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Abstract

In recent years work into larger humanoid robotic systems and other highly dynamic
legged robots has driven a need to increase control system performance and parameter
estimation capability. This in turn has seen an increase in the use of higher order joint
space derivative terms such as acceleration and jerk being introduced into the control
systems and estimators. Although it is evident that the inclusion of these terms can
increase the performance of the estimators and control systems, there is a distinct lack
of high quality sensors or systems capable of providing this information. Instead it is
apparent that those researchers aiming to employ the acceleration and jerk terms are
having to resort to other poor quality methods of acquiring the information, which in
turn limits the capability of the systems. The works examined suggest that in particular,
access to higher quality sources of joint space acceleration measurement or estimation
can lead to increases in the performance of control systems and estimators employing
these terms. The aim of this work is to investigate the feasibility and capability of a
new joint space sensor based on positional encoders and MEMs accelerometers that can
estimate angular joint position, velocity and acceleration.

The system proposed employs the accelerometer only IMU (AO-IMU) concept to
estimate link angular acceleration and velocity in an inertial frame. This concept is
then extended to obtain these angular components relative to the previous link. Sensor
fusion techniques are then tasked with estimating the velocity states of the AO-IMU and
ensuring consistency across the relative states. Two calibration schemes are proposed
and demonstrated to correct for the bias, gain and cross axis effects present in the
inertial sensors and to correct for the non-ideal placement of the sensors on the body
frame. The performance of the system is compared to three online methods common in
the literature with significant increases in performance being shown across all states,
particularly in the acceleration and velocity states.

The base sensor system is then augmented to explore alternate inertial sensor
arrangements and structures. In this the effects of adding MEMs gyroscopes to the sensor
system are studied and shown to have a small positive effect on the relative velocity state.
The addition of multiple relative accelerometers are then studied to examine whether the
initial system design choices could be improved upon, with this study showing greater
increases in the relative acceleration and velocity states performance. Taking inspiration
from the positive results of the multiple relative accelerometer study, an alternate sensor
system structure is proposed whereby the robot is instrumented with AO-IMUs and the
relative accelerometers omitted. This augmented structure may prove more useful in
larger robotic systems. This study initially showed poor results with the low angular
velocities experienced by the upper link AO-IMU introducing bias errors. This was
corrected for by the inclusion of gyroscopes with the resulting system exhibiting good
performance.

The findings within this work show that with some modification, the AO-IMU is
capable of directly measuring the relative angular acceleration and velocity of a robotic
link. When combined with positional sensors this system can be extended to obtain high
quality measurements of a joint’s angular position, velocity and acceleration.
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Chapter 1

Introduction

1.1 Why a Rotary Joint Sensor

Modern robotic control systems typically rely on rotational position and velocity feedback
to close a control loop around a joint of interest. With new work into humanoid and
larger highly dynamic robotic systems becoming more prevalent, researchers have begun
employing additional joint feedback data such as acceleration and jerk into control systems
in order to increase machine performance.

1.1.1 Joint Sensing for Control System Performance

Possibly the primary argument for incorporating rotary joint acceleration or jerk measure-
ments is that of general control system performance. In an effort to improve joint torque
control Dallali et al. (2015) developed a feedback compensator that required estimates of
joint velocity, acceleration and jerk. Radulescu et al. (2012) employed joint acceleration
feedback in their optimal controller formulation, and in their work on humanoid robots
Rotella et al. (2016) demonstrated that they are able to drive up stiffness and damping gains
for feedback controllers when incorporating velocity and acceleration terms.

In all these works the acceleration or jerk terms were not available as measured quantities
and in each case alternate means of obtaining the information were sought. Dallali et al.
resorted to using differentiation of an encoder to obtain their estimates, while Radulescu
et al. relied on an acceleration estimate obtained from their system model. Rotella et al.
simply used the commanded acceleration as a substitute for the estimate into their control
system.

Higher order derivatives of joint position and velocity also appear in work on highly
dynamic legged robots. These machines, typically operating in some unstructured environ-
ment, will experience unexpected contacts with the environment and must be capable of
compensating for these disturbances in real time. One such robot is the StarlETH quadruped
robot (Hutter 2013). In this work joint acceleration was incorporated into a disturbance
compensation task as part of their Hybrid Operational Space Control methodology. Hutter
states that in their hardware set up acceleration was not available and laments the use of
double differentiation in obtaining the data, due to the inherent noise issues. Instead an
assumption was made that there would be no acceleration for slow manoeuvres and the
term was set to zero. No mention of any performance cost due to this assumption was
provided.

Joint acceleration data also finds their way into estimating other online quantities that
then go on to find use in larger control systems. Humanoid robots rely on quantities such
as the Centre of Mass (CoM) (Xinjilefu 2015) and Centre of Pressure (CoP) (Baelemans
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Chapter 1 Introduction

2013) to estimate the machine’s body state, which is in turn incorporated into the control
of the robot. In these cases the acceleration terms are fused with other quantities such
as information from kinematics. In the works by Xinjilefu (2015) and Baelemans (2013)
once again the employed acceleration terms are not obtained via direct measurement. In
these cases commanded accelerations and differentiated position and velocity terms are
substituted for the measurements respectively.

1.1.2 Joint Sensing for Parameter Estimation

Parameter estimation in robotic systems revolves around finding estimates, ideally online,
of unknown quantities such as link length, inertia, joint friction etc. If not estimated by some
means, these parameters are typically taken from CAD models or measured in some way.
Acquiring this information requires time and accuracy on the researcher’s behalf and the
quantities found during offline procedures may vary during the operation of the machine
due to environmental factors.

In the limbed robotic systems of interest within this work, the majority of the parameter
estimation efforts revolve around estimating the inertial components of the joint space
dynamic model, typically of the form:

B(q)q̈ + C(q, q̇)q̇ + Fvq̇ + Fssgn(q̇) + g(q) = τ. (1.1)

The parameters of interest within this model are the components of the inertia or mass
matrix B, the components of C which is a matrix representing the Coriolis and centripetal
components, and the static and viscous friction components Fv and Fs. The model may be
extended or truncated depending on the requirements. Estimation of the parameters of this
model appear in a number of different works. In an early work Khosla (1987) attempts to
recover these components and explicitly relies on joint acceleration. Within this they employ
an online least squares fit of five data points to obtain the acceleration term, noting that
both the delay and noise exhibited by the process lead to bias in the estimates and lowered
estimation performance.

Baelemans (2013) incorporated joint velocity and acceleration terms into a parameter
estimation system for a humanoid robot. In this work they strictly rely on differentiation
to obtain the acceleration terms. They go on to discuss issues encountered in estimating
the robot inertia matrix terms, claiming the motions employed in the estimation tasks were
not significant enough to resolve these terms. Aside from increasing the motion velocity
and acceleration magnitudes they offer no solution to this issue, however noting that they
employed noisy differentiation it may be possible that increasing the noise performance of
the joint acceleration estimate may improve their results.

Joint acceleration appears in other parameter estimation works where the acceleration
term is employed in the estimation process, but obtained via some online state estimator such
as Unscented Kalman Filters (UKF) (Naerum et al. 2009; Van Der Merwe, Wan, Julier, et al.
2004), observers and adaptive controllers (Arteaga 2003) and Gaussian partially observable
Markov decision process (POMDP) based systems (Webb et al. 2014).

In each of these systems the acceleration terms are sourced from internal estimates of
the online estimator, rather than via measurement or differentiation. However such systems
are not without issue. For example, in the case of the UKF the acceleration term is typically
driven by a white noise process with no associated measurement and as may such lag the
measured states.1

1This is demonstrated in this work in Section 5.3.2.1.
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1.2 Thesis Structure

1.1.3 Motivation

It is evident that higher order terms such as joint acceleration and jerk can play a role in
increasing robotic control system performance and enabling the successful estimation of
parameters. However, it is apparent that researchers are using differentiation to estimate
accelerations, ‘good enough’ assumptions to set accelerations to some known value, relying
on models to obtain accelerations, or using commanded acceleration as the measurement
into the control system. Those researchers relying on differentiation to obtain velocity and
acceleration note the noise and phase delay issues that present from the differentiation of
already noisy signals, and those employing models as a means of extracting acceleration
find that they must first obtain accurate model parameters. However, these parameters may
vary during the operation of the machine and may be time consuming, costly or otherwise
difficult to obtain accurately. Rotella et al. noted in their work when employing commanded
accelerations that measured accelerations should yield better results, however this remained
untested.

The lack of use of estimates from sensors that directly measure joint acceleration within
these works suggests that the available devices or techniques are not sufficient in some
manner, and due to the benefits of incorporating these higher order terms into control
system performance and parameter estimation methods, further investigation into finding a
solution is warranted.

1.2 Thesis Structure

This work is presented in three major components. A review of the literature is first presented.
This is then followed by the development testing of the sensor system, which is in turn
followed by work on extending the sensor system.

Chapter 2 presents background information into the current state of joint space sensing,
primarily pertaining to limbed robotic systems. Within this, classic methods of obtaining
joint position and velocity are examined. Works regarding mechanical means of measuring
acceleration and their issues are then considered. Following this the literature surrounding
the recent works into incorporating MEMs sensors is discussed. From here we find that
the use of MEMs devices shows promising results regarding estimating the higher order
joint states, however the current means in which they are employed is perhaps not ideal.
This then leads on to a discussion on the accelerometer only IMU (AO-IMU) and how this
concept may be more suited for use in estimating joint states than the previous MEMs based
techniques.

Chapters 3, 4 and 5 detail the development of the joint sensor system. The sensor system
kinematics and theoretical basis are first developed in Chapter 3. Within this the issues
regarding the individual inertial sensors are first outlined. The AO-IMU kinematics are
then described and the issues regarding this formulation are first discussed. The relative
kinematics are then derived.

Chapter 4 develops the estimators that are employed to mitigate the AO-IMU issues and
fuse the states into usable information. The estimator for the AO-IMU is first presented,
followed by a discussion on the development of the relative UKF. The development of the
process noise matrices is then discussed.

Chapter 5 then presents the test rig hardware and the systems employed as baselines and
online comparisons. Following this, two methods of calibrating the sensor system are then
detailed. This chapter then details and discusses the results of testing the system on two
motion profiles. The issues regarding calibration and misalignment are then investigated.

3



Chapter 1 Introduction

The final chapter, Chapter 6, departs from the base sensor presented in the previous
three chapters and examines the system when augmented with alternate inertial sensor
combinations and under alternate structures. The system is first augmented with gyroscopes
to examine their effects on the performance. The relative accelerometer is then replaced with
a redundant set of accelerometers and the systems performance examined. An alternate
sensor structure is then proposed and examined, which is finally followed by a brief
exploration of the use of redundant gyroscopes.

A final conclusion then discusses the findings of the work.

4



Chapter 2

Literature Review

2.1 Existing Joint Sensing Methods

Many approaches to obtaining rotary position and velocity information are available, with
the majority of these methods relying on rotary encoders to obtain an estimate of the joint’s
rotational position. Classic methods rely on differentiation of the joint position to obtain
velocity, with some extending to robust differentiators and other numerical approaches.
The drawbacks of systems based on differentiation have prompted researchers to investi-
gate other means of obtaining velocity and acceleration estimates. Methods incorporating
observers or Kalman filters have shown improved results, however many of these do not
typically extend beyond obtaining joint position and velocity. Alternative approaches ex-
ploiting the glut of low cost MEMs inertial sensors have also enjoyed recent research. Typical
applications of these systems tend toward replacing positional encoders with MEMs devices.
Further works have gone on to augment positional encoders with the MEMs sensors in
order to improve position and velocity estimates, with some works extending to estimate
joint acceleration.

This chapter reviews a number of common methods employed in obtaining joint state
information. What is found within this review is that many of the existing methods aim
toward improving estimates of joint position and velocity, with only a very small number
working to estimate joint acceleration. The systems that do estimate joint acceleration tend
to rely heavily on full machine dynamics and kinematics models.

2.2 Classical Methods, Observers and Estimators

Classical velocity estimation methods typically rely on the differentiation of positional
encoder data and can be divided into three methods (Petrella et al. 2007); frequency
measurement, in which encoder pulses are counted in a fixed time step; period measurement,
where the time between encoder pulses is measured, and a mix of the two. All three methods
exhibit performance issues primarily based on quantisation noise and a loss of accuracy at
low speeds. Low pass filtering can be adopted to reduce the steady state and quantisation
errors, however these methods introduce a large phase lag (Zhu and Lamarche 2007)
which limits the performance of the control loop. Low speed accuracy can be improved by
combining period and frequency measurement but microprocessor timer limitations and
quantisation noise still hinder performance. Due to these limitations differentiation methods
are generally limited to measuring velocity and not extended into measuring acceleration.

Closed loop observer approaches have also been applied in the estimation of robotic
joint states. These systems are beneficial in that the periodic computational requirements
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are low and the observer accuracy is limited by the numerical precision of the computer
(Baran et al. 2012). An encoder is typically used to obtain position and velocity estimates,
however depending on the observer model employed acceleration estimates may also be
obtained, although in this case extra information may be required. For example the system
analysed by Baran et al. (2012) was able to estimate the velocity and acceleration of an electric
motor, but relied on reference current information along with rotor positional information.
Observer based systems rely on accurate models of the plant under consideration and these
parameters that describe the plant must be accurately obtained and may also vary during
the operation of the machine (Petrella et al. 2007). Inaccurate or varying parameters may
lead to reduced observer performance and incorrect state estimates.

An alternative approach to observers is the application of Kalman filters (Shaowei and
Shanming 2012). These estimators appear in both their linear forms where a measurement
is taken directly from an encoder and the state is propagated via simple Euler integration
(Bellini et al. 2003; Shaowei and Shanming 2012) or as non-linear estimators, where the
sin − cos components of the encoder position are estimated (Petrella et al. 2007). Both
of these formulations result in some estimate of the angular velocity, with the system
depicted in Bellini et al. (2003) extending to obtain some estimate of angular acceleration.
Kalman filter based systems are useful in state estimation as they are tolerant of system
model and measurement errors (Petrella et al. 2007). The output accuracy of the estimator
is also independent of the sensor resolution and an estimate of the states can be made
available during short periods when no sensor measurement is available. This allows the
estimators to operate and provide output at a higher rate than the measuring sensor is
capable of delivering. Despite these benefits Kalman filter based systems are subject to high
computational cost that scales with the number of states being estimated or measured. The
accuracy and convergence times of the filters are also affected by parameter choices (Petrella
et al. 2007).

Numerical methods have also been applied successfully to encoder based position data in
order to obtain estimates of velocity. Methods including robust differentiation or integration
(Su et al. 2005) and curve fitting (Chen et al. 2012) have shown promising results, however
these methods all appear to be directed at finding velocity estimates and are still highly
dependent on encoder resolution and sampling rate.

2.3 Mechanical Sensors

A small number of mechanical devices dedicated to measuring angular acceleration are
detailed in the literature. In early works Godler et al. (1995) details the development of a
rotary angular acceleration sensor. The device discussed in this work relies on a pair of
discs, one being a fixed reference and the other attached to the rotating shaft via flexures,
that deviate slightly when exposed to accelerations. The discs are fabricated with slit
patterns that when rotated coaxially and relative to one another produce a moire effect that
transforms the slight relative rotational displacement of the discs to a more pronounced
vertical displacement that is then measured via optical sensors. While successful operation of
the device is demonstrated its reliance on the flexure discs renders the sensor an inherently
inertial device and as such is subject to influence from external accelerations. Without a
means of estimating the angular acceleration of the reference body, this device may only be
suitable for measuring the angular acceleration of stationary installations.

The device developed in Kuzma and Kalas (2001) too relies on the motion of discs
moving relative to one another. In this system the angular acceleration is related to the
torsional torque between two sets of discs with opposing magnets. The device is configured
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such that any angular acceleration applied results in a torsional torque between the two
magnet discs, with the angular displacement as a result of the torque being measured to
estimate the angular acceleration. Like the system in Godler et al. this device is too subject
to the influence of external acceleration and requires some reference body.

The sensors described in Zhao and Feng (2015) and Restivo et al. (2012) are true relative
angular acceleration sensors. Simply put, the devices are both based on moving a disc or a
cup through a magnetic field generated by permanent magnets and the successful operation
of both devices is demonstrated in the papers.

While these sensors have all been shown to operate successfully they exhibit a number of
drawbacks that may render them undesirable for robotics applications. When compared to a
robotic joint, all the sensors are potentially physically large. Three of the sensors make use of
permanent magnets which adds mass and all four sensors require some form of housing and
must be mounted coaxially. The coaxial mounting of the permanent magnet based devices
moves away from the general trend in robotics of mounting devices of significant mass
toward the base and away from the moving links. All the devices require bearings and as
Kuzma and Kalas notes, the friction from the bearings introduces dead zones into the sensor
operation. Some of the devices exhibited non-linearity issues across their measurement
range, and finally when viewed in a robotics context the devices that do not measure true
relative acceleration will require some means of estimating the previous link acceleration.

2.4 MEMs Sensors

In recent times abundant access to low cost MEMs inertial sensors have enabled obtaining
some estimate of velocity or acceleration directly from a sensor, rather than via numerical
differentiation. These devices are physically small and light weight, reasonably low in
electrical power requirements and are low in cost and highly available due to their wide
spread adoption in modern mobile devices. Due to this, these sensors are an attractive means
of obtaining inertial information and as such are actively being researched in a robotics
context.

The approaches to employing MEMs inertial sensors within robotics control and estima-
tion systems are varied. In their survey Cheng and Oelmann (2010) discuss four methods in
which joint positional information may be extracted from combinations of MEMs gyroscopes
and accelerometers. Similarly, Quigley et al. (2010) demonstrates that users may trade off
measurement precision with the low cost of inertial sensors, depending on the intended ma-
chine task. Both of these works demonstrate that depending on the precision and accuracy
required, the positional encoders typically found in robotic joint systems may be completely
replaced with accelerometer and gyroscope based position estimation systems. Although
capable of estimating positional information these methods that rely solely on gyroscopes
and accelerometers are subject to some drawbacks. In obtaining positional estimates the
previous mentioned works rely on integration or differentiation of the gyroscopes output
and on the accelerometers ability to measure acceleration due to gravity under reasonably
static conditions. The outputs of the gyroscope integration or differentiation and the ac-
celerometer output are then combined in some manner, typically a complementary filter
(Colton 2007) to obtain the positional estimate. Cheng and Oelmann (2010) discussed issues
in the integration or differentiation processes when applied to the gyroscope output. The
result of this was introduction of unbounded noise in the case of the integration process and
bounded noise when differentiating, with both resulting in decreased system performance
when estimating the position during dynamic movements. Finally, Cheng and Oelmann
remarked that when deploying accelerometers for position estimation it is not possible to
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resolve any rotation that is normal to the gravity vector, with extra sensors being required to
estimate these quantities. Unfortunately this situation arises frequently in fixed base robotic
systems.

These systems described primarily presented a low cost alternative to replacing positional
encoders and while this is useful, these methods do not address the need for estimating the
higher order terms.

Alternative system configurations have been proposed whereby the MEMs sensors are
combined in some manner with the positional encoder. Kubus et al. (2012) aimed to improve
joint angle and angular rate estimates by reducing quantisation noise through the fusing of
encoder signals and MEMS gyroscopes via a complementary filter. This work, along with
the previously mentioned work by Cheng and Oelmann (2010) discussed the requirement
for gyroscopes to be placed on each link, with the difference between them resulting in the
particular joint’s angular velocity. Kubus et al. (2012) demonstrates improved results over
that of a differentiated encoder in a closed loop robot control experiment, however the work
also notes there are some tweaking factors involved that are dependent on the placement of
the gyroscopes on the robot links. Zhu and Lamarche (2007) also worked toward improving
angular velocity estimates by incorporating a single three axis accelerometer into the tool tip
of a single link robot. Within this they were able to improve the joint space velocity estimation
by tasking the accelerometer with estimating the high frequency velocity components and
the position encoder with the low frequency components. Axelsson et al. (2012) went on to
incorporate a linear acceleration measurement from an accelerometer into a particle filter
system in order to better the estimate of the tool tip position. Both of these works move
away from using the accelerometer to solely measure acceleration due to gravity and push
further toward incorporating the measurements into the actual dynamics of the robotic
system. Unfortunately, the works do not extend beyond obtaining or improving position or
velocity estimates.

Following on from single devices placed at tool tips, work into effectively ’lacing’ all
the links or joints of a robotic system with inertial sensors is under way. These systems
typically employ whole Inertial Measurement Units (IMUs), comprised of single three axis
gyroscopes, accelerometers and magnetometers placed on each link of the robot and are
generally networked in some manner to allow sampling from all devices during a time
interval. It is primarily within these systems that we see extension into estimating higher
order states.

In their work on large hydraulic back hoe style machines Honkakorpi (2014) worked to
replace expensive encoders with inertial sensors placed on each link of the machine. In a
similar manner to the previous gravity based methods, this work too relied on complemen-
tary filtering of gyroscope data and measurements of acceleration due to gravity to estimate
joint positions. However, this work was also extended to extract both angular velocity and
acceleration from the inertial sensors1. The angular acceleration data was then successfully
used in a control loop, which was constructed primarily to increase the system damping in
order to reduce the oscillations present in the long links.

Systems employing IMUs on all links also appear in research into humanoid robotics.
Rotella et al. (2016) placed single IMUs on each link of their humanoid robot and fused
the gyroscope and accelerometer data from the IMUs with measurements obtained from
encoders in an effort to estimate rotary joint position, velocity and acceleration. In a similar
manner to Honkakorpi, this work relied on a kinematic model of the whole robot to
extract the angular velocity and acceleration components from the distributed gyroscopes

1The details of this are covered in Section 2.5.
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and accelerometers. Rotella et al. demonstrated that the system would increase control
system performance, however rather than relying on the measured angular acceleration they
resorted to using the commanded acceleration, noting performance would have been better
had they used the measured acceleration.

This choice of employing commanded acceleration over that of the measured acceleration
came about due to their use of a single accelerometer per link. Rotella et al. showed that at
least two accelerometers (in their case IMUs) would be required per link in order to estimate
the angular acceleration, however they did not test the performance of their system in this
configuration. Honkakorpi had accounted for this in their work and employed two IMUs
per link to estimate the angular acceleration, demonstrating positive results. Although, this
work was based on a planar system and they noted that a third accelerometer per link
would be required to extend into three dimensions.

2.5 Accelerometer Only IMU

It is the idea that an IMU employing only a single accelerometer is not capable of producing
an angular acceleration estimate that leads to the Accelerometer Only IMU (AO-IMU).

Whereas the previous work discussed (Honkakorpi 2014; Rotella et al. 2016; Xinjilefu
2015) employed multiple IMUs and full robot kinematic and dynamic models to obtain their
angular acceleration estimate, the AO-IMU can be thought of as a single IMU that is capable
of producing both angular acceleration and velocity estimates without the need for a whole
robot model. It is this capability that makes these devices attractive when considering the
estimation of higher order rotational joint states.

The AO-IMU concept is based around fixing arrays of accelerometers at known positions
and orientations to a single rigid body. Then from the relationship for acceleration of a point
on a rigid body the linear acceleration and angular acceleration and velocity components
can be extracted.

The use of linear accelerometers to measure rotational acceleration and velocity has been
the subject of research since the 1960s. In early works arrays of six and nine accelerome-
ters were employed to estimate the acceleration and velocity components of rigid bodies
(Grammatikos 1965; Padgaonkar et al. 1975). Those methods incorporating six accelerometer
measurements employed integration to estimate angular velocity (Padgaonkar et al. 1975).
The estimated angular velocity was then relied upon to obtain the new angular acceleration
estimate for the next time step and as such the use of integration led to poor performance
in the devices. These devices were subsequently augmented to employ nine accelerometers
(Padgaonkar et al. 1975) and in these configurations the angular acceleration could be
derived directly from the measurements at each time step however, integration was still
required to estimate the angular velocity.

Subsequent works have gone on to demonstrate that by incorporating a minimum of 12
acceleration measurements it was possible to directly measure both the angular acceleration
and components of the angular velocity (Zappa et al. 2001). These devices serve as the basis
for the modern AO-IMU as it stands today.

Modern accelerometers are widely available in packages whereby three mutually orthog-
onal axes are present on the same device. Further AO-IMU works have gone on to exploit
these packages. In these works Lin and Ho (2009), Schopp et al. (2010), and Madgwick
et al. (2013) demonstrated that unlike the schemes presented in Padgaonkar et al., systems
employing the triple axis devices do not need specific geometric configurations, only that
the placement and orientation are known. Although these particular array configurations
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present great flexibility in their geometric configuration, there are some considerations that
must be addressed.

The general formulation of the modern AO-IMU relies the kinematic equation for
acceleration of a rigid body

am = ao + ω̇× r + ω× (ω× r), (2.1)

where ao is the body’s linear acceleration, ω̇ and ω are the angular acceleration and velocity
and r are the known accelerometer positions. The vector am represents one triple axis
accelerometer measurement. An equation for each three axis accelerometer is then stacked
into a vector and the subsequent system is reformulated into a matrix equation of the form

a = Bx, (2.2)

where a is the vector of stacked acceleration measurements, x are the unknown and time
varying linear acceleration and angular acceleration and velocity components and the matrix
B is made up of the known accelerometer positions. The unknown values x may then be
found as a solution to this equation.

The quality of the output of the AO-IMU then becomes dependent on the condition
of the matrix B and its suitability for inversion. A number of works have investigated
these properties and as such guidelines for the optimal placement of the accelerometers
are available. Lu and Lin (2011) showed that while it is not strictly necessary for successful
operation, a cube structure centred about the origin o with the accelerometers being placed
at the cube’s opposing corners offers the best performance. Madgwick et al. (2013) went on
to demonstrate that the performance of the AO-IMU becomes dependent on the volume
the cube occupies. Within this it was shown that the error of the kinematic states ω̇ and
ω2 are independent of the sensor’s distance to the origin, but inversely proportional to the
separation between the sensors themselves. In practice an overall increase in the volume
of the sensor occupying cube and in turn separation of the sensors should be aimed for.
Indeed Lin, Komsuoglu, et al. (2006) explicitly noted that the small volume that their AO-
IMU occupied severely limited the performance of their system and they had to rely on
gyroscopes for the angular velocity measurements. Madgwick et al. also discussed issues
regarding the systems capability of estimating low angular velocities, noting that sensor
measurement and alignment errors will result in bias errors that present primarily at these
low angular velocities and that at these low angular velocities, sensor noise may become an
issue.

Following this, a final issue regarding the performance AO-IMU is the estimation of the
angular velocity state. In the typical AO-IMU both the linear and angular acceleration terms
are available directly from the vector x however, the angular velocities appear as non-linear
terms, both as quadratics and functions of one another. This is a well studied issue (Lu and
Lin 2011; Cardou et al. 2011; Schopp et al. 2010; Ciblak 2007; Lu and Lin 2011) with the
majority of solutions tending toward the use of Kalman style estimators or optimisation
methods to find the actual angular velocity.

Although the AO-IMU has a couple of considerations and issues required to enable
its successful operation, they are not insurmountable. The device’s capability of directly
measuring both angular acceleration and angular velocity makes it attractive for investigation
in use in estimating higher order robotic joint states.
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2.6 Summary and Research Aims

This review has examined the current state of robotic joint sensing, in particular the sensing
methodologies currently in use when attempting to estimate the joint’s position, velocity
and in some cases acceleration. It is evident from the literature that researchers are indeed
pushing toward incorporating higher order derivatives of joint position into their control
systems and parameter estimation systems. What was found however, that those utilising
these higher order derivatives such as acceleration are often relying on differentiation,
estimates from models that may vary over time and other such means that offer poor
estimates. The review then focussed on joint state measuring technologies. Within this it was
found that the classical methods that rely on differentiation were not suited to estimating
higher order states due to the inherent noise and phase lag, and those systems that employed
observers and Kalman filters did not estimate higher order derivatives. Those that did found
that extra information other than the information from the positional encoder was required.

The review then examined the state of mechanical acceleration sensors and found a
number of solutions. The devices investigated were then either found to not measure true
relative acceleration, be physically bulky and heavy due to their reliance on permanent
magnets, or suffer from non-linearities.

The use of MEMs devices was then next examined. It was found that these devices
showed promise when measuring acceleration and velocity directly. However, the literature
showed that many of the works involving these devices aimed to employ them as a
replacement for positional encoders, forgoing any estimates of the higher order terms. A
few works had moved beyond this and begun employing the MEMs devices in conjunction
with positional sensors to increase the performance of position and velocity estimates. Only
once the works that pushed to ‘lace’ a whole robot with inertial sensors were introduced,
did work into estimating joint acceleration terms really take hold. These systems showed
positive results however, they all relied on full dynamic or kinematic models of the robot
and that each robot link be instrumented with IMUs.

From here the AO-IMU was introduced as an means of obtaining estimates of joint
acceleration and velocity without requiring any kinematic or dynamic model of the whole
robot. A brief background on the device was delivered, as was an introduction into the basic
operation of the concept. Finally, the issues surrounding the successful implementation of
the device were discussed.

This review has highlighted a gap in robotic joint sensor technology. It was shown that
although researchers wish to employ acceleration terms into their works, no good quality
means of obtaining this information is readily available. The AO-IMU concept offers both
velocity and acceleration estimates in an inertial frame and as such, by itself the device is
not suited to joint state estimation. With extra work and by incorporating sensor fusion
methods by means of Kalman style filters, the acceleration and velocity estimates obtained
from the AO-IMU might be combined with position measurements from a rotary encoder.
In doing so estimates of the joint’s position, velocity and acceleration can be made available
with no reliance on the robot’s kinematic or dynamic model.

The primary aim of this work is to investigate the effectiveness of the AO-IMU concept
in enabling the estimation of a robotic joints rotary position, velocity and acceleration.

In building on the base sensor system it is then aimed to investigate the effects of
alternate combinations of MEMs accelerometers and gyroscopes on the system. We also
look at alternate structures and their suitability on larger robotic systems.
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Chapter 3

System Modelling

3.1 Introduction

In this chapter the kinematic models that define the operation of the joint sensor and
calibration and alignment procedures required to compensate for the shortcomings of the
inertial sensors are presented. Section 3.2 describes the inertial sensor and incremental
encoder models. This is followed by the development of models describing the kinematics
of the joint sensor system in Section 3.3. An accelerometer only IMU (AO-IMU) is first
defined in Section 3.3.1 and is employed to obtain estimates of the linear acceleration and
angular velocity and acceleration of a robotic link li.The system is then extended in Section
3.3.2 by considering an accelerometer attached to the previous robotic link li−1 and the
kinematics for obtaining the relative angular acceleration and velocity are obtained. The
system modelling covers the general case for any rotational robotic joint with the specific
case being examined once the general kinematics are defined.

3.2 Sensor Models

3.2.1 Accelerometer Model

An accelerometer measures real inertial acceleration such that

ia = Sa
i
IR(I a + I g) + iba +

iva, (3.1)

where Sa is a matrix representing the gain and off-axis effects of each axis of the accelerom-
eter, the matrix i

IR rotates quantities expressed in the inertial frame into the local sensor
frame j, I a is the acceleration in the inertial frame I as measured by the accelerometer and
I g = [ 0 0 g ]T is the gravity vector, with g = −9.81. The vector iva represents the sensor noise
and iba contains the accelerometer bias terms. It is assumed the inertial frame I is oriented
such that it’s ẑ axis is in the direction −g.

The gain and off-axis parameters described by the matrix Sa and the bias terms in iba are
typical of a common MEMs accelerometer. These terms detrimentally affect the performance
of the accelerometers and will lead to a reduction in the performance of a system that is
reliant on them for accurate inertial information. Fortunately a simple calibration procedure
as outlined in Section 5.4.1 is sufficient to compensate for these effects and once compensated
for, the accelerometer model (5.6) can be simplified to

ia = i
IR(I a + I g) + iva. (3.2)

Within this work the experimental time frames are short and as such accelerometer moving
bias and temperature dependent effects are not considered.
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3.2.2 Gyroscope Model

While the joint sensor system is not dependent on gyroscope sensors, the system is aug-
mented to include them in later experiments. We also aim to compare the performance
of the joint sensor system to those systems incorporating the use of gyroscope sensors. A
MEMs gyroscope measures real inertial angular velocity and as with the accelerometer it
too will suffer from some level of bias and cross axis effects inherent to the device design. A
gyroscope can be described by the model

ig = Sg
i
IR

Iω + ibg +
ivg, (3.3)

where Sg is a matrix of gain parameters, Iω is the true angular velocity in the inertial frame
and ivg is the sensor noise vector. The vector ibg describes the gyroscope bias terms.

As with the accelerometer, the gains in the matrix Sg along with the bias terms in ibg

can found via the simple calibration procedure, similar to that covered in Section 5.4.2. In
aligning the device and removing the bias, the gyroscope can be described by the simplified
model

ig = i
IR

Iω + ivg. (3.4)

As the experimental time frames are short the moving bias and temperature effects need
not be considered.

3.2.3 Encoder Model

In this work a 16 bit incremental encoder is employed obtain the relative angle between two
links. Within this the encoder is modelled as taking the real angle as seen from link li and
augmenting it with a noise term as

iθenc = Se(
iθreal +

ive), (3.5)

where Se simply scales the raw encoder output iθreal counts to radians.
Although not strictly correct the encoder noise is considered as zero mean white noise.

As outlined later, this allows the use of a computationally efficient form of the UKF. The
results will show that this assumption is sufficient, however future work might consider the
effects of this choice on the performance of the system. As the quantisation noise is negligible
for this application the encoder signal is not filtered. Further details on the encoder are
presented in 5.2.2.2.

In the remainder of the work, the subscript of a vector expressed in its own frame is
dropped. For example iω̇i =

iω̇.

3.3 Kinematic Models

For any two series robotic links li and li−1 hinged about point o we wish to obtain the
relative joint position, velocity and acceleration. In this it is assumed that for the a general
case the joint is not constrained to rotate about a single axis and it is also assumed that the
positions of all the inertial sensors are known1.

The kinematic modelling of the joint sensor system is split into two major components.
First an accelerometer only inertial measurement unit is attached to link li and defines the
linear and angular acceleration and the angular velocity of that link in an inertial frame.
The system is then extended to define the same components for the previous link li−1 by

1Within reason, small misalignments in the sensor positions will be compensated for.
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Figure 3.1: Accelerometer only IMU.

incorporating a single three axis accelerometer placed on this link, along with an incremental
encoder which reads the relative position between the links. Once the angular velocities and
accelerations of links li and li−1 are known, the rule of summation of angular velocities and
its derivative is employed to extract the relative joint acceleration and velocity.

3.3.1 Accelerometer-Only IMU Model

The accelerometer only IMU formulation typically involves fixing arrays of accelerometers
arranged in specific three dimensional spatial patterns to a body of interest. The schematic
in Figure 3.1 depicts four tri-axial accelerometers placed on a body li at points irj, where
j = 1, 2, 3, 4. The acceleration of a point j on a rigid body li can be described by

iaj =
iao +

iω̇ × irj +
iω × (iω × irj), (3.6)

with the link’s linear acceleration iao, angular acceleration iω̇ and the angular velocity iω

being unknown and the known sensor position j relative to body i’s origin o being given
by the vectors irj. For the sake of simplicity the vectors from (3.6) are reduced to their
components and are written as

iao =
[

ax ay az

]T
,

iω̇ =
[
ω̇x ω̇y ω̇z

]T
,

iω =
[
ωx ωy ωz

]T
,

irj =
[
rx ry rz

]T
.

(3.7)

Once the kinematic equation of motion for acceleration for each accelerometer measurement is
applied, the problem can be manipulated further (Schopp et al. 2010) to be written as the
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matrix equation

iaj =



1 0 0
0 1 0
0 0 1
0 −rz ry

rz 0 −rx

−ry rx 0
ry rx 0
rz 0 rx

0 rz ry

0 −ry −rz

−rx 0 −rz

−rx −ry 0



T 

ax

ay

az

ω̇x

ω̇y

ω̇z

ωxωy

ωxωz

ωyωz

ω2
x

ω2
y

ω2
z



= Bjx, (3.8)

where the invariant acceleration position irj forms the matrix Bj and the linear and angular
accelerations, and angular velocities form the time varying vector x.

The body motion in (3.6) is described by the vector parameters iao, iω̇ and iω which
are comprised of nine unknown components. A recurring and well studied issue (Lin,
Komsuoglu, et al. 2006; Schopp et al. 2010) in the formulation of the AO-IMU is that the
angular velocity components in (3.8) appear in both quadratic form and as products of
them selves and one another. With only nine sensors it is not possible to find a unique
solution for iω (Schopp et al. 2010) and as such 12 sensor are deployed as four three-axis
accelerometers. The four three axis accelerometers are installed onto the link at positions irj,
with j = 1, 2, 3, 4 and the measurements iaj and position matrix Bj stacked as

y =
[

a1 a2 a3 a4

]T
, (3.9)

and
B =

[
B1 B2 B3 B4

]T
, (3.10)

which results in a matrix equation of the form

y = Bx, (3.11)

from which a solution might be found for x.
The structure matrix B is solely a function of the accelerometer positions irj (Lu and Lin

2011) and as such extracting the vector x becomes dependent on the numerical condition
of B. In turn, the numerical condition of B is dependent on the geometrical structure
the accelerometer array forms when fixed to a rigid body. The literature shows (Lu and
Lin 2011; Madgwick et al. 2013; Schopp et al. 2010) that three dimensional structures are
required to ensure linear independence of the rows of B and as such systems employing
planar structures are not capable of recovering x as B becomes rank deficient. Lu and
Lin; Madgwick et al. go on to demonstrate that cube structures with the accelerometers
placed at opposing corners offer the best performance in AO-IMU formulations. General
guidelines advise placing the origin o at the centre of the cube structure, while maximising
the structure’s volume. In this work the four accelerometers are placed in a cuboid manner,
with the forward accelerometers extending up the link’s x̂ axis. This is covered further in
Section 5.2.1.
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Figure 3.2: Relative kinematics.

3.3.2 Relative Acceleration Model

The AO-IMU system derived in Section 3.3.1 fully defines the angular acceleration and
velocity of the link li in the inertial frame. However, in robotics applications it is more
useful to know the angular acceleration, velocity and position of the link li relative to the
previous link li−1. In this section the AO-IMU concept is built upon to obtain the relative
joint state information. In doing this an extra accelerometer is placed on the previous link
li−1 and the acceleration obtained from this sensor, along with information obtained from
the AO-IMU, is employed to derive the relative joint acceleration and velocity. Within this
section it is assumed that issues regarding recovering the angular velocity from the AO-IMU
are accounted for and the linear and angular acceleration vectors iao and iω̇, along with the
angular velocity vector iω are fully available.

As in Section 3.3.1 obtaining the relative components is based on finding the acceleration
of a point on on a rigid body. The acceleration of this point k on the relative link li−1 can be
described by

i−1ak =
i−1ao +

i−1ω̇ × i−1rk +
i−1ω × (i−1ω × i−1rk), (3.12)

again with the linear acceleration i−1ao, angular acceleration i−1ω̇ and angular velocity i−1ω

being unknown and the known sensor position k relative to link li−1’s origin o being given
by i−1rk.

With only one accelerometer (3.12) cannot be directly solved. However as the acceleration
and velocity of li have been defined previously, we seek to express the quantities in li−1 in
terms of those in li. Referring to Figure 3.2 the two links li and li−1 are constrained to rotate
about a point at o. This constraint is typical of serial robotic systems and in this case enables
propagation of the quantities to the previous link, given that the rotation is known. The
acceleration vector i−1ao is coincident with iao but simply rotated by some quantity as

i−1ao =
i−1
i R iao. (3.13)

The angular velocity of link li−1 can be related to the angular velocity of link li through the
summation of angular velocities as

iω = iωi−1 +
iωi−1,i, (3.14)

where iωi−1,i is the angular velocity of link li−1 relative to i in frame i. Rearranging and
rotating into frame i− 1 gives

i−1ω = i−1
i R(iω − iωi−1,i). (3.15)

To obtain a similar relationship for angular acceleration, (3.14) is differentiated to give

iω̇ = iω̇i−i +
iω̇i−1,i +

iωi−1 × iω, (3.16)
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3.3 Kinematic Models

where iω̇i−1,i is the angular acceleration of link li−1 relative to i, expressed in frame i.
Rearranging and rotating into frame i− 1 gives

i−1ω̇ = i−1
i R(iω̇ − iω̇i−1,i − iωi−1 × iω). (3.17)

These equations represent a generalised form of the relative accelerometer model. For the
specific case in this work, links li and li−1 are rotational robotic joints and are constrained
to rotate about the local ẑ axis in as shown in Figure 3.2. In this case the rotation can be
described by

i−1
i R = Rz(θ), (3.18)

where Rz(θ) is the rotation matrix

Rz(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , (3.19)

and θ represents the joint angle obtained from an encoder measurement.
As this rotation is constrained about the ẑ axis the angular velocity and acceleration

components in (3.15) and (3.17) are independent of the rotational angle, and consequently
the cross product term in (3.17) reduce to zero.

The relative angular velocity and acceleration about the local ẑ axis can then be expressed
as

iωi−1,i = θ̇ẑ
iω̇i−1,i = θ̈ẑ,

(3.20)

and the relative kinematic relationship for this work can be given as

i−1ωi−1 = i−1
i R(iωi − θ̇ẑ)

i−1ω̇i−i =
i−1
i R(iω̇i − θ̈ẑ).

(3.21)

These equations are directly employed in the state estimation section 4.4.2.
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Chapter 4

State Estimation

4.1 Introduction

In this Section the issues regarding the estimating of the joint sensor states are addressed.
In examining the system models in Chapter 3 it is shown that the AO-IMU vector x is not
in a form that is directly useful within the sensor system. Specifically issues arises when
attempting to recover the angular velocity. Both the linear and angular acceleration are
directly available from the vector x, however the angular velocity components appear as
non-linear terms, both in quadratic forms and as products of one another. This issue is
well known in the literature and results in sign ambiguity when attempting to extract the
angular velocity components from the AO-IMU state. Ideally the AO-IMU will be fully
exploited for its angular acceleration and velocity information and as such some means of
recovering both of these states is desirable. In making these states measurable the concept of
sensor fusion can be employed, whereby the overall system performance can be improved
by incorporating the multiple sensor measurements. The relative component of the joint
sensor system can also benefit from the use of state estimators. In a similar manner to the
AO-IMU, measurements from both the inertial sensors and the incremental encoder will
enable some measurement of relative acceleration, velocity and position and again, we can
take advantage of sensor fusion methods to ensure consistency between the states.

The system presented in this section will not require knowledge of the overall robotic
system dynamic model, only that the joints be rotational. Due to this the sensor will be
robust to dynamics modelling errors or disturbances and as such common robotics tasks
such as picking up objects will not reduce the sensor system performance. Finally, all system
states are computed from sensor measurements and no knowledge of the robotic state (such
as input torques) is required.

4.2 Unscented Kalman Filter

In deriving the sensor system models it is evident that both the AO-IMU component
and the relative component are based on some level of non-linear measurement model. A
standard Kalman Filter is not suited to the estimation of non-linear systems and as such
the Unscented Kalman Filter (UKF) was selected for the sensor fusion task. The UKF does
not approximate the non-linear function as in the Extended Kalman Filter (EKF), rather the
probability distribution is approximated and propagated through a non-linear model. The
UKF is arguably simpler to implement than the EKF as derivations of Jacobian matrices
are not required (Van Der Merwe and Wan 2004) and the UKF formulation offers a 3rd
order approximation of the non-linear system, whereas the EKF is only capable of 1st order
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Encoder

Figure 4.1: Sensor and UKF data flow.

approximations (Van Der Merwe and Wan 2004).
This work does not cover the internal operation of the UKF in depth, rather attention is

given to the formulation of the system and the computation considerations required. The
UKF is covered in depth by Wan, Van Der Merwe, et al. (2000) and the additive (zero-mean)
UKF algorithm employed in this work is presented in Appendix B.

Figure 4.1 depicts the flow of information within the sensor system. The data entering the
system from the left is considered scaled and calibrated. The accelerometer measurements
are then rotated to ensure body frame alignment before being passed to their respective
estimators. Finally the output of the IMU UKF is passed to the relative UKF and the relative
states are estimated.

4.3 Computational Considerations

In perusing the literature it has become evident that the EKF is still more common in state
estimation systems over the UKF. Unfortunately the computational requirements of the
UKF overshadow its ease of implementation and superior performance. However, many
variations of the UKF formulation exist. Once calibrated the inertial sensors can be modelled
as having zero mean additive noise1 which enables the use of the additive zero mean UKF
formulation (Wan, Van Der Merwe, et al. 2000). In this method the system state does not
need to be augmented with noise variables and the dimension of the state vector and the
number of sigma points is reduced. Achieving this is straight forward: the covariances of the
measurement and state noise are simply added during the time update and measurement
update procedure. In making this assumption and employing this specific UKF formulation
the complexity of the UKF is reduced to order O(n3), for n states, which is the same as the
EKF.

Early simulation work on a single UKF based system showed that time wise performance
degradation was evident due to the large number of states to be estimated. Thus, to reduce
the computational requirements further the estimation of the system states is split into two
separate and sequential UKF implementations. From Figure 4.1 it is noted that there is
a one way flow of information from the AO-IMU to the relative components, in that the
relative components depend on data from the AO-IMU but not vice-versa. As such two
separate UKF implementations are constructed for the joint sensor system, with the first
estimating the states of the AO-IMU and the second estimating the relative components. In
doing so the total execution time is reduced from order O(193) for a combined formulation

1It is worth restating here that this is not strictly correct for the case of the incremental encoder, however the
encoder quantisation noise is minimal and thus the assumption is sufficient.
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Chapter 4 State Estimation

to order O(43) + O(153) for a split formulation. Further simulation work on the sensor
system showed a decrease in simulation execution time, however no study into the effects
of the AO-IMU sigma points no longer being propagated through the relative component
was carried out. It is suspected that a small decrease in system accuracy may be apparent.
Examining these effects is left as future work.

4.4 UKF Implementation

4.4.1 AO-IMU UKF

The AO-IMU UKF implementation enables the estimation of the angular velocity term from
the quadratic and product measurements in the vector x. In doing this the UKF also enables
fusion of the successive states while ensuring that they remain consistent.

A robot undergoing some motion in an unknown environment may be subject to abrupt
changes in acceleration, particularly in machines that experience unknown contacts with
the environment such as walking robots. It is also noted that within the sensor system both
the acceleration and velocity terms are directly observable. As such a constant jerk model
is adopted and it is assumed that both the angular and linear jerk terms are constant in
between time steps k and any variation is accounted for through the addition of process
noise via the UKF.

The vector ximu that contains the IMU states to be estimated is given as

ximu =
[

ax ay az ωx ωy ωz

]T
. (4.1)

Writing s = x, y, z, the linear acceleration components and the angular acceleration and
velocity components contained in (4.1) are then given as

as =
[

ȧs as

]
,

ωs =
[
ω̈s ω̇s ωs

]
.

(4.2)

At each time step k, for a sample time ∆t the state is updated by the UKF via a state model
of the form ximu,k = fimu(ximu,k−1, vimu,k−1). The transition function fimu(·) is constructed
from the linear and angular components of the state vector and integrated via simple Euler
integration as

ax,y,z,k =

[
ȧ

a + ȧ∆t

]
k−1

ωx,y,z,k =

 ω̈

ω̇ + ω̈∆t
ω + ω̇∆t + 1

2 ω̈∆t2


k−1

.

(4.3)

In this model the vimu term is a random variable that accounts for any uncertainty in the
linear and angular components, particularly the jerk and angular velocity components which
have no sensor directly associated with them. By incorporating this term the covariances of
the of the noise source can be simply added. As such vimu can be seen as a tuning parameter
for the UKF.

During the UKF update the state prediction (4.3) is corrected by an observation of the
sensors at each time step k. The observation model yimu,k = himu(ximu,k, wimu,k) transforms
the predicted states into predicted measurements so that they may be compared with actual
sensor readings.
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4.4 UKF Implementation

The observation model for the IMU component is constructed from (3.11), with x being
constructed from ximu,k as

yimu,k = Bhix(ximu,k) + wimu,k, (4.4)

where B includes the calibrated position estimates as given in (5.17) and hix(·) being a
non-linear operation that transforms the estimated state into the vector x. The observation
noise vector wimu accounts for sensor noise and is derived from the hardware data sheets.

4.4.2 Relative UKF

The relative component UKF formulation follows the IMU component UKF and adopts a
constant jerk model. In this case the relative state vector

xrel =
[...

θ θ̈ θ̇ θ
]T

(4.5)

is comprised of the relative link angular jerk
...
θ , acceleration θ̈, velocity θ̇ and relative link

position θ.
The state propagation model for the relative component is given as

xrel,k =


...
θ

θ̈ +
...
θ ∆t

θ̇ + θ̈∆t + 1
2
...
θ ∆t2

θ + θ̇∆t + 1
2 θ̈∆t2 + 1

6

...
θ ∆t3


rel,k−1

+ vrel,k−1, (4.6)

again, where ∆t is the sample time and vrel is the process noise that accounts for any
uncertainty in the process model and serves as a tuning parameter for the relative UKF
component.

As with the IMU component the relative state prediction xrel,k is corrected by an obser-
vation of the sensors via the observation model yrel,k = hrel(xrel,k, wrel,k). In this model the
predicted state is compared against both the relative accelerometer and the incremental
encoder. The accelerometer observation is constructed in a similar manner to the IMU obser-
vation, however in this case only one accelerometer is compared against. The observation
model is

yrel,k =
[

i−1ak θrel

]T

k
+ wrel,k, (4.7)

with θrel being the relative angular position to be compared to an incremental encoder
measurement and i−1ak being the accelerometer estimate taken from (3.12). In this case we
recall that the relative accelerometer estimates are derived from both the IMU estimated
state and the relative estimated state. Substituting (3.13) and (3.21) into (3.12) and letting
i−1
i R = Rz(θrel) gives the relative accelerometer observation equation,

i−1ak = Rz(θrel)aimu + ω̇rel × i−1rk + ωrel × (ωrel × i−1rk). (4.8)

In our specific case the rotation about the ẑ axis has no effect on the angular velocity and
acceleration and these terms simplify to

ω̇rel = ω̇imu − θ̈relẑ,

ωrel = ωimu − θ̇relẑ.
(4.9)

21



Chapter 4 State Estimation

4.5 Building Process Noise Matrices

Given that the joint sensor system executes on a digital computer discrete state propaga-
tion models have been used for both the AO-IMU and relative estimators. In doing this
discretisation of the process noise matrices Q is required.

A linear system can be described by the model

f (x) = Fx + Γv (4.10)

where Γ is the noise gain of the system and v is some white noise process that represents the
highest order term. Although this model represents a linear system, it sufficiently describes
the models used in the prediction steps in all three UKF components and in these cases v
represents the ‘motion’ of the jerk term between time steps. Within this it is assumed that
the system jerk is constant for each time step, but may vary between successive time steps.
A process noise matrix Q can then be obtained from an equation of the form

Q = Γσ2ΓT, (4.11)

where the variance σ2 can be seen as a tuning parameter for the system.
As discussed in Section 4.4.1 the AO-IMU state update model is separated into linear

and rotational components. Consequently, obtaining the process noise matrices are also split
into linear and rotational components. The linear AO-IMU component is described by a first
order process where the noise term Γ and is written as

Γ =
[
1 ∆t

]T
. (4.12)

The matrix Qimu,lin,n for each axis n is then obtained from the equation

Qimu,lin,n = Γσ2
imu,linΓT

=

[
1 ∆t

∆t ∆t2

]
σ2

imu,lin.
(4.13)

The rotational components requiring estimation of jerk, acceleration and velocity are based
on a second order process. In a similar manner the noise term Γ is given as

Γ =
[
1 ∆t 1

2 ∆t2
]T

, (4.14)

and again the matrix Qimu,rot,n for each axis n is obtained from

Qimu,rot,n = Γσ2
imu,rotΓ

T

=

 1 ∆t 1
2 ∆t2

∆t ∆t2 1
2 ∆t3

1
2 ∆t2 1

2 ∆t3 1
4 ∆t4

 σ2
imu,rot.

(4.15)

The final AO-IMU process noise matrix is then assembled as

Qimu =



Qimu,lin,x 0 0 0 0 0
0 Qimu,lin,y 0 0 0 0
0 0 Qimu,lin,z 0 0 0
0 0 0 Qimu,rot,x 0 0
0 0 0 0 Qimu,rot,y 0
0 0 0 0 0 Qimu,rot,z


, (4.16)
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4.5 Building Process Noise Matrices

noting that the zeros in the off-axis terms show that it is assumed that the noise between the
axes is independent.

Unlike the AO-IMU component the relative UKF component only estimates quantities
about the local ẑ axis. These rotational components are based on a third order process where
jerk, acceleration, velocity and position are all estimated. In this case the noise term Γ is
given as

Γ =
[
1 ∆t 1

2 ∆t2 1
6 ∆t3

]T
, (4.17)

and finally the relative component process noise matrix is constructed as

Qrel = Γσ2
rel,rotΓ

T

=


1 ∆t 1

2 ∆t2 1
6 ∆t3

∆t ∆t2 1
2 ∆t3 1

6 ∆t4

1
2 ∆t2 1

2 ∆t3 1
4 ∆t4 1

12 ∆t5

1
6 ∆t3 1

6 ∆t4 1
12 ∆t5 1

36 ∆t6

 σ2
rel,rot.

(4.18)

The values for the noise parameters σ for each of the UKF components, along with the time
step ∆t are detailed in Table 5.3.
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Chapter 5

System Hardware and Experimental
Results

5.1 Introduction

This chapter details the experimental methods and results employed in this study. Within
this the test apparatus employed to assess the performance of the sensor system is first
examined. The test apparatus is a simple two degree of freedom pendulum that when fixed
to the lower joint, enables testing of the sensor system as it moves through space.

Section 5.4 goes on to detail the calibration procedure required to reduce the effects of
the non-ideal off-axis and bias effects inherent to MEMs accelerometers. This section also
details a calibration technique used to compensate for any misplacement or misalignment
that will occur when physically attaching the sensors to the body frame.

In Section 5.5 the performance of the system is examined under two motion profiles.
As the sensor system relies only on measurements from sensors and does not rely on
information from the robot’s state or model, a chaotic motion profile is first used to
investigate the performance of the system when experiencing unknown motions. This is
followed by a low velocity profile which is employed to examine the performance impacts
of the AO-IMU design choices and when the inertial sensors are nearing their noise floor.

The experimental system output from these motion profiles is compared against online
and offline methods. The system output is then compared to three online methods that are
each subject to the same motion profiles. The online methods serve to enable comparing the
sensor performance to modern joint state estimation methods. The sensor system outputs
and the online methods are then compared to two offline joint state estimation methods,
with a forward/backward zero phase delay Kalman filter based system serving as a baseline
for all system performances to be compared against.

Within this chapter the test rig hardware and construction is first detailed. The experi-
mental considerations for the sensing elements are then discussed, followed by the details
of the data capture system. The UKF experimental parameters are then detailed.

The online and offline systems used to compare the system performance are then detailed
in Section 5.3, then the system calibration procedure is outlined. This is then followed by a
discussion on the system results and an examination of the effects of calibration and system
misalignment.
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5.2 Test Rig

5.2 Test Rig

5.2.1 Pendulum Geometry and Hardware

Testing for the joint sensor system was carried out on the two degree of freedom pendulum
shown in Figure 5.6. A schematic for the test rig is given in Figure 5.1. The rig is an un-
actuated two degree of freedom pendulum with both moving axes constrained to rotate
only about the local ẑ axis. The hardware test rig allows testing of the standard joint sensor
system as the joint of interest moves through space. The design of the rig also allows further
exploration of augmented sensor systems such as multiple joint sensors. These systems
explored are covered in Chapter 6.

The rig construction is based around parts cut on a waterjet from flat aluminium plate,
which were then built into a three dimensional structure. This method allows retaining
desirable physical properties of the aluminium, such as rigidity and dimensional stability
while keeping the costs and manufacture time low. Each link can then be considered to
be a rigid body for the purpose of the experiment. The inertial sensors themselves, along
with the electrical components of the incremental encoders require mounting to the test
rig. Suitable mounts were 3D printed from PLA plastic and serve to electrically isolate the
printed circuit boards (PCBs). The PCBs were glued to the plastic mounts, which were then
in turn glued to the rig frame.

The physical placement of both the inertial sensors and the incremental encoders are
subject to some constraints. The review of the literature and in particular in the work
by Lu and Lin (2011) shows that the inertial sensors placed at opposing corners of a
cuboid structure centred about the origin o offers the best performance. It was also shown
by Madgwick et al. (2013) that the separation of the sensors directly affects the system
performance and thus the volume of the cuboid structure formed by the placement of
the accelerometers should be maximised. A cuboid structure of maximised volume on a
slender robotic link is not practically achievable and may lead to decreased performance.
An alternative structure is proposed: referring to Figure 5.1 the accelerometers are placed
in a cuboid like manner with the centre being offset at point o. If it were to be that a strict
cuboid formation be employed then the forward accelerometers at xp would be placed
much closer to the origin, resulting in a violation of the sensor separation guidelines and
a reduction in AO-IMU performance would be seen. As such we take advantage of the
pendulum link length and place the accelerometers much farther up the link, and in a
sense trade off performance by mitigating the non-ideal cuboid structure by increasing the
forward accelerometer separation.

As depicted in Figure 5.1 four accelerometer units are placed on both the upper (li−1)
and lower (li) links. Four accelerometers are placed on the upper link, however only the
sensor placed at kr2 is employed as a relative sensor in the standard system. The extended
works in Chapter 6 make use of all the upper link accelerometers.

Finally the incremental encoder installation is considered. For this the manufacturer
outlines a requirement for the sensing read head to be placed between 0.3–0.6mm above the
rotating magnetic ring. This was achieved by mounting the sensor element on the PCB at
a fixed height and adjusting the magnetic ring carrier until the sensor reported adequate
readings.
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Table 5.1: Test rig physical parameters.

Upper link length Lul 200 mm
Lower link length Lll 200 mm
Positive x axis accelerometer xp 100 mm
Negative x axis accelerometer xn −15 mm
Positive y axis accelerometer yn 26 mm
Negative z axis accelerometer yp −26 mm
Positive upper link z axis accelerometer zp,ul 21 mm
Negative upper link z axis accelerometer zn,ul −21 mm
Positive lower link z axis accelerometer zp,ll 26.6 mm
Negative lower link z axis accelerometer zn,ll −26.6 mm

Table 5.2: Accelerometer position vectors built from test rig physical parameters.

li li−1

ir1 =
[
xn yn zp,ll

] i−1r1 =
[
xn yn zp,ul

]
ir2 =

[
xp yn zn,ll

] i−1r2 =
[
xp yn zn,ul

]
ir3 =

[
xp yp zp,ll

] i−1r3 =
[
xp yp zp,ul

]
ir4 =

[
xn yp zn,ll

] i−1r4 =
[
xn yp zn,ul

]

Table 5.3: Accelerometer and gyroscope sensor parameters, selected measurement ranges
and UKF parameters.

Accelerometer measurement range ± 4 G
Accelerometer max output rate 1.6 kHz
Accelerometer LPF cutoff 400 Hz
Accelerometer noise density @ measurement range 90 µg/

√
Hz

Gyroscope measurement range ± 1000 (17.45) °/s (rad s−1)
Gyroscope max output rate 1.6 kHz
Gyroscope LPF cutoff 400 Hz
Gyroscope noise density @ measurement range 7 m°/s/

√
Hz

Encoder Resolution 16 bits

System sample rate (∆t) 1 kHz

σimu,lin 3 m s−3

σimu,rot 20 rad s−3

σrel,rot 200 rad s−3

Rimu,acc 0.0111 m s−2

Rrel,enc 2.1343× 10−9 rad

α 1× 10−3 -
κ 0 -
β 2 -
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Figure 5.1: Test apparatus schematic

5.2.2 Sensing Devices

5.2.2.1 Inertial Sensors

The formulation of the AO-IMU selected relies on four three-axis accelerometer units and
the relative joint component employs a single three-axis accelerometers. The ST Micro
LSM6DS3 (LSM6DS3 iNEMO Inertial Module 2016)1 three-axis accelerometer and gyroscope
IC was chosen for this task. The device includes a three-axis gyroscope for negligible extra
cost over that of a similar accelerometer only device. The LSM6DS3 provides a digital
output of the linear acceleration and angular rate and offers many online configuration
options. Of this, the linear acceleration and angular rate measurement range settings are
used to set sensor ranges to give the largest signal to noise over a chosen operating range.

The ranges are chosen as a function of the vector irj of the accelerometer furthest from
the origin o and a reasonable expected maximum angular acceleration. Referring to Tables
5.1 and 5.2, the accelerometers at ir2 and ir3 are both much farther away from the origin
than the others. From here the linear acceleration measurement range of ±4G is selected.
This gives approximately

α =
a
r

392rad s−2 =
(4G× 9.81m s−2)

0.1m
,

(5.1)

which is a reasonable experimental range, noting that the measurable linear acceleration of
point o on the joint will also saturate at ±4G (≈ ±40m s−2). Similarly, an angular velocity
range for the gyroscopes was chosen and the gains selected to match. Table 5.3 shows the
ranges selected and the noise properties of the sensor.

1An earlier version of the test rig used LIS3DSH(LIS3DSH 2011) accelerometers. All test data is based on
the LSM6DS3 devices, however the calibration effects of the two devices are examined later in 5.5.1
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Figure 5.2: Schematic of data capture setup.

5.2.2.2 Incremental Encoders

An incremental encoder selected to measure the relative angle between the two links. A
simple custom rotary encoder based on the Austria Microsystems AS5311 (AS5311 High
Resolution Magnetic Encoder 2009) linear magnetic encoder was designed and assembled.
This contactless device measures the position of a multi-pole magnetic ring and provides
quadrature outputs at an equivalent resolution of 16 bits over a single rotation. The raw
output of the encoder appears in the data capture system as ‘ticks’ and requires scaling. The
scale parameter in (3.5) is given as Se =

2π
216 .

5.2.2.3 Data Capture

In total the data capture system for the joint sensor must support eight accelerometers
and two incremental encoders. Each accelerometer transmits and receives data over a
serial peripheral interface (SPI) bus and the encoders simply output their position via a
quadrature based signal. The system is to retrieve three axes of acceleration and angular
rate data from the eight accelerometers, along with the positions from the encoder at a
rate of 1kHz. The task of capturing the real-time sensor data was performed via an ST
Micro STM32F4 Discovery board and a simple daughter board that broke out connections
to the sensors. Figure 5.2 shows the schematic of the data capture system. Within this an
Arm based 32bit microprocessor handled all communications between the sensors and host
computer. Software was developed based on the embedded real-time operating system
ChibiOS (ChibiOS/RT Home page 2016) that interfaced via the microprocessor’s dedicated
peripheral to the external sensors. The software simply requested acceleration and angular
rate data from each of the inertial sensors and sampled the encoder positions. This raw data
would then be transmitted via USB to the host computer for further processing.

5.2.2.4 UKF Parameters

The noise density properties of the accelerometers and encoder as taken from the device
data sheets are used to build the UKF measurement noise matrix R for both estimators. In
obtaining the process noise matrix Q a discrete noise process is assumed, which in turn
allows the selection of a variance parameter σ for each process. The noise between the x̂,
ŷ and ẑ axes is also assumed independent. This allows for the selection of individual axis
variance if required. The variance terms for the IMU state components described in Section
4.4.1 are given by the terms σimu,lin and σimu,rot, which describe the linear and rotational noise
properties respectively. Likewise, the term σrel,rot describes the noise properties of the relative
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Table 5.4: Baseline F/B Kalman and ‘derivative and filter’ parameters

σfb,kal 0.82 rad s−3

Rkf,enc 2.1343× 10−9 rad
fc,fb 25 Hz

state in (4.5). A programmed iterative approach to obtaining the best performing σ values
was adopted. In this, σ values that fitted the expected approximate jerk term were used to
seed an iterative method that searched a range around the initial value. This would then
find the σ that resulted in the best performance in an RMS sense. Finally, the measurement
noise for the accelerometers and encoder is given by Rimu,acc and Rrel,enc respectively. Table
5.3 shows the final values used in the experimental system, along with the UKF parameters
α, κ and β which have been selected for a normal distribution.

5.3 Performance Comparison and Baselines

5.3.1 Baseline Comparison

To evaluate the system performance the joint sensor is compared to both online and offline
methods. The offline Kalman and low pass filter methods presented here serve as baseline
measurements in which the performance of all the systems presented within this work can be
compared to. Since it was not practical to obtain direct measurements of both joint’s angular
acceleration and velocity that were of higher precision than that obtained within this work,
methods based on zero delay (forward/backward) Kalman filtering and ‘differentiation and
filtering’ of the joint’s position were put to use.

5.3.1.1 Zero Delay Kalman Filter

A standard Kalman filter modified to incorporate zero delay functionality from the EKF/UKF
Toolbox for Matlab (Hartikainen et al. 2011) was configured with a constant jerk state
transition model, similar to that given in (4.5). For the state at time step k[...

θ θ̈ θ̇ θ
]T

k
(5.2)

the measurement matrix H can be given as

H =
[
0 0 0 1

]
. (5.3)

Within this the measurement noise Rkf,enc is given in Table 5.4, and in a similar manner
to the formulation in Section 5.2.2.4 the process noise is described by a single variance
parameter σf bkal , also given in Table 5.4.

5.3.1.2 Zero Delay ‘Derivative and Filter’

A forward/backward (zero delay) low pass filter and derivative method is also employed
as a baseline to compare the system performance against. The states for this estimate are
obtained by taking successive derivatives of each state, starting with position and filtering
them via the Matlab f ilt f ilt command with a −6dB filter cutoff set at fc,fb (Table 5.4). The
filter is based on a simple first order moving average structure. The gains σfb,kal and fc,fb

for the two baselines were derived through matching the state of a simulation of the sensor
system to that of the real system. This simulation was in turn based on fixing the upper
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Table 5.5: Online Kalman, ‘derivative and filter’ and encoder and gyro system parameters

σkf,online 0.82 rad s−3

Rkf,enc 6.9787× 10−5 rad
fc,fb 25 Hz
σukf,online 0.82 rad s−3

Rukf,enc 2.1343× 10−9 rad
Rukf,gyro 6.9787× 10−5 rad s−1

Figure 5.3: Gyro and Encoder only kinematics.

link such that the lower link became a single link pendulum, then lifting the lower link to
an angle of θ = π/2 and letting it drop. The acceleration and velocity were extracted from
the simulation and the filter gains were adjusted until the simple pendulum state closely
matched that of the simulation.

5.3.2 Online Comparison

The sensor is also compared to three online methods that are frequently used in robotic
systems. Similarly to the baseline methods, the online methods are based on a standard
Kalman filter and a ‘derivative and filter’ method. An extra online method based on
fusing the position encoder with a MEMs gyro is also included in the system performance
comparison. The plain Kalman filter and ‘derivative and filter’ method will not be detailed
as they are configured in the same manner as the baseline comparison, except they omit the
forward/backward component. The gains for the online Kalman filter (σkf,online and Rkf,enc)
and the gains for the ‘derivative and filter’ ( fc,fb) are given in Table 5.5.

5.3.2.1 Online Gyro and Encoder System

The gyroscope and encoder system is based on a constant jerk UKF formulation. Being a
linear system the gyro and encoder formulation could have used a standard Kalman filter,
however the choice of a UKF in this particular case was that of convenience. During the
measurement update section of the UKF the estimated state is compared to both an encoder
and the difference between two gyroscopes placed on each link. The gyro component of the
measurement function is based on summation of angular velocities as given in (3.14). This is
then written as

iωi−1,i =
iω − iωi−1. (5.4)

The angular velocities are expressed in the frame in which they are obtained as

iωi−1,i =
iω − i

i−1R(i−1ωi−1), (5.5)

30
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and in this case, the rotation is about the ẑ axis and has no effect. The relative angular
velocity is then simply given as

iωi−1,i =
iω − i−1ω. (5.6)

Equation (5.6), whose values are obtained from the gyroscopes and the position measurement
from the encoder are then directly compared to during the measurement update via the
function [

(iω − i−1ω)ẑ
iθenc

]
k

=

[
θ̇rel

θrel

]
k

+ wrel,k. (5.7)

The state transition variance parameter (σukf,online) and the measurement noise parameters
(Rukf,enc and Rukf,gyro) are given in Table 5.5.

5.4 Accelerometer Calibration

The two significant sources of error that affect the performance of the joint sensor system
can be compensated for by offline calibration procedures. The first source of error originates
directly from the sensors themselves in the form of manufacturing error, temperature
dependent errors and bias errors. Manufacturing errors result in the sensor axes being not
orthogonal upon which coupling of the axes becomes apparent at the output. The sensors
themselves will also experience some level of non-linearity in their output, however in
the devices selected this effect is negligible and not considered in this work. Sensor bias
errors appear as some non-zero signal being presented at the sensor output when the device
is stationary. In the case of the accelerometer it is expected that the device will measure
acceleration due to gravity when stationary, however bias terms will still affect the device
output if not accounted for. Temperature dependent effects are not considered in this work,
as short experimental times are employed. If considered these effects would appear as a
temperature dependent bias and scaling of the sensor output. Interestingly, although the
sensors chosen are low cost they are relatively robust to temperature dependent effects with
the LSM6DS3 device experiencing a change from zero of 0.5mg/◦C.

The second source of error originates from the placement and orientation of the ac-
celerometer during construction of the sensor system. Ideally the sensors will be placed with
their sensitive axes aligned exactly with the body frame axes. In reality placing the devices
in such an exacting manner is not possible and some level of performance degradation is to
be expected if this misplacement is not accounted for.

In both cases the errors presented can be compensated for once the accelerometers are
mounted for the physical hardware. In this section methods for correcting for both the
sensor level errors and the positioning errors are detailed. Both methods presented are
relatively straight forward in execution and do not require any special hardware other than
the test rig as used throughout the system experiments.

5.4.1 Bias and Cross Axis Calibration

In this section the errors inherent to MEMs accelerometers are accounted for. Within this
the sensor gain, bias and cross axis effects can easily be compensated for by exploiting the
fact that when an accelerometer sits stationary it will measure acceleration due to gravity.
This is a well studied technique (Frosio et al. 2009; Glueck et al. 2014; Panahandeh et al.
2010) and involves physically placing and resting the sensor system in a number of different
orientations. Due to this simple method and positive results reported this method was
incorporated into the sensor system as the first calibration method.
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Figure 5.4: Comparison of calibrated and uncalibrated accelerometer vector norms as a
result of the gravity based calibration method.

During this procedure the entire rig was removed from the upper base and fixed at the
lower joint such that it became a single rigid body. As the rig was placed and rested on each
side and edge, the sensor output was recorded and the data captured over the different
orientations was employed in finding the unknown parameters of the sensor model in which
the solution is known.

When stationary the measured magnitude of a calibrated accelerometer’s output is
constant and equal to the acceleration due to gravity in all directions, such that√

a2
x + a2

y + a2
z = g. (5.8)

Thus for a stationary uncalibrated accelerometer measurement u, (3.1) can be simplified to

g = ||Su + b||, (5.9)

where g is the magnitude of the gravity vector g = [ 0 0 −9.81 ]T, S is the matrix of gain
parameters

S =

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 , (5.10)

and the vector b contains the initial bias terms

b =
[
bx by bz

]T
(5.11)

and ||.|| is the vector norm operation. The matrix S accounts for any variation in axis gain and
coupling between accelerometer axes, where the term Smn describes the proportion of the
gain m affecting axis n (Madgwick et al. 2013). Ideally the off-axis coupling terms will equate
to zero, however real accelerometers may be affected by up 2% and a calibration procedure
that incorporates the off-axis coupling terms will yield a higher accuracy measurement
(Frosio et al. 2009).

Imposing a symmetry constraint on S such that Sxy = Syx, Sxz = Szx and Syz = Szy

and including the bias terms from b an accelerometer calibration model consisting of nine
independent parameters is obtained. The nine parameters for each of the j accelerometers

e =
[
Sxx Syy Szz Sxy Sxz Syz bx by bz

]T
, (5.12)
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Table 5.6: Accelerometer Calibration Components

Position [mm] Position Offset δ [mm] Rotation Offset E [rad] Gain Smm [-] Off Axis Smn [m s−2] Bias b [m s−2]

Sensor x y z x y z Ex Ey Ez Sxx Syy Szz Sxy Sxz Syz bx by bz

ir1 −15.00 −26.00 26.60 −0.42 0.26 0.99 0.00 −0.01 0.02 1.02 1.00 1.03 −0.02 0.00 0.00 0.13 −0.08 0.03
ir2 100.00 −26.00 −26.60 −1.50 −1.28 3.19 −0.01 0.00 0.02 0.99 0.99 1.00 −0.02 0.00 0.00 −0.07 0.00 0.24
ir3 100.00 26.00 26.60 −0.38 −0.59 1.98 −0.04 0.00 −0.03 1.01 0.99 1.00 −0.02 0.00 0.00 −0.02 −0.32 0.25
ir4 −15.00 26.00 −26.60 −1.40 0.23 3.06 0.02 0.01 0.01 0.99 1.03 1.00 −0.01 0.00 0.00 −0.16 −0.05 0.28
i−1rk −90.00 0.00 −10.00 0.60 −0.27 0.37 0.02 −0.01 0.02 1.01 1.02 0.97 −0.02 0.00 0.00 −0.097 −0.28 0.05

Figure 5.5: Placement of accelerometer j on the rigid body i.

may be found as a solution to the problem

ej = min
Sj,bj

∑
i
(g− ||Sjuj,i + bj||)2, (5.13)

over i recorded orientations.
During the calibration procedure the test rig was manually rotated and rested on

most faces and edges of a cube, for a total of 15 orientations. The rig was rested at each
orientation for a period of approximately 15 seconds and during this time a dataset was
collected concurrently for each of the accelerometers. Figure 5.4 shows both the calibrated
and uncalibrated vector norms of a stationary accelerometer and it can be seen that the
calibration procedure successfully corrects the output of the accelerometers. Table 5.6
presents the gain, off-axis and bias parameters obtained for the accelerometers. It is apparent
from this data that the bias term is a significant source of error that affects the accelerometer
outputs. At a minimum, if this calibration procedure not employed in future work then the
accelerometer bias should at least be compensated for.

5.4.2 Accelerometer Alignment

The second source of error affecting the output of the joint sensor system comes about from
the physical placement of the sensors onto the actual links. Ideally the accelerometers placed
on the test rig will be aligned with that particular link’s axes. Due to manufacturing and
construction tolerances, in practice this is not easily achieved and the accelerometers will
be placed with some rotational and translational misalignment that can lead to significant
errors in the estimated states (Madgwick et al. 2013). In this calibration procedure we aim to
correct for both rotational misalignment of the accelerometer’s sensitive axes from the link’s
axes and positional misalignment from the sensor’s origin from the ideal position.

Consider an accelerometer in Figure 5.5 placed on the link li at point irj that is ideally
aligned with the body’s coordinate frame. The accelerometer measures the acceleration iaj at
that point. In a practical implementation the accelerometer will not be accurately placed at j,
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rather it will be placed at j′ which is some arbitrary frame aligned to the accelerometer’s
axes.

5.4.2.1 Orientation

The orientation of j′ relative to j can be described by a rotation matrix j
j′R such that

iaj =
j
j′R

j′a, (5.14)

and the position of j′ relative to j can be given by the vector iδ. For a small angle deviation
the rotation matrix j

j′R can be given by the first order approximation (Nilsson et al. 2014),

j
j′R = (I + E×)R̃. (5.15)

In this, jE = [ Ex Ey Ez ]T is a vector of small rotational alignment errors and E× is the skew
symmetric representation of the alignment error vector jE and is given by

E× =

 0 −Ez Ey

Ez 0 −Ex

−Ey Ex 0

 . (5.16)

Finally I is the 3× 3 identity matrix and R̃ represents the ideal rotation if the accelerometer
were mounted without any alignment error. Typically R̃ might be the identity matrix I,
however in this work the accelerometers are mounted to the test apparatus in the most
convenient manner and so R̃ ideally rotates the accelerometers as mounted to the test
apparatus into the sensor body frame. See Appendix A for the mappings that transform the
accelerometer measurements from the test rig frame to the ideal model frame.

5.4.2.2 Translation

The alignment procedure must also consider that the accelerometers may be placed with
some translational error from the ideal positions irj. To compensate for the misplacement
the position vectors irj in (3.6) are augmented with some error jδ such that

irj =
[
rx + δx ry + δy rz + δz

]T
, (5.17)

where the vector components δ are to be discovered through calibration.

5.4.2.3 Compensating For Misalignment

For each accelerometer in the system the aim of the alignment procedure is to find a vector
e = [ jE jδ ]T of small angle and position deviations that will correct for any linear and rotary
misalignment of the accelerometer.

Recalling from (3.6), the accelerations iaj can be found from the kinematics of a rigid
body. Equation (3.6) is reformulated into the matrix Equation (3.8). In this calibration
section the matrix of known accelerometer positions Bj is augmented with the unknown
translational error terms jδ. The vector x containing velocity and acceleration components is
replaced with an estimate x̂ such that

iaj = Bj x̂. (5.18)

The estimate x̂ of the state is obtained by manually rotating the test rig back and forward
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Figure 5.6: Hardware rig in calibration configuration showing rotation about each axis.

about each of the x̂, ŷ and ẑ axes as depicted in Figure 5.6. During this, readings j′ax, j′ay

and j′az are taken from the accelerometers, along with the angular positions θx, θy, and θz

obtained from an incremental encoder. Since the encoder, shaft and mounting block (Figure
5.6) are constructed from machined components, is assumed that the encoder measurements
are aligned with the body frame in a more accurate manner than the accelerometers are
placed and thus are suitable as a baseline measurement.

For each axis the perceived angular velocity and acceleration for the off-axis components
are zero. From this the estimate x̂ of the vector x is formed, noting that the linear acceleration
of the origin of the test rig is only affected by the acceleration due to gravity,

x̂x =
[

igx ˆ̇ωx 0 0 0 0 0 ω̂2
x 0 0

]T

x̂y =
[

igy 0 ˆ̇ωy 0 0 0 0 0 ω̂2
y 0

]T

x̂z =
[

igz 0 0 ˆ̇ωz 0 0 0 0 0 ω̂2
z

]T

(5.19)

where igx = Rx(−θx)[ −g 0 0 ]T, igy = Ry(−θy)[ 0 0 −g ]T and igz = Rz(−θz)[ 0 −g 0 ]T. In this
case the three vectors representing gravity are the gravity as seen in the local frame i. The
test rig is reasonably aligned such that the x̂ axes are aligned with the gravity vector in the
inertial frame when θx = 0, θy = −π/2 and θz = −π/2. Section 5.5.2 examines the effects
of misalignment on the system and how this might be compensated.

The angular velocity and acceleration estimates are then obtained offline via zero phase
delay forward/backward Kalman filter (detailed in 5.3.1.1) as[

ˆ̇ωx ω̂x

]
= Kalman(θx),[

ˆ̇ωy ω̂y

]
= Kalman(θy),[

ˆ̇ωz ω̂z

]
= Kalman(θz).

(5.20)

The estimated vectors from (5.19) are populated with the gravity components and the
components from (5.20) and arranged into a 10× K matrix as

x̂ =
[

x̂x,l x̂y,m x̂z,n

]
, (5.21)

where l = 1 . . . L, m = 1 . . . M and n = 1 . . . N are the number of samples taken about each
axis, and K = L + M + N.
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Figure 5.7: Full chaotic motion profile experiment range showing angular acceleration,
velocity and position.

Similarly the acceleration components collected during the test rig rotation procedure
are arranged into a 10× K matrix as

j′a =
[

j′ax,l
j′ay,m

j′az,n

]
. (5.22)

The vector of error terms e = [ jE jδ ]T can be found for each of the j accelerometers as the
solution to

ej = min
jE,jδ

∑
k
(||Bj x̂k −

j
j′R

j′ak||)2. (5.23)

Calibration for the relative accelerometer k′a on link li−1 is carried out in the same
manner. In this case the x̂ axis of link li−1 is fixed to be collinear with the x̂ axis of link
li such that they rotate fixed together as a single rigid body. The position vector i−1rk is
modified to account for the extra length introduced by fixing the two links, with the extra
length being accounted for during the system operation.

Based on data acquired from the test rig outlined in 5.2, Table 5.6 shows the ideal
positions and their offsets and components that build the rotation correction matrix as
computed from the calibration procedure. The significant offsets, particularly in the z
components will lead to errors in the estimated states if not accounted for.

5.5 System Results

The experimental results obtained from the test apparatus are based on two motion profiles.
The first motion profile aims to examine the system’s performance under unknown and
chaotic motion and was executed by simply actuating the upper link by hand to produce
the desired motion at the lower joint and lower link. The second profile is a simple drop
test whereby the pendulum starts off stationary and horizontal and is let to drop. This test
aims to examine the system’s performance when undergoing motions of low velocity and
acceleration amplitude. During both the experiments data from all eight accelerometers
and the two encoders was streamed to a host computer and captured to text file. System
bandwidth is not examined within this work.
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Figure 5.8: Four second window showing angular acceleration, velocity and position as
measured by the joint sensor system (top) and the error from F/B Kalman filter (bottom).
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Figure 5.9: 0.1s window showing the same states as above.

Figure 5.7 shows the full experimental range of the chaotic motion test. Figures 5.8 and
5.9 go on to show the joint sensor’s three relative states during a 4 second window (Figure
5.8) and 0.1 second window (Figure 5.9). Within these two plots the RMS error as compared
to the zero delay (forward/backward) offline Kalman filter as detailed in Section 5.3.1.1 is
given below each state.

Similarly Figure 5.10 shows the full range of the slow pendulum drop test. In this test
we further examine a 4s window at 38s as presented in Figure 5.11. As with the chaotic
motion test the RMS errors are also presented in this plot.

Table 5.7 compares the RMS error of each experiment to online Kalman Filter, low pass
filter and gyro and encoder systems. In referring to this and the plots outlined, it is clear
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Figure 5.10: Full slow motion profile experiment range showing angular acceleration, velocity
and position.
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Figure 5.11: 4s window of slow motion profile showing angular acceleration, velocity and
position as measured by the joint sensor system (top) and the error from F/B Kalman filter
(bottom).

that the sensor system performs well when compared to these three online methods and
in particular outperforms them in the velocity and acceleration states. It can be seen that
the sensor system does not suffer from the significant phase delay in the acceleration and
velocity terms that Kalman and LPF methods are vulnerable to. This performance increase
can be attributed to the introduction of a measurement for these two states into the sensor
system, whereas the online Kalman and LPF methods only have a positional measurement
available.

In examining the gyro and encoder system it is shown that unlike the Kalman and
LPF system this methods accurately tracks both the positional state and the velocity state
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Table 5.7: RMS error of calibrated joint sensor compared with online methods, both chaotic
and slow motion profiles.

θ (rad) θ̇ (rad s−1) θ̈ (rad s−2)

Chaotic Profile

Online KF Encoder 0.0008 0.1289 10.8358
Online LPF Encoder 0.0175 0.3176 7.9664
Online Gyro and Encoder 0.0004 0.0535 11.8972
Full Calib Sensor 0.0004 0.0382 2.0578

Slow Profile

Online KF Encoder 0.0006 0.0964 8.2134
Online LPF Encoder 0.0075 0.1926 5.5021
Online Gyro and Encoder 0.0002 0.0392 7.3884
Full Calib Sensor 0.0002 0.0187 1.3033
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Figure 5.12: Comparison of the calibrated and uncalibrated acceleration states. Data based
on LIS3DSH sensors.

well. However it is evident that this particular formulation is not capable of tracking the
acceleration term as well as the sensor system and this term suffers from significant noise
and phase delay. Comparing this system to the joint sensor system in particular highlights
the benefits of providing a measurement for each state.

5.5.1 Effects of System Calibration

Figure 5.12 and Table 5.8 show the performance effects of the calibration methods on the
joint sensor system. This data also shows results from an early version of the test rig. This
early version employed ST Micro LIS3DSH accelerometers (no gyroscopes) and is included
as it both demonstrates the performance of the system under a more chaotic motion profile
and shows the increase in performance attributed to the calibration procedures. In this
version the accelerometers were not placed as accurately as the LSM6DS3 based test rig and
as such a more severe performance increase resulted between the calibrated and uncalibrated
system. This system is only presented in this section.

The plots in Figure 5.12 show the LIS3DSH system at the various stages of calibration.
These plots show that the uncalibrated systems suffer from varying levels of bias over their
experimental range. Each successive level of calibration is able to reduce these effects until
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Table 5.8: RMS error of calibrated and uncalibrated joint sensor compared with online
methods. These results based on the chaotic motion profile.

θ (rad) θ̇ (rad s−1) θ̈ (rad s−2)

LIS3DSH Based

Online KF Encoder 0.0017 0.2980 25.5378
Online LPF Encoder 0.0284 0.6210 16.1780
Uncalibrated Sensor 0.0003 0.0570 6.5242
Gravity Calib Sensor 0.0002 0.0450 5.2277
Full Calib Sensor 0.0002 0.0394 4.2807
Full Calib Sensor w Bias Comp 0.0002 0.0384 4.1425

LSM6DS3 Based

Online KF Encoder 0.0008 0.1289 10.8358
Online LPF Encoder 0.0175 0.3176 7.9664
Uncalibrated Sensor 0.0004 0.0390 2.2345
Gravity Calib Sensor 0.0004 0.0384 2.1065
Full Calib Sensor 0.0004 0.0382 2.0578

only slight levels of bias become apparent.
Although the uncalibrated sensor (in both cases) still presents better estimates of the

relative states than the online methods, the successive levels of calibration applied to the
system will increase the performance and remove the bias effects attributed to the sensor
properties and poor placement.

5.5.2 Effects of a Misaligned System

From Figure 5.12 it is evident that although the calibration procedure will eliminate the
majority of the bias in the acceleration term, the sensor system may still be subject to some
level of bias in this term. This bias propagates through the system into the velocity and
position terms, reducing their performance and is an effect from a misalignment when
zeroing the incremental encoder. If the encoder is not zeroed accurately along the x̂ axis
of link li−1 as in Figure 3.2 then the vector aimu in (4.8) is not rotated correctly and a bias
becomes apparent at the output.

Although the results in Table 5.8 show that in this case the bias is somewhat minimal,
earlier experiments have shown that a misaligned encoder can lead a drastic reduction in
the overall system performance. This bias can be corrected online by the relative UKF by
augmenting the relative state vector xrel,k with a slow bias correcting term θδ

xrel_aug,k =

[
xrel,k

θδ

]
k−1

+ vrel,k−1. (5.24)

xrel_aug,k then replaces xrel,k as the state vector in the relative UKF component. During
the measurement update, Equation (3.13) when combined with (3.18) is augmented as

i−1ao = Rz(θrel − θδ)
iao. (5.25)

and the observation equation is modified to become

i−1ak = Rz(θrel − θδ)aimu + ω̇rel × i−1rk + ωrel × (ωrel × i−1rk). (5.26)

The effect of the bias estimator can be seen in Figure 5.12 between 5s and 5.4s where
the acceleration error is centred around zero. In our case this also results in a slightly better
RMS error in the LIS3DSH based system in Table 5.8.
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Figure 5.13: Sensor system jerk state and error.

5.5.3 Estimate of Angular Jerk

An estimate of the relative jerk is also made available by the sensor system (Figure 5.13).
There is no sensor measurement associated with the angular jerk term and as such it is driven
by process noise. This is similar to the gyroscope and encoder reference system in Section
5.3.2.1 where an estimate of the angular acceleration is made available, but also driven
by process noise. The result of this is a jerk term that is somewhat noisy and displaying
noticeable phase delay. This term may only prove useful in slower moving systems and may
be a topic for future work.

5.5.4 Joint State Information from the AO-IMU

Also available from the sensor system are link states from the AO-IMU. This information
describes the angular acceleration and velocity, and the linear acceleration of point o in the
inertial frame. These values are used as a component of the joint sensor system, but may be
made available for use in other systems.

5.6 Summary

In this section the experimental apparatus, baselines for comparison and online methods
used to assess the performance of the sensor system have been detailed.

The performance of the system was assessed based on two motion profiles. Within
this a chaotic motion profile was employed to assess the performance of the system when
undergoing large and unknown accelerations. Along with this a zero torque drop test
was employed to examine the system when undergoing low angular velocities. In both of
these experiments the joint sensor system was demonstrated to perform well under the
two motion profiles. Although only reasonably small gains in performance were evident
in the position state, the angular velocity and in particular the angular acceleration states
demonstrated much greater performance than the existing online methods.

The performance of the calibration schemes in Section 5.4 was then examined. The
experiments carried out on the chaotic motion profile demonstrated that the calibration
methods worked sufficiently well to reduce the effects of bias due to the sensor effects
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and misalignments. Interestingly, these experiments also demonstrated that even without
calibration the joint sensor system outperformed the existing online methods.

Finally the sensor system was discovered to suffer somewhat from bias effects attributed
to inaccurate zeroing of the positional encoder. As correctly zeroing the encoder and ensuring
it is accurately aligned with the acceleration due to gravity measured by the accelerometers
may prove to be time consuming or expensive, an online method was developed to correct
for this. A bias term was introduced and means for correcting the misaligned system was
discussed. This system showed positive results and could be replaced with the estimated
bias value once correctly estimated.
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Chapter 6

Extending the Sensor System

6.1 Introduction

In this chapter the plain sensor system as detailed in the previous chapters is expanded upon.
It is suspected that while the plain system performs well, it is possible that the performance
of the system is hindered under low velocities. The single relative accelerometer is also
believed to be a source of performance limitation. It is also suspected that alternate system
structures may be more suited to larger robotic systems.

Within this chapter we aim to investigate the performance of the system when augmented
with additional accelerometers and gyroscope sensors. An alternate system structure that
may be more suited to larger robotic systems is also investigated.

In Section 6.2 the base sensor system is augmented to incorporate measurements from
single gyroscope sensors as placed on each link. Section 6.3 builds models for and compares
the performance of a system that incorporates multiple relative accelerometers as opposed
to the single accelerometer employed in the base sensor system. In Section 6.4 an alternate
joint sensor system structure is investigated that takes inspiration from the work done in
Section 6.3. Finally, in Section 6.5 we revisit each system that incorporated gyroscope sensors
and augment them to consider multiple gyroscope sensors.

The systems studied within this section are all based on the data from the chaotic motion
test as shown in Figure 5.7 in Section 5.5.

6.2 Addition of Gyroscope Sensors

In recent times the cost of MEMs inertial sensors has drastically reduced while the capability
of the sensors themselves has increased. In particular, not only has the specification1 of
the sensor increased, but manufacturers have move to consolidate multiple MEMs devices
onto one integrated circuit. As an example, at the time of writing the ST Micro LIS3DSH,
costing US$2.41 is a three axis accelerometer unit with a digital output. In comparison ST
Micro have since released the LSM6DS3 at a cost of US$3.98. This device has both three
axis accelerometer with similar specification to the LIS3DSH and a three axis gyroscope
built into a sensor in a package of similar size to the LIS3DSH.

By incorporating a gyroscope measurement the system presented in Section 5.3.2.1
demonstrated an increase in performance, particularly in the velocity state. Madgwick
et al. (2013) also noted that an AO-IMU by itself may suffer from poor performance at low
velocities. The addition of a gyro sensor may help resolve this issue and along with the low

1Such as sensor noise, drift due to temperature, accuracy, etc.
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Figure 6.1: Plain system with a single gyro on each link.
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Figure 6.2: Gyro augmented plain system sensor and UKF data flow.

cost and high performance specification of the combined inertial devices, an investigation
into the effects of the sensors on the joint sensor system is warranted.

In this section the plain sensor system is augmented to include measurements from a
single gyroscope attached to each link and the performance of this augmented system is
investigated.

6.2.1 Gyroscope Augmented System Model

The gyroscope sensor is modelled as per (3.2.2). Within this the gain parameters are set to

unity as Sg =
[ 1 0 0

0 1 0
0 0 1

]
and the bias term ibg is simply taken from the initial gyroscope bias.

The experimental time is short so moving bias is not considered.
Figure 6.1 shows the system model augmented as to incorporate the measurements

from the gyroscopes and Figure 6.2 shows the data flow through the estimators for this
system. In referring to Figure 6.1 the calibrated gyros are placed on links li and li−1 and
the system is modified as follows. The AO-IMU component on link li is first augmented to
compare its estimated state against both the accelerometers and the gyroscope. The AO-IMU
measurement vector yimu is augmented with a gyro placed at ig on the link li and the
AO-IMU measurement function (4.4) from Section 4.4.1 is modified to directly compare the
AO-IMU’s angular velocity against the calibrated gyroscope output,

ia1
ia2
ia3
ia4
ig


k

=

[
Bhix(ximu)

ωimu

]
k

+ wimu,k, (6.1)
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6.2 Addition of Gyroscope Sensors

Table 6.1: Gyroscope augmented system parameters parameters

σimu,lin 3 m s−3

σimu,rot 20 rad s−3

σrel,rot 200 rad s−3

Rukf,enc 2.1343× 10−9 rad
Rukf,gyro 6.9787× 10−5 rad s−1

Figure 6.3: RMS error results of plain system with a single gyro on each link.

where ωimu = [ ωimu,x ωimu,y ωimu,z ]T.
The relative components are then augmented to include measurements from the gy-

roscope. As with the IMU section the relative UKF measurement vector yrel is modified
to incorporate a gyro placed at i−1g and the measurement function (4.7) is modified to
compare the relative angular velocity to the gyroscope,i−1a1

i−1g
θenc


k

=

i−1ak

ωrel

θrel


T

k

+ wrel,k, (6.2)

where ωrel = ωimu − θ̇relẑ is taken from (4.9) and i−1ak transforms the relative state to a
linear acceleration measurement as given in (4.8).

6.2.2 Results

Figure 6.3 compares the RMS errors of the fully calibrated plain joint sensor system to the
system as augmented with gyroscopes. It is found within this that only slight performance
gains are evident in the acceleration term, however a higher performing angular velocity
term is obtained from the addition of gyros. It is noted that these results present for a system
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Figure 6.4: Plain system model with four relative accelerometers.

Encoder

Figure 6.5: Four relative accelerometers system sensor and UKF data flow.

experiencing somewhat significant angular velocities and it is expected that while the gyros
may not significantly contribute to large performance increases here, they will aid a system
experiencing low angular velocities. This is further examined in Section 6.4.2.

6.3 Redundancy of Accelerometers

During early testing and experiments on the joint sensor system it became apparent that
the use of a single relative accelerometer may be seen as a performance bottleneck in the
output of the system. Figure 6.6 shows the system output compared to the plain AO-IMU
output during a quiet period of the slow motion profile. Taking the RMS errors of the two
estimates over the 1s window gives a value of 0.1721rad s−2 for the sensor system state and
0.0853rad s−2 for the AO-IMU output only. From this it is evident that the acceleration state
for the sensor system output is somewhat noisier than the AO-IMU output. It is suspected
that this drop in performance may be due to the AO-IMU having four accelerometers
contributing to its output, whereas the relative system component goes on to compare this
to a single accelerometer. The literature also confirms this suspicion. Madgwick et al. (2013)
explored kinematically redundant AO-IMU based systems and demonstrated an inverse
relationship exists between the RMS noise of the sensor output and the quantity of three
axis accelerometers.

Given this evidence an experiment was performed to investigate the performance of
the sensor system when redundant relative accelerometers were employed. Within this we
simply augment the existing sensor system to incorporate four relative accelerometers and
assess the performance as compared to the plain system.
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Figure 6.6: Comparison of sensor system acceleration state to AO-IMU acceleration state.

6.3.1 Redundant Accelerometer Augmented System Model

The redundant accelerometer system extends the base sensor system. Figure 6.4 shows the
plain system augmented to incorporate four relative accelerometers and Figure 6.5 illustrates
the flow of data, particularly data moving into the relative UKF, from the addition of the
extra sensors.

From the original system relative kinematics presented in Section 3.3.2, the acceleration
of a point at k on link li−1 is given as

i−1ak =
i−1ao +

i−1ω̇ × i−1rk +
i−1ω × (i−1ω × i−1rk), (6.3)

which is then reformulated into a matrix equation as
i−1ak = Ckxmultrel, (6.4)

in a similar manner a given in the AO-IMU kinematics in 3.3.1. In this case the matrix Ck is
built from the position of the accelerometers i−1rk placed on link li−1 and the vector

xmultrel =
[

ax ay az ω̇x ω̇y ω̇z ωxωy ωxωz ωyωz ω2
x ω2

y ω2
z

]T
, (6.5)

forms the relative varying components. Four accelerometers are then placed on the link li−1

and (6.4) is then stacked as
ymultrel = Cxmultrel. (6.6)

Here the acceleration measurements are stacked as

ymultrel =
[

i−1a1
i−1a2

i−1a3
i−1a4

]T
, (6.7)

and the position matrices are stacked as

C =
[
C1 C2 C3 C4

]T
. (6.8)

The system state estimation is now augmented to make use of the redundant relative
accelerometers. The state transition function for the relative UKF given in Section 4.4.2
remains unchanged, however the measurement function is modified to incorporate the extra
information from the accelerometers. The measurement equation (4.7) is modified as

i−1a1
i−1a2
i−1a3
i−1a4
iθenc

 =

[
Chmultrel(ximu, xrel)

θrel

]
k

+ wrel,k. (6.9)
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Table 6.2: Redundant relative accelerometer system parameters parameters

σimu,lin 3 m s−3

σimu,rot 20 rad s−3

σrel,rot 200 rad s−3

Rukf,acc 0.0111 m s−2

Rrel,acc 0.0111 m s−2

Rrel,enc 2.1343× 10−9 rad

In this case k represents the time step and hmultrel(·) is a non-linear function mapping
the AO-IMU states to the relative state such that xmultrel = hmultrel(ximu, xrel). Again, the
components for (6.5) are derived from the relative kinematics outlined in 3.3.2 and are given
as

amultrel = Rz(θrel)aimu,

ω̇multrel = ω̇imu − θ̈relẑ,

ωmultrel = ωimu − θ̇relẑ.

(6.10)

The four accelerometers are calibrated using the same method given in Section 5.4.

6.3.2 Results

Table 6.2 shows the parameters as used in the redundant relative system experiments. In
this the same accelerometers are installed throughout the systems and as such the noise
parameters Rukf,acc and Rrel,acc are the same.

In referring to Figure 6.7 an increase in the performance of all the states over that of
the plain system is apparent. Figure 6.8 then shows the system output compared to the
plain AO-IMU states as previously shown in Figure 6.6, except in this case the angular
acceleration state from the augmented system in included. For the same quiet time period
as the plain system and AO-IMU previously given the augmented sensor system has an
RMS error of 0.0916rad s−2. This is similar in performance to the plain AO-IMU output and
indeed of lower noise than the plain sensor system. The four relative accelerometer system
shows a clear improvement over that of the plain sensor system and confirms the belief that
an increase in noise is apparent when only employing a single relative accelerometer.
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Figure 6.7: RMS error results comparing the plain system with the system augmented with
four relative accelerometers.
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Figure 6.8: Comparison of sensor system acceleration state to AO-IMU acceleration state
and augmented four relative accelerometer system.

6.4 Multiple AO-IMUs

Noting the improved performance of the multiple relative accelerometer system (Section
6.3) over that of the plain system, an interesting alternate approach is to consider placing an
AO-IMU on each link and forgo the relative accelerometer altogether.

In considering the work on joint state estimation on large humanoid robotic systems in
Rotella et al. and Xinjilefu where there is a requirement to estimate the state of all joints,
a system such as this might be more suited to the estimation task as there would be no
need place a relative accelerometer on the previous link for each of the joints whose states
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Figure 6.9: IMU placed on each link.
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Figure 6.10: Multiple IMU system sensor and UKF data flow.

are being estimated. Instead in this revised system, the relative accelerometer would be
replaced by the previous link AO-IMU and the angular joint acceleration and velocity would
be obtained from the difference between the two AO-IMUs as placed on the links. A floating
base robotic system would require an AO-IMU fixed to the base to define the angular
acceleration and velocity of the moving base.

This section describes the modelling and compares the experimental results of a multi
AO-IMU based sensor system to the plain joint sensor system.

6.4.1 Multiple IMU System Model

In this system each AO-IMU defines the angular acceleration and velocity and the linear
acceleration of the link it is fixed to.

In this an IMU is placed on the link li and link li−1. The kinematics for each AO-IMU
are then written in the same manner as given in Section 3.1. For each of the two AO-IMUs
the state at time step k is updated by a separate UKF. The AO-IMU state vectors, denoted as
ximu,i−1 and ximu,i are constructed in the same manner given in the AO-IMU state estimation
in section 4.4.1. Similarly the measurement function for each AO-IMU remains as given in
Section 4.4.1.

In this formulation as each AO-IMU fully defines the angular acceleration and velocity
of its respective link, the relative angular velocity and acceleration are easily obtained via
the rule of summation of angular velocity and its derivative. The relative angular velocity
and acceleration obtained from the two AO-IMUs, along with a positional measurement
from the encoder become measurements that the relative UKF estimates are compared to.
From (3.14) the relative angular velocities between the two link is given as

iωi−1,i =
iω − iωi−1, (6.11)
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Table 6.3: Multiple AO-IMU system parameters parameters

σimu,lin 3 m s−3

σimu,rot 20 rad s−3

σrel,rot 200 rad s−3

Rimu1,acc 0.0111 m s−2

Rimu2,acc 0.0111 m s−2

Rrel,ω̇ 0.0475 rad s−2

Rrel,ω 4.6435× 10−5 rad s−1

Rrel,enc 2.1343× 10−9 rad
Rimu1,gyro 6.9787× 10−5 rad s−1

Rimu2,gyro 6.9787× 10−5 rad s−1

which is then expressed in the frame it is estimated in as

iωi−1,i =
iω − i

i−1R(i−1ωi−1). (6.12)

In the experimental case, the rotation is about the ẑ axis and therefore has no effect. The
relative angular velocity is then simply given as

iωi−1,i =
iω − i−1ω. (6.13)

In a similar manner the relative angular acceleration between the two links is taken from
(3.16) as

iω̇i−1,i =
iω̇ − iω̇i−1 − iωi−1 × iω, (6.14)

which is again expressed in the respective frames as

iω̇i−1,i =
iω̇ − i

i−1R(i−1ω̇i−1)− i
i−1R(i−1ωi−1)× iω. (6.15)

Once again, the rotation is constrained about the ẑ axis and has no effect and in the case of
the angular acceleration the cross product term also goes to zero, resulting in the relative
acceleration equation

iω̇i−1,i =
iω̇ − i−1ω̇. (6.16)

Equations (6.13) and (6.16) are then directly employed during the relative state correction(iω̇ − i−1ω̇)ẑ
(iω − i−1ω)ẑ

iθenc


k

=

θ̈rel

θ̇rel

θrel


T

k

+ wrel,k. (6.17)

In this the angular velocity and acceleration components of link li−1 are taken from ximu,i−1

and the same components from link li are taken from ximu,i at time step k. In this case only
the ẑ axis components of the two IMU’s are used to form the relative measurements.

6.4.2 Results

The experimental parameters for the three UKFs are presented in Table 6.3. The measurement
noise terms for the two AO-IMU estimators are given in terms Rimu1,acc and Rimu2,acc. In
the case of the noise parameters for the relative UKF the encoder noise term is given in
Rrel,enc in a similar manner to the previous systems, and the values representing the noise
terms for the AO-IMU’s angular velocity and angular acceleration are given in Rrel,ω and
Rrel,ω̇ respectively. In these cases the values for Rrel,ω and Rrel,ω̇ are found from taking the
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Figure 6.11: Multiple AO-IMU system showing upper joint states. Note the offset in the
velocity term for the 2xAO-IMU system is not present in the 2xAO-IMU 1xGyro system.
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Figure 6.12: Multiple AO-IMU system showing lower (labelled as relative joint in other
experiments) joint states.

variance the outputs of the AO-IMU from the plain system during a period of no movement
activity. The process noise terms are given in the σ terms.

The results for this configuration as presented in Figures 6.11, 6.12 and 6.13 were inter-
esting. It was initially expected that a performance on par with the redundant accelerometer
system be seen, however it is clear from Figure 6.13 that this system suffered from poor
performance, particularly in the velocity and position terms. It became apparent that the
reduction in performance in these terms was due to the AO-IMU’s decreasing perfor-
mance when resolving low angular velocities, with further investigation into the literature
(Madgwick et al. 2013) supporting this claim. In the experiments carried out the upper link
AO-IMU would not experience angular velocities as large as the lower link. The result of this
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Figure 6.13: RMS error results comparing plain system to system utilising an AO-IMU on
each link. Note the performance increase when augmented with a gyro.

was that the upper AO-IMU would produce a poor angular velocity estimate, which would
in turn result in the relative UKF producing a velocity estimate with significant steady state
bias. The bias in the upper link AO-IMU is visible in the zoomed plot on the velocity state
in Figure 6.11. Evidently, the steady error introduced into the velocity component would
then propagate through to the position term. Unlike the misaligned system in Section 5.5.2,
tests on this system demonstrated that it was not able to be corrected with the introduction
of a moving bias term. In order to combat this issue each AO-IMU system was augmented
with a gyro as per the gyro configuration in 6.2.1. The addition of gyroscope sensors into
this system resolved the steady state bias issue experienced at low angular velocities and
increased the performance of the multi AO-IMU system to be on par with that of the
redundant relative accelerometer system. The velocity plot in Figure 6.11 shows that with
the addition of gyros, the AO-IMU will track low velocities more closely that the system
without.

6.5 Revisiting Additional Gyros

In this section we revisit the gyro augmented system presented in Section 6.2 and the multi
AO-IMU system in 6.4 with the aim of briefly exploring these systems performance with
multiple gyroscope sensors. Within this the two systems are augmented to compare their
respective states with measurements from four gyroscopes instead of one.

6.5.1 Additional Gyro Modelling

In these experiments the gyroscope sensor readings are calibrated, their initial bias is
compensated for and the sensor readings are combined to form a virtual gyro by averaging
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Table 6.4: Virtual gyroscope augmented system parameters parameters

Rplain,vgyro 2.2827× 10−5 rad s−1

Rimu1,vgyro 2.2827× 10−5 rad s−1

Rimu2,vgyro 2.2827× 10−5 rad s−1

Figure 6.14: RMS error results comparing plain system all methods.

the four gyroscope sensor outputs. Chang et al. (2008) showed that a ‘virtual gyroscope’
whose performance will be better than that of an individual sensor can be comprised of
multiple individual gyroscope sensors. Wang and Olson (2015) then go on to demonstrate
that simple averaging of n sensors with independent, uncorrelated noise will see a

√
n

reduction in noise and in turn the optimal filtering employed in Chang et al. is not necessary.
As such the gyroscope outputs are calibrated and their initial biases compensated for, and
finally the outputs are averaged together and employed as a virtual gyro written as

igv =
1
4

4

∑
i=1

ig. (6.18)

The systems presented in Section 6.2 and Section 6.4 are modified to compare their
estimates to the virtual gyro. Both systems employ the same noise parameters as given in
Tables 6.1 and 6.3 except the measurement noise properties for the gyros are modified to
reflect the noise properties of the virtual gyro. The virtual gyro noise properties are obtained
from taking the variance of the output during a period of no movement and are all identical.
These values are presented in Table 6.4.
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6.5.2 Results

The RMS errors of the averaged gyroscopes as compared to all other systems are given
in Figure 6.14. While Wang, Wang, et al. (2015) claims there should be a

√
n reduction

in noise for n devices, in this case a two times reduction for four devices, the effects of
this are not as evident as expected. It is evident from the RMS error that only a marginal
increase in performance is gained when employing multiple gyroscopes. In comparing this
to the system in Section 6.3 where multiple accelerometers were employed, the addition of
multiple gyroscopes does not appear to have such a dramatic effect on the performance of
the systems studied.

6.6 Summary

In this chapter alternate structures of the joint sensor system have been developed and
analysed. The plain sensor system was first augmented with low cost MEMs gyroscopes in
an effort to examine their performance benefits, particularly at low velocities. The results of
this study showed that the addition of a single gyroscope on each link increased the basic
system performance primarily within the velocity terms, and may prove to be useful in
mitigating the AO-IMU’s lacking velocity estimation performance.

The plain sensor system was then extended to consider multiple relative accelerometers.
In this study the suspicion that the use of a single relative accelerometer led to a limit on
the plain sensor system performance was confirmed. By incorporating multiple relative
accelerometers it was shown that improvements to the estimation of the acceleration and
velocity states performance could be made.

In building on the study into considering multiple relative accelerometers and alternate
system structure was developed whereby multiple AO-IMUs were installed on each link.
This system may prove more useful for larger robotic systems, however it suffered from poor
velocity estimation performance. Further investigation showed that the poor performance
was due to the AO-IMU’s inability to estimate low angular velocities well. This was mitigated
by including gyroscope sensors which in turn increased the performance to be on par with
the redundant accelerometer system.

Finally the gyro augmented system and the multi AO-IMU system were revisited
to investigate whether further performance gains could be found with the addition of
multiple gyroscopes. This short study showed that only marginal performance gains could
be achieved.
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Chapter 7

Conclusion

In an effort to increase robotic control system performance and further enable the estimation
of robotic system parameters, a growing trend among researchers is to begin incorporating
higher order joint state terms such as acceleration into these systems. A review into the
literature in Chapter 2 showed that unlike robotic joint position, access to high quality joint
velocity and in particular joint acceleration information is not readily available. Within this
it was found that the researchers are resorting to obtaining the information via other means,
which is resulting in poorer performing systems.

The first part of the work presented in this thesis investigates a means of exploiting
the use of low cost MEMs sensors and modern sensor fusion techniques to combine
the information from accelerometer based IMUs and joint position sensors. From this a
sensor capable of estimating a rotary robotic joint’s position, velocity and acceleration
was developed. Chapter 3 detailed the underlying AO-IMU and relative kinematics and
derived the relationships that would allow obtaining estimates of the relative velocity and
acceleration.

The state estimation and sensor fusion systems were introduced in Chapter 4. Within this
the Unscented Kalman Filter that was employed to address the issues regarding estimating
the velocity states within the AO-IMU was detailed. A second UKF based system was then
introduced to fuse the relative velocity and acceleration obtained from the AO-IMU with
positional information from an incremental encoder. This section also discussed solutions to
reducing the computational complexity of the dual UKF system and detailed the methods
employed to obtain the process noise matrices.

A two degree of freedom pendulum that served as a platform in which all tests were
carried out on was then detailed in Chapter 5. This chapter described two calibration
schemes that drastically reduced the effects of gain, bias and cross axis effect present at
the MEMs sensor level and the positional and alignment errors introduced when fixing the
sensors to the body frame. The offline Kalman smoother and forward/backward low pass
filter and derivative systems that served as baselines for comparing the performance of the
system against were then discussed. The system performance was also compared against
modern online methods. An encoder based Kalman filter method, along with an encoder
based derivative methods were outlined. In addition to this an online system incorporating
both the position encoder and a gyroscope also served as a comparison tool.

The performance results as presented in this chapter were based on two motion profiles;
an actuated chaotic profile and a zero torque drop profile that served to examine the system
under low velocity conditions. The sensor system was demonstrated to perform well under
both motion profiles and outperformed all the tested online methods across all states. In
particular the system demonstrated far greater acceleration tracking performance than
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the other online methods, with RMS error values of 2.06rad s−2 being achieved under full
calibration over the chaotic motion profile.

The effects of the calibration methods were then examined. In this it was shown that the
sensor calibration and alignment calibration schemes previously discussed indeed increased
the system performance by reducing the levels of bias that appeared in the acceleration
and velocity estimates. Interestingly it was demonstrated that even without the calibration
schemes in place the sensor system would still outperform the existing online methods.
Finally, the effects of misalignment due to inaccurate zeroing of the encoder were examined
and solution to this issue was detailed.

In Chapter 6 the plain joint sensor system is expanded upon to consider additional
accelerometers, the inclusion of gyroscope sensors and alternate system structures and the
effects these may have on the performance of the system.

The use of gyroscopes was first considered. In this section the plain system was aug-
mented to include an angular velocity estimate, as obtained by taking the difference between
the outputs of gyroscopes placed on each link. This study aimed to examine the capability of
the gyroscopes in compensating for the AO-IMU’s poor performance when estimating low
angular velocities. The results proved positive and it was demonstrated that by considering
the output of the gyros the sensor system’s angular velocity estimate could be improved
upon.

The next study investigated the use of multiple relative accelerometers as opposed to the
plain system’s use of a single relative accelerometer. This study was introduced when the
contrast between the noise performance of the AO-IMUs plain output was compared to the
whole system output. The results of this experiment demonstrated that by only considering
a single relative accelerometer, the plain system will suffer a limit in performance as imposed
by the single device. By introducing the multiple relative accelerometers, a decrease in RMS
error was seen across all states, with the acceleration term exhibiting a significant decrease
from 2.06rad s−2 to 1.76rad s−2.

The results of the multiple relative accelerometer study inspired the use of multiple
AO-IMUs in the next augmented system. This study presented a system that departed from
the use of the relative accelerometers, instead opting for the use of AO-IMUs attached to
each link of the machine. In considering the work on larger robotic systems a system such
as this was deemed possibly more suited to such larger machines. The results of this study
initially proved disappointing with poor velocity state estimation being evident, resulting in
an increase in the velocity term RMS error from 0.0382rad s−1 to 0.0705rad s−1. As with the
previous study that incorporated gyros, it became apparent that the poor performance was
the result of the AO-IMU’s declining capability when estimating low angular velocities in
the upper link. The system was augmented with gyroscopes and the overall performance
was improved to be on par with the multiple relative accelerometer system. In this case the
velocity state RMS error was reduced to 0.0277rad s−1.

Finally a short study into considering multiple gyroscopes was carried out. Within this
experiment the plain system and the multiple AO-IMU system were augmented with four
gyroscopes as opposed to one. The results of this showed marginal improvement over the
systems employing only a single accelerometer.
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Appendix A

Link Ideal Rotations

These matrices serve to rotate the sensor outputs from as they are mounted to the test rig
into the ideal sensor frame.
Link li ideal rotation matrices:

li ,1′
li ,1

R̃ =

0 −1 0
1 0 0
0 0 1

 , (A.1)

li ,2′
li ,2

R̃ =

0 1 0
1 0 0
0 0 −1

 , (A.2)

li ,3′
li ,3

R̃ =

0 −1 0
1 0 0
0 0 1

 , (A.3)

li ,4′
li ,4

R̃ =

0 1 0
1 0 0
0 0 −1

 , (A.4)

Link li−1 ideal rotation matrices:

li−1,1′

li−1,1 R̃ =

0 −1 0
1 0 0
0 0 1

 , (A.5)

li−1,2′

li−1,2 R̃ =

0 1 0
1 0 0
0 0 −1

 , (A.6)

li−1,3′

li−1,3 R̃ =

0 −1 0
1 0 0
0 0 1

 , (A.7)

li−1,4′

li−1,4 R̃ =

0 1 0
1 0 0
0 0 −1

 . (A.8)
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Appendix B

Additive (Zero Mean) Unscented
Kalman Filter

The UKF is initialised with

x̂0 = E
[

x0

]
,

P0 = E
[
(x0 − x̂0)(x0 − x̂0)T

]
.

(B.1)

For k ∈ {1, . . . , ∞} the sigma points are calculated as

X k−1 =
[

x̂k−1 x̂k−1 + γ
√

Pk−1 x̂k−1 − γ
√

Pk−1

]
. (B.2)

The time update equations are

X ∗k|k−1 = f (X k−1, uk−1),

x̂−k =
2L

∑
i=0

W(c)
i X ∗i,k|k−1,

P−k =
2L

∑
i=0

W(m)
i (X ∗i,k|k−1 − x̂k−1)(X ∗i,k|k−1 − x̂k−1)

T + Rv,

X k|k−1 =
[
X ∗i,k|k−1 X ∗0,k|k−1 + γ

√
Rv X ∗0,k|k−1 + γ

√
Rv
]

,

Y k|k−1 = h(X k|k−1),

ŷ−k =
2L

∑
i=0

W(c)
i Y i,k|k−1.

(B.3)

The measurement update equations are

Pỹk ỹk =
2L

∑
i=0

W(c)
i (Y i,k|k−1 − ŷ−k )(Y i,k|k−1 − ŷ−k )

T + Rn,

Pxkyk =
2L

∑
i=0

W(c)
i (X i,k|k−1 − x̂−k )(Y i,k|k−1 − ŷ−k )

T,

Kk = Pxkyk Pỹk ỹk
−1,

x̂k = x̂−k +Kk(yk − ŷ−k ),

Pk = P−k −KkPỹk ỹkK
T
k .

(B.4)

Where γ =
√

L + λ and λ is a scaling parameter such that λ = α2(L + κ)− L. The constant
α controls the spread of the sigma points around x̂ and κ is a secondary scaling parameter.
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L is the dimension of the state vector, Rv is the process noise covariance and Rn is the
measurement noise covariance. The weights Wi are given by

W(m)
0 =

λ

L + λ
, (B.5)

W(c)
0 =

λ

L + λ
+ 1− α2 + β, (B.6)

and
W(m)

i = Wc
(i) =

λ

2(L + λ)
, i = 1, . . . , 2L. (B.7)

Where β is a parameter that incorporates prior knowledge of the distribution of x.
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