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SUMMARY

The thesis consists of two independent parts, each of
which is concerned with a topic in p-adic approximation.
Part 1 deals with approximation to p-adic numbers (in particular,
p-adic integers) and Part 2 with approximation to p-adic
functions. §ince two of the most important methods of approximation
to real numbers and real or complex functions are the continued
fraction algorithm and interpolation, respectively, the thesis
concentrates on analogues of these two methods in the p-adic context.

Part 1 is a survey and comparison of the existing different
kinds of p-adic continued fractions that have been investigated
so far, namely the two developed by K. Mahler [2] in 1934 as
well as [4] in 1960, and the continued fraction considered by
Th. Schneider [7] in 1970 and that by A. Ruban [6] in 1970.

Three main aspects of these p-adic continued fractions are studied
in this thesis; they are: arithmetical properties such as
periodicity, metrical properties, and applications to p-adic
diophantine approximations. In addition, the comparison of these
p-adic continued fractions with other methods, for example, the
geometrical method of K. Mahler [3] is also considered.

Part 2 is devoted to the study of p-adic interpolation for
functions f:A > B , where A and B are subsets of Qp , the
completion of the algebraic closure of the field of p-adic
numbers, Qp . The theory of p-adic interpolation is developed
along the lines of the exposition of Gelfond [1] in the classical
case, with an emphasis on the use of divided differences and the
study of analytic functions. The main tools used are the
Schnirelman integral and the p-adic analogues of certain results
in complex analysis. The use of the theory is illustrated by
some number theoretic applications, including a simple proof of
a theorem on zeros of p-adic exponential polynomials which
corresponds closely to one obtained in Theorem 3 of [5] by a
more complicated method by van der Poorten.

Continued
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GENERAL INTRODUCTION

1. The scope of the thesis.

The Fwo topics studied in this thesis are the problem
of approximation of p-adic numbers, which is dealt with in
Part 1, aﬁd that of approximation of p-adic functions,
which is dealt with in Part 2. The p-adic analogues of
the classical continued fraction algorithm and interpolation,
which are two most important and useful methods for approx-
imating real numbers and real or complex functions, respect-
ively, are the main methods in each part.

Part 1 surveys and compares the different kinds of
p-adic continued fractions that have been investigated so
far; they are the two developed by K. Mahler in [21], [25],
the one developed by Th. Schneider in [37], and the one
developed by A. Ruban in [34]. Two other methods for
approximating p-adic numbers due to Lutz [19] and Mahler
[23] are briefly discussed at the end of this part.

In Part 2, the method of p-adic interpolation is
developed along the same lines as in the classical case
with the aid of the Schnirelman integral. As an illustration
of the method, some number theoretic results are derived in
the last chapter.

The two parts are independent of each other and a
detailed introduction will be provided at the beginning of
each part.

2. Preliminaries and notation.

Let p denote a fixed prime, QP, the field of p-adic

numbers, and Qp, the completion of its algebraic closure.



For any non-zero ¢§€Q,, we can write uniquely

m -1
i - FHC_pB HCRHE SO =se  x

& = c_pP
where m 1is an integer depending on & and

c; €{0,1,...,p-1} for all i with c¢_p# 0. The p-adic

valuation, pr ©of & is then defined by

lElp =P ™

is also used for the extension

Without any confusion, p

of this valuation to Qp.

Throughout the whole thesis, basic properties of 0p
and Qp, are assumed as given in Bachman [5 ] and Narici,
Beckenstein and Bachman [30]. The following results in

particular are basic for the whole work.

(1) For any &, ¢ in Q_p or 0 we have the "strong

p’

triangle inequality"

)

and this implies the "domination principle" : if [E£]|,<|z[,,

levc|, < max (12, ]¢l,

then

le+e], = el -

(2) A series ) s,, with elements in 9p or Qp, con-

verges p-adically if and only if |[sp|lp > 0 as n->e.

(3) Let S(a,p ) be a sphere in Qp with centre o and

radius p “(r€2Z), that is

S(a,p ") = {g€Q,; [g~alp < p 7} .

Then S(o,p °) is both open and closed. The same is true

in QP with 1r € R.

(4) If S = S(a,p ©) 1is a sphere in Qp, then S is

compact. This is not true for spheres in Q.



- true in @Q

is discrete in but not in

p QP

(5) |- p

(6) Let (sy) be a sequence in Qp. If ([sy|,) is

strictly decreasing then |sn[p-+0 as n-+«., This is not
P

There are five chapters in Part 1 and three chapters
in Part 2; each chapter is divided into sections numbered
consecutively throughout the chapter. The major. results
in a given chapter are numbered consecutively throughout
the chapter, regardless of whether they are called "theorem",
"lemma" or "corollary", so that, for example in Chapter 1,
Lemma 1.26 follows Theorem 1.25. Equations required for
later reference are also numbered consecutively throughout
each chapter. Definitions are either numbered as equations
(for feference) or not numbered. Numbers in square brackets
[ ] refer to the list of references at the end of the thesis,

which combines references for both parts.

The notation set out below will be standard throughout.

P a fixed rational prime number

|| the ordinary absolute variation

| |p the p-adic valuation

z the ring of rational integers

2t the set of positive integers (excluding 0)
Q the field of rational numbers

R the field of real numbers

C the field of complex numbers

Zp the ring of p-adic integers

YN the set {p&; &€ Iy}

Qp the field of p-adic numbers

Qp the completion of the algebraic closure of 0y

S~T the set {s; s€8S and sgT} .
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

This chapter will give an introduction and some back-
ground to the problem of approximation of p-adic numbers,
with special emphasis on continued fractions. After a
review of the basic ideas and methods of classical diophan-
tine approximations in section 1, there will be a sketch of
classical continued fractions and their applications to
diophantine approximations in sections 2 and 3. Section 4
will be a brief introduction to p-adic continued fractions
and p-adic diophantine approximations, and the scope of the
work on these topics in this first part of the thesis will
also be described in this section. Section 5 will deal
with some basic results on p-adic approximation. In sections
6 and 7 we shall give some preliminaries on p-adic measure
and measure preserving transformations which will be needed
in Chapter 3.

In this part of the thesis, we shall be working in I,
or Qp and this will be clearly stated in the relevant
context.

1. Basic classical ideas and methods.

The fundamental problem of classical diophantine approx-
imation to a given real number ¢ is to find good rational
approximations A/B, that is, to find integers A,B such
that B#0 and

| £-n/B]
is small while |B| is not too large. This problem leads

naturally to the investigation of the forms



| BE-A| and |BE-A-C],
where ¢ is any real number. It also leads to the problem
of simultaneous approximations A,/B,...,A,/B to a system

of real numbers €1r+--,&, and to the study of linear forms

|28+ e atx B -y, |,

-
-
-

|x1£m1+...+xn£mn-yml.
One of the simplest results is

Dirichlet's Theorem. Let £ be real and let B be a real

number greater than 1. Then there exist integers A,B such
that

0 <B< B, |aA-BE| < B!,

There are various different proofs of this theorem, all
of which illustrate the basic tools available. One method
is by Dirichlet's pigeon-hole principle (see for example,
the first proof of Theorem 1, page 1 of Cassels [ 41]).
Another proof is by Farey fractions (see for example Theorem
36, page 30 of Hardy and Wright [/6]). A third method of
proof is by using Minkowski's linear forms theorem (see for
example, the second proof, page 2 of Cassels [ ?1), which
is a simple application of a theorem in the theory of
geometry of numbers. It states as follows:

Minkowski's linear forms Theorem. There are integers By

not all 0 such that

A

£i4B5] < By (2<i<n)

provided that



If one wants better or deeper results, more sophist-
icated methods are needed. One main tool available is the
continued fraction algorithm which will be described in the
next section. Other useful tools are those based on the
geometry of numbers and analytical methods based on expon-
ential sums.

2. Classical continued fractions.

This section is closely based on Chapter 10 of Hardy
and Wright [76] and the book by Perron [371.
For each positive real number £ € (0,1), we can write
7' =b, + &
where b; denotes the integral part of g~! and &,
denotes the fractional part of £7'. If & # 0, then,
since £; <1, we can again write
1 =by + &2,
where now b, denotes the integral part of £7' and &2
denotes the fractional part of E;l. Now repeat the proc-

edure with &, in place of ¢£&1. Continuing in this manner,

we obtain a continued fraction corresponding to &,

1
by + 1
b, + 1 '
by + ...

which we shall write in the form

1 1 1l .
b;+ b2+ bz+ ...

The bi,b2,bs,... are called the partial quotients. Now

put for some positive integer n,

Ba/Bn = 53 B,¥



where A, ,B,, are both positive integers and A,/B, is

called the nth convergent to the continued fraction. The

continued fraction algorithm possesses a number of interest-
ing features, some of which will be listed below. For the
proofs, see the two books just mentioned.

Theorem 1.1. If £,b; (i =1,2,...), A,,B, are as above,

then

(i) A, =1, B., =0, A, =0, B, =1,
An+1 = bnAn + An—1 (n;;l)'
Bpntr = bpBy + By

(ii) AB,_, - A,_,B, = (-1)"7' (n=>1);

(iii) (A,,B,) =1 (n=>1),

where (A,,Bp) denotes the greatest common divisor of Ap
and Bn;
(iv) if £ 1is rational, then its continued fraction
expansion is finite but if ¢ is irrational, then its
continued fraction is infinite and

An/Bn > & . (n-+ ),

and in either case we therefore write

£ o= l 1 1 .
bi+ b2+ b3+ ... o
(v) the continued fraction of each real number £ is

unique.

As well as the simple properties mentioned above, we
also have the following approximation properties.

Theorem 1.2. Let & be irrational and A,,B,(n=1) be as

before. Then

1/B, (Bhy,+By) < | 8-A,/B,| < 1/B, (Byb,+B,_,) < 1/B2



Theorem 1.3 (best approximation). Let £ be irrational,
An,Bn(n>1) be as above. Tf A and B are integers such
that

0<B<B, and A/B#A,/Bn,

then
lAn'Bngl S lA"BE[ )

Theorem 1.4. Let & € (0,1) be irrational, A, ,Bn,bn

be as before. Then

(i) of any two consecutive convergents, one at least

satisfies
|£-A,/Bn| < 1/2Bp ;
(ii) of any three consecutive convergents, one at
least satisfies

| £-a,/Bn] < 1/V5 B: ;

(1ii) if for some n=>2, there is at least one bp

such that

then of any three consecutive convergents, one at

least satisfies
| g-a,/B,| < 1/V8 B} .
(For the proofs, see Theorems 2.14, 2.15, 2.16 pages 41-42

of Perron [31]).

Theorem 1.5. Let & be a real number. If A,B are two

integers such that
|£-n/B| < 1/2B% ,

then A/B is a convergent to the continued fraction of ¢&.

(See Theorem 184 page 153 of Hardy and wright [7é] for the

proof.)



One natural question concerning continued fractions is
the problem of periodic continued fractions. In the class-
ical case, it is completely answered in the following theorem
(see Theorems 176, 177 pages 144-148 of Hardy and Wright
[r61).

Theorem 1.6. (i) A periodic continued fraction is a

quadratic surd, that is, an irrational root of a quadratic
equation with rational integral coefficients.
(ii) The continued fraction which represents a quadratic

surd is periodic.

Apart from the arithmetical properties described above,
continued fractions also have interesting metrical properties.
Most results in this direction seem to originate from the
work of Khintchine (see his book [717] for discussion and
proofs of the following results).

Theorem 1.7. The set of all numbers in the interval

(0,1) with bounded partial quotients has measure 0.

Theorem 1.8. Suppose that (m(n)) is a sequence of

positive real numbers.

(1) If nzl 1/9(n) diverges, then for almost all £¢€ (0,1),

the inequality

b, = by (&) = 0(n)
holds for infinitely many n, whereb,(n>1) denotes the
partial quotients of the continued fraction of &§.

(ii) If zll/w(n) converges, then for almost all &€ (0,1),
n:

the above inequality holds for at most a finite number of

values of n.

10
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Theorem 1.9. There exists a positive constant B such

that for almost all & in (0,1) and for all sufficiently
large n, we have
B, = B, (&) < exp(Bn),

where B, (n=>1) are the denominators of the convergents to

n

the continued fraction of ¢,

Theorem 1.10. For almost all £ in (0,1), we have,

with the above notation,

© log k/log 2
. . 1
i) lim (b,b,...b )'/™ =T <1+ )
( n->o (b, b, n) k=1 kZ+2k !
(ii) lim (bi1+bs+...4by)/n = = 7
n->o
(iid) lim log B,/n = 12/12 log 2

n-—»>«

Theorem 1.11. (Galambos [13]). Let P be the Gauss

measure defined on Lebesgue measurable subsets E of (0,1)

by

_ 1 dx
P(E) » log 2 JE 1+x '

and let b, = b,(8) (n>1) denote the partial quotients of

the continued fraction of £¢. Then

%im P{E€ (0,1); max(b;+...+by) /N<y/log 2} = exp(-1/y).

3. Application of contined fraction in classical diophantine

approximation.

Continued fractions have been extensively applied to
problems of diophantine approximation. The following theorems
illustrate the kinds of result that have been obtained by this

method.



Theorem 1.12. Let & be real and irrational. Then

there are infinitely many positive integers B and integers
A such that
|a-BE| < 1/V/5 B .

r %(/5-1) +S

If & is of the form
te%(/5-1) +u

, where r,s,t,u € Z

with rs-tu = %1, the constant 1/Y5 cannot be replaced by
any smaller number. Otherwise, there are infinitely many
integers A,B with B>0 such that |

|aA-BE| < 1//8 B .
(For the proof see Theorem 5 pages 11-13 of Cassels [T 1).

Theorem 1.13 (Khintchine). To each irrational Eg,

there are infinitely many integers B>1 such that the
inequalities
1< B< B/2, | e-a/B| < 1/BB ,
have no solutions in integers A,B.
(For the proof, see Theorem 24 pages 36-37 of Koksma [ 78]).

Theorem 1.14 (Tchebycheff). If & is irrational, ¢

is an arbitrary real number, then
(i) there are infinitely many integers B>1, A,B such
that

|BE-A-C| < 1/B , |B| <%B ,
(ii) there are infinitely many integers B>1, A,B such
that

|BE-A-L| < 2/B , LB< B< 3B/2 .

(For the proof, see Theorem 2 pages 76-77 of Koksma [/81).

As an application of the metrical result (Theorem 1.8),

we have:

12
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Theorem 1.15. Suppose that £f(x) is a positive con-

tinuous function of a positive variable x and xf(x) 1is
a non-increasing function. If, for some positive ¢, the
integral

I f(x)dax

C

diverges, then the inequality

| E-a/B| < £(B)/B (B> 0)
has, for almost all & in (0,1), an infinite number of
solutions in integers A and B. On the other hand, if
the above integral converges, then the above inequality
has, for almost all ¢ in (0,1), only a finite number of
solutions in integers A and B.

(For the proof, see Theorem 32 page 69 of Khintchine [/7]).

Since Q is dense in QP as well as in R, it is
natural to investigate the approximation of elements of Qp
by those of @ and to hope that a p-adic analogue of con-
tinued fractions will yield results similar to those men-
tioned above.

4, Continued fractions and diophantine approximation in Qv

The study of rational approximation of p-adic numbers
seems to have been initiated by K. Mahler in a series of
papers starting from 1934. In his paper [20] in 1934,
Mahler investigated the existence of rational integral
solutions to systems of p-adic linear forms using Minkowski's
linear forms theorem. In the same year, Mahler [21] devel-
oped an algorithm for constructing a p-adic continued
fraction which has very good approximation properties. His

method is again based on Minkowski's linear forms theorems.
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Using this continued fraction, Mahler [22] in 1938 was able
to prove the p-adic analogues of Theorems 1.13 and 1.14 (i)
above. Since then, there have been rapid developments in
many directions. In this first part of the thesis, the
work will be devoted to p-adic continued fractions and
results which are analogues of those obtained by continued
fraction methods in the classical case as displayed in
sections 2 and 3 above.

It turns out that there is no p-adic continued fraction
which has all the desirable properties that the real contin-
ued fraction has. Mahler in 1961 in his book [25], which
gives an excellent account of p-adic diophantine approxim-
ations, also developed another p-adic continued fraction
which is closely related to the one he developed in 1934.

In the last decade two more p-adic continued fractions have
been studied. In 1970, Schneider [37] gave another kind of
continued fraction algorithm based on the unique represen-
tation of p-adic integers as series. Also in 1970, Ruban
[34 ]studied the p-adic continued fraction algorithm which
is the most similar to the ordinary real continued fraction.
The main feature of Ruban's continued fraction is the
metrical properties analogous to those shown in section 2.
Schneider's and Ruban's continued fractions are of the same
general nature and they do not yield very good approximations;
in fact Ruban's continued fraction was already mentioned by
Mahler [21] but not pursued by him for this reason.

In other directions, Mahler [Z23] in 1940 employed a
geometrical method in his study of p-adic diophantine approx-

imation. This method yields good approximation results
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(mostly with good values of constants) similar to those
described in section 3. Fifteen years later, Lutz [19]
obtained p-adic analogues of these results as well as p-adic
analogues of the metrical results discussed in section 2.
Her methods are based on the geometry of numbers and the
measure theory of Q.

The aim of this part of the thesis is to survey all
the different kinds of p-adic continued fractions referred
to above and to investigate their properties and applic-
ations, as well as to compare them with one another. The
remaining two sections of this chapter will indicate some
preliminary methods on p-adic diophantine approximation
corresponding to the classical counterpart of section 1 and
also some preliminaries on p-adic measure. Chapter 2 will
be concerned with p-adic continued fractions in general,
and will give proofs of most of the properties common to
the four p-adic continued fractions developed by Mahler,
Schneider and Ruban. In Chapter 3, Ruban's and Schneider's
continued fractions will be studied in detail. The two
p-adic continued fractions of Mahler will be considered in
Chapter 4. Finally, in Chapter 5, some applications on
diophantine approximation will be illustrated and the
comparison of different kinds of p-adic continued fractions
will be made. A brief discussion on Mahler's geometrical
method and Lutz's methods and results on p-adic diophantine
approximations will also be in Chapter 5.

5% Basic p-adic tools.

While there appears to be no p-adic analogue of Farey

fractions, the other two basic classical tools in section 1,
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namely Dirichlet's pigeon-hole principle and Minkowski's
2p-

following theorem, which is similar to results in Mahler

linear forms theorem, can both be applied to The

[20], illustrates the use of both ideas.

Theorem 1.16. For given positive integers m,n, let

aij(l< i<n, 1< j<m) be p-adic integers, and suppose that

hj (1<i<n) are non-negative rational integers, and let
h = (h;+h,+...+h )/m .
Then there exist rational integers X,s+++sX,, not all 0,
such that
m
L, aisxslp < p™H (i=1,...,n) ,
|x5] < p" (3=1,...,m) .
Proof. (i) We first use Dirichlet's pigeon-hole
principle. For any rational integral point 2z such that
lz5] < p" (3=1,...,m ,
we may write uniquely
L; (z) = jilaiij = ri(g)-+phiyi (i=1,...,n)
where rj;(z) is a rational integer such that
0<r;(z) < pt -1 (i=1,...,n) ,
and Yj is a p=-adic integer. Thus there are
ph1+...+hn =pmh
possibilities for the m-tuple r;(z) (i=1,...,n). Now
the number of distinct points 2z as above is
(2[pP1+1)™ > p™@ ,
so there must be two points g(l), g(z), say, such that
r;(z)) = r;(z(2)) (i=1,...,n) .

It is then easily seen that x

required inequalities.

(1) (2)

=z -z satisfies the



(ii) Alternatively, as Z 1is dense in Z,, it is easily
seen that we may assume without loss of generality that
ajy are rational integers, and the theorem can then be
proved by applying Minkowski's linear forms theorem to the
following system of m+n inequalities in m+n variables
XyreoorXyy Rl,...,Rm .

m
|.a Rp"| <1  (i=1,...,n),

|Xj| <p (j=1,...,m).

As applications of this theorem, we have the following
two results, the second of which will later be the basis of
one of Mahler's continued fractions.

Corollary 1.17. For given positive integers m,n,

let ay (1<i<n, 1<j<m) be p-adic integers and let hy

be a non-negative integer. Then there exist rational

integers X,,...,Xpsr Y,s+++1¥ys DOt all zero, such that
m

-h )
|j£1aijxj“Yi|P< p (i=1,...,n),
|x5] < it 0 (R (3=1,...,m),
|yi| < pnho/(m+n) (i=1,...,n).

Corollary 1.18. For a given positive integer h, let

£ be a p-adic integer. Then there are two rational

integers, not both 0, such that

IA-BEIP < p—h

max(|a],|B]) < p** .

6. Preliminaries on p-adic measure theory.

We recall from the notation in the general introduction
that Z, is the set of p-adic integers, that is
I, = {8€Qp; |E]lp<1) .

For &€Q and r'€Z+} define the sphere S(E,p_r) with
19

17
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centre & and radius p ° by

(1,1) S(E,p™7) = £4+pZ, = {x€Qy; [x-g|,<p "} .

The continued fractions of Ruban and Schneider in Chapter 3
will be defined for all & in pr, that is for all g
such that [£|p < p~!, and in order to obtain metrical
results for these continued fractions, we shall need some
results on measure in pZP. The first work on measure in

OQp was done by Turkstra [42] by a direct construction, and
measure in Qp can also be constructed as a Haar measure.
Here we shall outline a construction using the Hahn-extension
theorem and shall restrict our attention to plp, though the
construction easily extends to the whole of QP. We shall
use the definitions and basic results on measure and

integration of Taylor [40].

The following definitions will be used throughout all
investigation on measure theory. Define
(1.2) S ={¢}uls(o,p"")Iud{s(g,p ");
rezt, r>2, g€z, p7¥< lg] ,<p~! or g=0}.

(1.3) 0(S) = o-field generated by 8.

We note that
plp = S(0,p~') € S ;
and it is easily seen that if S(£,p F) €S, then
£ =0 or & = ciptcp’+...+cr-1p* !
where c¢; €{0,1,...,p-1} for all i. It follows that S

is countable. Clearly, we have

s(g,p ") < pZ, .

We shall need the following results which are fundamental.



Lemma 1.19. Let S(&,p °) be as defined in (1.1).

We have
(1) if BES(E,p "), then S(&,p %) = S(8,p %);
(ii) if R =5S(,p ") and S = S(n,p °) belong to S
and s2r and RNS = ¢, then ScR.
Proof. See Theorem 3 and its corollary, pages 6-7
of Narici, Beckenstein and Bachman [30].

Lemma 1.20. For S defined by (1.2), we have

(i) S is a semi-ring, that is,

(a) ¢ € 8§,
(b) if R,S€S, then RNSES,
n
and (c) if R,S€S, then, for some nEZz+, R~8 = U s,

where the §S; are disjoint sets in 8.
(ii) The o-field, o(S), is precisely the o-field of Borel
sets of pZP.
Proof. (i) follows by using the properties of spheres
in Lemma 1.19 and repeatedly using the fact that
(1.4) Zp = (04pZp) U (1+pZy)U...u((p-1)+pZ,],

which is a disjoint union. (ii) follows from the fact

that pZ 1is dense in plp.

We now introduce a measure on S, which will then be

extended to o (S).

Lemma 1.21. Define

by

Then
(1) t(pZp) = 1,

(ii) T is finitely additive on §,

19
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(iii) T is countably additive on S.

Proof. (i) is immediate. TFor (ii), we must show

that if S€S and S = S;US,U ... USuh, where
. Sy,-..,5,€S and are non-empty and disjoint, then
T(S) = 1(S;) +1(S2) +...+1(S,).
Suppose S = S(£,p °) and all S; have equal radius p %,

say, and n=>2. Then all S; are of the form S(gi,p—s),

say. Then s>r and it is easily shown that there is a

unique dissection of S into p°"* spheres in S of
radius p °, so that n = p°~ % and
T(S;) +...+ 1(Sp) =np—s+1 ='ps_rp_S+1 =p—r+1 =1(8),

as required. The general case where the radii are not all
equal can then be dealt with by dissecting each of §,,...,5p

into spheres in S of equal radius p ®, say, where p

=S
is the smallest of the radii of the Sji's. We now show (iii).
Let (S,) be a sequence of disjoint spheres such that

[¢ o]
U = S
U sq €S

Since S is compact (by (4) in section 2 of the general
introduction), it follows that S has a finite subcover

1) N
obtained from nU Snr say U S,. Thus, for all n >N,
=1

n=1
S, = ¢ and so 1(S,) = 0. By (ii), we have
N o)
T(S) = 2 T(Sn) = z T(Sn) .,
n=1 =1

that is 1 1is countably additive on S.

Lemma 1.21 immediately implies that T 1is a measure
on S. Next we extend 1 from S to o(s).

Theorem 1.22. There is a unique measure U on 0o(s)

such that

s =1 ,
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where u]S signifies the measure u restricted to S
and T 1is as defined in Lemma 1.21.

Proof. This follows from Lemmas 1.20, 1.21 by the
Hahn Extension Theorem as obtained by combining Theorems

3.4, 3.5 adn 4.2 of Taylor [40].

Theorem 1.22 yields in particular the following result.

Corollary 1.23. Let u be as in Theorem 1.22.

Suppose p 1is a measure on o0(S) such that for all
SES,
p(S) = u(s).

Then p = yu.

From now on, let u be the measure given by Theorem
1.22. We gather together some properties of u which
will be needed later. The proofs, which consist of straight
forward checking usually based on (1.4) and Corollary 1.23,
are omitted.

Theorem 1.24. Define for any r'€Z+,

1+]g)1532p - {F%W ‘ aEZP}'
We have
(1) 1/(1+p"2y) = 1+p°Z, ,
and so
u(1/(1+p72,)) = u(l+p“2,) =p °7'

(ii) for all B € pZy, S € pZp~ {0} ,
1/(6+22p) = (1/8) + (B/62)Zp
and so

u(1/(1+825)) = plB/s?|,
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(iii) if U is the group of p-adic units, then
p(U) = p(l/U) =p-1,
- (iv) if £ =c1(E)p+ca(E)p?+... € pl,, where
c; (§) e {0,1,...,p-1} for all i,
then for all i=1,
n{gepZpici (£)=0} = u{g€pZyici (8)=1} =...= u{g€pZy;c; (§)=p-1}
=p"1_

For any a€pl, and BE€o(S), we also have

(v) wu(aB) = |a| u(B),
(vi) u(a+B) = u(B).
7. Measure preserving transformation on pZ_.

In this section we collect together results on measure
preserving transformations needed for Chapter 3. We rely
on Billingsley [ 8 ] for the basic result and we shall work
in the probability space (pr,o(S),u) as determined by
Theorem 1.22.

A transformation

T : ply > plp

is measure preserving if and only if for all BE€o(S),

u(T7'B) = u(B) .
A set B 1is said to be invariant under the transformation
T if and only if
T !B =B .
And define the transformation T above to be ergodic if it
is measure preserving and for each invariant set B, we have
u(B) =1 or O.
We shall be interested in ergodic transformations as they

satisfy the following theorem.



Theorem 1.25 (Ergodic Theorem). Suppose T is

ergodic and f 1is an integrable (real valued) function
defined on pr. Then for almost all §&, with respect
to up, in pZP,

1 %t Xk
lim = ) £(Tg) = J fdu .
n->w k=0 pzp

Proof. See Theorem 1.3 page 13 of Billingsley [ 8].

A stronger property which implies ergodicity is
mixing. A transformation T is mixing if it is measure
preserving and if for every pair of sets B, C in 0o(S)

lim p(BNT "C) = u(B)u(C).

n+®

The following result will be basic for our later

proofs that certain transformations are mixing.

Lemma 1.26. Let S be as in (1.2) and for ne€ [+

let S,<S. Suppose that for each S €S, there is an
N = N(S) such that for n>N, S can be expressed as a
countable (and hence, by compactness, finite) union of
disjoint spheres from S,, and also that
H(S, NT™"S) = u(Sy)u(s)

for all S,€S8, and n=2N. Then T is mixing and hence
ergodic. |

Proof. It follows easily from Theorem 1.2 of Bill-
ingsley [ 8land the fact that o(S) 1is generated by the
field consisting of all finite disjoint union of spheres
from S that it is sufficient to prove that

lim u (RN T "g)
n>w

p(R)p(s)

for all R,S€S. We fix R,S5€S and take n=>N, where

N = max (N(R),N(S))

23



Since n=N(R), R can be expressed as a countable union
of disjoing spheres in S,. Since the set function v

defined by

V(R) = p(RnT "

S) (RES)
is clearly countably additive, it then follows from the
definition of N(S) that

n

P(RNT °8S) = u(R)u(s).

Since this holds for all n=2>N, the required result follows.

We illustrate the above idea by a brief discussion of
the "shift transformation"
i UIE pr > plp
defined by

T : ciptc2p? +...+ c pPP+... » captcsp?® +...+ cpp” 4. ..

where c¢; € {0,1,...,p-1} for all i.
Define for 11€Z+,
A(Cy,...,cp) = c1ptcep? +...+ cpp 4p ' 2Z

p °
Note that A(c,,...,cp) € $§ and it is easily deduced that
every sphere in S 1is a countable union of A(ci,...,cp)'s
for sufficiently large n. Also for different cjy's,
Alcy,2..,Cpn)'s are disjoint. Hence by Lemma 1.26, in
order to show that T 1is mixing, it is sufficient to prove
that for sufficiently large n

w(A(cyyeaarcn) NTPS) = u(dlc,re-ercy))ui(s)
for all Se€8S.

Clearly, fo. all SE€S,
A(cl,...,cn)(ﬁT—nS = c1p +...+ cnpn+an.

Thus by (v) of Theorem 1l.24,



u(A(cl,...,cn)r1T_nS)

as required.

1l

p "u(s)

U(A(Cl,...,Cn))U(S)I



CHAPTER 2

GENERAL p-ADIC CONTINUED FRACTIONS.

In this chapter, we shall be considering general p-adic
continued fractions and some of their simple properties,
most of which are common to all the p-adic continued
fractions to be considered in the following two chapters.
Most results obtained are straight forward analogues of
classical continued fractions as in Perron [231]. Since
there is no loss of generality in restricting ourselves to
p-adic integers (that is, elements of Zp), from now on
the work will be carried out in [, unless stated other-
wise. To be consistent, the following notation will be
standard throughout this first part of the thesis.

1. Notation and simple properties.

The continued fractions to be considered will be of

the form
(2.1) ag a, an = )]
be+ by+ °°° bn+ °°° 3
b0+ 5
b1+ a2
b,+
.+ a,
bnf
where aj;,b; € 2~ {0} for all i. For any two sequences
of non-zero rational numbers a = (ai), b = (bi), we
define A, = A,(a,b), Bh = Bhla,b) by
AL, =1, B, =0, A, =0, B =1,
(2.2) A, =bA + aA _, (n=@)
Bhyy, = byB, +aB _, .
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The next theorem is a collection of simple properties
that follow directly from the notation just set up. For
the proofs, see Perron [31].

Theorem 2.1. Using the above notation, we have for

non-zexo A ,B, (n=1),
(1) Ap _ 20 a1 @n-1 _ _@y _ @0d1 , (-1)" 'aga;...an-1
B, bo+ b+ b,-; BoB) B1B2 Bn-1Bn
(n=1),
(ii) An _ An-1 _ (-1)" " 'aga;...an-1 . (n>1),
Bn Bn—l Bn—an
AP An+a . L ap an-1 a2 =
(iii) o bn+ Bioot Bnst *** 5 (n>1),
Bn+) _ an an-1 a >
Bn = Bnt bn-i1+ bn-2+ 77 by (n=1),
(iv) <Bn Bn—1) (bo 1 il _|1 aji 0 (n=>2).
2. Convexrgence.

The next natural question one may ask about the fraction
(2.1) is that of its convergence. We call 2A,/Bn as defined

above, if it exists, the nth convergent of the continued

fraction (2.1) and say that the continued fraction (2.1)

converges to & and write

£ = bef byF " F bat tcC
if and only if

. A

1lim n =

n-—J;w Bn El

where, of course, this means that
|e-2,/Byl, > 0 (n + ) .
Writing, for non-zero A,, B, (n=1) and A, = 0, Bo = 1,

Ap Apn-a =
O = =22 - nz#= l)
n-i Bn Bn-1 ( !
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it is clear that (A,/B,) converges p-adically if and only
if
o, = 0 (n » «) .

n

Furthermore, by induction it can be proved that

A A, _ (-1)" lagai...an—
Op-, = 2B = S0-1l = o (n>1)
n-1 <~ 5 T B, B,-,B, °

Hence we have proved the first part of the following theorem
and the remainder is easily checked by induction.

Theorem 2.2. (i) The continued fraction

[V}
i}

0o a1 1
FbiF CCC BaF -

op

converges if and only if

dpdl.esdn=-)

>~ 0 n-+e
gl e . ( ),

(2.3)

where for all i, aj;, b; € 9 ~ {0} and B;i are as defined
in (2.2) and non-zero for i > 0.
(ii) Suppose the above continued fraction converges to £,

then the continued fraction

a 1 an+42
b, + =nt n .o
n bn+1+ bn+a2+

also converges; let the value to which it converges

be &,. Then for n=>0,

a 1 a 2
(a) = b, .4+ Znt n+ R
£ =230 21 3 — &nAn + anAn-1
(b) be+ b1+ b+ =°° Ean + aan_l r
n
(C) E _ éﬂ = (—l) Agdl...adn
Bn Bn(aan+aan_1)

We shall now give some results which yield sufficient
conditions for convergence in terms of the sequences

a = (ap) and b = (bp) .



Theorem 2.3. Let

ao ail asz
b+ bi+ bo+

be a given continued fraction with aj,b; € Q@ ~ {0} for
all i. Suppose that
[bolp = 1 2 |ao],

and either

(i) |bi]p > 1 > ]ai|P (i=1),
or

(ii) ]bﬂp>jl>|aﬂp (i=1).
Then

(2.4) |Bilp = |bob1...bi_1|P + 0 (i=0),

where for all i, B;j are as defined in (2.2) and so

aApd)] .« .d4n-1
21K 2 2
b2bZ,..bZ_,b

5. agal...anul[ _
(2.5) Bn-1Bn

n-1.\p
(n=>1).

Also the continued fraction converges to an element of lp.

Proof. Under (i) or (ii) it is immediate by induction
that (2.4) holds and so (2.5) follows. Using the inequal-
ities |aj/b;i|p<1/p, we then see that

AQga] s+ an-1
Bn-an P

- 0 (n-+w),

and hence the continued fraction converges by Theorem 2.2 (i).

That the limit of convergence belongs to Zp is evident
from the facts that
(i=1).

|b0|p>|aolp ’ lb >]ai'

ilp P

As seen in §2 of Chapter 1 of Perron [37], the idea of
equivalent continued fractions can be used to derive a
number of sufficient conditions for convergence. This

same idea carries over to p-adic continued fractions. We

29
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say that two continued fractions are equivalent if and only

if both have the same nth convergents for every n. Let

ao ai anz
bo+ b1+ b+

be a given continued fraction with a;,b; € Q2 ~ {0} for
all i. Let A,(a,b) and Bp(a,b) be as defined in (2.2)
and be non-zero for n=1. Let also p¢,01,P2,... be non-
zero rational numbers. Define A, (p), Bp(p) as in (2.2)
but with respect to the continued fraction

Podo Ppopraa Pi1pz2a:z
Pob, + pib1+ paba+

Then it is easily seen that for all n=0,

Ap(a,b) _ An(p) ,
B, (a,b) B, (p)

and so the two continued fractions are equivalent and thus

we can write

(2.6) ag a4 a: — P30 pPoPra1 pjPra: Pn-i10nan

bo+ b1+ by+ v pob0+ plb1+ pzb2+ =t _-pnbn+ “es

Consequently, the convergence of one continued fraction in
(2.6) implies that of the other. Upon varying values of
PosrP1sP2ses., 1t is clear that different sufficient con-
ditions for convergence can be obtained. One simple example
is the following theorem.

Theorem 2.4. Let a, a; a be a given
be+ bi+ b+ °°°

continued fraction with aj,b; € Q@ ~ {0} for every i. If

p < |bib;

lbolp =12 Iaolp ’ |ai| 1—1|p

then the continved fraction converges to some & in ZP‘
Proof. Putting in (2.6),

p; = bi’ (1>0),
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—

we see that

a g aa ao _ bElao bElbIIal b?lbzlaz
bo+ bi+ bo+*"" = 1+ 1+ 1+ mes v

Now applying Theorem 2.3 (ii) to the continued fraction on
the right' hand side, we see that it converges in lp, if
1> |b7l,b7!

ai|P (l?l),

and the theorem immediately follows.

The following theorem estimates the error & - (A;/B;)
under the conditions of Theorem 2.4.

Theorem 2.5. Let §& € ZP have the continued fraction

expansion

agq aj as
bo+ b+ b+ *°°

where a;,b; € 9 ~ {0} for all i. Let A;, B; be as

defined in (2.2). 1If

lai|p< |bibi—1|p (i=1),
then
Aj Apga]...aj Qpa] ... .aji .
- Bi |__“__44 (1>1).
(2.7) ‘ Bilp BiBiy, Ip bibi...b¢_bj|,
Proof. From Theorem 2.1 (i), we have for i=>1,
|£__él Apd]l «edj _ 8081 «..8541 + ...| .
Bj P BiBji+, Bit1Biso P

since |ap|p < |bpbp-ilp (n>1), by (2.4) of Theorem 2.3,
we have

|Bn|p = |b0b1...bn_1|P £+ 0 (n>0).

Also |ap|p < [byb (n>1) implies

n—1lp

1
Byb1:.obg

|55
byb;...brr1

Combining the last two results, we get for n=>1,

Agdls..dn4 _ aodle..ap+t1l aApa] . ..an Apdl . ..aAn |
B 2 - ] . 212 2
b2b2,..b2b ., Bn+2Bn+1 BpBhe; |p  [bgb}...b3- bylp
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Using this last inequality and the strong triangle inequality,

the theorem follows.

3. Construction of continued fraction from convergents.

If instead of directly constructing a continued fraction
to a p-adic integer §, two sequences of non-zero rational
numbers (A,), (B,) are given such that

A B - A B _ # 0
n-1 n n n-1 (n>0).

Ano Bnt, ~ Apsy Bno, ¥ 0
Then there is a unique pair of sequence of non-zero rational
numbers a = (ap), b = (b,) such that (in the standard

notation of section 1)

A, = Ap(a,b), Bn = Bp(a,b) (n=-1),
and hence (A,/B,) 1is the sequence of convergents of the
continued fraction ap; a: @z ... - Moreover, if

bg+ b+ b+

%n.+ €, then
n
£ = dg a; a
bg+ b+ b+ *°°

From the idea of equivalent continued fractions, it is clear
that there are infinitely many different continued fractions
of which A,/B, are the convergents. The results just
proved are summed up in the next theorem.

Theorem 2.6. Let A_, =1, B_, =0, Ay =0, By =1

and let (A]), (B,) be two sequences of non-zero rational
numbers such that

n-1-n n n-1 (n=0).

An—an+1 - An+1Bn—1 * 0

Then there exist two unique sequences of non-zero rational

numbers (a,), (b,) satisfying
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Ay, =b A +al,., (n>0).
Bh+y = bpBpy + @By,

For n=20, a, and b, are given uniquely by

(2.8) . —.AnBn+1-An4+1By . = An-1Bn+1-An+1Bn-1
) N An-1Bn-AnBn-; ' n Apn-1Bn-ApBpn-: !
and (A,/B,) is the sequence of convergents of the con-

tinued fraction a, a; a-
b0+ b1+ b2+ - * 8 -

4. Finiteness and periodicity.

The following two theorems are almost trivial and can
be proved by the same arguments as in the case of real
continued fractions.

Theorem 2.7. Let £ € ZP have the continued fraction

exXpansion

where aj,b; € 9 ~ {0} for i =0,...,n. Then & € Q.

Definition. An infinite continued fraction

dg Q) a»
bo+ b1+ bo+ *°°

where a;,b; € Q@ ~ {0} for every i=>0,

is said to be periodic if and only if there exist two

distinct positive integers m,n such that

am+j = @m+n+jr  Pm+j = Pmen+j (3=0).

Theorem 2.8. Let & € ZP have a periodic continued

fraction expansion. Then £ satisfies a quadratic equation

with rational integral coefficients.

The aim of this section is to investigate the converse

results of both theorems for general p-adic continued fractions,
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and the approach used was suggested by Schneider [37]. The
situation in the p-adic context is not entirely the same as
in the classical case, for example, as will be seen in the

. next two chapters, there are rational numbers which have
infinite p-adic continued fractions and rational numbers
which have periodic continued fractions. This together with
the non-uniqueness of certain continued fractions leads us
to the following:

Definition. Let ao, a; a2 be an infinite continued
bo+ b1+ b+

fraction with aj,b; € @ ~ {0} for all i. We say that

this continued fraction is weakly periodic if and only if

there are two distinct positive integers m,n (one may be

zero) such that

b+ am+l  aAm+2 =l = An+1 an42

m byt bpgt N bpyyt bpg,t

We shall give a theorem that gives conditions which
ensure that if & is a quadratic irrational and it has a

continued fraction

—ao al a2 . . ~e
g = Pl pio P2 L. (a; ,b; €0~ 1{0}),

then this continued fraction is weakly periodic. Before
doing so, however, we require some preliminary lemmas.
Lemma 2.9 (p-adic Liouville's Theorem). Let & € 7,

be algebraic of degree d over @ and A,B be any two
non-zero rational integers. Then there exists a constant
k depending only on & and d such that

. -d

|oe-A|, > kM ,

where ‘M = max (|A|,|B|).
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Proof. See Theorem 1 page 47 of Mahler [25].

Lemma 2.10. Let & € ZP be algebraic of degree 2

over @ and let its continued fraction expansion be

£ = ap_ a1 az
be+ b1+ bo+ 77

where aj,bi € @ ~ {0} for all i. Let A,,B, be as
defined in (2.2) and non~zero for n=1. Put
M, = max (|A,|,|Bnl) (n>-1),
Suppose that
Mo,, > M, (n=1).
Then the following two statements are equivalent:
(i) there exist two constants k,;,k; independent of n
such that
|BpE-2,l, < kaMp? , My, < koM (n>-1),
(ii) there exists a constant k3 independent of n such
that
|Bpe&-Rnlp < ksMp Mo L, (n > -1),
Proof. Suppose that (i) holds. Then (ii) is immediate.

Now suppose that (ii) holds, we get by Lemma 2.9, for some

k independent of n,

k Mp? < |Bp&-An|p < ksMp'Mpi, (n>1).
Thus
My, < ksk™'Mp (n>1).
The cases n = -1,0 are trivial from the definition.

Using the hypothesis
Mn+1 N Mn (n>l)’

and the definition for the cases n = 0,-1, the other

inequality follows.



36

Lemma 2.1]1. Let the assumptions and notation be as

in Lemma 2.10. Suppose that

(l) Anan € 7 ~ {0} (n>l), Ay = 0, By = lr A—l . lr

(ii) Mpy,, > My (n=0),

(iii) there exists a constant k3 independent of n such

that
Baf-Bglp < koMZ' M7l (m>-1),
(iv) bn = A,_ B, - A B, _, # 0 (n=0),
6n = An—1Bn+1 - An+1Bn—1 + 0

Then |an|, [anlp, |bnl, |by|p are bounded for all n=>0.

Proof. For n=0, we have, by (2.8) of Theorem 2.6,

ap = =Bp4y /By -
Thus
— An+1 o A_n
Ianl - An An p N

Now An € Z ~ {0}, so |An||lAn|p = 1, and we get

lanl < |dn+il[8nlp -
Clearly,
| An+, ] < 2MpM, 4 ,
|8nlp = | (Bpo =By- &) Bp=(An=Bn&)Bn_, |p
< k,Mpl Mgt .
Thus

lan| < 2k, Mp+;Mpl, (n=>0).
From Lemma 2.10, there exists a constant k: such that
for all n=0

Mpy, < k,Mp < k2Mm, .
Hence, |ap| ~is bounded by 2k2k,. Similarly

|an|p < |An+1[p |anl < kMg iMpi,-2M, 1M,

< 2ks ,
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using the hypothesis (ii).
As for b,, we have for n=0,
by, = 8,/b0, .
The required results follow by the same arguments as
above and the facts that

8,1 < 2M _ M ,

n-1-"n+1
IGnIP = I(An—f_Bn—lE)Bn+1"(An+1_Bn+1‘E)Bn—llp
< kgMpl oMot

Theorem 2.12. Let £ € Zp be a quadratic irrational

having the continued fraction

£ = ap aj as
bo+ by+ b+ *°*

where aj,b; € Q ~ {0} for all 1i. Let the other notation
be as in Lemma 2.10. Under the hypotheses of Lemma 2.11,
the continued fraction of £ is weakly periodic.

Proof. From Theorem 2.2 (ii) (b), we have

E = EnAn + apAp-;

EIl’lBll’l + aan- 1

(n>0).

Let £ satisfy the quadratic equation with integral
coefficients.
Px®> + Ox + R =0 .
By substitution, we get for n=0,
PLEA + QuE2 + R, =0,
where

P, = PA] + QA B, + RBZ ,

Q, = an{ZPAnAn_l-FQ(Aan_1+An_1Bn)-k2RBan_1},

Rp = aﬁ(PA§—14-QAn—1Bn-14'RBﬁ—1) .
We see that

lP < ClMﬁ 7

nl

where ¢, 1is a constant independent of n. From the
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hypothesis
Define C, (n=>0) by

so that
-2
[Chlp < kaMz2,
Eliminating A, in the equation for P,, we get
Pn = 2PEB,C, + QB,C, + PC2 .
Thus

nlp
where c¢2 is a constant independent of n. Since P, is
an integer, then it is divisible by a high power of P,
say p'". Thus |P,p™"™|  is bounded. Now consider R,.
Clearly,

Rn = aI"’;Pn__1 .
Using the fact that |a,| is bounded (Lemma 2.11), the
estimate of [P, _,| and the hypothesis (ii) of Lemma 2.11 ,
we see that there is a constant ¢+ such that

[Ry| < cyMZ .

Also using the fact that |a is bounded, the estimate

nlp
of an—1|p and the result (i) of Lemma 2.9, we see that
there is a constant Ccs such that
IRy |p < csMp? .

Since R, 1is an integer, it is also divisible by the same
power of p as P,, namely p'"™ and also IR,p""?| is
bounded. Now we consider On. By direct computation

Q, = 4P, R + ag(Q2—4PR)(Aan_l—An_an)2 .
Using the estimates of Pn+Ry, and the boundedness of ENE

lanlp, we have
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|in <CGM121 ’

|Qn|p<§c7M;2,

where cg,c7 are constants independent of n. By the
same argument as before 0, is divisible by p'® and
|o,p~"™| is bounded. Therefore if we divide through by
the common power of p in

P.EZ + Q.E, + R, =0,
we get, say,

XpEZ + Y £, + 2, =0,
where X,,Y,,Z, are integers with bounded absolute values.
Therefore, there are only finitely many different triplets
(Xp+/¥n,%2,). We can then find a triplet (X,Y,Z), say,which
occurs at least three times for different n. Therefore two
of the corresponding roots §,, of the above equation must

be equal at two distinct values of n say r and s.

Hence
Ayq1 Ay g2 _ dg41 Ag42
E.=Db_+ =% L ve. = &g = by + oSEL Zst2
r r br+1+ br+2+ k%+{+h%+2+

that is the continued fraction is weakly periodic.

Now we turn to the question of finiteness of continued
fraction. The following theorem says roughly that to a
certain extent rational numbers can not be too well approx-
imated.

Theorem 2.13. Let ag a; @2 ... be an infinite
bo+ b1+ b+

convergent continued fraction representing an element &

of Z with a;,b; € Q@ ~ {0} for all i and A;,B; are

b
as defined in (2.2). Suppose that
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(1) A;,B; € 7 ~ {0}, My, , >M, (i=>1),
(ii) |BjE-As|p < cMj? (i=1),
where ¢ 1is a constant independent of 1 and
M; = max (|A;|,[Bi|). Then £ is not a rational number.
Proof. Suppose on the contrary that & € Q and let
&€ =r/s ,

where r,s are integers with no common factor. By the

hypotheses,

|Bijr-sA; |, < cMi?[s|, < cMi® (i>1).
Also,

IBir—SAiI < C‘Mi (i>l)
where c¢' is a constant independent of i. Thus

|Bijr-sA;|p |Bir-shj| < cc'Mi! < 1,
for sufficiently large i. But B;r - sA; 1is an integer,
so we must have

B;jr - sA; =0,
that is r/s = A;/B; for all large i, say i=>i(f).

Writing i for 1i(¢) and since r and s are relatively

prime, we must have

Ai = kir, Ai+1 =3 ki+1r’
Bi = kiS' Bi+1 = ki+ls'
Consider for i = i(%),
AijBij4y, - Aj4,B; = kjkj4, (rs-rs) = 0,

Aj-,Bj - AjBj_, * 0.
Thus from (2.8) of Theorem 2.6, we see that for i = i(§)
a; =0,
which contradicts the fact that a; # 0 for every 1i.

Hence the theorem is proved.



CHAPTER 3

THE CONTINUED FRACTIONS OF RUBAN AND SCHNEIDER

1. Introduction.

This chapter will be the investigation of two p-adic
continued fractions. Sections 2 to 5 will be devoted to
the one studied by Ruban in [34], [35] and [36]. As
mentioned in Chaper 1, this algorithm is the most natural
analogue of the classical continued fraction and had already
been mentioned in Mahler [21] but not pursued because of its
comparatively weak approximation properties. In fact, Ruban
in [35] and [36] also extended it to a multidimensional
algorithm similar to the Jacobi-Perron algorithm, but we
shall restrict our attention here to the one-dimensional
case. The algorithm will be developed in section 2 and by
referring to Chapter 2, its basic properties will be derived
in section 3. In contrast to the classical continued
fraction, there are rational numbers having periodic Ruban
continued fractions and this will be considered in section
4. 1In section 5, the measure theoretic results of sections
6 and 7 of Chapter 1 will be used to obtain metrical results
for Ruban's algorithm analogous to those described in the
latter part of section 2 in Chapter 1. Apart from the
question of periodicity, the results obtained here are
already considered in Ruban [34], but our proofs of the
metrical results will rely heavily on the approach of
Billingsley [81].

The remaining sections, 6 to 9, will be devoted to

the closely related algorithm of Schneider in [37] and will

L]



treat this algorithm in a corresponding manner. The results
in sections 6 and 7 will correspond to those in Schneider
[37], but the remaining two sections on rational numbers
with periodic continued fractions and on metrical results
are not covered in Schneider [37].

2. Ruban continued fraction.

Without loss of generality, we restrict our consid-
eration to numbers in pZ,. Let £E€pZl,~{0} be the
number whose Ruban continued fraction is to be sought.
Since &£#0, then ]£'1|P>>l and let the unique series

representation of £~! be

-1 _ -m -m+1
E - c—-mp + c—m+ lp

where m 1is a positive integer depending on & and

ci € {0,1,...,p-1} for all i>-m with c_p# 0. Define

(3.1) <E~1ls> = c_mp—m-i-...-i-c0 ’
(3.2) (1) = cyp+cup?+... .
To each &, <¢”'> and (£7!) are unique and so we can

uniquely write
g7 = <g7> 4+ (g7
The algorithm proceeds as follows: write
(3.3) £ =bo + &1,
where bo = <¢7'>, &1 = (£§7'). If &; = 0, the algorithm
stops. If £&; # 0 and since lEllp < 1, then by repeat-

ing the step just described, we can uniquely write as in

(3.3),

g1 =by + &, ,
where. b1 = <€7'> and &, = (£7') as defined in (3.1) and
(3.2). Again, if &, = 0, the algorithm stops, otherwise

it proceeds in the same manner with & replacing £&: and

SO oOn.

+.etc_1p '+cotc,pt.e.. ,

4.2



Since the bj's (i>0) obtained are unique, then we
conclude that each § Efip'v{O} has a unique Ruban contin-

ued fraction expansion of the form
1 1 1l

(3,4) by+ b+ b+ *°°
where b;'s are of the form c_,p ™c_p,,p " '+...+c, for
some positive integer m and cj € {0,1,...,p-1} for all
i, with c_p#0.

For convenience, let us define
(3.5) J = {be€Q; b==c_jp—j+c_j+1p_j+1+...+co for some

jez", c;€{0,1,...,p-1} for all i, c_j#C}.
We sum up and complete the above discussion inthe foll-
owing theorem.

Theorem 3.1. To each E(Eprrv{O}, there corresponds

1 1 1
bo+ b1+ bao+

b; €J for all i with J as defined in (3.5). This

a unique Ruban continued fraction

eee 5 Where

unique continued fraction converges to & that is

1 1 1

(3.6) = b, b F boF °°° °

Conversely, if bj €J for all i, then the continued

1l 1 1
be+ b+ bo+ EC

fraction is a Ruban continued fraction
representing a unique number £, say, in praa{O}.

Proof. The existence of a unigue Ruban continued
fraction to each § Epiprv{O} is clear from the construction.
Let n be a positive integer. At the nth step of construc-

tion, we have

-1 _
rnﬁl _'bn—l + gn ’
where b, _, €J and &n.,, &, €plp. If £,=0, then the
continued fraction is finite and is equal to §&. If &, #0
+

for every n=12 , then it can be shown by induction that



n
& - %n ~ B (E‘l(]_?;l)+B )
n n n n n-1
An _ 1 1 1
B, be+ b+ "7 by,
i>1, it follows from (2.4) of Theorem 2.3 that

(n=1),

Since |bj|,>1 for all

[Bnlp = |bebi...by_,|p and |Bh—,lp = |byb,...bp_s]p -
Also §&,#0, implies that at the (n+1)th  step,
nl =by + &, (n>1),

with &.,,€pZ,~{0} and Ibn|p> 1. Thus by the strong

triangle inequality,

lentlp = Ibnlp o
and so
|e5 Byl, = bobyeo b | > [bobyaiby ol = (B ]y -
Therefore, by the strong triangle inequality,
2
| €-A,/Bylp = |bibl. . by bylp? (n>1),

and hence A,/B, converges to §&. The converse is proved
by using Theorem 2.3 to show convergence to some £ and
then showing that the given continued fraction must be
identical with the continued fraction obtained from & by
the Ruban algorithm.

3. Properties of Ruban continued fraction.

Ruban continued fractions possess the simple properties
mentioned in (2.2), theorems 2.1, 2.2 (ii), 2.3 (i), 2.4
and 2.5. We collect here some important properties for
future reference.

Theorem 3.2. Let EEZpr~J{O} and let its Ruban

continued fraction be

1 1 1
be+ b1+ bao+

£ =
where b; €J for all i>0 and J 1is as in (3.5). Let

(2,), (Bn) Dbe the corresponding sequences defined by (2.2),



so that the nth convergent is

An _ 1 1 1

an > .
Bn b0+ bl+ cce bn—l (n l)
(1) For n=0,
An+1 = bnAn + An—l’ Bn+1 = ann + Bn—l B
|Bysrlp = [bgby.cub |
(ii) For n=21,
E An _ (_l)n
Bn Bn(gan-i—Bn—l) ¢
1 1
where &, = b, + Bslie o
" . bn+1+ bn+2
‘ _An| |1 | 1 = 1
Bnlp BnBn+: P lanﬁlp lb%b%"'b%—lbnlp

Now let &€ pZ,~ {0} have Ruban continued fraction
(3.6) and let (A,), (B,) be the corresponding sequences
defined by (2.2). Difficulties can arise because the b,'s,
A,'s, Bp's, although rational, are not necessarily integral
and we overcome this problem by using the idea of equivalent
continued fractions discussed in section 2 of Chapter 2.

We define

(3.7) On = PpPpa; (n=1), a0 = po,
Bn Pnbn (n=>0),

so that for all n, the p,'s are powers of p such that
by €27, |ogbyl, = 1, and hence
o, = p' ", r,€Z, r,>0, Bn€Z+ (n=>0).

Then by (2.6) & 1is also represented by the continued

fraction

Q
Q

P 01 2

= 2
(3.8) & = Bot+ Bi1t+ Bot

¢ o @ 'y



In the notation of (2.2), let

(3.9) An = An(o"rB) ’ Bn = Bn(OL,B) -

Clearly, An€22+, Bp € zt  and by the discussion in section

2 of Chapter 2,

p

(3.10) An An = >
By B, ! anlp =1 (n=1).

Using this equivalent form, we shall give upper and lower
bounds for the error [g-A,/Bn|p . First we give some
preliminary results on the sizes of o,,Bn/An,Bn-

Lemma 3.3. Let E(Eprrv{O} have Ruban continued
fraction (3.6); (o), (B,) be as in (3.7); (A,), (By)
be as in (3.9) and let

Mp = max(|An|,[Bal) .

Then
(i) 1<B,<a,- 1 (n=1),
(ii) (A,) and (B,) and hence (M,) are strictly increas-

ing sequences (of positive integers) and

(L+a )My, < Mpy, S Qo -1)M, (n=1).

Proof. Using (3.7) and the properties of p, and by,

we get
Bn = Pnbn €= ppn-1< pppp-;, -1 =04-1 (n=1),

and this establishes (i). (ii);It follows by induction
from (i) that (A,) and (B,) and hence (My) are
strictly increasing. The remaining inequalities now follow
by using (2.2) applied to (A,) and (By).

Lemma 3.4. Let the notation be as in Lemma 3.3. Then
(i) Mop My 2 (I+a,) (L4o, ) o oo (14a, )0, o (n=0),

n
>
ne1 S 20 0 ... max (og,Bo) (n=0).

(ii) M



Proof. We note that
MMy = B2Ay = (B1Botar)aoe = (l+ay)ao ,
MiMo = A1Bo = ao .
Both results now follow by induction using Lemma 3.3 (ii).

Theorem 3.5. Let the notation be as in Lemma 3.3.

Then for n=>1,

(1) € -An/Bnlp = (opa1...an)" 0
(ii) 2n=1 An
> | & -S4
Mpon Bnlp
> (A+aTl) (A+az!) ... (I+op') | l4a7'+...+ogt .
MMy 4 MaMp o+,
Proof. (i) follows directly from Theorem 2.5.

(ii) follows from (i) and Lemma 3.4.

Corollary 3.6. Let the notation be as in Lemma 3.3.

(i) If the series ) 5; is divergent, there does not
n=1 1

exist a constant k, independent of n such that

| EBy=Aplp < KM ML, (n>1).
(ii) If the sequence (|a,|) is bounded, then there does

not exist a constant k, independent of n, such that
| EBn=An|p < kMM (n>1).
This is equivalent to saying that if there is a constant k,
independent of n, satisfying
| €8,=Aq [, < ki MZL, (n>1),
then the sequence (|ap|) is unbounded.
Proof. Both results follow from (3.10) that |B,|,=1
(n=1) and Theorem 3.5.
We now look briefly at the question of periodicity.
It is easily seen from uniqueness that a Ruban continued

fraction is periodic if and only if it is weakly periodic

in the sense of the definition given in section 4 of Chapter



2; and since Theorem 2.8 applies here, we know that if ¢
has periodic Ruban continued fraction, then it satisfies a
quadratic equation with rational integral coefficients,
and we shall see in the next section that & may in fact
be rational. It is easily seen that the Ruban continued
fraction (3.6) is periodic if and only if the corresponding
equivalent continued fraction (3.8) is periodic, and we
might therefore hope to prove periodicity of the Ruban
continued fractions of at least some gquadratic irrationals
by using Theorem 2.12, which assumes the hypotheses of
Lemma 2.11. However, Corollary 3.6(ii) above shows that
if & 1is a quadratic irrational in pr, then the con-
tinued fraction (3.8) cannot satisfy hypothesis (iii) of
Lemma 2.11 concerning the approximability of &, because
if it did then (|ap|) would be both bounded (by Lemma
2.11) and unbounded (by Corollary 3.6). Thus Theorem 2.12
gives us no information.

4. Some rational numbers with periodic Ruban continued

fractions.
One remarkable property of Ruban continued fractions
(3.6) is the existence of rational numbers having periodic

continued fractions. For example,

1 1 1

(3.11) (p-11p~ 1+ (p-1)+ (p-L)p~ '+ (p-1)+ (p-L)p- 1+ (p-1)+

is aRuban continued fraction representing the number -p.

To see this, we solve the quadratic equation

px? + (p?-l)x-p =0

to get either x = p ! or =-p. But x€pl,, so x = -p.

A few more examples are listed below without proofs.
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(3.12) For odd primes p and s€1{1,2,...,p-1} such

that s divides (s-1l)p+1,

-sp _ 1 il
p-1 = ((s-1)p+l) (sp) '+ (p-1)+ (p-1)p~i+(p-1)+
1 1
(p-l)p~t+(p-1)+ (p-L)p~T+(p-1)+

- . -

where the continued fraction on the right is periodic from

the second quotient onwards.

+
(3.13) For ne€ezZ ,

1 1
(p-1)p "+(p=L)p " T4l .+ (p-1)+ (p-l)p ‘+(p-1)+

1 1
(p-L)p~ "+(p-1)+ (p-1)p '+(p-1)+ °"°

_pn =

where the continued fraction on the right is periodic from
the second guotient onwards.

This section will be the investigation of a few cases
of such continued fractions.

Period 1 : Let £€pZ,~{0}. Let its Ruban contin-

ued fraction be periodic with period 1, that is £ is of

the form
e- 1 1 1
b+ b+ b+ "
where b€J (as defined in (3.5)). Then £ satisfies the

quadratic equation
£ + bt #1 = 0.
Clearly £€Q if and only if b? + 4 is a perfect square.

Let me€Z' be such that |b|, = p". Then

—m+1+ _ —m

b = c,p™™c,p «..tcp_,ptcy = up

where c¢; €{0,1,...,p~1} for all i with c_,#0 and

—-m
u = co+c1p+...+cmpm652+. Therefore, £€Q if and only if

there is an integer =z satisfying

u? + 4p®™ = z2 |



To solve this diophantine equation, write

4p?™ = (z-u) (z+u).

Clearly, we may suppose that zE€ Z+, without any loss of
generality.
It is easily seen that z-u and z+u are both even. Hence
there is an ne Z* satisfying
Z-1u = 2n.
Therefore
2m

P = n (n+u) .

2m, r>s=0

]

Thus there are integers r,s such that r+s
and
n=mp, n+u=p .
Solving for u, we get
u = ps(pr—s_l).
Since u is of the form c,+c,;p+...+cpp" and |u]_ =1,
then s =0, r = 2m and so u = p?®™-1., But

m+1--1, therefore m = 0 or 1.

u < (p-1) (14+p+...+p") = p
The case m = 0 is not possible because |b|,>1. Hence
‘'m =1 and so

u=p’-1= (p-1) + (p-1)p .
Therefore, the continued fraction is (3.11l), and we conclude
that the only periodic Ruban continued fraction with period

1 having rational value is

1 1 1
(p-)p~ 1+ (p-1)+ (p-1l)p '+ (p-1)+ (p-l)p i +(p-1)+

« e TP

Period 2 : Let & €pl,~{0} and let its periodic
Ruban continued fraction be of period 2, that is & 1is of

the form

fo 111 1 1 1
bo+ b1+ bo+ bi+ boe+ b1+ e -

50



We see that, as in the case of Period 1, &€ Q if and only

if (beb1)? + 4byb, 1is a perfect square. Now let

k

-k+1 -
Te..tCrPtCx = UyPp ,

-k
by, = cop tC;P

b, = dop'K+d1p‘K+1+...+dK_1p+dK = up ¥ .
X = k + K, u = upu:r ,
where k,KEEZ+; c;,d; €{0,1,...,p-1} for all i with

ci1,d; both #0;
— k K
U, = ¢cqCpt...+cyp , u, = d,+d;pt+...+dgp .
Thus, we see that £€Q if and only if there is an integer
z (which, as in the case of Period 1, we may suppose to be
positive) such that

2 4 4p?X

(u+p?%)? = z
that is,

4p?X = (u+p?X-z) (u+p?X+z) .
By using the same kind of arguments as in the case of period
1 and excluding the case of Period 1, we obtain the result
that there is no periodic Ruban continued fraction of (exact)

period 2 having rational value.

5. Metrical properties of Ruban continued fractions.

We shall use the following notation from (1.2) and
(1.3) of section 6 of Chapter 1.

S = {¢}uis(o,p Hruis(g,p Hirez ,r>2,8¢€12,

p ¥ <|E|,<p”! or £ = 0},

6(S) = o-field generated by S.

As in Chapter 1, u denotes the measure on o(S)
given by Theorem 1.22, or, equivalently p 1is the unique
Haar measure on 0(S) normalised so that u(pr) = 1.

Since our results in this section will not be affected

by sets of p-measure 0, and since u(9) = 0, we shall



consider only numbers in the set
(3.14) I = pran .

Let £€T1 and let its Ruban continued fraction be

o L1 1
bot+ b1+ b+ °°° °

We shall also find it convenient to use the notation

1 1 1 S
(3.15) £ = B, (517 b (5T b, (577 «..=[bo(&),b1(&),b2(8),...].

The continued fraction of & must be infinite since & is
irrational (by Theorem 2.7). Define the mapping

T : 1T »1
by

(3.16) TE

T([bo (£),b1 (£) ,by (£)])
= [by (&) ,b2(8),...]1 .
where & 1is as in (3.15). The following lemma is immediate
after noting that
T"E = [by (E) ,bpyy (8) 1bps, (8) ... ] (n>1).
Lemma 3.7. Let & Dbe as in (3.15). Then for n=>1,
bn(E) = by (T"E).

Now for fixed b,,b,,...b, €J (as defined in (3.5)),
we define
(3.17) A(by,bys-ce,sbn) ={E€T;b  (E)=b,,b, (E)=b,,...,b,(E)=b,}.

Lemma 3.8. For fixed bo'b1'°"'bn €J, we have
A(by,...,by) = [by,...,bnl

pl
5,715, b 2,715, - B 2. . (b FIB. 1) 752

+

that is to say A(b,,...,b,) 1is a sphere with centre
[b,,...,b,] and radius p~'|b,b,...by 52'
Proof. The result holds for one bj, say b,, because
A(bg) = l/(bo+pr)

and by Theorem 1.24(ii), this is equal to



"’O
~

p_=[b0]+%p_ 5
0

o)
o)

1
= 4+
b, 8

Now suppose the result holds for r bj;'s and consider

_ 1

Albgreveiby) = a6, B,

By induction hypothesis,

A, ,e..by) = [b,,...,b,]

+ PZp :
(b1+[b2,...,br])2(b2+[b3,...,br}}3...(br_1+[br])2b%
for which the result for A(b,,...,by) follows by another
application of Theorem 1.24(ii). Thus the general result

follows by induction.

Lemma 3.9. Let S€SNnI. Then for all n suffic-
iently great S can be represented as a countable union of
A(by,...,b,)'s, where A(by,...,by) 1is defined in (3.17).

Proof. Let S = S(&,p ') €S. For any n, each point
of 1 Dbelongs to some A(by,...,b,) and so SNnI can
certainly be covered by A(b,,...,b,)'s. Moreover, by
Lemma 3.8, each A(b,,...,b,) 1is a sphere with radius less
than

|bgb;...by|p% < p72772
and belongs to S. We take any n such that 2n+2>r.
Then by Lemma 1.19 (ii), each A(by,...,b,) which inter-
sects S is completely contained in S, and so SNn1I is
the union of the A(b,,...,by)'s which intersect it.

We now apply these results and Lemma 1.26 to prove the

following theorem.

Theorem 3.10. Let T be as in (3.16). Then T 1is

mixing and hence ergodic.
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Proof. It is easily seen that the restriction of
to {BNI; B€o(S)} is determined by u|S’ where
S*" = {sni; seS}
and a slight modification of Lemma 1.26 shows that we can
apply the lemma to T with S’ in place of S. By Lemma

3.9, we may take S, in Lemma 1.26 as the collection of

all A(by,...,by.,)'s. Thus, as u(snNiI) = u(s8s) and
7% nI =1T"s, it is sufficient to prove that for each
ses

p(Ab,,..o,by ) NTTS) = u(A(by, ..., by ) )u(s)
for all A(by,...,b,) and all n sufficiently great. From
the definitions of T and A(b,,...,by), it is not diff-

icult to see that

1 1 1
bo+ b1+ °°° b,_,;+5 °

A(by,...,by) NT "s =

Now it can be shown by induction (analogous to the proof

in Lemma 3.8) that

1 1 1 _
BFI BTI * o a B;j?:g - [bOI"'Ibn]
o S
(by+Ib,, ... b)) 2. . (by_,+[bn]) 2b}

and hence

p(d by, ee.,byoy) NT"S) |byb,...by| 2% u(S)

b
U(A(bo,.-.,bn))U(S) [4

as required.

We shall now establish p-adic analogues of the metrical
results in section 2 of Chapter 1 as consequences to Theorem
3.10, but first some preliminary results are required.

Lemma 3.11. (1) Let by,b;,...,b,€J be fixed and

let

|bilp = pki (i=0,...,n),



where kj €z" for all i. Then
W{E€T; b,(E)=b,,...,by(E)=by} = p~2Ko-2ky-...-2kn,
(ii) Let k,,k,,...,k, be fixed positive integers. Then
W{EE T By (E) | p=p v eney |Dp(E) | p=p P} = (1) PpFoK17e - n
(iii) Let k,,k,,...,ky be fixed positive integers. Then
U{EEI;IbO(E)Ipiipko,...,|bn(€)Ipsgpkn}
= (1-p7*0) (1-p7F) ... (1-p~Fm).
Proof. (i) follows easily from (3.17) and Lemma 3.8.

For (ii), we note that

U{E€I;|b0(€) |P=pkol'-'llbn(g) |p=pkn}

=) .. ) p{EEI;b,(E) =by,...,b (&) =by} ,

bo b,

where ) denotes the sum over all possible values of
bj

ki

b; €J with [bj|, =p for i=0,...,n, and the result

follows from (i). To prove (iii), we note that

WEET; [By (8| <D %senn, by (8) | < PP
ko kn ) .

= 1 ... ] wleeli|pg (@) =p"° ..., |by(8) [p=p""} ,
ig=1 in=1

and the result follows from (ii).

Theorem 3.12. PFor almost all EEZpZP (with respect

to U), we have

(1) lim |b, (&) bl(g)'--bn—1(5)|;/n = pP/ (p-1)

n-—»>w

A |
(ii) lim = {[b, (B) | p+.. . +[by ()|} = =,

(iii) with A, and B, as defined in Theorem 3.2,

: 1/n _ q: t/n _ ,p/(p-1)
Lim |Bhoy (8) 15 lim A, _, (8) ]} P

Proof. Let T be as in (3.16). By Theorem 3.10, T
is ergodic and thus satisfies the Ergodic Theorem (Theorem

1.25). Putting in the Ergodic Theorem,



£(£) = log|by (&) |, ,
and using (i) of Lemma 3.11, (i) follows. To get (ii), we
take
£(8) = [bo(8) ],
and argue as in (i). For the first part of (iii), put
£(T78) = log|Bp(£)/B,_, (E) ], (n>1),
and making use of Theorem 2.1 (iii) as well as (ii) of this
Theorem. For the second part of (iii), take
£(T7€) = log|An (£) /A, (&) ], (n>1)
and argue as in the first part.

Theorem 3.13. Let & be as in (3.15). Then for each

fixed positive integer k,
U{EET;lbn(E)IP<§pk for all n>0} = 0
and hence [bn(g)lP is unbounded for almost all & in pZ,.
Proof. This is an immediate consequence of (iii) of
Lemma 3.11.
In fact, Theorem 3.13 can be further strengthened.

Theorem 3.14. Let ¢(n) be a positive-valued function

p_w(n) diverges. Then

0

defined over Z+ such that

Ne~18

n
u{EEpr;Ibn(£)|p3>pw(n) for at most a finite number
of n} = 0.
Proof. The proof follows from Lemma 3.11 (iii).

The next theorem is a p-adic analogue of Theorem 1.11l.

Theorem 3.15. Let & E€plp~ {0} have a Ruban continued

fraction (3.15). Then for any positive integer k, we have
max
< n<pN- _
(1) lim u{€€17 Frmp o [bnlp < pk} = exp(-p ") ,

max
N_
(ii) lim u{gez; 0<n<pN-1 |bylp pk} -
N->o

pN

O



Proof. From Lemma 3.11 (iii),

-k - N

= (l-p .

u{g€1; O<ngg§_1|bn(5)lp<

By taking 1iflit as N->ew, (i) follows immediately.
(ii) is a direct consequence of (i).

6. Schneider continued fraction.

Let & €plp~{0} be the number whose Schneider contin-
ued fraction is to be sought. Let the unique series expan-
sion of & Dbe

_ m m+1 m+ 2
£ = cpP *Cp4,P FCp+oP L

cee 4
where me 2zt is dependent on & and c¢; €1{0,1,...,p-1}
for all i>m with ¢, ,#0. The algorithm proceeds as
follows : write uniquely
E = aour' (&) ,

where ao, = p" and uo(f) is a p-adic unit. Now uo (&)
has the unique series expansion

uo (§) = cw tcu ptcn p2+...

where ¢,; € {0,1,...,p-1} for all i with ci1o# 0.

Since aop, cww are unique, then we can write

= ao
& = be + &1 7

where bo = cyp, £, = cn p+Ccp p?+cis p+... . If &, = 0,
the process stops. If §&,#0, 1let r Dbe the smallest
positive integer such that c¢,,#0, then we
write
g1 = aur' (§) ,
where a; = pr and u; (&) is a p-adic unit. Now repeat
the previous step with u, (&) replaced by u;(g). The

algorithm continues in this manner.

Since the a:

;'s and b;'s obtained are unique, then

£ has a unique Schneider continued fraction
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ag aj ap
bo+ b1+ bo+ =7

where a; age of the form pri with rg_€Z+ depending

on & and b; €{l,...,p-1} for every i. The next theorem
sums up and completes this discussion in the same way as
Theorem 3.1 does for the Ruban continued fraction algorithm,
and the proof, which is similar, is omitted.

Theorem 3.16. To each gfiprrv{O}, there corresponds

a unigque Schneider continued fraction

ag aj a?z
bo+ b1+ b+ *°° 7

where aj; are positive powers of p and b; €{1,...,p-1}.
This unique continued fraction converges to §, and so

£ = g a az
Bo¥ D1¥ Dot """ -

Conversely, if aj; and bj are of the forms just men-

ao ai az
bo+ b1+ b+ S

tioned, then is a Schneider continued

fraction representing a unigue number in pZP.

7. Properties of Schneider continued fraction.

Clearly, the Schneider continued fraction algorithm
is very similar to that of Ruban. Because of this, we
shall give fewer details in the derivation of its properties
and omit most details. The following theorems are some of
its important properties, which follow from (2.2), Theorems
2.1, 2.3 and 2.5.

Theorem 3.17. Let EEEprnv{O} and let its Schneider

continued fraction be

£ = do a az
bo+ b1+ b+ e

where a;, b; are of the forms described in Theorem 3.16.



2Y

Let (A,), (B,) be the corresponding sequences defined by
(2.2), so that the nth convergent is
i

A a a an -
0 = o 1 Zn-1 >
B ]olb;{l R ] (n,l).

(i) For n=0,

Apy, = bpApta A _,, Byy, = byByta B,
IAn+1|p = an+1|p = 1.
(ii) For n=>1,
|e-An/Bnlp = lasa;...aplp = (a,a;...ay) 7" .

Proof. The only proof that needs checking is that
|2ns,lp =1 (n>0).
This follows easily by induction.
By similar proofs as in Theorem 3.5 and Corollary 3.6,
we have also

Theorem 3.18. Let the notation be as in Theorem 3.17

and define

M, = max ([Ay],[|Ba]) .

Then
(i) |€-2n/Bnlp < Mplap’ (n=>1),
(i1) |e-2,/Bylp >(1+ay i+ c+a, IM M L (n>1),

(iii) if there is a constant k, independent of n,
satisfying
|€-An/Bylp<k M_ "M (n>1),
then the sequence (|a_|) is unbounded.
As to the question of periodicity, similar comments
to those for Ruban continued fractions, at the end of
section 3, apply here also. Although Theorem 2.12 was

suggested by the discussion in Schneider [37], he appears

to have overlooked some points and neither Theorem 2.12 nor
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his discussion seems to yield information concerning
continued fractions of guadratic irrationals in pZP.

8. Some rational numbers with periodic Schneider

continued fractions.

Let us start with some examples of periodic Schneider

continued fraction which can be readily verified.

(3.18) P P P % -
(p-10+ (p-1)+ (p-1)+ *°° P
E_I; _ r
1+ (p-D)+ (p-1)+ (p-)+ °°° ~ 1-p
(rezhy.

These two examples indicate the existence of periodic
Schneider continued fractions possessing rational values.
Similar investigations to those in section 4 will be carried
out in this section.

Period 1: Let &£€pZ,~{0} and let its Schneider

continued fraction be periodic with period 1, that is

E- g Bt cor
with a = pS for some fixed sezt ana be{l,...,p-1}.
With the same arguments as in section 4, we see that & €0
if and only if there is an integer =z satisfying
b2 + 4p° = z?2

By carrying out the investigation as in section 4, we
obtain the result that the only periodic Schneider continued
fraction of period 1 having rational value is that in (3.18).

Period 2: Let §&E€pZp,~ {0} and let its Schneider
continued fraction be periodic with period 2, that is

E - ao al apg ail ao ai
bg+ bi+ bo+ b1+ be+ b1+ M

where ag,ai1,bo,b:1 are of the forms described in Theorem



3.16. Again by similar arguments to those of section 4, we
conclude that upon excluding the case of periodic continued
fractions of period 1, there is no periodic Schneider
continued fractions of period 2 representing rational
numbers.

9. Metrical properties of Schneider continued fraction.

Using the same notation for S, o(S), T as in section
5, let £€71 and let its (infinite) Schneider continued

fraction be

apg(&) ai1(&) az(f)

(3.19) & = B, (8)F b (B F B, (B)F *°° *

which we also write as
E = laog(g),a1(&),e..; Do (&) ,b1(E),...].
Define the mapping
T : 1 > 1
by the rule that, for ¢ as in (3.19),

(3.20) _a1(&) az2(&)

TE = b1 (g)+ b (g)+ *°°

2
Also define for any fixed bo,bi1,...,bn€{1,2,...,p-1}

[a: (&) raZ(g)l---; b (&) rbZ(E)»l---]

and ag,...,a, as positive powers of p
(3.21) Alag,...,apnibgs-..sbp)
= {g€l;a,(E)=a,,b, (E)=by, ... ,an(E)=a,,h(§)=b,}.
Clearly, two distinct A(ay,...,anibgy,.-..,bpn) are disjoint.
The following threelemmas can be proved in the same way
as Lemmas 3.7, 3.8, 3.9.

Lemma 3.19. ILet & be as in (3.19) and T as in

(3.20). Then
an(8) = a, (T"€); bp(E) = by (T"E) (n=>0).



Lemma 3.20. Let ao,...,an,bo,...,bn, as before, be

fixed; and let A(ay,...,an,bg,...,by) be as in (3.21).
Then
Alag,.-erapibg,e.-,by) = lag,...,apibgs-..sbyl +

asa;...an Plp ’
(b0+[a1,...,an;bl,...,bn])?(b1+[az,...,an;bl,...,bn])2...(bn_1+[an;bn])3bﬁ

Equivalently, A(a,,...,an;by,...,bn) 1is a sphere with
centre [a,,...,apiby,...,by] and radius p~'laja,...anlp

Lemma 3.21. Let S be as in section 4. For all

S€S, S can be represented as a countable union of
A(ao,...,an;bo,...,bn) for all sufficiently large n¢€ Z+ .
The following theorem is proved in the same way as

Theorem 3.10.

Theorem 3.22. Let T be as in (3.20). Then T is

mixing and hence is ergodic.
To establish results similar to Theorem 3.12, we
require the following Lemma ,

Lemma 3.23. (i) Let A(ao,...,an;bo,...,bn) be as

in (3.21) with a,,by,...,an/by fixed. Then
u(A(ao,...,an;bo,...,bn)) = laoal...anlp i
(ii) For fixed s, ,8,,-..,5Sy €Z+, we have |
u{E€l;a, (8)=p°%,...,a, (E)=p®r} = p %0 7""7°% (n>0).
(iii) For fixed b ,b,,...,by€ {1,2,...,p-1}, we have
uw{E€l;by (E)=b,, ..., bn(E)=bn} = (p-1) "1 (n=0).

(iv) For fixed s ..,sn.€Z+, we have

or-
u{g€l;a, (£) <p®9,...,a, (E) < p°n}

1

= (1-p %) a-pS17hH...(a-p "n7Y)

(nz0).
(p'-l) n+1l




Proof. (i) is immediate from Lemma 3.20. To prove
(ii), we note that

Lo S S

u{gel;a, (8)=p °,...,a,(E)=p 7}

= é U(A(Pso:---rPSn;bol---:bn)) ’

where ) denotes the summation over all possible values
b

of by,...,b in {1,2,...,p-1}. For (iii), we note that

n

a

W{E€T;b, (E)=by,...,bn(E)=bp} = J u(d(ays+-«s@nibyse-esbn) ),

where ) denotes the summation over all possible values of
a

ag,...sa, each of which is a positive power of p. The
proof of (iv) is the same as the proof of (ii) of Lemma 3.11.

With this lemma, the following theorems can be derived
in much the same way as Theorems 3.12, 3.13, 3.14.

Theorem 3.24. For almost all EEIpr (with respect

to yu), we have

. . 1 e . 1 n-1 D
@) lm g Jase) ==, limg ]bse) =%
(ii) lim (ao(g)al(g)_..an_l(g))l/n _ PP/(P—l)z ’

n->«

lim (b, (£)b, (£) ...by (£))/P = ((p=1)1)1/ (P71

n->«

(1ii) lim a}/%(g) = p®/ ("1 % | 1im B2 T () = ((p-1) 1)1/ PV,

n-> n-> )

Theorem 3.25. For almost all EEZpZP (with respect to

1) and for any fixed positive integer Kk,
u{€€l;a, () <p* for all n>0} =0
and hence a,(£) is unbounded for almost all & in pr.

Theorem 3.26. Let ¢(n) be a positive-valued function

p_w(n) diverges. Then

0

defined over Z+ such that
n

h~18

®(n)

U{Eepzp;an(£)>p for at most a finite number of n}

= 0.
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CHAPTER 4

MAHLER CONTINUED FRACTIONS.

1. Introduction.

This chapter will be devoted to an account of the two
p-adic continued fractions developed by K. Mahler. The
first, developed in Mahler [21], will be referred to as
Mahler I and the second, developed in Mahler [25], will be
referred to as Mahler II. The construction of Mahler I and
its properties will be described in sections 2 and 3.
Section 4 will be the description of the algorithm of
Mahler II. The last section, section 5, which is not
covered by [21] and [25], will show how the two continued
fractions are connected to each other.

Both Mahler I and Mahler II depend on the use of
suitable approximations A/B to & whose existence is
guaranteed by Corolloary 1.18. For convenience, we
re-state the result here.

Lemma 4.1. For each p-adic integer § and each
positive integer h, there are two rational integers not
both 0 satisfying

(4.1) {' |a-Bg|, < p~
M = M(A,B) = max(|a|,|B|]) < p™P,

h

and hence
E(a,B) = M|A-BE| < g ek
In each case, we shall start by constructing a

sequence of approximations (A,/B,) such that

A =13, B =B,
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satisfy (4.1) for suitable h and satisfy further require-
ments. The continued fraction will then be obtained from
the convergents by the process of Theorem 2.6.

2, Mahler I approximations.

Let E£€Z,~{0} and let
| |£|P - p—h(«‘;) .
Then we construct two sequences (A,), (Bn) of rational
integers as follows.
Step 1: Apply Lemma 4.1 with
h =2h(§) + 1 =h,; ,
say. Among all the rational integral solutions of (4.1),
choose a (not necessarily unique) pair
A=24A,, B=B5B
for which E(A;,B;) is least. Since h;=2h(&), it is
easily checked that neither A; nor B; is 0 and the
minimality of E(A,;,B;) implies that A; and B; are
not simultaneously divisible by any prime other than p.
If E(A;,B;) = 0, then the process stops, otherwise
proceed to
Step 2: Since E(A,,B;)<p-!, there is a unique
integer h; >h; such that
(4.2) p~ P2 < E(a,,B;) < p 2(hem1)
Now repeating step 1 with h, replaced by h,, we obtain
a pair of rational integers A,,B, satisfying (4.1) and
E(A,,B2) 1is least among all A,B satisfying (4.1) with
h = h,.
If E(A.,B,;) = 0, the process stops, otherwise repeat
step 2 with h, replaced by h,;, and the algorithm con-

tinues indefinitely in this manner unless we reach an n



for which
E(A,,By,) = 0 ,

in which case it stops. It is easily seen that
(4.3) E(A,,B,) = 0 for some n 1if and only if £e€0Q.
Hence, from now on we assume that & £ O and so obtain
by the algorithm infinite sequences of integers (hy),
(A,), (B,) and corresponding sequences (My), (Ap)
defined by

My, = max(|2,],[By]) .

Ay = An_1Bp = ApBpo,

with the convention that

A, =1,B, =0,37 =0, B, = 1.
For each n, (A,,B,) is thus a solution of (4.1) corre-
sponding to h = h, for which E(A&,,B,) is least, and we
have
(4.4) hn4e, > hp > 2h(E) + 1 .

From the two steps of construction and the minimality of
E, we have

-5h
E(A,,B;) > p "2 > E(A,,B,) ,

M, < p%(1+zh(£)) < M,
and so it follows that

|A1—B1€|p > IAz'Bzilp .
Also

A;B, - AB; #0 ,
because otherwise A;/B; = A,/B, and since M; <M;, there
are non-zero integers £,g such that g 1is a power of p
and

|£/g] >1, A, = Ay£/g, B: = B1f/g ,
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and this implies that

E(A;,B2) = |f/g||f/g|P E(A;,B:1) > E(A1,B1)

contradicting the inequality E(A:,B:1) > E(A2,B2) above.

The following properties of the sequences are now

easily checked by induction using the above results for
n=1 and 2. For n=1,
A,#0, Bn,#0, (An,Bn) =p" (reztu{o}),
E(A,,By) > p "Rt1 > E(AL, ,Bns,)

(4.5) Mn < p%hn < Mn+1 7

|An—Bn£|p > IAn+1—Bn+1£lp ’
Bn+y = ApBn4,~Ap4 By # 0, Gn:=An—1Bn+1_An+1Bn—1#:0-
From (4.5), it follows easily that for n=>1,
p—%MnMn+1 < |bpe, | < 2MpMpy,

-1y -1 a1y 1
(4.6) BMp Mpyy S IAn+1|p S PMp Mpy, o

e Lo
%Mnanll = IAn+1lp < IAn_Bnglp <P Mnanll ’

IAn_Bngip = Mﬁz .

Moreover, it is easily seen from (4.5) that for all
n, A,/Bp, is a best approximation, that is, if A and
B€Z such that B#0 and
IA‘Bglp < IAn"Bn£|p ’
(4.7) then
max(|Al,|B]) > My .

Finally,we see from (4.5) and (4.6) that

A
g.._g
Bn

(4.8) lim

n-»>o

p

and hence A,/B, converges (p-adically) to ¢&.



Y=

3. Mahler I continued fraction.

Having obtained two sequences (Ap), (Bn) of rational
integers corresponding to & in section 2, we recall the
construction described in section 3 of Chapter 2 and

define two sequences of non-zero rational numbers (a,),

(bp) by
.__Aan+1 = An+1Bn S An+] + >
an B An_an - Aan_l B An 0 (n 0)
(4.9)
_ An-1Bn+y; = An+;Bn-; _ Sn ' >
Pn = R T1Bn - PnBno =&, 70 =10

with the convention

The sequences (ap), (bp) obtained are well-defined and

yield a Mahler I continued fraction of §&,

E — ag aj. asz
bo+ b+ b+ °°° *

We summarise the above discussion in the following theorem.

Theorem 4.2. Let &€ Zp be irrational. Then ¢§

has at least one (infinite) Mahler I continued fraction

£ = ag ai a2
bo+ b1+ bo+ °°°

where a, and b, €0 for every n. The corresponding
sequences (A,) = A(a,b), (B,) = B(a,b) such that A,/Bj,
are the nth convergents satisfy (4.5), (4.6) and (4.8) and
the A,/B, are best approximations to §, that is (4.7)

holds.

The next theorem indicates that the shapes of a, and
b, as in Theorem 4.2 can be explicitly described.

Theorem 4.3. Let £¢€ ZP be irrational and let

ag ai ag
b+ b,+ b+ ="




be a Mahler I continued fraction of &.
ap and bp are of the forms

On
an = €pn+.1P /enl bn = cn/pen ’

where o,20, c,#0, e, #0, e

n

satisfying

Then for n=0,

n+; * 0 are rational integers

Ienl< 2Vp, |en+ll< 2V/p, |bn|'<2/5|an] .

Proof. From (4.9), using (4.6), we obtain for n=0
=51 Bl
“p “Mpo Mpy, S |anl < 2p*Mp- My,
- -1 3 -1
P My Mpig S Ian|p S 2p°Mp- Myy,
Using (4.5), we get
lanlp < 2,
and so
Ianlp< l'
Therefore, a, must be of the form
an
an = en+ P /en
where o, is a non-negative integer, e, and e, ,,, are

integers not divisible by p. Now since
n, by (4.6), we get

1< |a,]]a < 2V/p

nlp
and since ap = -Ap4,/d,, then A, must
Ap = enpfn

where £, 1is a positive integer and ep
such that

1< |ey] < 2/5 .
Hence, the assertion on the shape of a,

Now consider &, defined by
6n = An_1Bnyy = BAn4Bpoy

it is easily shown by induction that for

An €7 for all

(n=>0),
be of the form
(n>0)l

as before is

is established.
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P My_ M, < [8,] < 2M,_ M., ,
-1 -1 L1 -1

BMpZ i Mpi, S |5n|p S PMpo My

Therefore, from (4.9), we get for n=>0,
5p™7 < |b,| < 2p°MI'M

sp7 g, < [,

n+1 7

b
< <
P 2p p h

By the same kind of arguments as in the case of a we

nt
arrive at the fact that b, must be of the form
by, = cn/pen (n=0),

where c is a rational integer and e, 1is as in the case

n
of a,. Also
-1 _ -1 L -1
|bya | = 6,005, < 2p™M,_ M,
and thus

1
Ibnl < 2P’2[anl .

Now we turn to the question of periodic continued
fractions. It is quite easily checked that all four con-
ditions of Lemma 2.1l are always satisfied by any Mahler I
continued fraction. Hence, by appealing to Theorem 2.12,
we have the following theorem.

Theorem 4.4. Let ¢g€17, be a quadratic irrational.

Then any Mahler I continued fraction of & is weakly

periodic.

We end up this section by two examples which illustrate
the property that a certain part of any Mahler I continued
fraction need not necessarily be a Mahler I continued
fraction.

Example 4.3.1. In 03, ¥-2 exists and has a Mahler I

continued fraction

7c
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6 9/2 3 -3 3

— 1
=2 = 13 5% T4y T2 3¥ 2w

Consider the number

_ 6 9/2 3 -3 3
¢ = I5F¥ ILF D27 2+ 2%

= 2.3 + 3%u ,
where u 1s a p-adic unit depending on . Any Mahler I

continued fraction of ¢ is of the form

6 9/2 3 -3 3
=5+ —ht -2+ 2+ -2+ "t °

which is not the same as

Example 4.3.2. In @s, V-1 exists and has a Mahler

I continued fraction

/=T -1 10 5/2 -5 10

2+ -3+ 3/2+ 4+ -3+ " ¢

Consider the number

;= 10 5/2 =5 10
=3+ 3/2+ 4+ -3+ °°°

1.5 + 52u

where u 1s a p-adic unit depending on ¢. Any Mahler I

continued fraction of ¢ is of the form

5
L = ix °*°

10 5/2 -5 10

which is not the same as 3% 3/2% IF 3% ¢

4. Mahler II approximations and continued fraction.

The Mahler II continued fraction depends on an
explicit method for solving (4.1), which we now describe.
For any given irrational g €Z,, write
E =co + ci1p + c2p®+ ... ,
where c¢o,c1,c2,...€{0,1,...,p~1}, and write
(4.10) tp = tp(8) = co + cap + ... + ch_lph'1 (h=1).

Since lE—Chlp <p ', we immediately obtain the following

lemma.



Lemma 4.5. Let A,B be rational integers not both
0 and let h be any positive integer. Then
-h . . -h
|BE-A[ <P if and only if |Bzy-A[,<p , where &,

is as defined in (4.10).

We now proceed to construct a Mahler II continued
fraction for §&. For h=1, put
a(h) = Ch/Pp ’
and so
0 <a(h) <1.

Now construct the ordinary continued fraction for a(h), say

1 1 1
= afais, T .
afh) = =TT B+ ay. (B)
h
Let R,(h)/B,(h) for n =-1,0,1,...,Ny denote the nth

convergents of the continued fraction of o(h) with the
convention that

R_,(h) =1, B_;(h) =0, Ry(h) = 0, By(h) = 1.
Evidently, we have

Ry, (h) = ap (h)Rp-, (h) + Ry, (h) (n=21,2,...,Ny),

Bp (h)

ap (h)Bp-; (h) + By, (h) .
Now define

A, (h) = LpBy(h) - p"Ry(h) (n=-1,0,1,...,Np).
It is clear that for all n, the greatest common divisor
of An(h) and Bn(h), (An(h),Bn(h)), is a divisor of p",
and R,(h), By(h) >0 for all n=>1. In fact, Mahler [25]
pages 64-67 shows that for some n we have

| ()| < pP/2,  [By()| < P2 .
(We refer to Mahler [25] for the proof, which depends only

on standard properties of the continued fraction of a(h):

but is notationally complex.) Thus, by Lemma 4.5 the pair



A = Ap(h), B = By(h) satisfies (4.1) and we have the
following theorem.

Theorem 4.6. Let h€Z'; & and ¢p be as in (4.10).

Then there exist non-zero integers A,B satisfying (4.1)
and such that

A =B - th,
where R>0, B>0 and R/B 1is one of the convergents of

the ordinary continued fractions of ch/ph.

For each n€l', let (A,,Bn) Dbe a solution of (4.1)

obtained by applying Theorem 4.6 with h; = 1 + 2h(g) and
h, =n (or n+2h(§)). We now wish to construct a Mahler
II continued fraction for &. There are two conditions

that must be satisfied, they are

An = An_an - Aan"l #0 (n> 0)
6n = An-1Bn+; = AnsiBnoy
(as usual, we set A_, = 1, B =0, A, =0, B, = 1);

-1 0 0

and as we have seen from results in Chapter 2, it is
natural to require that

Mpe, = max([Apy |/ |Buey|) > My = max (|An|,[Bnl)

(n=0).

It is easily seen that we can satisfy these three require-
ments by extracting pairs of subsequences for which the
value of M are strictly increasing and the value of
|E-A/B|, are strictly decreasing. Let (A,,By) be a
pair of such subsequences obtained by omitting as few pairs
(A,,B,) as possible. Then, by section 3 of Chapter 2, the
sequences (A,), (B,) determine a continued fraction con-

verging to & and we call this a Mahler II continued

fraction of &. It is clear from the construction that

73
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the convergents A,/B, of such a continued fraction satisfy

lg_An/Bnlp < Mp® o= (max(IAnlran|)—2 )
However, they will not in general satisfy the other con-
ditions in (4.5) and the above condition by itself is not
quite enough to prove weak periodicity of the continued
fraction of a quadratic irrational by Theorem 2.12.

5. Derivation of Mahler I from Mahler IT.

For Mahler I, we considered solutions (A,B) of (4.1)
for certain values of h (h=h,), and required in addition
certain best approximation properties for these pairs (A,B).
For Mahler II, we considered solutions of (4.1) for all
h>2h(g) +1, but restricted our attention to those pairs
constructed by the method of Theorem 4.6 and by certain
restrictions described earlier. We now show how to obtain
the pairs required for Mahler I by starting with the
method of Theorem 4.6. This is equivalent to obtaining
Mahler I convergents from Mahler II convergents.

For simplicity we suppose & is a p=-adic unit,
|€]p = 1. We start with a lemma about the solutions of
(4.1).

Lemma 4.7. Let h€Z', ¢, be as in (4.10) if p#*2,
and further assume h=>3 if p = 2. Suppose that
(A,B) = (X,Y) and (A,B) = (A,B) are two solutions of
(4.1) such that

Y>>0, B>0, X/Y # A/B .
Let R be the positive integer such that

A - g,B =t th .
Then

(4.11) X =Yz, * pZ
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where Y,Z are positive integers such that
(4.12) YR - Z2B =+ 1
Proof. We first observe that since (X,Y) and (A,B)
satisfy (4.1) then neither of the four integers X,Y,A,B
is zero and there is a positive integer Z such that
(4.11) holds. Consider
|xB-YA|, = | (Xx-¥E)|B - (A-BE)Y|, < p ",
then there are two cases to be examined.
Case 1l: X and A both have the same sign. In
this case, we get
| XB-YA| < o,
and so
|XB—YA|P|XB—YA| <1,
which yields XB-YA=0, contradicting the hypothesis

that X/Y# A/B. Thus this case is not possible.

Case 2: X and A have different signs. We have

then
h
| XB-YA| < 2p.
If |XB-YA| = 2p™, then necessarily
|X| = |A] = p™® =y = B.
From IYE—X|P < p_h and IBE—AIP g’p_h, we get
le+1], < p7%,  |e-1, < p7*"
which implies that |2|p<§p_%h; this is absurd as either

p#2 or h>3. Hence we must have |XB-YA| <2ph, that

is, ph divides XB-YA. Taking into account the fact
that (4.1) is satisfied and the hypothesis X/Y # A/B,
we arrive that the only possibilities are

XB ~YA = ¢ ph

Substituting A =:tth4-chB and using (4.11) in the above
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equation, we obtain (4.12).

We now combine the result with Theorem 4.6 to give our
construction.

Construction: Suppose h=21 and we wish to find a

Mahler I approximation corresponding to this value of h,
that is a solution (A,B) of (4.1) for which (A,B) 1is a
power of p (by (4.5)) and E(A,B) is minimal.
First we apply Theorem 4.5 to obtain a solution
(A,B) = (A,B), say, such that
A = t¢yB - th .
R>0, B>0 and R/B 1is one of the ordinary convergents of
ch/ph. Since & 1is a unit, Z;h/ph is not an integer, and
so there is another convergent, already calculated, which
immediately precedes or follows R/B. Let this be z/y.
Then
YR - 2B =¢, =-yR + 2B = -¢ ,
where ¢ € {-1,1}. Then any solution (Y,Z) of (4.12) is

of the form

(Y,2) = = (y,Z) + t(B,R) (tel).
We look at the pairs (Y,Z) as above for which 0<Y<Sph/2
and

| voy + pPz| < p/2 .

For any such pair, the corresponding pair (X,Y) with X
defined by (4.11) yields a solution (A,B) = (X,Y) of
(4.1). Lemma 4.7 ensures that all solutions (X,Y) with
X/Y#A/B, Y>0 are obtained by this method. Any other
solution with (X,Y) a power of p is of the form

(X,Y) = + p“(a,B) ,



so that
E(X,Y) = E(A,B)
Hence, in order to find a solution (A,B) for which (A,B)
is minimal we need only to look at E(A,B) for (A,B) and
for the pairs (X,Y) obtained above.
Since the number of values of Y to be considered
in the above procedure is at most 2ph/2/B, the method

is quite efficient.

The following examples illustrate the above discussion
as well as the fact that Mahler II approximations are not
necessarily the same as those of Mahler I.

Example 4.5.1. In Gy, v-2 exists and is an ll-adic

unit,
/=2 = 3+9.11+4.112+1.11%+4.11% +4.11°% +1.11°%+ 5.117+... .

Two possible Mahler I continued fractions for v-2 are

: — _ 3 11/3 -11 -11 -11
(1) /-2 = i+ 7/3+ 6+ 6+ 6+ °°°
(i1) =5 - =2 _33/2 11/3 -11 -11

3+ =7/2+ 7/3+ 6+ 6+ °°°

Using the same notation as above and consider the case h=1.
Mahler I: A =3, B=1 or A=-2, B=3
Mahler II: ¢, = 3,

_Zy _ . 3_.1 11
al) =37 =37 537 I 2 °

Computing all convergents, the only possible ones are

R(1) = 0, B(1) 1, A(1) = 3.1 - 11.0 = 3,
and
R(1) = 1, B(1) = 3, A(1) = 3.3 - 11.1 = -2.

In this case all approximations of Mahler I can be directly

got from Mahler II.



Example 4.5.2. In Q5, /-1 exists and is a 13-adic

unit,
/=1 = 5+5.13+1.132+0.13%°+5.13*+5.13%+1.36%+ ...

Two possible Mahler I continued fractions for V-1 are

(i) V=1 - 2+ -4+ -5/3 6+ 5/2+ " °°

—~ _ 2 -13 13 13 39/2
1= 3+ 6+ -6+ 6+ 5/2+ °°° .

(ii)
Consider the case h = 1.
Mahler I: A= -3, B=2 or A =2, B= 3.
Mahler II: z1 = 5,

.. 5_.1 11
o(l) =13 =33 15 7 -

By checking all convergents, the only possible one is
R(1) =1, B(1) = 2, A(l) = 5.2 - 13.1 =~ 3.
In this case Mahler II algorithm does not give the pair
A =2, B=3. Now from the discussion above and from the
convergents 0/1, 1/3 preceding and succeeding % in the
continued fraction of a(l) = 5/3, we see that the pairs
(0,1) and (1,3) satisfying
l1‘R - 0:B=1-0 =1,
3*R~-1+B =3.1-1.2 = 1.
Thus any solution (Y,Z) of (4.12) are either of the form
(v,2) = +(1,0) + t(2,1) (te ).
Alternatively, any such pair is of the form
(vy,z) = +£(3,1) + t(2,1) (tel).
The only pair (Y,Z) such that 0<Y<213li and
|y.5+13.2| < 137
is (3,1) and hence the corresponding (X,Y¥) with X
defined by (4.11) is (X,¥) = (3-5-13-1,3) = (2,3), which

is the other approximation of Mahler T.

-



CHAPTER 5

COMPARISON, APPLICATION AND OTHER METHODS

1. Introduction.

In this chapter we review and compare the various
p-adic continued fractions studied in Chapters 3 and 4,
and consider their effectiveness as tools for proving
results in p-adic diophantine approximation. In section 2,
we shall summarise and compare the properties of the con-
tinued fractions of Ruban, Schneider and Mahler and in
section 3, we shall give some applications of these con-
tinuved fractions. Section 4 will be the comparison of
the results of section 3 with those obtained by Lutz [19]
by methods which do not involve an approximation algorithm.
A brief description of the geometrical approximation algo-
rithm of Mahler will be given in section 5 and then followed
by the comparison of results obtained by this method with
those of section 3. Finally, in section 6, we shall give
some conclusions about the relative value of the various
algorithms and methods as tools for diophantine approximation.

2, Comparison of the various p-adic continued fractions.

We first review the nature of the various continued

fraction algorithms.

Let &€pZp~{0}. The Ruban algorithm gives a simple
explicit construction of a unique sequence (b,) of
rationals such that

S R T |
b+ bi+ b+ *°°° !

where b, €J, as defined by (3.5), and of a corresponding



pair of sequences (a,),(B,) of rational integers such that

(5.1) g - Qg (¢ 5] Q2
Bot Bi+ B+ 77 7
where o, = p™™ (r,€27), Bp€Z" and |Bnlp = 1 for

all n. The algorithm can be expressed in terms of a
transformation T such that

by (E) = b, (T"E).
Similarly, the Schneider algorithm gives a simple explicit
construction of two unique sequences (ayp), (bp) of
rational integers such that

E = ag a ao
bo+ b1+ b+ °°° 7

where a, = p°n (sn.€2+), b, €{1,2,...,p-1} for all n,
and this algorithm can also be expressed in terms of a
transformation T. 1In both cases, the transformation T

is ergodic and because of this, certain metrical properties
can be proved. The set of all Ruban continued fractions is
exactly specified by the sequences (b,), where b, €J

for all n, and similarly for the set of all Schneider

continued fractions.

The Mahler ITI algorithm gives a systematic way of
constructing a (not necessarily unique) sequence of approx-
imations (A,/B,) and hence two sequences of rational
numbers (a,), (bp) such that

£ = dg aj aa
bg+ bi+ b+ °°° °

Because of the non-uniqueness of approximations, there may
be more than one Mahler II continued fraction for §. From
the approximations calculated by the Mahler II algorithm,

a sequence of best approximations (A,/B,) as required for



a Mahler I continued fraction can be derived by the method
discussed at the end of Chapter 4, and then two sequences
(an), (br) of rational numbers can be obtained such that

£ has a Mahler I continued fraction

£ = do a1 4az
bo+ bi+ b+ °°° d

which is again not unique. Partly because of their non-

uniqueness, the Mahler continued fractions do not correspond

to obvious ergodic transformations T; this suggests that
metrical results as obtained in the cases of Ruban and
Schneider continued fractions cannot be expected. Further,
it is not easy to determine whether a given continued frac-
tion is a Mahler I or Mahler II continued fraction.

We now compare the sizes of the error in the various
continued fractions. In each case, we let (An,), (Bn) be
the sequences defined by (2.2) for the given continued
fraction, so that the nth convergent is Ap/Bp and

My = max(|An|,[Bn]) .
For the Ruban continued fraction, we also consider the
sequences (A,), (B,) corresponding to (5.1) in a similar
way. From Theorems 3.2 (ii), 3.3, 3.5, 3.17 (ii), 3.18

and (4.3), we get

- 2 -
Ruban: |€-BL/Bplp = IBpBns, lp’ = [bibi...bA_ bylp'
1+o7 +.. .+a,? 2071
< |ByE-A < ;
MaMn+, B nlp Mpon
) l4a7t+...+an? -
Schneider: < |B,.&E~A = (aga;...an)
M Mp 4, | n n|p 0 n
< ki
Mnpan
R L 1. —
Mahler I: XM_'M_} 6 < |Bn€‘An|pS;p MM

Mahler I and II: | Bpe-Anlp <My2 .

&1
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From the above estimates, it is clear that the Mahler

I algorithm is the best for approximation purposes.

The second comparison is finiteness. Trivially, for
any one of the continued fractions if the continued
fraction is finite, then it represents a rational number
(Theorem 2.7). The converse result is true for Mahler T
and II continued fractions by Theorem 2.13. However, as
seen in sections 3.4 and 3.8, there are rational numbers
having infinite.Ruban and Schneider continued fractions and
so the converse result is not generally true unless a
stronger approximation property such as (ii) of Theorem 2.13
holds, that is

|BpE-Bplp < cMp? (n>1),

where c 1is a constant independent of n.

The third comparison is periodicity. Theorem 2.8, that
a periodic continued fraction represents a number that
satisfies a quadratic equation with rational integral co-
efficients, holds true for all continued fractions. The
converse result holds in a weaker form for Mahler I con-
tinued fractions as seen in Theorem 4.7 that if
ge;pzp~:{0} is a quadratic irrational, then its Mahler I
continued fraction is weakly periodic (as defined in section
4 of Chapter 2). For Ruban and Schneider continued fractions,
the proof that works in the case of Mahler I does not apply.,
as mentioned at the end of sections 3 and 6 of Chapter 3.
As for Mahler II continued fractions, it is not clear whether
the condition (iii) of Lemma 2.11 holds, and so the proof of

Theorem 2.12 does not apply.



B Applications of p-adic continued fractions to

diophantine approximations.

In Chapter 1 (section 3) we have seen that classical
continued fractions can be applied to derive a number of
diophantine approximation results. The p-adic analogues
of some of these results will be discussed here. First
of all, we re-state results already obtained which may be
regarded as analogues of Dirichlet's thoerem and Hurwitz's
theorem (Theorem 1.12).

Theorem 5.1A (p-adic Dirichlet-~Hurwitz theorem).

(i) For any given positive integer h and any p-adic
integer &, there are two rational integers A,B not
both 0 such that
|a-BE|, < p™", max |a|,|B]) < p*" .
(ii) Let £¢€ Zp be irrational. Then there are infinitely
many pairs of integers A,B such that
|a-Bg|, < (max(|A|,[BD)7> .
Proof. (i) is Corollary 1.18 (also Lemma 4.1).

(ii) follows easily from this or is immediate using the

Mahler I or II algorithm.

Now we look at analogues of Khintchine and Tchebycheff's
theorems (which can be derived from each other as in the

classical case).

Theorem 5.2A (p—-adic Khintchine Theorem). Let

£ € ZPAJ{O} be irrational. Then there exist arbitrarily
large positive numbers t =1 such that
Inax(|A|,!B|)|ArB£|p < 1l/4vp t ,
l1<max (|al|,|B]) < t ,

is not soluble in rational integers A,B.

&3



Proof. ©Let (A,),(By) Dbe two sequences of rational
integers corresponding to a Mahler I continued fraction of
£ and such that A,/B, denotes the nth convergent of this
continued fraction. Take a large 11€Z+ such that

Moy, > 2Vp max(|Al,|B]) ,
where Mn;l = max(|Bp4 |, |Bps,|). If
IA—BEIP < IAn_Bn£|p ’
then by the construction of Mahler I continued fractions
(Theorem 4.6),
max (|a],|B|) > M, ,
and by the strong triangle inequality as well as the
approximation property (4.6) of Mahler I, we get
|ABL-AB|p = |Bp (A-BE)-B(An-Bnk) |p
< |Ap-Bn&lp < vp Mp'Mpy, .
Al so,
|AB, -A,B| < 2 M, max(|a],]|B]) .
Thus

|AB, -A B[ |AB,-A,B|, < 2v/p Mji, max(|A],|B]) < 1.
Since AB,-A,B€Z, it follows then that AB,-A;B = 0 and
so there are non-zero integers £,g such that g 1is a

power of p,

£

A = A,f/g, B = B,f/qg, 15 > 1.

Therefore by the above estimates and the approximation
property (4.6) of Mahler I, we obtain

max (|A],|B]) |A—B€|p

|fl|f|p MnlAn_Bnglp

\Y%

=1
Mps1 -

If |A-BE|p > [Ap-BpE|p and AB, -AyB = 0, then by
the same kind of argument as in the previous case we

obtain the same estimate



max (|A],|B|) |A-BE|, > LM 1.

If |A-BE|p > [Ay-Bp&|p and AB,-A,B#0, then

AN

{2 max(|a|,|B|) M }7! |AB,-ALB| ™! < |AB-AB,|,

| B, (A-BE) -B(A,-Bp&) | < |A-BE|
and so
max (|Al,[B]) |A-Bg[, = wMp' > wMpL,

Choosing t =M /2Yp in all cases, the theorem follows.

n+1

Theorem 5.2A was proved as above in Mahler [22] and
was applied to prove the following theorem in the same
paper.

Theorem 5.3A (p-adic Tchebycheff Theorem). Let §

b e an irrational p-adic integer and ¢ be any p-adic
integer. Then there exists a positive number u depending
only on p but not on & and ¢ such that the system of
inequalities

|a-BE-¢ |, < wt™?

max (|a],|B]) < t ,
is soluble in rational integers A,B for fixed arbitrarily
large values of t>1. ({(u= (Ip24v/pl!)3/4/p is sufficient
for this theorem.)

4. The method of Lutz.

In the monograph [19], E. Lutz studied the diophantine
approximation problem of linear forms in many p-adic vari-
ables. The methods she uses come from the geometry of
numbers and p-adic measure theory.

She first defines a hyperconvex form f(x) as the

mapping
£: Q>R



such that
(1) £(x) =20 for all x in Q;
(11)  £(tx) = |t|, £(x) for all t in Q

(iii) f£(x+y) < max(f(x),f(y)] for all x,y in QE .
To study the values taken by a hyperconvex form, it is
shown to be sufficient to consider problems on linear forms

with p-adic coefficients. She then defines the lattice

defined by the inequality £(x) < ¢ where ¢ 1is a positive

constant as the set of points x in QS with rational
integral coefficients; this set is a sublattice of I% in
the classical sense of the geometry of numbers. A conn-
ection of this lattice with the measure of the set
{xEEZg; f(x)< c} 1is then established as well as a number
of theorems on the existence of points x € Z" satisfying
f(x) < c and other conditions involving a norm function g
defined on R".

The applications of her method to diophantine approx-

imations is made by putting

A=
= j > = = .
£ (x) 12?énlp Ay (%) g, g(x) = H(x) 12?én|x3| '
where A,,...,A, are linear forms in n variables with
p-adic coefficients and X;,...,A, are rational integers.

This f is shown to be hyperconvex and by applying
previous results as well as introducing a number of
definitions, results on diophantine approximation for a
system of linear forms with p-adic coefficients are
obtained, including, in particular, Theorem 5.1A. We
present here a few special cases, corresponding to Lutz's
Theorems 2.11 and 2.12, to compare with Theorems 5.2A and

5.3A.

&6
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Theorem 5.2B. Let & be an irrational p-adic unit.

Then there are infinitely many rational integers n such
that
|a+BE |, < p "
has no solution (A,B) € Z? such that
0 < max(|A],|B]) < p%n//f p% .

Theorem 5.3B. Let & be an irrational p-adic unit.

Then for any p-adic unit ¢, there are infinitély many n
such that
|A+BE+L |, < p "

has a solution in Z? such that

max (|A|,[B|) < %(1+/2p%) p°" .

In the later part of the monograph, Lutz obtains multi-
dimensional metrical results. The following theorem, which
is a special subcase of the case n=2, p=1 of her Theorem
4.24, is a p-adic analogue of Theorem 1.15.

Theorem 5.4. Let £f(2) be a well-defined positive

real-valued function of positive variable &. Then the
number of solutions (A,B) €7Z? of

|a+BE|, < £(max|al,[B])
is finite or infinite for almost all ¢ € ZP depending as
to whether the series

f h f£(h)
h=)

converges or diverges.

5. The geometrical algorithm of Mahler.

In the paper [23], K. Mahler employs a geometrical
method based on modular transformations in the complex plane

C to study the approximation properties of p-adic integers.



His algorithm will be briefly discussed in this section.

Let

ta s
Il

{z=x+iy €C; y>0}, the upper half plane of ¢(,
F = {z=x+iy €H; -%¥<x<%,x?+y?>1}, the fundamental
domain,
T = {(2 g); a,b,c,d€Z and lad-bc|==l}, the modular
group of transformations,
A be a fixed but arbitrary point in F, and & be a p-adic
integer to be approximated.
For n=0,1,2,..., define integers Cp,c, by
|g—cn|p < p7 %, os;cn<pn—1 ,

Cn < (Cn+1"'cn)/]?n '

so that
£ = 1lim C, = co+c1p +c2p” +... ,
n->
and that the sequence C(&) = (C,) as well as the sequence
c(&) = (cp) uniquely determine §&. ©Next, define the
sequence Z(¢) = (z,) in H by
Zo =X, Zy = (Ch+\)/p" (n=1,2,1,...),
and then define the sequence z(€) = (z,) in F such that

Z, 1is equivalent to 1z, for all n . (Two points in H

are equivalent if they are related by an element of T).

The sequence z (&) 1is unique and is called the represent-

ative of £&. The aim is to investigate 2z (&) and its
related modular transformations which will then lead to
results on diophantine approximations of £.

Let the modular transformation connecting Z, and

Zn Dbe



with IRnBA—RéBnI =1 and (B,,B)) = 1. Define the
transformation
- (3 )
where A, = p"R, - C,By, AL = p'R4 - CpBL4. Then
det T, = p". Define
Q4 = Ta' Tney (n=0),
and let Q(f) denote the sequence (Q,). We have
det Qpy, = p, Tp = U102...89, (n=1).

It is shown that & determines T(&), Q(&) uniquely

and conversely. By characterising the elements of Q(g),
three theorems stating the existence of £, corresponding
to X and Q(&), that can be closely approximated by
certain number 2z, in F are obtained. It is now a
matter of considering and characterising =z, = x,+1iy,.
The following are some interesting results proved.

(1) If €€Q, then 1limy, = + =,

N
(ii) If &€ Zp is irrational, then for infinitely many n,
Yn < VP,
and so
y(£) = lim inf y, < /P .
(iii) Given an € >0, there is an irrational p-adic

integer £ such that
y(g) =v/p-¢ .

Since the study of modular transformations is closely
connected to the study of quadratic forms, it is natural
to apply these results to diophantine approximation via

quadratic forms. To this end, let



8¢

_ 2(X=)Y) (X~AY)
RERY

w(X,Y) = aX? + 2BXY + yY? ,

where X denotes the complex conjugate of A, be a
positive definite quadratic form with determinant
B2 ~ay= <-1. This form ¢ is connected with T, as
defined earlier via A and by considering

On (X,Y) = @(ApX+AAY,BhX+BAY) = apX? + 2BpXY + yn¥Y? .

It is then seen that ¢, is related to z,, defined

above, by
On (X,Y) = oy (X-z,Y) (X-Z,Y) ,
and also
an = P"/¥n = ©(A,,By) ,
B, = - pnxn/yn = aA A + B(A B +A[B,) + YB,B/ ,
Yo = P (XZ+yR) /Y, = o(B),B)) .

Using all these connections, a number of diophantine
approximation results for & are obtained.

A sharper version of Theorem 5.1A is obtained for
all p, and best possible versions of this corresponding
closely to Hurwitz's classical results (Theorem 1.12) are
obtained for p=2,3,5. For example, his Theorem 19 gives
the following result.

Theorem 5.1C For every 2-adic integer & and for at

least one of any three consecutive integers n there are
two integers A,,B, satisfying
-n g n
|Ap+Bnélp < 277, 0<@(RL,By) < 72
moreover the constant 2//7 is best possible.
The following, corresponding to his Theorems 23 and

26, are his analogues of Khintchine's and Tchebycheff's

theorems.



Theorem 5.2C. (i) To every irrational p-adic integer

¢, there is an infinity of indices n for which the

conditions

|a+BE| , < p™7 ,  0<o(a,B) < p'//p

have no solution in rational integers A,B.
(ii) To every € >0, there is an irrational p-adic
integer §& such that for all sufficiently large n,

there are two rational integers A,,B, satisfying

n

-n [ 1
r 0<(D(Anan) < \/; + € p r

I*D‘n'|'Bx1£|};>< p
while for an infinity of indices,
n

B 1
lAn+Bn‘E|p . p 14 pn/‘/5<LD(An]Bn) <-(‘/E-‘l‘ €>pn &

Theorem 5.3C. Let £ €1Z be irrational and let

p

T € Zp. Then there is an infinity of indices n, such
that there are two rational integers Ap,,B, satisfying

|An+Bn£+§|p<P_n 4 (-D(Aann) < pn(p+l)/4/§ .

Taking, for example ¢(A,B) = 2(A%+AB+B?)//3 in
Theorem 5.2C, we see that this gives the bound

4 n 3.5 . .
(p/2p°),. while Theorem 3.2B gives

0 <max(|A|,|B]) < 3
1

0 <max(|Aa|,|B]) < l-(pn/2p7)%, which is only slightly

better; yet because there are different choices for o,

we may say that in this case Lutz's and Mahler's

geometrical methods are compatible. Moreover, both

Theorems 5.2B and 5.2C are clearly sharper than Theorem 5.2A.

By taking ¢(A,B) = A% + B?, it is easily seen that
Theorem 5.3C implies Theorem 5.3B and Theorem 5.3B is
clearly sharper than Theorem 5.3A. Hence Mahler's
geometrical method is better than Lutz's method and than

Mahler I.

17
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6. Conclusion.

From the above comparison, it is clear that for
approximation purposes, Mahler's geometrical method yields
the best results, then come Lutz's method, Mahler I and
Mahler II, while Ruban and Schneider algorithms are not
as good. However both Mahler's geometrical and Lutz's
method are not constructive while Mahler I, II, Ruban

and Schneider algorithms are.
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INTERPOLATION
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CHAPTER 6

INTRODUCTION AND PRELIMINARIES

In this chapter some background to p-adic interpolation
will be given. In sections 1 and 2, certain basic ideas of
classical approximation and interpolation will be recalled
and a few examples of number theoretic applications of
interpolation will be recollected. Section 3 will give a
discussion of some previous work on p-adic approximation
and interpolation. The scope of the work in the next two
chapters will also be indicated. In the last section, a
number of relevant ideas and preliminary results on p-adic
analysis that will be used in Chapter 7 will be gathered

together.

1. Classical approximation and interpolation.

The classical theory of approximation, as described,
for example, in Cheney [10], mainly concerns the problem
of approximating a given function £

£ : [0,1] -» R,
say, by simpler functions such as polynomials. One of the
most important theorems is the Weierstrass approximation
theorem which states that for £ as above and for each
fixed € > 0 there exists a polynomial P(x) such that
for all x € [0,1],

|£(x) -P(x)] < €.
This theorem can be proved by various methods, for example

by using the Bernstein polynomials

.
(6.1) BaGo = § H(E)() # -0t melo,1D).
k=0



as

Another alternative is by constructing a polynomial taking
the same values as f at the zeros of the Tchebycheff
polynomials

1x) (x€ef[0,1]).

(6.2) Tph(x) = cos(n cos”™
Since the Tchebycheff polynomials are characterised by the
fact that for each n, T,h(x) (x€[0,1]) deviates least
from zero compared with any other polynomials of the same
degree, then it is also clear that by using Tchebycheff
polynomials we can obtain polynomials which best approx-
imates f. A great deal more can also be said via the
functional analytic approach.

The classical problem of interpolation as seen in
Gelfond [14] is to determine a polynomial P, of degree
at most n such that

Pn(xi) = £(x3) (i=0,1,...,n)

where X,,...,X are given distinct points and f is a

n

given function. There is a convenient way of finding P,

using the idea of divided differences [x;,...,x;] defined
by
- f(xo) - £(x1)
[XOIXI] - Xo — X1 ’
(6.3)

[xo,x%:] - [x;,%x,] ,
Xo = X2

[x0,x1,x2] =
and so on. It can be shown that the polynomial P, exists,
is unique and is given by

(i) Lagrange's formula

_ f(xi)o(x)
(6.4) Ph(x) = izo (x-x3)0" (x3) '

where @(x) = (x-%,) (x-x;) ... (x-x,), and also by



(ii) Newton's formula

n
(6.5) Po(x) = } [Xg,%;,e00,x3](8=%0) (x-%;) oo (X=X50,),
1=0

and also, if £ 1is analytic, by

(iii) Hermite's formula for complex-valued function £

1 @(u) - p(x)
(6.6) P,(x) = TEl Jc ARG £ (u) du,

where ¢ denotes a suitable contour enclosing X;,...,Xp.
The corresponding error estimate for the first two

forms is

(6.7) IR, (%) ]| = [f(x)=Py(x)]| = |[x,x,,%,,.--rx5]0(x)],

and for the third form is

(6.8) IR, (x) | = |E(x)-Py(x)]| =

1 J @(x) f(u)du
2Ti c ¢ (u) (u-x)

Under suitable conditions the error gets smaller as n
increases and then P, is a good approximation to £.
For a given sequence (x,) of distinct points, we can
find a sequence of polynomials (Ppn) interpolating £
at such points and if

P, » £ uniformly in [0,1], say,

then f 1is represented by the interpolation series

oo

f(x) = izo [xo,xl,...,xi](x—xo)...(x—xi_l)
(xe[0,1]).
2. Number theoretic applications of interpolation.

The technique of interpolation has been applied to
number theoretic problems, particularly in the theory of
transcendence. The following are some examples. Let

a(k,2) (1<a<L; 0<k<K-1), wi,...,w5, be complex numbers

96
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with A = 1$??§;L|wi . Define the exponential polynomial
E by
K-1 L B
E(z) = ) a(k,) z g o,
k=0 =1

The following theorem, which deals with some estimates
concerning E which are of interest in transcendental
number theory, can be proved by using interpolation.

Theorem 6.1. Let E, A be defined as above. Suppose

that E 1is not identically zero. Then for some real R>0,

we have
KL
; -1 RA(y+1)
(i) max E(z)| < XY"= e max |g(z)
lz]<yR I | y-1 Iz|<12| I
for some real vy > 1,
(ii) the number of zeros of E in any closed disc, with

radius R, counted with multiplicities is
h < KL + RA ,
where < signifies the inequality < up to a constant.
Proof. Result (i) is Theorem 2 in Balkema and Tijdeman
[ 7; page 122] and is also implicit in Baker [ 6 ; pages
120-122]. Result (ii) is Lemma 1, page 120 of Baker [ & ].
The almost-best known bound for h in (ii) above was
obtained by Tijdeman as remarked by Baker [ 6 ; page 120].
It is
h < 3KL + 4RA.
As well as proving (i) above, Balkema and Tijdeman in
[ 71 also employ interpolation methods to prove the follow-
ing versions of Turan's theorems, which have important
applications in analytic number theory and diophantine

approximation, as can be seen, for example, in Turan [41].



Theorem 6.2. (Turan's first main theorem.) Let m
and n be non-negative integers, n=>1. Let byseea,by
and di,...,0p be sequences of complex numbers. Then

there exists an integer v with m+1<v<m+n such that

n n - 1 n
] > (B () 2T | Du] min ey,
k=1 h=1 k=1 j=1l,...,n
Theorem 6.3. (Turan's second main theorem.) Let m
and n be integers, m=>0, n>2. Let by,...,b, and
OGjyre.e,0n be sequences of complex numbers such that
0 = |a1=1] < |az-1| < ...< |ap-1].
Then
g v n-1 s %
max b, a > <————:—————) min b {.
v=m+l,...,m+n kzl k7k 4e (2m+3n) L=1,...,n k; Is
If moreover |op|{<1 for k=1,...,n, then
N v n-1 nol &
max ) broy| = (———-———) min N bk‘,
v=m+l,...,m+nl k=1 8e (mtn) 2=1,...,nlk=1

Further applications of classical interpolation are to
be found in Gelfond [/4], [7/5]. From these examples, it is
evident that interpolation techniques should be useful in
dealing with the corresponding number theoretic problems

in p-adic fields.

3. Approximation and interpolation for p-adic functions.

The earliest work on p-adic approximation stemmed from
a paper of Dieudonné [72] in 1944. Dieudonné was mainly
concerned with approximation of continuous functions defined
over a compact subset of QP. Among various results,
Dieudonné proved the following p-adic analogue of the

Weierstrass approximation theorem:

986
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Theorem 6.4. Let K be a compact subset of Qp and

f be a continuous function defined over X. To each € >0,
there exists a polynomial g defined over Qp such that
for all x € K, we have

| £(x) ~g(x) |, < e.

Proocf. See Theorem 4 page 86 of Dieudonné [712].

The problem of approximation to p-adic functions can
also be regarded as a special case of approximation in the
context of non-archimedean functional analysis. This area
of research was started in 1943 by A.F. Monna (see his book
[29] for a survey of the work up to 1970). Monna [28] also
started the investigation of best approximation in non-arch-
imedean vector spaces in 1956. For remarks on this problem
see Monna [28] and the book by Narici, Beckenstein and
Bachman [30]. While many results suggest similarity to the
classical case, there are also difficulties, for instance,
it is clear that the Bernstein polynomials (6.1) do not
necessarily converge to £ and there does not seem to be
a p-adic analogue to the Tchebycheff polynomials because
there are infinitely many polynomials yielding best approx-
imations to a given function.

The earliest work in p-adic interpolation was done by
Mahler [24] in 1958. He considered interpolation at the
points 0,1,2,... of a function

£ :2_ -2 _ ,

p p

which can be shown to have a representation

(6.9) ) an<§) = %% x(x-1) ... (x-n+l)
n

o}

= Z [0,1,...,n;flx(x~-1)...(x-n+1),
n



where, by (6.3),

(6.10) a, = n!l[0,1,...,n;f] =

n
Y (-
k=o

100

1)k<§) £(n=-k),

For more details of Mahler's work see his book [26] and

two closely related papers by Ahlswede

and Marki and Szabados [27]. Mahler's

connection between the sequence (a

n)

nature of £f. For example, if a, as

tends to zero, then the series

f 1is continuous on %, and,

uous then ap

(6.9) converges to £

conversely,

and Bojanic [3 ]
work deals with the
and the analytic
given by (6.10)

and

if £ 1is contin-

tends to zero and (€¢.10) holds.

Amice [4 ] has further generalised some of Mahler's

results to larger fields, and has based her work on non-

archimedean functional analysis.
the following.

Theorem 6.5.

For example,

she proved

Let K Dbe a local field with valuation

| |. Let (g,) be a sequence of distinct elements of K
such that for |x| < 1,
n-1 .
TT [g= < -
i=0 qn qi
Let f be continuous on |[x| < 1. Then
by n-1 X - qi
f(x) = z [Xgseeerxngif] TT (——:—L> &
=0 i=o \9n7Yy

Just as in the classical situation it is helpful to work in

the complex field C

and use complex function theory,

SO

in the p-adic case it is helpful to work in the field Qp

that is, the completion of the algebraic closure of Qp.

Working in this field Adams [ 7 ] employed the Schnirelman

integral to prove p-adic transcendence results.

There is
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a close connection between p-adic interpolation and the
Schnirelman integral via formulae corresponding to (6.6)

and (6.8). Indeed, Shorey [38], [39] used the interpolation
method with Schnirelman integrals to prove p-adic transcend-
ence results corresponding to those in Theorem 6.1.

Recently van der Poorten [33], using the p-adic interpol-
ation alone, was able to improve on Shorey's results. In
particular he proved

Theorem 6.6. Let 6 > 0 be fixed. Let E(z) be a

p-adic exponential polynomial of the shape

m  p{k)
ke Wk 2z
E(z) = ) ) a..z° ek (ay g €905 0, €0)
k=1 s=1
‘ --J:—+6)
with distinct wy such that lwk|p < p'PT! + and let
m
n= ) p(k). Then either the number of zeros of E(z) in
k=1

|z|p < 1 is less than

(n-1) + max {[logp(n+r)]—r/(p—l)}/e
0 <r<p-1

(where the square bracket denotes the integral part) or E

vanishes identically.

This theorem was derived by van der Poorten from the
following result on bounds for the coefficients of expon-
ential polynomials, which was also proved in [33].

Theorem 6.7. Let E,n be as in Theorem 6.6. For

each k (k=1,...,m), let &y be such that

Iwk'wh|p = p_Gk (h¢k; h=ll--~lm)
Also let B,,...,B, be distinct points of Qp satisfying
L

|Bulp <1, |- lp, > p°°  (h#k; h,k=1,...,m),

O\ . /"



for some fixed € > 0. Further let r,,...,r; be non-

negative integers with the sum

%
r=2ri.
i=1
If
r = (n-1) + [logP(n+p-l)]/6
and
IE“)wmlp<1fX (L<h<n; 1<i<rp),

for some real ¥, then
a <pA l1<ksm; 1<s<p(k)
kslp ]

where

b
1

A{x,r,e,n,s, &)

X = (r-1)e = (n-s)8x + logp (| (s=1)1!]})

- [logp(n+p—l)] + (n-1)/(p-1)

+ min{ (i~-1)e + logp(l(i—l)!|p]}
where the minimum in the last term is over all l<is<ry,
l1<hs<n.

In Chapter 7, I shall develop p-adic interpolation
technique using Schnirelman integrals and divided differ-
ences with an emphasis on analytic functions in Qp, and
then I shall derive some number theoretic applications in

Chapter 8.

4, Preliminaries on p-adic analysis.

We collect together here (mostly without proof) those
results on p-adic function theory which will be used later
and the proofs of which can be found in Adams [ 7 ], Adams

and Straus [2 ] and Bachman [5 ].

10



From now on the work will be done in lp unless
indicated otherwise, and we consider p-adic functions
f : A> B
where A,B c Qp.

Definition 6.8. The first derivative £’ of f 1is

defined by

f(z) - £(w)

r s »
f'(w) = 1lim o

zZ-rw

provided this limit exists. The following nota£ion is also
used

£7(w) = [Df(2)],_, = [D,E(2)]1,_,
and successively, we define

f(0) _ f,Dn+1f _ f(n+1) _ (f(n)), (n€Z+) )

From now on, all limits considered are defined with

respect to the p-adic valuation. We also note that with
the above definition, the manipulation of p-adic differ-
entiation corresponds exactly to that in the real case.
(It is worth remarking that one major difference is that
there exist many non-constant functions £ with Df
identically zero).

Definition 6.9. For some fixed a in Qp, f is

said to be analytic in [Z-a|,<R, where R>0, if and

only if it is representable as a power series in this disc

f(z) = ) A, (z-a)” (lz-a] ,<R),
r=0

where Ag,A),A2,... € Qp. (f is said to be analytic in
|z-a], <R if it is representable by a power series in
|z-a|p < R.)

We note that, since Rp is a non-archimedean field,

each of the discs |z-a|,<R and |z-a|, <R 1is both open
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and closed. Moreover, since Qp is not a local field and
hence not locally compact (see, for example, Theorem 1 page
23 and Corollary page 25 of Narici, Beckenstein and Bachman
[30]), neither of these discs can be compact. If a power
series representation of f exists in |z-a|p<R, then it
is unique, and since Aan—>0 (n~>~), the convergence is
uniform on ]z—a|p<£R. The classical properties of power
series apply without change. 1In particular, for f as
above it is easily seen that f is differentiable arbitrar-
ily often on |z—a|p<§R (provided limits are interpreted
relative to this set) and

£ (z) = ¥ An(n-1)...(n-r+l) (z-a)®"F
n=r

(|z-a] ,<R).
Also, it is easily shown that if f as above is not
identically zero, then its zeros in |z—a|p<£R are isolated;
the number of such zeros is then also finite, as we shall
show later (Corollary to Theorem 7.8).

Definition 6.10. For fixed a,r € Qp the Schnirelman

integral of £ at the centre a with radius r, if it

exists, is defined as

n
j f = J f(z)dz = 1lim § f(a+réy(n)),
a,r a,r n>o k=1
|nlp=1
where §&p(n) (k=1,...,n) denote all nth roots of unity in
Qp.

Proposition 6.11. Let f,a,r be as in Definition

6.10. If j f(z)dz exists, then
a,r

J f(z)dz

a,r

< max ]f(a+z)|p .

b |z|p=rp
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(For proof, see Adams [ 1 ; Theorem 1 page 298].)

Proposition 6.12. Let a,r be as in Definition 6.10.

Let

£(z) = ) acfi(z)
t=0

where the series on the right converges uniformly to £ on

z-al, = ||

p- Suppose that for all ¢, I fr exists
a,r

Then [ f exists and

Jax ]
J f = Zat J ft .
a,r t=o a,r

(For proof, see Adams [ 1 ; Theorem 2 page 298].)

Proposition 6.13 (p—adic analogue of Cauchy integral
theorem). Let R>0 be real; w,a,rEEQp be such that
|w|p, |a|p, |r]P all < R. If £ is analytic in |[z| <R

and |w-al, < |r|,, then

£ (4) = n1 £lz) (z-aldz (n=0,1,2,...)
a,r  (z-w)"t? A

(See Theorem 7 page 300 of Adams [ 1 ].)

Proposition 6.14 (p—adic maximum modulus theorem).
Let £ be analytic in [z[,<R (R>0) and let
M(a) = max [f(z)]p.

z p=0.

Then
(1) M(a) = max |a,]|p a®,
n=10

(ii) for o; < ap; < R, we have

M(a;) < M(az) < M(R).
(See Lemma of Adams and Straus [ 2 ] and Theorem 9 page 301

of Adams [ 1.)
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Proposition 6.15 (p-adic Cauchy's inequality). Let
f be analytic in |z|p<R (R>0). For any fixed r€Q,
such that |r|p<§R, we have
(n)
’E_HTLEL < |r|2"  max |f(z)|P
I PO R P
(lz]p<lxlp).

(See Theorem 9 page 301 of Adams [1 ].).

Proposition 6.16 (p-adic residue theorem). Let £ be

analytic in |z[,<R (R>0). Let re€Q, be such that

|r|p<R. Let also k,,...,k, be positive integers and

n
G(z) = (z-a,) t(z-a,)%2...(z-ay "0
be a polynomial with |ajlp<|r|g (i=1,...,n). If
t € Qp ~ {0} is such that
lai-ajlp > ltlp (i+#3),

then

£(z)zdz _ £(z) (z-ai)dz f(z) (z-a,)
[0 . G(z) J G(2) Teee? j G(2) &=

a,t ap,t
= sum of the residues of £/G over all

poles z such that lzlp‘<|r|p.
(See Theorem 13 and its corollary pages 302-304 of Adams
[17.)

The residues are calculated as in the complex case.
For example, if for some positive integer r

Y(z) = g(z)/(z-b)" , |z-al, < |olp &

where g is analytic in [z-al, < |p|p and lb-aly, < |olp.

then the residue of ¢y at b 1is

res(y;b) = o [D" 'g(2)],_ -
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Proposition 6.17 (p-adic Taylor's theorem). Suppose

f(z) = ) BA,(z-a)” is analytic in |z—a|p<;R (R>0).
n=g

Let b€ Qp be such that

|b-a|, < R.

Then we can expand f£(z) about b,
e £(n)(p) n
f(Z) = nzo T-— (Z_b) (lZ_b|p<R).

(See Theorem 15 page 304 of Adams [ 1 ].)

Definition 6.18. The exponential function is defined

as
2 3
exp z = e? =1+ z + %T + %T +  are
whenever the series converges.
Proposition 6.19. exp z 1is defined and analytic in
anae [ €xp(2) =1 I = (2l
-1 -1
|z|,<p Pl and |exp z|, = l‘Zfor all z in |z|,<p P71,

(See Bachman [ 5] or Adams [ I ; page 306].)

Proposition 6.20. Let n be a non-negative integer.

Write
t
n=a,+ap+... +ap ,
where t is a non-negative integer, a,,a,,... € {0,1,...,p-1}

and a¢#0. Then

n-s
In!lp = p p-1

where s = a, + ... + ag -

0
(See Bachman [S ].)
We shall also need the following result on sequences

of analytic functions, for which we outline the proof for

the sake of completeness.
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Proposition 6.21. Suppose that (£f,) 1is a sequence

of functions which are analytic on lz—alpséR and converge
uniformly on |[z-a|,<R to the function £. Then £ is
-analytic on |z-a|p <R.

Proof. Let pESﬁ) be such that

lolp < R.
Since f,, is analytic in |z-a|p<|p|p, then
f -a)d
f,(z) = J _n(:ll)_(lzl a)du (|z—a|p< |p|p)
a,p

Now

- 3 = 3 fn (u) (u-a)du

£(z) = )} £,(z) = ] J e
n=1 n=1 a,p

and since an converges uniformly, by Proposition 6.12,
we can interchange the summation sign with the integral sign
and get

f(Z) _ J f(ul)l(_u;a)du (Iz_a|p< Iplp)
a,p

Now consider for |[z-a|, < |p|, and large positive integer

k,

o

Fk(Z) = z fn(z).

We have

I~ %

k
Fy (z) = 21 £7(2) =

J fn (u) (u-a)du
. e (u-z)2

Using the uniform convergence of an, it is easily shown

that uniformly
f(u) (u-a)du

F/(z) » £'(2) = J , (k » o) .
k - (u-2z) 2
Similarly, we obtain
(n) _ f(u) (u-a)du _
£77(z) = n! J — (|z-al, < loly)

a,p (u-2z)
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Now for lz—a|P< lplp = |u-a|,, we have uniformly
s I+ 22 <513)2 + ...
u-z u-a u-a

Hence

= f (u) (u-a)dz _ J v (g:g)n
£ (z) Ja'p S . (nz £(u) o5 )du

=0

f ELE%éEL (z-a) "
n=~0

(1z-al < o] )

and £ is analytic in [z-a|,<R.
For completeness, we mention also the following analogue
of the Weierstrass approximation theorem.

Proposition 6.22(Chernoff, Rasala and Waterhouse).

Let F be a topological field and K be a compact subset
of F. Then the polynomials are uniformly dense in the
continuous F-valued functions on K.

(For the proof see Lemma 3 of Chernoff, Rasala and Water-

house [11].)
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CHAPTER 7

INTERPOLATION

1. The interpolation problem.

The interpolation problem investigated in this chapter
is the p-adic analogue of what is known as Hermite's inter-
polation problem, which is the extension of the problems
considered in section 1 of Chapter 6 to the case when the
interpolation points are not all distinct. First, the
existence of the interpolation polynomial will be established
and then in section 2 different forms of this polynomial will
be derived via divided differences. If the function to be
approximated is analytic, then by using Schnirelman integrals
we can obtain results similar to those in the complex case,
as mentioned in Chapter 6, and this is done in section 3.
Section 4 illustrates some applications of the results on
interpolation in sections 1 to 3. 1In section 5 certain
bounds on the interpolation polynomial and its coefficients
will be obtained in various forms ready to be used in
Chapter 8. These bounds are of importance in proving
auxiliary results in the theory of transcendental numbers.
The chapter ends up with similar results on interpolation
by rational functions, instead of polynomials. Now we prove

the existence theorem.

Theorem 7.1. Let w;,...,w, be m distinct points

in Qp and p(l),...,p(m) be positive integers such that
m

Y p(k) =n.
k=1
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Let also £ be a function defined at w,,...,0p with its
derivatives at wy (k=1,...,m) up to the (p(k)—l)th
order. Then there exists a unique polynomial Q(z) of

degree at most n-1 such that

0 (w) = £ (w)  (k=1,...,m; s=0,1,...,0(k)-1)
Proof. Let us write
n-1 ,
0(z) = ] aqiz .
1=0

To satisfy all the required conditions, we must have

n-1 .
Loagwyg = () (k=1,...,m),
1=0
and
(4 i (s)
1l- S
iZs (s-l)(s'l)! giwp 0 o= £ (wy)

(s=1,...,p(k)-1;
k=1,...,m).
Here we have a system of n linear equations in n unknowns
Qgre+-srdy-,; and the determinant of this system is (see

Gelfond [f4] page 41)
m p(k)-1

s TT T {j! ] (wk—ws)p(s)} ,
k=1 j=o k>s
which is non-zero as all wy are distinct. Hence the

system has unique solution dyr«++s9y-, and the theorem

is proved.

2. Divided differences and general formulae for inter-

polation polynomial.

We now intruduce divided differences for a given
function £f and interpolation points Ngres=rNpy which

are not necessarily distinct.
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Definition. The divided differences [no,...,nk; £

are defined by induction as follows. For 0<k<n-1, we
define
[ng; £1 = £(nx) .

For O0<k<k+r<n, 1if nk1=nk+r+1, we define

_[nkr-ocrnk+r7f]"[nk+1,...,nk+r+1;f]
[Mjcreeery, y 7 £1= e ;
k k+r+1

and if ny we replace in the above

= Nxtr+17 Nk+r+1

quotient by n and define
[nk,---,nk+r+1; f ]

[nkroo-lnk+r; £ ] - [nk+lr--'lnk+rvn; f]
Nk =N

= lim
n>ny

provided this limit exists.

We illustrate this definition with some examples,

several of which will be used later.

Example 7.2.1. Let 1* (r=0,1,2,...) Dbe the mappings

h ey r
I T Z W Z R

Let ny,/nyse.eyn,_, be as before. Then

[ny:I¥]

ng
r - - - -
[ng/nysT°] = ny~ 4037 %n, +nf %02 +...+ ni7,
In general, if 0<k<r, then
r S S S
[nolnlroo‘lnk71 ]l = 2 ﬂoonll ---nkk r
where the summation extends over all possible non-negative
integers Syr.--1rS¢ such that
Sp + s, + ... + 8x = r -Kk.

There are <i> distinct terms in this summation. Therefore,
if n, = n, = «+«+« =ng =n, and O0sks<r, then

-k _ 1( k
[no,---,nk;Ir]==[n,-.-,n;Ir]==(i) n* ==ET(D Zr)z=n'
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Also, in particular, for any MNy,N;s-««/Nrs
[nornlr---rnrflr] =1,
[ngrNyreeermiIT] =0 (k>x).

Example 7.2.2. If n,,n,;,...,Nn,_, as defined above

are all distinct, then by expanding according to the

definition of divided differences, we get

_[nol---lni—l;f] _[n17-~-rni7f]
- Ng — N3

[nO’---'ni; f]

(0<isn-1),

(Noyeee,Nie2; £1-IN1,¢ee,Njiw1; £]
[nor---,'ﬂi_ii_f]=

Ny = Nji-,
and so on. Hence
i £(n5)
[ngrevvrmyi £1 = ) (Ns-ng) (ny-na ])(n--n- ) (Ma-n3)
j=0 jotel ety i1 FTHg4+1) - V5T

In particular, for n,=0, n,=1,...,n =n-1, this is

the Mahler expansion (see Mahler [26])
i wE
(0,1, ..m2£1 =& ¥ 03w .
1: j:o :]

Example 7.2.3. Let NgreeerNy_y be distinct elements

in Qpi I¥ be as in Example 7.2.1l. By applying the result

of Example 7.2.2 to

1

- - = -Y
[no ,---,nil;1r+l 1] ]

and [T]O,...,nj_,l r
we get
[nglreea i I® 1 = (D) i oy ng, e ey s I750.

Example 7.2.4. Let nj(0<i<n-1) be as before. If

for some k,r, we have

£ ve amy,. Mk T Mxer T ce0 T Mgy TN
a l_jt'l-(, BN [T P wbiiee l‘l[’lv ‘F)

and {i£l4ﬂ%——exéstsq then

[NkreeerNgarps £1=In,e.ymi £1= T [D"f(z)]

Now we specify the set {no,...,nn_l} so that we can



proceed to say something about Theorem 7.1. Let
W, Wyrees,w, be m distinct elements in QP. Considexr
the sequence

(7-1) (nwo,n“---,ﬂn_l) . (wlI“'lelwzl'"Iwzl"'lwml"'lwm)

where wy (1<k<m) is repeated p(k) times with

m

n= ) p(k) .

k=1

The following lemma is basic for most of our subsequent
work.

Lemma 7.2. Let NoreeerNy_jr W peee, Wy be as just
defined above. Let £ and g be two p-adic functions.
We have then
(7.2) Ngreveernii £1 = [ngye-ayniigl (i=0,1,...,n-1)
if and only if
(7.3) £08) (wy) = g(s) (wy) (s=0,1,...,p(k) - 1;

k=1,...,m).

Proof. It is easily shown by induction that (7.2)

holds if and only if
[N rNpprreee My £1 = Ingungyreeerny, i gl
for all k,r such that
0Kk<k+r<n.

The equivalence of this with (7.3) can then be derived by

using induction on r and Example 7.2.4.

To simplify the notation, we set up the followings

Definition. Let £f,g be p-adic functions and let

NgreeerN )7 Wireee, p be as defined in (7.1) above.

14



We write
f =g (mod ngs--..npy)

if and only if (7.2) and hence (7.3) holds.

The next theorem allows us to write the unique poly-
nomial Q in Theorem 7.1 in a simple form.

Theorem 7.3. Let MNg,sece Npoyr Wyrees, Wy be defined

as in (7.1) and let f£f and Q be as in Theorem 7.1. Then

Q can be represented by Newton's interpolation formula

(7.4) Q(z) = ZE: ngreeewnis £1 (2-ny) .o (z-ny_,).
Proof. Let Q satisfy (7.4). It is then easily
checked by induction that
[ngree-wnii @l =1Ing,eeeymys £1 (0<i<n-1)

The result now follows immediately from Theorem 7.1 and

Lemma 7.2.

Theorem 7.4. Let NogreserNpoyqr wl,...,wm,f,Q be as
in Theorem 7.3. Then
f(z) = Q(z) + [z,n,,-..,n _,i £1(z-ny)...(z-n,_,).
That is, the error f(z) - Q(z) |is
[z,ngyecerny_yi £1 (2-my) ..o (2-n, ).

Proof. Consider an element 2z distinct from all

n; (0<i<n-1). By expanding the divided difference

[z,n,s.-.yn,_,7 £1, we obtain

A = f(z) _ [ne: £1 )
[Zlnor-.-lnn—lr £1 = (Z—no)...(z—nn_l) (Z—no)_..(z—nn_l)
[ﬂo,T]]_;'f] e _ [nOIn]_r---’nn-—J;f] X
(z=n1) .- (z-Ny_,) 77 2= Np—y

Hence, by (7.4) we have

[Zlnor--olnn_17f] (Z—no)-.-(z-nn_l) = £(z) - Q(z)

115



If z=n; for some i, this last equality also holds and
so the theorem follows.

Theorem 7.5. Let the hypotheses be as in Theorem 7.3.

If all n; (0sisn-1) are distinct, then Q can be

represented by Lagrange's formula

n-=1

f(ni)o(z)

iZo (z=nj)e’ (ny)

(7.5) Q(z)

r

where
©(z) = (z-ny)...(z-n,_,).
Proof. As in the proof of Theorem 7.4, if we expand

[z)ngseeceyn ;7 £] using Example 7.2.2, we get

116

. _ f(z)
[zlnol-.-lnn_ll f] == (Z_no)---(z-nn_l) +
s 7 £(n;)
i2e (ni=z) (ni=ny) ..o tni-ny ) (y-nj4 ) ... (ng-n _ ;)
_ £z Y £(ny)
¢ (z) iZe (z-mi)@’' (nj)

Thus

N fn) elz)

f(z) = E L + [Zrno:---,ﬂn_l; £1 o(2).

i=yp (z—ni)co' (ny)
By the uniqueness of Q and comparing with Theorem 7.4, we

obtain the desired result.

3. Interpolation of analytic functions.

If the function £ described in section 2 is analytic

in |z|,<R for some positive real number R, then by

P

using Schnirelman integrals we obtain

Theorem 7.6. (i) Let op € QP be =ch that

|p|p<R,
and let Ngree-sN,_, be such that

Inile < lelp (0<i<n-1).



Suppose £ is analytic in |z|p < R, then

f(z)zdz
(z-Nng) ... (z-nj3)

(7-6) [n01n1100-rni;f] = J
o,p

(0<i<n-1).
(ii)y If Inilp <R for i=0,...,n-1 and the power

series expansion of f as above is
f(z) = ) A,z (|z|p<R),
then also

[ﬂorﬂll---,ﬂi;f] . 2 Ar [nornll~--rni7Ir]

(0<i<n-1),
where IY¥ are as defined in Example 7.2.1.

Proof. (i) For i = 0, (7.6) holds by Proposition

6.13 (p-adic Cauchy's integral formula). It is then easily

proved for 1i>0 by induction, using the fact that,

whether or not n, = Njy1r W€ have
I f(z)zdz B J f(z)zdz
orh (z-ny) ... (z2-n3) (z=n,) ... (2=-nj4+,)
_ _ f(z)zdz
= (ny=nyyy) Jo,p (z-ng) eeolz-n;,,) °

(ii) This is easily proved by applying the definition
of divided differences directly to the series and using

uniform convergence.

Now we come to the main theorem of this chapter.

Theorem 7.7. TLet £,0,,...,0ph, Q be as in Theorem

7.1. Then Q can be represented by Hermite's interpolation

formuli

117
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, - ? p(k)-1 p(k%—s-1 f(s)(wk)
7.7 z) = ;
( Q Ko o e st((p(k)~s-1~i)1)
[Dp(k)-s-l-i((u-wk)p(k))] ___w(=z)
¢ (z) Ju=u)k ('z—u)k)l+1
" where
0(z) = (z=0)° ) L (z-w )P ™),
Moreover if f is analytic in |[z|,< R and p€Q, is
such that
los| < fel <R (0<i<n-1),
b b
then
m o (k)
(u—wk) f(u)(u—wk)du
(7.8) Q(z) = - @(z) 7} J =
k=1 Jup,t (u-z) o (u)

<
Qaly<lol,),
where t € @, ~ {0} is such that Iwk-wj|p2>|t|P (k#3)
(as seen, for example, in Proposition 6.16). We also have

the error

_ _ ¢(z) f (u)udu
(7.9) f£(z) 0(z) Jo’p (u-z) ¢ (u) (lzlp<|plp)'

Proof. If Hermite's formula (7.7) holds for f

analytic on |z| < R, then in particular it applies to

P
the interpolation polynomial for any £f. Hence we may
suppose that f is analytic on |z|, < R.

Let ny.n;se..yn,_, be as in (7.1). Then by Theorem

7.4 and equation (7.6), since o(z) = (z-n,)...(z-n,_,),

£(z) - Q(z) = o(z) [z,ny,ee.snp i £

=T

_ J ¢ (z) £ (u) udu
a (u-z) e (u)

(zlp<lelp,

say. Thus we have proved (7.9). Now we derive both

expressions for Q(z) from this.
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Write
f (u)

v = (u-z)w(u)

Then by the residue theorem (Proposition 6.16), for

Z=(.l)i (0<i<n—l)' Izlp<lplp’
m
I = (res(y;z) + kz res (Y;wy) o (2).
=1

Since @(z)res(y;z) 1is £(z) by directly computing the

residue at 2z, it then follows that

Q(z) = -@(z) ? res (Y;wg) ,
k=1
and this yields the expression (7.8) for Q(z). Now we
must compute the residues.
Since the power of (u-wy) dividing ¢(u) is exactly

p(k), it follows from Proposition 6.13 (Cauchy's integral

formula) that the residue of ¢ at wy is

SRR Y [Dp(k)—1((u-wk)p(k)f(u)>]
(p(x)-1)1 (u-z)o ()

u=wg

p(lzc)-l f(s)(wk) [Dp(k)-s—1<(u—wk)p(k)>]
sty stlp(x)-s-1]1 (u=z) o) /] ,oy,

p(k)-1 f(s)(wk) p(k)~-s-1 -1

= =Sp s izo (p(k)-s-1)!
[Dp(k)—s—l—i<(u-wk)p(k)>] 1 .
(p(u) Ju-_-wk (Z-wk)i+1

Combining all these results, we see that the equation (7.8)
holds for |z|p < |p|p and hence for all z, since both

sides of the equation are polynomials.

We note here that the work of van der Poorten [33]

was based on the following related form for Q.



120

m  p(k)-1 m p(i)-1 s
(s) Z =3 (z=wq)
0(z) = (5 (4,) { ( _L) (zow)®
kzl szo s f=1 \Wyp Wy s!
i#k
A m . i
pl(ki—l (agk) {(Z_wk)ﬁ(wk_wj)p(j)—l}(_l)max{o,)\(r)—l}
A r=s 3;11{ ¥
T (3) -1
M)t TT (wgmwg) 0
J=1
j#*k

where the last sum is over all non-negative integer sets
A(s),...,k(p(k)—l) with sum p(k) -s+1 and such that
AMr)<r-s+1 and such that A{p(k)-1)=>1 (if s-1=p(k),

the sum is of course empty).

We conclude this section by looking at the relation-
ship between analytic functions and interpolation series in
Qp (which is much simpler than the corresponding relation-

ship in Q,, as can be seen from Mahler [26]).

Theorem 7.8. Let (n,) be a sequence of (not necessar-
ily distinct) points in i, such that
|nmlp< R (m=0,1,2,...).

(i) If £ 1is analytic in lz]P<ZR, then f 1is represented

by the interpolation series
£(z) = ) Inose-e,nis £1(z-ng).u.(z-Ny-;)
1=0
(|z|p<§R),
and this series is uniformly convergent on |z|p<IR.

(ii) If £ has a representation

£2) = | ajng). @) (zl<w),
where the series is uniformly convergent on [z|p< R, then
f is analytic in |z|P‘<R.
Proof. (i) Suppose
f(z) = § Aizi (|zlp< R),

i=o
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and let Qp be the unique polynomial of degree at most
m-1 such that

O 2 £ (mod ng,eee np-,).
By Theorem 7.4, Theorem 7.6 (ii) and Example 7.2.1, we have,
for |z|p<R,

| £(2)-Qn(2) |p = |lz/ngseeesn 5 £ (z-ng) ... (z-n _) |y

N

R"| E

Belzingreeesng T8I
Y=m

< R" max R""™7!|a

- r
R™! max R |A
r=m r>m

rlp = r|p '
which tends to 0 as m » «. Thus Qy>f uniformly on
lz|P < R and the result follows from Newton's formula for
Om (Theorem 7.3).
(ii) This is an immediate consequence of Proposition 6.21
on uniformly convergence sequence of analytic functions.
Corollary. If f is analytic in |[z|, < R and is
not identically zero, then it has at most a finite number
of zeros in |[z|, < R.
Proof. If £ has infinitely many zeros (counted with
multiplicity) in |z[; < R, we can apply (i) above with
(np) as the sequence of zeros. This implies that all

divided differences vanish and hence f is identically

Zero.

We note in particular that if the points n, are
distinct and
ap(Np=ny) (p=ny) oo Mp=Ngp-,) > 0 (n»o),
and

| (z=ng) e tz=n, ) |, < Tng=ng)eee(ngmnp ) | (2] < R),

b



then the series in (ii) is uniformly convergent on |z|p<!R
and is identical with the series in (i). This case corres-
ponds to the situation considered in Qp by Mahler [26]
and in local fields by Amice [4 ], and it is easily shown

that here, too, the polynomials Q are best approximations.

4, Some consequences of interpolation.

In this section, some approximation results are.proved
to illustrate the use of theorems proved in sections 1 to 3.
(Compare with Lemma 1 and Theorem 1, page 310 of Walsh [43].)

Consequence 7.4.1. Let R be a positive real number

and NogrNyreeerMy_, be distinct elements of Qp such that

Inilp <R (0<i<n-1).
Then there exists a real constant K such that if

lvilp < v (0<i<n-1),
then

|QuHP<Kv qzb<m,
where Q(z) is the unique polyncmial of degree at most
n-1 which takes on the values v; at the points nj;
(0<i<n-1).

Proof. From Lagrange's formula (7.5), we have

n-1

vi ¢(2)
Q(z) = = 7 d
- izo (z=ni) e’ (ny)
where @(z) = (z—no)...(z—nn_l).
Since Q(z) 1is analytic for |z[p<§R, then
< l _ w(z)
lat2) [p o<ign-1 Vi e ()l

< Kv,
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where

K = max max w(z)'
|z|,<R 0<i<n-1 (z-nj)o’ (nj)

Consequence 7.4.2. Let S Dbe a bounded subset of

p and let n4y,...,n,-; be distinct points of €, (not
necessarily in 8), and let f be defined on S and at
NgreeerNpo,- If £ is uniformly approximable on S by

polynomials, then it is uniformly approximable on S by
polynomials Q@ such that

Q = f (mod NgreeerNp_1) -

Proof. Take an €>0 and take R>0 such that

|z]p<R for all z in S and |[nj|p, < R for all i.
Let K be the constant in Consequence 7.4.1 corresponding
to this value of R. Then there is a polynomial P such
that

|£(z) -P(2) |, < e/K (z €8).
Now let G be the unique polynomial of degree at most n-1
satisfying

G=f-P (mod NgyeeerNp-y)-

Define the polynomial Q by

Q(z) P(z) + G(z).
Clearly, Q satisfies our requirements, that is
Q =f (mod nyyeee,npy,y)
and by the strong triangle inequality and Consequence 7.4.1,
for z in S we have
|f(z)-—Q(z)|p < max ([f(z)-—P(z)|p, [G(z)lp)

< max (e/K, Kee/K).

123
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In particular, it also follows from Proposition 6.22
that if S is compact and £ 1is continuous on S, then
f is uniformly approximable by polynomials Q interpol-
ating at ng,.e..,n, -

Of course, Consequence 7.4.2 yields nothing beyond
what we already know from Proposition 6.21 and Theorem 7.8
if S is a disc |z]p < R and n; is in S8 for all i.
We now apply it with the nj; outside S to obtain an
analogue of Mittag-Leffler's theorem. Our hypothesis is
stronger than in the classical case because the disc
|z|p<1 4is not compact.

Consequence 7.4.3 (Mittag-Leffler Theorem; compare

Walsh [43; pages 312-313]). Let (n,) Dbe a sequence of
distinct elements in |z|, < 1, and suppose that for R
such that 0<R<1 at most a finite number of these
elements are in |z|p < R. Let (vx) Dbe a given sequence
in @p. Then there exists a function g analytic in
|z|p, < 1 such that

g(ng) = vk (k=0,1,2,...)

Proof. Without loss of generality, let the points

ngy be as arranged that
Denote by 2., the largest of the numbers
InolpsInifpseslngo, |, which is actually less that
Inklp, with 2, = |n,|,. Now choose
Qo(z) = Vo (lzlp<1).
By applying Consequence 7.4.2 with S as the disc |z|,< %o,

n=1, nop € S, n» ¢ S, and define the function £ by



f(z)

0 (z €58),
f(n,) = vi-vy,
we can obtain a polynomial Qi satisfying
f Q1 = £ (mod no,n1),
Qi1 (z) |, < p7* (z€8).
By repeating this process, in general, we obtain a poly-

nomial Qx (k>1) satisfying

Ok (nx) = vk - Q_, (ng) e = Qolnyg)

Ok (ng) = Qkx(n,) = ...
-k

Qk(nk—-l) =0 14
|k (2) [p < P (Jzlp< 2 ).
£, (z) converges uniformly on |[z|,<R for any R such

that 0<R<1l (because R< ., for some k) and hence

by Proposition 6.21, it is analytic in |z|p<1.

Bl Bounds on the interpolation polynomials and its

coefficients.

With certain applications in Chapter 8 in mind, some
accurate bounds on the interpolation polynomials and its

coefficients will be derived in this section.

First, the following set up will be used throughout this

section:

r

I is as defined in Example 7.2.1,

NgsNyseeerNp—, denotes n elements of Qp, not necessar-

ily distinct,

WyreeerWp denote m distinct elements of Qp,
p(l),...,p(m) denote m non-negative integers.
Lemma 7.9. If P = P(r;z) is the unique polynomial

of degree at most n-1 such that
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P = Ir (mOd T]o,.-.,nn_l)l

then
n=1
P(r;z) = ) crkzk 7
k=
where
(7.10)

r r
Crk=[nornll---lnk7I ]l - [no,---,nk.H;I ]Sl(nol‘°"nk+1) +.o..

n-k-1 r
[nolnll---lnn_liI ]Sn—k—l(nol--~rnn_1) r

+ (-1)
with
SiMysiMyreeerNgy;) = Ngny.-eny + oo (LS is<n-k-1)
= jth elementary symmetric

function of (no,...,nk+i).

Proof. From Theorem 7.3, we have

n-1

P(riz) = ] [nos...,nizI"] (z-no)...(z=n3_,).
i=o
If we also write
n-1 Xk
P(r;z) = ) c, 2z
k=0

the result follows by equating coefficients of z¥ (0<k<n-1).

Since I° itself satisfies the requirements for P if
0<r<n, we have

P(0;2)

1
'—l
~

(7.11) P(l;z)

Il
N
-~

P(n-1;z) = 2

Theorem 7.10. Let NgreearN v R and £ be as

above with

Inilp < R (0<i<n-1),

£(z) = ) Bzt (lz] ,<®).



127

If Q 1is the unique polynomial of degree at most n-1

such that

Q = £ (mod ng Mysreeesny ;)
then
(7.12) 0(z) = } AP(riz),

where P(r;z) are as defined in Lemma 7.9. More precisely

Q(z) =A¢ + A1Z2 + ... + Ay, 2"V + § A P(r;z).

r=n
Proof. By Theorems 7.3 and 7.6,
n-1
Q(z) = iz [Noseeesnis £l (z-my) eno(z-nj_ ;)
=0
n-1 [ r
= z Aylno,miseee,ni;I™] (Z—T]O)---(Z"‘ni)

1=0 r=o0

= ¥ ap(x;z),

The second assertion of the theorem follows from the formulae
in (7.21).

Now we are in a position to obtain upper bounds for
the coefficients of Q described in Theorem 7.10.

Theorem 7.]11. Let Q as in Theorem 7.10 be written as

n-=1 k
Q(z) = ) aqpz .
k=0

Then

(7.13) |qk|P < max (IAkIP'xgiﬁJArcrklp)’

where c,x are as defined in (7.10). Also, there is a

stronger bound

(7.14) [qk|P < max (lAkIP, mix Dy rklp)‘
r=2n

Proof. (7.13) follows by equating coefficients of

z®  with (7.12) as well as using (7.10) and the strong-

triangle inequality. For the stronger form (7.14) the use
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of (7.11) is also made.

The next theorems estimate some bounds of a particular
_polynomial that will be used in the latter part of Chapter
8.

Theorem 7.12. Let ®;,...,Wp, p(l),...,p(m) Dbe as

defined at the beginning of this section. Let also N,M
be two integers satisfying
1<M<€<m, 0 K N<p(M) -1.
If Quy(z) is the unique polynomial of degree at most n-1

such that

(U)(“’v) _ {l (=N, v=M)

QMN 0 (p#N, v£#M, Osu<p(v) -1, 1<v<smnm),

then
N+1 _ -1
[N1Qyy (2) 5 < lco(z)lp Iplp lu_g;TP=lplpl(u z)m(u)lp,

where o(z) = (z—wlf(l)...(z—wm)p(m)

, and p €y such that
|wi-—wM|P> |p|p (i#M, i=1,...,m).
Proof. By applying (7.7) of Theorem 7.7 to Quy and

using the hypotheses on Quy. Wwe obtain

B 1 [ p()-N-1[ (u~-w )p(M)>1
Qun(z) = (o (M)-N-1) IN! LD ( (u—g)w(u)

o(z).
Ju=wM

Now by Proposition 6.13 (Cauchy's integral formula), it

follows that

OQun (z) = w(z) J (u-wm)p(M)(u—wM)du
UJM'p

it (u=2) 0 () (umwy) P 7N

and hence by Proposition 6.11,

INtoyy (2) | < Iw(z>lplo|§+l max | (u-2z) @ (u)

Iu_lep=lpE

-1
1o
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6. Interpolation by rational functions.

As in the case of interpolation by polynomials, some
similar results can also be obtained if instead we inter-
polate by means of rational functions. 1In this section,
such results will be given (compare with Theorem 1 page 184
and Theorem 2 page 186 of Walsh [43]).

Theorem 7.13. Let OGgreeerO _, be points in Qp.

Let vy,eve,v be n given values in lp and also let

n-1
NgeMNyreeesn,_; be n distinct points in p, distinct
also from all o0;(0<i<n-1). Then there exists a unique
rational function of the form

b _,2" '4b,_,z" 7 %+... + b,
F(z) = - s = (biEQP;
(z-o ) (z-0;) ... (z O ) i=0,5. . ,n-1),

at the points =z, (0<i<n-1).

which takes the values v. i

1
Proof. The proof is analogous to that of Theorem 7.1.
The only difference is that now the determinant of the
system is
n-1 n-1
(10 007 (s 4oy
which does not vanish according to the hypotheses of the

theorem.

Theorem 7.14 (Lagrange's formula). Let the hypotheses

be the same as in Theorem 7.13. Then we have
n-1

B _ Vl“y(Z)
=) = 120 (z-n)¥"(ny) 7
- ({(z-nyg)...(z-nn)
where V(z) = (z—au). .(z—an)

If £(z) is analytic in |z], < R and p€Qa, is such that

Inilp < lolp <R (0<i<n-1),
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then we also have

_ f (u) udu
[nornlr-o-lniif] = JO o ‘*?TGT_ r

and the error term of the interpolation is
|

:f(Z) - F(z) = [Zlnolo-~rnn-1] Y(z)

Il

¥(z) £ (u)udu
Jo,p ¥ (u) (u-z) (|le< lplp)

Proof. The proof follows the lines of those in
Theorems 7.5 and 7.6. In fact, it is simpler and similar
to Example 7.2.2 due to the fact that all n; (0sSi<n-1)

are distinct.

Theorems 7.13 and 7.14 can also be used to obtain
analogues of Consequences 7.4.1 and 7.4.2 with rational
functions in place of polynomials, corresponding to Lemma

2 and Theorem 3 page 313 of Walsh [43].
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CHAPTER 8

APPLICATIONS

1. Introduction.

In this chapter some of the interpolation results of
Chapter 7 will be applied to obtain p-adic analogues of
number theoretic results similar to those mentioned in
section 2 of Chapter 6. In section 2 p-adic analogues of
two lemmas in Balkema and Tijdeman [7 ] will be proved and
will be used to derive similar p-adic results of Turan's
theorems (Theorems 6.2 and 6.3). Section 3 deals with
p-adic exponential polynomials. First different estimates
on the size of such polynomials will be derived and will
then be employed to prove p-adic analogues of Theorem 6.1.
The best results so far obtained in this direction are
those in van der Poorten [33], as described in section 3
of Chapter 6, but his approach is different. My estimates
of the number of zeros are close to his but not quite the
same. Finally in section 4 I shall obtain a bound on the
coefficients of exponential polynomials.

The approach used here is suggested by that of Shorey
[38]. However, my results will be stronger owing to a
better bound on the exponential polynomial. The only
interpolation version used by van der Poorten [33] is the
Hermite formula mentioned at the end of Theorem 7.7. Here
I shall mainly use the version established in terms of
divided differences (section 2 of Chapter 7) and Schnirelman
integral (section 3 of Chapter 7). This approach simplifies

the problem considerably. In fact the ideas renders a
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number of simplifications to the work of Balkema and

Tijdeman in the classical case [ 7 ]; in particular their

majorisation technique can be avoided. In the classical

case the crux of the problem is to effectively estimate
Ingrevernpifl

where f 1is an analytic function in |z|<R, that is,
f(z) = 2 a_z (ao,al,...,>/0; Iz[éR),

and for some constant n
Ini| < n (i=0,1,...,n).
Applying a result similar to Theorem 7.6 in Chapter 7, it

can be shown that

| Ingseeesnnifl] =] ¥ aplngsreee,nu:I7 1< ] ap[n,...,n;I°1]
n=go n=o

and thus
I[Tlor-,--,ﬂn;f]l < lf(n) (n)'/ln!| -

However, a corresponding result does not apply in the p-adic

case because it can happen that |ni|p<'n (i=0,...,n) but
S s-n s\ s-n
|[nol"°lnn;I ]Ip=n > |<n/pn -
(See Example 7.2.1.) Thus some of the difficulties in the

p-adic case are different form those in the classical case.

2. p-adic Turan's theorems.

Before turning to the main theorems of this section,
we shall require the following lemma one part of which is
proved in Shorey [38].

n
Lemma 8.1. Let Q(z) = ) qkzk be a p-adic polynomial.
SIS e K K2,

Then for any two sequences MNg,Myse--,/Nyr and b,,b,,...,by

of numbers in Q we have

pl



r

(8.1) Ikzoka(nk)lp < (omax lagl ) (2 én|k

npl )

X
L Pl
Furthermore, for r=n and f any p-adic function, if
Q 1is such that

Q = f (mod Ngse.-,Np)y

then we have

n .
(8.2) | L Pf () | < (o2ax lanlp) (ogggnlki by lp) -
Proof. To prove (8.1). By the strong triangle

inequality we have

X n hey h s h
|kzoka(nk)|p = 1hZO kzobkqhnklp = Oggénlqhh>|k;0bknklp

A

(Oggénlthp)(ogallgn kZ bknkl |

To prove (8.2) we simply note that for r=n,
Q(nk) == f(nk) (k=olll"'ln)l
and substituting Q(ng) by £(ny), the result follows.

Theorem 8.2 (p-adic analogue of Turan's first main

theorem) . Let m,n be two non-negative integers with
n>1. Also let Dby,...,bp and ng,...,Nn be two sequences
of numbers in §p and n;(0<i<n) be distinct. Then

there exists an integer Vv with m+1<v<m+n such that

n
|k;0bkn]\:]p = | Z bk|p m12 In Ip ’

0<i<
Proof. We may suppose without loss of generality that

min |[n; =16 .
o<i<n] llP

Thus we show that there exists an integer Vv with

m+1<v<m+ n such that

n n
S b
lkzo k klp . ]kzo kip



Let Q be the unique polynomial of degree at most n such

that

Q(z) = 27" 1 (mod ny,..-rNy) -
Thus (by Theorem 3) we have Newton's formula for Q(z)

n
kzo[no,-..,nk;Z'm'll(z—no)...(z—nk_l).

1l

Q(z)

n
k
- kzoqkz ’

say. Now, by Example 7.2.3, we see that

- 1o _ - +
[Ngreeesngiz ™ '] = | (ngny..ony) " tIngt 1t .o nztsz’ r]Ip
(0<r<n).
And, by Example 7.2.1, since Inzllp <1 for all i,
- - +
l[noll""nrl;zm r]lp<l .
Hence
[Ingeeeesmeiz™™ 1, < Ingnpeaen |08 (0<x<n),
and using Newton's formula above and the fact that
|ni|£1 < 1 for all i, we see that
laglp, < 1 (0<k<n).
By the equation (8.2),
n — n i
by n : < max by n .
IkZo k'lk |p (0<1<n kZO k klp)
Writing bknf{“+1 for by, we get the required result.

Theorem 8.3 (p-adic analogue of Turan's second main

theorem). Let pEﬁQpﬁl{O}. Let b ,...,by and ng,...,Np
be two sequences of numbers in QP such that

= < < ... < < .
Let also £ be an analytic function in |z|, < [p|,. Put

M([rlp) = max{lf(z)lp; |z|p = lrlp} .
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Then

. M(lol,) o238, Z bknkl (el >

[kzobkf(nk)lp
- -n max

el M(IOIP)O<l<n Z bknkl

(lelp<1)

n
Proof. Let Q(z) = 1} qkzk be the unique polynomial
k=0

of degree at most n satisfying
Q= f (mod ngse..,ny).
Then (by Theorem 7.3) we have Newton's formula

n
Q(z) = ) [nyr-eerngifl(z=ng) ... (z=np_,).

It follows easily from either of the expressions for
[Ngs-..,nx:fl that

| Ingseeemii £11p < lol35M(] 0] p) (0<k<n),
and it then follows from both expressions of Q that for

0<]<<11’

. M([p|p) (lelp>
Ak lp -k
lol Mol ) (lplp<1

By (8.2) of Lemma 8.1, we obtain the desired result.

3. Basic results on p-adic exponential polynomials.

Throughout this and the next section, the following
notation will be used. Let 6 be a fixed positive real
number; w,,...,W, be a sequence of distinct numbers in

Q such that

P
S | -8
(8.3) losglp < p ®°Y
Put
(8.4) W = max{|w;| i=1,2,...,m}

Pl
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We consider a fixed exponential polynomial

m p (k) " 5
(8.5) E(z) = ) Y axgz® te k% (|z| <p’),

k=1 s=q¢ p
where apg € Qp (k=1,...,m; s=0,...,p(k)). The agsg

will be referred to as the coefficients of E. From

Proposition 6.19, it is evident that E is analytic in
|z|P'<pe. For brevity, we write

(8.6) M(R) = max {|E(2)|p; |z|, = R}.

Define the sequence

(MosNireeerNp-1) = (wl,...,wl,wz,...,wz,...,wm,...,wm)

where wy is repeated p(k) times (l<k<m) and

m
ki p(k) = n. Now let v be a fixed number in &, such
=1
that
(8.7) |v|, < p’
. p :
Define an analytic function 1
= -0
f(z) = exp (vz) (lzlp<p (p-1) ) .

The main aim is to obtain a bound for M(YR)/M(R),
for some real Y=>1, by estimating the coefficients of
the unique polynomial Q of degree at most n-1 satis-
fying
(8.8) Q=f (mod NgseeesNyoy)

We write

[Ngrecesnyel = Ingreeo npifl (0<r<n-1)
The following lemmas establish the relationship between E
and Q and bounds of the coefficients of Q.

Lemma 8.4. Let E,v,Q be defined as (8.5), (8.7),

(8.8) and let

(8.9) Q(z) = 2; a,z -
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Then
n-1

(8.10) E(v) = 22 a2 (0)
=0

Proof. Since, by Theorems 7.2 and 7.3,

V2 - Q(z) +[z,ngreee,n _J(z-ng).oo(z-npy_ )y
then
Q(S—l)(wk) = (Ds—leVZ) = vS~legWkV
Z=Wk
(1<k<m, 0<s<p(k)) -
Therefore
m p(k) (s-1)
E(v) = ) } 23,407 (wy)
k=1 s=0

Also, from (8.9) we have
n-1 9 )
(s-1) = - -s-1
o) (wy) QEO qg(s_l)(s 1)! Wy

Substituting for Q(%~1)(wx) in the equation for E(v),

we get
n-1 m p(k)

_ 2\ 2-
E(v) = lzo qz(kzl SZO aks(s_l}(S—l)! w} s+1)

But by differentiating E(z) 1in (8.5) and putting z=0,

we get
(2) m o plk) ( L ) L-s+1
E (0) a (s-1)! w
kzl SZO kS S_l k
Hence
n-1 (2)
E(v) = E (0).
QZO ql

Lemma 8.5. Let E,Q and g, ,...,9,., be as in

Iemma 8.4 and W as in (8.4). Then

k r

-k
(8.11) |a, | <Imx{yl+ max |— o } (0<k<n-1)
kip k! p’ r=n 1XMp

k r -
(8.12) < max {‘%T , max XT wr k} .

1 rpk+l 1ESp




150

Proof. Since
Q(z) = exp(vz) (mod ny,...,n _,),
the result follows from Theorem 7.11, keeping in mind that

in this case Icrk|p<éwr_k.

Next we apply both lemmas to obtain an estimate of
the size of E. It appears that both (8.11) and (8.12)
give bounds of similar size so only (8.12) will be used.

Theorem 8.6. Let W,E,M be defined as in (8.4),

(8.5) and (8.6). Let v be as in (8.7) and uEiQP be

such that
<
lal, < Ivl,.
Then
(8.13)
v & vt r-k k!

< max v max |V _ a2l

M(|v]p) < M(]ulp) o<k<n-1max{|u o' rk+1|T] PW ’uk}p} :

Proof. From (8.10), we get

(k
M(fvlp) < Ogﬁén-llqu )(O)IP ’

Now by Proposition 6.15 (p-adic Cauchy's inequality)

k -k +
1E%) )], < |kt lp M(ul ) (kez®) .
Thus
-k
M(|v|)) < M(|u],) max  |q.k!tu™"]_ .
P P ock<n-1 * P
Using Lemma 8.5, we obtain
k r
M(lVIP) < M(Iulp) max max{ !1 , max K—’ Wr_k’E% }.
0<k<n-1 b orex+1!7 71 p utlyg

Corollary 8.7. Let W,E,M be as in Theorem 8.6. For

any positive integer
k = + ¢ + E
= a, a,p+ ... a.p

r

where a; € {0,1,...,p-1} (i=0,...,t) and a.#0, we write
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s(k) = a, ta, + ... +a, .

Let 6 be as before and € be a positive real number

such that
O0<e<%ko.
Then
(8.14) M(pe'ﬁ) < M(p%) p(e—ze)(n—l)max {l’p—e+(s—1)/(p-1)}
where s = max s(k), and
0<k<n-1
(8.15) M(pe—e) < M(p%) p(e—ze)(n—lhnax {l’p"e+{1ogp(n—n]+1-1/(p-m

Proof. If in Theorem 8.6 we put

6-c - -1)-6
lulp - PEI lvlp =p €I r W =p 1/(p-1) ,
then we get l
k| ., _
nax ’\_f ’ = p(8-2e) (n=1)
0<k<n-11Y b

and using Proposition 6.20, for 0<k<n-1, r>k+1l, we

have
s (r) s (k)
r -y —-———— (0-¢) k+————
v k! -k - -
(R () R i
P Wip :
—e(k+1)+xe—e)k+§i5%1l
<P' P
\
(using s(r) =1) ' s—1
(e—ze:)(n—1)—e+P__1
< p . .

Hence by Theorem 8.6, we get
s-1

(6-2¢) (n-1) E:I

8-¢ € { _El
M(p " %) < M(p°) p max |1,p J
To obtain (8.15) we note that if
k = a, + a;p +g§.. + atpt ’
then \
s(k) = a, +...+ay < (p-1) (t+l) < (p-1) ([log kl+1).
Replacing s by (p—l)([logp(n—l)]+1) in (8.14) we obtain

(8.15).
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Now we are in a position to estimate the number of
zeros of E in the p-adic case similar to Theorem 6.1 of
Chapter 6.

Theorem 8.8. If E is as defined in (8.5) and is

not identically zero, then the number of zeros of E in
|z] p<1 does not exceed
(n-1) + max{O,[logp(n—l)]+l—l/(p—l)}/6,

rzouv‘otr,x.— “wS L.
Procf. Let o31,...,0np be all zeros of E in

|z| ;<1 taken with multiplicities. (The number is finite
by the Corollary to Theorem 7.8.) Define
G(z) = (z-0;)(z-0a2)...(z=0p) .

Clearly, E/G 1is an analytic function in |z|p<<pe.
Therefore, by the maximum-modulus theorem (Proposition 6.14)

we have

8- :
M(p°~°) o M(p°)
(6-€)h eh

p P

where ©60,e are as before (e <%06). Thus
p(6—2€)h < M(pe_e)/M(ps)
Using the estimate (8.15) we get
h < (n-1) + max{O,—e+[logp(n—l)]+l—l/(p-l)}/(6—2€).

For each fixed 6, € 1is arbitrary with 0<e<%0; by
letting € =+ 0, the required result follows.

The bound obtained in Theorem 8.8 for h is better
than that obtained by Shorey [38] and is similar to that
in van der Poorten [33]. In fact, in Shorey [38]

90 30 1 :
L — oo S -
h 5 Tog + 5 ( =1 + 6) {n-1)

and in van der Poorten [33]

h < (n-1) + Og?ig_l{[logp(n+r)] - r/(p-1)}/6 .

—D Q.
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If n<p, it is better to use (8.14) with s=n to get
the bound
h<n-1+ (n-1)/(p-1)6

which is that obtained in van der Poorten [32].

4. The estimate on bound of p-adic exponential polynomials.

In this section a bound for the size of coefficients of
a p-adic exponential polynomial will be obtained similar to
Theorem 6.7. 73 Ayl vepet??

Theorem 8.9. Let 6 Dbe a fixed positive real number;

w1r---r“h1€9p be such that
lwg|p < p /P 7P (i= 1,...,m);
p(l),...,p(m) and n Dbe non-negative integers with
m
n = kzlp(k) ;
Yi,...,ry and r Dbe non-negative integers with
r = _% Ty
=1
Bir--<sBy € Qp be distinct such that
|Bilp < 1 (W= Iy 392,05
E(z) be an exponential polynomial of the form (8.5). For
fixed integers M, N such that
1<M<m, O0<N<p(M -1,

let w,,w,,b,,b,,E be positive real numbers such that,

n p (i) (M)

[:Ilww wilp > Wy |wM'wil; Z W2

i#FM (1<i<m, i+#M)
% *i L P
T_rIBj"Bilp Z b, (i#3, 1<j<2),
i=1

ri
IBj—Bllp b2 (J—#jr l<i<2’l l<]<2‘)r



If
(8.16) r> (n-1) + max{O,[logP(n—l)]-+l-—l/(p—l)}/6 :

then

1W§N+1)/0(M)

|N!aMN|p< (b1b2WlW2)_ E ,

where AnN

is the coefficient of zN—lexp(wMz) in E(z).

Before proving this theorem, a few auxiliary results
are required.

Lemma 8.10. Let M,N be as above, and let Quyg(2z)
n-1"- .
be the unique polynomial |} g;z" satisfying

i=o

QW)W ) = 1 (=N, v=M)
MN v T o (W#FN, v#*M, 1< v<m,
oO<us<p(v)-1).
Then
n-1 )
amy = 1 qiE(l)(O)
1=0

Proof. As in the proof of Lemma 8.4,

p(v)

i T i-u+1
Zoavu(u_l)(u 1) tw

. m
v=1 u=

Thus
n-1

, p (V) n-1 .
3 qiE (0) tat ]
1=9

u-
uzoav“ iZoqiD z JZ==wv

|
—
<
I~—3

? p(g) (u)( )
a, . 0 w = a =
S=n n=0 VU>MN v MN

Lemma 8.11. Let Quy be as in Lemma 8.10. Then

INig; |, < (wiw,) = twiN+1) /e (1)

Proof. We first note that by Proposition 6.14 (i)

we have

|qilp < maX{lQMN(Z)I; IZIP=1}
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Hence it is sufficient to prove that if |z|p = 1, then

|N1Qyy (2) Ip < (W1W2)_IWZ(N+1)/Q(M)

Let € €R be such that 0<i€<<w;/p(M). Taking
lplp = w;/p(M)-s, |z|p = 1 in Theorem 7.12 and note
that

max{|p” ™ (0 ()7 ;i Jumuyl = lolp} < Wi,
we hence obtain

INtQuy (2) | < (w;/p(M)-e)(Nﬂ_p(M))wI1 .

This inequality holds for any € such that

, " '
0 < s<:w;/p( ), and on letting ¢~ 0, we get the
required result

Lemma 8.12. Let B8,,...,By, E,b be as defined in

Theorem §.9; let P(z) be the unique polynomial of
degree at most r -1 such that

e = p e <<y 0<i<rj-1).
Let €€R be such that 0<e<k%06. If vV €Qp be such
that |v|, = p®, then

|P(v)|p < plT" e pip,) T E

Proof. The idea of proof is the same as that in

Lemma 8.11, that is of applying the method of proof of
Theorem 7.12 to the expression for P(z) obtained from

Theorem 7.7.

Proof of Theorem 8.9. For any € such that

0<e<%0, we have by Property 6.15 (Cauchy's inequality)
(8.17) B o) [, < i, T M%) < M%) (i=0,...,n-1),
where M(p%) = max{|E(z)|; |z|p==p€} .

Note that from (8.16) we have for all sufficiently small

>0,



(8.18) r> (n-1) +max{0,[logy (n-1) J+1-1/(p-1) }/(8~2e) .
Consider a fixed € >0 such that (8.18) holds, and

fix p€Qy, such that ]p|P==pe_€. Let P be the poly-

nomial defined in Lemma 8.12. By applying Theorem 7.7 to

E(z), for |[z|,<|p|l, we have

Y (z)E (u) udu
(u-2z) Y (u)

E(z) -P(z) = J
0,p

X r
where Y (z) = (z-B81) '...(z-8) o Therefore, by Proposition

6.11
|E(2)-P(2) |p< [0(2) |p p°7 ™ m(p®~%) .
Now choose the point z=v such that
lvlp =" , [E(v) |p = M%) .
Thus
|E(V)—P(V)|p < p(ze—e)rM(pe—e) < M(p%) ,
using (8.5) of Corollary 8.7 and (8.18).
Thus by the strong triangle inequality and (8.17)
[P [p= [P -EM+EM) |, = [EM) |, = M%) > [P (0) ],
(i=0,...,n-1) ,
From Lemmas 8.10, 8.11, 8.12 and this last inequality, we
get
(i)

[N!aMNlp < max n__1|N!qiE

i=o0,...,

(0) [

§N+1)/p(M)

< (wawz) Tlw RN

- = 1
< (bibaowiwy) 1p(r 1)e o W§N+ ) /p (M) .
Since this holds for all sufficiently small ¢ satisfying

(8.18).

Continued

144
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As can be readily checked the bound on Nlayy
obtained in Theorem 8.9 above implies that stated in the
introduction (page 13) of van der Poorten [33]. However,
our method of proof is simpler and it seems to be a more

natural approach to problems related to interpolation.
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