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Abstract

The focus of this thesis is the de-noising and representation of phonocardiograms
for subsequent analysis. The PCG has been proven to be a clinically significant diagnos-
tic tool while being inexpensive, non-invasive, reliable and cheap. However, the PCG is
corrupted by noise from a number of sources including thoracic muscular noise (Zhang,
Durand, Senhadji, Lee & Coatrieux 1998), peristaltic intestine noise (Zhang, Durand,
Senhadji, Lee & Coatrieux 1998), respiratory noises, foetal heartbeat noise if the subject
is pregnant, noise caused by contact with the instrumentation and ambient noise. Thus,
there is a need to de-noise the PCG signal. Because it is a complex, non-stationary signal,
traditional methods of de-noising are not appropriate. Phonocardiogram de-noising
techniques, which are explored, include wavelet de-noising, optimised wavelet de-noising,
wavelet packet de-noising, the matching pursuit technique, and averaging. The time-
frequency and time-scale de-noising methods performed roughly equally while removing
significant amounts of noise from the signal. However, optimised wavelet de-noising
performed slightly better than the other methods; thus, optimised wavelet de-noising
in conjunction with averaging is recommended to be used in appropriate cases. Once
the PCG has been de-noised, different methods of extracting features from the PCG
and classifying the PCG according to this information were explored. The use of phase
space diagrams, HT diagrams, instantaneous signal parameter extraction, and phase
synchronisation between the ECG and PCG were investigated, but these investigations
were limited by the quantity and quality of data available. The results presented are only
indicative results, but they demonstrate that further work to investigate the use of these
techniques with larger amounts of data would be worthwhile. Recommendations for

future research in the area of phonocardiogram de-noising and classification are provided.
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