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Abstract: Most non-Gaussian signals in wireless communication array systems contain temporal
correlation under a high sampling rate, which can offer more accurate direction of arrival (DOA) and
frequency estimates and a larger identifiability. However, in practice, the estimation performance
may severely degrade in coloured noise environments. To tackle this issue, we propose real-valued
joint angle and frequency estimation (JAFE) algorithms for non-Gaussian signals using fourth-order
cumulants. By exploiting the temporal correlation embedded in signals, a series of augmented
cumulant matrices is constructed. For independent signals, the DOA and frequency estimates can
be obtained, respectively, by leveraging a dual rotational invariance property. For coherent signals,
the dual rotational invariance is constructed to estimate the generalized steering vectors, which
associates the coherent signals into different groups. Then, the coherent signals in each group can
be resolved by performing the forward-backward spatial smoothing. The proposed schemes not
only improve the estimation accuracy, but also resolve many more signals than sensors. Besides,
it is computationally efficient since it performs the estimation by the polynomial rooting in the
real number field. Simulation results demonstrate the superiorities of the proposed estimator to its
state-of-the-art counterparts on identifiability, estimation accuracy and robustness, especially for
coherent signals.

Keywords: JAFE; fourth-order cumulants; coherent signals; coloured noise; rotational invariance

1. Introduction

Sensor arrays have been used in radar, sonar, wireless communications, seismology, etc.
Joint direction of arrival (DOA) and frequency estimation of incident signals have been attracting
considerable attention due to their application to various fields. For instance, the two parameters can
be applied to locate the mobile subscribers and allocate pilot tones in space division multiple access
systems in wireless communications. Besides, an accurate estimation of these parameters is helpful
with channel estimation and thus enhances the system performance.

The maximum likelihood estimator (MLE) can achieve the optimal estimates, but is
computationally cumbersome as it inevitably relies on a multidimensional search [1]. To reduce
computational expenditure, numerous subspace estimators based on the linear algebraic theory
have been proposed to extract the information efficiently from a batch of observations. In [2],
both parameters were obtained by performing a two-dimensional (2D) spectral search of the
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MUSIC algorithm, providing an automatic pairing between the DOAs and frequencies, and it calls
for a considerable amount of computations, despite lower cost than MLE. To further reduce the
computing load, one-dimensional (1D) subspace-based algorithms were developed. By a similar
principle, Lin et al. proposed a tree-structured frequency-space-frequency (FSF) MUSIC-based
algorithm [3], allowing multiple one-dimensional (1D) grid searches in the frequency and spatial
domains, respectively. In addition, ESPRIT-based joint angle and frequency estimation (JAFE) methods
have been proposed to further alleviate the computational load. Zoltowski and Mathews provided
a solution to radar applications from engineering perspectives [4], causing some compromise on
mathematical rigour and theoretical depth. Haardt and Nossek discussed the problem in the context
of mobile communications for SDMAapplications by using unitary ESPRIT, which transforms the
complex data to real-valued matrices [5]. Multiresolution ESPRIT, referred to as MR-ESPRIT, has been
developed to handle JAFE in different geometries, such as uniform linear arrays and uniform circular
arrays, by Lemma et al. [6], and they subsequently presented an intensive performance analysis of the
MR-ESPRIT JAFE algorithm [7]. These ESPRIT-based JAFE methods can provide satisfactory estimation
performance, but require an additional pairing, which may fail to work at low signal-to-noise ratios
(SNRs). In addition to ESPRIT-like approaches, Zhang et al. cast the JAFE problem as a trilinear model
and performed trilinear decomposition to obtain angle and frequency without any eigen-decomposition
to covariance matrices or singular-value decomposition to observations [8]; Liu et al. proposed a
unitary JAFE algorithm, termed U-JAFE, in conjunction with the frame method and the Newton
iteration method, resulting in improved computational efficiency and automatic parameter pairing [9].

It is worth pointing out that the existing methods for JAFE are generally restricted to white
Gaussian noise environments. However, in many applications, the additive noises in each channel are
correlated with each other, i.e., the noise becomes coloured. This coloured noise model is reasonable in
practice since the noise can be coupled due to the internal circuitry of the antenna elements [10,11]
or the prevailing external noise environment such as reverberation noise in sonar or external seismic
noise [12–16]. Since high-order statistics of wireless communication signals can suppress coloured
Gaussian noise and potentially extend the effective array aperture, they have been investigated
extensively for DOA estimation in the presence of unknown coloured noise [17–20]. However,
to the best of our knowledge, the previous effort has not been devoted to JAFE in coloured noise
environments. This motivates us to address such an issue using fourth-order cumulants (FOC),
and unitary cumulant-based estimators are devised in this work to tackle the problem. To be specific,
if the incident signals are independent of each other, an augmented cumulant matrix is first constructed
from the temporally-smoothed data, and its complex-valued entries are then transformed to the real
number field by exploiting the centro-symmetric property of the matrix. To determine the DOA
estimates with computational efficiency, the rank reduction (RARE) estimator in conjunction with
polynomial rooting is developed, and the corresponding frequency estimates are obtained in the least
squares manner with the DOA estimates already acquired, avoiding the parameter-pairing operation.
For coherent signals, the generalized steering vectors and frequencies are first estimated, by a new dual
rotational invariance arising from a series of dedicated cumulant matrices, to blind separate coherent
signals into different groups. Then, the inherent rank deficiency due to the generalized steering vectors
is recovered by FBSS, and finally, the DOA estimates are resolved by the unitary ESPRIT algorithm.

To show the contributions of this paper clearly, the differences between the state-of-the-art
methods [6–9] and our work are highlighted as follows:

1. The most important difference is that the operation of FOC with respect to JAFE is developed for
the first time, and the corresponding existence conditions, and the number of achieved DOFs is
analysed accordingly.

2. In [6–11], only the temporal and spatial white Gaussian noise is considered, while in this paper,
we study the JAFE in a more general case, i.e., the temporal and spatial coloured Gaussian noise,
and propose an FOC-based estimator to jointly determine DOA, as well as frequency robust to
white or coloured noise.
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3. In [6,7,9], the number of coherent signals that can be dealt with is up to b 2M
3 c, where M is

the number of array elements, which is a strict condition. In practice, one base station serves
multiple users simultaneously, where the propagation from each user composes multipath, so the
total number of coherent signals may exceed that of array elements. The approach developed
in this paper is capable of handling such a tough challenge that cannot be overcome by the
previous techniques.

4. To reduce the cumbersome computations arising from the processing by FOC, we transform
the complex-valued information to the field of real numbers and perform the resultant RARE
estimator by solving the roots of a polynomial, avoiding the multidimensional search.

The remainder of this paper is organized as follows. In Section 2, an array model for signals
corrupted by unknown coloured noise is introduced. In Section 3, the RARE estimators for JAFE of
uncorrelated and coherent signals using fourth-order cumulants are developed. Section 4 provides
numerical examples for demonstrating the validity and efficiency of our proposed algorithms. Finally,
some concluding remarks are given in Section 5.

Throughout this paper, the following notations will be used: the operators (·)T , (·)∗, (·)H , (·)+,
cum{·}, det{·}, ⊗, ◦, and ‖ · ‖2 denote the operation of the transpose, conjugate, conjugate transpose,
pseudo-inverse, cumulant, determinant, Kronecker product, Khatri–Rao (KR) product and Euclidean
(`2) norm, respectively. The symbol diag{z1, · · · , zN} represents a diagonal matrix with diagonal
entries z1, · · · , zN , and blkdiag{Z1, Z2} represents a block diagonal matrix with diagonal entries
Z1, Z2. The symbol IK stands for an identity matrix of size K× K. The symbol Z(a : b, c : d) refers to
a constructed submatrix by the entries from a to the bth row and c to the dth column of Z, and the
symbol Z(a, b) denotes the entry in the ath row and the bth column of Z.

2. Problem Formulation

2.1. Signal Model

Consider Q narrowband non-Gaussian signals impinging on a uniform linear array (ULA)
with M identical omnidirectional sensors. Let the signal from the ith far-field source be denoted as
ej2π( fc+ fi)tsi(t), where fc is the carrier frequency, fi is a small frequency offset (central frequency)
for the ith signal with fi � fc and si(t) is the amplitude of the ith signal, for i = 1, 2, · · · , Q.
After demodulation to intermediate frequency (IF), the signal due to the ith source becomes ej2π fitsi(t).
We assume that there are K groups of coherent signals, which come from statistically independent
far-field sources {sk(t)}K

k=1. In the kth coherent group, the signals coming from direction θkp,
p = 1, 2, · · · , Pk, correspond to the pth multipath propagation of the source sk(t), and the complex
fading coefficient is αkp. It is apparent that the total number of coherent signals is Q = ∑K

k=1 Pk. Since the
K sources are mutually independent, the signals between coherent groups are also independent of each
other, while the signals in each group are coherent. It is worth noting that if the independent sources
arrive at the sensor array undergoing a line of sight channel (no multipath propagation), the incident Q
signals can be regarded as Q coherent groups each of which only includes one signal, i.e., K = Q and
P1 = P2 = · · · = Pk = 1. The noise is spatially coloured and statistically independent of the signals.
Let P be the sampling rate that is much higher than the largest IF, then the M× 1 array output vector
is given by [7]:

x(
n
P
) =

K

∑
k=1

Pk

∑
p=1

a(θkp)αkpej2π fk
n
P sk(

n
P
) + w(

n
P
) = AΓΦns(

n
P
) + w(

n
P
) (1)

where a(θ) =
[
1, β(θ), · · · , βM−1(θ)

]T ∈ CM is the steering vector, β(θ) = ej 2πd
λ sin θ with λ and d

being the wavelength of the carrier signal and the spacing between adjacent elements, respectively,

A =
[
a(θ1), · · · , a(θQ)

]
is the array manifold, Γ = blkdiag{α1, · · · , αK} with αk =

[
αk1, · · · , αkPk

]T

containing attenuation information of the kth coherent group, while a special case Γ = IQ if the incident
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signals are independent of each other, Φ = diag
{

ej2π
f1
P , · · · , ej2π

fK
P

}
contains the information of the IF

frequencies of incident signals, s( n
P ) =

[
s1(

n
P ), · · · , sK(

n
P )
]T
∈ CK and w( n

P ) is the spatially-coloured
Gaussian noise. Besides, we assume that the array manifold A is unambiguous, i.e., the steering
vectors {a(θi)}Q

i=1 are linearly independent for any set of distinct {θi}Q
i=1. Collecting N samples of the

array output x( n
P ) at a rate P and stacking them into a row, one has:

X = AΓ

[
s(0), Φs(

1
P
), · · · , ΦN−1s(

N − 1
P

)

]
+ W ∈ CM×N (2)

where W ∈ CM×N collects N samples of the noise vector w( n
P ).

2.2. Temporal Smoothing

In this section, we consider a data stacking technique, referred to as temporal smoothing,
which adds structure to the data model for the implementation of the JAFE algorithm. An m-factor
temporally-smoothed data matrix is constructed by stacking temporally-shifted versions of the original
data matrix. This results in the following matrix of size mM× (N −m + 1) [7]:

Xm =


AΓ
[
s(0), Φs( 1

P ), · · · , ΦN−ms(N−m
P )

]
AΓΦ

[
s( 1

P ), Φs( 2
P ), · · · , ΦN−ms(N−m+1

P )
]

...

AΓΦm−1
[
s(m−1

P ), Φs(m
P ), · · · , ΦN−ms(N−1

P )
]

+ Wm (3)

where Wm represents the noise term constructed from W in a similar manner as Xm is obtained from
X. Assume that the signals are narrowband, i.e., s(t) ≈ s(t + 1

P ) ≈ · · · ≈ s(t + m−1
P ). In this case,

all the block rows in the right-hand term of (3) are approximately equal, which means that Xm has the
following factorization:

Xm ≈


AΓ

AΓΦ
...

AΓΦm−1


[

s(0), Φs(
1
P
), · · · , ΦN−ms(

N −m
P

)

]
+ Wm

, AmFs + Wm (4)

where Am, referred to as the extended array manifold, is given by:

Am =


AΓ

AΓΦ
...

AΓΦm−1

 (5)

and:

Fs =

[
s(0), Φs(

1
P
), · · · , ΦN−ms(

N −m
P

)

]
(6)

is a matrix collecting N −m + 1 samples of the K sources.
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3. Proposed FOC-Based Joint Angle and Frequency Estimator

3.1. Independent Signals

First, we consider the case of independent signals, where K = Q, P1 = P2 = · · · = Pk = 1
and Γ = IQ, so Γ in (1)–(5) can be neglected. Considering the received signals are assumed to be
non-Gaussian, one can establish the array FOC matrix between the received data blocks as:

Cq = cum
{

y(n), zH(n), z∗(n), zT(n)
}

(7)

where y(n) = HqXm(:, n) and z(n) = H1Xm(:, n). Herein, Hq =
[
0M×M(q−1), IM, 0M×M(m−q)

]
,

q = 1, 2, · · · , m, and Xm(:, n) is the nth column of Xm. The entries of Cq in the [(k1 − 1) M + k2] th
row and the [(l1 − 1) M + l2] th column are defined as:

Cq ((k1 − 1) M + k2, (l1 − 1) M + l2)

= cum{yk1(n), z∗l1(n), z∗k2
(n), zl2(n)}

= E[yk1(n)z
∗
k2
(n)z∗l1(n)zl2(n)]− E[yk1(n)z

∗
k2
(n)]E[z∗l1(n)zl2(n)]

− E[yk1(n)z
∗
l1(n)]E[z

∗
k2
(n)zl2(n)]− E[yk1(n)zl2(n)]E[z

∗
k2
(n)z∗l1(n)] (8)

where yi(n) and zi(n) are the ith entries of y(n) and z(n), respectively. Substituting (3) into (7) and
utilizing the properties of cumulants [CP1]–[CP5]in [18], one can further get:

Cq = cum
{

AΦq−1Fs(:, n), (AFs(:, n))H , (AFs(:, n))∗ , (AFs(:, n))T
}

= cum

{
Q

∑
m=1

a(θm)ej2π fm
q−1

P Fs,m,
Q

∑
p=1

aH(θp)F∗s,p,
Q

∑
n=1

a∗(θn)F∗s,n,
Q

∑
r=1

aT(θr)Fs,r

}

=
Q

∑
m=1

Q

∑
n=1

Q

∑
p=1

Q

∑
r=1

(
ej2π fm

q−1
P a(θm)⊗ a∗(θn)

) (
a(θp)⊗ a∗(θr)

)H cum
{

Fs,m, F∗s,p, F∗s,n, Fs,r

}

=
Q

∑
i=1

ej2π fi
q−1

P (a(θi)⊗ a∗(θi)) (a(θi)⊗ a∗(θi))
H cum

{
Fs,i, F∗s,i, F∗s,i, Fs,i

}
=

Q

∑
i=1

γiej2π fi
q−1

P (a(θi)⊗ a∗(θi)) (a(θi)⊗ a∗(θi))
H

= (A ◦A∗)Φq−1Cs (A ◦A∗)H (9)

where Fs,i is the entry in the ith entry of Fs(:, n), γi , cum
{

Fs,i, F∗s,i, F∗s,i, Fs,i

}
and Cs ,

diag
{

γ1, · · · , γQ
}
∈ RQ×Q.

By the principle of aperture extension via FOC [18], some rows of A ◦A∗ ∈ CM2×Q2
are redundant

with respect to the rest in the case of a ULA, resulting in the effective array aperture being 2M− 1
elements. Considering the regular distribution of the redundancy in A ◦ A∗, one can reduce the
problem dimension by performing a linear transformation as:

C̄q = GCqGT

= G (A ◦A∗)Φq−1Cs (G (A ◦A∗))H

= BΦq−1CsBH (10)
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where:

G ,

[
IM 0M×(M2−M)

0(M−1)×(M2−M+1) IM−1

]
∈ R(2M−1)×M2

(11)

and B , G (A ◦A∗) =
[
b(θ1), · · · , b(θQ)

]
with b(θ) =

[
β1−M(θ), · · · , βM−1(θ)

]T ∈ C2M−1.
To take full advantage of the information embedded in

{
C̄q
}m

q=1, one can design a new cumulant
matrix, of size m(2M− 1)×m(2M− 1), as:

Cx =


C̄1 C̄H

2 · · · C̄H
m

C̄2 C̄1 · · · C̄H
m−1

...
...

. . .
...

C̄m C̄m−1 · · · C̄1

 =


B

BΦ
...

BΦm−1

Cs


B

BΦ
...

BΦm−1


H

= B̃CsB̃
H (12)

where B̃ ,
[
BT , BTΦ, · · · , BTΦm−1

]T
. It can be readily verified that:

J̄C∗x J̄ =


BΦ1−m

BΦ2−m

...
B

C∗s


BΦ1−m

BΦ2−m

...
B


H

= B̃Φ1−mC∗s Φm−1B̃H (13)

where J̄ ∈ Rm(2M−1)×m(2M−1) denotes an exchange matrix that has unity entries on the cross-diagonal
and zeros elsewhere. It is apparent that J̄C∗x J̄ = Cx, i.e., Cx is centro-Hermitian, as ideally, Cs is a real
diagonal matrix. However, to “double” the number of snapshots and decorrelate possible sample
correlation in an arbitrary matrix Cs due to a limited observation window, the centro-Hermitian
property is sometimes forced by means of the so-called forward-backward (FB) averaging, that is,

C̄x =
1
2
(Cx + J̄C∗x J̄) = B̃C̃sB̃

H (14)

where C̃s =
1
2

(
Cs + Φ1−mC∗s Φm−1

)
. Then, one can transform C̄x into the field of real numbers for the

sake of computational efficiency. We define a new matrix Cr as:

Cr = QH
u C̄xQu (15)

where Qu, u = m (2M− 1), is a sparse unitary matrix given by:

Qu =



1√
2

[
Iv jIv

Jv −jJv

]
, u = 2v

1√
2

 Iv 0v×1 jIv

0T
v×1

√
2 0T

v×1
Jv 0v×1 −jJv

 , u = 2v + 1

(16)

where Iv ∈ Rv×v and Jv ∈ Rv×v are the identity matrix and exchange matrix, respectively, and v is
an arbitrary natural number. Referring to Theorem 3 in [21], one can identify that Cr is a real matrix.
Performing the singular-value decomposition (SVD) of Cr, one has:

Cr = UΣVH (17)
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where Σ = diag
{

λ1, · · · , λm(2M−1)

}
consists of m (2M− 1) singular values satisfying λ1 ≥ · · · ≥

λQ > λQ+1 = · · · = λm(2M−1) = 0. The columns of Us , U(:, 1 : Q) are the singular vectors
corresponding to the Q largest eigenvalues, while the columns of Un , U (:, Q + 1 : m (2M− 1))
are the singular vectors corresponding to the m (2M− 1)− Q singular values, which are all zeros.
The signal subspace is spanned by the columns of Us, whereas the noise subspace is spanned by

the columns of Un. Defining b̃(θ) ,
[
b(θ), ej2π

f
P b(θ), · · · , ej2π f m−1

P b(θ)
]T

, one can construct the
following function:

p (θ, f ) =
∥∥∥∥(QH

u b̃(θ)
)H

Un

∥∥∥∥2

2

=

∥∥∥∥(QH
u (Im ⊗ b(θ)) g ( f )

)H
Un

∥∥∥∥2

2

= gH ( f )TH(θ)UnUH
n T(θ)g ( f )

= gH ( f )M(θ)g ( f ) (18)

where g ( f ) =
[
1, ej2π

f
P , · · · , ej2π f m−1

P

]T
∈ Cm, T(θ) = QH

u (Im ⊗ b(θ)) ∈ Cm(2M−1)×m and

M(θ) = TH(θ)UnUH
n T(θ) ∈ Cm×m. We now show how to estimate DOAs based on the determinant or

the smallest eigenvalue of M(θ). It can be found that the size of TH(θ)Un is m× (m (2M− 1)− Q);
and if m ≤ m (2M− 1)− Q, the matrix TH(θ)Un, in general, is of full row rank, and M(θ) is of full
rank. However, when θ coincides with any one of the Q desired DOAs, i.e., θ = θi, i = 1, · · · , Q,
the expression in (18) becomes zero by the orthogonality between the signal and noise subspaces. Since
g ( f ) 6= 0, (18) can hold true only if the matrix M(θ) is rank deficient or, equivalently, its determinant
(as well as its smallest eigenvalue) is equal to zero. Now, it becomes clear that the determinant of M(θ)

can be utilized to estimate DOAs as:

θ̂ = arg min
θ

det {M(θ)} . (19)

One solution to (19) is to perform a one-dimensional spectral search to determine the DOA
estimates corresponding to the minima of det {M(θ)}, which approximates to zero. However,
it involves more computational cost than JAFE, which exploits ESPRIT without any grid search.
If the value of m is small, which is the common case in practice [7–9], one can turn (19) into a
polynomial rooting to avoid the search process and resolve DOA estimates directly. Denote z = β(θ),

then b(z) =
[
z1−M, z2−M, · · · , zM−1

]T
. As a result, a root-RARE polynomial can be constructed as:

h(z) , det
{(

QH
u

(
Im ⊗ b(z−1)

))T
UnUH

n

(
QH

u (Im ⊗ b(z))
)}

=
4m(L−1)+1

∑
k=1

rkzk−1−2m(L−1) (20)

where rk is the coefficient of the polynomial. Therefore, the roots of (20) {zi}Q
i=1 that are closest to

the unit circle indicate the desired DOAs of independent signals. The DOA estimates related to the
polynomial roots can be determined as:

θ̂i = arcsin
[

λ

2πd
arg(zi)

]
. (21)
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Once the DOA estimates are obtained, one can perform the frequency estimation as:

f̂ = arg min
f

p
(
θ̂, f
)
= arg min

f
gH ( f )M(θ̂)g ( f ) . (22)

Equation (22) is a quadratic minimization problem. Rather than spectral grid search, we provide
a closed-form solution to frequency estimation that is more computationally efficient. Let e1 =

[1, 0, · · · , 0]T ∈ Rm, then one has the constraint eT
1 g ( f ) = 1, which can remove the trivial solution

g ( f ) = 0, and (22) can be rewritten as:

f̂ = arg min
f

gH ( f )M(θ̂)g ( f ) , s.t. eT
1 g ( f ) = 1. (23)

By using the Lagrange multiplier µ, one can construct the following cost function [22]:

L ( f ) = gH ( f )M(θ̂)g ( f )− µ
(

eT
1 g ( f )− 1

)
(24)

Setting the partial derivative of L ( f ) to zero, i.e.,

∂L ( f )
∂g ( f )

= 2M(θ̂)g ( f ) + µe1 = 0, (25)

we find that when g ( f ) = νM−1(θ̂)e1 where ν = − 1
2 µ, L ( f ) will achieve its minima. Given eT

1 g ( f ) =
1, one can derive:

ν =
1

eH
1 M−1(θ̂)e1

(26)

g ( f ) =
M−1(θ̂)e1

eH
1 M−1(θ̂)e1

(27)

Given Q DOA estimates
{

θ̂i
}Q

i=1, there are {g ( fi)}Q
i=1 available. To estimate the frequency fi,

one can extract the phases from g ( fi) as:

hi = arg (g ( fi)) =

[
0, 2π

fi
P

, · · · , 2π fi
m− 1

P

]T
. (28)

Since the solution of fi in (28) is overdetermined, one can construct a fitting relationship to find
out the desired frequency in the least squares sense, that is,

ĉi = arg min
ci
‖Pci − hi‖2

2 (29)

where ci = [ci, fi]
T ∈ R2 with ci being an augmented parameter, and:

P =


1 0
1 2π

P
...

...
1 2π(m−1)

P

 ∈ Rm×2. (30)

The least squares solution of (29) is ĉi =
[
ĉi, f̂i

]T
= P+hi =

(
PTP

)−1 PThi, and one can directly

obtain f̂i from ĉi accordingly.
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3.2. Coherent Signals

As emphasized earlier, the above method is restricted to the case of independent signals, and its
performance would deteriorate severely provided that there exists coherence between signals due to the
multipath propagation. In this subsection, another FOC-based estimator is proposed to tackle coherent
signals by extending a dual rotation-invariant property to blind signal separation. More specifically,
the dual rotation-invariant property in terms of frequency and spatial signature is first utilized to
estimate the frequencies and blindly separate the coherent groups. Then, the DOAs of coherent signals
in each group can be estimated after rank recovery by FBSS.

Denoting Ā = AΓ = [ā1, · · · , āK], referred to as the generalized array manifold,
where āk = [a(θk1), · · · , a(θkPk)] αk is the generalized steering vector, we first construct a series of
cumulant matrices, distinct from (7), as follows:

∆q , cum
{

X1(1, n), X∗1(1, n), Xq, XH
1

}
= cum

{
K

∑
m=1

Ā(1, m)Fs,m,
K

∑
p=1

Ā∗(1, p)F∗s,p,
K

∑
n=1

ānej2π fn
q−1

P Fs,n,
K

∑
r=1

āH
r F∗s,r

}

=
K

∑
m=1

K

∑
n=1

K

∑
p=1

K

∑
r=1

ej2π fn
q−1

P Ā(1, m)Ā∗(1, p)ānāH
r cum

{
Fs,m, F∗s,p, Fs,n, F∗s,r

}
=

K

∑
i=1

ej2π fi
q−1

P |Ā(1, i)|2 āiāH
i cum

{
Fs,i, F∗s,i, Fs,i, F∗s,i

}
=

K

∑
i=1

γiej2π fi
q−1

P |Ā(1, i)|2 āiāH
i

= ĀΦq−1C̄sĀ
H (31)

Ξq , cum
{

X1(2, n), X∗1(1, n), Xq, XH
1

}
= cum

{
K

∑
m=1

Ā(2, m)Fs,m,
K

∑
p=1

Ā∗(1, p)F∗s,p,
K

∑
n=1

ānej2π fn
q−1

P Fs,n,
K

∑
r=1

āH
r F∗s,r

}

=
K

∑
m=1

K

∑
n=1

K

∑
p=1

K

∑
r=1

ej2π fn
q−1

P Ā(2, m)Ā∗(1, p)ānāH
r cum

{
Fs,m, F∗s,p, Fs,n, F∗s,r

}
=

K

∑
i=1

γiej2π fi
q−1

P
Ā(2, i)
Ā(1, i)

|Ā(1, i)|2 āiāH
i

= ĀΦq−1DC̄sĀ
H (32)

Ξ̆q , cum
{

X1(2, n), X∗1(1, n), X1, XH
q

}
= cum

{
K

∑
m=1

Ā(2, m)Fs,m,
K

∑
p=1

Ā∗(1, p)F∗s,p,
K

∑
n=1

ānFs,n,
K

∑
r=1

āH
r e−j2π fr

q−1
P F∗s,r

}

=
K

∑
m=1

K

∑
n=1

K

∑
p=1

K

∑
r=1

e−j2π fr
q−1

P Ā(2, m)Ā∗(1, p)ānāH
r cum

{
Fs,m, F∗s,p, Fs,n, F∗s,r

}
=

K

∑
i=1

γie−j2π fi
q−1

P
Ā(2, i)
Ā(1, i)

|Ā(1, i)|2 āiāH
i

= ĀDC̄s

(
ĀΦq−1

)H
(33)

Ωq , cum
{

X1(2, n), X∗1(2, n), Xq, XH
1

}
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= cum

{
K

∑
m=1

Ā(2, m)Fs,m,
K

∑
p=1

Ā∗(2, p)F∗s,p,
K

∑
n=1

ānej2π fn
q−1

P Fs,n,
K

∑
r=1

āH
r F∗s,r

}

=
K

∑
m=1

K

∑
n=1

K

∑
p=1

K

∑
r=1

ej2π fn
q−1

P Ā(2, m)Ā∗(2, p)ānāH
r cum

{
Fs,m, F∗s,p, Fs,n, F∗s,r

}
=

K

∑
i=1

γiej2π fi
q−1

P
|Ā(2, i)|2

|Ā(1, i)|2
|Ā(1, i)|2 āiāH

i

= ĀΦq−1DC̄s (ĀD)
H (34)

where q = 1, 2, · · · , m, C̄s = diag
{

γ1 |Ā(1, 1)|2 , · · · , γK |Ā(1, K)|2
}

, and D = diag
{

Ā(2,1)
Ā(1,1) , · · · , Ā(2,K)

Ā(1,K)

}
.

Then, one can build three cumulant matrices, of size mM× nM, with these blocks as:

Π1 ,


∆1 ∆H

2 · · · ∆H
m

∆2 ∆1 · · · ∆H
m−1

...
...

. . .
...

∆m ∆m−1 · · · ∆1

 =


Ā

ĀΦ
...

ĀΦm−1

 C̄s


Ā

ĀΦ
...

ĀΦm−1


H

(35)

Π2 ,


Ξ1 Ξ̆2 · · · Ξ̆m

Ξ2 Ξ1 · · · Ξ̆m−1
...

...
. . .

...
Ξm Ξm−1 · · · Ξ1

 =


ĀD

ĀΦD
...

ĀΦm−1D

 C̄s


Ā

ĀΦ
...

ĀΦm−1


H

(36)

Π3 ,


Ω1 ΩH

2 · · · ΩH
m

Ω2 Ω1 · · · ΩH
m−1

...
...

. . .
...

Ωm Ωm−1 · · · Ω1

 =


ĀD

ĀΦD
...

ĀΦm−1D

 C̄s


ĀD

ĀΦD
...

ĀΦm−1D


H

. (37)

Arranging {Πi}3
i=1 in an appropriate manner, one has:

Υ ,

[
Π1 ΠH

2
Π2 Π3

]
=



Ā
ĀΦ

...
ĀΦm−1

ĀD
ĀΦD

...
ĀΦm−1D


C̄s



Ā
ĀΦ

...
ĀΦm−1

ĀD
ĀΦD

...
ĀΦm−1D



H

= ÃC̄sÃ
H (38)

where Ã =

[
ĀT , (ĀΦ)

T , · · · ,
(

ĀΦm−1
)T

, (ĀD)
T , (ĀΦD)

T , · · · ,
(

ĀΦm−1D
)T
]T

is the extended

array manifold.
Now, one can estimate the frequencies and generalized steering vectors via the dual rotation-

invariant property. Let J̃1 =
[
IM(m−1), 0M(m−1)×M

]
∈ RM(m−1)×mM and J̃2 =

[
0M(m−1)×M, IM(m−1)

]
∈

RM(m−1)×mM, then one can extract two cumulant matrices from Υ:

Υ1 =
(
I2 ⊗ J̃1

)
Υ = Ã1C̄sÃ

H (39)

Υ2 =
(
I2 ⊗ J̃2

)
Υ = Ã2C̄sÃ

H (40)
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where Ã1 =
(
I2 ⊗ J̃1

)
Ã =

[
ĀT , (ĀΦ)

T , · · · ,
(
ĀΦm−2)T

, (ĀD)
T , (ĀΦD)

T , · · · ,
(
ĀΦm−2D

)T
]T

and

Ã2 =
(
I2 ⊗ J̃1

)
Ã =

[
(ĀΦ)

T ,
(
ĀΦ2)T

, · · · ,
(

ĀΦm−1
)T

, (ĀΦD)
T ,
(
ĀΦ2D

)T
, · · · ,

(
ĀΦm−1D

)T
]T

.

It is readily identified that Ã2 = Ã1Φ. Then, one can perform the eigen-decomposition of Υ2Υ+
1 to

obtain the frequencies, as well as the scaled column vectors of Ã1 by the following proposition.

Proposition 1. The principal eigenvectors and eigenvalues of the generalized space-frequency matrix Υ2Υ+
1

are the generalized steering vectors of Ã1 scaled by nonzero coefficients and Φ, respectively, i.e., Ŭs = Ã1Λ

and Σ̆s = Φ, where the columns of Ŭs ∈ CmM×K are the K eigenvectors, corresponding to the K largest
eigenvalues of Υ2Υ+

1 that are contained in the diagonal matrix Σ̆s, and Λ is an arbitrary diagonal matrix with
nonzero entries.

Proof of Proposition 1. Along with (39), (40) and the rotation-invariant property between Ã1 and Ã2,
one has:

Υ2Υ+
1 Ã1 = Ã2C̄sÃ

H
(

Ã1C̄sÃ
H
)+

Ã1

= Ã1ΦC̄sÃ
H
(

ÃH
)+

C̄−1
s Ã+

1 Ã1

= Ã1ΦC̄s

(
Ã+Ã

)H
C̄−1

s

= Ã1Φ (41)

where Ã+
1 Ã1 = Ã+Ã = IK as both Ã1 and Ã are of column rank. By definition, the eigenvector ŭk

and eigenvalue ζk of Υ2Υ+
1 satisfy Υ2Υ+

1 ŭk = ζkŭk, k = 1, 2, · · · , K. Stacking
{

Υ2Υ+
1 ŭk

}K
k=1 in a row,

one has Υ2Υ+
1 [ŭ1, · · · , ŭK] = [ζ1ŭ1, · · · , ζKŭK], and it can be rewritten as:

Υ2Υ+
1 Ŭs = ŬsΣ̆s (42)

where Ŭs = [ŭ1, · · · , ŭK] and Σ̆s = diag {ζ1, · · · , ζK}. Comparing (41) with (42), one can deduce
that Ŭs = Ã1Λ, where Λ is an arbitrary diagonal matrix with nonzero entries, as well as Σ̆s = Φ.
This completes the proof of Proposition 1.

Denoting the eigenvalues of Υ2Υ+
1 as {ηk}K

k=1, then all frequency estimates, f̂k, of coherent signals
can be obtained by:

f̂k = arg (ηk)
P

2π
, k = 1, 2, · · · , K. (43)

Let J̃3 = [ImM, 0mM×mM] ∈ RmM×2mM and J̃4 = [0mM×mM, ImM] ∈ RmM×2mM, then one can get
another two cumulant matrices as Υ3 = J̃3Υ = Ã3C̄sÃ

H and Υ4 = J̃4Υ = Ã4C̄sÃ
H where Ã3 = J̃3Ã =[

ĀT , (ĀΦ)
T , · · · ,

(
ĀΦm−1

)T
]T

and Ã4 = J̃4Ã =

[
(ĀD)

T , (ĀΦD)
T , · · · ,

(
ĀΦm−1D

)T
]T

. Evidently,

another rotation-invariant property is also valid for Ã3 and Ã4, i.e., Ã4 = Ã3D. Proceeding similarly,
one can resolve D and the scaled column vectors of Ã3 by performing the eigen-decomposition
of Υ4Υ+

3 .

Let J̆p =
[
0M×M(p−1), IM, 0M×M(2m−p−2)

]
∈ RM×2M(m−1), p = 1, · · · , 2(m − 1), then an

improved estimate of ĀΛ is obtained by performing a series of averages as follows:

ĀΛ =
1

2(m− 1)

{
m−1

∑
p=1

J̆pŬsΦ1−p +
2(m−1)

∑
p=m

J̆pŬsD−1Φm−p

}
. (44)
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By denoting âk as the kth column vector of ĀΛ, it is readily seen that the âk = κkāk = κkAkαk,
k = 1, · · · , K, where κk is the kth diagonal entry of Λ. Once âk is obtained, one can apply FBSS r times
to a Hermitian matrix constructed from âk as follows:

Z̄k =
1
2r

r

∑
i=1

[
FiâkâH

k FH
i + J

(
FiâkâH

k FH
i

)∗
J
]

= F1Ak

[
|κk|
2r

r

∑
i=1

(
Φi−1ααHΦ1−i + Φ2−l−iα∗αTΦi+l−2

)]
AH

k FH
1 (45)

where Fi =
[
0l×(i−1), Il , 0l×(r−i)

]
with l = M + 1− r being the number of elements of a subarray,

and J ∈ Rl×l is the exchange matrix.
Referring to [23], one knows that rank {Z̄k} = Pk after performing FBSS, which implies that

the rank deficiency due to the coherence has been successfully recovered. As a result, by applying
prevailing high-resolution DOA estimation methods, such as MUSIC or ESPRIT, to Z̄k, one can get the
DOA estimates of the coherent signals. Note that JZ̄∗k J = Z̄k, i.e., Z̄k is the centro-Hermitian matrix,
and one can perform the following linear transformation to relieve the computational load as:

Tk = QH
l Z̄kQl (46)

where Ql is defined in (16). Referring to Theorem 3 in [21], Tk is a real matrix, and thus, one can resort
to unitary ESPRIT [24] to resolve the DOA estimates of the coherent signals. As expatiated above,
the frequency, generalized steering vectors and DOAs are estimated by using the rotation-invariant
property, so the proposed JAFE estimation method for coherent signals can be referred to as the
generalized ESPRIT-like estimator.

Remark 1. Since the necessary condition for (19) being valid is m ≤ m (2M− 1)−Q, the maximum number
of resolvable independent signals by our root-RARE polynomial estimator is 2m(M− 1), which is twice as
much as JAFE. This is because the virtual array manifold B resulting from FOC doubles the DOFs, as well as
the effective aperture. By the principle introduced in [23], up to b 2M

3 c coherent signals in the kth group can
be resolved, provided that l ≥ Pk + 1 and 2r ≥ Pk. Therefore, considering at most M − 1 coherent groups
can be separated, the identifiability of the proposed generalized ESPRIT-like estimator is upper bounded by
(M− 1) b 2M

3 c.

Remark 2. The cumulant requires many more computations than the covariance and, hence, the proposed
FOC-based estimator works well on the condition that the observation window is sufficiently long and the target
is (quasi-) stationary. We attempted to implement the proposed method in a test bed composed of a Virtex-7 series
FPGA and a TMS320C6x series DSP, but found that it is infeasible to complete the joint DOA and frequency
estimation within time less than the scale of milliseconds in the case of M = 5, m = 2 and N = 2000 due to the
cumbersome calculations of cumulants and the eigen-decomposition of a matrix, of size 18× 18. As a result,
for some applications, like high-speed moving targets, the coherent processing interval of such cumulants is quite
short, and it is hard and even unlikely to realize the proposed algorithm by the prevailing hardware available on
the market within the period.

4. Simulation Results and Discussion

In this section, a series of numerical experiments under different conditions is carried out to
examine the performance of the proposed algorithms with some state-of-the-art methods. Simulations
were conducted for a small number of ULA with half-wavelength spacing between adjacent elements.
The existing approaches MR-ESPRIT and U-JAFE and the Cramér–Rao lower bound (CRLB) of joint
DOA and frequency estimates [7] were chosen for comparison. For simplicity, we assumed that
all signals had an identical power. Similar to the settings in [20,25], the signals were modelled as
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s(t) = F(t)r(t), where F(t) = diag { f1(t), · · · , fK(t)}, r(t) = [r1(t), · · · , rK(t)]
T with fi(t) and ri(t)

being zero-mean Gaussian processes with unit-variance and σ2
s -variance, respectively. The noise was

assumed to be a first-order spatial autoregressive process, and the (a, b)th entry of the noise covariance

matrix is given by R(a, b) = σ2
n0.8|a−b|ej π(a−b)

16 [26,27]. The sampling rate P was fixed at 30 MHz.
The accuracy of the DOA estimate, the statistical performance of the algorithms, was measured from
800 Monte Carlo runs in terms of the root mean squared error (RMSE), which is defined as:

RMSE =

√√√√ 1
800Q

800

∑
n=1

Q

∑
i=1

(θ̂
(n)
i − θi)2 (47)

where θ̂
(n)
i is the estimate of θi for the nth trial and Q is the number of all signals.

4.1. JAFE of Independent Signals

In the first scenario, we considered that three independent sources from [−52◦,−27◦,−10◦]
impinge on a five-element array, and the corresponding small frequency offsets (central frequencies)
for the signals were 1.2 MHz, 1.6 MHz and 1.8 MHz, respectively, while the temporal smoothing factor
m = 3. The resultant RMSE as a function of SNR and the number of snapshots N in the first scenario
is illustrated in Figure 1. It can be observed that the proposed FOC-based method outperformed its
two counterparts up to 10 dB, while being inferior to them when the SNR became even larger. For the
other two schemes, U-JAFE performed slightly better than MR-ESPRIT at low SNRs and the RMSEs of
both techniques tended to be the same as SNR increased. In addition, the performance of the proposed
estimator improved with the increase of the number of snapshots, whereas the RMSEs of both U-JAFE
and MR-ESPRIT stabilized for all snapshot sizes, even though as many as 10,000 snapshots were
collected, implying that the estimation performance of these two algorithms was mainly subject to the
SNR while immune to the large number of snapshots.

Figure 2 depicts the RMSEs of the frequency estimates varying with changes of the SNR and
snapshot size. Clearly, the proposed approach performed the best when the SNR was less than 7
dB or the number of snapshots exceeded 1500, whereas both U-JAFE and MR-ESPRIT were superior
to our solution at moderate to high SNRs, and U-JAFE still achieved somewhat better accuracy of
estimates than MR-ESPRIT under low SNRs, similar to the case of DOA estimation. Generally speaking,
the proposed FOC-based method had a certain advantage over its second-order statistics counterparts
in low SNR environments, whereas the latter provided better performance at high SNRs, which is
consistent with the general results of the existing work. It should be noted that clear margins arose
between the estimates, both DOA and frequency, and the CRLBs. This is mainly due to the fact that
the cumulant-based estimator is inherently biased, and algorithms using second-order correlation are
vulnerable to coloured noise, which will cause large estimation errors.
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Figure 1. RMSE of the DOA estimates of three independent signals versus (a) SNR when N = 3000
and (b) N when SNR = 5 dB. FOC, fourth-order cumulants; MR, multiresolution; U, unitary.
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Figure 2. RMSE of the frequency estimates of three independent signals versus (a) SNR when N = 3000
and (b) N when SNR = 5 dB.

As discussed earlier, MR-ESPRIT, U-JAFE and the proposed FOC-based method were able
to identify more independent signals than physical sensors, so it is necessary to investigate the
performance of three approaches in such an underdetermined case. Assume that six independent
sources from [−52◦,−27◦,−10◦, 10◦, 27◦, 47◦, ] impinge on a five-element array (Q ≥ M);
the corresponding small frequency offsets for the signals are 1.2 MHz, 1.6 MHz, 1.8 MHz, 2 MHz,
2.5 MHz, 3 MHz, respectively, and the temporal smoothing factor m = 3. It can bee seen from Figure 3
that the absolute estimation performance of all techniques became worse, which is also illustrated by
the CRLB, while the advantages of our technique over the other two became more obvious than the
overdetermined case, and the counterparts U-JAFE and MR-ESPRIT only worked well above 19 dB and
20 dB, very large SNRs, respectively. Besides, the RMSE of the proposed FOC estimator approached
the CRLB as the snapshot size increased, while both U-JAFE and MR-ESPRIT obtained almost the
same large errors and remained constant throughout the numbers of snapshots, similar to Figure 1b.
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Figure 3. RMSE of the DOA estimates of six independent signals versus (a) SNR when N = 3000 and
(b) N when SNR = 5 dB.

Figure 4 exhibits the performance of the three methods for the frequency estimation, as well
as CRLB as a function of SNR and the total number of snapshots. One can observe that generally,
the proposed method was distinctly better than the other two algorithms except at 20 dB and above,
and U-JAFE outperformed MR-ESPRIT for all SNRs and snapshot sizes, which agrees with the results
in Figure 2.
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Figure 4. RMSE of the frequency estimates of six independent signals versus (a) SNR when N = 3000
and (b) N when SNR = 5 dB.

4.2. JAFE of Coherent Signals

In this section, we investigate the JAFE performance of the proposed cumulant-based algorithm
first in the underdetermined coherent signals case, i.e., Q ≥ M. It is assumed that two groups of
six coherent signals uniformly distributed between −60◦ and 60◦ are imping on a six-element ULA,
and the frequency offsets are 1.2 MHz and 1.6 MHz, respectively, as each group of coherent signals was
derived from an independent source. The fading amplitudes of the coherent signals were [1, 0.9, 0.8]
and [1, 0.7, 0.6], while the fading phases were [48.74◦, 121.15◦, 35.66◦] and [9.35◦, 251.47◦, 103.56◦],
respectively. The temporal and spatial smoothing factors were m = 2 and r = 2, and the SNR
and number of snapshots were fixed at 15 dB and 5000. In such a scenario, neither U-JAFE nor
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MR-ESPRIT was able to resolve all DOAs as their DOFs were both upper bounded by four, whereas
the proposed method can handle 20 DOAs at most. Figure 5a depicts the DOA estimation results of
50 independent trials by the proposed method. The solid lines mark the true DOAs. It can be seen
that each DOA was correctly determined, and the frequency offset estimates were even more accurate,
as shown in Figure 5b, since the DOFs used for the frequency estimation were larger than that for the
DOA estimation.

Next, we examined the estimation performance of the proposed FOC-based estimator in the presence
of multipath propagation. Assume that one group of coherent signals from [−52◦,−27◦,−10◦] arrives
at a six-element array; the corresponding frequency offsets for the signals are 1.2 MHz, 1.6 MHz and
1.8 MHz, respectively. The fading amplitudes of the coherent signals were [1, 0.9, 0.8], while the fading
phases were [48.74◦, 121.15◦, 35.66◦], respectively. The temporal and spatial smoothing factors were
m = 2 and r = 2, respectively. Figure 6 shows the RMSE of DOA estimates in the overdetermined case.
It can be found that as the SNR and the number of snapshots increased, the RMSE of DOA estimation
decreased gradually for all of the methods, where the accuracy of our algorithm improved asymptotically,
whereas the RMSEs of U-JAFE and MR-ESPRIT were close to each other at low and moderate SNRs
and tended to saturate at 1◦ and 0.7◦, respectively. Evidently, the proposed FOC-based estimator was
significantly superior to the counterparts for all SNRs and snapshot sizes tested, mainly because it
exploited the dual rotational invariance of the frequency constructed by the rotation-invariant property
in the generalized array manifold.
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Figure 5. Estimation results of K = 2 groups of Q = 6 coherent signals via 50 runs in the
underdetermined case. (a) DOA and (b) frequency versus the index of experiment when SNR = 15 dB
and N = 5000.

In Figure 7, we plot the RMSEs of frequency estimates of the three methods as a function of SNR
and the total number of snapshots under multipath propagation. It can be seen that the proposed
solution had a prominent advantage over the other two algorithms for almost all the SNRs and
snapshot sizes, although its lead kept decreasing as the SNR rose and turned out to be lost at 19 dB
and above.Unlike the illustration in Figure 2, the performance of frequency estimation of U-JAFE was
strictly worse than MR-ESPRIT over the whole range of SNR and snapshot size for coherent signal
estimation. Additionally, the RMSEs of the frequency estimates by our method approached the CRLBs
more tightly than the results in Figures 2 and 4 since all three coherent signals shared an identical
frequency, and the number of frequencies to be estimated turned out to be one less than the cases
studied above.
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Figure 6. RMSE of the DOA estimates of the K = 1 group of Q = 3 coherent signals versus (a) SNR
when N = 3000 and (b) N when SNR = 5 dB.
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Figure 7. RMSE of the frequency estimates of the K = 1 group of Q = 3 coherent signals versus (a) SNR
when N = 3000 and (b) N when SNR = 5 dB.

5. Conclusions

The joint angle and frequency estimation of non-Gaussian signals in coloured noise is addressed
in this paper, and cumulant-based estimation algorithms are developed for independent and coherent
signals, respectively. The proposed methods make efficient use of the dual rotational invariance of
the newly-constructed array manifolds to enhance the DOF of a ULA, thus improving the estimation
accuracy and resolving more signals than the number of array elements, either for the independent or
coherent signal. For independent signals, we construct an augmented cumulant matrix, providing
twice the DOFs of the covariance matrix formed by the state-of-the-art techniques, then transform it to
the real number field and resolve the DOA estimates by using rooting of a polynomial resulting from
the RARE property, and the frequency estimates can be resolved in a least squares manner given the
DOA estimates already acquired, avoiding the spatial spectra search and reducing the consumption of
calculations accordingly. For coherent signals, the generalized steering vectors (coherent groups) and
the frequencies are blindly separated from each other by exploiting a new dual rotational invariance
arising from a series of dedicated cumulant matrices. Then, FBSS is performed to restore the inherent
rank deficiency of the generalized steering vectors, and finally, the DOA estimates are determined by
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using the unitary ESPRIT algorithm. Since the coherent signals are divided and conquered, into their
associated group, more coherent signals than array elements can be handled. Compared with previous
second-order statistics methods, the proposed solutions are efficient in the sense that by extracting
the temporal correlation embedded in the high-order statistics, they further raise the array DOFs and
effective aperture, as well as improving the estimation accuracy, especially for coherent signals, in
addition to the robustness to coloured noise.
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