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Abstract 

Aerodynamics is a facet of engineering that has progressed rapidly since the discovery of 

flight from as early as the mid-19th century. In recent years, high manoeuvrability aircraft, 

high-speed helicopters, unmanned-aerial vehicles, micro-aerial vehicles and natural flyers 

have attracted significant interest due to their potential for military, surveillance and 

rescue applications. Due to economic and global demand to limit greenhouse gas 

emissions, the awareness of clean energy resources, such as horizontal-axis and vertical-

axis wind turbines, has resulted in the rapid growth of research focusing on improving the 

performance and operational efficiency of such machines. Although these machines are 

designed for dissimilar applications, they all suffer from a common problem; the process 

of dynamic stall.  

Dynamic stall is the unsteady aerodynamic phenomenon that occurs on pitching and 

plunging wings due to transient fluctuations in the operating angle of attack. During the 

process of dynamic stall, flow separation is delayed to elevated angles of attack. 

Increasing the angle of attack results in growth of a vortex structure originating at the 

leading edge. This vortex results in increased lift, drag and moment on the wing. Increased 

forces and moments continue until the vortex detaches from the wing and convects into 

the wake. The wing proceeds into deep-stall until the incidence angle is reduced to angles 

permitting reattachment of the boundary layer. 

Dynamic stall results in increased material fatigue, cost and maintenance, and an overall 

decrease in performance of machine components. In contrast, natural flyers such as birds 

and insects have evolved to exploit the unsteady phenomenon for sustained flight. While 
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dynamic stall has been extensively studied for helicopter applications, recent work has 

focused on the operation of wind turbines. Helicopter rotor blades are exposed to 

sinusoidal changes in the angle of attack throughout each blade rotation. Whereas, wind 

turbines blades are subject to multiple variations in angle of attack. In addition, stalled 

rotor conditions may even be used beneficially to control power output during high wind 

load conditions.  

The purpose of this thesis is to investigate the effects of dynamic stall on wings typically 

associated with wind turbines, helicopter and micro-aerial vehicle applications. More 

specifically, the thesis will focus on the study of pitching airfoils. Under the unsteady 

operating conditions, unsteady aerodynamic forces and flow structure development will 

be investigated during both pitch-up and post-stall phases of the airfoil motion. This is 

achieved by replicating unsteady operating conditions in both water-channel and wind-

tunnel facilities. Particle image velocimetry and surface pressure measurements were 

utilised to identify key flow structure events, and the associated forces generated on 

wings during unsteady motion.  

Constant-pitch-rate motion at a Reynolds number of 20,000 was applied to similar airfoils 

of different thicknesses, and includes a NACA 0012 and a NACA 0021. The aim of the 

investigation was to determine the flow structure variation between both thick and thin 

airfoil profiles during dynamic stall. Separation was shown to occur at earlier stages of the 

dynamic stall process for the thinner airfoil section when exposed to low rotation-rate 

dynamic stall. Increasing the rotation rate resulted in higher inertial loads, which in turn 

led to delayed stall and increased force generation at higher angles of attack. Fluctuations 

in forces were correlated with periodic vortex shedding at the trailing edge during airfoil 
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ramp-up. Under steady-state conditions, the presence of separation bubbles on both 

surfaces of the airfoil resulted in a negative lift-curve slope prior to the collapse of both 

bubbles and subsequent recovery of lift. Deep stall was delayed with an increased rotation 

rate due to the initial delay in formation of the leading-edge vortex. However, once 

separation of the vortex occurred, post-stall characteristics were not influenced by airfoil 

geometry, with both airfoils exhibiting bluff-body separated-flow characteristics. 

For post-stall conditions following dynamic stall, increasing the reduced frequency 

delayed separation in some instances up to an angle of attack of 60°. Low surface pressure 

on the upper surface of the airfoil was linked to vortex structure developed during 

dynamic stall and in post-stall conditions.  The centre of pressure was shown to shift with 

the development of the leading-edge vortex, and move aft of the quarter-chord location 

during fully-separated flow conditions. The change in centre of pressure leads to 

increased moment, which is transferred and linked to increases in torsional loading and 

fatigue of rotor blades and power transmission components or rotary machines.  

For investigation of a boundary layer control method, a simplified leading-edge trip wire 

was implemented on two airfoils experiencing dynamic stall conditions. NACA 0012 and 

NACA 0021 airfoils were fitted with leading-edge trip wires of varying diameters, located 

at a fixed displacement from the airfoil leading edge. The Reynolds number was 20,000. 

The trip wires were shown to decrease the maximum lift, although the stall angle of attack 

was not observed to change with variations in the trip wire diameter. Geometric 

superposition was observed between the trip wire and the airfoil body when the diameter 

of the wire exceeded 1.6% of the airfoil chord length. This led to increases in lift and drag 

during the pitch-up motion.  
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Constant-pitch-rate rotation was utilised to investigate the effects of half-saddle 

movement and vortex formation on the aerodynamic characteristics of a pitching flat 

plate. A combination of round, square and triangular leading-edge and trailing-edge 

extensions were alternated during testing on a flat plate with a thickness-to-chord ratio 

of 0.1. The Reynolds number was 20,000. The half-saddle point, located on the upper 

surface, was linked to leading-edge vortex attachment. Detachment of the leading-edge 

vortex resulted once the position of the half-saddle point reached the trailing edge of the 

flat plate. Similarly, the rate of aft motion of the half-saddle point was shown to increase 

as a function of airfoil chord length, rotation rate and free-stream velocity. No benefit to 

overall force generation was observed once a critical angle of attack was reached. 

Maximum aerodynamic efficiency was shown to occur at angles of attack significantly 

below the angle of attack where maximum lift force was observed.  

The research in the current dissertation enhances knowledge of the dynamic-stall process, 

and provides information that can improve methods of boundary layer control on wings 

exposed to dynamic stall. Moreover, research reported herein provides critical 

information on the deep-stall process, which occurs after the event of dynamic stall. With 

the information acquired in this thesis, increased awareness of dynamic stall and deep-

stall characteristics can be achieved and utilised for the development of blades which are 

lighter, perform more efficiently and require lower costs to develop and maintain.   
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Nomenclature 

Acronyms  

PIV Particle image velocimetry  

 

Symbols 

𝛼 Angle of attack 𝑑𝑒𝑔𝑟𝑒𝑒 ° 

𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 Critical stall angle of attack 𝑑𝑒𝑔𝑟𝑒𝑒 ° 

𝛼̇ Angular velocity 𝑑𝑒𝑔𝑟𝑒𝑒°/𝑠 

𝑐 Airfoil chord length 𝑚 

𝐶𝐶 Maximum chord force coefficient − 

𝐶𝐷 Drag coefficient  − 

𝐶𝐿 Lift coefficient − 

𝐶𝑀 Pitching moment coefficient − 

𝐶𝜇 Jet moment coefficient − 

𝐶𝑁 Normal airfoil force coefficient  − 

𝐶𝑃 Pressure coefficient − 

𝑓 Frequency  𝐻𝑧 

ℎ Boundary layer thickness 𝑚 

𝜅 Reduced frequency, 𝜔𝐶 2𝑈∞⁄  − 

𝜇 Fluid dynamic viscosity 𝑁. 𝑠 𝑚2⁄  
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𝜔 Angular velocity 𝑟𝑎𝑑/𝑠 

𝜔𝑍 Span-wise vorticity 1/𝑠 

 

 

𝑟 Blade radius 𝑚 

𝑅𝑒 Chord based Reynolds number, 𝜌𝑈∞𝐶 𝜇⁄  − 

𝜌 Fluid density 𝑘𝑔/𝑚3 

𝑡 Time 𝑠 

𝜏 Period  𝑠 

𝑈′  Free-stream velocity fluctuation 𝑚/𝑠 

𝑈𝐶  Vortex convection velocity 𝑚/𝑠 

𝑈𝑓  Resultant unsteady velocity 𝑚/𝑠 

𝑈𝐹𝑜𝑟𝑤𝑎𝑟𝑑  Helicopter forward velocity 𝑚/𝑠 

𝑈∞ Free-stream velocity 𝑚/𝑠 

𝑈𝑁 Normalised vortex convection velocity − 

𝑉′ Operational velocity fluctuation 𝑚/𝑠 

𝑋 Distance from the airfoil leading edge 𝑚 
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Chapter 1.  Introduction to Dynamic Stall 

Introduction to Dynamic Stall  

1.1.  Background and Motivation  

Modern engineering requires complex problems to be analysed in detail in order to fully 

comprehend the task at hand, design solutions and engineer fixes to problems that arise 

in everyday situations. The study of aerodynamics on rotor blades and wings has 

progressed from a point of steady-state analysis through to unsteady analysis, where 

induced forces are developed as a result of fluctuating operating conditions on machines 

such as gas turbines, wind turbines, fixed wing aircraft, helicopters and micro-aerial 

vehicles. In addition, aerodynamic unsteadiness is associated with natural flyers including 

birds, bats and insects, where the generated transient lift is critical for sustained flight, 

avoidance and hunting manoeuvres, and perching during landing (Ellington, 1984, 

Ellington et al., 1996, Sane, 2003, Birch, Dickson and Dickinson, 2004, Shyy et al., 2007, 

Choudhry et al., 2014). With an increase in demand for renewable energy resources, a 

quest for more efficient and quiet operation of aerial vehicles and wind turbines, and a 

trend towards micro-aerial vehicle and flapping wing applications, the need for a in-depth 

research of the unsteady aerodynamics is highly warranted. This thesis seeks to provide 

new knowledge relating to the unsteady aerodynamic behaviour of such machines. In this 

thesis, wings will be subjected to pure-pitch motion and high rotation rates, in order to 

simulate and reproduce dynamic stall behaviour. These conditions are linked to increased 

material fatigue, operational cost and loss of efficiency during the operation of modern 
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rotary machines, whilst contributing to enhanced lift on micro-aerial vehicles and natural 

flyers.  

Dynamic stall is the unsteady process of delayed stall developed on wing subjected to 

transient fluctuations in the effective operating angle of attack or reverse flow conditions 

(Datta, Yeo and Norman, 2013, Hodara et al., 2016, Lind and Jones, 2016). Typically, 

dynamic stall is characterised by a delay in airfoil stall, where the airfoil stalls at a higher 

angle of attack in comparison to steady-state stall. Following delayed stall, generation of 

a vortex structure originated at the leading edge occurs. The vortex structure grows in 

strength whilst moving downstream over the airfoil upper surface. It is during this time, 

whilst the vortex remains in proximity to the airfoil surface, that enhanced lift is possible 

(McCroskey, 1981). The process of dynamic stall is completed via shedding of the leading-

edge vortex, which leads to a dramatic decrease in lift and increase in drag until the return 

of the wing to an angle of attack where flow re-attachment can occur. This process is 

illustrated in Figure 1.1, which shows the progressive flow structure development and 

associated forces generated during the dynamic stall cycle. 

The process of delayed separation and dynamic stall was first described by Kramer (1932) 

who described transient lift generation resulting from gusts on aircraft wings during flight. 

The lift developed led to in-flight instabilities and passenger discomfort during operation. 

It was not until the early 1960s that a considerable research undertaking of the dynamic 

stall process occurred, motivated by the development of unsteady flows on the rotor 

blades of helicopters operating at high speeds and during manoeuvring.  Harris and Pruyn 

(1968) were among the first to identify significant differences between operational rotor 

loads and conventional steady-state aerodynamics. 
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Figure 1.1. Dynamic stall development on an airfoil undergoing cyclic pitching motion, 

indicating the critical phases of the stall process and associated forces. Image 

reproduced from Carr (1988). 
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In addition, Liiva (1969) discussed the difficulties in predicting the applied rotor loads on 

helicopters at high speed using theoretical strip methods, due to unsteady aerodynamic 

effects imposed on the rotor by dynamic stall. 

The dynamic stall process, and its recognition as a large inhibitor to the performance of 

high speed helicopters, were highlighted in detailed studies that identified the variation 

in force generation and flow characteristics with respect to operating parameters 

including, Reynolds number (Re), airfoil rotation rate, Mach number, airfoil geometry, 

pitch location, and airfoil motion type (McCroskey, Carr and McAlister, 1976, Carr, 

McAlister and McCroskey, 1977, Carr et al., 1982, McCroskey et al., 1982). Since these 

extensive studies were conducted, investigation of dynamic stall has become a major 

topic in rotorcraft aerodynamics. Recent analysis of modern helicopter operation has 

revealed that blades operate in conditions where even reversed flow can be generated 

(Datta, Yeo and Norman, 2013, Hodara et al., 2016). In such conditions, the sharp trailing 

edge of the airfoil is considered to be the leading edge, which limits the lift capabilities of 

the helicopter and reduces its operational performance due to the unconventional 

aerodynamics developed during flow separation on the rotor blades. Owing to the limiting 

performance factors associated with dynamic stall, the continued study of unsteady 

aerodynamics is necessary to improve the performance and efficiency of machines and 

vehicles operating in transient unsteady environments. The experimental methods to 

study unsteady aerodynamics on  helicopters laid the foundation for development of 

analytical models for stall prediction and force modelling (Beddoes, 1976, McAlister, 

Lambert and Petot, 1984, Leishman and Beddoes, 1989, Hansen, Gaunaa and Madsen, 

2004, Larsen, Nielsen and Krenk, 2007). These models could be utilised by engineers and 

scientists alike to predict the lift characteristics of pitching wings, and to subsequently 
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design and implement mechanical components that are better suited for operation in 

unsteady environments. 

The dynamic stall process is not only limited to rotorcraft applications. The phenomenon 

has also been linked with the operation of both vertical-axis and horizontal-axis wind 

turbines (Butterfield et al., 1991, Leishman, 2006). Installation of horizontal-axis wind 

turbines has seen a surge in growth where, in 2016, an estimated 487,000MW of capacity 

was installed, compared to approximately 25,000MW installed in 2001 (World Wind 

Energy Association, 2016).  

Historically the power generation capacity and size of wind turbines shows that future 

reliance on wind energy will lead to further increases in turbine size and power output. 

This is reinforced by the current need to reduce greenhouse gases emitted from non-

renewable resources such as gas, oil and coal. The increase in wind energy capacity has 

closely been followed by a gradual increase wind turbine size. Figure 1.2 shows the 

average increase in horizontal-axis wind turbine size, whilst also indicating future 

projections of their rotor diameter based on future power demands (Serrano‐González 

and Lacal‐Arántegui, 2016). The increase in size not only places additional loads on the 

turbine blades, but also makes them more susceptible to dynamic stall due to tower 

shadow, turbine yaw and atmospheric turbulence. The generated unsteady loading 

resulting from dynamic stall, leads to increased blade vibration, material fatigue, power 

variation and cost of operation and maintenance(Veers et al., 2003).   

Therefore, knowledge of the dynamic stall process is of significant importance to ensure 

that future wind turbines can be developed to combat the unsteady aerodynamic forces. 

As a consequence, blades on rotary machines can be designed to have increased life-
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spans, and perform more efficiently in environments containing increased turbulence or 

asymmetric and unsteady blade inflow conditions.   

 

Figure 1.2. Approximation of horizontal axis wind turbine rotor diameter for past and  

forecasted growth in order to sustain demand for wind energy (Serrano‐González and 

Lacal‐Arántegui, 2016). 

The motivation of the current research is focused on developing fundamental scientific 

knowledge of the fluid structure development and load generation characteristics of 

airfoils undergoing dynamic stall and which are associated with blades of rotary machines, 

such as helicopters and wind turbines. Development of dynamic stall has previously been 

shown to vary significantly between airfoil motion types and rotation rates. Furthermore, 

due to fluctuations in in-flow conditions and turbulent operating conditions of blades of 

helicopters and wind turbines, extreme angles of attack and reversed flow conditions are 

possible. Thus, this research is focused on comprehending the aerodynamic behaviour 

and properties of the dynamic-stall process developed in extreme weather conditions.  As 
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such, the thesis aims to comprehend the impact of extreme operating conditions by 

utilising constant-pitch-rate airfoil motion to investigation the aerodynamic behaviour 

during both pitch-up and post-stall operating conditions.  Understanding of aerodynamics 

associated with these operating conditions will allow for the development of lighter blade 

structures in order to increase the performance, efficiency and blade life-cycles, and to 

lower operational and maintenance costs of rotary machine blades.  

1.2.  Research Aims 

The overall aim of the current research is to understand the unsteady separation process 

of dynamic stall on airfoils subject to atmospheric conditions representative of gust-like 

environments for applications including helicopters and wind turbines. Moreover, the 

thesis investigates the fluid-structure interaction and force development developed 

during unsteady dynamic stall. Additionally, the thesis aims to identify the forces and 

relaxation times required to reach steady-state operating conditions once dynamic stall 

has occurred.  A greater awareness of delayed stall, flow separation, vortex development 

and post-stall behaviour is important to determine the load characteristics on airfoils 

subject to unsteady aerodynamics. The research seeks to identify the velocity and 

vorticity fields associated with dynamic stall, such that more in-depth analysis of force 

development over a pitching airfoil can be obtained. Furthermore, this thesis focuses on 

analysing measurements of load generation and flow structure, in order to develop 

methods to suppress or mitigate the resulting force fluctuations due to dynamic stall. This 

will ultimately satisfy the project motivation of reducing the costs associated with rotary 

machine component design and maintenance, whilst increasing overall machine 
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performance and efficiency. In order to achieve the research aims, the following 

summarised research objectives are addressed: 

1. Determine, using well-resolved flow visualisation measurements, the flow 

structure development generated about multiple airfoil profiles, including a NACA 

0012 airfoil and a NACA 0021 airfoil, subjected to high rotation-rate constant-

pitch-rate motion.  

2. Identify the flow structures and loads developed about airfoils that undergo 

dynamic stall, and which also continue to operate in post-stalled conditions.  

3. Evaluate the potential of applying a passive flow control device to regulate the 

dynamic-stall process under highly unsteady operating conditions. 

4. Develop fundamental knowledge of the flow separation process and pressure 

distribution resulting from dynamic stall through the utilisation of a flat plate 

subjected to unsteady constant-pitch-rate motion.  

Full project aims and objectives will be summarised in detail in the conclusion of the 

literature review, in section 2.8.   

1.3.  Thesis Outline  

This thesis consists of an introduction to the current dissertation (Chapter 1), a literature 

review on dynamic stall (Chapter 2), four journal articles (Chapter 3 through to Chapter 6) 

focusing on the analysis of dynamic stall, and a conclusion summarising research 

outcomes and future work (Chapter 7). 
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Chapter one provides the research background and motivation underlying the study. 

Within this section, aims and objectives are introduced to provide the grounding for the 

remainder of the research work to be conducted.  

Chapter two provides a comprehensive review of the dynamic-stall process. This chapter 

discusses the occurrence of dynamic stall on machinery including helicopters, wind 

turbines, gas turbines, micro-aerial vehicles and fixed wing aircraft, through to its 

necessity on natural flyers including birds, bats and insects. Moreover, the review details 

the effect of multiple performance parameters on the development of dynamic stall, 

where significant load generation and fluctuation occur. The literature review brings forth 

the current state of research associated with dynamic stall, and concludes by presenting 

gaps in literatures which are still required to further advance our knowledge of the 

dynamic stall phenomenon.  

Chapter three utilises the application of particle image velocimetry (PIV) to determine the 

flow structure development created on two airfoils applicable to helicopter and wind 

turbine operation. The airfoils include a NACA 0012 and a NACA 0021, which are subjected 

to high rotation rates and constant-pitch-rate motion profiles. In addition, high reduced 

frequencies and elevated angles of attack are applied to the airfoils to represent gust-like 

operating conditions.  Flow visualisation, through obtained velocity and vorticity fields, 

provides details of each individual stage of the dynamic-stall process. These include (a) 

delayed stall to an angle of attack significantly greater than the steady-state angle of 

attack, (b) formation of the leading-edge vortex, (c) growth of the leading-edge vortex, 

and (d) final separation of the leading-edge vortex and transition into deep stall. The 

chapter also investigates the development of laminar separation bubbles generated over 
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the rear portion of each airfoil prior to leading-edge vortex formation. This work is 

significant for rotor designs utilising variable thickness airfoils between the blade root and 

its tip. With such blade designs, the lift and power generation directly depends on the 

associated flow patterns and separation properties developed along the entire length of 

the blade. As such, the characteristics of dynamic stall are presented for two dissimilar 

airfoils with significant thickness ratio variations to highlight the effects of extreme 

unsteady motion to elevated angles of attack. The work highlights the differences and 

similarities in load and flow structure to increase the knowledge with respect to the 

occurrence of dynamic stall on rotary machine blades.      

Chapter four endeavours to investigate the post-stall characteristics following dynamic 

stall.  Particle image velocimetry and surface pressure measurements are utilised to study 

the pitch-up and post-stall flow structure developed about a NACA 0012 and a NACA 0021. 

Within the study, the reduced frequency was shown to effect the angle of attack at which 

deep stall was initiated. For the maximum reduced frequency, deep stall was not observed 

to occur until 𝛼 = 60°. The results from surface pressure were linked to vortex structures 

developed during the pitch-up process and during the post-stall configuration. The study 

also showed the movement of the centre of pressure during post-stall flow conditions. 

The movement of the centre of pressure shifted between 30% and 55% over the complete 

range of reduced frequencies and maximum angles of attack evaluated. The movement 

of the centre of pressure is linked to increased torsional fatigue of wind turbines and 

helicopter rotor blades exposed to gust-like atmospheric conditions. 

Chapter five is developed to focus on the control of the dynamic-stall process through the 

application of a passive flow control device in the form of a leading-edge trip wire. In this 
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study, multiple trip wires were fixed at a constant distance from the leading edge of a 

NACA 0012 airfoil in order to promote boundary layer mixing and attempt to disperse the 

momentum transferred into the leading-edge vortex. Comparable studies utilised a 

similar method at low rotation rates, however, in the current chapter the application of 

the trip wire was extended to high rotation rates, where high fluid inertia is induced 

through rotation. Surface pressure measurements allowed for the resulting aerodynamic 

forces to be evaluated. The trip wire was shown to have a minimal influence on the angle 

of attack at which maximum lift was generated. However, the trip wire was shown to 

reduce the maximum lift when compared to the airfoil not fitted with the trip wire.  The 

trip wire did not have a significant influence on the dissipation of the large-scale von 

Karman vortex structures developed during deep stall, and where increased vibration 

occurs. 

Chapter six presents an investigation into the development of the leading-edge vortex 

generated over a simplified flat-plate model. The model comprises of three parts which 

include (a) an interchangeable leading-edge extension, where round, square and 

triangular profiles are employed; (b) a flat-plate body, which encloses the surface pressure 

sensors; and (c) a trailing-edge extension, where round, square and triangular profiles are 

employed. The three different geometries for the leading-edge and trailing-edge 

extensions were selected to decrease curvature effects generated by standard airfoil 

profiles, and to promote the formation of laminar separation bubbles and leading-edge 

vortex structures at low angles of attack during the pitch-up process. Surface pressures 

generated from the tests indicate key flow features developed from the dynamic-stall 

process via regions of localised low pressure on the upper surface of the flat plate. 

Features include (a) the leading-edge vortex, recognised as regions of low pressure 
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coefficient; and (b) a half-saddle point, identified due to a severe pressure gradient aft of 

the leading-edge vortex and at the location approximated by 𝐶𝑃 = 0 on the upper surface 

of the flat plate.  

Chapter seven outlines and summarises the major findings of the research developed 

within this thesis. In addition, the chapter discusses future work that can be continued, 

with respect to dynamic stall, to facilitate the design and operation of more cost effective 

rotary machine blades exposed to dynamic stall.  

Finally, the appendix includes a conference article, outlining the velocity fields and effects 

of unsteady separation on a NACA 0012 and NACA 0021 airfoil. 

1.4.  Publication Arising From This Thesis  

The thesis is presented in a manuscript format as a result of the research herein being 

utilised for the generation of scientific journal manuscripts and a peer-reviewed 

conference article. The work of each manuscript and conference paper tie in closely with 

the aims and objectives of the current thesis. Listed below are the outcomes of the 

publishable material that has either been published, or submitted for publication and 

peer-review. 

1.4.1.  Journal Articles 

1. Leknys, R., Arjomandi, M., Kelso, R. & Birzer, C. 2017. Dynamic- and post-stall 

characteristics of pitching airfoils at extreme conditions. Proceedings of the 

Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 
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2. Leknys, R., Arjomandi, M., Kelso, R. & Birzer, C. Dynamic stall Flow Structure and 

Forces on Symmetrical Airfoils at High Angles of Attack and Rotation Rates. 

Journal of Fluids Engineering (Submitted for publication). 

3. Leknys, R., Arjomandi, M., Kelso, R. & Birzer, C. Wind Turbine Unsteady Load 

Control Using Leading-Edge Trips. Journal of Wind Energy and Industrial 

Aerodynamics (Submitted for publication). 

4. Leknys, R., Arjomandi, M., Kelso, R. & Birzer, C. Leading-Edge Vortex Development 

on a Pitching Flat Plate with Multiple Leading Edge Geometries. Experimental 

Thermal and Fluid Science (Accepted for publication). 

1.4.2.  Refereed Conference Papers 

1. Leknys, R., Arjomandi, M., Kelso, R. & Birzer, C. Dynamic stall on airfoils exposed to 

constant pitch-rate motion.  20th Australasian Fluid Mechanics Conference, Perth, 

Western Australia, December 2016. 

1.5.  Thesis Format  

The current thesis has been submitted as a portfolio of the above journal manuscripts 

according to the formatting requirements of the University of Adelaide. The printed and 

online versions of the thesis are identical. The online version of the thesis is available as a 

PDF and can be viewed in its original format using Adobe Reader 11. 



1.6.  References 
________________________________________________________________________ 
 

 
14 

 

1.6.  References 

Beddoes, T. 1976. A synthesis of unsteady aerodynamic effects including stall hysteresis. 

Vertica, 1, 113-123. 

Birch, J. M., Dickson, W. B. & Dickinson, M. H. 2004. Force production and flow structure 

of the leading edge vortex on flapping wings at high and low Reynolds numbers. 

Journal of Experimental Biology, 207, 1063-1072. 

Butterfield, C., Simms, D., Scott, G. & Hansen, A. 1991. Dynamic stall on wind turbine 

blades. United States: National Renewable Energy Laboratory. 

Carr, L., McCroskey, W., McAlister, K., Pucci, S. & Lambert, O. 1982. An Experimental Study 

of Dynamic Stall on Advanced Airfoil Sections. Volume 3; Hot-Wire and Hot Film 

Measurements. United States: National Aeronautics and Space Administration. 

Carr, L. W. 1988. Progress in analysis and prediction of dynamic stall. Journal of Aircraft, 

25, 6-17. 

Carr, L. W., McAlister, K. W. & McCroskey, W. J. 1977. Analysis of the development of 

dynamic stall based on oscillating airfoil experiments. United States: National 

Aeronautics and Space Administration  

Choudhry, A., Leknys, R., Arjomandi, M. & Kelso, R. 2014. An insight into the dynamic stall 

lift characteristics. Experimental Thermal and Fluid Science, 58, 188-208. 

Datta, A., Yeo, H. & Norman, T. R. 2013. Experimental investigation and fundamental 

understanding of a full-scale slowed rotor at high advance ratios. Journal of the 

American Helicopter Society, 58, 1-17. 



Chapter 1.  Introduction to Dynamic Stall 
________________________________________________________________________ 

 
15 

 

Ellington, C. 1984. The aerodynamics of hovering insect flight. I. The quasi-steady analysis. 

Philosophical Transactions of the Royal Society of London B: Biological Sciences, 

305, 1-15. 

Ellington, C. P., Van Den Berg, C., Willmott, A. P. & Thomas, A. L. 1996. Leading-edge 

vortices in insect flight. Nature, 384, 626. 

Hansen, M. H., Gaunaa, M. & Madsen, H. A. 2004. A Beddoes-Leishman type dynamic stall 

model in state-space and indicial formulations. Denmark: Riso National Laboratory. 

Harris, F. D. & Pruyn, R. R. 1968. Blade stall-half fact, half fiction. Journal of the American 

Helicopter Society, 13, 27-48. 

Hodara, J., Lind, A. H., Jones, A. R. & Smith, M. J. 2016. Collaborative investigation of the 

aerodynamic behavior of airfoils in reverse flow. Journal of the American Helicopter 

Society, 61, 1-15. 

Kramer, M. 1932. Increase in the Maximum Lift of an Airplane Wing due to a Sudden 

Increase in its Effective Angle of Attack Resulting from a Gust. United States: 

National Advisory Committee for Aeronautics. 

Larsen, J. W., Nielsen, S. R. & Krenk, S. 2007. Dynamic stall model for wind turbine airfoils. 

Journal of Fluids and Structures, 23, 959-982. 

Leishman, G. J. 2006. Principles of helicopter aerodynamics, Cambridge university press. 

Leishman, J. G. & Beddoes, T. 1989. A Semi‐Empirical Model for Dynamic Stall. Journal of 

the American Helicopter Society, 34, 3-17. 

Liiva, J. 1969. Unsteady aerodynamic and stall effects on helicopter rotor blade airfoil 

sections. Journal of Aircraft, 6, 46-51. 

Lind, A. H. & Jones, A. R. 2016. Unsteady aerodynamics of reverse flow dynamic stall on 

an oscillating blade section. Physics of Fluids, 28, 077102. 



1.6.  References 
________________________________________________________________________ 
 

 
16 

 

McAlister, K. W., Lambert, O. & Petot, D. 1984. Application of the ONERA model of 

dynamic stall. United States: National Aeronautical and Space Administration. 

McCroskey, W., McAlister, K., Carr, L. & Pucci, S. 1982. An experimental study of dynamic 

stall on advanced airfoil sections. Volume 1, 2 & 3. NASA. 

McCroskey, W. J. 1981. The phenomenon of dynamic stall. United States: National 

Aeronautical and Space Administration. 

McCroskey, W. J., Carr, L. W. & McAlister, K. W. 1976. Dynamic stall experiments on 

oscillating airfoils. AIAA Journal, 14, 57-63. 

Sane, S. P. 2003. The aerodynamics of insect flight. Journal of Experimental Biology, 206, 

4191-4208. 

Serrano‐González, J. & Lacal‐Arántegui, R. 2016. Technological evolution of onshore wind 

turbines - a market‐based analysis. Wind Energy, 19, 2171-2187. 

Shyy, W., Lian, Y., Tang, J., Viieru, D. & Liu, H. 2007. Aerodynamics of low Reynolds number 

flyers, Cambridge University Press. 

Veers, P. S., Ashwill, T. D., Sutherland, H. J., Laird, D. L., Lobitz, D. W., Griffin, D. A., 

Mandell, J. F., Musial, W. D., Jackson, K. & Zuteck, M. 2003. Trends in the design, 

manufacture and evaluation of wind turbine blades. Wind Energy, 6, 245-259. 

World Wind Energy Association 2016. WWEA Half-year Report 2016. World Wind Energy 

Association. 

 



 

 
17 

 

Chapter 2.  Literature Review 

Literature Review 

2.1.  Dynamic Stall Occurrence and Characteristics 

Aerodynamics is a challenging field of engineering. Dynamic stall is no exception. Unlike 

steady-state aerodynamics, the process of dynamic stall occurs when a dynamic change 

in the angle of attack leads to significant increases in aerodynamic force and delayed 

separation, well beyond steady-state values. The dependency of the phenomenon on 

transient operating conditions generates complex flows and unsteady loads, which in turn 

lead to challenges in modelling and control of the dynamic stall process on rotary machine 

blades. The following chapter highlights the historical progression of research conducted 

to identify and explain the phenomenon of dynamic stall.   

2.1.1.  Development of Unsteady Separation and Causes 

Unsteady aerodynamics is a complex field within fluid mechanics, which has presented 

multiple challenges to scientists, engineers and operators of rotary machines. As 

described in Liebe (2006), unsteady aerodynamics has been investigated from as early as 

1925. Due to the effects of vertical wind shear on ride stability of aircraft noted by pilots, 

Kramer (1932) performed experimental wind tunnel tests to evaluate the effects of 

vertical gusts on the wings of aircraft, and to determine the loads developed as a result of 

transient increases in the angle of attack. In these tests, Kramer was able to show that 

when an airfoil is exposed to rapid pitching motions, the maximum angle of attack (and 

associated lift) significantly exceeds that of typical steady-state values (Kramer, 1932). The 
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phenomenon has become of significant importance in modern aerodynamics due to its 

potential to develop increased lift, and due to the negative effects leading to increased 

fatigue and structural damage of mechanical components. Significant research of the 

dynamic stall phenomenon has since occurred as a result of the limiting performance 

imposed on retreating rotor blades of helicopters and on highly manoeuvrable rotorcraft 

(McCroskey, Carr and McAlister, 1976, Carr, McAlister and McCroskey, 1977, McCroskey 

et al., 1982, Robinson and Luttges, 1983, Francis and Keesee, 1985, Walker, Helin and 

Chou, 1985, Walker, Helin and Strickland, 1985, Jumper, Schreck and Dimmick, 1987, Carr, 

1988, Robinson and Wissler, 1988, Green and Galbraith, 1995, Coton and Galbraith, 2003, 

Buchner, Honnery and Soria, 2017). Additionally, due to the push for greener energy 

production, research focusing on efficient methods for clean power generation has 

prompted investigations focusing on the drawbacks of dynamic stall associated with the 

operation of wind turbines. For a wind turbine, blade-tower interaction, yaw and 

operation in turbulent atmospheric boundary layers all lead to dynamic stall conditions 

on the blades of the turbine (Butterfield et al., 1991, Hansen and Butterfield, 1993, 

Munduate, Coton and Galbraith, 2004). Due to the unsteady operating conditions of the 

turbines, increased fluctuations in aerodynamic forces are transferred through the rotor 

blades and concentrated at key components of the turbine, including the power 

transmission and braking systems. In contrast to the negative effects, a flourishing 

research field has evolved in part to discover the means of locomotive force of flapping 

birds and insects, and also, to develop micro-air vehicles that utilise this form of 

locomotion for disaster recovery and observation purposes. 

Unsteady environmental conditions and self-induced flow fields developed by the 

operation of rotary machines significantly impact the operation of both helicopters and 
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wind turbines. Designs of airfoils and analysis of rotor disk loading have previously been 

evaluated using simple blade element techniques, where a single input velocity vector 

determines the direction, magnitude and resultant angle of attack experienced by the 

airfoil. In reality, environmental factors such as wind gusts, boundary layer velocity 

variations and atmospheric turbulence all contribute to the total velocity vector to which 

a blade is exposed to. The variation between both steady-state and unsteady-state can be 

represented as shown in Figure 2.1. 

 

Figure 2.1. Velocity vector representation of (a) steady-state and (b) unsteady operating 

conditions experienced by rotor blades. 

In Figure 2.1, 𝜔 is angular velocity, 𝑟 is blade radius, 𝑈∞ is the steady-state free-stream 

velocity and 𝑈′and 𝑉′are the time varying fluctuating component of velocity developed 

as a result of transient instabilities. The resultant unsteady velocity component, 𝑈𝑓, 

imparted onto the airfoil can be expressed as the vector addition of the magnitude and 

direction of the atmospheric free-stream velocity, rotation velocity and fluctuating 

velocity component, as shown in Equation 1. 

𝑈𝑓
2 = (𝜔𝑟 + 𝑉′)2 + (𝑈∞ + 𝑈′)2 Equation 1 
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Due to the random nature of 𝑈′ and 𝑉′, prediction of aerodynamic loads resulting from 

velocity fluctuations presents a challenge in the design of rotor blades on both wind 

turbines and helicopters. In addition to atmospheric velocity fluctuations, operational 

instabilities also impose unsteady fluctuations on the blades of wind turbines and 

helicopters. Machine operation induced instabilities imposed on the blades exist as either 

vertical wind shear, for the case of wind turbines, or cyclic velocity fluctuations as 

experienced by helicopters. For the case of a vertical wind shear on wind turbine blades, 

as indicated in Figure 2.2a, the varying velocity component can be represented as a 

boundary layer effect, where the velocity distribution over the vertical axis of the turbine 

varies according to 𝑈′(ℎ).  

 

Figure 2.2. Vertical wind shear of a wind turbine due to atmospheric boundary layer 

development (a) and cyclic variation in velocity created by the combination of helicopter 

rotor velocity and the helicopter forward velocity (b). 
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Furthermore, as shown in Figure 2.2b, the rotary motion of a helicopter rotor blade 

generates a cyclic variation in velocity and angle of attack over the rotor disk, due to the 

combination of forward speed, 𝑈𝐹𝑜𝑟𝑤𝑎𝑟𝑑, and rotor velocity, 𝜔𝑟.  The variation in velocity 

profile between advancing and retreating blades is typically considered to be sinusoidal 

due to the cyclic behaviour of the rotor motion.  

The effect of tower shadow on the immediate flow field behind the tower of a horizontal-

axis wind turbine has been shown to significantly reduce the operational capabilities of 

the turbine, and increase local blade velocity fluctuations (Snyder and Wentz Jr, 1981, 

Hansen and Butterfield, 1993, Munduate, Coton and Galbraith, 2004).  

As shown in Leishman (2006), the wake generated by the wind turbine tower can be 

modelled as the wake of a simple cylinder, and as expressed in Figure 2.3. The periodic 

vortex shedding in the wake of the tower creates a flow field that is non-uniform, and 

which is highly three dimensional. As a result, the wind turbine blade is not only exposed 

to a significant velocity fluctuation throughout its azimuth, but also along the total span 

of the blade. This results in an increase in load fluctuation, decreased fatigue life and 

difficulties in controlling the power output of large-scale wind turbines.  

As the blade passes through this region of chaotic flow structure, the resultant effective 

velocity and angle of attack change significantly.  Due to the turbulent aerodynamics of 

the tower wake and far-wake, analysis of unsteady flow structure and loading must take 

into account multiple motion types, including sinusoidal, constant pitch and heave. 

Moreover, modern wind turbines must factor into their design new design standards that 

include the possibility of gust-like conditions (Richards, Griffith and Hodges, 2017). 
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Motions types including cyclic and constant-pitch-rate rotation will be further discussed 

in later section of this literature review. 

 

Figure 2.3. Representation of (a) the flow field development downstream of the tower 

of a horizontal axis wind turbine and (b) resultant lift coefficient developed as a result of 

the unsteady operating conditions and blade-tower interaction (image reproduced from 

Leishman (2006)).  

Operation of horizontal-axis wind turbines in extreme weather conditions, and also wind 

turbines using stall for power regulation, are subject to elevated angles of attack and  

continuous operation in post-stall conditions (Butterfield et al., 1991, Hansen and 

Butterfield, 1993, Bossanyi, 2003, Tangler and Kocurek, 2005, Lanzafame and Messina, 

2013).  As such, motion profiles including constant-pitch-rate angular velocity can be 

utilised to represent gust-like conditions, and to simulate the pitch-up process created by 

instabilities generated by unsteady operating conditions.  From the literature, the random 

nature of turbulence associated with the operation of rotary machines has been shown 
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(Butterfield et al., 1991, Hansen and Butterfield, 1993, Bossanyi, 2003, Tangler and 

Kocurek, 2005, Lanzafame and Messina, 2013). However, much of the work linked to the 

unsteady behaviour is often completed using airfoils exposed to sinusoidal velocity 

profiles. Therefore, to represent extreme weather conditions, further research must be 

conducted to determine the aerodynamics of airfoils undergoing dynamic stall with 

constant-pitch-rate angular velocity, and to elevated angles of attack. Additionally, 

research needs to be conducted to evaluate the behaviour of the airfoils which have been 

exposed to dynamic stall, and which continue to proceed into post-stalled conditions as a 

result of sustained elevated angles of attack. 

2.1.2.  Dynamic Stall Forces and Flow Structure Development   

Dynamic stall is characterised by multiple stages of flow development and load 

generation. The critical stages of the unsteady separation process on a pitch-up airfoil are 

expressed in Figure 2.4, and include: (a) the attached flow phase, (b) boundary layer 

reversal, (c) shear layer roll-up, (d) dynamic stall onset, (e) fully separated flow and (f) 

flow reattachment (Carr, 1988, Shih et al., 1992, Mulleners and Raffel, 2012).  

During the initial pitch-up motion, the airfoils exhibit properties similar to steady-state 

airfoils, where the boundary layer remains attached and increased suction pressure 

continues to develop steadily at the leading edge. This results in a linear increase in lift 

similar to that of the steady-state counterpart (Mulleners and Raffel, 2012, Gharali and 

Johnson, 2013). Over the rear section of the airfoil, a recirculation zone forms with similar 

characteristics to steady-state trailing edge stall. However, its forward detachment point 

progresses towards the leading edge with an increased angle of attack, whilst its 
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reattachment point remains fixed at the trailing edge (Lee and Gerontakos, 2004, Gharali 

and Johnson, 2013).  

 

 

Figure 2.4. Schematic representation of the critical flow stages of the ramp-up phase of 

dynamic stall showing: a) attached flow, b) flow reversal, c) shear layer roll-up, d) 

dynamic stall onset, (f) full stall and (e) flow reattachment. (Image adapted from 

Mulleners and Raffel (2013). 

As the airfoil is pitched to a higher angle of attack, the trailing-edge recirculation zone 

breaks down and is replaced by the growth of two distinct recirculation zones (the 

leading-edge vortex and the shear layer vortex) that form on the upper surface (Visbal 

and Shang, 1989). This phase resembles the onset of the dynamic stall development. It is 

worth noting that resulting flow structures vary according to the applied rotation rate 

leading to differences in the dynamic stall development stage. Numerical simulations by 
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Visbal and Shang (1989) showed the formation of two distinct vortices, as described 

above, for high rotation rate motion. However, for a low rotation rate airfoil motion, the 

upper shear layer was observed to encapsulate multiple, regularly-spaced vortices, which 

were transported downstream by the external flow (Mulleners and Raffel, 2012). This 

indicates that the resulting dynamic stall flow structure is greatly influenced by the 

rotation rate, and associated induced accelerated flows. Regardless of the rotation rate, 

roll-up of vorticity originating completely at the leading edge resulted in the formation of 

the leading-edge vortex and subsequent increased lift (Shih et al., 1992).  

At the initiation of leading-edge separation, abrupt and rapid growth of the leading-edge 

vortex occurs while it remains attached and bound to the airfoil surface, as shown in 

Figure 2.4c. With the increased vorticity concentrated over the upper surface, the leading-

edge vortex induces localised velocity at the airfoil surface which, in turn, contributes to 

an increase in suction pressure on the airfoil surface. The influence of the leading-edge 

vortex further induces the formation of a secondary counter-rotating vortex pair, forward 

of the leading-edge vortex, which aids in the growth and advancement of separation of 

the leading-edge vortex (Shih et al., 1992).  

With the presence of the vortex structures above the airfoil surface, rapid increases in the 

lift force occur, as the leading-edge vortex grows and begins its journey across the chord 

of the airfoil (McCroskey and Puccif, 1982). The increase in lift can be either a positive 

attribute, for the case of high manoeuvrability; or a negative attribute, due to increased 

blade loading and vibration. Stall onset quickly follows with the passage of the vortex and 

occurrence of moment stall of the airfoil (McCroskey and Puccif, 1982, Carr, 1988, Visbal 

and Shang, 1989).  
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Studies show that the onset of stall can be classified by multiple physical occurrences.  For 

example, using critical events in the dynamic stall process, represented by force, moment 

and pressure development, can be utilised as criterions to predict dynamic-stall onset 

(Sheng, Galbraith and Coton, 2006, 2008). These events included: (a) deviation in the 

airfoil normal force, 𝐶𝑁, and drag 𝐶𝐷 coefficients; (b) collapse of both the airfoil moment 

coefficient, 𝐶𝑀, and leading-edge pressure coefficient, 𝐶𝑃; (c) reaching the maximum 

airfoil lift coefficient, 𝐶𝐿; and (d) variation in the pressure coefficient at the airfoil quarter-

chord location. The stall criterion identifies the point at which the leading-edge vortex 

translates over the chord to a point where aerodynamic forces and moments combine to 

create loss of lift force, increased drag and a reduction in airfoil moment. However, the 

criterion does not provide a good indication of the precise moment where separation of 

the leading-edge vortex, from the trailing edge, occurs. A method for analysing the 

progression of the leading-edge vortex and its subsequent separation using other physical 

properties, such as surface pressure, is therefore required for greater awareness of the 

leading-edge vortex transition over the upper surface of the airfoil. 

The translation velocity of the leading-edge vortex over the airfoil was highlighted in 

Panda and Zaman (1994), where the shed vortex is shown to translate at a rate according 

to 0.6 < 𝑈𝑁 < 0.8, where 𝑈𝑁 = 𝑈𝐶 𝑈∞⁄ , where 𝑈𝐶  is the vortex convection velocity. In 

the report, the centre of vortex is tracked using the resulting velocity profiles generated 

from hot-wire measurements. In a similar study, Shih et al. (1992) proposed that the 

convection velocity is 𝑈𝑁 ≈ 0.39 based on the trajectory of the centroid of the vorticity 

of the primary leading-edge vortex captured using PIV. Both examples show that the 

convection velocity is dependent on the proximity of the leading-edge vortex to the airfoil 

surface, the size and position of the vortex relative to the free-stream, where effects of 
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shadowing by the airfoil is reduced. These effects are also shown in Rival, Prangemeier 

and Tropea (2009), who conducted PIV measurements to track the vortex position with 

time. The normalised convection velocity is shown to range from 𝑈𝑁 ≈ 0.15, at initial 

formation, through to 𝑈𝑁 ≈ 1 once the vortex has passed approximately 3.5 chord 

lengths into the free-stream.  

Three dimensional interactions of substructures vortices created in the shear layer at the 

leading edge, in conjunction with wing tip interaction during dynamic stall were discussed 

in Garmann and Visbal (2017) using high fidelity large-eddy simulations. They showed that 

the separation bubble prior to dynamic-stall vortex formation was susceptible to 

instabilities in the boundary layer, which led to rapid breakdown of the separation bubble 

and generation of small vortex substructures over the upper surface of the airfoil. For an 

unswept wing, a laminar boundary layer and separation bubble was demonstrated to 

form uniformly on the upper surface and along the span of the wing.  Minor variations in 

boundary layer development at the tip were observed in their simulation due to the 

interaction of the wing tip vortex and impinging free-stream flow. In a similar study, Visbal 

(2014) used large-eddy simulations and a non-swept wing to analyse the formation of 

separation bubbles and the dynamic-stall vortex. They showed that the interaction 

between the leading-edge and trailing-edge vortexes was significant in altering span-wise 

three-dimensional instabilities within the vortex cores. The net effects of three-

dimensionality of the developed flow structure is shown to have a minimal influence on 

the developed force and moment coefficients, although the span-wise flow within the 

vortex cores was present.   
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Although much work has been conducted to detail the flow structure development and 

force generation properties of the dynamic-stall process, there remains a gap in literature 

detailing systematic differences between airfoils of significant thickness ratios and their 

performance when subjected to high-rotation-rate angular velocities. Furthermore, 

details of post-stall flow structure and the impact of unsteady rotation on post-stall 

behaviour is lacking.   

2.2.  Performance Parameters Influencing Dynamic Stall 

2.2.1.  Effects of Reynolds Number 

The Reynolds number, a representation of the ratio of inertial to viscous forces acting on 

a body moving through a fluid medium is defined as: 

𝑅𝑒 =
𝜌𝑈∞𝑐

𝜇
 Equation 2 

where, 𝜌 is the fluid density, 𝑈∞ is the free-stream velocity, 𝐶 is the chord length of the 

airfoil, and 𝜇 is the dynamic viscosity of the fluid.   

The Reynolds number can be classified into three categories: (1) laminar Reynolds 

numbers, where 𝑅𝑒 < 105 and viscous forces dominate the boundary layer and where 

separation bubbles heavily impact the resulting aerodynamic forces; (2) transitional 

Reynolds numbers, where 𝑅𝑒 = 105 − 5 × 106 and the boundary layer is highly 

susceptible to boundary layer instabilities and adverse pressure gradients; and (3) 

turbulent Reynolds numbers, where increased boundary layer mixing results in thickening 
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of the boundary layer (Cimbala and Çengel, 2014). This process is shown in Figure 2.5, 

where the growth of the boundary layer over a flat plate indicates the respective Reynolds 

number and its impact on boundary layer development.  

 

Figure 2.5. Boundary layer development over a flat plate indicating the transition in 

boundary layer thickness due to the increased Reynolds number along the length of the 

plate (Cimbala and Çengel, 2014). 

Under steady-state operating conditions, the impact of changing the Reynolds number 

has been heavily investigated and well documented (Sheldahl and Klimas, 1981, Laitone, 

1997). With an increase in Reynolds number, the steady-state stall angle of attack is 

observed to increase. This leads to delayed stall characteristics and an overall increase in 

aerodynamic efficiency of the airfoil. For steady-state operation, these characteristics are 

typically preferred for the operation of aircraft and wind turbines, where operation close 

to the maximum stall angle of attack delivers increased aerodynamic performance. With 

emerging micro-aerial vehicle development, where wings and rotors are operating at 

extremely low Reynolds numbers, the need to understand the aerodynamic performance 

is critical for increased performance and control of the micro-aerial vehicles. Laitone 

(1997) compared the performance of thin plate-like airfoils with thicker airfoils using a 
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wind tunnel, where 𝑅𝑒 < 70,000. The results showed that the maximum aerodynamic 

efficiency was far greater for the thin, cambered plate by comparison with a traditional 

NACA 0012 airfoil. The performance of the airfoils was shown to be susceptible to both 

wind tunnel turbulence intensity and variations in the Reynolds number.  

For higher Reynolds number applications, relevant to the operation of helicopters where 

𝑅𝑒 > 106, studies of the effects of Reynolds number on the dynamic-stall process have 

generally been shown to be minor (McCroskey, 1982, Robinson and Wissler, 1988, 

Choudhuri and Knight, 1996, Schreck, Faller and Helin, 1998, Kang et al., 2009, Ol et al., 

2009). McCroskey (1982) discussed the significance of Reynolds number as a critical 

performance parameter dictating the extent of flow separation. However, the impact of 

varying the Reynolds number was reported to be insignificant when compared to other 

parameters, such as the reduced frequency. Minor variation in the surface pressure was 

noted by Robinson and Wissler (1988), who performed surface pressure measurements 

on a pitching NACA 0015 airfoil. In this study, the overall vortex dynamics and normal 

force coefficients were observed to be similar across the range of Reynolds number 

evaluated (𝑅𝑒 = 59,000, 118,000 and 223,000). Similar surface pressure studies using a 

NACA 0015 airfoil were performed in Schreck, Faller and Helin (1998), which showed an 

independent influence of the Reynolds number on the boundary layer reversal and 

transition. Flow structures, including the leading-edge, secondary and tertiary vortices, 

were noted to decrease in length scale and form more rapidly in a numerical study 

presented in Choudhuri and Knight (1996). These results, which relate to a pitching NACA 

0012 airfoil, showed that the formation of the leading-edge vortex developed closer to 

the leading edge with increased Reynolds number. However the overall effects of 

increasing the Reynolds number on the dynamic-stall process were still considered minor.  
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In addition to experimental methods that shown similar dynamic-stall characteristics 

between multiple Reynolds number, Visbal (2014) investigated the boundary layer and 

substructure vorticity development during the pitch-up process using large-eddy 

simulations at Reynolds numbers of 𝑅𝑒 = 200,000 and 𝑅𝑒 = 500,000.  He showed that 

the effects of decreasing Reynolds number led to elevated pressures at the leading edge, 

earlier bursting of the laminar separation bubble, longer separation bubble development 

and aft movement of the separation point defining the onset of dynamic-stall vortex 

formation.  Although these effects were evaluated at Reynolds numbers in the range of 

𝑅𝑒 > 1 × 105, the effect of boundary layer development at lower Reynolds numbers still 

requires investigation to assess the viscous-inertial interaction between the impinging 

flow and the airfoil. Differences in Reynolds number exist, the effects of Reynolds number 

variations on the overall unsteady separation process was discussed in Shih, Lourenco and 

Krothapalli (1995). In (Shih, Lourenco and Krothapalli, 1995), the Reynolds number is 

discussed as it has a limited influence on the overall unsteady separation process. 

However, they state that differences in the length and time scales of the laminar 

separation bubble, boundary layer and developed vortex structures are to be expected. 

As such, investigations using low Reynolds numbers can be utilised to develop knowledge 

of the overall dynamic stall process, which in turn can be inferred to higher Reynolds 

number applications.     

2.2.2.  Effect of Pitch Rate and Motion Type 

The pitch rate and motion type have a significant impact on the stall characteristics of a 

rotating airfoil. The reduced frequency, used to describe the ratio between the freestream 
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and airfoil leading edge velocity, can be defined as shown in Equation 3 for an airfoil 

pitched about its mid-chord location.  

𝜅 =
𝜔𝑐

2𝑈∞
 Equation 3 

Here, 𝜔 is the airfoil angular velocity, 𝑐 is the airfoil chord length, and 𝑈∞ is the free-

stream velocity. The reduced frequency is utilised as a non-dimensional measure of flow 

steadiness.  In a steady-state environment, airfoil geometry is primarily responsible for 

the overall force generation, due to upper and lower surface pressure differentials. 

However, for a pitching airfoil undergoing dynamic motion, the reduced frequency is 

recognised as being a highly influential parameter dictating the resulting forces. This is 

due to the induced inertial effects, created by airfoil rotation, and its influence on delaying 

flow separation and stall (Carr, McAlister and McCroskey, 1977, McCroskey, 1982, 

Leishman, 1990). As discussed in Leishman (2006) the extent of steadiness can be 

classified as either quasi-steady, where 𝜅 = 0 − 0.05; or unsteady, where 𝜅 > 0.05 and 

accelerated flows become dominant in dictating resulting flow fields and associated 

forces. Both helicopters and wind turbines can be exposed to quasi-steady rotation rates 

(𝜅 < 0.05) and unsteady rotation rates (𝜅 > 0.05) during normal operating conditions. 

Such conditions may include varying wind speed, velocity gradients in the wind, yawed 

flow, unsteady wake interaction, sweep effects and rotor-fuselage or turbine-tower 

interactions. Explicitly constraining the reduced frequency to a specific value would be 

unrealistic due to the complexity of the system operating conditions. As a result of 

rotation rate of the airfoil, maximum lift is increased with higher reduced frequencies, and 

hence rotation rates. This characteristic was established and observed by Harper and 
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Flanigan (1950), who conducted wind tunnel testing on a rotating wing model and 

concluded that a linear increase in maximum lift was possible with increased rotation rate. 

Figure 2.6 shows the lift coefficient, 𝐶𝐿, for constant-pitch rate (Jumper, Schreck and 

Dimmick, 1987) and sinusoidal (McCroskey, 1981) airfoil motion types.   

 

Figure 2.6. Influence of increasing reduced frequency on the overall maximum lift for  a 

(a) constant-pitch rate velocity profile (Jumper, Schreck and Dimmick, 1987), and (b) for 

a sinusoidal airfoil velocity profile (McCroskey, 1981). 

Figure 2.6a shows that constant pitch-rate motion causes an increase in the maximum lift 

coefficient when the airfoil is rotated beyond steady-state stall angles. The increase in lift 

is possible until the leading-edge vortex separates, resulting in fully separated flows and 

deep-stall behaviour. The effects of increasing the rotation rate on the airfoil performance 

led to a delayed collapse of the initial suction peak and further decreases in the minimum 

pressure coefficient at the leading edge. As such, increased lift and delayed stall to a 

higher angle of attack were possible (Liiva, 1968, Conger and Ramaprian, 1994, Corke and 

Thomas, 2015). 
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The reduction in pressure at the leading edge can be linked to the development of the 

leading-edge vortex (Amiralaei, Alighanbari and Hashemi, 2010), where its formation is 

delayed with increased reduced frequency (Choudhuri and Knight, 1996). Once the 

leading-edge vortex sheds into the wake, the airfoil proceeds into a state of deep stall 

until the angle of attack returns to a suitable level to permit flow reattachment. 

For the sinusoidal case, a broadening in the lift hysteresis loop occurs with increased 

reduced frequency, where differences in maximum and minimum lift increases between 

flow separation and flow re-attachment respectively (Amiralaei, Alighanbari and 

Hashemi, 2010). Broadening of the lift coefficient curve is also highlighted in Figure 2.6b, 

and shows an increase in the lift coefficient of a NACA 0012 airfoil undergoing sinusoidal 

rotation, and where the angle of attack is represented according to the equation 𝛼(𝑡) =

15° + 10° sin(𝜔𝑡) (McCroskey, 1981).  

The difference between the maximum and minimum lift coefficients during post-stall is 

shown to increase due to delayed separation resulting from elevated rotation rates. This 

difference was defined in Choudhry et al. (2014) as the stall intensity factor for a constant-

pitch rate velocity profile. Furthermore, the broadening of the hysteresis loop for a 

sinusoidal velocity profile is classified as light stall, where flow separation and 

reattachment occur; or as deep stall, where the vortex shedding occurs (McCroskey and 

Puccif, 1982). Although the maximum lift can significantly increase, minimal impact on the 

lift-curve slope is observed through increases in the reduced frequency (Amiralaei, 

Alighanbari and Hashemi, 2010). 

Although the effects of increasing reduced frequency are well known, there remains little 

knowledge regarding the causes to the increased lift during the pitch-up motion.  The 
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question remains as to what underlying mechanics are responsible for the delays in 

separation prior to the development of the dynamic-stall vortex. For post-stalled 

conditions, there remains a gap in knowledge associated with the impact of reduced 

frequency on the forces developed about an airfoil that undergoes constant-pitch-rate 

motion and which proceeds into a fully-stalled state. Is there a relaxation time to achieve 

steady-state flow conditions? What are the effects of varying the reduced frequency on 

critical topological features of the airfoil? These questions still remain and require further 

investigation.     

2.2.3.  Effect of Airfoil Geometry 

Engineering designs and aeronautical applications heavily rely on the overall geometry of 

an airfoil to achieve high lift, high efficiency and delayed stall characteristics. For steady-

state stall, the application of the airfoil geometries greatly varies depending on the 

intended use of the wing or blade structure. Similarly, the effect of changing the airfoil 

geometry on the dynamic-stall process must also be determined to accurately predict the 

associated loads created during operation. Airfoil profiles studied for dynamic stall 

characteristics are often associated with helicopters or wind turbines due to their 

consistent steady-state operating performance. However, these airfoils were observed to 

underperform in their intended application when subjected to unsteady operating 

environments. As such, studies to determine the effect of airfoil profiles and their 

resistance to separation and dynamic stall is critical for the analysis of machines operating 

in dynamic stall conditions.  
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Liiva (1968) conducted wind tunnel tests on a modified NACA 0012 and a Vertol 23010 

airfoil undergoing dynamic stall and fitted with differential surface pressure sensors. It 

was determined that airfoils with larger camber performed better than symmetrical 

airfoils. This was due to an increase in maximum force generation and a delay in negative 

pitching moment at higher angles of attack. In a similar study, McCroskey, Carr and 

McAlister (1976) and McCroskey et al. (1982) conducted a series of detailed investigations 

to determine and compare the effects of parameters such as camber and thickness on 

dynamic stall. A NACA 0012 airfoil and seven contemporary helicopter airfoil designs were 

examined in a low speed wind tunnel facility to evaluate their performance under 

dynamic stall conditions. It was shown that airfoil profile shapes could significantly affect 

dynamic stall, because of the ability to achieve higher maximum lift and angles of attack 

prior to the occurrence of stall. In addition, airfoils that exhibited good static-stall 

behaviour also performed more favourably when operating in dynamic stall conditions 

(McCroskey et al., 1981). 

Much of the research conducted to analyse the effects of airfoil geometry on dynamic 

stall has been directed towards helicopter applications with sinusoidal motion profiles. 

Under these conditions, the mean angle of attack is defined within the steady-state limits 

of the airfoil, and the oscillatory component varied by, 𝛼 = ±10°. The effects of the airfoil 

geometry on the post-stall characteristics of an airfoil that has undergone constant-pitch-

rate motion dynamic stall is limited.  

A study by Choudhry et al. (2014) utilised three airfoils, a NACA 0012, a NACA 4418, and 

a NREL-S809, used hydrogen-bubble flow visualisation techniques to show minor flow 

structure variation in post-stall conditions and when the airfoil was subjected to a 
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maximum angle of attack of 𝛼 = 50° and constant-pitch rate motion. From the flow 

visualisation studies, the dynamic-stall vortex was shown to form further aft of the leading 

edge for airfoils with increased camber, such as the NACA 4418. No force data was 

available from the experiments in Choudhry et al. (2014). However, it may be speculated 

that increased negative moment for airfoils with increased camber and thickness may 

occur due to the further aft location of the dynamic-stall vortex initiation. Results 

presented in McCroskey et al. (1981) also concluded that under deep-stalled conditions, 

the influence of airfoil geometry was negligible, and that other performance parameters 

were more influential to the dynamic-stall process.       

2.2.4.  Compressibility Effects on Dynamic Stall 

 Compressibility of the flow around the tips of rotor blades operating at high speeds 

results in significant increases in tip load and rotor noise. Due to the occurrence of 

dynamic stall on rotor blades of helicopters, the effects of compressibility on the 

development of dynamic stall must be considered.  

Early studies (Sankar and Tassat, 1981, Chandrasekhara and Carr, 1990, Chandrasekhara, 

Ahmed and Carr, 1993) investigating the compressibility effects demonstrate the 

behaviour of airfoils exposed to dynamic stall operating conditions and also experiencing 

variations in local Mach number, M. From these studies, it was concluded that increasing 

the Mach number resulted in the formation and development of the dynamic stall process 

at lower angles of attack, therefore initiating dynamic stall characteristics earlier in the 

pitch-up cycle of the airfoil. This was more evident for Mach numbers above 0.3. In 

addition, the strength of the leading-edge vortex was shown to be lowered with increased 
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Mach numbers (Chandrasekhara and Carr, 1990). Carr and Chandrasekhara (1996) details 

the effects of compressibility in a comprehensive review outlining the variation in 

dynamic stall vortex formation with increased Mach number. In the review, it was shown 

that the leading-edge suction pressure was decreased as a result of localised shocks at 

the leading edge. This effect was also noted in a study by Choudhuri and Knight (1996) 

who showed that adverse pressure gradients and peak suction were reduced through 

increased compressibility effects. In addition, Choudhuri and Knight (1996) discussed the 

delay in formation of the recirculation zone on the upper surface of a NACA 0012 airfoil, 

whilst also showing its formation further from the surface with elevated Mach numbers. 

Numerical simulations by Sankar and Tassat (1981) showed that increased Mach number 

can lead to an increase in lift force prior to the development of the leading-edge vortex.  

In more recent studies assessing the effects of compressibility, Corke and Thomas (2015) 

confirm the effects of compressibility in lowering the strength of the leading-edge vortex. 

In addition, their results showed that for high-enough Mach numbers, the leading-edge 

vortex is formed downstream of the shockwave on the airfoil upper surface, whilst its 

topology is altered by comparison to lower Mach numbers. Similarly, Sangwan, Sengupta 

and Suchandra (2017) utilised implicit large-eddy simulations to show that both lift and 

moment stall occur at lower angles of attack with an increase in the Mach number. Their 

study also introduced the effects of compressibility on the hysteresis loops and maximum 

load generation, where the hysteresis is shown to decrease in magnitude with an increase 

in Mach number. 
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2.3.  Experimental Methods to Analyse Dynamic Stall 

Experimental techniques remain significant for determining the performance 

characteristics and flow patterns of many fluid mechanics phenomena. Contrary, 

advances in computing power have led to a growth in modelling of the dynamic-stall 

process through numerical simulations. Computing systems and numerical modelling 

schemes can evaluate fluid behaviours and forces associated with dynamic stall with 

reasonable accuracy. However fundamentally, numerical models must be validated with 

experimental data in order to determine the accuracy and practicality of the generated 

data sets.  

Numerical schemes were utilised in a series of work investigating the stages of the 

dynamic stall process and deep-stall characteristics in both subsonic and supersonic flow 

conditions for multiple airfoils including a NACA 0012, a NACA 0015 and a SD-3007 airfoil 

(Visbal and Shang, 1989, Visbal, 1990, Visbal, 2011, 2014). In this work, the dependency 

of the dynamic-stall process on the pitch-rate and pitch axis locations was shown. 

Furthermore, detailed flow structure and formation of Kelvin-Helmholtz instabilities 

within the leading-edge shear layer were discussed and linked to span-wise vortex 

breakdown during dynamic stall. Using a similar numerical model, the control of the 

dynamic stall vortex at low Reynolds numbers using a moving wall and boundary layer 

suction was explored in Visbal (1991). For the NACA 0015 airfoil utilised, both methods of 

boundary layer control were shown to delay flow reversal and prolong the formation of 

the dynamic-stall vortex.  
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Variation in unsteady free-stream inflow conditions and its effects on the dynamic stall 

process has been previously investigated (Spentzos et al., 2005, Amiralaei, Alighanbari 

and Hashemi, 2010, Gharali and Johnson, 2013, Lu, Xie and Zhang, 2013, Lu et al., 2013). 

In these studies, a comparison between unsteady force and flow development data 

resulting from uniform free-stream inflow condition and unsteady inflow conditions were 

presented. They showed an aerodynamic coupling due to the unsteady free-stream and 

the dynamic-stall process, which led to an increase in circulation of both the leading-edge 

and trailing-edge vortices.  

Numerical schemes using unsteady Reynolds averaged Navier-Stokes (URANS) equations 

have been shown to falsely predict the load and flow structure development during pitch-

down motion and when the airfoil is pitched to a high angle of attack (Martinat et al., 

2008, Wang et al., 2012). They show that the inherent nature of the averaging schemes 

utilised within the URANS models leads to significant loss of turbulent structures resulting 

in failure to accurately model force during highly unsteady flow conditions. Due to these 

errors, higher order schemes including direct eddy simulation, organised eddy simulations 

and large eddy simulations have been utilised to capture the generation of smaller vortex 

structures, separation bubbles and force augmentation during dynamic stall (Martinat et 

al., 2008, Wang et al., 2012, Visbal and Garmann, 2017). Although these models generate 

significant amounts of data pertaining to the onset of dynamic stall and the detailed flow 

structure, the work has not shed any light on the processes and flow behaviour occurring 

at extreme angles of attack and following dynamic-stall vortex separation. Therefore, the 

need to use experimental techniques still remains necessary for validation of modern 

numerical schemes, and for situations were high performance computing facilities are not 

available.  
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2.3.1.  Flow Visualisation 

Flow visualisation techniques are utilised to provide insight into flow patterns resulting 

from external and internal flow disturbances. For an airfoil exposed to dynamic stall 

conditions, flow visualisation allows detailed information to be obtained with respect to 

flow separation, vortex formation and observation of critical topological features. These 

features include the formation of the rear separation bubble, leading edge separation, 

the development of the dynamic-stall vortex and vortex structures resulting from fully-

separated flows. The principles of flow visualisations are applicable in determining, 

visualising and interpreting the development of fluid flows. Simple methods to obtain fast 

and effective visualisation of flow features created during dynamic stall include hydrogen-

bubble wire techniques, smoke-wire visualisation, dye injection and precipitation 

methods. 

A hydrogen-bubble wire was utilised in McAlister and Carr (1979) to generate flow 

patterns over a NACA 0012 airfoil undergoing dynamic stall. Coupling the hydrogen-

bubble wire and surface-mounted electrodes, flow structure development within the 

shear layer on the upper surface of the airfoil was obtained. From their hydrogen-bubble 

wire results, McAlister and Carr (1979) concluded that the onset of dynamic stall was 

established by the presence of a fast-moving reverse-flow region on the upper surface 

that progressed towards the leading edge. This unsteady reversed flow region broke down 

into multiple vortex structures leading to the formation of the leading-edge vortex. 

The hydrogen-bubble wire technique was also presented in Choudhry et al. (2014) who 

showed significant differences in the vortex development phase of dynamic stall with 
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three airfoils of dissimilar thickness and camber. Their results showed that thicker airfoils 

delayed stall to higher angles of attack, whilst higher-cambered airfoils moved the 

formation of the dynamic-stall vortex further aft of the leading edge, as indicated in Figure 

2.7.  

 

Figure 2.7. Flow visualisation showing vortex structure development about a NACA 

0012, a NACA 4418 and a NREL-S809 airfoil undergoing dynamic stall conditions and 

pitching to a maximum angle of attack where 𝛼 = 50°. 𝑅𝑒 = 10,000, whilst 𝜅 = 0.1. 

(Choudhry et al., 2014). 
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Similar flow structure development, using smoke visualisation, was utilised to identify 

flow structure interaction and the dependency of the dynamic-stall process on 

performance parameters including  Reynolds number and reduced frequency (Helin and 

Walker, 1985, Albertson et al., 1987). The effect on flow development as a result of two 

different motion types was investigated in Rival and Tropea (2010). In their study, a direct 

comparison between a pitching and a plunging asymmetric SD-7003 airfoil showed that 

similar flow topology and growth of the leading-edge vortex occurred in each case. Smoke 

visualisation showed the development of the leading-edge vortex and transition of the 

wake structure, from multiple vortex pairs (under bluff body conditions) to a ‘mushroom’ 

profile, at increased rotation rates (Rival and Tropea, 2010). The tests performed by Rival 

and Tropea (2010) were, however, limited to angles of attack of 𝛼 < 25°. As such, flow 

structures in deep stall and at elevated angles of attack were not observed. 

The influence of elevated angles of attack and pitching rate on the wake flow structure 

development of a pitching NACA 0012 and elliptical body is presented in Ohmi et al. (1990) 

and Ohmi et al. (1991). Their testing utilised solid particle tracers in a water channel to 

observe global streamlines of the developed flow fields about the pitching wings. In 

addition, streaklines were obtained using the tellurium method to observe the vorticity 

at the airfoil surface and in the wake (Ohmi et al., 1990). Vorticity within the shear layer 

was also presented in a study that investigated the application of upper-surface blowing 

(Weaver, McAlister and Tso, 1998) and upper-surface suction (Ahsanul Karim and 

Acharya, 1994). Furthermore, outer flow field visualisation was presented in Post and 

Corke (2004), where the application of plasma actuators for means of flow control during 

dynamic stall is suggested. However, the angular displacement was shallow (𝛼 < 35°) and 

specific to the application of helicopter operations, and as such, did not detail the vortex 



2.3.  Experimental Methods to Analyse Dynamic Stall 
________________________________________________________________________ 

 
44 

 

structures developed at high angles of attack and during deep-stall conditions (Post and 

Corke, 2004). 

Similar studies, investigating the flow structure and dynamic stall process using smoke-

wire visualisation, are presented in  Albertson et al. (1987). This study detailed events in 

the dynamic-stall process including the breakdown of the upper surface shear layer, 

leading edge separation and roll-up of the leading-edge vortex. Their results showed that 

the dynamic-stall vortex was a consequence of the unsteady motion and not a 

fundamental mechanism for lift generation, as significant lift is observed prior to its 

formation (Albertson et al., 1987). Although this study successfully highlighted the 

development phase of the dynamic-stall process, no details of the post-stall flow 

behaviour are presented. Details of the effects of rotation rate and airfoil geometry for 

high angle of attack dynamic stall are still required during deep stall operating conditions.  

A study that investigates dynamic stall and post-stall behaviour showed the influence of 

the leading-edge vortex and separated flows on the surface flow of a NACA 0015 airfoil 

(Helin and Walker, 1985). Figure 2.8 shows smoke-wire visualisation of the dynamic-stall 

process about the NACA 0015 airfoil and highlights the effects of delayed growth of the 

leading-edge vortex due to increased angular velocity on the airfoil. In Figure 2.8a, where 

𝛼̇ = 460°/𝑠, the leading-edge vortex is shown to have commenced its translation into the 

wake of the airfoil. Similarly, for the angular velocity of 𝛼̇ = 920°/𝑠, as shown in Figure 

2.8b,  the leading-edge vortex has also shed into the wake, resulting in fully separated 

flow. However, as the angular velocity is increased to 𝛼̇ = 1380°/𝑠, the leading-edge 

vortex and recirculation zone over the upper surface of the airfoil is shown to stay fixed 

to the airfoil surface, without separating into the free-stream. 
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This observation is critical as it indicates a dependence of the dynamic-stall process on 

the angular velocity, which subsequently delays the development of post-stall flow due 

to the delay in formation of the leading-edge vortex.  

 

Figure 2.8. Smoke visualisation of a NACA 0015 airfoil at α = 60°, and for (a) ω =

460°/s, (b) ω = 920°/s and (c) ω = 1380°/s showing the variation in flow structure 

resulting from increased pitch rate (Helin and Walker, 1985).  

The effects of both pitch rate and plunge motion is presented in Ol et al. (2009), which 

makes use of dye injection methods to show the effects of increasing Reynolds number 

and three-dimensional diffusion on the leading-edge vortex during dynamic stall 

development around a SD-7003 airfoil. This work was conducted where the maximum 

angle of attack was limited to  𝛼 = 25°, and as such, the behaviour of the dynamic-stall 

process could not be determined for higher angles of attack, where 𝛼 > 30°.  

All of the flow visualisation techniques detailed above generate qualitative results that 

can only be used for visualisation of the flow structure during dynamic stall. Quantitative 

details regarding the flow velocity and pressure fields require more advanced 

measurement techniques, such as PIV, in order to further understand the physical 

interaction between the fluid and wing body undergoing dynamic stall.   
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2.3.2.  Hot-Wire Anemometry and Hot-Film Measurement  

Hot-wire anemometry allows for the measurement of local flow velocities and their 

fluctuation, with respect to time, at high frequency ranges. Hot-wire anemometry utilises 

the electrical resistance of a conductive wire fixed between two or more probes to sense 

flow velocity via the degree of cooling created by the impinging flow. Similarly, hot films 

can also be utilised to provide velocity fluctuation within the boundary layer. Due to the 

hot-wire operation, directionality of flow measurement is limited as the flow speed can 

only be measured in the plane perpendicular to the wire axis. A diagram of a simplified 

hot-wire and hot-film probe is shown in Figure 2.9, which includes details of the 

arrangement of the wire electrode and hot-wire supports in conjunction with the hot-film 

flush-mounted probe, typically mounted level with the airfoil surface. 

 

Figure 2.9. Diagram of (a) a simplified hot-wire probe and (b) a hot-film flush-mount 

probe used for measurement of wall shear stress, localised velocity and boundary layer 

reversal. 

Analysis of the velocity profile using both hot-wire anemometry and hot-film 

measurements has allowed for a more in-depth comprehension of the dynamic-stall 
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process.  This has been achieved through a greater understanding of the separation 

characteristics at the boundary layer and on the surface of the airfoil where increased 

shear and reversed flow at elevated angles of attack occurs. McAlister, Carr and 

McCroskey (1978), using multiple hot-wire probes mounted at the leading edge of a NACA 

0012 airfoil, demonstrated the transition of laminar to turbulent flow resulting from 

dynamic stall occurring on an airfoil undergoing oscillatory motion. In addition, re-

attachment of the separation bubble developing at the leading edge of the airfoil was 

demonstrated through a sequential reduction in voltage of each hot-wire placed along 

the chord of the airfoil. Detailed studies of multiple airfoil profiles were investigated in 

Carr et al. (1982), where both hot-wire anemometry and hot-film analysis were 

conducted. In Carr et al. (1982), the presence of flow reversal was analysed through the 

interpretation of shear stresses within the boundary layer, to show the effect of airfoil 

geometry and pitch motion on the development of dynamic stall process and boundary 

layer transition. In this study, insight to the behaviour of the boundary layer under 

unsteady motion was gained. However, the behaviour of the boundary layer and its 

reversal for high rotation rates, and in post-stall flow regions at elevated angles of attack 

was not investigated.  

A study performed by Helin and Walker (1985) employed seven hot-wire probes mounted 

on the suction side of a pitching NACA 0015 airfoil to assess the near-surface flow field at 

elevated angles of attack. Their results showed a near linear increase in normalised flow 

velocity at the leading edge with increased rotation rate and until initiation of the leading-

edge vortex. Once the leading-edge vortex had begun its formation, higher velocities at 

the leading edge were identified to correlate with increased rotation rate, and a 

subsequent increase in the magnitude of the circulation of the vortex. This is significant 
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as it shows a direct comparison between the near surface flow strength and the airfoil 

rotation rate, whilst also linking the dynamic-stall vortex to an increase in flow velocity at 

the surface of the airfoil.   

Increases in vortex circulation were also observed in experiments performed in Lorber 

and Carta (1987) and Lorber and Carta (1988). In their experiments, they utilised hot-wire 

anemometry to study the separation process of a Sikorsky SSC-A09 helicopter airfoil 

undergoing dynamic-stall conditions. In the reports, increasing the reduced frequency 

was indicated to influence the location of boundary layer transition, from laminar to 

turbulent, where the transition point moved forward along the chord. These results were 

applicable for angles of attack of 𝛼 < 30° and for reduced frequencies of 𝜅 = 0.001 

through to 𝜅 = 0.02. For reduced frequencies in the unsteady range, where 𝜅 > 0.1 and 

inertial loads dominate flow structure development, there remains a gap in the literature 

detailing behaviour of boundary layer separation and post-stall flows when subjected to 

high rotation rate and high angle of attack operating conditions.   

Shear stress behaviour within the boundary layer was investigated in Schreck, Faller and 

Helin (1998), where the influence of increased rotation rates and Reynolds numbers was 

presented for a NACA 0015 airfoil undergoing constant-pitch-rate motion to a maximum 

angle of attack of 𝛼 = 60°. The results from fifteen hot-wire shear stress sensors 

concentrated on the forward portion of the airfoil (𝑋 𝑐⁄ < 0.2) demonstrated that both 

reduced frequency and Reynolds number influence the vortex initiation and separation 

process. However, both of these parameters were shown to act independently on the 

dynamic stall process, although both were shown to decrease the time required before 

unsteady boundary layer reversal. 
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Although the application of hot-wire anemometry for the measurement of unsteady 

boundary layer flow reversal and its separation can be utilised, measurements are 

typically focused on regions of high shear stress – such as at the leading-edge where the 

dynamic-stall vortex is generated. Studies utilising hot-wire techniques typically focus on 

the flow at low angles of attack, and which are associated with dynamic-stall vortex onset. 

There remains a gap in the literature detailing the dynamic stall process at high angles of 

attack, and during post-stall flow phases. In these conditions, the application of the hot-

wire technique becomes difficult due to highly separated and reversed flows, and 

increased fluctuation of surface velocity, resulting in increased signal noise and difficulty 

when interpreting the generated signals.  

2.3.3.  Surface Pressure Analysis 

Unlike both flow visualisation and hot-wire anemometry, surface pressure measurements 

offer the advantage of being able to observe the resulting pressures caused through 

dynamic motion of a pitching airfoil. The variation in surface pressure can be utilised to 

identify features, such as reversed flow, the existence of separation bubbles and regions 

of increased suction within the flow field. The pressure distribution surrounding an object 

can further be integrated to resolve the overall forces acting on the wing body. 

Under dynamic stall conditions, increased suction at the leading edge is observed. With 

an increased angle of attack, the formation of the leading-edge vortex further increases 

the suction on the upper surface (Leishman, 1990). The surface pressure distribution is 

observed to broaden and reduce in magnitude as the vortex grows in strength and size 

until its eventual separation and departure from the upper surface of the airfoil.  
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The surface pressure distributions on airfoil surfaces resulting from the dynamic-stall 

process have been heavily investigated (McAlister, Carr and McCroskey, 1978, Carta, 

1979, McCroskey, 1981, McCroskey et al., 1982, Daley and Jumper, 1984, Jumper, Schreck 

and Dimmick, 1987, Lorber and Carta, 1987, Robinson and Wissler, 1988, Jumper, 

Dimmick and Allaire, 1989, Acharya and Metwally, 1992, Currier and Fung, 1992, Conger 

and Ramaprian, 1994, Geissler, Dietz and Mai, 2005, Mulleners and Raffel, 2012). In these 

studies, performance parameters including Reynolds number, reduced frequency, Mach 

number, airfoil geometry and pitch motion were shown to influence the pressure 

distribution through changes in induced inertial flows, delayed separation and the 

presence of the dynamic-stall vortex. 

The effect of increased angle of attack, vortex development and turbulence in the free-

stream on the pressure distribution about an airfoils exposed to dynamic-stall conditions 

was discussed in Carr (1988). As a result of delayed stall, increased suction is observed at 

the leading edge prior to formation of the dynamic stall vortex. As the dynamic-stall vortex 

passes over the airfoil upper surface, a region of low pressure exists at the airfoil surface 

as a result of localised low pressure within the vortex. Similar observations detailing the 

surface pressure interaction with the dynamic stall vortex showed the relationships 

between the dynamic-stall vortex and overall force (Pierce, Kunz and Malone, 1976, 

Dadone, 1977, McCroskey et al., 1981). Dynamic stall remains to be a multi-stage flow 

phenomenon where increased lift is obtained during both pre-vortex formation and post-

vortex formation stages.  

In Leishman (1990) it was identified that multiple vortex shedding patterns could exist 

during dynamic stall and, that there was a lack of experimental data for airfoils specific to 
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helicopter applications. As a result, surface pressure measurements were conducted to 

determine the forces applied to a NACA 23012 airfoil pitching about its quarter-chord 

location. In this work, the effects of delayed stall, leading-edge vortex formation and 

secondary vortex formations were presented using surface pressure coefficients for 

multiple angles of attack, as indicated in Figure 2.10 (Leishman, 1990). 

 

Figure 2.10. Increased suction resulting from the pitch-up motion of a NACA 23012 

airfoil indicating the influence of the leading-edge vortex on the overall airfoil pressure 

distribution (Image adapted from Leishman (1990)). 

Figure 2.10 shows that for an angle of attack of 𝛼 < 21°, delayed stall leads to a dramatic 

increase in leading-edge suction. Pressure soon drops as a result of the onset of the 

leading-edge vortex growth between 𝛼 = 22° and 𝛼 = 24° and due to its convection over 

the airfoil chord. A secondary vortex is then observed to form and develop between 𝛼 =

30° and 𝛼 = 27° during the airfoil pitch-down process, as shown in Figure 2.10. These 

results indicate the interaction between the vortex dynamics and associated surface 

pressure on the airfoil, although only for shallow angles of attack, where 𝛼𝑚𝑎𝑥 = 30°, and 
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for reduced frequencies where 𝜅 = 0.01 through to 𝜅 = 0.2. Further conclusions about 

the extent of vortex interaction with the airfoil at higher angles of attack, and where the 

motion is of a constant pitch-rate type could not be drawn due to the limited surface 

pressure data.  

 

Figure 2.11. Variation in surface pressure at an angle of attack of 𝛼 = 30°, and with 

varying reduced frequency, indicating increased magnitude and narrowing of the peak 

suction due to increased rotation rate (Image adapted from Walker, Helin and Chou 

(1985)). 

Results from experiments using constant-pitch-rate motion to a maximum angle of attack 

of 𝛼 = 60° are presented in Walker, Helin and Chou (1985), which showed a significant 

increase in lift coefficient and delayed separation resulting from the increased rotation 

rate. Shown in Figure 2.11 are the surface pressure results for multiple rotation rates, and 

to a maximum angle of 𝛼 = 30°. Here, the effect of increased rotation rate is shown to 
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raise and narrow the peak suction pressure curve, focusing it further towards the leading 

edge of the airfoil.   

Similar studies utilising surface pressure were discussed in Jumper, Dimmick and Allaire 

(1989) and Conger and Ramaprian (1994), where both articles investigated the surface 

pressure about a NACA 0015 airfoil undergoing constant-pitch-rate motion. Both studies 

showed that increasing the pitch rate increases the minimum pressure coefficient, and 

delays the collapse of the initial pressure peak, prior to dynamic-stall vortex formation, 

and until higher angles of attack (Conger and Ramaprian, 1994).  

The application of surface-mounted pressure sensors has been successfully utilised for 

decades to identify different stages of flow development in the dynamic stall process. The 

measurement system is both simple to implement and install, whilst providing data that 

can be directly related to flow structure and forces developed on wings undergoing 

unsteady motions. Many of the previous studies have investigated dynamic stall 

behaviour using parameters defined by typical operating conditions of helicopters and 

wind turbines. However, this has somewhat limited the knowledge of the post-stall flow 

behaviour and the associated forces resulting from the dynamic stall process. Examples 

include a rotor blade exposed to significant gusts and variations in atmospheric 

turbulence, such as that experienced by wind turbines (Shipley, Miller and Robinson, 

1995); and high speed helicopter rotors, where exposure to reversed flow conditions can 

occur (Raghav et al., 2014, Granlund, Ol and Jones, 2016, Hodara et al., 2016). Under such 

operating conditions, further analysis of the dynamic-stall process is required to increase 

knowledge of high angle-of-attack flows, deep-stalled flows and fully-separated flows 

resulting from dynamic stall.  
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2.3.4.  Particle Image Velocimetry 

The experimental techniques discussed above provide quantitative details of fluid 

properties including the velocity and pressure, which in turn can be resolved as force 

acting on a wing undergoing dynamic stall. Quite often these measurement techniques 

are performed independently, thus limiting in-situ data recording. Whilst traditional flow 

visualisation techniques provide overall flow structure development, and valuable 

representations of boundary layers flow and development, overall flow field velocity and 

pressure cannot be obtained. For this reason, the technique of PIV can be utilised as a 

means of non-intrusive flow measurement in order to deduce details including flow 

velocity, vorticity, circulation and pressure distribution within the flow field. Particle 

image velocimetry is an attractive flow measurement tool to analyse dynamic stall due to 

the unsteady motion and variability in operating conditions often replicated on wings 

during experimental processes.  

A method of PIV analysis includes freely suspending small tracer particles in a fluid 

medium and shinning a high-intensity light sheet through the region of analysis. A digital 

camera can then be used to capture synchronised images of the tracer particles, and their 

movements as the flow develops. Individual interrogation windows within the images are 

then used to correlate the respective particle motion, leading to the determination of the 

local flow velocity of the fluid. Numerical schemes, correlation and interpretation 

methods, and limitations of each method are well documented (Lourenco, Krothapalli and 

Smith, 1989, Willert and Gharib, 1991, Westerweel, 1993, Prasad, 2000, Merzkirch, 2001, 

Adrian and Westerweel, 2011, Raffel et al., 2013). A simplified representation of the PIV 

test arrangement is shown in Figure 2.12 (Raffel et al., 2013).  
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Figure 2.12. Diagram of the basic PIV experimental arrangement for external flow fields 

about pitching airfoils. (Image acquired from Raffel et al. (2013)). 

The implementation of PIV, as a suitable flow measurement tool for rotor craft 

applications, was comprehensively reviewed and summarised in Raffel et al. (2017). 

Within the review, insight into methods of PIV analysis for dynamic stall on rotorcraft is 

presented. The advancement of the PIV concept, as an experimental flow measurement 

tool, has been shown to increase exponentially since its introduction into the field of 

unsteady aerodynamics. This indicates that both phase-averaged and time-averaged PIV 

can and will continue to be a significant tool for analysis of unsteady flow fields developed 

around airfoils exposed to unsteady motions. 

Evaluation of the dynamic-stall flow field was initially identified in Shih et al. (1992) using 

PIV data from a water channel with 𝑅𝑒 = 5000. Details of the vortex formation stage, 

vortex convection, stall onset and shear layer properties at the leading edge were 
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investigated. Using a random walk scheme to process the PIV results, Shih et al. (1992) 

concluded that the vorticity encapsulated within the dynamic-stall vortex was 

predominantly generated at the leading edge. The dynamic-stall vortex origin is shown in 

Figure 2.13a, which displays the concentration of vorticity within the dynamic-stall vortex 

as a results of vorticity generated at the leading edge (Shih et al., 1992).  

 

Figure 2.13. Dynamic-stall vortex origin denoted through colour-coded point vortices 

correlating to alternate regions on the airfoil surface (a), and superimposition of 

instantiations vorticity plots indicating the repeatability of ensemble-averaged PIV data 

(b) (Shih et al., 1992). 

Shih et al. (1992) proposed that any manipulation of the dynamic-stall vortex should be 

performed immediately at the leading edge and not at locations below the vortex 

structure itself. Details for convection velocity and origins of the leading-edge vortex were 

also presented. In addition,  Shih et al. (1992) discussed the repeatability of ensemble 

averaged PIV. Results from their experiments of instantaneous vorticity fields are 

superimposed in Figure 2.13b. These results showed similar vortex development and 

repeatability between test cases. In this study, minor variations between tests were 
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reported due to ‘smearing’ created by averaging techniques (Shih et al., 1992). Therefore, 

the authors proposed that analysis of small vortex structures using ensemble averaged 

PIV should be performed with care to avoid loss of detailed flow structure resolution. 

Another study using PIV to evaluate the boundary layer separation process of a NACA 

0015 airfoil undergoing constant-pitch-rate motion is presented in Lourenco et al. (1993), 

which utilised a similar approach to that presented in Shih et al. (1992).  In this study, the 

effects of rotation rate and Reynolds number were investigated to identify their effect on 

the developed vortex structures. The dynamic stall process was shown to be insensitive 

to Reynolds number, with little change occurring to the dominant vortex structures 

formed during the pitch-up motion (Shih et al., 1992, Lourenco et al., 1993). 

To further investigate the separation mechanisms resulting in leading edge separation, 

Shih, Lourenco and Krothapalli (1995) focused on the formation of both leading-edge and 

trailing-edge vortices using instantaneous PIV. The research showed that trailing edge 

flow had an indirect influence on the dynamic-stall process, with the vorticity generated 

at the trailing edge, prior to complete separation, affecting only the overall circulation. 

The authors also noted that the completion of the dynamic stall process occurred with 

the departure of the dynamic stall trailing-edge vortex, due to the presence and aft 

motion of the primary leading-edge vortex. Although this work provides significant detail 

with respect to the pitch-up motion of the wing body, a clear definition of the vortex 

separation mechanism and deep stall characteristics are not presented. The flow features 

leading to and occurring during separation of the leading-edge vortex still require further 

investigation. More specifically, knowledge pertaining to the vortex separation process, 

topological flow feature development and the resulting surface pressure and forces as a 
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consequence of the dynamic stall and post-stall process is lacking. As such, additional 

work is required to determine the influence of the dynamic stall and post-stall operating 

conditions on the fluid-structure interaction and aerodynamic properties of pitching 

airfoils. 

Early research into dynamic stall using PIV was also described in Raffel and Kompenhans 

(1993), where difficulties performing high-speed PIV are presented for a case study of an 

oscillating NACA 0012 airfoil at 𝑅𝑒 = 373,000.  High-speed flows were also investigated 

using PIV in Crisler (1994), where the effect of compressibility was investigated and shown 

to have a minor influence on dynamic stall development. 

In a similar study, Raffel, Kompenhans and Wernert (1995) used PIV to investigate 

dynamic stall conditions using sinusoidal motion of a NACA 0012 airfoil in a wind tunnel 

with 𝑅𝑒 = 373,000 and 𝜅 = 0.15. Their work showed the development of the dynamic 

stall vortex and its associated flows for angles of attack specific to the operation of 

helicopters, where 𝛼(𝑡) =  15° + 10° sin(2𝜋𝑓𝑡). Although overall flow structure 

development was shown, the research was primarily focused on indicating the limitations 

of the PIV and providing data for validation of numerical modelling schemes used to 

simulate dynamic stall. Due to the narrow angle of attack and range of rotation rates 

investigated, the knowledge of high angle of attack flows, and where the airfoil continues 

to proceed into deep-stall conditions, remains limited. Clearly research must be 

performed in deep-stall and post-stall stages of dynamic stall, to better understand how 

high angles of attack and high rotation rates influence the flow development and forces 

once the airfoil has completed the dynamic stall process.  
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Repeated tests using consistent operating conditions were applied using phase-averaged 

PIV to indicate the difficulties and precautions when determining point velocity 

measurements about an oscillating NACA0012 airfoil (Wernert et al., 1996, Wernert et al., 

1997). The overall major flow field structures developing from the dynamic stall process 

were captured successfully using this technique.  

Mulleners et al. (2009) used time-resolved PIV to develop vortex detection schemes and 

present details of the delay in boundary layer separation, dynamic-stall onset, and 

dynamic-stall vortex development for a OA-209 airfoil. However, the material presented 

was specific for helicopter applications where 𝑅𝑒 = 9.2 × 105, 𝜅 = 0.05, 0.075, 0.1 

(where 𝜅 = 𝜋𝑓𝑐 𝑈∞⁄ ) and to a maximum angle of attack, where 𝛼 = 30°. These 

conditions, alongside the surface pressure measurements, were also detailed in 

Mulleners and Raffel (2012) and Mulleners and Raffel (2013). In addition, the dynamic-

stall development stage, based on shear layer reversal, is presented.  

Development of the laminar separation bubble was presented in Nati et al. (2015) to 

address the gap in literature associating the behaviour of the laminar separation bubble 

with varying rotation rate. They utilised both planar PIV and topographic PIV to study the 

cross-sectional characteristics and three-dimensional flow structure of the laminar 

separation bubble forming on a SD-7003 airfoil. It was shown that airfoil rotation delayed 

the formation of the laminar separation bubble at a low angle of attack and during the 

pitch-up motion. However, rotation rate accelerated the formation of the laminar 

separation bubble during the pitch-down phase of the airfoil motion. Although providing 

significant detail on the laminar separation bubble characteristics during both pitch-up 

and pitch-down motions, the study did not include details of high angle of attack 
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variations in the laminar separation bubble, due to the shallow angles of attack (𝛼 = 8°) 

presented. Therefore, research is required to extend the range of angles of attack to 

higher values where significant force fluctuation occurs.    

Particle image velocimetry has been observed to perform well for studies involving 

unsteady aerodynamics. Repeatability of experiments is limited when using phase-

averaged PIV as it may lead to increased velocity errors and ‘smearing’ of small-scale 

vortex structures developed during airfoil rotation. From the literature utilising PIV, a 

majority of the research has been completed to understand the unsteady separation 

process specific to normal operation of rotor blades on helicopters. For these cases, the 

angle of attack is relatively shallow and the motion type is sinusoidal in nature. There 

remains a large avenue for future research to utilise PIV to study dynamic stall on airfoils 

exposed to high angles of attack, where 𝛼 > 30°, and which continuing to operate in post-

stalled conditions.    

2.4.  Control Mechanisms of Dynamic Stall 

Control of unsteady separation is a major factor for the operation of helicopters and wind 

turbines. Increased fatigue, lower power generation and higher design and maintenance 

costs all result from the unsteady separation process developed during dynamic stall. For 

this purpose, awareness of suitable control devices specific to the operating conditions of 

rotor blades is critical for improved performance and operation of both helicopters and 

wind turbines. Methods of dynamic stall control have historically been developed on 

techniques devised for boundary layer control of steady-state flow, and include both 

passive flow control and active flow control systems.  Reviews of boundary layer control 
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mechanisms for steady-state flows in Katz, Nishri and Wygnanski (1989) and Lachmann 

(2014) provide details of boundary layer control devices for both turbulent and laminar 

flows, whilst reviews in (Yu et al., 1995) and Choudhry et al. (2014) highlight the state of 

the art in terms of dynamic stall flow control using both passive and active devices.  

2.4.1.  Passive Control  

Passive control techniques use devices that are fixed to the surface of a wing to control 

boundary layer formation and flow separation, without the addition of momentum from 

alternative sources to sustain attached flow during normal operating conditions. Although 

passive control methods offer low-maintenance and cost-effective application, they may 

be limited in their effectiveness outside of specified operating conditions. Examples 

utilised for passive control of both steady-state and unsteady operation include the use 

of leading-edge vortex and perturbation generators, tubercles, cavities, leading-edge trip 

wires, slats and flaps. All of these techniques rely on their ability to lower and redistribute 

vorticity and momentum within the boundary layer to sustain flow attachment to higher 

angles of attack. 

Mai et al. (2008) utilised vortex generators, in the form of circular cylinders, mounted to 

the lower surface of the leading edge, and in close proximity to the stagnation point. The 

vortex generators were used to decrease the momentum of the dynamic-stall vortex via 

increased boundary mixing during leading-edge vortex development. In their study, they 

showed that the dynamic-stall drag could be reduced during dynamic-stall vortex growth, 

whilst maintaining similar lift to that of a clean airfoil not fitted with vortex generators. 

This was achieved whilst maintaining similar steady-state performance between the clean 
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airfoil and the one fitted with the vortex generators. Similar experiments using 

comparable vortex generators were presented in Geissler, Dietz and Mai (2005) and Heine 

et al. (2013), who also found positive benefits using vortex generators placed on the lower 

leading edge. 

Under steady-state conditions, modifications to the leading-edge geometry of wings using 

tubercles (Fish et al., 2011, Hansen, Kelso and Dally, 2011, New, Wei and Cui, 2016) and 

leading-edge undulations (Rostamzadeh et al., 2013) were shown to provide benefits of 

delayed separation and reduced drag at elevated angles of attack during steady-state 

operation. Tubercles and leading-edge undulations utilise chord-wise vortices to 

introduce momentum into the boundary layer, thus assisting with delayed transition and 

separation. Investigations of the effectiveness of tubercles under dynamic stall 

conditions, in Hrynuk (2015), resulted in a greater attenuation of the dynamic-stall 

process at low angles of attack. However, no significant control of the dynamic-stall vortex 

was gained at elevated angles of attack and for high rotation rates. Current methods of 

control are beneficial for the delay of boundary layer separation at low angles of attack 

and with low rotation-rate airfoils motions. There remains a gap in literature that focuses 

on effective boundary layer control of airfoils during extreme angles of attack and high 

rotation rate operation. 

Other passive control devices including high-lift devices such as leading-edge slats and 

trailing-edge flaps have been shown to significantly reduce dynamic stall occurrence and 

formation of the leading-edge vortex (McAlister and Tung, 1993, Carr et al., 2001, Joo et 

al., 2006). Figure 2.14 shows the effects of a leading-edge slat fitted to a VR-7 airfoil. The 
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results indicated that the effects of dynamic stall were eliminated due to the ability of the 

slat to suppress the formation of the leading-edge vortex (Carr and McAlister, 1983).  

 

Figure 2.14. Normal force coefficient (a) and pitching moment coefficient (b) generated 

by a VR-7 airfoil undergoing dynamic stall, with and without the installation of a leading-

edge slat (Carr and McAlister, 1983). 

The addition of the leading-edge slat resulted in reducing peak lift at the airfoil maximum 

angle of attack and prior to stall, whilst also reducing significant moment fluctuation at 

operating angles of attack. However, limitations in boundary layer control systems for 

dynamic stall exist, due to the mechanical limitations and difficulties in their installation. 

This has restricted the application of some boundary layer control methods of blades for 

rotary machine applications (Geissler et al., 2005). 

The use of leading-edge trip wires to control dynamic stall was presented in Choudhry, 

Arjomandi and Kelso (2016). Trip wires were fitted to a wing with a NACA 0021 airfoil 

profile at multiple fixed displacements from the leading edge, in order to breakdown and 

dissipate the momentum transferred into the leading-edge vortex through the generation 
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of span-wise vorticity. Their results showed improvements in stall intensity and post-stall 

aerodynamics, however the reduced frequency was specific to a quasi-steady operation. 

Further investigations must be undertaken to confirm the suitability of the trip wire as a 

means of passive control during unsteady rotation, and to develop a cost function to 

assess the feasibility of applying the trip wire to current wind turbines.    

2.4.2.  Active Control 

Active control systems require complex feedback devices to monitor and apply suitable 

responses to behaviour and variations in the boundary layer. A recent active control 

system for dynamic stall boundary layer separation control includes the utilisation of 

plasma actuators (Post and Corke, 2006, Lombardi, Bowles and Corke, 2013, Greenblatt, 

Ben-Harav and Mueller-Vahl, 2014). More traditional methods include adaptive geometry 

(Yu et al., 1995, Chandrasekhara, Wilder and Carr, 1998b, Chandrasekhara, Martin and 

Tung, 2004, Feszty, Gillies and Vezza, 2004, Geissler et al., 2004, Lee and Gerontakos, 

2006, Kerho, 2007), boundary layer suction (Karim and Acharya, 1994, Alrefai and 

Acharya, 1996), boundary layer blowing (Weaver, McAlister and Tso, 1996, Sun and 

Sheikh, 1999, Weaver, McAlister and Tso, 2004, Singh et al., 2006, Müller-Vahl et al., 2014, 

Müller-Vahl et al., 2016), and periodic excitation of the boundary  layer (Yu et al., 1995, 

Magill and McManus, 1998, Greenblatt et al., 2001, Greenblatt and Wygnanski, 2001, 

Greenblatt and Wygnanski, 2002, Gardner, Richter and Rosemann, 2011).  

Plasma actuators function by inducing external flow into the boundary layer through high 

voltage ionisation of air near to the surface of the wing. A simplified diagram showing the 

plasma actuation arrangement is presented in Figure 2.15. 
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Through activation of the plasma actuator, the region of induced flow can be used to 

introduce momentum into the boundary layer at the surface. This is beneficial for 

boundary layer separation control and transition delay. Under dynamic stall, significant 

reverse flow exists during the formation and development of the leading-edge vortex.  

 

Figure 2.15. Diagram describing the plasma actuator arrangement and induced flow 

effect created through ionisation of the surrounding air (Post and Corke, 2004). 

Placement of the plasma actuator at the location susceptible to flow reversal can 

potentially assist with delaying separation through local entrainment of flow. Post and 

Corke (2006) utilise plasma actuators fixed at the leading edge to increase lift and improve 

cyclic hysteresis of the lift during dynamic stall for a quasi-steady reduced frequency of 

𝜅 = 0.08. Additionally, results in Post and Corke (2006) indicated sustained flow 

attachment and a decreased leading-edge vortex size with the use of plasma actuators. 

These findings were later confirmed by Lombardi, Bowles and Corke (2013), who also 

demonstrated complete flow attachment using plasma actuators, for 𝜅 = 0.08, where 

𝜅 = 𝜔𝑐 𝑈∞⁄ . This is shown in Figure 2.16 which compares both control-off and control-

on states of a NACA 0015 airfoil undergoing dynamic stall.  As indicated in Figure 2.16c 

and Figure 2.16d, complete recovery of the boundary layer can be achieved through 

induced flow entrainment generated via activation of the plasma actuator.  Without 

boundary layer control, the flow is seen to separate (Figure 2.16a and Figure 2.16b) 
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leading to fully-stalled conditions. Although the plasma actuation method shows positive 

outcomes with respect to controlling boundary layer separation and leading-edge vortex 

development, research into its effect on the aerodynamic force at unsteady reduced 

frequencies (𝜅 > 0.1)  and at high angles of attack (𝛼 > 30°) remains limited. Future work 

needs to be completed to assess the effectiveness of the actuators as a boundary layer 

control method under highly unsteady flow conditions.  

 

Figure 2.16. Flow visualisation of a NACA 0015 airfoil (a and b) without flow control and 

(c and d)  using plasma actuation for control and reattachment of the boundary layer 

during dynamic stall (Lombardi, Bowles and Corke, 2013). 



Chapter 2.  Literature Review  
________________________________________________________________________ 

 

 
67 

 

Adaptive airfoil geometry has also been shown to improve the performance and reduce 

the force fluctuations of airfoils undergoing dynamic stall.  To overcome dynamic stall 

developed through increased acceleration and subsequent deceleration of flow at the 

leading edge, Chandrasekhara, Wilder and Carr (1998b) proposed to modify the leading 

edge radius and curvature through adaptive changes to the airfoil chord during the pitch-

up motion. Although the maximum angle of attack was 𝛼 = 20°, it was reported that a 

complete elimination of the leading-edge vortex was possible. 

A variable-droop leading edge was later used in Chandrasekhara, Martin and Tung (2004) 

to eliminate dynamic stall of an airfoil in compressible flow. By drooping the leading edge, 

Chandrasekhara, Martin and Tung (2004) were able to reduce the adverse pressure 

gradient and suction pressure at the leading edge of the drooped airfoil, thus lowering 

the force fluctuation generated by dynamic stall. Variations in upper surface pressure 

distributions between a standard VR-12 airfoil and a VR-12 airfoil adapted with leading-

edge droop is shown in Figure 2.17. 

In a similar study, Geissler et al. (2004) utilised a variable-droop leading edge to increase 

the maximum angle of attack at which maximum lift was obtained for a DLR-A1510 airfoil 

exposed to dynamic stall conditions. The resulting increase in lift can be attributed to an 

increase in camber, thus reducing the susceptibility of flow separation at high angles of 

attack. These findings were also observed in Kerho (2007) where the maximum lift was 

increased by 9% and stall delayed by 𝛼 = 2.5°, when comparing a SSC-A09 airfoil and a 

variable-camber SSC-A09 airfoil at 𝑅𝑒 = 4.25 × 106 and 𝜅 = 0.075. The influence of 

increasing camber, during the pitch-up motion, resulted in removal of high pressure 

gradients, resulting in shock induced separation, at the leading edge. This allowed for the 
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development of trailing-edge separation and late formation of the leading-edge vortex 

(Kerho, 2007). 

 

Figure 2.17.  Variation in surface pressure distribution between (a) a VR-12 airfoil and (b) 

an VR-12 airfoil adapted with leading edge droop. Note that maximum suction is 

reduced due to increased leading-edge droop (Chandrasekhara, Martin and Tung, 2004). 

Other methods of adaptive control include blowing, suction and periodic excitation of the 

boundary layer. These methods all use a similar concept to either remove or add fluid to 

a low momentum region of the boundary layer in order to prevent early flow separation 

(Sun and Sheikh, 1999). Using numerical modelling, Sun and Sheikh (1999) were able to 

reduce the lift, drag and pitching moment through the application of tangential blowing 

at multiple locations from the leading edge. The effects of tangential blowing on the 

aerodynamic load generation are presented in Figure 2.18 which shows reduced lift and 

drag as a result of increasing jet momentum coefficient, 𝐶𝜇, indicating an addition of 

boundary layer momentum and reduced flow separation. From Figure 2.18, by increasing 

the jet momentum coefficient, an increased control of the separation process was 

demonstrated for 𝜅 = 0.25, and for 𝑅𝑒 = 106. This led to delayed separation at the 
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leading edge, whilst in turn delaying the formation of the dynamic-stall vortex to higher 

angles of attack (Sun and Sheikh, 1999). The addition of blowing significantly reduced the 

load hysteresis of both lift and drag indicating that control through the means of steady 

blowing can successfully be used for dynamic stall control. 

 

Figure 2.18. Lift and drag coefficient of a standard NACA 0012 airfoil and a NACA 0012 

airfoil with steady leading-edge blowing showing reduced lift hysteresis and decreased 

drag fluctuation with increased jet momentum coefficient (Sun and Sheikh, 1999). 

McCloud, Hall and Brady (1960) demonstrated the ability to delay retreating blade stall 

on full-scale helicopter blades through careful placement of tangential jets located near 

the leading edge. However, the effect was less successful as the jets were moved aft of 

the leading edge, to a location positioned at 𝑥 𝑐⁄ = 0.4. The effect of jet momentum 
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strength for the control of boundary layer separation on a thick NACA 0018 airfoil 

undergoing sinusoidal motion with 𝜅 = 0.074, and for a Reynolds number ranging from 

𝑅𝑒 = 1.25 × 105 to 𝑅𝑒 = 5 × 105, was discussed in Müller-Vahl et al. (2014) and Müller-

Vahl et al. (2016). In both studies, a jet located near to the leading edge, where 𝑥 𝑐⁄ =

0.05,  was shown to promote early separation using a low-momentum jet injection. 

Conversely, control of flow separation and elimination of the formation of the leading-

edge vortex was achieved using a high momentum jet. 

In a similar manner to boundary layer jet blowing, which introduces momentum into the 

boundary layer, the use of suction removes low momentum fluid for flow control on 

pitching airfoils. Limiting the build-up of low momentum and reversed flow fluid within 

the shear layer during the pitch-up motion was the basis of work in Karim and Acharya 

(1994). Karim and Acharya (1994) utilised five suction ports within a NACA0012 airfoil to 

completely suppress the leading-edge vortex. The influence of the rotation rate, angle of 

attack and Reynolds number were all shown to vary the suction rate required to sustain 

attached boundary layer conditions. Likewise, higher lift and delayed stall were also 

reported in Alrefai and Acharya (1996), who used leading-edge suction to determine the 

required flow rate to completely suppress the leading-edge vortex, delay detachment of 

the vortex and maximise lift on a NACA 0012. Figure 2.19 presents the lift coefficient 

results obtained by Alrefai and Acharya (1996), where multiple suction flow rates were 

utilised to increase maximum lift and delay airfoil stall to elevated angles of attack.  Their 

results showed that suction applied on the upper surface inhibited the formation of the 

dynamic-stall vortex. However, the suction rate of the actuators was shown to be 

dependent on the airfoil angle of attack and rotation rate (Alrefai and Acharya, 1996).   
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From Figure 2.19, it is clear that significant gains in aerodynamic load generation can be 

obtained, and stall behaviour manipulated through the use of both suction and blowing 

mechanisms. However, as stated in Alrefai and Acharya (1996), the sensitivity of the 

suction flow rate was only specific to the operating conditions applied in their 

investigation.  

 

Figure 2.19. Effect of increasing leading edge suction rate, 𝑄𝑛𝑑, on the maximum lift and 

stall angle of attack for a NACA 0012 airfoil undergoing constant-pitch-rate motion, and 

with 𝜅 = 0.075 (Alrefai and Acharya, 1996). 

The feasibility of both boundary layer injection and suction for active control in highly 

unsteady flow and at extreme angles of attack remains a topic for future investigation. 

For this reason, it is recommended to further investigate boundary layer control using 

suction and blowing under highly unsteady operating conditions, similar to that 

experienced on horizontal-axis wind turbines during extreme weather conditions. A 
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summary of the methods of dynamic stall control are presented in Table 1. Both passive 

and active control methods are presented alongside each respective investigator.  

Table 1: Summary of passive and active dynamic stall control methods. 

 

Control Type Method of control Article 

Passive 

Vortex Generator 

Mai et al. (2008) 

Geissler, Dietz and Mai (2005) 

Heine et al. (2013) 

Tubercles 

Fish et al. (2011) 

Hansen, Kelso and Dally (2011) 

Hrynuk (2015) 

New, Wei and Cui (2016) 

Leading-edge Undulations Rostamzadeh et al. (2013) 

Leading- and Trailing-edge Slat 

Carr and McAlister (1983) 

McAlister and Tung (1993) 

Carr et al. (2001) 

Geissler et al. (2005) 

Joo et al. (2006) 

Leading-edge Trip Wire 
Choudhry, Arjomandi and Kelso (2016) 

Chapter 5 

Active 

Plasma Actuators 

Post and Corke (2006) 

Lombardi, Bowles and Corke (2013) 

Greenblatt, Ben-Harav and  Mueller-Vahl (2014) 

Adaptive Geometry 

Yu et al. (1995) 

Chandrasekhara, Wilder and Carr (1998b) 

Chandrasekhara, Martin and Tung ( 2004) 

Feszty, Gillies and Vezza (2004) 

Geissler et al. (2004) 

Lee and Gerontakos (2006) 

Kerho (2007) 

Boundary Layer Suction 
Karim and Acharya (1994) 

Alrefai and Acharya (1996) 

Boundary Layer Blowing 

McCloud, Hall and Brady (1960) 

Weaver, McAlister and Tso (1996) 

Sun and Sheikh (1999) 

Weaver, McAlister and Tso (2004) 

Singh et al. (2006) 

Müller-Vahl et al. (2014) 

Müller-Vahl et al. (2016) 

Periodic Boundary Layer 
Excitation 

(Yu et al., 1995, 

Magill and McManus (1998) 

Greenblatt et al. (2001) 

Greenblatt and Wygnanski (2001) 

Greenblatt and Wygnanski (2002) 

Gardner, Richter and Rosemann (2011) 
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2.5.  Dynamic Stall on Pitching Plates 

Using pitching flat plates, the underlying mechanism of lift generation and flow structure 

developed during dynamic stall can be evaluated. With regards to the control of the 

dynamic stall process, it is necessary to develop knowledge of the stall process to allow 

more efficient means of flow control to be developed and implemented. By utilising flat 

plates, elimination of geometric effects associated with airfoils (and the associated 

variable pressure gradients) is possible (Widmann and Tropea, 2017). The following 

section reviews literature that focuses on the study of dynamic stall applied to pitching 

flat plates, in order to increase knowledge of the topological flow structure and load 

developed as a result of unsteady separation.  

Flat plate aerodynamics has often been investigated for its application on birds, bats and 

insects. All of these natural flyers utilise the unsteady processes to create sufficient lift to 

sustain flight, increase manoeuvrability and perform flight techniques such as perching. 

In recent years, the development of micro-aerial vehicles have led to deeper 

investigations of flapping flight. Interaction of separation bubbles and vortex structures 

formed through the unsteady separation process allows for periods of enhanced lift 

required to sustain flight (Ellington, 1984, Sane, 2003, Shyy et al., 2007). Flat plates have 

been shown (Pelletier and Mueller, 2000) to provide an increased aerodynamic efficiency 

over thicker airfoil geometries at low Reynolds numbers. Flat plates can also be utilised in 

unsteady environments where generation of the leading-edge vortex can be utilised for 

enhanced lift to higher angles of attack.  
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Using PIV and force measurements in a water channel with 𝑅𝑒 = 10,000, Rival et al. 

(2013) showed the lift development and its variation with time for four dissimilar leading 

edge and trailing edge configurations. Furthermore, the study made comparisons to a 

NACA 0012 airfoil undergoing similar pure-plunge motion. The shapes of the leading edge 

and trailing edge included sharp, blunt, round and ramp geometries. The flow structure 

developed for each leading edge and trailing edge configuration was shown to be similar 

between all four cases. However, variation in leading edge geometry was shown to 

influence the delay in leading-edge vortex development.  In a similar study, using a flat 

plate with a sharp leading edge and near constant-pitch-rate motion, Widmann and 

Tropea (2017) discussed the variation in shear layer thickness and its role in feeding the 

leading-edge vortex for 𝑅𝑒 = 10,000 to 𝑅𝑒 = 80,000 and for 𝜅 = 𝜋𝑐𝑓 𝑈∞⁄ = 0.25. The 

changes in shear layer thickness were linked to variations in Reynolds number, where 

decreasing Reynolds number generated thicker shear layers.  

A major review of flat plate aerodynamics is presented in North Atlantic Treaty 

Organization (2016), where a parametric evaluation of flat plate motion type, Reynolds 

number and reduced frequency were presented, using direct force measurements and 

PIV from multiple independent experimental facilities. In this study, the effects of 

Reynolds number on the lift coefficient were found to be minimal for Reynolds numbers 

between 𝑅𝑒 = 500 and 𝑅𝑒 = 10,000. However, at low Reynolds numbers, the effects of 

increased skin friction becomes a dominant factor in varying the drag properties of the 

plate. As such, changes in drag become more significant in low Reynolds number 

operating conditions. It was found that increasing the rotation rate increases the lift well 

beyond steady-state values until rotation is ceased. Increasing the rotation rate also 

introduces a non-circulatory ‘bump’ in the lift curve, which is not present in the low 
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reduced-frequency cases.  Additionally, performance parameters including motion type 

and amplitude, Reynolds number and reduced frequency were evaluated using a SD-7003 

airfoil (Granlund et al., 2010) and a flat plate (Baik et al., 2012, Granlund, Ol and Bernal, 

2013, Jones et al., 2016) undergoing unsteady motion to show the resulting variation in 

lift, drag and flow structure with respect to each performance parameter. In these studies, 

and similarly in the studies by North Atlantic Treaty Organization (2016), the effects of 

Reynolds number were shown to be insignificant for Reynolds numbers between 5,000 

and 25,000. The rotation rate significantly increases the peak lift during rotation and is 

therefore shown to be the major parameter governing flow development. 

The effect of pivot location on the resulting inertial forces and flow structure was explored 

in Yu and Bernal (2013) and Yu (2014), where PIV and force measurements were 

correlated to evaluate the inertial load generated as a result of pitching at reduced 

frequencies of 𝜅 = 0.022 through to 𝜅 = 0.394. It was shown that a leading-edge pivot 

point generated a greater normal force coefficient. The normal force coefficient 

subsequently decreased when the pivot location moved towards the trailing edge. 

Similarly, Stevens and Babinsky (2017) provide experimental data to show the influence 

of rotation on inertial flows and leading-edge vortex circulation. The study concluded that 

the effect of pivot location, in this case positioned at the leading edge and the mid-chord, 

generated similar convection velocities, where 𝑈𝑐𝑜𝑛𝑣 = 0.5 𝑚/𝑠 and 𝑈𝑐𝑜𝑛𝑣 = 0.6 𝑚/𝑠 

for the leading and mid-chord pitch locations respectively. Furthermore, the mid-chord 

pivot location was demonstrated to generate several additional trailing-edge vortices 

when compared to the leading edge pivot location. Although these studies are beneficial 

in increasing the knowledge of force development of a flat plate exposed to unsteady 
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motion types, little detail is provided on the control and interaction of critical topological 

flow features developed during progression of the dynamic stall process.   

Using time-resolved PIV, Buchner and Soria (2015) provided details of the vortex 

development process of a pure-pitch-motion flat plate for 𝑅𝑒 = 1500 to 𝑅𝑒 = 10,000 

and for a highly unsteady rotation rate where 𝜅 = 0.7. They showed that the leading-edge 

vortex grew from the merging of multiple smaller coherent vortex structures developed 

within the shear layer at the leading edge. This is demonstrated in Figure 2.20, which 

shows the mean and fluctuating vorticity of the leading-edge vortex as a result of the 

smaller vortex structures.  

 

Figure 2.20. Mean normalised vorticity (a) and RMS fluctuation (b) in vorticity of a 

pitching flat plate indicating the influence of Reynolds number on the development of 

the leading-edge vortex (Buchner and Soria, 2015). 

In their study, the time scale of the leading-edge vortex is shown to be similar for all 

Reynolds numbers evaluated. However, during the pitch-up process, significant scatter in 
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the leading-edge vortex vorticity is presented and characterised by the ongoing vorticity 

shedding and merging process at the leading-edge vortex.  

In a similar study evaluating the effect of Reynolds number on the vortex development 

process of a flat plate, Garmann and Visbal (2011) concluded that increasing the Reynolds 

number resulted in many more discrete vortex structures emanating from the leading 

edge and trailing edge of the flat plate. Results from their numerical simulations for 𝑅𝑒 =

5,000 to 𝑅𝑒 = 40,000 and for a pitch rate of 𝜅 = 0.4 are shown in Figure 2.21.  

 

Figure 2.21. Vorticity contours of a pitching flat plate indicating the effect of increasing 

the Reynolds number on the vortex shedding frequency at the leading edge and trailing 

edge (Image adapted from Garmann and Visbal (2011)). 

This figure shows the vorticity contours about a flat plate undergoing pitch-up motion. It 

is clear from the vorticity contours that increasing the Reynolds number promotes 

increased vortex production at the leading edge and the trailing edge. Similar 

observations of increased vortex shedding with an increase in Reynolds number, were 
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also provided in Buchner and Soria (2015). The results showing the formation and 

interaction of vortex structures are critical for the development of understanding of the 

lift generation process of the flat plate. However, for the control of the vortex, a gap in 

literature remains regarding on the identification and tracking of the movement of the 

leading-edge vortex with time. Further details of topological flow features distinguishing 

the leading-edge vortex are required in order to identify the vortex motion, for control 

purposes, whilst it remains over the upper surface of the flat plate.  

A study to evaluate the motion of the leading-edge and trailing-edge vortex as a result of 

unsteady separation over a flat plate was presented in Rival, Prangemeier and Tropea 

(2009). However, only the displacement and velocity were reported for the respective 

vortex cores. No information was provided with respect to the pressure variations on the 

upper surface of the plate, as a result of the vortex-wall interaction. The convection rate 

of the leading-edge vortex and the trailing-edge vortex were established to be 0.5𝑈∞ and 

0.6𝑈∞ for leading-edge and mid-chord pivot points respectively (Stevens and Babinsky, 

2017). These convection velocities however, cannot be utilised for the identification of 

critical features on the surface of the plate for boundary layer control purposes. A study 

which utilises topological flow features was presented in Rival et al. (2013). Within this 

investigation, PIV was utilised to determine the relative velocity and vorticity profiles of 

the unsteady flow field surrounding a flat plate undergoing pure-plunge motion. Their 

results define a half-saddle point bounded to the upper surface of the pitching plate, and 

which also coexists at the bifurcation between forward and reverse flow located on the 

rear of the leading-edge vortex as shown in Figure 2.22. Movement of this half-saddle 

location into the wake via the ‘lift-off’ process was defined as the critical transition point 

leading to development of fully separated flows (Perry and Fairlie, 1975, Perry and 
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Steiner, 1987, Rival et al., 2013). It is also notable that a definition of the leading-edge 

vortex growth was suggested in Widmann and Tropea (2017) using similar notation and 

representation of the half-saddle point.  

 

Figure 2.22. Definition of the half-saddle forming aft of the leading-edge vortex at the 

bifurcation between forward and reverse flow on the upper surface of the pitching plate 

(Rival et al., 2013). 

Past literature has provided a wealth of information with respect to the lift and drag 

associated with vortex-induced lift developed on pitching plates. Furthermore, 

performance parameters such as reduced frequency, Reynolds number, pitch-axis 

location and pitching motion have all been heavily analysed for their impact on the 

dynamic-stall process. In addition, methods of quantifying the process of leading-edge 

vortex separation has been presented through investigations studying the process of 

dynamic stall. 

A possibility for active boundary layer control includes sensing the location of the half-

saddle point, through the use of internal pressure sensors, to provide suction or blowing 

in order to control the formation of the leading-edge vortex. A gap in literature exists 
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since minimal data is available for use of tracking and positioning the location of the half-

saddle point on the upper surface of a flat plate during pitch-up motions. Moreover, the 

variation and rate of movement of the half-saddle point location with respect to 

performance parameters has not been documented. For this reason, further research 

must be undertaken in order to fully comprehend the relationship between the half-

saddle point location and the overall flow structure and lift. This will allow more efficient 

application of active control boundary layer devices on both flat plates and airfoils subject 

to unsteady separation.   

2.6.  Summary of Literature and Research Still Required  

Rotary machines operate in severe environments that place the blades in unsteady 

conditions allowing for the development of dynamic stall. This leads to an increase in force 

and power fluctuation, whilst decreasing material lifetime. A challenge currently facing 

designers of rotary machine components is having adequate knowledge to design and 

predict the onset and aerodynamic characteristics of the unsteady separation process. 

Current literature focuses on the operation of helicopter and wind turbine blades typically 

operating at angles of attack of 𝛼 < 30°, and where the motion type is sinusoidal about 

a mean angle of attack. For a wind turbine, such conditions may lead to false evaluation 

of force in situations where the blade is exposed to an extreme and prolonged gust or 

weather event. Under these conditions, the unsteady motion of the blade can be 

characterised using constant-pitch-rate conditions.  

Furthermore, operation in post-dynamic stall conditions, where the angle of attack is held 

fixed at the maximum angle of attack to enable post-stall flow conditions, is critical for 
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the understanding of post-stall flow behaviour resulting from significant wind shear and 

gust-like operating conditions.    

Although significant research has been completed with respect to dynamic stall, there 

remains a gap in knowledge specifically relating to the understanding of vortex generation 

and fluid-structure interaction leading to force fluctuations on airfoils operating in highly 

unsteady flow conditions where unsteady constant-pitch-rate dynamic stall at extreme 

angles of attack occur. Furthermore, there is a lack of information detailing the process of 

separation and development of vortex structures in high-rotation-rate operating 

conditions. This may lead to the under-prediction of force development on rotary 

machine blades. For this reason, there remains a scope to further investigate and compare 

multiple airfoil geometries operating in conditions, where accelerated flow conditions 

become a dominant factor in the overall force generation. Understanding the flow 

structure behaviour in high angle of attack, high rotation-rate motions and during post 

stall can ultimately lead to improved methods of boundary layer control. This may reduce 

and mitigate machine vibration, increase material life cycles, lower the overall cost and 

improve the machine efficiency.   

In order to control the dynamic-stall process, researchers have applied multiple methods 

of active and passive control systems that have been applied in steady-state conditions. 

Examples of such control devices include turbulence generators, tubercle leading-edge 

modifications, undulating leading edges, addition of flaps and slats, active blowing and 

suction and more recently the application of plasma actuators. Literature has shown 

significant benefits towards the control of dynamic stall at quasi-steady reduced 

frequencies and moderate angles of attack. However, there remains a large gap in the 
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literature regarding the control of dynamic stall under unsteady operating conditions. 

Moreover, the effectiveness of applying leading-edge trip wires to airfoils operating in 

highly unsteady conditions remains unknown.  

To further apply active control methods, and to increase their effectiveness, details of the 

pressure field and critical flow features developed during unsteady operation must be 

understood. By using flat plates, effects of airfoil geometry can be omitted to allow the 

flow separation to develop immediately at the leading edge. Literature using flat plates 

for the study of dynamic stall sheds light on the dynamic stall process and critical 

topological flow features, such as the half-saddle located aft of the leading-edge vortex. 

The importance of understanding such critical flow features has also been discussed for 

applications of boundary layer control. Nonetheless, from the current literature review, 

there remains a gap in knowledge regarding the development and progression of the half-

saddle point from the leading edge rearwards toward the trailing edge. By better knowing 

the motion characteristics of the half-saddle point, more selective and efficient control 

methods can be adapted to either inhibit vortex formation or control its growth to achieve 

specific load characteristics.      

2.7.  Summary of Performance Parameters and Investigation Type 

The following section summarises the performance parameters associated with dynamic 

stall from historical experimental and numerical investigations. Performance parameters 

include the reduced frequency, Reynolds number, pivot location (𝑥𝑃), airfoil geometry 

and the operating angle of attack. The results of the summary combined with the 

parameters of the current thesis are shown in Table 2.  
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Table 2: Performance parameters and investigation type associated with the study of 

dynamic stall. 

Article Method Re 𝜿 (𝝎𝑪 𝟐𝑼∞⁄ ) 𝒙𝑷 𝒄⁄  Airfoil 𝜶° 

Acharya and 
Metwally (1992) 

Experimental 
8.8 × 104

→ 1.2 × 105 
0.018 → 0.385 0.25 NACA 0012 0 → 40 

Albertson et al. 
(1987) 

Experimental 6.35 × 104 0.05 → 0.1 0.25 NACA 0015 0 → 60 

Amiralaei, 
Alighanbari and 
Hashemi (2010) 

Numerical 
0.5 × 103

→ 5 × 103 
0.05 → 0.125 0.50 NACA 0012 −10 → 10 

Baik et al. (2012) Experimental 
5 × 103

→ 2 × 104 
0.314 → 1 0.25 Flat Plate −6 → 22 

Buchner, 
Honnery and 
Soria (2017) 

Experimental 
1 × 103

→ 1 × 104 
0.7 0.00 Flat Plate 0 → 40 

Carr, McAlister 
and McCroskey 

(1977) 
Experimental 

1 × 106

→ 3.5 × 106 
0.02 → 0.25 0.25 NACA 0012 1 → 29 

Chandrasekhara, 
Wilder and Carr 

(1998a) 
Experimental 

0.54 × 106

→ 1.1 × 106 
0.0125 → 0.05 0.25 NACA 0012 0 → 20 

Choudhuri, 
Knight and 

Visbal (1994) 
Numerical 1 × 104 0.1 0.25 NACA 0012 0 → 25 

Conger and 
Ramaprian 

(1994) 
Experimental 

5.2 × 105

→ 2.2 × 105 
0.018 → 0.1 0.25 NACA 0015 0 → 40 

Crisler (1994) Experimental 
2.8 × 105

→ 6.2 × 105 
0.005 → 0.03 0.25 NACA 0012 0 → 30 

Dadone (1977) Experimental 
3.1 × 106

→ 7 × 106 
0.16 → 0.18 0.25 NLR 7223-62 −10 → 30 

Daley and 
Jumper (1984) 

Experimental 
7.8 × 104

→ 3.01 × 105 
0 → 0.270 0.25 NACA 0015 0 → 31 

Francis and 
Keesee (1985) 

Experimental 
7.7 × 104

→ 1.69 × 105 
0.001 → 0.21 0.31 → 0.37 

NACA 0012 
NACA 64A012 

0 → 60 

Garmann and 
Visbal (2011) 

Numerical 
5 × 103

→ 4 × 104 
0.2 0.25 Flat Plate 0 → 45 

Geissler, Dietz 
and Mai (2005) 

Experimental 
Numerical 

2.1 × 106

→ 2.8 × 106 
0.0125 → 0.05 0.25 DLR A1510 0 → 25 

Gharali and 
Johnson (2013) 

Numerical 1.35 × 105 0.05 0.25 NACA 0012 −5 → 25 

Granlund et al. 
(2010) 

Experimental 
Numerical 

5 × 104 
2 × 104 

0.03 
0.0025 → 0.2 

0, 0.25, 0.5, 0.75 
SD7003 

Flat Plate 
0 → 45 
0 → 90 

Green and 
Galbraith (1995) 

Experimental 
2 × 104

→ 1.5 × 106 
0.03 → 0.048 0.25 

NACA 23012B 
NACA 21012C 

NACA 0015 
0 → 40 

Helin and 
Walker (1985) 

Experimental 4.5 × 104 0.1 → 0.3 0.25, 0.5, 0.75 NACA 0015 0 → 60 

Jumper, Schreck 
and Dimmick 

(1987) 
Experimental 

1.6 × 105

→ 2.8 × 105 
0.01 → 0.015 0.50 NACA 0015 0 → 50 

Kang et al. 
(2009) 

Experimental 
Numerical 

1 × 104

→ 6 × 104 
0.25 0.25 SD7003 −6 → 22 
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Analytical 

Kim and Chang 
(2014) 

Experimental 
2 × 104

→ 5 × 104 
0.1 0.25 NACA 0012 −6 → 6 

Lee and 
Gerontakos 

(2004) 
Experimental 1.35 × 105 0.0125 → 0.3 0.25 NACA 0012 −10 → 30 

Leishman (1990) Experimental 
0.8 × 106

→ 2 × 106 
0.01 → 0.2 0.25 NACA 23012 0 → 30 

Liiva (1968) Experimental 
2.6 × 106

→ 6.6 × 106 
0.02 → 0.36 0.25 

NACA 0012 
Vertol 23010 

0 → 30 

Lorber and Carta 
(1988) 

Experimental 
2 × 106

→ 4 × 106 
0.001 → 0.02 0.25 

Sikorsky SSC-
A09 

0 → 30 

Lourenco et al. 
(1993) 

Experimental 
5 × 103

→ 2.5 × 104 
0.02 → 0.065 0.25 NACA 0012 0 → 30 

Lu, Xie and 
Zhang (2013) 

Numerical 1.35 × 104 0 → 3.0 0.25 NACA 0012 5 → 30 

Martinat et al. 
(2008) 

Numerical 
1 × 105

→ 1 × 106 
0.1 → 0.188 0.25 NACA 0012 5 → 25 

McAlister, Carr 
and McCroskey 

(1978) 
Experimental 2.5 × 106 0 → 0.25 0.25 NACA 0012 5 → 25 

McCroskey et al. 
(1982) 

Experimental 
4.9 × 105

→ 4.2 × 106 
0.01 → 0.2 0.25 

NACA 0012 
Verton VR-7 

NLR-1 
NLR7310 

Ames A-01 
Wortmann FX-

098 
Sikorsky SC-1095 

Hughes HH-02 
 

−10 → 29 

Mulleners et al. 
(2009) 

Experimental 9.2 × 105 0.025 → 0.05 0.25 OA-209 10 → 30 

Nati et al. (2015) Experimental 3 × 104 0.1 0.25 SD7003 4 → 8 

Ohmi et al. 
(1990) 

Experimental 
Numerical 

1.5 × 103

→ 1 × 104 
0.5 → 1 0.5 Elliptical Airfoil 0 → 45 

Ol et al. (2009) 
Experimental 

Numerical 
1 × 104

→ 6 × 104 
0.25 0.25 SD7003 4 → 23 

Panda and 
Zaman (1994) 

Experimental 
2.2 × 104

→ 4.4 × 104 
0 → 1.6 0.25 NACA 0012 5 → 25 

(Raffel, 
Kompenhans 
and Wernert, 

1995) 

Experimental 4 × 105 0.15 0.25 NACA 0012 5 → 25 

Rival and Tropea 
(2010) 

Experimental 
3 × 104

→ 6 × 104 
0.05 → 0.3 0.25 SD7003 −8 → 24 

Shih, Lourenco 
and Krothapalli 

(1995) 
Experimental 

5 × 103

→ 2.5 × 104 
0.06 0.25 NACA 0012 0 → 30 

Spentzos et al. 
(2005) 

Numerical 6.9 × 104 0.05 → 0.1 0.25 → 0.33 
NACA 0012 

Square 
0 → 60 

Visbal (1990) Numerical 3 × 106 0.022 → 0.1 0.25 → 1 NACA 0015 0 → 60 

Visbal (2014) Numerical 6 × 104 0.025 0.25 SD7003 4 → 30 

Wang et al. 
(2012) 

Numerical 1.35 × 105 0.1 0.25 NACA 0012 −5 → 25 
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THIS THESIS 

Chapter 3 Experimental 2 × 104 0.05 → 0.2 0.5 
NACA 0012 
NACA 0021 

0 → 90 

Chapter 4 Experimental 2 × 104 0.05 → 0.2 0.5 NACA 0021 0 → 90 

Chapter 5 Experimental 2 × 104 0.025 → 0.1 0.5 NACA 0012 0 → 60 

Chapter 6 Experimental 2 × 104 0.025 → 0.1 0.5 Flat Plate 0 → 50 

 

2.8.  Conclusions from the Literature Review and Thesis Objectives  

The overall aim of the current research is to identify the unsteady behaviour of airfoils 

undergoing dynamic stall. Moreover, the thesis investigates the application of high airfoil 

rotation rates and high angles of attack specific to severe weather conditions. Moreover, 

the thesis will investigate fluid-structure interaction and force development resulting 

from unsteady separation during dynamic stall. The research will focus on identifying the 

effects of dynamic stall on the post-stall behaviour of airfoils exposed to such extreme 

operating conditions. The first objective of this thesis is to identify the variation in flow 

structure and forces developed as a result of continued rotation of an airfoil exposed to 

highly unsteady rotation rates and excessive angles of attack. Literature has detailed the 

flow structure and forces associated with reduced frequencies specific to the normal 

operation of helicopters. However, the angle of attack is typically limited to a maximum 

angle of 𝛼 = 30°. In addition, due to the variation in rotor blade thickness of wind 

turbines, the effects of airfoil thickness on dynamic stall during gust-like conditions 

remains unclear. The outcomes of the first objective will address this gap in the literature, 

so that a greater awareness of the variation between thick and thin airfoils operating in 

highly unsteady environments can be established. For this purpose, and as summarised in 

the literature review, the use of NACA 0012 and a NACA 0021 airfoil will be utilised for a 
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comparative analysis of the flow structure and force generation resulting from dynamic 

stall.  

The second objective of the current work focuses on addressing the gap in knowledge 

regarding the continued operation of wind turbine blades in post-stall environments, 

representative of stall-regulated wind turbines. Post-stall environments are highly 

complex flow fields resulting from tower shadow, turbine wake interaction, atmospheric 

turbulence, turbine yaw and blade elasticity. All of these parameters impose significant 

unsteady loads on the turbine. The literature does not detail the operation of airfoils 

exposed to dynamic stall conditions and which then continue to proceed into post-stall 

operating conditions. The second objective is to address this matter by replicating 

dynamic stall conditions, although instead of allowing the airfoil to return to an angle of 

attack where flow reattachment naturally occurs, the airfoil will be held fixed at its 

maximum angle of attack, allowing for the transition into post-stall to occur. Experimental 

techniques using PIV and surface pressure measurements will be utilised to identify the 

major flow structure characteristics, along with the forces associated with the airfoil 

motion.  

The third objective of the thesis is to determine the suitability of passive boundary layer 

control devices under highly unsteady flow conditions. Literature discusses the 

application of both passive and active boundary layer control techniques for the control 

of dynamic stall. The operating conditions of these control devices are typically associated 

with quasi-steady flows, where inertial loads generated via airfoil rotation are small. 

Control of dynamic stall at quasi-steady rotation rates are achieved by Choudhry, 

Arjomandi and Kelso (2016) through the application of a leading-edge trip wire. However, 
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the rotation rate was significantly lower than that obtained during highly unsteady flow 

conditions. Therefore, the scope of the third objective is to determine the effectiveness 

of the trip wire when the airfoil is subjected to increased rotation rates more indicative of 

severe wind gusts. Surface pressure measurements will be utilised to resolve the unsteady 

forces developed about a pitching airfoil fitted with a leading-edge trip wire. Analysis of 

the resulting forces will allow for the determination of the effectiveness of the trip wire 

under high rotation-rate pitching motions.  

The fourth objective of the research is to determine the characteristics of the dynamic-

stall process for a flat plate. This will be conducted in order to further increase the 

knowledge of the unsteady separation process, so that improved methods of flow control 

can be utilised for reduction or removal of the unsteady loads imposed by dynamic stall. 

Research using flat plates allows for geometrical properties of the airfoil to be limited. 

Therefore, inertial effects induced through rotation of the flat plate can be assessed for 

their influence on the flow structure development and separation behaviour during 

dynamic stall. Literature has previously discussed the performance of flat plates at low 

Reynolds numbers. Attempts have also been made to understand the topological flow 

structures developed during leading-edge vortex development and its transition over the 

plate. Performance parameters such as the reduced frequency, pitch location, Reynolds 

number and leading-edge and trailing-edge geometry have been investigated for their 

influence on the overall aerodynamic performance. In addition, literature discusses the 

presence of a half-saddle point located on the upper surface of the plate that could 

potentially be utilised for boundary layer control. This work has provided significant 

insight into dynamic stall. However, there remains a gap in knowledge of the motion of 

the half-saddle point during the pitch-up process. Therefore, the fourth objective of the 
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thesis will focus on investigating the motion of the half-saddle point in order to detect its 

variation in velocity along the upper surface with respect to parameters such as leading-

edge geometry and airfoil rotation rate. The work will identify the half-saddle point 

through the use of imbedded surface pressure measurements, allowing for trends in its 

motion to be identified. This will ultimately lead to a greater awareness of the dynamic 

stall process, so that adaptive boundary layer control techniques can be tuned and refined 

for increased control of flow separation.   
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Chapter 3.  Thick and Thin Airfoil Dynamic Stall 

Thick and Thin Airfoil Dynamic Stall 

3.1.  Chapter 3 Overview 

The following chapter investigates the variation in force and flow structure development 

between a thick NACA 0021 and a thin NACA 0012 airfoil undergoing constant-pitch-rate 

motion to elevated angles of attack and at high rotation rates. This is conduced to achieve 

the first project objective to identify the flow behaviour of airfoils with varying thickness 

ratios and undergoing highly unsteady flow conditions. An experimental apparatus was 

created to simulate constant-pitch-rate motion for both airfoils using water channel and 

wind tunnel testing facilities. Flow structures, identified from vorticity contours, were 

investigated using phase-averaged PIV, whilst airfoil surface pressures were evaluated 

using differential pressure sensors embedded within each wings. Results show minimal 

flow structure variation at angles of attack beyond 𝛼 = 40°. Velocity profiles were 

published as a conference article and can be referred to in Appendix A. The investigations 

showed that the highly accelerated flows significantly increased the total lift generation 

of both wings. The presence of separation bubbles on both surfaces of the airfoils are also 

shown to negatively influence the lift during steady-state conditions. Fluctuations in force 

generation were correlated with trailing-edge vortex shedding during pitch-up motions 

and were observed to intensify with increased rotation rate. The work shows minor 

variation between the flows produced by the two airfoils, however, differences in the 

location of vortex development are identified.  
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Dynamic Stall Flow Structure and Forces on Symmetrical 

Airfoils at High Angles of Attack and Rotation Rates 

R R. Leknys, M. Arjomandi, R M. Kelso and C H. Birzer 

The University of Adelaide, Adelaide, South Australia, 5006 

Abstract 

This article describes a direct comparison between two symmetrical airfoils undergoing 

dynamic stall at high, unsteady reduced frequencies under otherwise identical conditions. 

Particle image velocimetry was performed to distinguish the differences in flow structure 

between a NACA 0021 and a NACA 0012 airfoil undergoing dynamic stall. In addition, 

surface pressure measurements were performed to evaluate aerodynamic load and 

investigate the effect of laminar separation bubbles and vortex structures on the pressure 

fields surrounding the airfoils. Airfoil geometry is shown to have a significant effect on 

flow structure development and boundary layer separation, with separation occurring 

earlier for thinner airfoil sections undergoing constant pitch-rate motion all reduced 

frequencies. Inertial forces were identified to have a considerable impact on the overall 

force generation with increasing rotation rate. Force oscillation was observed to correlate 

with multiple vortex structures shedding at the trailing edge during high rotation rates. 

The presence of laminar separation bubbles on the upper and lower surfaces were shown 

to dramatically influence the steady-state lift of both airfoils. Post-stall characteristics are 

shown to be independent of airfoil geometry such that periodic vortex shedding was 

observed for all cases. However, the onset of deep stall is delayed with increased non-

dimensional pitch rate due to the delay in initial dynamic stall vortex.  
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Nomenclature  

𝛼 Angle of attack (𝑑𝑒𝑔) 

𝑏 Wing span (𝑚) 

𝑐 Airfoil chord length (𝑚) 

𝐶𝐼 Confidence interval (𝐶𝐿 ± 𝑍𝜎 √𝑛⁄ ) 

𝐶𝐿 Lift coefficient 

𝑑𝑙 Control volume vector spacing (𝑚/𝑠) 

𝑓𝑠  Sample rate (Hz) 

Γ Circulation (𝑚2/𝑠) 

𝜅 Non-dimensional pitch rate (𝜔𝐶 2𝑈∞⁄ ) 

𝐿 Lift Force (𝑁) 

𝑛 Number of samples 

𝜔 Angular velocity (𝑟𝑎𝑑/𝑠) 

𝜔𝑧 Normalised vorticity 

𝑅𝑒𝐶 Chord based Reynolds number 

𝜌 Fluid density (𝑘𝑔/𝑚3) 

𝑆 Theoretical span (𝑚) 

𝜎 Force coefficient standard deviation 

𝑇𝑢 Turbulence intensity (%) 

𝑇 Time (𝑠) 

𝑇∗ Non-dimensional time (𝑇𝑈∞ 𝑐⁄ ) 

𝑢 Horizontal velocity (𝑚/𝑠) 

𝑈∞ Freestream velocity (𝑚/𝑠) 
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𝑣 Vertical velocity (𝑚/𝑠) 

𝑉 Velocity (𝑢, 𝑣) of control volume boundary (𝑚/𝑠) 

 

Introduction 

Dynamic stall is a phenomenon whereby the angle of attack can temporarily exceed 

typical steady-state values without the occurrence of deep stall, therefore increasing the 

lift coefficient (𝐶𝐿). The increase in 𝐶𝐿 has been attributed to the delay in separation and 

formation of a dominant vortex structure that originates at the leading edge and convects 

over the upper surface of the airfoil [1-5]. Surface pressure measurements show a 

decreased pressure coefficient at the leading edge as a result of delayed separation and 

vortex presence on the airfoil upper surface [6-10]. As the leading edge vortex grows and 

begins to move across the upper surface, a broadening of the low-pressure region is 

observed which coincides with increased lift coefficient prior to vortex shedding.  

For the case of flapping machines, birds and insects, this behaviour is beneficial and critical 

for sustained flight. For rotary machines, such as vertical- and horizontal-axis wind 

turbines, dynamic stall can significantly reduce the performance output and impose 

increased fatigue and loads on rotor blades during operation at low flow speeds and 

during start-up. Therefore, the need to further understand the dynamic stall process is 

critical for optimisation of the performance, whilst also reducing operation and 

maintenance costs of rotary machine parts exposed to increased fluctuating loads.  

Wind turbine blades are frequently exposed to a high degree of oscillatory and gust-like 

conditions which are characterised by rapid changes in flow angle to high angles of attack 
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(i.e. high rotation rates). Tower shadow, atmospheric turbulence and turbine-turbine 

wake interaction for horizontal-axis wind turbines [11-14], and wake interaction for 

vertical-axis wind turbines [15], place varying unsteady flow conditions on wind turbine 

blades. In addition, the control of dynamic stall can assist with power generation and 

reduced load fluctuation resulting in increased lifetime and lowered maintenance costs 

[16-18].  

The unsteady operating conditions of these machines typically lead to transient variations 

in the angles of attack, which in turn result in dynamic-stall conditions and increased load 

fluctuation. In order to design wind turbine structures to cope with or minimise the effects 

of these conditions, we must first understand the underlying flow mechanisms and the 

influence of basic design parameters.    

Blades of wind turbines are designed to meet a range of requirements, including blade 

structural load limits, aerodynamic efficiency, and hub integration. All of these factors 

impact the overall thickness of the blade structure, resulting in variable aerodynamic 

performance characteristics along the span of the blade. Thickness ratios of wind turbine 

blades may vary as much as from 27% at the root to 15% at the tip [19]. Due to this 

variation in airfoil thickness, deviation in aerodynamic performance and flow behaviour 

along a blade is expected under dynamic stall conditions. It has been shown that the 

blades of horizontal axis wind turbines can experience dynamic stall conditions on up to 

80% of their blade length, or potentially operate continuously in stalled conditions for the 

majority of their operation [11]. To achieve optimal performance of rotary machines in 

low flow speed conditions, it is therefore essential to understand the effects of the blade 

thickness ratio with respect to dynamic stall development across a wide range of airfoil 
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profile thicknesses. Although thick and thin airfoils have been compared comprehensively 

at steady-state conditions, there have been no studies that specifically focus on the 

unsteady flow field development and forces produced by thick and thin airfoils operating 

in identical, highly-unsteady conditions and at extreme angles of attack, i.e. gust like 

operating conditions. A comprehensive, systematic and direct comparison between thick 

and thin airfoils undergoing dynamic stall at high (unsteady) reduced frequencies is 

therefore warranted in order to distinguish the differences in flow structure and force 

characteristics. For unsteady flows, where 𝜅 > 0.05, the effects of rotation are 

considerable and induced inertial flow effects cannot be ignored. Similarly, for 𝜅 < 0.05, 

the flow is considered quasi-steady with only minor inertial effects influencing the 

resulting force generation [20]. 

Panda and Zaman [21] and Panda and Zaman [22] successfully conducted wake surveys 

of an unsteady oscillating NACA 0012 airfoil at Reynolds numbers of 22,000 and 44,000, 

and deduced the effect of increasing the non-dimensional pitch rate on the delay in 

formation of the dynamic stall. The velocity profiles in the wake were utilised to estimate 

the lift with a good agreement with their PIV experimental data, however only for low 

angles of attack and rotation rates. Similar studies of the flow structure development at 

low Reynolds numbers (5,000 and 25,000) and for angles of attack between 0° and 30° 

were also performed using particle image velocimetry (PIV) in a water towing tank facility 

[23, 24]. Formation of the leading-edge vortex and roll-up of a shear layer vortex on the 

suction side of the airfoil are highlighted, whilst the convection and separation of the 

leading-edge vortex is suggested to be associated with the accumulation of fluid ahead of 

the leading-edge vortex, which induces the leading-edge vortex away from the airfoil 

surface and into the faster moving free-stream [24].   
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Detailed numerical investigations of the dynamic stall process are presented in a large 

body of work focusing on addressing dynamic stall flow structure development at low 

Reynolds numbers and for multiple rates of constant-pitch-rate motion and to elevated 

angles of attack [25-29]. Visbal and Shang [26] present the effects of pitch rate and pitch 

axis on the induced forces and vortex development of a pitching NACA 0015 airfoil. Here 

the maximum angle of attack is 𝛼 = 60°, whilst the Reynolds number ranged between 

𝑅𝑒 = 0.2 × 104 and 𝑅𝑒 = 1 × 104. The results show that the formation of the leading-

edge vortex, in conjunction with an upper-surface separation region over the rear of the 

airfoil, was directly dependent on both rotation rate and pitch axis location. Continued 

rotation of the airfoil to elevated angles of attack resulted in the separation of the upper-

surface separation region prior to its amalgamation with the leading-edge vortex. In a 

similar study using a NACA 0015 airfoil, Visbal [25] provided the results of local Mach 

number development for a constant-pitch-rate motion, and for 𝑅𝑒 = 0.6 × 106 through 

to 𝑅𝑒 = 3 × 106. Although a parametric study of the rotation rate, pitch axis location and 

Reynolds number were performed to assess their impact on Mach number, the flow 

structure formation at the higher Reynolds numbers is not available for comparison to 

presented force data.  

Low Reynolds number dynamic stall about a SD-7003 airfoil undergoing plunging and 

oscillating motion is investigated in Visbal [28]. In the study, detailed flow structure 

developed on the upper surface of the airfoil is presented for an unsteady reduced 

frequency of 𝜅 = 0.25, where 𝜅 = 𝜋𝑓𝑐 𝑈∞⁄ , 𝑅𝑒 = 1 × 103 through to 𝑅𝑒 = 1.2 × 105, 

and where the effective range of the angle of attack, during airfoil pitch-up motions, was 

between 𝛼 = −6° and 𝛼 = 22°.  The results indicated a significant variation in flow 
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structure, with higher force coefficients and increased vortex breakdown occurring with 

increased Reynolds number. Although this material provides invaluable details of the 

vortex formation and shedding process, the results presented are for a singular airfoil 

geometry and for shallow angles of attack. As such, there remains a gap in the knowledge 

of unsteady aerodynamics that address the difference between flow structure 

development of both thick and thin airfoils operating at high angles of attack (beyond 𝛼 =

60°) and at high rotation rates. Further studies are therefore required for identification 

of variations in flow structure with respect to airfoil thickness ratio, angles of attack, 

where 𝛼 > 30°, and high rotation rate operating conditions.  

A study using high fidelity large-eddy simulations in Visbal [29] was used to assess the 

impact of the upper surface laminar separation bubble on dynamic stall development for 

a NACA 0012 airfoil subject to constant-pitch-rate motion. In the numerical models the 

maximum angle of attack was 𝛼 = 30°, whilst the non-dimensional rotation rate was fixed 

at 𝜅 = 0.05. Although Visbal [29] discusses the critical role of the laminar separation 

bubble in initiating the events contributing to leading-edge vortex formation, further 

research is required to determine whether these mechanisms apply to a broader range of 

rotation rates and airfoil thickness.  

Consequently, to address the identified gap in the literature, the current article presents 

a study of both a thick and a thin airfoil geometries subject to highly unsteady, high angle 

of attack, constant-pitch-rate dynamic stall conditions that are typically associated with 

gust-like atmospheric conditions about wind-turbine blades and perching manoeuvres of 

MAV’s and natural flyers. The article focuses on two similar airfoil geometries, namely the 

NACA 0021 and a NACA 0012, operating in identical, highly-unsteady conditions and at 
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extreme angles of attack. This work will further extend the knowledge of highly unsteady 

aerodynamics, similar to work performed in Visbal [26, 27, 29]. However, the work herein 

will focus on a difference performance parameter space which investigates highly 

unsteady operating conditions to extreme angles of attack.   Direct comparison of these 

flow cases provides insights into the effects of thickness variations on the lift and the flow 

patterns, including the development of the dynamic stall vortex, and more specifically, 

the separation bubble observed prior to the formation of the leading-edge dynamic stall 

vortex. 

Materials and Methods 

Experimental investigations were conducted in two test facilities located at the University 

of Adelaide. A water channel was utilised to determine major flow structure development 

using phase-averaged PIV, whilst a wind tunnel was utilised to evaluate forces generated 

during the dynamic stall process. Two symmetrical airfoils of differing thickness ratios 

(NACA 0021 and a NACA 0012) were assessed using similar rotation rates and Reynolds 

numbers between each test facility.  

To simulate dynamic-stall motion during PIV analysis, a brushless direct-current motor 

with internal position encoder was directly coupled to the wing section with 𝑐 = 0.07𝑚, 

and 𝑏 = 0.45𝑚, and an aspect ratio of 6.4. The water channel had a working cross-section 

of 0.5𝑚 × 0.45𝑚. To isolate the aerodynamic forces and to minimise inertial effects, the 

pivot axis of the wing was positioned at the half-chord location in order to reduce virtual 

mass effects, as proposed in Stevens and Babinsky [30].  Angles of attack ranged between 

𝛼 = 0° and 90°, with PIV images being acquired every 10° of airfoil rotation throughout 
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the pitch-up motion until the maximum angle of attack was reached. The non-dimensional 

pitch rate, 𝜅, was set to values of 0.05, 0.1 and 0.2, such that quasi-steady and unsteady 

flow conditions are replicated. Although most of the applications experiencing dynamic 

stall occur at higher Reynolds numbers, the unsteady separation and external flow 

developed under unsteady rotation conditions have been shown to be independent of 

Reynolds number [23].  Therefore, due to the limitations in scale of the test facilities, the 

Reynolds number was maintained at a constant value of 20,000 for all test cases. A 

smooth transition to constant angular velocity was achieved by limiting the motor 

acceleration phase to the first 5°, and the deceleration to the last 5° of the total angular 

displacement of the airfoil. The position of the airfoil was controlled to within 𝛼 = ±0.25° 

of the target study angle of attack.  The angular displacement with respect to non-

dimensional time, 𝑇∗, is shown in Fig. 1. 

 

Fig. 1 Airfoil angular displacement with respect to non-dimensional time for reduced 

frequencies of 𝜅 = 0.05, 𝜅 = 0.1 and 𝜅 = 0.2. 
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Fig. 2 Schematic diagram of the water channel test facility used to conduct the 

constant pitch-rate experiments, showing the orientation of the digital camera, laser 

sheet and dynamic stall test apparatus. 

 

The arrangement of the water channel, test apparatus and PIV setup is indicated in Fig. 2. 

The test wing was clamped in a fixture located below the free surface of the water 

channel, and which acted as an end plate in order to reduce three-dimensional effects. A 

similar arrangement is utilised in Conger and Ramaprian [8] who performed similar water 

tunnel PIV experiments using a NACA 0015 airfoil. Three-dimensional effects at the tip of 

a heaving and pitching wing were shown to have a significant influence on the flow 

structure development during unsteady motion, although these effects only had a minor 

impact on the flow field development at the mid-span location [31]. As such, three-

dimensional flows created at the intersection of the test wing and the free-surface of the 

water channel could be considered to be minor in the current investigation, where the 

plane of analysis is located at the mid-span position. The wing was directly coupled to the 
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motor and gear box arrangement.  To limit bending of the wing, the lower end of the wing 

was located at a fixed position in the floor of the water channel tunnel using a locator pin 

fixed at the mid-chord position. The gap between the airfoil and the water channel floor 

was 1.6mm, sufficiently small (less than 0.005 × span) to avoid leakage effects at the 

wing tip and water tunnel junction [32].   

PIV images were captured using a Kodak MegaPlus ES1.0 CCD digital camera with 1008 × 

1018 pixel resolution. A digital control system was developed to phase-lock the camera 

trigger and airfoil position to consecutive 10Hz laser pulses generated from a frequency-

doubled Nd-YAG laser. To alleviate airfoil shadow in the obtained images, phase-averaged 

data were superimposed from both above and below the airfoil such that complete flow 

field velocity vectors could be obtained. A total of 200 image pairs was used for phase 

averaging to ensure statistical convergence of the velocity fields. Lighting was such that a 

3mm thick horizontal sheet penetrated the mid-chord location of the water channel to 

minimise three-dimensional effects. Spherical polyamide particles with a specific gravity 

of 1.03 and diameter of 50𝜇𝑚 were used for flow seeding. Combined with a magnification 

factor of 7.3 on the camera, particle pixel diameters of 1-3 pixel units were achieved in 

order to reduce peak-detection bias errors during image correlation [33, 34]. The PIV 

velocity vectors were established using a 32 × 32 pixel interrogation window, resulting in 

approximately 2.19mm between each velocity vector at 50% overlap. A 3-point Gaussian 

peak-detection method with Nyquist filtering was implemented and interrogated three 

times using a multi-pass analysis within PIVView V1.7. Streamlines were computed using 

the streamline function within Matlab®, whilst normalised vorticity fields were evaluated 

according to Equation 1. Using the phase-averaged PIV data, an averaged velocity flow 

field was established to capture the major dynamic-stall and post-stall flow structures.    
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𝜔𝑧 = [
𝛿𝑣

𝛿𝑥
−

𝛿𝑢

𝛿𝑦
] ∙

𝑐

𝑈∞
 (1)  

For assessment of the aerodynamic force, a series of separate tests were performed using 

an open-return wind tunnel with a test section opening of 0.5𝑚 × 0.5𝑚 and a turbulence 

intensity of ~0.8% [35]. A similar study using two independent test facilities, for 

evaluation of external flow fields and force measurement, was undertaken to investigate 

the response of a cavity on the upper surface of an airfoil undergoing dynamic stall 

conditions [36]. In these experiments, a turbulence intensity of the wind tunnel was 0.2%, 

whilst no details of the water channel turbulence intensity was provided. In addition, the 

blockage of the wind tunnel was 11.1% at 𝛼 = 20°, whilst the blockage of the water 

tunnel was 5.5% at only 𝛼 = 6°. In the current investigation, two wing bodies, with similar 

airfoil profiles to those used in PIV testing, were constructed such that 𝑐 = 0.1m and 𝑏 =

0.5m. Corrections for tip effects of the wing were not necessary for the wind tunnel tests 

due to the installation of end plates positioned within 2𝑚𝑚 of the wing tip. Surface 

pressures were evaluated using a series of 50 ± 1% 𝑃𝑎 Honeywell Truestability® 

differential pressure sensors imbedded in each of the NACA 0012 and NACA 0021 wing 

bodies. The sensors incorporated temperature self-calibration and internal amplification. 

The sensors produced an error in the evaluated pressure of the current operating range 

of ±2.5%. Analogue signals were collected using a National Instruments NI-6210 data 

acquisition module, with a sample rate of 𝑓𝑠 = 10,000𝐻𝑧 for all of the 100 individual 

ramp-up cases performed for each dimensionless pitch rate. The sample frequency was 

determined to be sufficient to capture all vortex structures occurring during the pitch-up 

process. Axial and tangential force coefficients were evaluated through trapezoidal 

integration of the measured surface pressure distribution, whilst net forces in the airfoil 
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coordinate system were transferred to the local wind tunnel coordinate system using 

standard coordinate transformation techniques. 

A schematic representation of the sensor locations within the NACA 0012 wing is shown 

in Fig. 3, whilst details of the sensor orifice positions on the surface of the NACA 0021 

were similar to those described in Choudhry et al. [37] and Jumper, Schreck and Dimmick 

[9]. 

 

 

Fig. 3 Wind tunnel and motion controller arrangement (a) and details of the NACA 

0012 wing body showing the orientation and locations of the imbedded differential 

surface pressure sensors 

 

The non-dimensional rotation rate and Reynolds number were consistent with those of 

the PIV measurements performed in the water channel, such that 𝜅 = 0.05, 0.1, 0.2 and 

𝑅𝑒 = 20,000. The location of the rotation axis was maintained at the wing half-chord 

location. 
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Due to the use of different test facilities, the effects of blockage and turbulence intensity, 

𝑇𝑢, were important due to their impact on promoting early transition of the boundary 

layer and altering the forces during the pitch-up motion.  Maximum blockage within the 

water channel was limited to 14%, whilst the maximum blockage of the open jet wind 

tunnel was 20%. Maximum blockage occurred periodically for both facilities as the airfoil 

reached its maximum angle of attack. After reaching 𝛼 = 90°, the airfoil was rotated back 

to 𝛼 = 0° and held fixed for 30 chord length of flow travel prior to the beginning of 

subsequent test cycles.  The impact of blockage on the flow structure development of 

pitching wings is described in Granlund et al. [38]. From their findings, short periods of 

high blockage were not observed to have a significant influence on the resulting forces 

during the dynamic stall process.  Consequently, in the current investigation, where only 

short durations of elevated angles of attack are achieved, the influence of blockage on the 

flow structure development was considered to be minor.  

The wing was positioned  250𝑚𝑚 downstream of the wind tunnel opening, allowing for 

the free expansion of the wind tunnel streamlines [39]. This reduced blockage effects 

allowing the airfoil aerodynamics to be evaluated with confidence. In addition, due to the 

absence of side walls on the wind tunnel, wake blockage effects were considered to be 

negligible [32]. Therefore, no corrections for solid body or wake blockage were applied.  

The impact of flow facility turbulence intensity has been demonstrated to influence both 

flow separation and the development of separation bubbles about airfoils exposed to 

various Reynolds numbers and pitch rates [32, 8]. In the current analysis, the turbulence 

intensity of the wind tunnel flow was 𝑇𝑢 = 0.85% at 𝑅𝑒 = 20,000 [35], whilst the 
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turbulence intensity of the water channel flow was approximately 𝑇𝑢 = 2% [40] for 𝑅𝑒 =

20,000.  

If these differences in turbulence intensity are significant, they will be seen in the flow 

structures such as laminar separation bubbles on the airfoil surfaces and the unsteady 

separation process itself. Firstly, at Re = 20,000 it is expected that laminar separation 

bubbles will occur, and that differences in free-stream turbulence intensity will affect the 

location and size of these separation zones. However, with variations in turbulence 

intensity between the facilities of only 1.15% and the high rotation rates applied, these 

differences are expected to be minor. Secondly, as discussed by Lourenco et al., 1993, the 

unsteady separation process is relatively universal and substantially independent of the 

Reynolds number and external flow conditions. Thus, at the low Reynolds numbers and 

relatively similar turbulence intensities considered herein, differences between the two 

test facilities can be considered to be minimal. 

Results and Discussion 

Constant pitch-rate dynamic stall was investigated using a thick NACA 0021 and a thin 

NACA 0012 airfoil. The PIV data for each airfoil was collected at 𝜅 = 0.05, 𝜅 = 0.1 and 

𝜅 = 0.2, where both airfoils showed dynamic-stall characteristics at these reduced 

frequencies. To study the post-stall flow characteristics, the airfoils were allowed to rotate 

through to 𝛼 = 90° prior to cessation of PIV data collection. This ensured that deep-stall 

characteristics were achieved and development of the shedding vortex structures was 

well established. 
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Pre-Vortex Formation 

The dynamic-stall vortex is shown to develop at the leading edge for all non-dimensional 

pitch rate cases investigated (𝜅 = 0.05, 𝜅 = 0.1 and 𝜅 = 0.2). In addition, increasing the 

non-dimensional pitch rate is found to delay the onset of leading-edge vortex formation 

to higher angles of attack.  Fig. 4 shows the streamline patterns and normalised vorticity 

magnitudes for three respective test cases where formation of the dynamic-stall leading-

edge vortex begins. It can be seen that for 𝜅 = 0.05, the beginning of vortex formation 

occurs at 𝛼 = 20°. Although 𝜅 = 0.05, which is indicative of high quasi-steady flow 

conditions [20], a comparison with the steady-state stall angle of attack, where 𝛼 = 10°, 

suggests that under the current test conditions, the airfoil rotation has a significant impact 

on the overall flow structure and force generation characteristics of the wing. It can also 

be seen that the angle of attack at which leading-edge vortex formation occurs increases 

with non-dimensional pitch rate, so for 𝜅 = 0.1, 𝛼 = 30° and 𝜅 = 0.2, 𝛼 = 40°.  

Prior to leading-edge vortex formation, the presence of a displaced shear layer above the 

upper surface of the airfoil can be observed. The shear layer extends to the trailing edge 

of the airfoil where a second stagnation point is observed, as indicated in  Fig. 4. Within 

this region, bound between the shear layer and upper surface of the airfoil, there exists a 

region of low-velocity flow with clockwise vorticity representative of a separation bubble. 

Unlike trailing-edge stall, where the flow begins to separate at the trailing edge and 

continues towards the leading edge with increased angle of attack, the pitch-up motion 

inhibits this trailing edge separation and prevents flow detachment to elevated angles of 

attack. 
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Fig. 4 Initiation of the leading edge vortex showing its delay in formation to higher 

angles of attack as the non-dimensional pitch rate is increased from κ = 0.05 − 0.2 for a 

NACA 0012 airfoil. Also observed is the detached shear layer and additional stagnation 

points (SP) on the upper surface of the airfoil during the pitch-up motion. 

 

Increasing the non-dimensional pitch rate delayed the breakdown of the separation 

bubble over the rear of the airfoil, until higher angles of attack. This allowed flow to be 

drawn back towards the surface of the airfoil and to a second stagnation point located at 

the trailing edge. The presence of the separation bubble delays separation of the 

boundary layer, allowing increased suction and lift to form prior to its breakdown [41]. 

For the unsteady reduced frequencies, κ = 0.1 and κ = 0.2, where unsteady effects 

become significant in dictating flow separation characteristics [20], the existence of the 

separating vortex structures, resulting from the breakdown of the  separation bubble 

above the upper surface, are not observed at low angles of attack. Increasing rotation rate 

is shown to reduce the effects of the minor vortex structure development, allowing the 

rear separation bubble to maintain its presence until higher angles of attack and until 

formation of the leading-edge vortex. The airfoil rotation, as seen in  Fig. 4, is shown to 
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suppress flow separation until the leading-edge vortex forms. Only once the leading-edge 

vortex forms are further increases in lift achieved, beyond steady-state lift values. 

Vortex Development Flow Structure 

Critical flow structures and topological flow features developed during dynamic stall 

include minor vortex structures on the upper-rear surface of the airfoil, a rear separation 

bubble, a half-saddle point (HSP) and stagnation points (SP) attached to the airfoil surface, 

and the leading-edge vortex, as indicated in  Fig. 4 and Fig. 5.  

After leading-edge vortex development, minor changes to the vortex shedding process 

occur with increasing non-dimensional pitch rate. At extreme angles of attack, vortex 

growth and size become more dependent on the location of the leading-edge vortex, 

behind the airfoil, and the maximum airfoil angle of attack. Once the leading-edge vortex 

separates, the wake of the airfoil exhibits periodic von-Karman vortex shedding, 

representing bluff-body separation [42, 43]. Fig. 5 shows PIV contour plots of normalised 

vorticity for both airfoils at increasing angles of attack but similar non-dimensional pitch 

rate, where 𝜅 = 0.05. Both airfoils exhibit dynamic stall characteristics such that delayed 

leading-edge separation and formation of a dynamic-stall vortex are observed. The flow 

patterns at 𝛼 = 10° in Fig. 5 show a clockwise (negative vorticity) closed separation 

bubble over the rear half of each airfoil, with reattachment occurring at the trailing edge. 

The separation bubble is observed not to burst, leading to delayed flow separation and 

increased lift. In contrast, a difference in flow structure is observed at 𝛼 = 20°. For the 

NACA 0012, a region of high vorticity develops at the leading edge in conjunction with a 

closed separation bubble located above the rear of the airfoil. With the presence of the 
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leading-edge vortex, a half-saddle point is produced behind the vortex at the airfoil 

surface.  

 

Fig. 5 Normalised vorticity contours and streamlines developed during dynamic stall 

of a NACA 0012 (left) and NACA 0021 (right) airfoil. κ = 0.05. 
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This half-saddle point divides the initial separation bubble into two zones of clockwise 

vorticity, including a leading-edge vortex and a trailing-edge vortex. With comparison to 

the NACA 0021 at 𝛼 = 20°, observation of a region of negative vorticity at the leading 

edge indicates the breakdown in attached flow and onset of leading-edge vortex 

formation. A similar vortex development process was indicated in Shih, Lourenco and 

Krothapalli [23], however only a NACA 0012 airfoil rotating under quasi-steady reduced 

frequencies was investigated. Under the current test conditions, leading-edge vortex 

development is shown to be highly dependent on the airfoil thickness, with a much 

broader recirculation zone occurring above the NACA 0021 in comparison to the NACA 

0012, as seen in Fig. 5b and Fig. 5c, which developed a concentrated leading-edge vortex 

over the forward 50% of the airfoil suction side.  

The differences in the position of the separation bubble on the upper surface suggests 

that under the highly unsteady flow conditions in the current investigation, airfoil 

thickness can significantly alter the surface pressure distribution, due to the separation 

bubble, varying the overall lift, drag and moment prior to leading-edge vortex formation. 

As both airfoils reach 𝛼 = 30°, growth of the leading-vortex structures continues. The 

NACA 0012 leading-edge vortex is shown to occupy approximately 0.7 of the airfoil chord, 

and is terminated by the half-saddle point (HSP) aft of the vortex and located on the airfoil 

upper surface. For the NACA 0021 airfoil, under the same operating conditions, the 

leading-edge vortex occupies the entire upper surface of the airfoil, as shown in Fig. 5. 

Also noted in Fig. 5(d) is a recirculation zone with positive vorticity bounded by the 

leading-edge shear layer and positioned immediately aft of the leading edge, but ahead 

of the leading-edge vortex. This recirculation zone is generated as a result of the fluid 
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ejection produced by the viscous interaction between the wall and the primary leading-

edge vortex, as discussed in Rival et al. [44] and Choudhuri, Knight and Visbal [45].    

At 𝛼 = 30°, the negative-vorticity separation bubble over the trailing edge is drawn into 

the leading-edge vortex, where it develops into a single vortex that extends to the airfoil 

trailing edge. For the NACA 0021 the leading-edge vortex is shown to have grown to an 

extent that the HSP is located at the trailing edge, whereas in the NACA 0012 case, the 

outer streamline stagnates at a point approximately 0.7 chord lengths from the leading 

edge  At 𝛼 = 40°, the streamline patterns for both airfoils show that the leading-edge 

vortex becomes detached from the airfoil, since none of their bounding streamlines are 

attached to the airfoil surface [46].  

Once the leading-edge vortex separates and the airfoil transitions into deep stall, similar 

vortex structures develop about both airfoils. This suggests that although airfoil geometry 

has little influence on post-stall flow conditions, it has a significant effect on the onset of 

delayed separation and dynamic-stall at low pitch rates. This observation is in agreement 

with previous studies which identify the minimal influences of airfoil geometry in deep 

stall conditions [47].  

Increasing the non-dimensional pitch rate to 𝜅 = 0.1 and 𝜅 = 0.2 results in both airfoils 

exhibiting similar vortex separation processes. Under such conditions, high-speed 

rotation of the airfoil delays vortex formation resulting in abrupt and sudden vortex rollup 

at elevated angles of attack. The flow structure development at these higher reduced 

frequencies is shown in Fig. 6, for 𝜅 = 0.1, and Fig. 7 for 𝜅 = 0.2.  
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Fig. 6 Normalised vorticity contours and streamlines of a NACA 0012 (left) and NACA 

0021 (right) airfoil undergoing dynamic stall where κ = 0.1. 

Fig. 6 shows normalised vorticity contours and streamline patterns developed for both 

airfoils when pitching during the dynamic stall process for 𝜅 = 0.1. Both airfoils generate 

a negative vorticity rear separation bubble that extends to the trailing edge, as indicated 
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in Fig. 6(a-b). Due to the expansion of the separation bubble, the shear layer moves away 

from the airfoil surface and into the freestream. The shear layer is shown to re-attach at 

the trailing edge at 𝛼 = 10°. For shallow angles of attack, the flow structure development 

for a non-dimensional pitch rate of 𝜅 = 0.1 is similar to that for tests with the non-

dimensional pitch rate, 𝜅 = 0.05, although delayed by approximately 10°. For 𝜅 = 0.1, 

the separation bubble remains positioned over the rear upper surface of both airfoils 

throughout the pitching movement and until the angle of attack reaches 𝛼 = 30°. During 

this period of rotation, thickening of the separation bubble due to the inclusion of multiple 

minor vortices with negative vorticity can be observed. Similar vortex structures were 

observed in Shih, Lourenco and Krothapalli [23], however in their tests the non-

dimensional pitch rate was 𝜅 = 0.065 and quasi-steady. Under the unsteady rotation 

rates, where 𝜅 = 0.1 and 𝜅 = 0.2, in the current investigation, minor impact of the non-

dimensional pitch rate and airfoil geometry on the formation of the rear separation 

bubble and its enclosed vortex structures are observed.  

As the airfoils approach 𝛼 = 30° (Fig. 6(c)), both airfoils show signs of initial leading-edge 

vortex development. This stage represents the initiation of dynamic stall where abrupt 

leading edge vortex growth is imminent. For the NACA 0012 airfoil, separation at the 

leading edge begins whilst the rear separation bubble remains attached over the trailing 

edge of the airfoil. However, the NACA 0021 appears to generate multiple vortex 

structures within the rear separation bubble in conjunction with the initiation of the 

leading-edge vortex. In Fig. 6(d), at 𝛼 = 40°, both airfoils have developed a distinct 

leading-edge vortex. This vortex continues to develop until 𝛼 = 50°, where the leading-

edge vortex engulfs the negative vorticity regions that are present over the rear of the 

airfoil. From 𝛼 = 50° to 𝛼 = 90° (Fig. 6(e-i)) the trailing-edge stagnation point gradually 
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detaches from the airfoil and transitions into the free-stream, indicating the initiation of 

deep-stall and fully separated flow [46]. Whilst the trailing-edge stagnation point remains 

attached to the airfoil, increases in lift generation of the airfoil are possible [8, 9, 48]. 

For 𝜅 = 0.2, similar flow development to 𝜅 = 0.1 is evident, as indicated in Fig. 7. 

However, for 𝜅 = 0.2, the process of dynamic stall and leading-edge vortex development 

is delayed due to the increase in rotation rate. Both airfoils exhibit similar flow behaviour, 

where a separation bubble of negative vorticity develops over the upper surface of the 

airfoil and with reattachment taking place at the trailing edge.  

The leading-edge vortex formation is delayed until 𝛼 = 40° for the NACA 0012 and 𝛼 =

50° for the NACA 0021 (Fig. 7(d)). Fig. 7(e-g) shows that between 𝛼 = 50° and 𝛼 = 70° 

engulfment of the rear vortex structures by the leading-edge vortex occurs. Beyond 𝛼 =

70° (Fig. 7), both airfoils are seen to develop a positive vorticity trailing-edge vortex, 

representing early stages of bluff-body separation. 

Through PIV measurements and under the high reduced frequencies tested, the present 

study highlights the strong dependency of dynamic stall on inertial based flows around 

pitching airfoils. Although earlier work discusses the influence of the inertial loads on 

aerodynamic force generation [26, 20], the current article highlights the significance of 

rotation rate, and its effects on the flow structure and load characteristics developed 

during dynamic stall of dissimilar airfoil geometries at elevated angles of attack and highly 

unsteady rotation rates. 
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Fig. 7 Normalised vorticity contours and streamline development of a NACA 0012 

(left) and NACA 0021 (right) airfoil undergoing dynamic stall where κ = 0.2. 
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Force Generation 

Determination of the aerodynamic loads indicated significant differences between the 

unsteady dynamic stall and steady-state tests.  Fig. 8 shows the lift coefficient for the 

NACA 0012 and NACA0021 airfoils for both steady-state and dynamic-stall conditions over 

the range of reduced frequencies investigated. Fig. 8 and Fig. 12 also show the maximum 

and minimum fluctuation in force response due to unsteady separation and experimental 

uncertainty evaluated during the cycle-to-cycle pitch-up motion. The precision of the 

obtained force results was determined to have a maximum standard deviation of 𝜎 = 6% 

about the mean over the 100 samples of the pitch-up motion recorded during the highly 

separate and unsteady periods in the dynamic-stall process. The fluctuations are related 

to the formation of vortex structures and separation bubbles developed on the airfoil 

upper surface leading to increased surface pressure variation. Similar fluctuations in force 

results were also observed for highly unsteady flow generated about a OA209 airfoil 

undergoing dynamic stall, which resulted in a standard deviation of approximately 𝜎 =

10% [49]. For the obtained force results, a confidence level of 𝐶𝐼 = 95% resulted in a 

variability of the mean force coefficients of ±1.2% during peak force generation and 

fluctuation. 

Increase in steady-state lift is observed to be delayed until 𝛼 = 5° for the NACA 0012. 

Further increasing the angle of attack led to a sudden increase in lift until the airfoil stalled 

at an angle of attack of approximately 𝛼 = 10°. The current results for the steady-state 

case were compared to the data presented in Zhou et al. [50], where wind tunnel tests 

were performed on a NACA 0012 airfoil using a similar Reynolds number of 𝑅𝑒 = 50000. 

In addition, viscous solutions using XFOIL were generated for the current test 
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configurations for both NACA 0012 and NACA 0021 airfoils. Similarly, unsteady results 

from Conger and Ramaprian [8] show the lift generation for a NACA 0015 airfoil operating 

at 𝜅 = 0.2 and a Reynolds number of 𝑅𝑒 = 120,000. A good correlation between the 

current tests and experiments in Conger and Ramaprian [8], although using a NACA 0012 

in the current investigation, indicates that the unsteady force generation is comparable 

between high Reynolds number and that vortex shedding at the trailing edge significantly 

influences the unsteady lift during the pitch-up process.   

 

Fig. 8 NACA 0012(a) and NACA 0021(b) lift coefficient comparing the dynamic stall 

and steady-state test cases. Initial lift delay is observed for the steady-state case, whilst 

inertial and vortex lift is evident in dynamic stall conditions. Error bars indicate 

maximum and minimum fluctuation in force coefficient evaluated, whilst an error of 

1.2% was established about the mean to achieve a 95% confidence level. 
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A reduction in lift, prior to 𝛼 =  5°, can be attributed to a separated shear layer, which 

becomes turbulent and reattaches to form a separation bubble at 𝛼 = 10° [51-53], and 

reduced pressure on the lower side of the airfoil, as identified in Anyoji et al. [54]. For the 

NACA 0021, negative lift was developed for an angle of attack, where 𝛼 < 8° and under 

steady-state conditions, as shown in Fig. 8. Similar conditions have also been reported in 

Hansen, Kelso and Dally [55], where negative lift was produced by a NACA 65-021 airfoil, 

as a result of a laminar separation bubble on the rear lower portion of the airfoil. The 

influence of the separation bubble on the surface pressure distribution of the NACA 0021 

is shown in Fig. 9.   

 

Fig. 9 NACA 0021 surface pressure distribution highlighting the increased suction on 

the lower surface resulting from the formation of a separation bubble at low angles of 

attack, and over the rear of the airfoil at low Reynolds numbers. 

In Fig. 9, the presence and influence of the separation bubble developed on the surface 

pressure distribution of a NACA 0021 airfoil is presented. With increased angle of attack, 

the separation bubble on the lower side is observed to increase in length, as shown by 



Chapter 3.  Thick and Thin Airfoil Dynamic Stall  
________________________________________________________________________ 

 

 
137 

 

decreases pressure coefficient, and transition towards the trailing edge until 𝛼 = 5°.  As 

the angle of attack is further increased, the pressure distribution flattens as the flow 

becomes fully attached. This continues until 𝛼 = 10°, where stall occurs.  Similar results 

of negative lift for the initial 10° of airfoil rotation under steady state conditions was 

calculated using the viscous XFOIL predictions. However, results from XFOIL are observed 

to over predict the lift coefficient for both test airfoils when stall is reached. This anomaly 

could be attributed to the low sensor density on the upper surface of the wing combined 

with three-dimensional effects generated by the wing aspect ratio limiting pure two-

dimensional results as utilised in XFOIL. 

For all dynamic stall cases, the plateau in lift at 𝛼 = 10°, as seen for the NACA 0012 (Fig. 

8) under steady-state conditions, was not observed. By contrast, an increase in lift 

coefficient was observed to occur until approximately 𝛼 = 2°. From 𝛼 > 2°, a divergence 

of the lift coefficient for all non-dimensional pitch rate test cases is observed with 

increasing rotation rate. This is attributed to an increase in rotation rate and associated 

unsteadiness resulting from induced inertia developed through the airfoil pitch-up 

motion.  

As the angle of attack reaches 𝛼 = 10°, for 𝜅 = 0.05, a sudden increase in lift coefficient 

results. From Fig. 5, the presence of a thick separation bubble over the rear of the airfoil 

begins to break down, leading to the formation of the leading-edge vortex. Due to the 

position of the leading-edge vortex above the airfoil surface, a significant increase in lift 

occurs until the half-saddle point on the upper surface reaches the trailing edge. At this 

point, maximum lift coefficient occurs, where 𝐶𝐿 = 2.15 at 𝛼 = 30°. The NACA 0021 was 

shown to exhibits similar aerodynamic and flow structure properties, although the 
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maximum lift coefficient was less, such that 𝐶𝐿 = 1.3 at 𝛼 = 22°. With the shedding of 

the leading-edge vortex, significant lift reduction results for both airfoils, as observed, Fig. 

8.  The lift coefficient curves for both airfoils then approach the steady-state curves until 

the maximum angle of attack of 𝛼 = 90°.  

Increasing the non-dimensional pitch rate to 𝜅 = 0.1 and 𝜅 = 0.2 delayed the leading-

edge vortex formation on both the NACA 0012 and NACA 0021 airfoils, and prevented the 

early reduction in lift-curve slope. Maximum lift, prior to leading-edge vortex formation 

where 𝛼 = 30° for 𝜅 = 0.1 (Fig. 6) and 𝛼 = 40° for 𝜅 = 0.2 (Fig. 7), is attributed to 

increased inertial loads generated through airfoil rotation.   The leading-edge vortex was 

shown to increase the period of maximum lift by broadening of the lift coefficient curve 

for increased non-dimensional pitch rates. The difference between the performance of 

the two airfoils was such that the NACA 0012 generated a maximum 𝐶𝐿 = 2.4 and 𝐶𝐿 =

2.7 for 𝜅 = 0.1 and 𝜅 = 0.2 respectively, whilst for the NACA 0021 maximum lift 

coefficients of 𝐶𝐿 = 1.9 and 𝐶𝐿 = 2.3 occurred for 𝜅 = 0.1 and 𝜅 = 0.2 respectively. The 

increase in lift is attributed to the more concentrated leading-edge vortex generated on 

the NACA 0012 in comparison to the NACA 0021 airfoil, as shown in Fig. 7c. As observed 

for 𝜅 = 0.05, once the leading-edge vortex separated from the airfoil, the airfoil 

proceeded into a state of deep-stall with the reduction in lift coefficient until 𝛼𝑚𝑎𝑥 was 

reached. The increase in lift, beyond steady-state values, is shown to be only lightly 

influenced by the Reynold number (as shown through comparison of results by Conger 

and Ramaprian [8]) and airfoil geometry during highly unsteady operating conditions. The 

physics of the system and resulting forces developed at the unsteady rotation rates 

examined herein are shown to be significantly influenced by the rotation rate and 

presence of the leading-edge vortex. Airfoil geometry was only shown to effect the 
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magnitude of lift fluctuation during the pitch-up phase, which in turn can be linked to 

trailing-edge vortex shedding.  

For all unsteady test cases, an oscillation in the lift-curve slope occurred at angles of attack 

between 𝛼 = 0° and 45°, becoming increasingly larger at higher non-dimensional pitch 

rates. The oscillation in force coefficient and its frequency was related to a series of vortex 

structures shedding at the trailing edge during the pitch-up motion, as shown in Fig. 10 

using instantaneous flow visualisation of a NACA 0012 during ramp-up dynamic stall. 

 

Fig. 10 Vortex patterns observed, using the hydrogen-bubble wire technique, at the 

trailing edge of the NACA 0012 airfoil resulting in force oscillation during ramp-up 

dynamic stall [56]. 

The vortex structures resembled Kelvin-Helmholtz instabilities forming in the shear layer 

separating the upper airfoil surface flows from the lower surface flows at the trailing edge. 

Similar observations were also made in Visbal [29], who attributed the force oscillation 

and decreased the upper surface suction pressure coefficient to the formation of Kelvin-

Helmholtz instabilities within the shear layer and originating at the leading edge. By 

contrast, in the current investigation the leading-edge instabilities are not observed (as 
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shown in Fig. 10), although the presence of the trailing-edge vortices are identified and 

linked to the force evolution during the airfoil pitch-up motion.  

The authors propose that the shedding of the trailing-edge vortex results in sudden 

decreases in the bound circulation of the airfoil, which in turn periodically reduces the 

airfoil lift. The effect of increasing the non-dimensional pitch rate was shown to increase 

the magnitude of vortex shedding strength. From the results in Fig. 9, higher rotation rates 

led to more significant oscillations in lift as the vortex structures separated from the 

trailing edge. This indicates that the strength of the shedding vorticity could potentially 

be directly related to the non-dimensional pitch rate, however further studies are 

required for validation.    

Although the leading-edge vortex has been shown to increase the overall lift, the higher 

rotation rates were also observed to augment the lower surface pressure distribution of 

the airfoil prior to the formation of the leading-edge vortex [57, 10, 58]. Surface pressure 

distributions around the NACA 0012 airfoil are shown in Fig. 11 for multiple reduced 

frequencies at various angles of attack to highlight the significance of rotation and also 

vortex lift on the airfoil.  

The airfoil rotation rate is shown to significantly influence the lower-surface pressure 

distribution prior to formation of the leading-edge vortex. Surface pressure was shown to 

decrease at the leading edge, whilst simultaneously increasing over the rear underside of 

the airfoil for 𝛼 < 8°,  as indicated in Fig. 11c and Fig. 11d. Also observed is the 

development of a laminar separation bubble over the rear of the airfoil. The combined 

effect of the laminar separation bubble and increasing rotation rate is such that the lift-

curve slope increases due to manipulation of the airfoil surface pressure coefficient. 



Chapter 3.  Thick and Thin Airfoil Dynamic Stall  
________________________________________________________________________ 

 

 
141 

 

 

Fig. 11 Surface pressure distribution around the NACA 0012 airfoil experiencing 

constant-pitch-rate motion to 𝛼𝑚𝑎𝑥 = 90° and for multiple unsteady reduced 

frequencies showing effects of the leading-edge vortex and airfoil rotation rate on both 

the upper and lower pressure distribution. 
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Assessment of the drag indicated significant increases in force due to the formation of the 

leading-edge vortex. Fig. 12 shows the drag coefficient of the NACA 0012 and NACA 0021 

airfoil at steady-state and dynamic stall conditions.   

 

Fig. 12 Pressure drag coefficient of both the NACA 0012 and NACA 0021 airfoil for 

steady and dynamic stall conditions indicating increased drag coefficient with leading-

edge vortex formation and increased non-dimensional pitch rate. Error bars indicate 

maximum and minimum drag force coefficient values recorded, whilst the error of 1.2% 

was established about the mean to achieve a 95% confidence level. 

From Fig. 12, it can be seen that the formation of the leading-edge vortex significantly 

increase the drag prior to its separation. Under steady-state conditions, the drag was 

shown to be consistent with wind tunnel tests reported in Zhou et al. [50] over the narrow 

angle of attack range presented. As expected, drag was observed to grow steadily to a 

maximum of 𝐶𝐷 = 1.5 at 𝛼 = 78° for the NACA 0012 and  𝐶𝐷 = 1.3 at 𝛼 = 72° for the 
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NACA 0021 under steady-state conditions. Prior to formation of the leading-edge vortex, 

drag profiles were similar between all test cases, indicating minor influence of the 

separation bubbles on drag. However, with the development of the leading-edge vortex, 

significant drag increases are observed. The NACA 0012 generated larger drag in 

comparison with the NACA 0021 for 𝜅 = 0.05, where  𝐶𝐷 = 1.3 and  𝐶𝐷 = 0.7 

respectively. Inspection of the vorticity contours in Fig. 5b, for the NACA 0012, and Fig. 

5c, for the NACA 0021, show a more concentrated leading-edge vortex over the NACA 

0012 resulting in higher pressure gradients at the airfoil surface and subsequent increased 

drag. The decay in drag reduction, on separation of the leading-edge vortex, was shown 

to be less compared with the NACA 0021. This suggests that thicker airfoils would be more 

beneficial to reduce force oscillation under post-stall dynamic stall conditions. Increasing 

the non-dimensional pitch rate to 𝜅 = 0.1 and 𝜅 = 0.2 showed similar drag development 

for both airfoils, which highlights the dominance of increased loads induced through 

airfoil rotation during high rotation rates. The drag was shown to rise with increased non-

dimensional pitch rate due to the proximity of the leading-edge vortex to the airfoil 

surface until high angles of attack. This resulted in a region of low pressure on the rear of 

the airfoil, as indicated by the increased suction on the upper surface in Fig. 11d, and 

vorticity contours in Fig. 7h and Fig. 7i. Maximum drag for 𝜅 = 0.1 was shown to reach 

𝐶𝐷 = 2.0 at 𝛼 = 50°, for the NACA 0012, and 𝐶𝐷 = 1.9 at 𝛼 = 50° for the NACA 0021. 

Maximum drag for 𝜅 = 0.2 was shown to increase to 𝐶𝐷 = 3.4 at 𝛼 = 70°, for both the 

NACA 0012 and NACA 0021 airfoils. 
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Conclusions 

An investigation of the flow field and force generation for airfoils undergoing dynamic 

stall at significantly high angles of attack and rotation rates has been performed using PIV 

and surface pressure analysis in both water channel and wind tunnel facilities 

respectively.  The study compares the effects of thickness ratio, using a NACA 0012 and a 

NACA 0021 airfoils, to determine the variation in flow structure and force development 

at high rotation rates and angles of attack, specific to gust-like conditions.  The two airfoils 

exhibit similar flow patterns, in terms of vortex formation, although the flow structure 

and location of the dynamic-stall vortex above the airfoils is shown to be dependent on 

airfoil pitch rate and thickness. Increasing the rotation rate resulted in the delay of flow 

separation and leading-edge vortex onset until higher angles of attack. This resulted in 

increases in the lift of up to three times that of steady-state values recorded at equivalent 

angles of attack. Similar observations were also observed for the airfoil drag, where the 

presence of the leading-edge vortex, and its delayed separation resulted in significant 

force development for 𝛼 > 60°.  

Airfoil thickness was shown to have a significant effect on the onset of delayed separation 

and the growth of the leading edge vortex in all of the unsteady flow cases. For the NACA 

0012 airfoil, the leading edge vortex formed at a lower angle of attack than in the thicker-

airfoil, whereas in the NACA 0021 case the initiation of the leading-edge vortex was 

preceded by the formation of multiple vortex structures within the rear separation 

bubble. In contrast, once formed, the rate of growth of the leading-edge vortex was 

greater for the thicker foil. The results also showed that, whilst the thinner foil produced 
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more unsteady lift, the lift force fluctuations were markedly higher for the thicker airfoil 

at the highest rotation rate. 

Once deep stall was established, however, the airfoil thickness was shown to have a minor 

impact on the flow structure, which was initiated by the detachment of the trailing-edge 

stagnation point into the wake. In post-stall scenarios and under unsteady rotation rates, 

both airfoils display similar vortex formations, representative of bluff-body separation. 

Increasing the non-dimensional pitch rate was shown to impact the pressure distribution 

on the lower surface of the airfoil such that decreased pressure at the leading edge and 

increased the pressure over the rear of the airfoil occurred. This effect, combined with 

the generation of a separation bubble resulted in an increase in the lift-curve slope prior 

to leading-edge vortex formation.  

For all dynamic stall cases, a periodic fluctuation in the ramp-up lift curve was observed 

and related to the shedding frequency of vortex structures developed at the trailing edge 

of the airfoil, and shed into the wake. Increasing the non-dimensional pitch rate resulted 

in amplification of the force fluctuation, suggesting that the circulations of the trailing-

edge vortex structures separating into the wake are linked to increased pitch rate. Further 

analysis of this hypothesis is however required to determine a quantitative relationship 

between pitch rate and trailing edge vortex circulation.   

The ability to operate at large reduced frequencies and angles of attack is critical for the 

efficient operation of vertical axis wind turbines, and during perching manoeuvres of 

MAVs and natural flyers where blades and wings are exposed to strong, rapid or 

prolonged changes in effective angle of attack. The evidence presented in this study 
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suggests that, in order to achieve enhanced lift under high pitch-rate conditions, a thin 

airfoil is advantageous, due to initiation of the leading-edge vortex at lower angles of 

attack and higher maximum lift. However, to decrease the detrimental effects of dynamic 

stall, a thicker foil is generally advantageous, with later leading-edge vortex formation and 

lower lift overall. However, at high rotation rates, the present study found that lift force 

fluctuations due to vortex shedding can be substantially larger in the thicker foil case. 
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Chapter 4.  Deep Stall Effects 

Deep Stall Effects 

4.1.  Chapter 4 Overview 

This chapter investigates the effects of dynamic stall on the post-stall characteristics of an 

airfoil exposed to high rotation rate, high angle of attack operating conditions.  Wind 

turbines frequently operate in post-stall conditions for power regulation and during start-

up. The current chapter shows the results from surface pressure and PIV measurements 

to identify the performance of a NACA 0021 airfoil experiencing dynamic stall, and 

continuing to operating in post-stall conditions. Dynamic stall using constant-pitch-rate 

motion is experimentally investigated to a maximum angle of attack of 𝛼 = 20°, 𝛼 = 40° 

and 𝛼 = 60°. The Reynolds number was 𝑅𝑒 = 20,000 and the reduced frequency was 

𝜅 = 0.05, 0.1 and 0.2. Increasing the rotation rate resulted in delayed stall and continued 

lift generation until 𝛼 = 37°, for 𝜅 > 0.1. The presence of the leading-edge vortex during 

dynamic stall resulted in increased suction on the airfoil upper surface, significantly 

shifting the centre of pressure.  Significant load fluctuation was noted once the airfoil 

motion had ceased, and increasing the rotation rate was shown to increase load 

fluctuation in the post-stall region. This resulted in an increase in time required to reach 

steady-state flow conditions. The results show that rotor blades exposed to high rotation-

rate dynamic stall can exhibit large force fluctuations for increased duration once the 

maximum angle of attack is obtained.  
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Chapter 5.  Passive Control of Dynamic Stall 

Passive Control of Dynamic Stall 

5.1.  Chapter 5 Overview 

Control of the dynamic-stall process at high rotation rates and elevated angles of attack 

are explored in this chapter to address the third objective and to identify the suitability of 

a leading-edge trip as a passive flow control method in highly unsteady flow conditions. 

In the current work, the behaviour of the trip wire as a method of boundary layer control 

is explored. The trip-wire was fixed at varying distances from the leading edge of a NACA 

0012 airfoil undergoing constant-pitch-rate rotation, where 𝑅𝑒 = 20,000 and 𝜅 = 0.025, 

0.5 and 0.1. The trip-wire was observed to reduce the lift prior to dynamic stall onset. The 

control device was also shown to lower post-stall load fluctuation, however, the wire was 

more successful in reducing the build-up of the laminar separation bubble developed at 

low Reynolds numbers and prior to dynamic stall.  Results from the work indicate that the 

influence of inertial flows, generated via the high rotation-rate motion of the airfoil, 

dominated the force and flow characteristics of the wing. As the diameter of the trip wire 

was increased, a superposition of the two bodies was observed, where the two bodies 

acted as one, leading to increased lift and drag.  It is concluded that alternative flow 

control methods should be utilised for the control of dynamic stall at unsteady rotation 

rates, and where the wings are exposed to elevated angles of attack.   
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Abstract 

Dynamic stall significantly impacts the performance of horizontal-axis wind turbines 

where unsteady blade loading is generated. This article describes the effects of a passive 

flow-control device in the form of a leading-edge trip wire applied to a NACA 0012 airfoil 

at high angle of attack and dynamic stall conditions and where the Reynolds Number is 

20,000. For determination of unsteady lift, surface pressure measurements were 

conducted. The benefit of the trip wire at high reduced frequencies was shown to be 

minimal due to the large accelerated flows induced by airfoil rotation, and decreases in 

maximum force and stall intensity were observed. The trip wires were shown to decrease 

maximum lift, although the stall angle of attack was not observed to change with trip wire 

diameter. Increasing the trip wire diameter beyond 1.6% of the airfoil chord led to 

geometric superposition of the trip wire and wing body, leading to subsequent increases 

in force. Under post-stall flow conditions, the leading-edge trip wire was shown to have 
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little impact on the large-scale von Karman vortex structure development, where load 

oscillation and vibration occurred. 

Keywords 

Wind Turbine; Dynamic-stall Control; Unsteady Reduced Frequency; Boundary Layer; 

Vortex Shedding 

Introduction 

Ever-increasing requirements for clean energy production have led to a greater demand 

for renewable energy resources, including the application of horizontal-axis wind turbines 

(HAWT). Maximising the energy output of a HAWT requires detailed analysis of the 

environmental operating conditions in conjunction with the imposed aerodynamic loads 

created through its unsteady operation. Dynamic stall is one such unsteady phenomenon 

generated during the operation of a HAWT exposed to high yaw angles, unsteadiness in 

the atmospheric boundary layer and turbine-wake interaction. Such conditions lead to 

the formation of a characteristic leading-edge vortex, which has been widely investigated 

due to the excessive loads it imposes on the mechanical components and blades of 

HAWTs. Previous studies [1-3] highlighted the necessity to study the dynamic-stall and 

post-stall aerodynamic characteristics of the turbine blades when exposed to high yaw 

angles, tower shadow and upwind turbine wakes. 

Under dynamic-stall conditions, delayed separation occurs, which is subsequently 

followed by the formation of a leading-edge vortex structure as the angle of attack is 

further increased [4]. The formation of dynamic-stall vortex structures is linked to adverse 

pressure gradients at the leading edge and typically results from geometric discontinuities 

or loss of momentum within the attached boundary layer at elevated angles of attack, 
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well beyond steady-state angles of attack. The leading-edge vortex leads to increased 

force generation, which itself has been shown to vary with performance parameters such 

as Reynolds number, pitch rate, Mach number and airfoil geometry [5-13].  Control and 

manipulation of the leading-edge vortex can therefore be used to delay the onset of 

dynamic stall and force generation characteristics. However, practical methods of doing 

so are limited. Furthermore, increasing operation of rotor blades in post-stall conditions 

requires accurate analysis of the aerodynamic behaviour such that blades can be 

developed to withstand the applied loads. 

As the majority of research conducted on dynamic stall is focused on low angles of attack, 

where attempts to avoid airfoil stall are sought, research into stall and post-stall 

characteristics of the airfoils in dynamic stall conditions is still limited. This insight into the 

challenge of stalled and post-stalled flow conditions was also expressed in Butterfield [2], 

who discussed the challenge in determining wind turbine blade loads at angels of attack 

between 12° and 30°. For post-stalled conditions, beyond 𝛼 = 30°, flat-plate 

aerodynamic properties have generally been employed for the design of wind turbine 

blades [2, 14]. Although flat-plate approximations provide a starting point in the design 

process of a turbine blade, the method is somewhat flawed and should not completely be 

depended upon, due to blade thickness variations along the span, and the tendency of 

stalled, thick airfoil sections to behave in a manner similar to cylinders [15]. Under such 

conditions the application of flat-plate aerodynamic characteristics becomes invalid. 

Similar to steady-state stall, under dynamic-stall conditions and immediately following 

dynamic stall, application of flat-plate analysis may not fully provide the correct 

aerodynamic loading on turbine blades. The resulting force fluctuation, outside of those 
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predicted by flat plate analysis, are of concern to wind engineers and designers of HAWT 

components due to the over- or under-prediction of the aerodynamic loading during 

these conditions. In addition, these comments highlight the need for further experimental 

data relating to the stall characteristics of airfoils, with profiles specific to wind turbines, 

exposed to elevated angles of attack, and which have undergone dynamic stall and 

proceeded into a state of fully-separated flow. 

Implementation of effective, inexpensive and simple flow-control devices can be a viable 

means to manipulate and control boundary-layer separation on turbine blades. However, 

greater understanding of such devices with a minimal drag penalty is still needed for stall 

and post-stall conditions at elevated angles of attack. Techniques applicable to the control 

of steady-state boundary layer separation have been investigated for their applicability 

for dynamic stall conditions. Katz, Nishri and Wygnanski [16] and Lachmann [17] detail the 

process of laminar and turbulent separation and highlight numerous methods of both 

active and passive boundary layer control methods, whilst Choudhry et al. [18] review 

current active and passive control methods utilised for the control of dynamic stall on 

wind turbines.  These flow control techniques have a common objective to delay or reduce 

the extent of separation by either reducing the surface curvature at the leading edge, thus 

decreasing the adverse pressure gradient, or by introducing flow momentum within the 

boundary layer by utilising devices such as blowing or suction. 

Active control systems require continuous feedback and often are associated with 

increased cost and complexity. Active boundary-layer control techniques currently 

investigated for control of the dynamic stall process include adaptive airfoil geometries 

[19-26], upper surface blowing [27-32], periodic boundary layer excitation [33-36, 26], 
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boundary layer suction [37, 38] and more recently, the use of plasma actuators [39-41]. 

Of these methods, all have been demonstrated to influence dynamic stall to moderately-

high angles of attack, although they all consist of highly complex systems that must be 

tuned to the conditions such that an efficient control of the boundary layer is achieved. 

In real conditions, less complex systems are preferred due to lower maintenance and 

installation costs. With an increasing demand for clean, renewable energy, wind turbine 

size and numbers have increased significantly. Furthermore, placement of the turbines 

away from urban areas results in increased demand on the turbine due the harsh 

operating conditions and their remote operating locations [42]. As such, implementation 

of active boundary layer control systems become increasingly complex and costly to both 

implement and maintain. For this reason, the use of passive boundary-layer control 

devices presents a viable means to control dynamic stall, due to simpler installation, lower 

production cost and ease of use. 

Control of separation and increased stall angle of attack on airfoils operating in steady-

state conditions have been achieved through the utilisation of devices that generate 

stream-wise vorticity. Examples include classical vortex generators, airfoils modified with 

tubercles [43-45], and changes to the wing layout, for example by using undulating-

leading edges [46]. Using stream-wise vorticity, significant potential in suppressing 

separation at moderate angles of attack and increasing the aerodynamic performance at 

angles of attack close to stall were demonstrated. Although much interest in the 

application of tubercles for steady-state boundary layer control has been generated, their 

application has, to an extent, been limited with respect to dynamic stall conditions. One 

such study into the use of this flow control method under dynamic-stall conditions was 

undertaken by Hrynuk [47], who concluded that the base flow structure (span-wise to 
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stream-wise vorticity) was modified for a wing with tubercles, although a single span-wise 

vortex remained present and shed into the wake once the airfoil transitioned into a deep 

stalled phase. From the previous literature, tubercles have been shown to be beneficial 

at pre-stall angles of attack, however in deep-stall flow conditions they do not show any 

effect on the flow separation process. 

Other, more traditional, passive flow-control methods utilise changes in the airfoil 

geometry via application of flaps and slats at fixed locations [48-50]. Both methods have 

been proven to delay separation and mitigate the formation of the leading-edge vortex. 

However, the application of such mechanisms requires complex actuators, where 

aerodynamic loading and response time are large and thus limit the applicability of the 

system [51]. Furthermore, passive boundary-layer control devices using leading-edge 

vortex generators [51] and cylindrical and triangular protrusions mounted on the 

underside of the leading edge [52], have been shown to reduce the maximum lift, drag, 

and pitching moment fluctuations at high angles of attacks during dynamic stall. In 

addition to vortex generators, leading-edge trip wires and span-wise cavities were also 

investigated by Choudhry [53] for low, quasi-steady rotation rates, such that 𝜅 < 0.025 

where 𝜅 = 𝜔𝑐 2𝑈∞⁄ , in order to reduce the load fluctuation during the dynamic-stall 

process. Here 𝜔 is the angular velocity in 𝑟𝑎𝑑/𝑠, 𝑐 is the airfoil chord length in 𝑚 and 𝑈∞ 

is the free-stream velocity in 𝑚/𝑠. 

In Choudhry et al. [18], a trip wire located at a range of displacements from the leading 

edge was shown to reduce the stall intensity and improve post-stall flow characteristics, 

where maximum aerodynamic force was reduced with respect to a clean airfoil. Surface 

pressure measurements showed that peak lift was reduced by 50% and stall intensity was 
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also reduced under dynamic-stall conditions for airfoils equipped with the leading-edge 

trip wire, compared with the clean airfoil case.  As the low rotation rates led to reductions 

in stall intensity [18, 53], the feasibility of investigating the effects of leading-edge trip 

wires under conditions of high rotation rates is warranted. 

This article aims to describe the effects of thin airfoil dynamic stall control where 

operating conditions are subject to high angles of attack and high rotation rates, typical 

of high wind shear and gust-like conditions. Control of the dynamic-stall process and post-

stall flow characteristics is investigated by utilising a fixed-displacement leading-edge trip 

wire whereby span-wise vorticity can be introduced to minimise the aerodynamic load 

variation prior to and after dynamic stall occurrence. Specifically, trip wires with a range 

of diameters, located at a fixed distance from the leading edge, will be assessed to 

determine their impact and applicability as a boundary-layer control method for airfoils 

undergoing constant-pitch-rate dynamic stall. The work herein extends the research 

conducted in Choudhry, Arjomandi and Kelso [54], where quasi-steady flow conditions 

(𝜅 = 0.023 → 0.038) were utilised, to the investigation of highly-unsteady operating 

conditions (𝜅 = 0.025 → 0.1). Additionally, unsteady rotation rate tests will be 

conducted at elevated angles of attack to determine the effectiveness of the trip wire 

during dynamic stall and proceeding into post-stall flow states.  Mitigation of the post-

stall load fluctuation on the blades of horizontal-axis wind turbines will assist the 

optimisation of turbine control systems, whilst reducing the power fluctuation and blade 

fatigue developed from the unsteady vortex shedding process 
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Experimental Procedure 

Experiments investigating dynamic stall were conducted in an open-return wind tunnel 

with a 0.5𝑚 × 0.5𝑚 test section and a turbulence intensity of ~0.85% [44]. A 

symmetrical NACA 0012 airfoil of chord 𝑐 = 0.1 𝑚 and span 𝑏 = 0.5 𝑚 was fitted with a 

series of pressure ports distributed along the wing chord at the centre of the wing’s span. 

The arrangement of the pressure ports and the wind tunnel test arrangement are shown 

in Figure 1. 

 

Figure 1: a) Test setup indicating the wind tunnel, wing and motor controller 

combination employed for dynamic stall testing, b) Chord-wise surface pressure port 

distribution on the NACA 0012 wing, c) Plan view of the pressure port locations located 

at the mid-span location of the wing. 
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The Reynolds number (𝑅𝑒), based on the chord of the wing, was 𝑅𝑒 = 20,000. Due to the 

induced inertial effects developed as a consequence of high rotation rate motion, the 

influence of Reynolds number can be considered minor when determining the behaviour 

of major flow structure and the unsteady separation process [55]. Furthermore the 

Reynolds Number is generally considered to have minimal influence on the unsteady 

separation process with little impact on the overall characteristics of the separation 

process [18, 56, 13]. As such the current investigation can be conducted with confidence 

to identify the variation in performance of the leading-edge trip wire on airfoil exposed 

to high rotation rate dynamic stall. The surface of the airfoil was CNC machined and post 

finished using a combination of 600 and 1200 grit emery paper to achieve a uniform and 

polished surface finish. This resulted in an average surface deviation of 𝜖 = 30𝜇𝑚, or an 

effective surface roughness of 𝑐/𝜖 = 3.3 × 104. However, due to the low operating 

Reynolds Number in the current investigation, a smooth surface could be considered for 

the current wind tunnel configuration, leading to no observable increases in skin friction 

drag as a result of surface roughness [57]. 

The blockage area ratio of the test set-up was approximately 17% at the maximum test 

angle of attack, 𝛼𝑚𝑎𝑥 = 60°. Correction of the test data to account for blockage effects 

in the open section was not performed for the current article due to the minor variation 

in force generation during the dynamic stall process as described in Granlund et al. [58]. 

Furthermore, as the airfoil was located 250mm downstream of the wind tunnel opening, 

free expansion of the wake streamlines was possible further reducing blockage effects 

[59]. As the current system was limited to a maximum angle of attack of only 𝛼 = 60° for 

short periods of time, and due to the absence of side walls limiting free expansion of the 

wake, blockage corrections were considered insignificant under the present test 
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configurations. In addition, wind tunnel test at low Reynolds numbers using flat plates in 

STO [60] indicate minor variation between results obtained from independent wind 

tunnel facilities with varying blockage ratios. As such, corrections for blockage were not 

considered significant to manipulate the resulting aerodynamic force generation. 

The surface pressure ports were connected directly to 250 ± 1% 𝑃𝑎 Honeywell 

Truestability® differential pressure sensors with internal amplification and self-

compensation capabilities. The sensors were fixed to a custom-made circuit board 

mounted in a cavity within the wing and collectively referenced to atmospheric 

conditions. A National Instruments® NI-6210 data acquisition module was utilised, in 

conjunction with a custom program based on Labview control software, to convert the 

generated voltage outputs from the pressure sensors into pressure values for both the 

wing and Pitot tube. 

Constant-pitch-rate airfoil motion was provided using a MaxonMotor® digital position 

encoder and DC motor connected to a gear box providing a 28 ∶ 1 reduction, coupled 

directly to a drive shaft located at the mid-chord pivot position of the wing body. The 

accuracy of rotation was such that the desired angle of attack was controlled to 

within 𝛼 = ±0.25°. The non-dimensional rotation rate was fixed at values of 𝜅 = 0.025, 

0.05 and 0.1. Equivalent rotation rates for these reduced frequencies ranged between, 

ω = 1.47rad/s and ω = 5.87 rad/s.  The angular displacement with respect to non-

dimensional time, T∗, is shown in Figure 2. 

Primary evaluation of high 𝑅𝑒 − 𝜅 combinations resulted in the introduction of angular 

displacement errors resulting from the excessive inertial loads placed on the drive motor 

due to high angular acceleration. To minimise these errors a gradual acceleration was 
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employed in the first 5° of angular displacement in both the ramp-up and ramp-down 

stages, thereby achieving an accurate and repeatable trapezoidal velocity profile. 

The maximum angle of attack was set to three values of 𝛼 = 20°, 𝛼 = 40° and 𝛼 = 60°. 

Once the airfoil reaches the maximum angle of attack, its position was held fixed, to 

replicate post-stalled flow conditions. The airfoil is held fixed at the maximum angle of 

attack for a non-dimensional time value of 𝑇∗ = 10, such that 𝑇∗ = 𝑇𝑈∞ 𝑐⁄ , where 𝑇 is 

the resulting flow time (𝑠). 

 

Figure 2: Airfoil angular displacement with respect to non-dimensional time for reduced 

frequencies of 𝜅 = 0.025, 𝜅 = 0.05 and 𝜅 = 0.1 and for each maximum angle of attack 

evaluated. 

The aerodynamic force coefficients, with respect to the airfoil coordinate system, were 

evaluated using a trapezoidal integral [18] of the pressure coefficient, 𝐶𝑃, distribution as 

described in Equation 1, where 𝑃 is the measured static pressure, 𝑃0 is the pressure sensor 

reference pressure, and 𝜌 and 𝑉∞ are the respective free stream density and flow velocity. 
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C𝑃 =
𝑃 − 𝑃0

1 2⁄ 𝜌𝑉∞
2, C𝐴 = ∮

𝐶𝑃

𝑐
𝑑𝑦, C𝑁 = − ∮

𝐶𝑃

𝑐
𝑑𝑥 (2)  

In Equation(s) 1, 𝐶𝑁 and 𝐶𝐴 are the respective airfoil normal and axial force coefficients, 

and 𝑑𝑥 and 𝑑𝑦 are the horizontal and vertical displacements between the surface 

pressure sensors with respect to the x and y coordinate system of the airfoil.  Subsequent 

lift and drag coefficients in the wind tunnel coordinate system were determined using 

Equations 2. 

C𝐿 = 𝐶𝑁 cos 𝛼 − 𝐶𝐴 sin 𝛼, C𝐷 = 𝐶𝑁 sin 𝛼 + 𝐶𝐴 cos 𝛼 (3)  

Satisfactory statistical convergence of the measured pressure data was achieved after a 

total of 100 repeated test cases of the dynamic stall pitch-up simulation. A total of 3000 

samples were recorded for each individual surface pressure sensor throughout the 

duration each test to capture the low-pressure vortex structures developed during the 

ramp-up and hold motion. As positive benefits were established in Choudhry, Arjomandi 

and Kelso [54] for the application of a trip wire with fixed diameter, investigations of the 

sensitivity of the flow to trip wire diameter and its applicability as a turbulence generator 

at a fixed displacement were investigated in the current article using four test cases of 

varying diameters. These included, a clean airfoil, where all trip wires were removed, and 

cases where trip wires of 0.95mm, 1.2mm, 1.6mm and 2mm diameter were installed at 

a fixed displacement of 1 mm forward of the wing leading edge. 
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Results 

Interpretation and Error Analysis 

Data from the pressure sensors was post-processed in order to evaluate the variation and 

average of the generated force coefficients of all pitch-up test cases. The resulting lift 

coefficients generated from integration of the averaged surface pressure readings, with 

𝛼 = 20° and 𝜅 = 0.025, are displayed in Figure 3.  

 

Figure 3: Lift Coefficient of the NACA 0012 airfoil and fluctuations of maximum and 

minimum forces evaluated for the clean and leading-edge trip wire configurations 

ranging over the complete dynamic stall test range. 𝜅 = 0.025, 𝛼𝑚𝑎𝑥 = 20°. 

Also shown in Figure 3 are the maximum and minimum variations in force resulting from 

the fluctuations in the wing surface pressure, plotted with respect to the angle of attack 

and also 𝑇∗. Here 𝑇∗ represents the flow time after the airfoil has reached its maximum 

angle of attack and ceased to continue to rotate. To ensure correct operation of the 

sensors, steady state values evaluated from the current investigation were compared to 
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results obtained in Zhou et al. [61]. A comparison of the current steady-state results shows 

good agreement with results in Zhou et al. [61] and provides confidence in further 

analysing dynamic stall conditions using the test arrangement.  

A maximum variation from the mean was found to be approximately 15% in deep-stall 

regions. Similar observations in force deviation were also observed in Heine et al. [52], 

where wake vortex shedding during post-stall operation resulted in increased surface 

pressure and force fluctuation about the airfoil. For regions of attached flow, where 𝛼 <

15°, a maximum deviation from the mean of approximately 6% was obtained.  In addition, 

variability of the mean force coefficient was evaluated to be approximately ±1.2% based 

on a 95% confidence level of the averaged dynamic stall data recorded. Errors resulting 

from pressure sensor operation were considered to be minor with regards to the overall 

pressure measured during dynamic stall. Under such operation, a maximum of 2% 

variation in pressure measurement was obtained over the entire operating range of the 

pressure sensors utilised. This equated to a pressure error at the leading edge stagnation 

point of approximately 0.3𝑃𝑎 when operating at 𝑅𝑒 = 20,000, or when the measured 

stagnation pressure was approximately 16𝑃𝑎. Large deviations in force coefficient 

resulted as a consequence of large-scale vortex shedding within post-stall phase and due 

to unsteady separation of the boundary layer on the upper surface of the airfoil.  

Figure 3 indicates the variation in force coefficient errors for the clean wing and for the 

wing with the leading-edge trip wire attached. Prior to dynamic stall, during the ramp-up 

phase of the wing, force coefficients for all test cases were seen to be similar, with no 

statistical significant differences occurring between each of the test data sets. Increasing 

the angle of attack, where 𝛼 > 15° and 𝑇∗ < 1, to promote the formation of the leading-
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edge vortex results in an error of less than 5% for pre- and post-dynamic-stall phases. 

Under post-stall conditions, where large vortex structure development and force 

fluctuation occur, a maximum error of 16%, based on the respective mean lift coefficient 

value. Post-stall force variation was shown to be a maximum of 5.15%.  The fluctuations 

in surface pressure, resulting in the force coefficient errors, were shown to be the same 

for all test cases. Due to the subtle changes in force generation for the cases where the 

leading-edge trip wire was applied, and to increase the visibility of the effects of the trip 

wire, results for cases utilising the trip wire were normalised such that 𝐶𝐿𝑁 = 𝐶𝐿 𝑇 𝐶𝐿𝐶⁄ , 

where 𝐶𝐿𝑁 is the variation in lift coefficient generated using the trip wire, 𝐶𝐿 𝑇, normalised 

with respect to the clean airfoil lift coefficient, 𝐶𝐿𝐶. 

Impact of the Trip Wire 

Figure 4 shows the effects of varying the trip wire diameter on the NACA 0012 airfoil lift 

coefficient and aerodynamic efficiency, 𝐶𝐿 𝐶𝐷⁄ . The figure consists of three pairs of graphs 

of equal maximum angle of attack, where 𝛼𝑚𝑎𝑥 = 20°, and increasing the non-

dimensional rotation rate, such that 𝜅 = 0.025, 0.05, 0.1 for Figure 4(a, d), Figure 4(b, e) 

and Figure 4(c, f) respectively. For each case, the angle of attack is indicated along with 

the non-dimensional time after cessation of the airfoil motion at its maximum angle of 

attack. Each non-dimensional time unit represents one chord length of travel of the free-

stream fluid over the airfoil. For 𝜅 = 0.05, a vortex is observed to develop at the leading 

edge of the airfoil. This is shown through an increase in lift coefficient, as highlighted in 

Figure 4b.  Similar dynamic stall test conditions were also performed using PIV in a related 

study, and shown in Figure 4e, which corroborates the presence of the leading-edge 

vortex and subsequent increase in lift during the pitch-up motion.  
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Figure 4: NACA 0012 lift coefficient with normalised trip wire lift coefficient (a, b, c) and 

lift to drag ratio of post-stall flow conditions (d, e, f) for increasing non-dimensional 

rotation rate and constant angle of attack, where 𝛼 = 20°. 
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For 𝛼 < 5°, results indicate that both upper and lower surface pressure distributions are 

similar with little deviations. This was found to be associated with the increased rotation 

rate of the airfoil and induced inertial effects at the leading edge leading to decreases in 

pressure on the lower surface of the airfoil as a result of the pitch-up motion of the airfoil.  

Shown in Figure 5 is the surface pressure coefficient of the clean airfoil for increasing 

angles of attack prior to stall at 𝛼 = 20°.  

 

Figure 5: Surface pressure coefficient for the clean NACA 0012 airfoil for 𝜅 = 0.025 

indicating the formation of the leading-edge vortex (LEV) and subsequent increased 

suction resulting in additional lift. ● – Upper Surface, ο – Lower surface. 
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The presence of the leading-edge vortex causes the lift coefficient to increase until the 

flow fully separates from the airfoil at 𝛼 = 20°, and at which point the lift is seen (Figure 

3(a)) to decrease significantly to 𝐶𝐿 = 0.8. After the leading-edge vortex is shed, and once 

the airfoil is held fixed at the maximum angle of attack of 20°, post-stall flow conditions 

are established. A secondary increase in lift is observed to develop at 𝑇∗ = 4 in Figure 

4(a), due to secondary vortex structure development as a result of bluff body separation 

after the airfoil rotation has ceased. This vortex structure leads to a low-pressure region 

forming at the leading edge and then extending towards the trailing edge with time. The 

low-pressure region is indicated in Figure 6, which shows the pressure coefficient 

developed over the chord of the airfoil with respect to the airfoil angle of attack and 𝑇∗. 

Also indicated in Figure 6 is evidence of a laminar separation bubble prior to 𝛼 = 15° and 

the formation of both the leading-edge vortex and secondary vortex structure developed 

in the post-stall conditions. In regions where the separation bubble exists near the trailing 

edge, the flow is influenced by the unsteady trailing edge vortex separation combined 

with shedding and convection of vortices at the leading edge. The net effect of the 

unsteady vortex shedding leads to unsteady upper-surface pressures, visible by scatter in 

the pressure contours prior to leading-edge vortex development and aft of the leading-

edge vortex once it is formed. 

After 𝑇∗= 8, a plateau in lift force is observed in Figure 4(a), indicating bluff-body 

separated flow conditions. Similar force generation profiles can be seen until 20° for the 

cases of 𝜅 = 0.05 and 𝜅 = 0.1, as indicated in Figure 4(b) and Figure 4(c) respectively. 

However, increasing the non-dimensional rotation rate was shown to increase the 

duration of maximum lift, where 𝐶𝐿 was sustained for periods of 𝑇∗ = 0, 𝑇∗ = 2 and 𝑇∗ =

3.5 for 𝜅 = 0.025, 𝜅 = 0.05 and 𝜅 = 0.1 at the airfoil maximum angle of attack, as shown 



5.2.  Elevated Trip Wires for Unsteady Dynamic Stall Control 
________________________________________________________________________ 

 
192 

 

in Figure 4(b, c). The increased transient lift can be attributed to the delay in formation of 

the leading-edge vortex, where for example, with 𝜅 = 0.025, early formation of the 

leading-edge vortex and its separation are observed. With increased non-dimensional 

rotation rate, airfoil angular velocity is increased such that separation and roll up of the 

leading-edge vortex are delayed until the maximum angle of attack is reached.  

 

Figure 6: Normalised chord length upper surface pressure contour with respect to angle 

of attack and normalised time, indicating localised low pressure regions correlating to 

the laminar separation bubble, leading-edge vortex and second vortex formation. 𝜅 =

0.025 and 𝛼𝑚𝑎𝑥 = 20°. 
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Once stoppage of the airfoil motion occurs at the maximum angle of attack, large scale 

separation and roll up of the leading-edge vortex occurs due to the highly adverse 

pressure gradients at the region of the leading edge. In regions where the separation 

bubble exists near the trailing edge, the flow is influenced by the unsteady trailing edge 

vortex separation combined with shedding and convection of vortices at the leading edge. 

The net effect of the unsteady vortex shedding leads to unsteady upper-surface pressures, 

visible by scatter in the pressure contours prior to leading-edge vortex development and 

aft of the leading-edge vortex once it is formed. The effect of the trip wire was 

demonstrated to be greater at lower reduced frequencies, for example when 𝜅 = 0.025, 

such that conditions similar to steady-state conditions were replicated [62] and enhanced 

mixing within the boundary layer could be utilised to control the vortex shedding process 

and its impact on overall force generation. Under the lowest reduced-frequency test 

condition, the wake from the trip wire appears to assist with mixing and momentum 

transfer in the airfoil boundary layer, preventing separation and reducing the build-up of 

vorticity in the form of the leading edge vortex. 

Sensitivity of the airfoil force generation to the trip wires in post-stall conditions was 

shown to be minimal at all three reduced frequencies, with the normalised lift coefficient 

trending towards 1 as 𝑇∗ → 10 for all cases of varying non-dimensional rotation rate. 

Once dynamic stall had occurred, post-stall flow conditions were established within 2 

shedding cycles of the airfoil. This, however, was difficult to observe for 𝜅 = 0.05 and 𝜅 =

0.1 due to the increased amplitude of fluctuation in 𝐶𝐿 and the finite period of data 

acquisition (up to 𝑇∗ = 10). Figure 4(a, b, c) show that once post-stall flows were 

established, the lift coefficient asymptotically approached a value of 𝐶𝐿 = 0.6 for post-

stall, fully separated conditions. 
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To investigate the influence of the trip wires at elevated angles of attack, experiments 

were performed for the case of 𝛼𝑚𝑎𝑥 = 40°. Application of the trip wires for this case was 

shown to lower the maximum lift coefficient relative to the clean airfoil configuration, 

prior to dynamic stall and shedding of the leading-edge vortex. Figure 7 shows the lift 

coefficient plotted against the angle of attack and non-dimensional time for ramp-up and 

hold dynamic stall for the NACA 0012 airfoil.  

The normalised lift coefficient (as defined above) of the airfoil fitted with each trip wire 

at the leading edge is also shown. Overall airfoil efficiency (𝐶𝐿 𝐶𝐷⁄ ) under post-stall 

conditions is also presented. Similarities in lift generation prior to 𝛼 = 20° did not show 

significant differences between each trip wire evaluated, so only the airfoil efficiency 

during leading-edge vortex growth and in post-stall conditions are indicated. 

Dynamic stall was initiated at 𝛼 = 25° for 𝜅 = 0.025, as observed through the sudden 

reduction in lift coefficient in Figure 7(a). Due to the lower rotation rate, separation of a 

second vortex is observed at 𝛼 = 37°. The increase in lift at 𝛼 = 37° coincides with the 

reduction in surface pressure as indicated in Figure 8, which shows the pressure 

coefficient of the upper surface of the NACA 0012 airfoil pitching to 𝛼 = 40° and 

maintaining the maximum angle of attack for 𝑇∗ = 10. 

As the non-dimensional rotation rate was increased from 𝜅 = 0.025 to 𝜅 = 0.05, the 

presence of the second vortex structure developed at 𝛼 = 20° (Figure 6) was no longer 

observed. Alternatively, for 𝜅 = 0.025, formation of the leading-edge vortex was shown 

to occur at 𝛼 = 20°, and with the airfoil angle of attack still increasing, a second vortex 

structure originating at the leading edge was observed to form at 𝛼 = 30°. The peak 

strength of the second vortex and the associated lift are significantly lower than that of 
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the leading-edge vortex, which is associated the lowest surface pressures and highest lift 

over the airfoil as indicated in Figure 8. Formation of a third vortex, for 𝜅 = 0.025, can be 

associated with the transition into deep stall where periodic vortex shedding occurs. 

 

Figure 7: NACA 0012 lift coefficient with normalised trip wire lift coefficient (a, b, c) and 

lift to drag ratio of post-stall flow conditions (d, e, f) for increasing non-dimensional 

rotation rate and constant angle of attack, where 𝛼 = 40°. 
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Figure 8: Normalised chord length upper surface pressure contour with respect to angle of 

attack and normalised time, indicating localised low pressure regions correlating to the 

leading-edge vortex and subsequent shed vortex structures in post-stall regions. 𝜅 =

0.025 and 𝛼𝑚𝑎𝑥 = 40°. 

With increased non-dimensional rotation rate, dynamic stall was shown to occur at 𝛼 =

37° for 𝜅 = 0.05, and at 𝛼 = 40° for 𝜅 = 0.1, as indicated in Figure 7(b, c). In conjunction 

with a delay in the formation of the leading-edge vortex to higher angles of attack, the 

resulting maximum lift for each non-dimensional rotation rate test case was also 

increased to values 𝐶𝐿 = 1.8, to 2.2 and 2.4 for  𝜅 = 0.025, 0.05 and 0.1 respectively. 
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After the onset of dynamic stall, and due to the fixed maximum angle of attack, the airfoil 

was observed to transition into a state of deep stall where the lift coefficient was observed 

oscillate about a mean value of  𝐶𝐿 = 1. 

With respect to the influence of the trip wire on the vortex shedding process, increasing 

the trip wire diameter was shown to lower the maximum lift coefficient of the airfoil 

during dynamic stall for reduced frequencies of 𝜅 = 0.05 and 𝜅 = 0.1, as shown in Figure 

7(b, c).  In contrast, the periodic nature of the stall process was not influenced, with 

vortices rolling up at the same phases of the stall process for each test case. Once post-

stall flow conditions were established, no net benefit from the application of the trip wire 

was observed. 

Although the maximum lift coefficient was reduced by the application of the leading-edge 

trip wires, the impact of the wires on the aerodynamic efficiency was negligible. As shown 

in Figure 7(d, e, f), the aerodynamic efficiency of the airfoil was shown to decrease and 

plateau to a value of 𝐶𝐿 𝐶𝐷⁄ = 1.1 once post-stall conditions were established.  However, 

the resulting aerodynamic efficiency was shown to be influenced by the non-dimensional 

rotation rate. Under higher reduced frequencies, increased time intervals were required 

before a steady-state post-stall characteristics were achieved.  This is represented in 

Figure 7(d, e, f) as indicated by the dashed line for each test case of 𝜅 = 0.025, 𝜅 = 0.05 

and 𝜅 = 0.1 where 𝑇∗ = 1.5, 𝑇∗ = 2.5, and 𝑇∗ = 4. 

The results for 𝛼𝑚𝑎𝑥 = 60° are presented in Figure 9, which shows the lift coefficient, 

normalised leading-edge trip wire lift coefficient and the overall aerodynamic efficiency 

of the clean airfoil and the airfoil fitted with the trip wires. Setting the non-dimensional 

rotation rate to 𝜅 = 0.025 resulted in the formation of three distinct vortex structures, 
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as highlighted in Figure 9(a). Maximum lift was generated during the initial dynamic stall, 

where 𝐶𝐿 = 2.0 for the clean airfoil. Once initial dynamic stall occurred, any further 

development of vortical structures partially increased lift, although to lower lift coefficient 

values of 𝐶𝐿 = 1.6 and 𝐶𝐿 = 1.4 respectively. Increasing the non-dimensional rotation 

rate, to 𝜅 = 0.05 and 𝜅 = 0.1 resulted in the formation of a single leading-edge vortex, 

as indicated in Figure 9(b) and Figure 9(c). Furthermore, the total lift rose with increasing 

non-dimensional rotation rate, such that 𝐶𝐿 = 2.1 and 𝐶𝐿 = 2.8 for the clean 

configuration at 𝜅 = 0.05 and 𝜅 = 0.1 respectively. Upper surface pressure coefficients 

for the NACA 0012 pitching to 𝛼𝑚𝑎𝑥 = 60° are presented in Figure 10 and show the 

leading-edge vortex resulting from the dynamic stall process, whilst also highlighting the 

three vortex structures generated in post-stall conditions. 

The leading-edge trip wire was shown to have a similar impact on the lift coefficient as 

observed in the case of 𝛼𝑚𝑎𝑥 = 40°, such that until dynamic stall occurs, an overall 

reduction in the lift coefficient was observed for all three reduced-frequency cases, as 

shown in Figure 9b and Figure 9c.  This reduction in lift was only temporary, with overall 

lift generation exceeding the clean airfoil configuration in post-stall states. The results 

indicate that, for the post-stall conditions, minimal influence of the trip wire is achieved 

once bluff-body flow separation occurs. 

Overall aerodynamic efficiency was shown to be independent of the presence of the trip-

wire at the leading edge after dynamic stall occurred. As shown in Figure 9(d, e, f), the 

maximum 𝐶𝐿 𝐶𝐷⁄  ratio was seen to increase from 𝐶𝐿 𝐶𝐷⁄ = 1.75 (Figure 9d) to 𝐶𝐿 𝐶𝐷⁄ =

2.5 (Figure 9f), although this increase can be attributed to the increase in rotation rate, 

and delay in separation of the leading-edge vortex (until high angles of attack) with 
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increased non-dimensional rotation rate. Once the airfoil transitions into a state of deep 

stall, the overall efficiency of the airfoil decreases to a asymptotic value of 𝐶𝐿 𝐶𝐷⁄ = 0.6. 

 

Figure 9: NACA 0012 lift coefficient with normalised trip wire lift coefficient (a, b, c) and 

lift to drag ratio of post-stall flow conditions (d, e, f) for increasing non-dimensional 

rotation rate and constant angle of attack, where 𝛼 = 60°. 
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Figure 10: Normalised chord length upper surface pressure contour with respect to angle 

of attack and normalised time, indicating localised low pressure regions correlating to 

the leading-edge vortex and subsequent shed vortex structures in post-stall regions. 𝜅 =

0.025 and 𝛼𝑚𝑎𝑥 = 60°. 

Comparisons between Test Cases 

Collectively, the results show that under quasi-steady reduced frequencies, where 𝜅 <

0.025, the effect of the trip wire was minimal, with the overall force coefficients 

remaining similar between all test cases at all maximum angles of attack. For the cases 

where 𝛼𝑚𝑎𝑥 = 40° and 60°, increasing the non-dimensional rotation rate to the unsteady 
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range resulted in the reduction of the leading-edge vortex lift when the trip wire was 

applied. Figure 11 shows the resulting pressure coefficient over the airfoil for the clean 

airfoil and trip wire test cases, where 𝛼 = 34°, 𝜅 = 0.05 and where 𝛼𝑚𝑎𝑥 = 60°. 

 

Figure 11: NACA 0012 airfoil surface pressure coefficient distribution during dynamic stall 

showing the lowering of 𝐶𝑃 with the application of the leading-edge trip wire at multiple 

angles of attack. At 𝛼 = 30°, the leading-edge vortex is seen  to convect over the upper 

surface of the airfoil, however minimal influence of the trip wire is observed to occur at 

other angles of attack tested. 𝜅 = 0.05 and 𝛼𝑚𝑎𝑥 = 60°. 

Through application of the trip wire, a disruption in the formation of the leading-edge 

vortex is observed to occur, such that its impact on the airfoil is lowered. This is visible 
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through the increase in the upper surface pressure coefficient, resulting in a decreased 

overall maximum lift coefficient, as indicated in Figure 11. 

When the airfoil was allowed to transition into a post-stall state at the maximum angle of 

attack, the effect of the trip wire was found to be negligible. Under post-stall conditions, 

the large-scale vortex shedding became dominant and any mixing generated by the trip 

wire wake became ineffective in controlling airfoil separation and vortex shedding. For 

this Reynolds number, at 𝛼𝑚𝑎𝑥 = 20° a laminar separation bubble was observed to form 

on the clean airfoil, as observed by the reduction in lift coefficient at approximately 𝛼 =

10° and the pressure distribution history in Figure 6. 

For post-stall flow conditions, the lift-to-drag ratio of the airfoil was shown to be 

unchanged by the application of the trip wire for all three maximum-angle test cases. On 

the other hand, the high lift-to-drag ratio was sustained for longer durations with 

increased non-dimensional rotation rate, but lowered by increasing the maximum angle 

of attack. This effect is due to the delayed separation of the leading-edge vortex at higher 

reduced frequencies. Although the peak aerodynamic efficiency duration was increased 

for higher reduced frequencies, force fluctuations increased with increased angular delay 

in leading-edge vortex formation. 

Conclusions 

The current article presents the findings of experimental work conducted to evaluate the 

effectiveness of a leading-edge trip wire as a method of controlling the dynamic-stall 

process under extreme conditions. A NACA 0012 airfoil was tested over three maximum 

angle-of-attack values and three reduced frequencies. For each of these the effects of four 

trip-wire diameters were compared with the clean airfoil case. Surface pressure 
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measurements were recorded for the pitch-up motion of the airfoil undergoing constant 

angular velocity rotation from 𝛼 = 0° → 60°. The dynamic-stall process was observed 

through the sudden increase in lift coefficient resulting from the generation of the 

leading-edge vortex. Once this vortex detached from the airfoil, post-stall flow conditions 

were established with periodic vortex shedding occurring. The application of the trip wire 

resulted in the following outcomes for high angle of attack, unsteady dynamic stall: 

1) A reduction in lift prior to dynamic stall and a lowering of the post-stall lift 

fluctuation. Overall, lift was lowered in the post-stall regime with the variation 

between maximum and minimum lift immediately after dynamic stall being 

reduced. 

2) The trip wire was successful in perturbing the laminar boundary layer at the 

leading edge due to the entrainment of turbulent, high-momentum flow into the 

boundary layer. 

3) For post-stall flow conditions, maintaining a low angle of attack proved more 

beneficial in achieving a greater aerodynamic efficiency. Applying the trip wire 

had a minor positive influence on the aerodynamic efficiency. 

4) Increasing the non-dimensional rotation rate, although delaying time to reach a 

steady-state post stall 𝐶𝐿 𝐶𝐷⁄  values, imposed higher negative load fluctuations 

on the airfoil. 

The findings presented in this article show that trip wires can beneficially manipulate the 

flow over a large angle-of-attack range and at elevated reduced frequencies, however this 

is only applicable until dynamic stall occurs. Following dynamic stall, the impact of the trip 

wire becomes negligible due to the occurrence of bluff-body separation.  Although trip 
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wires are effective under some operating conditions, for the application of wind turbines 

where random turbulence and wake interactions frequently occur, the trip wire does not 

appear to be a feasible means of flow control. As such, it is recommended that future 

research be performed to develop awareness of the fluid-structure interaction and vortex 

shedding frequency as a result of variations in the trip wire diameter for greater control 

of the dynamic stall process during unsteady operating conditions. Smoothing the stall 

process and lowering the force fluctuations on turbine blades during post-stall conditions 

still requires further investigation if passive control methods are to be implemented. For 

example, the application of tubercles could be investigated, where energy can be 

dissipated through means of chord-wise vorticity and where a “softer” stall process 

occurs. 
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Chapter 6.  Dynamic Stall Flow Topology 

Dynamic Stall Flow Topology 

6.1.  Chapter 6 Overview 

The final chapter of this thesis seeks to investigate the flow characteristics of the dynamic-

stall vortex, such that more efficient methods of flow control can be developed for highly-

unsteady flow conditions. This is conducted to address the final project objective, and 

identify the behaviour of the half-saddle point linked to the dynamic-stall vortex. A flat 

plate fitted with three different leading-edge and trailing-edge geometry combinations 

are utilised whilst simulating dynamic-stall conditions. A Reynolds number of 𝑅𝑒 =

20,000 was replicated in an open jet wind tunnel, where the resulting surface pressures 

are recorded throughout the duration of the pitch-up process, and for a flow time of 𝑡 =

30𝑐/𝑈∞ once rotation had ceased. Regions of low pressure were correlated to the 

development of the leading-edge vortex. Surface pressure was used to locate the position 

of the half-saddle point bifurcating streamlines from the leading-edge vortex and the 

outer free-stream above the upper surface of the airfoil. A strong pressure gradient was 

observed at the half-saddle location, whilst its position was approximated by the location 

where the pressure coefficient was approximately 𝐶𝑃 = 0 and at the location of a severe 

pressure gradient. Motion of the half-saddle point was linked to the free-stream velocity, 

plate rotation rate and plate chord length. Knowledge developed in this chapter can allow 

alternative methods of flow control to be developed that utilise the generated pressure 

fields to actively apply suitable boundary layer control methods in order to manipulate or 

reduce the effects of the dynamic stall process.  
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Abstract 

This article investigates the dynamic stall of a pitching flat plate in order to facilitate lift 

control in applications such as flapping wings and micro-aerial vehicles. Constant-pitch-

rate rotation, similar to ramp-and-hold, of a flat plate was investigated in an open-jet wind 

tunnel using embedded surface pressure sensors to assess vortex formation and its 

impact on aerodynamic characteristics. Three leading edge and trailing edge geometries 

were investigated, with all demonstrating minor effects on the overall aerodynamic 

performance for the angles of attack presented. For all leading and trailing edge 

combinations, increasing the rotation rate increased the magnitude of the localised low 

pressure on the upper surface the flat plate resulting in increased lift. Separation of the 

leading-edge vortex was characterised by the motion of a half-saddle flow feature on the 

upper surface of the flat plate, which in turn was linked to the rotation rate. A critical 

angle of attack was found whereby further increases in the angle of attack provided no 

benefit to overall force generation. The surface pressures shown in the current 

investigation can be utilised for the development of adaptive boundary layer control 
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devices to either limit or promote the dynamic stall process on a flat plates. This study 

confirms that vortex lift, which is critical for flight of micro-aerial vehicles and flapping 

wing devices, is limited by the maximum angle of attack and rotation rate. This is 

significant for high-lift devices where limited power is available for lift generation.   

Keywords 

Flat Plate; Dynamic Stall; Particle Image Velocimetry; Surface Pressure; Vortex Dynamics, 

Lift 

Introduction 

Unsteady aerodynamics has become a significant research topic in recent years due to its 

application on micro-aerial vehicles (MAV), the understanding of bird and insect flight, 

high manoeuvrability aircraft, wind turbines and also flat plate structures such as 

heliostats immersed in the turbulent atmospheric surface layer. Aerodynamic 

performance in low Reynolds Number (𝑅𝑒) conditions is typically dependent on unsteady 

aerodynamics of thin airfoil sections, where the generation and interaction of laminar 

separation bubbles and vortex systems (Ellington, 1984a, Sane, 2003, Shyy et al., 2007) is 

required for sustained lift. For 60,000 < Re < 200,000, thin flat plate airfoil profiles are 

often utilised due to their increased performance in steady state conditions (Pelletier and 

Mueller, 2000). Likewise, for flapping and natural flight behaviour of insects and birds, the 

study of pitching and stationary flat plates and wings provides insight into the vortex 

dynamics required for sustained lift (Ellington, 1984b, Dickinson and Gotz, 1993, 

Dickinson, 1994, Sane, 2003, Pullin and Wang, 2004, Taira and Colonius, 2009, Wilkins and 

Knowles, 2009, Chen, Colonius and Taira, 2010, Pitt Ford and Babinsky, 2011). Analytical 

models for rapid analysis of unsteady forces of plates have shown significant development 
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in assessing the aerodynamic loads on pitching plates (Jones, 2003, Xia and Mohseni, 

2012, Ramesh et al., 2014, Narsipur, Gopalarathnam and Edwards, 2018). However, it is 

critical that results of experimentally obtained force characteristics and flow development 

be utilised for validation of both analytical and numerical methods. For this reason, the 

study of the separation process and analysis of upper surface pressure distribution about 

simplified geometries, such as flat plates, is critical for the development of knowledge 

relating to lift generation, flow separation and boundary layer control of pitching wings 

associated with low Reynolds Number flyers, including MAVs.  

Rival et al. (2013) and Rival et al. (2014) used a flat plate to analyse the development time 

and lift generation in dynamic stall. In their investigation, a flat plate with four leading-

edge and trailing-edge configurations was compared to a NACA 0012 airfoil using both 

Particle Image Velocimetry (𝑃𝐼𝑉) and force measurements in a free-surface water 

channel. The reduced frequency (𝜅) (which is a function of frequency, 𝑓 (𝐻𝑧), chord, 𝑐 

(𝑚), and free-stream velocity, 𝑈∞(𝑚/𝑠)) was such that 𝜅 = 𝜋𝑓𝐶 𝑈∞ =⁄ 0.25, whilst the 

motion type was pure plunge (i.e. no rotation) and where 𝑅𝑒 = 10,000. The leading edge 

profile was shown to directly influence the onset of leading-edge vortex growth, local 

shear-layer profiles and lift generation. Similar results were concluded in experiments 

using PIV in Son and Cetiner (2015) and Son et al. (2016), who showed the difference 

between both round and square leading-edge and trailing-edge profiles. Conclusions from 

these works indicated that similar force responses were obtained, however an increase in 

force fluctuation peak was obtained for the sharp leading-edge profile. Variation in 

profiles was only shown to influence the onset of vortex development, not its growth rate 

(Son et al., 2016). Additionally, the detachment of the dynamic-stall vortex, and 

subsequent lift reduction, was characterised by the ‘lift-off’ process of the half-saddle 
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point located aft of the primary leading-edge vortex structure. A similar feature was also 

identified in Perry and Steiner (1987), who evaluated the flow topology leading to 

separation of vortex structures behind an inclined plate.  The motion of the half-saddle 

point was only provided for one rotation rate and plate motion type. There remains a gap 

in literature that addresses the behaviour of the motion of the half-saddle point along the 

upper surface of the plate with varying rotation rate and motion types.  

A comprehensive analysis in Widmann and Tropea (2017) investigated the impact of 𝑅𝑒 

on the dynamic stall process, which showed the 𝑅𝑒 dependency of the separated shear 

layer and early detachment of the  leading-edge vortex at 𝑅𝑒 ranging between 𝑅𝑒 =

10000 and 𝑅𝑒 = 80000, and for a fixed reduced frequency, 𝜅 = 𝜋𝐶 𝑈∞𝜏⁄ = 0.25 (where 

𝜏 is the period (𝑠) and equal to the inverse of frequency). Although detailing the link 

between Reynolds number and vortex growth through shear layer roll-up, details of the 

vortex development and associated flow features connecting the vortex to the plate’s 

upper surface are lacking. Further research is needed to address the knowledge gap 

associated with flow feature development and their propagation during dynamic stall. 

Similar to results discussed in Rival et al. (2013) and Rival et al. (2014), Widmann and 

Tropea (2017) also discussed the importance of critical flow features with respect to 

vorticity transport between the shear layer and upper-surface vortex structures, and in 

conjunction with leading-edge vortex separation. Although the characteristics of the 

vortex development process have been investigated previously, there remains a gap in 

literature regarding the growth rate of the critical vortex structures with respect to ramp-

and-hold, and constant-pitch-rate motion of a wing body.  As such, the motivation behind 

the current investigation is to investigate the motion behaviour and rates of change of the 

displacement of critical flow features developed on the surface of a pitching plate 
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undergoing dynamic stall conditions. As previously stated, the knowledge regarding the 

manipulation of critical flow features can be utilised for more efficient boundary layer 

flow control techniques, better suited to manipulating the development of the leading-

edge vortex (Rival et al., 2013, Rival et al., 2014).  

The vortex-formation process of plunging and flapping wings was described in Rival, 

Prangemeier and Tropea (2009) and Rival, Schönweitz and Tropea (2011), where detailed 

kinematics of the leading-edge vortex formation process were presented. Vorticity 

contours provided detail of the vortex growth which led to the identification of convection 

velocities and positions of the leading-edge and trailing-edge vortices. Due to the time-

dependent nature of dynamic stall, variations to the wing kinematics, with respect to 

rotation rate and motion type, are shown to significantly influence the overall 

performance and resulting flow structure development. Ol and Babinsky (2016) and Jones 

et al. (2016) present ranges of testing procedures of the dynamic-stall process applied to 

flat plates undergoing unsteady motion. In their work, multiple kinematic models are 

replicated on the flat plate to determine the underlying differences in force generation as 

a result of motion type and parametric variations in test conditions. This is significant, as 

their findings indicate the wide range of motion types and their influence on the force 

development on pitching plates. Ol and Babinsky (2016) presented a decomposition of 

the fundamental lift generation mechanisms, which included both pressure forces and 

inertial forces. These results were presented in a bid to better model the force 

characteristics of low 𝑅𝑒 dynamic stall on flat plates. The experimental results in Ol and 

Babinsky (2016) were directly compared with an analytical method using direct force 

measurements, flow visualisation and PIV, with good agreement being shown between 

the analytical model and experimental results. Stevens and Babinsky (2017) also utilised 
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PIV to lift and compare two analytical Wagner models, in order to model vortex growth 

and lift generation. The position of the leading-edge vortex core above a flat plate 

undergoing multiple rotation rates was presented in Jones et al. (2016). However, details 

of near-surface pressures are required for applications utilising boundary layer control 

methods.  

These studies provide beneficial fundamental knowledge of physical parameters and 

kinematics associated with the vortex separation process of a flat plate in unsteady 

motion. However, there remains further scope to investigate the development and 

control of the leading-edge vortex and its influence on surface pressure and forces during 

dynamic stall at elevated angles of attack and for sustained operating in post-stall 

conditions. 

Research on flat plates undergoing unsteady motion (Granlund, Ol and Bernal, 2013, Yu 

and Bernal, 2013, Buchner and Soria, 2015, North Atlantic Treaty Organization, 2016) have 

facilitated our understanding of the effects of performance parameters including pitch 

rate, Reynolds Number, pitch axis location and motion type. These studies utilised load 

cell measurements and PIV to link the vortex dynamics with associated forces. However, 

for a greater understanding of the dynamic-stall process, and its related flow structure 

and critical point development for the design more efficient methods of control, an 

awareness of the pressure distribution resulting from the vortex-plate interaction is 

required. Garmann and Visbal (2011) performed numerical modelling of a rapidly-pitching 

flat plate and presented results of span-averaged surface pressure, although details of the 

critical points, such as the half-saddle point, on the upper surface of the plate were not 

discussed. Additionally, as the leading-edge vortex is known to induce a low-pressure 
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region near the leading edge (McCroskey, 1981, Carr, 1988, Leishman, 1990), the surface 

pressure coefficients in Garmann and Visbal (2011) were primarily used for validation 

purposes of their numerical mesh. As such, a weak qualitative link can be deduced 

between the pressure fields and flow structures developed during dynamic stall.  

One way to develop our understanding of unsteady separation is to investigate the control 

and manipulation of the leading-edge vortex formation. As such, the purpose of the 

current article is to investigate the aerodynamic performance of a flat-plate wing with a 

range of leading-edge and trailing-edge geometries, undergoing constant-pitch-rate 

motion. The article does not attempt to deliver a cost function for the implementation of 

the specific leading- and trailing-edge geometries, but instead present knowledge of the 

comparisons in force and surface pressure variation resulting from the application of 

varying leading- and trailing-edge geometries. In addition, we attempt to determine the 

impact of the leading-edge geometry variations on the developed separation bubble and 

leading-edge vortex under multiple pitch-rate conditions. Furthermore, we investigate 

the near-surface pressure fields and how they are linked to critical flow features 

developed during unsteady wing motion behaviour. Details of the re-attachment point on 

the upper surface are investigated in order provide insight into the vortex shedding 

process of pitching flat plates applicable to MAVs, whilst also enhancing the knowledge 

that can be utilised for the implementation of active flow control devices during dynamic 

stall, thus helping limit or enhance the unsteady lifting process. 

Methods 

Dynamic stall was simulated using a flat plate constructed from two aluminium skins 

secured to front and rear spars, forming a box structure which housed 13 internally-
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mounted differential pressure sensors. Due to the internally-mounted pressure sensors, 

the overall thickness, 𝑡, of the flat plate was restricted to, 𝑡 = 10mm.  The chord, 𝑐 =

100mm and span, 𝑆 = 500mm provided an overall thickness-to-chord ratio of 0.1 and 

wing aspect ratio of 5. A 2mm gap between the upper end of the plate and the wind tunnel 

wall was present. The lower edge of the plate was fixed to a rotating end-plate recessed 

flush with the wind tunnel wall. The gap on the upper edge was within 0.005 × 𝑆 to 

ensure minimal three dimensional effects (Barlow, Rae and Pope, 1999). Both ends of the 

flat plate were pinned to limit bending and induced vibrations resulting from imposed 

aerodynamic loads. To evaluate the development of the separation bubble and dynamic-

stall vortex, three leading-edge and trailing-edge geometries were constructed using ABS 

plastic, and used as extensions to the base plate. These comprised of round, square and 

triangular leading-edge and trailing-edge geometries. Cross sections of the three flat plate 

profiles are shown in Figure 1a. 

Surface pressure was evaluated using 250 𝑃𝑎 Honeywell Truestability® differential 

pressure sensors mounted on a custom-built circuit board fixed within the flat plate 

structure. Pressure ports of the sensors were connected to copper tubes, with an internal 

diameter of 0.5𝑚𝑚, and which were bonded to one side of the flat plate. The sample rate 

was adjusted such that a minimum 10𝑘𝐻𝑧 was achieved for each sensor for all tests. A 

schematic representation of the pressure port location with respect to the wing geometry 

is provided in Figure 1b and Figure 1c.  Harmonic effects in the pressure signals were 

minimised by reducing the lengths of the tubing connecting the pressure sensor and the 

surface orifice. The transfer function of the pressure sensor system was such that a linear 

error of ±1%, of the full scale, in pressure fluctuation existed over the operating range of 

the pressure sensor. However, the error increased to a maximum of ±2.5% in the current 
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testing due to operation of the pressures sensors at 2.5% of their capacity. The response 

time of the system was 1ms, which was compensated for in operation of the sensors 

during flat-plate rotation. In addition, the frequency response of the sensors was 

significantly higher than the expected vortex shedding frequency of the vortex structures 

resulting from shear layer separation at both the leading edge and the trailing edge.  

 

Figure 1: Geometry of the flat plate used for dynamic stall testing. a) Leading and 

trailing-edge extension profiles mounted on the leading and trailing edges of the flat 

plate. b) Pressure port locations on the plate mid-chord location. c) Non-dimensional 

distance of the pressure sensors from the plate leading edge. 

This lowered the sensor error and ensured that sensor noise did not saturate the obtained 

test results. The limited volume within the flat plate for the internal mounting of the 

sensors, and the maximum allocation of 14 sensors on the data acquisition system, meant 

that only one surface of the flat plate could be utilised for surface pressure 
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measurements. As such, both upper and lower surface pressure measurements were 

conducted independently and consecutively to obtain both upper and lower surface 

pressure data. The results for the lower surface pressure were obtained by inverting the 

flat plate motion to ensure accuracy in the angle of attack and pitch rate motion. Due to 

the repeatability of the test arrangement a combination of both upper and lower surface 

readings could be obtained with confidence to evaluate the total forces developed during 

the pitch-up motion. To further reduce sources of experimental error associated with the 

use of the pressure sensors, the flat plate was pinned at both ends to limit elastic 

deflections and vibration. For the anticipated maximum loads, a maximum of 0.01mm of 

plate deflection was measured on the centreline of the plate. 

Data acquisition was achieved through the use of a National Instruments NI6210 data 

acquisition module which was programmed to simultaneously read the wing surface 

pressure and freestream dynamic pressure within the wind tunnel. The data acquisition 

system incurred a 10𝑚𝑠 response time delay, which was subsequently compensated for 

in custom-designed motion control software which simultaneously controlled pressure 

sensor recording and motor motion. A trapezoidal displacement motion profile was 

achieved to simulate constant-pitch-rate motion, whilst a pivot located at the mid-chord 

point on the flat plate was utilised to minimise virtual mass effects generated through 

plate rotation (Stevens and Babinsky, 2017).  

Ramp-up and ramp-down occurred over the first and last 3° of the angular displacement 

profile in order to initiate smooth start-up and shut-down of the motor. Airfoil motion 

was provided via a brushless DC motor and gearbox arrangement. The angular 

displacement, validated using PIV measurements of the same test equipment, was 
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controlled to within  𝛼 = ±0.25° of the maximum angle of attack (Leknys et al., 2017). 

The reduced frequency, 𝜅 = 𝛼̇𝑐 2𝑈∞⁄ , where 𝛼̇ is the flat plate angular velocity (𝑟𝑎𝑑 𝑠⁄ ) 

and 𝑈∞ is the free-stream velocity (𝑚 𝑠⁄ ), was adjusted to provide both quasi-steady and 

unsteady flow conditions such that 𝜅 = 0.025, 0.05, 0.1. The maximum angle of 

attack, 𝛼𝑚𝑎𝑥, was increased incrementally by 5° from 𝛼 = 10° through to 𝛼 = 30° and 

incrementally by 10° for 𝛼 = 30° through to 𝛼 = 50°. The angular displacement with 

respect to non-dimensional time, 𝑇∗ = 𝑇𝑐 𝑈∞⁄ , where 𝑇 is time (𝑠), is shown in Figure 2 

for the period of ramp-up and ramp-down motion, and prior to the plate being held fixed 

at its maximum angle of attack. Constant-pitch-rate motion was achieved by utilising a 

trapezoidal angular velocity profile as shown in Figure 2b.  

 

Figure 2: Airfoil angular displacement with respect to non-dimensional time for reduced 

frequencies of 𝜅 = 0.025, 𝜅 = 0.05 and 𝜅 = 0.1 and for each maximum angle of attack 

evaluated (a) and (b) velocity profile used to simulate constant-pitch-rate motion. 

The maximum angle of attack, 𝛼 = 50°, was specified such that deep stall could be 

established, whilst also being adequate to simulate flight manoeuvres such as the 
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perching of birds.  The free-stream velocity was 𝑈∞ = 2.9 𝑚/𝑠, corresponding to 𝑅𝑒 =

20,000 for all test cases. Individual test cases were repeated 100 times in order to achieve 

convergence of the resulting surface pressure samples. Stabilised wind tunnel flow was 

established by allowing the flat plate to return 𝛼 = 0° after each successive test, where it 

was held fixed for the equivalent time to travel of 30 chord lengths. 

The open-jet wind tunnel (Figure 3a) had a jet cross section of 500𝑚𝑚 × 500𝑚𝑚, 

providing a blockage ratio of 15% at the maximum angle of attack, 𝛼 = 50°.  

 

Figure 3: Wind tunnel used for constant-pitch rate dynamic stall simulation. A) Open-jet 

wind tunnel with motor and flat plate arrangement. B) Diagram of the flat plate in 

relation to the wind tunnel opening. 

Blockage correction of the pressure distribution results was not required due to the minor 

effects of blockage occurring under dynamic stall conditions (Granlund et al., 2010). 

Furthermore, the flat plate was positioned 250𝑚𝑚 downstream of the wind tunnel 

opening (Figure 3b) to allow sufficient free expansion of the air jet, further reducing 

blockage effects (Sayers and Ball, 1983). In addition, a collaborative effort, summarised in 



Chapter 6.  Dynamic Stall Flow Topology  
________________________________________________________________________ 

 

 
227 

 

North Atlantic Treaty Organization (2016), of five independent test facilities measuring 

forces on a pitching flat plate, showed minimal impact of blockage effects across the test 

facilities indicating the insensitive nature of dynamic stall with respect to tunnel blockage.  

The normal and axial forces on the flat plate were evaluated through trapezoidal 

integration of the surface pressures according to: 

C𝑃 =
𝑃 − 𝑃0

1 2⁄ 𝜌𝑉∞
2, C𝐴 = ∮

𝐶𝑃

𝑐
𝑑𝑦, C𝑁 = − ∮

𝐶𝑃

𝑐
𝑑𝑥 

Where, 𝐶𝑃 is the pressure coefficient, 𝑃 − 𝑃𝑜 is the measured (differential) pressure 

relative to the static reference (𝑃𝑎), 𝜌 is the fluid density and 𝑉∞ is the wind tunnel free-

stream velocity. In addition, 𝐶𝐴 and 𝐶𝑁 are the axial and normal force coefficients in the 

flat plate reference plane, as indicated in Figure 4, whilst 𝑑𝑦 and 𝑑𝑥 are the vector 

spacings of the surface pressure ports. 

 

Figure 4: Coordinate system used for force evaluation of the flat plate in the wind tunnel. 

Global forces, in the wind tunnel coordinate system were subsequently evaluated 

according to: 
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C𝐿 = 𝐶𝑁 cos 𝛼 − 𝐶𝐴 sin 𝛼, C𝐷 = 𝐶𝑁 sin 𝛼 + 𝐶𝐴 cos 𝛼 

Here, 𝐶𝐿 and 𝐶𝐷 are the respective lift and drag coefficients, whilst 𝛼 is the flat plate angle 

of attack.  

Results 

Investigation of a flat plate undergoing constant-pitch-rate motion was performed to 

determine the lift development and pressure distribution when the plate was hinged at 

𝑥 𝑐⁄ = 0.5, for multiple maximum angles of attack and three reduced frequencies. Noise 

generated through the use of the data acquisition system was determined by sampling 

the ambient pressure in still air, and found to be ±0.7𝑃𝑎. Figure 5 shows the mean lift 

coefficient and associated lift fluctuation for the flat plate pitching to a maximum angle 

of attack of 𝛼𝑚𝑎𝑥 = 50°, and for reduced frequencies 𝜅 = 0.025, 𝜅 = 0.05 and 𝜅 = 0.1. 

Error bars represent one standard deviation from the mean of the calculated force. 

Results from testing showed that the averaged cycle-to-cycle repeatability of the test 

apparatus was such that one standard deviation,∅, achieved a force coefficient error 

margin of approximately, ∅ = 6%. The fluctuation in force results are linked to the 

formation of the leading-edge vortex on the upper surface, resulting in large pressure 

gradients and surface pressure fluctuations. Similar force fluctuations are discussed in 

Heine et al. (2013) where fluctuations of lift were shown to be up to ∅ = 10% in regions 

of highly-separated flow. A comparison of the lift coefficient, from direct force 

measurements, is presented in Rival et al. (2013) and Rival et al. (2014) for a flat plate 

undergoing constant-velocity plunge motions and shows good agreement with the lift 

generated for the current test where 𝜅 = 0.1. Maximum pressure fluctuations, which 

occurred at 𝛼 = 50°, were related to the highly-separated, unsteady flows developed in 
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the wake of the flat plate.  Additionally, similar steady-state values for the drag coefficient 

were found to compare well with data in Yu (2014) using similar experimental test 

parameters.  

 

Figure 5: Lift coefficient versus angle of attack for varying 𝜅 and 𝛼 on the pitching flat 

plate with square leading- and trailing-edge extensions. Error bars represent one 

standard deviation of the averaged force measurements over 100 repetitions. 

Individual surface pressure sensor fluctuations were observed to be minimal in regions of 

attached flow. However, in regions of high pressure gradient typically associated with the 

location of the half-saddle point, an increase in pressure fluctuation was observed. Results 

of the surface pressure fluctuation of sensor ‘e’, located at 𝑥 𝑐⁄ = 0.36, are shown in 

Figure 6. 

Shown in Figure 6 is the surface pressure coefficient of sensor ‘e’ on the flat plate 

undergoing dynamic stall, where 𝛼𝑚𝑎𝑥 = 50° and for 𝜅 = 0.1. These operating conditions 
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led to the highest state of unsteadiness in both operating conditions and recorded surface 

pressure fluctuations. Lower angles of attack were found to result in lower pressure 

fluctuations, indicating that the maximum pressure variability occurred during highly 

separated flows under high rotation rate conditions.  

 

Figure 6: Surface pressure coefficient measured by sensor ‘e’, located at 𝑥 𝑐⁄ = 0.36 on 

the flat plate undergoing dynamic stall with 𝛼𝑚𝑎𝑥 = 50° and 𝜅 = 0.1. Error bars 

represent one standard deviation from the mean pressure coefficient. 

Greater uncertainties were also observed with low angles of attack and at low flow speeds 

(hence low dynamic pressure). This led to a low signal/noise ratio of the sensors, however, 

the overall uncertainty of the averaged force coefficient results was shown to be on 

average, ∆𝐶𝐿 = ±0.2 from the mean lift coefficient and across 100 repeated tests.   

Development and shedding of the dynamic-stall vortex, and other upper surface 

structures, were captured successfully. This allowed the impact of leading and trailing 

edge geometries to be studied during the pitch-up motion. 
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Force Generation 

The force variation created by the flat plate undergoing constant-pitch-rate motion was 

shown to vary with both reduced frequency and the type of leading and trailing edge 

extensions. In addition, the maximum lift was shown to plateau to a point where 

increasing the angle of attack had a minimal influence on the lift outcome. Figure 7 shows 

the lift coefficient with respect to the non-dimensional time for multiple angles of attack 

and the round leading-edge and trailing-edge extensions.  

 

Figure 7: Lift coefficient versus non-dimensional time of the flat plate fitted with a round 

leading edge profile and exposed to constant-pitch-rate dynamic stall, where 𝜅 = 0.025 

and 𝑅𝑒 = 20,000. Periods of plate rotation (𝑇∗ < 0) and sustained 𝛼𝑚𝑎𝑥 (𝑇∗ > 0) 

periods of flow indicate the critical angle of attack and bluff body separation 

characteristics respectively. 
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In Figure 7, lift generated in regions of negative 𝑇∗ represent stages of increased rotation 

prior to the flat plate reaching the maximum angle of attack. Positive 𝑇∗ show lift 

generated once the flat plate has ceased rotation and is held stationary at the maximum 

angle of attack. Also shown in Figure 7 is the Strouhal number, 𝑆𝑡 = 𝑓𝑐 𝑈∞⁄ , where 𝑓 is 

the wake vortex shedding frequency in Hertz for cases where the maximum angle of 

attack of the plate is 𝛼 = 30° and 𝛼 = 50°. Strouhal numbers were evaluated only after 

the plate rotation had ceased and periodic vortex shedding, representing bluff body 

separation, was established.   

From Figure 7, for 𝛼𝑚𝑎𝑥 = 50°, the period of airfoil rotation is approximately 𝑇∗ = 18.5. 

Maximum lift is established at 𝐶𝐿 = 1.5 and when 𝑇∗ = −11.5. As such, a flow time of 

approximately 7 chord lengths of travel was established between initial plate rotation and 

establishment of the maximum lift coefficient. Again, 𝑇∗ represents the non-dimensional 

flow time, with negative values indicating airfoil rotation and positive values representing 

period of flow time where the flat has reached its maximum angle of attack and continued 

to proceed into post-stall at the maximum angle of attack. Peak lift corresponds to the 

phase in the pitch-up process where the leading-edge vortex has developed and begins 

to separate from trailing edge on the upper of the flat plate.  Once the maximum angle of 

attack was reached, represented by 𝑇∗ = 0, any benefits of the unsteady lifting process 

are no longer available. Separation of the leading-edge vortex results in a significant lift 

reduction. Also shown in Figure 7 is the flow time required to establish bluff-body flow 

conditions, in this case 𝑇∗ = 10 once the maximum angle of attack is achieved. 

Figure 8 shows the lift coefficient with respect to the non-dimensional time for reduced 

frequencies of 𝜅 = 0.025, 𝜅 = 0.05 and 𝜅 = 0.1. To ensure correct system functions, a 
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validation case for both lift and rotation rate using Ramesh et al. (2011) where 𝜅 = 0.1 

for a flat plate undergoing similar rotation characteristics, was compared to the results 

obtained from the current investigation. 

 

Figure 8: Lift coefficient versus non-dimensional time of the flat plate fitted with round 

leading and trailing edge extensions and undergoing constant-pitch-rate motion to 

varying maximum angles of attack. The reduced frequencies were 𝜅 = 0.025 (a), 𝜅 =

0.05 (b) and 𝜅 = 0.1 (c). 
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The results in Figure 8a demonstrate a delay in lift generation at the beginning of rotation, 

which are observed as periods of increasing non-linear 𝐶𝐿, and which are attributed to the 

acceleration of the plate over the first 3° of rotation in the pitch-up process. Plotting the 

lift against the angle of attack resulted in linear increases in lift, as shown in Figure 5, 

confirming correct operation of the test apparatus.   Lift was shown to increase from 

𝐶𝐿 𝑚𝑎𝑥 = 1.5, for 𝜅 = 0.025 (Figure 8a), to 𝐶𝐿 𝑚𝑎𝑥 = 2.05 for both 𝜅 = 0.05 (Figure 8b) 

and 𝜅 = 0.1 (Figure 8c). This is reflected in an increase in the suction pressure coefficient, 

over the forward regions and on the upper surface of the flat plate, and also due to an 

increase in pressure coefficient on the lower surface of the plate with increased rotation 

rate, as indicated in Figure 9. In Figure 9, 𝑇∗ is the non-dimensional time from initial plate 

rotation until the indicated angle of attack is obtained and motions ceased. Increasing the 

rotation rate of the flat plate is shown to increase the pressure coefficient on the lower 

surface of the airfoil, resulting in increased lift. This is evident prior to the formation of 

the leading-edge vortex, as shown in Figure 9c for κ = 0.1. In Figure 9c, increased suction 

due to the leading-edge vortex is not observed, indicating that the additional lift is 

primarily due to the circulation developed about the plate, which is in-turn due to the 

pressure differential developed from attached flow induced via the pitch-up motion. The 

absence of the leading-edge vortex, for the case of 𝜅 = 0.1, is attributed to the increase 

in rotation rate which results in delayed formation of the leading-edge vortex until higher 

angles of attack. For lower rotation rates, as indicated in Figure 9a and Figure 9b, increases 

in surface pressure suction peaks are observed to extend along the upper surface with 

increased angle of attack, due to the growth of the leading-edge vortex.   
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Figure 9: Surface pressure coefficient of the flat plate for 𝜅 = 0.025, 0.05 and 0.1 

showing the increase in suction pressure on the forward-upper surface and also 

increased pressure on the lower-rear surface due to plate rotation. Solid lines represent 

upper-surface pressure coefficients, whilst broken lines represent lower-surface pressure 

coefficients. 
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However, from Figure 9c, the effects of vortex lift at the indicated angles of attack is 

limited. This being due to the decreased chord-wise distribution and magnitude of the 

suction peaks on the upper surface. 

Peak lift was delayed to higher angles of attack with an increase in reduced frequency. For 

example, for 𝜅 = 0.025, increasing the angle of attack beyond 𝛼𝑚𝑎𝑥 = 15° resulted in no 

significant increase in lift generation. Comparatively, with 𝜅 = 0.05, peak lift was 

established at 𝛼𝑚𝑎𝑥 = 30°, whilst for 𝜅 = 0.1, maximum lift was obtained at 𝛼𝑚𝑎𝑥 = 37°. 

Similar trends in increased lift and delayed stall were also noted in North Atlantic Treaty 

Organization (2016) The angle of attack where maximum lift is achieved is defined as the 

critical angle of attack, 𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, as beyond this threshold, no additional lift increase is 

obtained. Increasing the angle of attack above 𝛼𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 resulted in an earlier reduction in 

lift and transition into steady-state (deep) stall. Similar reductions in the aerodynamic 

force were discussed in Perrotta and Jones (2017) who showed, using PIV, the 

development of the vortical flow around a flat plate exposed to gust-like disturbances. 

From the results in Perrotta and Jones (2017), separation of the leading-edge vortex was 

correlated with significant lift reductions. In the current investigation, complete 

separation of the leading-edge vortex resulting in deep-stall conditions is expected, and 

is represented via fluctuations in lift resulting from large scale von-Karman vortex 

shedding (Fage and Johansen, 1927, Lam and Leung, 2005, Lam and Wei, 2010). The 

vortex shedding frequency in post-stalled conditions was consistent with steady-state 

data provided in Chen and Fang (1996). The Strouhal number was 𝑆𝑡 = 0.3 for 𝛼 = 30° 

and 𝑆𝑡 = 0.2 for 𝛼 = 50°. This indicates, for the post-stall flow regime and once rotation 

has stopped, that deep-stall characteristics and steady-state separation from the plate 

were not influenced by the flow’s previous history and induced flows developed during 
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the pitch-up motion. As such, the force characteristics revert back to steady-state 

conditions similar to those observed during von Karman vortex shedding.  

Replacing the round leading-edge extension with the square extension was shown to 

decrease the maximum lift values for all reduced frequency tests. Figure 10(a-c) shows 

the lift coefficient generated for the flat plate fitted with square extensions for all three 

reduced frequencies and to varying maximum angles of attack. From observation of the 

maximum lift coefficient, it is apparent that the lift coefficient of the square extension 

was reduced by approximately 𝐶𝐿 = 0.1 when compared with the round leading edge 

profile. Although this trend is clear, implementation of tests using a higher density 

pressure array at the leading edge can provide further evidence to focus on the effects of 

variations in the leading- and trailing-edge profiles. For example, Rival et al. (2013) and 

Rival et al. (2014) showed the opposite trend, where square leading-edge profiles 

provided increased aerodynamic performance. However, experiments in Rival et al. 

(2013) and Rival et al. (2014) were conducted for plunge motion at a varying pitch-rate, 

and indicating a possible sensitivity of the force response to motion type. These results 

indicate that the plunge and constant-pitch-rate motion conditions may not be 

comparable and therefore results from one condition may not be transferable to another 

for different leading-edge and trailing-edge profiles.  

Trends in maximum lift for the square edge cases were observed to be similar to those of 

the round-extension cases, such that once a critical point in the flat plate angle of attack 

was reached, then no further increase in lift generation was observed. For the square 

extension, the critical angle of attack was shown (Figure 10a) to be approximately 

𝛼𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 10° for 𝜅 = 0.025, whilst 𝛼𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 20° and 𝛼𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 40° for 𝜅 = 0.05 
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(Figure 10b) and 𝜅 = 0.1 (Figure 10c) respectively. Increasing the reduced frequency 

increased the maximum lift capacity such that 𝐶𝐿 = 1.4 for 𝜅 = 0.025, whilst 𝐶𝐿 = 2.0 

for 𝜅 = 0.05 and 𝐶𝐿 = 2.2 for 𝜅 = 0.1.   

 

Figure 10: Lift coefficient versus non-dimensional time of the flat plate fitted with a 

square leading-edge and trailing-edge extensions and undergoing constant-pitch-rate 

motion to varying maximum angles of attack.  The figure shows peak lift generation and 

the impact of increasing reduced frequency over the range 𝜅 = 0.025, 0.05 and 0.1. 
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Changing the leading-edge and trailing-edge extensions to the triangular geometry 

showed similar trends in lift generation to those of the round and square geometry 

extensions, and is shown in Figure 11.  

 

Figure 11: Lift coefficient verses non-dimensional time of the flat plate fitted with 

triangular leading-edge and trailing-edge extensions and undergoing constant-pitch-rate 

motion to varying maximum angles of attack. The figure shows peak lift generation and 

the impact of increasing reduced frequency over the range 𝜅 = 0.025, 0.05 and 0.1. 
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As before, delayed lift is observed during flat-plate acceleration, followed by a linear 

increase in lift prior to leading-edge vortex separation. However, the overall lift was 

shown to be less compared to both the round and square extensions, which correlates to 

the observations discussed from results in North Atlantic Treaty Organization (2016) using 

similar flat plate experiments. The current study indicates that the application of the 

triangular extensions have little benefits over round extensions in reducing the load 

fluctuations on plates exposed to transient gust conditions where low-rotation-rate 

conditions apply. However, for unsteady rotation rates, such as 𝜅 = 0.1, the triangular 

extensions are shown to have similar performance to both square and round profiles.    

The triangular extension results in a reduction of overall lift for the two lowest reduced 

frequencies, such that 𝐶𝐿 = 1.3 for 𝜅 = 0.025 (Figure 11a), and 𝐶𝐿 = 1.8 for 𝜅 = 0.05 

(Figure 11b). At the highest reduced frequency, 𝜅 = 0.1, lift was demonstrated to be 

similar to both the round and square extensions where 𝐶𝐿 = 2.2 (Figure 11c). Yu and 

Bernal (2013) show the influence of inertial flows created though high rotation rates, 

where increased lift and drag was shown to increase with both rotation axis and rotation 

rate. However in the current investigation, it is shown that the extension profiles do not 

significantly impact the maximum generated lift at the highest rotation rate investigated 

(𝜅 = 0.1). The rotation rate, when compared to leading-edge profile, is shown to have a 

greater influence on load generation, development of high pressure gradients on the 

forward upper surface of the plate and increasing pressure on the lower surface of the 

plate, all of which ultimately result in elevated force generation and flow separation. The 

presence of flow separation is shown to result from high localised pressure gradients, 

which in turn are increased with elevated reduced frequencies. These high pressure 

gradients are present regardless of the leading-edge profile utilised. 
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Changes in the maximum lift were compared directly for all extension profiles and 

reduced frequencies, as summarised in Figure 12.  It can be seen that increasing the 

reduced frequency resulted in an overall increase in the lift coefficient for all leading-edge 

cases. The results from the current work show the round profile extensions generate their 

maximum lift at higher angles of attack compared to both the square and triangular 

profiles.  

 

Figure 12: Trend in maximum (a) lift coefficient verses angle of attack verses maximum 

test angle of attack for the round, square and triangular extension, and for 𝜅 = 0.025, 

𝜅 = 0.05 and 𝜅 = 0.1. 

Leading-edge vortex growth rate 

Investigations to identify the growth rate and characteristics of the leading-edge vortex 

were conducted to determine the impact of varying leading-edge and trailing-edge 
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geometries and increasing rotation rate on the surface pressure distribution of the flat 

plate. Moreover, the surface pressure coefficient, 𝐶𝑃, was utilised to determine the 

change in growth rate of the leading-edge vortex with respect to the reduced frequency. 

Note that in the current investigation it was not possible to determine the beginning of 

the leading-edge vortex formation due to the lack of pressure sensors forward of 𝑋 𝑐⁄ =

0.11. However, trends in surface pressure gradient could be utilised for an approximation 

of the vortex growth once the leading-edge vortex was established. Figure 13a indicates 

the time history of the upper surface pressure distribution for the flat plate with round 

extensions, rotating at a reduced frequency of 𝜅 = 0.025 to a maximum angle of attack 

of 𝛼 = 30°. The location of the half-saddle point, representing the bifurcation between 

forward and reversed flow on the supper surface, corresponds to the presence of a strong 

adverse pressure. Although a critical point, in the form of a half saddle, is representative 

of local maximum pressures (Perry and Fairlie, 1975), where 𝐶𝑃 = 1, similar behaviour of 

reduced pressure coefficient at the location of the half-saddle point is also observed in 

the numerical simulations of Visbal (2011), and in the experimental results of Mueller-

Vahl et al. (2014) who measured surface pressures about thick airfoils undergoing pitching 

motions. This suggests that a change in static pressure results due to the interaction of 

the leading-edge vortex and motion of the flat plate.  

The half-saddle point location, represented by a significant  pressure gradient on the plats 

upper surface, is observed to move aft of the leading edge with increased flow time, as 

indicated in Figure 13b, until it reaches the trailing edge, prompting complete flow 

separation. Movement of the half-saddle beyond the trailing edge results in deep stall 

conditions and loss of suction, as shown in Figure 13a for T∗ > 2. 
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Figure 13: Representation of the leading-edge vortex reattachment point, determined by 

the half-saddle point defined at a position where a severe pressure gradient is located on 

the plate upper surface with round profile extensions and pitching to a maximum angle 

of 𝛼 = 30° and for 𝜅 = 0.025. 

Through visual inspection of the pressure coefficient at the half-saddle point, the rate of 

growth of the leading-edge vortex can be inferred as the reduced frequency is varied. 

Separation of the saddle point from the trailing edge leading to complete flow separation 

is also discussed in Rival et al. (2013) and Rival et al. (2014), thus indicating a good 

agreement with the current analysis linking the evolution of the surface pressure gradient 

with the motion of the half-saddle point.  

From Figure 14, interpretation of the formation of either separation bubbles or the 

leading-edge vortex is possible. Due to an increase in suction pressure coefficient on the 

upper surface towards the aft of the flat plate, the formation of a separation bubble is not 

observed. With the existence of a separation bubble on the upper surface, the pressure 

coefficient is expected to plateau with increased distance from the leading edge. In the 
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current analysis, an increase in suction pressure coefficient is observed and can be related 

to the formation, growth and presence of the leading-edge vortex above the plate’s 

surface.  

 

Figure 14: Surface pressure coefficient of the flat plate where 𝜅 = 0.025 and the 

maximum angle of attack is 𝛼 = 30°. Regions of severe pressure gradient and locations 

where are utilised for identification of the half-saddle point developed aft of the leading-

edge vortex. 

Regions of increased suction and leading-edge vortex interaction are highlighted in Figure 

14, with locations of increased suction being circled. For example, when 𝑇∗ = −4, an 

increase in the upper surface suction pressure is observed between 𝑥 𝑐⁄ = 0.45 and 

𝑥 𝑐⁄ = 0.8.  With the presence of the leading-edge vortex, an increase in induced velocity 

on the surface occurs, resulting in localised increases in suction pressure (decreased 

pressure coefficient) and enhanced lift. Additionally, regions approximating the location 

of the half-saddle 

Surface pressure results for 𝛼𝑚𝑎𝑥 = 30° are presented in the following analysis as full 

development of the leading-edge vortex, for all reduced frequency cases investigated was 
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achieved. Figure 15 shows contours of the upper surface pressure coefficient for 𝜅 =

0.025, 𝜅 = 0.05 and 𝜅 = 0.1 and for the flat plate fitted with round leading-edge and 

trailing-edge extensions. Here the dimensionless distance along the flat plate’s chord 

length is plotted on the ordinate axis, whilst the non-dimensional time is displayed on the 

abscissas. Figure 15 also shows the presence of the leading-edge vortex and its growth, 

which begins at the leading edge and extends to the trailing edge. Initial separation of the 

boundary layer occurs immediately in the pitch-up process due to the strong adverse 

pressure gradients created by the leading-edge geometry. With increasing angle of attack 

and under the presence of rotation, re-attachment of the separated boundary layer 

occurs, resulting in the formation of an attached leading-edge vortex (Widmann and 

Tropea, 2015, North Atlantic Treaty Organization, 2016).  

Increased lift is attributed to the increased area of the flat plate exposed to low pressure, 

resulting from the formation and presence of the leading-edge vortex. As the reduced 

frequency was increased, the magnitude of the suction pressure peak was shown to 

increase, leading to the increase in lift coefficient as observed in Figure 8(a-c), Figure 10(a-

c) and Figure 11(a-c). Increasing the reduced frequency was also shown to result in higher 

growth rates of the leading-edge vortex. This was identified through the rearward motion 

of the half saddle-point.  

The position of the half-saddle point was shown to progress from the leading edge 

towards the trailing edge in a linear manner, similar to that of the flat plate motion profile. 

Once reaching the trailing edge, its separation from the plate surface and departure into 

the wake lead to deep stall. The position of the half-saddle point, connecting the leading-

edge vortex to the upper surface of the flat plate, is approximated in the current work by 
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the location of a significant pressure gradient aft of the maximum suction location, as 

indicated in Figure 13b and Figure 15.  

 

Figure 15: Upper surface pressure coefficient distributions on the pitching flat plate, 

plotted against non-dimensional time for the cases where the plate is fitted with round 

extensions and 𝛼𝑚𝑎𝑥 = 30°. Low pressure regions indicate the formation of the leading-

edge vortex. 

The locations and definition of the half saddle point, shown in Figure 15, was also 

identified and discussed in Widmann and Tropea (2017), Rival et al. (2013) and Rival et al. 

(2014), however, its location was identified as regions of zero surface velocity on the 

upper surface of the plat during rotation. Rival et al. (2013) and Rival et al. (2014) show 

the movement of the half saddle for a flat plate with two dissimilar leading-edge profiles 

and discuss the benefits of knowing its motion with regards to flow control, although only 

for one test reduced frequency. 

In the present text, we have sought to identify the motion of the half saddle point, which 

directly relates to the growth of the leading-edge vortex, and its variation in growth rate 

with respect to changes to the reduced frequency to better apply methods of controlling 
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the growth and development of the leading-edge vortex, and dynamic stall. Movement of 

the rear half-saddle point attaching the leading-edge vortex to the upper surface is 

represented by 𝑋̇ = 𝑋 𝑐𝑇∗⁄ , where 𝑋̇ is the non-dimensional movement rate determined 

through interpretation of the surface contours shown in Figure 15, for each reduced 

frequency and extension profile examined. From analysis of the surface pressures a 

representation of the reattachment point of the leading-edge vortex could be determined 

through estimation of the pressure at the location where the significant pressure gradient 

existed. For the case of the round extensions, the pressure correlating to the location of 

significant pressure gradient was observed to vary according the flat plate rotation rate, 

as is shown in Figure 16. 

 

Figure 16: Variation in 𝐶𝑃 at the approximation of the half-saddle point location with 

changes in flat plate rotation rate for the plate with round extensions. 

Using the location of the pressure gradient on the upper surface, an approximation of the 

variation in half-saddle point movement for the constant-pitch-rate motion in the current 

analysis could be determined. Results of the rate of change of the half-saddle location are 

shown in Figure 17. 
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Figure 17: Non-dimensional rate of change of the half-saddle point location from the 

leading edge with respect to reduced frequency for all three leading edge geometries 

evaluated on the constant-pitch-rate motion flat plate. 

Movement of the half-saddle was observed to correlate closely with the linear pitch-up 

motion, such that a linear increase in its distance from the leading edge was observed. 

The normalised movement rate of the vortex half-saddle location was approximated such 

that 𝑋̇ = 0.75𝜅 + 0.145. Substitution of the reduced frequency, free stream velocity and 

chord length into 𝑋̇, resulted in the rate of change of the half-saddle location aft of the 

leading edge, such that 𝑋 𝑇⁄ = 0.15(2.5𝜔𝑐 + 𝑈∞). The movement of the half saddle was 

shown to be enhanced by the rate of rotation, such that its movement towards the trailing 

edge increased proportionally with increased reduced frequency and chord length.  This 

indicates the direct relationship between both rotation rate and chord length to the 

vortex growth for a flat plate exposed to constant-pitch-rate motion, as experienced in 

the current testing. The current results also agree with observations in Jones et al. (2016), 

where the leading-edge vortex position was tracked using PIV and increases in the 

rotation rate were shown to have a similar influence on increasing the velocity of the 
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leading-edge vortex over the plate’s surface. Also noted is that the initial growth rate is 

solely dependent on the free-stream velocity when the reduced frequency is lowered to 

𝜅 = 0. This hypothesis however must be confirmed in future investigations at reduced 

frequencies where 𝜅 < 0.025, to observe the trend in vortex growth rate as a function of 

both rotation rate and motion profile. 

Conclusions 

The edge profile shape was only observed to impact the lift coefficient at low angles of 

attack of the flat plate, with the lift becoming insensitive to leading-edge and trailing-edge 

geometry at higher angles of attack. The current work shows the details of variations in 

leading edge and trailing edge profiles and their influence on the overall lift 

characteristics. However, future work using additional sensors located at the leading edge 

can help to provide further evidence, and show the differences between multiple leading 

edge profiles, for the analysis of lift development and determination of the location and 

onset of the leading-edge vortex. A critical angle of attack is identified for each of the 

reduced frequencies, such that beyond this angle no benefit to lift occurs due to 

continued rotation. The round leading-edge and trailing-edge extensions were 

demonstrated to generate greater lift when compared to the square and triangular 

leading-edge and trailing-edge extensions. At the highest rotation rate, where 𝜅 = 0.1, 

lift was similar between all test cases indicating that the force becomes independent of 

the plate leading-edge and trailing-edge geometry and more associated with unsteady 

flows dominated by inertial induced flows.  Peak lift was linked to the generation of the 

leading-edge vortex, which on separation from the flat plate resulted in significant loss of 

lift. 
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Detachment of the leading-edge vortex is shown to occur once the location of a half-

saddle point, approximated by the location where a significant pressure gradient existed 

on the upper surface of the flat plate and aft of the low pressure region characterised by 

the leading-edge vortex, reaches the trailing edge of the flat plate. The half-saddle 

movement was shown to be independent of leading-edge and trailing edge geometry and 

also the angle of attack, but directly proportional to the rotation rate, chord length and 

free-stream velocity. The pressure coefficient at the location of the half-saddle point was 

shown to be a function of the rotation rate of the plate and increased in a logarithmic 

manner with increased non-dimensional rotation rate. Although a simple motion type was 

selected for the current investigation, further work is required to conclude if the motion 

of the half-saddle point remains linear with changes to the rotation rate profile. This will 

allow greater flexibility and regulation of boundary layer flow control devices, which may 

utilise the vortex dynamics for efficient operation. Under post-stalled conditions, the flat 

plate was observed to exhibit bluff body separation characteristics, where fluctuations in 

lift are associated with large-scale vortex shedding, and decreased aerodynamic efficiency 

with increased angle of attack.  
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Chapter 7.  Conclusions and Future Work 

Conclusions and Future Work 

Dynamic stall on airfoils exposed to constant-pitch-rate motion was investigated for its 

associated effects, such as increased force and moment fluctuation, on the blades of 

rotary machines. The research herein utilises PIV and surface pressure analysis to examine 

fluid flow formation and load generation at low Reynolds numbers, in order to address 

the overall thesis objectives. This leads to knowledge that can be utilised for more 

efficient control of the boundary layer during dynamic stall. Airfoil thickness was shown 

to have a minor influence on the flow structure and force at elevated rotation rates and 

high angles of attack. Furthermore, in post-stalled conditions, dynamic stall had little 

effect on the force generation, although separation of the leading-edge vortex was 

delayed to higher angles of attack with increasing pitch rate. Under high rotation rates 

and high angles of attack, the leading-edge trip wire did not perform adequately, due to 

high inertial loads imposed during airfoil rotation. The trip wire was not observed to 

provide beneficial flow control properties under the highly accelerated flow conditions. 

The thesis shows the formation of a half-saddle point on the surface of the flat plate aft 

of the leading-edge vortex, which can potentially be utilised for control of boundary layer 

separation. The following subsections outline major outcomes and conclusions drawn 

from each of the research aims developed at the initiation of the project.  
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7.1.  Dynamic Stall on Thick and Thin Airfoils 

Through application of PIV and surface pressure measurements, the extent of load 

generation and flow separation developed about two wings of different thicknesses were 

investigated during constant-pitch-rate dynamic stall. The two airfoils consisted of a thin 

NACA 0012 and a thick NACA 0021 airfoil. Test parameters include constant angular 

velocity, reduced frequencies of 𝜅 = 0.05, 0.1 and 0.2, and a Reynolds number for 𝑅𝑒 =

20,000. The wings were rotated to a maximum angle of attack of 𝛼 = 90° and remained 

fixed at this angle prior to returning to 𝛼 = 0°. The presence of vortex formations was 

shown to be similar between the two airfoils. However, the airfoil thickness and rotation 

rate were shown to influence the growth and strength of the developed separation 

bubble and leading-edge vortex on the suction side of the wing. Increases in rotation rate 

were linked to a delay in flow separation and leading-edge vortex formation, resulting in 

increased lift production of both airfoils to significantly higher angles of attack in 

comparison to steady-state operation. Fully-separated flow conditions were achieved 

once the stagnation point on the upper surface of the airfoil transitioned from the trailing 

edge of the airfoil into the wake. 

Geometry and reduced frequency variations did not appear to influence deep-stall flow 

characteristics. Both airfoils exhibited bluff-body separation characteristics, distinguished 

by large-scale von-Karman vortex shedding once deep stall was established. Decreases in 

pressure at the leading edge on the suction surface were observed to occur with 

increasing rotation rate. The reduced pressure at the leading edge, prior to leading-edge 

vortex formation, combined with the presence of a separation bubble on the aft of the 

airfoil, resulted in a reduction in the lift-curve slope. During ramp-up of the wings, periodic 
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fluctuations in lift were observed with the presence of the leading-edge vortex. The 

fluctuations in lift were linked to vortices shed at the trailing edge, which in turn increased 

in magnitude with increased rotation rate. 

7.2.  Deep Stall Effects 

Post-stall characteristics of a NACA 0021 airfoil was investigated to determine the effect 

of dynamic stall on the flow structure and force, proceeding departure of the leading-

edge vortex. Three maximum angles of attack of 𝛼 = 20°, 𝛼 = 40° and 𝛼 = 60° were 

investigated at 𝑅𝑒 = 20,000. Multiple vortex structures developed on the airfoil upper 

surface due to the breakdown of a separation bubble located over the rear of the airfoil 

prior to leading-edge vortex formation.    

Merging of the leading-edge vortex and vortex structures over the rear of the airfoil 

resulted in the generation of the dynamic-stall vortex. Subsequently, the vortices were 

shown to induce low pressure regions on the upper surface of the airfoil resulting in an 

increase in lift. The fluctuation in force prior to periodic bluff-body separation were 

primarily due to the unsteady vortex shedding process. Fully separated flows were 

observed when the dynamic-stall vortex separated from the airfoil. Separated flows were 

shown to be minimally influenced by the rotation rate and angle of attack. As such, bluff 

body separated flow characteristics were established within six chord-lengths of the 

airfoil reaching the maximum angle of attack. Convection of the vortex structures towards 

the trailing edge resulted in a significant movement of the airfoil centre of pressure, prior 

to the establishment of periodic bluff-body separated flow characteristics. With an 

increasing angle of attack, the centre of pressure is shown to move aft of the leading edge. 
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Variation in location of the centre of pressure is minimal once bluff-body separation had 

developed.   

7.3.  Dynamic Stall Control 

The effectiveness of a leading-edge trip wire for boundary layer flow control in highly 

unsteady flow conditions was examined for three maximum angle-of-attack values and 

three reduced frequencies using a NACA 0012 airfoil. Maximum angles of attack were 𝛼 =

20°, 40° and 60°, whilst reduced frequencies were 𝜅 = 0.025, 0.05 and 0.1. Internally-

mounted pressure transducers were utilised to record fluctuations in flat plate surface 

pressure during the pitch-up process and for 10 chord-lengths of travel, relative to the 

flow, after reaching the maximum angle of attack. Surges in lift resulted from increased 

suction on the upper surface of the airfoil resulting from the leading-edge vortex. Post-

stall flow conditions were established with separation of the leading-edge vortex and 

observation of periodic force fluctuations resulting from von-Karman vortex shedding.    

The application of the trip wire was shown to reduce the lift during pre- and post-dynamic 

stall, whilst also diminishing the formation of laminar separation bubbles due to increased 

boundary layer mixing. Maintaining lower airfoil angles of attack reduced force 

fluctuations and generated greater overall performance. The trip wires were ineffective 

in controlling boundary layer separation at high reduced frequencies. In such operating 

conditions, increased periods of load fluctuation occurred prior to steady-state conditions 

being established.  

The results from this investigation show the limited applicability of a leading-edge trip 

wire as a passive flow control technique under highly unsteady operating conditions. 



Chapter 7.  Conclusions and Future Work  
________________________________________________________________________ 

 

 
261 

 

Although the trip wire demonstrated some positive benefits to force control at low 

rotation rates and prior to dynamic-stall vortex development, its effects at high rotation 

rates and angles of attack were limited.  

7.4.  Dynamic Stall Flow Topology 

Major flow structure topology and surface pressures generated about a pitching flat plate 

were studied to develop knowledge of surface pressure variation for future dynamic stall 

control purposes. Round, square and triangular leading edge profiles were evaluated for 

their effect on the dynamic-stall process. Variations in leading edge geometries are shown 

to be critical prior to leading-edge vortex formation and at low angles of attack. High 

rotation rate operating conditions resulted in high inertial loads which dominated flow 

development. This led to no significant visible effect of the leading edge geometry on the 

generated forces.  Continued rotation resulted in the observation of a critical angle of 

attack, from which, continued increase of the angle of attack resulted in no advantageous 

increases in lift. Higher lift characteristics were established for the combination of the 

round leading- and trailing-edge profiles during low ration rates. Under high rotation 

rates, where 𝜅 = 0.1, no distinct advantage of was observed to result from varying the 

leading- and trailing-edge extensions.  

A half-saddle point was identified in the region of high pressure gradient on the surface 

of the plate and aft of the leading-edge vortex. The half-saddle was linked to the 

attachment of the leading-edge vortex and was represented by the attachment point on 

the plate surface of the streamline bifurcating the outer free-stream and the flow within 

the lead-edge vortex. Whilst the half-saddle was present on the upper surface, increases 
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in vortex lift were observed. After the half-saddle moved into the wake, fully separated 

flows were developed. Leading-edge and trailing-edge geometries were demonstrated to 

have a minor influence, whilst movement of the half-saddle point aft of the leading edge 

was shown to be linearly dependent on the free-stream velocity, chord length and 

rotation rate.  Results herein links pressure fields and critical flow topology for enhanced 

knowledge of dynamic stall control.   

7.5.  Significance of the Present Work 

Wind turbines, helicopters, micro-aerial vehicles and natural flyers are all subjected to 

high rotation rates and high angles of attack, which results in dynamic stall and unsteady 

force generation characteristics. These conditions leads to high inertial loads, enhanced 

vibration and increased structural fatigue. Development of knowledge associated with the 

dynamic-stall process during these operating conditions can lead to more efficient 

boundary layer control devices to assist with dynamic stall suppression, in order to 

reduced fatigue and structural loading on rotary machines, or enhance lift for increased 

control and manoeuvrability of micro-aerial vehicles and natural flyers.   

The research in the current thesis demonstrates increased load development at extreme 

operating conditions. Additionally, the thesis details major contributions towards 

research into dynamic stall and includes: 

1. Demonstrating the presence of load fluctuations for increased periods of time 

following dynamic stall and during post-stall conditions.  
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2. Showing the minimal influence of variations in airfoil thickness on the flow 

development characteristics during highly-unsteady rotation rate airfoil pitch-up 

motions.  

This is significant to the operation of wind turbines, where stalled conditions are often 

used as a simple method to control over-speed operation of the rotors in high-gust 

configurations.  

3. Presenting the effects of a leading-edge trip wire on airfoils which are undergoing 

highly unsteady flow conditions. 

4. The trip wire had a minor effect on flow development during high rotation rate, 

high angle of attack flow conditions. Furthermore, in post-stall conditions the trip 

wire was demonstrated to have a minor influence on the overall aerodynamic 

efficiency of the airfoil.   

This is significant, as it indicates that the leading-edge trip wire is an ineffective boundary 

layer control technique when used in highly unsteady operating conditions.   

5. The presence of a half-saddle point location was identified, through surface 

pressure investigations, on a flat plate undergoing dynamic stall. The motion of 

the half-saddle point was linked to performance parameters such as airfoil 

rotation rate, free-stream velocity and the airfoil chord length.  

This is significant as pressure data generated from a flat plate undergoing dynamic stall 

can potentially be combined with more advanced adaptive control devices to control and 

manipulate the presence of the leading-edge vortex.  
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7.6.  Recommendations for Future Work 

The results of this research provide detail of the dynamic-stall process where highly 

unsteady flow conditions and high angles of attack are experimentally investigated. 

Details such as the dynamic-stall separation, post-stall flow behaviour, a passive flow 

control method and surface pressure development over a flat plate exposed to dynamic 

stall conditions are presented. Throughout the research, future recommendations have 

been identified to advance the state of knowledge of the dynamic-stall process. Some of 

these recommendations include: 

 Developing more effective passive flow control devices for highly unsteady flow 

environments. From the literature, it was identified that many of the flow control 

techniques have been applied to helicopter applications. Under these operating 

conditions, the angle of attack seldom exceeds 𝛼 = 30°, whilst the rotation rate is 

typically quasi-steady (𝜅 < 0.05). As such, there is still significant work to be done to 

develop flow control methods that are effective at controlling large-scale separation 

at high angles of attack, and also during high-rotation-rate motions. A potential 

avenue of investigation includes developing a control system that dissipates or 

transfers the momentum from the leading-edge vortex into other flow features, such 

as chord-wise vortices, to sustain lift or to lead to more controlled stall characteristics. 

 Further evaluation of the characteristics in the motion profile of the half-saddle point 

on the airfoil upper surface. Identification of the half-saddle location led to the 

awareness of the aft motion being a function of rotation rate, chord length and free-

stream velocity. More testing should be conducted to further explore these 
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relationships, and to determine if the motion of the half-saddle point is dependent on 

the airfoil rotation rate profile.  

 Developing more advanced active boundary layer control methods for suppression of 

lift formed during highly-unsteady dynamic stall. For example, the flow rate of suction 

ports located at the leading edge can be tuned using feedback from additional 

pressure ports located along the chord of the airfoil sensing the half-saddle point 

location.  Active feedback control of the boundary layer can potentially be utilised for 

manipulation and control of the leading-edge vortex. As such, variations in load 

fluctuation can be controlled in order to prevent blade load oscillation and increased 

vibration.  

 Determination of the rate of flow entrainment into the leading-edge vortex. Through 

investigation of the flow rate into the leading-edge vortex, suitable suction devices 

can be implemented to actively draw flow towards the airfoil surface to inhibit large-

scale flow separation and load oscillation. Further work is therefore required to 

understand the entrainment rate for the application of more specific and targeted 

boundary layer control methods. 

 Apply highly-unsteady flow conditions at higher Reynolds numbers. Increasing the 

Reynolds number to higher values may lead to variations in force characteristics from 

those achieved in this thesis. As such, it is recommended that additional work be 

conducted to investigate the dynamic-stall process and post-stall characteristics 

under high Reynolds number conditions representative of rotary machine 

applications.   
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Appendix - Dynamic Stall Velocity Profiles Using PIV   

The experimental study of the flow field velocity developed about two symmetrical airfoils 

with differing thickness-chord ratios and undergoing dynamic stall was carried out in the 

water channel located with the School of Mechanical Engineering, The University of 

Adelaide. The results from the work were presented at the 20th Australasian Fluid 

Mechanics Conference held in Perth, Western Australia. The results complement the 

vorticity contours presented in Chapter 1 of this thesis which are used to compare flow 

dynamics of NACA 0012 and NACA 0021 airfoils undergoing unsteady dynamic stall. 
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