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ABSTRACT As a technique to help achieve high performance in parallel and distributed heterogeneous
computing systems, task scheduling has attracted considerable interest. In this paper, we propose an
effective Cuckoo Search algorithm based on Gaussian random walk and Adaptive discovery probability
which combined with a cost-to-time ratio Modification strategy (GACSM), to address task scheduling
on heterogeneous multiprocessor systems using Dynamic Voltage and Frequency Scaling (DVFS). First,
to overcome the shortcomings of poor performance in exploitation of the cuckoo search algorithm, we use
chaos variables to initialize populations to maintain the population diversity, a Gaussian random walk
strategy to balance the exploration and exploitation capabilities of the algorithm, and an adaptive discovery
probability strategy to improve population diversity. Then, we apply the improved Cuckoo Search (CS)
algorithm to assign tasks to resources, and a widely used downward rank heuristic strategy to find the
corresponding scheduling sequence. Finally, we apply a cost-to-time ratio improvement strategy to further
improve the performance of the improved CS algorithm. Extensive experiments are conducted to evaluate
the effectiveness and efficiency of our method. The results validate our approach and show its superiority in
comparison with the state-of-the-art methods.

INDEX TERMS Task scheduling, DVFS, cuckoo search algorithm, heterogeneous multiprocessor system.

I. INTRODUCTION
Modern High Performance Computing (HPC) systems, such
as Tianhe-2 [1] and Sunway TaihuLight [2], typically consist
of heterogeneous computing components interconnected by
a high speed network. Such systems are expected to be used
for fast processing of computationally intensive applications
with different computing needs. These applications often
have certain time constraints. Because high energy consump-
tion is a bottleneck for the deployment of HPC systems,
a major research challenge for heterogeneous HPC systems
is how to provide services to applications in such a way that
minimizes energy consumption while satisfying the applica-
tions’ time constraints.

Due to the importance of energy consumption, vari-
ous techniques have been developed, such as DVFS, con-
solidation virtualization and duplication [3], [4]. Among
them, DVFS has been shown to be a very promising
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technique, and has been widely used in energy-aware
scheduling to make processors energy-efficient [3], [5]–[8].
DVFS reduces energy consumption by scaling down sup-
ply voltage/frequency of processors [9]. When a real-time
application executes on a heterogeneous multiprocessor sys-
tem with DVFS technique, it contains three phases, namely,
task prioritizing, processor selection and power supplying
phases [3], [10]. The task scheduling problem on heteroge-
neousmultiprocessor systems has been proved to be NP-hard,
as its time complexity grows exponentially on the choice of
number for voltage settings [3], [11].

It is difficult to find an effective way to solve the above
problems, because a processor has several voltage settings,
and the same task has different processing times and energy
consumption levels when executing on different proces-
sors. Traditional scheduling studies focus on heuristic-based
algorithms, which are often based on greedy local opti-
mal selection for some heuristic strategies [3], [12], [13].
However, due to the greedy nature, heuristic-based meth-
ods can not always produce consistent results for different
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problem instances [3], [12]. Because of the high adaptabil-
ity, many well-known meta-heuristic algorithms have been
adopted, including Genetic Algorithms (GA) [12], [14]–[19],
and [20], Simulated Annealing algorithms (SA) [21], [22],
Quantum-inspired Hyper-heuristics Algorithms (QHA) [3],
[16], Ant Colony Optimization (ACO) [23]–[26], etc. How-
ever, the search process of the meta-heuristic algorithm varies
from problem to problem, and has the disadvantages of large
randomness, low global search efficiency, and premature con-
vergence in the late iteration.

Although there have been many studies on task schedul-
ing, energy-aware task scheduling using DVFS technique
still faces many challenges. First of all, due to its greedy
nature, existing heuristic algorithms are unable to obtain
a consistently good scheduling scheme in complex situa-
tions [27]. Secondly, many existing random search algorithms
have high time complexity and low search efficiency, and
their search performance needs to be improved [3]. Since
each scheduling technique has its pros and cons, and dif-
ferent techniques may complement each other, hybrid algo-
rithms as an effective way to improve algorithm performance
appeared. The Cuckoo Search (CS) algorithm, proposed by
Yang and Deb in 2009, can solve the optimization problem
by simulating the behavior of brood-parasitism and lévy
flights [28], [29]. It has the characteristics of simple structure,
fast search speed, and few parameters, and some studies
have shown that the CS algorithm is more efficient than
some swarm intelligence algorithms such as GA, the Arti-
ficial Bee Colony (ABC) algorithm and the Particle Swarm
Optimization (PSO) algorithm, etc., [28]–[37]. CS has been
widely used for solving optimization problems in engineering
applications, thus using it to search task graph scheduling
is expected to improve the scheduling quality and shorten
the search speed. Therefore, in this paper, we propose an
improved cuckoo search algorithm combined with a heuristic
modification strategy. By combining these algorithms, we can
maintain their complementary advantages and achieve better
universality.

The standard CS algorithm can easily fall into local opti-
mum when solving complex problems, and has the disad-
vantages of low solution accuracy [31]–[34]. In order to
overcome this shortcoming, we propose a Cuckoo Search
algorithm based on Gaussian random walk and Adaptive dis-
covery probability (GACS). We use chaos variables to initial-
ize populations to maintain population diversity, a Gaussian
randomwalk strategy to balance the exploration and exploita-
tion capabilities of the algorithm, and an adaptive discovery
probability strategy to improve population diversity. In this
paper, we apply the GACS algorithm to assign tasks to the
processors and their voltage states, and then use a widely used
downward rank heuristic to find the corresponding schedul-
ing sequence, and a cost-to-time ratio heuristic strategy to
further improve the performance of the GACS.

The four main contributions of this paper are listed below.
(1) We propose an improved cuckoo search algorithm

deploying Gaussian random walk and adaptive discovery

probability, which can effectively balance exploration and
exploitation capabilities of the CS algorithm.

(2) We use an Adaptive Fitness Transformation (AFT)
method to solve the performance-constrained energy opti-
mization. As far as we know, this is the first time that
AFT method is applied to task scheduling problem.

(3) We propose a improvement strategy on cost-to-time
ratio to improve the performance of the GACS algorithm,
which can further reduce energy consumption under perfor-
mance constraint.

(4) The simulation results reveal that our algorithm
has better performance compared with the state-of-the-art
algorithms.

In this work, we propose the GACSM algorithm to study
energy-aware task scheduling problem with DVFS. The goal
of our task scheduling problem is to allocate tasks to avail-
able processors to meet the precedence constraints of these
tasks, so as to minimize energy consumption under certain
time constraints. The difference between GACSM and other
algorithms is that our algorithm combines a heuristic modi-
fication algorithm with the improved CS algorithm, and we
use single population strategy and AFT method. We propose
the GACSM algorithm, which utilizes a chaotic search strat-
egy, Gaussian random walk strategy and adaptive discovery
probability strategy, and combines with the cost-to-time ratio
modification strategy, tominimize energy consumption under
a time constraint for task scheduling on heterogeneous com-
puting systems with DVFS. The average complete computing
time of our algorithm is shorter than two advanced algorithms
with respect to different graph sizes under 1000 evalua-
tions for 30 runs. We perform extensive experiments using
real-world graphs and 18 randomly generated graphs. The
results verify that our algorithm has good search accuracy
and search efficiency, and is superior to the state-of-art
algorithms.

The remainder of this paper is organized as follows.
Section 2 reviews some existing related studies on task
scheduling on heterogeneous systems. Section 3 describes
the model of heterogeneous systems. Section 4 presents our
GACSM algorithm. Section 5 reports our experiment results.
Section 6 concludes the paper.

II. RELATED WORK
Static task scheduling of applications on multiprocessors
has been widely studied [5], [38]. The proposed scheduling
algorithms can be classified as heuristic-based and meta-
heuristic. Heuristic-based scheduling algorithms typically
find a scheduling scheme in polynomial time based on
incomplete information [39]–[44]. Topcuoglu et al. in [38]
proposed two classical algorithms: Heterogeneous Earli-
est Finish Time (HEFT) and Critical Path On a Processor
(CPOP). Metaheuristic scheduling algorithms usually use the
technique of random search [45]–[48]. Metaheuristic algo-
rithm usually generates schedules of better quality than that
of heuristic-based algorithm; however, due to the low search
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TABLE 1. Summary of energy-aware task scheduling with DVFS.

efficiency, its computation cost is much higher than that of
heuristic-based algorithm [3], [15].

Many studies have been conducted for energy-aware
task scheduling on processors with DVFS (see Table 1).
Most of them either focused on homogeneous computing
systems [49] and independent task scheduling [49], [51],
[52], [58], [61], or have very high computational cost [3],
[53], [54]. For the continuous DVFS situation, there are
some studies that considered reducing energy consump-
tion [8], [50], [55]. However, since many scheduling prob-
lems are discrete in reality, energy-aware task scheduling
becomes quite complex in this case. For the discrete DVFS
situation, the authors in [3], [5], [7], [27], [49], [51]–[54],
[56]–[62] investigated the scheduling problems. However,
some of them adopted the strategy of shutting down the pro-
cessors in the system [56], [57], which is unreasonable in real-
ity [7]. Lee and Zomaya in [5] proposed an Energy-Conscious
Scheduling (ECS) algorithm, and the authors in [27] proposed
an Energy Aware task scheduling in the context of Service
Level Agreement (EASLA). These approaches are mainly
based on heuristic methods which are not agile for different
application situations [7], [27]. The work [3] proposed a
quantum-inspired hyper-heuristics algorithm (QHA), but its
computational cost is too high and its scheduling results may
violate the precedence constraint of the tasks [63].

The authors in [26] proposed an ImprovedMulti-Population
Co-evolution Ant Colony Optimization (ICMPACO) algo-
rithm, which is based on the multi-population strategy,
co-evolution mechanism, pheromone updating strategy and
pheromone diffusion mechanism. The ICMPACO algorithm
uses a positive feedback mechanism, which is different from
our GACS algorithm. In the ICMPACO algorithm, each
individual can only perceive local information and cannot
directly use global information, while our GACS algorithm
can share information through the current optimal individual.
In this work, we address the performance-constrained energy
optimization problem for task scheduling on heterogeneous
computing systems with DVFS by combining the GACS
algorithm and a cost-to-time ratio modification strategy.

III. THE MODELS
In this section, we discuss the mathematical models of hetero-
geneous multiprocessor systems with dynamically variable
voltage. We assume that the heterogeneous multiprocessor
system in this work has the following characteristics [12]:
(1) non-preemptive; (2) fully interconnected network;
(3) task duplication is prohibited; (4) communication links
with different startup time and bandwidth; (5) each processor
has an independent I/O unit that allows for communication
and computation to be performed simultaneously [9], [12].

A. SYSTEM MODEL
We assume that the system consists of a set of heteroge-
neous processors P = {P1,P2, · · · ,PM } that are fully inter-
connected by a high-speed network, where M represents
the number of heterogeneous processors and each processor
Pj ∈ P is DVFS-enabled with a finite numer of h(k) different
voltage supply levels [3]. Let Vk = (Vk1, · · · ,Vkh(k)) be
the voltage supply vector of Pk , where Vkr is the voltage
corresponding to the r th Voltage Supply Level (VSL) of
processor Pk . Specially, we denote Pkr as the processor Pk
under supply voltage Vkr . When processor Pk is idle, its
supplied voltage Vkh(k) is minimal [3].

B. APPLICATION MODEL
Let a task graph G = (T ,E) be a Directed Acyclic
Graph (DAG) composed of a set of tasks T = {T1, · · · ,TN },
where vertex set T represents tasks, edge set E represents
execution precedences among tasks, and N is the number
of tasks. We assume that each task can only be executed
sequentially without preemption in the same processor. There
is an entry task and an exit task in a DAG. The vertex
weight, denoted asDw(Ti), which represents the computation
amount of task Ti. Each edge eij ∈ E represents a precedence
constraint between Ti and Tj and implies that if Ti → Tj,
then Ti is the predecessor of Tj and Tj is the successor of
Ti [15], i.e., the output of Ti has to be transmitted to Tj
before Tj start its execution [5]. The edge weight is denoted
as Cw(Ti,Tj), which represents the communication amount
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FIGURE 1. Example of DAG.

TABLE 2. Important notations in this work.

between task Ti and Tj. An example of DAG is showed
in Fig. 1, which shows a DAG of nine tasks that need to be
assigned to the given number of available processors. The
weight 3.2 of T3 represents the computation amount of T3
denoted as Dw(T3) = 3.2, and the edge weight 2 between
T1 and T3 indicates the communication amount denoted as
Cw(T1,T3) = 2.

The precedence constraints of tasks are known a priori
and remain unchange during scheduling and task execution.
When scheduling the tasks of DAG to the processors, it is
necessary to satisfy the precedence constraints among tasks
and the availability of the processors.

Let Bikr be the processing time of task Ti on Pk with Vkr ,
and Sr(Vkr ) be the relative speed when Ti is executed on Pk
with Vkr . Then Bikr can be expressed as

Bikr =
Dw(Ti)
Sr(Vkr )

(1)

The communication between tasks assigned to different
processors is performed through message passing over the
bus [7]. If the data that a task needs to read is available in
the local memory, inter-processor communication will not
occur [9]. When Ti and Tj are scheduled to the same pro-
cessor, the communication time is zero as the intra-processor
communication can be ignored [3], [7], [9].

If Ti and Tj are assigned to different processors, then
the communication cost incurs [3], [7]. Suppose that Ti is
assigned to processor Pk and Tj is assigned to processor Pl .
Let D(Pk ,Pl) be data transfer rates between processor Pk
and processor Pl , and Cs(Pk ) be the communication startup
time of processorPk [15]. The communication timeC(Ti,Tj),
which represents the time spent in transferring data from Ti to
Tj, is measured in seconds. Thus, C(Ti,Tj) can be expressed
as

C(Ti,Tj) =

{
0, if k = l,
Cs(Pk )+

Cw(Ti,Tj)
D(Pk ,Pl )

, if k 6= l.
(2)

Let EFT (Ti) be the earliest finish time of task Ti on pro-
cessor Pk given supply voltage Vkr . Then EFT (Ti) is defined
as

EFT (Ti) = EST (Ti)+ Bikr , (3)

addedwhere EST (Ti) represents the earliest start time of
task Ti. EST (Ti) can be expressed as

EST (Ti) =


0, if Ti = Ten
max{eavt(Pk ),
max

Tj∈pr(Ti)
{EFT (Tj)+ C(Ti,Tj)}}, otherwise

(4)

where eavt(Pk ) represents the earliest available time when
Pk is ready for task schedule, pr(Ti) is the immediate prede-
cessor task set of task Ti, and Ten represents the entry task.

LetMs(G) be the makespan (scheduling length) ofG. Then
Ms(G) is defined as [3]

Ms(G) = max
Ti∈T

EFT (Ti). (5)

C. ENERGY CONSUMPTION MODEL
The energy consumption consumed by processors, power
supply modules, memory and fans varies under different
workload in high-performance computing systems [64], [65].
Some studies show that processors are the main consumers
of system energy [64], [65]. In this work, we focus on the
energy consumption of the processors. We assume processors
are based on the Complementary Metal Oxide Semiconduc-
tor (CMOS) technology [3], [5], [66]. The power consump-
tion is dominated by dynamic power dissipation Pd , which is
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defined as

Pd = CV 2F, (6)

whereC is the effective switched capacitance, V is the supply
voltage, andF is the processor clock frequency. SinceF ∝ V ,
soPd = λV 3, where λ represents a parameter that differs with
each type processor [3].

The dynamic energy consumption of all the tasks executed
can be expressed as [3]

Ed =
M∑
k=1

∑
Ti∈Uk

λkV 3
krBikr , (7)

where Uk is the task set on processor Pk . Obviously, Uk is a
subset of T .
The total idle energy consumption of all the idle nodes

is [3]

Ei =
M∑
k=1

Ms(G)− ∑
Ti∈Uk

Bikr

 λkV 3
kh(k)

 . (8)

where Vkh(k) is the minimum supply voltage on Pk .
Let E(G) be the total power consumption of a task graphG,

then it can be calculated as [3], [5]

E(G) = Ed + Ei. (9)

D. PROBLEM MODEL
The problem of performance-constrained energy optimiza-
tion we study in this paper is defined as:

Minimize : E(G), (10)

subject to:

EST (Ti) ≥ EFT (Tj),Tj ∈ pr(Ti),

Ms(G) ≤ S. (11)

where E(G) represents the total energy consumption of task
graphG, and S represents the time constraint of task graphG.

IV. ALGORITHM FRAMEWORK
In this section, wewill present the framework of our improved
cuckoo search (GACSM) algorithm deploying Gaussian ran-
dom walk and adaptive discovery probability and combined
with a modification strategy.

In order to take the advantages of GACS-based and
heuristic-based algorithms and avoid their disadvantages,
we use an approach by combining GACS algorithm and
heuristics. In this paper, we apply the GACS algorithm to
assign task to the processor and its voltage state. In our algo-
rithm, after obtaining the task-to-resource mapping scheme,
we use a widely used downward rank heuristic to calculate
the task priority according to the mapping results, and then
we can evaluate the fitness value f (xi) and constraint violation
degree v(xi).
Firstly, we call the chaos method to create an initial

population P0 (line 2). Secondly, if the random number

Algorithm 1 GACSM
Require: Parameters for GACSM and task scheduling.
Ensure: A task schedule.
1: g = 0;
2: Call Algorithm 2 to create an initial population P0;
3: repeat
4: g = g+ 1;
5: Pg = Pg−1;
6: if the random number r2 ≤ rank(i)/Np then
7: Generate new individuals by using Eq.(17) and xx

xx x obtain new population P
′g−1;

8: end if
9: Pg=ChooseBestIndividual(Pg−1,P

′g−1)
(Algorithm xx3);

10: Get cuckoo with eggs randomly by lévy flights;
11: Choose nest j randomly among Pg;
12: if xk is better than xj then
13: replace xj by the new individual xk ;
14: end if
15: Abandon a fraction Pa of worst nests by using Eq.(19)

xxand build new ones via Eq.(20);
16: Obtain new population Pgnew;
17: Pg = Pgnew;
18: until the stopping criterion is reached;
19: Call modification strategy to further improve the popula-

tion Pg(Algorithm 4);
20: return the best solution of schedule.

r2 ≤ rank(i)/Np, where rank(i) represents the order in which
the individual xgi is in the population according to the fitness
value from small to large and Np represents the population
size, then we use the Gaussian random walk strategy to
balance the exploration and exploitation capabilities of the
algorithm by Eq.(17) (line 6-8). Then, we select Np better
individuals in population P,P′ (line 9). Thirdly, in line 10-16,
we perform the CS operator. Among the CS operator,
we abandon a fraction Pa of worst nests by using Eq.(19) and
build new ones via Eq.(20) (line 15).

The loop iterates until the stopping criterion is reached.
After performing GACS, we use the cost-to-time ratio strat-
egy to improve its performance (line 17). The outline of
GACSM is depicted in Algorithm 1.

A. CUCKOO SEARCH
The CS algorithm is an emerging biological heuristic algo-
rithm proposed by Yang and Deb in 2009 which simulates
the brood parasitism behavior of cuckoos. Because of its sim-
plicity and easy implementation, CS has been successfully
applied to solving practical problems such as engineering
optimization, and widely accepted in the field of intelligent
algorithms [32]–[37]. Its main idea is below:

When generating a new solution xg+1i , a lévy flight is
performed as follows

xg+1i = xgi + α ⊕ Lévy(β), (12)
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where α represents the step size, xg+1i the next generation
solution, xgi the current generation solution, and product ⊕
the entry-wise multiplications. Lévy(β) represents the lévy
random number. For the convenience of calculation, the lit-
erature [29] uses the Eq.(13) to calculate the lévy random
number

Lévy(β) ∼
µ

||ν||1/β
, (13)

where µ and ν are the random numbers of normal distribu-
tions satisfying the following conditions:

θ2µ = [
0(1+ β) · sin(πβ/2)

0((1+ β)/2) · β · 2(β−1)/2
]1/β , θ2ν = 1

CS discards some inferior solutions by a discover probabil-
ityPa, and then regenerates the same number of new solutions
by using preference random walks:

xg+1i,d = xgi,d + r1(x
g
j,d − x

g
k,d ) (14)

where xgj,d , x
g
k,d represents two randomly selected solution,

and r1 is a uniformly distributed random number in the inter-
val (0,1).

B. CUCKOO SEARCH ALGORITHM BASED ON GAUSSIAN
RANDOM WALK AND ADAPTIVE DISCOVER PROBABILITY
(GACS)
1) CHAOS METHOD
We use the chaos method to initialize the population. The
nature of chaos is random, unpredictable, and regular. Search-
ing by chaos method can make the algorithm jump out of
local optimum, maintain population diversity, and improve
global search ability [67]. In this paper, an ergodic chaos
mapping is introduced to transform the initial variables into
chaos variables. The sinusoidal iteration formula is adopted
as follows

cf jk+1 = sin(cf jkπ ), (15)

where cf jk is a randomly generated number of interval (0,1),
j = 1, · · · ,N ; k = 0, 1, · · · ,MaxCh, MaxCh is the maxi-
mum numbers of chaotic iterations, and N is the number of
tasks.

The sinusoidal iteration formula Eq.(15) is introduced into
the process of population initialization, and the population
variable transformation formula is as follows

x ji = x jmin + cf
j
k (x

j
max − x

j
min), (16)

where x jmin and x
j
max are the lower and upper limits of the jth

dimension variable, respectively.

2) GAUSSIAN RANDOM WALK STRATEGY
Since Gaussian random walk strategy has strong local
exploitation ability [68], [69], we use this strategy to generate
a new random population, which can balance the global
exploration and local exploitation ability of the algorithm.
We use individual fitness values to determine individual per-
formance. Let rank(i) be the order in which the individual xgi

Algorithm 2 Chaos Method
for i = 1 to Np do
for j = 1 to N do
Randomly generate cf j0 in the interval (0, 1);
for k = 1 to MaxCh do
cf jk = sin(cf jk−1π )

end for
x ji = x jmin + cf

j
k (x

j
max − x

j
min);

end for
end for
return the generated Np individuals as the initial popu-
lation.

is in the population according to the fitness value from small
to large,Np be the population size, and r2 be a randomnumber
of interval [0, 1]. If the randomnumber r2 ≤ rank(i)/Np, then
xg+1i is operated as follows

xg+1i = Gaussian(xgb , ξ )+ r3 · (x
g
b − x

g
i ) (17)

where xgi is the ith candidate solution in the population, and
xgb is the best solution. r3 is a random number of
interval [0, 1], and ζ is defined as

ξ =
1
g3/5
· (xgb − x

g
i ) (18)

Using the best individual to guide the poor individual can
help the poor individual to move toward the best individ-
ual, which can speed up the convergence of the algorithm.
This strategy mainly operates on poor individuals with a
high probability, which increases the efficiency of algorithm
evolution. In addition, the Gaussian distribution is controlled
by the adaptively adjusted variance ξ . In the early stage of
the algorithm, the value of the variance ξ is large, which
helps maintain the global exploration ability of the algorithm;
the value of the variance ξ decreases with the increase of
the number of iterations g, which helps to improve the local
exploitation ability of the algorithm.

3) ADAPTIVE DISCOVER PROBABILITY
The CS algorithm discards some worse nests at a probabil-
ity Pa, and continue searching from the rest. It determines
a suitable probability Pa. If Pa is too small, it is difficult to
generate new individuals. If Pa is too large, the algorithm
will become a pure random search algorithm. Therefore,
the convergence of the CS algorithm is affected by choosing
an appropriate Pa. In the standard CS algorithm, the value of
Pa is usually equal to a constant number. Intuitively, a fixed
Pa is likely to reduce the convergence performance of the
algorithm. To overcome this problem, We use the following
dynamic adaptive mechanism to adjust the discover probabil-
ity Pa:

Pa = (Pmax − Pmin)
(

fi − fmin
fmax − fmin

)2

+ Pmin, (19)
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TABLE 3. Voltage-relative speed pairs.

Algorithm 3 ChooseBestIndividual(P,P′)
Calculate fitness value f (xi) and constraint violation
degree v(xi) of each individual in P;
Calculate the proportion φ1 of feasible solutions in P;
Calculate the transformed fitness value ffit (xi) by AFT
method according to φ1;
Calculate fitness value f (x ′i ) and constraint violation
degree v(x ′i ) of each individual in P

′;
Calculate the proportion φ2 of feasible solutions in P′;
Calculate the transformed fitness value ffit (x ′i ) by AFT
method according to φ2;
if ffit (P′) < ffit (P) then
return P′;

else
return P;

end if

where fi represents the fitness of the the current solution
xi, fmin is the minimum fitness of all solutions, and fmax is
the maximum fitness of all solutions. Pmax ,Pmin are two
parameters in the interval (0,1).

It can be seen from Eq.(19) that the closer the solution is
to the optimal solution, the smaller the Pa is, which makes
the solution more likely to be retained to the next generation.
When the difference between the fitness of the current solu-
tion and the optimal solution is large, the Pa is large, which
makes the solution to be discarded easily.

Let r4, r5 be a random number in the interval [0,1].
If r4 ≤ Pa, then the individual x

′g+1
i is operated as follows:

x
′g+1
i =

{
xg+1i + (r6x

g+1
j − r7x

g+1
k ), r5 ≤ 0.5

xg+1i + r8(x
g+1
b − xg+1j ), otherwise.

(20)

where xg+1b is the best individual, xg+1j , xg+1k are two ran-
domly selected different individual, r6, r7 are two uniformly
distributed random number in the interval [0,1], and x8 are a
random number of interval [0, 1]. It can be seen that through
individual screening strategy, individuals with poor fitness
are more likely to be discarded, and new individuals are gen-
erated according to Eq.(19). At the same time, Eq.(20) uses
two different types of mutation operators, namely random
search and mutation operator of optimal individuals, in order
to enhance the exploratory ability of the algorithm while
improving its development ability.

FIGURE 2. Nest’s position.

C. ENCODING OF SOLUTIONS
We first show the priority queues for DAG applications, and
then present the encoding mechanism of task scheduling.

1) TASK PRIORITY CALCULATION
We use a widely used downward rank heuristic to calculate
task priority by strategy [15]. Its definition is below:

Let Rk(Ti) be the downward rank of a task Ti on Pk given
supply voltage Vkr , then Rk(Ti) can be defined by Eq.(21):

Rk(Ti) = max
Tj∈pr(Ti)

(Bikr + C(Ti,Tj)+ Rk(Tj)), (21)

where pr(Ti) denotes the set of immediate predecessors of
task Ti.

2) NEST REPRESENTATION
For mapping tasks to resources, we first divide the voltage
supply levels of a processor into non-idle and idle volt-
age supply levels. Then we encode the non-idle voltages
supply levels of all processors in turn. Each processor has
several non-idle voltages supply levels, and each non-idle
voltage supply level corresponds to a unique index number
(see Table 3). Finally, we can determine the corresponding
processor based on the index of the non-idle voltage supply
level, and use Eq.(8) to calculate the total energy consumption
of all the idle nodes. The encoding of solutions is chosen
randomly from 1 to Ntv, where Ntv is the total number of the
non-idle voltage supply levels.

Cuckoo search works on the problem with continuous
space, but the problem of graph scheduling is a problem of
discrete space, so we need to discretize the space. In our algo-
rithm, the dimension of individual xi = (xi1, · · · , xiN ) is N ,
which is consistent with the tasks number of DAG. If there
are Ntv non-idle voltage states, each task can be assigned
to voltage states in the range of 1, · · · ,Ntv. We set xij(j =
1, · · · ,N ) in the range (0.5,Ntv+ 0.5), and then rounded the
xij value to the nearest whole number. For example, the value
of 10.9 in the fourth dimension in Fig. 2 indicates that task T4
is assigned to a processor of pair3 with the non-idle voltage
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FIGURE 3. Task to resource mapping.

index of 11 (see Fig. 3), i.e., task T4 is executed on a processor
with a voltage of 1.9 and a relative speed of 0.85.

D. CONSTRAINT HANDLING STRATEGY
We apply constraint optimization for the GACS search
process. Constrained optimization problems are usually
expressed as follows:

min f (x)

s.t. gj(x) ≤ 0, j = 1, · · · , q

hk (x) = 0, k = q+ 1, · · · , p. (22)

where x ∈ ω ⊆ Sp represents the decision vector, ω repre-
sents the feasible area, and Sp represents the search space.
Usually, this constraint is transformed into the following

inequality constraint:

|hk (x)| − η ≤ 0, k = q+ 1, · · · , p, (23)

where η represents tolerance factor, and it usually greater
than 0. Then the degree of constraint violation of an individual
on jth constraint can be evaluate as

Gj(x) =
{
max{0, gj(x)}, j = 1, · · · , q
max{0, |hk (x)| − η}, k = q+ 1, · · · , p

(24)

Then, the total degree of standardization constraint
violation v(x) of individual x can be calculate as

v(x) =
p∑
j=0

Gj(x). (25)

In order to deal with the constrained optimization problem,
the authors proposed an Adaptive Fitness Transformation
(AFT) method to divide the population into three states:
infeasible state, semi-feasible state and feasible state [70].
(1) Infeasible state: In the infeasible state, the population

only contains infeasible solutions. In this case, only the
degree of constraint violation needs to be considered,
and its fitness value can be calculated as follows [70]

ffit (xi) = v(xi) (26)

(2) Semi-feasible state: In the semi-feasible state, the pop-
ulation contains not only several feasible solutions but
also some infeasible solutions. In this case, the pop-
ulation is divided into feasible solution set (W1) and
infeasible solution set (W2). Therefore, the objective
function value f ′(xi,g) of solution xi,g can be converted
as [70]

f ′(xgi ) =


f (xgi ), i ∈ W1,

max{φ × f (xgb )+ (1− φ)× f (xgw),
f (xgi )}, i ∈ W2,

(27)

where φ is the feasible solution ratio of the previous
generation population, and xgb , x

g
w represent the best and

worst solution of feasible solution setW1, respectively.
Eq.(27) can be normalized as

fnor (xi) =
f ′(xi)− min

j∈W1∪W2
f ′(xj)

max
j∈W1∪W2

f ′(xj)− min
j∈W1∪W2

f ′(xj)
(28)

The degree of constraint violation can be calculated by
Eq.(25), then Eq.(25) is normalized as

Gnor (xi) =


0, i ∈ W1,

G(xi)− min
j∈W2

G(xj)

max
j∈W2

G(xj)− min
j∈W2

G(xj)
, i ∈ W2,

(29)

Therefore, the fitness value ffit (xi) can be expressed as

ffit (xi) = fnor (xi)+ gnor (xi) (30)

(3) Feasible state: In the feasible state, all individuals in
the population are feasible solutions. At this time, the fitness
value can be calculated as follows [70]

ffit (xi) = f (xi) (31)

E. MODIFICATION STRATEGY
Inspired by the literature [1], we propose an improved cost-
to-time ratio modification strategy to further reduce energy
consumption under time constraint.

The cost-to-time function Ra(Ti,Pkr ) can be defined as
follows [1]:

Ra(Ti,Pkr ) =
DiE(Ti,Pkr )
DiT (Ti,Pkr )

, (32)

where DiE(Ti,Pkr ) and DiT (Ti,Pkr ) represent respectively
the increased energy consumption and execution time when
task Ti is moved from the currently assigned processor
to Pkr [1].

Our strategy works as follows:
• Compute a critical path cp : Ti  Tj in G. Apparently,
the computation time of the critical path (CP) cp is equal
to the makespan of G.

• If T (G) > S, we re-allocate the processor of a task
selected from the CP to reduce the makespan. In order
to obtain the minimal energy consumption and meet
the time constraint, if Pjr is a new processor for Ti
and DiT (Ti,Pjr ) < 0, we select a task with the
maximal ratio Ra(Ti,Pkl) and move it to a processor
Pkl . Since the increased execution time is negative, for
the same amount of reduced execution time, a larger
ratio means a smaller increase of energy. For example,
assume DiE(Ti,Pjr ) = 10, DiE(Ti,Pkr ) = 4, and
DiT (Ti,Pjr ) = DiT (Ti,Pkr ) = −2, then according
to Eq.(32), we can see that Ra(Ti,Pjr ) = −5, and
Ra(Ti,Pkr ) = −2. Obviously, in this case, it is better
to reassign Ti to resource Pkr . After the task assignment
adjustment, the algorithm attempts to find a newCP inG
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and tries to reduce the completion time until the time
constraint is met, or the makespan G cannot be reduced
any more.

• If T (G) ≤ S, we try to reduce the energy consump-
tion by moving a task with the minimum ratio to a
new processor and voltage index. In order to reduce
energy consumption, the task reassignment must satisfy
DiE(Ti,Pjr ) < 0. If there exist Ra(Ti,Pjr ) > 0, which
means DiT (Ti,Pjr ) < 0, then we give priority to assign
Pkl with the smallest positive ratio in CP to Ti. For
example, assume DiE(Ti,Pjr ) = DiE(Ti,Pkr ) = −10,
and DiT (Ti,Pjr ) = −5, DiT (Ti,Pkr ) = −2, then
according to Eq.(32), we can see that Ra(Ti,Pjr ) = 2,
and Ra(Ti,Pkr ) = 5. Obviously, in this case, it is better
to reassign Ti to resource Pjr . Else if all Ra(Ti,Pjr ) ≤ 0,
which means DiT (Ti,Pjr ) > 0, then we assign Pkl with
the smallest negative ratio in CP to Ti. After reassigning
a node, the algorithm attempts to find another node and
continues this attempt until the energy consumption can
no longer be reduced.

The modification strategy iterates for each idle processor for
to assign a taskwith theminimum energy consumptionwithin
the time constraint.

The description of the further improvement is depicted in
Algorithm 3.

F. TIME AND SPACE COMPLEXITY
We analyze the time complexity of GACSM. It takes O(Np×
N × MaxCh) time to perform chaotic initialization. In each
iteration of Algorithm 1, it needs to performGACS operation.
It takes O(e × Ntv) time to evaluate the fitness function,
where e, Ntv are the number of edges, the total number of
the non-idle voltage supply levels, respectively. The time
complexity of the modification strategy is O(N 2

× N 3
tv ×

e + N 2
× N 3

tv × e). Thus, the time complex of the GACSM
algorithm can be calculated as

O((GACSM) = O(N + e× Ntv + N + e× Ntv + N

+ e× Ntv + N + e× Ntv + N )× Np× Gen

+Np× N ×MaxCh+ 2N 2
× N 3

tv × e)

= O(e× Ntv × Np× Gen+ 2N 2
× N 3

tv × e)

(33)

where Gen represents the maximum generation.
The space complexity of GACSM is O(Np × N ), because

we need an array of size N to store each nest and there are at
most Np nests.

V. SIMULATION AND RESULTS
A. EXPERIMENT SETUP
In the simulation environment, the target system comprises
a set of completely interconnected heterogeneous processors
which are DVFS-enabled. In our experiment, processors are
uniformly distributed among four different sets of voltage
supply levels, which are listed in Table 3. The parameter λk
of processor Pk is set the same as [51].

Algorithm 4 Modification Strategy
if T (G) > S then
repeat

find a CP cp in G;
Tcp← all tasks in cp;
for each Ti ∈ Tcp do
for each Pjr ∈ P do

if Pjr is a new index for Ti and xx xx xxx xx
xx xxxxx DiT (Ti,Pjr ) < 0 then

calculate Ra(Ti,Pjr );
end if

end for
end for
Ra(Ti,Pkl)← the maximal ratio in cp;
Assign Pkl to Ti;

until T (G) ≤ S
else
repeat

for each Ti ∈ G do
for each Pjr ∈ P do

if Pjr is an available index for task Ti and xx
xx xxx xx DiE(Ti,Pjr ) < 0 and T (G) ≤ S then

calculate Ra(Ti,Pjr );
end if

end for
end for
if there exist Ra(Ti,Pjr ) > 0 then
Ra(Ti,Pkl)← the smallest positive ratio in CP;
Assign Pkl to Ti;

else
Ra(Ti,Pjr )← the smallest negative ratio in CP;
Assign Pkl to Ti;

end if
until E(G) cannot be reduced

end if

We use two sets of graphs to evaluate the algorithms.
The first test set is the Modified Molecular Dynamics Code
(MMDC) [3]. The second test set is randomly generated task
graphs.

The parameters of the random graph generator are set the
same as [3]. The graph height of a random DAG is calcu-
lated by a uniform distribution with a mean value of

√
N
ψ

,
where N represents the number of tasks in the DAG [3],
and ψ represents a parallelism factor. Let Di be the mean
computation amount of task Ti. Di is generated randomly
with a uniform distribution of [0, 2 × DG], where DG is
the average computation amount of the given DAG. The
computation amount of task Ti, i.e., Dw(Ti), is in the range
[Di × (1 − δ

2 ),Di × (1 + δ
2 )], where δ is the computation

capacity heterogeneity factor. Then, the processing time of
task Ti on Pk with Vkr , i.e., Bikr , is calculated as Bikr =
Dw(Ti)
Rs(Vkr )

. The communication time among tasks is generated
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with a uniform distribution [0, 2 × DG × CCR], where CCR
is the ratio of communication to computation [3].

All simulations are performed on the PC with an Intel
Core i7-3770 3.40 GHz CPU and 12.0 GB RAM. The exper-
imental tool is Python 2.7.

B. COMPARISON METRICS
Energy Consumption Ratio (ECR) is an important compari-
son metric. The ECR value of an algorithm is defined as

ECR =
E∑n

i=1minPk∈P(λk × Bikh(k) × V
3
kh(k))

, (34)

where E represents the energy consumption of an algorithm
with DVFS, λk represents the parameter of processor Pk ,
Vkh(k) is minimal voltage of Pk , and Bikh(k) is the processing
time of task Ti on Pk with Vkh(k). It can be seen from Eq.(34)
that the denominator is the lower bound of the energy con-
sumption of a given task graph.

Energy-saving-ratio (ESR) can also be use to measure the
performance of algorithms. The ESR value [27] is expressed
as

ESR =
EHEFT − E
EHEFT

, (35)

where EHEFT is the energy consumption of all tasks in the
HEFT algorithm [38] performed at the highest frequency. The
makespan extension can be defined by: T (G) ≤ (1 + ζ ) ∗
MSb, where ζ is the makespan extension rate, andMSb is the
makespan of a best effort HEFT schedule. In our experiment,
we set the makespan extension rates at 0, 0.1, 0.2, 0.3, 0.4,
respectively.

C. PARAMETER SETTING
The setting of parameters will greatly affect the experimental
results, however, our main purpose is to illustrate the appli-
cability of GACS to task scheduling. In this paper, the val-
ues of all experimental parameters are verified by repeated
experiments or set by experience. To reduce randomness,
the simulation results of our experiments are the average
of 30 independent runs. We use the control variable method
to discuss the influence of parameters, i.e., we first fix other
parameter values, and then analyze the influence of the stud-
ied parameters on the algorithm.

In this paper, we uniformly set the number of population
to 40 and the maximum number of iterations to 200. The
parameters of GACS are set as follows: step size α = 0.10,
maximum discovery probability Pmax = 0.50, minimum
discovery probability Pmin = 0.20. The ICMPACO [26]
parameters, i.e., pheromone factor, heuristic factor, volatility
coefficient, pheromone amount, and initial concentration, are
set as 1, 5, 0.1, 100, 1.5, respectively. The QHA [3] param-
eters, i.e., NumP, SP, stasize and σ , are set as 4, 10, 20 and
0.05, respectively.

D. COMPLETE COMPUTING TIME
In this section, we compare the complete computing time of
our proposed GACS with two random heuristic algorithms,

FIGURE 4. Average complete computing time of different algorithm vs.
different tasks number.

i.e., QHA and ICMPACO algorithms. Fig.4 depicts the aver-
age computing time of different algorithm with respect to
different graph sizes under 1000 evaluations for 30 runs.
As can be seen from Fig.4, the average complete com-
puting time of GACS is faster than QHA and ICMPACO
by (13.8%, 7.4%), (13.7%, 9.1%), (10.7%, 6.0%), (10.1%,
5.3%), (10.3%, 5.5%), for the tasks number of 16, 32, 64, 128,
and 256, respectively. The reason is that our proposed GACS
algorithm evolves more easily than QHA and ICMPACO, and
has fewer parameters to adjust, thus its speed is relatively fast.

E. REAL WORLD APPLICATION GRAPHS
We use application graph of real-world problem, the modi-
fied molecular dynamic code (MMDC) [3], to evaluate the
performance of GACSM.

We test the search effectiveness of GACSM algorithm on
MMDC problems. There are three state-of-the-art algorithms
for solving performance constraint energy optimization prob-
lems, EASLA [27], ICMPACO and QHA. In order to ensure
fairness, we first use the same modification strategy men-
tioned in Algorithm 4 to improve the performance of EASLA,
ICMPACO, QHA and GACS, and denote them as EASLAM,
ICMPACOM, QHAM and GACSM, respectively. We apply
HEFT [38] and ECS [5] to the problem of modified molec-
ular dynamic code, then obtain the makespan of the graph.
EASLAM-HEFT, ICMPACOM-HEFT, QHAM-HEFT and
GACSM-HEFT are the result of EASLAM, ICMPACOM,
QHAM and GACSM simulation constrained by output of
HEFT respectively, and EASLAM-ECS, ICMPACOM-ECS,
QHAM-ECS and GACSM-ECS are the result of EASLA,
ICMPACOM, QHAM and GACSM simulation constrained
by output of ECS respectively.

The average ECR on MMDC is are shown in Fig. 5.
The result of the algorithms with respect to different CCR
values are shown in Fig. 5a. Our proposed GACSM algorithm
is superior to EASLAM, ICMPACOM, and QHAM, where
the QHAM algorithm is sometimes better or worse than
ICMPACOM. The ECR values of the algorithms for different
M and δ values are shown in Fig. 5b and Fig. 5c, respectively.
Fig. 5 shows that our proposed GACSM algorithm outper-
forms EASLAM, ICMPACOM, and QHAM algorithms on
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FIGURE 5. Average ECR of MMDC. (a) Average ECR of the algorithms vs. different CCR values (M = 4, δ = 0.5). (b) Average ECR of the
algorithms vs. different M values (CCR = 1.0, δ = 0.5). (c) Average ECR of the algorithms vs. different δ values (CCR = 1.0, M = 0.5).

TABLE 4. Random generated instance [3].

FIGURE 6. Best energy consumption simulation of R2.

the average ECR value by 15.0%, 10.1% and 10.4%, respec-
tively. The result shows that the strategy of our GACSM
algorithm increases the diversity of population and improves
the accuracy of the algorithm effectively.

F. RANDOM GENERATED APPLICATION GRAPHS
In this section, we use 18 randomly generated DAG instances
to evaluate the performance of GACSM (see Table 4).

FIGURE 7. Best energy consumption simulation of R4.

FIGURE 8. Best energy consumption simulation of R6.

The methods and parameters used for them are same as to
those used by [3]. In these instances, we consider the impact
of different application graphs and the number of proces-
sors. There are three state-of-the-art algorithms for solv-
ing the performance constraint energy optimization problem,
EASLA [27], ICMPACO [26] and QHA [3]. In order to
ensure fairness, we first use the same modification strat-
egy described in Algorithm 4 to improve the performance
of EASLA, ICMPACO, and QHA, and denote them as
EASLAM, ICMPACOM, and QHAM, respectively. We per-
form ICMPACO and QHA algorithms in the same number of
iterations as GACSM.
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TABLE 5. Result of random generated instance.

FIGURE 9. Energy saving of the algorithms. (a) Energy saving when N = 300,M = 16 vs. different makespan extension rates. (b) Energy saving
when N = 600,M = 32 vs. different makespan extension rates. (c) Energy saving when N = 1000,M = 64 vs. different makespan extension
rates.

The experimental results of randomly generated applica-
tion graphs are shown in Table 5, which reports the statistical
performance comparison of four algorithms, where ‘‘-’’ indi-
cates that the data is infeasible. Table 5 shows that GACSM
achieves better performance than ICMPACOM and QHAM
in many of the test instances, such as R2, R3, R4, R10, R12,
R14, R17 and R18. In contrast, ICMPACOM and QHAM
does not outperform GACSM in any instance. In addition,
the feasible rate and mean values of GACSM is better than
ICMPACOM and QHAM (see Table 5), which shows that our
GACSM algorithm has strong global search performance and
high robustness.

Figure 6-8 plot the convergence of energy consumption for
processing the R2, R4, and R6 test cases, which are taken as

representatives of 18 test cases. Figure 6-8 also show that their
convergence speeds are rather different, i.e., the GACSM
algorithm converges faster than ICMPACOM and QHAM.
It can be observed from the figures that the final energy
consumption achieved byGACSM is better than the other two
algorithms. The reason behind lies in that our GACSM algo-
rithm uses the optimal individual-guided population search
strategy of Gauss random walk, thus its search speed is fast;
and GACSM has strong local search ability in the later stage.

In what follows, we use another parameter ESR to compare
the energy saving of EASLAM, ICMPACOM, and QHAM
with our proposed algorithm. The energy saving results of the
algorithms with respect to various makespan extension rates
are shown in Fig. 9. The number of tasks is set at 300, 600 and
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1000, respectively, and the number of processors is set at
16, 32 and 64, respectively. We can see from Fig. 9 that our
GACSM algorithm outperforms the other three algorithms
under different conditions. As the makespan extension rate
increases, the energy saving results of four algorithms also
increase. Our GACSM algorithm can improve on energy
consumption by 14.9%, 6.9%, 8.4% than the EASLAM,
ICMPACOM, and QHAM algorithms respectively when
ζ = 0.3,N = 1000 and M = 64. GACSM, ICMPACOM,
and QHAM algorithms are outperform EASLAM in all case.
The reason behind this is that EASLAM algorithm adopts
heuristic strategy, and it is not easy to find good solution in
complicated task graph; while GACSM, ICMPACOM, and
QHAM algorithms adopt random search strategy, which can
be used to solve complicated problems and have better search
ability in large solution space, thus they can find better results
than EASLAM.

VI. CONCLUSION
In this paper, we address the problem of energy-aware
scheduling on heterogeneous computing systems with time
constraint. We propose an improved cuckoo search algo-
rithm incorporating a heuristic strategy to solve task schedul-
ing on heterogeneous multiprocessor systems with DVFS.
We first present an improved cuckoo search algorithm based
on Gaussian random walk and adaptive discovery probability
to establish the mapping of tasks and processor voltage states.
We then give a downward rank heuristic strategy to find
the corresponding scheduling sequence. Finally, we present
a cost-to-ratio modification strategy to further improve the
performance of the GACS. The simulation results show that
our proposed algorithm exhibits better performance than the
state-of-the-art algorithms.

In the future, we plan to consider new guided random
search algorithms to solve the DVFS-based task scheduling
problem. Moreover, we plan to find more effective and effi-
cient scheduling algorithms which can reduce time complex-
ity and improve energy efficiency.
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