
mapping (cin to cout), with σ2

b = 0.001
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Figure 7.2: Depth scales as σ2
m is varied. (a) The depth scale controlling the variance propagation

of a signal (b) The depth scale controlling correlation propagation of two signals. Notice that the
correlation depth scale ξc only diverges as σ2

m → 1, whereas for standard continuous networks,
there are an infinite number of such points, corresponding to various combinations of the weight
and bias variances.

and where each neuron is the sign(·) non-linearity. In the stochastic binary case, the networks
are evaluated by sampling several times. Recall the objective function is

LD(f ;M, b) =
∑
µ∈D

logES,x

[
p(yµ = f(xµ; S, b,x))

]
(7.21)

It is then straightforward to obtain a Monte Carlo estimate of the probability for each input
example µ

ES,x

[
p(yµ = f(xµ; S, b,x))

]
≈

N∑
ν=1

p(yµ = f(xµ;Sν , b, xν)) (7.22)

where samples ν are denoted by Sν , xν . The number of samples used in each simular is made
clear in the figure captions, as these vary.

7.3.1 Experimental details

The networks are trained on the classic benchmark MNIST dataset of handwritten digits, where
the task to correctly classify the digits. The general phenomena observed on MNIST is consistent
across different, more computationally intensive datasets. Since the networks are trained for
large network depths, a reduced MNIST training set size of 12,500 images is considered (25% of
the usual training set), while maintaining the same number of test images, 6000. The training
and test performance are recorded (that is, the percentage of the images correctly labelled) after
several so-called “epochs” of gradient descent. An epoch is defined as a single pass over the
training set. The optimiser used was a variant of gradient descent known as Adam [119] with
learning rate of 1 × 10−3 chosen after simple grid search, and a batch size of 64. Results were
similar for other optimizers, including SGD, SGD with momentum, and RMSprop. Note that
these networks were trained without dropout, batchnorm or any other heuristics.
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The program used to implement the algorithms is known as PyTorch, written in the Python
scintific computing language. Further details on the experimental settings, and further results,
are contained in Appendix [? ]. All code for the experiments will be released online, accompa-
nying publications resulting from this thesis.

7.3.2 Training and test performance for different mean initialisation σ2
m

It is seen that the experimental results match the correlation depth scale derived for the surrogate
model, with a similar proportion to the standard continuous case of 6ξc being the maximum
possible attenuation in signal strength before trainability becomes difficult, as described in [29].
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Figure 7.3: Training performance of the deterministic surrogate networks of different depth (in
steps of 5 layers, up to L = 100), against the variance of the means σ2

m. The performance plotted
is that of the continuous surrogate, not its binary counterparts. Overlaid is a curve proportional
to the correlation depth scale, matching the experimental results closely.

The reason the trainability is not seen to diverge in Figure 7.3 is that training time increases
with depth, on top of requiring smaller learning rates for deeper networks, as described in detail
in [26]. The experiment here used the same number of epochs regardless of depth, meaning
shallower networks actually had an advantage over deeper networks, and yet still the initial
variance σ2

m is the determining factor for trainability. A slight drop in trainability can be
noticed for the continuous surrogate as the variance σ2

m approaches very close to one. As argued
previously it is not likely that this is due to a violation of the CLT at the first level of mean
field theory, however the input layer neurons are deterministic, so this may be an issue in the
first CLT applied.

Figure 7.4 presents the training performance for the deterministic surrogate and its coun-
terpart binary networks, both deterministic and stochastic. Once again, the algorithms are
tested on the MNIST dataset and the results after 5 epochs are plotted. It can be seen that the
performance of the stochastic network matches more closely the performance of the continuous
surrogate, especially as the number of samples increases, from N = 5 to N = 100 samples.

The number of samples necessary to achieve better classification, at least for more shallow
networks, depends on the number of training epochs. In some way, this is a sensible relationship,
since during the course of training one might expect the means of the weights to polarise,
moving closer to the bounds ±1. Likewise, from experience continuous with neural networks,
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(a) (b)

(c) (d)

Figure 7.4: Training performance of the continuous surrogate and its binary counterparts after
training on the reduced MNIST dataset for 5 epochs. Figure (a) shows the performance of
the continuous model. Figure (b) shows the performance of the deterministic binary network.
Figures (c) and (d) show the performance of the stochastic binary network, averaged over 5 and
100 Monte Carlo samples respectively.

the neurons, which initially have zero mean pre-activations, are expected to “saturate” during
training - that is, they become either always “on” (+1) or “off” (−1). Being close to deterministic
would require fewer samples overall, and this phenomena is observed.

The theory presented does not specify for how many steps of training the effects of the
initialisation will persist, that is, for how long the network remains close to criticality. Therefore,
the number of steps the network is trained for is an arbitrary choice, and in turn the experiments
validate the theory in a limited way, since the theory itself is not specific enough.



7.4. Determining the edge of chaos 93

7.4 Determining the edge of chaos

Recent literature on signal propagation in neural networks has taken to more carefully analysing
the dynamical system properties of the mean field model of the networks [117] [120] [118]. A
perspective from differential geometry is provided in [120], which also assumes as neuron non-
linearity the erf() function to obtain closed form coupled equations. In [117], characterisations
are given for neural networks with activation functions which have rectified linear units, reveal-
ing log-normal behaviour of pre-activations as the depth increases, assuming the width is held
constant. The implication of this work is that for such networks the width must scale with the
depth for the central limit theorem to hold to a certain degree of accuracy. A similar treatment
is given in [118], which provides an instructive guide to the forward propagation properties of
the system, in particular the rates of convergence of the correlations to their fixed points. This
section follows the work in [118] and derives the edge of chaos conditions explicitly.

The edge of chaos condition is χ1 = 1, since this determines the stability of the correlation
map fixed point c∗ = 1. Note that for the deterministic surrogate this is always a fixed point.
The hyper-parameters (σ2

b , σ
2
m) that satisfy this condition can be found by solving the dynamical

equations of the network.
Claim: The points (σ2

b , σ
2
m) corresponding to the edge of chaos are given by σ2

m = 1/E[
(
ϕ′(
√
q∗ z)

)2
]+

E[ϕ2(
√
q∗ z)] and finding σ2

b that satisfies

q`aa = σ2
b + (σ2

b + 1)
Eϕ2(hl−1

j,a )

E[
(
ϕ′(
√
q∗ z)

)2
]

This can be established as follows. From the equation χ1 = 1,

χ1 =
σ2
mE[

(
ϕ′(
√
q∗ z)

)2
]

1− σ2
mE[ϕ2(

√
q∗ z)]

= 1 (7.23)

=⇒ σ2
m =

1

E[
(
ϕ′(
√
q∗ z)

)2
] + E[ϕ2(

√
q∗ z)]

(7.24)

This can be substituted into the expression for the variance map, to obtain the expression in
Claim 1.

Thus, in order to find the edge of chaos, as a function of the parameters σ2
m and σ2

b , one
must simply find a value of σ2

b which satisfies the variance map. This value for σ2
b is found

numerically, as shown in Figure 7.5, for different neuron noise models and hence non-linearities
ϕ(·). The critical initialisation for any of these design choices is found to be close to the point
(σ2
m, σ

2
b ) = (1, 0). However, it is not just the singleton point, as for example in [118] for the

ReLu case for standard networks.
It is straightforward to numerically calculate the edges of chaos in the (σ2

m, σ
2
b ) plane. First

consider both the stochastic and deterministic binary neurons, for both the tanh(·) and erf(·)
functions.

7.4.1 Stochastic binary weights and binary neurons

In Figure 7.5 it is clear that for the ϕ(z) = tanh(κ z) non-linearity, for values of κ ≤ 1 appears
to approach criticality for (σ2

m, σ
2
b ) → (1.0, 0.0). The maximum for σ2

m is of course one, since
the weights considered are binary. Therefore, the ‘edge’ of chaos appears to exist only about
the point (1, 0). Note there is indeed a line and not a singular point, according the numerical
solutions.
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Figure 7.5: Edges of chaos for the deterministic surrogate model, for stochastic binary weights
and stochastic or deterministic binary neurons. Presented is the edge of chaos in the (σ2

m, σ
2
b ),

for both the a) stochastic neuron case with ϕ(z) = erf(1
4 z), b) the deterministic sign neuron case

with ϕ(z) = erf(1
2 ·), and (c) the logistic based stochastic neuron, with tanh() approximation

(see Chapter 5 for details). All edges are above σ2 = 1 for all but small σ2
b << 1.
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7.4.2 Continuous weights and stochastic binary neurons

In the case of stochastic binary neurons and continuous weights, it is not possible to manipulate
the equations as before to solve for the weight variance, denoted as σ2

w in this case (w for a
continuous weight, rather than a mean of a binary weight). This can be seen from the equations
for this surrogate,

h`i =

∑
jW

`
ijϕ(h`−1

i ) + b`i√∑
j(W

`
ij)

2[1− ϕ2(h`−1
i )]

(7.25)

The correlation map for this surrogate is given by

c`ab =
σ2
wEϕ(hl−1

j,a )ϕ(hl−1
j,b ) + σ2

b

σ2
w(1− Eϕ2(hl−1

j,a ))
(7.26)

and when taking the derivative, it is clear that the weight variance σ2
w cancels,

χ =
Eϕ′(hl−1

j,a )ϕ′(hl−1
j,b )

(1− Eϕ2(hl−1
j,a ))

(7.27)

It is still possible to determine an edge of chaos condition, as shown in the appendix, however
the numerical solutions return a diverging variance length qaa, a problem which motivated the
introduction of signal propagation theory to neural networks in the first place. It therefore
appears that it is not possible to train networks with stochastic binary neurons and continuous
weights, to arbitrary depth, via this surrogate network. Experimental results confirm this,
though these experiments are not included here, since it suffices to report the lack of trainability.

7.5 Chapter conclusion

This chapter has presented a theoretical study of a binary neural network algorithm using
dynamic mean field theory, following the analysis recently developed for standard continuous
neural networks [28], [29]. Based on self-averaging arguments, it was possible to derive equations
which govern signal propagation in wide, random neural networks, and obtained depth scales
that limit trainability. Directly from the calculation of the signal propagation equations it is clear
that the choice of neurons being either deterministic or stochastic binary variables makes little
difference. Numerical simulations were presented which validate the theory of signal propagation
in randomly initialised networks. Experimental results presented in turn validate the theoretical
predictions around trainability.

Interesting experimental results were uncovered for the binary neural networks correspond-
ing to the trained surrogate. This includes both deterministic binary and stochastic binary
network. It was seen that during training, when evaluating the deterministic and stochastic bi-
nary counterparts concurrently with the surrogate, the performance of both binary networks is
worse than the continuous model, especially as depth increases. The stochastic binary network
was seen to outperform the deterministic binary network, which makes sense since the objective
optimised is the expectation over an ensemble of stochastic binary networks. In either case,
the difference between the continuous surrogate and the binary networks appears to decrease as
training progresses.



96 Chapter 7. Signal propagation in deterministic surrogates

The next chapter studies how signals propagate in untrained, random binary networks, both
deterministic and stochastic. From this study it is possible to make more informed guesses as to
why the binary networks may not perform well despite their surrogate training well to arbitrary
depth.

This chapter also developed the signal propagation theory to explicitly calculate the edge
of chaos conditions for deterministic surrogates for different combinations of stochastic weights
or neurons. That is, for networks with either stochastic binary weights or neurons, or both.
From this it was possible to categorise whether an edge of chaos exists for each model. It
was found that surrogates for networks with continuous neurons and stochastic binary weights
are easier to train, in the sense that the edge of chaos exists for a wider range of values of
the hyper-parameters than in the case where weights and neurons are both stochastic binary
variables.

Interestingly, it was found that a surrogate network for the case of stochastic binary neurons
but continuous weights has no edge of chaos. This is a counter intuitive result. One might
expect that the continuous weights would make for an easier problem than having stochastic
binary weights, in the sense of critical initialisation. However, it appears the combination of
both stochastic binary weights and neurons is beneficial. This shifts more weight to the notion
that it is the neuron non-linearity (stochastic or not), that determines the properties of the
dynamical system implemented by the neural network [118].

This study of this deterministic continuous surrogate network has provided considerable
insight into the training of binary neural networks, which should inform further theoretical
studies. It has also yielded results of practical significance, which should inform the development
of new algorithms.



Chapter 8

Signal propagation for perturbed
surrogates and binary networks

This chapter investigates the Gaussian Monte Carlo based approximation for binary neural
networks, the so called “perturbed” surrogate, defined in Chapter 5. This approximation is also
based on a Gaussian central limit assumption, but rather than integrating over each neuron as
in the algorithm studied in Chapter 7, the pre-activation is instead sampled, since the resulting
(stochastic) function is also differentiable. For this class of algorithm, the dynamic mean field
theory can also be applied and is shown to accurately describe the propagation of signals through
the surrogate networks, just as in the deterministic surrogate.

The resulting signal propagation equations are quite different to those of the deterministic
surrogates, in line with the very different nature of the approximation. The analysis reveals that
divergence in the derived depth scales depends on the various combinations of stochastic binary
weights or neurons that one chooses, with only the continuous neuron case having a divergent
depth scale. The derivations of all the signal propagation equations to all of these models are
presented in this section, and subsequently the edges of chaos for all the models are presented
as well.

In addition to studying the perturbed surrogate model, the signal propagation theory for
both deterministic binary networks and stochastic binary networks is also presented. That is,
networks that cannot be trained by gradient descent, but whose dynamic mean field behaviour
can be studied readily. The motivation for this study is that it may provide some explanation
for the poor performance in the early stages of training, of the binary networks that are trained
via a given surrogate network. This point is elaborated on in the discussion.

In summary this chapter makes the following contributions:

• Derives analogous equations for signal propagation in “perturbed” surrogate networks,
based on the Gaussian Monte Carlo approximation to stochastic binary neural networks.

• Proves that for certain surrogates there is no divergence in the corresponding depth scale
by showing that there is no edge of chaos, depending on the combinations of weights and
neurons being either continuous or binary stochastic variables

• Determines numerically the edges of chaos for the surrogates that have such an edge,
revealing the limitations on the trainability of the models
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• Derives signal propagation equations for deterministic binary networks, that is, with binary
weights and sign() neuron non-linearity, establishing that there is no edge of chaos for such
a network

• Derives signal propagation equations for stochastic binary networks, under the combi-
nations of the original binary network’s weights and neurons being either continuous or
binary stochastic variables (but not both continuous)

8.1 Perturbed surrogate: stochastic binary weights and neurons

8.1.1 Signal propagation equations

As in previous Chapter, the objective is to compute the variance map for the perturbed algo-
rithm. The pre-activation field for the perturbed surrogate with both stochastic binary weights
and neurons is given by,

hli,a =
1√
N

∑
j

M l
ijφ(hl−1

j,a ) + bli + ε`i,a
1√
N

√∑
j

1− (M l
ij)

2φ2(hl−1
j,a ) (8.1)

recalling that ε ∼ N (0, 1). The non-linearity φ(·) can of course be derived from any valid binary
Bernoulli neuron model, as before (eg. tanh(·) or erf(·)).

Again, the variance of interest is defined as

qlaa =
1

Nl

∑
i

(hli,a)
2 = E

[
(hli,a)

2
]

(8.2)

Assuming again that

mij ∼ N(0, σ2
m) (8.3)

bi ∼ N(0, σ2
b ) (8.4)

and appealing to the same self-averaging arguments used in the previous section,

lim
N→∞

1

N

∑
j

1− (M `
ij)

2φ2(h`−1
i ) = 1− σ2

mEφ2(hl−1
j,a ) (8.5)

the variance map is then found to be

E
[
(hli,a)

2
]

= E

( 1√
N

∑
j

ml
ijφ(hl−1

j,a ) + bli +
1√
N

ε`i,a

√∑
j

1− (ml
ij)

2φ2(hl−1
j,a )

)2
 (8.6)

= σ2
mEφ2(hl−1

j,a ) + σ2
b + (1− σ2

mEφ2(hl−1
j,a )) (8.7)

= 1 + σ2
b (8.8)

Interestingly, the variance map does not depend on the variance of the means of the binary
weights. This is a counter intuitive result, not immediately obvious from the pre-activation field
definition.
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In the covariance map however, there is no such simplification, since the perturbation εi,a is
uncorrelated between examples a and b,

qlab = E
[
hli,ah

l
i,b

]
(8.9)

= σ2
mEφ(hl−1

j,a )φ(hl−1
j,a ) + σ2

b (8.10)

and thus the correlation map is given by

clab =
σ2
mEφ(hl−1

j,a )φ(hl−1
j,a ) + σ2

b

1 + σ2
b

(8.11)

and the derivative of the correlation map is given by

χ = σ2
mEφ′(hl−1

j,a )φ′(hl−1
j,b ) (8.12)

8.1.2 Determining the edge of chaos

Since the mean variance σ2
m does not appear in the variance map, there are different conditions

for existence of the edge of chaos.
Claim: There is no edge of chaos for the perturbed surrogate for a network with stochastic

binary weights and stochastic binary neurons.
Proof: The conditions for a critical initialisation are that c∗ = 1 to be a fixed point and

χ1 = 1. No such fixed point exists. A fixed point c∗ = 1 exists if and only if σ2
m = 1

E[φ2(hl−1
j,a )]

.

Note that σ2
m ≤ 1. For any φ(z) which is the mean of the stochastic binary neuron, the

expectation E[φ2(z)] ≤ 1. For example, consider φ(z) = tanh(κz) for any finite kappa. Note
that if κ → ∞ corresponds to φ(z) = sign(z) and c∗ = 1 is in fact always a fixed point, but
the sign(z) function does not have a derivative defined appropriately for a gradient descent
procedure.

8.2 Perturbed surrogate: stochastic binary weights and contin-
uous neurons

8.2.1 Signal propagation equations

As shown in the appendix, the signal propagation equations for the case of continuous neurons
and stochastic binary weights yields the variance map,

qaa = Eφ2(hl−1
j,a ) + σ2

b (8.13)

Thus, once again, the variance map does not depend on the variance of the means of the binary
weights. The covariance map however does retain a dependence on σ2

m,

qlab = σ2
mEφ(hl−1

j,a )φ(hl−1
j,a ) + σ2

b (8.14)

with the same expression as before. The correlation map is given by

clab =
σ2
mEφ(hl−1

j,a )φ(hl−1
j,a ) + σ2

b

Eφ2(hl−1
j,a ) + σ2

b

(8.15)

and the derivative of the correlation map is given by

χ = σ2
mEφ′(hl−1

j,a )φ′(hl−1
j,b ) (8.16)
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8.2.2 Determining the edge of chaos

Claim: The edge of chaos for the perturbed surrogate, for the case of continuous tanh(·) neurons
and stochastic binary weights is the singleton (σ2

b , σ
2
m) = (0, 1).

Proof: From the correlation map there is a fixed point c∗ = 1 if and only if σ2
m = 1, by

inspection. In turn, the edge of chaos condition χ1 = 1 holds if

E[(φ ′(hl−1
j,a ))2] =

1

σ2
m

= 1 (8.17)

Thus to find the critical initialisation one needs to find a value of qaa = Eφ2(hl−1
j,a ) + σ2

b that

satisfies this final condition. In the case that φ(·) = tanh(·), then the function (φ ′(hl−1
j,a ))2 ≤ 1,

taking the value 1 at the origin only, this requires qaa → 0. Therefore the only solution is the
singleton (σ2

b , σ
2
m) = (0, 1).

Finding the edge of chaos corresponds to finding a value of qaa = Eφ2(hl−1
j,a )+σ2

b that satisfies

this final condition. In the case that φ(·) = tanh(·), then the function (φ ′(hl−1
j,a ))2 ≤ 1, taking

the value 1 at the origin only, this requires qaa → 0. Thus the ‘edge of chaos’ is the singleton
point (σ2

b , σ
2
m) = (0, 1). This is confirmed by experiment, as reported in the subsequent sections.

8.2.3 Experiments

As seen in Figures 8.1 and 8.2, the edge of chaos for the tanh(·) non-linearity occurs only at the
singleton point (σ2

b , σ
2
m) = (0, 1). Presented are simulations for varying σ2

m, with fixed σ2
b = 0.

As in the previous chapter, the performance continuous surrogate and binary network are
compared, at training time, in Figure 8.1, and at test time, in Figure 8.2. Once again, the
divergence in the depth scale is observed for the continuous surrogate, but the binary network
corresponding to the adapted means does not perform to similar depths. This effect was observed
for different conditions, such as longer training time, larger network width and different gradient
step sizes.

8.3 Perturbed surrogate: continuous weights and stochastic bi-
nary neurons

8.3.1 Signal propagation equations

As shown in the appendix, the signal propagation equations for the case of stochastic binary
neurons and continuous weights yields the variance map,

qaa = σ2
w + σ2

b (8.18)

where it can be seen the variance map does depend on the variance of the continuous weights.
The covariance map is given by,

qlab = σ2
wEφ(hl−1

j,a )φ(hl−1
j,a ) + σ2

b (8.19)

as is standard for this surrogate (and indeed continuous networks). The correlation map is given
by

clab =
σ2
wEφ(hl−1

j,a )φ(hl−1
j,a ) + σ2

b

σ2
w + σ2

b

(8.20)
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Figure 8.1: Training performance of the perturbed surrogate networks: a) evaluation of contin-
uous surrogate, b) evaluation of corresponding the binary model (non-stochastic). Maximum
depth L = 30, steps of L = 2, after ten epochs on reduced MNIST training set (10%), using SGD
with momentum. Non-linearity used was tanh(·) (with κ = 1), and divergence in trainability of
continuous surrogate is observed for hyperparameter setting of (σ2

m, σ
2
b ) = (1, 0)
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Figure 8.2: Test performance of the perturbed surrogate networks: a) evaluation of continuous
surrogate, b) evaluation of corresponding the binary model (non-stochastic). Results corre-
sponding to experiment presented in Figure 8.1.
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and the derivative of the correlation map given by

χ = σ2
wEφ′(hl−1

j,a )φ′(hl−1
j,b ) (8.21)

From the correlation map, it is clear that c∗ = 1 if and only if Eφ2(hl−1
j,a ) = 1. This is not

possible however, since the function φ2(z) ≤ 1 for all z. Therefore, this surrogate does not have
an edge of chaos1.

8.4 Signal propagation for deterministic and stochastic binary
neural networks

This section presents the signal propagation equations for deterministic binary and stochastic
networks. The case of deterministic binary networks considers random binary weights and sign(·)
neuron non-linearities. The case of stochastic binary networks considers weights and neurons
being either continuous or stochastic and binary (but not both continuous). In all cases, the
equations are either identical to, or special cases of, the equations for the perturbed surrogate
models.

The study of how signals propagate in such binary networks, despite not being directly
relevant to the optimisation methods considered here, is nonetheless important for at least two
reasons.

First of all, when evaluating any binary network which is trained by some algorithm (eg.
gradient descent on a given surrogate model), signals will of course propagate forwards through
the corresponding binary network. This network will either be deterministic or stochastic. In
either case, it makes sense that the closer one is to the early stages of the training process,
the closer the signal propagation behaviour is to the randomly initialised case. A theoretical
description of this propagation is thus desirable.

A second reason for studying deterministic binary networks is that such networks have been
used in popular heuristic algorithms for training binary neural networks [23], based on the so
called “straight-through estimator” [84]. This heuristic, which is not derived as an estimator of
any function, or derivative, propagates signals forward through a deterministic binary network,
whose neurons are the sign(·) non-linearity, and whose weights are taken to be the sign() of
some auxiliary parameter. In applying gradient descent, the non-linearities are “replaced” by a
smooth function, such as tanh(·), and the auxiliary parameters are updated ignoring the sign()
computation of the forward pass. While this heuristic is yet to be understood, given it is not
clear what function or derivative it is an estimator of, it is important to understand the dynamics
of the signals during the early stages of training.

8.4.1 Forward signal propagation

In this neural network, it should be understood that all neurons are simply sign(·) functions of
their input, and all weights W `

ij ∈ {±1} are randomly distributed according to

P (W `
ij = +1) = 0.5 (8.22)

(8.23)

1The noiseless case, κ→∞, where the neuron is the sign function, does satisfy this condition, but the gradient
of this function is not defined.
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thus maintaining a zero mean.
The pre-activation field is given by

h`i =
1√
N`−1

∑
j

W `
ij sign(h`−1

j ) + b`i (8.24)

So, the length map is:

q`aa =

∫
Dz(sign(

√
q`−1
aa z)2) + σ2

b (8.25)

= 1 + σ2
b (8.26)

Interestingly, this is the same value as for the perturbed Gaussian with stochastic binary weights
and neurons.

The covariance evolves as

q`ab =

∫
Dz1Dz2 sign(ua) sign(ub) + σ2

b (8.27)

and the corresponding correlation map evolves as

c`ab = C(c`−1
ab , q`−1

aa , q`−1
bb , b, σb) =

∫
Dz1Dz2 sign(ua) sign(ub) + σ2

b√
q`−1
aa q`−1

bb

(8.28)

This correlation can be written in closed form. The first step is to rewrite the integral over
h, for a joint density p(ha, hb), and then rescale the ha such that the variance is 1, so that
dha =

√
qaa dva∫
dhadhb sign(ha) sign(hb)p(ha, hb) =

∫
dvadvb sign(va) sign(vb)p(va, vb) (8.29)

=
(
2P (v1 > 0, v2 > 0)− 2P (v1 > 0, v2 < 0)

)
(8.30)

where p(va, vb) is a joint with the same correlation cab (which is now equal to its covariance), and
the capital P (v1, v2) corresponds to the (cumulative) distribution function. A standard result
for standard bivariate normal distributions with correlation ρ,

P (v1 > 0, v2 > 0) =
1

4
+

arcsin(ρ)

2π
, P (v1 > 0, v2 < 0) =

cos−1(ρ)

2π
(8.31)

So then,∫
dhadhbφ(ha)φ(hb)p(ha, hb) =

√
qaaqbb

(1

2
+

arcsin(c`−1
ab )

π
−

cos−1(c`−1
ab )

π

)
(8.32)

Thus the correlation map is:

c`ab =

(
1
2 +

arcsin(c`−1
ab )

π − cos−1(c`−1
ab )

π

)
+ σ2

b√
q`−1
aa q`−1

bb

(8.33)

=
2
π arcsin(c`−1

ab ) + σ2
b√

q`−1
aa q`−1

bb

(8.34)
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From before qaa = 1 + σ2
b , and so

c`ab =
2
π arcsin(c`−1

ab ) + σ2
b

1 + σ2
b

(8.35)

Recall that arcsin(1) = π
2 . Therefore c∗ = 1 is a fixed point always.

The slope of the correlation map, denoted as usual by χ =
∂c`ab
∂c`−1
ab

, is calculated by first

integrating over the φ() = sign() non-linearities, and then taking the derivative. This proceeds
as follows,

χ =
∂c`ab
∂c`−1

ab

=
2

π

1√
q`−1
aa q`−1

bb

1√
1− (c`−1

ab )2
=

2

π

1

(1 + σ2
b )

1√
1− (c`−1

ab )2
(8.36)

It is clear that the derivative χ diverges at c`ab = 1, meaning that there is no ‘edge of chaos’
for this system. This of course means that correlations will not propagate to arbitrary depth in
deterministic binary networks, as one might have expected.

8.4.2 Stochastic weights and neurons

Beginning again with the variance map,

qlaa = E
[
(hli,a)

2
]

(8.37)

where in this the field is given by

hli,a =
1√
N

∑
j

W l
ijxhl−1

j,a
+ bli (8.38)

where xhl−1
j,a

denotes a Bernoulli neuron whose natural parameter is the pre-activation from the

previous layer.
The expectation for the length map is defined in terms of nested conditional expectations,

since the idea is to average over all random elements in the forward pass,

q`aa = EhEx|hxhl−1
j,a

+ σ2
b (8.39)

= 1 + σ2
b (8.40)

Once again, this is the same value as for the perturbed Gaussian with stochastic binary weights
and neurons.

Similarly, the covariance map gives us,

qlab = E
[
hli,ah

l
i,b

]
= Eha,hbExb|haExb|hbxhl−1

j,a
xhl−1

j,b
+ σ2

b = Eφ(hl−1
j,a )φ(hl−1

j,a ) + σ2
b (8.41)

with phi(·) being the mean function, or a shifted and scaled version of the cumulative distribution
function for the Bernoulli neurons, just as in previous Chapters. This expression is equivalent
to the perturbed surrogate for stochastic binary weights and neurons, with a mean variance of
σ2
m = 1. Following the arguments for that surrogate, no edge of chaos exists.
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8.4.3 Stochastic binary weights and continuous neurons

In this case, as it is shown in the appendix, the resulting equations are

q`aa = Eφ2(hl−1
j,a ) + σ2

b (8.42)

qlab = Eφ(hl−1
j,a )φ(hl−1

j,a ) + σ2
b (8.43)

which are, once again, the same as for the perturbed surrogate in this case, with σ2
m = 1. This

means that this model does have an edge of case, at the point (σ2
m, σ

2
b ) = (1, 0).

8.4.4 Continuous weights and stochastic binary neurons

Similar arguments to the above show that the equations for this case are exactly equivalent to
the perturbed surrogate model. This means that no edge of chaos exists in this case either.

8.5 Chapter conclusion

This Chapter has studied the signal propagation properties of binary neural networks and a
perturbed surrogate network for training binary neural networks. In the case of the surrogate
model, based on a Monte Carlo sample of a Gaussian approximation, it was possible to apply
the mean field theory and validate the signal propagation equations, once again the derivation
was based on the self-averaging arguments. From these equations it was determined that the
surrogates would have diverging depth scales by the direct calculation of the edges of chaos.
The only model to have an edge of chaos is the case of stochastic binary weights and continuous
neurons.

In the case of the deterministic binary and stochastic binary networks, the signal propagation
description, under the dynamic mean field theory, revealed important theoretical results. In
particular, in the case of either networks with both deterministic binary weights and neurons,
and stochastic binary weights and neurons, it was seen that there is no edge of chaos initialisation.

This result is relevant for understanding the training of binary networks using the surrogate
networks, in particular the evaluation of the trained binary counterparts. Consider for a moment
the signal propagation behaviour of a continuous network that has been trained, and this is not
in its initially random state. This means that, as far as the mean field theory is concerned,
the self-averaging behaviour, including any central limit behaviour, cannot be assumed to hold.
However, clearly the networks are still performing some useful information processing, and thus
are not in either the completely ordered case (asymptotic correlation c∞ = 1) nor the chaotic
case (c∞ = 0).

It makes sense that the closer one is to the early stages of the training process, the closer the
signal propagation behaviour will reflect the randomly initialised case. That is, correlations do
not propagate, since there is no edge of chaos condition. However, it is possible that as training
progresses the signal propagation behaviour binary counterparts of these surrogates might ap-
proach the signal propagation of the trained surrogate model. This may explain the difference
in the performance between the surrogate model and its binary counterparts (deterministic or
stochastic) early in training, a difference which appears to decrease as training progresses.



Chapter 9

Conclusion

This thesis has studied autonomous decision making systems in two parts. The first part was
concerned with a model known as a reciprocal chain, a generative statistical model of target
dynamics, used in decision making for target tracking systems. The proposed advantage of a
reciprocal chain over existing models is the ability to capture higher level target behaviour such
as proceeding to a destination. The second part was concerned with neural networks, used as
discriminative models for classification tasks, when their parameters are constrained to have low
precision.

In the introduction the thesis was placed within both a domain of application, and an aca-
demic discipline. In terms of a domain of application, the two parts of the thesis are jointly
motivated by the spectre of advanced computation and decision making in real world applica-
tions, by devices processing information “at the edge”. So called edge processing refers to local
decision making on devices that are typically resource constrained. Tracking systems equipped
with target dynamics modelled with reciprocal chains may be able to make decisions locally
at the site of a device, such as a camera, since it processes information on a higher level of
abstraction. Neural networks with low precision parameters, in particular those with binary pa-
rameters, are able in principle to operate on fast, low memory and low power hardware, removing
the infeasible demands of the current full precision computation of regular neural networks.

In terms of a discipline, the two parts can be placed within the emerging field of machine
learning, which sees the intersection of established disciplines such as statisics, optimisation and
computer vision, to name a few. The two parts are distinguished according to the separation
long established in statistics, of generative and discriminative modelling approaches for decision
making. One advantage of generative statistical models is that they are considered to be more
interpretable by human users than discriminative models. The disadvantage they face is that
they are typically less flexible, whereas discriminative models, such as neural networks, can be
applied to a wider set of problems, provided there is sufficient data.

This final chapter is devoted to summarising the contributions made in both parts of the
thesis and connecting results between various chapters, as well as the two parts themselves. A
discussion of future avenues for research is also included in this chapter.

9.1 Conclusion for decision making with reciprocal chains

The first part of the thesis was concerned with a generative statistical model of “intention”,
or “destination awareness” of target dynamics in a tracking context. The model studied is
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known as a reciprocal chain, a stochastic process that posits a joint probability distribution
over the initial and final states of target trajectories. The use of this model was motivated
by considering the idea that, in more complex domains such as through camera networks or
through road networks, targets exhibit behaviours not explained by Newtonian dynamics. It
was argued that a human tasked with tracking an intelligent agent, might model behaviour using
some approximation resembling Bayesian inference applied to observations of a Markov decision
process (MDP). This is a problem known as inverse planning and is a computationally prohibitive
exercise not required for tracking. Furthermore, it was argued the dynamics for reciprocal models
qualitatively resemble those from a MDP without this computational overhead. The reciprocal
model was investigated and measured against other candidate tracking models, for a detection
task known as track extraction, using a novel observation model.

Reciprocal chains are stochastic processes on a fixed interval, which one can interpret as a
time interval. As reviewed in the background material presented in Chapter 2, a destination can
be encoded into target dynamics by prescribing a joint end-points distribution for a trajectory
with given local Markov dynamics. This means that reciprocal chains are non-causal generalisa-
tions of Markov chains, since they do not satisfy the Markov property. Several important results
were reviewed in this chapter, in particular the Markov or Schrödinger bridge construction of a
reciprocal chain. Based on this construction, it is possible write down hidden reciprocal chain
filters for state estimation and detection algorithms. The computational cost of using such mod-
els, at inference time, is N -times that of standard Markov chain filtering complexity, where N
is the dimension of the state space.

Chapter 2 concluded with a discussion of the fixed time interval nature of reciprocal chains
and similar models, and the potential issues that such a constraint might impose. As discussed,
popular mathematical model for an agent operating in an environment with some goal is a MDP.
In a tracking setting, one could model a destination as the “goal” of the agent, and consider
agent behaviour on an infinite time horizon. This motivated an exploration of the closest time
homogenous Markov process to a given reciprocal chain, with the measure of closeness being in
terms of Kullback-Leibler divergence. The resulting stochastic process produced qualitatively
similar dynamics to a MDP with a prescribed goal state. This is an interesting point of view to
take. If pursued, one can relate Schrödinger bridge models to a branch of control theory known
variously as path integral control theory or Kullback-Liebler control, which can be defined on
finite or infinite time horizons. Such connections are worthwhile to explore in the tracking
context, since explicit models of “agency”, such as a MDP, are likely to be desirable as tracking
systems will be expected to process and appropriately handle more complex human behaviour.

In order to assess the utility of modelling destination awareness with reciprocal chains, this
required first a design of a simulation environment comparable to the real-world domains where
reciprocal chains may find use. Targets with dynamics that incorporate a notion of intent may
be more appropriate in domains such as tracking a target through a road network, or through
a network of cameras, rather than a single camera or along a road. Therefore, one of the first
contributions of Chapter 3 was to propose a novel simulation environment exemplary of such
a domain. This particular environment included an observation model incorporating “clutter”,
defined to be observations of uncertain origin. These observations do not relate to the target of
interest but may interfere with the performance of the tracker.

Within this simulation environment, the problem of track extraction was studied. Track
extraction is a detection problem where the task is to decide whether a set of observations
originated from a target, or not. A likelihood ratio test was constructed based on normalised
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optimal hidden reciprocal chain filters.
In order to understand, via simulation, the potential advantages of reciprocal chains, several

viable models within the class of Markov processes were compared to reciprocal chains. The
included models were; (i) a Markov chain with given local dynamics, (ii) the Schrödinger bridge
model, and (iii) a reciprocal chain with a uniform joint endpoints distribution. Assuming the
ground truth to be that targets exhibit intentional behaviour codified by a joint endpoints
distribution, the benefit to the detector performance for track extraction from incorporating
this information faithfully was studied. Based on simulations, it was found that the benefit to
tracking, as measured by the area under the receiver-operator-characteristic curve, was in an
approximately linear relationship with the Kullback-Liebler divergence between the true joint
distribution and the joint distributions implied by each of the comparison models. This insight
would help to guide the application of reciprocal models, indicating where a benefit to tracking
performance could be expected.

9.1.1 Directions of future research

Tracking algorithms based around optimal Bayesian inference, such as those considered in the
thesis, do not scale well to complex tracking scenarios such as multi-target tracking. This is a
fundamental problem due to the combinatorial explosion in the number of possible tracks (or
hypotheses), as the number of measurements and targets increases. Scaling issues can be par-
tially alleviated by the application of approximate inference techniques such as particle filtering,
or heuristic techniques such as “pruning” tracks based on thresholding track likelihoods.

A question worthy of exploration is whether the incorporation of higher level information
improves multi-target tracking. The results from Chapter 3 suggest this might be the case,
since reciprocal chains essentially re-weight the probabilities of trajectories through a system.
In combination with the particle filter or pruning techniques, this could yield dividends for
tracking systems, and should be explored in future.

Another line of future research, for the tracking of targets equipped with some model of
intent, could step towards inverse planning problems. That is, the modelling of targets as
agents that evolve dynamically according to a Markov decision process. In particular, the class
of path integral or Kullback-Liebler control problems are especially interesting, since they are
very closely related to the Schrödinger bridge models that motivated reciprocal processes. An
example of the potential application of such Markov processes is that one can condition the
process on attaining several states (or in general, distributions) at several different times. This
idea of targets visiting “waypoints” along a trajectory was explored in the context of non-
Markov Gaussian reciprocal processes [121] recently. It was also argued that accentuating the
connections between the Markov reciprocal processes and the Markov decision processes studied
under Kullback-Leibler control theory would be valuable. For example, the paper of [52] and
related works have introduced advanced importance sampling methods for approximate Bayesian
estimation of these processes. As described previously, such approximate methods are likely to
be necessary in complex scenarios encountered in tracking problems.

9.2 Conclusions for for statistical learning with neural models

Neural networks are highly flexible discriminative models for decision making. In recent years
a significant engineering and economic effort has seen the development of software and com-
putational tools that have enabled researchers to satisfactorily solve tasks once thought to be
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quite difficult. However, the most successful neural network designs are both memory and power
hungry, being continuous functions represented with full precision variables, and having been
optimised on dedicated hardware such as graphical processing units. In the context of processing
on devices “at the edge” of a computer network, this makes the use of standard neural networks
infeasible.

The second part of the thesis therefore studied the problem of optimising neural networks of
low precision, in particular binary (±1) networks. One of the primary motivation for networks
entirely composed of binary variables in particular is the low power consumption and high speed
computation they enable, as compared to standard full precision neural networks.

Introducing discrete variables in neural networks creates challenges for the optimisation pro-
cesses typically applied to full precision neural networks. Specifically, since the neural networks
are not differentiable, one cannot directly apply popular continuous optimisation techniques.
Therefore, researchers resort to various approximations in order to obtain differentiable surro-
gate networks that, when trained, produce binary neural networks that perform well.

The latter chapters of the thesis focused on stochastic binary neural networks, which use the
stochasticity to develop differentiable surrogates. Several surrogate networks were developed
and explored, with the study questioning the role of parameter initialisation in particular. The
theoretical results obtained, based on tools from statistical physics, provide insight into the
optimisation process, as well as practical advice for those wishing to train binary neural networks.

In broader terms, the second part of this thesis is encouraging as it starts to “open” the
black box of neural networks. It is encouraging that the theoretical tools to do this are relatively
simple ideas borrowed from statistical physics and dynamical systems. While not a substitute
to the transparency of generative models such as those studied in the first part, theoretical
descriptions of these complex decision making systems is crucial for their reliable use in more
diverse applications.

9.2.1 Summary of contributions for statistical learning with binary neural
networks

The contributions made in the second part of the thesis included both an extensive review of
the background to the binary neural network learning problem, presented in Chapters 4, 5 and
6, as well as new algorithms in 5, and a theoretical analysis of several algorithms and binary
networks in Chapters 7 and 8.

The review of the background theory was presented with the aim of providing a unified
treatment of the elements composing the optimisation algorithms under consideration. This
contribution resulted in a broad discussion, covering both the technical details of the problem
required in surrogate design in Chapters 4 and 5, as well as an introduction to the theoretical
tools being borrowed from statistical physics in Chapter 6.

Chapter 5 also introduced new approximations for deriving surrogate models, based on a
novel Markov chain based derivation. This Markov chain representation encompasses all ex-
isting and new surrogates for stochastic binary neural networks. Of particular note was the
development of a Monte Carlo based approximation for neural networks with both stochastic
binary weights and neurons, yielding what was referred to as a perturbed surrogate network.

The theoretical contributions presented in Chapters 7 and 8 applied several ideas from sta-
tistical physics to analytically study properties of binary neural networks and the surrogate
networks used in their training. Specifically, the technical contributions investigated the typi-
cal behaviour of signals propagating forward and backward through these network models, at
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initialisation. A key technical step was to apply self-averaging arguments to derive so called dy-
namic mean field equations which govern signal propagation in random neural networks, in the
limit of infinite network width. These equations, which are coupled scalar equations, are func-
tions of initialisation hyperparameters, that is, the variance of the weights’ means and the bias
variance. The dynamic mean field description, and its theoretical predictions, were confirmed
by numerical simulations and experiment using specialised neural network software framework
PyTorch [122].

From the signal propagation equations depth scales were derived that provide quantitative
guides to the limits of trainability. This line of work led to the derivation of the “edge of chaos”
conditions for various network surrogates. The conditions allow one to determine, analytically
or numerically, whether or not an edge of chaos exists for a given surrogate model. This means
binary network algorithms can be categorised into those which have critical initialisation and
those which do not.

Chapter 7 considered a popular deterministic surrogate network [33], [85]. The derivations
revealed that the choice of deterministic or stochastic binary neuron had little impact on the
equations, with only a scaling constant difference in one of the two mean field equations. Further
results include categorising the edge of chaos (EOC) properties for different choices of stochastic
binary weights or neurons. For the case of stochastic binary weights and neurons, there exists
an EOC. In the case of stochastic binary neurons and continuous weights, there exists no EOC,
a counter intuitive result, since generally one would expect a network with higher precision
weights to train more easily than the stochastic binary weight counterpart. There exists no
deterministic surrogate for the case of stochastic binary weights and continuous neurons.

Chapter 8 considered a surrogate network of a different nature, involving a Monte Carlo
sampling approximation in order to attain a differentiable function. For this surrogate, the
EOC only exists for the case of continuous neurons and stochastic binary weights, with all other
choices having no EOC.

Practically, the solutions to the edge of chaos equations, if such an edge exists, provide
the values of the hyper-parameters for which the depth scales diverges. This analysis is the
first major theoretical study of multi-layer binary neural network algorithms. In the context of
neural network theory more broadly, it provides an analogue to the analyses recently developed
for standard continuous neural networks [28], [29], [117], [118]. The basic dynamic mean field
theory also holds for these surrogates, although in certain cases there exists an extra hyper-
parameter dependence, arising from the stochastic neuron noise model.

A pressing question, of both theoretical and practical significance, is on the nature of the
relationship between the continuous surrogate and its binary network counterpart (either deter-
ministic or stochastic). The experimental results in Chapter 7 revealed that the trained binary
networks do not perform well at large depths, despite the continuous surrogate attaining excel-
lent performance on both the training and test sets. Another observation from the experiments
was that earlier in training, the stochastic networks, with a sufficient number of samples, tends
to outperform the deterministic binary networks.

The difference between the surrogate and the binary networks appears to decrease as training
progresses. Based on the analysis of binary networks in Chapter 8, it was established that these
networks have no edge of chaos, and are always in the chaotic regime at initialisation. This
means that, in turn, correlations do not propagate to arbitrary depth in binary networks, and
all correlations asymptotically approach zero. As such, it makes sense that the closer one is
to the start of training, the worse the performance of the binary networks will be, since their
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signal propagation behaviour is chaotic. This is in contrast to continuous networks such as the
surrogates with edges of chaos, where signals propagate well at the start of training, by design.
Based on this logic, it was argued in 8 that as training progresses, the signal propagation
properties of the binary networks, deterministic and stochastic, might approach those of the
trained continuous surrogate.

9.2.2 Directions for future research

The second part of the thesis raises open questions. In terms of further theoretical tools for
analysis, there are several different routes to consider. The dynamic mean field theory presented
and used here can be the starting point of two traditionally distinct theories. The first is the
theory of critical phenomena, culminating in the so called renormalisation group methods. A
recent formulation of such a theory for standard continuous networks was recently proposed
[114]. A different route is to study the path integral approach to studying the same questions,
which is based on stochastic differential equations [31], [113]. One advantage of these more
advanced statistical physics theories is that in deriving the same dynamic mean field equations,
it is possible to also derive corrections to account for the fluctuations about the mean predictions,
as seen in the random network simulations. These corrections include, for instance, taking into
account finite size effects in the width of the network, which in some continuos neural networks
has seen to become an issue [117]. It is important to note that the information geometric
approach of [116] proposes to study finite size effects as well.

The perspective of controlling the spectrum of input-output Jacobian matrix first proposed
in [26] is also a compelling one, especially if one is interested purely in the optimisation of neural
networks, since the spectral properties of the Jacobian matrix control much of the gradient
descent process. This line of work has been extensively developed using random matrix theory
in [81] [30], from the original proposals of [26] regarding orthogonal initialisation, which allows
for large training speed gains. For example, orthogonal initialisations were recently defined
for convolutional neural networks, allowing for the training of networks with tens of thousands
of layers [123]. Whether a sensible orthogonal initialisation can be defined for binary neural
network algorithms, and if it is possible to apply the random matrix calculations are important
questions. The study here provides an important first step in this direction.

Finally, as a brief note, it is expected that the results presented in the second part of this
thesis may be of interest to researchers of Bayesian approaches to deep learning. A Bayesian
approach is desirable as one might like a measure of uncertainty over the parameters over
the neural network. Both the perturbed and deterministic Gaussian approximations presented
here have been used as the basis of approximate variational Bayesian algorithms [124], [119].
Therefore the results presented here on signal propagation at initialisation may prove interesting
for a problem of Bayesian inference over neural networks with discrete variables.
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Appendix A

Signal propagation derivations for
deterministic surrogates

A.1 Derivation of signal propagation equations in deterministic
surrogate networks

Here we present the derivations for the signal propagation in the deterministic surrogate network
models studied in the thesis in Chapter 7. The derivations are similar in all other surrogates,
and thus not repeated for brevity.

A.1.1 Variance propagation

We first calculate the variance given a signal:

qlaa =
1

Nl

∑
i

(
hli,a

)2
= E

[(
hli,a

)2
]

(A.1)

Where for us:
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∑
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l
ijφ
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+ bli√∑
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2
b

)
(A.3)
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Where, Eφ2
(
hl−1
j,a

)
can be written explicitly, taking into account that hl−1

j,a ∼ N (0, qaa):
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We can now perform the following change of variable:

zlj,a =
hlj,a√
qlaa

(A.6)

Then:
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In the first layer, input neurons are not stochastic: they are samples drawn from the Gaussian
distribution x0 ∼ N

(
0, q0

)
:
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Correlation propagation

To determine the correlation recursion we start from its definition:

clab =
qla,b√
qlaaq

l
bb

, (A.9)

where qlab represents the covariance of the pre-activations hli,a and hli,b, related to two distinct
input signals and therefore defined as:

qlab =
1

Nl

∑
i

hli,ah
l
i,b = E

[
hli,ah

l
i,b

]
. (A.10)

Replacing the pre-activations with their expressions provided in eq. (A.2) and taking advan-
tage of the self-averaging argument, we can then write:
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At this point, given that qlaa and qlbb quite quickly approach the fixed point, we can conve-
niently assume qlaa = qlbb. Moreover, exploiting eq.(A.8), we can finally write the expression for
the correlation recursion:
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A.1.2 Derivation of the slope of the correlations at the fixed point

To check the stability at the fixed point, we need to compute the slope of the correlations
mapping from layer to layer at the fixed point:
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where we get rid of σb because independent from cl−1
ab . Replacing the definition of ua and ub

provided in the continuous model, we can explicitly compute the derivative with respect to cl−1
ab :
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where we have defined A and B as:
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We can focus on B first. Integrating by parts over zb we get:
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Then, integrating by parts over za, we the get:
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(A.17)

Replacing A and B in eq. (A.14), we then obtain the closest expression for the stability at
the variance fixed point, namely:

χ|q∗ =
1 + q∗
1 + σ2

b

σ2
m

∫
DzaDzbφ′ (ua)φ′ (ub) (A.18)

A.1.3 Variance depth scale

As pointed out in the main text, it should hold asymptotically that:

|ql+1
aa − q∗| ∼ exp

(
− l + 1

ξq
,

)
(A.19)

with ξq defining the variance depth scale. To compute it we can expand over small pertur-
bations around the fixed point, namely:
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=
σ2
m

∫
Dzφ2

(√
q∗ + εl z

)
+ σ2

b

1− σ2
m

∫
Dzφ2

(√
q∗ + εl z

) . (A.20)

Expanding the square root for small εl, we can then write:

ql+1
aa '

σ2
m

∫
Dzφ2

(√
q∗ z + εl

2
√
q∗
z
)

+ σ2
b

1− σ2
m

∫
Dzφ2

(√
q∗ z + εl

2
√
q∗
z.
) (A.21)

We can now expand the activation function φ around small perturbations and then computing
the square getting rid of higher order terms in εl, thus finally obtaining:

ql+1
aa ' q∗ +

1 + q∗√
q∗

σ2
m

∫
Dzφ

(√
q∗ z

)
φ′
(√
q∗ z

)
z

1− σ2
m

∫
Dzφ2

(√
q∗ z

) εl (A.22)

Comparing this expression with the one in eq. (A.20), we can then write:

εl+1 ' 1 + q∗√
q∗

σ2
m

∫
Dzφ

(√
q∗ z

)
φ′
(√
q∗ z

)
z

1− σ2
m

∫
Dzφ2

(√
q∗ z

) εl. (A.23)

Integrating by parts over z, we then obtain:

εl+1 '

[
(1 + q∗)

σ2
m

∫
Dzφ′

(√
q∗ z

)
φ′
(√
q∗ z

)
+
∫
Dzφ′′

(√
q∗ z

)
φ
(√
q∗ z

)
1− σ2

m

∫
Dzφ2

(√
q∗ z

) ]
εl. (A.24)

Given that it holds eq. (A.8), and noticing that χ evaluated at the correlation fixed point
c∗ = 1 is given by:

χ|c∗=1 =
σ2
m

1 + σ2
b

(1 + q∗)

∫
Dz
[
φ′ (
√
q∗ z)

]2
, (A.25)

we can finally get:

εl+1 '
[
χ|c∗=1 +

σ2
m (1 + q∗)

1 + σ2
b

∫
Dzφ′′ (√q∗ z)φ (

√
q∗ z)

]
εl

1 + q∗
. (A.26)

Given that we expect (A.19) to hold asymptotically, that is:

εl+1 ∼ exp

(
− l + 1

ξq

)
, (A.27)

we can finally obtain the variance depth scale:

ξ−1
q = log (1 + q∗)− log

(
χ|c∗=1 +

σ2
m (1 + q∗)

1 + σb

∫
Dzφ′′ (√q∗ z)φ (

√
q∗ z)

)
. (A.28)



Appendix B

Signal propagation derivations for
perturbed surrogates

B.1 Perturbed Gaussian surrogate: Stochastic neuron Eφ(h`i) =
tanh(h`i), SB weights

We first compute :

qlaa =
1

Nl

∑
i

(hli,a)
2 = E

[
(hli,a)

2
]

(B.1)

Where for us:

hli,a =
1√
N

∑
j

ml
ijφ(hl−1

j,a ) + bli + ε`i,a
1√
N

√∑
j

1− (ml
ij)

2φ2(hl−1
j,a ) (B.2)

we will use a different parameterisation for this study, where ε ∼ N (0, σ2
ε ), so that we can

study the effect of the perturbation. If σ2
ε → 0 we have a deterministic continuous network

(under the mean field model).

mij ∼ N(0, σ2
m) (B.3)

bi ∼ N(0, σ2
b ) (B.4)

E
[
(hli,a)

2
]

= E

( 1√
N

∑
j

ml
ijφ(hl−1

j,a ) + bli +
1√
N
ε`i,a

√∑
j

1− (ml
ij)

2φ2(hl−1
j,a )

)2
 (B.5)

= σ2
mEφ2(hl−1

j,a ) + σ2
b + (1− σ2

mEφ2(hl−1
j,a )) (B.6)

= 1 + σ2
b (B.7)

qlab = E
[
hli,ah

l
i,b

]
(B.8)

= σ2
mEφ(hl−1

j,a )φ(hl−1
j,a ) + σ2

b (B.9)
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clab =
σ2
mEφ(hl−1

j,a )φ(hl−1
j,a ) + σ2

b

1 + σ2
b

(B.10)

c∗ = 1 if Eφ2(hl−1
j,a ) = 1

σ2
m

.

χ = σ2
mEφ′(hl−1

j,a )φ′(hl−1
j,b ) (B.11)

χ = 1 if Eφ′(hl−1
j,a )φ′(hl−1

j,b ) = 1
σ2
m

.

Perhaps there is a contradiction here...

B.2 Perturbed Gaussian surrogate: Continuous neuron φ() =
tanh(), SB weights

We first compute :

qlaa =
1

Nl

∑
i

(hli,a)
2 = E

[(
hli,a

)2
]

(B.12)

Where for us:

hli,a =
1√
N

∑
j

ml
ijφ(hl−1

j,a ) + bli + ε`i,a
1√
N

√∑
j

(1− (ml
ij)

2)φ2(hl−1
j,a ) (B.13)

mij ∼ N(0, σ2
m) (B.14)

bi ∼ N(0, σ2
b ) (B.15)

E
[
(hli,a)

2
]

= E

( 1√
N

∑
j

ml
ijφ(hl−1

j,a ) + bli +
1√
N
ε`i,a

√∑
j

(1− (ml
ij)

2)φ2(hl−1
j,a )

)2
 (B.16)

= σ2
mEφ2(hl−1

j,a ) + σ2
b + Eφ2(hl−1

j,a )− σ2
mEφ2(hl−1

j,a ) (B.17)

= σ2
b + Eφ2(hl−1

j,a ) (B.18)

qlab = E
[
hli,ah

l
i,b

]
(B.19)

= σ2
mEφ(hl−1

j,a )φ(hl−1
j,a ) + σ2

b (B.20)

clab =
σ2
mEφ(hl−1

j,a )φ(hl−1
j,a ) + σ2

b

σ2
b + Eφ2(hl−1

j,a )
(B.21)

c∗ = 1 if σ2
m = 1!

χ = σ2
mEφ′(hl−1

j,a )φ′(hl−1
j,b ) (B.22)

χ = 1 if Eφ′(hl−1
j,a )φ′(hl−1

j,b ) = 1
σ2
m
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B.3 Perturbed Gaussian surrogate: Continuous weights, stochas-
tic neuron

We first compute :

qlaa =
1

Nl

∑
i

(hli,a)
2 = E

[(
hli,a

)2
]

(B.23)

Where for us:

hli,a =
1√
N

∑
j

wlijφ(hl−1
j,a ) + bli + ε`i,a

1√
N

√∑
j

(1− φ2(hl−1
j,a ))(wlij)

2 (B.24)

wij ∼ N(0, σ2
m) (B.25)

bi ∼ N(0, σ2
b ) (B.26)

E
[
(hli,a)

2
]

= E

( 1√
N

∑
j

wlijφ(hl−1
j,a ) + bli + ε`i,a

1√
N

√∑
j

(1− φ2(hl−1
j,a ))(wlij)

2

)2
 (B.27)

= σ2
wEφ2(hl−1

j,a ) + σ2
b + σ2

w(1− Eφ2(hl−1
j,a )) (B.28)

= σ2
b + σ2

w (B.29)

qlab = E
[
hli,ah

l
i,b

]
(B.30)

= σ2
wEφ(hl−1

j,a )φ(hl−1
j,a ) + σ2

b (B.31)

clab =
σ2
wEφ(hl−1

j,a )φ(hl−1
j,a ) + σ2

b

σ2
w + σ2

b

(B.32)

c∗ = 1 if Eφ2(hl−1
j,a ) = 1.

χ = σ2
wEφ′(hl−1

j,a )φ′(hl−1
j,b ) (B.33)

χ = 1 if Eφ′(hl−1
j,a )φ′(hl−1

j,b ) = 1
σ2
w

.


