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Abstract

A fundamental issue in understanding homeostasis of the hematopoietic system is to what extent intrinsic and extrinsic
factors regulate cell fate. We recently revisited this issue for the case of blood platelets and concluded that platelet life span
is largely regulated by internal factors, in contrast to the long-held view that accumulated damage from the environment
triggers clearance. However, it is known that in humans there is an ongoing fixed requirement for platelets to maintain
hemostasis and prevent bleeding; hence a proportion of platelets may be consumed in such processes before the end of
their natural life span. Whether it is possible to detect this random loss of platelets in normal individuals at steady-state is
unknown. To address this question, we have developed a mathematical model that independently incorporates age-
independent random loss and age-dependent natural senescent clearance. By fitting to population survival curves, we
illustrate the application of the model in quantifying the fixed requirement for platelets to maintain hemostasis in mice, and
discuss the relationship with previous work in humans. Our results suggest a higher requirement for platelets in mice than
in humans, however experimental uncertainty in the data limits our ability to constrain this quantity. We then explored the
relationship between experimental uncertainty and parameter constraint using simulated data. We conclude that in order
to provide useful constraint on the random loss fraction the standard error in the mean of the data must be reduced
substantially, either through improving experimental uncertainty or increasing the number of experimental replicates to
impractical levels. Finally we find that parameter constraint is improved at higher values of the random loss fraction; thus
the model find utility in situations where the random loss fraction is expected to be high, for example during active
bleeding or some types of thrombocytopenia.
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Introduction

The relative contributions of intrinsic versus extrinsic factors in

regulating platelet life span have been the subject of considerable

debate and controversy. A popular explanation first articulated by

Mustard, Roswall and Murphy favoured the extrinsic viewpoint

[1]. Their ‘‘multiple-hit’’ model holds that platelets age by

accumulating damage over time, for example by temporary

involvement in thrombi or via stress, shear or temperature

fluctuations during normal circulation [1,2]. Once a critical level

of damage is reached, the platelet is cleared by the reticuloendo-

thelial system. Studies of size, density and morphology as platelets

age appeared to support this model [3–11]. However, recent

molecular data have challenged this primarily extrinsic view of

platelet ageing. Both platelet count and platelet turnover are

altered in mice with deficiencies in pro- and anti-apoptotic

proteins (in particular Bak and Bcl-xL), indicating an essential role

for the intrinsic apoptosis pathway in platelet homeostasis [12].

We recently attempted to integrate this new molecular

information with the multiple-hit model by fitting the latter to

population and cohort survival curves from mice with mutations in

Bcl-xL and Bak [13]. Although the multiple-hit model generated

adequate fits to the data, the results suggested that it was primarily

the rate of hits rather than the number of hits that differed

between the genotypes – a result that is difficult to reconcile with

the original exposition of the model. Thus, a simpler interpretation

was that, under normal physiological conditions, platelet life span

is not regulated by damage inflicted by extrinsic ‘‘hits’’, but instead

is programmed by an internal timer. We proposed that intrinsic

factors (such as the levels of pro- and anti-apoptotic proteins)

would give rise to a natural distribution of platelet life span.

Although many choices for the mathematical form of this

distribution were possible, we chose the lognormal distribution

as it appeared to provide a simple explanation of the differences

between genotype (i.e. shifting mean log life span). We refer to the

resulting mathematical model as the ‘‘lognormal-senescent’’ or LS

model.

Our conclusion that platelet life span is internally regulated left

open the questions of how the apoptotic program in platelets is

triggered, and what mechanism determines the point at which

each individual platelet enters the apoptotic process. Furthermore,
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our modelling did not account for the fraction of platelets that are

consumed by normal hemostatic requirements. Hanson et al.

demonstrated a fixed requirement for platelets by studying platelet

survival in patients with varying degrees of bone marrow

hypoplasia [14]. They used a novel approach, first extracting an

estimate of mean life span from the gamma-fit (multiple-hit)

method, and then using the Dornhorst model to correlate mean

life span and platelet count across all patients, assuming an equal

and fixed requirement for platelets in each individual. The

Dornhorst model is a classic model incorporating senescent death

at a fixed time with random loss up until that time. It was

described in 1951 for the study of red cell survival curves [15], but

can in principle be applied to any cell type with these two alternate

cell fates. However, the model suffers from the problem that it

tends to overestimate the random loss fraction when fit directly to

individual survival curves. Hanson et al.’s approach overcame this

problem by not directly relying on fits to survival curves. Rather

they focussed on the predicted reduction in both platelet count and

life span as platelet production was decreased – an approach made

possible by acquiring data from a wide range of patients with

differing degrees of hypoplasia, and controls. They concluded that

approximately 7,000 platelets per microlitre of blood per day are

required to maintain hemostasis, and consequently approximately

18% of platelets in healthy human individuals are consumed

before the end of their natural lifespan.

Here, we address the question of whether it is possible to detect

the fixed requirement for platelets directly from individual survival

curves, i.e. without access to data derived from individuals with

variable platelet production rates. The reason that the Dornhorst

model tends to overestimate the random loss fraction is that it does

not account for the intrinsic variability in cell life span. This

approximation works well for human red cells, whose mean life

span is approximately 120 days with a standard deviation of no

more than 10 days (coefficient of variation (C.V.) ,10%).

However, for wild-type murine platelets the mean life span is

approximately 4 days, with a standard deviation of 1 day (C.V.

,25%). Hence, the curved ‘‘tail’’ of the survival curve tends to

result in a spuriously high estimate of the random loss fraction

when the Dornhorst model is fitted. We therefore developed a

hybrid of the Dornhorst model and the LS model introduced in

our previous study, which we refer to as the Dornhorst-LS or DLS

model. Our results are consistent with a fixed requirement for

platelets to maintain hemostasis, however the biological interpre-

tation of our results is limited by poor constraint of the critical

parameter related to random loss. We quantitatively compare

humans and mice, and note that on face value our results suggest a

fixed requirement for platelets in mice of the order of 100,000 per

microliter of blood per day, much higher than the corresponding

value in humans. We then explore some of the technical difficulties

with our approach that contribute to poor parameter constraint.

Overall, our data and analysis suggest that at steady-state there is a

large excess of platelets and therefore the random loss fraction is

small, and difficult to detect by model fitting to survival curves

alone.

Results and Discussion

Recently, we developed an in vivo double-labeling technique for

studying platelet survival. First, the X488 reagent (Emfret

Analytics, Eibelstadt, Germany) is injected intravenously to label

the majority of platelets in circulation at that particular time, thus

establishing a ‘‘population label’’. X488 is a DyLight488-labeled

rat IgG derivate against the murine GPIbb subunit of the platelet

specific GPIb-V-IX complex. Subsequently (24 hr in our study)
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the standard technique of in vivo biotinylation is performed [16].

Platelets that are negative for the first label but positive for the

second represent a ‘‘cohort’’ of platelets born in the time period

between the two labelings. Flow cytometric analysis to enumerate

the percentage of platelets carrying combinations of the two labels

yields population and cohort survival curves.

In our previous study we fit two different models, the multiple-

hit model and the LS model, to population and cohort data in

wild-type, Bcl-x+/Plt20 and Bak2/2 mutant mice (for which platelet

life span is shortened or lengthened, respectively). Both models

explain senescent age-dependent platelet death (via different

mechanisms) and appeared to provide adequate fits to the data.

In this study, we address the question of age-independent random

loss (e.g. by consumption in blood clots) and whether its effect on

survival curves can be detected.

As discussed in Materials and Methods, parameter

constraint is an important issue in addressing this question. To

this end, we employed a Monte Carlo technique to estimate

confidence intervals. Briefly, this involves first modelling the

experimental uncertainty about the mean of the data as normally-

distributed (Gaussian) noise. A new, simulated set of survival

curves is then generated with Gaussian noise of the correct

magnitude added about the mean. The model is then refit to this

simulated data and a new set of parameters obtained. This process

is repeated 1000 times, and the empirical distribution of

parameters obtained is used to estimate confidence intervals in

those parameters – indicated by box-and-whisker plots with

outliers (outside of 2.5–97.5 percentiles) plotted individually as dots

in the figures of this paper.

Figure 1. Lognormal-Senescent model fits of platelet survival data. (A) Population survival data and LS model best fits for Bcl-x+/Plt20 (blue),
wild-type (green) and Bak2/2 (red) mice. A Monte Carlo technique was used to generate estimates of confidence intervals for the model parameters –
(B) mean natural life span, m, (C) standard deviation of natural life span, s, (D) random loss rate constant, r (always 0 hr21 for this model), and (E)
random loss fraction, f (always 0 for this model). 1000 Monte Carlo simulations were performed and fit to obtain parameters – box-and-whisker plots
indicate median, interquartile range, 2.5 and 97.5 percentiles, and outliers are plotted as individual dots.
doi:10.1371/journal.pone.0057783.g001

Model for the Hemostatic Consumption of Platelets
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As well as the intrinsic parameters of the models considered

here (mean life span, standard deviation of life span, and random

loss rate constant) additional parameters are required to fit to the

experimental data. In particular, because the labels are not perfect

(i.e. do not label 100% of platelets) parameters representing the

efficiencies of the two labels, e1 and e2, are required. Furthermore,

as discussed previously [13], the second label – biotin – tends to

continue to label platelets for some period of time after the initial

injection and so another parameter for its half-life is required, b1/2.

These extra parameters are potential confounders in interpreting

our results, so it is best to minimise their impact. To fit the

population survival data requires only one of these additional

parameters, e1, whereas to fit the cohort survival data requires the

other two, e2 and b1/2, as well. Therefore, any advantage that may

be gained by fitting the cohort data must be balanced against the

complication of two additional parameters. We found that fitting

the cohort data did not provide any improvement in the constraint

of the parameters of interest, therefore in the main text we present

results from fitting just the population survival data. In Supple-
mentary Figures and Tables we present the results from

fitting to both the population and cohort survival data, for

reference.

Lognormal-Senescent (LS) model
We began by reproducing the results of our earlier work

[13,17], fitting the LS model using the slightly altered method-

ology described above. Results are illustrated in Figure 1 and best-

fit parameter values and 95% confidence intervals are reported in

Table 1. In Figure 1A, we show what visually appear to be good

Figure 2. Dornhorst model fits of platelet survival data predict that a large proportion of platelets are destroyed randomly. (A)
Population survival data and Dornhorst model best fits for Bcl-x+/Plt20 (blue), wild-type (green) and Bak2/2 (red) mice. A Monte Carlo technique was
used to generate estimates of confidence intervals for the model parameters – (B) natural life span, T, (C) standard deviation of natural life span
(always 0 hr for this model), (D) random loss rate constant, r, and (E) random loss fraction, f. 1000 Monte Carlo simulations were performed and fit to
obtain parameters – box-and-whisker plots indicate median, interquartile range, 2.5 and 97.5 percentiles, and outliers are plotted as individual dots.
doi:10.1371/journal.pone.0057783.g002
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fits to the population survival curves for the three genotypes.

Figures 1B and C show confidence intervals for the mean and

standard deviation parameters, m and s, respectively, from the

Monte Carlo simulation. Figure S1A and B, illustrate the same

information with the alternate parameters –the mean log life span,

m, and the standard deviation of log life span, s – showing that it is

primarily the mean log life span, not the standard deviation in log

life span, that varies between genotypes, in agreement with our

earlier study [13]. Figure 1D and E emphasise that there is no

random loss in this model, and are included simply for comparison

to the Dornhorst and Dornhorst Lognormal-Senescent models in

Figures 2 and 3, respectively.

Dornhorst model
To assess the possibility of age-independent random loss in

addition to the usual age-dependent senescent clearance, we next

fit the classic Dornhorst model [15] to our population survival data

across the three genotypes. The Dornhorst model assumes that

senescent death happens at a definite, fixed age, and that prior to

senescent death cells are destroyed (or consumed) randomly at a

fixed rate. Thus, there are two parameters of the model in its pure

form – the fixed natural life span, T, and the random loss rate

constant, r, as well as the labeling efficiency parameter, e1. The

relative proportion of platelets that are randomly lost or undergo

age-dependent senescent clearance is of interest in discussions of

platelet fate. We refer to the proportion of cells that are randomly

Figure 3. Dornhorst-Lognormal-Senescent model fits of platelet survival data reveals a smaller random loss fraction than the
classic Dornhorst model but wide confidence intervals. (A) Population survival data and DLS model best fits for Bcl-x+/Plt20 (blue), wild-type
(green) and Bak2/2 (red) mice. A Monte Carlo technique was used to generate estimates of confidence intervals for the model parameters – (B)
natural life span, T, (C) standard deviation of natural life span, (D) random loss rate constant, r, and (E) random loss fraction, f. 1000 Monte Carlo
simulations were performed and fit to obtain parameters – box-and-whisker plots indicate median, interquartile range, 2.5 and 97.5 percentiles, and
outliers are plotted as individual dots.
doi:10.1371/journal.pone.0057783.g003
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lost (prior to the end of their natural life span) as the ‘‘random loss

fraction’’, f, throughout this paper. At steady-state in normal

individuals the major source of this random loss of platelets is

envisaged to be hemostatic consumption, and thus the random loss

rate constant and fraction could equally well be referred to as

‘‘consumption rate constant’’ and ‘‘consumption fraction’’.

Equally, in situations where random destruction of platelets is

increased, such as immune thrombocytopenia purpura, ‘‘destruc-

tion’’ may be a more appropriate adjective than ‘‘loss’’. However,

we use the more general term ‘‘random loss’’ throughout our

discussion, to emphasise the more general applicability of the

model. In the Dornhorst model, the random loss fraction is

dependent on the random loss rate constant, r, and the natural life

span, T, via Equation (8) in Materials and Methods.

Figure 2 illustrates Dornhorst model fits to our data, with

confidence intervals on parameter values using the Monte Carlo

technique as described above. Best-fit parameter values and 95%

confidence intervals are shown in Table 2. As expected, the

natural life span is different in the three genotypes (Figure 2B).

More surprisingly, the Dornhorst model predicts very high values

of the random loss rate constant and fraction (Figure 2D and E) –

suggesting of the order of 50% of platelets are randomly lost in

wild-type and Bak2/2 mice (and that this proportion is well-

constrained between approximately 40 and 60%). This is much

higher than previous estimates of this quantity in humans [14].

Figure 2C emphasises that in the Dornhorst model natural death

occurs at a fixed time (the standard deviation in natural death time

is zero). In his original publication, Dornhorst stressed that the

assumption of a fixed age of death is an approximation valid when

the standard deviation in life span is small compared with the

mean, as is the case for human red cells [15]. As discussed above,

our previous study [13] showed that for murine platelets the

standard deviation is actually quite significant (C.V. ,25%),

resulting in a significant ‘‘tail’’ to the population survival curve –

the curve tapers out after initially appearing linear. Therefore the

approximation of fixed natural life span is unlikely to be

appropriate for this system. The only way for the Dornhorst

model to fit to the tail region of the population survival curve is by

increasing the random loss fraction. Therefore, we wondered

whether the apparently high values for the random loss estimated

by the Dornhorst model were, in fact, an artefact of assuming a

fixed death time.

Dornhorst Lognormal-Senescent (DLS) model
To address the issue of artefactually high values of the random

loss fraction with the Dornhorst model, we developed a model,

which we refer to as the ‘‘Dornhorst Lognormal-Senescent’’ model

(or DLS model) see Materials and Methods, where senescent

death occurs according to a lognormal distribution, rather than at

a fixed time, and random death occurs independently – potentially

cutting short the natural life span. Thus the DLS model has three

parameters – the mean, m, and standard deviation, s, of the

lognormal distribution of senescent life spans, and the rate

constant for random loss of platelets, r (as well as the additional

parameter for the labeling efficiency, e1, needed to fit real data).

The random loss fraction, f, in this model depends on the

distribution of natural life spans, L(?), and the random loss rate

constant, r, via Equation (12) in Materials and Methods. The

choice of a lognormal distribution for natural lifespan is not

essential, and similar results can be obtained with other positive,

right-skewed distributions such as the gamma distribution.

Figure 3 illustrates the results of fitting the DLS model to the

population survival data across the three genotypes, and Table 3

reports best-fit parameter values and 95% confidence intervals.
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Figures 3B and C show the expected result of increasing mean life

span and standard deviation of life span across the genotypes, and

Figures S1C and D show that the result of increasing mean log life

span while standard deviation log lifespan remains constant (within

parameter constraints), seen in the LS model, is also true in the

DLS model. More importantly, as can be seen in Figure 3E, this

model does appear to allow for much lower value of the random

loss fraction when compared with the Dornhorst model, Figure 2E.

In Bcl-x+/Plt20 there is little evidence for random loss (best-fit

f = 0.00, 95% C.I. [0.00,0.39]), while in wild-type (best-fit f = 0.31,

95% C.I. [0.09,0.46]) and Bak2/2 (best-fit f = 0.34, 95% C.I.

[0.04,0.51]). Thus, while the best-fit value may still seem rather

high in wild-type and Bak2/2, the confidence intervals are very

wide and therefore it would be inappropriate to draw strong

conclusions regarding the value of this parameter and its biological

significance.

The DLS model can be viewed in two ways – (1) as an extension

of the LS model to include a random loss term, or (2) as an

extension of the Dornhorst model to allow a non-zero standard

deviation in the distribution of natural lifespan (the choice of

distribution is obviously not unique, but here we work with the

lognormal distribution). Either way, there is one extra parameter

in the more complex model (the DLS model) compared with the

simpler model (LS or Dornhorst) and the simpler model is said to

be ‘‘nested’’ in the more complex model. The F-test is a statistical

test that can be used in circumstances such as these (nested

models), to say whether the addition of extra parameters with the

more complex model is justified by the improvement in quality of

fit [18]. The test as it applies here is described in Materials and
Methods. The results of an F-test comparing the DLS to the LS

model are shown in Table 4, and comparing the DLS to the

Dornhorst model in Table 5. The F-test can be viewed as a type of

statistical hypothesis test, with the simpler model (LS or Dornhorst)

considered the null hypothesis, and the more complex model

(DLS) considered the alternate hypothesis. The relevant quantities

for each fit are the sum of square residuals (s.s.r.) and the number

of degrees of freedom (df), which is equal to the number of data

points minus the number of parameter values. The F-test shows

the improvements in quality of fit were statistical significant for

both model comparisons in the wild-type and Bak2/2 genotypes,

but not for either model comparison in the Bcl-x+/Plt20 genotype.

This improvement in quality of fit as assessed by the F-test could

be taken as evidence the DLS model is superior to either the LS or

Dornhorst models, at least in the wild-type and Bak2/2 genotypes.

However, this result must be interpreted with caution. As noted

above, the wide confidence intervals for the random loss

parameter limit the usefulness of the results. For example, no

firm conclusion can be drawn as to how the random loss fraction

varies, if at all, between the three genotypes studied here.

Fitting to the cohort survival data as well as the
population survival data does not substantially improve
confidence intervals

Tables S1, S2, S3 show the results of fitting each of the models –

the LS, Dornhorst, and DLS models – to both the population and

cohort survival data for each of the three genotypes. As discussed

above, to fit the cohort survival data necessitates the introduction

of two additional parameters – the labeling efficiency for the

second label, e2, and the biotin half-life, b1/2. As can be seen from

comparing the confidence intervals in these tables to those in

Tables 1, 2, 3, there is very little improvement (narrowing) of the

confidence intervals for the parameters, in particular the random

loss fraction, f, of most interest in this paper. Thus the cohort

survival data does not help significantly in constraining parameter
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values. As an illustration of the fits that can be obtained to the

double-labeling data, Figure S2 shows fits using the DLS model for

each of the genotypes, with the corresponding best-fit parameter

values and 95% confidence intervals are reported in Table S3.

Tables S1 and S2 report the best-fit parameter values and 95%

confidence intervals for fits to the double-labelling data with the

LS and the Dornhorst models, respectively.

Comparison between mice and humans
Some quantitative comparisons between mice and humans are

insightful at this point. At steady-state production of platelets (S)

must balance their clearance/loss, therefore a rough estimate of

the production rate is the total platelet count (N) divided by the

mean life span of platelets (m), S<N/m. Typical values of these

quantities in humans are approximately N = 2506103/mL, m = 9

days, and so S<286103/mL/day. In wild-type C57BL/6 mice,

approximately N = 12006103/mL, m = 4 days, and so

S<3006103/mL/day. Therefore mice have a roughly 10-fold

higher production/turnover of platelets per microliter of blood per

day, compared with humans.

Furthermore, according to Equation (15) in Materials and
Methods, the random loss fraction equals the absolute random

loss rate divided by the production rate, f = R/S. The absolute

random loss rate is the random loss rate constant times by the

platelet count, R = rN, and is equivalent to Hanson et al.’s ‘‘fixed

requirement for platelets’’ [14]. Hanson et al. estimated the fixed

requirement for platelets in humans to be 76103/mL/day.

Combining this value with the estimate of the production rate

above, gives f<0.25, in reasonable agreement with what Hanson

et al. reported (f<0.18) given the approximate nature of these

calculations. The fixed requirement for platelets in mice is

currently unknown, however if it is the same as in humans,

Equation (15) would imply that the random loss fraction would

only be f<0.02, due largely to the much higher production rate in

mice.

Of course, these calculations are only estimates, however they

give some insight into the expected value of the random loss

fraction if the fixed requirement for platelets is the same between

mice and humans. For technical reasons discussed further below,

such a low value of the random loss fraction (f<0.02) would be

very difficult to detect in the survival curves. By contrast, the

higher values of the random loss fraction reported in Figure 3

(f<0.35) can be seen to correspond to a much higher fixed

requirement for platelets. Figure 4 shows the fixed requirement for

platelets, expressed per microliter of blood per day for ease of

comparison to Hanson et al.’s results. As can be seen, in wild-type

and Bak2/2 the fits would suggest a fixed requirement for platelets

of closer to 1006103/mL/day, whereas in Bcl-x+/Plt20 the fixed

requirement was not convincingly detectable.

Several resolutions are possible. Our results may be correct and

mice may indeed have a fixed requirement for platelets of around

1006103/mL/day, much higher than the equivalent figure in

humans of 76103/mL/day. The fact that we could not detect this

fixed requirement in the Bcl-x+/Plt20 genotype might be explained

by the fewer data points on those survival curves making it difficult

to detect the precise curvature. If the difference between species is

indeed real, consideration of other quantitative differences in

mouse versus human physiology (such as body weight, blood

volume, platelet size and surface area of vessels) may prove

insightful. Alternatively, our results are misleading due to technical

difficulties in extracting the value of the random loss fraction from

the survival curves. We therefore decided to explore some of the

technical difficulties associated with fitting the model to data, and

the implications for the interpretation of our results.

Trade-off between mean life span and random loss
fraction in the DLS model

The poor constraint on the random loss fraction revealed by the

Monte Carlo simulation warranted further investigation. Part of

the difficulty appears to stem from the fact that small values of the

random loss fraction have only very subtle effects on the predicted

survival curves. Figure 5A illustrates this point. Here we have

generated theoretical predictions for the population survival curve

with the DLS model by keeping the natural life span distribution

constant while the random loss fraction is varied. As long as the

random loss fraction is relatively small (say, 0.4 and below in the

figure) the survival curve takes a qualitatively very similar shape. It

looks linear initially, and tapers out to a tail around the mean

natural life span. It would be very difficult by eye to distinguish the

effect of the increasing the random loss fraction from shortening

Table 4. F-test to compare best fits with the LS model (the null hypothesis) versus the DLS model (one extra parameter – the
alternative hypothesis).

#data points #paramsnull dfnull #paramsalt dfalt ssrnull ssralt F P

Bcl-x+/Plt20 48 3 45 4 44 295.2 295.2 0.00 1

wild-type 60 3 57 4 56 106.7 95.2 6.77 0.011

Bak2/2 78 3 75 4 74 314.5 290.5 6.11 0.016

doi:10.1371/journal.pone.0057783.t004

Table 5. F-test to compare best fits with the Dornhorst model (the null hypothesis) versus the DLS model (one extra parameter –
the alternative hypothesis).

#data points #paramsnull dfnull #paramsalt dfalt ssrnull ssralt F P

Bcl-x+/Plt20 48 3 45 4 44 314.4 295.2 2.86 0.098

wild-type 60 3 57 4 56 140.2 95.2 26.5 3e-6

Bak2/2 78 3 75 4 74 335.2 290.5 11.37 0.0012

doi:10.1371/journal.pone.0057783.t005
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the mean natural life span. It is only when the random loss fraction

is relatively large (say, 0.6 and above in the figure) that the initial

segment of the survival curve starts to take a noticeably non-linear

shape due to the contribution of random loss. The trade-off

between the mean life span parameter and the random loss

fraction is further illustrated in Figure 5B, which is a scatter-plot of

mean life span versus random loss fraction for the wild-type

genotype from the Monte Carlo simulation. Linear regression was

performed and Pearson’s correlation co-efficient was calculated,

which showed a high correlation between these two parameter

values (r2 = 0.94). This result further illustrates the point that the

poor constraint on the random loss fraction is largely due to a

trade-off with the mean life span – namely, a small increase in both

simultaneously can produce an almost identical initial slope to the

population survival curve. For completeness, Figures 5C and D

show that there is much weaker correlation of the random loss

fraction with other parameters of the model – the standard

deviation in life span and the labeling efficiency. Similarly, Figure

S3 shows little pair-wise correlation amongst the other parameters

of the model.

Relationship between parameter constraint and
experimental uncertainty

Finally, we attempted to quantify the relationship between

experimental uncertainty and parameter constraint in this system.

In practice it is impossible to eliminate experimental uncertainly

entirely or to vary its degree. Therefore, to answer this question we

decided to fit to simulated data generated directly from the model

with varying degrees of random noise added. We chose to fix the

mean and standard deviation at m= 100 hr, s= 25 hr, and vary

the random loss fraction over a range of values, f = 0, 0.2, 0.4, 0.6,

and 0.8. For each value of f we generated baseline ‘‘ideal’’ data.

Experimental uncertainty was modelled as Gaussian noise with a

mean of 0 and a standard deviation of varying magnitude. For

each value of the noise we simulated a single data set and fit the

DLS model to it, followed by the Monte Carlo technique to

estimate confidence intervals, exactly as was done for the real data.

The resulting confidence intervals are shown in Figure 6, (A)

f = 0.2, (B) f = 0.8, representative of low and high random loss

fractions, respectively. For all values of f, as the value of the

random noise is increased the confidence intervals rapidly widen.

We note, however, that for higher values of f the confidence

intervals tend to be narrower for any given value of the noise. This

point is illustrated in Figure 6C which plots the interquartile range

as a function of f for different values of the noise. Roughly, at

f = 0.8 an equivalent interquartile range can be achieved with

twice as much noise compared with f = 0.2.

To be able to draw useful conclusions as to how the random loss

fraction varies between individuals or in different disease states,

one requires relatively narrow confidence intervals around the

parameter values. One can see from Figure 6 that reasonable

confidence intervals are only achieved at the lower values of the

random noise, say s.e.m. = 0.2% and below. In practice, the

implication is that the standard error in the mean (s.e.m.) of the

data points must be reduced below this threshold to achieve that

level of parameter constraint. Theoretically, this can be achieved

in two ways – (1) by reducing the experimental uncertainty, or (2)

increasing the number of replicates. Usually, the experimental

protocol will have been optimised and care taken to minimise as

much as possible all potential sources of experimental uncertainty.

Therefore, (1) will not usually be possible in practice. The

alternative, (2) is to increase the number of replicates. The s.e.m. is

related to the standard deviation of the data (s.d.) and the number

of replicates (n) by the formula: s:e:m:~s:d:=
ffiffiffiffiffiffiffiffiffiffi
n{1
p

. As an

example, for our wild-type data, s.d. = 1.26%, n = 6, and therefore

s.e.m. = 0.56%. Assuming the s.d. cannot be improved, we would

need n.41 for s.e.m.,0.2%, and n.160 in order for s.e.m.,0.1%.

Thus the task of collecting sufficient experimental replicates is

clearly onerous and may be prohibitive in many circumstances.

However, as noted above, experimental uncertainty is somewhat

more tolerable at higher values of the random loss fraction; thus

the model is likely to find greater utility in disease states where

higher values of the random loss fraction might be expected.

Conclusions

Putting aside the issue of parameter constraint and differences

between mice and humans, our results are at least consistent with

the view that in steady-state the number of platelets is far in excess

of the body’s usual requirements and suggest an attractive

resolution to the debate over the relative importance of internal

and external processes in regulating platelet life span. Combined

with our previous results [13], we hypothesise that the default state

is for platelets to initiate apoptosis as they exhaust their natural life

span. This process is truly internal to the platelets and would occur

even if they were shielded from any form of environmental

damage. However, environmental factors, such as consumption in

blood clots or other forms of damage, lead to loss of some platelets

from the circulation before their natural life span is exhausted. The

proportion of platelets lost in this random way appears to be low in

healthy individuals, but is likely to be higher in disease states such

as certain thrombocytopenias or atherosclerosis, and with

advanced age, where survival curves look more curvilinear [19–

21].

Finally, we note that the model introduced here can be used to

study any cell population where there are two alternate fates – age-

dependent clearance according to a defined probability distribu-

tion (e.g. intrinsic senescent death), and random loss (e.g. due to

some extrinsic process that consumes or destroys cells indiscrim-

inately). This paradigm of competing intrinsic and extrinsic effects

on cell fate is found broadly in cell biology in vivo, thus our model

may prove useful in the analysis of other cell systems where

quantification of these two alternate fates is desired.

Figure 4. Values of absolute random loss rate (fixed require-
ment for platelets), extracted from the same fits of the DLS
model to survival data as illustrated in Figure 3. 1000 Monte
Carlo simulations were performed and fit to obtain parameters – box-
and-whisker plots indicate median, interquartile range, 2.5 and 97.5
percentiles, and outliers are plotted as individual dots.
doi:10.1371/journal.pone.0057783.g004
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Figure 5. Illustration of the difficulty in constraining the value of the random loss fraction using the Dornhorst-Lognormal-
Senescent model. (A) Theoretical population survival curves from the DLS model as the mean and standard deviation of natural life span are kept
constant (m = 100 hr, s = 25 hr) while the random loss fraction, f, is varied. Small values of the random loss fraction produce subtle changes in the
shape of the population survival curve. (B) Strong correlation between values of the random loss fraction (f) and the mean natural life span (m) in the
Monte Carlo simulation – r2 is the square of Pearson’s correlation coefficient; Slope is the gradient of the linear regression with 95% confidence
intervals in brackets [,]. The correlation with other parameters of the model is much less – (B) random loss fraction (f) versus standard deviation
natural life span (s), and (C) random loss fraction (f) versus labeling efficiency (e1).
doi:10.1371/journal.pone.0057783.g005

Figure 6. The effect of experimental uncertainty on the ability to constrain the value of the random loss fraction. Fits to simulated
data with Gaussian random noise of varying standard error of the mean (s.e.m.) added to simulate experimental uncertainty. (A)–(E) Simulated model
parameters: m = 100 hr, s = 25 hr, with (A) f = 0.2, (B) f = 0.8. For each value of f and each value of the s.e.m. of the noise, the fit was repeated 1000
times with independently-generated noise – the box-and-whisker plots indicate median, interquartile range, 2.5 and 97.5 percentiles, and outliers are
plotted as individual dots. (C) Interquartile range as a function of random loss fraction for the various levels of noise added to the simulated data. For
a given value of the s.e.m. of the noise, higher values of the random loss fraction are generally better constrained than lower (non-zero) values.
doi:10.1371/journal.pone.0057783.g006
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Materials and Methods

Ethics statement
All animal experiments complied with the regulatory standards

of, and were approved by, the Walter and Eliza Hall Institute

Animal Ethics Committee.

Mice
Mice with the Plt20 mutation in Bcl-x [12] and Bak2/2 mice

[22] have been previously described. Both mutations had been

backcrossed at least 10 generations to C57BL/6 background.

Wild-type controls were C57BL/6.

Experimental techniques
The experimental techniques for in vivo double labeling with

DyLight488 conjugated NHS-biotin and subsequent flow-cyto-

metric analysis to obtain population and cohort survival, have

been described previously [13]. Double labeling was performed in

6 mice of each genotype: Bcl-x+/Plt20, wild-type and Bak2/2.

Mathematical modeling
Mathematical modeling of a cell population in steady-state

where the distribution of life spans is fixed and known, has been

described previously [13,15,23]. We briefly review the main points

here to establish notation as a basis for discussing the Dornhorst

and DLS models. Let L(l) be the age-dependent distribution of life

spans, l. The probability, P(a), of surviving to age a is:

P(a)~1{

ða

0

L(l)dl: ð1Þ

At steady-state, the number of platelets of age a must be

proportional to the probability of surviving to that age. Therefore,

the (normalised) probability density of ages in the population is:

p(a)~
1{

Ð a

0
L(l)dl

m
, ð2Þ

where m~
Ð?

0
lL(l)dl is the mean life span. Because this is a

steady-state condition, after time t those platelets of age less than t

will be new. Therefore, the survival curve D(t) takes the form:

D(t)~1{

ðt

0

p(a)da: ð3Þ

When fitting to population survival data, this theoretical survival

curve must be scaled by the efficiency of labeling with the first

label, e1 (typically approximately 0.9 for the X488 label in our

experiments), which is an additional parameter in the fitting.

Finally, assuming the total blood volume is constant, and platelet

production occurs at a constant rate, S, then the number of

platelets, N, is predicted to be:

N~Sm: ð4Þ

Platelet counts and all rates (of production and destruction) are

measured per microliter of total blood throughout this paper.

Lognormal-senescent (LS) model
In this model the life span distribution is lognormal:

L(l)~
1ffiffiffiffiffiffi
2p
p

sl
exp {

log(l){mð Þ2

2s2

" #
: ð5Þ

The parameters m and s are the mean and standard deviation,

respectively, of the logarithm of life span. When the life span

distribution is lognormal, the survival curve always has an analytic

form [17].

Dornhorst model
The Dornhorst model was original developed to interpret red

cell survival curves [15]. Briefly, cells (in this case platelets) are

assumed to die at a fixed time, T, (senescent death) if they are not

earlier removed by random loss, which occurs at a constant rate, r.

The survival curve takes the form:

D(t)~
exp({rt){exp({rT)

1{exp({rT)
: ð6Þ

As above, if S is the production rate, then the predicted platelet

count is:

N~
S

r
1{exp({rT)ð Þ: ð7Þ

The proportion of platelets that eventually are randomly lost

before they die of senescence (the ‘‘random loss fraction’’, f) is:

f ~1{exp({rT): ð8Þ

Finally, the mean life span across all platelets is:

m~
1{exp({rT)

r
: ð9Þ

Dornhorst-LS model
Here, we derive a model that combines both age-dependent

senescent death according to some distribution and age-indepen-

dent random death at a constant rate, r. This can be considered a

generalisation of the Dornhorst model where senescent death does

not have to occur strictly at some fixed time (T) but is distributed.

Following the same logic as above, the probability of surviving

to age a is:

P(a)~e{ra 1{

ða

0

L(l)dl

� �
: ð10Þ

In steady-state, the probability density of cell age in the population

must be proportional to this probability, and can be found by

normalising this equation:

p(a)~
P(a)Ð?

0
P(a’)da’

: ð11Þ

Integration by parts can be used to show that the normalization

factor is
Ð?

0
P(a)da~

f

r
, where f is the random loss fraction:
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f ~1{

ð?
0

e{raL(a)da: ð12Þ

The survival curve can then be calculated as above, Equation (3).

The steady-state platelet number can be derived by requiring

that the number of platelets dying at any instant balances the

production rate. If N is the total number of platelets in the

population, then the number dying at any instant is:

N

ð?
0

p(a) rz�LL(a)ð Þda, ð13Þ

where �LL(a)~L(a)=(1{
Ð a

0
L(l)dl) is the rate of natural death at

age a, given life span distribution L(?). Equating this expression

with the production rate, S, gives (after some working involving

integration by parts):

N~
Sf

r
~

S

r
1{

ð?
0

e{rlL(l)dl

� �
: ð14Þ

As expected, when rR0 this equation reduces to Equation (4) for

the case of no destruction (f/rRm), and when L(l)?d(l{T) (a

delta function representing a fixed life span, T) it reduces to

Equation (7) for the Dornhorst model.

Finally, rearranging Equation (14) gives:

f ~
R

S
: ð15Þ

Where we have defined the instantaneous absolute total random

loss rate (R) as the random loss rate constant (r) times by the

platelet count (N). Thus, the random loss fraction is equal to the

ratio of absolute total random loss rate (R) to the production rate

(S). It follows that in situations where random loss is predominantly

due to hemostatic consumption, the random loss fraction is a

measure of the balance between the requirement for platelets (R)

and their production (S).

When the natural life span distribution is chosen to be

lognormal, we refer to this model as the Dornhorst Lognormal-

Senescent (DLS) model. When the standard deviation in life span

approaches zero, it reduces to the classic Dornhorst model.

Calculation of predicted cohort label
The double-labeling procedure involves injecting a second label

after a delay of time, d (24 hrs in our experiments), in order to

establish a ‘‘cohort’’, negative for the first label but positive for the

second, that were born within the intervening time. In our

experiments the second label is biotin, which is less effective than

X488 in labeling platelets (the labeling efficiency, e2, is approx-

imately 0.6). Ideally, the distribution of ages in the cohort at the

time it is established would be truncated at age d:

pcohort(a,t~d)~
p(a),aƒd

0, awd

�
: ð16Þ

However, in practice we need to account for the labeling

efficiencies – thus the initial distribution of ages in the cohort is:

pcohort(a,t~d)~
e2p(a),aƒd

e2(1{e1)p(a{d),awd

�
, ð17Þ

The survival of this population can be calculated by solving a

partial differential equation:

Lpcohort(a,t)

Lt
~{

Lpcohort(a,t)

La
{ rz�LL(a)ð Þpcohort(a,t), ð18Þ

with Equation (16) as the initial condition and with the boundary

conditions:

pcohort(a~0,t)~e2Se
{ log (2)(t{d)=b1=2 ,

pcohort(a??,t)?0:
ð19Þ

Here, the biotin half-life, b1/2, has been used to account for the

additional labeling of some newly-produced platelets, as described

previously [13]. The area under pcohort(a,t) represents the relative

proportion of the initial cohort remaining at time t:

Dcohort(t)~

ð?
0

pcohort(a,t)da: ð20Þ

Numerical methods
Best fits to survival data were generated by minimizing the sum

of square residuals between the data and model predictions using

custom code written in MATLAB, as described previously [13],

based on the MATLAB function fmincon using the ‘interior point’

algorithm. For numerical integration to obtain population and

cohort survival curves, the number of grid points was chosen to be

1000. The range for integration was [0,exp(m+4s)] for the LS or

DLS model (where m and s are the mean and standard deviation of

the log of lifespan),or [0,T] for the Dornhorst model. To overcome

the problem that the best fit may depend on the starting model

parameters, we adopted a technique of finding the best fit multiple

times from different starting points. Parameter starting points were

chosen uniformly and randomly from an interval, and the fit was

repeated to see if an improvement to the previous best could be

found. Once a better fit had not been found for the previous 100

starting points (population fits) or 10 starting points (population

and cohort fits), the optimization was terminated.

The Monte Carlo technique for estimating confidence intervals

is slightly different to the bootstrapping technique used in our

previous study [13], therefore we describe it here briefly. The

method is described in [18]. First a best fit to the data is generated.

Next, the experimental error about the model fit is modeled as

Guassian noise with a mean of 0 and a standard deviation, se,

given by:

se~

ffiffiffiffiffiffi
ssr

df

r
, ð21Þ

where ssr is the sum of square residuals of the best fit, and df is the

number of degrees of freedom of the data, which is equal to the

number of data points minus the number of model parameters.

Simulated data is then generated by adding Gaussian noise of this

magnitude to each data point on the curve. Since there were 6

replicates in the original experiment we simulate 6 survival curves

for each Monte Carlo iteration. A new best fit is then calculated as

above. This procedure was repeated for 1000 iterations, thus

producing an empirical distribution of parameter values that one

might expect to find from repetitions of the experiment. These

numerical distributions are used to create the box-and-whisker
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plots and correlations between parameters in the figures of this

paper, and the 95% confidence intervals reported in tables.

F-test
In general, a more complicated model (one with more

parameters) should be expected to produce an improvement in

the quality of fit to data (as measured by the sum of square

residuals) compared with a simpler model. The F-test [18,24] can

be used to assess the statistical significance of the improvement in

fit. First, the F statistic is calculated as:

F~
(ssrnull{ssralt)=ssralt

(dfnull{dfalt)=dfalt

, ð22Þ

where ssrnull and ssralt are the sum of square residuals and dfnull and

dfalt are the number of degrees of freedom (the number of data

points minus the number of model parameters) for the simpler

(null hypothesis) and more complicated (alternate hypothesis)

models, respectively. Under the null hypothesis that any improve-

ment in fit is due to chance alone, a theoretical distribution of the

F statistic (depending on the number of degrees of freedom of the

two models) can be calculated. Thus, a p-value can be derived that

can be interpreted as the likelihood, by chance alone, that the F

statistic takes a value at least as large as is observed. We adopted

the conventional threshold value of p = 0.05 for statistical

significance. Roughly speaking, if the relative improvement in

the sum of square residuals is much greater than the relative

increase in the number of degrees of freedom, then the result is

likely to achieve statistical significance.

The F-test is only valid when the simpler model is a special case

of the more complicated model (i.e. the models are nested). In this

paper, the classic Dornhorst model and the LS model are both

special cases of the DLS model – the Dornhorst model

corresponds to the standard deviation of life span being fixed to

be zero, and the LS model corresponds to the random loss rate

constant being fixed to zero. Therefore, the F-test can be used to

assess whether the improvement in the quality of fit with the DLS

compared with either the Dornhorst or LS models justifies the

inclusion of the extra parameter.

Supporting Information

Figure S1 Log-transformed parameters of the Lognormal-

Senescent and Dornhorst-Lognormal-Senescent model fits. (A)

and (B) Lognormal-Senescent model mean log life span (m) and

standard deviation log life span (s), respectively. (C) and (D)

Dornhorst Lognormal-Senescent model mean log life span (m) and

standard deviation log life span (s), respectively. It is primarily the

mean log life span rather than the standard deviation log life span

that varies between the genotypes in either model. The three

genotypes are identified by colour – Bcl-x+/Plt20 (blue), wild-type

(green) and Bak2/2 (red).

(EPS)

Figure S2 Fits of the Dornhorst Lognormal-Senescent model to

both population and cohort survival data for the different

genotypes. (A) Bcl-x+/Plt20. (B) wild-type. (C) Bak2/2.

(EPS)

Figure S3 Weak correlation amongst the parameters of the DLS

model other than the random loss fraction. Linear regression of

the Monte Carlo parameters for the wild-type genotype – r2 is the

square of Pearson’s correlation coefficient; Slope is the gradient of

the linear regression with 95% confidence intervals in brackets [,].

(A) mean natural life span (m) versus standard deviation natural life

span (s). (B) labeling efficiency (e1) versus mean natural life span

(m). (C) labeling efficiency (e1) versus standard deviation natural life

span (s).

(EPS)

Table S1 Best-fit LS model parameters from fits to population

and cohort survival data for each genotype, with 95% C.I.’s from

the Monte Carlo technique in brackets.

(PDF)

Table S2 Best-fit Dornhorst model parameters from fits to

population and cohort survival data for each genotype, with 95%

C.I.’s from the Monte Carlo technique in brackets.

(PDF)

Table S3 Best-fit DLS model parameters from fits to population

and cohort survival data for each genotype, with 95% C.I.’s from

the Monte Carlo technique in brackets.

(PDF)
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