
-3C).1

CBME

CeaEe for Bionedio¡l Bnginocdng
Adelaide Univenity

Signal Processing Techniques for

Phonocardiogram De-noising and Analysis

Sheila R. Messer

8.S., Urriversity of the Pacific, Stockton, California, IJSA

Thesis submitted for the degree of

Master of Engineering Science

ADELAIDE
U N IVERSITY
AUSTRALIA

Adelaide University
Adelaide, South Australia

Department of Electrical and Electronic
Faculty of Engineering, Computer and Mathematical Sciences

by

July 2001





Contents

Abstract

Declaration

Acknowledgement

Publications

List of Figures

List of Tables

Glossary

I Introduction

1.1 Introduction

t.2 Brief Description of the Heart

1.3 Heart Sounds

1.3.1 The First Heart Sound

1.3.2 The Second Heart Sound .

1.3.3 The Third and Fourth Heart Sounds

I.4 Electrical Activity of the Heart

1.5 Literature Review 11

1.5.1 Time-Flequency and Time-Scale Decomposition Based De-noising 11

vi

vll

vul

lx

IX

xlx

xxii

I

2

4

7

8

8

I

I

I



CO]VTE]VTS

I.5.2 Other De-noising Methods t4

1.5.3 Time-Flequency and Time-Scale Analysis . 15

t.5.4 Classification and Feature Extraction 18

1.6 Scope of Thesis and Justification of Research 23

2 Equipment and Data Acquisition

2.1 Introduction 26

2.2 History of Phonocardiography and Auscultation 26

2.2.L Limitations of the Hurnan Ear 26

2.2.2 Development of the Art of Auscultation and the Stethoscope 28

2.2.2.L From the Acoustic Stethoscope to the Electronic Stethoscope 29

2.2.3 The Introduction of Phonocardiography 30

2.2.4 Some Modern Phonocardiography Systems .32

2.3 Signal (ECG/PCG) Acquisition Process

26

.34

2.3.1 Overview of the PCG-ECG System

2.3.2 Recording the PCG

2.3.2.I Pick-up devices

2.3.2.2 Areas of the Chest for PCG Recordings

2.3.2.2.I Left Ventricle Area (LVA)

2.3.2.2.2 Right Ventricular Area (RVA)

oaooe r^fr 
^+-;^l ^-^^ 

/T 
^^\a.!,a.2.{ !v¡u Ãurlo¡ ¡rr!o \!/ r¡ r/

2.3.2.2.4 Right Atrial Area (RAA)

2.3.2.2.5 Aortic Area (AA)

2.3.2.2.6 Pulmonary Area (PA)

.34

34

34

37

37

38

ce

38

38

39

ll



CO]VTE]VTS

2.3.2.3 The Recording Process .

2.3.3 Recording the ECG

2.3.4 The \MIN-3OD Analog to Digital Converter

2.4 Data Records

2.5 Chapter Summary

3 Theory of De-Noising Methods

3.1 Introduction

3.2 The \iVavelet tansform and De-noising

3.2.L Fourier Analysis

3.2.2 Short Time Fourier Transform (STFT)

3.2.3 The Wavelet Transform (WT)

3.2.3.t Wavelet Families and Properties

3.2.4 The 'Wavelet De-Noising Procedure

3.2.4.I Soft or Hard Thresholding

3.2.4.2 Threshold Selection Rules

3.2.4.3 Threshold Rescaling Methods

3.3 \Mavelet Packets (WP) and De-Noising

3.3.1 Wavelet Packet Generation

3.3.2 Wavelet Packet Atoms

3.3.3 Organising Wavelet Packets in Trees

3.3.4 Choosing the Best Decomposition

3.3.5 De-Noising with Wavelet Packets

3.4 Use of the Matching Pursuit Method to De-noise Signals

uI



CO]VTE]VTS

3.4.L Numerical Implementation of the Matching Pursuit with Gabor

Dictionaries

3.5 De-noising Using Averaging

3.5.1 Heartbeat Segmentation Algorithms .

3.6 Chapter Summary

4 PCG De-noising Study

4.L Introduction

4.2 Estimation of Noise in Recorded PCGs

4.3 Measurement of Noise Removal from PCGs

66

67

68

69

7t

72

72

75

76

87

93

98

100

4.4 Optimised Wavelet De-noising

4.5 Wavelet De-noising

4.6 \ffavelet Packet De-noising

4.7 Averaging

4.8 Matching Pursuit

4.9 Results and Discussion . 108

4.10 Chapter Summary . 113

6 PCG Data Analysis 115

5.1 Introduction . 116

5.2 Phase Space and Hilbert Tïansform Diagrams . 116

5.2.I Phase Space Diagrams I rtt

5.2.2 Hilbert tansform Diagram 118

5.2.3 Comparison of Phase Space and Hilbert Tþansform Diagrams . . . . 119

5.3 Use of the HT to Calculate Instantaneous Signal Parameters of the PCG . L27

lv



J

COJV"E]VTS

5.4 Phase Synchronisation

5.4.L ECG-PCG Phase Sychronisation, The Cardiosynchrogram . I37

5.5 Chapter Summary

6 Conclusion and F\rture Directions

6.1 Introduction .

6.2 Summary

6.3 Discussion and Conclusions

6.3.1 PCG De-noising

6.3.2 PCG Data Analysis .

6.4 F\rture Research Directions

A Escope Speciffcations

..135

rr,
'r,l

ü

Ï

I

..139

t4L

r42

r42

143

L43

t46

148

153

155

165

169

I

B Some Data Flom Patient Recordlngs

C Information on the Design of the PCG/ECG System

D Moment of Velocity

,l

v



Abstract

The focus of this thesis is the de-noising and representation of phonocardiograms

for subsequent analysis. The PCG has been proven to be a clinically significant diagnos-

tic tool while being inexpensive, non-invasive, reliable and cheap. However, the PCG is

corrupted by noise from a number of sources including thoracic muscular noise (Zhang,

Durand, Senhadji, Lee & Coatrieux 1998), peristaltic intestine noise (Zhang, Durand,

Senhadji, Lee & Coatrieux 1998), respiratory noises, foetal heartbeat noise if the subject

is pregnant, noise caused by contact with the instrumentation and ambient noise. Thus,

there is a need to de-noise the PCG signal. Because it is a complex, non-stationary signal,

traditional methods of de-noising are not appropriate. Phonocardiogram de-noising

techniques, which are explored, include wavelet de-noising, optimised wavelet de-noising,

wavelet packet de-noising, the matching pursuit technique, and averaging. The time-

frequency and time-scale de-noising methods performed roughly equally while removing

significant amounts of noise from the signal. However, optimised wavelet de-noising

performed slightly better than the other methods; thus, optimised wavelet de-noising

in conjunction with averaging is recommended to be used in appropriate cases. Once

the PCG has been de-noised, different methods of extracting features from the PCG

and classifying the PCG according to this information ïyere explored. The use of phase

space diagrams, HT diagrams, instantaneous signal parameter extraction, and phase

synchronisation between the ECG and PCG were investigated, but these investigations

were limited by the quantity and quality of data available. The results presented are only

indicative results, but they demonstrate that further work to investigate the use of these

techniques with larger amounts of data would be worthwhile. Recommendations for

future research in the area of phonocardiogram de-noising and classification are provided.
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