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SUN{MARY

The thesis consists of two independent parts, each of
r^rhich is concerned with a topic in p-adic approximation.
Part 1 deals with approxirnation to p-adìc numbers (in partícular,
p-adic integers) and Part 2 with approximation to p-adic
functions. Since two of the most irnportant methods of approximation
to real numbers and real or complex functions are the continued
fraction algorithrn and interpolation, Tespectively, the thesis
concetttrates on analogues of these two methods in the p-adic context.

Part 1 is a survey and comparison of the existing different
kinds of p-adic continued fractions that have been investigated
so far, namely the two developed by K. Mahler l2l in 1934 as

well as t4l in 1960, and the continued fraction considered by
Th. Schneider l7l in 1970 and that by A. Ruban t6l in 1970.
Three rnain aspects of these p-adic continued fractions are studied
in this thesis; they are: arithmetical properties such as

periodicity, metrical properties, and applications to p-adic
diophantine approximations. In addition, the comparison of these
p-adic continued fractions with other nethods, for example, the
geometrical method of K. lr{ahler t 3I is also cons idered.

Part 2 is devoted to the study of p-adic interpolation for
functions f :A -+ B , where A and B are subsets of nn , the
completion of the algebraic closure of the field of p-adic
numbers , Q^ The theory of p -adic interpolation is developed

P
along the lines of the exposition of Gelfond tll in the classical
case, with an emphasis on the use of divided differences and the
study of analytic functions. The nain tools used are the
Schnirelman integral and the p-adic analogues of certain results
in complex analysis. The use of the theory is illustrated by
some number theoretic applications, including a simple proof of
a theorem on zeros of p-adic exponential polynonials which
corresponds closely to one obtained in Theorem 3 of t 5l by a

more complicated nethod by van der Poorten.

Continued
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GENERAL TNTRODUCTTON

t. The scope of the thesis.

The l*o topics studied in this thesis are the problem

of approximation of p-adic numbers, which is dealt wit.h in
ParÈ I, and that of approximation of p-adic functions,
which is dealt with in Part 2. The p-adic analogues of

the classical continued fraction al.gorithm and interpolation,
which are two most important and useful methods for approx-

imating real numbers and real or complex functions, respect-

iveIy, are the maín method.s in each part.
Part I surveys and compares the different kinds of

p-adíc continued. fractions that have been investigated so

f.ar¡ they are the two developed by K. Mahler in L2I), 1251 ,

the one developed by Th. Schneider in 1371, and the one

developed by A. Ruban in [34]. Two other methods for
approximating p-adic numbers due to Lutz t19l and lr{ah1er

L23l are briefly discussed at the end of this part.
In Part 2, the method of p-adic interpolation is

developed along the same lines as in the classical case

with the aid of the Schnirelman integral. As an illustration

of the method, some number theoretic results are derived in
the last chapter.

The two parts are independent of each other and a

detailed introduction wÍII be provided at the beginning of

each part.

2. Preliminaries and notation.

fixed prj-me , q

completion of

Let

numbers,

p denote a the field

algebraic

of p-adic

closure.

pt

itsand npt the
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For any non-zero 6 € 2p, w€ can write uniquely

E = c-mp-*+...+c-rp-t+co+crp+ r

where m is an integer depending on f and

ci € {0, I, . . . ,p-1} for at1 i with c-m # 0. The p-adic

valuation, l.ln, of E is then defined by

le ln = P-rn

Without any confusion,

of this valuation to CI

I '| n is also used for the extension

P

Throughout the whole thesis, basic properties of 2p

and CIp are assrlmed as given in Bachman t 5 I and Narici,

Beckenstein and Bachman [3O]. The following results in
particular are basic for the whole work.

(1) For any €, 6 in Qp or CIp, we have the "strong

triangle inequality"

lq*cln ( *.* (lElp,lcln) ,

and. this implies the

then

"domination principle" : if

2p or op, con-

AS n + oo.

with centre cx, and

lrln.l6lp,

lE+clp = lrln

(21 A series I sn, with elements in

verges p-ad.ically if and only if I =r,l p * O

(3) Let S (G,p-t) be a sphere in 2p

radius p-t (r €- Z) , that is

Then

in f¿p

(4) rf
compact.

s(a,p-t) = {E€Qp; lE-oln * p-t}

S(orp-t) is both open and closed" The same is true

with r € R.

s

This is noL true for spheres in f¿p.
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(5) I .l p is discrete in ()
-p but not in

the
the
the
the
the
the
the
the
the
the
the
the

f¿p '

(6) Let (sn) be a sequence in Qp. rf ( | s,., I n)

strictly decreasing then I "r, I p * 0 as n -> æ. This

l-s

is not

true in Ap

There are five chapters in Part I and three chapters

in Part 2¡ each chapter is divided into sections numbered

consecutively throughout the chapter. The major. results

in a given chapter are numbered consecutively throughout

the chapter, regardless of whether they are called "theorem",

"Iemma" or "corollaty", so that, for example in Chapter L,

Lemma I.26 follows theorem L.25. Equations required for

later reference are also numbered consecutively throughout

each chapter. Definitions are either numbered as equations

(for reference) or not numbered. Numbers in square brackets

t I refer to the tist. of references at the end of the thesis,

which combines references for both parts.

The notation set out below will be standard throughout.

a fixed rational prime number

ordinary absolute variation
p-adic valuation
ring of rational integers
set of positive integers (excluding 0)

field of rational numbers
field of real numbers

field of complex numbers
ring of p-adic integers
set {pE; t, € Zp}
field of p-adic numbers

completion of the algebraic closure of 2p

set {s; s€S and sÉT}

p

p

I

I

z

z+

q

R

c

zp

pZp
o<p

CIp

S-T
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CONTINUED FRÀCTIONS
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CHAPTER I

INTRODUCTION AND PRELIMINARIES

This chapter will give an introduction and some back-

ground to the problem of approximation of p-adic numbers,

with special emphasis on continued fractions. After a

review of the basic ideas and methods of classical diophan-

tine approximations in section I, there will be a sketch of

classical continued fractions and. their applications to

diophantine approximations in sections 2 and 3. Section 4

will be a brief introduction to p-adic continued fractions

and p-adic diophantine approximations, and the scope of the

work on these topics in this first part of the thesis will

also be described in this section. Section 5 will deal

with some basic results on p-adic approximation. In sections

6 and 7 we shall give some preliminaries on p-adic measure

and measure preserving transformations which will be needed

in Chapter 3.

In this part of the thesis, we shall be working in Zp

or Q.p and this will be clearly stated in the relevant

context.

1. Basic classical ideas and methods.

The fundamental problem of classical diophantine approx-

imation to a given real number E is to find. good rational

approximations A/8, that is, to find integers A,B such

that B+0 and

I E_A/BI

is small while lsl is not too large. This problem leads

naturally to the investigation of the forms
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I sg-al and I eE-a-q | ,
where Ç is any real number. rt arso leads to the problem

of simultaneous approximatj-ons Ar/B ,An/B to a system

of rear numbers Er,-.-,8' and to the study of rinear forms

l*, Er r*. ..+xn6r",r-yr l ,

| *, E.r+. . . +xrrE*rr-y* I .

One of the simplest results is
Dirichlet's Theorem Let 6 be real and let ß be a real

A, B suchnumber greater than r. Then there exist integers
that

o<B<8, la-sEl <

There are various different proofs of this theorem, arl
of which illustrat.e the basic toors available. one method

is by Dirichletrs pigeon-hole principre (see for example,

the first proof of Theorem l, page I of cassers t q l).
Another proof is by Farey fractions (see for example Theorem

36 , page 30 of Hard.y and tr{right I t6 l). A third method of
proof is by using Minkowski's rinear forms theorem (see for
example, the second proof, page 2 of Cassels t 7 l), which
is a simple application of a theorem in the theory of
geometry of numbers. It states as follows:
Minkowski's linear forms Theorem. There are integers Bj
not all 0 such that

I

I

I

n

-.I, t, iBl I
J-¡

B I

!,Eiieil < ßi

provided that
J

ßr,> lder(6ii) l.

(2<i<n)
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Ifonewantsbetterordeeperresults'moresophist-

icated methods are needed. one main tool available is the

continued fractj-on algorithm which will be described in the

hextsection.otherusefultoolsarethosebasedonthe
geometry of numbers and analytical methods based on expon-

ential sums.

2. Classica1 continued fractions.

ThissectioniscloselybasedonChapterl0ofHard.y

and Wright l'16) and the book by Perron I' jrl '

For each positive real number E € (0'1) ' we can write

E-r =b, + Er t

where br denotes the integral part of ;r and Er

denotes the fractional part of g-1' rf Er + 0' then'

since Er < 1, wê can again write

E;r = bz + Ez '
where now b2 denotes the integral part of EIt and Ez

denotes the fractional part of E; t ' Now repeat the proc-

edure with lz in pla.ce of Er ' Continuing in this manner'

\^re obtain a continued fraction corresponding to E'

I
br +

bz+

which we shall write in the

I
I t

I
5r+

bg

form

I

+

I
6r+ b¡*

the

n,

calIed

integer

artialThe brrb2,bs,... are

put for some Positive

An/Bn =
1

6r+
I

5r+
1
6;

tients. Now
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where An rB^ are both positive integers and An/Bn is
calIed the nth convergent to the continued fraction" The

continued fraction algorithm possesses a number of interest-
ing features, some of which will be listed below. For the

proofs, see the two books just mentioned.

Theorem 1.1. If Erbi (i = Lr2,...), AnrBn are as above,

then

(i) A-r = 1, B-1 = 0, Ao : O, Bo = 1r'

A"*' = b"A" * A"-l (nÞL) 
'

Brr+, = brrBr, + Bn-ri
(ii) A'Br-r - An-rBr, = (-1)n-I (n>r);
(iii) (a¡,8¡) : I (n Þ 1) ,

where (AnrBn) denotes the greatest common divisor of An

and B'i
(iv) if E is rational, then its continued fracLion

expansion is finite but if E is irrational, then its
continued fraction is infinite and

A¡/Bt, + E (n*-),

and in either case we therefore wriÈe

-rl1q = 6r+ 6r+ F3+ ì

(v) the continued fraction of each real number E is
unique.

As well as the simple properties mentioned abover vrê

also have the following approximation properties.

Theorem L.2. Let E be irrational and. An,Bn(nÞ1) be as

before. Then

L/Bn(Bn+ r +err) < | 6-a,.7er, | < r/Bn(Bnbn+Bn-, ) . L/81-,
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Theorem I.3

An , Bn (n> 1)

that

0 < B ( Bn and A/B + Av¡/Bn ,

then

Iarr-nnE l <

Theorem I.4. Let E e (0,1) be irrational, A¡'B¡'bn

be as before. Then

(i)ofanytwoconsecutiveconvergents'oneatleast

satisfies

I E-an,ze,', I ' L/zsh ì

(ii) of any three consecutive convergents' one at

least satisfies

IE-ar'ze',| t t/ß øfi ,

(iii)ifforsomen22,thereisatleastonebn

such that
b" Þ 2'

thenofanythreeconsecutiveconvergents'oneat

least satisfies

(For the proofs,

of Perron t3rl).
Theorem I.5. Let

lE-ar,7n,r¡ . lß n'z"

see Theorems 2.L4, 2.I5 , 2 'L6 pages 4I-42

E be a real number- If ArB are two

integers such that

I q-alel . r/2ø2 ,

then A/B is a convergent to the continued. fraction of E

(see Theorem I84 page 153 of Hardy and wright llt'l for the

proof. )

(best approximation) - Let

be as above. If A and B

E be irrational,

are integers such
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One natural question concerning continued fractions is

the problem of periodic continued fractions. In the class-
ical case, it is completely answered in the following theorem

(see Theorems 176, I77 pages l-44-I48 of Hardy and Wright

Í t6ll .

Theorem 1.6. (i) A periodic continued fraction is a

quadratic sr:rd, that is, an irrational root of a quadratic

equation with rational integral coefficients.
(ii) The continued fraction which represents a quadratic

surd is periodic.

Apart from the arithmetical properties described. above,

continued fractions also have interesting metrical- properties.

Most results in this direction seem to originate from the

work of Khintchine (see hís book ll7l for discussion and

proofs of the following results).
Theorem I.7. The set of all numbers in the interval

(0,I) with bounded partial quotients has measure 0.

Theorem 1.8. Suppose thaL (tp(n) ) i= a sequence of
positive real numbers.

æ

(i) rf I I/ç(n) diverges, then for almost all q € (0,1),
n=I

the inequality

bn = b,, (E) > ç(n)

holds for infinitely many n, where bn {n > 1)

partial quotients of the continued fraction of

denotes the

,

all E€ (0,1),
æ

(ii) rf In=
L/<pln) converges' then for almost

the above inequality holds for at most a finite number of

values of. n.
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Theorem 1.9. There exists a positive constant B such

E in (0,1) and for all sufficientlythat for almost all
large n, we have

where Bn (n ) 1, .,1".;"ij::;:'"l'.n" conversenrs ro
the continued fraction of Ë.

Theorem 1.I0. For almost al]- E in (0,1) r wê have,

with the above notation,

(i) Iim
n->æ

(ii) lim (b r +b zt . . .+b',-) /n = oo

n->@

P (E)

(b,b,...bn )t/n = É (,.k+;)t"n 
k/ros z

,

,

(iii) Iim log Bn/n
n->@

= 12 ¡r2 rog 2

Theorem f.11. (Galambos tf3l). Let p

measure defined on Lebesgue measurabl-e subsets

by

be the Gauss

E of (0,1)

dx
ï+xJ"

1
,

and let bn = br, (6) (n> I)
the continued fraction of

denote the partJ-al quotients of

E. Then

lÐ p{E € (0,1); max(br*...+b¡) /N <y/Log 2} = exp (-L/v).
N+@

3. Application of contined fraction in classi cal diophantine

approximation.

continued fractions have been extensively appried to
problems of diophantine approximation. The following theorems

illustrate the kinds of result that have been obtained by this
method.
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Theorem I.I2. Let E be real and irratj-onal. Then

there are infinitely many positive integers B and integers

A such that

I e-sE I . t/,ß s

If 6 is of the form r.U(,ß-t) +s
t.4(/l-t) +u

where rrsrtru € Z

with rs - tu = t 1, the constant f//l cannot be replaced by

any smaller number. Otherwise, there are infinitely many

integers ArB with B > 0 such that

la-eEl < t//e B

(f'or the proof see Theorem 5 pages 11-13 of Cassels L I J) .

Theorem I.t3 (Khintchine): To each irrational 9t

there are infinitely many integers I > I such that the

inequalitíes

1<B<ß/2, lE-A/BI < L/Bß ,

have no solutions in integers ArB.

(¡'or the proof , see Theorem 24 pages 36-37 of Koksma lf gl).

Theorem 1.14 (Tchebycheff) . If E is irrational, Ç

is an arbitrary real number, then

(i) there are infinitely many integers B > 1, A,B such

that.

(ii¡

that

¡e6-a-el <L/ß, lBl<%ß,
there are infinitely many integers B > I, ArB such

leE-A-çl . 2/ß, v,B<B< 3ß/2

(f'or the proof , see Theorem 2 pages 76-77 of Koksma llSl) .

As an application of the metrical result (Theorem I.8),
we have:
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tinuous function

a non-increasing

integral

Theorem 1.15. Suppose that f (x)

a positive variable
is a positive con-

x and xf (x) is

positive c, the

of

function. If, for some

f (x) dx

diverges, then the inequality

I e-t/sl . f ß) /B
has, for almost all E in (OrI),

solutions in integers A and B.

the above integral converges, then

has, for almost all ã in (0,1),

solutions in integers A and B.

(for the proof, see Theorem 32 page 69 of Khintchine L r7)) .

Since a. is dense in q.p as wel1 as in R, it is
nat.urar to investigate the approximation of elements of Q.p

by those of a- and to hope that a p-adíc analoque of con-

tinued fractions will yield results simitar to those men-

f-
J"

(B>0)

an infinite'number of

On the other hand, if
the above inequality

only a finite number of

tioned above.

4. Continued fractions and diophantine approximation in Q.t

The study of rational approximation of p-adic nurnbers

seems to have been initiated by K. Mahler in a series of
papers starting from 1934. In his paper lz0l in 1934,

Mahrer investigated the existence of rationar j-ntegrar

sorutions to systems of p-adic linear forms using Minkowski,s

linear forms theorem. fn the same year, Mahrer l2ll dever-

oped an algorithm for constructing a p-adic continued

fraction which has very good approximation properties. His

method is again based on Minkowski's rinear forms theorems.
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Using this continued fraction, Iv1ahler lz2l in 1938 was able

to prove the p-adic analogues of Theorems 1.13 and 1.14 (Í)

above. Since then, there have been rapid development.s in
many directions. In this first part of the thesis, the

work will be devoted to p-adic continued fractions and

results which are analogues of those obtained by continued

fraction methods in the classical case as displayed in
sections 2 and 3 above.

It turns out that there is no p-ad.ic continued fractj-on
which has all the desirable properties that the rear contin-
ued fraction has. Mahler in 1961 in his book [25], which

gives an excellent account of p-adic diophantine approxim-

ations, â1so developed another p-adic continued fraction
which is closely related to the one he developed in L934.

In the last decade two more p-adic continued fractions have

been studied. In 1970, Schneider 1,37) gave another kind of
continued fraction algorithm based on the unique represen-

tation of p-adic integers as series. Also in 1970, Ruban

[34]studied the p-adic continued fraction algorithm which

is the most similar to the ordinary reat continued fraction"
The main feature of Rubanrs continued fraction is the

metrical properties analogous to those shown in section 2.

Schneider's and Ruban's continued fract.ions are of the same

general nature and they do not yield very good approximations;

in fact Ruban's continued fraction was already mentioned by

Mah1er 121 I but not pursued by him for this reason.

In other directions, Mahler Í231 in 1940 employed a

geometrical method in his study of p-adic diophantine approx-

imation. This method yields good approximation results
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(mostly with good values of constants) similar to those

described in section 3. Fifteen years later, LuLz ltc l

obtained p-adic analogues of these results as well as p-adic

analogues of the metrical results discussed in section 2.

Her methods are based on the geometry of numbers and the

measure theory of 2p.

The aim of this part of the thesis is to survey aII
the different kinds of p-adic continued fractions referred
to above and to investigate their propertíes and applic-
ationsr âs well- as to compare them with one another. The

remaining two sections of this chapter will indicate some

preliminary methods on p-adic diophantine approximation

corresponding to the classical counterpart of section 1 and

also some preliminaries on p-adic measure. Chapter 2 wiIl
be concerned with p-adic continued fractions in general,

and will give proofs of most of the properties common to
the four p-adic continued fractions developed by Mahler,

Schneider and Ruban. fn Chapter 3, Ruban's and Schneider's

continued fractions will be studied in detail. The two

p-adic continued fractions of Mahler will be considered in
Chapter 4. Fina11y, in Chapter 5, some applications on

diophantine approximation will be illustrated and the

comparj-son of different kinds of p-adic continued fractions
will be made. A brief discussion on Mahler's geometrical

method and Lutzrs methods and results on p-adic diophantine

approximations will also be in Chapter 5.

5. Basic p-adic tools.

lVhi I e

fractions,

there appears to be

basic

no p-adic

clas s ical

analogue

tool-s in

of Farey

section 1,the other two
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namely Dirichletrs pigeon-hole principle and Minkowski's

linear forms theorem, can both be applied to Q_p. The

following theorem, which is similar to results in Mahler

1,201, illustrates the use of both ideas.

Theorem 1.16. For given positive integers Ír¡nr let
aij (1( i( n, 1< j< m) be p-adic integers, and suppose that
hi (1<i<n) are non-negative rational integers, and let

h - (hr+hr+...+hn),/m

Then

such

there

that

exist rational integers Xr r...,xm, not all 0,

m

l-1, aijxjln * P-hi
J- t

l"il <

(i) Irre f irst use Dirichlet's

For any rational integral point

l"il < ph

(i:1,...rD)

h1

(i = Ir... rrr) .

above is

Now

,

Proof.

princ j-pIe.

(j=1,.".,in)

pigeon-hole

z such that
(j=tr...ril) ,

we may write uniquely
m

:-,i(V) = -L,.tj"jJ-r

where rt(V) is a rational integer

o < ri (z) <

and yi is a p-adic integer. Thus

pht*...+hn = p*h

possibilities for the m-tup1e riQ)
the number of distinct points Z as

(2tphl+I)m , p*h

r¡(V) + p yi (i=1r...rrr)

such that
(i=1r...rrr)

there are

,

so there must be two points Z

11 (z(r)) =

It is then easily seen that x

required inequalities .

, say, such that
(i: Ir... rrl)

,(z) satisfies the

(r) (2)z,

ri(z(2) )

z
(r) -
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(ii) Alternatively, ês Z is dense in 7n, it is easily

seen that we may assume without loss of generality that

aij are rational integers, and the theorem can then be

proved by applying Minkowski's linear forms theorem to the

following system of m*n inequalities in m+n variables

X1r... rxn, Rl ,... rRm

a..x. -R.pr rl I l--

l*t

ntl

As applications of this theoremr wê have the following

two results, the second of which will later be the basis of

one of Mahler's continued fractions.

Corollary I.L7. For given positive integers il,Dr

let .ij (l ( i ( n, 1< j < m) be p-adic j-ntegers and let ho

be a non-negative integer. Then there exist rational-

integers xr '... 'xm' l, 
r... rY¡r not aII zeto, such that

l.l,trjxj -vilp < P-ho (i=1,...,D),

m

Lj
h

l<p
Corollary I.18. For a given positive

p (j=tr...ril) .

(j=1r...rR) ,

(i = lr... rn).

integer h, let

xj

Yi

l<p nh.o / (m+n )

nho / (m+n)

E be a p-adic integer. Then there

integers, not both 0, such that

la-eEln * p-h

max(lal,lel) ( p

6. Preliminaries on p-adic measure

are two rational

\n

theory.

notation in the general introduction

that isp-adic integers,

{6 € 2pt lEln< r}

We recall from the

that 7p is the set of

7p

For E€2p and r€24, clef ine the sphere S ( 6, p-t ) with
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centre I and radius p-r by

(1,1) S(E,p-t) = E+p'7p = {x€Qn; lx-Eln*p-t}
The continued fractions of Ruban and schneider in chapter 3

will be defined for a1l 6 in pZp, that is for a1l I
such that leln < p-r, and in order to obtain metrical
results for these continued fractions, we shalr need some

results on measure in pZp. Tire first work on measure in
Qp was done by Turkstra l+zl by a direct construction, and

measure in qp can also be constructed. as a Haar measure.

Here we shall outline a construction using the Hahn-extension

tlreorem and shall restrict our attention to pZp, though the
construction easily extends to the whole of qp. we shall
use the definitions and basic resurts on measure and

integraLion of Taylor Ito1.

The following definitions will be used throughout art
investigation on measure theory. Defj-ne

(L.2',) S = {0} u {s(o,p-r)} u {s(E,p-');
reZ+, rÞ2, E€2, p t. lEln*p-r or E=0].

(1.3) o(S) = o-fie1d generated by S.

We note that

PZp : s(o,P-l) € s ì

and it is easily seen that if S(E,p-r) €S, then

E = 0 or E - c1p*c rp2+. . .+cr- rpt- t

where ci € { 0,I,.. . rp-l} for all i. It follows that S

is countable. Clearly, wê have

s (E,p-') g pZp

we sharr need the following results which are fundamental.
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Lemma 1.19. Let s (E,p-t) be as defined in (1.1) .

We have

(i) if ß€S(6,p-t), then S(E,p-r) = s(ß,p-t);
(ii) if ft = S(E,p-t) and S = S(n,p-=) belong to S

and sÞr and RnS = þ, then ScR.

Proof. See Theorem 3 and its corollary, pages 6-7

of Narici, Beckenstein and Bachman t3o l.
Lemma L.20. For S defined by (L.2) r \^/ê have

(i) S is a semi-ring, that is,
(a) 0€s,
(b) if R,S€S, then RnS€S,

and (c) if RrS € S, then, for some ne zr, R- S : Û Si,
I= I

where the Si are disjoint sets in S.

(ii¡ The o-fierd, o (s) , ís precisery the o-fierd. of Borel
sets of pZp.

Proof. (i) follows by using the properties of spheres

in Lemma 1.19 and repeated.ly using the f act that
(1.4) Zn = (O+pZn) u (r+pZn)u...u((p-r)+pZn),
which is a disjoint union. (ii) folrows from the fact
that pZ is dense in pZp.

We now introduce a measure on S,

extended. to o (S) .

Lemma I.2I. Define

which will then be

by

Then

(i)

(ii)

t[s(E,p-'))

T:$+R

p

t (pZp) = 1,

T is finitely additive on S,

-r+ I r(0) = 0.
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(iii) t is countably

Proof. (i) is

that if S€S and S

Sr, ... 'Sn 
€ S and are

t (s) =

additive on S.

immediate. For (ii), we must show

= Sl U S z U ... t,l Sn, where

non-empty and disjoint, then

t (Sr) + r (Sz) +...+ t (Sr",) .

and all Si have equal radius P-=,

atl Si are of the form S(6i,P-=),

it is easily shown that there is a

S into p=-t spheres in S of
s-rn=p"-and

Suppose S

sâY, and

S(E,p-t)

nÞ 2.

say. Then s>r

unique dissection

radius p-", so

Then

and

of

that

t (Sr ) +...+ T (Sn) = np-s*l = p=-tp-s*I = p-t*l ='r (S) ,

as required. The general case where the radii are not all

equal can then be dealt with by dissecting each of Sr r... rSn

into spheres in S of equal radius P-", sâY, where p-s

is the smallest of the radii of the Si's. We now show (iii).

Let (Srr) be a sequence of disjoint spheres such that

ü sn=s€s
n=I

Since S is compact (by (4) in section 2 of the general

introduction), it follows that s has a finite subcover

obtained f rom ,,! r 
r* say 

,rü r 
rr. Thus, f or a1r n ) N,

sn = 0 and so t(Sr.,)

t(s) =

ii)
oo

r
L

l1 =

=0
N
TL

n=l

. BY(

r (sn) =

, wê have

t (Sn) 
'I

that is 'r is countably additive on S.

Lemma I.2L immediately implies that 'r is a measure

S. Next we extend r from S to o(s).

Theorem L.22. There is a unique measure u on o(s)

on

uls = r ,

such that
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where U I S signj-fies the measure U restricted to S

and t i-s as def ined in Lemma I.zL.

Proof . This follows from Lemmas I.20, L.2I by the

Hahn Extension Theorem as obtaj-ned by combining Theorems

3.4 , 3 . 5 adn 4 .2 of Taylor l, +ol -

Theorem L.22 yields in particular the following result.

Corollary I.23. Let U be as in Theorem L.22.

Suppose p is a measure on o (S) such that for all
s€s

p(S) = u(S).
Then p - U.

From now on, 1et U be the measure given by Theorem

L.22. We gather together some properties of U which

will be needed later. The proofs, which consist of straight
forward checking usually based on (1.4) and Corollary L.23,

are omitted.

Theorem L.24.
fDefine for any r €7' ,

I
I+pr' ' a€Z p

We have

(i)

and so

(ii) for all g e pZn,

L/ (6+?Zp') :

l/¡+prlÐ = 1+przp

v(L/ {r+prZn) ) = ir 1t+prZn) -r+lp ,

ô € pZp- i0Ì ,

(1/ô) + (g/62\7p

and so

v(r/(1+gzn¡1 = pl ß,/6'lp f
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(iii) if U is the group of p-adic units, then

u(U) = u(L/u) : p-I ,

(iv) if I - cr(6)p+cz(6)p2+... e pZp, where

ci (E) € {0,I,...,p-l} for all i,
then for all iÞJ-,

u{Eepzn;ci (E)=0} = u{E€pZp;ci (E):t} :...= u{E€pZp;ci (6¡=p-1}

= p-l

For any cl € pZn and B € o(S) , we also have

(v) u(08) = lolpu(s) ,

(vi) u(o+B) = u(B).

7. Measure eservl_ transformation on z

In this section we collect together results on measure

preservj-ng transformations needed for Chapter 3. We rely
on Billingsley t I I for the basic result and we shall work

(pzp, o (S ) , u) as det.ermined byin the probability space

Theorem L.22.

A transformation

T:pZp-pZp
is measure preserving if and only if for aII B € o(S),

u(T-rB) = u(B)

A set B is said to be invariant under the transformation

T if and only if

, T-lB = B

And define the transformation T above to be ergodic if it
is measure preserving and for each invariant set B, we have

u(B) :1 or 0.

We shall- be interested in ergodic transformations as they

satisfy the following theorem"
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Theorem I"25 (Ergodic Theorem). Suppose T is
ergodic and

defined on

to ¡-rr in

f

pZp.

pzp,

is an integrable (real valued) function
Then for almost all 1, with respect

Iim |'l'r(roE)
n+@ n klo

fdu
pZp

Proof. See Theorem 1"3 page 13 of Billings1ey t I l.

A stronger property which implies ergodicity is
mixing. A transformation T is mix-Lng if it is measure

preserving and if for every pair of sets B, C in o (S)

Iim u(BnT-nC) : u(B)U(C).
n->æ

The foll-owing result will be basic for our later
proofs that certain transformations are mixing.

Lemma I.26. Let. S be as in (1.2) and for ne 7+

let S' c S. Suppose that f or each S e S, there j_s an

N = N(S) such that for n)N, S can be expressed as a
countable (and hence, by compactness, finite) union of
disjoint spheres from S' and also that

u(snor-ns) = u(sn)u(S)

for all Sn €Sn and n)N. Then T is mixing and hence

ergodic.

Proof. It follows easily from Theorem I.2 of BiIl-
ingsley [ 8]and the fact that o(S) is generated by the

field consisting of all finite disjoint union of spheres

from S that it is sufficient to prove that
tim u(RnT-nS) = u(R) u(S)
n->@

for aII RrS € S. We fix R, S € S and take n Þ N, where

N : max (Ntnl ,N(S))



24

Since n)n(R), R can

of disjoing spheres in

defined by

is clearly

definition

Since this

v(R) = u(RnT-nS)

countably additive, ít then follows

of N (S) that

u(RnT-'S¡ = u(R)u(S).

holds for a1l n Þ N, the required

be expressed as a countable union

Sn. Since the set function v

(R€s)

from the

result fo1lows.

We illustrate the above idea by a brief discussion of

the "shift transformation"

T:pZp*pZp,

defined by

T: clp*czp2 +...+ crrpn*... r+ czp*capz +...* crrpt-1+...

where ci € {0,I,...,p-1} for all i.

Define for ne7+,

A (cr r . . . rcn) = clp*czp2 +. . .+ cnpt+pt+t Zn

Note that A(cr,...,cn) € S and it is easily deduced that

every sphere in S is a countable union of A (cr r.. - ¡cn) rs

for sufficientty large n. AIso for different ci's,

A (cr ¡'.. . ¡crr) 'S are disjoint. Hence by Lemma L.26, in

order to show that T is mixing, it is sufficient to prove

that for sufficiently large n

u(l{cr'...,cn) nr-"s) = u(A(cr'.--,cr))u(S)'
for all S€S-

CIearIy, fo. all S€S,

A (cr , ...,cn) fl T-ns

Theorem L.24,

nn_cnP *P s.

Thus by (v) of

crP *...+
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u(a{.r,...,cr.) nt-"s) = p-tu(s)

u (¡ ("r , . . .,cr,) )u (s) ,

as required.
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CHAPTER 2

GENERAL p-ADIC CONTINUED FRACTIONS.

In this chapterr w€ shall be considering general p-adic

continued fractions and some of their simple properties,

most of which are common to all the p-adic continued

fractionc to be considered in the fol-lowing two chapters.

Irfost results obtainecl are straight forward analogues of

classical- continued fractions as in Perron t3tl. Since

there is no loss of generality in restricting ourselves to

p-adic integers (tfrat is, elements of 7p) , from now on

the work wj-II be carried out in Zp unless stated other-

wise. To be consistent, the following notation will be

standard throughouL this first part of the thesis.

I. Notatj-on and simple properties.

The

the form

(2.1)

continued fractions to be considered will be of

âo âr ân
bo+ b1+ bn* â1bo*

br+ ã,2

bz*

+ an

bn*

âs

where ai rb1

of non-zero

define

€ 2- {o} for aI1 i.
rationalnumbers a= (a

two sequences

(¡ ), we

B

For

i),
by

=0

any

b=

B

An = An (arb) ,

A-, = L'

An+ i = brrAn

Bn = err(arb)

= 0, A
-t ' 0

+ ânArr- r

, 0

Bn+ r aBn n-l-bB +nn

(2 "2) (n > 0)

l-

I,
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the next theorem is a collection of simple properties

that follow directly from the notation just set up. For

the proofs, see Perron t3tl.
Theorem 2.L. Using the above notation, \^7e have for

non-zero AnrBn (n) 1),

ffi = 
"+Ë; 

- tr# +"'+ (-1)"-t"0.,...ân-rå^
Bn

ëLg âr(i)

(ii) An
B¡

(iii)

bo* br*

An- r
Btr- r

An An-
Bn Bn-

(-t¡"-tao.r...ët¡-1
Bn- r Bn

Bn- tBn

(nÞ 1),
(nÞ1),

(n)l),

(nÞ 1),

(n> 2) .

(n +-)

: 0r Bo = I,

ð.2
bl

â1
bo

(iv)

if and only if

- ao ëÌr>:--Þ be* b1*

( I

n- lâg
b 0 ) TT0

I å)(31
l-=l

2- Converqence.

The next natural question one may ask about the fraction

(2.L) is that of its convergence. We call An/Bn as defined

above, if it exis'ts, the nth convergent of the continuecl

fraction (2.I) and say that the continued fraction (2.I)

converges to 6 and write

+ ël'¡
bn*

lim
n+æ

An
Bn

:At-
Bn

E f

where, of course, this means that

I E-arr,ze,. I n
+0

Vlriting, for non-zero An, Bn (n) 1) and Ao

An- L
Bn- t0n- t (nÞ l),
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it is clear that (An/P.n) converges p-adically if and only

if

0n*0 (n+-)

Furthermore, by induction it can be proved that
(-1) n- laoar . . .ar.r-r

Btt- r Bn
(n)1¡u

Hence we have proved the first part of the following theorem

and the remaind.er is easily checked by j_nduction.

Theorem 2.2. (i) The continued fraction

Êhh ;i.
converges if and only if

(2.3) lâ.0.âr.-.ër.n-rl * 0 (r+-)rI Bn-rBn lp ' v

where for aII i, âi, bi € A - {0} and Bi are as defined
in (2.2) and non-zero for i > 0.

(ii) Suppose the above continued fraction converges to E,

then the continued fraction

bn + #+,+ f;i+ä
also converges; let the value to which it converges

be En. Then for n2 0,

(a) >n br,* ân * I eft2_bn+r+ bn+2+

rv:*n- I 4^
Bn

At- t :
Bn- r

F= âs â1 â.2
Eo+ Er+ 62+

EnAn + ânAn-r
6rrBr, + ârrBrr- r

,

(b)

(c) E- 4¡,
Bn

we shall now g.J-ve some resurts which yierd sufficient
conditions for convergence j-n terms of the sequences

a = (an) and b - (bn) .
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Theorem 2.3. Let

trt fr= #t
be a given continued f i:action with ai,bi € q - {O} for
all i. Suppose that

l¡olp > r > Iroln
and either

(i)

or

(ii)

Then

(2 .4)

where for aI1

(2.s)

(i>r),

(i>1).

L, Bi are as defined in

lnilp >

lnolp> l.olp

T>

lbilp > 1 t l.iln

l.ilp

lsilp: Inour...bi-tln +0
(2.2)

(i > 0),

and so

(n*-),

(i>r).

p
(n>1).

Also the continued fraction converges to an element of Zp.

Proof . Under (i) or (ii) it is -immediate by induction

t.hat (2.4) holds and so (2.5) fotlows. Using the inequal-

ities lui/Ail p< 1/p, we then see that

p

-)0
p

and hence the continued fractj-on converges by Theorem 2.2 (i).

That the timit of convergence belongs to 7p is evident

from the facts that

t lbilp'l.ilp

As seen in 92 of Chapter I of Perron 131 l, the idea of
equivalent continued fractions can be used to derive a

number of sufficient conditions for convergence. This

same idea carries over to p-adic continued fractions. We
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say that

if both

Then it is easily

Poâo Po0lar
Pobo * prbr*

seen that

Ar, (arb)
Btr (

zãz
9z z*

for all nÞ0,

two cont-ì-nued fractions are equivalent if and only

have Lhe same nth convergents for every n. Let

êo âr a
6o+ Et+ Uz+

be a given continued fractj-on with airbl € q - {O} for
all i. Let Ar, (a,b) and Bn (a,b) be as def ined in (2.2)

and be non-zero for n)1. Let also por0Ltg2t... be non-

zero rational numbers. Define A¡(o), Bn(p) as in (2.2)

but with respect to the continued fraction

a, b)

I

and so the two continued fractions are equivalent and thus

we can write

(2.6) âs 4r ã.2 _ 0oâ0 9oPlar PJ_P2ïL6r+ Ë-F 6r+ - pob-o+ -prb-F pÑ;+
0n- r Pnan

o nbr.+

Consequently, the convergence of one continued fraction j_n

(2.6) implies that of the other. Upon varying values of
go r p ¡ ¡p2 ¡ .. . ¡ it is clear that different sufficient con-

ditions for convergence can be obtained. One simple example

is the following theorem.

Theorem 2.4. Let âs â1 ã2
6-0+ EF Fr+

be a given

continued fraction with alrbi € q {0}

then the contin'..ed

Putting in (2.6) ,

Pi - bit

>/ l-o lp , l.i lp <

fraction converges to

for every i. rf

lbibi_, In (i > r) ,

some 6 in Zp.

luo lp

Proof.

(i>0),
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Ì¡/e See that

âo âr_ ä.2 _ Þoþ. Þ¡-rbîrar b] rb;ra2
6oTFr+br+"'--T+ 

-T+ 
_*_f+

Now applying Theorem 2.3 (ij_¡ to the continued fraction on

the right hand sider \d€ see that it converges in Zp if
I > lr¡l,u;' ai lp (i > 1) ,

and the theorem immediately follows.

The following theorem estimates the error | - (Ai/Bi)
under the conditions of Theorem 2.4.

Theorem 2.5. Let E € 7p have the continued fraction
expansion

âq â1 ã2
6;T 5r+ Fr+

where ai¡bi € q - {0} for all
defined in (2.2) . If

i. Let Ai, Bi be as

l.i_lp < (i>1),
then

Ai
(2.7)

we have

AIso an

E. B
t_ p

Bi p

(i>r).
p

Proof . From Theorem 2.L (i) , we have for iÞLr

E
Ar âoâr...ai

BiBi+, f
Since an lp <

lerrlp = luout...brr-rlp + o

Ip <

(n>0).

â¡
bobl . . .brr*, p

Combining the lasL two resul-Ls, wê get for n2 I,

âOâr . . .ân
I

p b6b1...bå_,bnlp
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Using this last inequality and the strong triangle i-nequalitl',

the theorem follows.

3. Construction of continued fraction from converqents.

If instead of directly constructing a continued. fraction
to a p-adic integer E, two sequences of non-zero rational
numbers (A¡), (8") are given such that

A ß A Bn-, + on-r n n n-l (ri>o).
Arr-, Br+ r Ar,*, Brr- , + 0

Then there is a unique pair of sequence of non-zero rational
numbers a = (a¡), þ = (bn) such that (in the standard

notatíon of section 1)

An = An(arb), B.: Bn(a,b) (n)-1),

and hence (An/ß'.) is the sequence of convergents of the

continued fraction âo âl âz . Moreover, if
bo+ b¡* b2*

4-
Bn

-> Ç, then

E
âo â-r âz
bo+ b1* b2*

From the idea of equivalent continued fractions, it is clear
that there are infinitely many different continued fractions
of which An/Bn are the convergents. The results just

proved are summed up in the next theorem.

Theorem 2.6. Let A-l = L, B-t = 0, Aq = 0, Bo : I

and let (An), (Brr) be two sequences of non-zero rational
numbers such that

Arr- t B

Arr- rB

Then there exist two

numbers (arr), (bn)

(n> 0).
n+r An+lB.r-, + 0

unique sequences of non-zero rational

satisfying

ABn n- In +0



33

Arr*, =

Brr+I. =

For nÞ0, ân and b

b'Ar, * ânAn , (n>0).

An- r Bn+ r -An+ r Bn- r
An- rB¡-A¡B¡- I

a

brrBr, * arrBrr_,

n are given uniquely by

AnBn+l-An+rBn
n An- rB¡-A¡B¡- ¡

bn=(2.8)

and (An,/Bn) is the sequence

tinued fraction â.s _ âr âz
bo+ b1* b2*

4 Finiteness and periodici

of convergents of the con-

The following two

be proved by the same

continued fractions.
Theorem 2.7. Let

expansl_on

âo âr
bo+ bl+

where ai¡bi € q- {0}

ty.
theorems are almost trivial and can

arguments as in the case of real

6 e 7p have the continued fraction

an
bn ,

for i 0,...,fl. Then g € a_.

Definition. An infinite continued. fraction
ê9 â1 ã.2
Fo+ 6-t+ E--r+

is said to be periodic if
distinct

where a1rbl € q - {0} for every í20,

and only if

[r rr such

there exist two

thatpositive integers

am+j = am*n+j r bm+j bm+n+i (j > 0).

Theorem 2.8. Let E € Z p have a

fraction expansion. Then Ç satisfies
with rational integral coefficients.

The aim of

results of both

this secti-on

theorems for

periodic continued

a quadratic equation

is to j-nvestigate the converse

general p-adic continued fractions,
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and the approach used was suggested by Schneider Í37). The

situation in the p-adic context is not entirely the same as

in the cl-assical case, for exampler âS wilt be seen in the

next two chapters, t.here are rational numbers which have

infinite p-ad.ic continued fractions and rational numbers

which have periodic continued fractions. This together with

the non-uniqueness of certain continued fractions leads us

to the folì-owing:

Definition. Let êq â1 ã.2 be an infinite continued
bq+ b1* b2*

fraction with airbl e

this continued fraction

there are two distinct
zero) such that

q - {0} for all i.

is weakly periodic if
positive integers rrtr rr

We say that

and only if
(one may be

b +

We sha1l give

ensure that if E

continued fraction

êm+ r ân* 2

bm+l+ bm+2+

a theorem that

is a quadratic

ân* I ân+ z

bn+r* bn+z*

gives conditions which

irrational and it has a

m -b +n

E = f;þ Ëh #r (al,bi € Q- {o}),

then this continued fraction is weakly periodic. Before

doing so, howeverr wê require some preliminary lemmas.

Lemma 2 -9 (p-adic Liouvillers Theorem). Let E €. 7p

be algebraic of degree d over a- and ArB be any two

non-zero rational integers. Then there exists a constant

k depending only on I and d such that
.b -'ìl¡g-aln t kM-" ,

where -¡l = m.* tlal ,lsll.
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Proof . See Theorem I page 47 of l4ahler fzs).

Lemma 2.L0. Let E €- 7p be algebraic of degree 2

over a. and. let its continued fraction expansion be

' = ffTfoh
where airbi € q * {0} for all i.

defined in (2.2) and non-zero for

Mn = max (larrl,lg,rl)

such that

larrE-arrln * L tMi'
(ii) there exists a constant

that

Let A

n)1.
nrBn be as

Put

(nÞ -1),
Suppose that

Mr,*, t Mr, (n > I) .

Then the following two statements are equivalent:
(i) there exist two constants kr rk2 independent of

lln+ l <

kg independent of

n

(nÞ-1),

n such

Prooå.

Now suppose

I arr6-arrl n = ksMnttrri, (n Þ -l),
Suppose that (i) holds. Then (ii) is immediate.

that (ii) holdsr \dê get by Lemma 2.9, for some

k independent of n,

k M;' < le'E-a'lp < ksMitr;ìr (nÞr).
Thus

Mn+r ( ksk-l}'ln (n> 1).

The cases rÌ = -1r0 are trivial from the definition.

Using the hypothesis

Mn+ r > Mn

and the definition for the cases n = 0,

inequalj-ty f ollows.

(nÞ 1) ,

the otherI f
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Lemma 2.Ll-.

in Lemma 2.L0.

(iv)

Mn+r t Mn (n) 0),

there exists a constant ka

t,hat

Inrr6-arrln * kaMf,r trl

^n=Arr-lBrr-Ar,Brr-,
An_

Then l.r,l, l.r'lp,
Proof. For

Let the assumptions and notation be as

Suppose that,

(i) Ar,,Bn € 7 - {0} (n} l) , Ao 0, Bo = L, A-

B-

l =1

l =o
(ii)

(iii) independent of n such

I
n+l (nÞ-1),

ôn

+ 0 (n2O),

,Bn*, - An+lBr,-, + 0

lu,.,l, lb"lp are bounded for all nÞ0.

nÞ0r vrê have, by (2.8) of Theorem2.tc,

an = -Arr+ r/An
Thus

l"nl

Now An€Z- {0},

l."l
CIearly,

Hence,

I

l^"*'l.lq"lI A" I lA"lp

l¡"l ll'lp > L, and we get

lar,*tllA"ln

SO

l ^.,*r 
l <

l Arrln = I (arr-r-Brr-18)nrr-(An-BnE)Bn-, In

Thus

Ia"I <
From Lemma 2.1-0, there exists a constant

for all n)0

(n> 0).

kz such that

an

Mn+r <

l."l is bounded by 2kîk3. similarly

In * lar,*,In l¡"1 < k"M;'r;1r.2M.,-,M'

,
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using the hypothesis (ii¡.
As for b' we have for nÞ O,

bn = ôrr/A¡

The required results follow by the same argruments as
above and the facts that

lô"1 <

I 6r,lp = I {arr-r-Br,-rE)Brr*, - (Ar,+r-Brr*rE)B,r_r lp
< k eM,.,l rMr,,

Theorem 2.I2 Let 6 e Zp be a quadratic irrational
having the continued fraction

r _ âs â1 ã2r - f,oa E-r+ 6r+
where a1,bi € a - {o} for all i. LeÈ the other notatíon
be as in Lemma 2.r0. under the hypotheses of Lemma 2.rr,
the continued fraction of E is weakry periodic.

Proof . From Theorem 2.2 (ii¡ 15¡ r \¡rê have

E= EnAn * ânAn- r (n> 0).E.rBr, + ar.an-,

Let 6 satisfy the quadratic equation with íntegral
coefficients.

Px2+ex*R=O
By substitutionr vtr€ get for n2 O,

P'Eå+orrg;*Rr,=0,
where

Pn = pAå + eAnBn + RBå r

en = ân{2earrar._r *e(ArrBr_r*Arr_rBr.) + 2RBnBr_r},
Rn = afrteafr_r * eA'_rBr,_r + RBå_r)

We see that
. ln,,I < crMfr ,

ct is a constant independent of n. From thewhere
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hypothesis

le,.E-ar, ln * kgMntMiì, . krMi, .
Define Cn (n)0) by

An=Brrt+Cn,
so Lhat

Ic'ln < krMi,.
Eliminating An in the equation for pr,, we get

Pn=2pgBnCn+eBnCn+pCå
Thus

where c2

an integer,
say pYtt.

Clearly,

lp', lp < cznl2 ,

is a constant independent of n. Since
then it. is divisible by a high power of

Thus I 
pr.p-Yt l i" bounded. Now consider

nP l_s

P,

Rr.'

Rr, = alpr,_r
Using the fact that l"rrl is bounded (Lemma 2.IL), the
estimate of lpr,_, I and the hypothesis (ii) of Lemma Z.IL
we see that there is a constant c.+ such that

ln"l <

Also using the fact that l-r,lp i-s bounded, the estimate
of lPr,-r lp and the resulÈ (i) of Lemma 2.9, we see that
there is a constant cs such that

ln,.lp < "uMi, .

since R., is an integer, it is also divisíble by the same
power of p as pr' namely pTn and also I nrrp-yrr l is
bounded. Now we consider en. By direct computation

en = 4pnRn + afr (02_4pn) (A'Br_r_Ar,_rBr,),
Using the estimates of p

I u' lp r \^/ê have
.r r R, and the boundedness of l -.r l ,
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lo"l <coMfr r

lo,-'lp( c7Þ1f,2,

where c6rc7 ârê constants independent of n. By the

same argument as before Qn is divisible by pYtt and

Inrrn-t"l i" bounded. Therefore if we d.ivid.e through by

the conìmon power of p in

+ Rn 0,P'Eå + QnEn

we 9et, say,

x'Eå + YrrE¡ + zn = o,

where XnrYnrZn are integers with bounded absolute values.

Therefore, there are only finitely many different triplets
(Xn,Yn,Zn). We can then find a triplet (X,y,Z), say,which

occurs at least three times for different n. Therefor:e two

of the corresponding roots En of the above equation must

be equal at two distinct values of n say r and s.

Hence

E, + âr+r ãr+z
bt+r* br+z*

thaL is the continued fraction is

convergent continued

of 7p with a1,bi

as defined in Q.2) .

:r-È\*âs+lâs+å'?s - vs b"*r* bu+z*

weakly periodic.

b t

Now we turn to the question of finiteness of continued

fraction. The following theorem says roughly that to a

certain extent rational numbers can not be too well approx-

imated.

Theorem 2.l-3. Let âo âl âz
b¡+ b1* b2*

fraction representing

€ q- {o} for ai1 i

Suppose that

be an infinite

an element E

and Ai,Bi are
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(i) A1¡B1 € Z - {0}, Mi*, t Mi (i > 1) ,

(ri) I si E-ai I p < cMI' (i Þ 1) ,

where c is a constant independent of i and

Mi: max tlai_l,leil). Then E is not a rational number.

Proof. Suppose on the contrary that E € a and let

E=r/s ,

where rrs are integers with no common factor. By the

hypotheses,

lerr-sarln <

Also,

larr-sail <.tMi (i>1)
where cr is a constant independent of i. Thus

leir-sailn Inir-sAil < ccrMlt ( L,

for sufficiently large i. But Bir - sAi is an integer,
so we must have

Bir-sAi=0,

that is r/s = Ai/Bi for all large i,
Writing i for i (ã) and since r and

primer wê must have

Ai = kir, Ai+l = ki+tr,

Bi = kis, Bi+, = ki+rs.

Considerfor i: i(6),

AiBi+, - Ai+rBi = kiki+, (rs-rs)

say i>i(E).
s are relatively

0,

Ai-,.8i - AiBi-1 * 0.

Thus from (2.8) of Theorem 2.6, we see that for i = i(g)

ai = o,

which contradicts the fact that ai * 0 for every i.
Hence the theorem is proved.
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CHAPTER 3

THB CONTINUED FRÂCTTONS OF RUBA,N AND SCHNEIDER

1. Introduction.

This chapter will be the investigation of two p-adic

continued fractions. Sections 2 Lo 5 will be devoted to
the one studied by Ruban in 1341, I35l and t361. As

mentioned in Chaper 1, this algorithm is the most natural
analogue of the classical continued fraction and had atready

been mentioned in Mahler l2:..l but not pursued because of its
comparatively weak approximation properties. In fact, Ruban

in t35l and t36l also extended it to a multi-dimensional

algorithm simil-ar to the Jacobi-perron algorithm, but we

shall restrict our attention here to the one-dimensional_

case. The algorithm will be developed in section 2 and by

referring to Chapter 2, its basic properties will be derived

in section 3. In contrast to the classical continued

fraction, there are rational numbers having periodic Ruban

continued fractions and this will be considered in section

4. In section 5, the measure theoretic results of sections

6 and 7 of Chapter 1 will be used to obtain metrícal results
for Ruban's algorithm analogous to those described in the

latter part of section 2 ín Chapter 1. Apart from the

question of periodicity, the results obtained here are

already considered in Ruban [34], but our proofs of the

metrical results will rely heavily on the approach of

Billingsley I8l.
The remaining sections, 6 to 9, will be devoted to

the closely related algorithm of Schneider in t37l and will
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treat this algorithm in a corresponding manner. The results
in sections 6 and 7 will correspond to those in Schneider

1371, but the remaj-ning two sections on rational numbers

with periodic continued fractions and on metrical results
are not covered in Schneider t371.

2. Ruban continued fraction.

Without loss of generality, we restrict our consld-
eration to numbers in pZp. Let 6 € pZp - {0} be the

number whose Ruban continued fraction is to be sought.

Since E+ O, then I g- t 
I p > I and let the unique series

representation of E- I be

E-l = c-^p **c-**rp-**l +...*c-rp-l +cs *crp*...
where m is a positive integer depending on 6 and

ci€{0,1,...,p-I} for all iÞ-m with c-*#0. Def-i-rre

(3.1) <g-t> = ._*p-* +...+ co ,

(3.2) (E-r) = crp*czp2 +.".
To each E, <q-t> and. (E-l) are unique and so we can

uniquely write

E-r = <E- r> + (E- 1)

The algorithm proceeds as follows: write
(3.3) E-t - bo + Et ,

where be = <6-t>, Er = (E-t). If lt = O, the algorithm
stops. If Et + 0 and since ler¡n ¡ I, then by repeat-
ing the step just described, we can uniquely write as in
(3.3),

where br = <6î

(3.2'). Again,

it proceeds in

so on.

Ert - br

if Ez =

the same

+Ezr

Ez = (6ît) as defined in (3.1) and.

0, the algorithm stops, otherwise

manner with Ez replacing 6r and
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Since the

conclude that

ued fraction
(3,4)

expansion of the form
I 11

Elr E,+bo*

the -mp-n+c-m+lp 
mf r+...+co for

ci € {0,1,...,p-1} for all
where bi's are of form c

i, with c-m * 0.

For convenience, let us define

(3.5) J = {n e q; b = c- jp- j+"- j+rp j+r+...+co for some

j ez+, ci € {0,1,...,p-1} for a1r i, c-i + C}.

We sum up and complete the above discussion inthe foll-

bi's (i > O) obtained

each E € pZp - {0} has a

are unique, then we

unique Ruban contin-

a unique Ruban continued fraction # # # , where

bi € J for all i with J as defj-ned in (3.5) . This

unique continued fraction converges to E that is
11r

ilT-5r+ -52+

some positive integer m and

owing theorem.

Theorem 3.1. To each

(3.6) >:

tionr w€ have

t"l,
where bn-l €J and

continued fraction

E € pZp - {0}, there corresponds

: b.r-, * 6n r

En- , , E¡r € PZn " If En : 0, then the

is f inite and is equal to t,. If Er,* 0

then it can be shown by induction that

Conversely, if bi € J for all i, then the continued.
.'l 11fraction rj-:- ;----= ,-- . is a Ruban continued fractionþo+ þ 1t Þ2+

representing a uni-que number E, saY, in PZp- {0}-

Proof. The existence of a unique Ruban continued

fraction to each E€PZp- {0} is clear from the construction'

Let n be a positive integer. At the ,tth step of construc-

for every tt = 7
+
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I1- 6-'+ ¡-¡
follows from

(-1) "
Bn(EñlBn*B.t-r)

t Since

(n)I),

for all

r h
Bn

where

i2I,

Also

with

where

(An) ,

bi€J
(Bn )

An
Bn

ir
lutln'rbtr- t

(2.4)

lgrrlp = lno¡,...br,-r ln and lBr,-r lp : luo¡r...br,-rlp
Er, * 0, implies that at the

6;t = bn + Er,-,

6n+r€pZp-{0} and l¡rrlp t 1.

of Theorem 2.3 that

(n+t) tfi step,

(nÞ1),

Thus by the strong

triangle inequality,

lE;tlp = lb,-,ln ,

and so

lE;tsrrln : luobr...br,ln t lbobr---bn-, lp : l"r,-, ln
Therefore, by the strong triangle inequality,

2

l6-a,.,,/B.,lp = luiu|...br,-,b.,lpt (nÞ 1),

and hence An,/Bn converges to E. The converse is proved

by using Theorem 2.3 to show convergence to some E and

then showing that the given continued fraction must be

identical with the continued fraction obtained from E by

the Ruban algorithm.

3. Properties of Ruban continued fraction.

Ruban continued. fractions possess the simple properties

mentioned in (2.2), theorems 2.I, 2.2 (ii) ' 2.3 (i) 
' 2.4

and 2.5. We collect here some important properties for

future reference.

Theorem 3.2.

continued fraction be

Let E€PZp-{0} and let its Ruban

7_ I I 1ç - bo+ 6r+ 6r+

f.or all i> 0 and J is as in (3.5) . Let

(2 .2) ,be the corresponding sequences defined by
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so that the nth convergent is

An
Bn

I (n> 1) .
11

(i) For n2 0,

An+r = brrAr * Arr-r,

lBr,*, ln = lbob,...br,In
(ii) For nÞ L,

(-1) "
Bn (EnBn + Bn_ r )

where Er, = bn + I16;T b;F

B =bBn+r n n +Bn- I t

,

E
An
Bn

A¡
E;E-

0n-P

(2.ø) I

1l

-t

B.rBn+ r I

I 1

cl¡
ßo+

p
a bn- I n p

Now let 6 € PZp- {0} have Ruban continued fraction
(3.6) and tet (A¡) , (Br,) be the corresponding sequences

defined by (2.2). Difficulties can arise because the b,-'rs,

Arrts, Bnts, although rational, are not necessarily integral
and we overcome this problem by using Lhe, idea of equivalent

continued fractions discussed in section 2 of Chapter 2.

We define

pn = lbrrlp (nÞo),

(3.7) 0r, = p'pr,-r (n) 1), 0e = po r

ßn = grrbr, (nÞ 0) ,

so that for all 11, the g.r's are powers of p such that

9r,br, €Z*, lp'b'lp = I, and hence

p lbnBålp lb6b?...

rn , rn€2, TnÞ0, 1yr€7+ (n>0).

is ailso represented. by the continuedThen by

fraction
(3.8) 0, r d.z

E-r+ Br+ )
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In the notation of (2.2\, Iet
(3.9) An = Arr(crrß) , B, = Brr(cl,ß)

clearly, A, € 7* , ßn e 7+ and by the discussion in section

2 of Chapter 2,

(3.10)
* = * , lc,,ln = 1 (n> 1).

Using this equivalent formr \i{ê shall give upper and lower

bounds for the error I E-4"/8" I p . First we give some

preliminary results on the sizes of cln, ßn, Ar' B, .

Lemma 3.3. Let E € pZp - {0} have Ruban continued

f raction (3.6) ; (cr,.) , (ß") be as in (3.7) r (A¡) , (ßr,)

be as in (3.9) and let

Mn = max(lA"l,lg"l)
Then

(i)

(ii)

(i)

(ii )

we get

ßn = gnbn < PPn-1 < 9n0n-l -I = orr-1 (nÞ1),

and this establishes (i) . (ii); rt follows by induction

from (i) that (4") and (8") and hence (M") are

strictly increasing. The remaining inequalities now follow

by using (2.2) applied to (4") and (8") .

Lemma 3.4. Let the notation be as in Lemma 3.3. Then

I( ßr,< crn I (nÞ I),
(4") and (8") and hence (M") are strictly increas-

ing sequences (of positive integers) and

(I+orr)Mr,-, ( Mn+r <

Proof. Using (3.7) and the properties of Pn and br,,

Mn+rMn Þ (I+crrr) (I+clrr-r)... (1+or)oo , (nÞ0),

Mrr* t <
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Proof. We note that
lrlzl,lt >

MrMo >

Both results now follow by induction using Lemma 3.3 (ii) .

Theorem 3.5. Let the notation be as in Lemma 3.3.
Then for
(i)

(ii)

nÞ I,

lg -Ar,/B'lp = (ooor...0n)-r

p

n n+I

F An
Bn

(I+cr;t ) (1+o;t) .. . (1+* I -rI*q,r'+...*o¿-'
MnMn+ r

-l
)

Proof. (i) follows directly from Theorem 2.5.
(ii) follows from (i) and Lemma 3.4.

Corollary 3.6. Let the notation be as in Lemma 3.3.
(i) rf the series i is divergent, there does not

n=I
such that

(n>1).

then there does

n, such that
(n> 1) .

i_
c[¡

exist a constant k, independent of n

lEB,.-A'ln * kM;'A{"i,
(ii¡ lf the sequence ( | cr" I ) is bounded,

not exist a constant k, independent of

IEB,.-A,,, lp < kM;tM;i,
This is equivalent to saying that if there is a constant k,
independent of n, satisfying

IqB,r-A'In * kM;'M;ì, (n)t),
then the sequence ( I o" I ) is unbounded.

Proof . Both resulLs follow from (3.10) that lBr-, l,'=t
(n) I) and Theorem 3.5.

We now look briefly at the question of periodicity.
It is easily seen from uniqueness that a Ruban continued

fraction is periodic j-f and only if it is weakly periodic
in the sense of the definition given in section 4 of Chapter
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2¡ and since Theorem 2.8 applies herer we know that if E

has periodic Ruban continued fraction, then it satisfies a

quadratic equation with rational integral coefficients,
and we shal1 see in the next section that E may in fact
be rational. It is easily seen that the Ruban continued

fraction (3.6) j-s periodic if and only if the corresponding

equivalent continued fraction (3.8) is periodic, and we

might therefore hope to prove periodicity of the Ruban

continued fractions of at least some quadratic irraLionals
by using Theorem 2.L2, which assumes the hypotheses of
Lemma 2.IL. However, Corollary 3.6(ii) above shows that
if 6 is a quadratic irrational in pZp, then the con-

tinued fraction (3.8) cannot satisfy hypothesis (iii) of
Lemma 2.II concerning the approximability of E, because

if it did then ( I "" I ) would be both bounded (by Lemma

2.Il) and unbounded (by Corollary 3.6). Thus Theorem 2.I2
gives us no information.

4. Some rational numbers with periodic Ruban continued

fractions.

One

(3.6) is
continued

(3.11)

remarkable property of Ruban continued fractions

the existence of rational numbers having periodic

fractions. For example,
111

(p-I)p-'+(p-I)+ (p-I)p-r+(p-f)+ (p-1)p-r+(p-1)+

is aRuban continued fraction representing the number -p.
To see this r \^trê solve the quadratic equation

px2 + (p'-t)x-p = o

to get either x: p t or -p" But x€pZn, so x: -p.

A few more examples are listed below without proofs.
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(3.12)

that

-spp-I

For odd primes p and. s € {L,2,...,p-I} such

d.ivides (s-I)p * 1,

11
[ (=-r ) p+r) ( 

=p) 
- '+ (p-I ) + (p-1) p- I + (p-1 ) +

1 1
(p-t¡ p- I + (p-t) + (P-t ) P- t + (p-1) +

where the continued fraction on the right is periodic from

the second quotient onwards.

(3.13) For n€.2+ ,

1 I
(p-r ) p + (p-t) p-t+ t +, . .+ (p-1)+ (p-1)p- r+ (p-1)+

I I
(p-I)p-r+(p-r)+ (p-1)p-'+(p-l)+

where the continued fraction on the right is periodic from

the second quotient onwards.

This section will be the investigation of a few cases

of such continued fractions.
Period 1 : Let E € PZp - {0}. Let its Ruban contin-

ued fraction be periodic with period L, Èhat is E is of
the form

-1I1t=b*ËTEF
where b € J (as defined in (3.S) ). Then E satisfies the

quadratic equation

Ç' + bE V t = o.

Clearly 6 € 2 if and only if b2 + 4 is a perfect square.

Let m€ Z+ be such that lblp = pm. Then

þ = cop-m+crp-**r+...*"*-lp*cm = up-m

where ci€{0,I,...,p-1} for all i with c_^*0 and

u = co+crp*...+c*p* €7+. Therefore, E€q if and only if
there is an inteqer z satisfying

u'+4p'*:z'

s

-pn
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To solve this diophantíne equation, write

4p" = (z-u) (z+u).

suppose that z e 7+, without any loss of

It is easily

there is an n € Z+

seen that z-rt and z+v are both even. Hence

satisfying

z - u = 2n.

Clearly, hle may

generality.

Therefore

p'*

Thus there are integers

and

= n (n+u) .

E,s such that r + s 2m, rls)0

n+u p t

S, T-Sp (p -l-r.
co*crp*...+"*p* and l"ln = I,

so u = p2*-I. But

p**t - 1, therefore m = o or 1.

Hence

Solving for u,

Since u is of

then

S=p,
we get

ll=

the form

2m and

n

s = 0, r =

u( (p-1) (r+p+...+p*)

The case m = 0 is not possible because I nl n t 1.

m:1 andso

u=p2-1= (p-1)+(p-l)p

Therefore, the continued fraction is (3.I1), and we

that the only periodic Ruban continued fraction with

t having rational value is

IIl
(p-r) p- t* (p-1) +

Period 2 z Let

p + p- + (p-1)p- t+ (p-r) + ..r-p.

Ruban continued fraction

the form

€ PZp - {0} and let its Periodic

be of period 2, that is E is of

I1r111
60+ Er+ 60+ 6r+ E-o+ 6r+

conclude

period

p

ç
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We

if

see that,
(bobr) 2 +

bo

br

coP *crP

the

is
as l_n case of Period L, E € Q if and only

Now let
-k=uoP,
-K= urP

a perfect square.

-Lrr ...*ck-lp*ck

doP t*drp-K*1+. ..+dr- rP*dr

4bobr

-k

uo : cocrP*...*c¡p
Thusr wê see that EeQ_ if

z (which, as in the case of
positive) such that

(u+p"x)'= z2

that is,

U = U¡lI 1 t

*, u1 = do+dtp+...+dxpK

and only if there is an integer

Period L, we may suppose to be

4p'x

X-k+K,
where krK € Z+; ci,dl € {0, I, . . . ,p-1} for all i with
cr 'dr both * 0¡

+ ,

AptX : (u+p2X-z) (u*p2X+z)

By using the same kind of arguments as in the case of period

1 and excluding the case of Period L, we obtain the result

that there is no periodic Ruban continued fraction of (exact)

peri-od 2 having rational value.

5. Metrical properties of Ruban continued fractions.

h7e shall use the following notation from (I.2) and

(1.3) of section 6 of Chapter 1.

s = {O} u {s(o,p-t)} u {s(E,p-t) ¡r€7*,Í}-2,1€7,
p-'. I eln( p-t or E - o],

o(S) = o-f iel-d generated by S.

As in Chapter 1, U denotes the rneasure on o(S)

given by Theorem I.22, or t equivalently U is the unique

Haar neasure on o(S) normalised so that U(pZn) = I.

Since our results in this section will not be affected

by sets of U-measure 0, and since U(2) : 0, we shaIl
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consider only numbers in the set
(3.14) I = pZp-Q

Let E € I and let its Ruban continued fraction be

(_ 1 I 1s - fiÇ Ëlr E;T

We shall also find it convenient to use the notation
(3.r5) E=-j-- j- t -[bo(6),br(6) ,bz(E),...].bo (E) + br (E) + bz (E) +

The continued fraction of f must be infinite since E is
irrational (by theorem 2.7). Define the mapping

TzI+l
by

(3.16)

where E is as in (3.15). The following lemma is immediate

after noting that

rtg : lbn (6) ,bn+r (E) ,bn+z (6) ,...l (n>1).

nÞ L,Lemma 3.7 . Let 6 be as in (3.15). Then for

Now for fixed

we define
(3.17) A(bs,b1,...,

br, (E) : bo (TnE) .

bo,br,...bn € J (as defined in (3.5) ) ,

b¡) = {EeI;bo (6):bs,b¡ (E)=b1 r. .. rbr(E)=bn}.
Lemma 3.8. For fixed b b q¡e haveo'

A(bor...rbr) = [bor...rbr]

+ bo*

1r"., b €.J,n

z

lr"', n r+ 2t " ', _t+ n nn

that is to say Â (b0,...,br) is a sphere with cenLre

lbo,...,br] ano radius p-t Ibob,.. .bnl;'
Proof. The result holds for one bi, say bo,

A(bo) = I/(Uo+pZn)

and by Theorem L.24 (ií) , this i-s equal to

because



I pZs
b3

sb
b3bo

+ Ibo] +

Now suppose the result holds for r bi's and consider

¡ (bo r.. . rbr) I
bo+A(b 1r...tb¡)

By induction hypothesis,

A(br,...rbr) = lbr,...rbr]
7+

+ + 3t...t
Ir- I ' r2r...t T 2 r

for which the result for Â (b0,...,br) folrows by another

application of Theorem L.24 (ii). Thus the general resurt
follows by induction.

Lemma 3.9. Let S € S n 1. Then for all n suffic-
iently great s can be represented as a countable union of
Â (bo ,...,brr) 's, where A (bo r. .. rbr) is defined in (3.12) .

Proof . Let S : S ( E,p t) g S. For any n, each point
of I belongs to some À (bo r. .. rbr) and. so S n I can

certainly be covered by A(bo ,...,brr) ts. Moreover, by

Lemma 3.8, each A (bo, . . . ,br) is a sphere with radius 1ess

than

l¡o¡r...b'l;' = p-2''-2 r

and belongs to S. IrIe take any n such that 2n+ 2Þ r.
Then by Lemma 1.19 (ii) , each A (bo , . . . ,br) which inter-
sects S is completely contained in S, and so S n I is
the union of the A (bo ,.. . rbrr) 's which intersect it.

We now apply these results and Lemma L.26 to prove the

following theorem.

Theorem 3.10. Let T be as in
mixing and hence ergodic.

(3.16). Then T is
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Proof. It is easily seen that the restriction of u

to {nn1; B € o (S) } is determined by u I s' where

s' = {snl; s€S}

and a slight modificatíon of Lemma L.26 shows that we can

apply the lemma to T with S' in place of S. By Lemma

3.9, we may take Sn in Lemma I.26 as the collection of

all ¡(bo,...rbr,-r)'s. Thus, âs u(SnI) = u(S) and

t-ns n I = T-nS, it. is sufficient to prove that.for each

S€S

u(A(b0,...,br-r) n r-ns) = u(A(bo'...,br-r))u(s)
for at1 A (b0,...,br,) and all n sufficiently great. From

the def initions of T and A (bo ,...,b¡) , it is not diff-

icult to see that

a(bo'---,bn) nr-ns : ## #
Now it can be shown by induction (analogous to the proof

in Lemma 3.8) that
11 I

ilT 6,+ ÇlTS [bo r. . . rbr]

S
+ (bo+[b, , ...,bnJ ) 2.. . (b.,- r+[bn]) 2bÃ

and hence

u(A(b0,...,br-r) n t-ts) = lnobr..-br,lp' u(s)

= u(A(b0,...,br,))u(s),
as required.

We shal1 norltz establish p-adic analogues of the metrical

results in section 2 of Chapter 1 aS consequences to Theorem

3.I0, but first some preliminary results are requirecl.

Lemma 3.11. (i) Let b o,br r. . . ,bn € J be fixed and

lnilp = pki

let
( i=0r...rû),



+where ki € Z for aII i. Then

p{5 € 1; b0 (6)=br ,... tbn (q)=brr} = p-2ko-2kt- 2kn.

(ii) Let k0,k1,...,k¡ be fixed positive integers. Then

u{q € 1; lu0 (E) I p=pk0,..., lbr,(6) lp=pkn} = (p-t)nn-ke-k1-"'-kn .

(iii) Let k0,k¡,...,k¡ be fixed positive integers. Then

u{ E€I; lU0 (E) lp ( pk0, . . . , lbr, (E) lp ( pk.}
(l-p-ko) (t-p-kr ) ... (t-p-kn¡ .

Proof. (i) follows easily from (3.17) and Lemma 3.8.

For (ii), $re note that

u{6€t¡lb' (E) lp = pko,...,lbr,(6) lp: pk"}

I
b

i
b

u{E€7¡bo (E) = b0,...,b. (6) = bn} ,
0 n

I
bi

where denotes the sum over all possible values of

bi € J with

follows from

l¡ilp = pki for i=0¡...¡rr¡ and the result
(i). To prove (iii), we note that

ko knrÍ
i o=l in=l

and the result follows from (ii).

Theorem 3.L2. For almost all

Iim
n+@

u{g€l; lb0 (E) lp( pk0,...,lbr, (E) lp( pk'}

u{q€I; In0 (6) lp = p'0,.. ., 1br,(E) lp = p"'} f

E € pZp (with respect

to U), we have

(i) *lg I uo (6) b, (E) . . .bn-, tel l;/" = pp/ (p-') 
,

(ii¡ lig * { lbo (6) In+...+1u,,(6) lp} = -,
(íii) with An and Bn as defined in Theorem 3.2,

lB,,-, (E) lål" = *+U lo.,-, (6) lål" = pP/ (p-r)

Proof. Let T be as in ( 3.16 ) . By Theorem 3.10 ' T

is ergodic and thus satisfies the Ergodic Theorem (Theorem

I.25). Putting in the Ergodic Theorem,
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f(6) = roslbo (q) lp
(i) of Lemma 3.11, (i) follows. To get (ii), weand usJ-ng

take

r(E) = Ino te ) ln

ancl argue as in (i). For the first part of

r(rnq) = losle, (E)/Bn_r (q) lp

and hence

and making use of Theorem 2.1 (iii) as well as

Theorem. For the second. part of (iii), take

f (r"E) = 10s la, (E) /An- r ( E) | p

(nÞI),

(ii) of this

and argue as in the first part.

Theorem 3.13. Let E be as in (3.15). Then for each

fixed positive integer k,

u{E€I; lbr, (E) lp< pk for all n} o} = o

lu"te) l, is unbounded for almost aII 6 in pZp.

This is an immediate consequence of (iii) of

(iii) , put

(n> 1)

Proof.

Lemma 3.11.

In fact, Theorem 3.13 can be further strengthened.

Theorem 3.L4. Let ç (n) be a positive-valued function

defined over z+ such that i n-o{"1 diverges. Then

u{E€pZp; lb.,(E) lp > ne(n)

n=0

for at most a finite number

of n] = 0.

Proof. The proof follows from Lemma 3.11 (iii).

The next theorem is a p-adic analogue of Theorem 1.1I.

Theorem 3.15. Let E€PZp - {0} have a Ruban continued

fraction (3.15) . Then for any positive integer k' \,ve have
max

(i) Iim u
N-'@

(ii) lim u
N-'@

t€r ¡ 55"'::151e
PN

E€I ¡ 9<nñpN-r lb'lp <
_v

= exp(-p '')pk
pN

max
klpl = 0.

,



By taking fífiit as N+ -, (i) follows immediately.

(ii) is a direct consequence of (i).

6. Schneider continued fraction.

Proof. From Lemma 3.tt (iii),

p{ g€1;
o<,€Ëñ- I I b,, (E) I p < Pk**] (t-p-k-*) n*

number whose Schneider conti-n-

Let the unique series expan-

Let E€pZp-{O}

ued. fraction is to be

sion of 6 be

where

for all

follows

where

has the

where

Since

be the

sought.

E : cmpm*"**rp**t*"**rP**'+..- t

+
m€ Z' is dependent on E and ci € {0,1,...,p-1}

i Þ m with c* * 0. The algorithm proceeds as

: write uniquely

ã = aouõ'r(E) ,

âo = p* and uo (E) is a p-adic unit. Now uo (6)

unique series expansion

uo (E) : cro *crt p*cv P2+...

cri € {0,I,...,p-t} for all i with cro * 0.

âo r clo are unique, then we can write
- êoç:6F-; f

where bo = cto r Et = clr P*crz p'+crs P3+... If Er = 0,

the process stops. If Et*O, let r be the smallest

posit.ive integer such that c t, * 0 , then we

write

6r = aru;r(E) ,

where êr = pt and ur (6) is a p-adic unit. Now repeat

the previous step with uo (E) replaced by ur (E). The

algorithm continues in this manner.

Since the ai's and bi'" obtained. are unique, then

E has a unique Schneider continued fraction
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âO âl âz
bq-l br* bz* |

where ai aJFe of the form pti with ri € 7+ dependi-ng

on E and bi € {1,... rp-l} for every i. The next theorem

sums up and completes this discussion in the same way as

Theorem 3.1 does for the Ruban continued fraction algorithm,

and the proof, which is similar, ís omitted.

Theorem 3.16. To each E € PZp - {o}, there correspond.s

a unique Schneider continued fraction

where ai

This unique

are positive powers

continued fraction

of p and bi € {1,.. .,p-I}.

converges to E, and so

r _ aO êt dZs - fra 6r+ 6;T

Conversely, if ai and bi are of the forms just men-

tioned, then 39- 3f- e¿- is a Schneider continuedbe+ b1* b2*

fraction representing a unique number in pZp.

7. Properties of Schneider continued fraction.

CIearIy, the Schneider continued fraction algorithm

is very simj-lar to that of Ruban. Because of thisr wê

shall give fewer details in the derivation of its properties

and omit most details. The following theorems are some of

its important properties, which follow from (2.2), Theorems

2.I, 2.3 and 2.5 -

Theorem 3.L7. Let

continued fraction be

âo
bo4

E € pZp - {0} and let its Schneider

Ç
âr ã.2
6t + 6r+

where âi, bi are of the forms described in Theorem 3.16.
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Let (An), (Br,) be the corresponding sequences defined by

(2.2) r so that the nth convergent is

'f þ = fu 3r- 3-E-r- (n) r).Bn - bo+ br+ brr_,

(i) For nÞ 0,

An+r = brrArr*anAn-1, Bn+r = brrBrr+ârrBn_r r

lAr,*rln = lBrr*rln = 1.

(ii) For nÞ L,

I E-arrTerr¡n = l.o.r....rrlp = (aoar...a.,)-t

Proof. The only proof that needs checking is that

lAr,*, lp = I (n> 0) .

This follows easily by induction.

By similar proofs as in Theorem 3.5 and Corollary 3.6,

we have also

Theorem 3.18. Let the notation be as in Theorem 3.17

and define

Mn = max (la'l,le"ll
Then

(i) | E-a,r,/Bn ln * u,., t "l 
t (n2 r) ,

(ii) | E-a,r,zer, I n > (r+a; r +. . . *r-,. t ) M; tM;i, (n Þ r) ,

(iii) if there is a constant k, independent of n,

satisfying

I q-a.,,/e' ln * k M; rM;.,1r (¡ ) r) ,

then the sequence t la,rl ) is unbounded.

As to the question of periodicity, sj-milar comments

to those for Ruban continued fractions, at the end of

section 3, apply here also. Although Theorem 2.I2 was

suggested by the discussion in Schneider 1371, he appears

to have overlooked some points and neither Theorem 2.L2 nor
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his discussion seems to yield information concerning

continued fractions of quadratic irrationals in pZp.

B. Some rational numbers with periodic Schneider

continued fractions.

Let

continued

(3.18)

us start with some examples of

fraction which can be readily
ppp

(p-1) + (p-1) + (p-1) +

É.ppI+ (p-1) + (p-r)+ (p-I) +

Period 1: Let

continued fraction be

periodic Schneider

verified.

-p

-Pt' l-p
-L(r € Z')

These two examples indicate the existence of periodic

Schneider continued fractions possessing rational values.

Similar investigations to those in section 4 will be carried

out in this section.

E € PZp - {0} and let its schneider

periodic with perj-od I, that is

õ=### ,

with a=ps forsonx=fixed s€Z+ and b€{1r...rp-I}.

With the same arguments as in section 4, we see that E € q

if and only if there is an integer z satisfying

b2+4p=:22

By carrying out the investigation as in section 4, we

obtain the result that the only periodic Schneider continued

fract.ion of period t having rational value is that in (3.18).

Period 2= Let E e pZp - {0} and let its Schneider

continued fraction be periodic with period 2, that is

t _ âO at âo âr âo âre - bo+ E-F 6iT 6r+ ËiT 6r+ f

where ao,al rbo rbr are of the forms described in Theorem



,

3.1-6. Again by similar arguments to those of section 4, \^/e

conclude that upon excluding the case of periodic continued

fractions of period I, there is no periodic Schneider

continued fractions of period. 2 representing rational

numbers.

9. Metrical propeities of Schneider continued fraction.

5 ,

Using the same notation for S,

1et E € I and let it.s ( inf inite)

o(S) , 1 as in section

Schneider continued

fraction be

(3.re) - _ ao(6) ar(E) az(E)ç _ 6;]EJT illÐT 6;tÐT
which we also write as

E = lao (E) ,ar (E),...; bo (E),br (E),... ].

Define the mapping

TzI+I

by the rule that, for 6 as in (3.19) ,

(3.20) -- _ ar(E) a2(g)Le _ El_GlT 6;lElT

E - [ar (E),az(E),...¡ br (E),bz(6),,...]

AIso define for any fixed borbr¡...rbn€ {1,2,...,p-1}

and â0 r...,an as positive po\,vers of p

(3.2I) ¡ (ao, . . .,an;bo, . . . rbr)

= {E€I; ao (E) =ao ,bo (6) =b0 , . . . ,ar (E) =an rq-,(E) =bn}.

Clearly, two distinct A (ao, .. .,ar",;bs r. . . rbr) are disjoint.

The following thrreelemmas can be proved in the same way

as Lemmas 3.7 , 3 . B, 3 .9 .

Lemma 3.19. Let E be as in (3.19) and T as in

(3.20). Then

a,, (E) = ao {rtE) ; bn (E) = b0 (TnE) (n > 0) -
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i,emma 3.20 .

and 1et

+
0

ë[, r... râri
a a ...4 z

Let ao r... ranrbo r. .. rbrr âs before, be

A(aor...,anrbsr...rb¡) be as in (3.21).fixed;

Then

A (ao arr;be r... rb¡) laor. .. ran;bo r. .. rbr] +

lr..., ,* AL' . .. ,+t; an;+
-l

Equivalently, A (ao r... ¡ët¡;bo,... rbn) is a sphere \^Iith

centre Iao r...,an;bo r. ..,bn] and radius p-t lâoêr...anlp
Lemma 3.2I. Let S be as in section 4. For all

S € S, S can be represented as a countable union of

Â(ao t...,ar,,;bsr...rb¡) for aII sufficiently large n€ Z+

The following theorem is proved in the same way as

Theorem 3.10.

Theorem 3-22- Let r be as in (3-20) - Then T is

mixing and hence is ergodic.

To establish results similar to Theorem 3.I2r wê

require the following Lemma .

Lemma 3.23. (i) Let A (ao r... rarr;bs r... rbr.r) be as

in (3.2I) lvith a0 'b0 '... 'anrbn fixed. Then

u(¡(.0r...,arr;b',...rbr,)) = l.o.r...a.,lp
(ii) For fixed s0rsrr...,sne7+, we have

uiE€I;ao (E):p=0 r... rar(6)=p"t] = p s0 -"'-sn (n> 0) -

(iii) For fixed b0,br,...,b, € {I,2t... tp-I}, wê have

u{E€I;bo (E):b0,...,br (E)=bn} = (p-1) -n-t (n > 0) .
+(iv) For fixed sor...,s,-€7 , wê have

u{6€1;ao (E) < p=0,...,a,, (E) ( p"t}

= (I-p-so-r) (r-p-st-r ) ... (1-p-sn-I )

(p-r) n+ I
(n>- 0) .
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Proof . (i) is immediate from Lemma 3"20-

(ii), lrre note that

u{ 6€1; ao (6):p= o, .. .,.r (6) =p=t}

= I u(¡(p"0r...,p=r;bor...rb.,)) r
Ë

where I
b

denotes the summation over al1 possible values

of bor...rb, in {r12r...,p-1}.

u{E€1;bo (E)=bo,. . .,br(E)=br,} =

To prove

For (iii), \^re note that

I u(A(a0,...'an;bor... rbr)),
a

where I denotes the summation over all possible values of
a

â0 r...,an each of which is a positive power of p. The

proof of (iv) is the same as the proof of (ii) of Lemma 3-11.

With this lemma, the following theorems can be derived

in much the same way as Theorems 3.L2, 3.I3, 3-I4-

Theorem 3.24. For almost all E e pZp (with respect

to u), we have

(i) *lg * ,i,"t,t, = @, *ll * I
J=

I
bj (E) = *

0

(ii) lim [ao (E)ar (6) ...an-, (E))r/" = PP/ (p-t)' 
,

n+æ

rim (uo telbr (6)...br,-r (E))'2" = (tp-r) !)t / (p-t)
n->æ

(iii) rim Ai1î (E) : pP/ (p-')' , lim Bili (g) = (tp-r) !) '/ (p-t) 
.

Theorem 3.25. For almost all E € pZp (with respect to

u) and for any fixed positive integer k,

u{E€I¡an(E) < Pk for all n} o} = o

and hence a,", (E) is unbounded for almost all E in pZp.

Theorem 3-26. Let tp(n) be a positive-valued function

defined over 7+ such that i n-a(n) diverges. Then
n=0

U{E€pZpian(E)rp9(") for at most a finite number of n}

= 0.
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CHAPTER 4

}IAHLER CONTINUED FRÀ,CTIONS.

t Introduction.

This chapter will be devoted to an account of the two

p-adic continued fractions developed by K. Mahler. The

first, developed in Mahler Í2L1, will be referred to as

Mah1er I and the second, developed in Mah1er 125J, wiII be

referred to as Mahler rr. The construction of Mahler r and

its properties will be described in sections 2 and 3.

Section 4 will be the description of the algorithm of
Mahler TI. The last section, section 5, which is not

covered by l,2ll and L25l, will show how the two continued

fractions are connected to each other.
Both Mahler f and lvÎah1er II depend on the use of

suitable approximations A/B to f whose existence is
guaranteed by Corolloary 1.18. For convenience, \^re

re-state the result here.

Lemma 4.I. For each p-adic integer E and each

positive integer h, there are two rational integers not

both 0 satisfying
I

(4. r) { la-eq lp < p-h
IL M = M(A,B) : maxt lal ,lel l <

and hence

E (A,B) = ¡'lla-e6ln * P-th
In each caser \Mê shall start by constructing a

sequence of approximations (An/Bn) such that

A=AnrB=Bn
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satisfy (4.1) for suitable h and satisfy further require-
ments. The continued fraction will then be obtained from

the convergents by the process of Theorem 2.6.

2. Mahler I approximatíons.

Let E € Zp - {0} and let

leln = p-h(E)

Then we construct two sequences (An), (Bn) of rational
integers as follows.

Step 1: App1y Lemma 4.1 with

h-2h(E) +1-h¡ ,

say. Among al1 the rational integral solutions of (4.1),

choose a (not necessarily unique) pair

A = Ar, B: Bt

for which E (41 ¡81) is least. Since hr > 2h(E) , it is
easily checked that neither A1 nor B¡ is 0 and the

minimality of E (Ar rBr ) implies that Ar and Br are

not simultaneously divisible by any prime other than p.

If E(ArrBt) = 0, then the process stops, otherwj-se

proceed to
Step 2: Since E (Ar rBr ) ( p-r, there is a unique

integer hz > h1 such that
(4.2) p-\h'' < E(Ar,Br) <

Now repeating step I with hr replaced. by hz, we obtain

a pair of rational integers Azr82 satisfying (4.I) and

E(Az,Bz) is least among all A,B satisfying (4.I) with
h = hz.

If E(Az,Bz) = 0, the process stops, otherwise repeat

step 2 with h2 replaced by h., and the algorithm con-

tinues indefinitely in this manner unless we reach an n
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for which

E(An,Bn) = 0 ,

in which case it stops. It is easily seen that

(4.3) E(An,Bn) = 0 for some n if and only if E€Q..

Hence, from nohT on we assume that E É a- and. so obtain

by the algorithm infinite sequences of integers (h¡) 
'

(An) , (Br,) and corresponding sequences (M¡) , (4")

defined by

Mn = maxtla"l,le,., l) r

An = An-rBrr-AnBn-t r
with the convention that

A-l = L, B-l = 0, Ao = 0, Bo:1.

For each n, (AnrBn) is thus a solution of (4.1) corre-

sponding to h : hn for which E(AnrBn) is least, and we

have

(4.4) hn+r t hn > 2h(E) + I

From the two steps of construction and the minimality of

E, we have

E (Al ,B 1 ) > p-ähz Þ E (Az ,Bz) ,

M1 <

and so it. follows that

la,-srElp t lar-ezElp
Also

AlBz - AzBt+0 ¡

because otherwise At/Bt = Az/Bz

are non-zero integers f,g such

and

Itlgl tr, Az =Arf/g,

and since

that g is

Mr <Mzt

a pO\^7ef

there

ofp

Bz Btf /s
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and this implies that
E(Az,Bz) = ltlglltlgl n u(Ar,Br) ) E(Ar,Br)

contradicting the inequality E(Ar rBr) > E(Az,Bz) above.

The following properties of the sequences are now

easily checked by j-nduction using the above results for

n = 1 and 2. For nàL,

o, Bn+0, (AnrBr) = pr

> p Lhrt* | )- E(An+1rB¡4¡ ) ,

Mr, ( pbh' ( Mn+r r

larr-errtln r lAr,*r-Bn+rElp r

An+r = ArrBn+r-An+rBn + O, 6n=An-rBrr+r-Arr*rBn-r*0.

From (4.5), it follows easily that for n)-!,
-Lp-=M'Mr,+, ( lArr*rl <

åulrr"r,r;l < lar,*,lp< pt¡.rrrtM'i, ,

4M-l
n

Moreover, it is easily seen from (4.5) that for all

r¡, Ar,/B¡ is a best approximation, that is, if A and

B €.2 such that B + 0 and

la-sqlp <

j Atr #

E (An, Bn )

(reZ+u{o}),

(4.6)

(4.5)

(4.7) then

M;

lAr,-B.rE p < M;'

,

,

max(lal ,lel) > Mn

Finally, we see from (4.5) and (4.6) that

(4.8) rimlq-þl =o
n->æ ¡ on lp

and hence Ar/B' converges (p-adically) to E
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3. Mah1er I continued fraction.

Having obtaj-ned two

integers corresponding to

construction described in

sequences (An), (Bn) of rational

define two sequences of non-zeÍo

(b") by

-AnBn+ r An+ l Bn

sect.ion 2, we recall the

3 of Chapter 2 and

rational numbers (ar.) ,

+0 (n> o)

(n> 0)

Ein
section

an An- l B.t
(4.e)

with the convention

A,=

The sequences

yield a Mahler

la : Art:rèD+l - An+tBn-t
Ar,-rBn AnBn-r

Ân+ r

An

= þ +o
Ll¡

ÀnBn- r

IrB-r=0rAo=0rBo=1.

(at-r) , (bn) obtained are well-defined and.

I continued fraction of e,

E

We summarise

Theorem 4 .2. Let E € Zp be

has at least one (infinite) Mah1er

- _ âg âr ã,2

" bo* br * bz*

where an and br, € 2 for every n. The corresponding

sequences (Ar,) = A(arb) , (8") = B (arb) such that An/Bn

are the nth convergents satisfy (4.5), (4.6) and (4.8) and

the An/Bn are best approximations to l, that is (4.1¡

ho1ds.

The next theorem indicates that the shapes of an and

bn as in Theorem 4.2 can be explicitly described.

Theorem 4.3. Let L€7p be irratj"onal and let

- âo 4t az- 6r+ n'+ 6r+

the above discussion in the following theorem.

irrational. Then I,

I continued fraction

ëLs â¡ â.2

ilT 5-F ÐT



bn* an = en*r pon/"n,

where 0r, Þ 0, cr, * 0, er, * 0,

satisfying

be a Mahler I continued fraction of €

â¡ and bn are of the forms

Then for n>- 0,

en+r * 0

/pen ,

are rational integers

1"" I < 2/p, l"r,*, I < z/p, lu" I . z6l "" I

Proof. From (4.9), using (4.6)r hrê obtain for nÞ0

Zp-tr'["]rMn+r ( l.rrl <

Lp-tlar,-rMr,ì, < l.rrlp < 2pt¡rr,-rMii,

Using (4.5), wê get

l .r,lp <

and so

l.,.lp < r.
Therefore, an must be of the form

â¡ = ên*rpot/en ,

where o' is a non-negative integer, €n and ên+r are

integers not divisible by p. Now since An € Z for all
n, by (4.6), we get

1 < l¡"1 la.,lp < 2,6 (nÞ o),

and since an = -Ar,+ 1/Ln, then 
^n 

must be of the form

An = enpft (nÞ 0),

where fn is a positive integer and ê¡ as before is

such that

r < lu'l <

Hence, the assertion on the shape of an is established.

Now consider ôn defined by

ôn: An-lBn+r - An+rBrr-, (n20),

it is easiJ-y shown by induction that for nÞ 0,

cn
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-tbp-=Mr,-rMr, ( lo"l <

%M;1,M.,i, < lôr, lp < pt¡a"l,Mit

Therefore, from (4 .9) r wê get f or rt)- O ,

Lp-b < lu"l <

åp-Lr'lrrr.trr], <

By the same kind of arguments as in the case of ân r \^/e

arrive at the fact that bn must be of the form

bn = cn/pen (n)0),

where cn is a rational integer and en is as in the case

of ên. AIso

lbr,r;tl = lô"A;ìrl<
and thus

Iu"I <

Now we turn to the question of periodic continued

fractions. It is quite easily checked that all four con-

ditions of Lemma z.IL are always satisfied by any Mahler I
continued fraction. Hence, by appealing to Theorem 2.L2,

we have the following theorem.

Theorem 4.4. Let E e Zp be a quadratic irrational.
Then any Mahler I continued fraction of E is weakly

periodic.

We end up this section by two examples which illustrate
the property that a certain part of any Mahler I continued

fraction need not necessarify be a Mahler f conÈinued

fraction.

Example 4.3.1. In

continued fraction
Qr, tÆ exists and has a Mah-ler I
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tÆ

Consider the number

69/23-33e-..5+=rr=FzT4T
=2.3 +32u,

where u is a p-adic unit depending on Ç. Any Mahler I

continued fraction of 6 is of the form
-?-¿5-t+

which is not the same as 6 3 -3 3
-2+ 2+ -2+-5+

Example 4 .3 .2 . In Qr, Æ exists and has a Mahler

I continued fraction

16
1+ :57

e/2
-1+

3 -3 3

-2¡ fi -2¡- t

e/2
=+

r- -1 10 5/2J-l : 

-
2+ -3+ 3/2+

,_ 10 5/29--ET7T

-5 I0
A+ =3T

Consider the number

-s 10
4+ -3+

= 1.5 + 53u

where u is a p-adic unit depending on Ç. Any Mahler I

contínued fraction of 'e is of the form
57--e-1+

which is not the same as t0 5/2 -5 10

=T+ 577¡ 4¡ -3+

4. Mahler II approximations and continued fraction.

The Mahler II continued fraction depends on an

explicit method for solving (4.1), which we now describe.

For any given irrational E € 7p, write

E- co +crp+ czp2+ t

where c0rcrtc2r".. € {0r1r...rp-I}, and write

6¡ = 6h(E) : co * crp + + ch-rph-t (h>I).

le-enln < p-hr \¡trê immecliately obtain the following

(4 .10 )

Since

Iermna.



Lemma 4.5

0 and let h

. Let ArB be rational integers not both

be any positive integer. Then

if and only if leqh-aln* p-n, where 4LlsE-aln* p-n

is as defined in (4.10) .

We now proceed to construct a Mahler II continued

fraction for E h> L, putFor

cr (h) = Çn/pP ,

and so

0 < o(h) < I

Now construct the ordinary continued fraction for o (h) , say

a (h) 1I
ar (h)+ az (h)+ +

Let Rn (h) /Bn (h) f or It = -1, 0 ,I, . . . 'Nh
convergents of the continued fraction of

convention that

R-r(h) = L, B-r(h) = 0, Ro(h) =

Evidently, we have

Rn (h) = an (h) Rn- r (h) + Rn- 2 (h)

Bn(h) = an(h)Bn-r (h) + Bn-2 (h)

denote the nth

o (h) with the

0, Bo (h) I

(n=l12r...rN¡),

Now define

A¡ (h) = Ç¡B¡ (h) phnn (h) (n = -1r 0,1 , ' ' ' 'Nn) '

It is clear that for all n, the greatest common divisor

of An(h) and Bn (h) , (An (h) ,Bn (h) ) , is a divisor of Ph,

and Rn (h) , Br (h) > 0 for all n Þ 1. In fact, Mahler l25l

pages 64-67 shows that for some n we have

l a', (h) | < ph/ 2, 
l er, (h) | <

(We refer to Mahler l25l for the proof , which depend's only

on standard properties of the continued fraction of cll (h)'

but is notationally complex.) Thus, by Lemma 4.5 the pair
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A = An(h), B = Bn(h) satisfies (4.1)

following theorem.

Theorem 4.6. Let h €. Z+, E and

and we have the

Çn be as in (4.I0) .

B satisfying (4.1)integers A,Then there exist non-zero

and such that

where R > 0,

the ordinary

[=6r,8-phR,

B > 0 and R/B is one

continued fractions of

of the convergents of
,h

Ç6/P

be a solution of (4. I)

hr >

to construct a Mah1er

are two conditions

(n> 0)

0, = 1);

isChapter 2, it.

For each n €. 7+, Iet (An, Bn)

obtained by applying Theorem 4.6 with

hn = ¡r (or n + 2h(q) ) . We now wish

II continued fraction for E. There

that must be satj-sfied, they are

An = An-rßn Anßn-l +

ôn = A.r-rBn+r An+rßrr-,

(as usualr wê set A-r = I, B-l = 0, Ao

0

ß
0

and as we have seen from results Ín

natural to require that

Mn+r = max(lAr,*, l, lBr,*, I ) ; Mn = max(lA"l,le"l)
(n> 0) .

It is easily seen that we can satisfy these three require-

ments by extracting pairs of subsequences for which the

value of I'l are strictly increasing and the value of

lE-l/ßlp are strictly decreasing. Let (A¡,Bn) be a

pair of such subsequences obtained by omitting as few pairs

(AnrBn) as possible. Then, by section 3 of Chapter 2, the

sequences (An), (Bn) determine a continuecl fraction con-

verging to 6 and we call this a Mahler II continued

fraction of E. It is clear from the construction that
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the convergents An/Bn of such a continued fraction satisfy

lE-ar,/s'ln * M;' = (max(lA"l,ls'l)-'
However, they will not in general satisfy the other con-

ditions in (4.5) and the above condition by itself is not

quite enough to prove weak periodicity of the continued

fraction of a quadratic irrational by Theorem 2.L2.

5. Derivation of Mahler I from Mahler If.

For l{ah1er I, \^/e considered solutions (ArB) of ('4.1)

for certain values of h (h = hr,) , and required in addit.ion

certain best approximation propert.ies for these pairs (ArB).

For tr{ahler II, we consid.ered solutions of (4.1) for all

h>- 2];l(6) + 1, but restricted our attention to those pairs

constructed by the method of Theorem 4 .6 and by certaj.n

restrictions described earlier. We now show how to obtain

the pairs required for Mah1er I by starting with the

method of Theorem 4.6. This is equivalent to obtaining

Mahler I convergents from Mah1er II convergents.

For simplicity we suppose E is a p-adic unit,

lglp = t. We start with a lemma about the solutions of

(4 .1) .

Lemma 4.7 .

and further assume

(A,B¡ = (x,Y) and

(4.1) such that

Then

(4 . r1)

+Let h€Z ,

h> 3 if
(4, B) =

6¡ be as in (4.10) if P*2'
p = 2. Suppose that
(A,B) are two solutions of

Y>0, B>0, x/Y + A/ß

Let R be the positive integer such that
A Çnß = t phn

X-Yçh "phz
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where Y rZ are positive integers such hat

(4.t2) YR - zB = ! I

Proof. We first observe that since (X,Y) and (A'ß)

satisfy (4.1) then neither of the four integers x,y,A,ß

is zeÍo and there is a positive integer Z such that

(4.11) ho1ds. Consider

lxa-vnln = | tx-vg) lB - (A-BE)ylp < p-h,

then there are two cases to be examined

Case 1: X and A both have the same sign. Tn

this case, wê get

lxa-vnl < ph ,

and so

lxe-vllnlxr-vnl . L,

which yields XB - YA:0, contradicting the hypothesis

that x/Y+ A/ß. Thus this case is not possible.

Case 2z x and A have different signs. We have

then

lxe-vnl < zph.

ïf lxf-vll = 2ph, then necessarily

lxl=lAl=pàh:Y=8.
From lvg-xln * p-h and I aç-nlp < p-h, we get

I E*rln * p-àh, I E-rln * p-åh

which implies that lzlp( n-l:h; this is absurd as either

p+2 or h>3. Hence we must have lxe-vnl . zph, that
.his, p" divÍdes XB - YA. Taking into account the fact

that (4.I) is satisfied and the hypothesis x/Y + A/8,

we arrive that the only possibj-lities are

XB-yA =, ph

Substituting A = + phn + ç¡B and using (4.11) in the above
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equation, we obtain (4.1-2) .

We now combine the result with Theorem 4.6 to give our

construction.

Construction: Suppose h> L and we wish t.o f ind a

Mahler I approximation corresponding to this value of h,

that is a solution (A, B) of ( 4 . f ) for which (4, B) is a

po\,,rer of p (by (4.5) ) and E (A,B) is minimal.

First we apply Theorem 4.5 to obtain a solution
(A,B) = (Á,8), say, such that

Á = 6118 phn r

R > 0, ß > 0 and R/B is one of the ordinary convergents of

e¡/vh. since 6 is a unit, en/ph is not an integer, and

so there is another convergent, already calculated, which

inrnediately precedes or follows R/8. Let this be z/y.

Then

yR - zß = et -yR + zB = - e ,

where e € { -1r I } . Then any solution (y ,Z\ of (4 .I2) is
of the form

(Y,u) = t (y,z) + t(ß,R) (i'el).

We look at the pairs (Y ,Z) as above for which 0 < y 4 ph/ z

and

lvqÌ,tphzl < ph/'
For any such pair, the corresponding pa-ir (Xrv) with X

def ined by (4.11) yields a solution (A,B) = (X,Y) of
(4.f). Lemma 4-7 ensures that all solutions (X,Y) with

X-/Y + A/B , Y > 0 are obtained by this method. Any other

solution with (X,Y) a power of p is of the form

(x,Y) = t Pt(A,B) ,



so that
E(X'Y) = E(A'ß)

Hence, in order to find a solution (A,B) for which (A,B)

is minimal we need only to look at E(A,B) for (4,ß) and

for the pairs (x,Y) obtained above.

Since the number of values of Y to be considered

in the above procedure is at most

is quite efficient.

2ph/ 2 ¡ß, the method

The following examples illustrate the above discussion

as well as the fact that Mahler II approximations are not

necessarily Èhe same as those of Mahler I-

Exampte 4.5.I. In Q\,'/4 exists and is an ll-adic

unit,

/4 = 3 + 9.11 + 4.112 +L.Il3 + 4.11a + 4.Irs + r.116+ 5.117+-..

T\nro possible Mahler I continued fractions for /=Z are

/---- 3 lL/3 -11 -11 -11(r, v-¿ = F 1ßl -GT -GT _6T

,. r \ rÃ - '2 33/2 II/3 -11 -11(ar) {-¿ = 3+- =j7Z+ 175T 6+ -ET .

Using the Same notation as above and consider the case h = 1.

lvlahler I: [ = 3, B = I or [ = -2, !, = 3

Mahler II: Çt : 3,

o (1) et
I1

1 1t=-3+I+2
3

11

Computing all convergents, the only possible ones are

R(I) = 0, B(I) = 1, A(I) = 3-1 11.0 = 3,

and

R(I) : 1, B(1) = 3, A(1) : 3-3 11-t = -2'

In this case all approximations of Mahl-er I can be direcLly

got from Mahler Iï.



Example 4.5.2. In qß, /a exists and is a 13-adic

unit,

/=t = 5 +5.13+1.132 +0.133 + 5.r3r+ 5.13s +1.366 +...

Two possible Mahler I continued fractions for /4 are
-3 13 26/3 13 3e/2(i) ,FT: 2I =T+ 4re G lÆ

,rJ\ 2 -13 t3 13 39/2(aa, {-L = 3T -ET :6+ 6+ VF .

Consider the case h = t.

MahlerI: [='3¡ þ=2 or [=2, þ=3.

Mahler TI: et = 5,

5
F

1 11o (1) 2+1+2

By checking all convergents, the only possible one is

R(I) : L, B(1) = 2, A(t) : 5.2 13.1 = - l.

In this case Mahler II algorithm does not give the pair

A - 2, B - 3. Now from the discussion above and from the

convergents 0/L, I/3 preceding and succeeding \ in the

continued fraction of cr(I) = 5/3, we see that the pairs

(0,1) and (1,3) satisfying

I.R - 0.8 = 1- 0 = It

3.R-I.B=3.L-I.2=I.

Thus any solution (Y ,Z) of (4.I2) are eíther of the f orm

(y,z) = t(1,0) + E(2,L') (t€Z).

Alternat.ively, êfly such pair is of the form

(v,z) = !(3,1) + L(2,L) (tez¡.

The only pair (Y,Z) such that O < Y< 13+ and

ly.s !r3.zl \< I3\
is (3,1) and hence the corresponding (X,Y) with X

defined. by (4.11) is (x,Y) = (3'5 - 13'I,3) : (2,3), which

is the other approximation of Mahler I.
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CHÄPTER 5

COMPARISON, APPLICATTON AND OTHER METHODS

1. Introduction.

In this chapter we review and compare the various

p-adic continued fractions studied in Chapters 3 and 4,

and consider their effectiveness as tools for proving

results in p-adic diophantine approximation. In section 2,

we shall summarise and compare the properties of the con-

tinued fractions of Ruban, Schneider and Mahler and in
section 3, we shall give some applications of these con-

tinued fractions. Section 4 will be the comparison of
the results of section 3 with those obtained by Lutz t19l

by methods which do not involve an approximation algorithm.
A brief description of the geometrical approximation algo-

rithm of Mahler will be given in section 5 and then followed

by the comparison of results obtained by this method with
those of section 3. Finally, in section 6, we shaIl give

some conclusions about the relative value of the various

algorithms and methods as tools for diophantine approximation.

2. Comparison of the various p-adic continued fractions.
We first review the

fraction algorithms.

Let 6€pZp-{0}.
explicit construction of
rationals such that

nature of the various continued

The Ruban

a unique

algorithm gives a simple

seguence (bn ) of

F III- Fo+ Fr+ 6r+ ,

where bn € Jr âs defined by (3-5), and of a corresponding



pair of
(s.1)

where o¿n p

- C[n CXrt : _:l_ _j_= ßo* ßr*
-frn (rr.t € z') ,

sequences (arr) , (ßr",) of rational integers such that
d,2

Ø
.l-

ßrr€Z' and lß"lp 1 for
aII n. The algorithm can be expressed in terms of a

transformation T such that.

bn (E) : bo (TnE) .

Similar1y, the Schneider algorithm gives a simple explicit
constructj-on of two unique sequences (arr), (brr) of
rational integers such that

-_â9â1ã2e - 5o+ 6-F 6-;T '

where an = pst (sn € z+), bn € {L,2,...rp-r} for all rr,

and this algorithm can also be expressed in terms of a

transformation T. In both cases, the transformation T

is ergodic and because of this, certain metrical properties

can be proved. The set of all Ruban continued fractions is
exactly specified by the seguences (b¡), where bn € J

for all n, and similarly for the set. of all Schneider

continued fractions.

The Mahler II algorithm gives a systematic way of
constructing a (not necessarily unique) sequence of approx-

imations (An/B") and. hence two sequences of rational
numbers (an) , (brr) such that

r _ ag ât àze - Ëo+ Er+ 6r+

Because of the non-uniqueness of approximations, there may

be more than one Mahler II continued fraction for E. From

the approximations calculated by the Mah1er II algorithm,

a sequence of best approximations (An,/Bn) as required for
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a l"lah1er I continued fraction can be derived by the method

discussed at the end of Chapter 4, and then two sequences

(arr), (bn) of rational numbers can be obtained such that

{ has a Mahler I continued fraction

-_âgâ1 ð,2ç - Eo+ 6r+ 6r+ t

which is again not unique. Partly because of their non-

uniqueness, the Mahler continued fractions do not correspond

to obvious ergodic transformations T; this suggests that

metrical results as obtained in the cases of Ruban and

Schneider continued fractions cannot be expected. Further,

it is not easy to determine whether a given continued frac-

tion is a Ivlahler I or Mah1er II continued fraction.

We now compare the sizes of the error in the various

continued fractions. In each caser wê let (an), (en) be

the sequences defined by (2.2) for the given continued

fractionr so that the nth convergent is An/Bn and

Mn : max(la"l,ls"l)
For the Ruban continued fractionr wê also consider the

sequences (An), (8n) correspond.ing to (5.1) in a similar

way. From Theorems 3.2 (ií), 3.3, 3.5, 3.L7 (ii), 3.18

and (4.3) , we get

Ruban: lE-a,.,/Bnlp = lgrrer,*r lit = l¡ãu"r...bå-rb'lpt ,

1 ,^.-l afI-ll+cl,1^+...+cln' ¿ lp, r_^ I < 2" -

W - lons-ñnlp : Mncln i

schneider: I+aT I+" '+añ1 <
MnMn+ r

1.,
Mnân

Ilahler I: ÞrM

Mah1er I and Itr,.,E-arrln.ru;'

-1
n

-1M.ti

If:
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From the above estimates, it is clear that the Mahler

I algorithm is the best for approximation purposes.

The second comparison is finiteness. Trivially' for

any one of the continued fractions if the conÈinued

fraction is finite, then it represents a rational nunrber

(Theorem 2.7). The converse result is true for Mahler I

and II continued fractions by Theorem 2.L3. However, as

seen in sections 3.4 and 3.8, there are rational numbers

having j-nfinite Ruban and Schneider continued fractions and

so the converse result is not generally true unless a

stronger approximation property such as (ii) of Theorem 2.L3

holds, that is

f a.E-A' lp < cM;2 (nÞ L) ,

where c is a constant independent of n.

The third comparison is periodicity. Theorem 2.8, that

a periodic continued fraction represents a number that

satj-sfies a quadratic equation with rational integral co-

efficients, holds true for all continued fractions. The

converse result holds in a weaker form for Mahler I con-

tinued fractions as seen in Theorem 4.7 that if

E€pZp- {0} is a quadratic irrational, then its Mah1er I

continued fraction is weakly periodic (as defined in section

4 of Chapter 2) . For Ru-ban and Schneider continued fractions,

the proof that works in the case of Mahler I does not aPPIY'

as mentioned at the end of sections 3 and 6 of Chapter 3.

As for Mahler II continued fractions, it is not cfear whether

the condition (iii) of Lemma 2.II hoIds, and so the proof of

Theorem 2.L2 does not aPPlY.
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3 ications of adic continued fractions to

diophantine approximations "

In Chapter I (section 3) we have seen that classical

continued fractions can be applied to derive a number of

diophantine approxímation results. The p-adic analogues

of some of these results will be discussed here. First

of all, we re-state results already obtained which may be

regarded as analogues of Dirichlet's thoerem and HurwiLz's

theorem (Theorem 1.12) .

Theorem 5. IA (p-adic Dirichlet-Hurwitz theorem) .

(i) For any given positive integer h and any p-adic

integer E, there are two rational integers ArB not

both 0 such that

la-sglp < p-h, max lal,lell <

(ii) Let EeZp be irrational. Then there are infinitely

many pairs of integers ArB such that

la-s6lp < (max(lal,lell)-" .

Proof. (i) is Corollary 1.18 (also Lemma 4.1).
(ii) follows easily from this or is immediate using the

Mah1er I or II algorithm.

Now we look at analogues of Khintchine and. Tchebycheff's

theorems (whj-ch can be derived from each other as in the

classical case).

Theorem 5.2A (p-adic Khintchi-ne Theorem) . Let

E € Zp - { 0 } be irrati-onal. Then there exist arbi-trarily

Iarge positive numbers L > I such that

max ( lal ,lel) la-egln . t/d/-p t ,

r(max tlal ,lell <

is not soluble in rational inLegers ArB.



Proof- Let (An), (Bn) be two sequences of rational

integers corresponding to a Mahler I continued fraction of

I and such that Ay¡/Bn denotes the nth convergent of this

continued fract.ion. Take a large n€.2+ such that
I

Mn+r ,2/p max(lal,lal) ,

where Mr+r = max(lAr,*rl,lg,-,+rl). rf
la-g6l n = lar,-e,rE lp ,

then by the construction of Mahler I continued fractions
(Theorem 4.6) ,

max(lal ,lell r Mn ,

and by the strong triangle inequali.ty as well as the

approximation property (4.6) of Mah1er I, we get

lae,.-arrnln = |er, 1a-eE)-g(An-BnE) Ip

AIso,

lae,r-arrel < 2 M' max(lal,lel)
Thus

lae,.-a,.,el lae,r-a'Blp < z6 tt:"'*r maxtlal ,lell < l-

Since .ABn-AnB € Z, it follows then that ABr-ArrB = 0 and

so there are non-zero integers 1,g such that g is a

power of p,

A = Anf /s, B = B- r/q. lål > 1."n-/rt lgl
Therefore by the above estimates and, the approximation

property (4.6) of Mahler T.t we obtain

max(lal,lel) ¡a-aElp = ltlltln *' 1a,,-a,.Eln
-ln+l

rf la-eElpr lAn-Bn6lp

the same kind of argument as

obtain the same estimate

and ABn - AnB = 0, then by

in the previous case \^/e



ö,

max(lal, lel ) l¡-nEln t Z¡1"1,

rf la-nElp > la,r-e,r[lp and AB,.-AnB+0, then

{2 maxtlal,lelI Mr,}-t ( lae,r-a,.,el-t <

I = Inr,{a-eE)-e(An-BrE)lp<le-sElp,
and so

max(lal,lnl) la-egln, %M;' t åM;+r .

Choosing t = Mr,* L/26 in all cases, the theorem follows.

Theorem 5.2A was proved as above in Mahler 1,22) and

was applied to prove the following theorem in the same

paper.

Theorem 5.34 (p-adic Tchebycheff Theorem). Let 4

b e an irrational p-adic integer and 6 be any p-adic

integer. Then there exists a positive number U dependíng

only on p but not on E and 4 such that the system of

inequalities

la-s6-cln * ut-2 ,

max llal,lel) <

is soluble in rational integers ArB for fixed arbitrarily

large values of l> I. (u = ( [p?A6l !) 3 /4/p is suf f icient

for this theorem. )

4. The method of LuLz.

In the monograph [t01, E. Lulz studied the diophantine

approximation problem of linear forms in many p-adi.c vari-

ab1es, The methods she uses come from the geometry of

numbers and p-adic measure theory.

She first defines a hyperconvex form f (x) as the

2Ë*R

mapping

4
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such that
(i) f (x) >

p

(ii) f (tx) = ltlp f (x) for all t in Q.p

(iii) r (xr-y) ( max [r txl , f (y) ) for all xty in qË

To study the values taken by a hyperconvex form, it is

shown to be sufficient to consider problems on linear forms

with p-adic coefficients. She then defines the lattice

defined. by the inequality f (x) <

constant as the set of points x in q; with rational

integral coefficients; this set is a sublattice of Zn in

the classical sense of the geometry of numbers. A conn-

ection of this lattice with the measure of the set

{xe Zi; f(x)< c} is then established as well as a number

of theorems on the existence of points x € Zn satisfying

f (x) < c and. other conditions involving a norm function g

defined on Rn.

The apptications of her method to diophantine approx-

imations is made by putting

f(x)= g?ëlp-Àjiir{x)ln,g(x)=H(x)= ry44 l"il ,
1( j(n'' J 1( j(n'

where

p-adic

This f

Â,. , .. . ,Â, are linear

coefficíents and À, ,

forms in n variables with

. , À, are rational integers.

is shown to be hyperconvex and by applying

previous results as well as introd.ucing a number of

definitions, results on diophantine approximation for a

system of l-j-near forms with p-adic coefficients are

obtained, including, in particular, Theorem 5.14. We

present here a few special cases ' corresponding to Lutz's

Theorems 2.LI and 2.I2, to compare with Theorems 5.24 and

5.3A.
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Theorem 5.28. ],et E be an irrational p-adic unit.
Then there are infinitely many rational integers n such

that

la+a6ln = p-n

has no sotution (A,B) € Z2 such that
0<

Theorem 5.38. Let 6 be an irrational p-adic unít.
Then for any p-adic unit Ç, there are infinitely many

such that
n

la+n6+6ln * p-'
has a solution in 7z such that

max (lAl,lBl) < 'znp

In the later part of the monograph, Lutz obtains multi-
dimensionar metrical results. The following theorem, which

is a special subcase of the case n:2, p= 1 of her Theorem

4.24, is a p-adic analogue of Theorem I.15.
Theorem 5.4. Let f (1,) be a well-defined positive

real--valued f unction of positive variable 9". Then the

number of solutions (,A,8) €22 of

la+egl n <

is finite or infinj-te for almost aII E € Zp depending as

to whether the series

i h r(h)
h=t

converges or dj-verges.

5. The geometrical alqorithm of Mahler.

In the paper L231, K. Mahler employs a geometrical

method based on modular transformat-ions in the complex plane

C to study the approximation properties of p-adic integers.
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His algorithm will be briefly discussed in this section.

Let

H = {z: x+íy € C¡

P = {z=x+iy€H;
domain,

ìf - {l: l)i a,b ,c,ð, € 7 and lad-bc I = r þ, the modular[\c d/' r---- --' -)'
group of transformations,

À be a fixed but arbitrary point in F, and E be a p-adic

integer to be approximated.

For n=0,L12r..., define integers Crrrc' by

I E-cr, In * p-t, o ( crr(pn- I ,

cn = (Cn+ r -Cr, ),/nt ,

so that

E : lim Cr, = co + crp + crp' +...

y>0Ì, the upper half plane of C,

-à ( x < \rx2+y2 >LI, the fundamental

,
n->@

and that the sequence C(6) = (Crr) as well as the sequence

c (E) = (cr,) uniquely determine E. Next, define the

sequence Z(l) = (zn) in H by

Zs =À, zn = (Crr+À)/p" (n=1r2rL,...),

and then d.efine the sequence z (Ç) = (zn) in F such that
Zn is equivalent to zn for all n , (two points in H

are equivalent if they are related by an element of f).
The sequence z (E) is unique and is called the represent-

ative of E. The aim is to investigate z(E) and its
related modular transformations which will then lead to

results on diophantine approximations of E.

Let the modular transformation connecting Zn and

zn be

zn



\^/ith In,rai-nin,., I

transformation

I¡

I and (BnrB;) 1. Define the

(tn
\e.,

CrBt'

(n> 0)
Ai
Bi

where An

det. Tn =

n
Rn Ai Rå C'Bi. Then

on+r - T;t tr,*r (nÞ0),

and let f¿(E) denote the sequence (fìn) . We have

det On+r = p, Tn: CIlllz...CIn (n>1).

It is shown that I determines T(E), CI(E) uniquely

and conversely. By characterising the elernents of CI(E),

three theorems stating the existence of E, corresponding

to À and ç¿(g), that can be closely approximated by

certain number zn in F are obtained. Tt is nor^/ a

matter of considering and characterising zn = xr, * iyrr.

The following are some interesting results proved.

(i) rf E € Q, rhen 
*]* "" 

= + oo.

(ii) If E € Zp is irrational, then for inf init.ely many n,

Y"( /P '
and so

npp

np Define

y (g) Iim inf
n->@

Yrr( 6

(iii) Given an e > 0, there is an irrational p-ad.ic

integer E such that
y(E) >S-e

Since the study of modular transformations is closely
connected to the study of quadratic forms, it is natural
to apply these results to diophantine approximation via
quadratic forms. To this end, Iet
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(p (X, Y) 2 (x-ÀY) (x-rY)
lÀ-Àl

ax2+2ßxY+yY2

where À denotes the complex conjugate of À, be a
positive defínite quadratic form with determinant

ß' - oy = r 1. This form p is connected with Tn as

defined earlier via À and by considering

9n (x, Y) = e (AnX+AíY, Bnx+BåY) : o'x2 + 2 ßnxY * y'y2

It is then see that en is related to zn, defined
above, by

gn (x, Y) = ar, (X-zrrY) (X-zr.Y) |

and also

on = pn/yn = g(AryBr-,) ,

ßn = ptxrr/yr, = oA'Al + ß(AnB;+Aåe',) + yBnBi ,

Yn = p'(xfr+yfr)/yn = e(A;,8å)
Using all these connections, a number of diophantine

approximation results for 6 are obtained.

A sharper version of Theorem 5.lA is obtained for
all p, and best possible versions of this corresponding

closely to Hurwitz's classical results (Theorem L.1-2) are

obtained for p = 2,3,5. For example, his Theorem 19 gi-ves

the following result.
Theorem 5.lC For every 2-adic integer I and for at

least one of any three consecutive integers n there are

two integers AnrBn satisfying

1a,.,+e,",61n < 2-n, o<ç(An,Bn)*Ê.2n¡
moreover the constant 2//7 is best possible.

The following, corresponding to his Theorems 23 and

26, are his analogiues of Khintchine's and Tchebycheff's

theorems.
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Theorem 5.2C. (i) To every irrational p-adic integer

E, there is an infinity of indices n for which the

conditions

le+eEln * p-n, o <a(A,B) . p"/6
have no solution in rational integers ArB.

(ii) To every e > 0, there is an irrational p-adic

integer I such that for all sufficíently large n,

there are two rational integers AnrBn satisfying

larr+a,.,Elp< p-" o < tp(An,Bn) < (Ê * r) p

while for an infinity of indices,

larr+n'Eln = p-n , p"/6(ç(An,B.)(

Theorem 5.3C. Let E € Z p be irrational and let

Ç € 7p. Then there is an infinity of indices n, such

that there are two rational J-ntegers AnrBn satisfying

larr+errE+6lp(p-t , e(An,Bn) < pt(p+r\/46

Taking , for example e (4, B) = 2 (a2+ag+82 ) / {5 in

Theorem 5.2Cr wê see that this gives the bound

0 < maxl f al ,lnl) < 3\ (p"/2p\)\, , whire Theorem 3.28 gives

0 < max( lAl ,lBl) < t. (p"/2p\)\, which is onry slighrly

better; yet because there are different choices for et

\^/e may say that in this case Lutzrs and Mahlerts

geometrical methods are compatible. Moreover, both

Theorems 5.28 and 5.2C are clearly sharper than Theorem 5.2A.

By taking Q(A,B) : A2 + ¡^2, it is easi-Iy seen that

Theorem 5.3C im¡r1ies Theorem 5.38 and Theorem 5.38 is

clearly sharper than Theorem 5.34. Hence Mahler's

geometrical method is better than Lutzrs method. and tha.n

Mahler I.

n

G.)n"
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6. Conclusion.

From the above comparison, it is clear that for

approximation purposes, Mahler's geometrical method yields

the best results, then come Lutzrs method, Mahler f and

Mahler II, while Ruban and Schneider algorithms are not

as good. Ilowever both Mahler's geometrical- and Lutz I s

method are not constructive while Mahler I, II, Ruban

and Schneider algorithms are.
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CHAPTER 6

INTRODUCTION AND PRELTMÏNARTES

In this chapter some background to p-adic interpolation

will be given. In sections I and 2, certain basic ideas of

classical approximation and interpolation will be recalled

and a few examples of number theoretic applications of

interpolation wilt be recollected. Section 3 will give a

discussion of some previous work on p-adic approximation

and interpolation. The scope of the work in the next two

chapters will also be indicated. In the last section, a

number of relevant ideas and preliminary results on p-adic

analysis that will be used in Chapter 7 will be gathered

together.

I. Classical approximation and interpolation.

The classical theory of approximationr ês described,

for example, in Cheney | 101, mainly concerns the problem

of approximat.ing a given function f

f : [0,1] -+ R,

sây, by simpler functions such as polynomj-a1s. One of the

most important theorems is the Weierstrass approximation

theorem which states that for f as above and for each

fixed e > 0 there exists a polynomial p (x) such that

for all x € [0,1],

lrtxl -p(x)l < e.

This theorem can be proved by various method.s, for example

by using the Bernstein polynomials

'(5Xl)0

n

I
k:

(6.1) er, (x) *k(1-*)t-k (x€ [o,r]).
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Another alternative is by constructing a porynomiar taking
the same values as f at the zeros of the Tchebycheff

polynomials

(6 .2) Tr, (x) : cos (n cos- I x) (x € [ 0,1] ) .
since the Tchebycheff polynomiars are characterised by the

fact that for each n, trr(x) (x€[0,1]) deviates least
from zero compared with any other polynomials of the same

degree, then it is also clear that by using Tchebycheff

polynomials we can obtain polynomials which best approx-

imates f. A great deal more can also be said via the

functional analytic approach.

The classical problem of interpolation as seen in
Gelfond. [1+] is to determine a porynomiar pn of degree

at most n such that

Prr(xi) = t(xi) (i=0,1,...,n)

are given distinct points and f is a

There is a convenient way of finding pn

divíded differences Ix0,...,xi] defined.

[xo rxr ]
f (xo) -f (xr)

Xo - Xr

where

given

using

by

X9 r . . . rXn

function.

the idea of

,
(6.3)

and so on. It can be shown

is unique and is given by

(i) Lagranqers formula

(6.4) er, (x)

Ixo rx y ¡xzJ lxo ,xr ] - [xr ,xz ]

n
I

Xo-xz

that the polynomial Pn exists,

f(xi)tp(x)
(x-xi ) q' (xtT I

0I

where A (x) (x-xo) (x-x1) (x-xr.), and also by
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(ii) Newtonrs formula

(6.5) e,", (x) =

and also, if f

(iii) Hermiters

(6.6) er., (x)

(6.8) Inr,(x) |

lxo,xr,...rxil (x-xs) (x-xl) .. . (x-xi-1),

is analytic, by

formula for complex-valued function f

n

T
l-=0

I
2t¡i

I r {x) -er, (x) 
|

q(u) - ç(x)
tp (u) (u-x) f (u) du,

ç (x) f (u) du
a (ul-Tu:x)--

c

where c denotes a suitable contour enclosing xo r... rxn.

The corresponding error estimate for the first two

forms is
(6.7) Inrr(x) | = lflx¡-err(x) | = | [x,xo,x!,...,xn],p(x) l,
and for the third form is

l#J"
Under suitable conditions the error gets smaller as n

increases and then Pn is a good approximation to f-

For a given sequence (xn) of distinct points, \^/e can

find a sequence of polynomials (Pn) interpolating f

at such points and if

Pn - f uniformly in [0,1], sayr

then f is represented by the interpolation series

f (x) lxo rxl,... rxrJ (x-Xo) ... (x-xt-r)

(x€ [0,1]).

2. Number theoretic applications of interpolation.

The technique of interpolation has been applied to

number theoretic problems, particularly in thre theory of

transcendence. The f oIlowì-ng are some examples. Let

a(k,,Q,) (I( .e,( L; 0 < k< K - l) , or r...,oL be complex numbers

0

æ

I
a=
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with A = , {ît 
" 
I,i I . Define the exponenLial polynomial

Eby

E (z) a (k, .Q,) ,k"'L'

The following theorem, which deals with some estimates

concerning E which are of interest in transcendental

number theory, can be proved by using interpolation.

Theorem 6.1. Let E, 
^ 

be defined. as above. Suppose

that E is not identically zero. Then for some real R > 0,

we have

(i) , Taî In(z)l *,*"-=t "na(v+r) , T1*- In(z)l ,\!' 
lrl*v* Y-I lzl\R

for some r:eal y ¡ 1,

(ii) the number of zeros of E in any closed disc, with

radj-us R, counted with multiplicities is

h<.

where <

Proof . Result (i) is Theorem 2 ín Balkema and Tijd.eman

[ 7 i page L22] and is also impticit in Baker I 6 i pages

I20-I221. Result (ii) is Lemma 1, page l-20 of Baker I 6 l.

The almost-best known bound for h in (ii) above was

obtained by Tijdeman as remarked by Baker l,6 ¡ Page I20l.

ft is

h<

As well as proving (i) above, Balkema and Tijdeman in

f f I al.so employ interpolation methods to prove the follow-

ing versions of Turants theorems, which have important

applicatíons in analytic number theory and. diophantine

approximationr âs can be seen, for example, in Turan Í411.

K-r
I

k=o

L

I
9,= r
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Theorem 6.2. (Turanrs first main theorem. ) Let m

and n be non-negative integers , nÞ L. Let br r... rb,
and o1 r -.. ron be sequences of complex numbers. Then

there exists an integer v with m+r(v(m+n such that

(,iV
c)¿¡

n

I¡o
k= I

I
k=l

m+h-1
h-1

b

2
h-t ik-

min
j=f , -.. rn

loil'.

max
v=m+lr...rm+n

max
v=m+Ir...,m+n

/ n-t \'-t- Iltl_fr\ e (2m+3n) ) y=rr...,rr

/ n-I \| 

--t\Se (m+n) /

bk
I

Theorem 6.3. (Turanrs second main theorem.) Let m

and n be integers, mÞ0, nÞ2. Let brr...rb, and

o¡ r...,cn be sequences of complex numbers such that
Q = lo,-rl<l"r-11<...<

Then

If moreover l"tl<f for k=1t...,n.t then
n n-l

b¡
9.

I
k=l

n

I br"X
k= I

b¡
L

T
Lk=t

v0¡k ml_n
9,=Lr...rn

t

Further applications of classical interpolation are to
be found in Gelfond ll+1, lfgl. From these examples, it is
evident that interpolation techniques should be useful in
dealing with the corresponding number theoretic probrems

in p-adic fields.

3 Approximation and j-nte rpola tion for p-adic functions.
The earliest work on p-adic approximation stemmed from

a paper of Dieudonné LtZl in 1944. Dieudonné was mainly
concerned with approximation of continuous functions defined
over a compact subset of qp. Among various results,
Dieudonné proved the forlowing p-adic anarogue of the
Weierstrass approximation theorem:
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Theorem 6.4. Let K be a compact subset of Q.p and

defined over K. To each Ê > 0,

g defined over 2p such that
f be a continuous functi.on

there exists a polynomial

for all x € K, we have

lrtx) -g(x)ln = e.

Proof. See Theorem 4 page 86 of Dieudonné 1121.

The problem of approximation to p-adic functions can

also be regarded as a special case of approximatj-on in the

context of non-archimedean functional analysis. This area

of research was started in 1943 by A.F. Monna (see his book

l21l for a survey of the work up to 1970). Monna lZel al-so

started the investigation of best approximation in non-arch-

imedean vector spaces in 1956. For remarks on this problem

see Monna l2\l and the book by Narici, Beckenstein and

Bachman [¡o ]. While many results suggest similarity to the

classical case, there are also difficulties, for instance,

it, is clear that the Bernstein polynomials (6.1) do not

necessarily converge to f and there does not seem to be

a p-adic analogue to the Tchebycheff polynomials because

there are infínitely many polynomials yielding best approx-

imations to a given function.

The earliest work in p-adic interpolation was done by

Iv1ahler l?41 in 1958. He considered interpolation at the

points 0 rLr2r... of a function

f , 7p - 7n '
which can be shown to have a representation

""(i)I
n

i *x(x-1).'.(x-n+l)n

=:T
n

(6.e)

[0,1 t. . . tn; f ]x(x-1) .. . (x-n+I) '
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where, by (6.3),

(6.10) an = n![0,1r...rn;fJ f (n-k) ,

For more det.ails of Mahler's work see his book 126l ancl

two closel-y related papers by Ahlswede and Bojanic l3 l

and Márki and Szabados 1,271. Mahler's work deals with the

connection between the sequence (ar,) and the analytic
nature of f. For example, if an as given by (6.10)

tends to zero, then the series (6.9) converges to f and

f is continuous on 7þ, and, conversely, if f is contin-
uous then â¡ tends to zero and (6.10) holds.

Amice l,4l has further generalised some of Mahler's

results to larger fie1ds, and has based her work on non-

archimedean functional analysis. For example, she proved

the following.

Theorem 6.5. Let K be a loca1 field with valuation

I l. Let (qr,) be a sequence of distinct elements of K

such that for l"l <

(-1) k(il)I
k=o

n-l
T-T
i=o

Let f be continuous on

f (x)

l"l <

n- I
i t"or...rxrr;fJ

n=0
T-T
r=0

/* - qi\
\%-qt /

Just as in the classical situation it is helpful to work in

the complex field C and use complex function theory¡ so

in the p-adic case it is helpful to work rn the field Qp,

that is, the completion of the algebraic closure of qp.

Working in this field Ad.ams I I i employed the Schnirelman

integral to prove p-adic transcendence results. There is
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a close connection between p-ad.ic interpolation and. the
schnirelman integrar via formulae corresponding to (6.6)

and (6. e) . Indeed, Shorey là61 , 1,391 used the interpolation
method with schnirelman integrals to prove p-ad.ic transcend-
ence results corresponding to those in Theorem 6.1.
Recentry van der Poorten 1331, using the p-adic interpor-
ation alone, was abre to improve on shoreyrs resurts. rn
particular he proved

Theorem 6.6. Let 0 > 0 be fixed. Let E (z) be a
p-adic exponential polynomial of the shape

m P(k)
E(z) =-l I .o"r=-te'k' (aks€op,rk€op)

k:l s=l

with distinct o¡ 
"o"n rhar lrx lp < ;(pì.t), and ler

n=
m

i P(rl
k=l

Then either the number of zeros of g(z) in

lrlp< t is less than

(n-I) + max
0 (rcp-1 { [ 1os, (n+r) J-r/ (p-1) ],/o

(where the sguare bracket denotes the integral part) or E

vanishes identically.

This theorem was derived by van der poorten from the

following resurt on bounds for the coefficients of expon-

ential polynomials, which was also proved in l,g3l.
Theorem 6.7 . Let Errr be as in Theorem 6.6. For

each k (k=I, . . . ,m), 1et ô¡ be such that

lr¡.-rnlp > p-ôL (h+k; h=1,..",m)
Also 1et ßr, . . ., ß* be distinct points of CIp satisfying

lghlp< I lh"-þolnÞp-' (h+k; h,k=r,...,il),
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for some fixed e > 0. Further let r yt...¡Ty be non-

negative integers with the sum
L

Ir= r1
a I

Tf

r Þ (n-1) + llogn (n+p-t) J/0

and

l"(t'(unllp< p-x (l(h(¡; 1<i(r¡),
for some real X, then

ltr."lp < PA (t<t<<m;1(s<p(k)),
where

A: A(Xrrrerrlrsrô¡)

= X (r-1) e (n-s) ô¡ + loep (l t=-r) t lp)

I logn (n+p-l) J + (n-1) / {ç-a)
+ min{(i-1)e + t6ep(l ti-r)tlp)}

where the minimum in the last term is over alr r< i( rh,
I( h( n.

In Chapter 7, I sha1l develop p-adic interpolation
technique using schnirerman integrars and d.ivided differ-
ences with an emphasis on anarytic functions in CIp, and

then r shall derive some number theoretic apprications in
Chapter 8.

4. Preliminaríes on p-adic analysis.

We collect Logether here (mostly without proof) those
resurts on p-adic function theory which wirr be used later
and the proofs of which can be found in Adams L 'l l, Adams

andStraus l2J andBachman t5l.
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From now on the

indicated otherwise,

where ArB c Qn

Definition

defined by

f '(w)

work will be done in np unless

and we consider p-adic functions

f:A+B

6.8. The first derivative f' of f is

Iim
z->vr

f (z) - f (w)
z-þt

provided this limit exists. The foll-owing notation is also

used

f'(w) = [Df (z)f z=w = lDrf (z)f 
"=,

and successivelyr \^re define

,(o) : f rDr+rf = ¡(n+r¡ = 1¡(r) ¡, 1n e Z+)

From now on, all limits considered are defined. with

respect to the p-adic valuation. We also note that. with

the above definition, the manipulation of p-adic differ-

entiation corresponds exactly to that in the real case.

(It is worth remarking that one major difference is that

there exist many non-constant functions f with Df

identically zero) .

Definition 6.9. For some fixed a in Qp, f is

said to be analytic in lz-u[p( n, where R> O, Lf and

only if it is representabte as a po\der series in this disc

A, (z- a)r (lz-alp<R),f (z)
@

Lr= 0

where Ao rAr ,A2 r...

lr-uln.n if itis
lr-uln. n.)

We note that, since

each of the discs I z-al

analytic in

series in

.is

and

f¿p a non-archimedean field,

€ f¿p. (f is

represental:1e

said to be

by a power

p( R lr-uln.n is both open
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and closed. Moreover, since CIp is not a local field and

hence not locally compact (see, f.or example, Theorem 1 page

23 and Corollary page 25 of Narici, Beckenstein and Bachman

t30l), neither of these discs can be compact. If a por¡er

series representation of f exists in lr-ulp( n, then it
is unique, and since ArrRn + 0 (n + -) , the convergence is
uniform on lr-uln* *. The classical properties of power

series apply without change. In particular, for t as

above it is easily seen that f is differentiable arbitrar-
iIy often on lr-uln<R (provided limits are interpreted
relative to this set) and

f (z) A.n(n-l) ... (n-r+l) (z-a) n-r

(lz-alp< n) .

AIso, it is easily shown that if f as above is not

identically zero, then its zeros in lr-^lp<R are ísolated;
the number of such zeros is then also finite, as we shal-I

show l-ater (Corollary to Theorem 7.8) .

Definition 6.10 . For fixed dtt € Qp the Schnirelman

integral of f at the centre a with radius r, if it
exists, is defined as

(r)
t
i

ll=

f (z) dz

f (z')dz =
n

lim I r(a+rE¡(n)),
n->@ k=l

Let f ,a,T be as in Def inition

exists, then

lrla+z) In
| 'lp= | 'ln

f
dtT dtt

l"lp=I
where Ex(n) (k=1,...,î) denote aIt nth roots of unity in

Propositj-on 6 .11.

ç¿p '

p

6.10. rf
ârf

ãtl
f (z) dz
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(For proof, see Adams

Proposition 6.I2.

Let

f (z)

It; Theorem 1 page 298).)

Let ârr be as in Definition 6.10.

a.f¡ (z)
æ

I
!-
L- 0

where the series on the right converges uniformly to f on

lr-.lp = Irln. Suppose that for all t, I ft exists
ãtT

Then

Then

(i)

dtt

I
J

f. exists and
o

f = I.. (

J
fr

àtT t=o àtT

(f'or proof , see Adams

Proposition 6. I3

I | ¡ Theorem 2 page 2981.)

(p-adic analogue of Cauchy integral

be real; w,arr € f,ùn be such that

tIp all <

| =l p, then

theorem) .

l*lp, l.lp,
and l*-.1 p

Let R>0

(n)
, .n+là, T ( z-IV)

(n=0,Ir2r...).f (w) = n! f(z) (z-a)dz

(See Theorem 7 page 300 of Adams I 1 I . )

Proposition 6.L4 (p-adic maximum modulus theorem).

Let f be analytic in lrln<R (R>0) and 1et.

¡'l(cr) =,T.* lttz)ln.
lzlp=d

l,'1(o) = max
nÞo

rrnlanlp o¿ ,

(ii¡ for 01 <

M(or) ( M(oz) < M(R).

(See Lemma of Adams and Straus I 2 I and Theorem 9 page 301

of Adams I I l. )
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Proposition 6.15

f be analytic in lz

such that I rl n< R,

(p-adíc Cauchy's inequality). Let

ln<R (R>0). For any fixed r€fin

we have

-n
(n)f (z)
n! l'l max

l"lp=l'ln
Ir tzl In

tlrlp.l'ln).

f z z-a
G zart, t

p p

(See Theorem 9 page 301 of Adams I I l.) .

Proposition 6.16 (p-adic resid.ue theorem). Let f be

anatytic in I "l n< R (R > 0) . Let r € Qn be such that

I rl p< R. Let also kr ,.. .,k, be positive integers and

G(z) = (z-ar)oo (z-az)k'... 1z-arr)kt

be a polynomial with l.ilp.ltlp (i=1,...,rI)- rf

t € Qp - {0} is such that

lai-ailp' ltlp (i+ j),
then

f (z) (z-at) dz
Glz

)+...+ dz
)

0 tr atrt

= sum of the residues of f/G over all

poles z such that lrlp. ltlp-
(See Theorem 13 and its corollary pages 302-304 of Adams

t r l.)
The residues are calcul-ated as in the complex case.

For example, if for some positive integer r

þ(z) = q(z)/(z-b)r, lz-aln * loln,
where s is analytic in lr-uln " I olp and' lu-.lp' I plp,

then the residue of. Ú at b is

res(rl;b) = # [o'-'s(r)lr=a
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Proposition 6.I7

f (z) ï
n=0

Ar, ( z-a) n

Let b€fl be such thatp

(p-adic Taylorrs theorem) . Suppose

is analytic in l"-ul n 
* * (R > o) .

Then we can expand f(z)
lu-"lp <R.

about b

r (") (u)
n!f (z) ï (z-b)n (lz-uln.n).

n=0

(See Theorem 15 page 304 of Adams t f l. )

lefinition 6.18. The exponential function is defined

AS
2 3

exp z=e" = 1+ "+"7¡+
z
3! +

whenever the series convergies.

Proposition 6.19. exp z ís defined and analytic in'a*.c I 1YP (z) - t lu= lzltul
l"lp< p-P-l and l"*p zlp = r /
(See Bachman t 5 I or Adams I f ;

Propositíon 6.20. Let n

for all z ín l"ln. p P-l

page 3061.)

be a non-negative integer.

1

Write

n=ao+atp++a¡p t

where t is a non-negative integer , a0 rât ,... € {0r1r... rp-I}

and a¡* 0. Then
n-s

l"!lp : p-F=T'

wheres=ao++at
(See Bachman t5l.)

We shall also need the followj-ng result on sequences

of analytic functions, for which we outline the proof for

the sake of completeness.

I
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Proposition 6.2I. Suppose that (fr,)

of functions which are analytic on lr-.ln
uniformly on lr-uln<R to the function
analytic on lr-ul p . n.

Proof. Let p € 0p be such that

loln < R.

Since f,! is analytic in lr-ul p.lplp,

fnk) f . (u) (u-a) du (lz-aln. lolnl
ar0 !- z

Now

f (z) f nkl f., (u) (u-a) du
ârP 1J- Z

and since If., converges uniformly, by proposition 6.1.2,

we can interchange the surnmation sign with the integral sign

and get

Now consider for
k,

f (u) (u-a) du
âr0 tr- z

f n(z) .

r_s a sequence

< R and converge

f. Then f is

then

(lz-aln. lolnl

f., (u) (u-a) du
(u-z¡ z

ï
n=I I

n=l

f (z)

Fk (z)

lr-^ln. loln and large positive integer

k
In=l

We have
k
I

n=l
vik) f ik)

k=l
n=I

Using the uniform convergence of lfr,, it is easily shown

that uniformly

Fi (z) * f' (z)

Similarly, we obtain

t(") (") = n! f (u) (u-a) du

âr0

f (u) u-a) du
u-z (k+-)

drQ

à, e (u-z) t+ t
(lz-aln. lolnl
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Now for

Hence

lr-uln. loln = lr-.1p,
u-â=l +z-a+(1J-Z U-a \

we have uniformly

f (u) (u-a) dz
u- z (æ)

+

ârP
("r,

n
f (z) f (u) d.u

âr9

i
n=0

¡ (n) (a) (z-a) nn! (1"-.ln.lelp)

and f is analytic in lr-ul n . n.

For completeness, we mention also the following analogue

of the VüeiersÈrass approximation theorem.

Proposition 6.22 (Chernoff, Rasala and Waterhouse).

Let F be a topological field and K be a compact subset

of F. Then the polynomials are uniformly dense in the

continuous F-valued functions on K.

(for the proof see Lemma 3 of Chernoff , Rasa1a and Vüat.er-

house ltt1.¡
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CHAPTER 7

ÏNTERPOLATION

1. The interpolation problem.

The interpolation problem investigated in this chapter

is the p-adic analogue of what is known as Hermite's inter-
polation problem, which is the extension of the problems

considered in section I of Chapter 6 to the case when the

interpolation points are not all distinct. First, the

existeuce of the interpolation polynomial will be established

and then in section 2 different forms of this polynomial witl
be derived via divided differences. If the function to be

approximated is analytic, then by using Schnirelman integrals

we can obtain results similar to those in the complex case,

as mentioned in Chapter 6 , and this is done in section 3.

Section 4 illustrates some applications of the results on

interpolatíon in sections I to 3. In section 5 certain
bounds on the interpolation polynomial and i-ts coefficients
will be obt.ained in various forms ready to be used in
Chapter 8. These bounds are of importance in proving

auxiliary results in the theory of transcendental numbers.

The chapter ends up with sj-miIar results on interpolation

by rational f unctions, instead of polynomial-s . Now rú¡e prove

the existence theorem.

Theorem 7 .L. Let 0lr...rcùm be m distinct points

and p(1),...,p(m)
m

I P(tl
k= I

be positive integers such thatin f¿p

= n.
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Let also f be a function defined at orr...rom w.ith its

derivatives at o¡ (k = 1, . ..,ffi) up to the [p tt) -f ) tfr

order. Then there exists a unique polynomial Qþ) of

degree at. most n - I such that

e(") (rt) = f(")(rt) (k:r,...rmi s= o ,r,...rp(k)-t)
Proof. Let us write

I iqíz
0

To satisfy all the required conditions, we must have

I9i0r f(trlk) (k=1,...rffi),

Qk) :
n-
I

I-

n-l
ii=o

and

Here we have

9ot...rQn-r

Gelfond I l4.l

+

n-l
f'
Li=s (

\ ¡-
) t"-rl I qirï-"i

s-l

a system of n linear

and the determinant of

(s) (r¡r )

(s=1,...,p(k)-1;

k=1r...ril).

equations in n unknowns

this system is (see

f

page 4L)
m p(k)-I

T-T TT
k=l j=o {r,TlI (ox-,s¡otsr} f

which is non-zero

system has unique

is proved.

are distinct. Hence theas all ulk

solution 90, . . . ,9n-, and the theorem

2. Divided differences and general formulae for inter-
polation polynomial.

We now intr.rduce divided

function f and interpolation

are not necessarily distinct.

differences for a given

points 10,... rln-l which
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Definition. The divided differences lno r... rrt¡; f J

are defined

define

For 0<k<k+r(Dr

ln¡r...rlk+r+r; f j =

by induction as follows. For 0<k(n-1, we

ln¡;fJ=f(nr).
if nx * tt+r+t r wê define

lntr...rlk+tì f ] - [nlc+l'...,rìk+r+r; f ]
lL - lL+r+r

and if rì¡ = ìlk+r+rr \Árê replace îk+r+, i-n the above

quotient by n and define

In¡r...rlk+r+ri f ]

1im
l+rlk

[n¡r... rlk+r; f ] - [no*1r ... rrt k*r rn; f ]

rt-rl

provided this limit exists.

l¡te illustrate this
several of which wiII be

Example 7.2.L. Let

definition with some examples,

used later.

Ir (r = 0 ,L,2, . .. ) be the mappings

r- I
I

n;n ,

possible non-negative

rrzz*zr
Let ns r rl tr...rln_ r be as before. Then

Ino;rt] = ni r

lr¡,î1;rrl = nä-t + nä 'n, * nf -tn1 +...+ n

In general, if 0 ( k( r, then
, _r.[l9rrì tr...rlk;t I =I n;on;'

where the

integers

There are

nt =

summation extends over all
so'...rSk such that

so + sr +

distinct terms/r\
\t/

+ sk = r - k.

in this summation. Therefore,

and 0(k(r, thenIr 1r

t
(

if no

[nor...,nk;rr] = [nr...rnirr] = k n
r-k I/

k!\ Dk zt
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AIso, in particular, for any t]srt'ì¡r...rrì¡r

Inornrr...rnr;IrJ : t t

[no rnl r...,rì¡;rrJ = o (k > r) .

Example 7.2.2. If rlerrìtr...,ln-r âs defined above

are a1t distinct, then by expanding according to the

definition of divided differences, we get

[ner...rrli; f J =
lnor...rrìi-ri f ] - tnr'...rrll; f ]

lno, .. .,ni- i; f I =

lo - li

(0<i(n-1),

[rìor...rlí-2i f ] - [nrr...rrti-]; f l

and so on. Hence

[nor...rIi; f J

In particular, for n

the Mahler expansion

(ni-n0) .. . (ni-nj-r) (nj-nj+r) ... (nj-Tli)

0, lr=It...rlrr_r=n-Ir this is
(see MahIer 12,6)l

no - li-r

f(ni)I

Ij=o

0

[0r1r... tn-l; f ]
t
il ( -1) l-

j f (i-j )
0j

i
I

j

Example 7 .2.3.

1r be as

Example

a)uop'

Let lo,...rrln_, b" distinct elements

in Example 7.2.L. By applying the resultl-n

of to7 .2.2

[nã1, . . .,ì]It'1r+i-t 1 and Insr...rïlirI-t]

be as before. If

f

\^7e get

Inãt,...,nIt'tr+i-t] = (-1)i*tno...ni[î0, - - -,ni;r-rJ.

Example 7 .2.4 . Let ni(0<i<n-1)
havefor some k,T , we

Í ¿5

r)
n na^'¿tè t: ¿-

k
I
+r
Zl¡u< Ft u L.-¿

lk+r = n

l1¡* -f2
k

then

[n¡r...rÏìk+ri f f = lnr...,r¡; f ] =
I lDÏf (z) l z=11r!

and

Now we specify the set {no, . . . ,ln- 1 } so that we can
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proceed to say something about Theorem 7.

cùlrûJ2r...rLd^ be m distinct elements in

the sequence

1. Let

above. Let

rlor...rÍìn_1,

fandgbe

û), r... r(t)m

two p-adic

Consider

be as just

functions.

f¿p '

(7.1)

where

work.

(no rnr r .. . rrì ¡- 1) = (ot , ... ruJ L t62t. .. rU)2, .. . ru)mr. .. ru)m)

{r¡ (1 < k < m) is repeated p (k) times with

Iì= p (k)

The following lemma is basic for most of our subsequent

Lemma 7 .2. Let

m

Ik=t

defined

We have

(7 .2)

if and

(7.3) g(=) (rr)

the notation,

Let f ,g be

be as

then

lno,...rli;f]
only if

t (s ) lur¡)

[nqr...rli; g ] (i=0,I,"..,n-1)

(s=0,I,...,p(k) -1;
k = 1r... rm) .

induction that (7.2)

In¡rn¡nl r...rlk+r¡ I ],

Proof. It is easily shown by

holcls if and only if

[rì¡rl¡*l'...rlk+r, f ] :

for all krr such that

0<k(k+r(n.
The equivalence of this with (7.3)

using induction on r and Example

then be deríved by

4.

can

7.2

To simplify

Definition.

we set

p-adic

defined

up the following;

functi.ons and let

in (7.I) above.fì Or...rTl ,r_1r tJ1r...rom
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We write

f = g (mod Ier...rrt¡-1)
if and only if (7.2) and hence (7.¡) hoIds.

The next theorem allows us to write the unique poÌy-

nomial O in Theorem 7.I in a simple form.

Theorem 7.3- Let lOr...rfl n-tr tr)lr...r(r)m be

7

defined

1. Thenas in (7.1) and let. f

O can be represented

(7.4) Qþ)

Proof.

checked by

The result

and 0 be as in Theorem

Newtonrs interpolationby f ormul-a

[ni,...,îi; f J (z-to)... (z-ni-r) .

Let O satisfy (7.4l.. rt is then

induction that

[no r... rrli; Q J = lno r... rl'ìi; f J

now follows immediately from Theorem

easily

n-t
I

a=0

(0<i<n-1)
7 .L and

Lemma 7 .2.

Theorem 7.4. Let l'ì0, . .. rfì n-l r (r), r . . . r¿rJm ,f ,Q be aS

in Theorem 7.3. Then

f (z) = Qþ) + tr,t)0,...,tn-r; f I (z-\o) ... (z-rln-r) .

That is, the error f (z) Q(z) is

Í2,\o,...rtn-r ; f I 17-\o) ... (r-\n-r) .

Proof. Consider an element z distinct from all

ti (0 < i( n - 1) . By expanding the divided difference

lr,rlor...rln_r; f ], I{Ie obtai

f (z\
lzrTtor...rln-lt f ] (z-no ) ... (z-no)... (z-nn-r)

lno rn t. t t -. rr]n-r i f ]
z - rìn_l

[nn; f ]
(z-nrr- , )

t orrìr;f]
z-11 t o ,lr^_!

Hence, by (7.4) we have

Lz,\0r...rì'ìn-r; f I (z-lo) ... (z-nrr-r) f (z) Q(z).
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If z=t)i for some í, this last eguality also holds and

so the theorem follows.
Theorem 7 .5. Let the hypotheses be as in Theorem 7 .3.

If all ti (0< i( n - 1) are distinct, then O can be

represented by Lagrange's formula
I

(7. s) Qþ)
n

I r(ni)q(z)
l_=0

(z-nifçTniI t

where

ç(z) = (z-no) ... (z-nrr_r) .

Proof. As in the proof of Theorem 7.4, if we expand

Lzr\or...rln-rt f ]

lzr\or...rln-l; f ]

using Example 7.2.2, we get

f. (z)
+(z-no) ...(z-nn_r)

f
\i-z Îi-l o

rìi-1i- I rli-li+ r

t t (ni)
o 

-(z-rtiJe?-1rfiJ-

+
n- I
Ir=0

f(ni)ç(z)
lz-nF-TnJ

n-
I

a=

+ lrrrlor...rrlrr-l; f ] ç(z) .

+f (z)
aØ ,

Ii-lt - r

v¡e

0

Thus
n- I

f (z)
l_ =0

By the uniqueness of O and comparing with Theorem'7.4,

obtain the desired result.

I

3. Interpolation of analytic functions.
If the function f. described. in section 2 is analytic

in l"ln< R for some positive real number R, then by

using Schnirelman integrals \^¡e obtain

Theorem 7.6. (i) Let p € Qp be s'.ch that

lplp < R t

and 1et lor...rln_r be such that

lnilp ' lplp (0<i(n-I).
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Suppose f is analytic in lz p < R, then

(7.6) [nornr'..",rìi; f J
f (z) zdz

'2-t) o z-T) ii",o

series expansion of f

f (z)

then also

(no-ni*, )

for i=0,...rn-1

as above is

Ar

(0<i(n-1).

and the power

(lrlp < R),

(ii) rf lntln < R

zrir=0

[nornl'...rlii f J

@

I
r=l

A, Inornr'...rn1;IrJ

(0<i(n-l),

where Ir are as defined in Example 7.2.I.

Proof. (i) For i : O, (7.6) holds by Proposition

6.13 (p-adic Cauchy's integral formula) . It is then easily

proved for i > 0 by induction, using the fact that'

whether or not no = li+r, we have

o tp 
(z-no) ... (z-ni)

f (z) zdzf (z) zd,z
(z-ni+r )ote (z-lr)"'

f (z) zð,2
z-Tl i+ torP ,-t) 

o

(ii) This is easily proved by applying the definition

of divided differences directly to the series and using

uniform convergence.

No\n/ Ì,üe come to the main theorem of this chapter.

Theorem 7 .i . Let fror¡...¡û)¡¡r 0 be as in Theorem

7.I. Then a can be represented bY

formula

Hermite' s interpofation
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m

I
k=l

p (k -l 9(k)-s-rr
L

i=o

)

I
f (s) (urr)

(7.7) Qþ)

where

ç (z)

Moreover if f
such that

where t €

(as seen,

the error

(7 .e')

S= 0 "r(( p(k)-s-r-i) t)

p (k) -s- r -i (u-t^r¡ ¡ ço (z)
ak) ü=0k (z-trt¡)

I
I

p (k)
D

lri

f(z) Q(z)

= (z-ur)o(

ís analytic in

i+r '

pp I <Rp

(z-o*) P (m) 
.

lrln< R and p€0p is

(0<i(n-1),

q (z) f (u) udu

then

(z.B) eþ) = _ ç(z) ( u-or )P 
(k)f 

(u)( u-or ) au
I tD¡rt

(u-z ) ç (u)I
J¡=

tlrlp.loln),
Qp - {0} is such thar lrr-rjlnt ltln (k+j)

for example, in Proposition 6.16). We also have

(u-z ) p (u)

<P (z) f (u) udu

(lrlp.lolnl .

(lrlp.loln),

or0

Proo!. If Hermiters formula (7 .7) holds for f
analytic on l, I n < R, then in particular it. applies to
the interpolation polynomial for any f. Hence we may

suppose that f is analytic on lrlp < R.

Let nq rnl,... rtn_, b" as in (7.f) . Then by Theorem

7.4 and equation (7.6), since tp(z) = (z-no) ... (r-nr,_, ),
f(z) QQ) =g(z) fz,t)o,...,tr,_r;f l

=f J-tt-z a uotQ

say. Thus we have proved (7.9). Now we derive both

expressions for Q(z) from this.



lle

Write

ü (u) = r-fl*r¡f
Then by the residue theorem (Proposition 6.16), for

z = uJl. (o< i=< n - t), l"lp. loln,

I [res (þ; z) + res(V;¿rrr))p(z).

Since p(z)res(þ¡z) is f(z) by directly computing the

residue at z, it then follows that

Qk) : -tP(z) res (rl;or)

m

I
k= I

m

I
k= I

and this yields the expression (7.8) for Qk). Now we

must compute the residues.

Since the power of (u-t¡r) dividing ç(u) is exactly

p(k), it follows from Proposition 6.f3 (Cauchy's integral

formula) that the residue of rli at rd¡ is

I
(p tr) -1) t

D

(.r.)

s! p (k) -s-t

(s)f (r..tr )
al

p (k)
P (k)-t (u-o¡¡ f (u)

(u-z )ç (u)

,(s) P (k)-s-r (u-op )
(u-z ) ç (u)

-1
I p tr) -s-1 )r

u=ûJk

i D
p (k)-r

(
p (k)

) ] 
"=,os=0

P(k)-t
I

s=0

p (k)-s-1
I

.l-=0

D
p(k)-s-r-i (u-or )

lrlp < loln

p (k)
1

ç (u) i+r

and hence for all z, since both

)l u=t,tk (z-o¡)

Combining all these resultsr w€ see that the equation (7.8)

holds for

sides of the equation are polynomials.

We note here that the work of van der Poorten t33 l

was based on the following related form for O.
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mm

ik=I

p (k)-t
I

s= 0

(s) 1z-:ei\o(i)-r
\ou-oi /

(z-oi¡ s

clQ (z) E
i=l
i+k

p(k)-t
TTr:s

À(r) r -l-i (or-,j¡o (j)-t
j=I

where the last sum is over åTf """-negative integer sets

À(s),...,À(o(t<)-f) with sum p(k) -s+t and such that

À(r)<r-s*1 andsuchthat r(p(fl-1) >1 (if s-1=p(k),

the sum is of course empty).

We conclude this section by looking at the relation-

ship between analytic functions an<1 interpolation series in
On (which is much simpler than the corresponding relation-
ship in Qn, as can be seen from Mahler 126l).

Theorem 7.8. Let (n*) be a sequence of (not necessar-

ily distinct) poi-nts in f¿p such that

ln*lp < R (m = o ,L,2, .. .) .

(i) If f is analytic in lrln< R, Lhen f is represent.ed

by the interpolation series

f (z) = i [n0,... rrìi; f ] (2-r)o) ... (z-t,r-¡ )
r=0

(lrlp<R),
and this series is uniformly convergent on lrln< R.

(ii) If f has a representation

f (z) at(z-no)...(z-ni_r) (lrlp(R) ,

lrlp<R, thenwhere the series is uniformly convergent on

f is analytic in lrln.*.
Proof. (i) Suppose

ï Airi

(z-c,rr, ü,urx-oj, 
o (j ) -rÌ (-r)*^*{o'À (r) -r }

J=lj+k

(rx )

I
À

("þ-)^ i

P
Li=0

tlrlp(R),
l_

f(z) =
0
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and leü Qm be the unique polynomial of degree at most

m-l such that

Qm = f (mod lor...rî¡n-1).

By Theorem 7.4, Theorem 7.6 (ii) and Example 7.2.L, we have,

for lrlp<R,
It(")-e^(z) In = llr,n0,...,rm-r; f J (z-rto) ...,r-nm_r) In

which tends to 0 as m + æ. Thus em + f uniformly on

lrlp < R and the result follows from Newton's formula for
Qm (Theorem 7.3).
(ii) This is an immediate consequence of proposition 6.2L

on uniformly convergence sequence of analytic functions.
Corollary. If f is analytic in lrlp < R and is

not identically zero, then it has at most a finite number

of zeros in l=lp < R.

Proof. If f. has infinitely many zeros (counted with
multiplicity) in lrlp < R, we can apply (i) above with
(n*) as the sequence of zeros. This implies tha.t all
divided differences vanish and hence f is identicarty
zero.

We note in particular that if the points rìm

distinct and

a*(n*-no) (n*-nr) ... (n*-n^-r) + 0

and

are

(n*-),

l(r-no) ".. (z-rm-,) In < l(n*-n0)... (n*-n*_,) ln tlrlp( R),
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then the series in (ii¡ is uniformly converglent on lrlo< R

and is identical with the series in (i). This case corres-

ponds to the situation considered in Q.p by Mahler lZø1

and in local f ields by Amice l,4 I , and it is easily shov¡n

that here, too, the polynomials Qm are best approximations.

4. Some consequences of interpolation.

fn this section, some approximation results are proved

to illustrate the use of theorems proved in sections I to 3.

(Compare with Lemma I and Theorem I, page 3I0 of Walsh t431.)

Conseguence 7.4.L. Let R be a positive real number

and rìs rnr,. .. rln_, b" distinct elements of fìp such that

Inilp<R (o<i(n-1).
Then there exísts a real constant. K such that if

Itilp < v (0< i( n- 1),

then

lo(r)lp< Kv (l"lp(R),
where Qþ) is the unique polynomial of degree at most

n - I which takes on the values v1 at the points rìi

(0<i(n-1).

Proof. From Lagrangers formula (7.5) r wê have

Qþ)
n-1
I

i=o
,

where A Þ)

Since

= (z-rìo) ... (z-nrr-r) .

Qk) is analytic for lz

laet lp < o*iåä-, I

p
( R, then

tP (z)vi (z-ni) ç' (ni) p
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where

(= max max
lr lp<* o(i(n-r

ç (z)
(z-ni) o' (ni)

Conse uence 7 .4 .2. Let S be a bounded su-bset of

f¿p and let îq r... rrtn_, b" distinct points of Qn (not

necessarily in S), and let f be defined. on S and at

no r.. . rlì¡-r. If f is uniformly approximable on S by

polynomials, then it is uniformly approximable on S by

polynomials a such that

O = f (mod lo r... rln_, ) .
Proof. Take an e>0 and take R>0 such that

lrlp< R for aII z ín s and. Inilp < R for att i.
Let K be the constant in Consequence 7 .4.I corresponding

to this value of R. Then there is a polynomial P such

that

Itlz)-P(z)ln< e/K (z€s).
Now let G be the unique polynomial of degree at most n - I
saÈisfying

G = f -P (mod lor...rrìn-¡).
Define the polynomial O by

Qþ) = P(zl + G(z).

Clear1y, Q satisfies our requirements, that is

0 = f (mod lor...rrì¡-1)
and by the strong triangle inequality and Consequence 7.4.L,

for z in S rtre have

Ir(z) - eþ) lp < max (lttz) - p (zt ln, lc(z) In)



t2+

In particular, it afso follows from Proposition 6.22

that if S is compact and f is continuous on S, then

f is uniformly approximable by polynomials a interpol-

ating at lor...rîn_r.
Of course, Consequence 7.4.2 yields nothi-ng beyond

what we already know from Proposition 6.2I and Theorem 7.8

if S isadj-sc lrln<R and t1 isin S forall i

We now apply it i,'¡ith the ni outside S to obtain an

analogue of Mittag-Leffler's theorem. Our hypothesis is

stronger than in the classical case because the disc

lrlp<1 is not compact.

Consequence 7 .4.3 (Mittag-Leffler Theorem; compare

Walsh LAti pages 3I2-3I31). Let (n") be a sequence of

d.istinct elements in I ,lp < L, and suppose that. for R

such that 0 < R < I at most a finite number of these

elements are in I , I p < R. Let (vr) be a given sequence

in Qp. Then there exists a function g analytic in

l"lp < I such that
g(nr) = vk (k=0,I,2r...)

Proof. Without loss of generality, Iet the points

rì¡ be as arranged that

lnolp< ln,lp< lnrlp< +1
Denote by [t-, the largest of the numbers

lnolp,lntlp'...,1nu-rln which is actually ress that

Inrlp, with .[o = lnolp. Now choose

eo(z) = Vo tlrlp<r).
By apply-ing Consequence 7.4.2 with S as the disc lrlp(&0,
D = I, rìo € S, tr ç S, and define the function f by
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f(z):0 (z€S),

f (Ir) = vl -vor
we can obtain a polynomial Qr satisfying

I Qt = f (mod no,rlr),

lot{z)ln < P-t (z€s)'
By repeating this process, in generalr wê obtain a poly-

nomial Qr (k > 1) satisfying

Qr (nr) = vk - Qk-, (n¡) - Qo (n¡) ,

Q:<(nq) = Qt(nr) = = Qr(n¡-r) = o ,

lot(,) ln <

IQx (z) converges uniformly on I " I p< R for any

that O < R < I (because R( [r-, for some k)

by Proposition 6.2L, it is analytic in l"ln.1.

R such

and. hence

5. Bounds on the interpolation polynomials and its

coefficients.

With certain applications in Chapter I in mind, some

accurate bounds on the interpolation polynomials and its

coefficients will be derived in this section.

First, the following set up will be used throughout this

section:

Ir is as defined in Example 7.2.L,

ns rnr r... rln-, denotes n elements of 0n, not necessar-

ily distinct,

ol,... rom denote m distinct elements of 0p,

p (1) ,. . . ,0 (m) denote m non-negative integers.

Lemma 7 .9. If P : P(riz) is the unique polynomial

n-1 such thatof degree at most
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P = Ir (mod lor...rrlrr_1),

then

P(r¡z) k

vthere

(7.10)

crk = [ns rnl , . . ., nk; rr] - [n6 r. . . rîk+, i It]S1 (ls r. . . ,n¡a1)

+ (-t¡t-t-t Inorrll r...rrln-rirt]srr-L-, (ns r... rln,r),
with

Si(nsrrl1r...rl¡..i) = îorr...rìi + (I< i<n-k-I)

= ith elementary symmetric

function of (ns r. " . rî¡..i) .

Proof. From Theorem 7.3, we have

n- I
I

k=o
crkZ

J

n-
P(r¡z) = Il=

If we also write
p(riz)

Since

0(r<n,

(7. r1)

lnilp < R

[n0,.. . rrìiiTr] þ-no) ., . (z-ni-r) .
I

0

n-l
i

k=o
kcrkz f

the result follows by equating coefficients of (0 < k( n-1) .
kz

Ir itself satisfies the requirements for P if

we have

P(0;z) = I,

P(L¡z) = z,

P (n-1; z )
n-1

Theorem 7.10. Let lo r... rrìrr_¡ r R and f be as

Arrt
æ
r
Lr=0

(0<i(n-I),
above with

f (z) tl"lp<R).
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If O is the unique polynomial of d.egree at lnost n - I

such that

O = f (mod nsrnrr...rrlrr_1),
then

(7 .r2) Qþ) AoP(r¡z),I
r=0

where P(r¡z) are as defined in Lemma 7.9. More precisely

Qþ)-As*A1z* * Ar, -r.'n-' + ArP(riz).

Proof. By Theorems 7.3 and 7.6,
n-l

Qþ) : .1 [no,...rrti;f] (z-no)... (z-ni-r)
.l_=0

Ar[n0 rrìr r "..rt'li;rr) þ-no) ... (z-ni)

ArP(r¡z\,
0

The second assertion of the theorem fol-lows from the formulae

in (7 .2L) .

Now we are in a position to obtain upper bounds for

the coefficients of O described in Theorem 7.10.

Theorem 7.11. Let O as in Theorem 7.1-0 be written as
n- I k

æ

I
r=n

n-l
Ii= 0

Ir=

ir=0

Q (z)

lqr

ÇtryzI
k 0

p

where crk are as defined in (7.I0). AIso, there is a

Then

(7.13)

stronger bound

(7.L4\

( I ar I n' ,9îîJ 
Arcrk I p) '

lø¡ln(max {lauln, Bil;.,c,oln) .

Proof. (7.13) follows by equating coefficients of

,k with (7.L2) as well as using (7.I0) and the strong-

triangle inequality. For the stronger form (7.l-4) the use
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of (7.ff) is also made.

The next theorems estimate Some bounds of a particular

polynomial that will be used in the latter part of Chapter

8.

Theorem 7 .I2. Let û) r'...r0m¡ P(1)r".,9(m) be as

defined at the beginning of this section. Let also N,M

be two integers satisfYing

1(M(m, 0<N<P(M)-1.

If Q¡a¡(z) is the unique polynomial of degree at most

such that

o
v=M)
v * M, O(U(p(v) -1, 1(v(ln),

then

n-I

(u)
lvlN

((,)v )

1

lp(¡nl- -IJ !N!
(u- t l¡,1)

p (M)

-lu:z) ç (u)

(u = N,
(u*N'{l

Iute¡¡*(z)ln < lo(z)ln lpl ln=lo,n't" )to(u) lnl'N+I
p ma

t-0M

where ç(z) = (z..wr)p (r)... (z-u.r*)P (m), and p € 0p such that

loi-o¡alp t lplp (i+M, i= 1,...,m).

Proof . By applying Q.7) of Theorem 7.7 to Q¡,¡¡ and

using the hypotheses on QMu, w.e obtain

Q¡a¡ (z) Dp 
(M) -N- r I

I
I
L

( ç(z).
u=0M

Now by Proposition 6.13 (Cauchy's integral formula), it

follows that
(u-o p (M) (u-t¡ )du

Q¡aç(z) = a (z)-
N! 0M (u-z ) ç (u) 1u-ur¡a) 

P t't) -N
)

p

and hence bY ProPosition

lure¡a¡r(z) In <

6.11,

l,p(zl lnlolf*' ma
u-014

x l(n-r)to(u) lnl.
ln= I o ln
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6. Interpolation by rational functions.
As in the case of interpolation by polynomials, some

similar results can also be obtainecl if instead we inter-
polate by means of rational functions. rn this section,
such results will be given (compare with Theorem I page fg4

and Theorem 2 page 186 of Wa1sh l,Æl) .

Theorem 7.I3. Let crs r . . . ,0n_, b" points j-n Qp.

T,et vo r... rvn_, b" n given values in ep and al-so 1et

rtq r rlt , . . . ,ln_, be n distinct points in 0p, di.stinct
also from all oi(0<i<n-1). Then there exists a unique

rational function of the form

E(z) =
brr_,zn-r*brr- r=n-"+... * bo

1z-o, o ) 1z-a r) (z-u (bi € CI,,;
i=0r-...rn-l),,r-, )

which takes the val-ues vi at the points zi (0< i( n - 1).
Proof . The proof is anarogrous to that of Theorem 7.L.

The only difference is that now the determinant of the
system is

tn-l n-l
(ff i=t, (n=-cr¡) -') (o*]T*"-r (nr-n j ) )

which does not vanish according to the hypotheses of the
theorem.

Theorem 7 .I4 (Lagrange's formula). Let Èhe hypotheses

be the same as in Theorem 7.13. Then we have
n- I

F (z) I
viY (z)

t_
(z-ni) Y-l¡i)- f

=Q

where v (z') (z-nu ) ... (z-rìn)
(z-ao ) .. l(Fo.1

rf f(z) is analytic in lrln < R and

Inilp . lpln = R

p € 0p is such that.

(0<i(n-1),
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then we also have

[nornl'...rI1;fJ f (u) udu
0rP Y (u)

and the error term of the interpolation is

f (z) - F(z) = lz,\0r...,t¡-1J V(z)

fO,p V(u) (u-z) tlrlp.lplp)Y (z) f (u) udu

Proof. The proof follows the lines of those in
Theorems 7 .5 and. 7 .6. In fact, it is simpler and similar

to Example 7.2.2 due to the fact that all ti (0< i( n- 1)

are distinct.

Theorems 7.I3 and 7.L4 can also be used to obtain

analogues of Consequences 7.4.L and 7.4.2 with rational
functions in place of polynomíaIs, corresponding to Lemma

2 and Theorem 3 page 313 of Walsh 143).



l3t

CHAPTER 8

APPLICATIONS

I Introduction.

In this chapter some of the interpolation results of

Chapter 7 will be applied to obtain p-adic analogues of

number theoretic results similar to those mentioned ín

section 2 of Chapter 6. In section 2 p-adic analogues of

two lemmas in Balkema and Tijdeman l,7 I wíII be proved and

will be used to derive similar p-adic results of Turanrs

theorems (Theorems 6.2 and 6.3). Section 3 deals with

p-adic exponential polynomials. First different estimates

on the size of such polynomials witl be derived and will

then be employed to prove p-adic analogues of Theorem 6.1.

the best results so far obtained in this direction are

those in van der Poorten 1331, as described in section 3

of Chapter 6, but his approach is different. My estj-mates

of the number of zeros are close to his but not quite the

same" Finally in section 4 I shall obtain a bound on the

coefficients of exponential polynomials.

The approach used here is suggested by that of Shorey

t38l. However, my results will be stronger owing to a

better bound on the exponential polynomial. The only

interpolation version used by van d.er Poorten [33] is the

Ilermite formula mentioned at the end of Theorem 7 .7 . Here

I shall mainly use the version established in terms of

divided differences (section 2 of Chapter 7) and Schnirelman

integral (section 3 of Chapter 7). Thj-s approach simplifies

the problem consJ-derab1y. Tn fact the ideas renders a
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number of simplifications to the work of Balkema and

Tijdeman in the classical case I z ) ¡ in particular their

majorisation technique can be avoided. rn the classical

case the crux of the problem is to effectively estimate

Insr...rlnifJ

where f. is an analytic function in lrl<n, that is,

(ao,a¡,...Þoi lzl<n),n
zT

n=0
âr,f (zl

and for some constant n

lnr. I <
similar to Theorem 7

(i = 0 ,Lr... rn) .

6 in Chapter 7, itApplying a result

can be shown that
æ

lno r.. . rrlnif] : I
n=

ó
arr[n',...,rì¡irr] I < I I .r,[n,..",n;rr]l

and thus

llnor.r"rî¡;fJl
However, a corresponding result does not

Ir(") tnl | /l"tl

n=0

appty in the p-adic

n (i = 0r... rn) but
s-n

0

case because it can happen that I ni I

|[no,...,rrn;r=]lp = n=-t >

(See Example

p-adic case

/"\
\"/

p

I

np

7.2.I.) Thus some of the difficulties in the

are different form those in the classical case.

2. p-adic Turan's theorems.

Before turning to the main

we shall require the following

proved in Shorey t38l.
n

Lemma 8.1. Let Q(z) = I

Then for any two

thec¡rems of this section,

on

lemma one part of which is

k=o
g*.rk be a p-adic polYnomial.

sequences ns rfì 1r... rrì r ancl b0 rb1r... rbt

, w€ haveof numbers in
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(8.1) 
I

bkQ (nr ) I p

x
I

lç=
(otf,i" I øn I n) 

(o{t{,, 
ul oooni )

then we have
n(8.2) lnlonot(n¡) |

p

brnilln t l,-[_urln* K=0

ioäf,{" I ør, I n) toäîä" I oÏ , 
ooni I n)

0

Furthermore, for r = n ancl f any p-adic function, íf

O is such that

O = f (mod ns r... rtì¡),

Proof. To prove (8.I).

inequality we have

By the strong triangle

Inr lË

r
Ik-

b¡a(n¡) lp = i,oonnnll n * oåf,ë"1ør'ln I oi,o*nll n
0

n

nlo k

t

To prove (8.2) we simply note that for r=Írt

Q(n¡) = f (nr) (k=0,L,---,r),

and substituting Q (n¡) by f (nx) , the result follov¡s "

Theorem 8.2 (p-adic analogue of Turanrs first main

theorem) . Let rrtrrr be two non-negative integers with

nÞ L. Also let bo r... rbn and ns r... rln be two sequences

of numbers in Qp and ni (0 ( i ( n) be distinct. Then

there exisLs an integer v with m * I( v( m * n such that
nn

T
ks 0

mrn
0(i(n

Progf. We may suppose without l-oss of generality that

^T+l Inilp = 1
0(i.(n

Thus we show that there exists an integer v with

m+1(v(m* n such that
n

I I bonXlo>
k=o

n

ibk
j!- u

p
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Let O be the unique polynomial of degree at most' n srrch

that

Qþ) = z-m-l(mod to,...rî¡).

Thus (by Theorem 3) vre have Newtonrs formula for Qþ)

Qþ) = Ins,. ..,nk iz-m-t ] (z-n0) -.. (z-n¡-r) -
k

n

I
0

nr'kL quz
k =0

,

And, by Example 7.2.L, since lnltln

say. Norn/, by Example 7.2.3, rrte see that

[nor...rrìr;z-m-I] = | (nonl...nr)-t[nõIrtTr r. --rrì;t;r*+t] In

. (0(r(n).

< t for all i,

Itnãr,...,nf t; zm+t I lp < I
Hence

| [no,...rrtìz-^-t1ln lnonr..-nrlnt (0(r(n),

and using Newtonrs formula above and the fact that

lnil;t < r for all i, \^te see that

lø¡ln< I (o<k<n)'

By the equation (8.2) ,
nn

I oI our.n['-' p < (ëîë" 
ol oroni )p

V,iriting bonil*r for bk, we get the required result.

Theorem 8.3 (p-adic analogue of Turanrs second main

theorem). Let p€Qp-{0}. Let bor...,br and 1or...rrìn

be two sequences of numbers in Qp such that

Q = lnolp < ln,lp < <

Let also f be an analytic function in l"lp < loln. Put

u(lrln) = max{lttz) lp; lrln = ltlp} .
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0

Proof . Let Qþ)

of degree at most n

O

Then (by Theorem 7 .3)

Qk) =

ler.l n <

(lpl >L)p

loln" u(loln)
(lplp.r)

be the unique polynomial

satisfying

= f (mod lor...rrì¡).
we have Newtonrs formula

n

(0<k(n),
that for

I [n0,...,îk;f J (2-\o) ...12-tk-r) .

Then

(8.3)

Put

(8.4)

n
M( p p)o{1ë,,l^uonik=0

pn

Ik- n

Ik-

bkf (nr) lp <
max

0(i^<n uoni I n0

ncJ<L Lvz
k=o

k =0

ft follows easily from either of the expressions for

[n0,. -.,rlt;f] that

I [n0,...,rk;f] lp < I olnkutl plp)

and it then follows from both expressions of O

0(k(n ,

M(lplp)

lolnki'rtlplp)

(lplp>r)
( | o In < r)

By (8.2) of Lemma 8.1, we obtain the desired result.

3 Basic results on p-adic exponential polynomials.

Throughout this and the next section, the following

notation will be used. Let 0 be a fixed positive real

number,' û)1r... ruJ¡ be a sequence of d.i.stinct numbers in

CIp such that

Itilp < p

v{ = max{ lri lp; i = I t2, . .. rm}
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We consider a fixed exponential polynomial
m p (k)iT
= I S= 0

ãkszs- r 

"ür¡z (l"l e(8.5) s (z)

where tl.r¡ is repeated
m

I p(k) = n. Now let
k= I
that
(8.7) l"l

(B.B) and let
(B.e)

p ,pk

where âks € c¿p (k=1r...rm; s=0r...,p(k))- The aks

witt be referred. to as the coefficients of E- From

Proposition 6.1.9, it is evident that E is analytic in

| " I p . po. For brevityr wê write

(8.6) M(R) = max { le t =) lp, l"lp = R}.

Define the sequence

(no, nt ¡ . . . ,rì ¡- 1) = (t¡t ,' ' ' tu) ¡ ¡uJ2 r ' ' ' ,(¡ 2 ¡ ' ' ' ¡û)¡¡¡ " ' 'o*)

p(k) times (I<k<m) and

v be a fixed number in 0p such

p e

n- I

p

Define an analytic function

f. (z\ = exp (vz)
I

(lrlp<p (P-t) 0

The main aim is to obtain a bound for tul(yR)/M(R),

for some real y>I, by estimating the coefficients of

the unique polynomial O of degree at most n - I satis-

fying
(8.8) Q=f (mod to,...,ln-1)

We write

lnsr.-.rrl¡l = [nqr'.'rl'ìr;f] (0(r(n-I)

The following lemmas establish the relationship between E

and O and bounds of the coeffj-cients of 0-

Lemma 8.4. Let E,v,Q be defined as (B-5), (8.7),

9"

o
0

QQ) r Ãy,
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Then

(8.10)

then

n (v) (¿)
Ãe.E (0)

Proof. Since, by Theorems 7.2 and 7.3,

"u' = Q(z) + lztr1o,...,lrr-rl (z-\o)... (z-tn-r) ,

n- I

I
f,= O

e(=-r) (urk)

p (k)
I ak"e (=- t ) 1o¡)

s=0

Qs

(os- t"t') = VS- r"ttl¡vz=ak

Therefore

E (v)

Also, from (8.9) \^/e have

e("-1) (t,lk)

(t<t<<m,0(s<p(k))

(=1t) (s-1) ! or-"- r

m

I
k=l

n- I

I
l,= O

Substituting for

we get

e(v) =

e 
(t- t ) (rr) in the equation for n (v) ,

n-
I

9.-

k) o

s-1
I m

I
p (

ILt t aks ( s-1) ! t¡\
)

.C-s * r
k )

0 k I S= 0

But by differentiating E(z)

we get.

(1.)
E (0 )

Hence

s (v) 9¿E (0).

in (8.5) and putting z = 0,

p (k)
I

s=0

m

:.1,

n- I

!.1o

aks (s-I) ! u)
9"

s-1
.C-s*r
k

(1,)

Lemma 8.5

Lemma 8.4 and !{

(8.r1)

Let ErQ and

as in (8.4).
9o r. -. ,9n-, b" as in

Then

lø¡ ln ( max {l$l 
",

(0<t<n-1)max
Tlzn

max
rÞk+I

(8.r2)



Teo

Proof. Since

Qk) = exp(vz) (mod î0,.-.,tn_r),
the result follows from Theorern 7.rr, keeping in mind that
in this c,ase l"rrln=*t-o.

Next we apply both lemmas to obtain an estimate of
the size of E. It appears that both (B.II) and (g.fZ)

give bounds of similar size so only (8.I2) wi1l be used"

Theorem 8.6. Let W,E,M be defined as in (8.4),
(8.5) and (8.6) " Let v be as in (8.7) and. u € fln be

such that

I'ln < I'ln
Then

(8.13)

*-*{ l;1", T p

Proof. From (8.10), we get

t

")

i'l( lvln) < max
O(k(n-1

Thus

Using Lernma B .5 , we obtain

¡l(lvlp) <

kv ltr k!

"*
max

rÞk+1 I

i'l(lvln) <

Now by Proposition 6. 15 (p-ad.ic cauchy's inequality)

l"(o) (o) lp < l:<ru-kln rtluln) +(k€z

max
0(k(n-I
Let W,

max
rÞk+I

t
V

-
wr-k k

uk

Corollary 8.7 . E,M be as jn Theorem 8.6" For
p p

any positive integer

k-âo+arp+
where ai € {0r1,...,p-t} (i=0r...rt)

t{- a,-I)

and at#0r wê write



s (k)

Let 0 be as before and

such that

:âo+ar++at

e be a positive real number

0 < e <Þr0 .

p(0-¿e) (r-t )*u.* {l,p-e+ (s-r) / (p-r ) }

and

Then

(B .14 )

where

< ¡t(pt)

s(k),

0-e

l3e

IM(p

max
0(k(n- I

(8.15) M(p

Proof.

(using s(r) >t)

max
0^<k( n-1

(lSl"*'XlSl"*.) : -er _s (r)p-rp p

-e(k+r)+'(0-e)k+

(o-e)t+" (kl
p-1

u-t) <

If in Theorem 8.6 we put

l"ln = pe, Itln = p9-t , ![ - p-t/ (p-r)-0,

then we get

p (9-2e ) (n-r)

t
and using Proposition 6.20, for O<k(n-I, rÞk*Lt we

have

kv
u

ê- r(0-ze) (n-r)-e+" 'p-r

Hence by Theorem 8.6, v/e get

¡'t(pe-t) < ¡l(pt) p(0-ze) (n-t)*.*

To obtain (8.15) we note that if

then

Replacing

(8.ls).

s-l
1,PP-t

l.
I

k = âo * arp + i,r.. + rtpt r

\

s(k) = a0 +...*a¡ ( (p-1) (t+1) < (p-I) ([Iognk]+r).

s by (p-1) ([1o9n (n-I) ]+1) in (S.14) we obrain
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Now we are in a position to estimate the number of

zeros of E in the p-adic case similar to Theorem 6"1 of

Chapter 6.

Theorem 8.8. If E j-s as defined in (8.5) and is

not identically zero, then the number of zeros of E j-n

l rl p< I does not exceed

(n-r) + max{0, [1o9p(n-1) J+I-I/ (p-I) ]/0 )
lzowv-Ac-.L 

.*tt) L.

Proof . Let crl r... roh be all zeros of E in

lrln< t taken with multiplicities, (The number is finite

by the Corollary to Theorem 7 .8. ) Define

C(z) = (z-ar) (z-az\ ... (z-o¡) .

E/c is an analytic function in l, I n . p0.

by the maximum-modulus theorem (Proposition 6.I4)

0-e

Clearly,

Therefore,

we have

M(p
(0-e)hp

and in van der Poorten

h < (n-1) +

where 0, e are as before (e < %0) . Thus

p (o-2e)h < u (po-r) /¡l (p.)

Using the estimate (8.15) we get

h ( (n-I) + max{0,-e*[loSn (n-1) ]+t-I/ (p-I)]/ (0-2e) .

Foreachfixed 0, e isarbit.rarywith 0<e.'<0; by

letting e + 0, the required result follows.
The bound obtained in Theorem B. B for h is betLer

than that obtained by Shorey t38l and is similar to that
in van der Poorten I3J l. In fact, in Shorey l38l

n * o-r#; . %q (#. o) (n-1)

t33l

maxO(r<p-I {[ros
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If n < p, it is better to use (8.14) wit.h s = n to get

the bound

h(n-1+ (n-1)/(P-I)0

which is that obtained in van der Poorten l32l '

4. The estimate on bound' of p-adic exponential polynomials.

In this section a bound for the sLze of coefficients of

a p-adic exponential polynomial wil-1 be obtained similar to

Theorem 6.7. 7? -^">¡ v'1'u'L?7

Theorem 8.9. Let 0 be a fixed positive real number;

tú¡r...rut*€f)n be such that

lrilp < p-r/ (P-t)-o (i= r,...,m);

p(1),...,P(m) and n be non-negative integers with
m

I11 = p (k)
Ik

T t , . . . ,T g, and r be non-negative integers with
Lr = .i ri ,

.l-=l

ßr,.. .,8* € ç¿p be distinct such that

lßilr< I (i=1,"',L\¡

nþ)beanexponentialpolynomialoftheform(8.5).For

fixed integers M' N such that

I(M(m, 0<N( p(M) -1,

let \^rr rw 2,b y ,b 2 rE be positive real numbers such that '
,*,. .p(i) ,p(M) _

[l0*r-0ilp 
>vtr, luru-û)il; 2wz

1+ú (r(i(m, i+M)
"rirTlor-ßilp 2b, (i+j, l(j<r)'

L= I
t:

lßi-gtln' '- b, (i+ j, 1( i< 'e', 1( j < r') '

l¡{i'¡ (gj)/itln * u (0< i( ri - 1, 1< j< 'q')'



If

(8.r6)

then

r> (n-1) + max{0,[1o9p(n-1)] +t -1/(p-L)]/g

lnla¡lrvlp < (brbzrvrvüz) -trj**r),/p (M)
ElU,

where a¡,rN ís the coef f icient of 
"N- 

t exp (orz ) j-n E (z) .

Before proving this theorem, a few auxiliary results
are required.

Lemma 8.10" Let M ,N be as above, and 1et Q¡a¡1 (z)
n-l'
I øirt satisfYing

: _^r- u

be the unique polynomial

oJ (ûrv )

(i)
E (0)

0

m P(v)

Ï. :'f:.uuDu 
-' 

"1= I U= o

P (v) n

I tu,
=0 a

f ( y( m,
o( u< p(v)-1).{lu

N
(u = N,
(u*N,

v=M)
v * M,

Then

Thus

n- I

aMN = I qiu(i)(o)
i=o

Proof. As in the proof of Lemma 8.4,
P (v)

I
u

m

¿v ""u(ulr) (u-r) ,,i-u+r

Z=(l)vv

n-l

["ï,

T 
otÏ' 

.urn,li) (,u)
v=l u=0

!,n'"t 
- ' 
"l.l qin(t) (o)

l_= 0 u
z=av

a
MN

Lemma 8.11. Let Qrur* be as in Lemma 8.10. Then

lNrqi I p < (wrv/z) - rt(N+t )'/P (¡l)

Proof. We first note that by Propositi-on 6.14 (i)

rw'e have

lqilp < max{lQrr(z't l; lzln=1}
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Hence it is suffic ent to prove that if l"lp = 7, then

lNler*(z) In <

Let e €R be such that 0<e .*)/p(l"t). Taking

loln - *i/pft't) -, , lrlp = 1 in Theorem 7.r-2 and nore

that.

max{lpp(M'(rtr))-'lp; lr-rrl = lplp} <
vùe hence obtain

Lemma 8.11,

Theorem 7.I2

Theorem 7 .7 .

lu¡er*(z) In < fu'r/o(t)-r¡ (**1-p (I'r))*ìt

This inequality holds for any e

o < e < wr /P (M) 
, and on letting e + o,

required result

Lemma 8.I2. Let ßt , . . . rßy, Erb be as def ined in

Theorem 8.9; let p(z) be the unique polynomial of
degree at most r - I such that

n(i) {ßr) : p(t) {oi) (t< j<.e.; o< i< rj - t).
Let e€R besuchthat 0<e<\e. If v€en besuch

that |rlp = pe, then

le(v) ln . p(r-r) t (brbr)-tE

Proof. The idea of proof is the same as that in
that is of applying the method of proof of

to the expressj-on for P (z) obtained from

such that

we get the

Proof of Theorem 8.9. For anv e such that
(Cauchy's inequality)0 < e 1 Þr0 , we have by Property 6.15

(8.17) lE(i) (0) lp< lill p p-'iM(p') <u(p') (i=0,...,n-l)¡
where ¡,t(pt) = max{ln(z) lpr lrln=pt}
Note that from (8.16) we have for at1 sufficierrtly small.

e ) 0r



t 4-+

(8.18) r> (n-1) -F max{0, [1o9e (n-1) )+t-t¡ (p-1) ] / (o-2e)

Consider a fixed e > 0 such that (8.18) holds, and

fíx p€Op such that loln=po-t. Let p be the poly-
nomial defined in Lemma 8.L2. By applying Theorem 7 "7 to
E(z) , for l rlp. I oln we have

E(z) -P(z)
o,g (u-z)rlr(u)-

û (z) E (u) udu

þ(z\ = (z-ßt) tt. .. (z-gùtn . Therefore, by proposition

lnlz)-p( r) lp< l,p(z) In p('-0) rr¿(p0-t)

Now choose the point z = v such that

le(v) lp = ¡,1(pe)

Thus

ln(.r)-p(v) ln * n(ze-e)rM(p0-t) < ¡l(p.) r

using (8.5) of Corollary 8"7 and (B.IB).

Thus by the strong tri-angle inequality and (8.17)

lp(n) ln= lp(v)-E(v)+n(v) lp = ls(v) lp = M(p') > lnli) 1o) ln

From Lemmas 8.10, 8.11,

get

(i=0t...,n-1) ,

8.L2 and this last inequality, v/e

lxtar*ln * i=o,Tiî,r,-,lNlqiE(i) {o) ¡n

(brb zw ¡tz) -rp(r-t) t e riN+1) /p (v)

where

6 .11

rrElvlp : P

Since this holds for aII sufficiently sma11

(8.18).
e satisfying

Continued
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As can be readily checked the bound on Nlar¡

obtained in Theorem 8.9 above implies that stated. in the

introduction (page 13) of van der Poort,en t331. However,

our method of proof is simpler and it seems to be a more

natural approach to problems related to interpolation.
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