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Abstract 
 

Prostate Cancer (PCa) is the second most common cancer and among the top 

causes of cancer-related mortality among men. In recent years there has been a 

growing debate about the effect of metabolic factors (diabetes, hypertension, and 

hyperlipidaemia) and obesity on prostate cancer risk and aggressiveness. 

This thesis aims to uncover the role of metabolic factors, sex hormones, and 

obesity as risk factors for prostate cancer incidence and aggressiveness, and how the 

metabolic factors and sex hormones are important confounders in prostate cancer risk 

assessment and screening models. It also aims to review how assessing different 

aspects of obesity including peri-prostatic fat influences prostate cancer incidence and 

aggressiveness. The thesis consists of five chapters: 

• Chapter 1 is a literature review and it includes;  

o Section 1 an introduction to prostate cancer risk factors. 

o Section 2 a summary of prostate cancer as a metabolic disease. 

o Section 3 a summary of the debate around prostate cancer screening. 

o Section 4 a summary of the debate around the role of sex hormones in 

prostate cancer pathogenesis.   

o Section 5 (published review) a review on the role of periprostatic 

versus subcutaneous fat and its association with prostate cancer risk.   

• Chapter 2 (published research): describes the inverse relationship between 

obesity and PSA levels and the underlying mechanisms 

•  Chapter 3 (research submitted for publication) describes how obesity 

attenuates prostate cancer screening and leads to an underestimation of 

prostate cancer risk. 
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• Chapter 4 (research prepared for publication) describes how metabolic factors 

may attenuate prostate cancer screening efficacy. 

• Chapter 5 (research submitted for publication) describes the association 

between sex hormones and prostate cancer characteristics at the time of 

diagnosis. 

The research work done through this project and as part of this thesis, have shown 

that: 

• Obesity leads to lower PSA levels through two main mechanisms, first; the 

change in the sex hormone levels among men with obesity (mainly the 

increase in the estradiol-to-testosterone ratio), second; the increase in the 

plasma volume among men with obesity.  

• The lowers levels of PSA among men with obesity (especially moderate and 

severe obesity) could lead to underestimation of prostate cancer risk and 

potentially delay prostate cancer diagnosis. 

• Metabolically healthy men (those without diabetes, hypertension or obesity) 

appear to benefit from prostate cancer screening in terms of reducing their risk 

of prostate cancer-specific mortality, in comparison to those who have one or 

more of these conditions. 

• Sex hormones (mainly the higher estradiol-to-testosterone ratio) are associated 

with a higher Gleason score at the time of diagnosis.   

The results of this project give opportunities to introduce and identify new risk 

reduction modalities and interventions, as well as identify factors that may attenuate 

the efficacy of prostate cancer screening. The effect of these factors needs to be 

confirmed in randomised controlled trials. Longer term, applying the results of this 
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project in clinical practice may refine the implementation and/or interpretation 

prostate cancer screening, and improve the available risk reduction interventions.  
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Introduction 
 

Prostate Cancer (PCa) is the second most common cancer, and one of the top 

causes of cancer-related mortality, among Western men (Bashir 2015; Bray et al. 

2018). Because of worldwide population growth and aging, there are likely to be 1.7 

million new prostate cancer cases and an estimated 500,000 prostate cancer-related 

deaths by 2030 (Ferlay et al. 2015). The burden of prostate cancer in Australia is 

approximately equal to that of breast cancer among females, with an estimated 19,500 

new cases to be diagnosed in 2019, representing 25% of all new cancer cases among 

men, and 3300 prostate cancer-specific deaths, representing 12% of all men's cancer 

related deaths (Cancer Australia 2019).  

In recent years there has been a growing debate about the association between 

metabolic factors (Karzai, Madan & Dahut 2016) including obesity (Allott, Masko & 

Freedland 2013) and prostate cancer. While laboratory-based research and mice 

models have provided evidence for a role of lipid synthesis and obesity in prostate 

cancer aggressiveness (Appendix 1: prostate cancer staging and definition of high risk 

and aggressive prostate cancer) (Allott, Masko & Freedland 2013; Butler, Centenera 

& Swinnen 2016; Chen et al. 2018; Kobayashi et al. 2008), epidemiological studies 

have not to date been conclusive regarding the effect of metabolic factors (including 

diabetes, hypertension and hyperlipidaemia) and obesity on prostate cancer incidence 

and aggressiveness. Addressing this gap in knowledge will provide opportunities to 

introduce and identify novel risk reduction modalities and interventions to decrease 

the burden of prostate cancer.  

This thesis aims to uncover (i) the role of metabolic factors, sex hormones and 

obesity as risk factors for prostate cancer incidence and aggressiveness; (ii) the 

confounding effect of metabolic factors and sex hormones on prostate cancer risk 
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assessment models and prostate cancer screening models; and (iii) to review how the 

assessment of obesity including peri-prostatic fat measurement influences prostate 

cancer incidence and aggressiveness. Chapter 1 is a literature review, and it includes; 

section 1, an introduction to prostate cancer risk factors and what the underlying 

mechanisms that may be contributing to increased prostate cancer incidence and 

aggressiveness. Section 2 examines prostate cancer as a metabolic disease and how 

metabolic factors and their association with sex hormones affect prostate cancer 

incidence and aggressiveness. Section 3 covers the debate regarding prostate cancer 

screening and the possible factors attenuating the efficacy of screening to reduce 

prostate cancer-specific mortality. Section 4 is a summary of the debate around the 

role of sex hormones in prostate cancer pathogenesis. Section 5 (published review 

article) reviews the role of periprostatic fat and its potential association with prostate 

cancer risk.  Chapter 2 (published research) describes how obesity affects PSA levels 

and examines the underlying mechanisms; chapter 3 (research submitted for 

publication) describes how obesity attenuates prostate cancer screening and prostate 

cancer risk assessment models and leads to an underestimation of prostate cancer risk; 

chapter 4 (research prepared for publication) describes how metabolic factors may 

attenuate prostate cancer screening efficacy; and finally chapter 5 (research 

submitted for publication) is about examining the association between sex hormones 

and the pathological features of prostate cancer at time of diagnosis.   
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1. Prostate cancer risk factors 
 
 

The established risk factors for prostate cancer include age, ethnicity, and a 

family history of prostate cancer. Other risk factors, such as western lifestyle and 

obesity, are still under debate.  The following section is a description of how some of 

these established risk factors are possibly mediated by underlying metabolic and 

hormonal pathways. 

 

1.1  Age and prostate cancer 

The cumulative risk of all types of cancer increases with age (mainly up to the 

age of 70 years) (White et al. 2014).  Regarding prostate cancer, age is the most 

established risk factor. The peak rate of a prostate cancer diagnosis is in the age group 

65 to 69 (Cancer Australia 2018). The probability of a prostate cancer diagnosis is 

2.3% in men aged 50 to 59, 6.3% in men aged 60 to 69, and 11% in men aged 70 or 

more (Siegel, RL, Miller & Jemal 2015). Different mechanisms may explain why 

prostate cancer risk increases with age. Although debatable, the decline in 

testosterone levels with age was suggested to be associated with an increase in the risk 

of prostate cancer incidence and aggressiveness (Michaud, Billups & Partin 2015). 

Older men are more often obese (have more fat mass) and more likely to be diabetic, 

hypertensive, and have altered lipid profile. These conditions are related to reductions 

in testosterone levels and relative increases in the conversion of testosterone to 

estradiol. These alterations in metabolic profile may be related to the observed 

increased prostate cancer incidence in older men (Karzai, Madan & Dahut 2016). 

Alternatively, an increase in somatic mutations in the mitochondrial DNA, a process 

that is believed to increase oxidative stress in the cells and lead to further damage to 

the nuclear DNA is another suggested mechanism for increasing the risk of prostate 
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cancer with age (Khandrika et al. 2009). The fact that prostate cancer risk increases 

with age may reflect complex crosstalk between metabolic factors, obesity and the sex 

hormonal milieu that may promote prostate cell proliferation and malignant 

transformation (Khandrika et al. 2009), although this does not rule out common risk 

factors or causality between prostate cancer, aging, and an alteration in the hormonal 

and metabolic profile. 

1.2 	Racial	 variation	 in	 risk	 of	 prostate	 cancer	 incidence	 and	

aggressiveness		

There is an ethnic difference in regards to both the risk of prostate cancer 

incidence and risk of having aggressive prostate cancer (Kumar et al. 2018). The 

racial difference in prostate cancer may be in part due to the access to health care 

systems (Dess et al. 2019; Moses et al. 2017), the application of prostate-specific 

antigen (PSA) based screening (Ito et al. 2019), as well as the maturity of data 

registries; African and developing countries,  have less mature and underdeveloped 

cancer registries meaning that the precise magnitude of prostate cancer problem is not 

well represented (Rebbeck et al. 2013).  

African Americans have more than double the risk of developing prostate 

cancer in comparison to other races (Siegel, R et al. 2014). They are also diagnosed at 

a younger age with more aggressive tumour characteristics and more advanced stages 

(He, T & Mullins 2017). Prostate cancer-related mortality is also the highest among 

those of African descent (Age-standardized prostate cancer mortality rate in; South 

Africa 26.8/100K; Middle Africa 22.7/100K; Western Africa 18.7/100K) (Bray et al. 

2018; Ferlay et al. 2015). African Americans also have a higher risk of disease 

recurrence (recurring of prostate cancer after first-line treatment) (Latini et al. 2006). 

Socio-economic factors may explain part of this racial difference. African-Americans 
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were found to have a lower socio-economic level (Latini et al. 2006), less frequent 

follow-up while on watchful waiting (Shavers et al. 2004), and less general education 

than non-Hispanic White (Albano et al. 2007). Furthermore, African American race is 

an independent risk factor for prostate cancer incidence after adjusting for age, PSA 

level, digital rectal examination (DRE), year of biopsy and the total number of core 

biopsies taken (Yanke et al. 2006).  They also have higher rates of prostatic 

intraepithelial neoplasia in the prostatic biopsies (Tewari et al. 2005), findings that are 

unlikely to be explained by access to medical services. Alternatively, there are 

biological factors that may explain this racial difference.  In comparison to white 

Caucasian men, African Americans have higher expressions of the androgen receptor 

(AR) (Nwaneri, McBeth & Hinds 2016), higher frequencies of the CYP3A4 allele (a 

gene belonging to the cytochrome p450 family involved in testosterone metabolism 

and prostate cancer aggressiveness) (Bhardwaj et al. 2017), and higher expression of 

epidermal growth factor receptor (EGFR), which is involved in androgen-independent 

prostate cancer growth (Kumar et al. 2018). Another biological mechanism that may 

explain racial differences in prostate cancer risk is the differences in estradiol (E2) 

and estrogen receptor beta (ERß) activity. African American men have higher levels 

of E2 and increased activity of ERß in comparison to white Caucasian men, both of 

which are associated with increased prostate cancer risk (Abd Elmageed et al. 2013).  

On the other side of the spectrum the incidence of prostate cancer appears to 

be lower among Asians (Age-standardized incidence rate in; South-Central Asia 

5.0/100K; South-Eastern Asia 12.7/100K; Eastern-Asia 13.9/100K and Western-Asia 

26.9/100K) (Bray et al. 2018).  Genetic and socio-economic factors, as well as the 

availability of prostate cancer screening, are some of the suggested reasons for this 

racial discrepancy (Kimura & Egawa 2018). However, during the last decade, there 
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has been an increase in prostate cancer incidence among Asians possibly due to the 

adoption of prostate cancer screening strategies in addition to a change in lifestyle (Ito 

et al. 2019). The effect of lifestyle factors on prostate cancer risk among Asians will 

be discussed in more details in the next section. 

 

1.3 	Effect	of	lifestyle	on	prostate	cancer	worldwide	variation		

There is a wide variation in prostate cancer incidence worldwide. Many factors 

influence this variation, including the existence of reliable registry data (Figure 1), 

prostate cancer screening programs, lifestyle factors as well as genetic factors (as 

mentioned previously). 

 

 

 

 

 

 

Figure 1: Quality of Cancer incidence data registry worldwide 
The figure is used with permission from Cancer Incidence and mortality worldwide, GLOBOCAN 2012 (Ferlay et 
al. 2015) 
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As per GLOBOCAN 2018 cancer incidence (Figure 2), the highest incidence of 

prostate cancer is in Australia/New Zealand (Age-standardized rate 86.4/100K), 

Northern Europe (Age-standardized rate 85.7/100K), Western Europe (Age-

standardized rate 75.5/100K) and Northern America (Age-standardized rate 

73.7/100K), while the lowest incidence is among Asian populations (South-Eastern 

Asia (Age-standardized rate 12.7/100K) and South Central Asia (Age-standardized 

rate 5.0/100K)) (Bray et al. 2018).   

The influence of western lifestyle and its association with metabolic disorders and 

obesity was suggested to affect prostate cancer incidence. This was observed among 

Asian immigrants to western countries as well as among Asian countries that adopted 

a western lifestyle diet (higher intake of saturated fat, red meat, and dairy products). 

The rate of prostate cancer among Asian immigrants to New South Wales, Australia 

was higher than that in their countries of origin (1.7/100K versus 16.3/100K for 

Chinese versus Chinese immigrants; 7.6/100K versus 30.0/100K for Hong Kong; 

6.9/100K versus 28.3/100K for Indian; 11.0/100K versus 33.3/100K for Singapore), 

with a similar trend in change in rates of colorectal cancer, which support the 

hypothesis of western lifestyle and diet-related effect (Grulich, McCredie & Coates 

1995). A similar trend of increasing prostate cancer incidence overtime was observed 

among Asian immigrants to the United States of America (Gomez et al. 2013). The 

incidence of prostate cancer among Asian Americans is almost equal to that among 

non-Asian Americans, after adjusting for access to health care systems (Raymundo et 

al. 2011). Part of this increase in prostate cancer incidence among Asian immigrants 

may be attributed to prostate cancer screening programs. However, over the past 

years, there has been an observed increase in the incidence of prostate cancer in Asian 

countries, even among those countries that did not widely adopt national prostate 



	 9	

cancer screening programs (Kitagawa & Namiki 2015; Namiki et al. 2010; Park et al. 

2006).  This has been accompanied with an increase in the prevalence of obesity in 

Asian countries (Prevalence of obesity increased in; West Pacific from 0.8 in 1980 to 

4.9% in 2015; South-Eastern Asia from 1.7% in 1980 to 6.8% in 2015) (Chooi, Ding 

& Magkos 2019), which may reflect the effect of the adoption of western lifestyle 

accompanied by increasing rates of obesity. 

 

B 

A 

Figure	2:	Prostate	Cancer	global	(A)	incidence	and	(B)	mortality	
The figure is used with permission from Cancer Incidence and mortality worldwide, GLOBOCAN 
2018 (Bray et al. 2018)	
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1.4	Other risk factors 
	
In addition to the previously mentioned risk factors, there are other risk factors that 

may contribute to increasing risk of prostate cancer. Some of these factors have a 

well-established evidence base e.g. family history and inherited germline mutations 

(BRCA1/2 and Lynch syndrome) (Na et al. 2017), while others are still under 

investigation, including diet, smoking, infections and sexual factors (Patel & Klein 

2009).   

Summary  
 

Prostate cancer is a major health problem among Western countries, including 

Australia, with the expectation of an increase in its burden as population age. There is 

some evidence to suggest that the metabolic and hormonal factors may mediate, at 

least partially, the established prostate cancer risk factors such as age and race.  By 

understanding how the underlying mechanisms affect prostate cancer pathogenesis, 

we may be able to identify and improve the risk reduction modalities, and design 

interventions to reduce the burden of this disease.  
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2. Prostate cancer as a metabolic disease  
	

2.1  Introduction to metabolic syndrome and obesity  

Metabolic syndrome is a cluster of metabolic conditions that include central 

obesity, insulin resistance, hypertension, and dyslipidaemia. Together metabolic 

syndrome represents a risk factor for the development of numerous metabolic and 

non-metabolic conditions, including type 2 diabetes mellitus, cardiovascular disease, 

and numerous cancers (O’Neill & O’Driscoll 2015).  

During the last 20 years, there have been competing definitions of metabolic 

syndrome (Blanc-Lapierre et al. 2015) (summarized in table 1).  One main difference 

between these definitions is whether obesity should be included to define metabolic 

syndrome.   



	 12	

Table 1: Definitions of metabolic syndrome 

  
Criteria for defining metabolic syndrome among men 
 

 
 

WHO 1999 

 
Type 2 diabetes (FPG >150 mg/dl) 

 
Plus any two of the following: 

• Hypertension  
(SBP≥130 mmHg or DBP ≥85 mmHg) 

• Dyslipidaemia 
(Low HDL <40 ml/dl and high TG >150mg/dl) 

• Obesity (BMI>30 or WHR >0.9) 
 

 
 

NCEP-ATPIII 2005 

 
At least three of the following: 

 
• Type 2 diabetes (FPG >150 mg/dl) 
• Hypertension  

(SBP≥130 mmHg or DBP ≥85 mmHg) 
• Dyslipidaemia 

(Low HDL <40 ml/dl and high TG >150mg/dl) 
• Obesity (WC>102 cm or BMI>30 or WHR >0.5)  

 
 
 

IDF 2006 

 
Obesity (WC >94 cm or BMI >30) 

 
Plus any two of the following: 

• Type 2 diabetes (FPG >150 mg/dl) 
• Hypertension  

(SBP≥130 mmHg or DBP ≥85 mmHg) 
• Dyslipidaemia 

(Low HDL <40 ml/dl and high TG >150mg/dl) 
 
 

 
IDF: International Diabetes Federation; WHO: World Health Organization, WHR: Waist hip ratio; 
NCEP-ATPIII: Adult Treatment Panel III from the National Cholesterol Education Program; TG: 
Triglycerides; WC: Waist circumference; BMI: Body mass index; HDL: High-density lipoprotein 
cholesterol; SBP: Systolic blood pressure; DPB: Diastolic blood pressure; FPG: Fasting plasma 
glucose  
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There has been a parallel increase in the global incidence of prostate cancer 

and metabolic syndrome during the past two decades. The global incidence of prostate 

cancer has increased by 3.7 fold in the period from 1990 to 2015 (Pishgar et al. 2018). 

This change is primarily due to population growth, the population aging, and the 

increase in the incidence rates. There was a total of 40% global increase in prostate 

cancer incidence in the period from 2006 until 2016, of which 7% was due to the 

increase in the incidence rate (Fitzmaurice, Christina et al. 2018). However, this 

contribution differs according to the countries’ sociodemographic index. Among the 

middle sociodemographic index countries, there is a 74% increase in the incidence of 

prostate cancer, of which 34% was due to the increase in incidence rate (Fitzmaurice, 

Christina et al. 2018).  

On the other hand, the global prevalence of obesity has doubled in the period 

between 1980 and 2015, and the global prevalence of type II diabetes is expected to 

increase from 8.8% in 2015 to 10.8% by 2040. This translates to a 25% current global 

prevalence of metabolic syndrome among adults (Saklayen 2018). Over the past 25 

years, there has been a global increase in obesity-related deaths and disabilities, with 

cardiovascular, diabetes, chronic kidney diseases, and cancers being the most 

common obesity-related comorbidity and cause of mortality (Afshin et al. 2017). 

Obesity is associated with an increased risk of a number of cancers (including 

esophagus, colon and rectum, liver, gallbladder and biliary tract, pancreas, breast, 

uterus, ovary, kidney, thyroid and leukemia), poorer survival, worse prognosis, poorer 

treatment tolerance and treatment outcomes (Parekh, Chandran & Bandera 2012). 

There are biological factors that relate obesity to carcinogenesis and cancer 

progression. Obesity is associated with chronic inflammation, lower levels of 

adipokines (adiponectin), insulin resistance (which includes hyperinsulinaemia and 
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hyperglycaemia), a change in the gut microflora, and immune system impairment 

(Font-Burgada, Sun & Karin 2016). The parallel trends of increasing incidence and 

prevalence of prostate cancer and metabolic syndrome may also suggest common risk 

factors or causality between these two conditions (Blanc-Lapierre et al. 2015). 

 

2.2  Prostate cancer as a metabolic disease  

Prostate cancer can be considered a metabolic disease due to two aspects of 

dependency. The first aspect relates to prostate cancer cell metabolism and its 

dependence on lipid synthesis (section 2.2.1), while the second relates to the effect of 

metabolic factors on prostate cancer diagnosis, aggressiveness and progression, and 

how these characteristics relate to changes in sex hormones (sections 2.2.2 and 2.2.3).   

2.2.1 Prostate cancer and lipid synthesis 

Prostate cancer cells do not use aerobic glycolysis (Warburg effect) as a source of 

energy; instead, they depend on de novo lipogenesis (Deep & Schlaepfer 2016; Wu, X 

et al. 2014). The role of lipids in prostate cancer includes, amongst others, energy 

production through fatty acid beta-oxidation and cell membrane formation. The 

synthesis of unsaturated lipids plays a crucial role in both cell survival and signaling 

(Butler, Centenera & Swinnen 2016). Lipogenesis in prostate cancer cells was found 

to be dependent on both increasing de novo fatty acid synthesis and the use of 

extracellular fatty acid availability (Zadra, Giorgia & Loda 2019).    

Increased fatty acid synthesis and overexpression of the related enzymes is 

associated with prostate cancer incidence and progression. Stearoyl CoA desaturase-1 

(SCD1) (a rate-limiting step enzyme in the formation of the mono-unsaturated fatty 

acids, a critical component of the membrane phospholipids) is overexpressed in 

prostate cancer cells, and its action is essential for the proliferation of prostate cancer 
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cells but not for normal prostate cells (Fritz et al. 2010). Fatty acid synthase (FASN) 

is a key enzyme in fatty acid synthesis from acetyl CoA. FASN is involved in the 

initiation of prostate cancer and the progression to the castrate-resistant stage (CRPC; 

progression after starting hormonal treatment) (Rossi et al. 2003). A recent study 

showed that a novel FASN inhibitor (IPI-9119) could antagonise castrate-resistant 

prostate cancer cell growth and enhance the efficacy of second-line hormonal 

treatment (Enzalutamide) (Zadra, Giorgia et al. 2019).  

There is complex cross-talk between lipid synthesis and androgen signalling 

pathways in prostate cancer cells. The phosphatidylinositol 3–kinase (PI3K) pathway 

has an essential role in prostate cancer, being involved in regulatory pathways inside 

the cells, including metabolism, survival, and proliferation (Chalhoub & Baker 2009). 

FASN expression is associated with the activity of Akt in prostate cancer tissue (Akt 

is a serine/threonine protein kinase that is activated through the PI3K pathway) (Yang 

et al. 2002). Inhibition of FASN leads to a decrease in Akt expression, which 

subsequently leads to the down regulation of Akt (reviewed in (Zadra, G., 

Photopoulos & Loda 2013)). Inhibition of androgen receptors leads to a decrease in 

expression and activity of FASN through the inhibition of SREBP-1 activity(Swinnen 

et al. 1997; Swinnen et al. 2000). SREBPs are transcription factors that control lipid 

synthesis by controlling the expression of several essential enzymes that are required 

for fatty acid and cholesterol synthesis (Eberle et al. 2004). The SREBP family has 3 

isoforms (SREBP-1a, SREBP-1c, SREBP-2). SREBP-1 is stimulated by androgens in 

prostate cancer cells, while simultaneously AR expression is regulated by SREBP-1 

(Butler, Centenera & Swinnen 2016; Huang et al. 2012). At the cellular level, it, 

therefore, appears that prostate cancer cells depend on the bi-directional cross-talk 
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between the lipid/fatty acid synthesis and the androgen pathways for proliferation and 

progression. 

  

2.2.2 Obesity and prostate cancer  

Obesity, or excess body fat, is estimated to be the primary cause of cancer in 

about 13% to 20% of all obesity-related cancers (including breast in postmenopausal 

women, ovary, endometrium, colon, esophagus, gallbladder, pancreas, kidney and 

prostate) (Byers & Sedjo 2015). The different pathways through which excess body 

fat leads to an alteration in cell proliferation and carcinogenesis include, among 

others, chronic inflammation, an alteration in the sex hormonal milieu, and an 

increase in serum insulin and insulin-like growth factor 1 (IGF-1) (Byers & Sedjo 

2015).  

The association between obesity and prostate cancer is complex (Figure 2).  

This is primarily due to further interacting factors that are unique to prostate cancer: 

first, prostate cancer is a highly prevalent cancer especially among elderly, an age 

group at which there is a high prevalence of obesity and metabolic related conditions 

(metabolic syndrome).  Men with obesity and metabolic complications have poorer 

overall survival and thus may die from other causes before they are diagnosed with 

prostate cancer, i.e. a competing risk effect (Grossmann, M. & Wittert 2012).  

Second, prostate cancer is an androgen-dependent tumour. Obesity is usually 

accompanied by lower serum testosterone levels (Gautier et al. 2013). The lower 

testosterone levels may be associated with lower prostate cancer incidence due to 

lower intra-prostatic testosterone and DHT (Thompson, IM, Jr. et al. 2013), albeit, it 

was suggested that lower testosterone levels might be associated with aggressive 

prostate cancer (Thompson, IM, Jr. et al. 2013). (This will be discussed in more 
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details in section 4 below and chapter 5.) Lower serum testosterone results in a 

reduction in PSA levels that may lead to missed diagnoses and thus a decrease in 

cumulative age-specific incidence, but at the same time, may lead to a more advanced 

prostate cancer stage due to the delay in diagnosis (Chow et al. 2018). Besides, 

obesity is associated with alteration in other biological pathways that can lead to 

aggressive prostate cancer. This includes the deregulation of the insulin and insulin-

like growth factor pathways; the cross-talk between insulin pathway and sex 

hormones; and the paracrine effect of peri-tumour adipose tissue that facilitates 

tumour vascularisation, growth and cell migration through chemokine secretion 

(Bandini, Gandaglia & Briganti 2017).  
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Figure 3: Causal diagram relating obesity and metabolic syndrome with prostate cancer development, 
aggressiveness, and mortality 
PCa: Prostate cancer; PCSM: prostate cancer specific mortality; Sex hormones include estradiol, testosterone and sex 
hormone binding globulin; Aggressive PCa: Advanced stage and/or high Gleason score 
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2.2.2.1  Central obesity and prostate cancer 

 
A large number of population-based and nested-case control studies have 

explored the associations between obesity and the risk of prostate cancer incidence 

and aggressiveness. This has led to ten published meta-analyses relating obesity to 

prostate cancer incidence, the incidence of localised, and incidence of aggressive 

prostate cancers (Table 2).  

These meta-analyses found that the association between obesity and risk of 

prostate cancer (total) incidence is either weak (Bergstrom et al. 2001; MacInnis & 

English 2006; Renehan et al. 2008) or undetectable (Choi et al. 2018; Hu, M. B. et al. 

2014). There was a weak inverse association between obesity and risk of localised or 

non-aggressive prostate cancer (Discacciati, Orsini & Wolk 2012; Fang et al. 2018; 

Xie et al. 2017). Of note, there was heterogeneity among the studies within each 

meta-analysis. The association between obesity and aggressive prostate cancer was 

more consistent and robust, with a positive association between obesity and 

aggressive prostate cancer (Table 2).  

2.1.1.1.1 The associations between obesity and prostate cancer – differences between 

studies   

 The direction of the association between obesity and total prostate cancer 

incidence is unclear. Obesity may be associated with a delay in prostate cancer 

diagnosis due to lower PSA levels in men with higher BMI (Chow et al. 2018). This 

would lead to a reduced age-specific prostate cancer incidence, and reduced localised 

prostate cancer incidence. There is some evidence to support this hypothesis; first, the 

inverse association between obesity and prostate cancer incidence seems to be 

affected by the presence of more intense PSA screening practice (Allott & Hursting 
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2015). By the early 2000s, the annual prevalence of PSA testing among men aged 

over 50 was 57% in the USA, versus 6% in the UK and 11% in Australia (Baade, 

Youlden & Krnjacki 2009). Studies that are conducted in the United States, (where 

PSA screening is widespread, and thus prostate cancer diagnosis is driven by PSA 

results), did not detect an association between obesity and prostate cancer incidence, 

while the studies conducted in either Europe or Australia, (where there are lower rates 

of PSA screening), showed a positive association between prostate cancer incidence 

and obesity (Renehan et al. 2008). The effect of obesity on PSA and how this may 

affect PSA based screening models is presented in section 3.  Second, the positive 

association between obesity and high risk or aggressive prostate cancer may dilute the 

association between obesity and total prostate cancer incidence if there is a true 

negative association with localised/early prostate cancer. This was apparent in meta-

analyses that differentiate between the incidence of localised and advanced 

(aggressive) prostate cancer (Fang et al. 2018; Xie et al. 2017) (Table 2).  

 The time of obesity assessment may also lead to different conclusions in terms 

of the association between obesity and prostate cancer risk or mortality. In the meta-

analyses by Zhong et al. and Cao et al., pre-diagnosis BMI was associated with an 

increased risk of prostate cancer specific mortality, but not at diagnosis or post-

diagnosis BMI (Cao, Y & Ma 2011; Zhong et al. 2016). This may indicate a 

cumulative effect of obesity on prostate cancer aggressiveness. The overall change in 

BMI and the duration of being obese may lead to metabolic and hormonal changes 

that change prostate cell biology and hence increase prostate cancer cell proliferation 

and progression. However, some of the studies included in the Cao et al. and Zhong et 

al. meta-analyses are cohort studies, and thus it is unclear if there is a treatment effect 

on BMIs assessed post cancer diagnosis.  
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Finally, differences in how aggressive prostate cancer is defined (whether 

Gleason score alone is used or a combination of the stage, Gleason score, and PSA) 

also affects the conclusions of analysis, as will be shown in Chapter 5.  
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Table 2: Associations between prostate cancer and obesity - summary of meta-analyses 

  Author name 
& year 

Predictor 
of interest 

Number of 
studies 

Outcome(s) Number 
of cases 

RR [95%CI] Comments 

(Bergstrom et 
al. 2001) 

BMI 6 Prostate cancer 
incidence 

4592 1.01 [1.00- 1.02] 
 

2 trials contribute 80% of the 
number of patients 

One trial was using the BMI at 
the age of 21 

(MacInnis & 
English 2006) 

BMI 
 

56 Prostate cancer 
incidence 

68753 1.05 [1.01- 1.08] 
For incidence 

 

 Localised 
prostate cancer 

0.96 [0.89- 1.03] 
For localised disease 

Advanced 
prostate cancer 

1.12 [1.01 – 1.23] 
For advanced disease 

(Renehan et al. 
2008) 

BMI 27 Prostate cancer 
incidence 

70421 1.03 [1.00- 1.07] 14.4 years median follow up 
years 

12 1.00[0·96–1·03] North American studies 
10 1.04[1·01–1·07] European and Australian 

studies 
5 1·15 [0·95–1·39] Asia–Pacific studies 

(Cao, Y & Ma 
2011) 

BMI 6 Prostate cancer 
specific mortality 

 

6817 1.15[1.06–1.25] Case control studies 

6 932 1.20 [0.99–1.46] Post diagnosis BMI 
assessment 

(Discacciati, 
Orsini & Wolk 

2012) 

BMI 12 Localised prostate 
cancer 

19130 0.94[0.91–0.97] 
For localised disease 

Dose-response meta-analysis 

13 Advanced 
prostate cancer 

7067 1.09 [1.02–1.16] 
For advanced disease 
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Author name 
& year 

Predictor 
of interest 

Number of 
studies 

Outcome(s) Number 
of cases 

RR [95%CI] Comments 

(Hu, M. B. et 
al. 2014) 

BMI 11 Prostate cancer 
incidence 

 

29464 1.15 [0.98–1.34] 
For prostate cancer 

incidence 

 

Advanced 
prostate cancer 

1.37 [1.19–1.57] 
For advanced disease 

(Zhong et al. 
2016) 

BMI 38 Prostate cancer 
specific mortality 

 

2738000 1.15 [1.07–1.23] 
For Pre-diagnosis BMI 

 

Pre-diagnosis or post-
diagnosis BMI showed no 

effect on all-cause mortality in 
prostate cancer patients. 

1.10 [0.99–1.22] 
For post-diagnosis BMI 

(Xie et al. 
2017) 

BMI 17 Localised 
prostate 
cancer 

Localised prostate 
cancer 

 

51307 0.96 [0.92 – 1.00] A dose response meta-analysis 
 

Sensitivity analysis indicated 
that results for non-aggressive 
PCa are not robust and steady 21 

Aggressive 
prostate 
cancer 

Aggressive 
prostate cancer 

1.07 [1.03 – 1.12] 
 
 
 

(Choi et al. 
2018) 

BMI 27 Prostate cancer 
incidence 

 

70391 1.02 [1.00 - 1.05] Re-analysis of dose-response 
meta-analysis by adding big 

data or missed individual 
studies 

(Fang et al. 
2018) 

BMI 43 
 

Prostate cancer 
incidence 

144687 1.02 [1.00 – 1.04]  

15 
 

Incidence of 
localised prostate 

cancer 

29493 0.97 [0.95 – 0.99] 

16 Incidence of 
advanced prostate 

cancer 

8410 1.06[1.00 – 1.12] 
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2.2.2.2 Visceral obesity and prostate cancer 

The role of visceral obesity has emerged as a confounder that may be affecting the 

association between obesity and prostate cancer.  There are two main types of fat in 

the human body. White adipose tissue (the white fat) that is mainly located in 

subcutaneous and visceral fat sites, and is associated with obesity and metabolic 

comorbidities; and brown adipose tissue (the brown fat) that is responsible for 

thermogenesis and energy dissipation, and is negatively associated with obesity and 

the related metabolic complications (Gonzalez et al. 2017).  Excess visceral fat is 

associated with cardiovascular complications and the development of diabetes 

irrespective of the subcutaneous fat deposition; however, subcutaneous fat is usually 

used to assess obesity (Ding et al. 2017; Hiuge-Shimizu et al. 2012). This raises the 

question, is excess peri-prostatic fat (an example of visceral fat) causally associated 

with prostate cancer incidence and aggressiveness? Section 5 reviews the role of peri-

prostatic fat in prostate cancer from a preclinical and clinical perspective.  

 

2.2.3 Metabolic syndrome and prostate cancer  

There is a debate regarding healthy obesity (obesity that is not complicated 

with other metabolic conditions) versus non-healthy obesity (obesity that is 

complicated with other metabolic conditions) (Jung, Lee & Song 2017). Using 

metabolic syndrome instead of obesity as the variable of interest has been used in 

several studies to elicit whether having one or more of metabolic comorbidities 

increase the risk of prostate cancer incidence or aggressiveness. Several meta-

analyses have tried to uncover these associations (Table 3).  In summary, the 

association between metabolic syndrome and risk of prostate cancer incidence appears 

to be very weak, however the positive association between metabolic syndrome and 
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aggressive (high risk) prostate cancer appears to be more consistent, albeit, still 

debatable due to the heterogeneity of the studies, the way metabolic syndrome was 

defined and individual effect of each of the metabolic syndrome factors on prostate 

cancer (will be discussed in details in the subsequent section). 

2.2.3.1 Reasons for inconsistency among studies 

There are different reasons for this inconsistency; some may be related to 

study designs, while others are related to the effect of each component of metabolic 

syndrome on prostate cancer risk. 

2.2.3.1.1 Heterogeneity of the studies 

There was moderate to high heterogeneity between the studies included in 

these meta-analyses (based on the difference in studies' design, risk of bias and the 

clinical characteristics) (I2= 60% to 78% (Esposito et al. 2013), I2= 74% to 85% 

(Gacci et al. 2017)).  

2.2.3.1.2 Definition of metabolic syndrome 

The factors used to define metabolic syndrome may have an impact on the 

conclusions. The IDF definition of metabolic syndrome included obesity as an 

essential component in the definition, while the WHO, and the NCEP ATP III 

definitions do not include obesity as an essential component to define metabolic 

syndrome (Table 1).  In the Gacci et al. meta-analysis there was a slightly detectable 

association between metabolic syndrome and prostate cancer incidence (RR= 1.17, 

95%CI =  [1.0- 1.36]), but when restricted to studies using only the NCEP ATP III 

definition, no association was detected (OR= 1.09, 95%CI = [0.93, 1.27]) (Gacci et al. 

2017). However, the definition of metabolic syndrome did not have an impact on the 
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association between metabolic syndrome and prostate cancer in the meta-analysis by 

Esposito et al. (Esposito et al. 2013). 

2.2.3.1.3 Epidemiological and demographical factors 
 

Epidemiological, social, and factors related to prostate cancer screening may 

have also influenced the results of these meta-analyses. In the meta-analysis by 

Esposito et al., there was an association between metabolic syndrome and prostate 

cancer incidence among the studies conducted in Europe, but not amongst studies 

conducted in Asia or the United States (Esposito et al. 2013). This may be due to 

epidemiologically related confounders, including differences in metabolic syndrome 

prevalence between Europe, Asia, and the United States, differences in prostate 

cancer screening and detection rates, and differences in population ethnic 

composition.  

 

2.2.3.1.4 Medications 
 

One crucial factor often not assessed is the medication used for the treatment 

of diabetes, hyperlipidaemia, and hypertension and whether those conditions were 

controlled by the medication or not. There is growing evidence of risk reduction and 

an improvement in prostate cancer outcomes among men using metformin (the first-

line treatment for diabetes) (He, K et al. 2019; Pircher et al. 2018; Saini & Yang 

2018) and statins (medications used in the treatment of hyperlipidaemia) (Meng et al. 

2016; Papadopoulos et al. 2011; Raval et al. 2016; Zhang, Y & Zang 2013). The 

usage of antihypertensive medication mainly the angiotensin converting enzyme 

inhibitors were also suggested to reduce the risk of prostate cancer. However, the 

results of the studies are still controversial (Azoulay et al. 2012; Cao, L et al. 2018; 
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Mc Menamin et al. 2012; Rotshild et al. 2019).  Not accounting for medications may, 

therefore, confound study results. 

2.2.3.1.5 Effect of metabolic syndrome components on prostate cancer 
 

 The distinct effect of the individual metabolic syndrome components on 

prostate cancer incidence and aggressiveness is another possible reason for the 

differences between study findings. As mentioned above, obesity may be associated 

with detection bias and thus have both an inverse association with prostate cancer 

incidence, and a positive association with prostate cancer aggressiveness.  

The association between hyperlipidaemia and prostate cancer appears at most 

very weak.  In two meta-analyses, the associations between prostate cancer incidence 

and each of serum triglycerides (RR =0.95, 95%CI = [0.97, 1.04]) (Ma, HQ et al. 

2016) and serum cholesterol (RR =1.05, 95%CI = [0.97, 1.14])  (YuPeng et al. 2015) 

were not detected, however this may be confounded by the usage of lipid-lowering 

agents. The presence of diabetes is inversely associated with prostate cancer 

incidence, as shown in several meta-analyses (Bansal et al. 2013; Jian Gang et al. 

2015; Zhang, F et al. 2012). Many confounders may influence this finding, first, the 

competing risk effect, in that diabetic men have worse overall survival (Lee, 

Giovannucci & Jeon 2016) and thus may die before being diagnosed with prostate 

cancer (Grossmann & Wittert 2012). Second, the duration of diabetes may influence 

the risk of prostate cancer. Prolonged diabetes is associated with a state of 

hypoinsulinaemia, and consequently lower levels of leptin, higher levels of insulin 

growth factor (IGF) binding protein and thus lower levels of circulating IGF-I (a 

growth regulator and prostate carcinogenic promoting factor) (Kasper & Giovannucci 

2006). In a study on  51,529 men (4511 with prostate cancer), the risk of prostate 

cancer incidence was lower in those who have diabetes for a longer duration (HR= 
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0.75, 95%CI= [0.61, 0.93]) (Kasper, Liu & Giovannucci 2009). Third, the effect of 

medication, especially metformin, is suggested to be associated with decreased 

prostate cancer incidence (Deng et al. 2015; Wang et al. 2016). Finally, diabetes is 

also associated with lower PSA levels, which may lead to diagnosis bias and lower in 

prostate cancer detection rate among men with diabetes (Dankner et al. 2016; Sarma 

et al. 2015). 

Acting in the opposite direction, the presence of hypertension was associated 

with an increased risk of prostate cancer incidence in three meta-analyses ( (Gacci et 

al. 2017) RR= 1.10, 95%CI = [1.01, 1.19], (Esposito et al. 2013) RR= 1.15, 95%CI = 

[1.01, 1.30] and  (Liang et al. 2016) RR= 1.08, 95%CI = [1.02, 1.15]). One of the 

suggested mechanisms is the activity of the sympathatic nervous system that has been 

linked to androgen-dependent prostate cancer cell growth (De Nunzio et al. 2012). 

Thus the overall effect of the association between metabolic syndrome and 

prostate cancer incidence will be an amalgam of the opposing effects of diabetes and 

obesity from one side and hypertension from the other side.  Added to this, the 

influence of missing information regarding the duration of metabolic syndrome 

components, the medical control of the metabolic syndrome components and the 

biological effect of the medications together may confound the association between 

metabolic syndrome and prostate cancer incidence.  

2.2.3.1.6 Effect of metabolic factors on sex hormones  
 

Another confounder for metabolic syndrome and prostate cancer studies is 

serum sex hormone status. Prostate cancer is an androgen-dependent tumor, and the 

sex hormone milieu and the balance between serum estradiol and serum testosterone 

play a role both in the detection of prostate cancer (through effects on serum PSA 
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levels) and on prostate cancer biology and progression (presented in detail in section 

4).  

Sex hormones are affected by metabolic syndrome, mainly obesity, and to a 

lesser extent by the presence of diabetes and hyperlipideamia. Obesity causes an 

increase in the aromatase dependent conversion of testosterone to estradiol (in the 

adipose tissue), thus increasing serum estradiol and leading to a negative feedback 

effect on the hypothalamic-pituitary hormonal axis, and thereby a decrease in serum 

testosterone and an increase in the serum estradiol to testosterone ratio (Gautier et al. 

2013). Besides, with obesity, there are higher levels of leptin, which in large 

concentrations lead to a decrease in the responsiveness of the testicular Leydig cells to 

gonadotropin hormone stimulation (Saboor Aftab, Kumar & Barber 2013).  Weight 

loss is associated with an increase in serum testosterone in men and the restoration of 

a balanced sex hormone milieu (Corona et al. 2013; Escobar-Morreale et al. 2017). 

On the other hand, lower levels of testosterone lead to a decrease in total lean body 

mass and an increase in the total fat mass (Kelly, DM & Jones 2015). Testosterone 

therapy is associated with a decrease in the fat mass, primarily subcutaneous fat 

(Corona et al. 2016); however, there is still a debate regarding the effect of restoring 

testosterone levels on visceral fat (Grossmann, Mathis et al. 2015). 

Reduced levels of testosterone is a risk factor for metabolic syndrome 

development (Li, C et al. 2010), which has been observed among prostate cancer 

patients after initiation of androgen deprivation therapy (Bosco et al. 2015). 

Interestingly lower testosterone levels appear to be a risk factor for diabetes 

independent of obesity, suggesting a direct effect on glucose metabolism and insulin 

resistance (Selvin et al. 2007). However, this association may still be mediated, at 

least partially, through the effect of testosterone on body fat composition (Gates et al. 
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2013; Grossmann, Mathis et al. 2015). Reduced testosterone levels were also 

associated with an increased risk of hypertension, and elevated levels of serum 

cholesterol and triglycerides (Cheung et al. 2015).  This complicated relationship 

between sex hormones, obesity, and metabolic syndrome makes identifying their 

associations with prostate cancer challenging. In the next sections, the associations 

between sex hormones and risk of prostate cancer incidence and aggressiveness will 

be discussed in more detail.   
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Table 3: Meta-analyses of the association between metabolic syndrome and prostate cancer 

Author name Predictor of 
interest 

Number of 
studies 

Outcome RR [95% CI]  Comments 

(Esposito et al. 
2013) 

Metabolic 
syndrome 
≥3 versus <3 
components 

14 (total studies) Prostate cancer 
incidence 

1.12 [0.93- 1.60] - 27 years follow up 
- Some studies use metabolic syndrome ≥ 3 versus 0 
components 
- Effect of obesity defined using waist circumference 
was significant in all trials 
- Dyslipidaemia is not associated with risk of prostate 
cancer 

8 European 
studies 

1.20 [1.02- 1.66] 

4 US studies 1.03 [Not reported] P=0.39 

2 Asian studies 0.99 [Not reported] P=0.93 

(Xiang et al. 
2013) 

Metabolic 
syndrome 
(Different 
definitions were 
used) 

9 Prostate cancer 
incidence  

Prostate cancer 
incidence  
  
 
 
Advanced 
prostate cancer  

0.96 [0.85-1.09] - Different definitions of MS were used. 
- Included only longitudinal cohorts in the meta-

analysis 
- Follow up time range from 2 to 30 years 7 High Gleason 

score  
 

1.36 [0.90-2.06] 

4 Advanced stage  1.37 [1.12 - 1.68] 
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Study Variable of 
interest 

Number of 
studies 

Outcome OR [95% CI]  Comments 

(Gacci et al. 
2017) 

Metabolic 
syndrome 
(different 
definitions)  

18 studies for PCa 
incidence  
 
 

Prostate cancer 
incidence 
 
 
 
 
Aggressive 
prostate cancer 

1.17 [1.0- 1.36] 

 
 
 
 

- In sub-analysiss using only NCEP ATP III 
definition of metabolic syndrome, no association 
was detected between metabolic syndrome and 
prostate cancer incidence. (OR= 1.09, 95%CI = 
[0.93, 1.27]) 

6 studies for 
aggressive PCa 

1.77 [1.34 – 2.34]  
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Summary 
 
Prostate cancer is a metabolic disease with cell proliferation and progression being 

highly dependent on lipid and fatty acid synthesis, an androgen-dependent process. 

Metabolic syndrome components (including obesity, diabetes, hypertension, and 

hyperlipidaemia) and obesity per se have been associated with prostate cancer 

aggressiveness. However, the association with prostate cancer incidence remains 

unclear, albeit modest. The effect of metabolic syndrome components on developing 

comorbidities and all-cause mortality may attenuate the influence of metabolic 

syndrome on prostate cancer incidence through a competing risk effect. Also, obesity 

and diabetes are associated with lower PSA levels and thus, a possible detection bias, 

which adds to the complexity of the association with prostate cancer incidence. The 

effect of sex hormones on metabolic syndrome and vice versa and the effect of 

medication and the control of metabolic syndrome components may be influencing 

the development and aggressiveness of prostate cancer (at least partially).   
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3. The effect of metabolic factors on prostate cancer 
screening models    

3.1  Prostate specific antigen (PSA) and prostate cancer screening 

Prostate specific antigen (PSA) is a protease that is produced by the secretory 

epithelial cells of the prostate gland. Any condition that leads to a disruption of the 

normal prostate epithelial architecture will increase the diffusion of PSA into the 

prostatic tissue and from there into circulation (Ahn & Ku 2006; Gray et al. 2004). 

PSA is organ-specific, but it is not disease-specific; as such, levels in the blood can be 

elevated due to other pathological conditions of the prostate, such as benign 

hyperplasia or prostatitis. Measurement of PSA in the blood was approved in the 

United States of America in 1986 to monitor prostate cancer and in the 1990s for 

prostate cancer screening (Heidegger et al. 2015).  

In contrast to case-finding (which is selecting sub-group of population with some 

high risk features for further screening tests), prostate cancer screening (the term used 

through this thesis) is a population wide testing of asymptomatic men aiming for early 

diagnosis of prostate cancer (i.e. at earlier stages) (Ranson et al. 2018). 

Hypothetically, screening should lead to more effective treatment outcomes and a 

reduction in mortality. Initially, PSA screening led to a 21% reduction in the 

incidence of advanced stages and metastatic prostate cancer in the United States of 

America (Etzioni et al. 2008) and a 6% reduction in prostate cancer-specific mortality 

by 1997 (Barnholtz-Sloan et al. 2003), however this was offset by a 29% increase in 

the rate of detection of low grade and very early prostate cancer cases (over-

diagnosis) (Cooperberg et al. 2004; Etzioni et al. 2002). The screening-related over-

diagnosis is comparable to the prevalence rate of incidental prostate cancer during 

regular autopsy (36%) for men unknown to have had prostate cancer (in the pre-PSA 

screening era) (Etzioni et al. 2002). This has raised the question as to whether the 
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detection of very early prostate cancer is of any clinical value. However, there is a 

debate around the methods of calculating the rate of over-diagnosis, how to define 

over-diagnosis and the population used to estimate the effect of screening on 

advancing time to prostate cancer diagnosis (Draisma et al. 2009). There are different 

definitions of over-diagnosis with no current consensus on what is the best definition. 

Over-diagnosis can be defined as the number of men diagnosed with prostate cancer 

due to PSA testing who otherwise would not have been clinically diagnosed during 

their lifetime (Etzioni et al. 2002). It can also be defined as the number of men in 

whom diagnosis through PSA screening would not lead to extension of their lifespan 

(Etzioni et al. 2002; McGregor et al. 1998). An alternatively-used definition is 

detecting clinically insignificant tumours (smaller than 0.2 cm3 or with Gleason score 

less than 7) (Draisma et al. 2009).  Depending on how over-diagnosis is defined, the 

impact of screening on rates of over-diagnosis will potentially differ.    

Longer follow-up showed that the effect of screening on reducing prostate cancer 

specific mortality is at best modest (IRR = 0.79, 95%CI [0.69, 0.91]) (Ilic et al. 2018). 

The trade-off between the higher rates of over-diagnosis and modest reductions in 

prostate cancer-specific mortality is the main issue underpinning the debate regarding 

the value of prostate cancer screening.  

 

3.2  Prostate cancer screening studies 

During the past 20 years, five large randomised clinical trials have attempted to 

examine the effectiveness of prostate cancer screening in reducing prostate cancer-

specific mortality. However, there is variation between the results of these studies. 

The Quebec Prospective Randomised Controlled Trial (The Canadian Trial) 

was a two-arm randomised controlled clinical trial in which 46,486 men from the 
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electoral roll of the Quebec City area, Canada were randomised (2:1) in the period 

between 1988 and 1999 to either be invited to screening or not to be invited to 

screening (usual care). The study aimed to explore the effect of prostate cancer 

screening on prostate cancer-specific mortality. In this study, a PSA level of 3ng/ml 

was used as an indication for transrectal ultrasonography (TRUS). A biopsy was 

indicated based on PSA and the TRUS findings. Only 23.6% of the men invited to 

screening underwent the initial PSA testing and DRE, while 7.3% of men in the 

control arm had PSA screening test during the study after randomisation 

(contamination rate). After 11 years of follow-up, there was a 64% reduction in 

prostate cancer-specific mortality in the screening arm in comparison to the control 

arm (RR=0.36, 95%CI =[0.19, 0.65]) (Labrie et al. 2004).  

The European Randomised Study of Screening for Prostate Cancer (ERSPC) 

is a European multicentre randomised two-arm screening trial that explored the effect 

of prostate cancer screening in 162,387 participants on reducing mortality (Schroder 

et al. 2009). Men were recruited during the period between 1991 and 2003 (however, 

some centres started recruiting later (Netherlands, Finland, Italy, Spain, and 

Switzerland) or stopped recruitment earlier (Netherlands, Finland, Italy, and Spain)).  

The screening interval was designed to be every 4 years, with a PSA level of ≥3.0 

ng/ml providing the indication for biopsy. The overall compliance with the study 

protocol was 85.6%, and on average men were screened 2.3 times during the study 

duration. The rate of contamination in the control arm (having a PSA test) was 

estimated to be in the range of 23 to 40%.  After 13 years of follow-up, the ERSPC 

reported that screening increased the diagnosis of prostate cancer by 57% (RR=1.57, 

95%CI=[1.51,1.62]) and decreased risk of prostate cancer-specific mortality by 21% 

(RR=0.79, 95%CI = [0.69, 0.91]). However, all-cause mortality was not affected by 
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screening (RR=1.00, 95%CI = [0.98, 1.02]) (Schroder et al. 2014). The 16 year 

follow-up mortality report was recently published and it showed a similar reduction in 

the prostate cancer specific mortality with screening (RR=0.80, 95%CI=[0.72, 0.89]) 

with an increase in the absolute difference in prostate cancer specific mortality from 

0.14% at 13 years to 0.18% at 16 years (Hugosson et al. 2019). An important finding 

in this study is that the absolute risk reduction was increasing in magnitude over time, 

with one death avoided per 570 screened at 16 years of follow-up versus 781 screened 

at 13 years of follow-up, versus 979 screened at 11 years and 1410 at 9 years, 

suggesting a cumulative benefit of screening over time. 

The Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial is 

a multi-center randomised (1:1) controlled two-arm trial across the United States of 

America, which enrolled 76,685 men between 1993 and 2001. Men enrolled in the 

screening arm were offered annual PSA tests over six years, and annual digital rectal 

examinations for four years (Andriole, Gerald L et al. 2009).  A PSA level of 4ng/ml 

was considered a positive result, however, there was no protocol for further 

investigation after a positive test result. The decision for any subsequent investigation 

was left to the patient and his health care provider. After 13 years of follow-up, the 

cumulative incidence of prostate cancer was 12% higher in the screening arm 

(RR=1.12, 95%CI=[1.07, 1.17]), while there was no effect on prostate cancer-specific 

mortality (RR=1.10, 95% CI= [0.87, 1.36]), a marginal reduction in all-cause 

mortality was observed in the screening arm (RR=0.96, 95% CI= [0.93, 1.00]) 

(Andriole, G. L. et al. 2012). A report after 15-years of follow-up showed no effect of 

screening on prostate cancer-specific mortality (RR=1.04, 95%CI= [0.87, 1.24]) 

(Pinsky, Paul F et al. 2016).  The average compliance rate for PSA screening was 

84.1% in the screening arm. However, it was noted that 46% of men in the control 
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arm had had at least one PSA test in the year preceding randomisation (contamination 

rate), and a total of 86% of the control arm had at least one PSA test during the study 

(post-randomisation) and around 50% having had annual screening. After 17 years of 

follow-up there was still no detectable reduction in prostate cancer-specific mortality 

with screening (RR=0.93, 95%CI=[0.81, 1.08]), however, there were a reduction in 

high Gleason score (≥8) tumours at diagnosis (RR=0.89, 95%CI=[0.88, 0.90],]) 

(Pinsky, P. F. et al. 2018).  

The CAP Randomised Clinical Trial is a primary care-based cluster-

randomised trial that assessed the effect of low-intensity PSA-based screening (single 

– one time PSA test) on prostate cancer-specific mortality (Martin et al. 2018). 

415,357 participants from the United Kingdom were included in the study. A PSA 

level of 3ng/ml or higher was considered positive, and further biopsy was offered. 

The compliance with the study protocol was 40%, with a cumulative contamination 

rate of 10 to 15 % over ten years.  After a median of 10 years follow-up there was no 

detectable effect on prostate cancer-specific mortality (RR= 0.96, 95%CI= [0.85, 

1.08]), although there was a 19% increase in prostate cancer diagnosis in the 

screening arm (RR=1.19, 95%CI=[1.14, 1.25]), and prostate cancer tumours detected 

in the screening arm were less likely to be high grade (OR=0.68, 95%CI=[0.64, 0.73]) 

or of advanced stage (OR=0.68, 95%CI=[0.62, 0.75]). 

The Swedish Prostate Cancer Randomised Screening Study (Lundgren et al. 

2018) randomly selected 2400 men from a population of  27,464 men to the screening 

arm using a PSA test, DRE, and TRUS. In this study, compliance with screening was 

74%. PSA level of 10ng/ml, notably higher than the other studies above, was used as 

an indication for biopsy. After 20 years of follow-up, there was no effect of a single 

screening intervention on prostate cancer-specific survival (RR=0.97, 95%CI=[0.71, 
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1.23]). However, there was an increase in prostate cancer diagnosis with screening 

(RR=1.12, 95%CI=[1.08, 1.38]). In this study, there was an overall survival benefit 

with screening (RR=0.92, 95%CI=[0.86, 0.98]).  

There is disagreement between the results of the screening trials, with the 

Canadian and the ERSPC studies showing an effect of screening on reducing prostate 

cancer-specific mortality, while the other studies failed to show such an effect. This 

may be due to differences in study design including different PSA threshold levels 

used to trigger further investigations (the PLCO used PSA level of 4 ng/ml, the 

Swedish study used PSA level of 10 ng/ml, while the other studies used PSA level of 

3 ng/ml); PSA screening intensity (the CAP study and the Swedish study were using 

low-intensity screening (single PSA test), while the Canadian, the ERSPC and the 

PLCO were using more intense screening schedules); the “post PSA test” diagnosis 

protocol (the PLCO study has no pre-specified post-diagnosis protocol); and 

differences between studies in terms of compliance (the adherence to study protocol; 

the Canadian and the CAP studies had low compliance, while the PLCO, the ERSPC, 

and the Swedish studies have higher compliance rates (70% to 85%)), or screening 

contamination in the control arms (contamination rates of 7.3%, 20-40% and >85% in 

the Canadian, ERSPC and the PLCO studies respectively).  

Other factors may have contributed to the observed different results between 

studies. The positive result of the ERSPC study was suggested to be the result of a 

more effective treatment for prostate cancer cases diagnosed in the screening arm. In 

the ERSPC study, men who were diagnosed with prostate cancer in the screening arm 

were more likely to have radical prostatectomy as the primary treatment in 

comparison to the control arm (40.3% versus 30.3% for screening versus control 

respectively). However, this difference in treatment selection in the ERSPC study was 
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believed to have minimal if any effect on prostate cancer-specific mortality (Carlsson 

et al. 2019; Wolters et al. 2010).  Another difference between studies is in mean lead 

times (MLT). The MLT reflects the time by which prostate cancer diagnosis was 

accelerated as a result of screening relative to the estimated time to diagnosis if not 

screened (Draisma et al. 2009). Using an estimated MLT (EMLT) (which reflects the 

intensity of screening and diagnosis, with higher values indicating higher attendance 

for screening, more frequent screening and less conservative criteria for biopsy), the 

EMLT for the PLCO control arm was estimated to be only 25% less than in the 

screening arm (EMLT = 4.0 versus 3.1 for screening versus control respectively). 

Besides, the EMLT of the PLCO control arm was more than twice that of the ERSPC 

control arm (EMLT =4.0 versus 1.6 for screening versus control, respectively) 

(Tsodikov et al. 2017). These longer EMLTs in the PLCO control arm are results of 

more frequent PSA tests, more frequent biopsies (in the control arm of the PLCO 

versus ERSPC), less conservative criteria for biopsy and lower risk of prostate cancer 

death (in the PLCO versus ERSPC). After adjusting for the difference in the EMLT 

(intensity of screening and diagnosis), there was 27 to 32% reduction in the expected 

risk of prostate cancer death in the PLCO study compared to 25 % to 31% reduction 

in the expected risk of prostate cancer death in the ERSPC study. A pooled analysis of 

the PLCO and ERSPC studies found that screening is effective in reducing prostate 

cancer-specific mortality with an average of 16% (95%CI [4 %, 27%]) reduction in 

risk (after accounting for the different baseline risk of prostate cancer specific 

mortality in the PLCO setting relative to the ERSPC setting) (Tsodikov et al. 2017).  

The 16% reduction in prostate cancer death shown in the Tsodikov et al. pooled 

analysis is overlapping with the point estimate of the ERSPC study (RR= 0.80) and 

the lower confidence interval of the PLCO study (CI= [0.87, 1.36]), the CAP study 
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(CI= [0.85, 1.08]), and the close to lower confidence interval of the Swedish study 

(CI=[0.71, 1.23]). This may suggest that prostate cancer screening may be actually 

reducing prostate cancer specific mortality and that the problem is mainly due to the 

difference in the studies’ design, duration of follow up, the intensity of screening and 

contamination rate of the control arm, which leads to variation in the upper limit of 

the confidence interval. 

   

3.2.1 Systematic reviews and meta-analyses  

Two systematic reviews were published in 2018 to address the effect of prostate 

cancer screening on prostate cancer-specific mortality.  

Ilic et al. performed a systematic review and meta-analysis, including the five 

previously mentioned studies (Ilic et al. 2018). In this meta-analysis, screening had no 

effect on all-cause mortality (incidence rate ratio (IRR)=0.99, 95%CI=[0.98, 1.01], 

I2=0%, moderate risk of bias), and no effect on prostate cancer-specific mortality 

(IRR=0.96, 95%CI=[0.85, 1.08], I2=58%, serious risk of bias, inadequate concealment 

of allocation during randomisation resulting in potential for selection bias; inadequate 

or lack of blinding of participants and personnel, resulting in potential for 

performance bias; and some contamination) and inconsistency (ERSPC trial shows 

significant reduction while all other trials show no significant difference). There was a 

marginal decrease in the incidence of stage III/IV prostate cancer (IRR=0.87, 

95%CI=[0.72, 0.99], I2=87%, serious risk of bias, and inconsistency). One of the 

limitations of this meta-analysis is the low grade of evidence of its findings based on 

the heterogeneity in the studies methodology, as all the studies included were assessed 

as being potentially susceptible to performance bias (except the ERSPC study) and 

this has lowered the confidence of their effect size estimates (Ilic et al. 2018). This 
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meta-analysis also assessed the risk of complications from screening based on the 

PLCO and CAP studies, and it has shown that screening is associated with an increase 

in the risk of complications due to biopsy including sepsis (one man for every 1000 

men screened), and increase risk of complication due to treatment including urinary 

incontinence (three men for every 1000 men screened), and erectile dysfunction (25 

men for every 1000 men screened). 

The United States Preventive Services Task Force (USPSTF) published another 

systematic review and meta-analysis of 36 studies (including randomized control 

studies, cohort studies and external validations of pre-biopsy risk calculators to 

identify aggressive prostate cancer) (Fenton et al. 2018). This systematic review 

concluded that PSA screening reduces prostate cancer-specific mortality but at the 

expense of increased false-positive results, complications, and over-diagnosis. Based 

on this systematic review, the USPSTF changed its recommendation from grade D 

(against prostate cancer screening) to grade C (advocating for an individualised 

approach to screening) (Grossman et al. 2018). 

In summary, randomised clinical studies have shown that prostate cancer 

screening has led to an increase in prostate cancer diagnosis, mainly of low stage and 

low-grade tumours (over-diagnosis), but a reduction in the diagnosis of the advanced 

stage – high-grade tumours. There was no effect of prostate cancer screening on all-

cause mortality, while the effect on prostate cancer specific mortality was modest. 

There are many differences between the studies in terms of study design, compliance, 

the intensity of screening, and contamination in control arms, thus pooled analyses 

that include these studies should be interpreted with caution.  
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3.2.2 The potential value of screening  

As discussed above, screening has led to an increase in the detection of early 

prostate cancer. However, the long-term benefit of early detection of prostate cancer 

and the long-term effects on mortality remains unresolved. One difficulty is the 

indolent course of prostate cancer, which requires screening studies to have a long 

follow up time to detect changes in prostate cancer-specific mortality.  In a Swedish 

population-based cohort study with 21 years of follow-up and 223 early-stage prostate 

cancer cases diagnosed during this period, prostate cancer-specific mortality was 

more than doubled in the period after 15 years of follow-up in comparison to the first 

15 years post-diagnosis (mortality rate for first 15 years 15/1000 person-years, 95%CI 

= [10, 21]; and 44/1000 person-years, 95%CI = [22,88], beyond 15 years of 

diagnosis) (Johansson et al. 2004). This suggests that detecting an effect on prostate 

cancer mortality requires very long follow up time to have a sufficient number of 

events. Another difficulty is that prostate cancer is a disease of older men. Older men 

are more likely to be offered non-curative treatment when they have localised disease 

due to frailty, having multiple chronic comorbidities, and reduced life expectancy. 

Data from the population-based registry, USA (SEER) showed that older men (more 

than 67 years old) who were diagnosed with localised prostate cancer and offered 

non-curative treatment options had higher rates of prostate cancer-specific mortality 

(HR=3.34, 95%CI=[1.97, 5.67]; in a Fine and Gray competing risk regression model 

adjusted for age at diagnosis, year of diagnosis and PSA level) when compared to men 

who received curative treatment (Aizer et al. 2014). Thus the under-treatment of older 

men may increase the risk of mortality from prostate cancer and thus mask any 

reduction in the prostate cancer-specific mortality due to screening. 
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Early detection of prostate cancer has another advantage from an economic 

point of view. Detecting patients in low or intermediate risk stages leads to a 

reduction in the cumulative cost of prostate cancer treatment of more than 25% 

(treatment costs include primary treatment and subsequent disease and treatment 

complication costs) (Gordon et al. 2018). 

In summary, prostate cancer screening can be of benefit in terms of detecting 

prostate cancer in early stages, which may have survival benefits over longer follow 

up periods in addition to the economic advantages of detecting prostate cancer in 

early stages. 

 

3.3  Other factors that may attenuate prostate cancer screening  

In addition to the previously mentioned factors that are related to screening trial 

design, other factors may attenuate the efficacy of PSA based prostate cancer 

screening models. A delay in prostate cancer diagnosis due to PSA based detection 

bias (for example lower PSA levels as a result of using 5ARIs medications) has been 

suggested to increase the risk of aggressive prostate cancer and prostate cancer-related 

mortality (Sarkar et al. 2019). In such a situation, factors that affect circulating PSA 

levels may subsequently affect the efficacy of current prostate cancer-screening 

models. Studies have shown that obesity leads to lower PSA levels in the blood (this 

will be discussed in the next section and chapter 3). Thus it is possible that 

neglecting the effect of obesity may be altering the effectiveness of prostate cancer 

screening. Other factors that may affect prostate cancer screening are metabolic 

comorbidities (including diabetes, hypertension, and hyperlipidaemia), which may 

mask the effect of prostate cancer screening through the competing risk effect (will be 

discussed in section 3.3.2 and chapter 4). Thus identifying factors that may be 
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altering or masking prostate cancer screening effectiveness and subsequently selecting 

sub-groups of men who will benefit most from prostate cancer screening is essential 

to improve the efficacy and design of screening protocols. 

 

3.3.1 Obesity and PSA 

 
The effect of obesity on PSA levels has been widely studied in the past two 

decades, but several areas of debate remain. Current debates are concerned with (i) 

the underlying mechanism(s) by which obesity affects PSA levels, (ii) whether this 

effect is seen only in prostate cancer-free men or also in men with prostate cancer, and 

(iii) whether or not obesity attenuates the sensitivity of the PSA test to detect prostate 

cancer. 

3.3.1.1 The association between obesity and PSA and underlying mechanisms  

Several studies have explored the effect of obesity on PSA levels (Tables 4A 

and 4B). The majority of studies (13 studies out of 19 in prostate cancer-free men) 

concluded a negative association between PSA and BMI. Tables 4A and 4B 

summarise the studies in cancer-free and men with prostate cancer respectively that 

have explored the relationship between PSA and BMI and presents their explanations 

for the underlying mechanism through which BMI may affect PSA. 

  Most studies examined the haemodilution effect (the increase in plasma 

volume in obese men) as the underlying cause for lower PSA with obesity. However, 

an increase in BMI leads not only to an increase in plasma volume, but also a 

decrease in the serum testosterone levels (Woodard et al. 2012). The haemodilution 

effect and the reduction in serum testosterone may explain the change in PSA with 
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BMI.  In chapter 2, these mechanisms will be compared using data from the 

MAILES study. 

 

3.3.1.2 Prostate cancer diagnosis and the association between BMI and PSA 

The inverse association between BMI and PSA levels may be affected by the 

presence of sub-clinical or clinical prostate cancer.  As mentioned previously, obesity 

is associated with lower PSA levels, which may mask the diagnosis of early (small 

size) prostate cancer. However, because of the delay in prostate cancer diagnosis, it is 

expected to have larger tumour volume over time, and thus higher PSA levels, which 

may mask the effect of obesity on PSA levels among men with advanced prostate 

cancer.    

In a study of 15,827 men who were referred for PSA testing in Sweden 

between 2010 and 2013 (Bonn et al. 2016), the inverse association between PSA and 

BMI was only observed in men who were not diagnosed with prostate cancer during 

the subsequent five years of follow-up. In another retrospective study of 14,293 

prostate cancer patients who underwent radical prostatectomy at the Mayo Clinic 

during the period 1987 to 2007 (Mitchell et al. 2011), there was no detectable 

association between preoperative PSA and BMI at time of surgery (ß coefficient = 

0.003, p= 0.72), nor was there a detectable interaction (p= 0.98) between PSA and 

BMI for the prediction of tumour volume using PSA levels. On the other hand, a 

retrospective study using two prostate cancer cohorts (the SEARCH and the DUKE 

cohorts) including 3390 prostate cancer patients (Freedland et al. 2008) showed that 

higher BMI at time of diagnosis was associated with lower PSA levels. A combined 

retrospective analysis of three different prostate cancer cohorts (the SEARCH, the 

DUKE and the Johns Hopkins cohorts) including data of 13654 prostate cancer 
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patients found that PSA at time of surgery was negatively associated with increasing 

BMI (Banez et al. 2007).  

 

3.3.1.3 The clinical significance of the effect of BMI on PSA 

 
The clinical importance of a negative association between BMI and PSA is 

whether it affects the accuracy of PSA to detect prostate cancer. In a study of 3471 

Asian men who were eligible for prostate biopsy because of high PSA levels, the PSA 

accuracy in predicting prostate cancer (using receiver operating characteristics 

(ROC)-derived area under the curve (AUC)) was 57% (95%CI =[54% to 61%]) in 

normal-weight men (BMI 23 to 25 kg/m2), 61% in overweight (95%CI = [58% to 

65%]) and 54%  (95%CI =[38% to 71%]) in obese men (Oh et al. 2013). However, 

this difference was not significant (p-value  = 0.11 and 0.75 for the difference 

between normal weight and each of overweight and obese respectively).  In a 

prospective cohort of 917 white European men, the accuracy of PSA as a predictor of 

prostate cancer did not differ between BMI groups (AUC 0.56 and 0.60 for normal 

weight and obese respectively) (Banez et al. 2014). An age-adjusted BMI-PSA model 

designed by Harrison et al. did not increase the accuracy to predict prostate cancer in 

comparison to the NICE guidelines PSA value threshold (sensitivity 0.80 and 0.79 for 

NICE guidelines thresholds and age-PSA-BMI adjusted model respectively) (Harrison 

et al. 2016).  

There are several limitations in the studies that attempted to adjust the PSA 

levels according to BMI groups; this includes retrospective study designs, the lack of 

information on ethnicities, history of other factors that may affect PSA levels or 

prostate cancer risk which includes diabetes, medications like statins, metformin, and 
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5 alpha-reductase.  Of course, the alternative hypothesis is that BMI adjusted PSA 

models do not improve the predictability of the PSA test. 

Recently Chow et al. built a model that predicts the expected level of the 

tumour PSA secretion based on tumour stage, grade, and tumour volume (Chow et al. 

2018). In this model, there was a significant difference between the expected PSA 

level and the measured PSA level (delta PSA) in men with severe obesity (2.5ng/ml 

versus 8ng/ml for delta PSA in normal and very obese men respectively, p<0.01).  

Using mediation analysis, BMI was the significant predictor of the difference between 

the measured and the expected PSA levels (b= 0.25, SD = 0.08, p= 0.002).  

Chow et al. analysis suggest that obesity may lead to an underestimation of 

prostate cancer risk and possibly a delay in prostate cancer diagnosis (detection bias). 

PSA based detection delay (associated with the use of 5ARIs) was suggested to 

increase the risk of prostate cancer-related mortality (HR=1.39, 95%CI= [1.27, 1.52]) 

(Sarkar et al. 2019). There is a possibility that higher BMI may lead to 

underestimation of prostate cancer risk and thus a delay in diagnosis which may 

explain partially the positive association between obesity and advanced-stage prostate 

cancer (Fang et al. 2018; Xie et al. 2017) and prostate cancer related mortality (Cao, 

Y & Ma 2011; Zhong et al. 2016). However, despite this possibility, there are still no 

recommendations to consider BMI factors when interpreting the PSA results in 

clinical practice.   
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Table 4A: Studies exploring the effect of BMI on PSA in prostate cancer-free men 

Studies including prostate cancer-free men 

Author and 
year 

Population 
(N) 

Ethnicity 
background 

Range/ Median 
Age 

Mean BMI 
kg/m2 or % 

obese 

Mean PSA 
(ng/ml) 

Effect of obesity on PSA Explored 
mechanism 

Comments 

(Gray et al. 
2004) 

1405 Mixed 40 - 69 Not 
mentioned 

Not 
mentioned 

Total PSA was 18% lower in 
men with BMI >34 

Not done  

(Baillargeon 
et al. 2005) 

2779 Mixed 20 - ≥70 34% obese 1.32 PSA decreases linearly with an 
increase in BMI groups 

Not done  

(Barqawi et 
al. 2005) 

4458 Mixed 60 years 19% obese 1.1 Men with BMI≥30 have lower 
PSA levels across all age 

groups 

Not done National screening cohort – No 
data about future PCa diagnosis 

(Ochiai, 
Fritsche & 
Babaian 
2005) 

653 Mixed 62 27.2 5.5 No correlation detected between 
PSA and BMI 

The result of the multivariable 
regression model was not 
statistically significant, 

although the association was in 
the negative direction 

Not done Suggest effect of obesity on 
PSA to be through the effect of 

body size (BMI) on prostate 
volume. 

(Teas et al. 
2005) 

77 African 
American 

52.5 28.5 
36.3% 
obese 

1.1 No statistically significant 
interaction detected between 

PSA and BMI 

The suggested 
effect is through the 
lower levels of E1 
in men with high 

BMI on PSA levels 

Participants were attending PCa 
screening clinic and have PSA 
level below the threshold, with 
no history of PCa – No data on 

future diagnosis 
(Ahn & Ku 

2006) 
2032 Mixed 36 23.5 0.85 A statistically significant 

negative association between 
PSA and BMI 

Not done  
 

(Fowke et al. 
2006) 

299 White 
Caucasian and 

African 
American 

40 - 79 28.2 
32% obese 

0.73 PSA decreased with increasing 
BMI, with a statistically 

significant trend for men with 
age less than 60 years 

Not done  

(Hutterer et 
al. 2007) 

616 White French 
Canadian 

58 26.2 
13.3% 
obese 

1.8 No statically significant 
association between PSA and 

BMI 
 
 

Not done The study cohort is men who 
underwent prostate cancer 

screening. 
No data about screening result 
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Author and 
year 

Population 
(N) 

Ethnicity 
background 

Range/ Median 
Age 

Mean BMI 
Kg/m2 or % 

of obese 

Mean PSA 
(ng/ml) 

Effect of obesity on PSA Explored 
mechanism 

Comments 

(Kim, YJ et 
al. 2007) 

8640 Korean 52.8 25.5 
41.1% 
obese 

1.1 A statistically significant 
negative association between 
PSA and BMI mainly in age 
groups less than 60 years old 

Not done Older age group had a small 
sample size for those in obese 

groups.  

(Chia et al. 
2009) 

2714 Mixed Asian 59 24.1 
36.3 % 
obese 

1.5 A statistically significant 
negative association between 
PSA and BMI mainly in the 

elderly age group 

Not done - No data about the future 
diagnosis of PCa 

- Asian BMI was used for 
categorization 

(Grubb et al. 
2009) 

28,380 Mixed 62.3 27.6 
23.5% 
obese 

1.5 A statistically significant 
negative association between 

PSA and BMI 

The negative 
association 

explained by the 
haemodilution 

effect 

Data from the PLCO study. 
Included men who are PCa free 

during the first 6 years of 
screening. 

(Ohwaki et al. 
2010) 

19,367  50 23.7 
3% obese 

0.7 Higher BMI was weakly 
correlated with lower PSA  

PSA concentration 
increase with 

increasing 
haematocrit 
suggesting 

haemodilution 
effect with obesity 

 

(Lopez 
Fontana et al. 

2011) 

413 South 
American 

59 28.8 1.4 BMI was negatively correlated 
with PSA 

Haemodilution and 
serum testosterone 

effect were 
explored.  

Results suggest 
haemodilution 
effect based on 

similar testosterone 
concentration in all 

BMI groups. 
 
 

 

(Li, F et al. 
2012) 

1444 Chinese 40 – 65 17.7 % 
obese 

(BMI>27.5) 

0.80 A statistically significant 
negative association between 

PSA and BMI 

Haemodilution 
effect based on 
consistent PSA 
mass with BMI  

PSA mass was calculated by 
two methods using haematocrit 

and BMI 
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Author and 

year 
Population 

(N) 
Ethnicity 

background 
Range/ Median 

Age 
Mean BMI 
Kg/m2 or % 

of obese 

Mean PSA 
(ng/ml) 

Effect of obesity on PSA Explored 
mechanism 

Comments 

(Kim, JH et 
al. 2014) 

907 Korean 66 24.3 
41% obese 
(≥BMI 25) 

5.95 No correlation between PSA 
and BMI 

Suggested 
haemodilution 

effect after 
adjusting for 

prostate volume 

Negative PCa biopsy but serum 
PSA ≥3ng/ml 

(Klaassen et 
al. 2016) 

8122 Mixed 62 21.4% 
obese 

5.6 A statistically significant 
negative association between 
PSA and BMI when adjusting 

for testosterone and DHT. 
 

The effect of 
testosterone and 
DHT can explain 
19% only of the 

change in PSA with 
BMI 

Data from the REDUCE study 

(Bonn et al. 
2016) 

15827 White 65 13.5% 
obese 

4.3 A statistically significant 
negative association between 

PSA and BMI in men who did 
not develop PCa 

Not done 735 men diagnosed with  PCa 
during follow up 

PCa: Prostate Cancer; BMI: Body Mass Index; PSA: Prostate Specific Antigen, DHT: Dihydrotestosterone 
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Table 4B: Studies exploring the effect of BMI on PSA in prostate cancer cases 
 
 
 

PCa: Prostate Cancer; BMI: Body Mass Index; PSA: Prostate Specific Antigen, DHT: Dihydrotestosterone 
  

Studies including prostate cancer cases 

Author and 
year 

Population 
(N) 

Ethnicity 
background 

Range/ Median 
Age 

Mean BMI 
Kg/m2 or % 

of obese 

Mean PSA 
(ng/ml) 

Effect of obesity on PSA Explored 
mechanism 

Comments 

(Banez et al. 
2007) 

13,654 Mixed  - This is a retrospective analysis 
from 3 different data-sets 

- Plasma volume was positively 
associated with increasing BMI 

- The plasma volume effect 
(PSA mass) was not evident in 

the John Hopkins cohort 
SEARCH 

(1373) 
61.1 30% obese 6.9 PSA significantly decrease with 

increasing BMI. 
 

The suggested 
effect is due to an 

increase in the 
Plasma volume in 

obese men 
(haemodilution) 

 

Duke 
Prostate 
Centre 
(1974) 

62.5 28% obese 6.2   

Johns 
Hopkins 
(10,287) 

57.8 16% obese 5.9   

(Freedland et 
al. 2008) 

 

3390 Mixed 61.5 28.2 8.9 A statistically significant 
negative association between 

PSA and BMI 

Not done  

(Mitchell et 
al. 2011) 

14293 Mixed 62 27.1 
26% obese 

 

9.6 No statistically significant 
association between PSA and 

BMI at time of surgery 

Not done No interaction detected between 
PSA and BMI for the 

predictability of tumour volume 
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3.3.2 Metabolic factors and the competing-risk effect 

Prostate cancer is primarily a disease of the elderly, an age group at higher risk 

of metabolic and cardiovascular-related comorbidities. The increase in the prevalence 

of comorbidities may represent another challenge for prostate cancer screening 

studies, as men may be dying from other causes before dying from prostate cancer, 

resulting in a competing risk effect (Matthes et al. 2018). This raises the question, 

who will best benefit from prostate cancer screening?   

An analysis using the ten-year follow-up data from the PLCO study has shown 

an interaction between comorbidities and the effect of screening to reduce prostate 

cancer-specific mortality (p=0.006 for the interaction). Thus screening of men with 

minimal comorbidities reduced the risk of prostate cancer-specific mortality 

(HR=0.56, 95%CI=[0.33, 0.95]), in comparison men with at least one significant 

comorbidity did not benefit from prostate cancer screening (HR=1.43, 95%CI=[0.96, 

2.1]) (Crawford et al. 2011). In addition to the competing risk effect, men with 

significant comorbidities are more often offered non-curative treatment modalities 

(Berglund et al. 2011; Marr et al. 2006), and the presence of comorbidities may lead 

to worse treatment outcomes and early progression (Alibhai et al. 2005). Interestingly 

in the 13-year follow up report of the PLCO study, no interaction was detected 

between screening and the presence of comorbidities (Andriole, G. L. et al. 2012). In 

the 13-year follow up report the authors used either “having no comorbidities” versus 

“having one or more comorbidities” (based on a modified Charlson score), which was 

different from that used by Crawford et al. The authors in the 13-year report have 

questioned the method used by Crawford et al., and concluded that the interaction 

between screening and comorbidities sensitive to the definition of comorbidities (i.e., 
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the conditions included). However, even when they used the same definition of 

Crawford et al. and combining the relative risk rate, no interaction was observed. 

 In light of these conflicting results of the 10 and 13 year reports, we will re-

examine the interaction between metabolic syndrome components and screening on 

the PLCO data (using the recently reported 17 year follow-up data) and explore the 

effect of this interaction on the effectiveness of prostate cancer screening on prostate 

cancer-specific mortality (chapter 4).  

 It is worth mentioning that a prevalent limitation of all of these analyses is that 

most of the studies that explored the competing risk effects on prostate cancer 

mortality are using historical data, and do not consider the improvement in medical 

management of cardiovascular diseases. Thus, those findings may not be directly 

transferrable to contemporary recent prostate cancer cohorts.   
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Summary  
 

The benefits of prostate cancer screening are still an area of debate. Prostate 

cancer screening reduces the risk of advanced prostate cancer diagnosis and may 

affect reducing prostate cancer specific mortality. The effect on reducing prostate 

cancer specific mortality seems to require a longer duration of follow-up (around 20 

years of follow up) to be observed. On the other hand, prostate cancer screening leads 

to increased over-diagnosis of prostate cancer (mainly early stage and localised) and 

increase the risk of biopsy related complications.  

Prostate cancer screening studies have reported divergent outcomes in regards to 

the clinical benefit of screening. One reason for this disagreement may be due to the 

difference in the study designs, rate of contamination in the control arm and rates of 

compliance with the studies’ protocols. Besides, other factors may affect the 

screening models.  Serum PSA decreases with obesity, with some studies suggesting 

that this may lead to an underestimation of prostate cancer risk and a delay in prostate 

cancer diagnosis. Also, the presence of comorbidities may attenuate the efficacy of 

prostate cancer screening due to the competing risk effect. Unfortunately, these 

factors have not been considered nor explored in most of the prostate cancer screening 

studies and may explain the disagreement between different studies assessing prostate 

cancer screening. 
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4. Prostate cancer and the sex hormone milieu  
 

4.1  The prostate gland and sex hormones 

The prostate gland is an androgen-dependent organ. The availability of 

testosterone (T) is controlled by sex hormone binding globulin (SHBG), and the 

conversion of testosterone to dihydrotestosterone (DHT) through the 5-alpha-

reductase (5AR) enzyme inside the prostate gland. At the time of puberty, the surge in 

androgen hormone levels leads to an increase in prostate gland volume through 

binding to the androgen receptor (AR) (Michaud, Billups & Partin 2015). Testicular 

Leydig cells are the primary source of testosterone production in men (90%), with the 

remaining 10% being produced by the adrenal glands. Once androgens bind to 

cytoplasmic AR, the hormone-receptor-complex shuttles into the cell nucleus and 

stimulate expression of numerous androgen-regulated genes that are responsible for 

prostate cell growth and survival (Tan et al. 2015; Tindall & Rittmaster 2008). 

In addition to androgens, estrogens play a significant role in prostate gland 

growth, acting mainly through estrogen receptors (ER) α and ß (Usoro et al. 2015). 

There are three forms of estrogen in males: estrone (E1), estradiol (E2) and estriol 

(E3).  Estradiol is the most potent estrogen in men and is mainly formed via the 

peripheral aromatisation of testosterone (80%), while the remainder (20%) is formed 

by Leydig cells (Vermeulen et al. 2002).  

The balance between estradiol and testosterone levels plays an important role in 

prostate gland development and pathogenesis. An increase in estradiol-to-testosterone 

ratio (E/T) during intrauterine life is responsible for squamous metaplasia within 

developing prostate epithelium (Zondek et al. 1986). Increased E/T is one of the 

underlying mechanisms for BPH pathology observed in elderly and African-American 

men (Prins et al. 2007). 
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4.2  Prostate cancer and serum sex steroids 

The sex hormone milieu may be an important link between the risk of prostate 

cancer and metabolic factors. In section 2.2.3.1.5, the effect of metabolic factors on 

sex hormones was summarized. In the current section, evidence linking sex hormones 

and prostate cancer risk will be presented.     

4.2.1 Serum testosterone and the risk of prostate cancer  

Since 1941 when Huggins and Hodges showed that prostate epithelial cell 

growth is androgen-dependent (Huggins, Scott & Hodges 1941), androgen 

deprivation has become the standard of care in treating men with advanced prostate 

cancer (Sartor & de Bono 2018). Since the Huggins and Hodges finding, it has been 

suggested that higher serum testosterone may be associated with an increased risk of 

developing prostate cancer (Rhoden & Morgentaler 2004), and thus speculated that 

testosterone replacement therapy for men with prostate cancer and those on androgen 

deprivation therapy (ADT) could increase the risk of prostate cancer recurrence 

(Yassin et al. 2019).  Testosterone is converted inside the prostate to DHT through the 

action of the 5-alpha reductase (5AR) enzyme. The levels of intraprostatic DHT are 

associated with BPH, and thus the decrease in the levels of DHT through the usage of 

5AR enzyme inhibitors (5ARIs) has been the treatment of choice for BPH (Parsons et 

al. 2012; Rittmaster 2008; Roehrborn et al. 2002; Wurzel et al. 2007). This section 

will summarise available data regarding the association between testosterone and risk 

of prostate cancer.  
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4.2.1.1 Endogenous testosterone and risk of prostate cancer incidence and 

aggressiveness 

In the Endogenous Hormones and Prostate Cancer Collaborative Group 

(EHPCCG) individual-level meta-analysis that included data from 18 prospective 

studies (matched case-control studies and randomised trials with 3886 prostate cancer 

cases and 6438 controls), no association was detected between levels of serum total 

testosterone and the risk of prostate cancer incidence (testosterone RR=1.1, 

95%CI=[0.96, 1.3]) nor with risk of high grade prostate cancer (testosterone RR= 

0.98, 95%CI =[0.76, 1.25]). Also, no association was detected between serum levels 

of free testosterone (testosterone that is unbound to either SHBG or albumin in the 

blood, which may represent the physiologically active form of testosterone) and either 

risk of prostate cancer incidence or high-grade prostate cancer. There was also no 

evidence of a dose-response relationship, nor of heterogeneity between the studies 

(Roddam et al. 2008). A meta-analysis in 2016 that included an additional four studies 

also did not detect an association between serum total testosterone and risk of prostate 

cancer incidence (RR=0.99, 95%CI=[0.96, 1.02]), with no evidence of heterogeneity 

(I2 = 0%) (Boyle et al. 2016). A more recent meta-analysis including 20 prospective 

studies (with 6933 prostate cancer cases and 12,088 controls in total) showed that, 

compared to men in the 2nd to 10th percentiles, men in the lowest 10th percentile for 

free testosterone have less risk of developing prostate cancer (OR=0.77, 

95%CI=[0.69, 0.86]), and less risk of low grade prostate cancer (OR=0.76, 95%CI = 

[0.67, 0.88]), but no detectable association with high grade prostate cancer (OR=1.56, 

95%CI=[0.95, 2.57]) (Watts et al. 2018). Similar to the EHPCCG meta-analysis, no 

association was detected between the risk of prostate cancer and total testosterone 

(OR=1.00, 95%CI=[0.90, 1.11]).  
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4.2.1.2 The effect of low testosterone and testosterone replacement therapy on 

the risk of prostate cancer 

The use of 5ARIs has been associated with a decreased risk of prostate cancer 

incidence through the reduction of intra-prostatic testosterone and DHT levels. The 

Prostate Cancer Prevention Trial (PCPT) reported a 24% reduction  (95%CI = 

[18.6%, 30.6%]) (Thompson, IM et al. 2003) and the REDUCE study showed a 23% 

reduction (95%CI = [9.9%, 35.3%]) (Andriole, G. L. et al. 2010) in risk of prostate 

cancer incidence with usage of 5ARIs. These results have been confirmed in two 

meta-analyses (RR=0.66, 95%CI=[0.52, 0.85]) (Monga et al. 2013) and (RR=0.74, 

95%CI = [0.55, 1.00]) (Wilt et al. 2008).  

In contrast to associations with reduced prostate cancer incidence with 5ARIs, 

several studies reported an increased risk of high-grade (Gleason score ≥7) prostate 

cancer among men using 5ARIs. This was shown in the PCPT study (RR=1.62, 

95%CI=[1.37, 1.93]) (Thompson, IM et al. 2003), in the long term follow-up of the 

PCPT study (RR=1.17, 95%CI=[1.00, 1.37]) (Thompson, IM, Jr. et al. 2013), a 

French trial (increase risk of Gleason ≥8, OR=1.21, 95%CI=[1.00, 3.21]) (Scailteux et 

al. 2018) and in a recently published population-based cohort study in which men 

using 5ARIs were more likely to have Gleason score ≥8 (25.2% versus 17% for none 

5ARIs users, p<0.001) (Sarkar et al. 2019).  However, this has not been replicated 

among other studies (REDUCE study: RR=1.53, 95%CI=[0.86, 2.73] (Andriole, G. L. 

et al. 2010) and CombAT study: RR=0.59, 95%CI= [0.26, 1.31] (Roehrborn et al. 

2011) or in pooled analysis of the two studies for risk of Gleason score ≥8 (RR=0.99, 

95%CI=0.39, 2.53]) (Monga et al. 2013) ). It is worth mentioning that the studies that 

did not detect associations between 5ARIs and high Gleason score tumours have very 
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wide confidence intervals, mainly in the positive direction. This could suggest a small 

positive association.   Detection bias has been suggested for the increased risk of 

high-grade tumours in a low androgen environment with lower PSA levels due to 

5ARIs delaying prostate cancer diagnosis (Sarkar et al. 2019), however it is also 

possible that a low androgen hormone milieu may promote aggressive prostate cancer 

due to differential growth responses or development of high grade tumours de novo 

(Watts et al. 2018). 

Interestingly, men with clinical hypogonadism and unstable serum total 

testosterone over prolonged time duration are at higher risk of developing prostate 

cancer, in comparison to those with stable serum testosterone (Xu et al. 2018; Zhang, 

X et al. 2019). Besides, testosterone replacement therapy has not been found to 

increase the risk of prostate cancer. Meta-analyses of studies on testosterone therapy 

among men with hypogonadism did not show an increase in the risk of prostate cancer 

(Cui et al: five randomized controlled studies for short term testosterone therapy: 

OR=0.74, 95%CI=[0.25, 2.19], I2 = 0%, three randomized controlled studies for long 

term therapy: OR=0.99, 95%CI=[0.24, 4.02], I2 = 0% (Cui et al. 2014); Boyle et al: 11 

placebo-controlled studies: OR=0.84, 95%CI=[0.31, 2.25], I2 = 0% (Boyle et al. 

2016); Elliott et al: 13 randomised controlled trials: OR=0.97, 95%CI=[0.43, 2.23], I2 

= 0% (Elliott et al. 2017)). One limitation of those meta-analyses is the low number of 

events (prostate cancer cases).  However, the same conclusion was reached in larger 

case-control cohorts.  In a nested case-control study using the national prostate cancer 

register of Sweden 38,570 prostate cancer cases were matched to 192,838 prostate 

cancer-free men; no association was observed between testosterone replacement 

therapy and risk of prostate cancer development (OR=1.03, 95%CI=[0.90, 1.17]). 

Interestingly men who were on testosterone replacement therapy have a lower risk of 



	 61	

aggressive (≥T3, Gleason score ≥8, positive lymph node or positive metastasis) 

prostate cancer (OR=0.50, 95%CI =[0.37, 0.67]) (Loeb et al. 2017). Another study of 

174,593 men, of which 58,617 received testosterone replacement therapy due of low 

serum testosterone, showed that testosterone therapy was not associated with 

increased risk of prostate cancer incidence (HR=0.90, 95%CI=[0.81, 1.01]) nor with 

risk of aggressive prostate cancer (HR=0.89, 95%CI=[0.70, 1.13]) (Walsh et al. 

2018). In a more recent study of 12,779 men diagnosed with hypogonadism, of which 

215 men developed prostate cancer during a median follow-up of 3.7 years, there was 

no association between testosterone replacement therapy and risk of prostate cancer 

incidence (HR=0.97, 95%CI=[0.71, 1.32]) (Santella et al. 2019). A recent meta-

analysis on testosterone therapy in high-risk prostate cancer patients on androgen 

deprivation therapy showed that testosterone therapy did not increase the rate of 

progression (biochemical recurrence) in this group of patients (rate of biochemical 

recurrence = 0%, 95%CI=[0.00%, 0.05%]) (Teeling et al. 2018). 

4.2.1.3 Summary of the association between testosterone and prostate cancer 
risk  
 

In summary, although prostate cancer is an androgen-dependent tumour, 

population-based and case-cohort studies have failed to show an association between 

serum testosterone and risk of prostate cancer incidence. There is some evidence that 

lower intra-prostatic testosterone levels may be associated with a lower risk of 

prostate cancer incidence (detection bias cannot yet be ruled out) and at the same time 

with a higher risk of developing aggressive prostate cancer. To date, there is no 

evidence that testosterone replacement therapy increases the risk of prostate cancer 

development. It appears that the stability of serum testosterone over a prolonged 

duration may be more important than a single time point assessment.   
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Several factors should be considered when interpreting the results of the 

studies about the association between serum testosterone and risk of prostate cancer.  

These factors include the variation in the time between assessment of serum 

testosterone level and time of prostate cancer diagnosis; the use of different assay 

methods (radioimmunoassay, chemiluminescence, fluoroimmunoassay) to assess 

serum testosterone (Roddam et al. 2008), ignoring hormone diurnal variation and long 

term variation over time and ignoring the presence of comorbidities and chronic 

illness. Also, not all the studies have examined the difference between both total and 

free testosterone and the risk of prostate cancer incidence or aggressiveness, nor 

considered the effect of other hormones on testosterone (mainly SHBG and estradiol), 

which may influence the associations with prostate cancer. Other factors that should 

be considered when interpreting the results of those studies are: the variation between 

serum androgen levels and the intra-prostatic androgen levels, which have been 

shown to have a low correlation (Cook et al. 2017), and variation in prostate tissue 

sensitivity to the changes in serum testosterone, which is known as the "Saturation 

Model". This model suggests that prostate tissue is very sensitive to low testosterone 

concentrations, but once the testosterone level exceeds a saturation point (usually 

around 8nmol/l), there are no more androgen-mediated changes in the prostate as 

androgen-androgen receptor binding has reached a maximum saturation (Khera et al. 

2014). Thus it may be intraprostatic androgen levels that are associated with risk of 

prostate cancer rather than the circulating androgen levels, but this hypothesis requires 

further confirmation.  

The association between serum testosterone and risk of aggressive prostate 

cancer may be non-linear. A number of studies have shown that high-grade prostate 

cancer is associated with both the highest and the lowest testosterone percentiles even 
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after adjusting for other sex hormones (estradiol and SHBG) (Capogrosso et al. 2017; 

Izumi et al. 2017; Salonia et al. 2012). Thus a U-shaped association may relate serum 

testosterone to the risk of high-grade prostate cancer. 

 

4.2.2 Estrogens and prostate cancer risk 

Estrogen receptors (ER) have an important role in prostate cancer initiation 

and progression. ERα promotes cancer cell proliferation as well as being involved in 

the initiation of hyperplasia, inflammation, dysplasia, and squamous metaplasia of 

prostate cells (Nicholson & Ricke 2011). ERα is expressed in aggressive tumour 

epithelial cells (high Gleason score) and is involved in the initiation of carcinogenesis 

of prostate cells (Ricke et al. 2008). ERβ regulates epithelial growth of the prostate 

and is thought to be protective against neoplastic transformation (Weihua et al. 2001). 

However, it has been reported as overexpressed in bone and lymph node metastases 

(Lai et al. 2004). The decrease in levels of ERβ during prostate cancer progression is 

associated with a decrease in the levels of E-cadherin and thus associated with 

increases in the metastasis potentiality (Nelson et al. 2014). ERβ has five isoforms, 

each having a different role in prostate cancer. ERβ2 was found to be the dominant 

isoform for prostate cancer, followed by ERβ1 and ERβ5 (Leung et al. 2010). The 

ERβ2 and ERβ5 are associated with a shorter time to metastasis development while 

ERβ1 has a role in the inhibition of proliferation, decreasing hyperplasia and acting as 

tumour suppressor gene, its expression decreases with prostate cancer progression 

(Dey et al. 2012). However, the role of ERß in prostate cancer should be considered 

with caution primarily because of a lack of standardised guidelines for assessing the 

specificity and functionality of the ERß antibody (Andersson et al. 2017). 
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Although estrogen has been previously used as a treatment for prostate cancer 

(acting via negative feedback action on the hypothalamus-pituitary hormonal axis and 

thus leading to lower serum testosterone levels), it may also be involved in the 

pathogenesis of prostate cancer. One of the mechanisms of prostate progression to 

advanced stages is through androgen receptor mutation (Centenera et al. 2018). 

Preclinical studies have shown that estradiol can activate both wild-type androgen 

receptor and mutated androgen receptor (T877A) in a prostate cancer cell line 

(LNCaP) (Susa et al. 2015). Furthermore, stromal-derived prostate cancer cells can 

synthesise estradiol from testosterone and secrete cytokines under the regulation of 

estradiol (Machioka et al. 2015). Animal studies have shown that there is a 

requirement for both testosterone and estrogen in prostate cancer initiation and 

progression (long term treatment of mice with estradiol and testosterone leads to 

100% rate of prostatic adenocarcinoma) (Bosland, Ford & Horton 1995; Ozten et al. 

2010). It has also been suggested that higher estradiol levels can partially explain the 

observed racial differences in the risk of prostate cancer incidence and aggressiveness 

in Africans and African-Americans (Abd Elmageed et al. 2013).  

 

4.2.2.1 Studies exploring the association between serum estrogens and risk of 
prostate cancer incidence and aggressiveness  

 
Several clinical and epidemiological studies have explored the association 

between serum estrogens, mainly estradiol, and risk of prostate cancer incidence and 

aggressiveness. In the Endogenous Hormones and Prostate Cancer Collaborative 

Group (EHPCCG) meta-analysis there was no detected association between serum 

estradiol and risk of prostate cancer (RR=0.93, 95%CI=[0.77, 1.11]) nor risk of high-

grade prostate cancer (RR=0.85, 95%CI =[0.63, 1.15]) (Roddam et al. 2008). Since 
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this meta-analysis, further studies have explored the relationship between serum 

estradiol and the risk of developing prostate cancer. In a prostate cancer cohort study 

on 539 prostate cancer patients who were diagnosed between 2001 and 2005 at Dana-

Farber Cancer Institute, no association between highest estradiol quartile and Gleason 

score was observed (OR=1.01, 95%CI=[0.63, 1.63]) (Sher et al. 2009). Similarly 

another case-cohort study (within the Osteoporotic Fractures in Men cohort study of 

community-dwelling men) that included 1652 controls and 275 prostate cancer cases 

with 5 years follow-up showed no association between serum estradiol and risk of 

prostate cancer incidence (HR=0.95, 95%CI=[0.67, 1.34]) (Daniels et al. 2010). In a 

nested case-control study using data from the PCPT trial including 1798 cases and 

1798 controls, no association was detected between highest estradiol quartile and the 

risk of prostate cancer incidence (OR=1.23, 95%CI=[0.95,1.56]) or high-grade 

prostate cancer (OR=1.11, 95%CI=[0.71, 1.73]) among men not using 5ARIs (the 

control group) (Yao et al. 2011). Another nested-case control study on a sub-cohort 

from the PLCO study (with 195 controls and 195 advanced-stage prostate cancer 

cases) showed no association between highest estradiol quartile and aggressive 

prostate cancer (OR=0.80, 95%CI=[0.43, 1.48]) (Black et al. 2014). 

In summary, cohort and case-cohort studies have failed to detect an 

association between serum estradiol and risk of prostate cancer development or 

aggressiveness. Given the associations observed in lab studies, it is surprising that so 

little has been observed at the population level. If true associations do exist, then there 

may be some other possible reasons for their lack of detection. One reason may be the 

unknown status of estrogen receptor activity, which has a dual function on prostate 

cancer pathogenesis (as mentioned above).  Besides, higher levels of estradiol may 

have a negative feedback effect on the hypothalamus-pituitary hormonal axis, which 
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may lead to lower levels of serum testosterone and affect the association between 

estradiol and prostate cancer risk. Other factors are similar to those mentioned above 

for testosterone, including the method of analysis used, the presence of other factors 

that may affect estradiol levels (medications, chronic illness) as well as the variation 

in the time between estradiol assessment and diagnosis of prostate cancer. Of course, 

there may be no true association between serum estradiol and risk of prostate cancer; 

however, this can only be concluded after addressing all the limitations in the 

available study designs. 

 

4.2.3 E/T ratio and prostate cancer risk  

The physiological functions of estradiol and testosterone generally act in 

opposite directions with regards to prostate function. Consequently, assessing the 

balance between these two sex hormones may provide a better picture of the effects of 

sex hormones on different physiological and pathological conditions than considering 

each hormone separately (van Koeverden et al. 2019). 

Few studies have explored the association between estradiol-to-testosterone 

ratio) with prostate cancer incidence and aggressiveness (Table 5 and Figure 4). One 

study showed an inverse association between E/T and prostate cancer incidence 

(OR=0.45, 95%CI=[0.26, 0.81]) (Tsai et al. 2006). There was a positive association 

between E/T and aggressive prostate cancer in one study (OR=3.02, 95%CI= [1.29, 

7.04]) (Platz et al. 2005), a negative association between E/T and aggressive prostate 

cancer in another study (OR=0.27, 95%CI=[0.12, 0.59]) (Black et al. 2014), and a 

non-linear association with aggressive prostate cancer in third study (significant 

association with 2nd and 3rd E/T quartiles, but not with the 4th quartile, p=0.38 for 
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trend) (Schenk et al. 2016). Other studies were not able to detect any association with 

prostate cancer incidence or aggressiveness (Table 5 and Figure 4). 

  Certain factors may be confounding the results of these studies. One of those 

factors is that the evaluation of E/T was done at a single time point, which may not 

represent the lifetime change of the E/T. The only study that showed a negative 

association between E/T and prostate cancer incidence assessed the E/T at middle age 

(median 34 years old) with an average of 34 years follow-up (Tsai et al. 2006). In 

regards to the association between E/T and prostate cancer aggressiveness, there is 

heterogeneity in how aggressiveness was defined. Some studies used only Gleason 

score to define aggressive prostate cancer (Daniels et al. 2010; Schenk et al. 2016; 

Sher et al. 2009), while other studies used a combination of Gleason score and T stage 

(Black et al. 2014; Severi et al. 2006; Tsai et al. 2006). Combining T stage with 

Gleason score may not be optimal as the effect on T stage may be influenced by 

factors that delay diagnosis (for example lower PSA levels due to lower testosterone, 

obesity, and/or use of 5ARIs), while the effect on Gleason score may not be 

influenced by these factors or possibly affected in the opposite direction.  Finally, one 

more factor that may influence the association of prostate cancer aggressiveness with 

sex hormones is that in most studies, there was no discrimination between Gleason 

scores 3+4 and 4+3 for defining prostate cancer aggressiveness. 
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Figure 4: The association between estradiol to testosterone ratio and risk of prostate cancer incidence and aggressiveness. 

The	frequencies	of	estradiol	to	testosterone	values	divide	into	four	equal	groups.				
	
	

Odds	ratio	of	prostate	cancer	incidence		 Odds	ratio	of	prostate	cancer	aggressiveness		
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Table 5: Studies exploring the association between estradiol-testosterone ratio and the risk of prostate cancer and prostate cancer 
aggressiveness 

Author   PCa 
cases 

Controls  Outcome  Assessment 
E/T ratio  

Covariate 
adjustment  

Race  Aggressive 
PCa (%) 

Aggressive 
definition  

Associations with E/T 
Reference = 1st Q 

Comments 
 

(Platz et 
al. 2005) 

460 460 PCa 
incidence 

At baseline  Age, time of day, 
year of blood 
draw, PSA, 
SHBG 

Mixed  32% GS≥7 Incidence 
2nd Q: OR= 1.17 [NR, NR] 
3rd Q: OR = 0.86 [NR, NR] 
4th Q: OR = 1.25 [0.79, 1.99] 

- Nested case-
control in a follow-
up study.  
- Used Conditional 
logistic model. 

Aggressive 
PCa 

Aggressiveness 
2nd Q: OR= 2.06 [NR, NR] 
3rd Q: OR = 0.90 [NR, NR] 
4th Q: OR = 3.02 [1.29, 7.04] 

(Severi et 
al. 2006) 

524 1859 PCa 
incidence  

At baseline  Age, country of 
birth 
(Adjusting for 
BMI, smoking 
and education did 
not change the 
results)  

White  17% T3 or T4, N +ve 
or M +ve or 
GS>7 

Incidence 
2nd Q: HR = 1.13, [0.83, 1.54] 
3rd Q: HR= 1.01, [0.75, 1.37] 
4th Q: HR= 0.90, [0.69, 1.27] 

- Cox model. 
- Australian study.  
- Did not adjust for 
SHBG. 
- Follow up cohort 
study- nested case-
cohort.  

Aggressive 
PCa 

Aggressiveness 
2nd Q: HR= 0.93, [0.46, 1.9] 
3rd Q: HR= 0.91, [0.47, 1.8] 
4th Q: HR= 1.47, [0.79, 2.7] 

(Tsai et al. 
2006) 

325 650 PCa 
incidence 
 

Middle age Age, and T for E, 
SHBG and TE 
and E for T and 
for E and T with 
SHBG 

Mixed  29% T3-4  & /or M 
+ve & /or 
poorly 
differentiated or 
undifferentiated 
grade  

2nd Q: OR = 0.56, [0.36, 0.83] 
3rd Q: OR = 0.57, [0.35, 0.93] 
4th Q: OR = 0.45, [0.26, 0.81] 

- Conditional 
logistic regression. 
- NB: ET ratio 
decrease risk of Pca. 
- Adjusted for T in 
E/T model. 
- Matched – case – 
control.  
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Author   PCa 

cases 
Controls  Outcome  Assessment 

E/T ratio  
Covariate 
adjustment  

Race  Aggressive 
PCa (%) 

Aggressive 
definition  

Associations with E/T 
Reference = 1st Q 

Comments 
 

(Sher et al. 
2009) 

539 0 Aggressive 
PCa 

At diagnosis  Age, SHBG, 
BMI, and PSA 

Mixed   47 % GS≥7  2nd Q: OR = 0.74,  [0.46, 1.2] 
3rd Q: OR = 1.0,  [0.63, 1.64] 
4th Q: OR = 1.10, [0.68, 1.8] 
 

Cases only  

(Daniels et 
al. 2010) 

275 1652 PCa 
incidence  

At baseline  Age, race, study 
site, BMI, person-
time 

Mixed  50%  GS≥7 2nd Q: HR = 0.90, [0.65, 1.3] 
3rd Q:  HR = 0.83, [0.59, 1.25] 
4th Q: HR = 1.00, [0.70, 1.43] 
 

Case-cohort 

(Black et 
al. 2014) 

195  195 Aggressive 
PCa 

At baseline  Age, BMI, 
SHBG, FH, 
smoking  

White non 
hispanic 

100 % Stage ≥III & / 
or GS≥7 

2nd Q: OR = 0.48, [0.26, 0.89] 
3rdd Q: OR = 0.50, [0.26- 0.97] 
4th Q: OR = 0.27, [0.12, 0.59] 
 

- Logistic 
regression model  
- Nested case-
control PLCO 

(Schenk et 
al. 2016) 
 
 
 
 

1025 1037 PCa 
incidence 

At baseline  Age, race, FH, 
BMI,  
SHBG,  
S.  Cholesterol, 
Physical activity, 
History of DM 
 

White and 
black and 
hispanic 

21%  GS≥7 Incidence 
2nd Q: OR = 1.28, [1.00, 1.64]  
3rd Q: OR = 1.10, [0.85, 1.40] 
4th Q:OR = 1.12, [0.87, 1.50] 
 

- Used logistic 
regression models 
- Nested Case-
control. 
- 7 years follow 
up Aggressive 

PCa 
Aggressiveness 
2nd Q: OR = 1.71, [1.09, 2.69],  
3rd Q: OR = 1.64, [1.04, 2.6]  
4th Q: OR = 1.32, [0.81, 2.2] 

 
NR: Not Reported; E: Estradiol; T: Testosterone; E/T: Estradiol to Testosterone ratio; Q: Quartile; PCa: Prostate cancer, FH: Family history, BMI: Body Mass Index; DM: Diabetes: SHBG: 
Sex hormone binding globulin; PSA: Prostate Specific Antigen; OR: Odd ratio; GS: Gleason Score; S.: Serum
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Summary  
 

The associations between sex hormones and prostate cancer incidence and 

aggressiveness are complex. Serum testosterone is not linearly associated with 

prostate cancer incidence, and the stability of serum testosterone over time may be 

more critical. Lower serum testosterone can be associated with aggressive prostate 

cancer, with studies suggesting a U-shaped association between serum testosterone 

and aggressive prostate cancer after adjusting for other sex hormones (estradiol and 

SHBG). Although preclinical studies suggest a role for estradiol in prostate cancer 

pathogenesis, the association between estradiol and prostate cancer incidence and 

aggressiveness in population-based and case-control studies remains unclear. The 

balance between estradiol and testosterone should theoretically provide a better 

picture of the sex hormone milieu and its influence on prostate cancer risk than each 

hormone separately. However, the results of such studies have revealed inconsistent 

results.  

The association between serum sex hormones and prostate cancer incidence and 

aggressiveness may be influenced by numerous factors, including the timing of sex 

hormone assessment relative to prostate cancer diagnosis, the methods by which sex 

hormones are analysed (radioimmunoassay, chemiluminescence, 

fluoroimmunoassay), the factors that confound sex hormones levels (including 

obesity, metabolic comorbidities, chronic illness, and medications (5ARIs)), and how 

aggressiveness is defined (using only Gleason score or a combination of Gleason 

score and T stage). In chapter 5 we will show that using a different definition of 

aggressive prostate cancer (high Gleason score ≥8, instead of high-risk, a combination 
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of high stage and Gleason score) markedly alters the association between sex 

hormones and prostate cancer incidence and aggressiveness.       
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5. Peri-prostatic adipose tissue: the metabolic micro-
environment of prostate cancer 
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Peri-prostatic adipose tissue: the metabolic
microenvironment of prostate cancer
Zeyad D. Nassar*†‡, Adel T. Aref*†‡, Dushan Miladinovic§, Chui Yan Mah*†‡,
Ganesh V. Raj¶, Andrew J. Hoy§ and Lisa M. Butler*†‡
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Emerging data have linked certain features of clinical prostate
cancer (PCa) to obesity and, more specifically, increased
adiposity. Whereas the large number of clinical studies and
meta-analyses that have explored the associations between
PCa and obesity have shown considerable variability,
particularly in relation to prostate cancer risk, there is an
accumulating weight of evidence consistently linking obesity
to greater aggressiveness of disease. In probing this
association mechanistically, it has been posited that peri-
prostatic adipose tissue (PPAT), a significant component of
the prostate microenvironment, may be a critical source of
fatty acids and other mitogens and thereby influences PCa

pathogenesis and progression. Notably, several recent studies
have identified secreted factors from both PPAT and PCa
that potentially mediate the two-way communication between
these intimately linked tissues. In the present review, we
summarize the available literature regarding the relationship
between PPAT and PCa, including the potential biological
mediators of that relationship, and explore emerging areas of
interest for future research endeavours.

Keywords
adipocytes, obesity, peri-prostatic adipose tissue, prostate
cancer, tumour microenvironment

Introduction
Prostate cancer (PCa) is the most commonly diagnosed
cancer in men in developed countries and the second most
common cancer worldwide [1]. The past 30 years have seen a
progressive increase in the incidence of PCa, to an extent that
cannot be explained solely by the implementation of PSA-
based testing programmes. This increase in PCa incidence has
largely mirrored the increase in the prevalence of obesity and
metabolic syndrome [2,3]. While there are conflicting reports
on the effect of obesity on PCa incidence [4], there is an
increasing body of evidence demonstrating associations
between obesity and more aggressive carcinoma, poor
treatment outcome and higher risk of cancer-specific
mortality for PCa [5,6]. A range of mechanisms have been
proposed to underpin the effects of an obese environment on
PCa behaviour, including increased systemic inflammation,
hyperinsulinaemia, altered adipokine profiles and increased
lipid availability [7,8]. Enhanced synthesis and uptake of

lipids are key hallmarks of PCa and are regulated by
androgen signalling (the key driver of PCa pathogenesis),
reviewed in Butler et al. [9]. Taken together with observations
that increased local adipose tissue amounts, specifically peri-
prostatic adipose tissue (PPAT), may be associated with
higher grade or aggressiveness of disease (Table 1), obesity-
mediated change to the size of this lipid depot may be an
important contributor to PCa pathobiology. In this review, we
present the available data regarding the link between PPAT
and PCa aggressiveness, drawing from both clinical studies
and in vitro laboratory research, and consider potential
mechanistic pathways by which PPAT may influence PCa.

Methodology
We searched PubMed, Medline, Scopus and Google Scholar
using the following search terms: ‘periprostatic’, ‘adipocytes’,
‘adipose tissue’, ‘prostate’ and ‘cancer’ in various
combinations. There was no limitation on the year of

© 2018 The Authors
BJU International © 2018 BJU International | doi:10.1111/bju.14173 BJU Int 2018;121: Supplement 3, 9–21
Published by John Wiley & Sons Ltd. www.bjui.org wileyonlinelibrary.com
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publication or the publication language. The reference lists of
identified publications were also searched for additional
material.

Obesity and Prostate Cancer
Epidemiological Evidence Linking Obesity and
Prostate Cancer

Multiple epidemiological studies have identified associations
between obesity (often measured as body mass index (BMI)
and increased incidence of different types of cancer,
including oesophageal, gynaecological and colorectal cancers
[10–17]. Obesity has also been associated with poor
treatment outcome and increased cancer-specific mortality
[18]. Similar relationships have been observed for PCa,
although the findings are inconsistent; some studies report
an association between obesity and increased PCa incidence
[19–23], whilst others have shown no or only modest
associations with PCa incidence [24–26]. Meta-analyses
designed to examine robustly the association between
obesity and PCa incidence are equally inconclusive
[4–6,19,27–29].

Several studies have, however, identified significant
associations between obesity and the progression of PCa,
most commonly with the presence of a more aggressive
carcinoma and/or higher PCa-specific mortality [25,30–33], as
well as increasing the risk of biochemical recurrence [34,35].
Unlike the data for PCa incident risk, meta-analyses have
shown more consistent associations between obesity and
more advanced stages of PCa as well as higher disease-related
mortality [4–6,19,27–29].

In a study exploring the effect of pre-diagnostic BMI on
PCa incidence in the Prostate, Lung, Colorectal, and
Ovarian (PLCO) Cancer Screening Trial, BMI at the age of
50 years and at the study baseline was inversely associated
with total incidence [36]. Interestingly, one meta-analysis
found obesity to be associated with decreased risk of
localized disease but an increased risk of a more advanced
disease [37]. Several factors could be attributable for this
finding including the lower PSA levels in obese men [38],
the technical difficulties in examination, diagnostic
procedures and treatment methods, as well as potential
stage-specific interactions [39].

Proposed Mechanisms Linking Obesity and Prostate
Cancer

Causative mechanisms that have been proposed as
explanations for the potential link between obesity and PCa
aggressiveness have largely focused on alterations in the
host systemic milieu, such as increased circulating levels of
insulin and other growth factors, altered inflammatory
status and dyslipidaemia [7,8]. Alongside these systemic

changes, it is also evident that cells of the surrounding or
nearby tissue, such as stromal, endothelial, lymphocytes and
adipose stem cells, contribute to a supportive tumour
microenvironment [40]. Peri-tumoral adipose tissue and
other adipose beds that support metastatic disease promote
growth of a range of cancers through diverse mechanisms
including the release of growth factors, inflammatory
signalling activators, and the release of fatty acids as a
source of potential usable energy [41]. Adipose tissue is a
heterogeneous mix of cell types comprising resident
immune cells, fibroblasts, the stem cell population termed
‘pre-adipocytes’ and mature adipocytes, with mature
adipocytes alone able to promote tumour progression in
several types of cancer [42–44]. These considerations,
together with the close proximity of PPAT to the prostate,
have understandably stimulated interest in this understudied
adipose depot and its influence on PCa.

All Adipose Tissue Depots are not Equal

Adipose tissue is a metabolically active organ that can be
broadly classified into visceral and subcutaneous adipose
beds. Visceral adipose tissue releases more inflammatory and
growth factors compared with subcutaneous adipose tissue
[45], and a recent study by Lee et al. [46] reported that
visceral adipose tissue, and the visceral to subcutaneous
adipose tissue ratio, is an independent predictor for all-cause
mortality. Moreover, in 2004 Von Hafe et al. [47] found
that higher visceral fat identified by CT was associated with
higher risk of PCa. To date, very few data exist on the
phenotype of PPAT and how it relates to subcutaneous
adipose tissue and other visceral adipose beds. Differences
between the various adipose beds with respect to BMI
highlight the need to analyse more accurately the
associations between PCa incidence and aggressiveness with
the actual differential fat content of the body using
radiological methods.

Relationships Between Peri-Prostatic
Adipose Tissue and Prostate Cancer
Features
A range of studies have investigated the relationship between
PPAT thickness and/or density and PCa clinical features,
most during the past 4 years, and the impact of obesity on
these measures (summarized in Table 1 and below). While
there is no consistent definition of PPAT, it can be generally
defined as the adipose bed that surrounds the prostatic
surface (Fig. 1). Notably, the distribution of PPAT differs
across the distinct surfaces of the prostate gland [48]. Whilst
a fibro-muscular capsule normally separates the prostate
gland from the surrounding PPAT, invasion of PCa into
PPAT, resulting in the juxtaposition of PCa cells with cells of
the adipose tissue, is defined as extracapsular extension and
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patients with this pathological feature have poorer prognostic
outcomes [49–55].

Measurements of Peri-Prostatic Adipose Tissue using
CT

A common approach used to measure PPAT thickness in
PCa studies is CT. Most recently, Taussky et al. [56]
defined PPAT as the adipose bed located only anteriorly to
the prostate gland in a CT section at the level of the
intervertebral space at the L4 and L5 level. The authors
reported no significant correlation between BMI and PPAT
volume and density, nor between PPAT and PCa

aggressiveness, as defined by Cancer of the Prostate Risk
Assessment (CAPRA) score. Similar observations were
reported by Tiberi et al. [57], who defined PPAT as the
contour at the level of the superior border of the
symphysis pubis with exclusion of the tissue medial to the
levator ani muscles on both the anterior and posterior
aspects of the CT image, and van Roermund et al. [58],
who defined PPAT in a transverse section at the level of
the caput femoris and greater trochanter of the femur. In
the study by van Roermund, 31% of patients with normal
BMI had a high PPAT density (>75th percentile) and only
20% of the cohort population had high-grade disease [58].
Interestingly, these authors did report that total PPAT

In
tra

-o
p

M
RI

CT

prostate PPAT

Fig. 1 Matched intra-operative (top panel), MRI (middle panel) and CT (lower panel) images of peri-prostatic adipose tissue (PPAT) and its spatial
relationship to the prostate for a representative patient. Right panels depict the prostate and PPAT as orange and blue regions, respectively.
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area and PPAT density were associated with high-grade
disease, whereas BMI was not associated with high-grade
disease, using the same CT technique in a separate cohort
of patients including a group of patients who received
intensity-modulated radiotherapy, of whom 83% had
high-risk disease [59]. These studies included only white
populations.

Allott et al. [60] explored the association between PCa
aggressiveness and visceral and subcutaneous adipose tissue
or PPAT in black vs white patients who underwent
radiotherapy. The three types of adipose tissue were identified
by CT scan at the level of the symphysis pubis. BMI was
associated with increased risk of aggressive PCa (in terms of
Gleason score ≥7) in both black and white patients, while
visceral adipose tissue was associated with aggressive PCa
only in black patients. Obesity, measured by BMI, was
associated with PPAT area (r = 0.2; P < 0.001) and visceral
adipose tissue (r = 0.65; P < 0.001), but no significant
association was found between PPAT and risk of aggressive
PCa in either group of patients. One important observation
in their study was that, despite there being no significant
difference in BMI, black patients had significantly lower
amounts of visceral adipose tissue and PPAT than white
patients (P < 0.001 for both).

Measurements of Peri-Prostatic Adipose Tissue using
MRI

A number of studies have measured PPAT volume using MRI
[61–64]. For example, Salji et al. [64] assessed PPAT volume
by delineating the first visible facial boundary laterally, the
Denonvillier’s facia posteriorly, and symphysis pubis
anteriorly in a small group of patients with advanced PCa
before commencing androgen deprivation therapy. In that
study, higher PPAT volume was significantly associated with
the development of castrate-resistant PCa. Adding PPAT
volume to a predictive model improved the receiver-operating
characteristic (ROC) sensitivity (area under the curve 0.9 with
PPAT volume vs 0.8 without PPAT volume). Notably, there
was no significant association in this study between PPAT
volume, body weight or waist circumference.

Likewise, Woo et al. [61] found a significant correlation
between PPAT, measured by MRI, and Gleason score;
however, the correlation was low (R = 0.0228). Interestingly,
there was no association between BMI and PPAT, although
62% of the study population were non-obese. Tan et al. [62]
assessed the correlation between three separate measures in
MRI images and aggressive PCa in 234 men; in this case,
PPAT volume was measured by identifying the area of
adipose on the MRI cut from the level of the base to the apex
of the prostate. The PPAT ratio was calculated by dividing
PPAT volume by prostate volume. Another measurement
considered was the supra-pubic adipose thickness. PPAT

volume and PPAT ratio were significantly associated with
higher Gleason score, but the supra-pubic adipose was not.
Of note, PPAT ratio did not show significant correlation with
age, PSA level or BMI. Sensitivity analysis in this study
showed that age, PSA and BMI were poor determinates of
high Gleason score (0.56, 0.50 and 0.51, respectively), while
PPAT ratio had the higher determinate in the ROC analysis
(0.64). An important limitation of that study was that the
TRUS biopsy result was used as the reference standard
instead of the prostatectomy pathology result. Finally, Zhang
et al. [63] reported similar results in a small group of patients
(n = 184, 30% with high-risk disease) where PPAT area was
identified by MRI transverse section at the level of the
femoral head and greater trochanter of the femur. In their
study, there were significant associations between PPAT area
and both clinical stage and Gleason score, but not for BMI.
Recently, two clinical studies have also shown that PPAT
measured by MRI is an independent predictor for aggressive
PCa [65,66].

Other Techniques to Measure Peri-Prostatic Adipose
Tissue

Alongside CT and MRI, PPAT has also been determined
from images obtained for TRUS-guided biopsy procedures.
Using TRUS images, Bhindi et al. [67] used the shortest
perpendicular line from the pubic bone to the prostate to
determine PPAT thickness, which was associated with PCa,
more aggressive cancer and BMI. Again, ROC curves had an
area under the curve of 0.58 for PPAT to detect PCa, and
0.59 to detect high-grade PCa, which was comparable to PSA
and DRE and age as determinates.

Peri-Prostatic Adipose Tissue and Prostate Cancer
Outcome

The above studies collectively demonstrate that there is an
association between PPAT and PCa aggressiveness. PPAT
volume also predicts time to castrate-resistant PCa [64] but
its influence on other oncological outcomes of PCa are yet to
be reported. Interestingly, obesity increases the risk of
biochemical recurrence [34,35]; however, these studies did not
explore the contribution of PPAT. Further studies are
required to explore this association.

Summary: Clinical Peri-Prostatic Adipose Tissue
Studies

For detecting high-grade PCa, PPAT appears to have a
promising degree of sensitivity, irrespective of the method
used to determine the PPAT, and could be considered for
risk stratification of patients in the future. Despite this
finding, information about PPAT is still not included in PCa
registries [68]. The inclusion of PPAT-related data in existing
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registries and its prospective collection in biobanks will help
to elucidate the influence of PPAT size and composition on
PCa features, treatment outcomes and risk of recurrence.

Despite the range of approaches used to define PPAT,
measuring PPAT at the retropubic region seems to be
adequate, and the inconsistencies between the various study
findings are probably influenced more by the study
population than the method by which PPAT was identified.
Considering that most patients with PCa are now having
MRI as part of their staging and diagnosis evaluation,
identifying the PPAT via MRI images would be the preferred
method, being the most accurate and least operator-
dependent.

By contrast, the correlation between PPAT and BMI is
complex. There may be many reasons for this. Firstly, PPAT
is correlated with prostate volume, which is influenced by age
and may affect the association between BMI and PPAT.
Furthermore, BMI is not a robust indicator of adiposity
(neither subcutaneous nor visceral), and not all men with
high BMI have more visceral adipose and PPAT, and vice
versa. BMI only quantifies the relationship between height
and mass, and thus provides no insight into body
composition or metabolic health of obese adults. There is an
obvious need to identify more relevant and detailed
measurements of metabolic health when considering the role
of obesity in PCa. Collectively, these studies highlight the
complexity of the associations between PPAT, BMI and PCa
measures, some of which may be influenced by racial
differences.

Potential Mechanistic Links Between Peri-
Prostatic Adipose Tissue and Prostate
Cancer
The epidemiological evidence of an effect of obesity on PCa
progression, and the associations found between PPAT
thickness and PCa aggressiveness, suggest that expansion of
local adipose tissue can influence PCa behaviour. These
clinical findings have spurred laboratory-based studies of the
mechanistic pathways that may underlie this association. In
this section, we will describe the interactions observed
between adipose tissue and PCa cells (summarized in
Fig. 2).

Adipocytes in the Prostatic Microenvironment

Whereas intraprostatic adipocytes are extremely rare [69,70],
the extracapsular extension of PCa into the PPAT promotes
tumour-adipocyte cross-talk because of the close proximity
of these cell populations. This cross-talk may be further
amplified by the increased number of pre-adipocytes
observed in PPAT from patients with PCa compared to

patients with BPH [71,72], and PPAT being richer in
adipocyte precursors than other visceral adipose tissue [71].
The reciprocal interaction between adipocytes and tumour
cells re-programmes adipocytes to a less differentiated status
referred to as cancer-associated adipocytes, a phenotype
favourable to more aggressive tumours including PCa [73–
77]. Multiple lines of evidence suggest that cancer-associated
adipocytes, in turn, can enhance the malignant
characteristics of the cancer cells, ultimately producing a
vicious self-amplifying positive feedback circle [73,78,79]. In
vitro Boyden chamber migration assays have shown that PCa
cells or PCa conditioned media (CM) can attract pre-
adipocytes, and to a significantly greater extent than non-
malignant cells or their CM [72,80]. Importantly, this
interaction is not limited to the close proximity of the
prostate gland; in an elegant study, Lin et al. [80] showed
that human PCa cells injected in the right flank of athymic
nude mice can recruit pre-adipocytes transplanted into the
opposite flank, and this migration of the pre-adipocytes
enhances tumour growth and angiogenesis. The origin of the
recruited adipocytes in clinical samples still lacks solid
experimental evidence; while the PPAT is a likely source,
some investigators have suggested that PCa cells can
differentiate into adipocyte-like cells [81], while others have
implicated mobilization of adipocytes from visceral adipose
tissue through local vessels or systemic circulation [71,82],
although this mechanism has been questioned as being
incompatible with the chemo-physical properties of
adipocytes [83].

Reciprocal Interactions Between Adipose Tissue
and Prostate Cancer Cells

Culturing human PPAT with PC3 cell-derived CM enhances
secretion by the PPAT of adipokines (8–11 kDa secreted
proteins), TNF-a, interleukin (IL)-6 and osteopontin, and
increases mitochondrial DNA copy number and
metalloproteinase (MMP)-9 activity [73]. Moreover, pre-
adipocytes primed with PCa CM undergo neoplastic-like
transformation including genetic instability, mesenchymal-to-
epithelial transition, and formation of prostate-like neoplastic
lesions in vivo [84].

Prostate cancer is, in turn, influenced by adipocyte-secreted
factors that enhance its ability to proliferate, migrate and/or
invade [74,79,85–89]. Punch biopsies of human prostate
specimens or PPAT collected after prostatectomy revealed a
strong concentration gradient of the adipokine CCL7,
suggesting that the PPAT secretome passively diffuses from
PPAT into the tumour tissues to enhance the directed
migration of PCa cells [74]. The CM of PPAT contains
higher MMP activity compared with peri-peritoneal visceral
adipose tissue [79], and this MMP activity degrades
extracellular matrix proteins and promotes invasion of
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cancer cells into the surrounding tissues [90]. Direct
adipocyte-prostate cell cross-talk has been detected in co-
culture models of prostate cells with adipocytes. Mature rat
epididymal adipocytes influenced the growth and
differentiation of normal rat prostatic epithelium [91] or
human PCa [92,93] when co-cultured in a three-dimensional
collagen gel matrix. These effects were accompanied by
increased expression of the cytokines VEGF and PdGF 20-
fold [92], and activation of the PI3K pathway [93] in the
PC3 PCa cell line. However, these studies have shown
considerable variability; while PPAT CM showed a
stimulatory effect on PC3 and LNCaP cell migration in one
study [79], the effect was not significant in another [88].
Similarly, co-culturing rat epididymal adipocytes with PC3
cells increased PC3 proliferation in one study [92] but not
in a later study [93]. These differences probably reflect the
nature of the cell lines and experimental methodologies
used; a critical issue discussed in detail below.
Nevertheless, the functional significance of adipocyte–PCa
interactions is highlighted by a study using a subcutaneous
in vivo tumour model, in which co-injection of PCa cells

with pre-adipocytes resulted in larger tumours than injection
of unaccompanied PCa cells [94].

Pro-Inflammatory Effects of Adipose Tissue on
Prostate Cancer Cells

Obesity can be considered a state of chronic inflammation that is
characterized by increased secretion of inflammatory proteins by
adipose tissues [95]. Adipose tissues produce many
inflammatory and pro-mitogenic molecules, including leptin,
adiponectin, IL-6, IL-8, MCP-1, VEGF, CCL5, CCL7, visfatin
and TNF-a. At least some of these factors may also be produced
by infiltrating immune cells such as macrophages. Strikingly,
~30% of the 100 most significantly expressed genes in adipose
tissues that are correlated with body mass encode inflammation-
related genes [96]; however, the interaction between
inflammatory markers, insulin resistance, obesity and metabolic
syndrome is complex [97–100] and the current lack of detailed
metabolic phenotyping of patients with PCa makes it challenging
to determine the extent to which PPAT inflammation is a
consequence of obesity or metabolic syndrome.

Aggressive PCa

Obesity

PPAT

Cancer-Associated
Adipocytes

Inflammatory cells

Stem cells

Prostate Cancer cells

Adipokines/Cytokines TAG ATGL

ATGL

Fatty Acids

CPT1

CGI-58

Energy

Prostate Tumour

Proliferation
Angiogenesis

Migration
Metastasis

Adiponectin, Leptin,
IL6, TNFα, VEGF

Hormones

Metabolic
Substrates

Proteases
MMPs

?

?

Fatty Acids

Fig. 2 Model of how peri-prostatic adipose tissue (PPAT) may promote prostate cancer (PCa) aggressiveness and the influence of obesity. The
reciprocal interaction between adipocytes and tumour cells re-programmes adipocytes to a less differentiated status, referred to as cancer-associated
adipocytes (CAAs). In turn, CAAs secrete several adipokines, cytokines, hormones, enzymes and growth factors that may boost PCa cell growth and
metastasis. Fatty acids are also translocated from PPAT into the PCa cells, increasing energy production. Obesity drives inflammation within the PPAT,
and modifies PPAT constituents, transcriptomic, metabolic and endocrine profiles, potentially augmenting their secretome. These effects on the PPAT,
taken together with the documented systemic effects of obesity, may underpin the emerging associations between obesity and increasing PCa
aggressiveness.
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These inflammatory markers are also associated with PCa
promotion and progression both in clinical and in vitro
studies [101–103]. Notably, IL-6 secreted by PPAT from
patients with PCa was present at >375 times greater
concentration than in the matched patient serum, and
significantly with the disease pathological grade [86]. In a
recent study, PPAT inflammation defined by the presence of
crown-like structures was found to be associated with larger
adipocyte size, higher circulating levels of insulin and
triglycerides, and with high-grade PCa [104].

Adipose Tissue and its Constituents Modify Prostate
Cancer Cell Metabolism

Adipose tissues serve as reservoirs for triglycerides, and
adipocytes mobilize and locally release stored fatty acids via
lipolysis to the surrounding and distant organs [105].
Lipolysis is catalysed through a sequence of lipases, initiated
by adipose triglyceride lipase. Cancer cells cause metabolic
changes in the adipocyte that lead to activation of lipolytic
pathways and thus use adipocytes as source of energy, a
condition defined as cachexia [106]. This is consistent with
the increased expression of the lipolytic enzymes adipose
triglyceride lipase and CGI-58 detected in high grade PCa
[107]. Gazi et al. [108] have shown in a study using Fourier
transform infrared spectroscopy that there is strong evidence
of lipid translocation between adipocyte and PCa cells. This
phenomenon has been also reported for ovarian cancer [109]
and breast cancer [110], but there is little known about the
role of adipocyte-derived fatty acids as metabolic substrates
for PCa.

In addition to the potential for enhanced fatty acid release
and transfer to PCa cells, the composition of fatty acids in
the PPAT is commonly altered in PCa compared to benign
prostatic tissue [111,112]. For example, Quiroga et al. [111]
studied 23 patients (12 with PCa and 11 with BPH) and
showed that PPAT from patients with PCa had significantly
higher levels of palmitic and dihomo-gammalinolenic acids,
and lower levels of arachidonic acid. Similarly, Iordanescu
et al. [112] used magnetic resonance spectroscopy to show
that PPAT from patients with more aggressive PCa has a
higher ratio of monounsaturated/saturated fatty acids.
However, this relationship was not observed with high
Gleason scores (7 vs 6), which may be attributable in part to
those patients with Gleason score 7 being a mixed population
of 4 + 3 (only four patients) and 3 + 4 (13 patients). As fatty
acids are quantitatively important sources of energy for PCa
cells compared with glucose and glutamine, studies of the
uptake and differential utilization of these various fatty acids
by PCa cells, and their impact on PCa biology in a clinical
setting of obesity, remain important gaps in our
understanding and potential avenues for therapeutic
intervention.

Hormonal Influences of Peri-Prostatic Adipose Tissue
on Prostate Cancer Progression

Adipose tissues are endocrine organs with capacity to
synthesize, secrete and metabolize steroid hormones from
circulating precursors. While less is known about PPAT than
other adipose beds, adipose tissue contains multiple
androgens and androgen precursors, including testosterone,
dihydrotestosterone, androstenedione, progesterone and
dehydroepiandrosterone [113,114], which, in the case of
PPAT, provide a credible local extragonadal source of
androgens that may support PCa growth and metastasis.
PPAT also expresses aromatase enzymes, which convert
androgens to oestrogens [77], and abundant historical data
support the suggestion of a promoting role for oestradiol in
PCa pathogenesis and progression, and as a modifier of racial
differences in PCa incidence [115]. Age-related increases in
oestradiol/testosterone ratio in men predispose to PCa [116],
and a high ratio has been associated with increased risk of
aggressive PCa among male-to-female transsexuals [117]. In
addition, oestrogen can activate both wild-type and mutated
androgen receptors [118]. More detailed analyses of sex
steroid production and secretion in PPAT vs other visceral
and subcutaneous adipose, and the influence of PPAT size
and composition on these measures, are important areas for
future investigation.

Peri-Prostatic Adipose Tissue may Influence Obesity-
Induced Prostate Cancer Progression

Obesity modifies the metabolic and endocrine profiles of
multiple adipose tissues, resulting in increased release of
growth factors, hormones, adipokines and mobilization of
lipids and free fatty acids [74,119–123]. In addition, obesity
increases the rate of pre-adipocyte migration from white
adipose tissue, which may contribute to the obesity-induced
promotion of PCa progression [82,124,125]. Given the
consistent correlation between PPAT and aggressive PCa,
increasing attention has focused on obesity-related changes in
PPAT composition.

Venkatasubramanian et al. [126] reported that PPAT tissue
composition differs from that of the subcutaneous adipose
tissue in obese vs lean patients (obesity defined by BMI
>30 kg/m2). Specifically, the PPAT of obese men had
increased monounsaturated/saturated lipid ratio compared to
subcutaneous fat. In addition, obesity alters the PPAT gene
expression profile to favour hypercellularity and reduced
immune surveillance, thereby promoting a conducive
environment for PCa progression [78]. PPAT in obese men is
more metabolically and secretorily active than PPAT in lean
men. PPAT in obese men had higher MMP-9 activity [79],
and CM from these tissues induced PC3 PCa cell line and
endothelial cell proliferation more than CM from tissues in
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lean men [127]. PPAT from obese men exhibited increased
angiogenic capacity compared with that from lean men, as
evidenced by ex vivo measurement of T2 relaxation time
[127]. Obese patients with PCa exhibited increased expression
of the chemokine CXCL1, a concentration gradient of which
is needed for obesity-dependent recruitment of pre-adipocytes
[128].

Importance of Experimental Model Systems

Progress in understanding the biology and functional
consequences of adipocyte–PCa cross-talk has been hampered
by a lack of consistency in experimental conditions and model
systems used, resulting in substantial variability between
studies and laboratories. The choice of in vitro interaction
models between PCa cells and adipocytes, in particular, has a
significant impact on the observed effects on both cell types.
For instance, adipocyte co-culture using Boydon chambers
enhances RM1 PCa cell proliferation more than when RM1
cells are exposed directly to the adipocyte CM [85]. Another
important factor is the use of isolated adipocytes rather than
adipose tissue. The adipose tissue is a heterogeneous mixture of
cells consisting of mature adipocytes, pre-adipocytes (stem
cells), immune cells and fibroblasts, and thus the observed
effects might be caused or modified, at least partly, by cell types
other than adipocytes, or could be attributed to interactions
between these different cell populations. In addition, adipose
tissues are often sourced from varying anatomical depots; some
studies used visceral fats [73,88,127], while others used
epididymal adipose tissue [91–93]. Distinct adipose depots
exhibit different adipokine [45,129–131] and gene expression
[132] profiles and have different cellular composition. Further,
the metabolic activity of adipose beds differs, with omental
adipose tissue having increased expression of proteins involved
in lipid and glucose metabolism including HSP90, HSP70,
GAPDH and fatty acid binding protein 5 compared with
subcutaneous adipose [133]. PPAT in particular contains
higher MMP-2 and MMP-9 activity compared with adipose
tissue from the median pre-peritoneal visceral region [79], and
higher in vitro pro-angiogenic responses and viability effects on
PC3 cells than for subcutaneous adipose tissue [127]. Another
important source of diversity is the intrinsic heterogeneity of
the patients studied, their tumour subtypes and their individual
metabolic profiles. PPAT from obese and overweight men
exhibits overexpression of inflammatory adipogenic, anti-
lipolytic, proliferative, anti-apoptotic, and mild
immunoinflammatory genes compared with that from lean
men [78]. Ideally, the influence of disease stage and metabolic
profiles for PPAT and human PCa tissues should be taken into
account in future studies, and incorporation of patient-derived
explant or xenograft models offer the opportunity to study
reciprocal PCa-adipose interactions in systems that more
closely recapitulate the disease heterogeneity and complexity of
the clinical tissue microenvironment [134,135].

Concluding Remarks
The accumulated weight of evidence to date supports an
association between PPAT quantity and increased PCa
aggressiveness, although the mechanistic basis of this
association remains inconclusive and has limited the
development of potential interventions. Measuring PPAT
area or density showed more significant correlations with
PCa aggressiveness than measuring general obesity markers
BMI and waist circumference [59,61,63], while the
correlation of PPAT thickness with BMI or weight was non-
significant or weak [56–58,61,63,67]. Moreover, no
association has been demonstrated between subcutaneous
adipose thickness and PCa aggressiveness [59,61]; thus,
PPAT measurements may serve as an independent predictor
of PCa aggressiveness rather than as a surrogate measure for
body adiposity. Incorporating PPAT-related measures into a
PCa risk assessment model may improve PCa
prognostication and identify patients who may be in need of
more aggressive treatment methods. To facilitate this, large
prospective studies are required that take into consideration
the assessment of obesity, subcutaneous fat, visceral fat and
PPAT in determining risk of PCa incidence and
aggressiveness. Ideally, these would be accompanied by
ex vivo studies to examine functional readouts, such as the
secretome, of the PPAT from these patients and provide a
more robust mechanistic basis by which PPAT may
influence PCa pathogenesis.
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Abstract

Obese men have lower serum prostate-specific antigen (PSA) than comparably aged 
lean men, but the underlying mechanism remains unclear. The aim of this study was 
to determine the effect of obesity on PSA and the potential contributing mechanisms. 
A cohort of 1195 men aged 35 years and over at recruitment, with demographic, 
anthropometric (BMI, waist circumference (WC)) and serum hormone (serum 
testosterone, estradiol (E2)) PSA and hematology assessments obtained over two waves 
was assessed. Men with a history of prostate cancer or missing PSA were excluded, 
leaving 970 men for the final analysis. Mixed-effects regressions and mediation analyses 
adjusting for hormonal and volumetric factors explore the potential mechanisms relating 
obesity to PSA. After adjusting for age, PSA levels were lower in men with greater WC 
(P = 0.001). In a multivariable model including WC, age, E2/testosterone and PlasV as 
predictors, no statistically significant associations were observed between with PSA and 
either WC (P = 0.36) or PlasV (P = 0.49), while strong associations were observed with both 
E2/testosterone (P < 0.001) and age (P < 0.001). In the mediation analyses with PlasV as 
the mediator, the average causal mediation effect (ACME) explained roughly 20% of 
the total effect of WC on PSA (P = 0.31), while when E2/testosterone is a mediator, the 
ACME explained roughly 50% of the effect (P < 0.001). Our findings indicate that lower 
PSA levels in obese men, as compared to normal weight men, can be explained both by 
hormonal changes (elevated E2/testosterone ratio) and hemodilution. Hormonal factors 
therefore represent a substantial but underappreciated mediating pathway.

Introduction

Prostate cancer is the most common cancer affecting 
men in developed countries (Torre et al. 2015). Although 
the advent of prostate specific antigen (PSA) testing has 

resulted in earlier detection of prostate cancer, its role in 
decreasing prostate cancer-specific mortality is far less 
certain (Pron 2015). Contradictory findings of screening 

Endocrine-Related Cancer  
(2018) 25, 933–941

11

Key Words

 f prostate cancer

 f obesity

 f estradiol

 f testosterone

 f hemodilution

 f PSA

 f prostate cancer screening

25

Downloaded from Bioscientifica.com at 08/13/2019 09:31:18AM
via University of Adelaide -Internet



	 93	

	
	
	 	

Printed in Great Britain
Published by Bioscientifica Ltd.https://doi.org/10.1530/ERC-17-0438

http://erc.endocrinology-journals.org © 2018 Society for Endocrinology

934A T Aref, A D Vincent et al. Obesity reduces serum 
prostate-specific antigen

25:11Endocrine-Related 
Cancer

studies undertaken to date may reflect the impact of 
potential modifiers of PSA levels, with considerable 
attention focused on obesity. Men who are obese have 
consistently lower PSA concentrations in serum samples 
than non-obese men (Zhang et al. 2015, 2016, Bonn et al. 
2016). The predictive power of the PSA test was not altered 
by BMI (kg/m2), a relatively crude measure of obesity, in 
two independent studies (Banez et  al. 2014, Vidal et  al. 
2015). Other studies have shown that the sensitivity 
of PSA detection is decreased by approximately 16% in 
obese men (Negron et al. 2010), leading to the proposal 
that an obesity-specific PSA model is required to improve 
the sensitivity of the PSA blood test (Hekal & Ibrahiem 
2010, Liang et al. 2010). However, the development and 
implementation of such a model will be most optimally 
achieved with an understanding of the mechanisms 
underlying the relationship between obesity and serum 
PSA concentrations.

Currently, there are two major hypotheses to explain 
the reduced PSA levels in obese men (Fig. 1): the effect 
of hemodilution (Li et al. 2015, Klaassen et al. 2017) and 
low serum testosterone (Gates et al. 2013, Parikesit et al. 
2016). The former is the generally accepted explanation. 

Men with obesity have a larger plasma volume, which 
dilutes the serum concentrations of tumor markers 
such as PSA. Obesity is associated with lower serum 
testosterone levels (Gates et al. 2013, Parikesit et al. 2016) 
and, as the prostate gland is an androgen-dependent 
organ, lower levels of testosterone would be expected to 
associate with reduced prostate gland volume and PSA 
secretion. As significant weight loss has been associated 
with increased serum testosterone and PSA, as well 
as decreased plasma volume (Woodard et  al. 2012),  
both hormonal and hemodilution mechanisms are 
credible modifiers of PSA levels in a clinical setting of 
obesity.

A major shortcoming in the study of obesity-related 
changes in serum PSA, highlighted by several groups 
previously, is that some of the studies to date have been 
undertaken in cohorts of men diagnosed with prostate 
cancer, rather than cancer-free individuals (Banez et al. 
2007, Bonn et al. 2016). The aim of this study is to assess 
the influence of obesity on serum PSA concentrations 
and to explore the underlying mechanism for  
these changes in a longitudinal population-based  
cohort of men.

Figure 1
Hypothesized mechanistic pathways. Adiposity is associated with increases in both plasma volume and conversion of testosterone to E2. Each of these 
factors negatively influences serum PSA. DHT, dihydrotestosterone; E2, estradiol; PlasV, plasma volume; PSA, prostate specific antigen; SHBG, sex 
hormone-binding globulin
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Materials and methods

Study population and design

To study the effect of obesity on PSA as well as the 
underlying mechanisms, we used data from the Florey 
Adelaide Male Ageing Study (FAMAS) cohort. A full 
description of this cohort has been previously published 
(Martin et  al. 2007). Briefly, 1195 urban community-
dwelling men aged 35  years and over were enrolled 
and underwent baseline clinical assessments between 
2002 and 2005. A second wave of clinical assessments 
was undertaken between 2007 and 2010, and 950 men 
returned.

There was a mean of 4.9  years between the two 
assessment waves. Men with prostate cancer (n = 109 
(9%)) and men with at least one PSA assessment of more 
than 4 ng/mL (n = 116 (10%)), to ensure the exclusion of 
any undiagnosed prostate cancer cases, were excluded. 
For 710 men, PSA and other demographic factors were 
available at both assessment waves, while 260 men had 
only one assessment (Fig.  2). Supplementary Table  1 
(see section on supplementary data given at the end 
of this article) presents the number of men assessed at 
each assessment wave and the number of non-missing 
data per variable and thereby the data included in the 
analysis cohort.

Measures

Anthropometry measures (including weight, height 
and waist measurements as per Norton & Olds (2001)) 
and a fasting blood sample were taken twice, at the 
first baseline clinic visit and during the second wave 
of assessment. We included the following parameters 
from both assessment time points for our analysis: 
age at assessment (years), weight (kg), height (m), BMI  
(kg/m2) and waist circumference (WC) (cm). In addition, 
we included the following blood investigation, which 
was taken after 8- to 12-h fasting (Martin et al. 2007); PSA  
(ng/mL), total testosterone (nmol/L), estradiol (E2) 
(pmol/L), dihydrotestosterone (DHT) (nmol/L) and sex 
hormone-binding globulin (SHBG) (nmol/L). Testosterone 
was measured using a validated stable-isotope dilution 
liquid chromatography–tandem mass spectrometry; E2 
was measured using Immunolite I; PSA was measured 
using Abbott ARCHITECT. Plasma volume (PlasV) was 
calculated using Nadler’s formula (Nadler et  al. 1962): 
PlasV = ((0.3669 ×  (height in meters)3 + 0.03219 ×  weight 
in kg + 0.6041) ×  (1 − hematocrit)). PSA-mass (µg) was 
calculated as the product of PSA and PlasV.

Statistical methods

Demographic summary statistics are reported as mean 
(S.D.) for continuous and frequency (%) for discrete 
variables unless otherwise stated, and compared between 
obesity groups (categorized by WC) using non-parametric 
Mann–Whitney tests for continuous variables and Fisher’s 
exact test for discrete. Data from both assessment waves 
were included in the analyses of PSA. As the majority of 
individuals contributed two observations for both the 
outcome and the predictors, mixed-effect models were 
employed with a random intercept per individual. Non-
linearity was included via restricted cubic splines with 
3 degrees of freedom. After visual inspection of residual 
distributions, we log-transformed PSA and PSA-mass. 
PlasV was also log-transformed due to the assumed 
relation: log(PSA) = log(PSA-mass) − log(PlasV). Being 
concentrations, we also log transformed the hormonal 
factors. To estimate obesity and hormonal associations 
with PSA, we constructed age-adjusted linear models.

Initially to explore the mechanistic action of obesity 
on PSA, we compared the magnitudes of associations of 
WC with adjustment for PlasV and the hormonal variables 
separately. Full multivariable mixed-effects linear models 
were constructed with age, WC, E2, testosterone and 
PlasV as predictors. Of note, the magnitude of effect of 

Figure 2
Study flow-chart presenting the number and reasons for inclusion/
exclusion and the final analysis cohort.
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E2 and testosterone were equal but opposite, motivating  
the inclusion of the E2/testosterone ratio variable in 
all analyses. We used WC throughout due to it being 
more representative of abdominal fat as practically 
relevant methods to assess obesity. In the multivariable 
models missing data were imputed using multivariate 
imputation with chained equations (100 imputations). 
Sensitivity analyses for the multivariable models were 
performed by (i) a complete-case analysis, (ii) excluding 
WC, (iii) using BMI instead of WC, (iv) using the entire 
cohort without excluding those with PSA more than 
4 ng/mL and (v) repeating the analyses using linear 
regressions of the cohort for each assessment wave 
separately. Mixed-effects coefficient of determination 
(R2) was calculated as per Jaeger et al. (2017). Finally, we 
considered a mechanistic model where adiposity affects 
PSA via either the plasma volume pathway or hormonal 
pathway (Fig.  1). Being controlled through a feedback 
regulatory axis, there was no concern that PlasV has 
any causal effect on hormonal levels (E2, testosterone, 
DHT); equally, there was no reason to believe that 
hormonal factors would have any causal effect on 
the plasma volume, nor that obesity in our cohort is 
a result of primary hormonal dysfunction. As such, 

we employed mediation analyses (Tingley et  al. 2014) 
to estimate the direct effects of WC on PSA and the 
proportion associated with either plasma volume or the 
E2/testosterone ratio. These were complete case analyses 
adjusting for age. Linear associations are presented as 
estimated coefficient = β (95% CI). All statistical analyses 
were performed using R software (version 3.3.0, The R 
foundation for statistical computing, 2016).

Ethics

The FAMAS study protocol was approved by the Royal 
Adelaide Hospital Research Ethics committee and, where 
appropriate, the Aboriginal Health Research Ethics 
Committee of South Australia. Participants gave informed 
consent to be involved in the FAMAS study.

Results

The analysis cohort consisted of 970 men with a median 
age at accrual of 52  years (range 35–80). The mean 
(S.D.) baseline PSA concentration for the cohort was  
1.0 (0.7) ng/mL, baseline BMI was 29 (4) kg/m2, and 
baseline WC was 101 (12) cm (Table 1).

Table 1 Baseline demographic summary statistics.

   Non obese* Obese* Total  
P-value**N = 577 (59%) N = 393 (41%) N = 970

Age Mean (S.D.) 53 (11) 55 (11) 53 (11) 0.005
Median (range) 51 (35–80) 54 (35–79) 52 (35–80)

Adiposity WC (cm) Mean (S.D.) 93 (7) 112 (9) 101 (12) –
BMI (kg/m2) Mean (S.D.) 26 (3) 32 (4) 29 (4) <0.001

Missing 1 (<1%) 1 (<1%) 2 (<1%)
PlasV (L) Mean (S.D.) 2.8 (0.3) 3.2 (0.4) 3.0 (0.4) <0.001

Missing 6 (1%) 4 (1%) 10 (1%)
PSA PSA (ng/mL) Mean (S.D.) 1.03 (0.70) 0.97 (0.67) 1.00 (0.69) 0.07

PSA mass (µg) Mean (S.D.) 2.8 (1.9) 3.0(2.1) 2.9 (2.0) 0.19
Missing 6 (1%) 4 (1%) 10 (1%)

Hormonal Testosterone (nmol/L) Mean (S.D.) 19 (7) 16 (7) 18 (7) <0.001
Missing 2 (<1%) 3 (<1%) 5 (<1%)

E2 (pmol/L) Mean (S.D.) 89 (38) 99 (37) 93 (38) <0.001
Missing 5 (<1%) 5 (1%) 10 (1%)

DHT (nmol/L) Mean (S.D.) 1.9 (0.8) 1.5 (0.9) 1.8 (0.9) <0.001
Missing 32 (5%) 46 (12%) 78 (8%)

E2/testosterone Mean (S.D.) 5.1 (2.9) 7.0 (3.2) 5.9 (3.1) <0.001
Missing 5 (<1%) 5 (1%) 10 (1%)

SHBG (nmol/L) Mean (S.D.) 37 (17) 31 (15) 35 (17) <0.001
Missing 2 (<1%) 0 (0%) 2 (<1%)

Ethnicity Caucasian 375 (65%) 254 (65%) 629 (65%) 0.005***
Other 13 (2%) 0 (0%) 13 (1%)
Missing 189 (33%) 139 (35%) 328 (34%)

*Obesity defined as WC ≥ 102 cm; **P value of Mann–Whitney tests; ***P value of Fisher exact test.
DHT, 5α-dihydrotestosterone; E2/testosterone, estradiol-testosterone ratio; E2, estradiol; PlasV, plasma volume; PSA, prostate specific antigen; SHBG, sex 
hormone binding globulin; WC, waist circumference.
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Obesity

At baseline 307 men (32%) were obese (BMI ≥30 kg/m2) 
of whom 32 (10%) had a WC less than 102 cm. Based on 
WC, 393 men (41%) were classified as obese (≥102 cm) 
of whom 117 (30%) had a BMI less than 30 kg/m2. Both 
WC and BMI increased with age until roughly 60 years, 
and then decreased for older individuals (Supplementary 
Fig. 1).

In linear age-adjusted mixed-effect models, greater 
WC was associated with larger PlasV (β = 0.0068, 
95% CI = 0.0064, 0.0073), higher E2 (β = 0.0043,  
95% CI = 0.0026, 0.0060) and E2/testosterone (β = 0.014, 
95% CI = 0.012, 0.016) and reduced testosterone 
(β = −0.097, 95% CI = −0.011, −0.008) and DHT (β = −0.010,  
95% CI = −0.012, −0.008) (all P < 0.001). Similar 
associations were observed for BMI (data not shown).

Prostate-specific antigen

Serum PSA levels were higher in older men and lower 
in obese men (Fig.  3). After age adjustment, negative 
associations with PSA were identified with PlasV (P = 0.007) 
and both E2 (P = 0.002) and E2/testosterone (P < 0.001), 
and a positive association with testosterone (P = 0.008), 
but not with DHT (P = 0.18) (Table 2 and Supplementary 
Fig.  2). Of note, the magnitude of effect of E2 and 
testosterone was equal in opposite directions, suggesting 
that the magnitude of the ratio is related to PSA levels.

The magnitude of the association between PSA and 
obesity (in terms of either WC or BMI) was reduced 
when either PlasV or hormonal factors were adjusted 
for, with the greatest attenuation after adjustment for  
E2/testosterone. Adjustment for E2/testosterone and 
plasma volume led to attenuations of 48% and 18%, 
respectively (Supplementary Table 2). Notably, the negative  

association between E2/testosterone and PSA remained 
significant (both P < 0.001) with minimal attenuation 
when adjusting for age and either BMI or WC. In 
multivariable mixed effects regressions, age and  
E2/testosterone provided the greatest explanatory 
value for PSA, with plasma volume providing minimal 
additional value (Model 2 Fig. 4A and Table 2). Repeating 
these analyses without WC (Fig. 4B), adjusting for SHBG 
or DHT or replacing WC with BMI did not affect the results 
(Supplementary Table 3). Including men with PSA more 
than 4 ng/mL or restricting to a complete-case analysis did 
not change the conclusions (data not shown). Repeating 
Model 2 (Table  2) for each assessment wave separately 
using linear regression model (Supplementary Fig. 3A and 
B) resulted in similar conclusions, albeit with a slightly 
stronger PlasV effect at the first assessment.

In a complete-case analysis of Model 2 a total of 
R2 = 12.8% of the variance of PSA was explained, with age 
having the greatest effect (partial R2 = 11.1%) followed by 
E2/testosterone (R2 = partial 1.3%), while plasma volume 
explained only 0.2% of the variance.

Mechanistic pathways

Fat mass and prostate volume increase with age 
in an average male (Vermeulen et  al. 1999, Vesely 
et  al. 2003). Higher levels of body fat result in both 
increased plasma volume (Woodard et  al. 2012) and 
an increased E2/testosterone ratio (Gates et  al. 2013). 
Of interest is whether hormonal and/or hemodilution  
(plasma volume) mediate the adiposity’s effect in 
reducing PSA concentrations in obese men. In the 
mediation analyses with plasma volume as the mediator 
for WC on PSA (Table 3), the average causal mediation 
effect (ACME) was not significant (P = 0.31; Fig. 4C), the 
point estimate suggesting roughly one-fifth of the total 

Figure 3
Non-linear mixed effect estimated PSA levels by 
age and adiposity. BMI, body mass index; PSA, 
prostate specific antigen (ng/mL); Waist 
circumference (cm). A full colour version of this 
figure is available at https://doi.org/10.1530/
ERC-17-0438.

Downloaded from Bioscientifica.com at 08/13/2019 09:31:18AM
via University of Adelaide -Internet



	 97	

	 	

Printed in Great Britain
Published by Bioscientifica Ltd.https://doi.org/10.1530/ERC-17-0438

http://erc.endocrinology-journals.org © 2018 Society for Endocrinology

938A T Aref, A D Vincent et al. Obesity reduces serum 
prostate-specific antigen

25:11Endocrine-Related 
Cancer

Table 2 Mixed-effect model estimates of (log transformed) PSA with age, WC, plasma volume and hormones.

  Age-adjusted associations Model 1 Model 2

Coefficient (95% CI) P-value Coefficient (95% CI) P-value Coefficient (95% CI) P-value

Age 0.022  
(0.018, 0.025)*

<0.001 0.022  
(0.019, 0.026)

<0.001 0.022 (0.019, 
0.026)

<0.001

Adiposity WC −0.0050  
(−0.0079, −0.0020)

0.001 −0.0018  
(−0.0056, 0.0020)

0.36 −0.0017  
(−0.0055, 0.0021)

0.36

log(PlasV) −0.36  
(−0.62, −0.10)

0.007 −0.12  
(−0.46, 0.21)

0.47 −0.12  
(−0.45, 0.21)

0.49

Hormones log(E2) −0.13  
(−0.20, −0.05)

0.002 −0.18  
(−0.27, −0.09)

<0.001 – –

log(T) 0.11  
(0.030, 0.20)

0.008 0.17  
(0.07, 0.27)

0.001 – –

log(E2/testosterone) −0.20  
(−0.27, −0.12)

<0.001 – – −0.17  
(−0.25, −0.10)

<0.001

log(DHT) 0.05  
(−0.03, 0.13)

0.18 – – – – 

PSA increases with age and after age-adjustment, increases with testosterone, and decreases with WC and plasma volume, E2 and E2/testosterone ratio. 
In the multivariable models including age, WC, E2, testosterone and PlasV (Model 1) and age, WC, E2/testosterone and PlasV (Model 2), there are no 
associations detected between PSA and either WC or plasma volume, while hormonal associations remain.
*Covariate unadjusted.
DHT, 5α-dihydrotestosterone; E2/testosterone, estradiol-testosterone ratio; E2, estradiol; PlasV, plasma volume; PSA, prostate specific antigen; WC, waist 
circumference.

Figure 4
(A and B) Standardized mixed-effects regression coefficients for log transformed PSA concentration with (A) WC included in the model and (B) WC 
excluded from the model. After adjusting for age and the E2/testosterone ratio, there were no detectable associations between PSA and either WC or 
plasma volume. (C and D) Causal mediation estimates (including average causal mediation effects (ACME), average direct effects (ADE) and the total 
effects) estimating the contribution of adiposity (WC) to reduce PSA with mediation by either (C) plasma volume, or (D) E2/testosterone. E2/ 
testosterone, estradiol-testosterone ratio; PlasV, plasma volume; WC, waist circumference. A full colour version of this figure is available at https://doi.
org/10.1530/ERC-17-0438.
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effect of WC on PSA. In contrast with E2/testosterone 
as a mediator, the ACME suggested roughly one half of 
the effect (P < 0.001; Fig.  4D). There was no evidence 
of mediation with DHT (P = 0.67). Repeating the 
mediation models using variables and outcome from 
first and second assessment separately (Supplementary 
Fig.  3C, D, E and F) resulted in the same conclusion 
for E2/testosterone however similar to the mixed effects 
regressions, at Wave 1 there was evidence of mediation 
by PlasV, but not at Wave 2.

Discussion

In this study, we demonstrate that in men free of prostate 
cancer, serum PSA concentration is inversely associated 
with obesity, irrespective of the modality of assessment 
(either WC or BMI) and provide compelling evidence for 
mediation of this effect by hormonal factors.

Obesity is associated with increased plasma volume, 
which has been proposed to have a dilution effect, 
thereby decreasing serum PSA concentrations (Banez et al. 
2007, Grubb et al. 2009). In a study by Banez et al. (2007), 
the decrease of PSA associated with obesity in 14,000 men 
with prostate cancer from three independent cohorts was 
attributed to haemodilution as a result of increasing the 
plasma volume. In that study, the non-significant change 
of PSA mass (PSA multiplied by the plasma volume) 

with obesity was used as evidence of the haemodilution 
effect. In agreement with this study, we observed strong 
associations between PSA concentration and both WC 
and BMI, and no equivalent significant associations 
with PSA mass in age-adjusted analyses (Supplementary 
Table 4). However, in contrast to Banez et al. (2007), we 
do not conclude that the PSA concentration–obesity 
association is solely due to hemodilution, but rather show 
that hormonal factors play a major role. We note that this 
conclusion is in agreement with the one-compartment PSA  
model (Supplementary Fig. 4). The steady-state solution 
indicates that PSA-mass is equal to the accumulation rate 
(prostate excretion) divided by the body’s elimination 
rate multiplied by plasma volume. Hence, PSA mass, but 
not PSA concentration, is expected to be associated with 
plasma volume. In this model, the prostate excretion rate 
is the natural mechanism linking hormonal levels with 
both PSA mass and concentration. Replacing PSA with 
PSA mass in our multivariable regressions only changes 
the coefficient of PlasV, as expected, which changes from 
a minimal positive effect to a large negative effect as 
expected (Supplementary Table 4 and Fig. 5).

Using the REDUCE study cohort, Klaassen et  al. 
(2017) concluded that testosterone and DHT are 
responsible for only 19% of the associated reduction 
in the PSA with obesity with the remaining effect due 
to hemodilution. In our study, we compared the effect 
of plasma volume, estradiol, testosterone, DHT and  
E2/testosterone in separate models (Supplementary 
Table  2). In our cohort, the E2/testosterone causes the 
greatest attenuation in the effect of obesity on PSA. Further, 
the hormonal changes associated with obesity (in the form 
of reduced testosterone, discordant E2 and thereby elevated  
E2/testosterone ratio) represented a substantial proportion 
of the decrease in the PSA associated with obesity, a result 
confirmed in our mediation analyses. Our findings are 
consistent with previous studies that show associations 
between PSA and hormones (Woodard et al. 2012, Peskoe 
et al. 2015, Usoro et al. 2015).

Prostate cancer detection accuracy has been improved 
with the use of the PSA/testosterone ratio (Gurbuz et al. 
2012, Xu et  al. 2018). In contrast, adjusting only for 
obesity in addition to PSA did not improve specificity (Oh 
et al. 2013, Banez et al. 2014, Vidal et al. 2015, Harrison 
et al. 2016). This may be due to the absence of adjustment 
for hormonal factors in those models. Hormonal factors 
play a critical role in prostate cancer development, for 
which obesity may be a poor surrogate.

Strong evidence exists regarding the association 
of obesity with elevated grade and advanced stage 

Table 3 Causal mediation analyses.

Estimate (95% CI) P-value

PlasV mediating WC
 ACME −0.0011  

(−0.0034, 0.0011)
0.31

 ADE −0.0039  
(−0.0076, −0.0001)

0.05

 Total effect −0.0050  
(−0.0079, −0.0020)

<0.001

E2/testosterone mediating WC
 ACME −0.0025  

(−0.0036, −0.0014)
<0.001

 ADE −0.0026  
(−0.0056, 0.0007)

0.12

 Total effect −0.0050  
(−0.0079, −0.0020)

<0.001 

The average causal mediation effect (ACME) of E2/testosterone ratio 
explains roughly one half of the total effect of obesity on PSA. In 
contrast, the ACME of the PlasV explains about one fifth of the total 
effect of obesity on PSA. Causal mediation analyses (including average 
causal mediation effects, average direct effects and the total effects) 
estimating the contribution of adiposity’s (WC) influence on PSA 
mediation by plasma volume or E2/testosterone.
ACME, average causal mediation effect; ADE, average direct effect; E2/
testosterone, estradiol-testosterone ratio; PlasV, plasma volume; WC, 
waist circumference.
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prostate cancers (Bonn et  al. 2016, Zhong et  al. 2016), 
as such it is a natural question as to whether the altered 
hormonal milieu, characteristic of increased obesity 
(reflected in the E2/testosterone ratio), contributes to 
more aggressive disease, potentially via direct hormonal 
effects on the prostate gland. It is equally possible 
that E2/testosterone is a surrogate for other hormonal 
processes influencing prostate function. Metabolic 
effects on the hormonal environment are very complex, 
and potentially influenced by other factors such as sex 
hormone-binding globulin (SHBG) (Moran et al. 2013). 
Adjusting for SHBG in our models however did not 
qualitatively change our final conclusions regarding 
E2/testosterone, nor were there significant associations 
between PSA and SHBG. The non-significant association 
observed between PSA and DHT may be attributed to the 
fact that serum DHT does not represent the true intra-
prostatic DHT concentration (Cook et al. 2017).

A major strength of our study is that we not only 
examined the effect of obesity on PSA, but also directly 
explored two hypothesized causal mechanisms. Further, 
we assessed two independent measures of obesity, WC 
and BMI, and found little difference. We explored 
hormonal effects using different hormonal variables, 
namely testosterone, E2, DHT and E2/testosterone. 
Finally, we calculated the plasma volume by using 
hematocrit, which is considered a more accurate 
technique than estimation using weight and height 
only. Our study is limited by missing clinical data; our 
final cohort of 970 men may have included undiagnosed 
prostate cancer patients. Measures of prostate volume 
would have further improved our analyses, however, 
in its absence we assume that the observed strong age 
effects are in part due to the growth in prostate volume 
with age.

Conclusion

Observed lower PSA levels in obese men, as compared to 
normal weight men, can be explained by both hormonal 
changes (namely elevated E2/testosterone ratio) and 
possible hemodilution effects. As a substantial mediating 
pathway between obesity and PSA, hormonal factors 
should be considered in the development of models of 
obesity-dependent PSA levels.

Supplementary data
This is linked to the online version of the paper at https://doi.org/10.1530/
ERC-17-0438.
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Abstract 

Background:  Obesity is associated with lower levels of prostate specific antigen 

(PSA), which may influence interpretation of PSA test values.  

Objective: To determine whether obesity attenuates risk estimates of PSA-derived 

screening models.  

Participants: Two independent cohorts of prostate cancer (PCa)-free men were 

analyzed; the screening arm of the PLCO study (USA; N=23254; median age = 61 

years), and the MAILES cohort (Australia; N=1120; median age = 55 years). Men 

who subsequently developed PCa, had a history of BPH, were missing PSA or BMI, 

or a baseline PSA ≥10ng/ml were excluded.  

Outcome Measurements and Statistical Analysis: Quantile regressions 

were used to estimate the 50th, 80th and 95th PSA-percentiles over both continuous and 

discrete age ranges, for each weight category. The effect of obesity on attenuating risk 

estimates for PCa was explored using PSA thresholds of 1, 2 or 3 ng/ml. 

Results:   In the PLCO cohort, obesity lead to lower 50th and 80th PSA-percentiles in 

the 55-59 and 60-65 year age-groups (p<0.001 in each) and a lower 95th PSA-

percentile in the 55-59 year age-group (p= 0.04). In the MAILES cohort, the effect of 

obesity was only detected in the 50-60 years age group (p= 0.007, 0.003, 0.04 for 50th, 

80th and 95th PSA-percentile respectively). Continuous-age quantile regressions in the 

PLCO cohort indicated that, men with severe obesity (BMI ≥ 35) were 5.2 years (95% 

CI =[3.3, 7.3]), 4.1 (95%CI= [0.5, 6.9]) and 4.9 (95%CI: [0.2, 9.1]) years older when 

attaining a PSA level of 1, 2 and 3 ng/ml respectively. In the MAILES cohort, men 

with obesity were 6.9 (95%CI = [0.2, 12.5]), 5.6 (95%CI = [-0.2, 11.1]) and 8.9 

(95%CI=[2.9, 16.9]) years older, respectively, for the same PSA thresholds.  



	 106	

 

Conclusion: In two independent PCa-free cohorts, obesity leads to widening of 

PSA-derived screening intervals and potential underestimation of PCa risk.  

 

Patient Summary 

In this work, we have shown that obesity is associated with lower levels of PSA in 

the blood, in the test used for prostate cancer screening and diagnosis. We found that 

these lower levels could lead to underestimation of prostate cancer risk and 

potentially delay further diagnostic tests.   
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Introduction 

Prostate cancer (PCa) is the most commonly diagnosed male cancer in developed 

countries (Fitzmaurice, C. et al. 2017). The prostate specific antigen (PSA) blood test 

is currently central to the initial diagnostic detection of PCa, but the interpretation of 

this test remains complex, with debate regarding the value of PSA screening (Pinsky, 

P. F. et al. 2012; Schröder et al. 2014) leading to varying testing protocols worldwide. 

Irrespective of the testing model employed, it is critical that key patient-specific 

modifiers of PSA levels are identified in order to accurately interpret the results of 

this widely-applied test.  

There are multiple factors that influence PSA levels, the most important of which is 

age due to its association with prostate gland volume (Pinsky, P. F. et al. 2006; Vesely 

et al. 2003). Oesterling et al first introduced age-adjusted PSA thresholds in 1993 

(Oesterling et al. 1993) and their model was subsequently validated in numerous 

patient cohorts (Guan et al. 2011; Luboldt, Schindler & Rübben 2007; Oesterling et 

al. 1995). Another factor influencing PSA is obesity, with multiple studies linking 

obesity to lower levels of PSA (Bonn et al. 2016; Woodard et al. 2012) and increased 

risk of advanced and aggressive PCa (Allott, Masko & Freedland 2013; Hu, M. B. et 

al. 2014; Xie et al. 2017).  Recently, Chow et al (Chow et al. 2018) showed that 

obesity could lead to diagnostic bias, error in risk stratification and delay in diagnosis 

due to the lower levels of PSA at time of diagnosis. 

Given the importance of accurate risk assessment, and the increasing prevalence of 

obesity, the aim of this study was to determine the effect of obesity on attenuating risk 

estimates of PSA-derived PCa screening models. Importantly, we performed these 

analyses in PCa-free men to exclude any potential cancer-related confounders. 
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Material and Methods 

Study population 

Two independent population-based cohorts were employed, the PCa screening arm of 

the “Prostate Lung Colon Ovarian (PLCO)” study, and the “Men Androgen 

Inflammation Lifestyle Environment and Stress (MAILES)” study cohort. 

The prostate screening arm of the PLCO study included 38340 men with ages ranging 

between 55 and 75 years. The men were enrolled at 10 screening centers in the United 

States of America, over the period from 1993 to 2001.  PSA testing was performed 

yearly for six years along with a digital rectal examination (DRE) every two years.  

Men were followed for at least 13 years for assessment of risk of PCa. Those with 

abnormal PSA or DRE were advised to follow up with their primary health care 

physicians for further investigations; however, there was no specific protocol as per 

the study design for further diagnostic workup.  A full description of the study design 

is cited elsewhere (Prorok et al. 2000). 

The MAILES study cohort is a population-based study established to explore 

associations between sex steroids, inflammation, environmental and psychological 

factors and risk of cardio-metabolic diseases in Australian men. The MAILES cohort 

consists of 2569 men from two studies, the Florey Adelaide Male Ageing Study  and 

the North West Adelaide Health Study. Each participant in the MAILES study has 

received a detailed clinical assessment including anthropometry collection of a fasting 

venous blood sample for measurement of PSA in addition to a range of other assays 

that included sex steroids and markers of metabolism on two initial waves with 

around 4.9 years between each wave. The study has previously been described in 

detail (Grant et al. 2014).  
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Measures 

In the PLCO study, baseline PSA tests were performed with a Hybritech Tandem-R 

assay, manufactured by Beckman-Coulter. Body Mass Index (BMI; self-reported) at 

study entry was recorded for each participant. In the MAILES study, PSA was 

measured using Abbott ARCHITECT©. The measurements including weight and 

height were assessed as per Norton & Olds. 

The variables included in the analyses are baseline assessments of age, BMI in kg/m2 

and PSA in ng/ml. Weight groups were constructed based on the World Health 

Organization BMI classifications (normal weight from 18.5 to 24.9 kg/m2, overweight 

25 to 29.5 kg/m2, obese I 30 to 34.9 kg/m2, obese II 35 to 39.9 kg/m2, obese III more 

than 40 kg/m2). In the PLCO analyses the obese II and obese III groups were 

combined due to low prevalence of obese III men. For a similar reason weight groups 

in the MAILES cohort were defined as non-obese (BMI <30 kg/m2) or obese (BMI 

≥30 kg/m2).  

 

Statistical Methods  

We report means (±SD) for continuous factors, and frequency and percentages for 

discrete demographic factors, unless otherwise stated. Differences in age, PSA levels 

and ethnicity between weight groups were assessed using linear-by-linear tests. The 

change in (log transformed) PSA by weight and age in each cohort was assessed using 

multivariable linear regressions. Quantile regression analyses were used to estimate 

50th, 80th and 95th PSA-percentiles among discrete age and weight categories. In the 

PLCO cohort, the age categories 55 to 59, 60 to 64, 65 to 69, and 70 to 75, and in the 

MAILES, 35 to 49, 50 to 59, 60 to 69 and 70 to 80 were employed. Subsequently age 
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was analysed as a continuous variable with nonlinearity modelled using restricted 

cubic splines of 2 degrees of freedom in the PLCO cohort, as this model showed the 

least Akaike information criterion (AIC) (Supplementary Table S1). Because the AIC 

for 3 models using 2, 3, or 4 degrees of freedom in the MAILES cohort analysis did 

not show great difference, we maintained 2 degrees of freedom for uniformity. The 

age-differences between men with specific PSA-quantile attaining PSA levels of 

1ng/ml, 2ng/ml (the cut-off levels for detecting high risk group for screening and the 

frequency of screening), and 3ng/ml (the cut-off level to proceed for further 

investigation and biopsy) were estimated for each weight categories, with 95% 

confidence intervals for these age-differences were calculated using a 999 normal 

bootstrap. A sensitivity analysis was performed by repeating the analyses without 

excluding individuals with a PSA more than 10ng/ml.  All statistical analyses were 

performed using R software (Version 3.3.0, The R foundation for statistical 

computing, 2016) using the “coin”, “quantreg” and “boot” packages.  
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Results 

The PLCO screening arm consists of 38340 men, of whom 23254 were included in 

the current analysis cohort. Excluded were those with PCa diagnosis either at 

enrolment or during follow up (n=4430), BPH (n=7937), younger than 55 years (n=3), 

missing either PSA (n=2399) or BMI (n=262) at baseline, or had a baseline PSA 

value of more than 10ng/ml (n=55) (Figure 1). The median age was 61 years (range 

55-75), mean BMI was 27 kg/m2 (±4.3), mean PSA was 1.4 ng/ml (±1.1).  Obesity 

was associated with younger age and lower PSA (both p<0.001) (Table 1). The 

MAILES cohort consists of 2563 men, of whom 1120 were included in the analyses. 

Excluded were those with PCa diagnosis prior to accrual or in the subsequent follow 

up (n=227), BPH (n=1105), missing PSA (n=106) or BMI (n=2) at baseline, or a PSA 

more than 10ng/ml (n=3) (Figure 1). The median age was 55 years (range 35-80), 

mean BMI was 28.7 kg/m2 (±4.7), mean PSA was 1.4 ng/ml (±1.4). Obesity was 

associated with lower PSA, however there was no detectable difference in age 

between obesity groups (Table 1).  

Age-adjusted linear regressions indicated significant negative associations between 

mean (log-transformed) PSA and BMI in both the PLCO (p<0.001) and MAILES 

(p<0.001) cohorts (Supplementary Table S2). In the PLCO cohort, all obesity groups 

were associated with lower median (50th percentile) PSA levels than normal weight 

men for all age groups (all p<0.05), except for men with severe obesity (obese II & 

III) aged 65-69 and 70-75 (p= 0.22 and p=0.97 respectively) (Table 2). Severe obesity 

was only associated with lower levels of the 80th PSA-percentile in men less than 65 

years of age (p<0.001). For the 95th PSA-percentile, a reduction was only apparent in 

the youngest age group (p=0.04). For the MAILES cohort, the 50th, 80th and 95th PSA-
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percentiles decreased with obesity in the age group 50 to 59 (all p<0.05), with no 

detectable significant differences in the other age groups (Supplementary Table S3).  

In the PLCO cohort, the 50th, 80th and 95th PSA-percentile were 0.97, 1.8 and 

3.5ng/ml respectively, while in the MAILES cohort, they were 0.9, 1.8 and 4.0 ng/ml 

respectively. These values closely approximate the PSA thresholds commonly used in 

PCa screening models (the 1, 2 and 3 ng/ml). Thus, we used these thresholds to 

explore the effect of obesity on the age at which men attained these PSA levels.  

Quantile regression of continuous age indicated a 4.7-year (95%CI = [1.1, 8.2]) age 

difference between men with moderate obesity (obese I) and those with normal 

weight with median PSA equal to 1.0 ng/ml, and a 5.2 year difference (95%CI = [3.3, 

7.3]) in those with severe obesity (obese II & III; Figure 2A). The same age-shift is 

apparent for the 80th PSA-percentile (Figure 2B), as men with moderate and severe 

obesity were 2.0 years (95%CI = [-0.3, 4.4]) and 4.1 years (95%CI = [0.5, 6.9]) older 

to attain a PSA level of 2ng/ml respectively. Finally, there was a 4.9-year (95%CI = 

[0.2, 9.1]) difference between men with severe obesity to attain a PSA level of 3 

ng/ml in comparison to men in other weight groups. These findings were also 

apparent in the MAILES cohort; men with obesity were 6.9 years (95%CI = [0.2, 

12.4]), 5.6 (95%CI = [-0.2,11.1]) and 8.9 years (95%CI = [2.9, 16.9]) older than 

normal weight men to attain a PSA level of 1, 2 and 3-ng/ml respectively (Figure 3A-

3C). The sensitivity analysis including the 58 men with PSA more than 10ng/ml 

resulted in qualitatively the same conclusions (data not shown). 
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Discussion  

Our analysis of the 23254 men enrolled in the screening arm of the PLCO study 

shows that obesity can lead to a five-year delay in attaining a PSA threshold of 1 

ng/ml, and a two to four-year delay in attaining 2ng/ml. Severe obesity leads to five-

year age difference in attaining a PSA level of 3 ng/ml, thereby potentially delaying 

further diagnostic investigations. This effect was also seen in the independent 

MAILES cohort), differing in country of origin and decade of assessment. Together, 

these analyses demonstrate the potential consequences of obesity-mediated 

attenuation of PCa risk assessment models that rely on PSA test interpretation. 

PSA testing remains the mainstay of PCa diagnosis and risk stratification, especially 

in high-risk populations. Theoretically, obesity may delay PCa diagnosis due to lower 

levels of PSA and/or the technical problems in performing DREs and biopsies 

(Bandini, Gandaglia & Briganti 2017; Nassar et al. 2018).  Many studies have found 

obesity to be associated with lower overall incidence of PCa, but paradoxically with 

increased risk of aggressive PCa and PCa specific mortality (Discacciati, Orsini & 

Wolk 2012; Kelly, S. P. et al. 2017; Moller et al. 2016). This may be attributed to a 

delay in diagnosis that in turn misses early detection of low-grade cases. PCa specific 

mortality has been found to be primarily associated with pre-diagnosis obesity, rather 

than post-diagnosis obesity (Zhong et al. 2016), and to be confounded by the 

widespread adoption of PSA testing (Fowke et al. 2015). Although obesity is 

associated with other mechanisms that may lead to aggressive PCa biology (Allott, 

Masko & Freedland 2013; Ma, J et al. 2008), this does not explain why only pre-

diagnosis obesity is associated with poorer PCa specific mortality. 
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The relationship between PSA, age and BMI is complex, as PSA increases with age 

and decreases with BMI, but BMI also decreases with age due to decreased muscle 

mass (Bonnefoy & Gilbert 2015). In our analysis, the change in PSA with age was 

greater in magnitude than that with obesity, which may explain why previous BMI-

age-adjusted PSA models have not improved sensitivity for PCa detection (Harrison 

et al. 2016). Moreover, the lower age-adjusted PSA due to obesity was only clear in 

the severely obese group, a concern given the increasing prevalence of severe obesity 

in western countries (NCD Risk Factor Collaboration (NCD-RisC) 2016).  

Our study provides a potential mechanism by which obesity could lead to a delay in 

proceeding to diagnostic investigation (based on the current clinically-recommended 

PSA level of 3ng/ml). This may partially explain the paradox between the 

associations of obesity with decreased localized PCa incidence and potentially lower 

overall incidence of PCa but a higher risk of advanced PCa (Allott, Masko & 

Freedland 2013; Discacciati, Orsini & Wolk 2012; Xie et al. 2017). The EAU-

ESTRO-SIGO guidelines recommend PSA testing for men at risk, or those with PSA 

more than 1 ng/ml if aged less than 45 or PSA more than 2 ng/ml if aged 60 years, 

with a two year interval of screening (Mottet et al. 2017). According to the National 

Comprehensive Cancer Network guidelines 2018, for men at risk (those with age of 

45 to 75 years), a two to four-year interval screening should be offered for those with 

baseline PSA less than 1 ng/ml, and a one to two-year interval for those with PSA 

levels between 1 and 3 ng/ml. For those with PSA more than 3 ng/ml, further 

investigations were recommended.  

Notwithstanding the issues surrounding population-based screening, there exist high-

risk groups of men who require more intensive screening for PCa (e.g. those with 
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strong positive family history of PCa), for whom a correct interpretation of the PSA 

test result is essential. We have shown that those men with severe obesity have 

approximately a five-year delay in attaining a PSA level of 1.0 ng/ml. As such, their 

risk could be underestimated and only a ‘four or more years’ PSA screening interval 

offered, as opposed to a one to two-year screening interval for normal weight men. 

Similarly, men with severe obesity took approximately four years longer to reach the 

PSA threshold of 2ng/ml.   

Potential limitations of our study include the lack of a uniform protocol for PCa 

diagnosis in the PLCO study, which may underestimate the risk of PSA-derived PCa 

diagnosis in this cohort. In addition, PCa cases in the MAILES cohort were reported 

during follow up but there was no initial protocol to exclude PCa cases at baseline 

assessment. Thus, there may also be undiagnosed cases in this cohort. We have 

attempted to overcome this problem by excluding those with PSA of more than 

10ng/ml, however this will not eliminate all undiagnosed PCa cases. Secondly, the 

MAILES cohort was too small to categorize obesity into three groups, as for the 

PLCO cohort. It is unclear whether the observed increased delays in the MAILES 

cohort are an overestimation due to small sample sizes, or a true population-specific 

effect. Despite the large size of the PLCO cohort, there are few elderly men in the 

obese group. Notwithstanding these potential limitations, our study is the first to our 

knowledge to report weight and age-specific PSA-quantiles in a PCa-free population. 

We also provide evidence for attenuation in PCa risk assessment due to obesity in two 

independent cohorts; this attenuation has potential to tangibly delay diagnosis of PCa. 

These data suggest the need for BMI- in addition to age adjusted PSA cut-offs for 

defining PCa risk with prospective evaluation to determine the impact on PCa 

outcomes.  
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Conclusion: In two independent PCa-free cohorts, obesity is associated with 

significantly lower PSA levels, potentially widening the screening interval and 

leading to an underestimation of PCa risk. BMI should be considered when 

interpreting PSA results, especially in men with severe obesity.  
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Tables 
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Table 1: Demographic summary statistics for the PLCO and MAILES cohorts. 

 
PLCO Normal weight Overweight Obese I Obese II & Obese III All p-value 

 N = 5968 N = 11538 N = 4437 N = 1311 N = 23254  

Age (years) Median (range) 62 
(55-75) 

62 
(55-74) 

61 
(55-74) 

60 
(55-74) 

61 
(55-75) 

<0.001 

BMI (kg/m2) Mean 23.1 27.2 31.9 38.4 27.7 -- 

 SD 1.5 1.4 1.4 3.6 4.3  

PSA (ng/ml) Mean 1.36 1.32 1.24 1.11 1.30 <0.001 

 SD 1.12 1.12 1.1 1.02 1.11  

Race White Non-Hispanic 5061 
(85%) 

10304 
(89%) 

4007 
(90%) 

1184 
(90%) 

20556 
(88%) 

<0.001 

 Asian 511 
(9%) 

449 
( 4%) 

75 
( 2%) 

15 
( 1%) 

1050 
( 5%) 

 

 Black Non-Hispanic 250 
(4%) 

412 
( 4%) 

206 
( 5%) 

75 
( 6%) 

943 
( 4%) 

 

 Others 145 
(2%) 

364 
( 3%) 

145 
( 3%) 

37 
( 3%) 

691 
( 3%) 

 

 Unknown 1 
(<1%) 

9 
(<1%) 

4 
(<1%) 

0 
(0%) 

14 
(<1%) 

 

MAILES  Non Obese Obese All p-value 
N = 756 N = 364 N = 1120  

Age( Years) Median (range) 55 (35- 80) 55 (35- 80) 55 (35- 80) 0.41 

BMI (Kg/m2) Mean (SD) 26.2 (2.5) 34.0 (3.8) 28.7 (4.7) -- 

PSA (ng/ml) Mean (SD) 1.38 (1.38) 1.15 (1.16) 1.31 (1.32) 0.004 

 
Difference in age, PSA and race between weight groups was assessed using linear by linear tests. PSA: Prostate specific antigen, BMI: Body mass index. World Health Organization (WHO) BMI 

classifications (normal weight: from 18.5 to 24.9 kg/m2, overweight: 25 to 29.5 kg/m2, obese I: 30 to 34.9 kg/m2, obese II: 35 to 39.9 kg/m2, obese III: more than 40 kg/m2. Weight groups were defined as 
non-obese (BMI <30 kg/m2) or obese (BMI ≥30 kg/m2). 
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Table 2: Observed PSA percentiles and quantile regression estimated 95% confidence intervals for the PLCO 
cohort. 

  55 to 59 60 to 64 65 to 69 70 to 75 
  N PSA  95% CI p-value N PSA  95% CI p-value N PSA  95% CI p-value N PSA 95% CI p-value 
50th Percentile Normal  2443 0.91 [0.88,0.94] -- 1701 1.00 [0.95,1.10] -- 1261 1.21 [1.14,1.29] -- 563 1.36 [1.21,1.53] -- 

Overweight 4966 0.90 [0.88,0.92] 0.62 3493 1.01 [0.98,1.04] 0.76 2206 1.12 [1.07,1.17] 0.04 873 1.29 [1.2,1.38] 0.43 
Obese I 2215 0.84 [0.81,0.88] 0.003 1232 0.90 [0.85,0.95] 0.008 734 1.07 [0.99,1.16] 0.01 256 1.08 [0.88,1.33] 0.05 
Obese II&III 700 0.72 [0.68,0.77] <0.001 352 0.74 [0.67,0.81] <0.001 193 1.13 [1.03,1.24] 0.22 66 1.39 [1.0,1.87] 0.97 

80th Percentile Normal  2443 1.66  [1.59,1.73] -- 1701 1.92  [1.83,2.02] -- 1261 2.28  [2.16,2.41] -- 563 2.65 [2.42,2.9] -- 
Overweight 4966 1.60  [1.55,1.65] 0.16 3493 1.87  [1.80,1.94] 0.41 2206 2.17  [2.07,2.27] 0.17 873 2.44 [2.3,2.61] 0.15 
Obese I 2215 1.56  [1.49,1.63] 0.05 1232 1.78  [1.67,1.9] 0.07 734 2.15  [1.99,2.35] 0.28 256 2.24 [2.04,2.46] 0.01 
Obese II & III 700 1.40 [1.29,1.52] <0.001 352 1.41 [1.24,1.63] <0.001 193 2.00  [1.66,2.45] 0.23 66 2.49 [1.19,5.22] 0.87 

95th Percentile Normal  2443 3.01  [2.79,3.25] -- 1701 3.37  [3.16,3.59] -- 1261 3.96  [3.65,4.29] -- 563 4.36 [3.8,4.98] -- 
Overweight 4966 2.99  [2.84,3.15] 0.89 3493 3.46 [3.32,3.62] 0.44 2206 3.90  [3.63,4.19] 0.78 873 4.63 [4.3,4.99] 0.45 
Obese I 2215 3.07 [2.84,3.35] 0.68 1232 3.56  [3.28,3.91] 0.27 734 3.84  [3.36,4.41] 0.72 256 3.64 [3.28,4.04] 0.03 
Obese II & III 700 2.64  [2.42,2.92] 0.04 352 2.98 [2.66,3.39] 0.09 193 3.64  [2.73,5.12] 0.73 66 4.53 [2.29,9.31] 0.88 

N: Sample size of each group, PSA:  Prostate specific antigen. 
World Health Organization (WHO) BMI classifications (normal weight: from 18.5 to 24.9 kg/m2, overweight: 25 to 29.5 kg/m2, obese I: 30 to 34.9 kg/m2, obese II: 35 to 39.9 
kg/m2, obese III: more than 40 kg/m2) 
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Supplementary tables 
 
 

Table S1: AIC of quantile regression models using 2,3, or 4 degrees of freedom  

Degree of freedom AIC 

PLCO 50th percentile 80th percentile 95th percentile 

Df=2 54261 58714 68716 

Df=3 54266 58721 68718 

Df=4 54266 58721 68719 

MAILES 50th percentile 80th percentile 95th percentile 

Df=2 2571 2776 3222 

Df=3 2570 2770 3207 

Df=4 2566 2772 3208 
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Table S2: Multivariable linear regressions of log transformed PSA 
with Age and BMI; demonstrate negative associations between PSA 

and BMI in both the PLCO and MAILES cohort. 

 
 PLCO data 

 
MAILES data 

 Estimate 
[95% CI] 

p-value Estimate 
[95% CI] 

p-value 

Age 0.019 
[0.017, 0.021] 

<0.001 0.025 
[0.021, 0.029] 

<0.001 

BMI -0.014 
[-0.017, -0.012] 

<0.001 -0.021 
[-0.030, -0.012] 

<0.001 

• PSA: Prostate specific antigen, BMI: Body mass index 
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Table S3: Observed PSA percentiles and quantile regression estimated 95% confidence intervals for the MAILES 
cohort. The 50th, 80th and 95th PSA percentile are decreasing with obesity in the age group 50 to 60 (all p<0.05). 

 

 

N: population of each group, PSA:  Prostate specific antigen, P: p-value of quantile regression model. 

Weight groups were defined as non-obese (BMI <30 kg/m2) or obese (BMI ≥30 kg/m2). 
 

  35 to 49 50 to 59 60 to 69 70 to 80 
  N PSA 95% CI P N PSA 95% CI P N PSA 95% CI P N PSA 95% CI P 

50th percentile Non Obese 271 0.67 [0.61,0.74] -- 210 1.00 [0.89,1.13] -- 165 1.00 [0.85,1.18] -- 100 1.90 [1.51,2.39] -- 
Obese 123 0.69 [0.56,0.85] 0.80 123 0.78 [0.68,0.89] 0.007 79 1.10 [0.84,1.44] 0.54 35 1.40 [1.15,1.71] 0.04 

80th percentile Non Obese 271 1.20 [1.04,1.39] -- 210 1.80 [1.66,1.95] -- 165 2.40 [1.84,3.13] -- 100 3.86 [3.04,4.75] -- 
Obese 123 1.20 [1.08,1.34] 1.00 123 1.30 [1.06,1.59] 0.003 79 2.94 [1.96,4.58] 0.37 35 2.20 [1.15,4.21] 0.11 

95th percentile Non Obese 271 2.20 [1.75,3.02] -- 210 3.02 [2.38,4.31] -- 165 4.98 [3.85,6.49] -- 100 6.96 [5.41,11.8] -- 
Obese 123 1.78 [1.53,2.12] 0.12 123 1.99 [1.41,2.85] 0.04 79 4.81 [4.20,8.02] 0.48 35 5.76 [3.83,13.9] 0.81 
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Figure and figures legends 



	126	

Figure 1 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flow diagram of accrual and exclusion. PLCO: Prostate Lung Colon Ovarian study; MAILES: Men Androgen Inflammation Lifestyle 

Environment and Stress study. 
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Figure 2 
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Figure 2 continue  
 

Figure 2. Quantile regression estimated PSA 50th, 80th and 95th percentiles by age for 

specific weight groups in the PLCO cohort. Severe obesity estimates are truncated at 

70 years of age due to sample size. Horizontal dashed lines reflect the 1, 2 and 3 

ng/mL PSA thresholds, respectively, and the point estimates and associated 95% 

confidence intervals are for discrete age categories as per Table 2. World Health 

Organization (WHO) BMI classifications (normal weight: from 18.5 to 24.9 kg/m2, 

overweight: 25 to 29.5 kg/m2, obese I: 30 to 34.9 kg/m2, obese II: 35 to 39.9 kg/m2, 

obese III: more than 40 kg/m2). 
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Figure 3 
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Figure 3 continued  

 

 

Figure 3. Quantile regression estimated PSA 50th, 80th and 95th percentiles for age for 

specific weight groups in the MAILES cohort. Obese estimates are truncated at 70 

years of age due to sample size. Horizontal dashed lines reflect the 1, 2 and 3 ng/mL 

PSA thresholds, respectively, and the point estimates and associated 95% confidence 

intervals are for discrete age categories as per Supplementary Table S2. 
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Chapter 4. Prostate cancer screening may reduce prostate 
cancer specific mortality among metabolically healthy men 
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Abstract 

Background 

The current prostate cancer (PCa) screening recommendations are for an 

individualized approach. As PCa and metabolic comorbidities are highly prevalent 

diseases among the elderly, it has been suggested that PCa screening benefit may be 

masked because of a competing-risk effect.  

 

Aim of the study 

To explore whether there is evidence for a reduction in prostate cancer-specific 

mortality (PCSM) due to screening among men with no metabolic syndrome related 

conditions. 

Study population & definitions  

Men from the Prostate, Lung, Colon, Ovary (PLCO) screening study with data 

regarding history of having hypertension, diabetes, and/or obesity were included 

(analysis cohort; n=72120). 

Methods  

Time dependent Cox proportional hazard and Fine and Gray models with PCSM as 

outcome were used to assess interactions between PCa screening and the presence of 

metabolic syndrome related factors (obesity, diabetes and/or hypertension). These 

factors were assessed at baseline and again at (median) nine years post-randomization. 

Non-PCa mortality events were censored at date of death. Two summations of 

metabolic status were considered: (i) men were considered metabolically unhealthy if 

they had any one of the metabolic syndrome conditions (binary predictor), and (ii) the 

number (0-3) of the three separate conditions as a continuous linear predictor.   
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Results 

The mean age at randomization was 63 (±5.3), at baseline 23% were obese, 10% had 

diabetes and 36% were hypertensive. In the time dependent Cox proportional hazard 

models, there was evidence for an interaction between the presence of any metabolic 

syndrome related conditions and screening (p=0.01), but not when the number of 

conditions was used (p=0.13). In the first model, screening reduced PCSM in 

metabolically healthy men (HR=0.75, 95%CI=[0.61, 0.92], p=0.01), but not in 

metabolically unhealthy men (HR=1.07, 95%CI=[0.89, 1.28], p=0.48). Although the 

interaction was weaker in the second model, there was still evidence that screening 

reduced PCSM in men without metabolic conditions (HR=0.82, 95%CI=[0.68, 0.99], 

p=0.04). Similar results were observed in Fine and Gray models. 

 

Conclusion  

PCa screening appears more effective among men with no metabolic syndrome 

related conditions in reducing prostate cancer specific mortality.    
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Introduction  

The efficacy of screening in reducing prostate cancer specific mortality (PCSM) is an 

area of current debate. The U.S. Preventive Services Task Force (USPSTF) changed 

its recommendation recently to grade C (advocating for an individualized approach to 

screening) (Grossman et al. 2018).  Thus identifying factors that could improve the 

outcome of PCa screening is essential.  The 17 year follow-up mortality data report 

for PCa in the Prostate, Lung, Colon, and Ovary Screening trial (PLCO) showed no 

detectable reduction of PCSM with PCa screening, despite reporting a reduction in the 

percentage of high Gleason score (≥8) cases (Pinsky, P. F. et al. 2018).  

As PCa is a highly prevalent disease among the elderly, an age group with 

elevated rates of comorbidity (mainly metabolic and cardiovascular related), it was 

suggested that PCa screening effect is not detected simply because men are dying 

from other causes, the competing risk hypothesis (Matthes et al. 2018).  An alternative 

hypothesis is that the presence of metabolic related comorbidities may lead to more 

aggressive PCa and thus increase risk of PCSM (Xiang et al. 2013), or that 

metabolically healthy men are offered more effective treatment (Aizer et al. 2014).   

An analysis of the 10 year follow-up data from the PLCO study detected an 

interaction between comorbidities and PCa screening in which men with no or 

minimal comorbidities benefited more from screening, with a reduction in their 

PCSM risk (Crawford et al. 2011). However in the 13-year mortality report of the 

PLCO no interaction between comorbidities and PCa screening was detected 

(Andriole, G. L. et al. 2012). It is unclear whether this discrepancy is due to the 10-

year result being a spurious association or due to the difference between the two 

analyses regarding the type of comorbidities included. If there is an interaction, 
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whether some or all of metabolic syndrome comorbidities should be considered is an 

unanswered question. 

Metabolic syndrome is a cluster of metabolic conditions including central 

obesity, diabetes, hypertension and dyslipidaemia, collectively the most prevalent 

cluster of comorbidities in Western countries (Saklayen 2018). Metabolic syndrome 

increases the risk of the development of numerous of metabolic and non-metabolic 

conditions including cardiovascular disease as well as numerous cancers (O’Neill & 

O’Driscoll 2015). Obesity and diabetes are also associated with lower PSA levels and 

lower incidence of low-grade PCa (Aref et al. 2018; Banez et al. 2007; Bonn et al. 

2016; Dankner et al. 2016; Sarma et al. 2015). One explanation for these negative 

associations is a delay in PCa diagnosis due to the reduced PSA levels (Chow et al. 

2018; Dankner et al. 2016).  This may also partially explain the positive association 

between obesity and advanced stage PCa (Fang et al. 2018; Xie et al. 2017) and 

PCSM (Cao, Y & Ma 2011; Zhong et al. 2016). Thus hypothetically having one or 

more of these conditions may attenuate the efficacy of PCa screening.   

 

The aim of this study is to explore whether there is evidence for a reduction in 

PCSM due to screening among metabolically healthy (non-diabetic, non-hypertensive, 

and non-obese) men using the extended 17-year follow up data of the PLCO study.   
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Material and Methods 

Study population 

Our study cohort is the PLCO screening and control arm consisting of 76635 men 

aged between 49 and 75 years. Over the period 1993 to 2001 men were enrolled at 10 

screening centers across the United States of America.  PSA testing was performed 

annually for six years along with a digital rectal examination (DRE) annually for four 

years.  Men were followed for a median of 17 years for assessment of PCSM. Those 

with abnormal PSA or DRE were advised to follow up with their primary health care 

physicians for further investigations. During this 17-year period 8334 men were 

diagnosed with PCa.  A full description of the study design is reported Prorok, PC et 

al. (Prorok et al. 2000). 

	
Definition of metabolic syndrome factors 

The baseline questionnaire of the PLCO study included current BMI, history 

of hypertension and history of diabetes. Unfortunately dyslipidemia was not recorded 

at baseline, as such we were not able to use the exact definition of metabolic 

syndrome as per the Adult Treatment Panel III from the National Cholesterol 

Education Program (NCEP-ATPIII) ('Third Report of the National Cholesterol 

Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of 

High Blood Cholesterol in Adults (Adult Treatment Panel III) final report'  2002), but 

rather we used the occurrence of one or more of the following conditions: 

hypertension, diabetes and/or obesity.  A follow up questionnaire (median) nine years 

post baseline reassessed the presence and/or development of any of the previously 

mentioned three conditions. 
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Analysis Cohort  

Out of the 76635 men included in the screening and control arms of the PLCO 

we excluded men who were missing baseline data regarding race, BMI, hypertension, 

diabetes and/or follow-up mortality data. The remaining 72120 men were included in 

the analysis cohort (Figure 1). Out of the analysis cohort, 42280 men have been re-

assessed with a follow up questionnaire after median of nine years (Figure 1).    

 

Statistical methodology 

Unless otherwise stated means (SD) and frequencies (percentages) are 

reported for demographic variables as appropriate. Time dependent Cox proportional 

hazards models with PCSM as outcome were used to assess interactions between 

screening and the presence of metabolic syndrome related factors. Two time points 

for the assessment of metabolic conditions were identified, at baseline and at the time 

of the follow up questionnaire. Four models were constructed, model 0; with no 

interaction, model 1; includes all the metabolic factors as three separate factors 

(diabetes, hypertension and obesity), model 2; includes metabolic syndrome related 

factors as one factor (having one or more of the following conditions, diabetes, 

hypertension and/or obesity- yes versus no) and model 3; which includes metabolic 

syndrome as a sum (0-3) of diabetes (0-1), hypertension (0-1) and obesity (0-1). In 

these models we assessed the interaction between screening with (i) all three 

conditions simultaneously (i.e. three pairwise interactions with screening); (ii) having 

any of diabetes and/or hypertension and/or obesity (i.e. a single interaction with this 

composite measure); and for completeness (iii) the number of metabolic syndrome 

factors as a linear score (0-3). A sensitivity analysis confirming the findings of the 

time dependent models consisted of (non-time dependent) multivariable Cox 
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proportional hazards models for PCSM that assessed the interaction between 

screening and presence of metabolic syndrome conditions either solely at baseline or 

at the 9-year follow-up assessment. In the time-dependent models and in the baseline-

only (non-time dependent) model survival duration was from date of randomization 

until date of last contact. In the analysis of using only 9-year follow-up data, the 

survival duration was from date of the follow-up assessment until date of last contact. 

All models were adjusted for age at randomization (continuous linear variable) and 

race (black non-Hispanic versus other). Men who were alive at time of last contact or 

died due to non-PCa causes were censored at date of death. Proportional hazard 

assumptions were assessed by examining Martingale residuals of time varying 

coefficients (Grambsch & Therneau 1994). The time dependent model was repeated 

using a multivariable Fine and Gray regression with the same definitions for survival 

duration, but with death by non-PCa causes considered as a competing risk instead of 

being censored. Cumulative incidence of PCSM with/without screening was presented 

for men without any of the three metabolic factors vs. men with at least one, both for 

metabolic assessments at baseline and at follow-up.  

To assess the effect of metabolic syndrome and its component factors on PCa 

incidence and other cause mortality (dying from causes other than PCa time 

dependent multivariable Cox proportional hazard regression models were constructed. 

Similar to the PCSM models above these models adjusted for age and race, and the at-

risk duration was from date of randomization until date last contact. With the event of 

interest being PCa incidence or other cause mortality respectively.  

In men who were diagnosed with PCa, age and race adjusted generalized 

linear (logistic and linear) regressions were used to explore the conditional (on PCa 

diagnosis) risk of developing (i) high Gleason score (≥8), (ii) high T stage (≥T3), (iii) 
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high risk PCa (Gleason score ≥8 and/or Stage III or IV and/or PSA at diagnosis >20), 

and (iv) the mean difference in log transformed PSA levels at time of diagnosis with 

metabolic syndrome conditions assessed at baseline.  

Mantel-Haenszel chi-squared test was used to compare distribution of 

treatment across the two arms of study and metabolic health status in each of high risk 

and low risk PCa groups.  

 All analyses were performed using R software (version 3.5.1, The R 

foundation for statistical computing, 2018) using the ‘survival’, ‘survminer’ and 

‘riskRegression’ packages. 

Results 

Demographics: The mean age at randomization was 63 (±5.3) years, at 

baseline 23% were obese, 10% were diabetic and 36% were hypertensive (Table 1), 

with 51% having one or more of the three metabolic syndrome comorbidities 

(Supplementary table S1). In men who did not report any of the three metabolic 

syndrome related conditions at baseline, 18% developed at least one condition by the 

time of follow-up (Supplementary table S2). High-risk PCa cases were more likely to 

receive radical prostatectomy as primary treatment among screened metabolically 

healthy men but more likely to receive radiation therapy among screened 

metabolically non-healthy men (Supplementary table S3) 

Effect of screening: There was no evidence that screening reduced PCSM in 

the entire cohort (HR=0.91, 95%CI=[0.79, 1.04], p=0.17; Model 0 in Table 2 & S4, 

and Figure S1A) or in men with a follow up assessment (HR=0.87, 95%CI=[0.70, 

1.11], p=0.26; Model 0 in Table S5 and Figure S1B). There was also no evidence for 

interactions between the three metabolic syndrome factors and screening in the time 

dependent model or in the baseline sub-cohort (Model 1 in Table 2 & Supplementary 
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table S5). However there was evidence for an interaction between screening and 

having one or more of the metabolic syndrome related factors in the time dependent 

model (p=0.01, Model 2 in Table 2), the time dependent Fine and Gray model 

(p=0.03, Model 2 in Supplementary table S6) and in men with a follow-up assessment 

(p=0.02, Model 2 in Supplementary table S5), and weak evidence in analysis only 

using baseline data (p=0.06, Model 2 in Supplementary table S4). These interactions 

were attenuated when metabolic syndrome was implemented as a continuous linear 

number of factors present (0-3) in all four analyses (Model 3 in tables 2, S4, S5 and 

S6).  In metabolically healthy men (men without any of the three metabolic syndrome 

factors) screening appeared effective in reducing PCSM (HR=0.75, 95%CI=[0.61, 

0.92], p=0.01; Model 2 in Table 2; Figure 2A). While screening appeared to have no 

effect in men with one or more of these three factors at baseline (HR=1.07, 

95%CI=[0.89, 1.28], p=0.48; Figure 2B). Similar improvements in PCSM due to 

screening were observed in metabolically healthy men in the other three analyses 

(Model 2 in tables S4, S5 and S6) and in time dependent model using continuous 

linear count of factors (Model 3 in tables 2). With regards to the interactions with 

each metabolic syndrome factor separately, there was only weak evidence for 

interactions in the follow-up assessment analyses (diabetes p=0.04; hypertension 

p=0.06; Model 1 in Supplementary table S5). There was no evidence of a failure of 

the proportional hazards assumption for any of the interaction models.  

Associations with PCa incidence (The delay hypothesis): As expected, 

screening was associated with increase in PCa incidence (HR=1.06, 95%CI = [1.03, 

1.10], p<0.001). Having diabetes at baseline was associated with a reduction in PCa 

incidence (HR=0.87, 95%CI=[0.82, 0.92], p<0.001; Supplementary table S7), and 

similarly for being obese (HR=0.94, 95%CI=[0.90, 0.98], p=0.004). There was no 
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evidence of an association between hypertension and incidence (HR=1.01, 

95%CI=[0.97, 1.05], p=0.59).  

Associations with other cause mortality (Competing risk hypothesis): 

There was no effect of screening on other cause mortality (HR= 0.99, 95%CI= [0.96, 

1.01], p= 0.18). As expected each metabolic syndrome related conditions were 

associated with an increased risk of other cause mortality either separately or as 

having one or more (HR= 1.16, 1.48, 1.05 and 1.29 with p value <0.001 for 

hypertension, diabetes, obesity, or having one or more of them respectively)  

(Supplementary table S7).  

Associations with PCa characteristics at diagnosis (Aggressive PCa 

hypothesis): Among men who developed PCa both diabetes (HR=1.4, 95%CI=[1.1, 

1.8], p=0.003) and obesity (HR=1.3, 95%CI=[1.1, 1.5], p=0.01) were associated with 

the presence of high Gleason tumours, and high-risk PCa (diabetes HR=1.5, 

95%CI=[1.2, 1.8], p<0.001; obesity HR=1.2, 95%CI=[1.0, 1.4], p=0.02) while 

hypertension was associated with lower risk of high T stage (≥T3) and lower PSA at 

diagnosis (Table 3).  

Effect of PCa treatment modality: In a time dependent cox model adjusted 

for screening, age, race, treatment modality (radical prostatectomy versus others) and 

having one or more of the metabolic syndrome related factors there was no interaction 

between screening and treatment modality (p= 0.37 for the interaction), however, the 

interaction between screening and having one or more of the metabolic syndrome 

related factors was maintained (p= 0.01 for interaction) and screening among 

metabolically healthy men reduced risk of PCSM (HR= 0.71, 95%CI= [0.58, 0.88], 

p=0.002). No interaction was detected in the same model between treatment and the 

metabolic health status (p= 0.61 for the interaction).  
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Discussion 

Using the 17-year mortality data for the PLCO study we have shown that for 

men free of all three metabolic related conditions (diabetes, hypertension and 

obesity), a reduction in PCSM was observed in the screening arm, which was not 

observed in men with one or more of the metabolic syndrome related conditions. We 

have excluded that this observation could be due to the difference in treatment 

modalities across the analysis cohort.  

If PCa screening decision is based on individualized approach, then 

identifying the group of men who may benefit from screening is paramount. PCa is a 

disease of the elderly, a group in which metabolic syndrome related conditions are 

prevalent. Such conditions are a competing risk as men may die from non-PCa causes 

while PCa remains undiagnosed (Grossmann, M. & Wittert 2012). Furthermore 

metabolic syndrome factors have been associated with more aggressive PCa at 

diagnosis, and reduced PCa specific survival thereafter due to poor treatment 

outcomes (Gacci et al. 2017; Xiang et al. 2013). Thus metabolic syndrome may 

attenuate the effect of screening both by reducing the duration for which men are at 

risk of PCSM, and by reducing the benefits of early detection in men with PCa.  

Our analyses showed that having one or more metabolic syndrome related 

conditions is associated with a lower cumulative incidence of PCa and a substantial 

increase in other cause mortality, both of which support the competing risk 

hypothesis. In addition, obesity and diabetes were associated with lower risk of PCa 

incidence but increased risk of having high-grade and high-risk disease. This may 

support the diagnosis bias hypothesis (delay in diagnosis due to lower PSA levels) 

thereby reducing the efficacy of screening. However, there was not detectable effect 
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of either diabetes or obesity on high T-stage (≥T3), which may make the diagnosis 

bias hypothesis questionable.  

Using the 10-year follow-up data of the PLCO study Crawford el al. showed 

that men who have no or minimal comorbidities benefit from screening in terms of 

reducing risk of PCSM versus those who have one or more significant comorbidities 

related to cardiovascular conditions or cancer (Crawford et al. 2011). However there 

is concern regarding how significant comorbidities were defined, the inclusion of 

obesity and hypertension in this group increased the percentage of the unhealthy 

group to 64% (in comparison to 51% in our cohort analysis using only metabolic 

related conditions) (Andriole, G. L. et al. 2012), and thus this finding should be 

interpreted with caution (Bach & Vickers 2011).  The 13-year follow-up report of the 

PLCO did not detect an interaction between the presence of comorbidities and PCa 

screening on PCSM (Andriole, G. L. et al. 2012). In this report a modified Charlson 

comorbidity score (0 versus ≥1) was used based on the PLCO baseline questionnaire 

and it included myocardial infarction, stroke, diabetes, cancer, liver and pulmonary 

disease.  In our analysis, an interaction was detected between screening and 

cardiovascular comorbidities (stroke, ischemic heart disease, and heart failure) either 

alone or with addition of hypertension, obesity and diabetes in the time dependent 

model and in the follow up cohort, but not in the baseline cohort (data not shown).    

Our study features notable strengths compared to existing analyses of 

comorbidities and PCa screening in PLCO. We have taken advantage of the extended 

median 17-year follow-up mortality data now available, which includes a total of 627 

PCSM events, more than double the number observed in the 13-year follow-up report. 

By using only a limited number of comorbidities, our analysis have a clinical utility in 

terms of being able to easily identify such a group of men in clinical practice who are 
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free from these three conditions, rather than free from a long list of comorbidities. 

This does not rule out that the presence of other types of comorbidities may attenuate 

screening efficacy.  Our results are robust to modelling assumptions: time-dependent 

versus non-time dependent Cox models and Cox versus Fine & Gray competing risks 

regression models. We have also explored different possible explanations for our 

observation.  

Our analyses have the following limitations; this was an unplanned post hoc 

subgroup analysis of the PLCO data. Second there was no data available regarding 

medication usage for diabetes and hypertension, or whether these conditions were 

controlled for or not. Third, there was no data available at baseline about history of 

having hyperlipidaemia, which prevents us from using NCEP-ATPIII’s definition of 

metabolic syndrome.  

Notwithstanding these issues, our results support those of Crawford el al 

(Crawford et al. 2011) in terms of detecting an interaction between presence of 

comorbidities and PCa screening. We have also tried to overcome a criticism of their 

study by limiting the comorbidities to only metabolic syndrome related conditions to 

have a reasonable sized healthy and unhealthy study cohort (Andriole, G. L. et al. 

2012). However, identifying the type of comorbidities that may attenuate screening 

remains an area for future research.  
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Conclusion 

The presence of metabolic syndrome appears to attenuate the effect of PCa 

screening, with PCa screening possibly being effective among healthy men with no 

metabolic syndrome related conditions.  If confirmed in other cohorts or in a 

prospective study, then this result has major implications for PCa screening 

guidelines. 
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Table 1: Demographics at baseline assessment.  
 

  Control Screening Total 
  N = 35338 N = 36782 N = 72120 

Age  mean (SD) 62.7 (5.3) 62.7 (5.3) 62.7 (5.3) 
Race white non-Hispanic 31275 (89%) 32511 (88%) 63786 (88%) 

black non-Hispanic 1591 (5%) 1659 (5%) 3250 (5%) 
Asian 1405 (4%) 1501 (4%) 2906 (4%) 
other 1067 (3%) 1111 (3%) 2178 (3%) 

BMI  mean (SD) 27.5 (4.1) 27.6 (4.2) 27.6 (4.2) 
Obesity  no 27182 (77%) 28107 (76%) 55289 (77%) 

yes 8156 (23%) 8675 (24%) 16831 (23%) 
Diabetes  no 31953 (90%) 33241 (90%) 65194 (90%) 

yes 3385 (10%) 3541 (10%) 6926 (10%) 
Hypertension  no 22408 (63%) 23493 (64%) 45901 (64%) 

yes 12930 (37%) 13289 (36%) 26219 (36%) 
Prostate cancer sub-cohort 

(Those who diagnosed with prostate cancer during the 18 years of follow up) 
 

  Control Screening  Total 

 
N = 3910 

(47%) 
N = 4424 

(53%) 
N = 8334 

 
Obesity  no 3108 (79%) 3504 (79%) 6612 (79%) 

yes 802 (21%) 920 (21%) 1722 (21%) 
Diabetes  no 3631 (93%) 4115 (93%) 7746 (93%) 

yes 279 (7%) 309 (7%) 588 (7%) 
Hypertension  no 2538 (65%) 2823 (64%) 5361 (64%) 

yes 1372 (35%) 1601 (36%) 2973 (36%) 
Metabolic Syndrome no 2067 (53%) 2241 (51%) 4308 (52%) 

yes 1843 (47%) 2183 (49%) 4026 (48%) 
High Gleason Score 

(≥8) 
no 529 (14%) 476 (11%) 1005 (12%) 
yes 3331 (85%) 3876 (88%) 7207 (86%) 

Missing 50 (1%) 72 (2%) 122 (1%) 
High T stage (≥T3) no 93 (2%) 75 (2%) 168 (2%) 

yes 3817 (98%) 4349 (98%) 8166 (98%) 
PSA at diagnosis  Mean (SD) 2615 (67%) 3619 (82%) 6234 (75%) 

0 -10 2615 (67%) 3619 (82%) 6234 (75%) 
10 - 20 524 (13%) 557 (13%) 1081 (13%) 

> 20 261 (7%) 215 (5%) 476 (6%) 
Missing  510 (13%) 33 (<1%) 543 (7%) 

High Risk  no 2729 (70%) 3687 (83%) 6416 (77%) 
yes 724 (19%) 660 (15%) 1384 (17%) 

Missing  457 (12%) 77 (2%) 534 (6%) 
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Table 2: Models with all coefficients for the association between screening and metabolic factors (hypertension, 
diabetes, obesity), either separate or as “having one or more” with interactions for the effect of screening on prostate 
cancer specific mortality  
 

 Time dependent Cox regressions 
Model 0 Model 1 Model 2 Model 3 

HR [95% CI] P value HR [95% CI] P value HR [95% CI] P value HR [95% CI] P 
value 

Age at randomization 1.04 [1.03, 1.06] <0.001 1.04 [1.03, 1.06] <0.001 1.04 [1.03, 1.05] <0.001 1.04 [1.03, 1.05] <0.001 
Race (black non-Hispanic 
vs. others) 

2.07 [1.58, 2.71] <0.001 2.07 [1.58, 2.71] <0.001 2.03 [1.55, 2.65] <0.001 2.03 [1.55, 2.65] <0.001 

Screening (screening vs. 
control) 

0.91 [0.79, 1.04] 0.17 0.82 [0.68, 0.99] 0.04 0.75 [0.61, 0.92] 0.01 0.82 [0.68, 0.99] 0.04 

Hypertension (yes vs. no) 0.81 [0.70, 0.94] 0.004 0.72 [0.59, 0.88] 0.002 ------ ------ ------ ------ 
Diabetes (yes vs. no) 0.80 [0.64, 1.00] 0.05 0.65 [0.47, 0.93] 0.02 ------ ------ ------ ------ 
Obesity (yes vs. no) 1.24 [1.06, 1.46] 0.009 1.34 [1.07, 1.67] 0.01 ------ ------ ------ ------ 
Metabolic syndrome 
related factors (yes vs. no) 

------ ------ ------ ------ 0.74 [0.61, 0.89] 0.002 0.88 [0.78, 0.99] 0.03 

Screening x Hypertension ------ ------ 1.27 [0.96, 1.68] 0.10 ------ ------ ------ ------ 
Screening x Diabetes ------ ------ 1.44 [0.92, 2.26] 0.11 ------ ------ ------ ------ 
Screening x Obesity ------ ------ 0.86 [0.63, 1.19] 0.37 ------ ------ ------ ------ 
Screening x Metabolic 
syndrome related factors 

------ ------ ------ ------ 1.43 [1.09, 1.88] 0.01 1.14 [0.96, 1.34] 0.13 

 
• Model 0 – Model including diabetes, hypertension and obesity without interactions with screening.  
• Model 1 – Model including pairwise interactions between screening and each factor: diabetes, hypertension and obesity.  
• Model 2 – Model including an interaction between screening and having one or more of the metabolic syndrome related factors: diabetes, 

hypertension and/or obesity (yes for any of them vs. no). 
• Model 3 – Model including an interaction between screening and the sum (0-3) of diabetes (0-1), hypertension (0-1) and obesity (0-1). 
• Each metabolic factor is implemented as a time dependant variable with assessments at baseline and at (median) nine years follow-up.
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Table 3: Associations with prostate cancer characteristics at diagnosis  
 

 Logistic regression Linear regression 

High Gleason score 
(≥8)  

High T stage (≥T3) High Risk PSA (log) at diagnosis  

OR  
[95% CI] 

P 
value 

OR  
[95% CI] 

P 
value 

OR 
 [95% CI] 

P value ß  
[95% CI] 

P 
value 

Hypertension  0.89  
[0.77, 1.03] 

0.11 0.71  
[0.50,0.99] 

0.05 0.88  
[0.78, 1.0] 

0.06 -0.04  
[-0.10,  -0.004] 

0.03 

Diabetes  1.4  
[1.1, 1.8] 

0.01 1.4  
[0.8, 2.4] 

0.19 1.5  
[1.2, 1.8] 

<0.001 0.04  
[-0.03, 0.11] 

0.29 

Obesity  1.20  
[1.11, 1.50] 

0.01 0.81  
[0.52, 1.20] 

0.32 1.20  
[1.0, 1.40] 

0.03 0.003  
[-0.04, 0.05] 

0.91 

Metabolic syndrome 
related factors 

1.0  
[0.91, 1.20] 

0.53 0.82  
[0.60, 1.10] 

0.21 1.0  
[0.91, 1.20] 

0.71 -0.02  
[-0.06, 0.01] 

0.21 

Metabolic syndrome 
related factors as 
continuous (0-3) 

1.09  
[1.00, 1.19] 

0.05 0.84  
[0.67, 1.04] 

0.12 1.08  
[0.99, 1.16] 

0.06 -0.013 
[-0.04, 0.01] 

0.27 

 
• Multivariable models with the three metabolic conditions at baseline adjusted for screening, age at randomization and race.     
• High Risk: Stage ≥T3 and/or Gleason score ≥8 and /or PSA at diagnosis >20 ng/ml 
• Metabolic syndrome related factors as continuous factor, as a sum (0-3) of diabetes (0-1), hypertension (0-1) and obesity (0-1). 
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Supplementary table S1: Additional demographic data at baseline 
assessment  
		

  Control Screening  Total 
  N = 35338 N = 36782 N = 72120 

Metabolic syndrome 
related factors (Diabetes 
&/or hypertension &/or 

obesity)  

No 17509 (50%) 18126 (49%) 35635 (49%) 
Yes 

17829 (50%) 18656 (51%) 36485 (51%) 
Prostate cancer  No diagnosis 31428 (89%) 32358 (88%) 63786 (88%) 

Diagnosis 3910 (11%) 4424 (12%) 8334 (12%) 
Median Follow up  Mean (±SD) 12.6 (±4.8) 12.5 (±4.7) 12.6 (±4.7) 

Status at last contact Alive 22583 (64%) 23819 (65%) 46402 (64%) 
Died of other 

causes  12436 (35%) 12655 (34%) 25091 (35%) 
Died due to 

PCa  319 (<1%) 308 (<1%) 627 (<1%) 
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Supplementary table S2: Demographics at the 9-year follow-up 
assessment  
 

  Control Screening Total Not assessed 
at follow-up 

  N = 20045 N = 22235 N = 42280 N= 24923 
Age at 

randomization 
Mean 
(±SD) 

62.1 (±5.1) 62.0 (±5.0) 62.1 (±5.1) 63.0 (±5.6) 

Hypertension  

No 9282 (46%) 
10241 
(46%) 

19523 
(46%) 

15077 (60%) 

Yes 
 

10763 
(54%) 

 

11994 
(54%) 

 

22757 
(54%) 

 

9846 (40%) 

Diabetes  
 

No 
16691 
(83%) 

18494 
(83%) 

35185 
(83%) 

21656 (87%) 

Yes 
 

3354 (17%) 
 

3741 (17%) 
 

7095 (17%) 
 

3267 (13%) 

Obesity  
 

No 
14376 
(72%) 

15766 
(71%) 

30142 
(71%) 

18663 (75%) 

Yes 
 

5669 (28%) 
 

6469 (29%) 
 

12138 
(29%) 

 

6260 (25%) 

Hypertension 
and /or diabetes 
and /or obesity  

No 6897 (34%) 7433 (33%) 
14330 
(34%) 

11231 (45%) 

Yes 
13148 
(66%) 

14802 
(67%) 

27950 
(66%) 

13692 
(55)%) 

No 
hypertension, 

diabetes or 
obesity at 

baseline, but 
developed any 
at the 9-year 

follow-up 

No  
16567 
(83%) 

18280 
(82%) 

34847 
(82%) 

-------- 

Yes 3478 (17%) 3955 (18%) 7433 (18%) 

-------- 

Prostate cancer  No 
diagnosis 

17609 
(88%) 

19439 
(87%) 

37048 
(88%) 

22469 (90%) 

Diagnosis 2436 (12%) 2796 (13%) 5232 (12%) 2454 (10%) 
Time from 

randomization 
to follow-up  

Mean 
(±SD) 

9.4 (±1.9) 9.4(±1.9) 9.4(±1.9) -------- 

Time from 
follow up till 
last contact  

Mean 
(±SD) 

7.9 (±2.4) 8.0 (±2.4) 8.0 (±2.4) -------- 

Status at last 
contact  

Alive 15497 
(77%) 

17179 
(77%) 

32676 
(77%) 

10243 (41%) 

Died of 
other 

causes  4419 (22%) 4930 (22%) 9349 (22%) 

 
 

14356 (58%) 
Died due to 

PCa  129 (<1%) 126 (<1%) 255 (<1%) 
 

324 (1%) 
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Supplementary table S3: Distribution of treatment modalities by screening arm across low and high risk prostate 
cancer cases in metabolically healthy and unhealthy men.  
	

	 Metabolically	healthy	
N=	4308	

Metabolically	unhealthy	
N=	4026	

	 Low	risk	
N=	3336	(77%)	

High	risk	
N=	696	(16%)	

Low	risk	
N=	3080	(77%)	

High	risk	
N=	688	(17%)	

	 Control	
N=1443	
(43%)	

Screening	
N=	1893	
(57%)	

Control	
N=384	
(55%)	

Screening	
N=312	
(45%)	

Control	
N=1286	
(42%)	

Screening	
N=1794	
(58%)	

Control	
N=340	
(49%)	

Screening	
N=348	
(51%)	

Radiation	therapy	alone	 331	
(23%)	

424	
(22%)	

29	
(7.6%)	

21	
(6.7%)	

336	
(26%)	

437	
(24%)	

26	
(8%)	

35	
(10%)	

Radiation	with	hormonal	 272	
(19%)	

278	
(15%)	

127	
(33%)	

102	
(33%)	

259	
(20%)	

314	
(18%)	

137	
(40%)	

117	
(34%)	

Radical	prostatectomy	 561	
(17%)	

833	
(44%)	

125	
(33%)	

106	
(34%)	

441	
(34%)	

660	
(37%)	

75	
(22%)	

85	
(24%)	

Hormonal	treatment	only	 54	
(1.7%)	

	

63	
(3.3%)	

	

79	
(21%)	

63	
(20%)	

74	
(6%)	

87	
(5%)	

76	
(22%)	

78	
(22%)	

Other	treatment	 189	
(6%)	
	

251	
(13%)	

15	
(3.9%)	

15	
(4.8%)	

131	
(10%)	

250	
(14%)	

15	
(4%)	

19	
(5%)	

Other	ablative	 28	
(0.9%)	

34	
(1.8%)	

8	
(2%)	

5	
(1.6%)	

36	
(3%)	

36	
(2%)	

11	
(3%)	

13	
(4%)	

Missed	 8	
(<1%)	

10	
(<1%)	

1	
(<1%)	

0	
(0%)	

9	
(<1%)	

10	
(<1%)	

0	
(0%)	

1	
(<1%)	

Using	Mantel-Haenszel	chi-squared	test,	among	low	risk	group,	there	no	difference	between	treatments	options	across	screening	arms	
and	metabolic	status	(p=	0.13).	Among	high-risk	group,	there	was	a	difference	between	treatments	options	across	screening	arms	and	
metabolic	status	(p=	0.03). 	
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Supplementary table S4: Models with all coefficients for the association between screening and metabolic factors 
(hypertension, diabetes, obesity), either separate or as “having one or more” with interactions for the effect of 
screening on prostate cancer specific mortality using data from baseline cohort. 
 

 Cox Proportional Hazard model  
Model 0 Model1 Model 2 Model 3 (Linear model) 

HR [95% CI] P value HR [95% CI] P value HR [95% CI] P value HR [95% CI] P 
value 

Age at randomization 1.13 [1.11, 1.15] <0.001 1.13 [1.11, 1.15] <0.001 1.13 [1.11, 1.14] <0.001 1.13 [1.11, 1.14] <0.001 
Race (black non-Hispanic 
vs. others) 

2.24 [1.67, 3.00] <0.001 2.24 [1.67, 3.00] <0.001 2.19 [1.64, 2.93] <0.001 2.18 [1.63, 2.91] <0.001 

Screening (screening vs. 
control) 

0.91 [0.78, 1.07] 0.26 0.86 [0.70, 1.06] 0.16 0.78 [0.63, 0.98] 0.03 0.87 [0.71, 1.07] 0.18 

Hypertension (yes vs. no) 0.91 [0.77, 1.08] 0.30 0.84 [0.66, 1.06] 0.14 ------- ------- ------- ------- 
Diabetes (yes vs. no) 0.77 [0.56, 1.05] 0.09 0.78 [0.50, 1.21] 0.27 ------- ------- ------- ------- 
Obesity (yes vs. no) 1.42 [1.18, 1.7] <0.001 1.42 [1.09, 1.84] 0.009 ------- ------- ------- ------- 
Metabolic syndrome ------- ------- ------- ------- 0.90 [0.72, 1.12] 0.36 1.00 [0.87, 1.16] 0.99 
Screening x Hypertension ------- ------- 1.20 [0.861, 1.68] 0.28 ------- ------- ------- ------- 
Screening x Diabetes ------- ------- 0.96 [0.52, 1.79] 0.90 ------- ------- ------- ------- 
Screening x Obesity ------- ------- 1.00 [0.69, 1.44] 0.98 ------- ------- ------- ------- 
Screening x Metabolic 
syndrome 

------- ------- ------- ------- 1.36 [0.99, 1.86] 0.06 1.08 [0.881, 1.32] 0.46 

• Model 0 – Model including diabetes, hypertension and obesity without interactions with screening.  
• Model 1 – Model including pairwise interactions between screening and each factor: diabetes, hypertension and obesity.  
• Model 2 – Model including an interaction between screening and having one or more of the metabolic syndrome related factors: diabetes, 

hypertension and/or obesity (yes vs. no). 
• Model 3 – Model including an interaction between screening and the sum (0-3) of diabetes (0-1), hypertension (0-1) and obesity (0-1). 
• Cohort of men with baseline information about metabolic syndrome related conditions, from time of randomization until time of last 

contact 
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Supplementary table S5 Models with all coefficients for the association between screening and metabolic factors 
(hypertension, diabetes, obesity), either separate or as “having one or more” with interactions for the effect of 
screening on prostate cancer specific mortality using data from follow up cohort  
 
 

 Cox Proportional Hazard model  
Model 0 Model 1 Model 2 Model 3  

HR [95% CI] P value HR [95% CI] P value HR [95% CI] P value HR [95% CI] P 
value 

Age at randomization 1.14 [1.11, 1.17] <0.001 1.14 [1.11, 1.17] <0.001 1.14 [1.11, 1.16] <0.001 1.14 [1.11, 1.16] <0.001 
Race (black non-Hispanic 
vs. others) 

1.75 [0.95, 3.21] 0.07 1.74 [0.95, 3.2] 0.07 1.79 [0.98, 3.28] 0.06 1.74 [0.95, 3.20] 0.07 

Screening (screening vs. 
control) 

0.87 [0.70, 1.11] 0.26 0.64 [0.43, 0.94] 0.02 0.57 [0.37, 0.88] 0.01 0.65 [0.45, 0.95] 0.03 

Hypertension (yes vs. no) 0.96 [0.74, 1.23] 0.72 0.75 [0.53, 1.07] 0.12 ------- ------- ------- ------- 
Diabetes (yes vs. no) 1.21 [0.88, 1.67] 0.23 0.83 [0.50, 1.39] 0.49 ------- ------- ------- ------- 
Obesity (yes vs. no) 1.25 [0.95, 1.66] 0.11 1.46 [0.99, 2.16] 0.06 ------- ------- ------- ------- 
Metabolic syndrome ------- ------- ------- ------- 0.79 [0.56, 1.13] 0.19 0.97 [0.80, 1.19] 0.79 
Screening x Hypertension ------- ------- 1.62 [0.98, 2.70] 0.06 ------- ------- ------- ------- 
Screening x Diabetes ------- ------- 1.97 [1.02, 3.80] 0.04 ------- ------- ------- ------- 
Screening x Obesity ------- ------- 0.74 [0.43, 1.29] 0.29 ------- ------- ------- ------- 
Screening x Metabolic 
syndrome 

------- ------- ------- ------- 1.88 [1.10, 3.21] 0.02 1.32 [1.00, 1.74] 0.05 

• Model 0 – Model including diabetes, hypertension and obesity without interactions with screening.  
• Model 1 – Model including pairwise interactions between screening and each factor: diabetes, hypertension and obesity.  
• Model 2 – Model including an interaction between screening and having one or more of the metabolic syndrome related factors: diabetes, 

hypertension and/or obesity (yes vs. no). 
• Model 3 – Model including an interaction between screening and the sum (0-3) of diabetes (0-1), hypertension (0-1) and obesity (0-1). 
• Cohort of men with baseline and follow up information about metabolic syndrome related conditions, from time of follow up 

questionnaire until time of last contact 
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Supplementary table S6: Models with all coefficients for the association between screening and metabolic factors 
(hypertension, diabetes, obesity), either separate or as “having one or more” with interactions for the effect of 
screening on prostate cancer specific mortality in a time dependent Fine and Gray model   
 

 Time dependent models 
Model 0 Model 1 Model 2 Model 3  

HR [95% CI] P value HR [95% CI] P value HR [95% CI] P value HR [95% CI] P 
value 

Age at randomization 1.06 [1.05, 1.07] <0.001 1.06 [1.05, 1.07] <0.001 1.05 [1.04, 1.06] <0.001 1.05 [1.04, 1.06] <0.001 
Race (black non-Hispanic 
vs. others) 

2.27 [1.67, 3.08] <0.001 2.26 [1.67, 3.07] <0.001 2.19 [1.61, 2.96] <0.001 2.19 [1.62, 2.98] <0.001 

Screening (screening vs. 
control) 

0.93 [0.80, 1.09] 0.38 0.86 [0.69, 1.06] 0.16 0.77 [0.61, 0.97] 0.03 0.87 [0.70, 1.07] 0.19 

Hypertension (yes vs. no) 0.78 [0.66, 0.92] <0.001 0.66 [0.53, 0.84] <0.001 ------- ------- ------- ------- 
Diabetes (yes vs. no) 0.74 [0.57, 0.95] 0.02 0.63 [0.43, 0.92] <0.001 ------- ------- ------- ------- 
Obesity (yes vs. no) 1.29 [1.08, 1.55] 0.01 1.51 [1.17, 1.93] <0.001 ------- ------- ------- ------- 
Metabolic syndrome ------- ------- ------- ------- 0.72 [0.58, 0.89] <0.001 0.87 [0.76, 1.00] 0.05 
Screening x Hypertension ------- ------- 1.37 [0.99, 1.88] 0.05 ------- ------- ------- ------- 
Screening x Diabetes ------- ------- 1.35 [0.81, 2.25] 0.24 ------- ------- ------- ------- 
Screening x Obesity ------- ------- 0.74 [0.51, 1.05] 0.09 ------- ------- ------- ------- 
Screening x Metabolic 
syndrome 

------- ------- ------- ------- 1.42 [1.04, 1.94] 0.03 1.10 [0.91, 1.32] 
 

0.33 

• Model 0 – Model including diabetes, hypertension and obesity without interactions with screening.  
• Model 1 – Model including pairwise interactions between screening and each factor: diabetes, hypertension and obesity.  
• Model 2 – Model including an interaction between screening and having one or more of the metabolic syndrome related factors: diabetes, 

hypertension and/or obesity (yes vs. no). 
• Model 3 – Model including an interaction between screening and the sum (0-3) of diabetes (0-1), hypertension (0-1) and obesity (0-1). 
• Time dependent Fine and Gray competing risk model  
• Each variable is dealt with as a time dependant variable with two time points; at time of baseline questionnaire, and at time of follow up 

questionnaire   
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Supplementary table S7: Effect of metabolic condition at baseline on prostate cancer incidence, and mortality  
 

 Time dependent Cox models 
 

  
PCa incidence  

 

 
Other cause mortality  

 HR  
[95% CI] 

P 
value 

HR 
 [95% CI] 

P 
value 

HR  
[95% CI] 

P 
value 

HR  
[95% CI] 

P 
value 

Age at randomization 0.98  
[0.97, 0.98] 

<0.001 0.98  
[0.97, 0.98] 

<0.001 1.04  
[1.03, 1.04] 

<0.001 1.04  
[1.04, 1.04] 

<0.001 

Race (black non-
Hispanic vs. others) 

1.22  
[1.12, 1.32] 

<0.001 1.21  
[1.12, 1.31] 

<0.001 1.26  
[1.19, 1.32] 

<0.001 1.3  
[1.24, 1.36] 

<0.001 

Screening (screening vs. 
control) 

1.06  
[1.03, 1.10] 

<0.001 1.06  
[1.03, 1.1] 

<0.001 0.99  
[0.96, 1.01] 

0.18 0.99  
[0.96, 1.01] 

0.18 

Hypertension (yes vs. no) 1.01  
[0.97, 1.05] 

0.59 ------ ------ 1.16  
[1.13, 1.19] 

<0.001 ------ ------ 

Diabetes (yes vs. no) 0.87 
 [0.82, 0.92] 

<0.001 ------ ------ 1.48  
[1.44, 1.53] 

<0.001 ------ ------ 

Obesity (yes vs. no) 0.94  
[0.90, 0.98] 

0.004 ------ ------ 1.05  
[1.02, 1.08] 

<0.001 ------ ------ 

Metabolic syndrome ------ ------ 0.96  
[0.92, 0.99] 

0.01 ------ ------ 1.29  
[1.26, 1.32] 

<0.001 

 
- Time dependent Cox regression models with time dependent variables, each variable is dealt with as a time dependant variable with two 

time points; at time of baseline questionnaire, and at time of follow up questionnaire 
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Figure 1: Participant flow diagram. 
HTN: Hypertension; DM: Diabetes; BMI: Body mass index 

PLCO cohort  
N= 76635 

Analysis cohort: N= 72120 
Men who have baseline data about 

metabolic syndrome factors (obesity, 
hypertension and diabetes)   

N= 42280 
Men who have baseline and follow up 

data metabolic syndrome factors 
(obesity, hypertension and diabetes)   

 

Exclude those missing 
data  
N = 4515  
Survival data: N=19 
Race: N= 2866 
HTN: N=432 
DM: N=83 
BMI: N=1115 
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Figure 2: Difference in cumulative incidence of PCSM due to screening in (A) metabolically healthy men (no 
diabetes, hypertension or obesity at baseline), and (B) metabolically unhealthy men (one or more of the three 
metabolic conditions at baseline), using covariate unadjusted Cox proportional hazard regressions with survival 
from date of randomization until date of last contact 
 
 
Supplementary figures  

Fig: 2A Fig: 2B 
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Figure S1: Difference in cumulative incidence of PCSM due to screening in (A) entire cohort, (B) men with nine-year 
follow-up, using covariate unadjusted Cox proportional hazard regressions. In (A) survival is from date of 
randomization until date of last contact, and in (B) survival is from date of follow-up assessment until date of last 
contact.  
 
  

	

Fig: S1A 
Fig: S1B 
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Figure S2: Difference in cumulative incidence of PCSM due to screening in men with a nine-year follow-up 
assessment in (A) metabolically healthy men (no diabetes, hypertension or obesity at follow-up) and (B) 
metabolically unhealthy men (one or more of the three metabolic conditions at follow-up) using covariate unadjusted 
Cox proportional hazard regressions with survival from date of follow-up assessment until d of last contact.	

Fig: S2A Fig: S2B 
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Chapter 5. Associations between sex hormones, prostate 
cancer incidence and disease characteristics at diagnosis 
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Abstract: 

Introduction: Prostate cancer (PCa) is an androgen-dependent cancer, however the 

relationship between sex hormones and the incidence and aggressiveness of PCa 

remains poorly understood.  

Methods: A nested case-control sub-cohort from the PLCO (Prostate, Lung, 

Colorectal and Ovarian) study that has hormonal data available (N= 371) was used to 

examine associations between sex hormones and PCa incidence and tumour 

characteristics at diagnosis in terms of Gleason score (GS), T stage and PSA at 

diagnosis. Estradiol (E2), testosterone (T), and sex-hormone binding globulin 

(SHBG) data were available from baseline blood samples. The change in sex hormone 

levels with body mass index (BMI) was assessed using age-adjusted linear regression 

models. Conditional logistic regressions were employed to assess associations 

between hormone levels and PCa incidence. Binomial logistic regressions were 

employed to assess hormonal associations with high GS (GS>7), high T stage (≥T) 

and PSA at diagnosis in the PCa cohort (N= 180) in age-adjusted and multivariable 

models.  

Results: Higher BMI was associated with lower T (p<0.001), lower SHBG 

(p=<0.001) and higher E2/T (p=<0.001). After covariate adjustment, BMI was not 

associated with PCa incidence (p= 0.55), or with high GS (p=0.7). Men with higher 

E2/T ratios had a lower risk of incident PCa (OR=0.43; 95%CI=[0.22, 0.85], p=0.02), 

and greater risk of high GS at diagnosis (OR=13.0; 95%CI=[2.9, 74], p=0.002). 

Higher testosterone was associated with reduced risk of high GS (OR=0.08; 

95%CI=[0.01, 0.5], p=0.01).  
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Conclusion: E2/T is positively associated with BMI, an increased risk of high GS 

at diagnosis, and negatively associated with PCa incidence. No associations are 

detected between sex hormones, T stage or PSA at diagnosis.  
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Introduction: 

Prostate cancer (PCa) is an androgen dependent cancer, however our understanding of 

the role of serum sex hormones on PCa incidence and aggressiveness is incomplete. 

This is compounded in a setting of obesity and its associated metabolic alterations, 

which is typified by increased conversion of testosterone (T) to estradiol (E2), thereby 

altering the ratio between E2 and T in obese men relative to non-obese men (Wu, A et 

al. 2018). There is accumulating evidence, associating obesity with aggressive PCa 

(Zhong et al. 2016), however the contribution of obesity-related hormonal changes 

(Gates et al. 2013; Gautier et al. 2013) remains elusive.   

The serum E2/T ratio is a good reflection of the net sex hormonal milieu in men. 

Previous studies that have explored the association between serum E2/T and risk of 

PCa aggressiveness have reported contrasting results ranging from positive 

associations between higher E2/T and PCa aggressiveness (Schenk et al. 2016) to 

inverse associations (Black et al. 2014; Salonia et al. 2012; Tsai et al. 2006), with 

others unable to detect significant associations (Daniels et al. 2010; Severi et al. 2006; 

Sher et al. 2009). One factor that may contribute to these inconsistent findings is 

variability in the definition of aggressive PCa. Some studies use only Gleason score 

(GS) (Daniels et al. 2010; Schenk et al. 2016; Sher et al. 2009), while others use a 

combination of clinical stage and GS (Black et al. 2014; Salonia et al. 2012; Severi et 

al. 2006; Tsai et al. 2006). 

Aggressive PCa is commonly defined by grouping the following disease 

characteristics: GS, tumor stage (T stage), prostate specific antigen at diagnosis (PSA 

Dx), presence of involved lymph nodes (N) and the presence of metastasis (M) 

(https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf, reviewed on 22nd 
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of October 2018). Despite risk scores providing clinical value for patient prognosis, 

they combine factors relating to distinct pathways (pathology versus tumor 

development versus tumor propensity for metastasis, with tumor development 

potentially confounded by delays in diagnosis). Thus using combined risk scores may 

explain inconsistent findings when examining associations between sex hormones and 

PCa outcomes. For instance, sex hormones are affected by obesity(Aref et al. 2018), 

at the same time obesity has been reported to be negatively associated with total 

incidence, tumor stage and localized stage, but positively associated with higher GS 

and PCa specific mortality (Amling et al. 2004; Burton et al. 2013; Kelly, Scott P et 

al. 2016; Pischon et al. 2008; Zhong et al. 2016). 

The aim of our study is to examine associations between sex hormones and PCa 

incidence and characteristics at diagnosis in terms of Gleason score (GS), T stage and 

PSA at diagnosis. 

 

Material and Methods 

Study population 

Our study population is nested case-control subgroup of the PLCO PCa screening 

arm, which have sex hormones assessment. The PLCO study includes 38340 men 

with ages ranging between 49 and 75 years. Over the period from 1993 to 2001 men 

were enrolled at 10 screening centers in the United States of America.  PSA testing 

was performed annually for six years along with a digital rectal examination (DRE) 

every two years.  Men were followed for at least 13 years for assessment of risk of 

PCa.  4430 men were diagnosed with PCa during follow up.  A full description of the 

study design is cited elsewhere (Prorok et al. 2000). A nested case-control sub-cohort 
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of 727 PCa cases and 889 controls (PCa free) from the PLCO study (matched on age 

at randomization, fiscal year of first screen and study year of diagnosis/reference) 

were chosen and had androgen hormone assessments (Weiss et al. 2008). Out of this 

group, another sub-cohort (total hormonal sub-cohort N= 371, PCa free N = 191, PCa 

N = 180) was chosen and had their stored serum sample analyzed for estradiol. This 

sub-cohort is described in detail in (Black et al. 2014).  

The hormonal sub-cohort was selected to re-explore the association between sex 

hormonal milieu and each of PCa incidence and prostate cancer criteria in terms of 

Gleason score (GS), T stage and PSA at diagnosis (Figure 1). 

Measures 

Estradiol (E2), testosterone (T), and sex hormone binding globulin (SHBG) were 

collected from baseline blood samples.  E2 was quantified using stable isotope 

dilution LC/MS-MS, T was measured using direct RIA (Immunotech; CV= 14%), and 

SHBG was measured by a sandwich immunoradiometric assay. Full details are cited 

in (Black et al. 2014; Weiss et al. 2008).  

 

Statistical Methods 

We report means (±SD) and frequency (percentages) for demographic factors as 

appropriate, unless otherwise stated.  The associations between E2, T, E2/T, and 

SHBG with body mass index (BMI) were assessed using age adjusted linear 

regression models. In all analyses these hormone measures were log transformed. 

Spearman correlation coefficients were used to assess correlations between hormonal 

variables in the hormonal sub-cohort. Except for data on PSA before randomization 

which were missing 10%, no other variables have missing data more than one percent, 
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thus naïve imputation using mean for continuous variables or most abundant for 

factorial variables was used to impute for missing variables in the hormonal sub-

cohort.  

Conditional logistic regression (matched on age at randomization, fiscal year of first 

screen and study year of diagnosis/reference) was employed to assess the association 

between the hormonal variables and PCa incidence in the hormonal sub-cohort. 

Binomial logistic regression models were employed to assess the associations 

between hormonal variables and both high GS (GS>7) and high T stage (≥T2c). A 

linear regression model was employed to assess the association between hormonal 

variables and log transformed PSA at diagnosis. The association between the 

hormonal variables and prostate cancer characteristics was initially assessed using 

age-adjusted regressions models, then in multivariable models with two sets of 

covariates. The first model adjusted for age at baseline, BMI at study entry and 

SHBG, the second model extended the first model to include history of having 

diabetes, history of having hypertension, positive family history of PCa, and smoking 

duration, education (high school or less versus more than high school), marital status 

(married versus single) and having PSA test before randomization (one or less versus 

more than one). The multivariable SHBG models were adjusted for estradiol and 

testosterone in addition to the previously mentioned covariates. To account for non-

linearity, each model was repeated with the hormonal variables divided into quartiles 

(using the lowest quartile as the reference group).   

 All statistical analyses were performed using R software (Version 3.5.1, The R 

foundation for statistical computing, 2018) using the ‘survival’ package.  
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Results 

Hormonal associations with BMI: The mean age of our analysis cohort was 63 

(±3.5) and mean BMI was 28 (±4). Of those who have PCa, 34% were stage III or IV, 

3% had T stage of T3 or higher at diagnosis and 14% had a Gleason score of 8 or 

more (Table 1). Using an age-adjusted linear regression model, higher BMI was 

associated with lower T (p<0.001), lower SHBG (p=<0.001) and higher E2/T 

(p=<0.001). The association with E2 (p=0.13) was not significant (Supplementary 

Table S1). The correlation between E2 and E2/T and SHBG was low (r= -0.38 and r= 

0.11 respectively), however as expected T and SHBG showed higher correlation (r= 

0.72) (Supplementary Table S2).  

Prostate cancer incidence:  Using a conditional logistic regression model, E2/T was 

associated with a reduced PCa incidence in both age adjusted and multivariable 

models (age adjusted OR=0.62, 95%CI=[0.4, 0.97], p= 0.04; full multivariable 

OR=0.43, 95% CI=[0.22, 0.85], p=0.02), while higher T was associated with 

increased PCa incidence in the multivariable model (OR=2.1, 95%CI=[1.1, 4.0], p= 

0.04; Table 2). After covariate adjustment, higher BMI at baseline was not associated 

with PCa incidence.  

 

Prostate cancer at diagnosis:  When restricting to men diagnosed with PCa in the 

hormonal cohort (N= 180), E2/T was positively associated with high GS (≥8) both in 

age adjusted and multivariable models (age adjusted OR=2.4; 95% CI=[1.0, 6.0], p= 

0.05, full multivariable model OR=13.0; 95% CI=[2.9, 74], p = 0.002).  We detected 

an inverse association between T and high GS in full multivariable model (OR=0.08, 

95% CI=[0.01, 0.5], p= 0.01) (Table 3). A positive association between SHBG and 
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high GS was detected in the full multivariable model (OR=15, 95% CI=[2.4, 120], p= 

0.006) (Table 3) 

No association was detected between any of the sex hormones and T stage at 

diagnosis except for weak inverse association with higher E2/T ratio in the age-

adjusted model (Table 4). No association was detected between any of the sex 

hormones and the level of PSA at diagnosis  expect for a weak inverse association 

with higher T in age adjusted model (Table 5). 

Non-linear analyses: Using E2/T quantiles indicated a decreased risk of PCa 

incidence with the 4th quantile (Supplementary Table S3), while the association with 

higher GS was near significant in the age-adjusted model (p=0.07) and significant for 

the age, BMI and SHBG adjusted and the full multivariable models (both p=0.01).  

After adjusting for other sex hormones (E2 and T), there was a positive association 

between SHBG and higher GS in the multivariable models (both p= 0.01) 

(Supplementary Table S4).  No associations were detected between any of the sex 

hormones quantiles and higher T stage (Supplementary table S4). A weak negative 

association was detected between SHBG and PSA at diagnosis in age-adjusted model 

(Supplementary table S4).   

The complete case sensitivity analyses using same models after excluding men with 

missing data showed qualitatively similar results (data not shown).    
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Discussion 

Our analyses have shown that higher serum E2/T, reduced testosterone and higher 

SHBG are associated with lower risk of PCa incidence; and a higher risk of high GS 

(>7).  In the full multivariable model, no other associations were detected between 

any of the sex hormones and the T stage or PSA at diagnosis.  

There was no association detected between obesity and either PCa incidence or high 

GS in this nested case control cohort. However, in a previous publication which 

analysed the entire PLCO prostate cancer cohort, a negative association between BMI 

and prostate cancer incidence and a positive association with fatal PCa were reported 

(Kelly, Scott P et al. 2016). Of note, in our analyses, the point estimates for the 

association between obesity and PCa incidence as well as T stage were in the negative 

direction, while that with high GS was in the positive direction, albeit none reached a 

statistical significance, which is following the association direction of the whole 

cohort.  

In our analysis, E2/T ratio increased with obesity, which is consistent with previous 

data that support the increase in the E2/T ratio with obesity(Fejes et al. 2006; Parikesit 

et al. 2016).  Obesity and the associated lower PSA values may lead to delayed 

diagnosis and thus a decrease in the PCa incidence rate (Bandini, Gandaglia & 

Briganti 2017; Chow et al. 2018). We have shown in a previous study that the lower 

PSA in obese men is partially due to the association with E2/T (Aref et al. 2018). 

Alternatively the inverse association between E2/T and PCa may be due to a 

protective effect induced by a hormonal milieu with elevated E2 and reduced T.  

The increase in E2/T observed in obese men may be one of the mediating mechanisms 

for previously reported obesity and PCa aggressiveness associations(Zhong et al. 
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2016), in particular, high GS. Alternatively it is possible that these associations may 

be a consequence of disease progression due to delayed diagnoses.  It is currently 

unknown whether tumour GS can progress or whether it is established with initial 

tumour formation (Penney et al. 2013; Porten et al. 2011). Previous studies have 

shown an effect of environmental and lifestyle-related factors on attenuating PCa risk 

for those with similar genetic predispositions (Lichtenstein et al. 2000; Loeb et al. 

2015).  In addition, high fat diet mouse models support the role of obesity influencing 

the development of high-grade (higher GS) tumours (Cho et al. 2015; Hu, Meng‑Bo et 

al. 2018). The 18-year follow up data from the PLCO showed a reduction in the 

incidence of tumours with high GS in the screening arm, suggestive of GS 

progression over time (Pinsky, P. F. et al. 2018). 

The development of PCa and the aggressiveness of disease progression depend on 

both the balance and interaction with androgenic hormones (Rahman, Hofland & 

Foster 2016).  Preclinical studies have shown that estradiol has an important role in 

both prostate cancer pathogenesis and progression. Transgenic mice model with 

aromatase enzyme overexpression (AROM+) have shown that an increase in the E2/T 

ratio due to aromatase over expression was associated with increased fat deposition 

and is correlated with Gleason grade and increased proliferation and invasion (Ellem 

et al. 2009). Estradiol can activate both wild-type androgen receptor and (T877A) 

mutated androgen receptor in LNCaP cells (Susa et al. 2015).  The increase in the 

E2/T ratio was also found to induce an oxidative/nitrosative damages to the DNA of 

the prostatic epithelial cells (Tam, Leav & Ho 2007). Studies on NBL rat models 

showed that the combination of low dose testosterone with estradiol administration 

leads to the development of prostate cancer in 100% of the experiment population and 

that estrogen treatment leads to DNA damage in the NBL rate prostate prior to cancer 
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development (Bosland 2013). Mice studies showed that higher levels of estrogens 

during embryonic life is associated with intraepithelial neoplasia and tumor formation 

during adult life (Prins & Ho 2010), this is consistent with the hypothesis that the 

increase risk of prostate cancer incidence and aggressiveness among African-

American men may be due to the exposure to higher levels of estrogens during the 

embryonic life (Henderson et al. 1988). The differences in sex hormones have been 

suggested to underlie race-specific differences in PCa aggressiveness (Gapstur et al. 

2002; Rohrmann et al. 2007). Previous studies have also suggested that the 

association between PCa and advanced age (Vermeulen et al. 2002), obesity (Allott, 

Masko & Freedland 2013), and hormonal management in transsexual male to female 

individuals (Gooren & Morgentaler 2014) can be explained at least in part by the 

imbalance between E2 and T (higher E2/T). In addition, lower serum T has been 

associated with higher GS (Schatzl et al. 2001) and advanced stage PCa (Massengill 

et al. 2003). The prolonged use of 5-alpha-reductase inhibitors (5ARIs) was found to 

be associated with increased risk of high GS tumours, despite the decrease in the 

incidence of PCa, possibly due to both, hormonal perturbation (Lebdai, Bigot & 

Azzouzi 2010; Scailteux et al. 2018) and delay in diagnosis (Sarkar et al. 2019).  

A study by Black et al. (Black et al. 2014), using the same nested case-control cohort 

within the PLCO study (Prorok et al. 2000) assessed the association between sex 

hormones and aggressive PCa. In this study, cases were defined as those with 

aggressive PCa (stage III or IV or GS≥7) and controls were defined as men free from 

PCa for the duration of follow up. By design all PCa cases selected for hormonal 

assessment were aggressive according to this definition. The study found E2/T to be 

negatively associated with aggressive PCa. Our analyses however suggest that this 



	 182	

association may have been driven largely by the association between E2/T and PCa 

incidence rather than disease characteristics (e.g. high GS).  

Our analyses of obesity and sex hormones with PCa incidence and tumour 

aggressiveness characteristics indicate associations in opposing directions. In 

particular, E2/T was associated with reduced incidence but elevated GS and weak 

negative association with T stage. This highlights a potential problem with combining 

incidence and aggressiveness in time-to-event analyses. Further, risk stratification 

scores combining T-stage, GS and PSA, while crucial in the clinical setting and for 

treatment decision-making, are not ideal for association studies when different 

components are affected differently by metabolic factors. In our analysis, we were 

unable to detect any association between sex hormones and either T stage or PSA at 

diagnosis (potentially due to smaller sample size). Thus defining aggressive PCa 

using the combination of GS, T stage and PSA may not be ideal for association 

studies like ours, as the weak association between sex hormones and T stage and PSA 

may attenuate the results.   

 A major limitation of our study was that our analysis cohort is small, with only 14% 

having a GS greater than 7. Despite this we were still able to detect associations with 

three out of five hormonal factors (Table 3). Secondly the E2 and T assessments for 

this cohort did not use the same analytical techniques, and thereby may give different 

absolute values. However it was shown by Black et al that the results between these 

two techniques are strongly correlated (Black et al. 2014). Thirdly primary and 

secondary Gleason scores were unavailable for these samples. Differences between 

men with GS of 7 comprising (4+3) versus (3+4) may explain some differences 

between our results and others (Daniels et al. 2010; Sher et al. 2009) when including 

GS 7 in the definition of aggressiveness. Fourthly, we do not have data on other 
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ethnic groups who may exhibit different hormonal associations or of baseline 

medication that may alter the sex hormones metabolism. Finally, it is unclear how 

PCa screening may have affected our results, with all our samples being from the PCa 

screening arm of the PLCO study. 

We have shown that in men with elevated E2/T, PCa incidence is reduced, but at 

diagnosis GS scores are higher than in men with lower levels of E2/T. However 

defining the impact of the serum sex hormones on PCa incidence and aggressiveness 

is confounded by multiple factors including how aggressiveness is defined, combining 

GS, T stage and PSA together which may attenuate the association detected, age, race, 

obesity and the duration of an altered hormonal milieu. Further studies on larger 

cohorts are required for better understanding of how sex hormones influence PCa 

incidence and aggressiveness, and the impact of obesity on these relationships.  

 

Conclusions 

E2/T is positively associated with BMI, and with an increased risk of higher GS (≥8), 

while it is negatively associated with PCa incidence. This suggests that E2/T may be a 

mediating factor for incidence and aggressiveness associations with obesity. Further 

mechanistic studies to confirm this finding are warranted.  
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Table 1: Baseline demographic summary of the hormonal Sub-cohort 
 

  No PCa PCa Total 
  N = 191 N = 180 N = 371 

Age At Randomization (years) Mean (±SD) 63 (±3.6) 63 (±3.4) 63 (±3.5) 

Baseline BMI (Kg/m2) Mean (±SD) 28(±4.1) 27(±3.7) 28(±3.9) 
Baseline PSA (ng/ml) Mean (±SD) 1.4 (±1.3) 4.5(±6.3) 2.9(±4.8) 

Diabetes No 174 (91%) 174 (97%) 348 (94%) 

Yes 15 (8%) 6 (3%) 21 (6%) 

Missing  2 (1%) 0 (0%) 2 (<1%) 

Hypertension No 135 (71%) 130 (72%) 265 (71%) 

Yes 55 (29%) 50 (28%) 105 (28%) 

Missing  1 (<1%) 0 (0%) 1 (<1%) 

E2 (pg/ml) Mean (±SD) 5.3(±2.2) 5.0(±1.4) 5.1(±1.9) 
Testosterone (ng/ml) Mean (±SD) 5.0(±2.4) 5.2(±2.4) 5.1(±2.4) 

SHBG (nmol/L) Mean (±SD) 49(±23) 47(±22) 48(±23) 
E2/T Mean (±SD) 1.3(±1.2) 1.1(±0.6) 1.2(±1.0) 

Having PSA Before 
Randomization 

PSA More Than 
Once 

24 (13%) 27 (15%) 51 (14%) 

PSA One Or 
Never 

146 (76%) 137 (76%) 283 (76%) 

Missing 21 (11%) 16 (9%) 37 (10%) 
Family History Of Pca Negative 178 (93%) 156 (87%) 334 (90%) 

Positive 12 (6%) 24 (13%) 36 (10%) 
Missing 1 (<1%) 0 (0%) 1 (<1%) 

Smoking Duration years Mean (±SD) 19(±17) 12(±15) 16(±16) 
Missing 2 (1%) 2 (1%) 4 (1%) 

Education High School Or 
Less 

44 (23%) 46 (26%) 90 (24%) 

More Than High 
School 

147 (77%) 134 (74%) 281 (76%) 

Marital Status Married 168 (88%) 160 (89%) 328 (88%) 
Single 23 (12%) 19 (11%) 42 (11%) 

Missing … 1 (<1%) 1 (<1%) 
Gleason score Low GS (<8) … 155 (86%) … 

High GS (≥8) … 25 (14%) … 
T stage  Low T stage 

(<T2c) 
… 162 (90%) … 

High T stage 
(≥T2c) 

… 18 (10%) … 

PSA at diagnosis Mean (±SD) … 12.3 (63) … 
PSA < 20 ng/ml  172 (96%) … 

 
PSA ≥ 20 ng/ml  8 (4%) … 

 
BMI: Body mass index, PSA: Prostate specific antigen, T: Testosterone, E2: Estradiol, SHBG: Sex 

hormone binding globulin, E2/T: Estradiol to Testosterone ratio, T/SHBG: Testosterone to Sex 
hormone binding globulin ratio, GS: Gleason score   
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Table 2: Association between obesity / hormonal factors and PCa 

incidence in the hormonal sub-cohort (nested case-control) 
 

Sub-cohort with hormonal data 
 Incidence of PCa 

Conditional Logistic 
Age adjusted Multivariable 

Model 1# Model 2## 
 OR [95% CI] p-

value 
OR [95% CI] p-

value 
OR [95% CI] p-

value 
BMI 0.94 [0.71, 1.2] 0.68 0.91 [0.67, 1.2] 0.52 0.91 [0.65, 1.3] 0.55 
E2 0.56 [0.27, 1.2] 0.12 0.55 [0.27, 1.1] 0.11 0.47 [0.21, 1.1] 0.07 
T 1.3 [0.84, 2.1] 0.22 2.1 [1.0, 4.0] 0.04* 1.40 [0.73, 2.9] 0.29 

E2/T 0.62 [0.40, 0.97] 0.04* 0.36 [0.19, 0.68] 0.002* 0.43 [0.22, 0.85] 0.02* 
SHBG 0.84 [0.52, 1.4] 0.50 0.38 [0.18, 0.81] 0.01* 0.47 [0.21, 1.0] 0.06 

 
BMI: Body mass index, PSA: Prostate specific antigen, T: Testosterone, E2: Estradiol, SHBG: Sex 

hormone binding globulin, E2/T: Estradiol to Testosterone ratio, GS: Gleason score), OR: odd ratio, 
CI: confidence interval 

 
# Model 1: Adjusted for BMI at baseline (except in BMI model), age at baseline and SHBG (expect in 
SHBG model which is adjusted for E2 and T). ##Model 2: Adjusted for factors in Model 1 and HTN, 
DM, education, marital status, positive family history, smoking duration and having PSA assessment 

before randomization. 
	 	



	 189	

 

Table 3: Association between BMI and hormonal factors with high 
GS (>7) in the PCa group of the hormonal sub-cohort. 

 
 

PCa group Sub-cohort with hormonal data 
Association with high GS≥8 
Logistic regression model 

 Age adjusted Multivariable 
 Model 1# Model 2## 
 OR [95% CI] p-value OR [95% CI] p OR [95% CI] p-value 

BMI 1.1 [0.6, 1.9] 0.72 1.1 [0.6, 2.0] 0.70 1.1 [0.6, 2.0] 0.75 
E2 2.0 [0.4, 9.6] 0.41 2.0 [0.4, 10] 0.41 2.9 [0.5, 16.0] 0.22 
T 0.4 [0.1, 1.1] 0.07 0.07 [0.01, 0.4] 0.01* 0.08 [0.01, 0.5] 0.01* 

E2/T 2.4 [1.0, 6.0] 0.05* 11.0 [2.5, 52] 0.002* 13.0 [2.9, 74.0] 0.002* 
SHBG 1.0 [0.41, 2.7] 0.94 12 [2.2, 81] 0.006* 15 [2.4, 120] 0.006* 

 
BMI: Body mass index, PSA: Prostate specific antigen, T: Testosterone, E2: Estradiol, SHBG: Sex 

hormone binding globulin, E2/T: Estradiol to Testosterone ratio, GS: Gleason score), OR: odd ratio, 
CI: confidence interval 

 
# Model 1: Adjusted for BMI at baseline (except in BMI model), age at baseline and SHBG (expect in 
SHBG model). ##Model 2: Adjusted for factors in Model 1 and HTN, DM, education, marital status, 

positive family history, smoking duration and having PSA assessment before randomization. Both 
SHBG models were adjusted for estradiol and testosterone. 
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Table 4: Association between BMI and hormonal factors with high T 

stage in the PCa group of the hormonal sub-cohort. 
 
 

PCa group Sub-cohort with hormonal data 
Association with high T stage (≥T2c) 

Logistic regression model 
 Age adjusted Multivariable 
 Model 1# Model 2## 
 OR [95% CI] p-value OR [95% CI] p OR [95% CI] p-value 

BMI 0.51 [0.22, 1.08] 0.10 0.54 [0.23, 1.20] 0.14 0.45 [0.17, 1.02] 0.08 
E2 0.26 [0.04, 1.72] 0.17 0.34 [0.04, 2.38] 0.29 0.16 [0.01, 1.37] 0.11 
T 2.2 [0.7, 7.1] 0.17 2.3 [0.4, 13] 0.34 1.4 [0.2, 8.7] 0.73 

E2/T 0.35 [0.11, 0.98] 0.05* 0.23 [0.04, 1.20] 0.08 0.23 [0.04, 1.30] 0.10 
SHBG 1.8 [0.6, 5.6] 0.30 0.5 [0.08, 3.1] 0.46 0.7 [0.1, 5.3] 0.74 

 
BMI: Body mass index, PSA: Prostate specific antigen, T: Testosterone, E2: Estradiol, SHBG: Sex 

hormone binding globulin, E2/T: Estradiol to Testosterone ratio, GS: Gleason score), OR: odd ratio, 
CI: confidence interval 

 
# Model 1: Adjusted for BMI at baseline (except in BMI model), age at baseline and SHBG (expect in 
SHBG model which is adjusted for E2 and T). ##Model 2: Adjusted for factors in Model 1 and HTN, 
DM, education, marital status, positive family history, smoking duration and having PSA assessment 

before randomization. 
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Table 5: Association between BMI and hormonal factors with PSA at 
diagnosis in the PCa group of the hormonal sub-cohort. 

 
 

PCa group Sub-cohort with hormonal data 
Association with log transformed PSA at time of diagnosis 

Linear regression model 
 Age adjusted Multivariable 
 Model 1# Model 2## 
 ß [95% CI] p-

value 
ß [95% CI] p ß [95% CI] p-

value 
BMI 0.04 [-0.13, 0.2] 0.67 0.01 [-0.16, 0.17] 0.93 0 [-0.17, 0.18] 0.96 
E2 -0.21 [-0.65, 0.24] 0.36 -0.28 [-0.73, 0.17] 0.22 -0.35 [-0.82, 0.12] 0.14 
T -0.27 [-0.53, 0] 0.05* -0.21 [-0.62, 0.21] 0.33 -0.23 [-0.66, 0.21] 0.30 

E2/T 0.15 [-0.09, 0.39] 0.22 -0.02 [-0.39, 0.34] 0.89 -0.06 [-0.44, 0.33] 0.77 
SHBG -0.23 [-0.48, 0.03] 0.09 -0.14 [-0.57, 0.29] 0.52 -0.14 [-0.58, 0.31] 0.55 
 

BMI: Body mass index, PSA: Prostate specific antigen, T: Testosterone, E2: Estradiol, SHBG: Sex 
hormone binding globulin, E2/T: Estradiol to Testosterone ratio, GS: Gleason score), OR: odd ratio, 

CI: confidence interval 
 

# Model 1: Adjusted for BMI at baseline (except in BMI model), age at baseline and SHBG (expect in 
SHBG model which is adjusted for E2 and T). ##Model 2: Adjusted for factors in Model 1 and HTN, 
DM, education, marital status, positive family history, smoking duration and having PSA assessment 

before randomization. 
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Supplementary table S1: Associations of sex hormones with obesity 
in the hormonal sub-cohort. 

	
Age adjusted linear regression model 

 Hormonal Sub-cohort 
Log 

transformed 
Estimate [95%CI] p-value 

T -0.18 [-0.25, -0.12] <0.001* 
E2 0.03 [-0.01, 0.07] 0.13 

E2/T 0.21 [0.15, 0.28] <0.001* 
SHBG -0.17 [-0.23, -0.12] <0.001* 

 
BMI: Body mass index, PSA: Prostate specific antigen, T: Testosterone, E2: Estradiol, SHBG: Sex 

hormone binding globulin, E2/T: Estradiol to Testosterone ratio, GS: Gleason score 
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Supplementary table S2: Correlation between hormonal variables 

 
 
 
 

 E2 T E/T ratio SHBG 
E2 1.00 0.22 0.21 0.11 
T <0.001 1.00 -0.52 0.72 

E/T ratio <0.001 <0.001 1.00 -0.38 
SHBG 0.04 <0.001 <0.001 1.00 

 
 

BMI: Body mass index, PSA: Prostate specific antigen, T: Testosterone, E2: Estradiol, SHBG: Sex 
hormone binding globulin, E2/T: Estradiol to Testosterone ratio, T/SHBG: Testosterone to Sex 

hormone binding globulin ratio, GS: Gleason score.
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Supplementary table S3: Effect of hormonal factors quartiles on total incidence and association with high GS (>7) 
 
 

 Whole hormonal sub-cohort 
 Total PCa Incidence 

Conditional logistic 
 Age adjusted Model 1# Model 2## 
 OR [95% CI] p OR [95% CI] p OR [95% CI] p 

E2 Q1 1 1 1 1 1 1 
E2 Q2 1.4 [0.73, 2.7] 0.31 1.4 [0.74, 2.8] 0.29 1.3 [0.61, 2.6] 0.52 
E2 Q3 1.1 [0.59, 1.9] 0.85 1.1 [0.6, 2.0] 0.80 0.84 [0.43, 1.6] 0.61 
E2 Q4 0.74 [0.41, 1.4] 0.33 0.74 [0.4, 1.4] 0.33 0.67 [0.34, 1.3] 0.26 
T Q1 1 1 1 1 1 1 
T Q2 1.5 [0.76, 3.1] 0.23 2.1 [0.97, 4.5] 0.06 1.8 [0.79, 4.3] 0.16 
T Q3 1.2 [0.65, 2.1] 0.58 1.7 [0.84, 3.4] 0.14 1.3 [0.59, 2.8] 0.54 
T Q4 1.5 [0.8, 2.8] 0.22 2.8 [1.1, 6.7] 0.03* 1.8 [0.67, 4.6] 0.25 

E2/T Q1 1 1 1 1 1 1 
E2/T Q2 0.77 [0.43, 1.4] 0.38 0.66 [0.36, 1.2] 0.19 0.71 [0.36, 1.4] 0.32 
E2/T Q3 0.99 [0.53, 1.9] 0.97 0.70 [0.33, 1.5] 0.35 0.77 [0.34, 1.7] 0.52 
E2/T Q4 0.51 [0.27, 0.97] 0.04* 0.33 [0.15, 0.75] 0.01* 0.41 [0.17, 0.99] 0.05* 

SHBG Q1 1 1 1 1 1 1 
SHBG Q2 0.87 [0.49, 1.6] 0.64 0.66 [0.35, 1.2] 0.19 0.78 [0.39, 1.6] 0.49 
SHBG Q3 1.1 [0.58, 2.0] 0.80 0.63 [0.29, 1.4] 0.25 0.86 [0.36, 2.0] 0.73 
SHBG Q4 0.95 [0.51, 1.8] 0.87 0.45 [0.18, 1.1] 0.08 0.49 [0.19, 1.3] 0.15 

 
BMI: Body mass index, PSA: Prostate specific antigen, T: Testosterone, E2: Estradiol, SHBG: Sex hormone binding globulin, E2/T: Estradiol to Testosterone ratio, Q: 

Quartiles (1to 4), OR: odd ratio, CI: confidence interval 
# Model 1: Adjusted for BMI at baseline (except in BMI model), age at baseline and SHBG (expect in SHBG model which is adjusted for E2 and T). ##Model 2: Adjusted 

for factors in Model 1 and HTN, DM, education, marital status, positive family history, smoking duration and having PSA assessment before randomization 
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Supplementary table S4: Effect of hormonal factors quartiles on PCa aggression criteria, high GS, high T stage and 
PSA at diagnosis 

 
 PCa group in hormonal sub-cohort 
 Association with high GS 

Logistic regression model 
Association with high T stage (≥T2c) 

Logistic regression model 
Association with PSA at diagnosis 

Linear regression model 
 Age adjusted Model 1# Model 2## Age adjusted Model 1# Model 2## Age adjusted Model 1# Model 2## 
 OR  

[95% CI] 
p OR  

[95% CI] 
p OR  

[95% CI] 
p OR  

[95% CI] 
p OR  

[95% CI] 
p OR  

[95%CI] 
p ß  

[95% CI] 
p ß  

[95% CI] 
p ß  

[95% CI] 
p 

E2 Q1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
E2 Q2 0.8 

 [0.2, 2.8] 0.75 
0.8 

 [0.23, 2.8] 0.73 
0.8 

 [0.2, 2.9] 0.72 
1.4 

 [0.4, 5.0] 0.57 
1.5  

[0.5, 5.4] 0.53 
1.5 

[0.4, 6.1] 0.53 
-0.2 

 [-0.5, 0.1] 0.27 
-0.2  

[-0.5, 0.2] 0.32 
-0.2 [-0.5, 

0.2] 0.28 
E2 Q3 0.7  

[0.2, 2.7] 0.65 
.7  

[0.2, 2.6] 0.62 
0.9  

[0.2, 3.4] 0.86 
0.6  

[0.1, 2.4] 0.45 
0.7  

[0.1, 2.9] 0.58 
0.5  

[0.08, 2.5] 0.39 
-0.1  

[-0.4, 0.3] 0.60 
-0.09  

[-0.4, 0.3] 0.61 
-0.1  

[-0.5, 0.2] 0.46 
E2 Q4 1.4  

[0.5, 4.8] 0.53 
1.5  

[0.5, 5.0] 0.53 
1.9  

[0.5, 6.8] 0.33 
0.4  

[0.05, 20.0] 0.29 
0.5 

[0.06, 2.5] 0.41 
0.3 

[0.04, 1.9] 0.24 
-0.1  

[-0.5, 0.2] 0.45 
-0.2  

[-0.5, 0.2] 0.32 
-0.2  

[-0.6, 0.1] 0.21 
T Q1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
T Q2 1.2  

[0.4, 3.6] 0.80 
0.8 

[0.2, 3.0] 0.76 
0.9 

[0.2, 3.6] 0.91 
1.5  

[0.2, 12] 0.68 
1.4  

[0.2, 12.0] 0.76 
1.4  

[0.2, 14.0] 0.73 
-0.2  

[-0.6, 0.1] 0.16 
-0.2  

[-0.6, 0.2] 0.37 
-0.2  

[-0.6, 0.2] 0.33 
T Q3 

0.7  
[0.2, 2.2] 0.50 

0.4  
[0.08, 1.8] 0.24 

0.5  
[0.1, 2.1] 0.33 

2.8  
[0.6, 21.0] 0.23 

2.9  
[0.5, 26.] 0.28 

2.6  
[0.4, 25.0] 0.35 

-0.4  
[-0.8, -0.06] 0.02* 

-0.3  
[-0.7, 
0.09] 0.13 

-0.4  
[-0.8, 0.05] 0.08 

T Q4 0.5  
[0.1, 1.8] 0.30 

0.2 
 [0.04, 1.3] 0.11 

0.3  
[0.04,1.5] 0.15 

3.5  
[0.8, 24.0] 0.12 

4.3  
[0.6, 46.0] 0.19 

4.3  
[0.5, 54.0] 0.22 

-0.2  
[-0.6, 0.09] 0.16 

-0.08  
[-0.5, 0.4] 0.75 

-0.08  
[-0.6, 0.4] 0.73 

E2/T Q1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
E2/T Q2 1.2  

[0.3, 4.6] 0.79 
2.0 

 [0.5, 9.0] 0.33 
2.4  

[0.5, 12.0] 0.27 
1.6  

[0.5, 5.3] 0.46 
1.4  

[0.4, 5.2] 0.65 
1.3  

[0.31, 6.0] 0.70 
-0.1  

[-0.5, 0.2] 0.45 
-0.2  

[-0.5, 0.2] 0.28 
-0.2  

[-0.6, 0.1] 0.23 
E2/T Q3 1.3 

 [0.4, 4.9] 0.67 
3.0 

 [0.7, 14.0] 0.15 
3.9  

[0.8, 20.0] 0.09 
0.9 

 [0.2, 3.1] 0.83 
0.7 

[0.1, 3.3] 0.64 
0.6  

[0.09, 3.5] 0.57 
-0.05  

[-0.4, 0.3] 0.77 
-0.2  

[-0.5, 0.2] 0.42 
-0.2 

 [-0.6, 0.2] 0.30 
E2/T Q4 3.1  

[0.95, 11] 0.07 
13.0  

[2.1, 87.0] 0.01* 
16 

[2.4,140.0] 0.01* NA NA NA NA NA 0.99 
0.3  

[-0.08, 0.6] 0.13 
0.09  

[-0.4, 0.6] 0.73 
0.05  

[-0.5, 0.6] 0.84 
SHBG Q1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
SHBG Q2 

0.38 
[0.1, 1.4] 0.18 

1.2  
[0.21, 5.6] 0.86 

2.4  
[0.5, 12.0] 0.27 

1.8  
[0.5, 7.3] 0.41 

0.9  
[0.2, 4.2] 0.90 

1.0  
[0.2, 5.1] 0.98 

-0.3  
[-0.7, -0.01] 0.04* 

-0.3  
[-0.7, 
0.03] 0.08 

-0.3  
[-0.7, 0.05] 0.09 

SHBG Q3 0.7 
[0.2, 2.2] 0.52 

4.1  
[0.8, 22.0] 0.09 

3.9  
[0.8, 20.0] 0.09 

0.7 
[0.1, 3.5] 0.69 

0.2  
[0.03, 1.3] 0.09 

0.3 
[0.04,2.0] 0.23 

-0.3  
[-0.58, 0.06] 0.10 

-0.2  
[-0.6, 0.2] 0.29 

-0.2  
[-0.6, 0.2] 0.35 

SHBG Q4 1.1  
[0.4, 3.3] 0.85 

18  
[2.4, 170.0] 0.01* 

16  
[2.4, 140] 0.01* 

1.4  
[0.4, 6.1] 0.62 

0.2 
 [0.02,1.5] 0.12 

0.2  
[0.02,2.1] 0.19 

-0.4  
[-0.7,-0.03] 0.03* 

-0.3  
[-0.8, 0.2] 0.25 

-0.3  
[-0.8, 0.2] 0.28 
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BMI: Body mass index, PSA: Prostate specific antigen, T: Testosterone, E2: Estradiol, SHBG: Sex hormone binding globulin, E2/T: Estradiol to Testosterone ratio, Q: Quartiles (1to 4), OR: odd ratio, CI: confidence 
interval, GS: Gleason score# Model 1: Adjusted for BMI at baseline (except in BMI model), age at baseline and SHBG (expect in SHBG model which is adjusted for E2 and T). ##Model 2: Adjusted for factors in 

Model 1 and HTN, DM, education, marital status, positive family history, smoking duration and having PSA assessment before randomization
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Figure and figure legends   
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Figure 1:  study flow-chart presenting the number and reasons for 

inclusion/exclusion and the final analysis cohort. 
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Chapter 6. Discussion and future directions 
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This project has documented the influence of metabolic factors (namely 

obesity, hypertension, and diabetes) on prostate cancer screening, prostate cancer 

diagnosis, and prostate cancer aggressiveness.  It has shown: the effect of obesity on 

PSA levels and screening models; how changes in sex hormones among men with 

obesity may affect PSA levels; how the presence of metabolic factors may attenuate 

the efficacy of prostate cancer screening; and how sex hormones are associated with 

aggressive prostate cancer.  It has also shown that the way aggressive prostate cancer 

is defined may affect the results of association studies, especially those involving 

metabolic factors or hormonal factors.   

As discussed in sections one to four of Chapter 1 (literature review), prostate 

cancer is highly influenced by metabolic status, and it can be considered, at least in 

part, as a metabolic disease. There is strong preclinical evidence that shows prostate 

cancer cell survival and progression is dependent on cross-talk between lipid/fatty 

acid synthesis and androgen pathway signalling, both of which are intimately linked 

to metabolism. From an epidemiological perspective, racial and geographical 

differences in prostate cancer incidence and mortality may be partially explained by 

differences in metabolic status, risk of developing obesity and other metabolic related 

conditions (metabolic syndrome) as well as interactions between metabolic status and 

the sex hormone milieu. 

Obesity per se is an independent risk factor for prostate cancer aggressiveness.  

This was shown in numerous previous studies and meta-analyses. However, when 

defining obesity using only subcutaneous fat, the association with aggressive prostate 

cancer appears weaker. This has raised a question regarding the association between 

visceral fat and risk of aggressive prostate cancer. In our published review article 

(Chapter 1, section 5) we have shown that an increase in visceral fat (peri-prostatic fat 
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in particular) is positively associated with aggressive prostate cancer and the risk of 

prostate cancer progression. We have posited in this review that peri-prostatic fat 

measurement could increase the sensitivity of prostate cancer risk stratification 

models. On a cellular level, we have shown in the review the evidence of cross-talk 

between the peri-prostate adipose cells and prostate cancer cells through the release of 

adipokines, tumour necrotic factors (TNF-α), interleukins and metalloproteinase 

activity among others. The volume of peri-prostatic fat might partially explain the 

positive association between obesity and aggressive prostate cancer. This is through 

the effect of obesity on the peri-prostatic fat, which showed to have a different 

cellular composition in obese men compared to lean men and to be more 

metabolically and secretory active.    

The association between obesity and aggressive prostate cancer is not only 

explained by biological mechanisms (through the effect of chronic inflammation 

condition, TNF, interleukins, peri-prostatic fat, etc.) but also through the effect of 

obesity on the sex hormone milieu and a possible effect on screening and time to 

diagnosis. Obesity was found to be negatively associated with the serum levels of the 

prostate specific antigen (PSA) protein. There has been considerable debate around 

how obesity influences PSA levels in the blood, with the majority of previous studies 

supporting the haemodilution mechanism (the increase in the plasma volume with 

obesity and the resulting dilution of the PSA concentration in the blood).  Fewer 

studies have compared the effect of obesity on serum testosterone with the 

haemodilution effect and concluded that the haemodilution effect predominates.  

In chapter 2, in published research using a South Australian population-based 

cohort of prostate cancer-free men, we have shown that the lower levels of PSA in 

men with obesity is explained by both the haemodilution effect as well as by the 
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effect of obesity on the sex hormone milieu.  We have shown for the first time that the 

increase in the estradiol to testosterone ratio with obesity can explain approximately 

50% of the effect of obesity on PSA levels. The results of this research are important 

for the following reasons. First, the use of estradiol to testosterone ratio as a surrogate 

for the changes in sex hormones among men with obesity appeared to be more 

representative than using either of these hormones separately (as it summarises the net 

effect on the sex hormones milieu).  Second, we have highlighted the potential 

importance of the estradiol to testosterone ratio in reducing the PSA levels among 

men with obesity. This opens new research questions in the future regarding the role 

of the estradiol to testosterone ratio with respect to a resultant delay in prostate cancer 

diagnosis, the need to adjust the PSA levels to the estradiol to testosterone ratio 

(instead of adjusting it to the testosterone levels which has been suggested by some 

researchers in the past), and the links between the estradiol to testosterone ratio and 

prostate cancer aggressiveness.  

Lower levels of PSA among men with obesity have been suggested to lead to 

a delay in prostate cancer diagnosis  (diagnosis bias). Despite the existence of 

multiple models indicating that lower PSA levels could lead to longer time to prostate 

cancer diagnosis and an increased risk of aggressive prostate cancer at the time of 

diagnosis, the consideration of obesity when interpreting PSA levels is still not 

included in current prostate cancer screening guidelines.  

In chapter 3 (submitted for publication) we have shown that the lower PSA 

levels in men with severe obesity has led to around seven years delay to reach a 

threshold level of 1ng/ml, around five years delay to reach 2ng/ml and around four 

years delay to reach 3ng/ml. These findings have strong potential to be clinically 

significant. Those PSA threshold levels mentioned earlier are used in current prostate 
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cancer screening recommendations to base the future schedule of screening and even 

the need for any future screening. Besides, the PSA level of 3 ng/ml is commonly 

used as a trigger for further diagnostic procedures (imaging and biopsies) for prostate 

cancer diagnosis. Thus it is hypothetically possible that the lower PSA levels among 

men with severe obesity could delay prostate cancer diagnosis and thus contribute to 

the association between obesity and more advanced prostate cancer.    

A failure to consider the effect of obesity (especially among men with severe 

obesity) on PSA levels during conventional screening protocols could lead to an 

incorrect interpretation and sub-optimal medical advice. Whether this would lead to a 

delay in prostate cancer diagnosis and thus explain the poorer prognosis of prostate 

cancer among men with severe obesity still needs to be explored in future research 

studies.  Future randomised controlled trials that include the effect of obesity on PSA 

and screening models would answer this question.  

Although prostate cancer is a significant health problem among Western 

countries in general and in Australia in particular, there is considerable debate 

surrounding the overall benefit of prostate cancer screening. In the literature review 

(Chapter 1, section 3), the available evidence regarding the efficacy of prostate cancer 

screening was discussed and, in particular, the drawbacks of each of the five main 

randomised clinical studies that have examined the efficacy of prostate cancer 

screening.  The available evidence shows a very modest effect of prostate cancer 

screening in reducing prostate cancer-related death; at the cost of increased diagnosis 

of early prostate cancer and increases in biopsy related complications, as well as the 

negative impact of biopsy, over-diagnosis and treatment of indolent cases on quality 

of life. Consequently, whether to screen or not remains an open question.  However, 

the results of available clinical studies should be considered with caution due to 
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limitations in study design: low compliance, variation in the intensity of screening and 

the rate of contamination (PSA screening) in the control arm.  Apart from the 

variation in study design, there has been a suggestion about the role of having chronic 

comorbidities on the efficacy of prostate cancer screening through a competing risk 

effect. However, to date, there is not enough data to support this hypothesis.  

In chapter 4 (prepared for publication), we have shown for the first time that 

having metabolic syndrome-related factors could attenuate the efficacy of prostate 

cancer screening. We have shown that men who were metabolically healthy at the 

start of the screening, as well as men who maintained metabolically healthy status for 

an average of nine years, benefited from prostate cancer screening in terms of 

reducing the risk of prostate cancer-related death.  In this work, we have also shown 

that the competing risk effect can partially explain this effect. Men with one or more 

factors of the metabolic syndrome (obesity, diabetes or hypertension) have a higher 

risk of dying from non-prostate cancer causes, and thus they mostly die before being 

diagnosed with prostate cancer or before dying of prostate cancer if they have been 

diagnosed. We have also shown that the effect of having metabolic syndrome factors 

(mainly diabetes and obesity) on screening efficacy can be explained by their inverse 

association with the PSA levels (leading to potential delay in diagnosis) and their 

positive association with aggressive prostate cancer (mainly high grade prostate 

cancer) and thus their presence may mask the efficacy of prostate cancer screening.  

There is evidence regarding the effect of metabolic factors (obesity, diabetes, 

and hypertension) on the sex hormone milieu and vice versa. Whether the hormonal 

changes can explain the effect of metabolic syndrome factors on prostate cancer 

aggressiveness is still an area of debate requiring further research. The current body of 

research consists of inconsistent associations between the changes in sex hormone 
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milieu and prostate cancer incidence and aggressiveness. Several factors can attribute 

to this inconsistency, mainly the way of measuring sex hormones, neglecting the 

variation of sex hormones over time and the effect of extremely high or low levels of 

sex hormones. Also, how aggressive prostate cancer is defined has been suggested as 

another reason. Although combining the tumour size (Stage), grade (Gleason score) 

and PSA at time of diagnosis is of clinical value in clinical risk stratification models, 

and is used for predicting prostate cancer prognosis, it may not be the best approach 

for association studies which includes factors that may affect time to prostate cancer 

diagnosis.  A good example is obesity and diabetes, both of which are associated with 

lower PSA levels and thus a potential delay in diagnosis and inverse association with 

the tumour stage. However, they have positive associations with the tumour grade 

(Gleason score). Thus combining these tumour aggressiveness factors may mask 

overall associations with certain metabolic factors.  

In chapter 5 (submitted for publication), we have shown that redefining 

aggressive prostate cancer can lead to different conclusions. In particular, if only 

tumour grade is used as a surrogate for prostate cancer aggressiveness instead of a 

combination of the stage, grade, and PSA, a different conclusion can be reached. We 

have shown that the association between sex hormones (mainly the estradiol to 

testosterone ratio) and tumour grade is not consistent as for tumour stage or PSA 

levels. In this work, we have shown that higher estradiol to testosterone ratio is 

associated with increased risk of having aggressive prostate cancer when defined by 

Gleason score only, but not when defined by tumour stage or a combination of 

Gleason score and stage.  
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Future research direction and projects 

The work done for this project opens the opportunity for distinct future 

research questions to improve the efficacy of the screening models, determine more 

effective risk reduction modalities, and provide a better understanding of how 

metabolic factors and the sex hormones influence prostate cancer progression. Based 

on the work presented in this thesis, the following represent future directions and 

possible future projects: 

 

Obesity and PSA levels: 

In our analysis of the association between obesity and PSA levels and the role 

of sex hormones in reducing PSA levels, we were limited by the small size of our 

study cohort, and the fact that our cohort featured prostate cancer-free men. Besides, 

the clinical impact of reduced PSA levels in men with obesity needs to be examined 

in more detail. These points can be covered in the following projects: 

i. The role of sex hormones (in comparison to the haemodilution 

mechanism) in reducing PSA levels among men with moderate and 

severe obesity needs to be validated in different cohorts, with larger 

sample sizes. 

ii. The association between obesity and PSA and the role of sex hormones 

in that association needs to be compared between prostate cancer-free 

cohorts and a prostate cancer cohort to understand if both mechanisms 

have the same contribution in the presence/absence of malignancy.   

iii. The effect of obesity on PSA and whether this leads to a clinically-

meaningful delay in prostate cancer diagnosis needs to be explored in 

different cohorts to confirm this finding. A promising option would be 
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to use the South Australian Prostate Cancer registry and examine 

whether men with moderate/severe obesity are diagnosed later than 

those with a normal BMI. 

iv. Explore the utility of PSA levels adjusted for the estradiol to 

testosterone ratio in prostate cancer diagnosis and whether the E/T 

adjusted PSA levels have better predictive power than PSA alone.  

v. One challenging way to explore the effect of obesity on PSA and 

whether this affects screening efficacy is to explore this in a 

prospective three-arm randomised control clinical study, in which men 

are randomised to either no screening, screening, and biopsy based on 

the current recommended PSA levels, or screening and biopsy-based 

on adjusted PSA levels (Obesity adjusted PSA or E/T adjusted PSA 

levels). One drawback of such design is the need for a large sample 

size, the very long duration of follow up required (~15 to 20 years) and 

the cost. Considering this drawback, alternative approaches should be 

considered including micro-simulation modelling of screening 

outcome based on BMI values. While not within the scope of this 

work, the prospect of modelling the effect of more specifically targeted 

screening groups would assist in understanding the potential success of 

implementing targeted screening based on BMI. 

 

Obesity and prostate cancer  

An outstanding issue to be resolved is the best way to assess obesity and its 

relationship to prostate cancer. It is also necessary to discern the respective roles of 



	 208	

visceral versus subcutaneous obesity. The following project may answer these 

research questions:   

i. To confirm the conclusion of our review, we need to assess if defining 

obesity using different modalities leads to different associations with 

aggressive prostate cancer and whether visceral fat (mainly peri-

prostatic fat) can explain the association between obesity and 

aggressive prostate cancer. Using data from prostate cancer cohorts 

and registries, this can be done through a retrospective assessment of 

obesity using different modalities including recalled BMI and waist 

circumference at the age of 50 and at time of diagnosis and comparing 

this with the subcutaneous and visceral fat measurement at the time of 

diagnosis using the MRI images. This will allow examining the impact 

of using different modalities to assess obesity, the association with 

aggressive prostate cancer at the time of diagnosis and whether visceral 

peri-prostatic fat is a key mediator of the association between obesity 

and aggressive prostate cancer. Of note, although recalled data are not 

as accurate as collected data from registries, multiple studies have 

shown that they are robust and reliable (Dahl et al. 2010; Dahl & 

Reynolds 2013; Munoz et al. 1996; Tamakoshi et al. 2003).  

 

 

Metabolic syndrome and prostate cancer 

The associations between metabolic syndrome and prostate cancer are 

complex and are influenced by different factors. The most important factors are the 

duration of having metabolic syndrome, the degree of control of metabolic syndrome 
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with medication, and the changes in sex hormones that are associated with metabolic 

syndrome. The following research projects may uncover the roles of these factors in 

the association of metabolic syndrome with prostate cancer: 

ii. A retrospective analysis of a prostate cancer cohort (or men from a 

prostate cancer registry) that has collected information about the 

presence of metabolic syndrome, duration of metabolic syndrome and 

medications used for treatment or control of metabolic syndrome 

components may clarify the effect of duration and medication on the 

association between metabolic syndrome and risk of aggressive 

prostate cancer.  

iii. As mentioned previously, metabolic syndrome is a risk factor for 

cardiovascular and all cause-related mortality. One of the main side 

effects of hormonal treatment in advanced prostate cancer is the 

development of metabolic syndrome (a metabolic complication of 

androgen deprivation therapy). A retrospective analysis of the effects 

of taking metformin and statin (medications used for treatment of 

metabolic syndrome and that decrease risk of cardiovascular-related 

complications) before and at time of starting the androgen deprivation 

therapy on; a) risk of developing metabolic syndrome after initiation of 

androgen deprivation therapy, and b) on time to prostate cancer 

progression would clarify the effects of those two common 

medications on controlling the androgen deprivation side effects and 

prostate cancer progression. 

 

Metabolic syndrome and prostate cancer screening  
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We have shown the effect of having metabolic syndrome-related conditions on 

the efficacy of prostate cancer screening; however, these results need to be validated: 

i. The effect of MS on PSA screening needs to be validated in another 

screening and prostate cancer cohorts (including the ERSPC study 

cohort, the South Australian prostate cancer registry, among others).  

This could lead to practice change and may lead to improving the 

efficacy of prostate cancer screening through identifying the sub-

group/s of men who benefit the most from screening.  

ii. Future work investigating the cost and benefit of more specific testing 

algorithms for men in different risk groups would add more insight 

about the absolute benefit of prostate cancer screening. This would 

include health economic evaluation of prostate cancer screening among 

different risk groups with identification of the best strategy to 

implement for each group.    
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Sex hormones and prostate cancer 

The association between sex hormones and prostate cancer aggressiveness and 

whether the changes in sex hormones can explain the association between obesity/ 

metabolic syndrome and aggressive prostate cancer needs to be explored in more 

detail. This can be done through the following projects: 

i. The association between sex hormones (estradiol to testosterone ratio) 

and risk of aggressive prostate cancer needs to be confirmed and 

validated in another cohort with larger sample size. Using a different 

way to define aggressive prostate cancer (including Gleason score 

only, T stage only or combination of Gleason score and tumour stage) 

will address our hypothesis that the definition of aggressive prostate 

cancer used may influence the association between sex hormones and 

risk of aggressive prostate cancer. 

ii. It remains unclear whether changes in the sex hormone milieu can 

explain the association between metabolic syndrome (and obesity 

specifically) and aggressive prostate cancer. An analysis that examines 

the association between a) obesity, b) metabolic syndrome components 

and risk of aggressive prostate cancer after adjusting for the sex 

hormones levels might clarify this association.   Besides, it would be 

useful to identify a phenotype profile that includes metabolic syndrome 

components and sex hormone levels that may be risk factors for 

developing prostate cancer and/or aggressive prostate cancer.  This 

analysis can be done using a retrospective cohort with available bio-

specimens. A potential candidate cohort is the Australian Prostate 

Cancer BioResource cohort, which the Lipids and Prostate Cancer 
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Research Group is part of, and the MAILES cohort, which includes 

prostate cancer-free men.  

 

Of course, there is the opportunity to integrate other methodological 

approaches to address these and additional questions. Some examples include, i) 

genetic profiling for risk of prostate cancer and aggressive prostate cancer based on 

metabolic and hormonal profiling (phenotype), ii) a Mendelian randomisation study 

design to identify the causal relationship between metabolic factors and prostate 

cancer, and iii) adaptive design studies that explore the best approach to control 

metabolic side effects with androgen deprivation therapy and how this can reduce 

metabolic comorbidities and if this can reduce time to prostate cancer progression.  

 

The results of this project, as well as the potential future projects, will lead to a 

complete understanding of the association between metabolic factors, especially 

obesity, and prostate cancer. It will provide greater insight into underlying 

mechanisms through which metabolic factors affect prostate cancer pathogenesis and 

aggressiveness. This will allow for the identification of risk reduction modalities and 

interventions that may reduce the risk of aggressive prostate cancer and improve 

prostate cancer outcomes. The direct objective of these proposed studies is to 

ultimately improve clinical practice, mainly in the area of prostate cancer screening, 

by identifying the effect of considering obesity when interpreting PSA results and by 

identifying sub-group of men who benefit the most from prostate cancer screening.  
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Appendix 1. Prostate cancer staging and definition of 
aggressiveness  
	
	
AJCC 8th Edition (Buyyounouski et al. 2017)	
 
Primary Tumor (T)  
 

TX Primary tumor cannot be assessed 
T0 No evidence of primary tumor 
T1 Clinically unapparent tumor neither palpable nor visible by imaging 

T1a  Tumor incidental histologic finding in 5% or less of tissue resected 
T1b  Tumor incidental histologic finding in more than 5% of tissue 

resected 
T1c  Tumor identified by needle biopsy (for example, because of elevated 

PSA 
T2 Tumor confined within prostate1 

T2a  Tumor involves one-half of one lobe or less 
T2b  Tumor involves more than one-half of one lobe but not both lobes 
T2c  Tumor involves both lobes 

T3 Tumor extends through the prostate capsule 
T3a  Extra capsular extension (unilateral or bilateral) 
T3b  Tumor invades seminal vesicle(s) 

T4 Tumor is fixed or invades adjacent structures other than seminal 
vesicles, such as external sphincter, rectum, bladder, levator muscles, 

and/or pelvic wall 
	
Regional Lymph Nodes (N) 
 

NX Regional lymph nodes were not assessed  
N0  No regional lymph node metastasis 
N1 Metastasis in regional lymph node(s) 

 
 
Distant Metastasis (M) 
 

M0 No distant metastasis 
M1 Distant metastasis 
M1a Non regional lymph node(s) 
M1b Bone(s) 
M1c Other site(s) with or without bone disease 
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Grading and Gleason Score  
 
 

ISUP Grade Group Gleason Score Gleason Pattern 
1 ≤6 ≤3+3 
2 7 3+4 
3 7 4+3 
4 8 4+4, 3+5, 5+3 
5 9 or 10 4+5, 5+4, 5+5 

	
	
	
	
	
 

Figure 1-Appendix: Gleason score, Figure adapted with permission from Shah, 

R. B., and M. Zhou (Shah & Zhou 2016) 

	
	 	

Small, uniform glands

More space between glands

Distinctly infiltration of cells from 
glands at margins

Irregular masses of neoplastic cells 
with few glands

Lack of or occasional glands, sheets 
of cells 

Well differentiated 

Moderately differentiated 

Poorly differentiated 
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Prostate Cancer staging (AJCC 8th Edition)  
 
 

Stage T N M PSA Grade 

I cT1a‐c, cT2a N0 M0 <10 ng/mL 1 

I pT2 N0 M0 <10 ng/mL 1 

IIA cT1a‐c, cT2a N0 M0 ≥10, <20 ng/mL 1 

IIA pT2 N0 M0 ≥10, <20 ng/mL 1 

IIA cT2b‐c N0 M0 <20 ng/mL 1 

IIB T1‐2 N0 M0 <20 ng/mL 2 

IIC T1‐2 N0 M0 <20 ng/mL 3 

IIC T1‐2 N0 M0 <20 ng/mL 4 

IIIA T1‐2 N0 M0 ≥20 ng/mL 1‐4 

IIIB T3‐4 N0 M0 Any 1‐4 

IIIC Any T N0 M0 Any 5 

IVA Any T N1 M0 Any Any 

IVB Any T Any M1 Any Any 
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NCCN 2019 Version 2 Risk grouping  
 

Risk group Clinical/pathologic features 
Very low • T1c AND 

• Grade Group 1 AND 
• PSA <10 ng/mL AND 
• Fewer than 3 prostate biopsy fragments/cores positive, 
• ≤50% cancer in each fragment/core AND 
• PSA density <0.15 ng/mL/g 

Low • T1-T2a AND 
• Grade Group 1 AND 
• PSA <10 ng/mL 

Intermediate Has no high- or very- 
high-risk features 
and has one or more 
intermediate risk 
factors (IRF): 

• T2b-T2c 
• Grade Group 2 

or 3 
• PSA 10–20 

ng/mL 

Favourable 
intermediate 

• 1 IRF and 
• Grade Group 1 

or 2 and 
• <50% biopsy 

cores positive 
Unfavourable 
intermediate 

• 2 or 3 IRFs 
and/or 

• Grade Group 3  
and/or 

• >50% biopsy 
cores positive 

High • T3a OR 
• Grade Group 4 or Grade Group 5 OR 
• PSA >20 ng/mL 

Very high • T3b-T4 OR 
• Primary Gleason pattern 5 OR 
• >4 cores with Grade Group 4 or 5 

https://www.nccn.org/professionals/physician_gls/pdf/prostate_blocks.pdf  
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