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Abstract 24 

Megatrends of urbanisation and reducing contact with natural environments may pose a 25 

largely unappreciated risk to human health, particularly in children, through declining normal 26 

(healthy) immunomodulatory environmental exposures. On the other hand, building 27 

knowledge of connections between environments, biodiversity and human health may offer 28 

new integrated ways of addressing global challenges of rising population health costs and 29 

declining biodiversity. In this study we are motivated to build insight and provide context and 30 

priority for emerging research into potential protective (e.g. immunomodulatory) 31 

environmental exposures. We use respiratory health as a test case to explore whether some 32 

types and qualities of environment may be more beneficial than others, and how such 33 

exposures may compare to known respiratory health influences, via a cross-sectional 34 

ecological epidemiology study for the continent of Australia. Using Lasso penalized 35 

regression (to interpret key predictors from many candidate variables) and 10-fold cross-36 

validation modelling (to indicate reproducibility and uncertainty), within different socio-37 

geographic settings, our results show surrogate measures of landscape biodiversity correlate 38 

with respiratory health, and rank amongst known predictors. A range of possible drivers for 39 

this relationship are discussed. Perhaps most novel and interesting of these is the possibility 40 

of protective immunomodulatory influence from microbial diversity (suggested by the 41 

understudied ‘biodiversity hypothesis’) and other bioactive agents associated with biodiverse 42 

environments. If beneficial influences can be demonstrated from biodiverse environments on 43 

immunomodulation and human health, there may be potential to design new cost-effective 44 

nature-based health intervention programs to reduce the risk of immune-related disease at a 45 

population level. Our approach and findings are also likely to have use in the evaluation of 46 

environment and health associations elsewhere.  47 
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1. Introduction 48 

There is growing awareness of the numerous mechanisms and co-benefits that link natural 49 

and biodiverse environments with human health. It is important to understand such 50 

connections given the global challenges of escalating population health costs and declining 51 

biodiversity (WHO and SCBD, 2015). As reviewed elsewhere (Craig et al., 2016; Keniger et 52 

al., 2013; Myers et al., 2013; Sandifer et al., 2015; WHO and SCBD, 2015), there are broad 53 

and interacting mechanisms of human health impact from environmental change, many of 54 

which are well-studied. However, some potentially important environmental influences on 55 

human health remain understudied due to their multidisciplinary nature. A key example is 56 

described by the biodiversity hypothesis (von Hertzen et al., 2011), and related microbial ‘old 57 

friends’ mechanism (Rook, 2013), as recognized by the World Health Organisation (WHO 58 

and SCBD, 2015) and World Allergy Organization (Haahtela et al., 2013), which highlights 59 

that environmental microbiota (or communities of microorganisms from the surrounding 60 

environment) overlap and interact with human commensal microbiota, contribute to human 61 

microbial diversity and may provide important beneficial immunomodulatory roles. As 62 

discussed later, there are potential links between different environments, their microbiotas 63 

and other possible bioactive agents (e.g. volatile organic compounds, VOCs; air ions), and 64 

via direct and aerobiological exposures, possible immunomodulatory effects and human 65 

health influences (e.g. see Liddicoat et al. (2016) Fig. 1).  66 

The possibility of populations receiving some level of inadvertent ambient beneficial 67 

or adverse immunomodulatory influence associated with different types and qualities of 68 

environment, highlights a potentially important gap in our awareness of possible links 69 

between environments and human health. Megatrends of urbanisation and reducing contact 70 

with natural environments may pose a largely unappreciated risk to human health through 71 

declining normal (healthy) immunomodulatory environmental exposures. Children may be 72 
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particularly impacted by inadequate exposures during the critical early period of immune 73 

system development (Wopereis et al., 2014) where immunoregulatory commensal microbiota 74 

can be acquired through random environmental encounters (Artis, 2008). For example, 75 

children who grow up in environments with diverse microbial exposures such as traditional 76 

farms, are less prone to developing asthma and atopy (allergic sensitization) (Ege  et al., 77 

2011; Stein et al., 2016). Beneficial immunomodulatory environmental exposures are also 78 

suggested into adulthood (Douwes et al., 2007; Rottem et al., 2015; von Hertzen and 79 

Haahtela, 2006). Moreover, a lack of appropriate environmental exposures and deficient 80 

immune training and regulation may also impact other areas of immune-related human health 81 

including susceptibility to infectious disease (as below). 82 

Respiratory health provides a conspicuous test case to explore environment-human 83 

health associations that have plausible microbiota-mediated linkages, because breathing 84 

offers a primary mode of exposure for people interacting passively with the environment. 85 

Throughout life, millions of litres of air move through the human respiratory tract, which 86 

provides one of the first points of contact with environmental contaminants and bioaerosols 87 

(airborne microbiota and bioactive agents). Airway epithelial tissues provide a protective 88 

arsenal of physical barriers, niche-occupying commensal microbiota, antimicrobial 89 

compounds, and receptors ready to orchestrate immune responses (Parker and Prince, 2011; 90 

Whitsett and Alenghat, 2014). Environmental microbiota can interact directly with 91 

respiratory mucosal immune receptors or via ecological interactions with host commensal 92 

microbiota. Similar interactions can also occur in the gut, influencing immune- and health-93 

status, after environmental microbiota deposit in the airways and are transported by cilia to be 94 

swallowed (Rook, 2013). Importantly, dysregulation of the airway epithelial innate immune 95 

system can be associated with compromised immunity and chronic inflammation (Parker and 96 

Prince, 2011). Immune dysfunction may involve adverse feedbacks that reinforce imbalance 97 
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(or dysbiosis) of host microbiota (Haahtela et al., 2013), which in turn may favour pathogenic 98 

microbes and increase susceptibility to infectious disease. As discussed later, there is often 99 

not a clear distinction between infectious and non-infectious respiratory disease outcomes, for 100 

example, where one type of disease (e.g. cold or influenza) can exacerbate symptoms of 101 

another (e.g. asthma). This means there is potential for environments and their microbiota to 102 

impact immune status, which in turn may have potential broad underlying (and population-103 

level) influence on multiple infectious and non-infectious respiratory diseases. 104 

If particular macro- and landscape-scale features of the environment (e.g. types of 105 

vegetation, soil, land use, and their diversity) can be associated with human health benefits 106 

(and ultimately supported by new knowledge of underlying causal mechanisms), it may be 107 

possible in the future to design new cost-effective, landscape and urban green space 108 

interventions with concurrent benefits for public health and biodiversity conservation. 109 

Informing such outcomes would require a large body of multidisciplinary research. The work 110 

presented here represents an early step. 111 

Our motivation for this study is to build insight and provide context and priority for 112 

further research into these types of potential beneficial environmental exposures, through 113 

building on existing, inexpensive data. Given the possible abovementioned links between 114 

environments, immune development or dysfunction, and infectious and non-infectious 115 

respiratory disease, we examine available aggregated respiratory health outcome data in a 116 

cross-sectional ecological epidemiology study spanning the continent of Australia. Our aim is 117 

to test whether some types and qualities of environment may be more beneficial than others, 118 

and how such exposures may compare to known respiratory health influences. We appreciate 119 

that using aggregated health response data represents a limitation in terms of loss of 120 

specificity to link environmental influence with any particular disease. On the other hand, this 121 
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approach may offer greater sensitivity to detect possible broad environmental influence on 122 

multiple respiratory disease outcomes. 123 

Due to many unknowns (e.g. possible agents, behaviourally- and temporally-mediated 124 

exposures, requisite exposures, immunomodulatory and other possible physiological 125 

pathways), the use of environmental proxies is warranted as a pragmatic investigation tool 126 

(Liddicoat et al., 2016). Proxies allow us to consider a variety of (including possible 127 

beneficial immunomodulatory) environmental influences on human health. We might expect 128 

to see correlative signals between health outcomes and environmental exposures that are 129 

consistent with sources of microbial diversity, such as biodiverse environments, diversity in 130 

land use, and soils high in clay and/or organic matter content (Liddicoat et al., 2016; Rook, 131 

2013; von Hertzen and Haahtela, 2006). 132 

We use a data-intensive approach suited to this emerging area of scientific inquiry 133 

where it is important to gain an early understanding of key relationships among many 134 

variables, and note that models will improve iteratively over time (Elliott et al., 2016). Our 135 

modelling approach reflects the highly faceted nature of environments and is adept at 136 

handling large numbers of (included potentially correlated) candidate predictors. To guide 137 

future work, we provide clear interpretation and ranking of previously unaccounted 138 

environmental influences among important predictors of our respiratory health data. 139 

 140 

2. Methods 141 

We use an array of specially-prepared environmental covariates to estimate environmental 142 

exposures, each allowing for a potential surrounding zone of influence (section 2.2). To cater 143 

for geographically-variable environmental and multimodal social predictors, we stratify our 144 

analysis into three different socio-geographic groups spanning the Australian continent 145 

(section 2.3). We develop an automated screening algorithm to filter out extraneous variables 146 
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and assess selected transformations of candidate predictors to help optimize linear 147 

relationships in subsequent modelling (section 2.4). We use least absolute shrinkage and 148 

selection operator (or Lasso) penalized regression (a contemporary machine-learning 149 

algorithm (Tibshirani, 1996)) to interpret key predictors from large numbers of candidate 150 

variables, and purpose-built 10-fold cross-validation (CV) modelling to indicate 151 

reproducibility and uncertainty in our results (section 2.5). This approach puts the onus on 152 

variables to compete and display strength and consistency of predictive value. 153 

 154 

2.1. Public health and contextual data 155 

We use merged 2011/12 and 2012/13 Social Health Atlas of Australia (PHIDU, 2015, 2016) 156 

data for respiratory disease public hospital admissions (a breakdown of disease codes is 157 

provided in Appendix A, Table S1), together with accompanying contextual data (Appendix 158 

A, Table S2). For reliability and privacy purposes, these respiratory disease and associated 159 

contextual data are only available in aggregated form. In this study data are aggregated 160 

spatially, by Australian local government areas (LGAs), and thematically, grouped under 161 

principal diagnoses of diseases of the respiratory system. In each LGA, the 2011-13 162 

normalized mean cumulative incidence of respiratory disease public hospital admissions was 163 

calculated using: 164 

ଶ଴ଵଵିଵଷܴܵܣ = ൫ ଵܰଵ/ଵଶ  +   ଵܰଶ/ଵଷ  ൯/ ൬
ேభభ/భమ

஺ௌோభభ/భమ
+

ேభమ/భయ

஺ௌோభమ/భయ
൰   (2.1) 165 

where ASR is the respective age standardized rate per 100,000, and N is the respective raw 166 

number of annual admissions recorded. We used the LGA-based data because we considered 167 

they offered a balanced coverage of health reporting areas and a spatial framework suited to 168 

capturing environmental variability across both urban and regional Australia. Numbers of 169 

LGAs used in the modelling are shown in Table 1. 170 

 171 
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2.2. Environmental data 172 

We prepared and collated an as large as practical number of environmental covariate layers to 173 

reflect possible direct and indirect influences on respiratory health. Many environmental 174 

layers were included to allow detection of as-yet-unexplained possible microbiota-mediated 175 

and other influences, as introduced earlier and discussed elsewhere (Liddicoat et al., 2016; 176 

Rook, 2013). Our data-intensive approach (i.e. including many variables and later use of 177 

Lasso machine-learning) also aimed to reduce modelling bias that might arise through pre-178 

selection of only a small number of candidate environmental variables. We represent the 179 

diversity, and multi-faceted nature of environments using an array of climatic, soil, landscape 180 

and vegetation-based variables based on exhaustive Australia-wide gridded mapping datasets 181 

(Appendix A, Table S3). For consistent and pragmatic data-handling we adopt a common 250 182 

m resolution grid system, as used elsewhere in continent-wide, landscape-scale mapping of 183 

land cover (Geoscience Australia, 2014). Where necessary to match the common grid system, 184 

resampling was performed bilinearly for numeric data layers, and using the nearest neighbour 185 

method for categorical layers. 186 

Environmental map layers were then re-expressed using focal neighbourhood statistic 187 

calculations so that environmental data (at any cell location, or if averaged over an area) 188 

provide an estimate of exposure corresponding to a surrounding zone of influence. Such a 189 

zone reflects potential movement of populations within their surroundings and also the 190 

possibility of airborne dispersal of environmental microbiota and bioactive agents. We do not 191 

know how far populations or bioaerosols disperse, however we chose a nominal 3 km radius 192 

area as our representative environmental zone of influence. This area was consistent with 193 

previous studies examining possible links between land use and human immunomodulatory 194 

influence (Hanski et al., 2012) and green space and self-reported health (Maas et al., 2006). 195 

We were also guided by Ruokolainen et al. (2015), who found the spatial scale of land-use 196 
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description affected the detection of statistically significant relationships between land-use 197 

and atopy (allergic sensitization), which they observed in the range 2-5 km. 198 

 This meant for all of the Australia-wide gridded environmental data layers, in every 199 

grid cell, we calculated a measure summarising a particular aspect of the surrounding 200 

environment over a 3 km-radius area. Numeric variables were averaged (including climatic, 201 

soil, landscape, and remotely-sensed vegetation parameters), while class proportions and 202 

Shannon diversity indices were calculated for categorical themes (i.e. land use, land cover, 203 

ecological land units and major vegetation groups). The conversion of categorical data to 204 

numeric data (using the focal neighbourhood calculations) also enabled a simpler linear 205 

modelling approach as all environmental data were ultimately expressed in numeric form. 206 

Additional information and formulae for the calculation of environmental layers are provided 207 

in Appendix A. A total of 176 gridded environmental-variable map layers were prepared.  208 

To join with available health outcome data in LGAs, environmental data were 209 

averaged within each LGA boundary. (For future studies where finer resolution health data 210 

are available, we suggest these specially-prepared focal neighbourhood environmental layers 211 

could be sampled at point locations or averaged over smaller areas.)  212 

Point-based air pollution data were also considered, however these were handled 213 

differently to the gridded data layers (due to reasons discussed below). Estimated total 214 

industrial emissions of inhalable particulate matter (of 10 micrometres or less in diameter, or 215 

PM10) for 2011/12 and 2012/13 were spatially intersected and summed in each LGA, 216 

expressed as area-based rates (kg.km-2.yr-1), then averaged to estimate the mean 2011-13 217 

emissions. 218 

 219 
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2.3. Socio-geographic clustering 220 

Environments vary greatly across the Australian continent (approx. area of 7.7 million km2), 221 

with populations spanning urban, peri-urban, rural and remote locations. Therefore, we might 222 

expect any environmental influences on health (where present) to vary geographically. There 223 

are known health inequalities associated with socioeconomic status, remoteness (AIHW, 224 

2007), and Aboriginal populations (Gubhaju et al., 2013); and these social factors also vary 225 

geographically. During preliminary data analysis we observed a negative skew in the 226 

Australia-wide distribution of Socioeconomic index, suggestive of a second minor mode of 227 

lower socioeconomic status LGAs (Appendix A, Fig. S1). To allow for likely varying 228 

environmental and multimodal socio-geographic influences across an expansive dataset, and 229 

to improve linear modelling of the respiratory health outcome, we stratify the data into three 230 

socio-geographic groups using k-means clustering based on all available data for 231 

Socioeconomic index, Population density and Percent Aboriginal persons (Fig. 1; Appendix 232 

A, Table S4). We broadly interpret the resulting groups (LGA clusters) as the ‘Moderate 233 

majority’, ‘Major cities’, and ‘Remote disadvantaged’. Separate analyses were performed 234 

using these socio-geographic clusters. 235 

 236 

2.4. Additional data preparation for modelling 237 

Due to missing data, we excluded some LGAs from the health response modelling. We also 238 

developed an automated screening algorithm to objectively exclude extraneous variables (e.g. 239 

irrelevant environment class proportions in particular LGA clusters), and to consider a 240 

limited set of candidate predictor transformations (designed to improve linear relationships in 241 

subsequent modelling). The screening algorithm was fully coded in R script as a means to 242 

transparently and consistently inspect variables and consider preparatory steps that might 243 

otherwise be done manually one variable at a time, prior to multiple linear regression 244 



11 

modelling. In each LGA cluster, pragmatic threshold criteria were used to exclude (original 245 

or transformed) variables if less than 50% of LGAs contained non-zero values, if variable 246 

skewness exceeded 1.5, kurtosis exceeded 4, or if stand-alone explanatory value (R2) was less 247 

than 2.5%. Only logit transformations were considered for proportion or percentage data, 248 

otherwise square root, log10, square and cube root were considered, subject to certain 249 

disqualifications (e.g. log10 cannot be used on zero or negative values). Selection of a final 250 

representative candidate (whether original or transformed) was made according to pre-251 

determined rules that attempted to balance the trade-off between interpretability and 252 

optimising normality of predictor distributions. Further description of the data preparation 253 

steps are provided in Appendix A (including R code). 254 

Within LGA clusters, all screening and subsequent analysis of candidate predictors 255 

was performed on 95% Winsorized data, designed to objectively eliminate the influence of 256 

extreme and potentially outlying values (Friedman and Popescu, 2008). The distributions of 257 

respective health response variables were inspected, and for the ‘Moderate majority’ and 258 

‘Remote disadvantaged’ clusters, log10 variance-stabilising transformations were applied 259 

(Appendix A, Fig. S2). All predictor data were centred and scaled before input for Lasso 260 

modelling. 261 

 262 

2.5. Lasso modelling 263 

We use Lasso penalized regression as our primary tool for correlation analysis and health 264 

response modelling, as implemented in the R glmnet package (Friedman et al., 2010). Use of 265 

the Lasso is relatively new in epidemiology, but has been suggested as a credible alternative 266 

to more conventional stepwise multiple regression approaches when identifying key 267 

predictors from large datasets (Mansiaux and Carrat, 2014). As the Lasso can be prone to 268 

inconsistency in variable selection (Leng et al., 2006), within each LGA cluster, we apply 269 
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explicit randomized 10-fold resampling to generate variation in input data for modelling. This 270 

was designed to help interpret the levels of variation, reproducibility and uncertainty in our 271 

modelling results. In each fold, internally within the Lasso software we ran leave-one-out CV 272 

to identify the optimal penalisation parameter (we used the parsimonious option 273 

corresponding to s = ‘lambda.1se’ when calling the cv.glmnet function, with the Lasso model 274 

corresponding to the default setting a=1). Details of the statistical analyses and R scripts used 275 

for the modelling are provided in Appendix A. 276 

 We interpret the relative importance and direction of predictors identified by the 277 

Lasso from the size and sign of standardized regression coefficients (this is facilitated by 278 

centring and scaling of data as discussed). Identified predictors and their standardized 279 

coefficients were harvested from the respective 10-fold Lasso modelling outputs and plotted, 280 

as below. 281 

 282 

3. Results and Discussion 283 

3.1. Key predictors of respiratory health 284 

We show results for the ‘Moderate majority’ in Fig. 2, ordered by the mean absolute size of 285 

standardized regression coefficients. Important predictors (toward the top of Fig. 2) are 286 

consistently identified. Beneficial respiratory health outcomes were associated with (in order 287 

of decreasing importance) Socioeconomic index, Diversity of major vegetation groups, 288 

Species richness (log10), Proportion of eucalypt forests 10-30m (logit), Percent overweight 289 

persons (logit), Percent English-speaking immigrants (logit), Proportion of open [i.e. 30-70% 290 

canopy cover] trees (logit), Diversity of land use, and Proportion of nature conservation 291 

(logit). Adverse respiratory health associations were identified with Distance to coast, Percent 292 

obese persons, Mean temperature annual range, Maximum temperature of warmest month, 293 

Percent smoking during pregnancy, Proportion of warm wet plains (logit), Percent Aboriginal 294 
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persons (logit), and Vegetation fractional cover minimum nonphotosynthetic (logit). 295 

Predictors decrease in importance down the y-axis and we suggest variables towards the 296 

bottom should be viewed with caution (e.g. Mean precipitation of the coldest quarter, 297 

Vegetation fractional cover minimum photosynthetic (logit), and Soil cation exchange 298 

capacity * erodible fraction (geometric mean)). Predictors that are rarely or not consistently 299 

selected may not be generally applicable (e.g. localized influence) and, possibly, the lowest 300 

ranked variables may be spurious (e.g. analogous to near-zero coefficient variables in a 301 

multiple linear regression). Many variables were not selected at all by the Lasso in any of the 302 

10 folds (see Appendix A, Table S5).  303 

The nature of correlations between predictors identified across the 10-fold Lasso 304 

modelling is shown, by way of example, for the ‘Moderate majority’ cluster (Appendix A, 305 

Fig. S3). Important predictors for the remaining clusters are shown in Appendix A, Fig. S4-306 

S5. Summary performance statistics (Table 1) and CV plots (Appendix A, Fig. S6) for the 10-307 

fold Lasso modelling, indicate that moderate levels of prediction success were achieved. 308 

Based on concordance correlation coefficients (which indicate how closely observed and 309 

predicted values adhere to a 1:1 relationship), moderate agreement was found between 310 

predicted and observed health responses in the ‘Moderate majority’ and ‘Major cities’. 311 

However, poorer agreement was found for the ‘Remote disadvantaged’ LGAs, possibly due 312 

to their sparsely settled nature, coarse scale of data and small sample size. The high mean R2 313 

value for the ‘Remote disadvantaged’ cluster (Table 1) suggests good linear agreement within 314 

each of the CV folds. However, we view this with caution due to small sample numbers and 315 

poor 1:1 alignment of observed and predicted values indicated by the low concordance 316 

correlation coefficient and Fig. S6 (c) (Appendix A). 317 

Our approach provides a side-by-side comparison of the potential influence of 318 

(including previously unaccounted) environmental variables against recognized population 319 
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health predictors of respiratory disease (Fig. 2). Reassuringly, a number of key predictors in 320 

our results match expectation, or align with findings elsewhere for lifestyle and 321 

environmental influences. For example, higher socioeconomic status (Socioeconomic index) 322 

associates with reduced hospital admissions and smoking associates with increased hospital 323 

admissions. Noting that our dependent variable is aggregated, we draw tentative support from 324 

literature relating to both general and disease-specific influences linked to respiratory health 325 

outcomes. For example, obesity has been negatively associated with respiratory health 326 

(Zammit et al., 2010), and lesser indications of a counter-intuitive health advantage attributed 327 

to being overweight are not without precedent (Flegal and Kalantar-Zadeh, 2013). Benefits 328 

from closeness to sea air (or disadvantage with distance from coast) might be expected with a 329 

number of respiratory conditions, for example in non-cystic fibrosis bronchiectasis (Kellett 330 

and Robert, 2011). Although, the variable of Distance to coast provides an example for 331 

possible parallel interpretations, such as respiratory conditions that could be linked to 332 

increasing dust in drier inland areas. High temperatures are reported to have an impact on 333 

respiratory admissions, particularly in the elderly (Michelozzi et al., 2009). Warm and wet 334 

(humid) environments also contribute to population risk of non-tuberculous mycobacterial 335 

pulmonary infection (Prevots and Marras, 2015). 336 

Our results highlight a number of health-correlated environmental variables that are 337 

worthy of further investigation (refer to beneficial respiratory health associations listed 338 

earlier). In particular, Diversity of major vegetation groups featured in our results—and 339 

provides a measure of differentiation among habitats (analogous to beta diversity). The 340 

higher ranking of biodiversity surrogates (e.g. Diversity of major vegetation groups, Species 341 

richness (log10), Proportion of eucalypt forests 10-30 m (logit), Proportion of nature 342 

conservation), compared to remote sensing of vegetation greenness (e.g. fraction of 343 

photosynthetically active radiation and fractional cover layers) and land use class proportions 344 
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for broad-acre agricultural uses (which were considered but not recognized in the modelling), 345 

is consistent with the notion that the quality of environments is important to respiratory 346 

health. From this, we speculate that optimal health benefit may not be merely associated with 347 

any type of green space and ‘clean country air’, but may be promoted by as-yet-unknown 348 

attributes of the green space itself. However, air pollution has not been fully accounted for, as 349 

discussed below. We also undertook extended analyses for the ‘Moderate majority’ LGA 350 

cluster to better understand the significance of variables selected by the Lasso (noting this 351 

represents an evolving area of statistical science), and this is described in the Appendix A. 352 

We saw a notably different pattern for ‘Major cities’ (Appendix A, Fig. S4). Health 353 

benefits were primarily associated with socioeconomic status (consistent with the notion of 354 

social ‘insulating layers’ (Myers et al., 2013)), while other social, lifestyle, and ambient 355 

environmental influences appeared to be generally detractive. For example, possibly, rainfed 356 

pasture and peak levels of remotely-sensed living vegetation could in this case be related to 357 

excessive levels of airway allergens from productive but low-biodiversity neighbouring 358 

farmland. It is likely the scale of our data has limited the prospects of detecting positive 359 

environment-health associations in this cluster. 360 

The ‘Remote disadvantaged’ cluster was only represented by a small and coarse-scale 361 

dataset, so results may be misleading, however it was interesting to see wetlands, Acacia 362 

forests and woodlands, and swampy vegetation feature positively—also consistent with the 363 

notion that biodiversity may provide an as-yet-undetermined beneficial influence on 364 

respiratory health. 365 

Previous modelling of Australia-wide asthma and chronic obstructive pulmonary 366 

disease (COPD) hospitalisation rates (AIHW et al., 2014) found significant associations with 367 

socioeconomic status, remoteness and the Indigenous proportion of the population; with 368 
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generally higher hospitalisation rates for both asthma and COPD in inland and rural 369 

Australia. In general terms, our findings are consistent with previous studies examining 370 

environmental influences on respiratory health. However our approach in considering an 371 

array of environmental attributes (including landscape-scale biodiversity surrogates), 372 

provides potential new insight and priority research targets to further investigate causal 373 

mechanisms. 374 

 375 

3.2. Air pollution 376 

We lacked appropriate exhaustive, continent-wide mapping data to fully represent the 377 

potential influence of air pollution in this study. We did test the influence of point-based 378 

mean 2011-13 estimated total industrial PM10 emissions in each LGA, however these data 379 

did not register as a key predictor in our analyses. Closer inspection of the PM10 data showed 380 

many LGAs contained zero values which made the data poorly distributed in the context of 381 

our modelling approach (due to inherent skewness and also disqualification of log10 382 

transformation due to zeros). We note these PM10 data represent modelled estimates (not 383 

actual measured data) and don’t account for natural emissions (e.g. from windblown dust, sea 384 

salt aerosols and biological aerosol particles), which elsewhere (Liora et al., 2015) are 385 

estimated to be of a similar order to the lower range of estimated industrial PM10 emissions 386 

analysed here. Without wider data or knowledge of natural background PM10 levels we did 387 

not consider it valid for this study to interpolate a continent-wide map layer based on 388 

incomplete and spatially-limited data. 389 

We suggest the lack of appropriate air pollution data doesn’t invalidate our broader 390 

results; for example, we are encouraged by the recognition of known respiratory health 391 

predictors. Also, Australia's ambient air quality is generally good, typically meeting national 392 



17 

health-based standards, with many key air pollutants having declined or remaining stable 393 

over the assessment period 1999-2008 (State of the Environment 2011 Committee, 2011). 394 

Particulate pollution from localized extreme events such as bushfires has been linked to 395 

increased respiratory hospital admissions (Chen et al., 2006), although bushfire frequency 396 

mapping was included but not identified as a useful predictor in our study. Urban air 397 

pollution is another localized concern for respiratory health (Simpson et al., 2005) that is not 398 

accounted for due to a lack of exhaustive data. To some extent, the separation of ‘Major 399 

cities’ may largely quarantine this factor in our analyses. We expect air pollution may 400 

contribute to respiratory health outcomes, however our data did not support findings of an 401 

association in this study. 402 

 403 

3.3. Possible links between biodiverse environments and respiratory health 404 

Our finding of an association between beneficial respiratory health outcomes and surrogate 405 

measures of landscape biodiversity (in particular, Diversity of major vegetation groups, and 406 

other measures listed earlier) warrants consideration of possible underlying ecological 407 

linkage mechanisms. As a megadiverse continent (Groombridge, 1992), Australia provides an 408 

interesting study area for exploring such links. 409 

Simple indirect explanations may exist, for example, due to absence of air pollution 410 

(or ‘clean country air’). Seasonal exposures to airborne airway allergens such as grass pollen, 411 

a major trigger for allergic rhinitis and asthma (Davies et al., 2015), may be indirectly related 412 

to landscape biodiversity. For example, where landscapes and land uses elsewhere may be 413 

characterized by a low biodiversity of plant species and a corresponding concentration of 414 

(often introduced) grass and tree species producing large amounts of allergenic pollen 415 

(Cariñanos and Casares-Porcel, 2011). In Australia, knowledge of seasonal and 416 
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biogeographical patterns of pollen exposures and relationships with allergic respiratory 417 

disease is growing (Davies et al., 2015). Human health results from a complex interplay of 418 

factors, so a number of (including environmental) influences may possibly contribute. Viral 419 

infections are known to exacerbate other respiratory conditions, and are implicated in 50 to 420 

80% of all hospitalisations for asthma (Bardin, 2004). This highlights the importance of 421 

underlying immune status and possible connections between common communicable and 422 

non-communicable respiratory disease. 423 

In terms of general health outcomes, cross-sectional spatial epidemiology studies have 424 

previously found positive associations between neighbourhood green space and self-reported 425 

health status (e.g. de Vries et al., 2003; Maas et al., 2006). Exposure to green space and 426 

natural environments has been associated with reduced all-cause mortality (Mitchell and 427 

Popham, 2008). Mitchell and Popham also found that increased exposure to green space 428 

reduced health inequalities related to socioeconomic status. Common beneficial influences 429 

suggested from enhanced visual and/or physical access to green space include greater 430 

physical activity, reduced stress, enhanced restoration from mental fatigue, improved mood 431 

and self-esteem, and provision of psychological and mental health benefits (reviewed 432 

elsewhere e.g. (Keniger et al., 2013; WHO and SCBD, 2015)). These influences may act 433 

synergistically to further enhance benefits from ‘green exercise’ (exercise in natural 434 

surroundings) (Gladwell et al., 2013). 435 

A number of reviews also suggest the possibility of beneficial environmental 436 

microbiota- and bioactive-mediated immunomodulatory influences on human health (Craig et 437 

al., 2016; Haahtela et al., 2013; Rook, 2013; Sandifer et al., 2015; WHO and SCBD, 2015). 438 

Intuitively, there may be plausible mechanisms for microbiome-respiratory system health 439 

influence including competitive exclusion and/or regulation of airway pathogens and immune 440 

priming. There is a known role for host commensal microbiota in normal (healthy) immune 441 
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functioning (e.g. in the gut (Artis, 2008; Molloy et al., 2012)) and increasing awareness of 442 

associations between dysbiosis (i.e. altered composition of the human microbiota, often with 443 

an imbalance between pathogenic and commensal organisms) and a range of diseases 444 

(Belizario and Napolitano, 2015; Clemente et al., 2012), including respiratory diseases 445 

(Dickson et al., 2013; Noval Rivas et al., 2016). Certain commensals, particularly in the gut, 446 

may play important roles in the signalling and control of inflammatory and regulatory 447 

immune processes (Artis, 2008; Molloy et al., 2012). Emerging knowledge of a 'gut-lung' 448 

microbial axis (Fujimura and Lynch, 2015; Noval Rivas et al., 2016), or connection between 449 

host gut and airway microbiota, has been demonstrated in mouse models where changes in 450 

gut microbiota composition can influence airway immune responses (Fujimura et al., 2014; 451 

Ichinohe et al., 2011; Kim et al., 2014).  452 

Importantly, at least a portion of the human microbiota is in dynamic exchange with 453 

environmental microbiota and, therefore, natural microbial diversity is recognized as an 454 

important potential contributor to healthy immune functioning (Haahtela et al., 2013; WHO 455 

and SCBD, 2015). Aerobiology studies tell us that the air is alive with all manner of biogenic 456 

and bioactive particles (Després et al., 2012; Polymenakou, 2012). Bioaerosols often 457 

comprise microorganisms from soils, plant surfaces, water bodies, rocks and built structures 458 

that are mobilized by wind and splashing water and can be transported considerable distances 459 

(Polymenakou, 2012). Bioaerosols can be deposited in the upper airways, carried up the 460 

trachea by the action of cilia and then swallowed—therefore, airborne microorganisms can 461 

end up on the skin, in the airways, and in the gut where they can perform immunomodulatory 462 

roles (Rook, 2013). Pulmonary neuroendocrine cells in the airway can also directly translate 463 

environmental cues into physiological and immune responses (Branchfield et al., 2016). 464 

Possible connections between environmental features (e.g. vegetation, soils, water bodies, 465 

land use, etc.) and environmental microbiota are discussed elsewhere (Liddicoat et al., 2016; 466 
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Rook, 2013), and such knowledge is steadily building (e.g. via Bissett et al., 2016; Gilbert et 467 

al., 2014). Neighbouring land use and landscape composition have been shown to influence 468 

bioaerosol composition (Bowers et al., 2011; Després et al., 2012; Mhuireach et al., 2016). 469 

However, more work is needed to investigate possible links between aerobiological 470 

exposures and surrounding environments. 471 

Although not explored here, temporal aspects of environmental microbiota-human 472 

contact are likely to be important, in relation to commensal microbiota and immune system 473 

development (Wopereis et al., 2014). In immature hosts, commensals appear to be acquired 474 

through random environmental exposures (Artis, 2008). Once established, the mature host 475 

commensal microbiota is more resilient to colonisation (Seedorf et al., 2014). Although, if we 476 

extrapolate from studies of short- versus long-term dietary change (Voreades et al., 2014), 477 

possibly, long-lasting environmental change may influence a shift in composition even for 478 

mature commensal microbiota. Poor western diets may cause irreversible loss of potential 479 

key beneficial commensal taxa, with suggestions that a rewilding of the human microbiota 480 

may be needed (Sonnenburg et al., 2016). Recent findings that the human intestinal 481 

microbiota may be dominated by spore-forming bacteria (Browne et al., 2016) which are 482 

designed to persist in the environment, aligns with the idea that critical early and perhaps 483 

‘ongoing maintenance’ environmental exposures may help replenish key spore-forming 484 

bacteria to the human commensal microbiota. In turn, as discussed, such interactions may 485 

influence airway immune status and respiratory health. 486 

Health benefits may also be linked to abiotic bioactive agents from the environment 487 

such as phytoncides (wood essential oils or VOCs) and negative air ions (Craig et al., 2016). 488 

Negative air ions from waterfall aerosol have been shown to produce lasting beneficial 489 

effects on asthma symptoms, lung function and airway inflammation (Gaisberger et al., 490 

2012). Plants and phyllosphere microbiota are known to emit and influence a wide variety of 491 
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VOCs (Bulgarelli et al., 2013). Such plant-based VOCs can promote or inhibit (and thus 492 

shape) adjacent microbial communities (Bringel and Couée, 2015), which may in turn have 493 

varying human health influences. 494 

Australia has among the highest rates of allergies among developed countries, 495 

affecting almost 20% of the population, and this prevalence is increasing (Access Economics, 496 

2007). According to the 2014-15 National Health Survey (ABS, 2015), long-term respiratory 497 

disease is estimated to affect nearly 31% of the population; with the prevalence of hayfever 498 

and allergic rhinitis, asthma, and chronic sinusitis estimated at 19.4%, 10.8%, and 8.4% 499 

respectively. If links between macro- and landscape-scale environmental biodiversity and 500 

beneficial immunomodulatory influences can be substantiated and quantified, significant 501 

reductions in disease burden and public health expenditure might be possible through greater 502 

consideration of biodiversity in public health programs and new landscape and urban green 503 

space design. 504 

 505 

3.4. Limitations 506 

The environmental mapping products used here have been produced from a variety of 507 

projects and methods, independently from routine Australia-wide public health reporting. 508 

Consequently, the trade-off for representing a wide diversity of potential environmental 509 

influences, is a loss of exact temporal coincidence of surrogate environmental exposures 510 

(derived from environmental mapping) with the health response data. We continued on the 511 

basis that the rate of environmental change across the continent should be sufficiently slow, 512 

or health impacts possibly integrated over time, that available environmental mapping 513 

datasets from recent decades should sufficiently characterize the type of environments and 514 

potential exposures relevant to our recent (2011-2013) health response data. We note this 515 

approach allows us to consider many expert-interpreted mapping layers for different 516 
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classifications of the environment. Our approach is vindicated where a number of these 517 

expert-interpreted layers (and derived biodiversity surrogates) offer greater explanatory value 518 

than less-interpreted remote sensing-derived layers (e.g. based on greenness indices) also 519 

included in the modelling. 520 

We recognize there will be environmental and social/lifestyle influences, and 521 

potential lurking variables and interactions, that we have not specifically accounted for (e.g. 522 

inadequate air pollution data, as discussed). Ecological epidemiology studies will always 523 

contain confounders, and cross-sectional studies are generally limited as they cannot infer 524 

temporal directionality or causality. However this type of study is suited to inexpensive 525 

examination of population-wide disease associations with multiple potential influences, as 526 

well as further hypothesis generation and informing more detailed studies. As our public 527 

health data in this study were aggregated into LGAs we note the potential for erroneous 528 

findings due to ecological bias and fallacy (Elliot et al., 2000), and the modifiable areal unit 529 

problem (Parenteau and Sawada, 2011). The scale of data is generally finest to coarsest in 530 

order from 'Major cities', 'Moderate majority', then 'Remote disadvantaged'—where coarser 531 

datasets are more prone to errors of the type suggested. To some extent, the use of 10-fold 532 

resampling and CV modelling, moderates concern due to the modifiable areal unit problem, 533 

particularly in ‘Moderate majority’ cluster, where top-ranking predictors are consistently 534 

identified from different (10-fold) sub-selections of LGAs.  535 

The use of aggregated respiratory disease outcome data poses a limitation for 536 

interpretation of possible specific environment-respiratory disease relationships. On the other 537 

hand, our approach may offer insights to possible broad underlying influences (through as-538 

yet-unknown mechanisms) that may impact a range of associated diseases. Also we note that 539 

the use of aggregated health outcome data is common in population health studies (e.g. (de 540 

Vries et al., 2003; Maas et al., 2006; Mitchell and Popham, 2008)). On the positive side, with 541 
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this inexpensive but expansive continent-wide dataset, we have provided a side-by-side 542 

comparison of known population-level respiratory health predictors and previously untested 543 

potential environmental influences. 544 

 545 

4. Conclusions 546 

Using continent-wide datasets, we have explored previously unaccounted potential 547 

environmental influences on respiratory health. Our results are generally suggestive of a 548 

potential beneficial or protective health influence associated with natural and biodiverse 549 

environments. Across different socio-geographic settings, we highlight environmental 550 

features and attributes worthy of more targeted investigation—in particular, high biodiversity 551 

areas, natural forests through to open woodlands, wetlands, high diversity in land use, and 552 

proximity to coastal areas. The validity of these findings is supported by the parallel 553 

associations we found with well-recognized social predictors of health included in the 554 

modelling. These findings provide additional motivation to investigate the various potential 555 

connections between biodiverse environments and human health. Among these, we suggest 556 

possible beneficial immunomodulatory influences from environmental microbiota and 557 

bioactive agents (perhaps associated with various environmental components such as types of 558 

vegetation, soils, land use, and their diversity) represent a worthy research focus (e.g. via 559 

study of environmental and human microbiomes and human health biomarkers). Our results 560 

provide additional support and context to emerging research into the potential role of natural 561 

green space exposures in reducing the risk of immune-related disease at a population level. 562 

Our approach can be readily adapted to explore potential health and environmental 563 

associations elsewhere. 564 

 565 

  566 



24 

Acknowledgements. We thank Graham Rook and Geraint Rogers for helpful discussions and 567 

suggestions. This research used high-performance computing services provided by eRSA 568 

(www.ersa.edu.au), and mapping datasets produced through Australia’s Terrestrial 569 

Ecosystem Research Network (TERN, www.tern.org.au). 570 

 571 

Appendix A. Supplementary data 572 

Supplementary material related to this article can be found at <insert Science Direct link> 573 

 574 

 575 

 576 

 577 

  578 



25 

 579 

 580 

Fig. 1. Socio-geographic clusters of Australian LGAs. Three clusters were identified: the 581 

‘Moderate majority’ (A, n=451), ‘Major cities’ (B, n=72), and ‘Remote disadvantaged’ (C, 582 

n=35). Numbers indicate all available LGAs used to determine clusters, whereas a reduced 583 

set were available for health response modelling (see Table 1). Inset maps show LGAs 584 

associated with (a) Perth, (b) Adelaide, (c) Melbourne, and (d) Sydney. 585 

 586 

  587 
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 588 

Fig. 2. Important predictors for the ‘Moderate majority’ socio-geographic cluster. The 589 
right panel shows density and point plots of standardized regression coefficients from 10-fold 590 
CV Lasso modelling of log10(respiratory disease public hospital admissions). Shading of 591 
density plots indicates negative (blue) to positive (red) coefficients. Variables with negative 592 
coefficients associate with decreased hospital admissions. Twenty predictors were identified 593 
across the 10-fold Lasso models: (A) Socioeconomic index, (B) Distance to coast, (C) 594 
Percent obese persons, (D) Diversity of major vegetation groups, (E) Mean temperature 595 
annual range, (F) Species richness (log10), (G) Maximum temperature of warmest month, 596 
(H) Proportion of eucalypt forests 10-30 m (logit), (I) Percent overweight persons (logit), (J) 597 
Percent smoking during pregnancy, (K) Percent English-speaking immigrants (logit), (L) 598 
Proportion of warm wet plains (logit), (M) Proportion of open trees (logit), (N) Percent 599 
Aboriginal persons (logit), (O) Diversity of land use, (P) Proportion of nature conservation 600 
(logit), (Q) Vegetation fractional cover minimum nonphotosynthetic (logit), (R) Mean 601 
precipitation of the coldest quarter, (S) Vegetation fractional cover minimum photosynthetic 602 
(logit), (T) Soil cation exchange capacity * erodible fraction (geometric mean). Maps display 603 
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all available predictor data for Australia (low values are shown in yellow, high values in 604 
blue), however only a portion of local government areas (LGAs) occur in the ‘Moderate 605 
majority’ socio-geographic cluster (Fig. 1). Due to reduced data availability among candidate 606 
predictors, a smaller subset of LGAs (n=364, see maps C and I) were used in the modelling. 607 
 608 

  609 
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Table 1. Performance of 10-fold CV Lasso modelling.  610 

Mean performance statistics from explicit 10-fold CV Lasso modelling of respiratory disease 611 

public hospital admissions (see Appendix A for further details). 612 

 613 
 Local government area cluster 

CV statistics (mean of 
10-fold validation sets) Moderate majority Major cities 

Remote 
disadvantaged 

Response 
transformation 

log10 - log10 

No. of LGAs used in 
modelling (n) 

364 62 24 

No. of predictors (p) 
chosen by the Lasso 

20 11 10 

SD(obs) 0.1479 242.2 0.1824 

Root mean square error 0.0999 125.3 0.1463 

Mean error (bias) -0.0003 -2.833 0.0199 

Skewness(residuals) 0.1363 -0.1932 -0.0341 

Concordance 
correlation coefficient 

0.6795 0.7768 0.4070 

R2 0.5557 0.7698 0.9244 

 614 

 615 

  616 
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Methods (Supplementary Information) 

 
Environmental covariate preparation 

 
We collated and prepared a wide array of environmental covariates from various sources 
(Table S3). A standard grid system was adopted matching the approx. 250 m cell size of 
Geoscience Australia dynamic land cover mapping data [1]. Where necessary, numeric layers 
were bilinearly resampled and categorical layers were resampled using the nearest neighbor 
method, in order to match the common grid system. 

Focal neighborhood calculations using a 3 km radius were then undertaken for all of the 
Australia-wide map layers, such that each grid cell subsequently contained a summary value 
characterizing the surrounding 3 km-radius area. For numeric layers, each grid cell was 
recalculated to contain the average value of the surrounding area. Categorical layers were 
converted into numeric layers via (a) iteratively evaluating the proportion of each class within 
the 3 km-radius area, and (b) calculating the diversity of classes using the Shannon diversity 
index (H): 
 

ܪ = − ∑ ௜݌
௞
௜ୀଵ ln (݌௜)       (S1.1) 

 
where pi is the proportion in class k, and k is the number of classes found in each 

respective 3km-radius area. 
 

A derived layer for the erodible fraction (EF) of soils was calculated using the 
formula proposed by Fryrear et al. [2]: 
 

ܨܧ = [ 29.09 + 0.31 ∗ ݀݊ܽݏ + 0.17 ∗ ݐ݈݅ݏ + 0.33 ∗ ൬
݀݊ܽݏ
ݕ݈ܽܿ

൰ 

                                         −4.66 ∗ ܥܱ − 0.95 ∗  ଷ ]/100    (S1.2)ܱܥܽܥ
 

where: sand = sand content (%), silt = silt content (%); OC = organic carbon content 
(%),  CaCO3 = calcium carbonate content (%); and sand, silt and OC content layers 
were sourced from Viscarra Rossel et al. [3], while the CaCO3 content layer was 
sourced from Wilford et al. [4]. 

 
The majority of spatial data preparation and analysis was performed using the R software 
environment [5], in particular using tools adapted from the R raster package [6]. Australia-
wide focal neighborhood calculations for class proportions and Shannon diversity indices 
were implemented using R software on high-performance computing facilities provided by 
eRSA (www.ersa.edu.au).  

Environmental variables were finally summarized by averaging values to match Local 
Government Area (LGA) boundaries corresponding to the available public health and 
contextual data, using the zonal statistics tool in ESRI ArcGIS 10.2 [7]. 
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Data cleaning due to missing data 
 
The Social Health Atlas of Australia has missing data for some LGAs across the response and 
candidate predictor variables. To consider the widest possible range of potential explanatory 
variables, in the ‘Moderate majority’ and ‘Major cities’ clusters we first excluded all rows 
(LGAs) with missing data. This reduced the number of LGAs used (from 451 to 364 for the 
‘Moderate majority’; and from 72 to 62 for ‘Major cities’) in the subsequent modelling and 
analysis.  
 

In the ‘Remote disadvantaged’ cluster, we first excluded four variables with a high 
frequency of missing data (Percent smokers, Percent high alcohol consumption, Percent 
overweight persons, Percent obese persons) and then excluded any remaining rows with 
missing data. This process reduced the number of LGAs available for analysis from 35 to 24. 
 
Automated screening of candidate predictors 

 
Because the Lasso tool is effectively a machine-learning adaptation of multiple linear 
regression, we considered the need to screen and potentially transform candidate predictors to 
help improve linear relationships while balancing the need for interpretability (of predictors) 
and transparency in any transformation process. To achieve this in a transparent, objective 
fashion, we developed an automated screening algorithm (using R script) to scrutinise and 
where necessary transform or eliminate candidate predictors prior to input to the Lasso. The 
algorithm was run separately for each LGA cluster and comprised the following steps: 

 
Step 1: Variables were excluded if there were less than 50% of the total LGAs with non-

zero observations from which to infer a relationship. This was designed to eliminate 
predictors that were present in the Australia-wide data but were considered non-
representative for the particular socio-geographic cluster under consideration. 

 
Step 2: The following transformations were calculated for each candidate predictor for 

later comparison against each other and the original (untransformed) data: 
 Logit (log odds) transformations were the only alternative considered for 

proportion and percentage-based data, with lower and upper bounds (i.e. 0, 
100%) remapped to the 2.5th and 97.5th percentile respectively. 

 Square root (sqrt), which was disqualified if negative values were present. 
 Log10, which was disqualified if negative or zero values were present. 
 Square 
 Cube root, which was only considered where negative values were present. 

 
Step 3: Pragmatic threshold acceptance criteria were set for the original and transformed 

variables to be included in the modelling. Any candidate predictors not meeting these criteria 
were excluded: 

 absolute value of skewness <= 1.5 
 kurtosis <= 4 
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 coefficient of determination (R2) between the candidate predictor and response 
variable >= 0.025 (i.e. at least 2.5% stand-alone explanatory value). 

 
Step 4: Representatives for each variable were then chosen. If only one option remained 

(whether original or transformed), that was chosen. Then, for proportion and percentage-
based variables, the most normally distributed data (comparing only original and logit 
transforms) were chosen, as judged by the maximum Shapiro-Wilk normality test p-value. 
For non-proportion-based variables, if the original form passed the acceptance criteria then 
that was chosen as a priority for ease of interpretation. If the original was not eligible, then 
the most normally-distributed data from the remaining transformations was chosen (again, as 
judged by the maximum Shapiro-Wilk normality test p-value). For a number of variables, no 
options passed the acceptance criteria, and they were eliminated from the modelling. 

 
All of the above analyses, and subsequent modelling, were performed on candidate 

predictor variables that had been subject to 95% Winsorization (based on data within each 
cluster), which was designed to eliminate the influence of extreme and potentially outlying 
values [8]. This involved all extreme low values below the 2.5th percentile being replaced by 
the 2.5th percentile, and all extreme high values above the 97.5th percentile being replaced by 
the 97.5th percentile. 

Predictor data were then centered and scaled (based on data within each cluster) prior to 
the 10-fold Lasso modelling. 

 
Statistical analysis 
 
The performance of the 10-fold Lasso modelling was assessed using mean cross-validation 
statistics for: root mean-square error, mean error (or bias), skewness of model residuals, 
coefficient of determination (R2), and concordance correlation coefficient [9]. That is, health 
response observations from LGAs in each respective validation set (not used to develop the 
respective k-fold Lasso model) were compared against respective predictions based on the 
validation set predictor data. These results were then averaged over the 10 validation sets. 
This process was repeated for each socio-geographic cluster (see Table 1 of main article). 
The R2 values were computed from the square of the Pearson correlation coefficient and 
indicate how well predictions and observations adhere to a straight line (least-squares linear 
fit). The concordance correlation coefficient indicates how well predictions and observations 
adhere to a 1:1 relationship, with values closer to 1 indicating greater agreement. The 
skewness of residuals indicates how balanced the model is in terms of under- and over-
predictions. Table 1 also reports the standard deviation of observations (SD (obs)). 
Performance measures were calculated using the same form of health response data as used in 
modelling, i.e. using log10-transformed response data for the ‘Moderate majority’ and 
‘Remote disadvantaged’, and untransformed data for the ‘Major cities’. Validation set 
predictions and observations are plotted in Fig. S6.  

 
To examine the significance of Diversity of major vegetation groups within quartiles 

of Socioeconomic index (using ‘Moderate majority’ data only, Fig. S7) we constructed 
standard multiple linear regression models for the health response (log10(respiratory disease 
public hospital admissions)) using only Socioeconomic index and Diversity of major 
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vegetation groups as explanatory variables. Variable significance was assessed using p-values 
for the regression coefficients from the respective multiple linear regression models. 
Throughout this study, where standard linear regression models are applied, these use base R 
software [5]. Testing of Lasso-identified predictor significance (i.e. selection-adjusted p-
values, Tables S6-S7) use the R SelectiveInference package [10]. 
 
Extended analysis: examining variable significance 
 
Based on the 10-fold Lasso modelling results, and using the ‘Moderate majority’ data only, 
we undertook two further analyses to better understand variable significance. Firstly, we 
examined the influence of Diversity of major vegetation groups, while controlling for 
Socioeconomic influence (Fig. S7). Within quartiles of Socioeconomic index, we considered 
only Socioeconomic index and Diversity of major vegetation groups as explanatory variables 
in separate multiple linear regression models for respiratory health. In every quartile, 
Diversity of major vegetation groups was identified as significant predictor. However, only in 
the wealthiest quartile was Socioeconomic index also identified as a significant predictor.  
 

Secondly, we wished to understand whether predictors identified by the Lasso could 
be viewed as significant. We noted that the assessment of significance using contemporary 
machine-learning tools is a developing field of statistical science, and new tools for 
investigating selective inference with the Lasso provide more conservative p-values than 
might be expected from traditional methods [11]. To examine the significance of results from 
the Lasso we re-analysed all ‘Moderate majority’ data, this time considering a two-part 
random split (each with n=182 LGAs). (The reason for splitting data is that the Lasso tool is 
able to provide important insights into a particular dataset, and can cherry-pick variables with 
the most explanatory value for that dataset. From a purist statistical science viewpoint, it is 
therefore not appropriate to reuse the same dataset and the cherry-picked (Lasso-identified) 
variables in a traditional multiple linear regression model, as this will not provide a fair and 
independent assessment of variable significance.) 

 
On data-split one we ran a single iteration of the Lasso (Fig. S8), and determined the 

selection-adjusted p-values [10] for coefficients of identified non-zero predictors. Ordering 
these Lasso-identified predictors by the absolute size of standardized regression coefficients, 
we then inputted respective predictor data from data-split two into standard multiple linear 
regression software. This generated an independently-generated and contrasting set of 
regression coefficients and p-values (Table S6). For completeness, we also reversed these 
operations: running the Lasso on data-split two (Fig. S9), and then entering the corresponding 
identified predictor data from data-split one into a standard multiple linear regression (with 
results in Table S7). For this extended Lasso analysis we used the default internal 10-fold 
cross-validation setting when calling cv.glmnet to identify the optimal penalisation parameter 
(using the parsimonious option, s = ‘lambda.1se’) and corresponding Lasso regression 
coefficients. 

 
Results show some consistency with similar themes of predictors identified in 

comparison to the 10-fold modelling. However, different results were obtained because of 
differences in input data. P-values provided by the selective inference software were 
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conservative, however many of the predictors ranked highly by the Lasso (when ordered by 
absolute size of standardized regression coefficients) also showed up as significant predictors 
in the complementary data-split (i.e. using data kept separate from the Lasso variable-
selection process). 
 
Associated data 
 
The following data are available for download from the article web page on ScienceDirect: 
 

 Database S1 – All data in raw form (558 local government areas x 192 candidate 
explanatory variables) 

 Example R scripts for: 
o Continent-wide 3 km-radius focal neighbourhood calculation - Shannon 

diversity index 
o Continent-wide 3 km-radius focal neighbourhood calculation - class 

proportion #1 
o Modelling workflow for Australia-wide 10-fold Lasso modelling of 

respiratory health by local government areas 
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Fig. S1. Histogram of Australia-wide Socioeconomic index 

Frequency distribution of Socioeconomic index (termed ‘Index of relative socioeconomic 
disadvantage’ in the Social Health Atlas of Australia [12, 13]) for n=558 local government 
areas across Australia. The left tail is suggestive of a second minor mode centered on 
communities of low socioeconomic status. Note that low values of Socioeconomic index 
correspond to greater disadvantage or deprivation, while high values correspond to higher 
socioeconomic status. 
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Fig. S2. Histograms of respiratory disease response variables 

Frequency distributions of respiratory disease public hospital admissions (health response 
variable) for local government area clusters: (a) ‘Moderate majority’ [log10-transformed, 
n=364, mean ± sd: 3.210 ± 0.150], (b) ‘Major cities’ [n=62, mean ± sd: 1022 ± 267], and (c) 
‘Remote disadvantaged’ [log10-transformed, n=24, mean ± sd: 3.612 ± 0.213]. Raw units are 
age standardized rate per 100,000. 
 
  

(a) (b) (c) 
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Fig. S3. Scatterplot matrix with correlation coefficients for response and predictor 
variables identified from 10-fold cross-validation Lasso modelling of the ‘Moderate 
majority’ cluster. 
Variables labelled on the diagonal are ‘Response’, i.e. log10(respiratory disease public hospital 
admissions)’, (A) Socioeconomic index, (B) Distance to coast, (C) Percent obese persons, (D) 
Diversity of major vegetation groups, (E) Mean temperature annual range, (F) Species richness 
(log10), (G) Maximum temperature of warmest month, (H) Proportion of eucalypt forests 10-30m 
(logit), (I) Percent overweight persons (logit), (J) Percent smoking during pregnancy, (K) Percent 
English-speaking immigrants (logit), (L) Proportion of warm wet plains (logit), (M) Proportion of 
open trees (logit), (N) Percent Aboriginal persons (logit), (O) Diversity of land use, (P) 
Proportion of nature conservation (logit), (Q) Vegetation fractional cover minimum 
nonphotosynthetic (logit), (R) Mean precipitation of the coldest quarter, (S) Vegetation fractional 
cover minimum photosynthetic (logit), (T) Soil cation exchange capacity * erodible fraction 
(geometric mean). Panels below the diagonal contain scatterplots with locally weighted 
scatterplot smoothing (‘lowess’) curves; and above the diagonal contain the calculated Pearson 
correlation coefficient (r). Variable histograms are included on the diagonal. 
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Fig. S4. Important predictors for the 'Major cities' cluster (n=62).  

Density and point plots of standardized regression coefficients from 10-fold cross-validation 
Lasso modelling of respiratory disease public hospital admissions. Eleven predictors were 
identified across the 10-fold Lasso models: (A) Socioeconomic index, (B) Mean temperature 
of the wettest quarter, (C) Proportion of rainfed pasture (logit), (D) Percent Aboriginal 
persons (logit), (E) Percent of smokers, (F) Percent obese persons, (G) Percent smoking 
during pregnancy, (H) Vegetation fraction of photosynthetically-active radiation maximum 
(logit), (I) Total population, (J) Percent overseas-born from non-English-speaking countries 
resident less than 5 years (logit), (K) Proportion of tussock grass open (logit).  
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Fig. S5. Important predictors for the 'Remote disadvantaged' cluster (n=24). 

Density and point plots of standardized regression coefficients from 10-fold cross-validation 
Lasso modelling of respiratory disease public hospital admissions. Ten predictors were 
identified across the 10-fold Lasso models: (A) Proportion of wetlands (logit), (B) Mean 
temperature of the wettest quarter, (C) Proportion of acacia forests and woodlands (logit), (D) 
Proportion of swampy grasses and sedges (logit), (E) Proportion of hummock grass sparse 
(logit), (F) Air temperature annual mean isothermality, (G) Proportion of eucalypt woodlands 
(logit), (H) Vegetation fractional cover standard deviation – bare soil, (I) Proportion of 
scattered trees (logit), (J) Vegetation fractional cover maximum – bare soil (logit). 
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Fig. S6. Cross-validation plots 

10-fold cross-validation predictions versus observations for Lasso penalized regression 
modelling of respiratory disease public hospital admissions, for local government area 
clusters: (a) ‘Moderate majority’, (b) ‘Major cities’, and (c) ‘Remote disadvantaged’. Note: 
response variables for clusters (a) and (c) are log10-transformed. 
 
  

(a) (b) (c) 
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  p-value for 

regression coefficient 
Correlation (r) 

  Socio-
economic 

index 

Div. of 
major 
veg. 

groups 

Div. of major 
veg. groups & 
Socioeconomic 

index 

(a) 

 

0.3728 
- 

0.0005 
*** 

-0.2037 

(b) 
0.0437 

* 
0.0001 

*** 
0.0746 

(c) 
0.0665 

. 
9e-07 
*** 

-0.1350 

(d) 
1e-05 
*** 

2e-06 
*** 

0.1259 

                 Diversity of major veg groups (scaled) 

Fig. S7. Relationship between Diversity of major vegetation groups, Socioeconomic 
index, and respiratory health response for the ‘Moderate majority’ cluster—within 
quartiles of Socioeconomic index. 

Plots show data for local government areas split by: (a) 0-25th, (b) 25-50th, (c) 50-75th, and (d) 
75-100th percentiles (i.e. quartiles) of Socioeconomic index. For each socioeconomic quartile 
(n=91), the corresponding table row on the right contains p-values for regression coefficients 
from a multiple linear regression model for the health response—log10(respiratory disease 
public hospital admissions)—with only Socioeconomic index and Diversity of major 
vegetation groups as explanatory variables. Significance codes are:  0–0.001: ‘***’, 0.001–
0.01: ‘**’, 0.01–0.05: ‘*’, 0.05– 0.1: ‘.’ The third column in the table shows the respective 
Pearson correlation coefficient (r) calculated between Diversity of major vegetation groups 
and Socioeconomic index (indicating they have low levels of correlation). 
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Fig. S8. Alternate Lasso model parameters for the ‘Moderate majority’ cluster – based 
on data-split one training data. 

Panel (a) shows mean square error on the y-axis, the log of the penalisation parameter is 
shown on the lower x-axis, and the increasing number of non-zero predictors introduced by 
alternate Lasso models is shown on the top axis. Panel (b) shows increasing R2 on the lower 
x-axis (eventually indicating over-fitting to the training data) for alternate regression models 
where the number of predictors (upper x-axis) is allowed to increase. Both panels indicate the 
‘sweet spot’ of low mean square error, moderately high R2 value, and parsimony in the 
number of predictors selected. 
 
 
  

(a) (b) 
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Fig. S9. Alternate Lasso model parameters for the ‘Moderate majority’ cluster – based 
on internal cross-validation of data-split two training data. 

Panel (a) shows mean square error on the y-axis, the log of the penalisation parameter is 
shown on the lower x-axis, and the increasing number of non-zero predictors introduced by 
alternate Lasso models is shown on the top axis. Panel (b) shows increasing R2 on the lower 
x-axis (eventually indicating over-fitting to the training data) for alternate regression models 
where the number of predictors (upper x-axis) is allowed to increase. Both panels indicate the 
‘sweet spot’ of low mean square error, moderately high R2 value, and parsimony in the 
number of predictors selected. 
 
  

(a) (b) 
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Table S1. International classification of diseases 10th revision Australian modification 
(ICD-10-AM) codes for diseases of the respiratory system 
This study has used aggregated data for public hospital admissions with principal diagnoses 
of diseases of the respiratory system (ICD-10-AM codes J00-J99 [14]), listed below, as 
reported by the Social Health Atlas of Australia [12, 13]. To provide an indicative breakdown 
of individual disease cases, separations from all hospitals (public + private) are shown in the 
right-hand columns [15]. Note: at the time of writing, separation data were not available for 
public hospitals only. 
 

Sub-
category 

Disease Separations (% of total) 
2011-12 2012-13 

Acute upper respiratory infections (J00-J06)   

 Acute nasopharyngitis [common cold] (J00) 
Acute sinusitis (J01) 
Acute pharyngitis (J02) 
Acute tonsillitis (J03) 
Acute laryngitis and tracheitis (J04) 
Acute obstructive laryngitis [croup] and epiglottitis (J05) 
Acute upper respiratory infections of multiple and unspecified sites (J06) 

186 (<0.05%) 
1039 (0.3%) 
2364 (0.6%) 
12195 (3%) 
447 (0.1%) 
7308 (1.8%) 

14463 (3.6%) 

164 (<0.05%) 
900 (0.2%) 
2145 (0.5%) 
11617 (2.9%) 
406 (0.1%) 
5799 (1.5%) 

13883 (3.5%) 

Influenza and pneumonia (J09-J18)   

 Influenza due to certain identified influenza virus (J09) 
Influenza due to other identified influenza virus (J10) 
Influenza, virus not identified (J11) 
Viral pneumonia, not elsewhere classified (J12) 
Pneumonia due to Streptococcus pneumoniae (J13) 
Pneumonia due to Haemophilus influenzae (J14) 
Bacterial pneumonia, not elsewhere classified (J15) 
Pneumonia due to other infectious organisms, not elsewhere classified (J16) 
Pneumonia, organism unspecified (J18) 

687 (0.2%) 
2400 (0.6%) 
1178 (0.3%) 
3508 (0.9%) 
1775 (0.4%) 
1151 (0.3%) 
3862 (1%) 
No data 

67507 (16.8%) 

184 (<0.05%) 
4846 (1.2%) 
1316 (0.3%) 
3798 (1%) 
2017 (0.5%) 
1237 (0.3%) 
3908 (1%) 
No data 

63791 (16%) 

Other acute lower respiratory infections (J20-J22)   

 Acute bronchitis (J20) 
Acute bronchiolitis (J21) 
Unspecified acute lower respiratory infection (J22) 

2642 (0.7%) 

18347 (4.6%) 
24099 (6%) 

2338 (0.6%) 

19152 (4.8%) 
23631 (5.9%) 

Other diseases of upper respiratory tract (J30-J39)   

 Vasomotor and allergic rhinitis (J30) 
Chronic rhinitis, nasopharyngitis and pharyngitis (J31) 
Chronic sinusitis (J32) 
Nasal polyp (J33) 
Other disorders of nose and nasal sinuses (J34) 
Chronic diseases of tonsils and adenoids (J35) 
Peritonsillar abscess (J36) 
Chronic laryngitis and laryngotracheitis (J37) 
Diseases of vocal cords and larynx, not elsewhere classified (J38) 
Other diseases of upper respiratory tract (J39) 

681 (0.2%) 
1115 (0.3%) 
10970 (2.7%) 
3419 (0.9%) 

25627 (6.4%) 
40813 (10.2%) 
3251 (0.8%) 
84 (<0.05%) 
4436 (1.1%) 
1752 (0.4%) 

645 (0.2%) 
1297 (0.3%) 
11065 (2.8%) 
3313 (0.8%) 

26089 (6.5%) 
41384 (10.4%) 
3283 (0.8%) 
78 (<0.05%) 
4516 (1.1%) 
1677 (0.4%) 

Chronic lower respiratory diseases (J40-J47)   

 Bronchitis, not specified as acute or chronic (J40) 
Simple and mucopurulent chronic bronchitis (J41) 
Unspecified chronic bronchitis (J42) 
Emphysema (J43) 
Other chronic obstructive pulmonary disease (J44) 
Asthma (J45) 
Status asthmaticus (J46) 

2451 (0.6%) 
41 (<0.05%) 
420 (0.1%) 
419 (0.1%) 

61893 (15.4%) 
36176 (9%) 
2505 (0.6%) 

2115 (0.5%) 
57 (<0.05%) 
429 (0.1%) 
349 (0.1%) 

62151 (15.6%) 
35257 (8.8%) 
2267 (0.6%) 
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Bronchiectasis (J47) 5185 (1.3%) 5388 (1.4%) 

Lung diseases due to external agents (J60-J70)   

 Coalworker's pneumoconiosis (J60) 
Pneumoconiosis due to asbestos and other mineral fibres (J61) 
Pneumoconiosis due to dust containing silica (J62) 
Pneumoconiosis due to other inorganic dusts (J63) 
Unspecified pneumoconiosis (J64) 
Pneumoconiosis associated with tuberculosis (J65) 
Airway disease due to specific organic dust (J66) 
Hypersensitivity pneumonitis due to organic dust (J67) 
Respiratory conditions due to inhalation of chemicals, gases, fumes and 
vapours (J68) 
Pneumonitis due to solids and liquids (J69) 
Respiratory conditions due to other external agents (J70) 

25 (<0.05%) 
132 (<0.05%) 
35 (<0.05%) 
No data 
5 (<0.05%) 
No data 
No data 
150 (<0.05%) 
 
20 (<0.05%) 
9857 (2.5%) 
236 (0.1%) 

27 (<0.05%) 
124 (<0.05%) 
25 (<0.05%) 
No data 
6 (<0.05%) 
No data 
No data 
106 (<0.05%) 
 
16 (<0.05%) 
9894 (2.5%) 
230 (0.1%) 

Other respiratory diseases principally affecting the interstitium (J80-J84)   

 Adult respiratory distress syndrome (J80) 
Pulmonary oedema (J81) 
Pulmonary eosinophilia, not elsewhere classified (J82) 
Other interstitial pulmonary diseases (J84) 

156 (<0.05%) 
689 (0.2%) 
277 (0.1%) 
3594 (0.9%) 

148 (<0.05%) 
609 (0.2%) 
271 (0.1%) 
3638 (0.9%) 

Suppurative and necrotic conditions of lower respiratory tract (J85-J86)   

 Abscess of lung and mediastinum (J85) 
Pyothorax (J86) 

531 (0.1%) 
722 (0.2%) 

532 (0.1%) 
733 (0.2%) 

Other diseases of pleura (J90-J94)   

 Pleural effusion, not elsewhere classified (J90) 
Pleural plaque (J92) 
Pneumothorax (J93) 
Other pleural conditions (J94) 

6696 (1.7%) 
 
3189 (0.8%) 
326 (0.1%) 

6773 (1.7%) 
 
3274 (0.8%) 
345 (0.1%) 

Other diseases of the respiratory system (J95-J99)   

 Postprocedural respiratory disorders, not elsewhere classified (J95) 
Respiratory failure, not elsewhere classified (J96) 
Other respiratory disorders (J98) 

No data 
3476 (0.9%) 
5514 (1.4%) 

No data 
3683 (0.9%) 
5958 (1.5%) 

(Separations > 3% annual total  
are highlighted in bold) 
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Table S2. Socio-geographic variables 
The following socio-geographic variables were used as candidate predictor data, sourced 
from the Social Health Atlas of Australia dataset [13], except Area of local government area 
and Population density which were derived from spatial mapping of LGAs [16]. 
 
Variable Units Reference period 

Total population No. persons 2013 

Area of local government area km2 N/A 

Population density Persons/km2 2013 

Percent Aboriginal persons % 2013 

Percent Australian-born persons % 2011 

Percent born overseas in predominantly 
English-speaking countries 

% 2011 

Percent born overseas in a predominantly non-
English-speaking country 

% 2011 

Percent born overseas in a predominantly non-
English-speaking country, resident in Australia 
for 5 years or more 

% 2011 

Percent born overseas in a predominantly non-
English-speaking country, resident in Australia 
for less than 5 years 

% 2011 

*Socioeconomic index No units 2011 

Percent smoking during pregnancy % 2008 to 2010 (NSW, Qld, 
SA and ACT), 2009 to 
2011 (Vic, WA, Tas), 2006 
to 2008 (NT) 

Percent smokers (estimated population rates, 
18 years and over) 

ASR /100 2011-13 

Percent high alcohol consumption (estimated 
population rates, 18 years and over) 

ASR/100 2011-13 

#Percent overweight persons (estimated 
population rates, 18 years and over) 

ASR/100 2011-13 

#Percent obese persons (estimated population 
rates, 18 years and over) 

ASR/100 2011-13 

N/A = not applicable, ASR = age standardized rate 

*Socioeconomic index was originally called Index of relative socioeconomic disadvantage in 
the Social Health Atlas of Australia. Note that low values correspond to greater disadvantage 
or deprivation, while high values correspond to reduced disadvantage (or higher 
socioeconomic status). 
#In our data, obese denotes body mass index > 30, while overweight denotes body mass index 
25 to <30. 
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Table S3. Environmental variables 
The following environmental variables provided the basis for candidate predictor data (all 
listed in Table S5). Broad themes of environmental data are: climate (C), ecological (E), 
geographic (G), land use (LU), pollution (P), soil parameters (S), vegetation or land cover 
classes (VLC), and vegetation indices from remote sensing (VRS). Units are displayed for 
numeric variables, whereas the number of classes (in brackets) are displayed for categorical† 
variables. Further preparatory steps for gridded environmental variables (i.e. 3 km radius 
focal calculations for numeric average, and conversion of categorical layers to class 
proportions and Shannon diversity indices), and subsequent selective transformations, are 
described in the Methods (refer to main article). #Focal calculations were not performed for 
point-based PM10 emissions (air pollution) data, as no exhaustive mapping was available; 
instead PM10 sites were intersected within each LGA, expressed as total/area, and averaged 
for the 2 year period. Additional abbreviations are explained in the Table footnote. 
 
Variable Theme Units / 

(classes†) 

Reference 
period 

Data 
source 

#Air pollution: Total industry PM10 emissions (mean 
2011-12 and 2012-13)/LGA area 

P kg/km2 2011-2013 [17, 18] 

Air temperature annual mean diurnal range C °C 1970-2012 [19] 

Air temperature annual mean isothermality C °C*100 1970-2012 [19] 

Annual mean precipitation C mm 1970-2012 [19] 

Annual mean temperature C °C 1970-2012 [19] 

Annual precipitation seasonality (coefficient of 
variation) 

C N/A 1970-2012 [19] 

Annual temperature seasonality (standard 
deviation*100) 

C °C*100 1970-2012 [19] 

Distance to coast G Decimal 
degrees 

N/A Calc. 

Ecological land units (combinations of bioclimate 

and landform)† 

E (39) 2012-2013 [20] 

Fire frequency mapping for Australia P No. years 
burnt 

1997-2010 [21] 

Land cover† VLC (34) 2000-2008 [1] 

Land use† LU (15) 1997-2014 [22] 

Major vegetation groups† VLC (32) 2012 [23] 

Maximum temperature of the warmest month C °C 1970-2012 [19] 

Mean precipitation of the coldest quarter C mm 1970-2012 [19] 

Mean precipitation of the driest month C mm 1970-2012 [19] 

Mean precipitation of the driest quarter C mm 1970-2012 [19] 
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Variable Theme Units / 

(classes†) 

Reference 
period 

Data 
source 

Mean precipitation of the warmest quarter C mm 1970-2012 [19] 

Mean precipitation of the wettest month C mm 1970-2012 [19] 

Mean precipitation of the wettest quarter C mm 1970-2012 [19] 

Mean temperature annual range C °C 1970-2012 [19] 

Mean temperature of the coldest quarter C °C 1970-2012 [19] 

Minimum temperature of the coldest month C °C 1970-2012 [19] 

Mean temperature of the driest quarter C °C 1970-2012 [19] 

Mean temperature of the warmest quarter C °C 1970-2012 [19] 

Mean temperature of the wettest quarter C °C 1970-2012 [19] 

Prescott Index C N/A 1981-2006 [24] 

Soil clay content, in the < 2 mm fraction (0-5 cm) S % 2014 [3] 

Soil effective cation exchange capacity (0-5 cm) S meq/100g 2014 [3] 

Soil effective cation exchange capacity (0-5 cm) * 
Soil erodible fraction * Vegetation fractional cover – 
mean BS; calculated as a geometric mean  
(intended to represent possible exposures to high clay and organic 
matter content soils, weighted by erodibility and soil cover) 

S N/A 2000-2012 Calc. 

Soil effective cation exchange capacity (0-5 cm) * 
Soil erodible fraction; calculated as a geometric mean 
(intended to represent possible exposures to high clay and organic 
matter content soils, weighted by erodibility) 

S N/A 2014 Calc. 

Soil effective cation exchange capacity (0-5 cm) * 
Vegetation fractional cover – mean BS; calculated as 
a geometric mean  
(intended to represent possible exposures to high clay and organic 
matter content soils, weighted by soil cover) 

S N/A 2000-2012 Calc. 

Soil erodible fraction; calculated using the method of 
Fryrear et al. [2] 

S % 2014 Calc. 

Soil erodible fraction * Vegetation fractional cover – 
mean BS; calculated as a geometric mean  
(intended to represent possible soil exposures due to erodible and 
bare soils) 

S N/A 2000-2012 Calc. 

Soil organic carbon content, in the < 2 mm fraction 
(0-5 cm) 

S % 2014 [3] 

Soil organic carbon stocks in the top 30 cm S t.ha-1 2010 [25] 

Soil pH (in CaCl2) (0-5 cm) S pH 2014 [3] 

Soil sand content, in the < 2 mm fraction (0-5 cm) S % 2014 [3] 

Soil silt content, in the < 2 mm fraction (0-5 cm) S % 2014 [3] 
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Variable Theme Units / 

(classes†) 

Reference 
period 

Data 
source 

Species richness (average of all biological species 
occurrences in 9 pane moving window, where each 
pane is 0.01 degrees latitude/ longitude, or ~1km2) 

E No. of 
species 

N/A [26] 

Vegetation FPAR maximum VRS Fraction 1981-2011 [27] 

Vegetation FPAR mean VRS Fraction 1981-2011 [27] 

Vegetation FPAR median VRS Fraction 1981-2011 [27] 

Vegetation FPAR minimum VRS Fraction 1981-2011 [27] 

Vegetation FPAR standard deviation VRS Fraction 1981-2011 [27] 

Vegetation fractional cover – maximum BS VRS % 2000-2012 [28] 

Vegetation fractional cover – maximum NPV VRS % 2000-2012 [28] 

Vegetation fractional cover – maximum PV VRS % 2000-2012 [28] 

Vegetation fractional cover – mean BS VRS % 2000-2012 [28] 

Vegetation fractional cover  – mean NPV VRS % 2000-2012 [28] 

Vegetation fractional cover – mean PV VRS % 2000-2012 [28] 

Vegetation fractional cover – min BS VRS % 2000-2012 [28] 

Vegetation fractional cover – min NPV VRS % 2000-2012 [28] 

Vegetation fractional cover – min PV VRS % 2000-2012 [28] 

Vegetation fractional cover – standard deviation BS VRS % 2000-2012 [28] 

Vegetation fractional cover – standard deviation NPV VRS % 2000-2012 [28] 

Vegetation fractional cover – standard deviation PV VRS % 2000-2012 [28] 

Abbreviations used: N/A = not applicable; Calc. = calculated; FPAR = Fraction of photosynthetically 
active radiation (i.e. radiation signal due to living green vegetation); PV = photosynthetic (living 
green) vegetation; NPV = non-photosynthetic vegetation (e.g. non-living straw, stubble, plant 
remnants), BS = bare soil. 

Note: Summary statistical layers (minimum, mean, median, maximum, standard deviation) for time-
series vegetation FPAR and fractional cover products were previously calculated by CSIRO Land and 
Water for collaborative Australia-wide predictive soil and landscape mapping via the Terrestrial 
Ecosystem Research Network ‘Soil and Landscape Grid of Australia’ [29]. 
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Table S4. Socio-geographic clustering of Australian local government areas 
The total available number of local government areas (LGAs), as indicated, were used in k-
means clustering, however a reduced number [in brackets] were used in subsequent 
modelling due to reduced availability of public health response and candidate predictor data. 
Cluster means and interquartile ranges (in brackets) are displayed, with scaled cluster centers 
beneath#. 
 

Description n 

Cluster characteristic values 

Socioeconomic 
index 

Percent 
Aboriginal 
persons (%) 

Population 
density 

(persons/km2) 

Cluster A. ‘Moderate majority’: 

The majority of Australian LGAs 
with moderate socioeconomic status 
and low to moderate population 
density 

 

451 

[364] 

974 

(945-1003) 

0.1164# 

6.5 

(2.0-7.3) 

-0.1815# 

95.8 

(0.474-22.5) 

-0.3306# 

Cluster B. ‘Major cities’: 

Highest population density, highest 
average wealth LGAs concentrated 
around major capital cities 

 

72 

[62] 

1041 

(1010-1126) 

0.7765# 

0.8 

(0.4-1.0) 

-0.5066# 

2978 

(2087-3531) 

2.272# 

Cluster C. ‘Remote disadvantaged’: 

Lowest population density, highest 
percent Aboriginal persons, and 
lowest average socioeconomic status 
LGAs spanning the arid inland to 
high rainfall northern Australia. 

35 

[24] 

649 

(583-696) 

-3.097# 

69.6 

(54.0-87.4) 

3.380# 

3.1 

(0.029-0.856) 

-0.4142# 

Notes: 
1. Cluster B ‘Major cities’ contain LGAs associated with capitals Perth, Adelaide, Melbourne, and 
Sydney. The capital of Brisbane was not included in this cluster due to larger LGA boundaries being 
defined in the official LGA dataset in that region, which resulted in lower population densities. 
 
2. Summary descriptive statistics for areas of LGAs ultimately used in the modelling are (note these 
area distributions are positively skewed): 
 Cluster A. ‘Moderate majority’ (n=364): median 2779 km2; interquartile range 921-5177 km2; 

range 9-93211 km2 
 Cluster B. ‘Major cities’ (n=62): median 27 km2; interquartile range 14-54 km2; range 3-103 km2 
 Cluster C. ‘Remote disadvantaged’ (n=24): median 43047 km2; interquartile range 1693-159867 

km2; range 70-320706 km2 
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Table S5. Candidate predictors selected (and not selected) from Lasso modelling 
From the 10-fold Lasso modelling, mean positive association, mean inverse association, low 
coefficients of questionable reliability (?), and variables not selected by the Lasso (blank) are 

denoted below. Variables with mean positive coefficients (+, shaded orange) associate with 

increased hospital admissions, and those with mean negative coefficients (–, shaded light 
blue) associate with decreased hospital admissions. 
 

Candidate predictors 

Sign of mean association 
identified from 10-fold Lasso 

modelling, by LGA cluster 

‘Moderate 
majority’ 

‘Major 
cities’ 

‘Remote 
disadvantaged’ 

Social variables    

Total population  –?  

Area of local government area    

Population density    

Percent Aboriginal persons (logit) + +  

Percent Australian-born persons    

Percent born overseas in predominantly English-speaking countries (logit) –   

Percent born overseas in a predominantly non-English-speaking country    

Percent born overseas in a predominantly non-English-speaking country, resident in 
Australia for 5 years or more 

   

Percent born overseas in a predominantly non-English-speaking country, resident in 
Australia for less than 5 years (logit) 

 –?  

Socioeconomic index – –  

Percent smoking during pregnancy + +  

Percent smokers (estimated population rates, 18 years and over)  +  

Percent high alcohol consumption (estimated population rates, 18 years and over)    

Percent overweight persons (estimated population rates, 18 years and over) (logit) –   

Percent obese persons (estimated population rates, 18 years and over) + +  

Environmental variables 
(3 km focal class proportion^, Shannon diversity index†, mean‡) 

   

Species richness (log10)^ –   

Diversity of land cover†    

Diversity of land use† –   

Diversity of ecological land units†    

Diversity of major vegetation groups† –   

Land cover #1: Proportion of extraction sites^    

Land cover #10: Proportion of rainfed sugar^    

Land cover #11: Proportion of wetlands (logit)^   – 

Land cover #12: Proportion of forbs open^    

Land cover #13: Proportion of forbs sparse^    

Land cover #14: Proportion of tussock grass closed^    

Land cover #15: Proportion of alpine grass open^    

Land cover #16: Proportion of hummock grass open^    
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Land cover #17: Proportion of sedges open^    

Land cover #18: Proportion of tussock grass open (logit)^  +?  

Land cover #19: Proportion of grassland scattered^    

Land cover #2: Proportion of bare areas^    

Land cover #20: Proportion of tussock grass scattered^    

Land cover #21: Proportion of grassland sparse^    

Land cover #22: Proportion of hummock grass sparse (logit)^   + 

Land cover #23: Proportion of tussock grass sparse^    

Land cover #24: Proportion of shrubs closed^    

Land cover #25: Proportion of shrubs open^    

Land cover #26: Proportion of chenopod shrubs open^    

Land cover #27: Proportion of shrubs scattered^    

Land cover #28: Proportion of chenopod shrubs scattered^    

Land cover #29: Proportion of shrubs sparse^    

Land cover #3: Proportion of inland waterbodies^    

Land cover #30: Proportion of chenopod shrubs sparse^    

Land cover #31: Proportion of trees closed^    

Land cover #32: Proportion of trees open (logit)^ –   

Land cover #33: Proportion of trees scattered (logit)^   + 

Land cover #34: Proportion of trees sparse^    

Land cover #4: Proportion of salt lakes^    

Land cover #5: Proportion of irrigated cropping^    

Land cover #6: Proportion of irrigated pasture^    

Land cover #7: Proportion of irrigated sugar^    

Land cover #8: Proportion of rainfed cropping^    

Land cover #9: Proportion of rainfed pasture (logit)^  +  

Land use #1: Proportion of nature conservation (logit)^ –   

Land use #11: Proportion of irrigated pastures^    

Land use #12: Proportion of irrigated cropping^    

Land use #13: Proportion of irrigated horticulture^    

Land use #14: Proportion of urban intensive use^    

Land use #15: Proportion of intensive plant and animal production^    

Land use #16: Proportion of rural residential farm infrastructure^    

Land use #17: Proportion of mining and waste^    

Land use #18: Proportion of water^    

Land use #4: Proportion of grazing native vegetation^    

Land use #5: Proportion of production forestry^    

Land use #6: Proportion of grazing modified pastures^    

Land use #7: Proportion of plantation forestry^    

Land use #8: Proportion of dryland cropping^    

Land use #9: Proportion of dryland horticulture^    

Climate: Air temperature mean diurnal range‡    

Climate: Air temperature mean isothermality‡   – 

Climate: Maximum temperature of the warmest month‡ +   

Climate: Mean annual precipitation‡    
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Climate: Mean annual precipitation seasonality‡    

Climate: Mean annual temperature‡    

Climate: Mean annual temperature seasonality‡    

Climate: Mean precipitation of the coldest quarter‡ –?   

Climate: Mean precipitation of the driest month‡    

Climate: Mean precipitation of the driest quarter‡    

Climate: Mean precipitation of the warmest quarter‡    

Climate: Mean precipitation of the wettest month‡    

Climate: Mean precipitation of the wettest quarter‡    

Climate: Mean temperature annual range‡ +   

Climate: Mean temperature of the coldest quarter‡    

Climate: Mean temperature of the driest quarter‡    

Climate: Mean temperature of the warmest quarter‡    

Climate: Mean temperature of the wettest quarter‡  + + 

Climate: Minimum temperature of the coldest month‡    

Climate: Prescott index‡    

Major vegetation groups (MVG) #1: Proportion of rainforests^    

MVG #10: Proportion of other forests and woodlands^    

MVG #11: Proportion of sparse eucalypt woodlands^    

MVG #12: Proportion of tropical eucalypt woodlands with annual grasses > 2 m^    

MVG #13: Proportion of sparse acacia woodlands^    

MVG #14: Proportion of mallee eucalypt woodlands and shrublands^    

MVG #15: Proportion of tall dense thickets^    

MVG #16: Proportion of acacia shrublands^    

MVG # 17: Proportion of other shrublands^    

MVG # 18: Proportion of heathlands^    

MVG # 19: Proportion of grasslands^    

MVG # 2: Proportion of 2 tall eucalypt forests > 30 m^    

MVG # 20: Proportion of arid spinifex grasslands^    

MVG # 21: Proportion of swampy grasses and sedges (logit)^   – 

MVG # 22: Proportion of saltbushes and salt marshes^    

MVG # 23: Proportion of mangroves^    

MVG # 24: Proportion of water^    

MVG # 25: Proportion of cleared vegetation^    

MVG # 26: Proportion of unclassified native vegetation^    

MVG # 27: Proportion of naturally bare^    

MVG # 28: Proportion of sea^    

MVG # 29: Proportion of regrowth^    

MVG # 3: Proportion of eucalypt forests 10-30 m (logit)^ –   

MVG # 30: Proportion of unclassified forest^    

MVG # 31: Proportion of other sparse woodlands^    

MVG # 32: Proportion of sparse mallee eucalypt woodlands and shrublands^    

MVG # 4: Proportion of low eucalypt forests < 10 m^    

MVG # 5: Proportion of eucalypt woodlands (logit)^   – 

MVG # 6: Proportion of acacia forests and woodlands (logit)^   – 
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MVG # 7: Proportion of cypress pine forests and woodlands^    

MVG # 8: Proportion of sheoak forests and woodlands^    

MVG # 9: Proportion of paperbark forests and woodlands^    

Soil effective cation exchange capacity (0-5 cm)‡    

Soil clay content, in the < 2 mm fraction (0-5 cm)‡    

Soil sand content, in the < 2 mm fraction (0-5 cm)‡    

Soil silt content, in the < 2 mm fraction (0-5 cm)‡    

Soil organic carbon content, in the < 2 mm fraction (0-5 cm)‡    

Soil pH (CaCl2) (0-5 cm)‡    

Soil organic carbon stocks in the top 30 cm‡    

Soil effective cation exchange capacity (0-5 cm) * Soil erodible fraction; calculated as 
a geometric mean‡ –?   

Soil effective cation exchange capacity (0-5 cm) * Soil erodible fraction * Vegetation 
fractional cover – mean BS; calculated as a geometric mean‡ 

   

Soil effective cation exchange capacity (0-5 cm) * Vegetation fractional cover – mean BS; 
calculated as a geometric mean‡ 

   

Soil erodible fraction * Vegetation fractional cover – mean BS; calculated as a geometric 
mean‡ 

   

Soil erodible fraction‡    

Distance to coast‡ +   

Fire frequency ‡    

Vegetation Fraction of photosynthetically active radiation (FPAR) maximum (logit)‡  +  

Vegetation FPAR mean‡    

Vegetation FPAR median‡    

Vegetation FPAR minimum‡    

Vegetation FPAR standard deviation‡    

Vegetation fractional cover – maximum BS (logit)‡   +? 

Vegetation fractional cover – maximum NPV‡    

Vegetation fractional cover – maximum PV‡    

Vegetation fractional cover – mean BS‡    

Vegetation fractional cover – mean NPV‡    

Vegetation fractional cover – mean PV‡    

Vegetation fractional cover – minimum BS‡    

Vegetation fractional cover – minimum NPV (logit)‡ +   

Vegetation fractional cover – minimum PV (logit)‡ –?   

Vegetation fractional cover – standard deviation BS‡   + 

Vegetation fractional cover – standard deviation NPV‡    

Vegetation fractional cover – standard deviation PV‡    

Ecological land unit (ELU) #1: Proportion of artificial or urban area^    

ELU # 10: Proportion of cool semi dry plains^    

ELU # 11: Proportion of cool wet hills^    

ELU # 12: Proportion of cool wet mountains^    

ELU # 13: Proportion of cool wet plains^    

ELU # 14: Proportion of hot dry hills^    

ELU # 15: Proportion of hot dry mountains^    

ELU # 16: Proportion of hot dry plains^    

ELU # 17: Proportion of hot moist hills^    
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ELU # 18: Proportion of hot moist mountains^    

ELU # 19: Proportion of hot moist plains^    

ELU # 21: Proportion of hot semi dry mountains^    

ELU # 22: Proportion of hot semi dry plains^    

ELU # 2: Proportion of cold wet hills^    

ELU # 20: Proportion of hot semi dry hills^    

ELU # 23: Proportion of hot wet hills^    

ELU # 24: Proportion of hot wet mountains^    

ELU # 25: Proportion of hot wet plains^    

ELU # 26: Proportion of snow and ice^    

ELU # 27: Proportion of undefined^    

ELU # 28: Proportion of warm dry hills^    

ELU # 29: Proportion of warm dry mountains^    

ELU # 3: Proportion of cold wet mountains^    

ELU # 30: Proportion of warm dry plains^    

ELU # 31: Proportion of warm moist hills^    

ELU # 32: Proportion of warm moist mountains^    

ELU # 33: Proportion of warm moist plains^    

ELU # 34: Proportion of warm semi dry hills^    

ELU # 36: Proportion of warm semi dry plains^    

ELU # 37: Proportion of warm wet hills^    

ELU # 38: Proportion of warm wet mountains^    

ELU # 39: Proportion of warm wet plains (logit)^ +   

ELU # 4: Proportion of cold wet plains^    

ELU # 40: Proportion of water body^    

ELU # 5: Proportion of cool moist hills^    

ELU # 6: Proportion of cool moist mountains^    

ELU # 7: Proportion of cool moist plains^    

ELU # 8: Proportion of cool semi dry hills^    

ELU # 9: Proportion of cool semi dry mountains^    

Air pollution - total industry PM10 emissions (mean 2011-13)    

    

Abbreviations: MVG = Major vegetation groups, FPAR = Fraction of Photosynthetically Active Radiation, PV = photosynthetic 
(living) vegetation, NPV = non-photosynthetic (non-living) vegetation, BS = bare soil, ELU = Ecological land unit. 
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Table S6. Significance testing of regression coefficients for the ‘Moderate majority’ 
cluster—based on data-split one. 
Lasso regression coefficients and selective inference were evaluated using data-split one#. 
Then data for top-ranking predictors (ordered by absolute size of standardized regression 
coefficients) from data-split two were input to standard multiple linear regression software, 
with results shown†. 
 

Predictor 
Lasso # Standard† 

Coef p-value Coef p-value 

Proportion of eucalypt forests 10-30m (logit) -0.0386 0.3363 -0.0270 0.0055 ** 

Percent obese persons 0.0366 0.2680 0.0098 0.3528 

Socioeconomic index -0.0325 0.2899 -0.0382 0.0008 *** 

Distance to coast 0.0256 0.3944 0.0411 0.0076 ** 

Proportion of warm wet plains (logit) 0.0241 0.0149 * 0.0190 0.0455 * 

Proportion of dryland cropping (logit) -0.0236 0.9195 -0.0046 0.6692 

Mean temperature annual range 0.0217 0.5958 0.0293 0.0583 . 

Soil cation exchange capacity x erodible 
fraction – geometric mean 

-0.0204 0.5875 -0.0101 0.2607 

Diversity of major vegetation groups -0.0191 0.6542 -0.0324 0.0033 ** 

Area of local government area (log10) 0.0187 0.3082 -0.0158 0.2515 

Percent English-speaking immigrants (logit) -0.0185 0.1033 0.0133 0.2415 

Percent overweight persons (logit) -0.0096 0.0486 * -0.0256 0.0124 * 

Percent smoking during pregnancy 0.0051 0.6161 0.0233 0.0218 * 

Species richness (log10) -0.0044 0.5686 -0.0376 0.0239 * 

Significance codes:  0–0.001: ‘***’, 0.001–0.01: ‘**’, 0.01–0.05: ‘*’, 0.05– 0.1: ‘.’ 
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Table S7. Significance testing of regression coefficients for the ‘Moderate majority’ 
cluster—based on data-split two. 
Lasso regression coefficients and selective inference were evaluated using data-split two#. 
Then data for top-ranking predictors (ordered by absolute size of standardized regression 
coefficients) from data-split one were input to standard multiple linear regression software, 
with results shown†. 
 

Predictor 
Lasso # Standard† 

Coef p-value Coef p-value 

Maximum temperature of the warmest 
month 

0.0468 0.1105 0.0173 0.2579 

Socioeconomic index -0.0438 0.1748 -0.0511 5e-6 *** 

Distance to coast 0.0381 0.1142 0.0355 0.0180 * 

Diversity of major vegetation groups -0.0318 0.0869 . -0.0134 0.2499 

Mean temperature annual range -0.0295 0.0954 . 0.0229 0.2160 

Proportion of warm wet hills (logit) 0.0239 0.6361 -0.0364 0.0099 ** 

Vegetation fractional cover minimum 
photosynthetic (logit) 

-0.0231 0.5251 0.0205 0.2822 

Proportion of open trees (logit) -0.0202 0.5697 -0.0121 0.3738 

Percent smoking during pregnancy 0.0201 0.0206 * 0.0171 0.1345 

Percent overweight persons (logit) -0.0197 0.5545 -0.0126 0.2142 

Percent Aboriginal persons (logit) 0.0183 0.3977 -0.0030 0.7843 

Proportion of warm wet plains (logit) 0.0179 0.2707 0.0454 0.0002 *** 

Mean precipitation of the coldest quarter -0.0139 0.0930 . -0.0010 0.9295 

Air temperature annual mean isothermality -0.0135 0.2846 -0.0057 0.6077 

Diversity of land use -0.0077 0.1901 -0.0138 0.1933 

Significance codes:  0–0.001: ‘***’, 0.001–0.01: ‘**’, 0.01–0.05: ‘*’, 0.05– 0.1: ‘.’ 
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