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Abstract

Alterations in regional subcortical brain volumes have been investigated as part of

the efforts of an international consortium, ENIGMA, to identify reliable neural corre-

lates of major depressive disorder (MDD). Given that subcortical structures are com-

prised of distinct subfields, we sought to build significantly from prior work by

precisely mapping localized MDD-related differences in subcortical regions using

shape analysis. In this meta-analysis of subcortical shape from the ENIGMA-MDD

working group, we compared 1,781 patients with MDD and 2,953 healthy controls

(CTL) on individual measures of shape metrics (thickness and surface area) on the sur-

face of seven bilateral subcortical structures: nucleus accumbens, amygdala, caudate,

hippocampus, pallidum, putamen, and thalamus. Harmonized data processing and sta-

tistical analyses were conducted locally at each site, and findings were aggregated by

meta-analysis. Relative to CTL, patients with adolescent-onset MDD (≤ 21 years) had

lower thickness and surface area of the subiculum, cornu ammonis (CA) 1 of the hip-

pocampus and basolateral amygdala (Cohen's d = −0.164 to −0.180). Relative to first-

episode MDD, recurrent MDD patients had lower thickness and surface area in the

CA1 of the hippocampus and the basolateral amygdala (Cohen's d = −0.173 to

−0.184). Our results suggest that previously reported MDD-associated volumetric

differences may be localized to specific subfields of these structures that have been

shown to be sensitive to the effects of stress, with important implications for map-

ping treatments to patients based on specific neural targets and key clinical features.

K E YWORD S

amygdala, ENIGMA, hippocampus, major depressive disorder (MDD), nucleus accumbens, shape

analysis

1 | INTRODUCTION

Major depressive disorder (MDD) is one of the leading causes of disabil-

ity worldwide, with relatively high rates of lifetime prevalence and recur-

rence (World Health Organization, 2017). MDD is often triggered by

stressful experiences and is commonly associated with various affective

symptoms (e.g., abnormalities in emotion regulation, reduced motivation

in the face of positive incentives, sustained experiences of negative

affect; Davidson, Pizzagalli, Nitschke, & Putnam, 2002; Woody & Gibb,

2015), as well as with cognitive deficits (e.g., attention, learning, working

memory, processing speed, motor functioning; McIntyre et al., 2013).

Several subcortical regions—particularly the hippocampus, amygdala,

and structures of the striatum—through their connections with one

another and with cortical structures, are important for supporting a
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number of these cognitive and affective processes that are disturbed in

MDD (Davidson et al., 2002). In a recent multisite effort, we examined

morphological alterations at the level of subcortical gray matter volumes

in MDD (Schmaal et al., 2016), and found lower total hippocampal vol-

umes, mainly driven by patients with recurrent episodes and by patients

with a relatively early age of onset (i.e., prior to age 21). Despite the

large study sample size and homogeneous analysis protocols, no statisti-

cally significant group differences emerged for any of the other subcorti-

cal structures. It is possible, however, that such aggregate measures of

volume are either insensitive to local volumetric effects or that they

obscure heterogeneous local effects by averaging out more complex

shape effects. In this respect, the analysis of shape parameters repre-

sents a complementary approach to volumetric analyses.

Indeed, MDD is most likely characterized by specific associations

with functionally distinct subregions within the hippocampus, amygdala,

striatum, and other subcortical structures (e.g., thalamus). It is important

to note, however, that characterizing local patterns in subcortical sur-

faces has traditionally been challenging due to the lack of identifiable

surface landmarks that are more common in cortical surfaces (e.g., deep

sulcal patterns). Thus, the lack of detectable volumetric differences in

the amygdala, caudate, putamen, and NAcc between MDD and CTL in

our previous meta-analytic study may be due to the fact that we did not

use shape analyses to examine these important subdivisions (Schmaal

et al., 2016). Furthermore, local variations in shape measures may pro-

vide critical insight into the anatomical relation between a subcortical

structure and important clinical variables, such as illness onset and recur-

rence, as well as detect granular changes that may be particularly helpful

in the context of monitoring intervention targets with more specificity.

To address these knowledge gaps, we conducted a multisite

meta-analytic investigation to test whether MDD patients, and

whether specific subgroups of MDD based on important clinical char-

acteristics, show differences from controls in subcortical shape. Spe-

cifically, we applied meta-analytic models on effect sizes generated

from 10 study cohorts from six different countries participating in the

MDD Working Group of the international ENIGMA consortium. Each

study site applied a well-validated harmonized preprocessing pipeline

and conducted statistical models on high-resolution T1-weighted

MRIs, yielding site-level summary statistics of volume and shape for

seven bilateral subcortical regions from 1,781 patients diagnosed with

MDD and 2,953 healthy controls (CTL).

Guided by findings from our prior meta-analysis in which we

reported that the most robust difference between individuals with

MDD and CTL was smaller hippocampal volume (Schmaal et al., 2016),

and from recent work indicating that the cornu ammonis subfields

(CA) 1–4, dentate gyrus (DG), and the subiculum (SUB) are associated

with exposure to aversive stressful experiences (Teicher, Anderson, &

Polcari, 2012; Treadway et al., 2015) and MDD (Cao et al., 2017; Cole

et al., 2010; Han, Won, Sim, & Tae, 2016; Huang et al., 2013; Roddy

et al., 2018; Treadway et al., 2015), we hypothesized that patients

with MDD would exhibit reductions in these hippocampal subregions.

Given previously documented effects of age of illness onset and recur-

rence of illness on subcortical volumes (primarily the amygdala and

hippocampus; Hamilton, Siemer, & Gotlib, 2008; Schmaal et al., 2016),

we also sought to stratify groups according to these clinical character-

istics: early (prior to age 21) versus later (after age 21) onset MDD and

first-episode versus recurrent-episode. We also report results from

additional exploratory analyses of medicated and nonmedicated

patients (each compared separately to CTL) and of dimensional associ-

ations between subcortical shape and depression severity (clinician-

rated as well as self-reported) among patients with MDD.

2 | MATERIALS AND METHODS

2.1 | Samples

Ten participating sites in the MDD Working Group of ENIGMA consor-

tium (Schmaal et al., 2016, 2017; Thompson et al., 2014) applied harmo-

nized preprocessing and statistical models on structural T1-weighted

MRIs, yielding site-level summary statistics of subcortical volume and

shape from a total of 4,734 participants (1,781 patients with MDD and

2,953 CTL). Detailed demographics, clinical characteristics, and exclusion

criteria for study enrollment for each site are presented in Supporting

Information Table S1. All participating sites obtained approval from their

respective local institutional review boards and ethics committees. All

study participants provided written consent at their local site.

2.2 | Clinical variables of interest

We selected specific clinical variables of interest based on prior work

demonstrating their effects on aggregate subcortical volumes in MDD

(Hamilton et al., 2008; Schmaal et al., 2016). Specifically, we consid-

ered participants with earlier or adolescent onset (EO) to be those

who developed their first episode at or before age 21, and partici-

pants with later or adult onset (LO) to be those who developed their

first episode after age 21 (Schmaal et al., 2016). We defined

recurrent-episode MDD (RECUR) to be those who experienced more

than one major depressive episode (Schmaal et al., 2016).

Because not all sites used the same depression severity scales, as a

supplemental analysis we assessed the severity of depressive symp-

toms at the time of scan as measured by the clinician-rated 17-item

Hamilton Depression Rating Scale (HDRS-17; Hamilton, 1960) or the

21-item self-report Beck's Depression Inventory (BDI; Beck, Ward,

Mendelson, Mock, & Erbaugh, 1961) and their linear associations with

subcortical shape metrics for the subset of sites that had this informa-

tion. Similarly, because the majority of sites did not include detailed

information on lifetime medication usage, dosage, or adherence, as a

supplemental analysis we also compared MDD groups on the basis of

antidepressant medication usage at the time of scan.

2.3 | Image processing and analysis

All participating sites collected anatomical T1-weighted MRI brain

scans locally at each site, where they were analyzed using the fully-
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automated and validated segmentation software FreeSurfer version

5.3 (Fischl, 2002), with the exception of three sites which used ver-

sion 5.0 or 5.1 (see Table S1). A subset of these subcortical measures

has been previously published (Frodl et al., 2016; Renteria et al.,

2017; Schmaal et al., 2016); however, none of these prior meta-

analyses from the ENIGMA MDD Working Group conducted shape

analyses. Detailed information on the number of sites that overlap

between the present investigation and the subcortical paper ENIGMA

MDD (Schmaal et al., 2016) is presented in Table S2. Image acquisi-

tion parameters and software descriptions for each sample are pres-

ented in Supporting Information Table S1. The seven bilateral

subcortical segmentations were: the nucleus accumbens, amygdala,

caudate, hippocampus, pallidum, putamen, and thalamus (as well as

lateral ventricles and total intracranial volume, ICV). All segmentations

were visually inspected for accuracy following standardized protocols

(http://enigma.ini.usc.edu/protocols/imaging-protocols/).

We analyzed shape using the ENIGMA-Shape protocol (http://

enigma.usc.edu/ongoing/enigma-shape-analysis/), for which test–retest

reliability has been previously validated (Hibar et al., 2015). Briefly,

shapes were extracted using the FreeSurfer 5.3 parcellation, followed by

a topological correction and mild smoothing based on the topology-

preserving level set algorithm (Gutman et al., 2015). As in prior work,

after registering shapes to standardized templates, we then defined two

vertex-wise measures of space morphometry which facilitated compari-

sons of subcortical shape: radial distance, as derived from the medial

model (Gutman et al., 2015; Gutman, Wang, Rajagopalan, Toga, &

Thompson, 2012), which yields a measure of “shape thickness,” and the

Jacobian determinant, as derived from tensor-based morphometry (TBM;

Gutman et al., 2015; Wang et al., 2011), which yields a metric of local-

ized tissue reduction or enlargement of surface area (relative to the

respective template shape). Because the Jacobian represents the ratio of

the area in the individual shape relative to the area in the template at the

corresponding vertex, and is not Gaussian in distribution, we used the

logarithm of the Jacobian in all analyses examining shape surface area. A

useful feature of the ENIGMA-Shape pipeline is that results are based

on bilateral shape measures (i.e., templates for corresponding left and

right regions are vertex-wise registered after reflecting one of them, and

summed vertex-wise). Importantly, our registration algorithm provides a

unique and stable matching between datasets, allowing us to efficiently

meta-analyze the effects of MDD across datasets (as in Roshchupkin

et al., 2016). See “Image processing and analysis” under the Supporting

Information for more details on the pipeline for subcortical shape analy-

sis and on quality control procedures.

Each of the 10 study sites applied the subcortical shape pipeline and

ran a priori statistical models (for details, see “Statistical framework for

meta-analyses”, below) that were guided by discussions with ENIGMA-

MDD members and previous work (Schmaal et al., 2016, 2017) to gener-

ate summary statistics for inclusion in our meta-analyses.

2.4 | Site-specific statistical models

To harmonize analyses across sites, a set of standardized scripts to com-

pute mass univariate statistics was distributed to all participating sites

via the ENIGMA-Git page (https://github.com/ENIGMA-git/ENIGMA/

tree/master/WorkingGroups). Each study site performed mass univari-

ate (per-vertex, per-measure) analysis for all the linear models proposed

in the present study (see Table 1). Specifically, for our primary statistical

models of interest, subcortical shape measures of thickness (radial dis-

tance) and surface area (log of the Jacobian determinant) were the out-

come variables, and a binary group indicator variable (e.g., 0 = CTL,

1 = MDD) was the predictor of interest, with age, sex (as a factor), and

total ICV as covariates. Our planned comparisons included the following:

MDD versus CTL; early-onset MDD (EO) versus CTL; later-onset MDD

(LO) versus CTL; EO versus LO; recurrent episodeMDD (RECUR) versus

CTL; first episode MDD (FIRST) versus CTL; RECUR versus FIRST. We

also tested whether sex and age significantly interacted with diagnostic

group. Although demographic variables for MDD versus CTL were mat-

ched at the site-level, such matching was not necessarily preserved for

subgroup comparisons (e.g., EO vs. CTL). Thus, in all analyses, age, sex

(as a binary factor), and total ICV were included as covariates.

Finally, we conducted exploratory analyses testing for the associ-

ations (i.e., linear correlations) with HDRS-17 and BDI scores (sepa-

rately) within the MDD group only, as well as comparing groups based

on antidepressant usage at the time of scan (MED vs. CTL, and NON

vs. CTL) to explain variation in subcortical shape measurements. These

analyses were exploratory as only a subset of sites collected the rele-

vant information that permitted us to conduct these analyses.

2.5 | Meta-analytic framework and correction for
multiple comparisons

The resulting group-level maps of effect sizes (i.e., Cohen's d for the

group comparisons and Pearson's r for the dimensional analyses),

regression parameters, and confidence intervals, as well as basic site

information, were aggregated for mass univariate meta-analysis. As per-

formed in Schmaal et al. (2017, 2016), we conducted meta-analyses

which pooled each site's effect sizes, for each region, using an inverse

variance-weighted random-effects model as implemented in the R

package metafor (version 1.9-1) and fit with REML (https://cran.r-

project.org/). One advantage of random effects models is that they

allow effect sizes to vary across studies due to study-specific differ-

ences (e.g., mean age); random effects models therefore weight within-

study as well as between-study variance in the pooled effect size esti-

mates to mitigate bias or undue influence from the largest samples in

the meta-analysis (Borenstein, Hedges, Higgins, & Rothstein, 2010).

Maps of p-values resulting from the meta-analysis were corrected for

multiple comparisons using a modified searchlight false discovery rate

(FDR) procedure set to p < .05 (for details on procedures and code, see

Langers, Jansen, & Backes, 2007). We applied this correction globally

across all seven bilateral subcortical regions and measures (thickness, sur-

face area) for each linear model. See “Meta-analytic framework and correc-

tion for multiple comparisons” in the Supporting Information for more

details. For comprehensiveness, we also conducted and report local FDR-

corrected results for each of the seven bilateral subcortical structures (i.-

e., corrected independently in each subcortical region and for each shape

metric) in the Supporting Information. Finally, we also report I2 values for
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each of our significant effects, which reflect the amount of heterogeneity

relative to the total amount of variance in the observed effects.

3 | RESULTS

3.1 | Global FDR-corrected effects

3.1.1 | MDD versus CTL (and interaction effects
with age and sex)

There were no significant differences between MDD and CTL, and no

significant interactions between diagnostic group and age or sex.

3.1.2 | Age of onset groups

There were no significant differences between LO and CTL, and no

significant differences between EO and LO. Relative to CTL, EO had

lower thickness in the hippocampus (Cohen's d = −0.17) and amyg-

dala (Cohen's d = −0.16), and smaller surface area in the hippocam-

pus (Cohen's d = −0.18) and amygdala (Cohen's d = −0.17). The

strongest effects were primarily in the surface area of the SUB, CA1,

and BLA. See Table 1 and Figure 1 for more details. Please see

Figure S1 for a map of I2 values for the surface area results for EO

versus CTL.

3.1.3 | Recurrence status

There were no significant differences between RECUR and CTL, and no

significant differences between FIRST and CTL. Relative to FIRST,

RECUR had lower thickness in the hippocampus (Cohen's d = −0.17)

and amygdala (Cohen's d = −0.17), and smaller surface area in the hip-

pocampus (Cohen's d = −0.17) and amygdala (Cohen's d = −0.18). These

effects were primarily in the surface area of the CA1 and BLA. Relative

to FIRST, RECUR also had both greater thickness (Cohen's d = 0.18) and

greater surface area (Cohen's d = 0.18) in the medial posterior thalamus.

See Table 1 and Figure 2 for more details. Please see Figure S2 for a

map of I2 values for the surface area results for RECUR versus FIRST.

3.2 | Supplemental results assessing associations
with depression severity

There were no significant associations with depressive symptom

severity using HDRS-17 or BDI scores in any subcortical structural

outcome measures.

TABLE 1 Summary of results

Statistical model
# of first group/# of second
group/total sample size # of sites

Global-FDR correction

results for thickness
(Cohen's d/% affected/I2)

Global-FDR correction

results for surface area
(Cohen's d/% affected/I2)

MDD versus CTLa 1,781/2,953/4,734 10 n.s. n.s.

EO versus CTL 476/2,879/3,355 9 Hipp: −0.172/4.51%/1.41

Amyg: −0.164/4.23%/0.04

Hipp: −0.180/22.52%/2.79

Amyg: −0.168/6.01%/1.36

LO versus CTL 1,028/2,879/3,907 9 n.s. n.s.

EO versus LO 476/1,028/1,504 9 n.s. n.s.

RECUR versus CTL 1,273/2,953/4,226 10 n.s. n.s.

FIRST versus CTL 500/2,879/3,379 9 n.s. n.s.

RECUR versus FIRST 1,174/500/1,674 9 Hipp: −0.173/1.61%/6.27

Amyg: −0.174/3.45%/7.21

Thal: 0.177/6.79%/0.90

Hipp: −0.174/1.94%/0.47

Amyg: −0.183/0.52%/0

Thal: 0.176/7.68%/5.78

MED versus CTL 976/2,879/3,855 9 Hipp: −0.139/2.99%/7.92

Caudate: −0.133/9.73%/8.24

Hipp: −0.136/9.32%/7.87

Caudate: −0.140/2.31%/2.72

NAcc: −0.143/22.10%/13.1

NON versus CTL 797/2,933/3,730 9 n.s. n.s.

HDRS-17b 720 4 n.s. n.s.

BDIb 760 6 n.s. n.s.

Note: Statistical models in bold indicate primary analyses. All site-specific analyses included age, sex (as a factor), and intracranial volume (ICV) as covariates

and all meta-analytic models pooled each sample's effect sizes (i.e., d or r) using an inverse variance-weighted random effects model. For more information

on each study site, please see Table S1. Thickness is measured by radial distance and surface area is measured using tensor-based morphometry. See

Figures 1 and 2 for more details on results from the primary analyses surviving global-FDR correction, Figures S3–S7 for more details of results from the

primary analyses surviving local-FDR correction, and Figures S8–S10 for results on the supplemental analyses involving medication usage.

Abbreviations: BDI, Beck's Depression Inventory; CTL, healthy controls; EO, early-onset MDD (≤21 years old); FIRST, first-episode MDD; HDRS-17,

Hamilton Depression Rating Scale (17 items); LO, later-onset MDD (>22 years old); MDD, major depressive disorder; MED, medicated at time of scan; n.s.,

no significant effects; NON, not medicated at time of scan; RECUR. recurrent-episode MDD.
aInteractions between age and sex (separately) were also tested.
bDimensional analyses conducted within MDD only.
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3.3 | Supplemental results of group comparisons
based on local-FDR correction

Overall, the results from the local-FDR corrected results were consis-

tent with the global-FDR corrected results, including smaller thickness

and surface area of the SUB and BLA in EO relative to CTL and

smaller BLA thickness in RECUR relative to FIRST. Not surprisingly,

we observed more significant results with the local-FDR correction.

Notably, MDD relative to CTL exhibited smaller surface area in SUB,

BLA, and NAcc shell. Please see Table S2 for a summary of local FDR-

corrected thresholds and Figures S3–S7 in the Supporting Information

for more details.

3.4 | Supplemental results of group comparisons
based on antidepressant usage

Please see Table S1 for a summary of results comparing MED, NON,

and CTL, and Figures S8–S10 in the Supporting Information for more

details.

4 | DISCUSSION

The present study is the largest investigation of subcortical shape in

MDD to date with a total of 1,781 patients with MDD and 2,953

healthy controls. We identified reductions in the thickness and sur-

face area of the subiculum (SUB) and the cornu ammonis (CA) one

subfields of the hippocampus and the basolateral amygdala (BLA) in

patients with an adolescent age of onset (i.e., prior to age 21 years)

compared to healthy controls. Further, patients with recurrent depres-

sion (i.e., more than one episode of MDD) exhibited lower thickness

and surface area primarily in CA1 and BLA compared to patients

experiencing their first episode of depression.

Our findings build significantly from our initial study from the

ENIGMA MDD Working Group (Schmaal et al., 2016). First, we report

depression-related effects in the shape of structures—namely, the

amygdala and thalamus—that did not yield statistically significant volu-

metric differences as a function of depression status (Schmaal et al.,

2016). Second, we provide information on which aspects of gray mat-

ter morphology (thickness, surface area) are impacted by depression.

Third, we report that the subiculum of the hippocampus and the

F IGURE 1 Global-FDR corrected
results for EO versus CTL. (a) Surface
area effects in subregions of the
amygdala and hippocampus from a
superior view (left) and an inferior
view (right). (b) Surface area effects
overlaid on the FreeSurfer v. 6.0
hippocampal subfield atlas (mirrored).
Colored bars correspond to range of

effect sizes (Cohen's d). All results are
based on bilateral shape measures
(i.e., templates for corresponding left
and right regions are vertex-wise
registered after reflecting one of them,
and summed vertex-wise). See Table 1
for more information

F IGURE 2 Global-FDR corrected
results for RECUR versus FIRST.
(a) Surface area effects in subregions
of the amygdala, hippocampus, and
thalamus from a superior view (left)
and an inferior view (right). (b) Surface
area effects overlaid on the FreeSurfer
v. 5.3 hippocampal subfield atlas. Color
bars correspond to range of effect
sizes (Cohen's d). All results are based
on bilateral shape measures
(i.e., templates for corresponding left
and right regions are vertex-wise
registered after reflecting one of them,
and summed vertex-wise). See Table 1
for more information
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basolateral amygdala specifically are affected by early onset and

recurrent depression. Thus, our results reveal depression-related dif-

ferences that are manifested in nuanced changes in subcortical mor-

phometry. Importantly, these patterns may offer insight into

important clinical influences (e.g., early onset, recurrent episodes) on

the brain basis of MDD.

In line with findings from our previous findings (Schmaal et al.,

2016), we found significant reductions in hippocampal volume that

were primarily driven by patients who had an age of onset of

depression prior to 21 years and/or patients experiencing recurrent

episodes of MDD. Our present finding that early-onset MDD is

characterized by smaller surface area of the SUB and CA1 com-

pared to healthy controls suggests that excessive or dysregulated

stress responses play a key role in the development of MDD, con-

sistent with broader theoretical literature (Hammen, 2005). Our

results are theoretically consistent with preclinical and clinical

models of MDD that posit that stress-induced increases in gluco-

corticoid levels shrink dendrites and reduce the number of spines

in the hippocampus, resulting in atrophy (McEwen et al., 2015;

Tata & Anderson, 2010). Postmortem data indicate that the human

SUB may contain a higher density of glucocorticoid binding sites

than CA1–4 or even the DG (Kim, Pellman, & Kim, 2015; Sarrieau

et al., 1986). The SUB also receives input from other subfields of

the hippocampus (especially CA1), has reciprocal connections with

the hypothalamic nuclei, and sends projections to several subcorti-

cal and cortical targets, making it a key structure that regulates the

HPA axis (Lowry, 2002; O'Mara, 2005). In light of the extant litera-

ture focused on hippocampal subfields in the context of stress and

MDD (Bearden et al., 2009; Cao et al., 2017; Cole et al., 2010;

Han et al., 2016; Huang et al., 2013; Roddy et al., 2018; Teicher

et al., 2012; Treadway et al., 2015), at least two potentially com-

plementary explanations emerge: first, stress-induced neurotoxicity

due to HPA-axis dysregulation prior to disease onset may have led

to the observed structural deficits. Second, in light of our findings

that recurrent MDD is associated with lower thickness and smaller

surface area in CA1, the hippocampal alterations we report may

also be a consequence of the stress associated with experiencing

multiple episodes of depression. Unfortunately, an insufficient num-

ber of sites provided information on the number and timing of

depressive episodes, making it challenging to dissociate the effects

of early onset from recurrent depression. Future longitudinal data

are ultimately needed to disentangle these possibilities.

Patients with recurrent MDD also showed reduced basolateral

amygdala (BLA) and enlarged medial posterior thalamus relative to

those in their first episode. Our finding of reduced BLA in patients

with recurrent MDD relative to those in their first episode clarifies

conflicting data in the extant literature on the effects of MDD on

amygdala volume and is consistent with the role of the BLA in

responding to threats and stressors in the environment (Terburg

et al., 2018). Indeed, previous studies have documented that age

of onset, number of episodes, and antidepressant medication affect

amygdala volume in people with MDD (Hamilton et al., 2008;

Kronenberg et al., 2009; Rubinow et al., 2016; Schmaal et al.,

2016; van Eijndhoven et al., 2009). Interestingly, in our exploratory

analyses examining patients who were medicated (at the time of

scan) and also those who were not medicated versus CTL, we did

not find evidence of enlarged amygdala volume, as was reported in

a meta-analysis from a decade ago (Hamilton et al., 2008). Given

the partial overlap in sites and samples (see Table S2), it is not sur-

prising our results are more aligned with our prior meta-analysis of

aggregate subcortical volumes, where we reported a trend that

individuals with MDD exhibit reduced amygdala volume compared

to healthy controls (Schmaal et al., 2016).

Our finding of greater medial posterior thalamic thickness and

surface area in recurrent patients with MDD relative to first-episode

patients is an intriguing result that requires more research. While one

study of postmortem samples reported more neurons in the

mediodorsal and anteromedial nuclei of the thalamus in people diag-

nosed with MDD relative to healthy controls (Young, Holcomb,

Yazdani, Hicks, & German, 2004), others have reported larger thalamic

volumes in first-episode treatment-naïve patients with MDD (Qiu

et al., 2014; Zhao et al., 2014). Interestingly, in a meta-analysis by

Bora et al., late-life depression was associated with smaller thalamic

volume (Bora, Harrison, Davey, Yucel, & Pantelis, 2012). Lithium usage

is associated with larger thalamic volumes in patients with bipolar dis-

order (Lopez-Jaramillo et al., 2017; Lyoo et al., 2010), but it is unclear

from our data as well as in the current literature what the role of

mood stabilizing medications are on brain structure in patients with

MDD. As we report in the Supporting Information, patients receiving

antidepressant treatment at the time of scan did not differ, on aver-

age, in thalamus thickness or surface area compared to healthy con-

trols. It will be important for future research to carefully consider the

role of subregions of the thalamus in MDD and determine how illness

recurrence and/or medication usage affects morphometry of this

structure.

Using a less stringent statistical threshold for significance (i.-

e., local-FDR correction only), we also report that patients with

MDD show lower caudate thickness and smaller surface area in

the shell of the nucleus accumbens (NAcc-s) compared to CTL

(in addition to smaller surface area of SUB and BLA). As with the

amygdala, while we did not detect overall statistically significant

differences in nucleus accumbens volume between MDD and CTL

(Schmaal et al., 2016), the use of shape analysis was more sensitive

in identifying nuanced differences between groups. The NAcc-s

enjoys robust connections with the orbitofrontal cortex (OFC), with

prior research suggesting that both structures underlie disturbed

reward processing and decision making in MDD (Drevets, 2007;

Kumar et al., 2019). Similarly, extensive work has demonstrated

that the caudate plays a critical role in reward-based reinforcement

learning, with neurons in this structure relaying signals that code

for expectation violation and reward prediction errors

(Arulpragasam et al., 2018; Haber & Knutson, 2010; O'Doherty,

2004; Tricomi & Lempert, 2014). Smaller putamen and caudate vol-

umes have been observed not only in adults with depression

(Pizzagalli et al., 2009) but also in young adolescents with parental

history of MDD (Pagliaccio et al., 2019), suggesting that these
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morphological characteristics may represent risk markers. While

more research in this area is clearly needed, our results are consis-

tent with neurobiological models of anhedonia and melancholic

MDD, which are characterized by more persistent episodes of

depression (and indeed, we find smaller NAcc-s in recurrent

patients relative to controls in our local-FDR corrected results),

that implicate dopaminergic dysfunction specifically in mesolimbic

pathways (Heller et al., 2009; Misaki, Suzuki, Savitz, Drevets, &

Bodurka, 2016; Whitton, Treadway, & Pizzagalli, 2015).

Overall, our effect sizes are modest; nevertheless, they are com-

parable to what we have reported in prior meta-analytic investigations

comparing MDD and CTL in subcortical and cortical regions (Schmaal

et al., 2016, 2017). Given the heterogeneity of MDD as a disorder (e.-

g., atypical depression) and the likely clinical heterogeneity across the

different study sites (e.g., illness duration, medication usage), it may

be that several of the findings we report here represent nuanced vari-

ations in subcortical subregions as a function of specific clinical char-

acteristics in MDD, and that combining across these distinct clinical

subgroups resulted in smaller effect sizes. For instance, early-onset

depression may affect the hippocampus specifically due to early

and/or chronic exposure to stress (as well as experiencing recurrent

episodes, which are themselves stressful experiences) whereas later-

onset depression may affect the striatum due to experiences affecting

reward-based circuitry specifically (e.g., anhedonia, motivational loss,

etc.). Future research is needed to comprehensively parse subtypes of

MDD and collect more detailed information on important clinical char-

acteristics in order for us to link specific clinical profiles with their

neurobiological substrates.

4.1 | Strengths, limitations, and future directions

As the first multisite meta-analytic study of subcortical shape in MDD,

major strengths of our investigation include the large number of observa-

tions sampled from several sites across the world combined with the use

of standardized quality control procedures across all of these sites.

Despite the standardized preprocessing protocols and statistical ana-

lyses, one limitation of our meta-analytic investigation is that we com-

bined pre-existing data across worldwide samples; thus, data collection

protocols (e.g., scan sequences, depression measurements) were not har-

monized. Therefore, there may be important sources of heterogeneity in

both imaging acquisition protocols and in clinical assessments that will

need to be considered in future investigations utilizing mega-analyses.

Indeed, there are several advantages to mega-analyses over meta-ana-

lyses, including greater flexibility in model specifications (e.g., relaxation

of model assumption such as within-study normality, inclusion of

covariates at the level of individuals as well as at the level of sites, etc.)

and potentially greater statistical power to detect certain effects (e.-

g., higher order interactions) (Boedhoe et al., 2019; Burke, Ensor, & Riley,

2017; Debray, Moons, Abo-Zaid, Koffijberg, & Da Riley, 2013). Never-

theless, there are several analytic advantages to meta-analyses over

mega-analyses, including the ability to assess the robustness and gener-

alizability of findings across cohorts (see Table 1, Figures S1 and S2), as

well as handling site-specific covariates to account for local population

substructure (Burke et al., 2017; Schmaal et al., 2020).

Even though all sites performed quality control tests according to

the ENIGMA-Shape Quality Control guide, a limitation of our study is

the reliance on an automated segmentation tool (i.e., FreeSurfer) that

has been shown to systematically overestimate the size of the hippo-

campus, amygdala, and other structures in comparison to manual trac-

ing (Makowski et al., 2018; Schmidt et al., 2018; Schoemaker et al.,

2016). However, a recent study reported that despite this bias, agree-

ment between FreeSurfer and tracing methods, as well as measures of

spatial overlap, were high (r: 0.70–0.72; Schmidt et al., 2018). Another

recent study also reported high test–retest reliability for FreeSurfer

estimates of the twelve subfields of the hippocampus, with the excep-

tion of the hippocampal fissure (ICC: 0.66–0.96; Whelan et al., 2016).

Although this issue is outside of the scope of the present investiga-

tion, it is critical for the field to identify which subcortical (and cortical)

regions may be adequately segmented by automated procedures and

which may show systematic biases (or may only exhibit such biases

with certain clinical conditions). Indeed, this is an explicit goal and

active area of future research for the ENIGMA Consortium

(Thompson et al., 2014, 2019).

It is important to note that with respect to hippocampal differ-

ences between MDD and CTL, the results of the present study dif-

fered from our previous study on subcortical volume, in that we

identified group differences in subfields of this structure with local-

FDR correction only whereas the most robust subcortical volumetric

difference between groups was smaller hippocampal volume in MDD

(Schmaal et al., 2016). One reason for this discrepancy is that the sam-

ples differed between the two studies, both in terms of total sample

size (Schmaal et al. examined a total N = 8,927) and in the specific

sites included. As detailed in Table S2, five of the sites (n = 1909) that

were included in this study were not included in our previous study.

Given the smaller sample size of the present study, statistical power is

also likely an issue, particularly since we applied vertex-wise correc-

tion for determining significance thresholds, resulting in more strin-

gent p-values. Despite these differences, the effect size for smaller

hippocampal surface in MDD versus CTL in our study was d = −0.11,

which is comparable to the effect size of our previous volumetric ana-

lyses (d = −0.14). Moreover, both studies report that early-onset

depression robustly affected hippocampal morphology. Thus, despite

the differing samples and distinct methodological approaches, the

shape and volumetric analyses do broadly share consistent results

with respect to MDD-related hippocampal effects.

While previous studies on overall volume in subcortical regions

have identified important neurobiological correlates of MDD, investigat-

ing the shape of these structures may represent an important direction

for future research focused on understanding structural abnormalities in

psychiatric disease, as such findings are able to complement volumetric

analyses that are unable to show surface abnormalities. Such an

approach is particularly important for structures whereby distinct sub-

fields or regions exhibit distinct functionality (e.g., BLA vs. CMA; Mosher

et al., 2010) and promises to provide insight into circuit-level connec-

tions that can be investigated further with other imaging modalities
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(e.g., diffusion-weighted MRI, resting-state MRI), as well as in preclinical

animal models.

Finally, as we alluded to previously, investigating the effects of

antidepressant medication was challenging in the present study, as

the majority of sites did not collect detailed information on history,

duration/adherence, type, and dosage of antidepressant treatment.

Future research studies focused on collecting detailed information on

lifetime medication usage in patients with MDD are needed to better

understand how various antidepressants affect brain structure.

4.2 | Conclusions

We identified reductions in stress-sensitive subfields of the hippo-

campus, particularly in the subiculum and CA1, and in the basolateral

amygdala in MDD patients with an earlier onset of depression and in

MDD patients with recurrent episodes, compared to healthy controls

and first-episode patients, respectively. Examining nuances in subcor-

tical shape may help disentangle the complex clinical influences on

the brain basis of MDD (e.g., structural correlates with important clini-

cal variables, such as illness onset and recurrence), as well as provide

the ability to detect fine-grained changes that show promise in the

context of monitoring intervention targets with more specificity.
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