
' 

The University of Adelaide 

THE UNIVERSITY 

of ADELAIDE 
DOCTORAL THESIS 

Investigation of Timepix Radiation Detector for · 
Autoradiography and Microdosimetry in Targeted Alpha 

Therapy 

Ruqaya 0. Al Darwish 

Supervisor: Prof. Eva Bezak 
Co-Supervisors: Dr. Mohammad Moharnrnadi (until 2013) 

& Dr. Alex Staudacher (2013-2016) 

A thesis submitted in fulfilment of the requirements 
for the degree of doctor of Philosophy 

in 
The School of Physical Sciences 

University of Adelaide 

August 2016 

LIBRARY NOTE:
The following blank pages have been omitted, 
pp. 46, 118, 148, 166, 190



Declaration of Authorship 

I, Ruqaya 0. Al Darwish, certify that this thesis titled, 'Development of transmission alpha 

particle microdosimetry using Timepix radiation detector for targeted alpha therapy' and the 

work presented in it are my own. 

I confirm that: 

• This work contains no material which has been accepted for the award of any other 

degree or diploma in any university or other te11iary institution to Ruqaya 0. Al 

Darwish, to the best of my knowledge and belief, contains no material previously 

published or written by another person, except where due reference has been made in 

the text. 

• I give consent to this copy of my thesis, when deposited in the University Library, being 

made available for loan and photocopying, subject to the provisions of the Copyright 

Act 1968. 

• The author acknowledges that copyright of published works contained within this thesis 

resides with the copyright holder(s) of those works. 

• I also give pennission for the digital version of my thesis to be made available on the 

internet, visa the University's digital research repository, the Library catalogue, the 

Australasian Digital Theses Program (ADTP) and also through web search engines, 

unless permission has been granted by the University to restrict access for a period of 

time. 

Signed: 

Date: 
16 Oct 2017 



Scholarship 

• Ministry of Education of Saudi Arabia Scholarship 

ii 



Publications Contained Within Thesis 

Published 

I. Al Darwish R., Staudacher A. H., Bezak E. and Brown M. P., "Autoradiography 

Imaging in Targeted Alpha Therapy with Timepix Detector," Computational and 

Mathematical Methods in Medicine (2015), Article ID 612580, 7 pages 

http://dx.doi.org/I 0.1155/2015/612580. 

2. Al Darwish R., Staudacher A. H., Brown M. P. and Bezak E., "Development of a 

Transmission Alpha Particle Dosimetry Technique using A549 cells and a Ra-223 

source for Targeted Alpha Therapy", Medical Physics 43, 6145 (2016 ); doi: 

I 0.1118/1.4965805. 

Submitted for Publication 

I. Al Darwish R., Bezak E. Marcu L. and Rozenfeld A., "Timepix - technical aspects 

of a novel development in solid state radiation detectors", invited review article: 

submitted paper (invited paper). Submitted to: Radiation Measurements. 

2. Al Darwish R., Bezak E. Marcu L. and Rozenfeld A., "Overview of current 

applications of the Timepix detector in radiation physics", invited review article: 

submitted paper (invited paper). Submitted to: Radiation Measurements. 

4. Al Darwish R., Bezak E. and Mohammadi M., "Application of Timepix to Low 

Dose Radiation Dosimetry", research article: submitted paper. Submitted to: 

Radiation Protection Dosimetry. 

iii 



Conference Presentations 

National Presentations 

I. AL Darwish R., Bezak E. and Mohammadi M., Investigation of' Timepix Detector 

Application .fbr Radiation Imaging and Dosimetr, Engineering & Physical Sciences in 

Medicine (EPSM), 2-6 December 2012, Gold Coast, Australia. 

2. AL Darwish R., Bezak E. and Mohammadi M., Investigation cf Energy Deposition 

by Alpha Particles using Timepix Detector, Engineering & Physical Sciences in Medicine 

(EPSM), 3-7 November 2013, Perth, Australia. 

3. AL Darwish R., Staudacher A. H. and Bezak E., Application of'Timepix Detector in 

Targeted Alpha Therapy Autoradiography, Fifth Australasian Cyclotron Users' Group 

Meeting, 25 April 2014, Adelaide, Australia. 

4. AL Darwish R., Staudacher A. H. and Bezak E., Application ul Timepix detector to 

microdosimetry: Investigation o/A54<J lung carcinoma cells survival exposed to photons 

and alpha particles, Combined Scientific Meeting, 4-7 September 2014, Melbourne, 

Australia. 

5. AL Darwish R., Staudacher A. H. and Bezak E., Development of' transmitted alpha 

particle microdosimetry using A54<) cells and Ra-223 source.fbr targeted alpha thera1~v. 

Engineering & Physical Sciences in Medicine ( EPSM ), 8-12 November 2015, 

Wellington, New Zealand. 

International Presentations 

I. AL Darwish R., Staudacher A. H. and Bezak E., Application of' Timepix for 

Autoradiography Imaging in Targeted Alpha Therapy, European Society for 

Radiotherapy & Oncology (ESTRO 33), 4-8 April 2014, Vienna, Austria. 

iv 



2. AL Darwish R., Staudacher A. H. and Bezak E., Development of transmitted alpha 

particle microdosimetry using Timepix: Investigation of A549 lung carcinoma cells 

exposed to alpha particles irradiatedji-0111 Ra-223, The IUPESM World Congress, 7-

12 June 2015, Toronto, Canada. 

3. AL Darwish R., Staudacher A. H. and Bezak E., Investigation ofDNA douhle strand 

breaks correlation with absorbed dose fi·om alpha particle irradiation using 

combination of radiation and biological dosimet1y, J 4th International workshop on 

radiation damage, 20-24 March 2016, Melbourne, Australia. 

Other Presentations and Publications 

1. AL Darwish R., Staudacher A. H. and Bezak E., Investigation of Timepix Detector 

Application for Radiation Imaging and Dosi111et1y, the 2013 student paper night, 

Australian College of Physical Scientists and Engineers in Medicine (ACPSEM) I 

South Australian/Northern Territory Branch - Student Night, 20 March 2013, 

Adelaide, Australia. 

2. Work included in chapter 9: Targeted Alpha Therapvfhr Cancer. by B.J. Allen, L.G. 

Marcu, and E. Bezak, in Advances in Medical Physics, editedly Godfrey, D.J., et al. 

Medical Physics Publishing. 2016. 

v 



Abstract 

The Timepix detector developed by CERN is a novel and sophisticated particle detector. It 

consists of a semiconductor layer divided into an array of pixels. This array of pixels is bump

bonded to an electronics integrated layer (i.e. the readout chip). Timepix can be used for a wide 

range of measurements of electromagnetic radiation and particles and their applications in 

different fields such as space physics, nuclear physics, radiotherapy physics, imaging and 

radiation protection. 

The Timepix detector used in this work was purchased from Amsterdam Scientific Instruments, 

the Netherlands, in order to investigate its use for microdosimetry purposes, in particular in 

targeted alpha therapy. The device has the following properties: 256 x 256 pixels of 55 x 55 

µm 2 area each, the chip is effective for positive or negative charge and can be used to detect 

electrons, X-rays, neutrons and heavy charge particles. It can work as an energy spectrometer, 

has good spatial resolution and reason1ble detection efficiency. The device can operate in three 

common modes: Timepix mode, Medipix mode, and Time-Over-Threshold (TOT) mode. 

Targeted alpha therapy (TAT) is a novel type of radionuclide therapy in which an alpha 

emitting radioisotope is attached to a cancer cell seeking vector (so called 

radioimmunoconjugate (RIC)). Once attached to a cancer cell, it causes localized damage due 

to traversal and energy deposition high LET a-particles. 

There is, however, a lack of data related to a-particle distribution in TAT. These data are 

required to more accurately estimate the absorbed dose on a cellular level. As a result, this 

work aims to develop a microdosimetry technique, using Timepix detector that will estimate, 

or better yet determine the absorbed dose deposited by a-particles in cells as well as will 

measure the biodistribution of the radioisotope in a tumour. 
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Initially, extensive Timepix characterization and testing has been done to evaluate the 

detector's response, including linearity, reproducibility, and sensitivity to low doses of 

radiations (µGy-mGy dose region) and energy dependence. 1-125 seeds and superficial X-rays 

(below 70 kVp), produced by the Gulmay superficial X-ray unit, were used. The measured 

Timepix pixel value was correlated with the known dose (based on the irradiation time used 

and TLD-100 measurements) and a pixel-value-to- dose calibration curve was obtained. It was 

confinned that Timepix value increased linearly with the dose delivered. The dose calibration 

curves using the superficial X-ray beams showed that the pixel value, however, depended on 

the energy of the X-ray beam. 

The application of Timepix to measure radioisotope biodistribution (i.e. autoradiography) was 

investigated. Mice with Lewis lung (LL2) tumours were treated with about 18 kBq oP27Th

labelled DAB4 murine monoclonal antibody that bounds to necrotic tumour cells. The rationale 

is to develop a-particle-mediated bystander kill of nearby viable tumour cells. To generate 

more necrotic tumour cells for 227Th-DAB4 binding, some mice also received chemotherapy 

before being injected with Th-227-DAB4. Finally, 5 mm tumour sections were cut from treated 

mice for autoradiography with Timepix. Each tumour section was mounted onto a slide with 

front face uncovered to allow emission of a-particles from the tumour section. Simple steel 

collimator (I cm radius, 2 cm length) was manufactured in-house and positioned around the 

tumour section. The slide was placed 2 cm away from the Timepix detector. Bias voltage of 7 

V was applied, and a-particle filter was selected for acquisition. Detector cover was removed, 

exposing the Si layer, to allow the emitted a-particles ( - 6 Me V) to reach the detector. Image 

acquisition took -14 h. Good resolution autoradiographs of radiolabelled tumour sections were 

acquired, showing a-particle, electron and X-ray tracks. Timepix measurements also showed 

an increased Th-227-DAB4 uptake following chemotherapy due to increase in necrotic tissue 

volume. 
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Timepix was also used to measure the uptake of Cr-51 by A549 cells (lung carcinoma cell line) 

for different pH levels and the dependence of uptake on pH was investigated. Timepix was 

observed to be sensitive to detect small changes in the activity/uptake of radioactive sources 

depending on the environmental condition and the number of cells. 

The last part of this thesis deals with the development of a transmitted a-particle 

microdosimetry technique. First, A549 cells were grown in vitro using standard protocols and 

were irradiated using a 6 MY photon beam with different doses varying between 2-8 Gy and 

Ra-226 source was used for a-particle irradiation to evaluate A549 radiation sensitivity using 

clonogenic assay and MTT assay. The cell line was found radiosensitive, with 050 of~ 2 Gy 

for X-ray irradiation. 

For transmitted dosimetry, A549 cells were either unirradiated (control) or irradiated for ~2, 1, 

2 or 3 hours with a-particles emitted from a Ra-223 source positioned below a monolayer of 

A549 cells. The HTS Transwell" 96 well system (Corning, USA), consisting of 2 

compartments, was used to develop a method for tracking a-particles through a cell mono layer. 

This system comprises of two compartments, with liquid Ra-223 evaporated in the lower 

compartment to avoid a-particle self-absorption inside the liquid. The measured activity of 5 

kBq was unifonnly distributed, as confirmed by Timepix detector. The second compartment 

consists of a flat bottom polycarbonate membrane (I 0 µm thick) where cells are plated. It is 

sufficiently thin to allow a-particles to penetrate through and hit the cells. Fifteen thousand 

A549 cells were seeded in the upper compartment that was then inserted into the lower 

compartment containing the evaporated Ra-223. The transwell system was positioned under 

the Timepix detector. Transmitted a-particles were detected for 1;2, I, 2 or 3 hour irradiation 

times. Additionally, DNA double strand breaks (DSBs) in the form of y-H2AX foci, were 

examined by fluorescence microscopy. The number of transmitted a-particles was correlated 
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with the observed DNA DSBs and the delivered radiation dose was estimated. Additionally, 

the dose deposited was calculated using Monte Carlo code SRIM. 

Approximately 20% of a-particles were transmitted and detected by Timepix. The frequency 

and number of y-H2AX foci increased significantly following a-particle irradiation as 

compared to unirradiated controls. The RBE equivalent dose delivered to A549 cells was 

estimated to be approximately 0.66 Gy, 1.32 Gy, 2.53 Gy and 3. 96 Gy after Y2, I, 2 and 3 h 

irradiation, respectively, considering a relative biological effectiveness of a-particles of 5.5. 

In summary, the Timepix detector can be used effectively for autoradiography in TAT, 

providing high resolution images and excellent spatial resolution of detected a-particles, as 

well as a transmitted a-particle microdosimetry detector. If cross-calibrated using biological 

dosimetry, this method will give a good indication of the biological effects of a-particles 

without the need for repeated biological dosimetry which is costly, time consuming and not 

readily available. 
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Chapter 1 

Introduction 

1.1 Introduction 

Cancer is defined as a group of complex diseases where normal cells transition to cancer cells 

through abnormal gene expression resulting from gene mutations, translocations, transcription 

or translations (Ruddon 1995, Kopans 2002), and cells enter into a random, continuous division 

phase (Ruddon 1995). According to the World Cancer Reports from 2008 to 2014 (WHO 2008, 

WHO 2014) there are three major factors contributing to developing cancer: biomedical 

factors, lifestyle factors and enviromnental factors (Welfare 2010). 

Different cancer types differ in growth rate, cellular differentiation state, diagnostic 

detectability, invasiveness, metastatic potential, treatment response and prognosis (Ruddon 

1995). There are many modalities to control and cure cancer such as surgery, chemotherapy 

and radiation therapy which can be used alone or in combination. Radiation therapy has been 

' found beneficial and used for almost half of cancer patients (Wambersie, Pih et et al . 1990). 
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Chapter 1. Introduction 

Radiation therapy includes many types of treatments, which use either direct or indirect 

ionizing radiation and includes X-ray therapy, electron therapy, light and heavy ion therapy 

and neutron therapy. As the treatment beams differ in particle type and energy, it is 

understandable that the biological effects differ between radiation modalities. As a result, the 

treatment outcome depends on the interplay between the interaction of radiation with tissue 

and the resulting biological response. Determination of the absorbed dose and the effective 

dose is therefore critical to improve disease eradication and to protect healthy tissue. Several 

dosimetry techniques have been used over the years (ICRU 2007) to measure radiation dose 

and to determine the absorbed dose in patients. This is usually done on a macroscopic level in 

terms of a radiation dose to a tumour volume. However, a novel radiotherapy modality, that 

differs from the localized external beam radiation therapy (which uses a beam to directly 

irradiate a specific target volume inside the body), and that is known as targeted therapy, can 

target individual cells in the tumour and hence can be applied to treatment of 

disseminated/systemic disease. This is a relatively new area of dosimetry known as 

microdosimetry. Microdosimetry enables the monitoring of a single ionization event within an 

irradiated volume on a micrometre (cellular) level. Microdosimetry can use measuring devices 

similar to those used in dosimetry, such as proportional counters and tissue equivalent 

proportional counters (Waker 1995). 

1.2 Dose Measurement Techniques in Radiation Therapy 

1.2.1 Dose and Quantities 

According to the International Commission on Radiation Units and Measurements (ICRU), 

dose is defined as the amount of energy absorbed, dE, per unit mass, dm, of the irradiated 

material (Mayles, Nahum et al. 2007): 
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Dose=- -dE ( J) 
dm kg 

(1.1) 

The SI unit of absorbed dose is Gray (Gy) and is equal to one joule of energy per kilogram of 

mass. Another older unit also used is rad and it is equal to 100 erg/gram (Hall and Giaccia 

2006). The relationship between Gray and rad is given in equation (1.2): 

1 Cy = 11.. = 100 rad 
kg 

(1.2) 

To estimate the biological effect of a given dose, the absorbed dose is multiplied by a relative 

biological effectiveness (RBE) factor. RBE compares the doses required to produce the same 

biological effect which results from a standard radiation dose delivered by 250 kVp X-rays or 

6°Co y-rays and a test radiation dose, as given in equation (1.3) (Mayles, Nahum et al. 2007). 

RBE varies according to radiation type, dose, dose rate, LET, cell type and the biological end-

point (Podgorsak 2005). 

RB E = Dose of reference radiation 

Dose of radiation under investigation 
(1.3) 

The ability ofradiation to produce more biological damage increases with an increase in linear 

energy transfer (LET). LET is defined as the average energy, dE, locally imparted by a charged 

particle with specific energy travelling a specific distance, dx, in the absorber (Podgorsak 2005) 

as shown in equation (1.4 ). 

This means that the RBE is higher for radiation with higher LET than it is for radiation with 

lower LET, as shown in Figure 1.1. 
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LET = dE (keV) 
dx µm 
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Figure 1.1 . The relationship between RBE and LET, courtesy of (Podgorsak 2005). 

1.2.2 Cancer Cells and Radiation Therapy 

The relationship between the cancer cell responses, which is the observed biological effect on 

the tumour population, resulting from different absorbed radiation doses is called the dose 

response curve, while the relationship between the fraction of surviving cells and different 

absorbed radiation doses is called the cell survival curve. These responses have been studied 

extensively for different radiation types (Podgorsak 2005, Hall and Giaccia 2006). An example 

of a typical cell survival curve is shown in Figure 1.2. 

The aim of radiation therapy is to maximize damage to cancer cells to control tumour growth, 

while minimizing the dose to the surrounding healthy tissues. Typical probabilities for tumour 

control and n01mal tissue complications are shown in Figure 1.3. The difference between the 

two curves (the red line) identifies the most suitable treatment dose, which will maximise 

tumour control while keep the damage to normal tissue at an acceptable level (Thwaites and 

Williams 2000, Podgorsak 2005). 
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Figure 1.2. An example of a cell survival curve using linear (a) and semi logarithmic (b) 
scale, courtesy of (Mayles, Nahum et al. 2007). 
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Figure 1.3. An example of the therapeutic ratio plot where curve A shows the probability of 
tumour response, while curve B shows the probability of complications of the normal tissues, 

courtesy of (Podgorsak 2005). The red line illustrates the suitable treatment dose. 

This aim is achieved by controlling the shape of dose distribution (ICRU 2007, Mayles, Nahum 

et al. 2007) within the irradiated volume. Selection of an optimum type of radiation therapy 

' and treatment planning depend on many factors (Podgorsak 2005) such as : cancer type and 

stage, tumour size, tumour depth, and location (Chao, Perez et al. 2011). 
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Further improvements in radiotherapy require research in different areas, such as studies of the 

biological effects, for example, the radiation damage to DNA and the other sites in a cell which 

can be targeted and may cause cell death, as well as the interaction between the radiation and 

matter (e.g. better knowledge of low energy cross-sections) (Podgorsak 2005). Furthennore, 

the development of novel tools for quality assurance (QA) is essential to accurately deliver and 

monitor the radiation dose to a patient (Rosenfeld, Cutajar et al. 2006). 

There are many forms of radiation therapy used in cancer treatment. This thesis will concentrate 

on dosimetry applications for the special fom1 of radiotherapy, known as targeted alpha particle 

radiotherapy 

1.3 Radiation Dosimeters 

In order to detennine the accuracy of dose delivery, various dosimetry techniques can be used 

before and during treatment. 

A dosimeter is defined as a device or instrument which provides a measurement of the average 

absorbed dose that is deposited in the dosimeters volume by ionizing radiation. The dosimeter 

and the reader are called the dosimetry system (Podgorsak 2005). Specific dosimetry design 

depends on one of the four requirements: the accuracy of the absorbed dose determination, the 

measuring system's sensitivity, the energy and dose-rate dependence and the spatial resolution 

(ICRU 2007). 

An ideal dosimeter should have the following properties: 

1. The imparted energy distribution is measured for the material of interest (e.g. tissue 

equivalent materials). 

2. It measures all ranges of the imparted energies. 

3. It can be used for a wide range of irradiation volumes. 

4. The resulting signal is proportional to the imparted energy. 
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5. It has only a small background noise (ICRU 1983). 

For any dosimeter, there are many properties used to judge the perfonnance of the dosimeter, 

for example: 

1. Predictability of the measurements under the similar conditions. 

2. Accuracy of the measured values relative to the true values. 

3. Linearity of readings as they need to be proportional to doses. 

4. Dose rate dependence. 

5. Energy dependence. 

6. Directional dependence. 

7. Temperature dependence. 

8. Spatial resolution (Podgorsak 2005). 

There are many types of dosimeter systems including an ionisation chamber, 

thermoluminescense dosimeters (TLD), gel dosimeters, semiconductor dosimeters, films and 

others. The WHO recommends, that in vivo dosimetry is carried out on patients (Thwaites and 

Williams 2000). There are two major in vivo dosimetry groups: thermoluminescense dosimetry 

and semiconductor dosimetry. Each of these groups contains several different types of 

dosimeters. This proposal will focus on semiconductor dosimetry and, where applicable, its 

application to microdosimetry. 

1.3.1 Semiconductor Dosimeter 

Semiconductors represent a group of elements from column IV of the Periodic Table (David 

1990). Semiconductor materials are elements with highly desirable characteristics such as high 

density, low energy requirement to produce an electron-hole pair, have the ability to work in 
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unbiased or biased mode and are efficient even under low voltage (Rosenfeld, Cutajar et al. 

2006). Furthermore, they are attractive to use for dosimetry because they offer instant and high 

readout speed, and the possibility of having a detector and a reader assembled in a single unit 

(Lutz 2007). The readings are perfonned in real-time and no post processing is required unlike 

TLD and gels dosimeters. 

Furthermore, compound semiconductors which mainly use a combination of the elements 

located in column III and V of the Periodic Table such as GaAs or InP can also be manufactured 

(David 1990) and used in dosimetric applications. 

1.3.1.1 PN Junctions Diodes 

Semiconductor diodes are used for radiation dosimetry because of the small volume, high 

sensitivity (almost 18,000 times the sensitivity of an ionisation chamber), high spatial 

resolution, real-time readout and air pressure independence (Thwaites and Williams 2000, 

ICRU 2007, Mayles, Nahum et al. 2007). Measured readings are accurate (Mayles, Nahum et 

al. 2007). Usually, diodes use silicon as a substrate, which is described as being n-type and of 

light density. It is then implanted with a high density of p-type material (Podgorsak 2005, 

Mayles, Nahum et al. 2007). 

The PN junction is made from a combination of materials from column III and column V of 

the Periodic Table of Elements as shown in Figure 1.4. Materials from column Ill are rich in 

electrons and are called n types or donors. These include materials such as phosphorus and 

arsenic. The elements from column V are rich in holes and are called p types or acceptors. 

These include materials such as boron and gallium. 
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After this combination, an area between the two types is generated, called the depletion layer 

(i.e. the PN junction) resulting from recombination of electrons and holes in this area, as 

illustrated in Figure 1.4. 
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Figure 1.4. PN junction's depletion layer, courtesy of (Bird 2007). 

1.3.1.2 Principle of PN Junction Diode Detectors 

If the radiation passes through a diode, an electron-hole pair is generated in a depletion layer. 

The minority charge carriers are formed on the detector surface where there are likely to diffuse 

to the depletion layer due to the intrinsic potential which generates an adverse current to the 

diode (Figure 1.5). A short-circuit mode (current) is used because it provides the detector with 

a linear relationship between the charge carriers produced and the dose (Thwaites and Williams 

2000). It is also used to minimize the leakage (Podgorsak 2005, Mayles, Nahum et al. 2007). 

1.3.1.3 General characteristic of PN Junction Diode Detectors 

a) Background Signal 

, Diodes have dark current because of the charge particles generated by thennal effects. This can 

cause problems when measuring low doses and low dose rates. The background signal is 
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dependent on temperature. Some diodes give high currents with rising temperature even when 

the accumulated dose is low. Therefore, high temperature will not only cause background 

noise, but it will also increase the accumulated dose. Background signals can change by up to 

4 mGy per minute between room and patient's body temperatures (Thwaites and Williams 

2000, Mayles, Nahum et al. 2007). 
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Figure 1.5. The P-N junction diode polarity, courtesy of (Neudeck 1989). 

b) Temperature Effects 

The temperature affects the charge carrier mobility as well as the number of traps in the detector 

and decreases the resistance. Moreover, unlike the usual behaviour where the sensitivity is 

increased with increasing temperature, the diode detectors sensitivity decreases when 

temperature increases (Thwaites and Williams 2000, Mayles, Nahum et al. 2007). 

c) Detection Threshold 

The detection threshold is the minimum dose detectable by a detector. For diodes, it depends 

on the doping level of the semiconductor detector and the pre-irradiation dose. The detection 

' threshold for a commercial diode is between 0.1 cGy and tenths of cGy (Mayles, Nahum et al. 

2007). 
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t.3.1.4 Advantages and Disadvantages of the PN Junction Diode Dosimetry 

The advantages of PN Junction diode dosimetry are their small size, sensitivity, the ability to 

assemble the detector and the reader into a single piece, instant readout and no need for external 

bias voltage. 

The diode disadvantages include calibration and sensitivity changes as a function of the 

temperature and with the accumulated dose (Podgorsak 2005). Diodes are also energy, dose 

rate and orientation dependent. Furthennore, diode detectors have high threshold in comparison 

to TLD threshold which is between 1 to 40 µGy depending on the TLD material (Mayles, 

Nahum et al. 2007). 

1.4 Microdosimetry 

Microdosimetry is a technique of measuring absorbed dose at a micrometre level (i.e. the 

cellular level). In microdosimetry, a quantity called lineal energy, y, is used rather than the 

linear energy transfer. This quantity is the energy imparted into the matter of volume, £, by a 

single energy deposition event to the mean chord length, I , in a volume and its unit is keV/µm 

or Jim (ICRU 1983, Attix 1986), as is given in equation (1.5): 

(1.5) 

Where the mean chord length is the mean length of randomly oriented chords in a volume. 

The lineal energy transfer depends on the radiation type (ICRU 1983) and the energy imparted 

£ in a volume, and is the sum of all energies, Ei, in that volume in e V (Bardies and Pihet 2000). 
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In addition, the distribution function, F(y), is used to describe the probability that the lineal 

energy is equal or less than y. Therefore, the density of probability, f(y) , is given by the 

equation (1.6): 

f(y) = d:~) (1.6) 

f(y) is called the lineal energy distribution and is independent of the absorbed dose and dose 

rate (ICRU 1983). 

The dose probability density d(y) is then given by equation (1.7): 

d( ) = dD(y) 
y dy (1. 7) 

Where d(y) is the fraction of the absorbed dose that is delivered with lineal energy equal or less 

than y (ICRU 1983). 

1.4.1 Microdosimetric Spectra 

A microdosimetric spectrum illustrates the relationship between the lineal energy, (y), and 

yd(y), as is shown in Figure 1.6. A number of parameters affect the resultant microdosimetric 

spectra such as the particle type (e.g. its track length distribution, LET distribution and 

straggling) and the volume size (ICRU 1983). From microdosimetric spectra, the contributions 

of different radiation types has been identified (Sabol and Weng 1995). 
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Figure 1.6. Microdosimetric spectra for 6°Co gamma radiation on a logarithmic scale, 
courtesy of (ICRU 1983). 

Microdosimetric spectra can be obtained by experimental or calculation methods. Both 

methods can be applied toy-rays with energies between 50 keV and 5 MeV and for thermal 

and fast neutrons with energies lower than 10 Me V (ICRU 1983). For these radiation types, 

the methods are applied without any conections, but other radiations types or other energy 

ranges require conection factors to be applied. The calculation methods for a known interaction 

cross-section for a given particle of certain energy are more accurate than experimental 

measurements and take less time (ICRU 1983). On the other hand, even though the calculation 

is more accurate than the experiment, it usually contains a simplification, which leads to 

uncertainties of the results. 

The calculation methods can be divided as follows: 

Analytical calculations: these are mostly applied to neutrons (ICRU 1983) and the main 

assumption is that of radiation equilibrium, meaning that the secondary charged particles are 

produced with equal probability through the whole inadiated volume. 
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Monte Carlo calculations: these are applied to fast neutrons, electrons and ions. The main 

assumption of radiation equilibrium is assumed as well. In Monte Carlo calculations, many 

physical effects, such as energy loss straggling and delta ray production, can be taken into the 

account (ICRU 1983). 

The shapes of microdosimetric spectra depend on a number of factors for each single event, 

namely distribution of track lengths, distribution oflinear energy transfers, and the energy loss 

straggling per collision and the number of primary collisions. These factors are common for 

both experimental and calculation methods, but in case of experimental methods using a 

proportional counter, there are additional factors such as the number of ions produced per unit 

energy, deposition factors known as Fano-fluctuations (ICRU 1983) and others . 

The next section discusses some studies in the field of semiconductor dosimetry and 

microdosimetry devices. Number of these devices can be used for both unagmg (i.e. 

autoradiography) and dosimetry. 

1.5 Current Semiconductor Dosimeters and Microdosimeters 

1.5.1 Medipix 

The Medipix detector was developed at CERN in the 1990s, and was developed for tracking 

of high energy particles by using a hybrid silicon pixel detector (CERN 2011 ). At present, 

there are multiple generations of Medipix, which are in chronological order are Medipix 1, 

Medipix2, Timepix and Medipix3 . 

I) Medipixl 

The Medipixl, also called Photon Counting Chip (PCC) provides noise-free single photon 

counting. In order to minimize blurring in the image, a sensor layer consisting of chip of Si or 
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GaAs is bump-bonded to an electronic layer of complementary metal-oxide- semiconductor 

(CMOS) which provides direct photon conversion to charge (CERN 2011). The radiation 

generates a positively charged hole in the sensor layer, which is then collected in the electronics 

layer. If the charge produced by incoming particles is higher than the threshold, the event is 

counted. For each pixel, there is a comparator with three bits to ensure that the threshold 

distribution is homogenous through the whole chip (CERN 2011). The Medipixl propet1ies 

are: each chip contains 64 x 64 pixels, each pixel has an area of 170 x 170 µm 2, the active area 

of the chip is approximately 1.2 cm2, the maximum count rate is almost 2 MHz and the 

minimum threshold that can be collected is - 1500 e- (that equals to - 5.5 keV energy deposition 

in a Si sensor). For each pixel, there is a fifteen bit counter capable of storing up to 32767 single 

events and the acquisition time is variable. 

A study with a narrow beam and "edge" image contrast was done by Sinor et al. (2003) (Sinor, 

Jakubek et al. 2003) to investigate the charge sharing (charge sharing is an event in a single 

pixel where charge generated is shared with surrounding pixels) between pixels and to examine 

the spatial resolution of Medipixl Si and GaAs pixel devices. Two types of radiation were 

investigated: X-rays (from an X-ray tube with voltage< 35 kV, Mo anode) where the narrow 

beam was applied using a small hole in a thin lead foil, and using a Cd filter and alpha particles 

(from decay of 241 Arn isotopes). A special point a-source was produced by electrostatic 

collection technique of Rn-220 daughter on a tip of tungsten needle (needle diameter was 50 

or 100 mm) and a collimated point alpha source was obtained by using a plastic 

chromatography capillary (capillaries of 300 and 500 mm diameter to collimate the special 

point a-source)). 

' The results indicate the pixel-sharing behaviour differs for photons of different energies and 

for alpha particles collimated with collimators of different capillary diameter. For photon 
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beams with energy of 35 kV, the charge sharing can be neglected unlike for alpha paiiicles 

which are detected in a cluster of pixels (cluster diameter ~ 2.5 pixels). The measurements have 

been found in this study to have position precision of 150 µm for both X-rays and heavy 

charged particles (same as pixel size) and it affected by the parallax effect (Sinor, Jakubek et 

al. 2003). 

II) Medipix2 

Medipix2 was developed in late 1990s also at CERN (CERN 2011). The use of the sub-micron 

CMOS, enabled the pixel size to be decreased and therefore resulted in the increased number 

of pixels per chip. The advantage of the Medipix2 was the enhancement of the pixel cell 

function and the reduction of pixel size (CERN 2011 ). A development extension of Medipix2 

is Timepix (2004) that not only counts hits on the detector but can measure arrival time of the 

first particle to the chip and also record time over threshold (meaning it can measure the energy 

of the particle). 

The Medipix2 has the following properties: each pixel has size equal to 55 µm 2, the chip is 

effective for positive or negative charge and the energy to be detected can be selected to ensure 

uniform perfonnance. 

1.5.2 Microdosemeter based on Silicon on Insulator (SOI) PN Junction 

The early tests of silicon detectors were based on bulk silicon. This type of microdosimeter 

was tested at the Harper Hospital in Detroit (USA). The experiment was done using a water 

phantom with fast neutron therapy and microdosimetric spectra of the secondary recoil protons 

were measured. The disadvantage of using the bulk silicon lies in the fact that it may lead to 

charge diffusion between the p-n junction between the silicon and the bulk silicon, affecting 

the sensitive volume (Rosenfeld and Bradley 1999). 
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SOI is a microdosemeter based on silicon on insulator (SOI) p-n junction array (i.e. using 

electrical isolation between silicon cells) as shown in Figure 1. 7. It has the advantages of small 

size with no requirement for gas or high voltage power supply compared to proportional 

counter, ease of conversion from measured amplitude spectra to tissue-equivalent 

microdosimetric spectra, the possibility of merging the sensor with the readout electronics 

together in the same chip and the diffusion effects are minimised as the sensitive volume is in 

the silicon layer (Rosenfeld and Bradley 1999). Furthermore, it measures a full beam without 

any pile up effect and it has high spatial resolution (Rosenfeld and Bradley 1999). It is suitable 

for dosimetry applications in fast neutron therapy (FNT) and boron neutron capture therapy 

(BNCT), proton therapy (PT) and for personal radioprotection (Rosenfeld and Bradley 1999). 

The SOI microdosimeter has been tested in Northeastern Proton Therapy Center, Boston and 

in Proton Medical Research Center, Tsukuba with 230 MeV and with 250 MeV proton beams, 

respectively. The microdosimeter has a good spatial resolution, especially around the proton 

Bragg peak when compared to a proportional gas counter (Rosenfeld, Bradley et al. 2000). 

Fujitsu Research Laboratories Ltd (Japan) manufacture microdosemeters from SOI wafers 

bound with 2, 5 and 10 µm sensitive layers. Each chip consists of two types of p-n junction 

arrays with dimensions 100 x 100 µm 2 (with 150 diodes) and 10 x 10 µm 2 (with 4800 diodes) 

which are connected in parallel (Rosenfeld and Bradley 1999). 
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Figure 1. 7. Schematics of a SOI microdosemeter, courtesy of (Rosenfeld and Bradley 1999). 

The proton beam energy in Proton Medical Research Center was adjusted to be suitable for 

medical applications from 500 MeV to 200 MeV by using carbon based degraders and a filter. 

Also in Northeastern Proton Therapy Center, the proton beam was adjusted to a dose rate of 

200 cGy/min . Microdosimetric spectra for both experiments are shown in Figure 1.8 and Figure 

1.9 respectively. 

Rosenfeld and Bradley (1999) (Rosenfeld and Bradley 1999) also tested the SOI 

microdosemeters for FNT, BNCT and PT as well as mixed radiation fields of high and low 

LET were examined as well. The SOI microdosimeter' s physical characteristics included: 

sensitive volume thickness of 2 µm, the chip was in a ceramic dual in line (DIL) package, and 

this package was lodged in a 1 x 1 x 7. 5 cm3 Perspex probe. A low voltage (0-10 V) was used 

for the readout electronics and a PC based multichannel analyser (MCA) was used to measure 

the amplitude spectra of deposited energy from the secondary charged particles, produced in a 

l Sx l Sx 15 cm3 Perspex phantom. The results confirmed that this microdosemeter could 

measure a lower lineal energy limit of 0.1 keV.µm- 1 (Rosenfeld and Bradley 1999). 
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Figure 1.8. Microdosimetric spectra of a 200 Me V proton beam at different depths in a Lucite 
phantom (proton range ;::::; 18 cm) obtained in the Proton Medical Research Center in Japan, 

courtesy of (Rosenfeld, Bradley et al. 2000). 
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Figure 1.9. Microdosimetric spectra of a 191.5 MeV proton beam at different depths in a 
water phantom (proton range ;::::; 23.7 cm) obtained in the Northeastern Proton Therapy Center 

in Boston, courtesy of (Rosenfeld, Bradley et al. 2000). 

1.5.3 Printed Circuit Silicon-Board Semiconductor Detector for Personal 

Dosimeter 

Ishikura et al ., (2008) (lshikura, Aoyama et al. 2008) developed a small semiconductor detector 

composed of a radiation sensor made of silicon, an electronic circuit for analogue amplifier and 
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a circuit for sensor bias filter, all on a single silicon circuit board. This detector has a size of 14 

x 6 x 3 mm3 . The silicon circuit board is a silicon substrate with dimensions of 14 x 6 x 0.5 

mm3. Sixteen built-in resistors, two built-in capacitors and thin resistive, insulative and 

conductive films are set on the silicon substrate as illustrated in Figure 1.10 and Figure 1.11. 

Crns~ sec1iu11 nr .; i l ico11 buard BuiJd-i n re ·istor 

Figure 1.10. Cross section of a silicon board with the built-in resistor, courtesy of (Ishikura, 
Aoyama et al. 2008). 

This detector is 85% smaller than the commercial detector, which is composed of the same 

sensor and the same circuit with a plastic circuit board and covered with a ceramic case 

produced by Fuji Electric System Co. Ltd. The physical characteristics of the commercial 

detector are 103 x 55 x 15 mm3 and 100 g for a gamma ray dosimeter and 120 g for a 

multifunctional dosimeter (measures gamma rays, beta rays, and fast and thermal neutrons). 
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Figure 1.11. Cross section of a silicon board with the built-in capacitor, courtesy of (lshikura, 
Aoyama et al. 2008). 

The built-in resistors and built-in capacitors in the silicon circuit board are smaller than they 

are in the plastic board. In addition, the silicon circuit board is used for the analogue amplifier, 

where it was originally used as a digital circuit. Furthermore, the silicon sensor is set on the 

silicon board directly with a conductive silver paste and without using the ceramic case. 

The new detector was investigated using 241 An1, 57Co, 137Cs, 6°Co gamma rays and X-rays in 

the range of 49-157 ke V to study the energy response that corresponds to a personal dose 

equivalent (Hp (10)), in mSv and its linearity to dose equivalent rate (the personal dose 

equivalent, Hp ( d), is defined as the dose equivalent in soft tissue at the depth, d, below a 

specific point, p, (Podgorsak 2005)). In order to estimate the energy response, the new detector 

was attached to an acrylic phantom and energy spectra were measured for 60 keV 24 1Am, 122 
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keV 57Co, 662 keV 137Cs and 1250 keV 6°Co gamma rays (Figure 1.12). In addition, the energy 

spectra for X-rays ranging from 49 to 157 keV were also measured. 
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Figure 1.1 2. Pulse height spectra for different y-ray and X-ray sources measured with the 
newly developed silicon circuit board detector, courtesy of (Ishikura, Aoyama et al. 2008). 

The results showed peaks for 241 Am 60 keV y-rays and the spectra were linearly prop01tional 

for 57Co 122 keVy-rays. The X-ray spectra of various energies had continuous distribution. 
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The linearity of detection efficiency to dose equivalent rate for different distances between the 

detector and the gamma source (to provide different source intensity) was measured. A good 

linearity between 1 and 500 mSv/h was seen (Figure 1.13). 

IO 100 1000 
DOSE EQUI VALENT RATE [mSv/h) 

Figure 1.13. Linearity of detection efficiency to dose equivalent rate of newly developed 
silicon circuit board detector, comtesy of (Ishikura, Aoyama et al. 2008). 

The comparison between the commercial silicon circuit board detector and the new developed 

detector is shown in Table 1.1. The new device is smaller, also the relative detection efficiency 

is slightly higher than that of the commercial detector and has lower electrical noise. 

Table I . I .Comparison between newly developed silicon circuit board detector and 
commercial detector (NRY), courtesy of (Ishikura, Aoyama et al. 2008). 

Developed detector Commercial detector 

Relative size 0.15 1 

Relative detection efficiency 1.02 1 

Noise level (keV) 40 41 

Circuit current (mA) 0.3 0.3 
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t.5.4 Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) 

MOSFETs are dosimeters based on metal oxide semiconductor field effect transistors. 

MOSFETs work by producing an electron-hole pair in Si02 after radiation exposure. These 

dosimeters are used in in vivo dosimetry because of instantaneous readout, energy and dose 

rate independence. The dose can be also stored for later use. The detector is dose rate 

independent up to 108 Gys- 1 and the sensitivity can be changed by changing the bias (Rosenfeld, 

Cutajar et al. 2006). In addition, it has an excellent spatial resolution. It requires a bias voltage 

during irradiation. When the radiation penetrates the oxide, electron-hole pairs are generated. 

These positive charges are trapped, changing the threshold voltage. The relationship between 

the threshold voltage and the absorbed dose is a linear function (Podgorsak 2005). MOSFETs 

have disadvantages of temperature dependence and non-linearity of response (Podgorsak 

2005). 

Two systems used for MOSFET dosimetry in radiation therapy are: the commercial system 

(Thomson Nielson MOSFETs) and the MOSFETs online system (MOSPLOT DAQ hardware 

and Software) developed at the University of Wollongong. This clinical dosimetry system is 

considered to be the first real-time application of MOSFETs (Rosenfeld, Cutajar et al. 2006). 

1.5.5 Miniature Semiconductor Detector 

Rosenfeld et al. (2006) (Rosenfeld, Cutajar et al. 2006) created a miniature semiconductor 

detector for personal dosimetry and in vivo dosimetry in radiation therapy. This miniature 

semiconductor detector is a combination of metal oxide semiconductor transistor in a 

spectroscopy mode and silicon p-n junction detector. It is sensitive to only neutron radiation. 

Unlike other semiconductor detectors, which operate in "ionising energy loses (IEL)" mode 

(Rosenfeld, Cutajar et al. 2006), such as diodes (in current and spectroscopy modes) and 

MOSFETs, this miniature semiconductor detector (p-i-n diodes) operates in "non-ionising 
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energy loses (NIEL)" (Rosenfeld, Cutajar et al. 2006) mode which is for neutron dosimetry. 

The miniature semiconductor detector measures the energy deposition by the secondary 

charged particles produced by neutrons. 

For personal and in vivo dosimetry, a silicon p-n junction with a different converter is used 

along with a processor to convert the data to the equivalent dose. To detect neutrons, a 

combination of convertors is used namely, polyethylene converter for fast neutrons, 235U 

convertor or 6Li and 10B converter for thennal neutrons (Rosenfeld, Cutajar et al. 2006). 

For in vivo dosimetry, a new dosimetry technique called spectroscopical dosimetry (developed 

from high energy-resolution nuclear spectroscopy) was developed as modem silicon detectors 

can measure the absorbed dose for a very low dose rate, as well as the relative biological 

efficiency (Rosenfeld, Cutajar et al. 2006). 

Rosenfeld et al. (2006) (Rosenfeld, Cutajar et al. 2006) applied spectroscopic dosimetry for 

low energy photons (15 -35 keV) in prostate brachytherapy using developed urethral alarm 

probe consists of a Si-mini-detector connected to an amplifier and discriminator. The probe is 

small enough to be inserted within the urethral catheter. For clinical purposes, this application 

has multiple alarms, which can infonn the medical staff to avoid overdosing. 

1.6 Motivation and Thesis Structure 

1.6.1 Motivation 

The relationship between the characteristic of the radiation hitting the tissue and affected 

targets plays an important role in estimating the effect of targeted therapy. 

Radionuclide dosimetry is difficult and complex to accurately determine due to a number of 

factors including the physical properties of the radionuclide including radiation type and half

life, and biological transit time (uptake and clearance). Additionally on a cellular level, the 

dose can be quite heterogeneous depending on the spatial distribution of the radioisotope in the 
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tumour. As a result, there is need for real-time microdosimetry of alpha particles to determine 

the radiation dose delivered to the tumour is this stage for TAT 2. 

The literature shows that there is lack of infonnation related to the use of semiconductor 

detectors for measurements of subcellular damage, such as that occurring in targeted alpha 

therapy. The knowledge and measurement of energy deposited by a-particles is required to 

accurately estimate the absorbed dose on a cellular level and to dete1mine radiobiological 

endpoints. This knowledge will then assist with development of dosimetry protocols and dose 

prescription for TAT. The ability to accurately measure cellular damage resulting from 

localised alpha particle irradiation will allow to determine what radioisotope doses should be 

injected to patients to achieve tumour control while minimising the damage to nonnal tissues. 

1.6.2 Project Objectives 

Objective 1. 

To study the performance of the Timepix radiation detector and its physical characteristics such 

as reproducibility, accuracy, dose linearity and its perfonnance for different radiation types and 

energies. 

Objective 2. 

To investigate the use of Timepix for autoradiography to measure biodistribution of the Th-

227 isotope in tumour sections. 

Objective 3. 

To investigate Tirnepix suitability for use in clinical microdosimetry for targeted alpha therapy 

as well as the conditions affecting the calibration and use. 
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t.6.3 Thesis Outline 

This thesis includes combination of the five papers listed on page iv. These papers present 

investigations that have been performed in order to achieve the objections of this thesis . 

Chapter 2 contains a brief overview of targeted alpha therapy. Research was conducted to 

investigate alpha emitters along with chelates and suitable specific proteins to target different 

types of cancers. The review focuses on Th-227 and Ra-223 alpha emitters and their application 

in targeted alpha therapy. Some important pre-clinical and clinical trials are also presented. 

Chapter 3 contains a literature review of Timepix radiation detector. This chapter is based on 

two submitted literature review papers; one about the technical aspects of Timepix, including 

general characteristics, acquisition modes and calibration. The second papers briefly reviews 

possible applications ofTimepix relevant to medical physics, e.g. Timepix as a photomultiplier, 

use for stopping power measurements, neutron detection, hadron therapy and brachytherapy 

and targeted alpha therapy. 

Chapter 4 investigates the use of Timepix in dosimetry, characterising its physical properties 

such as reproducibility, accuracy, dose linearity and energy dependence, in addition to Timepix 

requirements for dose calibration. Radioactive sources from the Medical Physics Department 

at the Royal Adelaide Hospital such as Iodine-125 and Strontium-90 were used. In addition, 

superficial Gulmay D3 l 50 X-ray unit at the Royal Adelaide Hospital with beam HVLs between 

0.5 to 3 mm Al and peak voltages between 40 to 100 kV was used for the measurements. 

Chapter 5 discibes the applications of Timepix as a spectrometer using Am-241, Ra-223 , Pu-

223 and Fe-55 sources. 

Furthermore, a brief investigation of Timepix for imaging applications is also presented using 

different radiation sources and different objects. 

Chapter 6 discusses the details ofusing Timepix for autoradiography in Targeted alpha therapy 

using Lewis lung tumour sections from mice treated with or without chemotherapy and then 
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administered 227Th-labelled antibody (DAB4). Furthennore, this chapter has the results of 

uptake measurements of Cr-51 by A549 cells (lung carcinoma cell line) for different pH levels 

of the medium. 

Chapter 7 discusses the design of transmitted a-particle microdosimetry technique. A549 cells 

and Ra-223 source were used to evaluate the cell damage (DNA double strand breaks) induced 

by a-particles and to detennine absorbed dose at a culler level. The results were examined and 

con-elated with biological dosimetry (y-H2AX assay) and Monte Carlo simulations using 

SRIM program . 

Chapter 8 contains conclusions and future work to further enhance the transmitted a particle 

microdosimetry design. 
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Targeted Alpha Therapy 

2.1 Introduction 

According to the World Cancer Report, it is expected that by 2030 the number of new cases of 

cancer will reach more than 20 million, and there will be 17 million deaths from cancer per 

annum (WHO 2008, WHO 2014). In developed countries, 25 to 30 per cent of the population 

will develop cancer at some stage in their life (Wambersie, Pihet et al. 1990). A cancer patient 

can be treated using different modalities: surgery, chemotherapy and radiotherapy, or a 

combination of more than one modality. Radiation therapy is used for almost half of all cancer 

patients (Wambersie, Pihet et al. 1990) and includes many types of treatments, (using either 

direct or indirect ionizing radiation) such as X-ray therapy, electron therapy, light and heavy 

ion therapy and neutron therapy (Podgorsak 2005). 

Most of the external radiotherapy beam techniques are beneficial in treatment of localized 

disease. However, the primary cause of cancer death is the disseminated (or systemic) disease 

requiring different treatment and targeting approaches. 
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Targeted radionuclide therapy is a radiation therapy technique that takes advantage of the 

development in radionuclide production and pharmaceuticals that can specifically target 

tumours (Mayles, Nahum et al. 2007). Targeted radionuclide therapy directs doses ofradiation 

(which can be high linear energy transfer (LET) radiation) to individual tumour cells, while 

reducing the dose to off-target normal tissues (Allen 2006, 2007, Mayles, Nahum et al. 2007). 

This is achieved by having a cancer-targeting protein (commonly peptides, monoclonal 

antibodies (mAbs) or derivatives of mAbs) labelled with a radionuclide, knowing as 

radioimmunoconugate. This radioimmunoconugate (RIC) then attaches itself to a specific 

antigen on a cancer cell. The decaying radioisotope emits radiation directly into the tumour 

cells, causing localized radiation damage, as shown in Figure 2.1 (Wheldon and O'Donoghue 

1990) . Many studies have been undertaken on targeted radionuclide therapy, investigating the 

process from different points of view such as pharmacology, biology, 

dosimetry/microdosimetry, radiation production and others (Wheldon and O'Donoghue 1990, 

Roeske and Stinhcomb 1997, McDevitt, Sgouros et al. 1998, Sgouros, Ballangrud et al. 1999, 

Allen, Raja et al. 2004, Mather and Britton 2004, Sgouros 2008, Sgouros, Roeske et al. 2010, 

Kim and Brechbiel 2012, IAEA 2013, Seidl 2014, AL Darwish, Staudacher et al. 2015, Fichou, 

Gouard et al. 2015). This chapter will highlight briefly some of the important studies in targeted 

radionuclide therapy and the results of some of the trials that have been conducted. Further, 

this chapter will focus on targeted alpha therapy (TAT); and specifically on the application of 

Th-227 and Ra-223 radionuclides in TAT. 

2.2 Targeted Radionuclide Therapy 

Selection of a specific radionuclide for targeted therapy requires many physical and biological 

studies (Mayles, Nahum et al. 2007). An ideal radionuclide must have well-characterised 
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properties, including a good knowledge of the physical and biological half-lives of the emitted 

particles types and their energies and ranges and how these compare with the size of the tumour 

(Wheldon and O'Donoghue 1990, Reilly 20 I 0). Other factors that must be taken into account 

are radionuclide ' s chemical properties (i .e., stability), the possible administration route and 

uptake (according to Mather and Britton, 1-2% of the injected dose will be taken up by the 

tumour and the rest be distributed in nom1al tissue (Mather and Britton 2004)) and distribution 

of the radionuclide between the tumour and the other organs (Mather and Britton 2004). 

Phannaceutical studies have an important role in identifying a carrier (e.g. protein/monoclonal 

antibody) that has high uptake by the tumour and low uptake in the healthy organs and in 

developing an agent (i.e. chelator) to combine the carrier and the radionuclide which known as 

the radioimrnunoconjugate (RJC) (Wheldon and O'Donoghue 1990). 

In targeted radionuclide therapy, the instantaneous tumour dose-rate can vary significantly 

depending on the injected activities, radioimmunoconjugate uptake, tumour size and others. 

For tumours with low alpha/beta ratios (alpha/beta ratio gives the dose where cell killing, due 

to both linear and quadratic components of the linear quadratic model, is equal (Podgorsak 

2005)), the dose-rate effects on cell survival could be significant. According to (Wheldon and 

O'Donoghue 1990), depending on the dose-rate, the following occurs: 

a) High dose-rate: Cell cycle progression is inhibited and the cells are killed proportionally to 

the dose delivered. 

b) Medium dose-rate: Limited cell cycle progression can occur with a potential block in G2 (G2 

is the postsynthetic phase where the cell prepares for division) (Marcu, Bezak et al. 2012). 

c) Low dose-rate: Cell cycle progresses and repai r/repopulation are possible. 
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Monoclonal Antibody Alpha emitter 

Radio-immunoconjugate 

Labelling and Targeting of an 
Alpha-Emiting Radio lmmunoconjugate 

Figure 2.1: Targeted alpha therapy as an example of targeted radionuclide therapy (2007). 

Radionuclides that emit P-particles and a-particles are attractive for use in targeted therapy due 

to their physical properties. For instance, the limited range of these particles in tissue is unlike 

that of the penetrating X-ray and y-ray radiation (Reilly 2010). Some of the radioactive sources 

that are used for radionuclide targeted therapy have been summarised by Reilly in Table 2.1 

(Reilly 2010). 

Another group of potential radionuclides suitable for use in targeted therapy are those that emit 

Auger electrons. An Auger electron is emitted from an atom when the inner-shell vacancy is 

filled with another electron. These emitters can be used for targeted therapy when they are 
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close to the nucleus due to the short range of most Auger electrons (;:::: l µm) and their high 

cytotoxicity (LET ;:::: 100 ke V /µm) (O'Donoghue and Wheldon 1996, Mayles, Nahum et al. 

2007, Reilly 20 I 0). Auger elech·on energies can vary between several of e V and tens of e V 

(O'Donoghue and Wheldon 1996) (< 30 keV in (Reilly 2010)). The radionuclides that only 

emit Auger electrons have the advantage of only irradiating the targeted cells that the emitter 

is bound to (Reilly 2010). This makes them an excellent choice for pre-angiogenic tumours, 

cell clusters or micro-metastasis. Some Auger electron emitters also emit y-rays and X-rays, 

which can be used for imaging at the same time as for targeted therapy, e.g. 1251 (Wheldon and 

O'Donoghue 1990). 

To date, many sources conjugated with different agents have been used in targeted Auger 

electron therapy for different types of cancer. One example is 11 7mSn (IV)-DTPA (DTPA: 

diethylenetriamine pentaacetic acid) which is used for palliative therapy in bone cancer therapy 

(Krishnamurthy, Swailem et al. 1997). 

P emissions occur when the nucleus has an excess of either neutrons or protons, which leads to 

the release of an electron or a positron as shown in the following equations: 

A A -
z X ~z+1Y + /F + ve 

33 

(2.1) 

(2.2) 



Chapter 2. Targeted Alpha Therapy 

Table 2.1: Examples of some radionuclides which can be used for targeted radiation therapy, 
sourced from (Reilly 2010). 

Radionuclide Production 
Particulate Maximum 

Method 
Emissions Range T 112 phys Labelling Methods 
(Energy) in Tissues 

Direct radioiodination 

124Xe(n,g)1 25Xe Auger electrons with Chloramine-T or 
1251 

_, 1251 (<30 keV) < JOµm 59.4 days lodogen; indirect 
conjugation using 
A TE, SIPC, SGMIB 

1231 
124Xe(p,2n)123Cs 

Auger electrons < IO µm 13 .2 h Same as for 1251 _,l23Xe-.1 231 
Neutron 

P-Particles 131 I irradiation of 2µm 8.0 days Same as for 1251 
130Te (0.6 MeV) 

a -Particles Indirect conjugation 
211At 209Bi(a,2n)211 At (5.9- 7.4 MeV) 50- 100 µm 7.2 h with A TE, SAB, 

SAPC 
Binding to thiols; 
chelation by 

P-Particles 
tetradentate 

1s6Re 1s5Re(n,g)1 86Re (1.1 MeV) 3 µm 3 .7 days 
complexes; 
HYNIC; interaction of 
carbonyl complex with 
histidine residues; 
trisuccin 

1ssRe 
1ssw ;1ssRe P-Particles 

8 µm 3.7 days Same as for 186Re 
generator (I.I MeV) 

90y 9osr/9oy P-Particles 
12µm 2 .7 days Chelation by DOT A 

generator (2.3 MeV) 
Auger electrons 

Chelation by DFO 67Ga 68Zn( p,2n)67Ga (<30 keV) < lOµm 3.3 days 
and DOTA 

P-Particles 
Chelation by DOT A, 64Cu 68Zn( p,an)64Cu (0 .6 MeV) 2 µm 12.7 h 
BAT, orTETA 

natzn( p,2p)67Cu 
P-Particles 61Cu or 2 µm 2.6 days Same as for 64Cu 

68Zn( o,2P )67 Cu 
(0.4- 0.6 MeV) 

76Yb(n,g)-> 1 n Yb P-Particles 
Chelation by DOT A or 177Lu _,111Lu (0 .5 MeV) 2 µm 6.6 days 
CHX-DTPA 

212 Pb 
224Ra/212Pb a -Particles 

100 µm 10.5 h TCM C-trastuzumab 
generator (7.8 MeV) 

225 Acf- 13Bi a-Particles 
Chelation by DOT A 213Bi (8 MeV) 50- 100 µm 46 min 

generator or CHX-DTPA 

a-Particles 
(severa l 

22sAc 233u_,225 Ac daughter 
50- 100 µm 10 days Chelation by DOT A 

radionuclides 
with different 
energies) 
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~-particles that are suitable for targeted radionuclide therapy have ranges in tissue between 

0.5- 12 mm and deposit most of their energy (0.3- 2.3 MeV) at the end of their track (Hassfjell 

and Brechbiel 2001 , Reilly 2010). Low-, medium- and high-energy~ emitters are widely used 

for targeted therapy delivering high local dose to the tumour and a relatively smaller dose to 

normal neighbouring tissues if a pure ~ emitter is used. Another advantage of using pure ~ 

emitters is the small risk of irradiating others around the treated patient. Many ~ emitters, 

however, also emit y-rays ; for example, I-131 which is used for thyroid cancer and to treat non

Hodgkin's lymphoma (2007, Stigbrand, Carlsson et al. 2008, Reilly 2010). In this case, the 

treatment gives a greater dose to the whole body, but it offers a potential advantage of using 

the emitted y-rays for counting and imaging the area outside the body using a gamma camera, 

which allows monitoring of the isotope uptake and its distribution (Reilly 2010) . 

Mayles et al. (Mayles, Nahum et al. 2007) listed a nwnber of attractive low-, medium- and 

high-energy ~ emitters and their properties, such as their half-life, which ranges from 0.10 to 

163 days, (see Table 2.2). As ~-particles have a maximum range in the order of millimeters in 

water (Mayles, Nahum et al. 2007). For small tumours, there is a risk of irradiating not only 

the tumour, but also other adjacent cells. However, this can be an advantage for the treatment 

oflarge tumours (Reilly 2010). 
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Table 2.2: Examples of~ emitters for targeted therapy, sourced from (Mayles, Nahum et al. 
2007). 

Radionuclid 
T112 (days) E (MeV) 

e 
Low-energy ~ emitters 

19108 15.4 0.038 
3ss 87.4 0.049 
33p 25.4 0.077 

4sca 163.0 0.077 
199Au 3.2 0.082 
169Er 9.3 0.101 
61Cu 2.6 0.121 
41Sc 3.4 0.143 
177Lu 6.7 0.149 
161Tb 6.9 0.154 
iosRh 1.4 0.179 

Mediwn-energy ~ emitters 
131 I 8.0 0.192 

153Sm 2.0 0.229 
77As 1.6 0.232 
I43pr 13.6 0.314 
19sAu 2.7 0.315 
1s9Gd 0.77 0.319 
109pd 0.56 0.361 
is6Re 3.8 0.362 
111Ag 7.5 0.363 
149Pm 2.2 0.370 

High-energy ~ emitters 
16sDv 0.10 0.455 
s9Sr 50.5 0.583 
32p 14.3 0.695 

I66Ho 1.1 0.695 
lssRe 0.71 0.764 

11 4mrn 49.5 0.777 
142Pr 0.80 0.833 
90y 2.7 0.935 

76As 1.1 1.267 

2.3 Introduction to Targeted alpha therapy 

Targeted alpha therapy is a promising treatment modality where an alpha particle, emitted from 

a single radionuclide decay, has the potential to eradicate individual cancer cells. This is 

considered an advantage compared to ~-particles which may require ~ 100 - 1000 times of~-

particles to cross the cell to cause enough radiation damage to kill it (Jurcic, Larson et al. 2002, 
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Mulford, Scheinberg et al. 2005, Allen, Huang et al. 2014, Elgqvist, Frost et al. 2014). 

Moreover, the short range of alpha particles (micrometres) is another important advantage 

compared to the longer ranged ~-particles (millimetres), which will also irradiate the nom1al 

cells surrounding the tumour (Wheldon and O'Donoghue 1990, Kim and Brechbiel 2012). 

Unlike the low LET of ~-particles , alpha particles have a high LET and can deliver a greater 

dose to the targeted tumour cells (lethal dose) (Wheldon and O'Donoghue 1990, McDevitt, 

Sgouros et al. 1998, Marcu, Bezak et al. 2012, Allen, Huang et al. 2014). However, presently 

there is still not enough dosimetric information about the delivered dose, its distribution and 

the effects of alpha particles on both the tumour cells and potentially the surrounding healthy 

cells (Wheldon and O'Donoghue 1990, Roeske and Stinhcomb 1997, Kim and Brechbiel 2012). 

Alpha particles are emitted from nuclides with high atomic numbers (mostly higher than 82) 

leading to decay and emission of two protons and two neutrons as shown in equation (2-3) 

(Khan 1994, Reilly 2010): 

A x~A-4 y +a+Q 
Z Z-2 (2.3) 

Where Q is the total amount of energy released. 

Therefore, the alpha particle (-particle) can be defined as a nucleus of the helium atom (). The 

two protons mean that the a-particle holds a positive charge that allows it to be accelerated 

(Hall and Giaccia 2006). There are many nuclides that decay via alpha emission, such as and, 

shown in equations (2.4) and (2 .5): 

(2.4) 

221Th~223 Ra+ a+ Q 
90 88 (2.5) 
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Alpha particles have a short path length (less than 100 µm) in tissue (equivalent to a few cell 

diameters), high LET (mean energy deposition ~ 100 ke V /µm) (Larsen, Borrebaek et al. 2007, 

Mayles, Nahum et al. 2007, Reilly 2010, Kim and Brechbiel 2012) and the cell damage, caused 

by a-particles, is independent of cell proliferation and oxygenation (Roeske and Stinhcomb 

1997, McDevitt, Ma et al. 2001, Mulford, Scheinberg et al. 2005, Elgqvist, Frost et al. 2014). 

According to Sgouros (Sgouros 2008), a-particles deposit energy along their track at densities 

between l 00 and 1,000 times higher compared to those of photons and electrons . Similarly, the 

biological effects are 3-7 times higher than those for beta targeted therapy. The high density of 

ionisation events caused by a-particles results in unrepaired DNA double strand breaks in the 

tumour cells, even within an environment lacking oxygen (Sgouros 2008, Kim and Brechbiel 

2012, Allen 2013). All of these advantages, along with evidence provided in various in vitro 

and in vivo studies (Allen, Raja et al. 2004), have lead to the first clinical TAT trial conducted 

in 1995. Since then, more studies have been carried out to produce agents that can be 

conjugated with alpha emitting sources, distributed inside the body and attached to the tumour 

(Kim and Brechbiel 2012). TAT has now been used in clinical trials to treat prostate, ovarian 

cancer, melanoma, leukaemia and neuroendocrine tumours (Jurcic, Larson et al. 2002, IAEA 

2013). 

One a-particle source, that is used for targeted alpha therapy, is 225 Ac (half-life 10 days with 

six daughter isotopes produced until the stable daughter of 209Bi is reached) (Kim and Brechbiel 

2012). It is produced naturally from the decay of 223U and/or 229Th or artificially, by neutron 

irradiation of 226Ra target (McDevitt, Sgouros et al. 1998, IAEA 2013). It can be chelated by 

DOT A and attached to HuMl 95 antibody to treat myeloid leukaemia (Kim and Brechbiel 

2012). A phase I clinical trial has already been conducted involving 23 patients with advanced 
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myeloid leukaemia to determine the maximum dose tolerance for 225 Ac-HuMl 95 (225 Ac 

labelled with anti-CD33 antibody lintuzumab) (IAEA 2013, ClinicalTrials.gov 2015). In 

another study, 20 patients were injected with Ac-225 with an activity between 851 and 14,430 

kBq. At the 5-month follow up, there was limited toxicity observed and the dose tolerance was 

found to be less than 148 kBq/kg (IAEA 2013). 

Another alpha-emitting radionuclide used for TAT is 213Bi (alpha (8.4 MeV) and beta emitter) 

(Dahle, Abbas et al. 2011 , IAEA 2013, Fichou, Gouard et al. 2015). Even though the 213Bi half

life is 46 minutes, meaning that is has restricted usage due to delivery and uptake limitations, 

it has been used in several targeted alpha therapy clinical trials (Jurcic, Larson et al. 2002, 

Allen, Raja et al. 2004, Elgqvist, Frost et al. 2014). It is produced as a generator product of the 

parent 225 Ac (Allen, Raja et al. 2004, Kim and Brechbiel 2012). Bi-213 emits y-rays, which can 

be beneficial for adjunct imaging, assessment of biodistribution or dosimetry (Kim and 

Brechbiel 2012). It has been used in several clinical trials when chelated with monoclonal 

antibodies (mAbs), such as with the C-functionalised trans cyclohexyldiethylenetriamine 

penta-acetic acid moiety (CHX-A-DTPA), or chelated with proteins such as plasminogen 

activator inhibitor-2 (P AI2), or C595 or used with HuM 195 to cure leukaemia and melanoma 

(McDevitt, Sgouros et al. 1998, Sgouros, Ballangrud et al. 1999, Jurcic, Larson et al. 2002, 

Allen, Raja et al. 2004, Raja, Graham et al. 2007, Marcu, Bezak et al. 2012, IAEA 2013). 

Preclinical studies from the Centre for Experimental Radiation Oncology (CERO), Australia, 

have shown that there is an enhancement in the TAT cytotoxicity compared to targeted beta 

radiotherapy (Allen, Raja et al. 2004). Furthem1ore, a clinical trial of TAT for melanoma in 

humans has proven the safety and the efficacy of TAT in melanoma regression (Allen, Raja et 

al. 2004, Raja, Graham et al. 2007). 
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2.3.1 Targeted Alpha Therapy using Th-227 

Thorium-227 has a half-life of 18.72 days (Lederer, Hollander et al. 1967, Dahle, Abbas et al. 

2011 ). It decays by emitting both and ~ particles . Figure 2.2 shows a diagram of the Th-227 

decay scheme. The main decay energies of -particles are 6.04 MeV (23% occurrence), 5.98 

MeV (24%), 5.76 MeV (21 %) and 5.72 MeV (14%). 

A number of preclinical studies have investigated Th-227-immunoconjugates for treatment of 

lymphoma, breast, and ovarian cancer using animal models (Seidl 2014), with Th-227 

commonly bound to antibodies with p-SCN-benzyl-DOTA chelator (Dahle, Abbas et al. 2011 , 

IAEA 2013). For example, Th-227 labelled anti-CD20 antibody rituximab has been used for 

treating lymphoma in animal models (Allen, Huang et al. 2014). In both in vitro and in vivo 

studies, the results showed that a single treatment of 227Th-DOT A-p-benzyl-rituximab (200 

kBq/kg) resulted in a 60% regression of lymphoma cells and an increase in survival from 21 

days in the untreated mice to 119 days for treated mice (Dahle, Borrebaek et al. 2007, Seidl 

2014). Moreover, even a low dose rate alpha-radioimmunotherapy with 227Th-rituximab; i.e. 

using low injected activities (between 50 to 200 kBq/kg), was effective to regress tumours 

(Dahle, Borrebaek et al. 2007). Another study assessed the long-tenn toxicity oflow dose rate 

227Th-rituximab (Dahle, Jonasdottir et al. 2010), where mice were injected with 50, 200 or 

1,000 kBq/kg 227Th-rituximab and then followed up for a period of one year. The results 

suggest that achievement of a therapeutic effect is possible with safe dose levels of 227Th

rituximab (Dahle, Jonasdottir et al. 2010). 
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Figure 2.2: Thorium-227 decay scheme, courtesy of (Heyerdahl, Abbas et al. 2012). 

Another monoclonal antibody studied for TAT is trastuzumab. Trastuzumab has been 

radiolabeled with Th-227 using p-SCN-benzyl-DOTA chelator and its effects were 

investigated in mouse models of breast and ovarian cancer (Larsen, Borrebaek et al. 2007, Seidl 

2014). The cytotoxic effect of using the low dose rate radioimmunoconjugate 227Th-DOTA-p

benzyl-trastuzumab was tested using SKOV-3 ovarian cancer cell lines and as a potential 

therapeutic agent for metastatic cancers (Heyerdahl, Abbas et al. 2012). Different specific 

activities of 227Th-trastuzumab were used to treat SKOV-3 cells; 11 kBq/µg was the highest 

specific activity. It caused higher cell suppression than the lowest specific activity of 2.8 

kBq/µg. However, similar amounts of apoptosis were seen for both of the specific activities 

using this agent (Heyerdahl, Abbas et al. 2012). Furthermore, the effects of 227Th-trastuzumab 

on HER2-positive breast cancer cells was studied in term of their survival, growth and 

apoptosis. Survival was decreased, cell growth was inhibited and apoptosis was induced in this 
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cells line, and each of these effects was found to be dependent on the amount of specific activity 

of 227Th-trastuzumab (Heyerdahl, Abbas et al. 2012). 

Another study investigated 200, 400 and 600 kBq/kg of 227Th-trastuzumab in mice using 

HER2-expressing breast cancer xenografts. The results suggest a dose-dependent anti-tumour 

effect with limited toxicity (Abbas, Heyerdahl et al. 2011, Seidl 2014). 

In addition, responses of HER-2-positive ovarian cancer xenografts in mice to 227Th (a

particles) versus 177Lu (~-particles) labelled trastuzumab were compared (Abbas, Bruland et al. 

2012). The mean survival of mice treated with 400 and 600 kBq/kg 227Th-trastuzumab was 107 

± 9 and 129 ± 12 days, respectively, which was significantly improved compared to a control 

or 72 MBq/kg 177Lu-trastuzumab treatment (88±11 days and 85±8 days, respectively) (Abbas, 

Bruland et al. 2012). 

Moreover, fractionation of the same concentration of 227Th-trastuzumab could reduce the 

toxicity while maintaining the same therapeutic effect. However, this is not applicable for 

targeted alpha therapy in rapidly growing tumours, as the dose rate will be lower than necessary 

for tumour control (Heyerdahl, Abbas et al. 2012). 

The Th-227-labelled murine monoclonal antibody DAB4 (APOMAB) has been used in 

preliminary in vivo investigation of Lewis lung tumour in mice (Staudacher, Bezak et al. 2014). 

This group studied the effect of 227Th-DAB4 (18 kBq) with and without prior chemotherapy 

administration to tumour bearing mice. To assess the tumour uptake, tissue biodistribution of 

the RIC after 1, 2, 3 and 5 days of 227Th-DAB4 administration were examined. The tumour 

uptake was significantly higher for mice treated with chemotherapy prior to 227Th-DAB4 

administration compared to mice treated with 227Th-DAB4 alone. Combining 227Th-DAB4 

with chemotherapy increased tumour regression significantly compared to treatment with 
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227Th-DAB4 alone, which gave a modest anti-tumour response, compared to untreated mice 

(Staudacher, Bezak et al. 2014). 

Nevertheless, a major issue associated with Th-227 implementation in TAT is production of 

the daughter nuclide (223Ra) which accumulates in bones as it targets calcium hydroxyapatite 

in the stroma of the bone (Seidl 2014 ). Ra-223 realises alpha particles too that causes many 

unwanted toxic side-effects. Ra-223 also releases alpha particles that may cause additional 

toxicities. 

2.3.2 Targeted Alpha Therapy using Ra-223 

Ra-223, with a half-life of 11.4 days, is produced either from an Ac-227 generator or from Th-

227 decay (Lederer, Hollander et al. 1967, Kim and Brechbiel 2012). It emits four a-particles 

(energy range between 5 to 7.05 MeV (Lien, Tvedt et al. 2015)) and two p--particles and y-rays 

before reaching the stable state of 207Pb. 

Different preclinical studies have investigated Ra-223 (Ra-223 is bone-seeking radionuclides 

and there is no need to associate with antibody) for bone cancer, and especially metastatic 

disease associated with prostate and breast cancer. This led to the introduction of Alpharadin@ 

(223Ra chloride, or Xofigo@) by the Norwegian company Algeta ASA and Bayer Schering 

Pharma AG. As Alpharadin naturally targets to bone metastases, it gives the advantage of 

effectively localising the radiation damage to cancer cells in the bone. Alpharadin has been 

examined in phase II and III clinical trials for prostate cancer patients with bone metastases 

(Nilsson, Franzen et al. 2007, Kim and Brechbiel 2012, IAEA 2013, Joung, Ha et al. 2013, 

Allen, Huang et al. 2014). Furthermore, Ra-223 dichloride (formerly Alpharadin) is the first 

alpha emitter approved for the treatment of castration-resistant prostate cancer patients with 

bone metastases. 
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The results of a clinical trial (Shirley and McCormack 2014, Lien, Tvedt et al. 2015, Shore 

2015) that used a regimen of six injections ofRa-223 (50 kBq/kg body weight) over a period 

of four weeks revealed a general improvement in patient survival (including a 30% reduction 

in the risk of death) and reduction in noticeable pain and symptomatic skeletal events, where 

the Ra-223 skeletal uptake was between 40 to 60% of the administered dose, and was well 

tolerated by patients (Croke, Leung et al. 2012). 

For breast cancer patients with bone metastases, in vitro preclinical studies have shown the 

ability of Ra-223 to combine with bone matrix and control the breast cancer cell proliferation. 

In vivo study resulted in 56% and 43% decrease in osteolysis and tumour growth, respectively, 

while DNA double strand breaks were produced in the breast cancer cells culture (Suominen, 

Rissanen et al. 2013, Nilsson 2014). This led to a metastatic breast cancer clinical trial using 

Ra-223 dichloride. In a phase Ila clinical trial, 23 patient received a weekly dose of Ra-223 

(50 kBq/kg of body weight) over four weeks (Coleman, Aksnes et al. 2014). After 17 weeks, 

the patients showed a decrease in the hypermetabolic osteoblastic bone lesion metabolic 

response rate of 41.5%. Furthermore, the investigation emphasised the safe use and a good 

tolerability of Ra-223 dichloride for breast cancer patients with bone metastases. Compared to 

beta therapy (such as Sm-153 and Sr-89) Ra-223 has less myelotoxicity (Coleman, Aksnes et 

al. 2014). 

2.4 Conclusion 

Targeted alpha therapy is a modality belonging to targeted radionuclides therapies that provides 

localised tumour treatment to cancer patients due to the unique properties of a-particles, such 

as their short range and high LET, meaning that a-particles are highly cytotoxic to tumour cells. 
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The selection of an alpha emitter should involve consideration of the physical range of a

particles relative to the cell and tumour size, along with commercial availability and 

bioavailability of suitable antibodies. Moreover, intensive dosimetric studies need to be 

conducted to evaluate the dose rate and dose distribution in TAT. 
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Timepix Radiation Detector 

3.1 Introduction 

With the development of hadron and targeted therapies, there is a renewed interest in novel 

microdosimetry detectors. The Timepix detector, developed at CERN as an extension of the 

Medipix2 detector, represents such a microdosimeter. It can be used for experiments with 

photons, electrons and heavy particles and in a wide range of applications in space physics, 

nuclear physics, radiotherapy physics, imaging and radiation protection. This chapter reviews 

some of the published works utilizing Timepix as a radiation detector, a spectroscope or as a 

camera for photons, and charged particles. Specific applications of Timepix are described, 

showing that more investigation is still required to gain the full benefit of Timepix applications, 

especially in the fields of radiation therapy and imaging. More specifically, the application of 

Timepix to targeted radiotherapies remains absent despite the main advantage of Timepix: 

tracking energy deposition at the micrometer level. 
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3.2 Statement of Contribution 

3.2.1 Conception 

The first concept of reviewing the latest papers on Timepix was suggested by Eva Bezak. 

3.2.2 Realisation 

These two review papers were primarily written by Ruqaya Al Darwish. Eva Bezak assisted 

by editing the manuscript. 

3.2.3 Documentation 

This paper was primarily written by Ruqaya Al Darwish. Editing was conducted by Eva Bezak. 

Loredana Marcu and Anatoly Rozenfeld both provided assistance with editing the final versions 

of these papers. 
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Structure: 

1. Introduction 
2. General characteristics 
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4. Timepix modes 
5. Spatial resolution 
6. Conclusions 

Abstract 

The Timepix detector, developed at CERN as an extension of the Medipix2 detector, represents 
a versatile microdosimeter. It can be used for experiments with photons, electrons and heavy 
particles and in a wide range of applications in space physics, nuclear physics, radiotherapy 
physics, medical imaging and radiation protection. This paper reviews the general 
characteristics of Timepix, including calibration, Timepix modes, spatial resolution and other 
features revealed by current research. 

Key words: Timepix, detector, microdosimeter, spectroscopy, TOT mode. 
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1. Introduction 

With the rapid development of hadron therapy as well as of various particle based targeted 
therapies, further development in detection and dosimetry technology is required in a form of 
an accurate tool which can track ionization events on a micrometer or even nanometer level. In 
other words, a detector able to monitor individual particle tracks that can also measure the peak 
energy deposited is needed. 

Semiconductor materials have many highly desirable characteristics for dosimetry including 
high density, low energy requirements to produce an electron-hole pair (i.e. high sensitivity 
and resolution), ability to work in unbiased or biased modes, and high efficiency even at low 
voltage bias (Rosenfeld et al., 2006). Furthermore, they offer high readout speed and have 
compact design with both detector and reader generally assembled in a single unit. Particle 
energy and position can be measured simultaneously and precisely (Lutz, 2007). Developments 
in semiconductor technologies have led to a new generation of highly efficient radiation 
detectors with very small pixel size and low noise such as Medipix detectors, with several 
generations (Medipixl, Medipix2, Timepix and Medipix3) having evolved over the past two 
decades at CERN within two frameworks of international collaborations (Llopart et al., 2007; 
Vallerga et al., 2008). 

This review discusses a prototype of a semiconductor microdosimeter, namely Timepix. It 
provides detailed discussion of some of the major studies that examine the use ofTimepix as a 
detector, a spectrometer and a camera. Another review paper published in 2010 studied 
development and applications of Medipix2 over a ten year period including its modifications 
ultimately leading to Timepix development (Campbell, 2011). However, the review did not 
focus on Timepix and its applications. According to the INSPEC database, there have been 274 
articles related to Medipix2 published since 2001 until 2015, while the number of articles 
published on Timepix has reached over 240 since 2007. This timely review is the first one 
focussing specifically on Timepix since its introduction in 2004. 

As an additional impetus, development of Timepix applications is no longer restricted to CERN 
framework collaboration (requiring a cost-prohibitive licence) as the technology (the naked 
chip and the detector assembly) has now been released for commercial production and purchase 
through several companies, including: Amsterdam Scientific Instruments (The Netherlands), 
X-ray Imaging Europe GmbH (Germany) andX-Ray Imatek (Spain). The cost, on average, for 
a single Timepix chip is approximately€ 10.000, making the detector affordable and more 
departments may be looking into including this novel semiconductor detector into their 
radiation detection and dosimetry equipment arsenal. 

2. General characteristics 

Timepix is a semiconductor detector evolved from the original Medipixl system, also called 
Photon Counting Chip (PCC), developed in the 1990s, using a hybrid semiconductor pixel 
detector to detect particles in high energy physics experiments (Abate et al., 2000; Amendolia 
et al., 1999; Amendolia et al., 2000; Bardelloni et al., 2000; Bertolucci et al., 1999; Bisogni et 
al., 1998; Campbell et al., 1998; CERN, 2011; Mikulec, 2000; Mikulec et al., 2001; Schwarz 
et al., 1999). Medi pix 1 consisted of a sensor layer of 64 x 64 pixels with a single pixel area of 

.. 170 x 170 µm 2 (Campbell et al., 1998; Davidson et al., 2003; Faruqi and Cattermole, 2002; 
Mitschke et al., 2004; NiederlOhner et al., 2003; Pfeiffer et al., 2003; Sinor et al., 2003). Each 
pixel was made of Si or GaAs and was bump-bonded to a second readout layer made of a 
complementary metal-oxide-semiconductor (CMOS) (Bert et al., 2003; CERN, 2011). 
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In the late 1990s, CERN developed Medipix2 using sub-micron CMOS technology (Bello et 
al., 2001; Chmeissani and Mikulec, 2001; Rossi et al., 2006). This technology resulted in the 
improvement of the pixel function and also enabled the decrease of the pixel size, increasing 
the number of pixels per chip (CERN, 2011; Pfeiffer et al., 2004). Medipix2 has the following 
properties: pixel size of 55 x 55 µm 2 (Dammer et al., 2009; Faruqi and Cattermole, 2002; 
Manach and Gal, 2002; Mettivier et al., 2003), the chip can collect positive or negative charge, 
the upper and lower charge thresholds can be selected to ensure uniform performance and, to 
avoid dead time, the read-out is performed after exposure (Bisogni et al., 2003; CERN, 2011; 
Llopart et al., 2002). 

Medipix3 was developed using an 8-metal 0.13 µm CMOS readout chip connected to a 
pixelated semiconductor sensor layer (Ballabriga et al., 2007; CERN, 2011). The sensor layer 
is a matrix of an 8 x 8 pixel square with 55 x 55 µm 2 individual pixel area (Ballabriga et al., 
2011; Ballabriga et al., 2007; Gimenez et al., 2011). It is still under development and aims to 
eliminate the spectral distortion due to so-called charge sharing effect (Ballabriga et al., 2007), 
to operate free of dead time (CERN, 2011). 

A development extension of Medipix2 is Timepix. While Timepix can count particle hits same 
as Medipix2, it can also record time over a certain energy threshold allowing direct energy 
measurement in each pixel and it can measure arrival time of the first particle to the chip. This 
represents the main advantage of Timepix as it can measure the amount of energy deposited in 
the Time Over Threshold mode (Campbell et al., 2007). Although Timepix and Medipix2 share 
some physical properties such as pixel size (Bamberger et al., 2007; CERN, 2011) and the 
ability to detect both positive and negative charges (CERN, 2011), they differ in three aspects. 
In Timepix (Llopart et al., 2007): 

1. Each pixel has a single energy threshold with 4-bit threshold adjustment; 
2. Each pixel can operate in three main modes (Medipix mode, Timepix mode and Time 

Over Threshold); 
3. Each pixel's counting clock is synchronized with an external clock reference. 

As mentioned above, Timepix consists of a semiconductor layer divided into an array of pixels. 
This array is bump-bonded to readout ASIC (Application Specific Integrated Circuit) as an 
integrated electronic layer (Fig. 1 ). Each pixel has an individual charge-sensitive preamplifier, 
a discriminator and a counter (CERN, 2011; Rligheimer et al., 2008) and a 4-bit digital-to
analogue convertor (DAC) to adjust the charge threshold ( 4-bit DAC for threshold adjustment) 
(Llopart et al., 2007) as shown in Fig. 2 and Table 1. 
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Pixelated 300 µm thick Si 
detector chip (256 x 256 

Fig. 1: Timepix structure, courtesy of (Kraus et al. , 2011) and the structure of one pixel: 1) 
preamplifier, 2) discriminator with 4-bit threshold equalization, 3) 8-bit Pixel Configuration 
Register, 4) reference clock buffer and Timepix Synchronization Logic and 5) 14-bit shift 

register and overflow control, courtesy of (Llopart et al ., 2007). 

Timepix perfonns its functions using a synchronization logic and a 14-bit counter per pixel. 
The detector can cope with count rates of up to 100 kHz for each pixel (in single particle 
counting mode) (Llopart et al ., 2007) and has an overflow limit of up to 11810 counts (CERN, 
2011). It also has the advantage oflow electric noise of almost 100 e-nns (root mean square) 
(Pugatch et al., 2011). 
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Fig. 2: Timepix pixel schematic. Each pixel consists of two main parts: analog part and 
digital part, courtesy of (Campbell, 2011 ). 
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Table 1: Physical properties of Timepix adopted from different references (for more 
information refer to the text). 

Number of pixels 256 x256 or 512x512 
Pixel size 55 x 55 µm 2 

Chip size 1.408 x 1.408 cm2 or 2.8160 x 2.8160 cm2 

Active area About 2 cm2 (for 512x512 chip) 
Type of accepted charge Positive or negative charge 
Modes 1. Medipix mode to count single particle 

2. Timepix mode to measure the arrival time of pa1iicle 
interaction 
3. Time Over Threshold (TOT) to measure the energy 
deposited in each pixel for events between the thresholds 

Type of Timepix chip Single, quad and octo 

Timepix can be linked to an integrated USB-based readout interface that can connect to a 
PC/notebook. Windows compatible software package Pixelman determines the control and 
data acquisition of Timepix detector (Granja et al., 2010). 

3. Calibration 

Calibration of any radiation detector, including Timepix, is an important procedure before 
employing that system for radiation measurement purposes. Timepix calibration establishes the 
relationship between the collected charge and the deposited energy where the total charge 
recorded in each pixel depends on the incoming particle ' s energy, the place and the depth of 
the interaction (i.e. charge sharing effect), the detector bias voltage, preamplifier and the energy 
threshold (Jakubek, 2009; Jakubek et al. , 2008). Additionally, pixel equalization needs to be 
performed as there is a need for uniform perfonnance of all pixels. Calibration and equalization 
can be performed using low energy X-rays (Jakubek, 2009; Jakubek et al., 2008). This is 
potentially not a trivial task, as there are 65536 (256 x 256) or 262144 (512 x 512) individual 
pixels. 

According to Jakubek et al. (Jakubek et al., 2008), radioactive sources can be used to calibrate 
Timepix in TOT mode: 55Fe (5.9 keV), 24 1Am (59.5 keV) as well as fluorescent materials 
emitting characteristic X-rays produced using tungsten X-ray tube (26Fe (6.4 keV), 29Cu (8.0 
keV), 40Zr (15.8 keV), 42Mo (17.5 keV), 48Cd (23.2) keV and 49In (24.2 keV) (Jakubek et al. , 
2008). By selecting one pixel cluster and by fitting the corresponding peaks in the energy 
spectrum with a Gaussian distribution curve, the resulting calibration is a nonlinear surrogate 
function as shown in Fig. 3. 

55 



Chapter 3. Timepix Radiation Detector 

16 

14 

12 Threshold (t) 

10 
<n 
2. 8 
t-
~ 6 

4 I f (x)=ax+b- xc-t I 
2 

0 
0 20 40 60 80 

Energy [keV] 

Fig. 3: Calibration curve (surrogate function) , courtesy of (Jakubek et al. , 2008). 

The surrogate function (i .e. the calibration curve) is given by: 

f(x) = ax + b - _c_ 
x-t 

(1) 

The parameters a, b, c and t should be determined for each pixel "using the least-squares fit". 
To determine these parameters, the measurement for each pixel is repeated at least four times 
(Jakubek, 2011). 

Jakubek and his group (Jakubek et al. , 2008) also studied Timepix performance with alpha 
particles passing through a sample material. Initially, Timepix calibration was conducted using 
gamma radiation from different radioactive sources and fluorescent materials that emit 
characteristic X-rays and those produced by a tungsten X-ray tube. First, y-rays of 59.5 and 
26.3 keV from 24 1Am source (750 MBq) were used with exposure time of 50 ms and the 
threshold of about 4.5 keV (taking 2000 frames) to study the measured energy spectrum of 
photons without energy calibration of Timepix. The results show that the cluster-volume 
spectrum will be distorted if it is measured without energy calibration, while pixels calibrated 
with the same source give a well-aligned peak. Fig. 4 shows the results for a non-calibrated 
and a calibrated Timepix and subsequent measurement of 241 Am y-rays. 
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Fig. 4: A) Cluster volume spectrum of 241 Am obtained from a non-calibrated Timepix for all 
clusters (dashed line) and for different cluster sizes (number of pixels) (solid lines), B) 

Cluster volwne spectrum of 241 Am obtained from a calibrated Timepix in TOT mode for all 
clusters and for different cluster sizes, courtesy of (Jakubek et al., 2008). 

Secondly, the alpha particle cluster-volume (energy) spectrum was measured in air for two 
sources (241 Am and 239Pu) with results shown in Fig. 5. 
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Fig. 5: Cluster volWTie spectrum of alpha particles from combined 241 Am and 239Pu sources 
measured in air, courtesy of (Jakubek et al., 2008). 
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The calibration in TOT is a demanding process as it requires analysing at least 250 thousand 
spectra. In 2011 , Jakubek presented a new calibration method based on precise analysis of the 
spectral peaks shapes and requiring just two to three calibration points in order to have "the 
number of least-squares fits needed" (Jakubek, 2011 ). Instead of using a plain Gaussian for the 
low energy part of the calibration curve, a combination between Gaussian and surrogate 
function is recommended. The resulting fit depends on 7 parameters: 

M a,b,c,t ,µ,a ,A (5) = Gµ,a ,A (ta~6-.c,t (S)) (2) 

where Ma,b,c,1,µ,u,A (S) is the new spectral peak model obtained from the combination of Gaussian 
(Gµ ,u.A (e) ) and the inverse surrogate function {fa,b,c,1(e) ). The surrogate function shows the 
energy transformation to TOT signal(s) which works as a pixel calibration function; e is the 
particle's energy; µ is a Gaussian parameter that gives mean energy in the calibration peak; a 
is a Gaussian parameter that gives energy noise; A is also a Gaussian parameter that gives 
spectral peak intensity or area (Jakubek, 2011 ). 

The calibration was tested by using multi -energy source: a combination of an 241 Am that emits 
59.5 keV y-ray penetrating indium and iron plates and XRF materials, where the characteristic 
fluorescence X-ray generated for In is 24. l keV and for Fe is 6.4 keV, as shown in Fig. 6. The 
threshold was higher than the noise level of about 3.2 ke V with 100 V bias voltage and 10 MHz 
clock frequency. This method of calibration improved the quality of energy calibration and 
simplified the procedures (Jakubek, 2011 ). 

Attenuation 
Al 

In, XRF 

Fe, XRF 

. - . - -
·············-·· ·-···· .. ·-·-· Timepix 

Fig. 6: Timepix calibration testing setup, courtesy of (Jakubek, 2011 ). 

The quality of calibration was further tested for higher energy alpha particles of 5.5 MeV 
energy from 241 Am concluding that the surrogate function was not valid for very high ionization 
particles as the pixel electronics presented unexpected distortion for energies higher than 0.9 
MeV. However, this behaviour can be corrected extending the calibration range up to 1.2 MeV 
per pixel. 

4. Timepix modes 

The architecture and functionality of Timepix characterisation were evaluated in 2007 by 
Llopart et al. (Llopart et al. , 2007). This group also presented the first electrical measurement 
to test the three modes (as shown in Table 1 ). 

In the counting mode (Medipix mode), ans-curve method was used to measure the electronic 
noise and effective threshold. First, a fixed threshold was chosen and the input charge was 
taken under the threshold (no counter counts) to higher than the threshold (all pulses are 
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counted). The results can be built as an s-shaped curve where the effective threshold can be 
obtained at 50% of the curve. The results show linearity for both polarities up to 20 ke- in one 
pixel at the matrix centre (see Table 2). 

Table 2: Electrical characterization of Timepix in Medi pix mode adopted from (Llopart et al., 
2007). 

Measurement 
For hole collection For electron collection 

Measured electronic noise 99.4 ± 3.8 e- rms 104.8 ± 6 e- nns 
Measured DAC ste am 24. 7 ± 0. 7 e-/ste 25.4 ± 1.2 e-/ste 

In TOT mode, the linearity was tested up to 40 ke-. The results show a relationship between 
the input charge and the measured time at three different thresholds. This relationship is linear 
when the input charge is higher than the threshold by 3-4 ke-. 

The measurement in arrival time mode (Timepix mode) measures the time-walk, which is the 
difference between the time measured for an input charge higher than the threshold by 1 ke
and for the infinite input charge. Fig. 7 shows the relationship between the time-walk measured 
for five threshold values and two preamp current DAC settings (to control the preamplifier 
peaking time) for a pixel at the matrix centre. Having a faster preamplifier peaking time gives 
better value of time-walk. For the hjgher preamp current DAC setting, the measured time-walk 
was less than 50 ns. 

The study concludes that each pixel in a Timepix device can be programmed individually to 
one of the three modes: counting mode, particle arrival time mode or energy mode [ 4]. The 
initial measurement of the electronic pixel noise is almost 100 e-rms, but after equalization of 
the whole matrix, threshold variation between pixels is about 35 e-nns. Furthermore, as the 
charge deposition for a single event spreads between a number of neighbouring pixels, Timepix 
chip can be operated in more than one mode at the same time: TOT mode and arrival time 
mode to compensate off-line time-walk considering the neighbouring pixels ' input to deposited 
charge. 

5. Spatial resolution 

Spatial resolution of Timepix was also studied with alpha particles produced by 241 Am decay 
(alpha particles of 5.5 MeV) penetrating a sample of eight overlapping Mylar foils, each with 
thickness of 4 µm (Jakubek et al., 2008). The measured spectra are shown in Fig. 8. The results 
show that if the energy loss of a single alpha particle is measured, there is a possibility to 
measure the thickness of a thin organic sample with a resolution between 300 to 600 nm. This 
resolution can be augmented by increasing the energy of the particles, while the precision of 

, thickness can be improved by increasing the number of particles. 
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Fig. 7: Time-walk of a single pixel at the centre where the thick and thin line curves 
conespond Preamp = 1.8 µA and 900 nA, respectively, courtesy of (Llopart et al., 2007). 
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Fig. 8: Energy spectra of alpha particles passing through a stack of Mylar foils , courtesy of 
(Jakubek et al ., 2008). 

Another test done by this group was to take radiographic images with 241 Am alpha particles in 
vacuum of a spider slough placed on the detector surface and fixed by Mylar foil as shown in 
Fig. 9. About 60,000 frames were taken during 16 hours. 
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Fig. 9: Spider slough radiographic images taken with 241Am alpha particles (720,000 alpha 
particles per 1 megapixel) in vacuum, courtesy of (Jakubek et al. , 2008). 

The results confirm the appropriateness of using Timepix for radiography with heavy particles 
by measuring their energy loss while transiting the sample of interest. 

As any individual interaction event causes spreading of charge deposition between 
neighbouring pixels, Jakubek published a study dealing with the charge sharing effect in 
Timepix (Jakubek, 2009). The charge sharing effect occurs when the incoming particle 
produces sharing between adjacent pixels during the charge collection from a primary 
ionization event. This results in a cluster (i .e. signal from several neighbouring pixels) and 
leads to a reduction of the total amount of measured energy compared to the original energy 
because the amount recorded in each pixel depends on its threshold. If it is higher than the 
threshold, the contributed energy is recorded. If it is lower than the threshold, it is neglected. 
This is shown in Fig. 10. The charge sharing effect depends on three elements: (a) the deposited 
energy, (b) the speed of charge collection and ( c) the thickness of the detector. 

Detecte d 
charge 

L o st 
cha rge 

Fig. 10: Charge sharing effect process, courtesy of (Jakubek, 2009). 

This effect can be studied in more detail with Timepix as it can work in TOT mode, which 
allows the study of each individual pixel. Jakubek compared the results of a simplified model 
of the charge sharing effect with experimental data. Just one pixel cluster was considered and 
neighbouring pixels were neglected. To study the effect of interaction depth on the charge 
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sharing effect of the detector, the detector was tilted in front of a narrow X-ray beam as shown 
in Fig. 11; the resulting cluster analysis showed a linear dependence of the cluster size on the 
interaction depth. This means that diffusion is responsible for the charge spread. Results were 
compared with simulations of 3 x 3 pixels irradiated with monoenergetic X-ray beam 
perpendicularly. The depth of interaction was chosen by applying the exponential absorption 
Jaw to the incoming X-ray beam of a given energy and the attenuator (silicon). The simulations 
agreed with the experimental data . 

10 m slit 

Fig. 11: The experimental setup to study the relationship between the cluster size and the 
depth of interaction, courtesy of (Jakubek, 2009). 

Jakubek also used the energy calibrated Timepix for material-sensitive X-ray radiography. A 
tungsten anode X-ray tube (40 kV), very low current (1 µA) and exposure time equal to 1 ms 
were used to irradiate a PMMA-water sample (taking - 40,000 frames) . From the spectra, 
Jakubek concluded that the energy resolution of Timepix using energy-sensitive X-ray 
radiography has the ability to recognize the soft biological tissue leading to potential 
application in medical physics. In Fig. 12, a tungsten anode X-ray tube (40 kV and 1 mA) was 
used to irradiate a PMMA-water sample that simulates fat and muscle tissue. 

Fig. 12: a PMMA-water sample used with low X-ray tube current where about 40,000 frames 
(1 ms per frame) were taken with Timepix, courtesy of (Jakubek, 2009). 

In order to extend the imaging applications of Timepix, a method based on Monte Carlo 
simulations was presented by Zemlicka et al. (Zemlicka et al., 2009) for X-ray fluorescence 
(XRF) imaging. Measurements of characteristic fluorescence spectra of pure elements were 
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first conducted, in order to measure complex spectra from an unknown sample composition. 
The geometric setup using a pin-hole collimator for this experiment is shown in Fig. 13 
(Zemlicka et al., 2009). As a result of this setup, the Timepix's spatial resolution is equal to the 
diameter of the collimator pin-hole. Simulation method using pixel decomposition was 
employed to decompose the complex spectra to distinguish the element distribution area in a 
sample. 

Character istic 
rad iation 

Pin-hole 

collimator 

Pixel detector 

Fig. 13: Pin-hole camera setup with XRF imaging, courtesy of (Zemlicka et al., 2009). 

The method was later applied to two samples: a modified printed circuit board and a Euro coin. 
The results proved the validity of this method and showed the ability to distinguish elements 
with atomic numbers heavier than potassium. This method is valid even for samples made of 
composed elements as presented in Fig. 14. 

75% copper (Cu) 
25% nickel (NI) 

~ 
75% copper (Cu) 
20% zinc (Zn) 
5% nickel (Ni) 

Fig. 14: Euro coin image top (Photograph, scheme and X-ray fluorescence: grayscale RGB 
coded reconstruction). Bottom images are the results of the per pixel decomposition method, 

courtesy of (Zemlicka et al. , 2009). 
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first measurements oflow and high energy electrons using Timepix were reported by Esposito 
et al. (Esposito et al. , 2011). Timepix was used in a TOT mode, and was calibrated for energies 
down to 3.1 keV using y-rays and X-rays emitted from 24 1 Am, 55Fe and In Kai and also by using 
alpha particles from 241 Am (Esposito et al. , 2011 ). This study also took into account the charge 
sharing effects affecting the detector perfonnance in energy distribution and spatial resolution. 
Electrons from 90Sr/ 90Y sources (10 cm distance from the Timepix) were measured and the 
resulted energy spectrum was compared with ~- decay spectrum and simulated spectrum 
obtained from Monte Carlo calculation. The measured and simulated results are shown in Fig. 
15. There is a good agreement between the measured and the simulated results except for 
energies lower than 50 keV. In this area the measured results were higher than the simulation 
results. This is due to electronic noise and energy losses from laterally diffused charge which 
are in fact under the threshold. The peak at I 00 ke V is due to particles that lose some of their 
energy but leave the detector. 
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Fig. 15 : Measured and simulated spectra for 90Sr/90Y electrons and ~- decay spectrum, 
courtesy of (Esposito et al. , 2011). 

Using low frame rate to reduce the chance of individual electron tracks overlapping, the group 
identified all charge clusters generated by a single electron and identified the (x, y) position of 
electron centroids. This indicates the location the first pixel was hit by an electron, thus limiting 
the resulting image blur. Esposito et al. (Esposito et al. , 2011) refer to a similar procedure that 
can be applied for UV, alpha and neutron imaging with Timepix. 

An absorbing edge method applied in their work used a slightly tilted steel edge to take an 
image (100 µm thick) with 90Sr/ 9oy (10 cm distance) as shown in Fig. 16. The measured 
oversampled Edge Response Function (ERF) and the corresponding oversampled Line Spread 
Function (LSF) (with and without centroid approximation) are shown in Fig. 17. The spatial 
resolution in terms of LSF width with and without the calculation of the cluster centroid were 
reported to be about 27.5 ± 1.1 µm and 45.6 ± 1.6 µm , respectively. 
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Fig. 16: a) Spatial resolution measurements setup, b) Image (52 x 109 pixel) of a steel edge 
obtained using 90Sr/90Y source away ~ 10 cm from the detector, courtesy of (Esposito et al., 

2011 ). 
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Fig. 17: Edge response function (ERF) and the corresponding oversampled Line Spread 
Function (LSF) with centroid approximation, b) ERF and LSF without centroid 

approximation, courtesy of (Esposito et al., 2011 ). 

In addition, a 14C W source was placed in front of the detector surface for autoradiography and 
spectrometry data. Fig. 18 (b) shows an image of 14C taken with Timepix, where 14C labelled 
solution was deposited on a low density paper foil with a thickness equal to 200 µm, 
evaporated, pressed and packed in Mylar foil of 10 µm thickness and then placed on the detector 
surface. The measured energy spectrum for 14C electrons was compared with Monte Carlo 
simulation spectrum for 14C electrons as shown in Fig. l 8(a). The figure shows a good 
agreement between both data. 
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Fig. 18: a) 14C measured and simulated spectrum, b) Autoradiography image of 14C source 
placed on the surface of the Timepix, courtesy of (Esposito et al., 2011). 

The results from Monte Carlo simulation agreed with the cluster analysis method used to limit 
the image blur in the measured tracks. In addition, the results suggest the ability to use Timepix 
for autoradiography with ~- tracers and for electron microscopy. 

4. Conclusion 

Timepix is a state of the art microdosimetry system. Its unique properties offer possibilities for 
use in a range of fields such as space research (Granja and Pospisil, 2014; Pinsky et al., 2008; 
Pinsky et al., 2011 a; Pinsky et al., 2011 b; Pinsky et al. , 20 l O; Stoffle et al., 2015; Turecek et 
al., 2011), imaging (Dudak et al., 2015; Lemaire et al., 2013; Moats et al., 2011), medicine 
(Baek and Uher, 2013; Martisikova et al. , 2012a) and radiation protection (Martisikova et al., 
201 2b ). At present, most research related to Timepix is laboratory-focussed and its properties 
have been studied purely for research/characterisation purposes. Even though it has highly 
advantageous properties, the applications have not been fully exploited to date. 
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Abstract 

With the development of hadron and targeted therapies, there is a renewed interest in novel 
microdosimetry detectors. One detector that fulfils the criteria to be used in this sense is 
Timepix. 

The current overview describes specific applications of Timepix that may be of interest to 
medical physicists showing that more investigation is still required to gain the full benefit of 
Timepix applications in the fields of radiation therapy and imaging. More specifically, the 
application ofTimepix to targeted radiotherapies remains absent despite the main advantage of 
Timepix, which is tracking energy deposition at a micrometer level. 

1. Introduction 

The aim of this article is to review the major applications of Timepix for X-ray, gamma ray, 
electron and heavy particle detection, which opens a window to some promising applications 
in the field of medical radiation. The paper is a compilation of Timepix applications in radiation 
detection and they are discussed in the sections below. 
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2. Timepix in Photomultiplier Applications 

The standard photomultiplier tubes (PMTs) (Fig. 1) are essential devices in particle, atomic, 
solid state, or medical physics. A PMT consists of a sealed vacuum tube with an electric field 
between a photo-cathode and a silicon anode. To improve the spatial resolution of a PMT, its 
dynode system can be modified using Timepix detector. Consequently, in 2008 a hybrid photon 
detector (HPD) based on Timepix was presented by Ri.igheimer and his group as illustrated in 
Fig. 20 (Ri.igheimer et al ., 2008). Silicon anode was replaced by pixelated silicon Timepix 
detector in a new modified design of HPD this time. As shown by the results, this HPD with 
the Timepix anode has the advantage of higher spatial and time resolution for detection of 
photo-electron compared to conventional anode. In this experiment, energies between 6 and 
20 ke V of photo-electrons were detected and the data was fitted with a linear fit to extract the 
time-walk effect (i .e. the time when the charge pulse exceeds the discriminator threshold). The 
slope of that linear fit gives the peaking time of the preamplifier output pulse of 130 ns. Time
resolution of 10.5 ns was measured ifthe time-walk due to charge-sharing among neighbouring 
pixels was neglected and only single clusters were considered. 

. . . . . 
' . • .. 

Photo-electron 
trajectories 

Field-shaping : '~ 
electrode : • • 

Sensor layer/ 
readout ASIC 

. 
' . . •. 
j ] 

Fig. 1: The general concept of HPD where Timepix replacing the sensor layer. ASIC: 
application specific integrated circuit, courtesy of (Rtigheimer et al., 2008). 

Comparing these results with the simulation data performed by Geant4 Monte Carlo tool kit as 
shown in Fig. 2, the group determined the limiting factors of time resolution to be: electron 
backscattering from the sensor layer, charge sharing effect and the finite rise time of the 
preamplifier output pulse. However, future work should be focused on improving time 
resolution by using larger pixels and reducing the sensor thickness. 

' 
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Fig. 2 : HPD/Timepix setup with Timepix detector on the top 41 mm away from the photo
cathode to investigate Timepix detector response to photo-electrons, courtesy of (Rligheimer 

et al. , 2008). 
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Fig. 3: Experimental and simulation data, courtesy of (Rtigheimer et al. , 2008). 

Anton et al. (Anton et al., 2009) considered the same HPD assembly from Rtigheimer et al. 
(Rtigheimer et al., 2008) and developed a computational model to calculate the photo-electron 
energy deposited in each pixel, the charge signal arriving to each pixel electrode, and the time 
response of the energy distribution (Anton et al., 2009). In their experiments, photo-electrons 
in the range 6 to 20 keV were detected. It was found that the electron-hole pairs were created 
within a distance of 10 µm of the pixel ' s surface and then diffused to neighbouring pixels. This 
presented the need to have a further development to optimise ASIC design . The development 
is called Photopix and comes with a thinner silicon sensor and a larger pixel pitch. In addition, 
Anton et al. (Anton et al., 2009) emphasised the advantages of the proposed HPD compared to 
other HPDs with silicon sensors. Even though, the HPD used in their work has high total 
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acquisition rate, each individual pixel deals with low rate signal. That means the pixel's 
electronics can process the signals effortlessly. 

Detection of optical photons and imaging properties were also studied for this HPD /Timepix 
setup (Gebert et al. , 2010) . Gebert and his group specifically investigated the time resolution, 
imaging properties and dark-count rate. In this experiment, the detector was placed into a 
pumped vacuum tube as shown in Fig. 3. Csl photocathode released photo-electrons by pulses 
of self-triggering UV discharge lamp and electrons were then accelerated towards the detector. 
Timepix was operated in Timepix mode to detennine the time of events. Fifty thousand frames 
were recorded. 

It was concluded that unlike PMTs, the new assembly was able to detect optical photons and 
to distinguish between noise, one, two or more photo-electrons. The experiments proved the 
ability of Timepix to control electronic noise using an appropriate threshold setting and to deal 
with high dark-count rates as a consequence of both the high number of pixels and the location 
of the electronics in Timepix (Gebert et al. , 20 l 0). 

3. Timepix and Stopping Power Measurements 

The spatial, spectral and temporal resolutions of Timepix for detection and visualization of 
charged particles was investigated by Granja et al. (Granja et al., 2010). 

Since the stopping of charged particles depends on the particle momentum, they can be stopped 
in a sensor, depositing all their energy, or pass through a sensor volume while depositing some 
of their kinetic energy along their trajectory. As a result, Timepix can be used as a stopping or 
.6.E/.6.x detector (Granja et al. , 2010). This may have an application in photon therapy and ion 
therapy. Fig. 4 shows detection of 1361 ion (36 MeV) in portion (19 x 19 pixels) ofTimepix in 
TOT mode. The particle's full energy is calculated approximately by summing the charge 
collected in every pixel (Granja et al. , 2008; Granja et al., 2010). 
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Fig. 4: 1361 ion detection in 19 x 19 pixels ofTimepix detector operated in TOT mode, 
courtesy of (Granja et al. , 2010). 

The response of Timepix in TOT mode to heavy ions with kinetic energies between 4 to 110 
MeV and mass range between 3 and 136 emitted from a fission-fragment separator Lohengrin 
(at the Institute Laue Langevin in Grenoble, France) was investigated (Granja et al. , 2011). 
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Timepix was placed on Lohengrin focal plane and the fission fragments were focused towards 
the Timepix. 239Pu and 235U were placed in a neutron flux of 5 x 1 04 n/cm2/s to cause fission. 
Fission products were then detected by Timepix. Spatial distribution of detection of 
predominantly 90Sr with energy 110 Me V and the exposure time of 19 s is shown in Fig. 5 
(Timepix bias of 11 V and pixel energy threshold of 8 keV). The collected energy per pixel is 
shown as a colour bar in ke V in picture on the right, while the left picture shows the full detector 
(256 x 256 pixels). 

50 100 150 10 15 20 25 3J 35 40 
Position !pixel! PoSll ~n fptxelf 

Fig. 5: Timepix detection of 90Sr (110 MeV) in TOT mode. The figure shows an example of 
the spatial distribution of ions along the mass- and energy- dispersive directions, courtesy of 

(Granja et al. , 2011). 

The pixel signal response is linear for charged particles with energy range of low Me V such as 
alpha particles. In this case, the charge spread cluster has a Gaussian shape while for charged 
particles with higher energy range(~ 10 MeV), the charge spread cluster will be distorted from 
the normal Gaussian shape. This distortion depends on the pixel bias voltage, pixel baseline 
and the threshold as shown in Fig. 6. 

It was found that for conventional detector settings, the electronic pixel signal responses were 
distorted when the energy collected per pixel reached around 1 Me V which can happen for 
heavy ions with energies above several tens of MeV, as the detector will saturate gradually 
with increasing energy. This effect can be managed using suitable pixel signal baseline, 
threshold levels, sensor chip bias voltage (Granja et al., 2011). 

The group concluded that the optimal settings for Timepix are 5 to 10 V bias voltage with 
baseline parameter FBK 128 (parameter used in software specification). These setting were 
tested for different ions and the results are shown in Fig. 7. 

77 



Chapter 3. Timepix Radiation Detector 

B -;; 10 11 12 

os I oon JplxelJ 

--- s 
........ 1 1 

---Sil 

--1 

-- 1 
-- 11 

--75 
--45 

Fig. 6: Sectional view profile of cluster shape of 98Zr ions (100 MeV) at different bias 
voltage in TOT mode, courtesy of (Granja et al. , 201 I). 
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Fig. 7: Timepix detection of ions in TOT mode with bias voltage 7.5 V and Baseline FBK = 
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12Be, f) 8 Me V 6He, courtesy of (Granja et al. , 2011 ). 
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4. Timepix and Neutron Detection 

A combination of Timepix and a thin plastic scintillator (placed on the surface of the Timepix) 
were used as a spectrometer and camera of fast neutrons (Uher and Jakubek, 2011) as shown 
in Fig. 8. The fast neutrons recoil protons in the scintillator, which are then detected by the 
Timepix detector. The response was analysed to retrieve the energy and the direction of 
protons. At the same time, the light from the scintillator was detected by a Silicon Photo
Multiplier (SiPM). The energy and direction from Timepix and the SiPM were reconstructed 
to predict the energy and direction of the neutrons. The results were compared with a simulation 
using Monte Carlo methods (Uher and Jakubek, 2011). 

Fig. 8: Fast neutron detection with Timepix and scintillator setup, courtesy of (Uher and 
Jakubek, 2011 ). 

A Monte Carlo simulation was done for a monoenergetic neutron beam of 14 MeV. Results 
showed a good agreement between the simulated and measured data. The differences observed 
between the simulated and measured data were due to the converted protons, from the neutron, 
that can pass through the 300 µm of the Timepix chip, which requires a reconstruction of the 
neutron energy spectrum . The data is presented in Fig. 9. 

The paper concluded that when combined with plastic scintillators, Timepix works as a 
spectrometer and a camera for fast neutrons, so both energies and direction of fast neutrons can 
be measured. Furthermore, the neutron energy reconstruction produced by protons during their 
passage through the sensor layer of Timepix was also discussed. 
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Fig. 9: A comparison between a measured (circles) and simulated (full line) energy deposited 
spectra by proton inside Timepix for monoenergetic beam ( 14 Me V neutrons), courtesy of 

(Uher and Jakubek, 2011). 
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5. Timepix and Hadron Therapy 

Timepix was applied in hadron therapy by Opalka and his group (Opalka et al ., 2012) in 
Heidelberg Ion-Beam Therapy Center (HIT), Germany (Opalka et al., 2012). The objective of 
this work was to use Timepix in a TOT mode to detect and characterise secondary radiation 
generated from monoenergetic carbon ion beams (250 Me V /u) of 10.1 mm FWHM in a water 
phantom of dimensions 355 x 355 x 420 mm3. The positioning of Timepix in the water 
phantom is shown in Fig. 10 (15 mm and 40 mm away from the beam axis) where it was placed 
inside a waterproof rubber sleeve. The number of frames was 1500 with 1 ms exposure time. 
Each track observed on the PC monitor corresponds to one particle, and from the shape of the 
cluster generated the particle can be differentiated. Small clusters correspond to photons, curvy 
tracks to electrons, large clusters to alpha particles and linear clusters to protons. Beam particle 
energy can be measured, as well as the total energy deposited by secondary particles. More 
than five million events were processed. As the beam intensity varied for each detector 
position, the number of events in each particle group was nonnalized to the total number of 
events in each position (not to the initial beam intensity) which reflected the changes in the 
relative composition of the beam in water depending on the depth in a phantom, as shown in 
Fig. 11. 

Remote positioning 
system allowing 3D 

Fig. 10: Setup of measurement of radiation distribution in water tank phantom using Timepix 
detector for hadron therapy, courtesy of (Opalka et al., 2012). 
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Fig. 11: Spatial distribution of radiation in the water tank phantom for small, round and linear 
clusters events where the Bragg curve is on top, courtesy of (Opalka et al. , 2012). 

The study (Opalka et al. , 2012) concluded that Timepix allows identification of secondary ions 
traces as well as their angular distribution. Additionally, depending on the phantom depth, the 
relative amount of particles of each type will be different. For instance, the number of small 
clusters decreased with increasing the depth. 

In another study Opalka et al. (Opalka et al. , 2013) conducted the same experiment using a 
PMMA target instead of a water tank (Fig. 12) with the aim to determinate secondary particles 
and their angular direction and to evaluate the difference in stopping powers for different 
particles which can be used to correct the total therapeutic dose. 
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Fig. 12: Experimental setup to measure the secondary radiation produced as a result of 
irradiating a PMMA target with monoenergetic carbon ion beams setup, courtesy of (Opalka 

et al., 2013). 

A monoenergetic carbon ion beam with 4.3 mm FWHM and energy of 430 MeV/u was used 
to irradiate a 1 mm3 PMMA target. Timepix was placed in parallel position with the beam at 
30 mm distance and secondary particles were detected. 33000 frames were acquired in a 1 ms 
exposure time. 

The LET for each particle was calculated and compared with Monte Carlo simulations (Fig. 
13). The difference between the two data sets is in the low energy region where a peak is 
recorded in the experimental spectrum. This peak corresponds to electrons that were not 
considered in the simulation (Opalka et al. , 2013). After subtracting it from the spectrum the 
results fit the experimental function . 
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Fig. 13: Experimental (blue lines) and Monte Carlo simulation of LET spectra of different 
particles, courtesy of (Opalka et al., 2013). 

Timepix was also used to investigate the ion beam fragmentation by Martisikova et al. 
(Martisikova et al. , 2012). Many ion species are produced as a result of nuclear reactions 
during ion beam therapy. Each of these secondary ions has its own biological effectiveness and 
therefore it is very important to identify them inside a patient/phantom to account for additional 
dose and/or associated radiobiological effects. The group tested the Timepix response to proton 
and carbon ions. The results showed that Timepix can identify the primary, scattered and 
secondary ions associated with the therapy. The group studied Timepix signals, sizes and 
distribution of charge clusters as well as cluster energy. They found them to be different for 
protons and carbon ions for the same range in a phantom which makes Timepix useful for 
spectroscopic use and as a tool for biological effectiveness estimations (Martisikova et al. , 
2012). 

6. Timepix and Brachytherapy 

In the work of Loo at al. (Loo et al. , 2014; Loo et al. , 2013) Timepix was incorporated into a 
so called BrachyView system and used for real time in-body imaging during prostate 
brachytherapy to monitor the position of low dose seeds. Loo et al. (Loo et al. , 2014) also 
presented quantitative analysis of Timepix imaging performance for different thicknesses of 
tissue-equivalent plastic inserted into a prostate phantom. The study demonstrated the ability 
of Timepix to identify different soft tissue thicknesses when used with both standard (300 µm) 
and thick (1 mm) sensor layers. The 1 mm thick sensor resulted in higher detection efficiency 
and required lower acquisition times compared with the standard 300 µm sensor (Loo et al., 
2014). 

7. Timepix in Targeted Alpha Therapy 

An autoradiography imaging study of Targeted Alpha Therapy with Timepix detector was 
performed in 2015 (AL Darwish et al. , 2015). This work aimed to record individual alpha 
particles emitted from Lewis Lung carcinoma tumour sections grown in mice that were treated 
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with Th-227 labelled radioimmunoconjugate (RIC). Mice (and the tumour sections imaged) 
were divided into two groups; a group treated with chemotherapy prior to treatment with Th-
227 labelled RIC and a group that was not treated with chemotherapy at all. The Timepix 
sensitivity was investigated in monitoring variations in tumour uptake of Th-227 labelled RIC 
based on the necrotic tissue volume (AL Darwish et al., 2015). The alpha particle, photon, 
electron and muon tracks were recognised by Timepix detector in tumour section images. The 
results (Fig. 14) show that the uptake was four times greater when using chemotherapy prior 
to treatment with Th-227 labelled RIC. The difference when compared to the uptake of tumours 
without chemotherapy pre-treatment had a significant p-value of 0.026 as shown in Fig. 15. 

fol lb) 

k) {dl 

Fig. 14: Images of tumour sections from mice treated (a) and (b): with 227Th-DAB4 alone, (c) 
and (d): with chemotherapy followed by 227Th-DAB4. The red circles represent the 

approximate tumour section boundaries, courtesy of (AL Darwish et al., 2015). 
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Fig. 15: Measured alpha particle hits per unit tumour area per 1 hour for: 3 tumour sections 
without application of chemotherapy prior to administration of Th-227 

radioimmunoconjugate and 4 tumour sections with application of chemotherapy prior to 
administration of Th-227 radioimmunoconjugate, courtesy of (AL Darwish et al. , 2015). 

Conclusions 

The ability of Timepix to detect photons, neutrons and heavy charge particles as well as to 
measure their arrival time, energy and number and the ability to produce images of their 
distributions makes it a highly versatile detector. This review has demonstrated that Timepix 
has the possibility to be used in a range of practical applications. For medical physics purposes 
it can be used to detect and track photons, electrons and charge particles down to the 
microdosimetry level as well as for imaging. We have shown that this aspect of Timepix should 
be investigated further. Timepix provides an excellent opportunity for researchers in both pure 
and applied science. 

References: 

AL Darwish, R., Staudacher, A.H., Bezak, E., Brown, M.P., 2015. Autoradiography Imaging in Targeted 
Alpha Therapy with Timepix Detector. Computational and Mathematical Methods in Medicine 2015, 
7. 
Anton, G., Gebert, U., Michel, T., Ri.igheimer, T.K., 2009. A hybrid photodetector using the Timepix 
semiconductor assembly for photoelectron detection. Nuclear Instruments and Methods in Physics 
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 602, 205-208. 
Gebert, U. 1 Ri.igheimer, T.K., Michel, T., Anton, G., Seguinot, J., Joram, C., 2010. Detection of optical 
photons with the Timepix in an HPD set-up. Nuclear Instruments and Methods in Physics Research 
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 623, 288-290. 

, Granja, C., Jakubek, J., Kopatch, Y., Pospisil, S., Telezhnikov, S., Vykydal, Z., 2008. Position-, spectral
and time-sensitive spectroscopy of fission fragments with TimePix pixel detectors, Nuclear Science 
Symposium Conference Record, 2008. NSS '08. IEEE, pp. 1659-1660. 

85 



Chapter 3. Timepix Radiation Detector 

Granja, C., Jakubek, J., Koster, U., Platkevic, M., Pospisil, S., 2011. Response of the pixel detector 
Timepix to heavy ions. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, 
Spectrometers, Detectors and Associated Equipment 633, Supplement 1, S198-S202. 
Granja, C., Jakubek, J., Platkevic, M., Pospisil, S., Vykydal, Z., 2010. Detection and Real Time 
Spectroscopy of Charged Particles with the TimePix Pixel Detector. AIP Conference Proceedings 1204, 
75-79. 
Loo, K.J., Jakubek, J., Zemlicka, J., Petasecca, M., Safavi-Naeini, M., Bucci, J., Zaider, M., Rosenfeld, 
A.B., 2014. BrachyView: Feasibility study into the application of Timepix detectors for soft tissue 
thickness imaging in prostate brachytherapy treatment. Radiation Measurements 71, 329-332. 
Loo, K.J., Petasecca, M., Safavi-Naeni, M., Han, Z., Lerch, M., Bucci, J., Jakubek, J., Zemlicka, J., Meikle, 
S., Zaider, M., Rosenfeld, A., 2013. BrachyView: Tomographic reconstruction using Timepix detectors 
in post-implant dosimetry checks for permanent prostate brachytherapy implants, Nuclear Science 
Symposium and Medical Imaging Conference (NSS/MIC), 2013 IEEE, pp. 1-3. 
Martisikova, M., Granja, C., Jakubek, J., Hartmann, B., Telsemeyer, J., Huber, L., Brons, S., Pospisil, S., 
Jake!, 0., 2012. Two-dimensional silicon-based detectors for ion beam therapy. AIP Conference 
Proceedings 1423, 327-334. 
Opalka, L., Granja, C., Hartmann, B., Jakubek, J., Jaekel, 0., Martisikova, M., Pospisil, S., Sole, J., 2012. 
3D measurement of the radiation distribution in a water phantom in a hadron therapy beam. Journal 
of Instrumentation 7, C01085. 
Opalka, L., Granja, C., Hartmann, B., Jakubek, J., Jaekel, 0., Martisikova, M., Pospisil, S., Sole, J., 2013. 
Linear energy transfer and track pattern recognition of secondary radiation generated in hadron 
therapy beam in a PMMA target. Journal of Instrumentation 8, C02047. 
Rugheimer, T.K., Gebert, U., Michel, T., Anton, G., Seguinot, J., Joram, C., 2008. Experimental 
demonstration of a hybrid photon detector concept based on the Timepix detector. Nuclear 
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and 
Associated Equipment 595, 353-358. 
Uher, J., Jakubek, J., 2011. Detection of fast neutrons with particle tracking detectorTimepix combined 
with plastic scintillator. Radiation Measurements 46, 1624-1627. 

86 



Chapter 3. Timepix Radiation Detector 

3.3 Conclusion 

Timepix is a state of the art microdosimetry system. Its unique properties offer possibilities for 

use in a range of fields such as space research (Pinsky, Chancellor et al. 2008; Pinsky, Empl et 

al. 2010; Pinsky, Stoffle et al. 2011; Pinsky, Empl et al. 2011; Turecek, Pinsky et al. 2011; 

Granja and Pospisil 2014; Stoffle, Pinsky et al. 2015), imaging (Moats, Yang et al. 2011; 

Lemaire, Amgarou et al. 2013; Dudak, Zemlicka et al. 2015), medicine (Martisikova, 

Hartmann et al. 2012; Baek and Uher 2013) and radiation protection (Martisikova, Jakubek et 

al. 2012). Its ability to detect photons, neutrons and heavy charge particles as well as to measure 

their arrival time, energy and number and the ability to produce images of their distributions 

makes it a highly versatile detector. At present, most research related to Timepix is laboratory

focussed and its properties have been studied purely for research/characterisation purposes. 

Even though it has highly advantageous properties, the applications have not been fully 

exploited to date. This review has demonstrated that Timepix has a range of practical 

applications. For example, for medical physics purposes it can be used to detect and track the 

photons, electrons and charge particles down to the microdosimetry level as well as for 

imaging. We have shown that this aspect of Timepix should be investigated further. Timepix 

provides an excellent opportunity for researchers in both pure and applied science. 
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Chapter 4 

Timepix as a Dosimeter 

4.1 Introduction 

Semiconductor detectors such as the Timepix radiation detector play an important role in 

radiation dosimetry and particle tracking. As the radiation hits the Timepix sensor, charges are 

liberated in one or more pixels depending on the radiation type and its energy, as shown in 

Figure 4.1. These charges are collected in the readout chip by an external electric field if the 

amount of free charge produced is higher than the set threshold level. These particular 

properties are useful in dosimetry applications, in particular if the amount of charge produced 

is proportional to the absorbed energy. However, in order to use this system for radiation 

protection and clinical dosimetry, Timepix must meet the specific requirements such as: 

high accuracy and precision, linear response to absorbed dose, dose rate independence, flat 

, energy response, high sensitivity, low noise and high spatial resolution. As such, the aim of 

this chapter was to use Timepix as a dosimeter using photon and electron sources. 
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Figure 4.1: Timepix response to ionizing particles and the resulting charge measured compare 
to the threshold, courtesy of (Jakubek 2009). 

4.2 Statement of Contribution 

4.2.1 Conception 

The aim is to investigate the use of Timepix detector for dosimetry purposes in the low dose 

region (µGy- mGy), using different radiation sources. The first concept was suggested by Eva 

Bezak and Mohammad Mohammadi . The methods by which to achieve this concept were 

conceptualised by Ruqaya Al Darwish, Mohammad Mohammadi and Eva Bezak. 

4.2.2 Realisation 

The practical work was done by Ruqaya Al Darwish under supervision of Mohammad 

Mohammadi and Eva Bezak. All work usmg radiation was performed according to the 

conditions of Operating an ionising radiation apparatus licence and Using and handling 

radioactive substances licence (Radiation Protection and control Act 1982) by South Australian 

Environment Protection Authority. Data collection and analysis was done by Ruqaya AL 

Darwish. 
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4.2.3 Documentation 

This paper was primarily written by Ruqaya Al Darwish. Editing was done by all authors. 

Note: 

Dosemeter spelling was used in the following manuscript instead of dosimeter, as the former 

is mandated by the Radiation Protection Dosimetry journal, where the manuscript has been 

submitted to. 
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Abstract 

Timepix is a pixelated semiconductor detector. It has the ability to measure and discriminate 

the energy of detected particles. This paper investigates the performance of a commercial 

Timepix using low doses radiations in the µGy to mGy range. Timepix sensitivity, 

reproducibility and linearity were investigated to determine its suitability for low dose 

dosimetry. The measured doses were compared with doses using TLD 100. The results show 

that Timepix has a linear response with increasing absorbed dose (R-square of the regression 

line ~ 1). Timepix also has good short and medium term reproducibility (p< 0.0001 ). 

Furthermore, its response to X-ray beams of different HVLs (0.5 3 mm Al) showed energy 

dependence. Good agreement of~ 3% was observed between the doses measured by Timepix 

and the extrapolated doses measured by TLDlOO using 125I source. 

In conclusion, the Timepix detector is a stable and sensitive dosemeter that can be used for low 

dose dosimetry subject to energy calibration. 
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INTRODUCTION 

The Timepix detector, developed at CERN by the Medipix Collaboration (l, 2J, is a sophisticated 

microdosemeter that can be used for a wide range of experiments with photons, electrons and 

heavy charged particles <3l and has applications in research fields such as space physics, nuclear 

physics, radiotherapy physics, imaging and radiation protection (I, 4-14)_ Timepix is essentially 

a development extension of Medipix2 <15 J. Its main advantage over Medipix2 is that it can also 

measure the amount of energy deposited using the "Time Over Threshold" (TOT) mode <16l. 

Medipix2 and Timepix share some of the same physical properties. For example, they have the 

same pixel size of 55 x 55 µm 2 <15• 17l, and in both cases the readout chip can collect both 

positive and negative charges <15 l. 

Timepix consists of a semiconductor layer divided into an array of pixels. This array of pixels 

is bump-bonded to a readout Application Specific Integrated Circuit (ASIC), which is basically 

an electronic integrated layer (Figure I). Each pixel has its own charge-sensitive preamplifier, 

discriminator, counter <15• 181 and 4-bit digital-to-analogue convertor (DAC) used to adjust the 

charge threshold (lJ (see Figure 2). 

Additionally, Timepix has the following properties Ol: 

1. Each pixel contains a single energy threshold with 4-bit threshold adjustment; 

2. Each pixel can operate in three main operating modes (Medipix mode, Time Over 

Threshold mode and Timepix mode); 

3. Each pixel has its own counting clock that synchronizes with an external clock 

reference. 
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Figure 1: Timepix structure, courtesy of <19l. 

14blls 
i Shuttlr ...... Shift 
I 

amt -i:::---Testblt 

~ 

PO l.llllc 
Conf 

Pol.tty P1 

I Testqiut 

Sbits 
canftllntllln 

CM 

~Count ca.Jlmd 
Nectl'lm 

Analog Digital 
Figure 2: Timepix pixel schematic. Each pixel consists of two main parts: an analog 

part and digital part, courtesy of <4l. 

Timepix performs its functions using synchronization logic and a 14-bit counter per pixel. It 

can cope with count rates of up to 100 kHz for each pixel (in the single particle counting mode) 

(I) and has an overflow control of up to 11810 counts <15l. It also has the advantage of low 

electric noise of - 100 e- rms (root mean square) <20l. 

' Timepix uses an integrated USB-based readout interface which is connected to a computer. 

Windows compatible software package, Pixelman, is used to control Timepix detector and data 
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acquisition c21 l. This assembly can be used as an imaging device as well, with the image 

displayed on the computer screen C9l. 

Early laboratory investigations of Timepix and Medipix detectors studied their architecture, 

functionality and characteristics, along with applications in spectrometry, imaging and 

tomography (I, 2• 6• 8• 
16

• 17• 22-24 >_ Eventually, the technology of Medipix generations (i.e. the 

naked chip and detector assembly (ASIC bump-bonded to the sensor material)) has been 

released for trading. Timepix can be purchased as a commercial product through several 

companies, for example: Amsterdam Scientific Instruments (The Netherlands), X-ray Imaging 

Europe GmbH (Germany) and X-Ray lmatek (Spain). The cost on average for a single Timepix 

chip (256 x 256 pixels) is - € 10,000. Commercially available Timepix chips can be purchased 

in single (256 x 256 pixels), quad (512 x 256 pixels) and octo (1024 x 1024 pixels) 

configurations, with the cost increasing more than linearly. 

As mentioned previously, the Timepix radiation detector has broad applications in particle 

detection, imaging, and clinical and radiation protection dosimetry (5, 8• IO. 12• 14• 25l. In general, 

the Timepix dosimetry system consists of a dosemeter and a reader that is able, directly or 

indirectly, to measure the number of particles and the absorbed dose deposited by incident 

radiation. However, in order to use this system for radiation protection and clinical dosimetry, 

Timepix must meet the specific requirements such as: high accuracy and precision, linear 

response to absorbed dose, dose rate independence, flat energy response, high sensitivity, low 

noise and high spatial resolution C26-28 l. As a result, this paper aims to characterise Timepix as 

a dosemeter for low doses using low energy clinical photon beams (i.e. 125I gamma rays and 

superficial X-rays). We have specifically investigated the low dose sensitivity (in the µGy to 

mGy region), linearity, reproducibility and energy dependence. 

MATERIALS 

Timepix 

The Timepix detector used in this work was purchased from Amsterdam Scientific Instruments, 

the Netherlands. The detector chip consists of 256 x 256 pixels with an individual pixel size of 

55 x 55 µm 2 and 300 µm depth. The total size of the chip is 1.408 x 1.408 cm2• Each pixel 
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contains a charge-sensitive preamplifier, a discriminator and a counter and has its own power 

supply, meaning that Timepix is a device that consists of over 65,000 individual detectors. 

As mentioned earlier, Timepix can be operated in one of three main acquisition modes C7l. These 

are: 

a) Medipix mode: the particle number is counted where the shift register counts digital 

signals if higher than a threshold; 

b) Timepix mode: the arrival time of a particle to the chip is recorded. Here, the counter 

works as a timer and measures the time of the particle detection; 

c) Time Over Threshold (TOT) mode: the counter allows each pixel to measure the 

detected particle's energy. 

The acquisition modes are run through the multi-platform software package, Pixelman v3, 

developed at the Institute of Experimental and Applied Physics (Czech Technology University, 

Prague). The software controls Timepix data acquisition and is also used to process the 

acquired data (29l. 

Iodine-125 

Iodine-125 radioactive seeds (Oncura calibration strand; Oncura Inc., Arlington Heights, IL) 

were used in the current work to investigate Timepix use in dosimetry. The average length of 

the single seed was 4.5 mm and the diameter was 0.8 mm (301. 1251 has a half-life of 59.4 days 

and it decays by electron capture to Tellurium-125 as shown in equation 1 (26 l. It emits a 

maximum energy gamma ray of 35.5 keV, while the average energy of all photons emitted is 

between 28 and 30 keV (26• 31 l (Figure 3). 

125 125 
I+e-~ Te+r 

53 52 
(1) 
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125 * Te 

Electron capture decay 

Maximum energy is 35.S keV (7'°") of v 

Figure 3: Iodine-125 decay. Based on information from C
26• 32). 

Gulmay D3150 superficial X-ray Unit 

In addition to 1251, measurements of X-rays were also performed using a Gulmay D3150 

superficial X-ray Unit (Gulmay Limited, Surrey, United Kingdom) at the Radiation Oncology 

Department, Royal Adelaide Hospital. X-ray beams with Half Value Layers (HVLs) between 

0.5 to 3 mm AI and peak voltage between 40 to I 00 kV were used for dosimetric measurements. 

The output dose rates (Gy/min) in water of these beams were determined using the Institution 

of Physics and Engineering in Medicine and Biology (IPEMB) code of practice for the 

determination of absorbed dose for X-rays below 300 kV C33). 

Thermoluminescent dosemeter (TLDlOO) 

Verification of doses delivered to Timepix, calculated using equation 4 below, was done with 

thermoluminescent dosimetry using TLDI 00 (Krakow, Poland) chips. TLDI 00 consists of 

LiF:Mg,Ti and it is considered to be almost soft tissue equivalent with Zerr of 8.2 C26• 3 1l. Its 

main glow curve is between 180°C to 260°C. In the current work, the Harshaw TLD Reader 

3500 (Thenno Fisher Scientific, Waltham, MA) was used to heat the TLDIOO chips and to 

detect the thennoluminescent light emission by a photomultiplier tube (PMT) within the reader 

(26) 

METHODS 
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Before Timepix can be used for dosimetry purposes, it needs to be characterised; this includes 

pixel calibration, dose linearity, reproducibility, energy dependence, dose rate dependence and 

even particle response. The following sections describe measurements conducted in this work. 

Pixel Response Calibration - Threshold Equalization 

Pixel equalization/calibration is one of the most important tasks to be conducted prior to 

Timepix use for any purpose. Pixel calibration ensures the unifom1 response of all pixels for 

the same irradiation signal. In order to calibrate all 65536 pixels, the manufacturer's calibration 

procedure, included in Pixelman, known as threshold equalization was followed. Threshold 

equalization is used to compensate the pixel to pixel threshold variations due to local transistor 

threshold voltages and current mismatches (34l. During the equalization process, each pixel is 

adjusted to make its threshold as near as possible to the average of the mean values of the 

threshold distribution. This is done using a 4-bit current DAC placed in the discriminator chain 

of each pixel to conduct low threshold (THL) and high threshold (THH) adjustments as shown 

in Figure 4 (l l. 

The THL and THH are separately scanned above the noise edge and to the direction of noise 

<35• 36l. The THL value is set to a DAC value which would give as low a threshold level as 

possible before sensor noise would start to appear. The DAC value corresponding to THL is 

calculated as follows: 

THL DAC = (mean distribution of thresholds)after equalization -

10 (standard deviation of distribution)after equalization 

(2) 
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,. ( 

fl - r 

Figure 4: Threshold equalization procedures. 

Upon completion, the equalization parameters of all pixels are saved and uploaded every time 

Timepix is used. THL DAC value must also be set in Pixelman prior to any measurements. 

The literature also shows that equalization reduces the threshold variation as well as the 

minimum detectable charge (from 1600 e- before, to 650 e- after equalization) Cl)_ 

The equalization procedure in this work was done under dark current conditions and a 100 V 

bias was applied to the sensor. The saved equalization file was uploaded prior to each 

measurement. After equalization, Timepix was irradiated with 1251 gamma rays to check the 

response to the flood field and to check the image uniformity. The acquisition time was set to 

1 second per frame and 700 frames were acquired. To further check Timepix's basic 

functionality, a lead block was used to cover one comer of the detector. An image was acquired 

using I second per frame acquisition time, collecting 500 frames. 

Timepix dosimetry with low energy gamma rays and X-rays 

I-125 measurements 
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The measurements perfonned with 1251 seeds aimed to investigate Timepix linearity, 

reproducibility and low dose sensitivity. A schematic diagram of the experimental setup is 

shown in Figure 5. The 1251 seed with the initial activity of 14.6 MBq was placed in front of the 

Timepix detector surface at a distance of 15 cm. In order to assess the dose sensitivity and the 

dose response linearity, the acquisition rate was set to 1 second per frame. Timepix was 

operated in Medipix mode (i.e. particle counting), and all acquired frames were integrated to 

give the final reading. Timepix was irradiated to different doses by varying the exposure time 

between 1 and 100 seconds on the same day. The mean Pixel Value (PY) was obtained from 

each measurement and plotted against the dose delivered. Linearity of the dose response was 

investigated using the line of best fit. 

15 cm 

Time pix 125 
I source 

.__~~-[ (Pixelma~~oftware) I 
Figure 5: Schematic diagram of Timepix and Iodine-125 setup. 

To calculate the dose delivered by 1251, the standard mathematical calculation was followed <37l, 

using the known initial apparent activity (Appo) of the 1251 seed (i.e. corrected for the source 

self-absorption in the seed), the half-life time (T 112) and the time (t) since the initial activity had 

been measured to calculate the activity (A) at time t: 

(3) 

Using the activity in GBq, the air kerma rate was calculated by multiplying the air kenna rate 

constant (35.8 µGym 2/hGBq) by the actual activity and divided by the square of distance from 
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the source (i.e. ( 15)2 cm2). The absorbed dose rate (µGy/h) to Timepix sensitive layer can be 

calculated when the air kenna rate is multiplied by the ratio of the mean mass energy absorption 

coefficients for silicon and air <37l: 

D(r) = K(r) (µen/ Pt/icon 
(µen/ p)"'r 

(4) 

Finally, the dose delivered to Timepix was calculated by multiplying the absorbed dose rate to 

Timepix and the exposure time. 

The measurements described above were repeated after one week and the mean PV s were 

compared. 

Gulmay 03150 superficial X-ray unit measurements 

The Gulmay 03150 superficial X-ray (SXR) unit was also used to investigate the linearity, 

reproducibility and energy dependence of Timepix. Because of the high dose output from this 

unit, Timepix was positioned at 165 cm from the focal spot of the SXR unit, using a 1.5 cm 

diameter cone. The SXR exposure times ranged between 0.01 and 0.35 minutes. The Timepix 

measurement was initiated prior to the SXR unit being energized and the acquisition stopped 

after the irradiation. This was achieved by using a data acquisition time of 1 min (1 frame per 

second) for Timepix. The measurements were repeated at least four times for each point using 

X-ray beams of different qualities as shown in Table 1. 

To calculate the dose delivered to Timepix, in terms of dose to water, standard equations from 

the departmental protocol (equations 5 and 6) were used in conjunction with the calibration 

values, current at the time of the measurement, shown in Table l: 

D waler = D waterref X FCF X JSCF (5) 

Dose= DwaterX Time (6) 

Where the dose to water is calculated when the reference (i.e. calibrated) dose rate was 

corrected by the Field Correction Factor, FCF, and the Inverse Square Correction Factor 

(ISCF). Finally, the dose was obtained by multiplying the dose rate and the exposure time. 
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Table 1: Dose rate and energy of different HVL of superficial X-ray unit (10 cm diameter 
collimator). 

HVL kV 
Dose rate (15 cm FSD) 

(Gray/min) 

0.5 mm Al 40 5.454 ± 0.11 

1 mm Al 50 3.832 ± 0.08 

2mmAl 80 13.968 ± 0.28 

3 mm Al 100 18.332 ± 0.37 

Mean PV s were obtained from the Pixelman software and plotted against the calculated dose 

values for each X-ray beam. Dose response linearity and reproducibility over a 2-week period 

as well as energy dependence were evaluated. 

Dose verification using TLD 100 

Annealing and reading of TLD 100 chips was performed using a standard TLD protocol 

implemented at the clinic (38 l. In the current work, the readout of each chip was corrected for 

its individual Sensitivity Correction Factor (SCL) to account for slight mass differences 

between the chips. The TLD readings, R, were corrected for the background and the TLD dose 

was calculated using the following equation: 

TLDs dose (RReading (nC) - Rsackgrond (nC)) x SCF X CF (pGy/nC) (7) 

Where CF is the calibration factor to convert the TLD readings from nanoCoulombs (nC) to 

dose in µGy. In this experiment, the correction factor of 0.108 Gy/nC was used as detennined 

from irradiation of TLDs to a known dose. 

In order to compare the TLD doses with those calculated to be delivered to Timepix, 21 

TLD 100 chips were irradiated for 1 hour using iodine-125 and six chips were used to measure 
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the background. The distance between the TLD 100 chips and the source was 15 cm. The 

TLDlOO chips were read by the Harshaw 3500 Reader and the dose was calculated using 

equation 7. This dose corresponds to a dose in water, however, in order to compare it with the 

dose delivered to Timepix, it needed to be converted to the dose to silicon. This was done by 

multiplying the TLDlOO dose by 7.29 which is the ratio of silicon to water mass energy 

absorption coefficients <39J. 

The TLD 100 doses were then compared with the doses calculated using equations 3 and 4. 

RESULTS 

Threshold Equalization 

As shown in Figure 4, the mean and the standard deviation of the threshold distribution 

following equalization were found to be 370.32 and 2.05, respectively. Therefore, based on 

these equalization results, and using equation 3, the THL DAC was detennined to be 350. This 

number was set in Pixelman manually for all Timepix measurements in the current report. 

Figure 6 shows the Timepix response to a radiation flood field, using 1251 seed, for two set-ups: 

open field and blocked at one corner by a lead block. As shown in Figure 6A and B, a good 

unifonn image was acquired where the mean and the standard deviation of PV distribution 

were 135 and 20 respectively (Figure 6C). No dead/damaged pixels were detected. Individual 

photons can be distinguished in single frames and they appear as small square dots occupying 

1-4 pixels. 
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Figure 6: (A) a flood field image of 1251, (B) a flood field image with one comer blocked with 
a lead block, (C) the PY distribution for flood image shown in A. 

Timepix Measurements using 1251 

Dose linearity 

The Timepix response to i1ndiation by a 1251 seed as a function of the absorbed dose, calculated 

using equation 4 for the exposure times used, is shown in Figure 7. There is a good linearity 

observed between the mean PY measured and the absorbed dose in the range from 0 to 8 µGy. 

The R-square of the regression line, i.e. the measure of the goodness-of-fit, on the graph is 
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0.9993 supporting our claim that a linear fit adequately describes the measured data. The 

standard errors of the mean PVs shown in Figure 7 varied between 0.002 and 0.27. 

7.5 

Q) 5.5 
:J 

re 
> 
Q) 

.~ 3.5 
D.. 
c 
re 
Q) 

~ 1.5 

-0.5 2 4 6 8 

Dose (µGy) 

Figure 7: Dependence of Timepix mean pixel value as a function of the absorbed dose (single 
day data) for dose linearity assessment, using an 1251 seed. 

Additionally, Timepix showed a high sensitivity when measuring very low gamma radiation 

doses and was able to detect doses as low as 0.5 µGy . 

Timepix response to two irradiations, using the 1251 seed, conducted one week apart is shown 

in Figure 8, where the mean pixel values are not corrected for the 1251 decay. As a result, the 

doses delivered for the same irradiation time are ~8% higher for the first irradiation. This 

difference has been detected by Timepix. The standard errors of mean PVs ranged between 

0.002 and 0.27 for the first measurement and 0.01 and 0.14 for the second. The ratio of activities 

of the 1251 seed during the first and the second measurement was ~ 1.09, while the average ratio 

of the mean PVs for the two measurements was 1.12 (see Figure 8). The results once again 

demonstrate the ability of Timepix to resolve doses in the µGy region. 
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Figure 8: Timepix response to 1251 as a function of the exposure time. The data presented 
relate to two sets of data acquisitions one week apart. Note that the data for the second 

reading is not corrected for 1251 decay. 

After the mean PVs from the second measurement were corrected for the 1251 decay, the 

agreement percentage between the mean PVs from the two measurements was on average 

98.49%. Using a paired t-test, a significant p-value of 0.0043 (correlation coefficient :::::1) was 

obtained, showing that the two sets of PVs were identical when applying the decay correction. 

Dose verification using TLD 100 

A comparison between absorbed doses measured by TLD 100 chips and calculated doses 

delivered to Timepix, for the same apparent activity and the same irradiation time, are 

presented in Figure 11 . The standard errors for calculated Timepix doses were - 5% and were 

determined from multiple readings. The standard error for the measured and extrapolated TLD 

doses were estimated - 10%. A good agreement of 96.62% between the calculated doses and 

measured doses was obtained using a correlation factor of 1. 
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Figure 9: A comparison of the absorbed dose versus exposure time as measured by TLD LiF 
100 chips and calculated (equation 4) for Timepix. 

Timepix Measurements using Gulmay D3150 superficial X-ray unit 

The dependence of mean pixel values, measured for Timepix irradiation with 40 kV, 0.5 mm 

Al HVL X-ray beam, as a function of the absorbed dose (mGy), is shown in Figure 10. It can 

be seen that Timepix exhibits very good linearity as a function of the absorbed dose in the mGy 

region. An R-square value of 0.9997 was obtained, indicating that a linear regression fit closely 

approximates the measured data. 

Figure 11 shows the relationship between the mean pixel reading and the exposure time for 50 

kV, 1 mm Al HVL X-ray beam repeated 5 times over a period of 2 weeks. A good 

reproducibility of measured mean PVs during a period of two weeks was obtained. The data 

from the 5 measurements were analysed using Paired t-test (GraphPad Prism 6 software, 

(GraphPad Software, Inc. , CA, USA)). Statistical significance, i.e. the p value for the 

agreement between the 5 measurements, between the data was found to be less than 0.0001 and 

an R-square value of 0.9996 was obtained. 
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Figure 10: The dependence of mean pixel values, measured for Timepix irradiation with 40 
kV, 0.5 mm Al HVL X-ray beam, as a function of the absorbed dose (mGy); PV standard 

errors were between 2 and 32. 

• 1st meaurments 
20000 

0 2nd meaurments 

<> 3rd meaurments 
@ 

OJ 0 4th meaurments 
15000 

@® :::::l a 5th meaurments ro 
> 
OJ @® x 
0. 10000 
c @® ro 
OJ 

~ 

5000 

0 

0 0.05 0.1 0.15 0.2 0.25 0.3 

Exposure time (min) 

, Figure 11: Timepix Mean Pixel values measured as a result of irradiation by 50 kV, I mm Al 
HVL X-ray beam, collected over two weeks, as a function of exposure time. The obtained PV 

standard error was range from 2 to 37. The R-square value is ~0. 999 . 
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The energy dependence of the Timepix response is presented in Figures 12 and 13 for 40 kV /0.5 

mm Al, 50 kV/I mm Al, 80 kV/2 mm Al and 100 kV/3 mm Al HVL X-ray beams. The results 

are presented in tenns of the mean pixel reading as a function of the dose delivered by different 

kV/HVL X-ray beams. As can be seen, Timepix is energy dependent and therefore must be 

calibrated separately for each X-ray beam (i.e. for a given energy spectrum) if it is to be used 

for dosimetric purposes. The energy dependence, however, appears to be reducing as a 

function of increasing kV and HVL, as the mean PVs measure for 80 kV/2 mm Al and 100 

kV/3 mm Al HVL X-ray beams appear to lie on the same line (Figure 13). 
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Figure 12: Measured mean Timepix PVs as a result of exposure to 40, 50, 80 and 100 kV X
ray beams, as a function of the absorbed dose. 
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Figure 13: Measured mean Timepix PVs as a result of exposure to 80 and 100 kV X-ray 
beams, as a function of the absorbed dose. 

DISCUSSION AND CONCLUSION 

The results show that the Timepix response to low energy photons was linear to the absorbed 

dose in the µGy-mGy region . Timepix was found to be very sensitive to low absorbed doses 

as well as sensitive to day-to-day variation in doses, for example in case of radioactive materials 

due to changes in the activity as a result of radioactive decay. A good medium term 

reproducibility o~ Timepix was also shown. The results identified that Timepix is energy 

dependent, and thus requires energy calibration for a given photon spectrum before it can be 

used for dosimetry purposes. 

Several dosemeters are routinely used for clinical and radiation protection dosimetry 

applications, for example ionization chambers, TLDs, scintillation dosemeters, optically 

stimulated luminescence dosemeters and others. However, the absorbed dose range they cover 

is generally in the mGy to Gy ranges. Optically stimulated luminescence dosemeters have been 

found to be sensitive in µGy region, however they do not provide immediate on-line readout 

and require a special stimulating/reading apparatus to obtain dose <40l. An additional advantage 

' of Timepix is that it is considered a noise-free dosemeter. It gives a zero reading when a pixel 

has not been hit by radiation. This is one of the reasons for its superb sensitivity. For example, 

the PMMA plastic optical fibre dosemeter is affected by noise at low radiation doses. 
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Therefore, it is suggested a further signal processing is required to improve the radiation

induced attenuation and the resolution of that sensor <41 J. That is not required for Timepix. 

While this work investigated Timepix performance under low energy photon irradiation, 

further dosimetry investigations of Timepix will be performed using electron and alpha particle 

sources in the future. 
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4.3 Investigation of Timepix Application for Electron Dosimetry 

4.3.1 Strontium/Yttrium-90 

Strontium-90 is a pure electron emitter (p- decay) and has a half-life of 28.8 years with 

maximum electron energy of 546 ke V. This source was used as an electron source in this work 

(Massillon-JL, Minniti et al. 2009; Marcu, Bezak et al. 2012). Sr-90 decays to its daughter 

product Yttrium-90, which is also a pure beta emitter with half-life of 64 hours and emits 2.28 

(~99.9%) and 0.523 (~0.1%) MeVelectrons (Massillon-JL, Minniti et al. 2009; Marcu, Bezak 

et al. 2012). Because Sr-90 is encapsulated in stainless steel, the emitted low energy betas will 

mostly be absorbed by the capsule, meaning that most of the detected beta particles are emitted 

from Y-90 (2.28 Me V) (LNHB ; Massillon-JL, Minniti et al. 2009). 

In this work, the used Sr-90 source (IBA dosimetry, Gennany) had an initial activity of 16 

MBq. The distance between the electron source and the Timepix detector was 2 cm. 

4.3.2 Investigation of Timepix Pixel Value Linearity using Sr/Y-90 Source 

Timepix Medipix mode was chosen to investigate linearity of measured pixel values as a 

function of exposure time, when irradiated with Sr/Y-90. Pixel values from the total/ integrated 

acquisition frame were used for the analysis. Acquisition time of 1 second per frame was used 

and the number of frames varied between 1 and 400 frames. 

4.3.3 Results of Investigation Timepix Pixel Value linearity using Sr/Y-90 

Source 
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Figure 4.2 shows the relationship between Timepix mean pixel value and the exposure time in 

seconds, as a result of irradiation with Sr/Y-90 ~-particle source. 
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Figure 4.2: Timepix response to electrons (the relationship between the mean pixel value and 
exposure time). The PY statistical variation (i.e. the error bars) was estimated as 5% of the 

mean pixel reading. 

It can be seen that the mean pixel value increases linearly as a function of exposure time in 

seconds. An R-square value of 0.9902 was obtained. The divergence of some readings from 

the linear fit is a result of electron energy distribution present at the sensitive layer of Timepix . 

As electrons deposit their energy in curly tracks, as shown in figure 4.3 , they hit more than one 

pixel and the energy deposited is shared between the pixels. 
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Figure 4.3: Curly electron tracks recorded by Timepix (100 second exposure time). 

4.4 Conclusion 

The results in this chapter show that the Timepix pixel values increased linearly with the 

absorbed dose in the µGy to mGy region as a result of irradiation by low energy photons and 

electrons. The detector response was found to be very sensitive to low absorbed doses and to 

day-to-day variations in doses as a result of radioactive decay. It also has a good medium term 

reproducibility, but is energy dependent, requiring energy calibration for different radiation 

types and energy spectra before it can be used for a dosimetry purposes. 
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Chapter 5 

Timepix as a Spectrometer and an lmager 

5.1 Introduction 

The Timepix detector can be also used as a spectrometer if used in Time Over Threshold mode 

(TOT mode). The calibration of Timepix pixels, performed to achieve a uniform response to 

radiation using Pixelman software, was reviewed in detail in the review articles studying 

Timepix characteristics: "Timepix - technical aspects of a novel development in solid state 

radiation detectors" and "Overview of current applications of the Timepix detector in radiation 

physics", by Ruqaya AL Darwish, Eva Bezak, Loredana Marcu and Anatoly Rozenfeld 

(chapter 3 ). 

The following paper describes the use of Timepix in TOT mode in order to evaluate its 

spectroscopic and imaging capabilities. This is required to fully characterize the detector, 

should be used for medical physics, imaging and dosimetry purposes (in addition to 

characterization conducted in chapter 4. The Sophy software used was developed by 
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Amsterdam Scientific Instruments (ASI), the Netherlands, and is provided with the detector 

purchase. 

The investigation in this chapter was performed using several radioactive sources: Am-241, 

Ra-223, Pu-238 and Fe-55. The effect of bias voltage, applied to the Timepix sensitive layer, 

on the measured energy spectra was also investigated. 

5.2 Statement of Contribution 

5.2.1 Conception 

The objective is to investigate the Timepix radiation detector performance for spectrometry 

applications using different radiation types. The first concept was suggested by Ruqaya Al 

Darwish. The methods by which to achieve this concept were conceptualised by Ruqaya Al 

Darwish and Eva Bezak. 

5.2.2 Realisation 

The practical works were done by Ruqaya Al Darwish under supervision of Eva Bezak for all 

experiments. Radiation measurements were conducted according to the conditions of 

Operating an ionising radiation apparatus licence and Using and handling radioactive 

substances licence (Radiation Protection and control Act 1982) by the South Australian 

Environment Protection Authority. Part of this work was conducted at Amsterdam Scientific 

Instruments, the Netherlands. Data collection and analysis were performed by Ruqaya Al 

Darwish. 
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5.2.3 Documentation 

This paper was primarily written by Ruqaya Al Darwish. Editing was perfonned by all authors. 
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Abstract 

Timepix is a detector that can be used for dosimetry, imaging and spectrometry purposes. This 

technical report evaluates the use of Timepix for spectrometry using the Time Over Threshold 

(TOT) mode and the energy calibration file provided with the device. The report also evaluates 

the parameters that can affect the spectrometry measurements. Two radiation types (photons 

and alpha particles) from different radiation sources were used in this work: Am-241, Ra-223, 

Pu-238 and Fe-55. The effect of bias voltage, applied to the Timepix sensitive layer, on the 

measured energy spectra was also investigated. Finally, Mylar foils were used to deconvolve 

the measured spectra. 

It was concluded that, while Timepix, if energy calibrated for a given bias voltage and a given 

radiation type, can be used for spectrometry of low energy y-rays, X-rays and alpha particles 

in the MeV range, its energy resolution is not excellent and is inferior to, for example, 

germanium detectors. 

1. Introduction 
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The Timepix TOT mode allows direct measurement of particle energy in each pixel, when 

calibrated using a surrogate function between the TOT response and the particle energy in keV. 

This surrogate function must be derived for at least two radioactive sources (Jakubek 2011; 

Platkevic, Jakubek et al. 2013) . 

The calibration is usually done using 5.9 keV 55Fe and 59.9 keV 241 Am and certain fluorescent 

materials emitting characteristic X-rays that are generated in a tungsten tube (Jakubek, 

Cejnarova et al. 2008; Jakubek 2011; Platkevic, Jakubek et al. 2013 ). Studies have shown that 

in the TOT mode the Timepix detector is able to measure energy spectra of photons, heavy 

charged particles and neutrons (if a converter, such as 6LiF has been used) (Jakubek, Cejnarova 

et al. 2008; Jakubek, Schmidt-Wellenburg et al. 2009; Granja, Jakubek et al. 2011; Jakubek 

2011; Platkevic, Jakubek et al. 2013). Furthermore, the calibrated device shows good 

agreement between the Timepix energy spectra and simulated or measured (by other methods) 

spectra (Jakubek, Schmidt-Wellenburg et al. 2009). However, in the TOT mode, the pixel 

count, used to detennine the energy, depends on the cluster size (1, 2, 3 and 4 pixels) as well 

as the incidence beam angle with respect to the detector (Jakubek, Cejnarova et al. 2008; 

Granja, Jakubek et al. 2011). Figure 1 shows an example of the energy spectrum of 241 Am 

generated by a calibrated Timepix detector. The figure shows variations in energy spectra as a 

function of the number of pixels in which the radiation has deposited its energy (cluster size). 

The energy resolution achieved was about 2.8 keV at 15.8 keV, 3.2 keV at 24.2 keV (Ka lines 

of Zr and Indium), and about 35 keV at 5.5 MeV (alpha particles from 241 Am) expressed in 

terms of full width at half maximum (FWHM) (Turecek, Holy et al.). In another study, the 

energy resolution of 30 keV was achieved for 5.5 MeV alpha particles from 241 Am (Turecek, 

Holy et al.). 
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Figure 1: Energy spectra of 241 Am for different cluster size measured by Timepix in the TOT 
mode, comiesy of (Jakubek, Cejnarova et al. 2008). 

2. Materials and Methods 

2.1 Sophy software 

The Timepix software used in this work was developed by the Timepix manufacturer, 

Amsterdam Scientific Instruments, the Netherlands, and is called software for physics (Sophy 

software). It is displayed in two windows: one to control the detector functions, such as the 

acquisition time, the number of frames, the mode of operation and the energy threshold (Figure 

2). The second window shows quick-access icons to select procedures. From the main menu, 

the 'Preview' button opens several windows to display Timepix data acquisition, such as 

individual frames so that the events (i.e. individual particle hits) can be observed frame by 

frame. ' Spectral image (cluster analysis)' is another display window where a total/integrated 

image of all the events recorded in all frames is shown. In addition, the 'Spectra (cluster 

analysis)' window can be selected to display the energy spectra as well as the total pixel count 

from all recorded events. 

The TOT mode can be selected using the measurement type button. In general, the Sophy 

software has more functionality compared to that offered by the Pixelman software (Pixelman 
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has been discussed in chapter 4). The 'Gear' icon, near the measurement type selection, opens 

up another set of possible measurement options, where a filter can be applied to choose the 

radiation type to be counted as well as the cluster size. The whole data acquisition can be 

recorded and replayed or saved as an image or an ASCII file for subsequent export to other 

software, such as Matlab and Excel, for further analysis. The device can be energy calibrated. 

The energy calibration file is provided with the device and can be uploaded to give the energy 

of detected particles in keV. 

For advanced detector settings, tool driver can be opened for more specific detector settings, 

such as the bias voltage, which should be between 5 and 100 V depending on the particle type 

and the source activity. The bias voltage determines the charge collection speed and the size of 

the collected charge cluster (Turecek, Holy et al. ; Jakubek 2011; Janik, Ploc et al. 2016). 

Furthermore, a lower bias voltage gives a larger cluster response compared to a larger bias 

voltage (Granja, Jakubek et al. 2011; Janik, Ploc et al. 2016). However, a higher bias voltage 

increases the probability that Timepix will reach repletion due to charge depletion before the 

generated charges diffuse into the neighbouring pixels (Granja, Jakubek et al. 2011). 
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Figure 2: Timepix operating window in Sophy Software, courtesy of (Instruments 2013). 

2.2 Radioactive sources 

To investigate the energy spectra measured by the Timepix detector, different radioisotopes 

with different particle and photon energies were tested. The radioisotopes tested were: Am-

241, Ra-223, Pu-238 and Fe-55. 
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Am-241 decays by emitting a-particles and y-rays (Figure 3) with a half-life of 432.2 years 

(Lederer, Hollander et al. 1967). It has an a-particle energy range of between 5.389 and 5.545 

MeV and y-rays energy range between 0.033 and 0.097 MeV (Vajda, Martin et al. 2012). The 

Am-241 used in this study was a sealed radioactive source with an activity of 1.3 MBq. It was 

purchased from Eckert & Ziegler Nuclitec GmbH, Germany. 

Ra-223, purchased from Algeta ASA, Norway, has a half-life of 11.43 days (Lederer, 

Hollander et al. 1967) and the activity used was 1.67 MBq. It emits a-particles (mean energy 

range ~ 6 MeV) and y-rays and X-rays (80 and 270 keV) (McDevitt, Sgouros et al. 1998; 

Bruland, Nilsson et al. 2006; Lien, Tvedt et al. 2015). 

0.059 -------------/ 
o.033 r o.059(36%) Y o.102(0.02%) 

Atomic number 

241Am 
95 

a 5.389 MeV (1.4%) 
a 5.443 Mev (12.8%) 
a 5.486 MeV (85.2%) 
a 5.512 MeV (0.20%} 
a 5.545 MeV (0.30%) 

Figure 3: Am-241 decay scheme (all energies are in MeV), courtesy of (Vajda, Martin et al. 
2012). 
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Pu-238 (a sealed source from the Radiochemical Centre, Arnersham, England) has a half-life 

of 87. 7 y and the activity used was 4.13 nCi. Pu-238 decays by emitting a-particles (100%) to 

U-234 with energies of 5.4 MeV (0.1 %), 5.55 (28,85%) and 5.6 MeV (71 %) (LNHB). 

Fe-55 (half-life of2.737 years) decays to Mn-55 by electron capture as shown in Figure 4. This 

decay is followed by the emission of Auger electrons that produce bremsstrahlung X-rays 

resulting in a continuous spectrum of up to 231 ke V (LNHB). The electron capture can also be 

accompanied by the emission of Mn-55 characteristic X-rays with energies of 5.89875 keV 

(16.2%), 5.88765 keV (8.2%) and 6.49045 keV (2.85%) (LNHB). This source was provided 

by the ASI facility , Amsterdam. 
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Figure 4: Fe-55 decay scheme, courtesy of (LNHB). 

2.3 Experimental set up 
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The sources were placed at a distance of 0.5 cm from the sensitive layer of the detector. The 

cover of Timepix was removed only for a-particle emitters and was kept on for other sources. 

The TOT mode was selected as the Timepix operation mode along with spectral imaging (i.e. 

cluster analysis) as the measurement type. 100 V was applied as the bias voltage during a 15 

minute to 2 hour irradiation times with 0. 1 seconds per frame to investigate the spectra of 

radioactive sources. The THL threshold used was 330 (resulting from calibration of the whole 

detector matrix). Different filters were selected in the software, depending on the radiation 

type, with the inclusion of comer pixels. These filters apply specific requirements for cluster 

shapes for each radiation type. For example, the X-ray filter has a cluster area of 1 and the a

particle filter accepts cluster areas from 9 to 65,536 pixels and a peak height of >7 (i.e. clusters 

with areas below 9 pixels will be rejected when detecting alpha particles). 

Another test was performed using Am-241 to investigate the effects of two bias voltages on 

the resulting spectra. 5 and 100 V were used to perfonn this investigation. 

Additionally, the Am-241 y-ray spectra were measured and compared when using 0, 1, 3 and 

6 Mylar foils (0.5 µm thick each)) positioned in front of the Am-241 source. The face of the 

Timepix was covered with the lid in order to prevent a-particles from reaching the sensitive 

layer of the detector, and an X-ray filter was applied during the 12 hour acquisition time. 

Mylar foils (0-2) were also used measure the reduction/changes in energy spectra of a-particles 

emitted from Pu-238 during a 24 hour acquisition time. The face of Timepix detector was 

uncovered and the a-particle filter was applied. 

To measure the energy resolution of Timepix for Am-241, using 5 and 100 V bias voltages, 

. and for Ra-223, using l 00 V bias voltage, the full width at half maximum (FWHM) was 

determined from each measured spectrum as well as the energy at the center of the peak. 
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Timepix energy resolution was then calculated using the following equation (Bushberg, Seibert 

et al. 2002): 

FWHM 
Energy resolution = x 100% 

- Pulse_ height_ at_ center of_ peak 

Finally, Timepix perfonnance as an energy spectrometer was evaluated based on the energy 

resolution observed. 

3. Results and Discussion 

3.1 Am-241 spectrum 

Am-241 was used to calibrate the Timepix detector in the TOT mode. Two peaks are expected 

in the Am-241 energy spectrum: a peak for y-rays and a peak for a-particles. As the energies 

of a-particles emitted from Am-241 are close to each other (Figure3), it is not expected that 

Timepix can be capable of distinguishing between these energies. The same applies toy-rays. 

Due to the limited energy resolution of Timepix, it will produce continuous peaks for all a-

particle energies in the total/combined spectrum (i.e. non-filtered spectrum in blue) as well as 

in the a-particle only (i.e. filtered spectrum in red), as shown in Figure 5. 
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Figure 5: The combined Am-241 y-ray and a-particle spectrum in blue taken with a bias 
voltage of 5 V. The red line corresponds to an a-particle spectrum only. 

The acquired images of a-particle hits are shown in Figure 6 when using the two bias voltages. 

As can be seen, the a-particle cluster area is larger when 5 V was applied compared to 100 V. 

The spatial resolution for a single a-particle cluster is 385 and 575 µm , corresponding to bias 

voltages of 5 and 100 V, respectively. 

Figure 6: Timepix images of Am-241 a-particle hits acquired with a bias voltage of A) 5 V 
and B) 100 V. 
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The corresponding energy spectra for these two bias voltages are shown in Figure 7. Using a 

bias voltage of I 00 V resulted in the spectrum being shifted towards a higher energy as 

compared to the real a-particle energy. 

The measured energy resolution for bias voltage of 5 and 100 V was approximately 17% and 

26%, respectively. 
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Figure 7: Am-241 a-particle spectra collected using a bias voltage of 5 V (green spectrum) 
and 100 V (red spectrum). 

The Arn-241 y-ray spectra measured without and with 1, 3 and 6 Mylar foils positioned in front 

of the Am-241 source are shown in Figure 8. As expected for photons, the energy has not 

changed, but the number of these low energy photons detected is reduced slightly due to 

scatting and absorption in the foil. 
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Figure 8: Am-241 y-rays spectra after 12 h acquisition time, where red, yellow, blue and 
black lines correspond to spectra with 0, 1, 3 and 6 Mylar foils covering the source. 

3.4 Ra-223 spectrum 

The image acquired after 15 minute irradiation using Ra-223 , is shown in Figure 9, where the 

right-hand image shows all particles that hit the Timepix during that time, while the left-hand 

image displays only a-particle events. The spectrum resulting from the 15 minute irradiation is 

shown in Figure 10. It also contains two separate groups of peaks, representing the a-particle 

spectrum and the y-ray spectrum. The mean energy reading for a-particles, shown in Figure 

10, is shifted towards higher energies (as the bias voltage of I 00 V was used) compared to the 

real mean a-particle energy. 

Timepix energy resolution for Ra-223 was determined to be 32%. 
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Figure 9: Ra-223 emissions: the image on the right shows a-particle and y-ray hits and the 
image on the left shows a-particle hits only. 
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Figure 10: Ra-223 spectra: (A) A combined spectrum with a-particles (red) and y-rays (blue) 
and (B) an a-particle spectrum only. The measurement was done using the bias voltage of 

100 v. 

3.2 Pu-238 spectrum 

' The acquired Pu-238 spectra for y-rays and a-particles are shown in Figure 11. 
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Figure 11 : Pu-238 A) A combined y-ray and a-particle spectrum and B) the a-particle 
spectrum. 100 V bias voltage was used. 
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When the source was covered with 1 or 2 Mylar foils, the a-particle spectra shown in Figure 

12 were measured. As expected, the energy of a-particles decreased with the increasing number 

of Mylar foils . 
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Figure 12: Pu-238 a-particle spectra measured using Mylar foils: 0 (red spectrum), I (grey 
spectrum) and 2 Mylar foils (pink spectrum). 
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3.3 Fe-55 spectrum 

An X-ray filter was used to obtain the Fe-55 spectrum. The measured spectrum is shown in 

Figure 13 . A single broad continuous bremsstrahlung X-ray spectrum is observed. 
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Figure 13: The measured Fe-55 continuous Bremsstrahlung X-ray spectrum. The Mo-55 
characteristic X-rays cannot be distinguished. 

4. Conclusion 

Timepix performance shows that it has capacity to function as a spectrometer, albeit with 

limited ability to distinguish between close particle energies (within 1 MeV), although with 

poor resolution. Photons and a-particles emitted from several radioactive sources were 

identified and their spectra were studied. Investigation of Timepix energy calibration, provided 

by the manufacturer, was also performed. The results demonstrate that the energy calibration 

cannot be applied to all bias voltages but only for the one it has been generated for. More 

accurate calibration for a range of radiation sources is still required. 

137 



Chapter 5. Timepix as a Spectrometer and an Im ager 

It is also concluded that while Timepix, if energy calibrated for a given bias voltage and a given 

radiation type, can be used for spectrometry of low energy y-rays, X-rays and alpha particles 

in the MeV range, its energy resolution is not excellent and is inferior to, for example, 

gennanium detectors. This is possibly a consequence of the pixel sharing effect as well as of 

the very thin detector layer (300 µm). 
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5.3 Timepix as an lmager 

Imaging applications of detectors from the Medipix family are possible as a result of the 

combination of the small pixels (µm), and high density electronic components and the pulse 

processing electronics (Cudie 2007). 

A simple evaluation of the Timepix radiation detector was performed in this chapter in order 

to examine its imaging ability. The evaluation was conducted using different objects such as 

ball bearings, optical fibre and a rectangular block of lead. 

Furthennore, evaluation ofTimepix's spatial resolution was also perfonned using a sharp edge. 

The spatial resolution is determined by the ability of an imaging system to accurately illustrate 

the details of an object in two dimensions (Bushberg, Seibert et al. 2002). The spatial resolution 

of any imaging system can be obtained by either the point spread functions (PSF) which is 

considered a difficult task as it requires an infinitesimal point source or by the line spread 

function (LSF) which should be performed with infinitesimal line source. LSF however, can 

be acquired using a sharp edge object via the edge response function (ERF) (Smith 1997-1998, 

Lee 2001, Bushberg, Seibert et al. 2002). PSF, LSF and ERF are shown in Figure 4.4. 

PSF LSF ESF 

Figure 5.1. Point spread functions (PSF), line spread functions (LSF) and edge response 
function (ERF) and their profile in bottom, courtesy of (Bushberg, Seibert et al. 2002). 
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ERF is defined as the distance between I 0 and 90% of the edge response and LSF is the first 

derivative of the ERF. 

In this experiment, a sharp edge image was used to measure the edge response function using 

a rectangular block of lead to cover part of the detector. These tests were performed with X

rays emitted from an I-125 seed and also using a-particles emitted from Pu-238. 

5.3.1 Materials 

5.3.1.1 Radiation Sources 

Two sources were used in these experiments: 1-125 (two seeds of Iodine-125 were used where 

the average length of the single seed was 4.5 mm and the diameter was 0.8 mm) and a Pu-238 

source with a circular area of 2 cm diameter. More information about these two sources was 

presented in chapters 4 and chapter 5, respectively. 

5.3.1.2 Imaging Objects 

In order to determine Timepix's ability to image fine objects, four metal ball bearings (2 mm 

diameter each), F2 fractal optical fibre with an air core (0.22 mm diameter) and a complex 

optical fibre with multi size air holes ( ~ 8 mm diameter) were used. The optical fibres were 

provided by the OptoFab node of the Australian National Fabrication Facility. A rectangle 

block of lead was also used. 

5.3.2 Methods 
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5.3.2.1 Imaging 

The objects were placed one by one directly on the top of the Timepix cover and radiation 

source was positioned 15 cm away from Timepix. Medipix mode (chapter 2) was used and 

integrated frames were applied to produce an image of our objects. Between 300 and 43,200 

frames were acquired using an acquisition time of l second/frame. Ability to identify/resolve 

fine details of the structure of the imaged objects was evaluated qualitatively only. 

5.3.2.2 Measurements of Spatial Resolution using Sharp Edge Images 

A rectangular block of lead was used to cover part of the Timepix detector and the sharp edge 

images were acquired using X-rays emitted from 1-125 seeds and a-paiticles emitted from Pu-

238. Medipix mode was used. The total acquisition time was 2 hours with 0.1 second/frame. 

Each sharp edge image in Timepix preview window was exported as an ASCII matrix, and 

processed using Matlab software. The mean pixel value of each row (i.e. 256 rows) in the image 

matrix was calculated and plotted on the y-axis with the corresponding pixel number on the x

axis. In order to determine the ERF, the distance between I 0 and 90% of the edge response 

width was calculated (Figure 5.2). 

141 



Chapter 5. Timepix as a Spectrometer and an Im ager 
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-i 14-- F.dge ~ 

Figure 5.2. Determination of the edge response function, courtesy of(Smith 1997-1998). 

5.3.3 Results and Discussion 

5.3.3.1 Images 

Figure 5.3 shows the four ball bearings imaged usmg 1-125 seeds after 12 hours 

acquisition/irradiation time. The ball bearings are clearly visible. Some image artefacts are 

present as well, represented as shadowing between the individual ball-bearings. 
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y 

X (column number) 256 

0 0.25 0.5 0.75 
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Figure 5.3. An image of four ball bearings acquired with an I-125 seed source. 

The image of the F2 fractal optical fibre acquired using the I-125 source is shown in Figure 

5.4. 300 frames with 1 s per frame were taken. The mean reading per pixel was 45.9 counts. 

The F2 fractal optical fibre has a diameter of 0.62 mm. The air core in the fibre is clearly 

visible, confinning that Timepix is capable of imaging objects with submillimetre structures. 

256 

y 

X (column number) 256 

0 27.5 55 82.5 110 

Figure 5 .4. F2 fractal optical fibre image acquired with an 1-125 seed source. 

The image of the optical fibre with multi holes (I-125 source, 1 second peer frame) is shown 

in Figure 5.5. The smallest and the largest measured inner oval holes had widths of 0.6 and 

1.26 mm, respectively and are clearly distinguishable in the image. 
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Figure 5 .5. Optical fibre with air holes imaged by Timepix using I-125 seed source. 

5.3.3.2 Sharp Edge Images 

The sharp edge image acquired with I-125 seeds and the lead block is shown Figure 5.6. The 

measured edge response function is 0.79 mm is shown in Figure 5.7. 

Figure 5.6. Sharp edge image acquired with Timepix and X-rays emitted from two I-125 
seeds. 
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Figure 5.7. The edge response function of the sharp edge imaged using Timepix and 1-125 X
rays. Each pixel, on the x-axis, has the width of 55 µm. 

The sharp edge image acquired using Pu-238 and Timepix is shown in Figure 5.8; where (A) 

is an actual response of Timepix to a-particles, showing a-particles as clusters and (B) is a 

processed image where each a-particle hit is represented by the centroid pixel only (i.e. the 

central pixel in a cluster). The ERF, determined by using mean pixel values in each row, is 1.28 

mm (Figure 5.9). 
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Figure 5.8. The sharp edge image acquired with Timepix and Pu-238 a-particles: (A) a
particles clusters and (B) centroid pixels only of each a-particle cluster. 

Pixel 

250 

Figure 5.9. The edge response function of the sharp edge imaged using Timepix and Pu-238 
a-particles. Each pixel, on the x-axis, has the width of 55 µm. 

5.4 Conclusions 
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The studies in this chapter show that Timepix can be used as a spectrometer and an imager. 

Timepix can detect and identify photons, a-particles and electrons emitted from various 

radioactive sources and can also measure their energies, although not with very good 

resolution. The TOT mode can be used to measure the energy of the impinging radiation 

directly, provided that Timepix is calibrated for the given energy range and the same 

acquisition parameters are used for the calibration and the measurement (e.g. the bias voltage). 

The energy resolution was found to be 17% and 26% for Am-241 a-particles with a bias voltage 

of 5 and I 00 V, respectively and 32% for Ra-223 a-particles. Selection of the optimal bias 

voltage depends on the activity of the radioactive source and the radiation type. 

As an imager, Timepix can image fine details of an object (from 0.2 mm diameter). The 

measured edge response functions measured with I-125 X-rays and Pu-238 a-particles were 

0.79 mm and 1.28 mm, respectively. These values result from the fact that the sources used 

were not point sources. Far superior resolution can be achieved with Timepix if a point source 

is used, for example, a nano-focus X-ray tube with a focal spot size ofless than 1 µm (Dammer, 

Frallicciardi et al. 2009). 
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Chapter 6 

Application of Timepix in Au to radiography for TAT 

6.1 Introduction 

Autoradiography monitoring tools are essential to detect radiation in ex vivo experiments of 

targeted therapy and to provide precise quantitative measurements of radiation uptake. 

Different devices with different abilities can be used for such measurements and include a 

gamma counter such as Geiger-Muller (GM) counter, well-type scintillation counter, a-camera 

and QID camera (Pearson, Hodes et al. 1969; Back and Jacobsson 201 O; Chouin, Lindegren et 

al. 2013; Karimi, Lee et al. 2014; Miller, Gregory et al. 2014; Frost, Miller et al. 2015). 

Now that the Timepix performance has been comprehensively characterised, using radiation 

sources only, additional degree of complexity was added to the experiments, introducing 

measurements of radiation emitted from biological samples, namely: radiolabeled cells and 

' radiolabeled tumour sections. Capacity of Timepix for autoradiography and radiolabeling 

counting (i.e. efficiency of radioisotope uptake by cells) has been investigated. 
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In this chapter, the use of Timepix for autoradiography in TAT is described. Additionally, 

Timepix use as a radiolabelling detector is also discussed. 

6.2 Statement of Contribution 

6.2.1 Conception 

The first concept of investigation of Timepix use for autoradiography was suggested by Eva 

Bezak and Alex Staudacher. The methods by which to achieve this concept were 

conceptualised by Ruqaya Al Darwish, Alex Staudacher, Eva Bezak and Michael Paul Brown. 

6.2.2 Realisation 

The experimental work was done by Ruqaya Al Darwish under supervision of Alex Hugo 

Staudacher and Eva Bezak. All experiments using radiation were conducted according to the 

conditions of Operating an ionising radiation apparatus licence and Using and handling 

radioactive substances licence (Radiation Protection and control Act 1982) by South Australian 

Environment Protection Authority. Data collection and analysis was done by Ruqaya AL 

Darwish. 

6.2.3 Documentation 

This paper was primarily written by Ruqaya Al Darwish. Editing was performed by all authors. 
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There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required 
to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking 
of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of 
imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without 
prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour 
uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained 
imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and 
resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted 
alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the 
tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for 
those without chemotherapy. 

1. Introduction 

The relationship between the characteristics of a particular 
radiation type and its impact on irradiated biological tissues 
and cells plays an important role in estimating the efficacy and 
applicability of targeted radiotherapies [l]. In a specific case of 
targeted alpha therapy (TAT), a tumour-specific antibody or 
protein is radiolabelled with an alpha-emitting radionuclide, 
termed a radioimmunoconjugate [2, 3]. This radioimmuno
conjug~te attaches preferentially to tumour-specific antigens 
that can be expressed on a tumour cell membrane and release 
high-linear energy transfer (LET) alpha particles with kinetic 
energy of a few MeV. The traversal of these short-ranged 
alpha particles through target and neighbouring tumour cells 
results in localised radiation damage and ultimately cell death 

[2, 4]. TAT can, however, also result in so-called cross fire irra
diation in which antigen-negative nontumour cells in close 
vicinity of the radioimmunoconjugate are also irradiated and 
damaged. The magnitude of this radiation damage (to tumour 
or healthy cells) strongly depends on the tumour-specific 
uptake of the particular radioimmunoconjugate. 

To date, there is a lack of methods that can quantify 
alpha particle emissions in biological systems. One of the 
few devices presently available (known as the "a-camera") 
combines autoradiography with a scintillation detector and 
optical registration using a charge-coupled device. In the 
study of Back and Jacobsson, the distribution of At-211 
labelled antibody and antibody fragments in human tumour, 
mouse kidney, and whole-body sections were examined 
[6] . The a-camera had a resolution of 35 ± 11 µm, and 
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FIGURE 1: Timepix detector structure, courtesy of [5]. 

the quantitative analysis proved that the pixel intensity has 
a linear relationship with the activity of the imaged tissue. 
The results demonstrated the ability of the a-camera to be 
employed in small-scale dosimetry for TAT as it was able 
to provide quantitative data on a microscopic scale [ 6]. 
Furthermore, the a-camera was also used to examine the 
accumulation of an At-211 radioimmunoconjugate admin
istered to mice with ovarian cancer micrometastases. The 
activity level and the number of tumour cell clusters were 
determined by imaging one section with the a-camera and 
by staining a consecutive section with hematoxylin and eosin 
[7]. The study demonstrated that the radioimmunoconjugate 
had high uptake and retention at the tumour surface and that 
dose estimates to micrometastases could be calculated using 
the a-camera. 

Timepix is a new prototype radiation detector which 
takes advantage of recent developments of the complemen
tary metal-oxide-semiconductor (CMOS) technology for 
constructing integrated circuits. Timepix consists of a silicon 
semiconductor layer, divided into an array of pixels, which is 
bumped-bonded to an electronics integrated layer (Figure 1). 
Each pixel is connected to an individual charge-sensitive 
preamplifier, a discriminator and a counter [8, 9], and a 4-
bit digital-to-analogue converter (DAC) to adjust the voltage 
threshold ( 4-bit DAC for threshold adjustment) [10). 

Timepix is a sophisticated microdosimeter that can be 
used for a wide range of experiments with photons, electrons, 
and other charged particles and has applications in fields such 
as space physics, nuclear physics, radiotherapy physics, imag
ing, and radiation protection. One of its main advantages is 
that it can measure energy deposition directly and in real 
time [11]. For example, in the work of Esposito et al., Timepix 
was used to trace {3-particles froma C-14 sample [12, 13). C-14 
was deposited on a low-density paper foil, evaporated before 
packing in 10 µm thick Mylar, and being read by the detector 
[12] . The image was analysed in terms of clusters of hit pixels, 
which gave an indication of the interaction position of the 
f3 particle with the detector. The result showed that Timepix 
was highly sensitive with a minimum detectable activity of 
0.0077 Bq and with a spatial resolution of 76.9 µm at full 
width at half maximum (FWHM) [13]. 

Computational and Mathematical Methods in Medicine 

In this paper, we present the first results for using 
Timepix to visualise TAT ex vivo in mouse tumour sections. 
As mentioned above, the a-emitting radioimmunoconjugate 
binds to its cancer-specific antigen. The emitted a particles 
deposit their kinetic energy inside a target cell, as well as 
in surrounding cells, potentially resulting in cell death. In 
the current work, the DAB4 murine monoclonal antibody 
(trademarked as APOMAB), which binds to necrotic tumour 
cells [14, 15], was used and was radiolabelled with Thorium-
227 as described in [4]. Since there is a spatial correlation 
inside a tumour between the necrotic and the hypoxic regions 
[4], we hypothesised that targeting or binding of DAB4 to 
necrotic tumour regions would result in nearby hypoxic 
tumour cells receiving cross dose and hence undergoing 
radiation-induced death. Hypoxic tumour cells are generally 
resistant to low LET radiation like that of X-rays, which is 
typically employed in clinical radiation therapy. Furthermore, 
by increasing the number of dead tumour cell targets, for 
example, after chemotherapy, the tumour uptake of the 
radioimmunoconjugate would be increased, consequently 
increasing the tumour dose [16). In order to confirm this 
hypothesis, qualitative and quantitative detection and anal
ysis of the radioimmunoconjugate uptake and its distribu
tion within the tumour volume are required, using suitable 
microdosimetric detection techniques. In this study, we used 
the Timepix microdosimeter to detect radiation emissions 
from tumour sections of mice treated with Thorium-227 
APOMAB to image and quantify alpha particle emissions at 
a micrometre level. 

2. Materials and Methods 

2.1. Th-227. The radionuclide Thorium-227 is an alpha emit
ter produced from actinium-227 with a half-life of 18.7 
days, making it, attractive for use in therapeutic applications 
[17, 18) . Alpha particles have a short range of only a few 
cell diameters in tissue ( <100 µm [18]). The higher LET 
of alpha particles results in greater biological effectiveness 
compared to other radiation types such as X-rays or electrons 
[19]. Along with alpha particle emissions, the Th-227 decay 
chain also results in the release of {3-particles and a low 
percentage of X- and gamma rays prior to reaching a stable 
isotope (Lead-207). The Th-227 decay chain and the mean 
energies of major particles produced in this decay chain 
are presented in Figure 2. Th-227 used in the current work 
was purchased through the National Isotope Development 
Centre, Department of Energy, USA. 

2.2. Preparation of Autoradiography Sample 

2.2.1. Monoclonal Antibody Production, Conjugation, and 
Radiolabelling with 227 Th. The La-specific murine mono
clonal antibody DAB4 (APOMAB) [20) in conjugation buffer 
(O.lM sodium bicarbonate, O.lM monosodium phosphate, 
and pH 8.5) was mixed with SO-fold molar excess of the 
bifunctional chelator p-SCN-Bn-DOTA (Macrocyclics, USA) 
and incubated at room temperature for four hours with 
rotation. After buffer-transfer to 0.5 M sodium acetate buffer 
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FIGURE 2: The decay chain oflh-227, half-lives, and mean energies of emitted particles. 

(pH 5) , the ratio of DOTA : mAb was determined as previ
ously described [21] and was approximately 4: 1. 

227Th was purified as previously described [18] imme
diately prior to radiolabelling. DAB4-p-SCN-DOTA was 
incubated overnight with purified Th-227 using an Eppen
dorf Thermomixer (37°C, 550 rpm constant). Samples were 
washed three times and buffer-transferred to phosphate
buffered saline (pH 7.4). The activity of the radioimmuno
conjugate was determined using a Germanium detector and 
MCDWIN version 3.08 software (FAST ComTec, Germany), 
with the main gamma peaks of 236 and 256 keV (17.6% 
and 9.5% abundance, resp.) used to quantify Th-227 activity 
and of 269 and 154keV peaks (13.9% and 5.7% abundance, 
resp.) used to quantify Radium-223. The specific activity of 
radioimmunoconjugates was 400 kBq/mg, with <1% Ra-223 
and <1% unbound Th-227 present, as determined by instant 
thin-layer chromatography. 

2.2.2. LL2 Tumour Model and Treatment of Tumour-Bearing 
Mice. All animal experiments were approved by the SA 
Pathology Animal Ethics Committee, Adelaide, and con
ducted following institutional ethical guidelines. Six- to eight
week-old female C57Bl/6 mice were injected subcutaneously 
in the right flank with 106 LL2 cells (this cell line is derived 
from transplantable murine Lewis lung carcinoma). Tumour 
size was measured using electronic callipers, and tumour 
volume was determined using the following calculation: 
tumour volume = (a2 x b) /2, where a is the shortest diameter 
and b is the longest diameter of the tumour. Treatment 
commenced when tumours reached 45-60 mm3

. To gener
ate more necrotic tumour cells for Th-227-DAB4 binding, 
some mice also received chemotherapy prior to injection 
with Th-227-DAB4. These were treated intravenously with 
50 mg/kg gemcitabine (Hospira, Australia) on days 1 and 2 
and 2.5 mg/kg cisplatin (Hospira) on day 1. 18 kBq of 227Th
DAB4 was administered on day 3. Mice were euthanised 
2 days after administration of Th-227 labelled antibody via 
cervical'dislocation, and tumours were collected and fixed 
in 10% neutral-buffered formalin . Tumours were paraffin 
embedded, and 5 µm sections were cut for imaging. 

2.3. Timepix Radiation Detector. The Timepix radiation 
detector, used in the current work, was purchased from 

Amsterdam Scientific Instruments (ASI), the Netherlands. 
The device consists of a silicon chip, 1.408 x 1.408 cm2 in size 
containing 256 x 256 pixels, with each pixel having an area of 
55 x 55 µm2 and 300 µm depth. 

The chip can collect positive or negative charges [9], and 
the range of particle energies to be detected can be selected 
for a uniform performance using adjustable thresholds. The 
device can be operated in one of three main modes to 
either count single particles (Medipix mode), measure the 
arrival time of events/particles (Timepix mode), or measure 
the energy deposited in each pixel for events between the 
thresholds (time over threshold (TOT) mode) [10] . This offers 
the possibility of using the detector for a wide range of 
applications for photon and particle detection and energy 
spectrometry in addition to imaging and tomography. 

The ASI Timepix detector is combined with the beam data 
acquisition software, SoPhy (Software for Physics), developed 
by the provider. The SoPhy software allows one to control 
Timepix acquisition modes such as selection of the operation 
mode, adjustment of suitable energy thresholds, cluster sizes, 
and other acquisition settings using multiwindows. The 
recorded data and frames/images can be exported to and 
processed using other programs such as Matlab or Image]. 

In the current work, before any measurements and fol
lowing manufacturer recommended procedure, pixel equal
isation was performed to ensure a uniform response of 
all pixels. Subsequently, tumour sections mounted on glass 
microscope slides were placed 2 cm away from the detector 
with the front face of the detector uncovered to allow the 
emitted alpha particles to penetrate the Timepix silicon chip 
(Figure 3). A simple steel collimator with 1 cm radius and 
2 cm in length was manufactured in-house and positioned 
around the tumour section using epoxy glue. Bias voltage 
of 5 V was applied to Timepix. The TOT mode was selected 
along with alpha particle filter. This acquisition filter allows 
identification of individual alpha particles detected (amongst 
other detected particles) as well as determination of the centre 
pixel in a charge cluster produced in the Timepix silicon 
chip by a traversing alpha particle. The total acquisition time 
was approximately 14 hours with 0.01 seconds per frame. 
Individual frames as well as the total integrated image can 
be evaluated. In the current work, the detected number of 
alpha particle hits from individual samples was evaluated and 
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(a) (b) 

FIGURE 3: Image of the experimental setup. (a) Tumour section with a 2 cm diameter collimator mounted on top of a tumour section. (b) A 
tumour section in front of the uncovered Timepix detector. 

compared after correction for decay and normalisation for 
tumour section size and acquisition time. 

2.4. Compartmental Analysis. The compartmental model 
[22] was used in the current work to calculate and compare 
the radioimmunoconjugate uptake in TAT-treated tumours. 
It is assumed that there are three main compartment volumes: 
the blood volume (B), tumour volume (T), and a free 
volume (E), where the radioactive source will escape from the 
blood. It is assumed that, after injection, the Th-227-DAB4 
will distribute throughout all volumes. The blood and the 
escape volumes are open volumes where the radiolabelled 
immunoconjugate can escape from. The tumour volume, 
however, is a closed volume where the taken-up Th-227-
DAB4 concentration will remain steady as shown in Figure 4. 

For simplicity, it is assumed in the current work that, 
at time zero, the initial activity concentration of the isotope 
in blood, C8 , is equal to the administered activity, A

0
; that 

is, all of the
0 

injected activity has been taken up by blood. 
Subsequent changes of the Th-227-DAB4 concentration in 
the blood volume, dC8 /dt, are due to isotope uptake by 
the tumour and due to excretion/depletion through escape 
volume. This can be expressed as [2, 22] 

(1) 

where ky and kB are the so-called transfer (uptake) coeffi
cients for tumour and for the escape volumes. 

Variations in Th-227-DAB4 concentration in tumour 
volume, dCy/dt, are due to Th-227 uptake from the blood 
volume and due to its depletion through radioactive decay of 
Th-227. This can be then written as 

(2) 

where A is the decay probability constant for Th-227. 

Th-227 labeled DAB4 

11 
Bvolume Evolume 

FIGURE 4: Compartmental model for the autoradiography using Th-
227 labelled DAB4. 

Assuming, for simplicity, that the tumour volume transfer 
coefficient, ky, is much higher than escape volume transfer 
coefficient, kB, the previous equation becomes 

dCr _ -!vrt 
~ - kyA 0 e - A.Cy, 

Cy(t) = A:Tky Ao(e-krt -e-AI). 

(3) 

In our case, for tumour sections treated with only Th-227-
DAB4, the concentration of the radioactive material at time t 
can be expressed as 

k C (t) = T,nochemo A ( -kT,oo<h<mot _ -At) 
T,nochemo A - k 0 e e . 

T,nochemo 
(4) 

Similarly, for tumour sections treated with chemotherapy 
prior to Th-227-DAB4 administration, the concentration of 
Th-227 at time t can be expressed as 

k C (t) = T,chemo A ( - K T,<h•mot _ -At) 
T,chemo A k oe e . 

- T,chemo 
(5) 
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FIGURE 5 : (a) and (b): images of tumour sections from mice treated with 227Th-DAB4 alone. (c) and (d): images of two tumour sections from 
mice treated with chemotherapy followed by 227Th-DAB4. The red circle indicates the approximate tumour section boundaries. 

The ratio of radioisotope concentrations between the radio
labelled tumour samples with and without chemotherapy is 

CT,chemo (t) e - kT,<h<mot - e - At 

CT,nochemo (t) e-kT,no<h<mo t - e-At 

e - kT,<h<mo t ( J _ e - (A- kr,,h<mo) ) 

e-kT,nochemo t ( l - e-(.\-kT,nochemo)). 

(6) 

Considering that the decay probability coefficient A. is much 
smaller compared to the transfer coefficient ky, the above 
ratio can be reduced to 

CT,chemo ( t) e - kT,<h<mo t - 1 

CT,nochemo (t) e-kT,nochemot - 1. 
(7) 

Once the mouse has been euthanised and/or all of the initial 
activity has been taken up by the tumour and escape volumes 
(e.g., at time tmax), the amount of radioisotope in the tumour 
volume, Cy, will only vary as a result of radioactive decay: 

(8) 

As both tumour sample types (treated and not treated with 
chemotherapy) will decay with the same decay probability, 
the number of recorded alpha emissions will be directly 
proportional to the amount of radioisotope taken up by 
the tumour prior to a mouse being euthanatised. As a 
result, from the measurement point of view, the number 
of alpha hits detected by Timepix detector is proportional 
to isotope concentrations, CT,chemo and CT,nochemo' during 
measurements. As a result, from the number of recorded 
alpha hits measured at different time intervals, the transfer 
coefficients for the two scenarios could be determined. 

3. Results and Discussion 

Figure 5 shows acquired integrated images of sections from 
four tumours: two tumours from mice treated with 227Th
DAB4 alone ((a), (b)) and two tumours from mice treated 
with chemotherapy followed by 227Th-DAB4 ((c) , (d)). Even 
though the collimator was positioned around the tumour 
section, the collimator was not touching the detector, leaving 
a small (-2 mm) air gap. As a result, particles emitted at 
smaller angles, compared to a trajectory perpendicular to the 
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FIGURE 6: Timepix responses to electron, Muon, X-/gamma ray, and 
alpha particle. 

detector, can still reach the detector. These are observed as 
hits outside the red circle in Figure 5. 

High LET alpha particles release their kinetic energy 
in more than one pixel as they pass in the semiconductor 
detector, forming a charge cluster. The small dots recorded in 
the image represent X- and gamma rays. An electron passage 
will result in a wavy and short track, and a muon track will be 
detected as a straight, long line (Figure 6). 

An automated method using ImageJ was used to deter
mine the number of alpha particle hits. These were also 
counted manually for comparison. The differences between 
the two methods varied between 4 and 20 hits. Using the 
automated method, the number of hits varied between 93 and 
251, for the sections that did not receive chemotherapy, and 
between 445 and 582, for the sections that were treated with 
chemotherapy before administering Th-227-DAB4. 

As shown in Figure 7, the recorded alpha particle hits 
for each sample were corrected for radioactive decay (based 
on the time elapsed between the Th-227 administration and 
Timepix measurement), the area of each sample, and total 
acquisition time, resulting in the alpha particle acquisition 
rate between 27.6 and 44.8 hits/cm2 ·hour for tumour sections 
of mice not previously given chemotherapy and between 94.0 
and 206.8 hits/cm2·hour for sections that were treated with 
chemotherapy followed by 227Th-DAB4. 

Corrected alpha particle acquisition rates were statisti
cally analysed using one-way ANOVA for their significance, 
using GraphPad Prism software, yielding P value of 0.026 
( <0.05, two-tailed), confirming that the observed differences 
between the two sample groups are significant. 

Energy spectra of alpha particles detected from decay of 
Th-227 and its daughters were also acquired and an example 
is presented in Figure 8 where the lowest and the highest 
energies can be determined. The energy varies between 4 and 
7.4 MeV, corresponding to the expected energy range of alpha 
particles produced by Th-227 decay chain. 

Usmg the compartmental analysis, corresponding trans
fer coefficients for the two samples can be determined when 
repeating the measurements for at least one sample type 
at different times. The data can be plotted using ( 4) or (5) 
and the transfer coefficient can be estimated. The ratio in 
detected alpha particles between the two sample types was 
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FIGURE 7: Measured alpha particle hits per unit tumour area per 1 
hour for two groups of tumour sections: 4 sections with and 3 sec
tions without application of chemotherapy prior to administration 
ofTh-227 radioimmunoconjugate. 
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FIGURE 8: The detected alpha particle spectrum as emitted from Th-
227-DAB4 from a single tumour section. 

found to be approximately 4. If one of the transfer coefficients 
is known from repeated measurements, the second one can be 
determined from (7). 

4. Conclusion 

Tumour sections were imaged in the current work to charac
terise the pattern ofuptake and distribution ofTh-227-DAB4. 
High resolution autoradiographs of radiolabelled tumour 
sections were acquired, showing alpha particles, f3 particles, 
electrons, and X-ray tracks. The Timepix measurements 
also showed an increased uptake ofTh-227-DAB4 following 
chemotherapy due to an increase in necrotic tissue volume. 
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1he experiment showed that the Timepix detector can be 
used effectively for autoradiography in TAT to provide high
resolution images. Development of a fine collimator can 
improve the definition of the tumour boundaries and identify 
the geometrical origin of detected alpha particles within 
the sample. It was also shown that, in principle, the data 
acquired by Timepix can be used for compartmental analysis 
to quantify the uptake of radioimmunoconjugate in targeted 
alpha therapy. 
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Chapter 6. Application of Timepix in Autoradiography for TAT 

6.3 Investigation of Cr-51 Uptake by A549 Cells using Timepix 

6.3.1 Chromium (Cr-51) 

Chromium-51 with a half-life of 27.7 days decays by electron capture (Figure 6.1) to reach the 

stable state ofVanadium-5 I (Lederer, Hollander et al. 1967). The main radiation emissions are 

0.320 MeV y-rays (9.9%), 0.005 MeV X-rays (22%) and Auger Electrons (energies between 

10 eV and 0.004 MeV; 68%) (Kassis, Sastry et al. 1985). Since Cr-51 can penetrate into cells 

and bind to cellular proteins, it has been used in cell biology for precise and accurate 

quantification of tumour response to chemotherapy and immunotherapy (i.e. to assess 

cytotoxicity of a treatment) (Pearson, Hodes et al. 1969; Kassis, Sastry et al. 1985; Micheau, 

Salary et al. 1997; Santin, Hermonat et al. 2000; Yang and Haluska 2004; Fehniger, Cai et al. 

2007). The amount of radioactivity in the supernatant (i.e. the liquid lying above the cells) 

indicates the cytotoxicity of therapy, as Cr-51 will only be released as a result of cell lysis 

following the treatment (Biomedicals 2016). This is usually monitored using a gamma counter 

such as Geiger- Muller (GM) counter and well-type scintillation counter (Pearson, Hodes et al. 

1969; Karimi, Lee et al. 2014). 
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Figure 6.1. Cr-51 decay scheme, courtesy of (Lederer, Hollander et al. 1967). 
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Chapter 6. Application of Timepix in Autoradiography for TAT 

In this experiment, uptake of Cr-51 (purchased through PerkinElmer, Inc., USA) by A549 cells 

was investigated. The effects of different factors such as the number of seeded cells and 

changes in pH level of the medium on the uptake were evaluated using the Timepix detector. 

6.3.2 Preparation of Autoradiography Sample of A549 Cells with Cr-51 

For the in vitro radiolabelling, 5 x 105 of A549 cells were seeded in a 96-well plate (Corning, 

USA) (the diameter is 6.4 mm). Cells were labelled with 1.1 Bq/cell liquid 51 Cr (sodium 

chromate) which was added to 100 µ!media. Cells were incubated at 37° C for an hour to allow 

Cr-51 uptake. The cells were then washed three times with PBS to remove any unincorporated 

Cr-51 and a varying number of labelled cells (105, 2 x 105, 4 x 105, 6 x 105, 8 x 105, 106 cells) 

was spotted onto a microscopic slide and dried. The slides were placed in front the Timepix 

detector and the emitted photons were counted (see details below) to evaluate the relationship 

between the cell number and Cr-51 uptake. 

As Cr-51 uptake is affected by the pH level, the second part of this study investigated the effects 

of changes in the pH level on Cr-51 uptake. The pH of media used for Cr-51 labelling is 7.5. 

Hydrochloric acid was added to the media to create a more acidic solution (pH 6.5) and sodium 

hydroxide was added to the media to create a more neutral solution (pH 8.4). In triplicate, 

500,000 cells in 100 µl of media at pH of 6.5, 7.5 or 8.4 were incubated with 1.1 MBq Cr-51. 

After washing, cells were spotted onto glass slides, dried and photon emissions were detected 

using Timepix. 

6.3.3 Timepix Preparation 
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In order to investigate the uptake of Cr-51 by A549 cells, the slide containing the radio labelled 

A549 cells was placed directly in front of Timepix (covered face) to monitor photons emitted 

from the slide. TOT mode was chosen in SoPhy software along with a photon filter (i .e. the 

acquisition filter type) to detect photons emitted from the samples. Bias voltage of 5 V was 

applied to Timepix. Acquisition time was approximately 2 hours with 0.1 s for each frame. The 

resultant image was analysed using Matlab to identify the total nwnber of recorded counts 

which is proportional to the Cr-51 uptake. 

6.3.4 Results 

Figure 6.2 shows two images for 1000 and 1000,000 Cr-51 labelled cells, respectively. The 

photon counts are higher for 1000,000 cells which means a higher uptake of Cr-51 as expected 

for a larger number of cells. The images also show uniform uptakes of Cr-51 by cells in all 

samples with different cells number for a uniform spread of cells across the slide. 

Axb[-1 

, Figure 6.2. A and B: Cr-5 1 uptake of 1000 and 1000,000 A459 cells, respectively. 
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Chapter 6. Application of Timepix in Autoradiography for TAT 

For A549 cell numbers between 100,000 and 1,000,000, the photons counts as a function of 

the cell number with pH of 7.5 is presented in Figure 6.3 (Acquired counts per frame corrected 

for the activity and normalized to I 00,0000 cells). The figure shows a linear relationship 

between the number of cells and Cr-51 uptake confirming that Timepix response is linear and 

has a good sensitivity to detect differences in the uptake. 
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Figure 6.3 . Cr-51 photon counts per frame as a function of the cell number where the count is 
corrected for the activity and normalized to 1,000,000 cells. The error bars per frame 

(calculated for 256 * 256 pixels) were - 2%. 

Changing the pH of the medium can affect the total uptake of Cr-51 . Three levels of pH: 6.5 , 

7.5 and 8.4 were used and the acquired images show a uniform uptake ofCr-51 but also show 

, differences in the photon counts for these three pH levels (Figure 6.4). 
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,. pH 6.5 · 

Figure 6.4. Photon emission from Cr-51 labelled A549 cells seeded in media with different 
pH levels. 

The relationship between the number of counts and the pH level is presented in Figure 6.5. pH 

of 6.5 resulted in the highest uptake ofCr-51 , followed by 7.5 and 8.4 with the slope of (-0.26) . 
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Figure 6.5 . Relationship between the photon counts and the media pH level. The acquired 
counts are corrected for the activity and nonnalized to the media pH level of 7.5. The error 

bars per frame (calculated for 256 * 256 pixels) were ~ 0.023. 

164 



Chapter 6. Application of Timepix in Autoradiography for TAT 

6.4 Conclusion 

The investigations showed that Timepix radiation detector is a good device to quantitatively 

and assess cellular labelling by Th-227 and Cr-51 and is suitable for use in autoradiography 

and for estimation of uptake of Cr-51 by cells. This means that Timepix is a suitable detector 

to estimate radioisotope uptake. The results showed good linearity between the number of 

labelled cells and the photons detected by Timepix. 

The acquired images (autoradiography using both Th-227 and labelling using Cr-51) were of 

high resolution and showed differences in the uptake when changing measurement conditions 

(such as using chemotherapy prior to Th-227 for autoradiography and changing the number of 

cells or pH level of the media in labelling with Cr-51 ), demonstrating thus Timepix sensitivity 

to detect changes in the experimental parameters. 

Timepix provides an easy monitoring tool of the uptake and gives 2D images that can be used 

not only to quantify the uptake but also to examine the uniformity of the uptake across the 

sample. 
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Chapter 7 

Transmitted Alpha Particle Microdosimetry Design 
for TAT 

This chapter is based on the submitted manuscript number 5: 

Ruqaya AL Darwish, Alex Hugo Staudacher, Yanrui Li, Michael Paul Brown and Eva Bezak, 

Development of a Transmission Alpha Particle Microdosimetry Technique using A549 cells 

and a Ra-223 source for Targeted Alpha Therapy. 

7.1 Motivation 

Microdosimetry of alpha particles for targeted alpha therapy is believed to be complex due to 

a number of factors such as alpha particle energy and range in tissue. This chapter describes a 

design for transmitted alpha particle microdosimetry for TAT using A549 cells and a Ra-223 

source. 
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Prior to microdosimetry experiment, radiation sensitivity of A549 cell line was determined 

using clonogenic assay. 

7.2 Clonogenic Assay 

The human lung carcinoma A549 cell line was cultured in RPMI-1640 (Sigma-Aldrich, St. 

Louis, MO, USA) medium with 5% foetal bovine serum (Bovogen Biologicals, Keilor East, 

Victoria, Australia). 

Clonogenic assay is an in vitro tool to study the radiation effects by studying the ability of a 

cell to grow into a colony of at least 50 cells (Munshi, Hobbs et al. 2005; Franken, Rodermond 

et al. 2006). 

For clonogenic assay study, A549 cells were seeded at 1.5 x 106 cells/flask in 25 cm2 tissue 

culture flasks (T-75 flask (Coming, USA)). To irradiate cells, the flasks were placed in a wax 

mould to generate full scatter conditions and then irradiated at room temperature using a Varian 

21EX Linear Accelerator (Varian, Palo Alto, CA, USA) at the Radiation Oncology 

Department, Royal Adelaide Hospital, South Australia, using a 6 MV photon beam, 20 x 20 

cm2 field size, with the clinical nominal dose rate of 3 Gy/min at I 00 cm from the beam focal 

spot. The flasks were positioned at the depth of maximum dose (i.e. on top of 1.5 cm solid 

water) and were irradiated from below (i.e. gantry at 180°) so as to not irradiate through the air 

gap in the flask. Cells were irradiated with 2, 4, 6, 8 and I 0 Gy radiation doses. An unirradiated 

(sham) flask with cells was used as a control. Accelerator radiation output, calibrated using 

IAEA TRS 398 protocol (Agency 2000) was checked with Daily QA 3™ device (Sun Nuclear, 

USA) prior to irradiation. 
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After irradiation, the cells were collected, counted, diluted to the desired seeding concentration; 

250, 500, 500, 750, 1000, 2000 cells (for each irradiation dose 0, 2, 4, 6, 8 and 10, respectively) 

and replated (in triplicate) in 6 well plates. Dishes were placed in an incubator until cells in the 

control dishes (unirradiated dishes) grow adequate number of colonies taking 12 - 14 days. 

Cells were then washed with phosphate-buffered saline (PBS), fixed and stained using crystal 

violet solution (6.0% glutaraldehyde, 0.5% crystal violet, PBS) for 30 minutes, followed by 

washing with water. Colonies were then counted manually and the plating efficiency of the 

control (from sham) and surviving fraction were detennined using equations (7.1) and (7.2), 

respectively (Munshi, Hobbs et al. 2005; Franken, Rodermond et al. 2006). 

Pl . Eff' . (PE) number of colonies framed lOOOJ. atmg 1c1ency = x 10 
number of cell seeded 

number of colonies framed after treatment 
Surviving Fraction = 

number of cell seeded x PE 

(7.1) 

(7.2) 

An example of colonies fonned for sham-unirradiated (control) cells and for cells irradiated 

with 4 Gy photon dose is shown in Figure 7.1. 
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Unirradiated 
(control colonies) 
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Figure 7.1. A549 cell colonies from unirradiated (control colonies) and 4 Gy irradiated cells. 

7.3 Statement of Contribution 

7.3.1 Conception 

The first concept of investigation of targeted alpha therapy dosimetry was suggested by Eva 

Bezak. The use of Timepix for this application was suggested by Ruqaya Al Darwish. The use 

of A549 cells is suggested by Alex Staudacher. The final design of the transmission alpha 

particle microdosimetry has evolved through a number of development stages that have been 

tested by Ruqaya Al Darwish, Alex Staudacher and Eva Bezak. 

170 



Chapter 7. Transmitted a-Particle Microdosimetry Design for TAT 

7.3.2 Realisation 

The experimental works were done by Ruqaya Al Darwish with the help of Alex Staudacher 

and Yanrui Li in practical biological parts. Data collection and the analysis was performed by 

Ruqaya AL Darwish. 

7.3.3 Documentation 

This paper was primarily written by Ruqaya Al Darwish. Editing was conducted by Eva Bezak 

and Alex Staudacher. Michael Brown provided advice on biological content. 
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Purpose: In targeted radionuclide therapy, regional tumors are targeted with radionuclides delivering 
therapeutic radiation doses. Targeted alpha therapy (TAT) is of particular interest due to its ability 
to deliver alpha particles of high linear energy transfer within the confines of the tumor. However, 
there is a lack of data related to alpha particle distribution in TAT. These data are required to more 
accurately estimate the absorbed dose on a cellular level. As a result, there is a need for a dosimeter 
that can estimate, or better yet determine the absorbed dose deposited by alpha particles in cells. In 
this study, as an initial step, the authors present a transmission dosimetry design for alpha particles 
using A549 lung carcinoma cells , an external alpha particle emitting source (radium 223; Ra-223) 
and a Timepix pixelated semiconductor detector. 
Methods: The dose delivery to the A549 lung carcinoma cell line from a Ra-223 source, considered 
to be an attractive radionuclide for alpha therapy, was investigated in the current work. A549 cells 
were either unirradiated (control) or irradiated for l/2, I, 2, or 3 h with alpha particles emitted from 
a Ra-223 source positioned below a monolayer of A549 cells. The Tirnepix detector was used to 
determine the number of transmitted alpha particles passing through the A549 cells and DNA double 
strand breaks (DSBs) in the form of y-H2AX foci were examined by fluorescence microscopy. The 
number of transmitted alpha particles was correlated with the observed DNA DSBs and the delivered 
radiation dose was estimated. Additionally, the dose deposited was calculated using Monte Carlo 
code SRIM. 
Results: Approximately 20% of alpha particles were transmitted and detected by Timepix. The 
frequency and number of y-H2AX foci increased significantly following alpha particle irradiation 
as compared to unirradiated controls. The equivalent dose delivered to A549 cells was estimated 
to be approximately 0.66, 1.32, 2.53, and 3.96 Gy after l/2, I, 2, and 3 h irradiation, respectively, 
considering a relative biological effectiveness of alpha particles of 5.5. 
Conclusions: The study confirmed that the Timepix detector can be used for transmission alpha par
ticle dosimetry. If cross-cabbrated using biological dosimetry, this method will give a good indication 
of the biological effects of alpha particles without the need for repeated biological dosimetry which 
is costly, time consuming, and not readily available.© 2016 American Association of Physicists in 
Medicine. [hltp://dx .doi .org/10.1118/1.4965805] 
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1. INTRODUCTION 

Alpha particles, compared to x-rays and electrons, are consid
ered to have 100-1000 times higher linear energy transfer 
(LET) and have a much shorter range (50-100 µm in tis
sue).1·2 High LET radiation is much more damaging biolog
ically compared to low LET radiation, resulting in higher 
relative biological effectiveness (RBE) of alpha particles rela
tive to x-rays for the same absorbed dose. The RBE of alpha 
particles is generally considered to be between 10 and 20 for 
radiation protection purposes,3- 5 compared to 1 for x-rays. 
This is, however, likely to vary depending on the cell type, 
radiation dose, and biological endpoint; for example, the RBE 
for targeted therapies with alpha particles has been reported to 
be between 2 and 10.1.6-9 

Evidence from a number of preclinical and clinical studies 
suggests that alpha particle emitting radionuclides can be used 
in cancer radiation therapy as they cause multiple irreparable 
DNA double-strand breaks, resulting in cell death. 1·2·10 In tar
geted alpha therapy (TAT), tumor cells are targeted with alpha 
particle emitting radionuclides, and only several alpha particle 
traversals are required to kill a tumor cell compared to several 
hundred or thousands required for low LET electrons or x
rays. 8· 11 The short path length of emitted alpha particles means 
that the radiation dose is confined to a small volume, poten
tially limiting off-target effects, and the absence of oxygen
dependence for tumor cytotoxicity with high LET radiation 
means that the treatment will not encounter tumor radioresis
tance associated with hypoxia as observed with conventional 
radiotherapy. 1·2·12- 14 For alpha particles to deliver dose to a 
tumor, an alpha emitting radionuclide is chelated to a specific 
carrier molecule (typically a protein or antibody) that specif
ically targets the tumor cells, resulting in the tumor being 
traversed by alpha particles and receiving a radiation dose.13 

Although the use of TAT is gradually advancing, to our knowl
edge there are currently only two methods to detect alpha emis
sions and to determine biodistribution : the a-camera (which 
is an autoradiography system using scintillating technique 
and optical registration by a charge-coupled device) 15- 17 and 
iQID camera (which combines a scintillator and an image 
intensifier) .17·18 However, limited measurements, using these 
techniques for cellular uptake, have been applied to dosimetry 
to date. As a result, there is an ongoing need for real-time 
dosimetry of alpha particles to determine the radiation dose 
delivered to the tumor from TAT.2 Radionuclide dosimetry is 
difficult and complex to accurately determine due to a number 
of factors including the physical properties of the radionuclide 
including radiation type and half-life, and biological transit 
time (uptake and clearance). Additionally on a cellular level, 
the dose can be quite heterogeneous depending on the spatial 
distribution of the radioisotope in the tumor.19 

The T~mepix radiation detector20 has the ability to iden
tify individual radiation particles including photons (x-rays or 
gamma rays) , electrons, and alpha particles.21 -26 Our previous 
study confirmed that Timepix could be used to detect and 
quantify spatial distribution of alpha particles, electrons, and 
x-rays resulting from thorium-227 (Th-227) decay in tumor 
sections from mice treated with a Th-227-labeled antibody.26 
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These features along with the ability of Timepix to measure 
deposited energy suggest that Timepix could be used to esti
mate absorbed dose in targeted alpha therapy. 

In this paper, as an initial step, we present a transmission 
dosimetry design for alpha particles using A549 lung carci
noma cells, an external Ra-223 source, and a Timepix detector. 
Using this setup, several issues mentioned above related to the 
radioisotope kinetics and uneven distribution can be avoided 
and the practicality ofTimepix for alpha particle dosimetry can 
be evaluated. 

In this work, the number of transmitted alpha particles, de
tected by Timepix for several irradiation times, was correlated 
with the observed DNA DSBs, in the form of y-H2AX foci, 
which is typically used for biological dosimetry. 

2. MATERIALS AND METHODS 

2.A. Timepix 

Timepix is a semiconductor radiation detector developed 
by the European Organization for Nuclear Research (CERN). 
Taking advantage of the complementary metal-oxide-semi
conductor (CMOS) technology, the detector consists of a semi
conductor layer, divided into an array of pixels, which is bump
bonded to an integrated electronics layer (Fig. I ) . Timepix 
used in the current work was purchased from Amsterdam 
Scientific Instruments, Netherlands and consists of a silicon 
detector with 256 x 256 pixels (approximately 1.41 cm2

), with 
a 55 x 55 µm2 pixel size, making it suitable for dosimetry 
measurements. Each pixel is connected to its own charge
sensitive preamplifier, a discriminator, and a counter. 20•27 This 
sophisticated microdosimeter can be used in different research 
fields such as space physics, nuclear physics, radiotherapy 
physics, imaging, and radiation protection. 

In our system, a fine brass collimator (50 µm thick) was 
positioned in front of Timepix with <50 µm diameter holes 
drilled with a laser system as shown in Fig. 2. The collimator 
was manufactured by OptoFab (Macquarie University, NSW) 
and is required essentially for autoradiography purposes. As 
the collimator was carefully aligned with Timepix, it is fixed 
in place permanently (3 mm away from the sensitive detector 
layer). A correction factor for collimator alpha particle absorp
tion was measured previously in order to use this detector 
assembly for dosimetry purposes as well. 

nip-chip 
bump bonding 

CMOS pixel 
read-out chip 

semiconductor 
sensor chip 

FIG. I . Tirnepix structure, courtesy of (Ref. 28). 
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FIG. 2. Side (A) and front (B) view of Timepix with the brass collimator. The top right image shows the laser-drilled microcollimator structure details. 

2.8. Ra-223 

Ra-223 is an alpha emitter produced from actinium-227 
decay 

227 Ac(T112 = 21.7 y) ----) {T + 227Th(T1 12 = 18.7 d) 

----) a+ 223Ra(T112 = ll.43d). (1 ) 

Ra-223 has a half-life of 11.43 days, and its decay chain 
results in the emission of additional alpha particles, beta parti
cles, and y-rays until reaching a stable isotope oflead-207. 29·30 

The mean energies of alpha particles produced in this decay 
chain are presented in Fig. 3. Ra-223 used in the current work 
was a product of thorium-227 decay, which was purchased 
through the National Isotope Development Centre, Depart
ment of Energy (USA). 

Ra-223 is an attractive isotope to deliver high LET radiation 
to a tumor because it has a suitable half-life, and delivers 
multiple alpha particles from the first three nuclides in the 
decay chain which are emitted almost instantaneously, and 
contribute to the radiation dose.29·30 Indeed, Ra-223 is being 
used to effectively treat castration-resistant prostate cancer 
patients with bone metastases.31 

2.C. A549 cell line 

The human lung carcinoma A549 cells have a diameter of 
approximately 12.5 µm. A549 was cultured in RPMI-1640 

(Sigma-Aldrich, USA) with 5% foetal bovine serum (Bovogen 
Biologicals, Australia). The relative biological effectiveness of 
alpha particles for this cell line has been estimated to be 5.5 
for 10% survival using clonogenic assays, nuclei staining, and 
gene expression.7 

2.C.1. Irradiation and cell survival assay 

Initially, to evaluate the radiation sensitivity of the cell line, 
the cell survival after irradiation with x-rays and alpha particles 
was obtained in the current work using the MIT assay. 33-35 For 
photon irradiation, A549 cells in 75 cm2 flasks were placed 
in a wax mould to generate full scatter conditions and then 
irradiated at room temperature using a Varian 21EX Linear 
Accelerator (Varian, Palo Alto, CA, USA) at the Radiation On
cology Department, Royal Adelaide Hospital, South Australia, 
using a 6 MV photon beam, 20 x 20 cm2 field size, with the 
clinical nominal dose rate of 3 Gy/min at 100 cm from the 
beam focal spot. The flasks were positioned at the depth of 
maximum dose (i .e., on top of 1.5 cm solid water) and were 
irradiated from below (i.e., gantry at 180°) so as to not irradiate 
through the air gap in the flask. Cells were irradiated with 2, 4, 
6, 8, and 10 Gy radiation doses. An unirradiated (sham) flask 
with cells was used as a control. Accelerator radiation output, 
calibrated using IAEA TRS 398 protocol ,36 was checked with 
Daily QA 3™ device (Sun Nuclear, USA) prior to radiation 
treatments. 

Pb-211 
36.I ru 

Ra-223 I a I Rn-219 a Po-215 I a )I 
11.43 d ) 3.98 s ---~ 1.78 ms . . 

...._ ____ 5.65 MeV '------' 6.75 MeV ..__ ___ ___. 7. 53 MeV ..___...,..... _ ___. 

Po-2 11 
0.5 16 s 

a 7.59 MeV 

Pb-207 
Stable 

Fm. 3. 223Ra decay scheme (Refs. 2, 8, 30, and 32). 
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For testing cell viability after irradiation with alpha parti
cles, approximately 3 x 104 cells were seeded in a single 
well of 96-well transwell in 30 µ1 of media. The cells were 
then irradiated from above with an evaporated Ra-223 source 
(18 .2 kBq) for times varying between 5 and 60 min. An 
unirradiated well with cells was used as a control. 

After irradiation, the cells were collected, seeded at 104 

cells/well in a 96-well plate and kept at 37 °C with 5% C02. 

Three days later, the media were removed, and replaced with 
fresh media containing 0.4 mg/ml thiazolyl blue tetrazolium 
bromide (Sigma-Aldrich) and incubated for 2 h. The superna
tant was removed and the resulting purple crystals dissolved in 
isopropanol. The absorbance was read at 570 nm using a FLU
Ostar Omega microplate reader (BMG Labtech, Germany). 
The absorbance is directly proportional to the number of viable 
cells,34 and the absorbance value was normalized to percentage 
of viable cells remaining. 

2.D. Experimental setup for transmission alpha 
particle dosimetry 

In transmission alpha dosimetry, alpha particles that have 
passed through a layer of interest, cells for example, are 
measured. However, due to the short range of alpha particles 
(50-100 µmin tissue), they can be absorbed by the source 
itself, the cells, the cell medium, and/or the support material on 
which the cells grow, making the transmission dosimetry quite 
challenging. The approaches used in the current study were 
aimed at minimising the noncellular sources of absorption to 
ensure that some alpha particles traversed the measuring setup 
and reached the Timepix detector. 

The HTS Transwell@ 96 well system (Corning, USA), 
consisting of two compartments, was used to develop a method 
for tracking alpha particles through a cell monolayer. This 
system comprises of two compartments (Fig. 4), with liquid 

Ra-223 evaporated in the lower compartment [the activity 
was measured with a germanium detector (GR2519; Can
berra Industries, Meriden, CT, USA)], to avoid alpha particle 
selfabsorption inside the liquid. The measured activity of 5 
kBq was uniformly distributed, as confirmed by the Timepix 
detector. The second compartment consists of a flat bottom 
polycarbonate membrane (10 µm thick) where cells are plated. 
The membrane surface area is 0.143 cm2 and contains pores 
of 3 µm diameter. The distance between the first and the 
inserted compartment was 1 mm. It is sufficiently thin to allow 
alpha particles to penetrate through and hit the cells. Fifteen 
thousand A549 cells were seeded in the upper compartment 
and allowed to adhere overnight before exposure to alpha 
particles. The following day, the medium was removed and 
only a minimal amount of fresh medium was added to the 
cells to minimize absorption of alpha particles in the medium. 
The upper transwell compartment was then inserted into the 
lower compartment containing the evaporated Ra-223. The 
transwell system was positioned under the Timepix detector, 
with the plastic cover removed and the brass collimator in 
place. Transmitted alpha particles were detected for l/2, 1, 2, or 
3 h irradiation times. These times were used as the experiments 
were limited by the time that the cells could be left at ambient 
temperature and C02 levels. Three transwell systems were 
sham irradiated and used as controls. 

Timepix was operated using Software for Physics (So
Phy) software, developed by the device manufacturer. Reading 
was done in time-over-threshold (TOT) mode which allows 
Timepix to measure the energy deposited in each pixel for 
the events between the set thresholds . An alpha particle filter 
was applied to detect and accept alpha particles only if the 
detected signals met the acquisition requirements for shape 
(round cluster) and size (7 x7 pixels or more).37 Reading using 
this setup was done without cells (i.e., the upper compartment) 
first to measure the entrance activity and then with the cell 

Time pix 

.... •• .i ••• •••----~Collimator 
Upper Compartment 

(Single Cell Layer and Medium)---~ ++-r----~ Alpha Particles 

t--:--"*1-1---_,. Medium 
Lower Compartment------11 ,~~,,,ft,~r;---~ A549 Cells 

(Evaporated Ra-223 Radiation Source) ,....,.., ____ _ 

FJG. 4. Schematic diagram of the experimental setup showing the transwell system with two compartments: the lower compartment with the evaporated Ra-223 
source and the upper compartment with seeded cells (cell diameter: 12.5 µm) and a thjn layer of medium (approximately 45 µm height). Transmitted alpha 
particles are detected by Timepix. 
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compartment in place to measure the exit/transmitted activity. 
The frame acquisition time of 0.1 s was selected during the 
total acquisition times of I/2, 1, 2, and 3 h. 

Due to the brass collimator, a correction factor for alpha 
particle absorption in the collimator was added to the collected 
data. The collimator correction factor, CF, had been deter
mined previously, using a Ra-223 source and defined as the 
ratio of the total number of hits (i.e., detected alpha particles) 
with, Nc(t), and without, N0(t), the collimator in place for the 
same irradiation time, 

CF= Nc(t). 
No(t) 

The collimator correction factor, for the Ra-223 source, was 
determined to be 0.96. To correct for the collimator absorption, 
the detected hits were multiplied by 1 /CF= 1.04. 

2.E. Dose assessment 

Theoretically, considering the mean energy of Ra-223 and 
its daughters to be 6.735 MeV, the energy absorbed, Eab, 
in the cell layer and the medium can be crudely estimated 
for I/2, 1, 2, and 3 h irradiation times using the following 
equation: 

Eab(MeV) = (Aen-Aex)Et, (2) 

where Aen is the measured entrance activity (Bq) of the Ra-
223 source and Aex is the measured exit activity (Bq). E is the 
mean energy (Me V) of all alpha particles emitted in the decay 
chain and t is the exposure time. As the mass of the cell and 
media layers, m, can be calculated from the known volume 
and density, the absorbed dose, Dab, can be calculated as 
well as 

Eab 
Dab(Gy) = - . (3) 

m 
Additionally, simulation of alpha particle energy loss while 
penetrating the cells and the media was also performed us-

Depth vs. Y-Axis 

Air, I mm 

Not to scale 

ing Monte Carlo code SRIM (Stopping and Range of Ions 
in Matter), version 2008.38-4° SRIM can simulate a semi
infinite target (i .e., an infinite layer of a given thickness) 
made of compound materials and up to eight layers.38 In the 
simulation, a thickness of 57.3 µm for the cell and media 
layers (considered as water with density of 1 g/cm3) and a 
1 mm air gap (0.001 25 g/cm3 density) was included between 
the source of alpha particles (106 particles) with energy of 
6.735 MeV (i.e., only a monoenergetic point source was 
considered). The air gap represents the distance between 
the lower and upper compartments of the transwell system. 
Five runs of one million alpha particles were performed. The 
simulation setup with transmitted alpha particles is shown in 
Fig. 5. 

Absorbed dose to cells and media, and cells alone can be 
estimated using Eq. (3) and from SRIM simulations. When the 
RBE value for alpha particles is applied, the equivalent dose 
to A549 cells can be estimated and correlated with biological 
damage as described above. 

2.F. Biological dosimetry with y-H2AX assay 

To verify the design and to correlate the number of particles 
absorbed in the cell layer (based on the number of transmitted 
alpha particles), a biological dosimetry41

•
42 (y-H2AX) was 

also used. y-H2AX is a biomarker for DNA DSBs as any DNA 
DSB is followed by the phosphorylation of the histone H2AX 
at the break site.43•

44 

For y-H2AX staining, the transwell membrane was cut 
from the transwell using a scalpel, and cells were fixed with 
10% neutral-buffered formalin for 10 min at room temperature. 
After washing with PBS, cells were blocked and permeabilized 
using 5% bovine serum albumin (BSA)/0.2% Triton-X in PBS 
for 30 min at room temperature. Cells were washed three times 
with PBS and incubated overnight at 4 °C with 1 µg/ml mouse 
antihuman anti-phospho-histone H2AX (ser139) (clone 
JBW301, Millipore). Cells were washed again three times in 

Water, 57.3 µm 

Air 

20% of ions 
transmitted 

FIG. 5. SRIM simulation of transmitted alpha particles with 1 mm air gap between the source and cells and media (represented as water with a mass of 
0.816 mg) . Mass was calculated using the irradiated volume dimensions of 0.816 mm3). 

Medical Physics, Vol. 43, No.11, November 2016 



6150 AL Darwish et at.: Development of a transmission alpha particle dosimetry technique 6150 

PBS and incubated with 4 µg/ml goat anti-mouse Alexa488 
for 1 hat 37 °C. After washing with PBS, cell nuclei were coun
terstained with 1 µg / ml DAPI, cover-slipped, and examined 
using an Olympus IX71 microscope with CellSens Standard 
software (version 1.6; Olympus, USA). After irradiation and 
cell staining, ten randomly selected microscope images per 
well (at 40x magnification) were taken. Two images were 
taken for each field: one of DAPI stained cells (blue) and one 
of the y-H2AX foci (green). The two images were combined 
in ImageJ (version 1.48V)45 arid the number of cells as well as 
the number of y-H2AX foci per cell were counted manually. 
Cells that had seven or more foci were assigned to one group. 

3. RESULTS AND DISCUSSION 

3.A. MTT assay result 

From the absorbance value, which is proportional to the 
number of cells with metabolic activity, the relationship be
tween the dose and the percentage of viable A549 cells follow
ing irradiation with 6 MV photons and Ra-223 alpha particles 
was determined (Fig. 6). Previously published studies have 
shown similar relative cell viability trends after cellular irradi
ation to gamma rays and alpha particles.35 The data show that 
the percentage of viable cells is lower for the same dose of 
alpha particle irradiation as compared to the x-ray irradiation. 

3.8. Tirnepix results 

About 80% of alpha particles emitted from Ra-223 decay 
were stopped in the cell and medium layer. The particles 
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FIG. 6. The percentage of viable A549 cells following irradiation with 6 MV 
photons and Ra-223 alpha particles, using an MIT assay. The relative errors 
were calculated from standard deviations of the mean obtained from triplicate 
samples. 

transmitted through (~20%) hit the pixelated silicon surface 
of Timepix and deposited energy (i.e., caused production of 
charge) in an area larger than the size of one pixel; i.e., more 
than one pixel was involved in the energy deposition. This is 
known as charge sharing effect.25 The resulting image of a 
single alpha particle hit is a charge cluster covering around 
7 x 7 pixels. The total number of transmitted alpha particles 
acquired with Timepix during irradiation of A549 cells with 
Ra-223 for 1 and 3 his shown in Fig. 7(a) . The corresponding 
particle energy spectrum (in channel numbers) is shown in 

Detected Transmitted Alpha Particles in 1 and 3 hours 

(a) Alpha 
Particle Image 
using Timepix 

(b) Energy 
Spectrum 
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F1G. 7. (a) The total number of transmitted alpha particles acquired with Timepix during irradiation of A549 cells with Ra-223 for I and 3 h, (b) the energy 
spectrum of these particles. 
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A. 1 hour irradiation 8.3 hour irradiation 

FIG. 8. Microscopic/fluorescence image of part of cell samples after 1 h (A) and 3 h (B) irradiation. y-H2AX foci appearing as green dots (40x magnification). 

Fig. 7(b). The total number of alpha particles hitting the de
tector ranged from 1433, 3077, 4903, and 8520 (corresponding 
to 1;2, 1, 2, and 3 h irradiation times). The readings were then 
corrected for absorption in the collimator, using a l/CF value 
of 1.04. 

3.C. y-H2AX assay results 

Figure 8 shows an example of observed y-H2AX foci 
following irradiation, confirming the presence of DNA dam
age. The distribution of foci numbers observed in irradiated 
cells compared to control cells is shown in Fig. 9. For example, 
the 1 h untreated control cells had only a small number of 
cells with DSB breaks (i.e., 90% of these cells had no foci 
present). The 3 h untreated control cells have more DSBs 
present compared to 1 h control, and is most likely due to the 
extended period of time that the untreated cells were outside 
the incubator at room temperature without C02-buffering. 
Nevertheless, the cells irradiated for 3 h contained significantly 
more cells with DSBs than the corresponding control, with 
almost all cells having six or more y-H2AX foci (p-value of 

0.019 for 1/2 h irradiation, 0.009 for 1 h irndiation, 0.049 
for 2 h irradiation and p-value of 0.0008 for 3 h irradiation 
compared to their respective controls). Comparisons were 
done using unpaired t-test in GraphPad Prism 6 software 
(GraphPad Software, Inc., CA, USA). 

3.D. Dose assessment and SRIM calculation 

Based on the SRIM simulation, the energy deposited in the 
cell layer only and in the cell and media layer was -812 000 
and - 5 960 000 MeV, respectively (for 106 particles). The 
corresponding absorbed doses for l/2, 1, 2, and 3 h irradiation 
times were determined using both the SRIM results as well as 
Eq. (3) and are shown in Table I. 

The standard errors for the simulations were - 5% and were 
determined from the multiple simulation runs. The standard 
error in dose using the detected activity was - 10%. There is 
a good agreement between the simulation and the calculation 
using the measured activities . 

The equivalent dose to the A549 cells resulting from alpha 
particle irradiation is a combination of the estimated absorbed 
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indicate a significant difference with p-value of 0.019 for l/2 h irradiation, 0.009 for 1 h irradiation, 0.049 for 2 h irradiation and p-value of 0.0008 for 3 h 
irradiation compared to their respective controls) . 
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TABLE I. Estimated absorbed dose, Dab to the cell layer only and to the cell 
and media layer using SRIM simulation and Eq. (3) . 

Analytical calculation 

Eq. (3) SRIM calculation 

Irradiation Dab cells and media D ab cells and media Dab cell layer 
time (h) (Gy) (Gy) (Gy) 

1/2 1.00 ± 0.10 0.89 ± 0.09 0.12 ± 0.01 

I 1.96 ± 0.20 1.73 ± 0.09 0.24 ± 0.012 

2 3.85 ± 0.39 3.41 ± 0.34 0.46 ± 0.05 

3 5.98 ± 0.60 5.29 ± 0.26 0.72 ± 0.035 

(physical) dose and the radiation weighting factor which re
flects the RBE of alpha particles. Depending on the RBE, the 
effective doses delivered to the cell layer were estimated to be 
0.66, 1.32, 2.53, and 3.96 Gy after 1/2, 1, 2, and 3 h irradiation, 
respectively using an RBE of 5.5. 

3.E. Cell damage and alpha particle absorbed dose 

The relationship between the percentage of cells contain
ing y-H2AX foci due to alpha particle irradiation and envi
ronmental conditions (expressed as the percentage of cells 
containing one or more y-H2AX foci) and the absorbed dose 
is shown in Fig. 10, using SRIM calculations of absorbed 
dose. 

Two microscopic images of a small part of the membranes 
with the seeded cells after 1 and 3 h irradiation times are shown 
in Fig. 8. Cells with multiple y-H2AX foci are more dominant 
after 3 h irradiation. Additionally, the foci are larger and more 
intense following the 3 h irradiation compared to 1 h irradiation 
and both control samples. Figure I l presents the pan-nuclear 
stained cells for irradiated samples compared to their controls 
for the same time. 
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FIG. 10. Relationship between the absorbed dose to the cell layer and the 
media and the % of cell damage ascertained from biological dosimetry 
(induced by radiation and the environmental factors) after 1/2, I , 2, and 3 h 
irradiation times. 
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F1G. 11. Percentage pan-nuclear stained cells for different irradiation times 
with their corresponding controls "unirradiated" for the same time. 

4. CONCLUSION 

The Timepix detector can be used for transmission alpha 
particle dosimetry. If cross-calibrated using biological dosim
etry, this method will give a good indication of the biological 
effects without the need for repeated biological dosimetry that 
is costly, time consuming, and not readily available. How
ever, we expect that different cell lines will have different 
radiation responses resulting in differences in the number and 
intensity of y-H2AX foci; thus having some estimate of these 
differences, as we have provided here, is essential. In future 
studies, we will extend this concept to measuring alpha parti
cles emitted from radio-labeled tumor sections using Timepix 
as a real time targeted alpha therapy dosimeter. 
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7.4 Clonogenic Assay Result 

From the number of viable colonies grown, the survival curve for the A549 cell line following 

irradiation with 6 MV photons was determined (Figure 7.2). The LDso (radiation dose at which 

50% of the cells survived) was found to be close to 2 Gy, which is similar to previously 

published studies (Wera, Borlon et al. 2012; Riquier, Wera et al. 2013). This result confirmed 

the cell line is radiation sensitive. It has been conducted that A549 cell line is a suitable 

candidate for experiments with a-particles presented in this chapter. 
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Figure 7.2. A549 cell survival curve following irradiation with 6 MY photons. The relative 
errors were calculated from standard deviations of the mean obtained from triplicate samples. 

7.5 Conclusion 

, The results confirmed the potential of this transmission alpha particle microdosimetry design 

using Timepix. Furthermore, using both the transmission microdosimetry system, calculated 
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using the biological dosimetry, can be used to estimate the biological effects in TAT without 

the need for repeated biological dosimetry that is costly, time consuming and not readily 

available. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusion 

Targeted alpha therapy is a type of radionuclide therapy where a suitable alpha emitter is 

attached to a cancer cell-targeting vehicle. Once at the cancer site, a-particles are emitted 

causing localized damage to cancer cells. Several factors should be considered when dealing 

with TAT, such as the short range of a-particles in tissue, the nature of a-particle distribution 

and selective uptake in the organs and also the physical and the biological half-life of the alpha 

emitter. 

Due to limited dosimetric data available, related to this type of radiation treatment, the 

objective of this project was to develop a semiconductor microdosimetry system to use in 

targeted alpha therapy. The main goals of this study were to develop techniques for estimation 

of the absorbed dose deposited by a-particles at a cellular level and determination of 

biodistribution of a radioisotope in the tumour. 
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In this work, a unique and novel semiconductor microdosimetry system was successfully 

designed, tested and verified, taking advantage of a novel pixelated semiconductor detector 

developed at CERN, known as Timepix. This groundbreaking microdosimetry system is 

expected to be used in development of new targeted alpha therapy radiopharmaceuticals, for 

both in vitro and in vivo studies. 

This development was preceded by thorough characterization of Timepix at low radiation doses 

(chapter 4). Basic performance characteristics, including linearity, reproducibility, energy 

dependence and sensitivity were determined in the absorbed dose range from µGy to mGy. The 

study confirmed superb sensitivity of Timepix to low radiation dose levels down to 0.1 µGy. 

It was demonstrated that Timepix pixel value increased linearly with delivered dose, as 

required for a dosimetric device. It was, however, based on the results of studying different 

kV/HVL X-ray beams, found to be energy dependent. This means that Timepix must be 

carefully calibrated for a given radiation type and its energy spectrum before it can be used for 

dosimetric measurements. A good medium term reproducibility of Timepix was observed. 

The work conducted in chapter 5 identified that while Timepix, if energy calibrated for a given 

bias voltage and a given radiation type, can be used for spectrometry of low energy y-rays, X

rays and alpha particles in the Me V range, its energy resolution is not excellent and is inferior 

to, for example, germanium detectors. This is possibly a consequence of the pixel sharing effect 

as well as of the very thin detector layer (300 µm). Deconvolution of y-ray and alpha particle 

energy spectra has also been also studied using Mylar foils positioned on top of the radiation 

source. The energy resolution was found to be 17% and 26% for Am-241 a-particles with a 

bias voltage of 5 and 100 V, respectively. For Ra-223 a-particles, the energy resolution found 

· to be 32%, using a bias voltage of 100 V. 
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Moreover, imaging applications of Timepix were briefly evaluated using several objects with 

internal submillimeter design (e.g. optical fibres). The image resolution was investigated using 

the edge response function (ERF) and I-125 seed and a Pu-238 source. The measured ERF 

based spatial resolution for imaging applications was detennined to be 0. 79 mm and 1.28 mm, 

respectively for y-rays and alpha particles respectively. These values result from the fact that 

the sources used were not point sources. Far superior resolution can be achieved with Timepix 

if a point source, for example a nano-focus X-ray tube with a focal spot size of less than l µm 

(Dammer, Frallicciardi et al. 2009), is used. 

First ever application ofTimepix to measure radioisotope biodistribution (i.e. autoradiography) 

was developed in Chapter 6, allowing semi-quantitative assessments of doses in tumour 

samples and visualization of a-activity spatial distribution in tumour samples. In this part of 

the project, tumor sections were taken from mice with Lewis lung (LL2) tumours that were 

treated with about 18 kBq of 227Th-labelled DAB4 murine monoclonal antibody, where DAB4 

binds to necrotic tumour cells. Some of the mice were also treated with chemotherapy prior to 

radiotherapy treatment in order to increase necrotic tissue volume and to increase tumour 

uptake of DAB4. Sections of tumours were then mounted 2 cm away from the Timepix 

detector. During the 14 h image acquisition, particles emitted from the tumour sections were 

collected. a-particles, X-rays and electron tracks were identified in the tumour autoradiography 

images. The results showed that the administration of chemotherapy prior to TAT radiation 

therapy increased Th-227-DAB4 uptake approximately 4 times compared to using TAT only. 

Finally, the carefully constructed experimental studies, conducted in this thesis, culminated in 

a design and development of a novel transmitted a-particle microdosimetry technique with 

potentially widespread in vitro and in vivo applications in dosimetry of targeted alpha particle 

therapy. The work has met with international interest and was presented in an invited 
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presentation on novel technologies in radiation oncology at the Medical Physics World 

Congress 2015, Toronto, Canada. 

In this work, this cell line was found to be sensitive to radiation and Dso found to be ~ 2 Gy for 

X-ray irradiation. The cell line was seeded in a HTS Transwell® and irradiated with a-particles 

emitted from below using an evaporated Ra-223 source for Yz, 1, 2 and 3 hours. Unirradiated 

cells were used as a control. The Transwell system was placed under Timepix to detect 

transmitted a-particles. In addition, after irradiation, the cells were processed and DNA double 

strand breaks (DSBs) in the fonn ofy-H2AX foci, were examined by fluorescence microscopy. 

The number of transmitted a-particles after Yz, 1, 2 or 3 hour irradiation times were measured 

and were correlated with the observed DNA DSBs. Moreover, the dose deposited at a cellular 

level was calculated using Monte Carlo code SRIM. The experiment found that 20% of a

particles were transmitted and detected by Timepix and the number of y-H2AX foci increased 

significantly following a-particle irradiation compared to unirradiated controls and was 

proportional to dose. The absorbed dose deposited by a-particles in the cells was estimated to 

be 0.12, 0.24, 0.46 and 0.72 Gy after Yz, 1, 2 and 3 h irradiation time, respectively, 

In conclusion, this thesis investigated the performance of Timepix as a detector, an imager and 

a spectrometer. The sensitivity ofTimepix to low doses, its linearity, reproducibility and energy 

dependence were also examined. Due to energy dependence observed, Timepix energy 

calibration is required for each radiation modality and energy range prior to use for dosimetric 

purposes. Timepix can also be used effectively for autoradiography in TAT to monitor the 

uptake and biodistribution of a radioisotope. Furthermore, this thesis presented a novel 

transmitted a-particle microdosimetry system. It has been suggested that both transmitted a

particle microdosimetry detector and a biological dosimetry can give a quantitative information 

on the biological effects of a-particles at a cellular level. 
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8.2 Future Work 

Future work, which could be done to further enhance the performance of Timepix 

microdosimetry system include: 

Firstly, further investigation of more parameters that could affect Timepix radiation 

performance as a detector and a spectrometer should be conducted. These include temperature 

dependence, parameters from the global DACs in the device (e.g. IKrum, baseline (FBK) and 

THL) and a bias voltage. 

Other applications of Timepix in medical physics could also be studied and developed; for 

example measurement of neutron doses received by a patient during high megavoltage (above 

I 0 MV) radiotherapy. 

Another area for further study relates to the transmission of a-particle microdosimetry system. 

Further investigation on the same cell line and other cell lines can be perfonned using different 

radioactive sources. Furthermore, correlation between the events detected by Timepix and the 

y-H2AX foci on a cell by cell basis could be studied. Ideally, it would be useful to image the 

cell layer with Timepix and a nano-focus X-ray tube, then irradiate the sample with an alpha

emitter. The X-ray image of individual cells and the alpha-particle hits image could then be 

correlated to identify the number of alpha particle traversals through individual cells. 

Finally, future applications of this system may include modelling of the system using Geant4 

to predict and assist with interpretation of experimental results. 
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Appendix 

SRIM Calculation 

SRIM is a Monte Carlo code, with its name abbreviated fromStopping and Ranges of Ions in 

Matter. In this work, version 2008 was used (Ziegler; Stoller, Toloczko et al. 2013; Hofsass, 

Zhang et al. 2014) SRIM can simulate a target as a semi-infinite layer of a given thickness. Up 

to eight layers can be simulated (Ziegler). Each layer can be made of compound materials, 

using SRIM libraries. 

SRIM simulation in this work was performed to simulate a-particle energy loss while 

penetrating cells and media. The cells and the media were considered as water (density of 1 

g/cm3) with a thickness of 57 .3 µm and simulated as a single layer. The thickness was adjusted 

via repeated simulations to get~ 20% a-particles transmission, that was measured using the 

Timepix radiation detector with and without the cells and the media. In the simulation, 1 mm 

air gap (0.00125 g/cm3) density was placed between the a-particle source and the cells and 

media as shown in Figure A. 1. The a-particle source was simulated as a monoenergetic point 

191 



Appendix 

source with the energy of 6.735 MeV (1.e. the mean energy of a-particles emitted from Ra-

223) as shown in Figure A.2. The simulation was run five times using 106 a-particles. 

The results of a-particle energy loss in each layer can be found in the output file , called 

IONZ.txt file. Using the data in this file, the energy deposition in the cells can be calculated. 

The energy list for one run is attached as a table and the cells and media layer thickness ts 

highlighted. 

~ TRIM S<tup Window x 

(hblpWlndow) T e of TRIM calculation 
J..,..:=:. ...... ---------. DAMAGE Detaied c.lcUalion will ful Damage Cascades 

? AIAGS.,. ti Ion I 

? ToltlN.-ollono 

_!J R..--Seod 

10000 

Baaic Plata 

Compound D1 e11onary 
........ w AIOrii -W....0.leVJ ? 
........., 1$S1<>ttooot Dap Lall 5"' 

12.01 1.so· oo.o. 20 J 2 

15.99 21.0· 21.0: 28 3 2 

14.00 78.4· 78.4· 28 3 2 

9 18 39.94 0.46" 00.4 5 1 2 

1.J Output Disk Files 

.!JP" lonR.-

.!J P" 8- Ions 2J 0 ~~oak:.- =:;;:==:::::::::::r 

.!J i;;" Trammited fonoJRecols u .. TRIM·96 
,..;..---~....... ? ., SP<'te<edAlomt 2J r [DDS) 

Delals 
r.w--- 0 Speaol 'tX'IZ Fio" Increment (el/) ===== 

Figure A.1. SRIM simulation set up. 
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I 528. um 

Depth vs. Y-Axis 

"" .. 
Q . 
"" 
< 

• 0 .... 
I 

:::J 
Ill!: 
0 

1-528. um 

OA - Target Depth - l.OSmm 

Figure A.2. SRIM simulation of transmitted alpha particles with 1 mm air gap between the 
source and cells and media (represented as water). 
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TARGET depth TARGET depth 
IONIZ. By ions 

(Ang) (mm) 
(eV/(angstrom-

Ion) 

1.06E+05 1.06E-02 

2.11E+05 2.llE-02 

3.17E+05 3.17E-02 7.71E-03 

4.23E+05 4.23E-02 7.71E-03 

5.29E+05 5.29E-02 7.71E-03 

6.34E+05 6.34E-02 7.71E-03 6.77E-08 

7.40E+05 7.40E-02 7.72E-03 9.68E-08 

8.46E+05 8.46E-02 7.72E-03 3.79E-07 

9.52E+05 9.52E-02 7.72E-03 1.73E-07 

1.06E+06 1.06E-01 7.72E-03 1.0SE-07 

1.16E+06 1.16E-01 2.08E-07 

1.27E+06 1.27E-01 

1.37E+06 1.37E-01 7.72E-03 5.82E-07 

1.48E+06 1.48E-01 7.72E-03 2.97E-07 

1.59E+06 1.59E-01 7.72E-03 2.33E-07 

1.69E+06 1.69E-01 9.lSE-07 

1.80E+06 1.80E-01 4.19E-07 

1.90E+06 1.90E-01 3.SSE-07 

2.01E+06 2.0lE-01 7.72E-03 2.83E-07 

2.11E+06 2.llE-01 7.72E-03 

2.22E+O 2.22E-01 7.72E-03 

2.33E+06 2.33E-01 7.72E-03 

2.43E+06 2.43E-01 7.72E-03 

2.54E+06 2.54E-01 7.72E-03 

2.64E+06 2.64E-01 7.72E-03 

2.75E+06 

7.72E-03 8.06E-06 

7.72E-03 4.SlE-07 

3.28E-01 7.72E-03 6.38E-07 

3.38E-01 7.72E-03 4.41E-07 

3.49E-01 7.72E-03 8.97E-07 

3.59E-01 7.72E-03 6.74E-07 

7.72E-03 1.68E-06 

7.72E-03 8.0SE-07 

7.73E-03 4.77E-07 

4.02E+06 
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4.12E+06 7.73E-03 6.88E-07 
. 

4.23E+06 .73E-03 1.77E-06 

4.33E+06 .73E-03 CA[" nr 
~. -

11 11 '1E+06 JI JI/I~. n n -
5E+O 4.5 73E-03 6.09E-07 

:+06 4.65E-01 7.73E-03 9.66E-07 

4.76E+06 4.76E-01 7.73E-03 7.35E-07 

4.86E+06 4.86E-01 7.73E-03 1.13E-06 
·-··-----

4.97E+06 4.97E-01 7.73E-03 5.67E-07 

5.08E+06 5.08E-01 7.73E-03 1.70E-06 
----···--· 

5.18E+06 5.18E-01 7.74E-03 7.76E-07 

5.29E+06 5.29E-01 7.74E-03 1.05E-06 
"""""" 

5.39E+06 5.39E-01 7.73E-03 8.66E-07 

5.SOE+06 5.SOE-01 7.73E-03 1.SlE-06 

5.60E+06 5.60E-01 7.74E-03 1.04E-06 

5.71E+06 5.71E-01 7.74E-03 1.04E-06 

5.82E+06 5.82E-01 7.74E-03 2.76E-06 

5.92E+06 5.92E-01 7.74E-03 5.73E-07 ----- -··-·--···-· 
6.03E+06 6.03E-01 7.74E-03 1.05E-06 

•··---
6.13E+06 6.13E-01 7.74E-03 7.45E-06 

6.24E+06 6.24E-01 7.74E-03 5.81E-07 

6.34E+06 6.34E-01 7.74E-03 2.17E-06 

6.45E+06 6.45E-01 7.74E-03 9.64E-07 
•·~--· 

6.56E+06 6.56E-01 7.74E-03 . 2.31E-05 

6.66E+06 6.66E-01 7.74E-03 1.12E-06 

6.77E+06 6.77E-01 7.75E-03 3 17E-06 
""""" 

6.87E+06 6.87E-01 7.75E-03 1.13E-06 
-----···· 

6.98E+06 6.98E-01 7.75E-03 1.75E-06 ........ 
7.08E+06 7.08E-01 7.75E-03 8.89E-07 

7.19E+06 7.19E-01 7.75E-03 1.30E-06 
"""""""" 

7.30E+06 7.30E-01 7.75E-03 1.14E-06 

7.40E+06 7.40E-01 7.75E-03 3 09E-06 i 
"""""""" ···--- ·····--

7.51E+06 7.SlE-01 7.75E-03 1.12E-06 

7.61E+06 7.61E-01 7.75E-03 1.llE-06 
"·""" 

7.72E+06 7.72E-01 7.76E-03 1.02E-06 
----·-· --·--- ·~· 

7.82E+06 7.82E-01 7.76E-03 2.14E-06 
----··--·- --

7.93E+06 7.93E-01 7.76E-03 1.33E-06 
------· -~- -·---· 

8.04E+06 8.04E-01 7.76E-03 2.02E-06 
"""""""" ..... ·-· 

8.14E+06 8.14E-01 7.76E-03 1.3:~ --

8.25E+06 8.25E-01 7.76E-03 .OE-06 

I 
········- -----

8.35E+06 8.35E-01 7.76E-03 1.26E-06 

195 



Appendix 

8.46E+06 8.46E-01 7.77E-03 1.25E-06 

8.56E+06 8.56E-01 7.77E-03 1.42E-06 

8.67E+06 8.67E-01 7.76E-03 4.74E-06 

8.78E+06 8.78E-01 7.76E-03 3.SlE-06 

8.88E+06 8.88E-01 7.77E-03 2.44E-06 

8.99E+06 8.99E-01 7.77E-03 1.0lE-06 

9.09E+06 9.09E-01 7.77E-03 1.25E-05 

9.20E+06 9.20E-01 7.77E-03 2.64E-06 

9.30E+06 9.30E-01 7.77E-03 1.57E-06 

9.41E+06 9.41E-01 7.77E-03 1.SSE-06 

9.52E+06 9.52E-01 7.77E-03 3.17E-06 

9.62E+06 9.62E-01 7.77E-03 2.61E-06 

9.73E+06 9.73E-01 7.77E-03 2.28E-06 

9.83E+06 9.83E-01 7.78E-03 1.09E-06 

9.94E+06 9.94E-01 7.79E-03 1.54E-06 

1.00E+07 1.00E+OO 3.18E+OO 9.llE-04 

1.02E+07 1.02E+OO 8.11E+OO 2.53E-03 

1.03E+07 1.03E+OO 9.13E+OO 2.96E-03 

1.04E+07 1.04E+OO 1.07E+01 3.70E-03 

1.0SE+07 1.0SE+OO 1.39E+01 5.27E-03 

1.06E+07 1.06E+OO 1.77E+01 3.41E-02 

sum= 5.96E+01 4.86E-02 
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