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Epithelial mesenchymal transition (EMT): a
universal process in lung diseases with
implications for cystic fibrosis
pathophysiology
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Abstract

Cystic Fibrosis (CF) is a genetic disorder that arises due to mutations in the Cystic Fibrosis Transmembrane
Conductance Regulator gene, which encodes for a protein responsible for ion transport out of epithelial cells. This
leads to a disruption in transepithelial Cl-, Na + and HCO3− ion transport and the subsequent dehydration of the airway
epithelium, resulting in infection, inflammation and development of fibrotic tissue. Unlike in CF, fibrosis in other lung
diseases including asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis has been well
characterised. One of the driving forces behind fibrosis is Epithelial Mesenchymal Transition (EMT), a process where
epithelial cells lose epithelial proteins including E-Cadherin, which is responsible for tight junctions. The cell moves to a
more mesenchymal phenotype as it gains mesenchymal markers such as N-Cadherin (providing the cells with
migration potential), Vimentin and Fibronectin (proteins excreted to help form the extracellular matrix), and the
fibroblast proliferation transcription factors Snail, Slug and Twist. This review paper explores the EMT process in a range
of lung diseases, details the common links that these have to cystic fibrosis, and explores how understanding EMT in
cystic fibrosis may open up novel methods of treating patients with cystic fibrosis.
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Background
Cystic Fibrosis (CF) is a genetic disorder that arises due to
mutations in the Cystic Fibrosis Transmembrane Conduct-
ance Regulator (CFTR) gene, which produces a protein
responsible for epithelial ion transport. This leads to a dis-
ruption in transepithelial Cl-, Na + and HCO3− ion trans-
port and the subsequent dehydration of the epithelium
within a range of organs including the respiratory system,
pancreas, reproductive system, and sweat glands [1, 2].
Foremost is the disruption to the respiratory tract, which
becomes enveloped with thickened mucus due to an
osmotically-driven reduction in airway surface liquid vol-
ume, thus reducing mucociliary clearance [2, 3], and

facilitating colonisation by pathogenic organisms. This leads
to a cycle of inflammation and infection as pathogens such
as bacteria, viruses, and fungi proliferate in the thickened
mucus of the conducting airways. The cycle of infection
and inflammation leads to fibrosis of the airways, pulmon-
ary insufficiency and bronchiectasis which together ultim-
ately leads to respiratory failure. Importantly, while there is
a failure to clear thickened mucus there also appears to be
a lack of, or dysfunction in, an auto-feedback mechanism
preventing goblet cells from continually over-producing
mucins, leading to mucus plugging and mucus plaques [4].
Fibrosis in other lung diseases including asthma, chronic

obstructive pulmonary disease (COPD) and idiopathic
pulmonary fibrosis (IPF) has been well characterised. One
of the driving forces behind fibrosis is Epithelial Mesen-
chymal Transition (EMT), a mechanism first identified in
the 1980s [5]. EMT is the process of epithelial cells losing
epithelial proteins including E-Cadherin, which is respon-
sible for tight junctions [6, 7], and the miRNA200 family
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which helps maintain an epithelial phenotype [8]. The cell
moves to a more mesenchymal phenotype as it gains mes-
enchymal markers such as N-Cadherin (providing the
cells with migration potential) [9], Vimentin and Fibronec-
tin (proteins excreted to help form the extracellular
matrix) [7, 10], and the fibroblast proliferation transcrip-
tion factors Snail, Slug and Twist [7, 11]. Furthermore,
upon the loss of the tight junctions and pseudo-stratified
phenotype, epithelial cells become flattened and take on a
stratified squamous epithelium appearance, allowing them
to migrate throughout the tissue [12, 13].
When tissue is damaged/wounded or invaded by for-

eign antigens such as viruses and bacteria, a series of
signaling cascades activate the immune system, resulting
in inflammatory responses that lead to EMT [14, 15].
Macrophages, neutrophils, eosinophils and other immune
cells are recruited to the damaged tissue and release an
array of cytokines and growth factors including trans-
forming growth factor β1 (TGF-β1) that signal the tis-
sue to repair itself [16–19]. A study looking at kidney
fibrosis estimated that during the repair process, 35% of
fibroblasts that populate the tissue under repair are
from epithelial/endothelial mesenchymal transition,
12% are derived from bone marrow (BM) via cell mi-
gration through the CXCL12/CXCR4 axis, and 30% are
resident cells [15]. However, when tissue is persistently
damaged, this leads to chronic inflammation, increased
and prolonged EMT, and increased fibroblast prolifera-
tion resulting in hyperplasia [20]. Fibroblastic cells be-
come activated to form myofibroblasts that excrete
products that create a disorganised extracellular matrix.
The accumulation of this matrix leads to permanently
damaged fibrotic tissue with an aberrant architecture
that is unable to function correctly [21, 22].
Over the last decade, the origin of proliferating fibro-

blasts during tissue repair has become a focus of a large
body of research designed to better understand and pre-
vent tissue fibrosis. The build-up of fibrotic tissue can
lead to hepatic cirrhosis, nephrogenic systemic fibrosis
and pulmonary fibrosis resulting in ongoing pathology
and scarring of the affected organs, leading to early
death unless the affected organ is removed and replaced
through transplantation [23–25].
EMT is associated with many processes, including em-

bryonic development, wound healing and tissue repair,
and cell migration. These processes are subdivided into
three distinct EMT categories:

Type 1: During embryonic implantation onto the
uterine epithelium, primitive epithelial cells in the
trophoectoderm undergo EMT and migrate within the
inner cell mass and undergo mesenchymal to epithelial
transition (MET) to form cells that will go on to form
the various organs [15, 26, 27].

Type 2: Tissue damage occurs over a prolonged period
and leads to fibrotic tissue. Despite being termed
epithelial to mesenchymal transition; this process is not
confined to epithelial cells. Endothelial cells and pericytes
have also been observed to undergo a very similar
process, indicating that this process is important for
more than just epithelial tissue repair [28–30].
Type 3: The largest body of research has been on type
3 EMT which is involved in malignant cell growth
leading to metastasis [26, 27]. With the removal of tight
junctions through down regulation of E-Cadherin,
transdifferentiated epithelial cells are free to migrate to
areas of damage through the tissue and even the
bloodstream if required. However, this process can be
utilised by cancerous cells which, after undergoing
EMT, have the potential to metastasize and form
secondary tumor growths within distant organs [31].
Once metastases have occurred, prognosis is
diminished because the cells can evade treatments
such as chemotherapy, making many treatments
redundant and potentially more dangerous than
beneficial [32, 33]. The remainder of this review will
focus on Type 2 EMT, and for convenience will be
referred to simply as EMT.

EMT signaling: A pathway to fibrotic tissue
EMT is a complex process that involves a large interactome
including protein to protein and genetic interactions that
are initiated and controlled as a response to extracellular
cues. At the forefront of these interactions is TGF-β1
which, on addition to epithelial cultures, causes the cells to
undergo EMT (Fig. 1) [7, 10]. TGF-β1 is involved in several
cellular functions including cell proliferation, cell differenti-
ation and apoptosis [34–36]. TGF-β1 performs these vari-
ous actions by directly activating a range of signaling
pathways including Smad proteins, ERK/MAP kinases and
micro RNAs [37–41], indicating that the progression of
EMT is caused by a complex cascade of multiple signal
transductions. TGF-β1 binds to target molecules on the
cellular membrane known as TGF-β type I and type II re-
ceptors (TBR-I and II) creating a cascade of signals [37].
Activation of pathway-restricted Smads form heterodimers
with Smad4 and then translocate to the nucleus. Within
the nucleus they can promote the transcription of Snail and
Twist, which together help break down E-cadherin and
subsequently the tight junctions and adherens junctions,
resulting in a leaky epithelium [42]. Apical polarity of the
cells is then lost and cells are able to detach from the basal
lamina, allowing them to break free of the tissue and
become mobile [43–45]. A range of EMT inducers act
directly or indirectly with TGF-β1, or via alternative
pathways including reactive oxygen species (ROS) that
are generated through hypoxic conditions, Fibroblast
Growth Factor-2 (FGF-2), Epidermal Growth Factor
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(EGF), Connective Tissue Growth Factor (CTGF) and
Transglutaminase 2 (TG2) which can activate matrix
bound TGF-β1 [46–49].

EMT, an underlying role in fibrotic lung diseases
Kim et al. reported that terminally-differentiated airway
epithelial cells (AECs) could transdifferentiate into fibro-
blasts and myofibroblasts and develop fibrotic tissue [50].
Using a mouse model expressing β-galactosidase exclu-
sively in lung epithelial cells, they tracked the epithelial
cells under pulmonary fibrotic conditions and found
β-galactosidase positive cells also expressing the mesen-
chymal markers α-smooth muscle actin (α-SMA) and
Vimentin, showing that lung epithelial cells can transdif-
ferentiate into other cell types. Subsequently it was shown
that EMT in various lung diseases is the underlying cause
of fibroblast, goblet cell and pneumocyte hyperplasia,
which leads to lung fibrosis [51, 52]. The following sec-
tions outline and demonstrate the role of EMT in asthma,
IPF, viral infections, COPD, and why it is important to
gain more insight into its role in cystic fibrosis.

Asthma
Asthma is an inflammation and swelling of the airways that
results in airway narrowing, goblet cell hyperplasia and air-
way hyper-responsiveness that make it difficult to breathe
[51]. Severity can range from mild to severe. Human air li-
quid interface cultures (ALI) cultures developed from the

epithelial cells of normal and asthmatic patients have been
examined for their response to TGF-β1 exposure. While
E-cadherin expression was initially lower in the asthmatic
ALIs, treatment with TGF-β resulted in significantly
decreased E-cadherin expression, whereas expression in
normal ALIs did not decrease significantly [10].
Fibronectin, which was absent without TGF-β1 exposure

in both asthmatic and normal ALIs, was then expressed
after TGF-β1 addition, but at a much greater level in
asthma ALIs [10]. Furthermore, histological analysis of the
ALI cultures revealed that markers of EMT were far more
extensive throughout the epithelial layers in asthma ALIs
compared to normal, and in the latter those markers were
primarily localised to the basal epithelial layer. Since tight
junctions within the asthmatic epithelial airways are often
disturbed, TGF-β1 released from immune cells might be
able to access and affect cell layers deeper into the epithe-
lium [42, 53]. The varying severity of asthma also appears
to alter epithelial cell responses to TGF-β1, with Johnson et
al., [9] showing that TGF-β1 had a greater effect on cells
obtained from severe asthmatic subjects [9]. A range of
markers including EFNB2, FGFR1, FGFR2, INSR, IRS2,
NOTCH2, TLE1, NTRK2 and ADAM33 are all dysregulated
in asthma patients [54, 55], and IL-22, a pro-inflammatory
cytokine produced by immune cells, is significantly elevated
in severe asthmatic subjects compared to mild asthmatic
subjects [9]. Together these studies show that EMT is asso-
ciated with asthma severity, but whether modifying the

Fig. 1 A schematic diagram of the TGF-β1 signaling cascade leading to EMT (blue arrows indicating active signal pathway, red lines indicating inhibition)
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EMT response has therapeutic applications remains to be
seen.

Idiopathic pulmonary fibrosis
Idiopathic Pulmonary Fibrosis (IPF) is a distinct variety
of progressive fibrosing interstitial pneumonia associated
with declining lung function, and is caused by increasing
amounts of fibrotic tissue that cannot be correctly
repaired by the lung [56]. To date, IPF is irreversible and
has a 5-year survival of 43% [57, 58]. Interleukin-17
(IL-17) can induce TGF-β1 gene and protein expression
in IPF animal models and IPF patients through the
Smad2/3 and ERK1/2 pathways [59], and blocking
TGF-β1 in rat models has been shown to slow disease
progression [60]. Immunohistological analysis of human
IPF patients has shown increased cell proliferation to re-
pair the tissue through increased cytokeratin 14 (CK14)
expression, a marker for airway basal progenitor cells.
E-Cadherin expression extends into the basal cells as
well as deeper into the underlying tissue and appears to
be colocalised with the N-Cadherin expression associ-
ated with mesenchymal cells, indicating that cells
throughout the epithelium are in the process of transi-
tion from epithelial cells to mesenchymal cells [13]. Re-
cently, tannic acid and triptolide has been identified as a
potential drug to slow IPF, through binding to the active
site of TGF-β1 [61, 62]. In vitro results have shown that
following tannic acid treatment, TGF-β1 induced Smad2
and Smad3 phosphorylation is diminished, reversing
morphogenic and genetic changes in epithelial cell cul-
tures [62]. Other drugs have also recently been exam-
ined, including thalidomide (inhibiting the Smad
independent pathway), Pirfenidone (inhibits myofibro-
blast differentiation through mitophagy induction lead-
ing to reduced ROS and PDGFR-PI3K and Akt
activation) and Tubastatin (Inhibits HDAC6 activated
TGF-β1-PI3K-AKT signaling leading to decreased colla-
gen type 1 expression) [63–65]. These results suggest
that despite the extensive distribution of EMT-induced
fibrosis throughout IPF lungs, retarding fibrosis may be
a possibility with the use of drugs that inhibit EMT.

Viral infections
Viral infections of the airways elicit immune responses
leading to tissue repair, and they have also been found to
induce EMT in vitro. Specific cell surface binding proteins
such as the Epstein-Barr virus (EBV) encoded latent
membrane protein 1 (LMP1) in kidneys have been found
to directly initiate EMT [66], as do secondary infections
such as enterotoxigenic Escherichia coli in intestinal epi-
thelial cells [67]. Human cytomegalovirus (HCMV), hu-
man papillomavirus (HPV), hepatitis C virus (HCV) and
respiratory syncytial virus (RSV) have been shown to in-
duce morphological changes, switch from epithelial to

mesenchymal markers, and increase proliferation and mi-
gration of non-invasive cancer cell lines [68–71]. Repeated
rhinovirus infections as a child can also increase the likeli-
hood of developing asthma [72, 73]. Minor, et al. showed
in vitro that the addition of rhinovirus (RV) was sufficient
to induce EMT, although the effect was significantly en-
hanced with the addition of TGF-β1 [74]. This effect may
be due to TGF-β1 mediated silencing of the protective
mucosal interferon (IFN)-I and III production through the
down-regulation of inducible interferon regulatory factor
1 (IRF1) expression in mesenchymal cells, which has been
shown to increase both RV and RSV replication [75].
Interestingly, the measles virus, which can infect polarised
epithelial cells, is unable to infect epithelial cells after they
have undergone EMT, likely because the measles virus cel-
lular receptor (which is still unknown) is down-regulated
during EMT [76]. Other viruses that have been shown to
induce EMT include the human immunodeficiency virus
(HIV) through the hedgehog pathway [77], and Transmis-
sible gastroenteritis virus (TGEV) through the TGF-β/
PI3K/ERK pathways [67].
Whether EMT results from a viral infection, or EMT

provides a suitable environment for viral infection are
both important notions to consider as they can each
have ramifications for diseases that result in organ fibro-
sis such as cystic fibrosis. Identifying which of these two
paths is the primary cause will allow us to understand
the fibrotic process more deeply and provide ways of
controlling it, as well as preventing secondary infections.

Chronic obstructive pulmonary disease
Chronic Obstructive Pulmonary Disease (COPD) results
from chronic inflammation, pulmonary remodeling, per-
manent airflow obstruction, and air trapping that leads to
difficulties breathing [78, 79]. EMT is present in COPD,
and in patients with COPD who are still smoking, the
leaky epithelium, goblet cell hyperplasia, and poorly
formed architecture of the airways results in more preva-
lent EMT [80–83]. Milara et al., (2013) showed in vitro
and in vivo that E-cadherin was almost absent in both
smokers and COPD patients, while collagen type 1 and
Vimentin expression was far more prevalent compared to
non-smokers [84]. From airway biopsies of COPD pa-
tients, expression of TGF-β1 and its downstream signaling
partners Smad2/3 were greatly increased in COPD pa-
tients compared to normal, with the most prominent ex-
pression around blood vessels [38]. Mahmood et al., [85]
found that there was a distinct difference between the
small and large airways, with Type 2 EMT primarily found
within the small airways leading to fibrotic tissue, and
Type 3 EMT more closely associated with large airways
leading to COPD-related cancers [85].
The canonical Wnt signaling pathway in COPD/EMT has

also been shown to be up-regulated, as indicated by
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cellular-compartment expression of β-catenin in epithelial
cells that is positively correlated with the EMT markers
Twist and Snail [80]. Amongst current smokers with and
without COPD, there was a shift from cytoplasmic to nuclear
staining for β-catenin, Twist and Snail in basal cells, reticular
basement membrane cells and lamina propria cells.
ALI cultures using COPD cell lines that are simply main-

tained and not exposed to cigarette smoke show that mes-
enchymal markers present early in the cultures are lost
over time, indicating that EMT-related fibrosis can be
halted in vitro, provided that the relevant EMT-causing
stimuli (i.e. cigarette smoking) are removed [83]. Elevated
heparin-binding epidermal growth factor (HB-EGF) has re-
cently been linked to COPD disease severity by increasing
EMT and collagen deposition [86]. However, the use of in-
haled corticosteroids can decrease EMT activity in COPD
patients through a reduction in epidermal growth factor re-
ceptor (EGFR) expression, suggesting a potential method
for slowing or halting the development of COPD [87].
Unlike the lung diseases discussed earlier, it seems that

EMT related to COPD is a direct result of cigarette
smoke, and the elimination of this stimulus can slow
down the progression of EMT induced fibrosis.

Cystic fibrosis
Research examining the involvement of EMT in CF has
been limited, focusing only on CFTR involvement in cancer
and other fibrotic diseases [88–90]. If new respiratory ther-
apeutics extend the life expectancy of CF patients by 20+
years then the CFTR deficiency in other organs may have
more severe effects on life and functioning, with CF pa-
tients already at a 17× higher risk of developing gut cancers
[91]. The mechanisms of this interaction with cancers re-
main unknown, and what effects these processes will have
should be elucidated well before they become a problem.

Linking CFTR with EMT
Pseudomonas aeruginosa infection (a key and common
infection in CF patients that results in production of an ex-
cess of largely ineffective neutrophils) can induce TGF-β1
driven EMT by activating monocytes [92]. TGF-β1 is a
known CF modifier gene that can influence the severity of
respiratory CF disease based on TGF-β1 polymorphisms as
well as environmental factors such as smoking which ex-
acerbate or reduce respiratory severity by modulating
TGF-β1 signaling [93–95].
Recently, an increase in UDP-glucose levels (an extracel-

lular nucleotide that helps regulate mucociliary clearance)
in CF lung secretions was shown to recruit neutrophils
through the upregulation of interleukins [96]. Neutrophils
have been shown to excrete neutrophil-derived elastase
which can cleave E-Cadherin [97]. The epithelial hyperpla-
sia present in the airways of CF mice, where a 5-fold in-
crease in basal epithelial cells with clonogenic/proliferative

potential has been reported [98], indicates that CF lungs
undergo increased tissue remodeling and repair, consistent
with an EMT process.
A portion of airway basal cells are progenitor cells that can

self-renew and differentiate through two basal cell sub-types;
basal stem cells and basal luminal progenitors. After epithelial
injury the basal luminal progenitor cells become either cili-
ated cells or mucin secretory cells [99, 100]. How these cells
divide and expand throughout the injured epithelium to re-
pair the wound is still largely unknown, but it is possible that
basal cells in these circumstances undergo at least a partial
EMT process. This clonal expansion may not just be an in-
flammatory response, but potentially driven by the CFTR de-
ficiency itself. Recently, TG2 (an EMT inducer that works
throughTGF-β1) was found to be elevated in vitro in CF epi-
thelial cell cultures leading to increased TGF-β1 and EMT
induction. Inhibition of TG2 could reverse the EMT process,
lower TGF-β1 gene expression, reduce the amount of extra-
cellular matrix bound TGF-β1 and stabilise CFTR [49].
The close association of EMT (Particularly type-3 EMT

which leads to metastasis) with cancer led to the identifica-
tion that CFTR is often down-regulated in metastatic can-
cer cells [88, 101]. Maloney et al., (2016) showed higher
levels of circulating TGF-β1 in CF patients [102]. TGF-β1
decreases CFTR expression through the p38 MAPK path-
way and interestingly this was shown to occur prior the
classical EMT E-Cadherin to N-Cadherin shift with low
TGF-β1 concentrations [103]. E-Cadherin/N-Cadherin
co-localisation along with CFTR downregulation through-
out ALI cultures treated with TGF-β1 has been reported
and suggested that this is evidence that EMT is not occur-
ring [104]. However, this phenomenon was also shown by
Jonsdottir et al. who suggest that this may just be an inter-
mediate phase in the EMT process [13].
The recent insights into the roles of micro RNAs have

shown that they are key factors in both CFTR regulation
as well as EMT with miR1343 binding to the 3’UTR of
TGFRβ 1 and 2, resulting in unstable mRNA transcripts
thus reducing the level of TGF-β1 signaling while miR145
which is upregulated due to TGF-β1 binds to the 3’UTR
of CFTR causing reduced CFTR expression [41, 105].
The addition of TGF-β1 to non-invasive breast cancer

cells caused the cells to undergo type-3 EMTas seen by the
decrease in E-cadherin, but interestingly CFTR was also
down-regulated [88]. To determine whether CFTR
down-regulation was connected with E-cadherin
down-regulation and EMT, rather than just a side effect of
TGF-β1 addition, the non-invasive cells were treated with a
CFTR inhibitor, resulting in a decrease in E-cadherin ex-
pression [101]. When a metastatic cancer cell line was
made to over-express CFTR, upon subcutaneous injection
into mice a reduced number of metastatic lung growths re-
sulted compared to the same cell line without CFTR
over-expression [88].
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The direct implication of CFTR in cancer progression is
still somewhat controversial since CFTR has not yet been
connected in any direct signaling pathways, however, CFTR
may act by regulating intracellular Cl− concentrations
[106], and so influencing the intracellular environment.
C-Src (a tyrosine kinase) has also been linked to EMT

[107, 108], and also found to be regulated by CFTR. Al-
though CFTR normally suppresses the oncogene c-Src,
when CFTR is impaired c-Src is up-regulated [109]. c-Src
is highly expressed in 60% of cancers and is involved in
cell proliferation, cell survival, angiogenesis and invasion
pathways [110]. The transcription factor NFkB is activated
by c-Src which in turn up-regulates genes such as MUC1,
a glycoprotein normally present in lung mucus and is
required for mucociliary clearance, but is also highly
secreted in CF causing increased mucus to build up and
creating an environment for bacterial infection [111]. As a
result, in a paracrine fashion c-Src could affect cells that
don’t normally express CFTR. c-Src levels in cells from
CFTR knockout animal cell lines can be returned to nor-
mal with the addition of an IL-1β inhibitor [112].
CFTR is down regulated in COPD patients [113, 114],

and cigarette smoke has been identified as a possible initial
cause of this down regulation through a rise in cytoplasmic
Ca2+ which potentially prevents normal sorting/degradation
of CFTR, and results in the rerouting of the CFTR protein
from cellular membrane to aggresomes. Chelation of Ca2+

prevented this rerouting and maintained normal CFTR ac-
tivity on the cellular membrane [90].
Whether CFTR/c-Src/MUC1 interaction is directly in-

volved in the development of hyperplasia and the in-
creased number of stem cells in CF lungs is not known,
but significant therapeutic possibilities warrant investi-
gating the role of both type-2 and type-3 EMT in CF
lung disease. Ultimately, if EMT is linked to CFTR dys-
regulation, then using methods to block EMT, such as
small molecule drugs like Kaempferol and TGF-β1 re-
ceptor kinase inhibitors may assist in reducing both
hyperplasia and lung fibrosis [115, 116].

EMT increases cell plasticity
EMT is a complex physiological response process that oc-
curs when tissues are damaged. There is increasing evi-
dence that the traditional concept that once cells had
terminally differentiated they would carry out their function
before dying and being replaced by a progenitor cell that
differentiates into the required cell type, is outdated. It now
appears that ‘terminally differentiated’ cells may in fact be a
source of these progenitor cells, and indeed Cre lineage tra-
cing experiments in mice show that Club cells can act as a
source of progenitor cells for the ciliated cells of the lung
[117]. The inhibition of TGF-β1 after EMT induction does
result in a transition of the mesenchymal cells back into
epithelial cells [10], however the stem cell potential of these

de-differentiated epithelial cells may be far wider than the
original epithelial cell type. Battula et al., reported that once
epithelial cells had undergone EMT in vitro, they were then
capable of differentiating down the osteogenic, adipogenic
and chondrogenic lineages. These de-differentiated epithe-
lial cells also expressed markers that are associated with
mesenchymal stem cells (MSC), while maintaining some
markers of epithelial cells [118]. The residence of MSCs
within organs is unknown, raising the question; are MSCs a
niche population of cells within tissues, or are they various
cell types that can transdifferentiate into other cell types. In
bone marrow MSCs, various populations of cells have
markers that are associated with specific cell lineages,
resulting in them preferentially differentiating down those
cell lineages [119, 120]. The capability for preferential dif-
ferentiation is well established amongst MSC isolates from
different tissues such as dental pulp, which preferentially
differentiate down the odontogenic and neurogenic path-
way [121]. A micro-array of human mammary epithelial
cells that have been induced to undergo EMT were com-
pared to bone marrow isolated MSCs showed 70% similar-
ity in expressed genes, with 15% of the differentially
regulated genes being epithelial markers left from prior to
EMT induction [118].
Therefore, if MSCs are indeed de-differentiated cells that

were once thought to be terminally-differentiated, this
change in viewpoint may allow us to approach controlling
the EMT process, to manipulate and direct tissue regener-
ation, particularly in CF patients where diagnosis is typically
neonatal and well before fibrosis of tissue begins to occur.

Conclusion
In conclusion, EMT is a universal and normal process in-
volved in tissue repair, but EMT dysregulation can lead to fi-
brosis. These processes have already been well studied in a
range of lung diseases. While EMT is less understood in the
pathology of CF, studies do show the involvement of CFTR
in the EMT process, particularly in Type 3 EMT, where
there has been compelling evidence of its involvement in
cancer progression in lung, gut, liver and breast cancer. Type
2 EMT involvement in CF should be explored further to
understand the process in the airways of CF patients as the
results may provide novel insights into the causes and effects
of the dysregulated cellular pathways, potentially providing a
future means for preventing or limiting CF related airway
disease. As treatments for CF lung disease improve, an im-
proved understanding of EMT in CF lung disease may also
benefit our understanding of CF disease in other organs.
While there are several strategies being developed to slow or
halt CF lung disease [122], where that disease already exists
there remains a need to restore tissue architecture through
resolution of the fibrotic response. A fuller understanding of
the mechanisms behind EMTand lung fibrosis may allow us
to prevent, halt or even reverse the fibrosis process.
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