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Abstract 

Detecting changes in our visual environment is fundamental to our everyday functioning, for 

example navigating safely in traffic. Change detection is often quick and precise, with people 

able to capture meaning of a scene in under a second. However, people can fail to detect 

significant visual changes when a disruption occurs between views (Simons & Ambinder, 

2005). It remains unclear just how much the finer visual details matter for detecting change in 

scenes. To explore whether people are more sensitive to changes in the summary, or details in 

natural scenes, we explored short-term visual working memory by manipulating change-size 

across two change detection experiments. Participants (n = 30) were presented with arrays and 

its summarised image average for 150ms with a blank 300ms mask in between. Confidence 

ratings for participant certainty in the change occurring was also investigated. Contrary to 

predictions, participants were better at discriminating changes in the summary statistic 

averages than detailed arrays. However, performance increased with proportion of change size 

and confidence as predicted. It was concluded change size and image representation does affect 

change detection, and more visual detail is not always necessary to detecting change - spare 

representations are not so sparse after all.  
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CHAPTER 1  

Introduction 

How well do we perceive the world around us? Classic studies on the limits of 

perception, memory, and attention suggest that our capacity to perceive every detail in our 

visual environment is severely impoverished (Cohen & Chun, 2017; Rensink, O’Regan & 

Clark, 1997; Simons & Ambinder, 2005). For example, in a study by Chabris, Weinberger, 

Fontaine & Simons (2011), a participant and experimenter jogged around a university 

campus where a mock fight with three confederates was planned in plain view. The fight 

involved shouting and grunting, which was only a few feet away from the participant and 

visible for at least 15 seconds. Only 35 per cent of participants reported seeing the fight 

during the lit night-time trial. The daytime trial found only 56 per cent of participants noticed 

the staged fight. A significant proportion of people managed to miss a loud and visible fight, 

with many surprised they did not notice it. In another real-world display of inattentional 

blindness, pedestrians were asked if they noticed a brightly coloured clown riding a unicycle 

near their walking path (Hyman, Boss, McKenzie & Caggiano, 2010). Of those using their 

mobile phone, only 25 per cent noticed the clown. These studies highlight that seemingly 

large or unusual changes to our visual environment go far more undetected than originally 

thought.  

This research is contrary to the phenomenological experience that suggests we 

perceive an incredibly rich and detailed world from the moment we open our eyes (Cohen, 

Dennett, & Kanwisher, 2016b; Haun, Tononi, Koch & Tsuchiya, 2017). Can sparse visual 

representations give rise to rich visual experiences? In this thesis, I use a change detection 

task to explore what people can remember from sparse versus detailed views of the world. 
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1.1 Change Detection 

Change detection is commonly used in visual perception to gauge human sensitivity 

to shifting stimuli. It refers to the visual processes involved in recognising alterations 

occurring in the world around us over time (Rensink, 2002). The ability to detect change is 

important in much of everyday life. Navigating road traffic, for example, involves a dynamic 

process of detecting and avoiding potential collisions. When a change is seen, attention is 

drawn to its location to facilitate further detailed visual processing (Pessoa & Ungerleider, 

2004). Change detection tasks in the lab typically involve presenting observers with quick 

alterations (< 200 milliseconds) of a scene on a computer screen and commenting if a change 

occurred between alterations or not. These tasks are made challenging by the presence of 

mask, blank screen or implemented noise in between views to cover the quick alteration of a 

scene. This obscures any changes from online or real-time visual processing (Simons & 

Ambinder, 2005).  

It is surprisingly difficult to detect changes from short-term memory even when we 

are deliberately searching for them (Brady, Konkle, Oliva, & Alvarez, 2009; Murphy & 

Murphy, 2018). Simons and Levin (1997) showed that 50 per cent of observers failed to 

notice that two people in a photograph had exchanged heads when shifting their eyes from 

one side of the photograph to the other. Changes introduced during eye movements or even in 

centreal vision can also go undetected (Rensink et al., 1997; Simons & Levin, 1997). 

Remarkably, people can fail to detect changes between two images separated by a blank 

screen even when the changing object is large (Cohen & Chun, 2017). This inability to detect 

changes due to a disruption or time-lag between views is often used to illustrate our 

surprisingly limited capacity to perceive and remember every detail of our visual 

environment. 
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One explanation for why people perform so poorly on change detection tasks is that 

the critical change (e.g., removing a sink from a kitchen scene) often preserves the summary 

statistics of the scene (e.g., the kitchen remains intact; Cohen et al., 2016a). People have a 

limited capacity to perceive particular details at a high resolution and are thought to rely on a 

summary of information across the visual field to resolve the entire scene. Disruptions to this 

summary information are much easier to detect because they change the ‘gist’ of the entire 

scene (Alvarez & Oliva, 2009; Brady & Alvarez, 2011). This summary information is 

thought to be represented as an ensemble or an average. If so, then people may display a 

sensitivity to changes in the average scene given the absence of particular items. In my 

honours project, I test people’s sensitivity to changing ensembles of scenes and paintings, 

represented as averages or arrays of images. 

First, I look to research on gist perception, ensemble representations, and studies of 

visual short-term working memory, as a guide to understanding failures of change detection 

and how people can be looking but not always seeing significant objects that come into their 

field of view.  

1.2 Gist Perception 

Gist perception refers to the amount of perceptual information an observer can 

comprehend within a glance of a scene (Oliva & Torralba, 2006). People can capture a scene 

or objects’ general meaning, orientation, size and shape—it’s gist—within a brief glance 

(Howe, 2017; Koehler & Eckstein, 2017; Oliva & Torralba, 2006). Humans can also 

recognise the general substance of even blurry images when presented for just 100 to 200 

milliseconds (Schyns & Oliva, 1994). The gist of a scene can be extracted with an accuracy 

level of over ninety per cent in some tasks (Rousselet, Joubert, & Fabre-Thorpe, 2005), and 

significantly above chance even when the images have been reduced down to a handful of 

pixels (Searston, Thompson, Vokey, French, & Tangen, 2019). Experts in various fields also 
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display an increased ability to extract the gist of complex images quickly and accurately. For 

example, fingerprint experts can detect prints belonging to the same person but left by 

different fingers (Searston & Tangen, 2017) and they can identify prints presented in noise 

with little time (Thompson & Tangen, 2014). Remarkably, Brennan et al. (2018) found that 

radiologists can detect abnormalities in mammograms at above-chance levels after a 

momentary glimpse of an image containing an abnormality. Similarly, others who have 

investigated gist perception in abstract artworks have found that exposure times as short as 

50ms can be enough for people to form a judgment of aesthetic (Schwabe, Menzel, Mullin, 

Wagemans & Redies, 2018).  

Gist perception is thought to guide the allocation of attention and use past knowledge 

to decipher the more detailed elements in our visual environment (Sampanes, Tseng & 

Bridgeman, 2008; Torralba, 2009). For example, a brief glimpse of a kitchen can be used to 

direct your eyes to likely locations of the sink as gist comprises the spatial layout of the room 

and helps to constrain the location of particular objects. Research exploring gist perception 

has also distinguished between global and local features within a scene (Navon, 1977; 

Rousselet et al., 2005). Global features capture the holistic structure of a scene, with many 

shape and texture descriptors falling under this category. Local features, on the other hand, 

are computed at multiple key points within a scene and thus are more robust to occlusion or 

clutter in the scene than global perception (Franconeri, Alvarez & Enns, 2007). Global 

features are thought to be perceived first, in the time course of perceptual experience, guiding 

further local level feature analysis within a scene (Navon, 1977).  Summary statistics, such as 

the average hue, luminance or spatial frequency of a scene, are also thought to be central to 

gist perception (Oliva & Torralba, 2006), and these summary statistics are referred to as 

ensembles (Jackson-Nielsen, Cohen & Pitts, 2017). 
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1.3 Ensemble Representations 

Ensemble coding or ensemble representation is the idea that the visual system, rather 

unconsciously, represents multiple items seen into a single, average depiction, therefore 

creating a single summary statistic (Cohen et al., 2016a). Ensemble coding is the ability 

to extract summary statistical information from groups of similar objects and is thought to be 

useful for organising information in working memory and understanding the gist of a visual 

scene (Jackson-Nielsen et al., 2017; Whitney & Yamanashi-Leib, 2018). Summary statistics 

can be represented across a range of visual dimensions including average orientation, position 

and facial expression (Alvarez & Oliva, 2008; Whitney, Haberman & Sweeny, 2014). For 

example, we are able to perceive a lawn without viewing every single blade of grass. That is, 

ensemble perception enables us to see past redundant features to the statistical summary 

or average of the scene. Such ensemble or summary representations are thought to drive the 

compelling impression that we perceive a complete and accurate picture of the visual world 

(Noe, Pessoa, & Thompson, 2000; Haberman & Whitney, 2009). Thus, it is thought to serve 

as a cognitively economical driver in perceiving the gist of a scene.  

1.4 Visual Short-Term Memory 

Visual short-term memory (VSTM) research suggests that people’s ability to 

remember lists or arrays of specific items has a critical limit (Cowan, 2001; Miller, 1994). 

This limit appears to increase via a process of ensemble coding or averaging, which 

effectively reduces an array of items to a single summary statistical representation.  

Notably, as highlighted by Bateman, Ngiam & Birney (2018) there is a distinction 

between VSTM and visual working memory (WM). VSTM is the cognitive system’s process 

of rapidly creating representations of visual information and actively preserving it for a few 

seconds to aid the requirements of ongoing activities (Luck & Vogel, 2013). Meanwhile, WM 

research involves brief exposure times, often less than one second to assess encoding 
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performance (much similar to VSTM research) but involves the manipulation of information 

as opposed to only retaining.  

Research into the VSTM system highlights a limited capacity of only holding 3-4 

items, or ‘slots’ (Cowan, 2001; Luck & Vogel, 1997), as opposed to long-term memory that 

can store thousands of items (Brady, Konkle & Alvarez, 2011). Visual perception research 

approaches the domain of memory by attempting to determine what is being represented 

through change detection tasks. This aims to better understand the architecture of visual 

cognition and its capacity; often by exploring its limits via change blindness tasks (Suchow, 

Fougnie, Brady & Alvarez, 2014). Whilst there are a fixed number of capacities, or ‘slots’, 

more studies have shown 7-8 items may be attended to in visual attention and working 

memory from the traditional 3-4 items (Franconeri et al., 2007; Howe, Cohen, Pinto & 

Horowitz, 2010; Miller, 1994). 

An explanation for this increase in ‘slots’ is relational grouping. This has been shown 

to enhance recall in change detection tasks due to the encoding of configural relationships 

between objects (that is, recording the associations between emergent features) amongst 

certain traits in the scene (Rensink, 2000; Bateman et al., 2018). For example, in face 

perception, humans typically detect two eyes, a nose and mouth (first-order relations) and 

then process this information holistically by ‘gluing’ the features together to then assist in 

determining they are indeed viewing a face (Maurer, Le Grand & Mondloch, 2002). This 

advocates that relational grouping further assists the retention of individual in memory (Jiang, 

Olson & Chun, 2000). 

Whilst Cohen et al. (2016b) contend even 7-8 slots do not sufficiently lend strength to 

the debate of perceptual experience nor explain its richness; Brady and Tenenbaum (2013) 

calculated human memory capacity via a Bayesian model to account for the assumption that 

observers remember not just individual items but also a summary of the display. This was 
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highlighted via a change detection task with stimuli that consisted of 5 ×5 coloured dots. 

When displays had limited structure, memory capacity was around 4.5 items; although, when 

more structure was added, an estimated 24-25 items were held in memory, suggesting 

observers encode a few individual items alongside a visual summary of the whole display. 

Despite the assumption that ensemble representations are thought to comprise the 

average of a scene’s component parts, we know little about people’s ability to detect changes 

to visual averages (i.e., sum total divided by the number of items). Therefore, in my thesis, I 

examine the extent to which people can detect changes in average representations of natural 

images, such as scenes and paintings. My broad aim is to provide further insight into the 

nature of visual short-term working memory for complex image sets. 

1.5 The Current Project 

Prior work demonstrates that people can detect changes in simple visual displays 

shown on-screen between 130 to 350 milliseconds, with natural scenes processed faster than 

artificial ones, and gist accuracy of around 90 per cent (Rousselet et al., 2005; Schwabe et al., 

2018). VSTM and change detection is commonly explored by using simple displays of 

randomly arranged stimuli; believed to prevent contamination from memory systems and 

familiarity (Murphy & Murphy, 2018). However, less is known about how sensitive people 

are to changes in natural scenes and images. The current project involves two twin 

experiments exploring people's ability to detect global changes in the average of natural 

scenes and images. In particular, I test people’s sensitivity to change in the presence or 

absence of local image detail by presented a series of natural images simultaneously as an 

array (see Figure 1A) or as an average (see Figure 1B). That is, are people better at 

remembering and detecting changes to the kitchen without the sink?  
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The two experiments I present below were designed to tease apart these two opposing 

explanations for failures of change detection. I expected that participants would be more 

sensitive to changes in the arrays than the averages as these retain the local properties of the 

images, plus the global properties of the display. In the arrays condition, the location of the 

images are left intact across views, so as the images change, the global ensemble of the 

images also changes. The extent that participants are relying on the local detail in the images 

to detect changes, above and beyond the global ensemble of the array, proposes their 

performance should be higher with the arrays than the averages. On the other hand, if 

ensemble representations resembling the statistical average of a scene are critical to the 

perception of changes in a visual display, reducing the images to an average may boost 

change detection performance, even in the absence of local features. Based on the above line 

of thinking I predicted the following results: 

1. Participants will be more sensitive to changes as the size of the change increases. 

2. Participants will be more sensitive to changes in the arrays than the averages. 

3. Participants will be more confident as the size of the change increases. 

4. Participants will be more confident with the arrays compared with the averages. 

My predictions were identical for Experiment 1 and 2, with the exception that change 

size was operationalised as the number of changed images in my first experiment (i.e., 1, 2, 4 

or 8 images changed out of 16 images), and number of total images in my second experiment 

(i.e., 1 image changed out of 2, 4, 8, or 16 images). Both experiments were conducted 

concurrently with the same sample of participants to see if the pattern of results would 

replicate across different variants of the same manipulation. 
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CHAPTER 2  

Experiment 1: Change Alteration 

In Experiment 1, I explore people’s sensitivity to change within averages (i.e. global 

change) and arrays (i.e. local change) of Natural and Urban scenes, and Cubist and 

Impressionist paintings. As I was not interested in short term memory for scenes or paintings 

specifically, I did not include stimuli as an explicit factor in my design and planned to 

average participants’ responses for my main analyses for generality. A gap-contingent 

technique was used to investigate change detection, which involves a mask or blank field in 

between the original and changed stimulus (Rensink, 2002). I also used a one-shot change 

detection approach, further outlined by Rensink (2002), whereby the change is made once 

during each trial and does not ‘flicker’ between the mask and change stimulus. This one-shot 

task is designed to minimise the involvement of eye movements and long-term memory in 

change detection, enabling me to focus my analysis on VSTM for the averages versus the 

arrays. 

2.1 Method 

I used a 2 (change: no change, change) × 4 (change size: 1, 2, 4, 8 images changed out 

of 16) x 2 (representation: arrays, averages) fully within-subjects design, with representation 

as the key manipulation for investigating people’s ability to detect global versus local 

changes. I included the change size manipulation to better isolate participants’ capacity for 

detecting changes with the arrays and averages. Half of the trials consisted of arrays with 16 

images, and the other half comprised the averages of those 16 images. The images in the 

arrays and averages were paired so that each average consisted of the exact same 16 images 

as one of the array trials, but the arrays of images were randomly sampled for each 
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Within the blocks of arrays and averages, a random half of trials were “No Change” 

trials, where none of the images changed between views, and the other half were  “Change” 

trials, where either 1, 2, 4, or 8 images were swapped out for images from the opposite 

category. For example, on a change trial consisting of an array of 16 natural scenes in the 1-

change condition, a random natural scene image would be swapped out for an urban scene 

image in the second presentation of the array (e.g., first glance includes 16 natural scenes, 

second glance includes 15 natural scenes and 1 urban scene). Likewise, in the 2-changes 

condition, two random natural scene images would be swapped for two urban scenes in the 

array, four swaps in the 4-change condition, and eight swaps in 8-change condition. 

Similarly, 1, 2, 4, or 8 Cubist paintings were swapped for Impressionist paintings and vice 

versa for paintings trials. An average image was generated for every set of original 16 images 

and every set of changed 16 images, so that each changed and unchanged array in every 

change size condition could be repeated in the average condition for each participant. The 

blocks of averages and arrays were counterbalanced across participants to control for order 

effects. 

2.1.1 Materials 

2.1.1.1 Paintings. The paintings are a subsample from the ‘How Low Can You Go?’ 

collection (Searston et al., 2019). The full collection contains 5,184 paintings, made up of 18 

different paintings by 72 different artists, in each of four different artistic styles (Cubism, 

Impressionism, Realism, and Renaissance; 288 artists in total, available at 

https://osf.io/kuja8/). All of the paintings in the ‘How Low Can You Go?’ collection were 

originally cropped to the centre of the shortest dimension using a 1:1 (square) aspect ratio, 

resized using nearest neighbour scaling to 800×800 pixels, and converted to jpeg format. All 

signatures had also been removed using the “Content Aware” fill tool in Photoshop. I used 

the 1,296 Cubist and 1,296 Impressionist paintings in the current experiment (2,592 painting 

in total).  
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2.1.1.2 Scenes. The scenes were a subsample of urban and natural scenes from the 

LabelMe dataset (Oliva & Torralba, 2001; available at http://cvcl.mit.edu/database.htm). The 

Natural category contains 359 beach, 328 forest, 374 mountain, and 411 open country scenes 

(1,472 natural scenes in total). The Urban category contains 260 highway, 308 inside city, 

292 street, and 356 tall building scenes (1,216 urban scenes in total). All of the images were 

originally coloured, in jpeg format, and were standardised at 800 × 800 pixels. 

2.1.1.3 Arrays. My supervisor developed a computer application that automatically 

sorted these two image sets into 80 Impressionist, Cubist, Natural and Urban subfolders. Each 

of the subfolders contains a different random sample of 16 images from that category that 

served as the original unchanged arrays (80×4 = 320 subfolders of 16 images in total). 

These subfolders were then duplicated four times to generated 4 additional sets of 320 

subfolders for the four change size conditions: 1, 2, 4, or 8 images changed out of 16. My 

supervisor developed separate computer application that automatically ‘swapped’ 1, 2, 4 or 8 

images in each subfolder with 1, 2, 4, or 8 images from the subfolders of the opposite 

category (e.g., Impressionists for Cubists, Natural for Urban), within each of change size 

folders. In total this process produced five folders labelled “no-change,” “1-change,” “2-

changes,” “4-changes,” and “8-changes.” Within each of those folders, there was a separate 

folder for “cubist,” “impressionist,” “natural,” and “urban” arrays and within each of those 

subfolders there were 80 further subfolders containing 16 images—resulting in a total of 

1600 arrays to sample from, or 80 arrays per category and condition.  

2.1.1.4 Averages. A separate average image was generated for all 1600 arrays and 

these were embedded within the same file structure. That is, each of the 1600 subfolders 

contained the 16 original images and one average of those 16 images. I generated a 

subsample of 320 averages using an action in Adobe Photoshop (CC 2019) to group and 

summarise the arrays as a pilot of different aggregation methods. The final full set of 1600 
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averages were created using a MatLab (R2018b) script that loops through each of the folders, 

combines all of the images in each folder into a single pixel matrix, and then averages them 

by adjusting the opacity of each to 1/x, where x is the number of images in the average (16 in 

this experiment). In other words, the arrays preserve all original details in each set of 16 

images, while the averages are a summary of those same 16 images. 

2.1.1.5 Presentation. The arrays were presented centrally on the computer screen in 

grids of 16 images at a reduced size of 200×200 pixels: a total array size of 800×800 pixels, 

plus 11 pixels of image separation. The averages were presented centrally on the computer 

screen at 800×800 pixels. I equated the image size of the averages with the total size of the 

image arrays (rather than equating the averages with the size of the individual images in the 

arrays) so that the stimuli were similarly distributed across the visual field in each condition. 

2.1.2 Participants. A total of 30 participants were recruited (15 female, 15 male) 

from the general public via recruitment flyers placed around campus and social media, word 

of mouth, and The University of Adelaide’s School of Psychology SONA Research 

Participation System (RPS, see Appendices A-D for recruitment poster, SONA 

advertisement, information sheet and consent form). All participants were over the age of 18 

(M = 25.17, SD = 9.23) with normal or corrected-to-normal vision and compensated with a 

$20 Coles-Myer gift-card, although eight participants generously opted to volunteer their 

time in lieu of a gift-card. First year students recruited via the RPS were awarded one course 

credit for their time.  Every participant gave informed consent and experimental procedures 

were approved by the School of Psychology Human Research Ethics Subcommittee at the 

University of Adelaide (approval number H-2019-73).   

2.1.3 Procedure. Participants first read an information sheet about the project, 

completed a consent form and then began the experiment on a 13-inch MacBook Pro laptop 

(the application for presenting the experiment was developed in LiveCode Community). The 
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first screen asked participants to input demographic information that was used to generate a 

unique, de-identifiable code for their data. The second screen then displayed an instructional 

video demonstrating the change detection task. The video included several examples of the 

task, the stimulus sets, each condition,, and an explanation on how to use the response scale 

(Experiment 1 video available: https://www.youtube.com/watch?v=3kfsb6jq980). After the 

video concluded, participants pressed a button to begin the change detection task.  

On each trial, participants were presented with either an array of 16 images organised 

as a 4×4 grid, or an average of those 16 images summarised into one overall image for 150 

milliseconds. This first presentation was followed by a 300-millisecond blank mask and then 

a second presentation of the same array or average for 150 milliseconds. The second 

presentation either had no changes (on the no change trials) or included either one, two, four 

or eight changed images from on change trials as described above. A response scale appeared 

in the centre of the screen immediately after the second presentation (see Figure 4). 

Participants were asked to indicate how strongly they believed a change occurred or not on a 

12-point, forced choice, confidence scale; “no change” responses ranged from 1 (sure no 

change) to 6 (unsure no change) and “change” responses ranged from 7 (unsure change) to 12 

(sure change). The scale remained on-screen until a selection was made, but if participants 

took longer than four seconds to respond they were prompted to try and respond within this 

time on future trials. Participants completed 256 trials in total, including 128 paintings and 

128 scenes trials. Within each block of 128 trials, 64 consisted of ‘array’ trials and 64 

consisted ‘average’, with a random half of participants viewing the paintings first and the 

other half viewing the scenes first. Each block of 64 trials was further divided into the four 

change size conditions (1, 2, 4, or 8 images changed), with a random half being no change 

trials (i.e., the images remained the same in both presentations) and the other half being 

change trials (i.e., one or more images changed in the second presentation). All of the trials 
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within each of the counterbalanced arrays and averages blocks were presented in  a different 

random order to each participant.  In other words, the average and array trials are presented in 

two separate blocks within two separate paintings and scenes blocks, and are counterbalanced 

across participants. All other trials are randomised at the level of the individual participant.  

 

 

2.2 Results 

I investigated how the number of changes within each representation type (arrays and 

averages) affected participants’ change detection ability by measuring their discriminability 

and confidence across conditions. First, as a basic measure of performance, each participants’ 

proportion correct was computed by averaging the number of correct responses they made 

across all trials within each condition. For the main analyses comparing participants’ ability 

to detect changes in the averages and arrays across change size conditions (1, 2, 4, 8 images 

changed), each participants’ empirical area under the ROC curve (W or AUC) was computed 

based on their cumulative confidence ratings on the change and no change trials (see Hanley 

& McNeil, 1982 and Vokey, 2016 for the method used to compute AUC).  AUC summarises 

participants’ hit (say “change” on true change trials) and false alarm (say “change” on true no 

change trials), while also accounting for their confidence. An AUC score of 1 suggest perfect 

change detection, while an AUC of .5 indicates chance change detection.  

Each participants’ average confidence was also computed by converted their ratings 

on the 12-point forced-choice scale to a score out of 6, where a confidence rating of “1” 

Figure 4. Example of forced-choice response scale shown after both image presentations. 
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indicated the participant was unsure and 6 indicated they were “Sure” in their rating. Ratings 

of 1 and 12 on the original scale were converted to confidence scores of 6 (“Sure”), ratings of 

2 and 11 to confidence scores of 5, and so on, with ratings of 6 and 7 on the original scale 

representing a confidence score of 1 (“Unsure”). These collapse confidence scores were then 

averaged for each participant.  

All analyses were performed in R (version 3.5.2), using RStudio (version 1.2.1335) 

and R Markdown (version 1.14) for documentation (see Appendix E-J for the code and 

output associated with all reported analyses). All plots included in this thesis were produced 

with the ggplot2 package (version 3.2.1). As Experiment 1 and 2 share similar manipulations 

of change size and representation, serving as close replications of one another, the 

interpretation of results will be left to the general discussion, in Chapter 4 of the thesis. 

2.2.1 Descriptives. Overall, participants performed better in the averages (M = .65, 

SD = .16) than the arrays (M = .59, SD = .18). Table 1 shows participant sensitivity and 

proportion correct in each condition. On visual inspection of the data (see Figure 6), there 

were a few outlying observations, however these were retained in the dataset as none met the 

data exclusion criteria. As the data in the average and array conditions appeared to be 

normally distributed (see Figure 5A), parametric analyses were carried out as planned in the 

preregistration. Mauchley’s sphericity tests were performed for each analysis that included 

change size as a factor (which had more than two levels) and appropriate corrections were 

applied to the reported p values where this assumption was violated. more conservative 

statistics implemented where sphericity is violated.  

To check for floor effects, a paired t-test was conducted comparing participants’ AUC 

scores to the simulated randomly responding participants. Participants were indeed 

performing significantly above chance; t(239) = -9.397, p < .001, 95% CI [-0.179, -0.117]. 

This result suggests that an overall floor effect was not present.   
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2.2.2 Discriminability. Discriminability was computed as Area Under the Receiver 

Operating Characteristic (ROC) Curve (AUC). AUC provides an indication of the extent to 

which a stimulus is accepted as a member of a particular target category, in this case change 

or no change categories (Vokey, 2016). AUC is a frequently used analysis in signal detection 

experiments which employ two-alternative forced choice techniques—in this case ‘change’ or 

‘no change’ (Hanley & McNeil, 1982). The proportion of ‘hits’ (correct identification of a 

condition) are mapped against the proportion of false alarms (incorrect identification of a 

target). Discriminability asks how well participants can distinguish change trials from no 

change trials with 0.5 indicating at-chance performance and 1 equating to perfect 

performance, thus high sensitivity to distinguishing between hit and false alarm trials.  

As shown in Table 1, participants’ discriminability of change and no change trials 

with the arrays and averages increased alongside the increasing number of changes. In the 1-

change condition, participants performed close to chance with the arrays and averages, 

similar to flipping a coin. However, as the change size increased, so did participants’ 

sensitivity to detecting changes across the board. This trend lends support to Prediction 1. 

Notably, a change size of 8 images out of 16 produced the largest difference in sensitivity (10 

per cent) between the averages and the arrays, suggesting that the average advantage might 

be strongest with larger changes. Similar to discriminability, as change size increased, the 

proportion of correct responses also increased, with averages outperforming arrays, and the 8-

change condition again producing the largest difference.  

 

 

 

 

 

 

 

 

 

 



VISUAL SHORT-TERM MEMORY IN ENSEMBLES                                                                      28 

Table 1 

Experiment 1 Discriminability and Proportion of Correct Scores across Representation and 

Number of Changes  

 

Number of Changes 

Discriminability (AUC)  Proportion Correct 

Averages 

M (SD) 

Arrays 

M (SD)  

Averages 

M (SD) 

Arrays 

M (SD) 

1 Change .47 (.14) .49 (.15)  .57 (.08) .60 (.10) 

2 Changes .58 (.16) .50 (.171)  .65 (.09) .61 (.11) 

4 Changes .68 (.17) .61 (.20)  .72 (.09) .68 (.12) 

8 Changes .84 (.14) .74 (.19)  .81 (.10) .76 (.12) 

Note. The AUC scores refer to mean (and standard deviation) Area Under the Curve for each 

condition in experiment.  

 

After inspecting and visualising the data, I conducted repeated-measures ANOVAs on 

participants AUC scores with representation (arrays vs. averages) and change size (1, 2, 4, 8 

images changed) as a within-subject factors.  Mauchly’s test indicated that the assumption of 

sphericity was violated for the change size condition, W = 0.65, p = .035, indicating 

significant heteroscedasticity or unequal variability in AUC scores across change size 

conditions. To minimize the risk of increasing in Type 1 error, the more conservative 

Greenhouse-Geiser (GG) corrected p value is reported for change size, ε = .76, p < .001, 

(Field, Miles & Field, 2012). There was a significant effect of representation on change 

detection with a small-medium effect size (see Bakeman, 2005 for analysis of generalised 

eta-squared effect size conventions in ANOVA) , F(1, 29) = 6.48, p = .02, η2
𝐺

  = .03 (see 

Figure 5A). That is, people were better at detecting changes in the averages compared with 

the arrays. Additionally, there was also a significant effect of change size change detection 

with a large effect size, F(3, 87) = 108.10,  p[GG] < .001, η2
𝐺

 = .34 (see Figure 5B).  



VISUAL SHORT-TERM MEMORY IN ENSEMBLES                                                                      29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. 

Figure 5. Panel depicts (A) main effect of participants’ discriminability in performance across both representations, 

collapsed across number of changes, and (B) main effect of discriminability in sensitivity to the number of changes, 

collapsed across representation (arrays and averages). 

A. 
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Moreover, a significant but small interaction between representation and change size 

was also found, F(3, 87) = 4.35, p = .01, η2
𝐺

 = .02 (see Figure 6). Polynomial contrasts 

further revealed a significant linear trend over change size for arrays (p < .001) and averages 

(p < .001). That is, greater sensitivity was observed at with larger change sizes (i.e., number 

of images changed).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.3 Confidence. To examine participants’ if participants’ confidence in their change 

detection ability changed across conditions, I subjected their mean confidence scores (out of 

6) to the same set of analyses as their AUC scores. Capturing participant confidence ratings 

Figure 6. Panel depicts interaction effect between representation (Averages and Arrays) and change size (number 

of changes) 
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= 0.49, p = .001), F(3, 87) = 43.79, p = .001, η2G = .03. A significant but small interaction 

between representation and change size was also revealed, F(3, 87) = 5.58, p = .002, , η2
𝐺

 = 

.002. Polynomial contrasts revealed a significant linear trend (p = .02) over change size, with 

participants’ confidence ratings increasing over change sizes for the averages and arrays. 

That is, confidence also increased as change size increased.   

CHAPTER 3  

Experiment 2: Image Alteration 

Experiment 2 asks the same question as Experiment 1: Did you see a change? But this 

time, instead of fixing the number of images and manipulating the number of changes, I 

investigate sensitivity to change by altering the number of images displayed. So I still 

manipulate change size, but by fixing the number of changes to 1 and manipulated the 

number of images in the display. Therefore, either two, four, eight or sixteen images are 

shown in any array or average trial but on the change trials, only 1 image (selected at 

random) changes on the second presentation.   

3.1 Method 

3.1.1 Participants. The same group of participants completed Experiment 1 and 2 

concurrently, with some opting to take a short few-minute break between the two 

experiments. To randomise the order in which participants’ completed each experiment they 

reached into an opaque bag to randomly select one of two pods labelled either “1” or “2”to 

determine which experiment they would complete first. 

3.1.2 Procedure. The procedure for generating the arrays and averages, and the 

number of trials and procedure for presenting them to participants was identical to 

Experiment 1, with the exception of the variation in the change size manipulation. The 

instructional video for Experiment 2 can be viewed here: 

https://www.youtube.com/watch?v=a9swkqqAZ8Q 
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Figure 8. Number of Images in each condition of the Averages featuring Cubist paintings. 
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3.2 Results 

The same analyses conducted in Experiment 1, were repeated for Experiment 2 to 

examine the effect of representation (averages versus arrays) and change size (1 change out 

of 2, 4, 8, or 16 images) on participants’ change detection ability and confidence. Note that 

for Experiment 2, change size is now operationalised by varying the number of images 

displayed on screen with a single changing image, rather than by varying the number of 

changing images in a fixed display of 16 images.  

3.2.1 Descriptives. There were a few outlying observations present in the data, (see 

Figure 11), however these were retained as no participants’ displayed a pattern of responding 

that met the prespecified data exclusion criteria. Unlike in Experiment 1, the assumption of 

sphericity was not violated for the change size manipulated. Therefore, no corrections were 

applied and parametric analyses were carried as planned in the preregistration.   

Overall, participants performed better in the averages (M = .69, SD = .12) than the 

arrays (M = .61, SD = .14). Table 2 shows participant sensitivity and proportion correct in 

each condition. To check for floor effects, a paired t-test was conducted comparing 

participants’ AUC scores to the simulated randomly responding participants. Participants 

were indeed performing significantly above chance; t(239) = -11.28, p < .001, 95% CI [-0.19, 

-0.12]. This result suggests that an overall floor effect was not present.   

While people were better at detecting changes in the averages overall, discriminability 

with the 16 image condition (the condition where change size was the smallest; 1 image 

changed out of 16) produced similar sensitivity scores for both averages (M = .44, SD = .12) 

and arrays (M = .45, SD = .16). Additionally, as change size increased, so did participants’ 

sensitivity to changes within the visual display. For example, the change size or proportion of 

change, is largest in the 2-Images condition half of the display changes (e.g., one of two 
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Cubist paintings swapped for an Impressionist). Whereas, change size in the 16-image 

condition results in a 6.25% alteration to the display, which is more difficult to observe.  

 

Table 2 

Experiment 2 Discriminability and Proportion of Correct Scores across Representation and 

Number of Images 

 

Number of Images 

Discriminability (AUC)  Proportion Correct 

Averages 

M (SD) 

Arrays 

M (SD)  

Averages 

M (SD) 

Arrays 

M (SD) 

2 Images .94 (.09) .85 (.14)  .90 (.09) .87 (.09) 

4 Images .79 (.13) .67 (.16)  .79 (.09) .73 (.10) 

8 Images .61 (.13) .48 (.15)  .68 (.08) .60 (.08) 

16 Images .44 (.12) .45 (.16)  .55 (.08) .56 (.10) 

Note. The AUC scores refer to mean (and standard deviation) Area Under the Curve for each 

condition in experiment 

 

3.2.2 Discriminability. There was a significant effect of representation type on 

participants’ sensitivity to change, F(1, 29) = 17.05, p < .001, η2
𝐺

 = .09, with a medium to 

large effect size (see Figure 10A). Additionally, there was a significant effect of image size 

on participants’ sensitivity to change, F(3, 87) = 273.16, p < .001, η2
𝐺

 < .63, featuring a large 

effect size (see Figure 10B).  
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A. 

Figure 10. Panel depicts (A) main effect of participants’ discriminability in performance across both 

representations, collapsed across number of images and domain (Scenes and Paintings); and (B) main effect 

of discriminability in sensitivity to the number of images, collapsed across representation (Arrays and 

Averages) and domain (Scenes and Paintings). 

 

B. 



VISUAL SHORT-TERM MEMORY IN ENSEMBLES                                                                      38 

Moreover, a significant interaction between representation and change size was found 

with a medium effect size, F(3, 87) = 6.17, p < .001, η2
𝐺

  = .04 (see Figure 11). Polynomial 

contrasts further revealed a significant linear (p < .001) and quadratic trend (p = .046) over 

change sizes with the arrays, revealing participants’ sensitivity to detecting change across 

image size conditions decreased exponentially as the number of images increased. That is, 

greater sensitivity was observed with lower number of images in the display (larger change 

size), with an exponential decrease in performance as the number of images increased 

(smaller change size). A significant linear trend (p < .001) was also observed with the 

averages, with participants’ sensitivity in the 2-image condition resembling near perfect 

performance (M = .94, SD = .09).  

 

Figure 11. Interaction effect between Representation and Number of Images for 

Experiment 2. 
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A within-subjects ANOVA revealed a small but significant main effect of 

representation on confidence, F(1, 29) = 4.83, p = .04, η2
𝐺

  = .01.  A significant main effect 

of image size was also revealed; F(3, 87) = 105.05, p < .001, η2
𝐺

  = .18, featuring a large 

effect. A significant but small interaction between representation and change size was also 

uncovered, F(3, 87) = 9.52, p < .001, η2
𝐺

  = .01. Confidence increased as change size 

(proportion of display changed) also increased, thus highest when less images were presented 

on-screen.  Polynomial contrasts revealed a significant linear trend (p < .001) over display 

size, with participants’ confidence ratings decreasing over change sizes for the averages and 

arrays. That is, confidence decreased as display size increased.  

Notably, whilst participants reported being most confident in the arrays 2-image 

condition, they were more accurate in discriminating change and obtaining proportion correct 

within the averages 2-image condition than arrays.   

 

CHAPTER 4  

Discussion 

 

My thesis brings together gist perception, ensemble coding, and VSTM research by 

exploring human ability to detect global and local changes via a one-shot detection task. The 

research seeks to provide further understanding of visual perception and offer insight into the 

nature of VSTM capacity. Question remains in the literature as to how rich or sparse our 

perception is. Subjective experience appears rich, however past literature identifies limits, 

and even blindness to large scene changes (Cohen, Ostrand & Frontero, 2019; Miller, 1994). 

To answer this, I explored human sensitivity to detecting changes in scenes and paintings by 

implementing summarised scenes and series of images. We varied change size to better 

isolate the conditions under which change detection may be better or worst in the averages 

and arrays to identify the sweet spot of change detection.   
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One view of ensemble coding contends that observers represent their world as an 

ensemble statistic (Cohen et al., 2016a). While VSTM research contends there are only three 

to four items held in memory at a time (Cowan, 2000). Brady and Tenenbaum (2012) argue 

people encode both, overall gist of a scene (ensemble statistic) and detailed information about 

objects. Their 2012 research provided evidence that visual memory capacity can retain 

approximately 24 items. When their 5 ×  5 arrays included more structure, visual memory 

capacity increased from the standard estimates of three-four slots.  

These accounts of VSTM from change detection studies suggest summary statistics 

and individual items are held in memory, but estimates of capacity tend to differ across 

studies. As this project was exploratory, change size was manipulated in to gauge how 

different representation effects detection of changes with varying magnitude. This was 

investigated with two twin experiments: by shifting the number of changes within a display, 

and number of images. 

4.1 Findings 

Prediction 2 proposed participants will be more sensitive to changes in the arrays than 

averages. Contrary to this, in both perceptual experiments participants were more sensitive to 

detecting changes in the averages than the arrays. Despite working memory constraints, 

ensemble coding gives ruse to the feeling of richness and a possible explanation to bridging 

the gap between claims that sparse or detailed views are at play. These findings lend support 

to research that affirms people perceive far less than intuitively believed, (Cohen et al., 

2016b; Haberman & Whitney, 2012; Huan et al., 2017). Therefore, redundant features, such 

as every individual leaf that makes up a tree, is seen past and a statistical summary is created. 

This is based upon various ensemble features including orientation, density, position and size 

(Jackson-Nielsen et al., 2017; Geisler, 2008). This offers a possible explanation into why the 

averages condition resulted in better discriminability performance. People see the gist and are 
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slower to see the detail, thus extra detail in the arrays does not suggest adding much during 

brief periods of exposure as seen in the experiment.  

People have a remarkable ability to often accurately capture the gist of a scene, 

capturing the statistical visual summary almost instantaneously and frequently between 100 

to 200ms (Oliva & Torralba, 2006; Whitney & Leib, 2018). The nature of the averages means 

the images, when presented for 150ms, are already summaries of their subsequent individual 

scenes from the arrays. The averages combined with brief exposure durations may have made 

the ensemble even more salient and thus easier to encode. By averages having computed the 

mean global image features to create a statistical visual summary, this may prove 

advantageous in providing a cognitive shortcut in determining the scene’s average. 

Additionally, visual perception literature highlights low-level global features, such as 

hue and spatial position, play a role in the formation of gist (Oliva & Torralba, 2006). It is 

often stated that global features are perceived first in a scene, believed to guide which local 

details are attended to (Ericson, Beck & Lamsweerde, 2016; Navon, 1977). Participants in 

this project were presented with displays for less than half a second. Therefore, there 

purposely was not enough time to make an eye movement or blink, compelling the visual 

system to capture the gist - the scene at a glance, and straining the ability to capture many 

local details or encode beyond short-term visual memory. Given the averages are a condensed 

synopsis of the arrays, these low-level ensemble features may provide an advantage in visual 

memory encoding.  In the current project, images were artificially summarised lending 

cognitive aid to obtaining a gist, suggesting an explanation into the results achieved.   

Experiment 1 explored observers’ sensitivity to change size by the varying number of 

images that change in display of sixteen paintings of scenes. Significant linear trends in 

discriminability were observed in for both averages and arrays, revealing that the increment 

performance increase remains the same across each of the change levels. As the proportion of 



VISUAL SHORT-TERM MEMORY IN ENSEMBLES                                                                      43 

change increased, so did discriminability. While the interaction between representation type 

(Averages, Arrays) and change size (1, 2, 4, 8 images changed out of 16) reported small 

effect size, notably there was a very large effect size for number of changes within the 

display upon discriminability. This supports prediction 1 which proposed participants will be 

more sensitive to change as the size of change increases. This result suggests that variance in 

the ensemble is useful when identifying statistical visual outliers.  

Ensemble variance is extracted for low-level (e.g., orientation, Norman, Heywood & 

Kentridge, 2015) and mid-level ensemble features (e.g., size, Solomon, Morgan & Chubb, 

2011). This can lead to stark differences in the summary between two visual presentations, 

with observers having been found to accurately discriminate and reproduce a statistical 

moments (Whitney & Yamanashi-Lieb, 2018). The increasing sensitivity to changes with 

increasing change size suggest that more variance provides a larger disruption to the original 

ensemble participants may have encoded. This result lends support to the fact participants 

could accurately discriminate between change and no-change trials in the larger change size 

conditions, relatively well above chance. These results suggest creating an ensemble, or 

statistical summary assists VSTM capacity.     

Participants confidence ratings also followed a similar pattern to their discriminability 

in the two experiment. Even though people often believe detecting changes in scenes will be 

easy, they are often surprised to find it is not (Levin, 2000). Confidence increased as the 

proportion of change increased, supporting prediction 3. When the change became more 

prominent and harsher in the visual display, participants indicated it was ‘more obvious’. 

Confidence ratings mirrored discriminability performance overall, therefore suggesting 

observers are consistent in gauging their relative ability across the different conditions. This 

finding is consistent with Brady & Tenenbaum’s (2012) arrays task, whereby observers were 

also reliable in stating which changes they found difficult or easy to detect.  
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Experiment 2 further explored observers VSTM capacity for complex images through 

change detection by manipulating the number of images presented in the display. Should 

people correctly discriminate between a change or no-change trial, it suggests they are 

holding a reasonably accurate gist in mind. Therefore, may assist in determining a decision 

regarding the second trial presentation. Experiment 2 found participants could reliably 

discriminate whether a change occurred or not (above chance) at 2-image and 4-image 

display sizes. While the 8-images were above chance, participants performed less reliably in 

this image size condition within the arrays. Participants were more sensitive to changes as the 

proportion of change increased; that is, as the number of images in the display increased with 

a single changing image. Likewise, participants were more confident as the size of the change 

increased.  

Notably, participants were more confident in the arrays 2-image, even though their 

discriminability and proportion correct with the averages was higher. This finding suggests 

that more detail is not necessarily better in detecting changes at a glance. This seems 

counterintuitive given, when trying to recognise alterations, one would want as much 

information as possible (Jackson-Neilsen et al., 2017). However, in both experiments I 

observed better discriminability within the averages representation than arrays, contrary to 

my second predition that proposed participants will be more sensitive to changes in the arrays 

than the averages. It appears people are more sensitive to detecting changes that disrupt the 

holistic or global representation of the display, compared with those that only disrupt local 

features and objects.   

In real-world scenes, people not only encode information about specific objects but 

semantic gist of a scene too. The findings from both experiments support previous research 

that has modelled scene gist and found local, item-based information not necessary to 

determine gist (Koehler & Eckstein, 2017; Oliva & Torralba, 2006). The averages showcase 
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various ensemble features of texture, hue and orientation, suggesting these features are 

possibly processed more easily given the limited time to encode into memory.  

Moreover, results from this current project supports of VSTM that suggest people 

encodes global visual information more robustly than local detail-based features (Vidal, 

Gauchou, Tallon-Baudry, & O'Regan, 2005; Luck & Vogel, 1997). Changes in the arrays 

may have gone unnoticed more frequently than the averages as the local internal change may 

not have been a large enough disruption to pique observer sensitivity.  

Interestingly, both experiments captured one change within 16 images (Experiment 1: 

arrays, 1-change; Experiment 2: arrays, 16-images) with mean accuracy falling just below 

chance for both. Moreover, feature-based theory may suggest an explanation in the quadratic 

trend revealed within the arrays condition of Experiment 2. The steep decline in performance 

sensitivity from 2-images to 4-images and 8-images perhaps illuminates the limits of VSTM 

capacity. Change detection tasks impose processing demands on visual memory, beyond 

those of object recognition with even dramatic changes going unnoticed (Gaspar, Neider, 

Simons, McCarley & Kramer, 2013). However, the ability to encode the pre-change display 

and then subsequently decide if it matches to a second display trial is one that is remarkable. 

Yet is is not without limits as efficient cognitive processes can lead to missing large, often 

dramatic changes to the visual environment.   

4.2 Strengths and Limitations 

Several strengths of the research stand out as constructive to the current literature. My 

current research contributes empirical evidence to the emerging field by further 

understanding ways the visual system exploits redundancy in real-world scenes to represent a 

large amount of information presented briefly. I test people’s ability to retain global versus 

local information in VSTM by examining their ability to detect changes in visual averages 
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(sum total divided by number of items) and through their sensitivity, capture the various 

capacities of VSTM.  

I expect the findings to generalise to other natural image sets, such as amusement 

parks, classrooms and golf courses, as used by Konkle, Brady, Alvarez & Oliva (2010). I 

used paintings, urban and natural scenes for generality given real-world visual experiences 

often are complex and involve scenes from such environments.  

Moreover, a power analysis to determine sample size indicated high chance of 

detecting an effect with 30 observers. These participants were a sub sample from the general 

public and therefore, it is believed the findings can also be generalised to the broader 

Australia population too.     

The project does have its limitations. Firstly, image size and transparency were not 

matched between arrays and averages. A trade-off was made between matching the 

conditions on display size. Ultimately it was decided to match according to pixels with the 

overall display equating to 800×800 pixels. This was to ensure the stimuli were similarly 

distributed across the visual field in each condition and control for display. If representations 

were matched to image size and averages set to the individual array size of 200×200 pixels, 

the average display would be markedly smaller than the array display.  

 Secondly, to have captured a more direct comparison of discriminability between 

visual representation of a summary or series of images, it would have been beneficial to 

randomise images within the arrays for the second presentation. By scrambling the location 

of each individual array item, this would create a disruption to the global representation and 

structure of the display.  

4.3 Future investigation 

There are a number of future lines of research that follow from this project. Firstly, 

future studies may attempt to scramble the location of images presented in arrays to 
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investigate what occurs when global representation is further disturbed. People may still have 

been detecting changes in the arrays as the global structure of the array was left intact. 

Despite arrays providing a degree of local and global information, people were still better at 

detecting changes in the averages.  

 Secondly, Cohen (2019) argues participants may not be aware of a target’s precise 

location, but one may still hold some imprecise knowledge regarding its location. From this, 

it may be useful to capture qualitative claims from observers who may not precisely be aware 

of a change, although voice their thinking process to capture approximate awareness of items 

(e.g- change located top right, or hue, colour or texture seems to have been altered). 

Alternatively, if observers can provide multiple responses instead of a single forced-choice 

response, this may shed more light on what participants consciously remember.    

4.4 Implications and Conclusion 

By employing differing visual representations to explore gist and by manipulating 

change size; I demonstrated that summary representation (averages) are sufficient and more 

detail (arrays) are not necessary for accurate detection of changes in natural scenes and 

paintings. In fact, the less detailed average representations produced significantly better 

change detection performance.  

This result is counterintuitive given that participants had more information at their 

disposal in the arrays compared to the averages to draw connections with across the 

presentations. Additionally, these results provide empirical evidence to better understanding 

the capacities of perceptual experience and contributes to visual perception theory. As 

McClelland and Bayne (2016) propose, sparsity still encapsulate key information than can be 

used to inform ensemble judgement. VSTM research grows to understand the underpinnings 

of our cognitive mechanisms. This project demonstrated that people seem to be better able to 
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retain summary representations of a display, which provides some insight into how people 

represent their visual environment in VSTM.  

Change detection is important and used in much of our everyday life. This includes 

deciding when to safely merge into traffic by judging speed, location and direction of other 

cars, or spotting a child that has run onto the road to retrieve their ball (Rensink, 2002). When 

significant changes in scenes or objects go undetected, this phenomenon of change blindness 

can produce inherently consequential results. For example, air traffic controllers 

simultaneously juggle visual searches, situational evaluations and communicate with relevant 

personnel while organising the flow of air traffic (Imbert et al., 2014). Should change 

blindness occur and a significant piece of visual information be missed, this can lead to fatal 

accidents.  

Further exploring how we see the world around us, aids theoretical understanding of 

how people remember their visual experiences and can benefit applied settings too. An 

understanding in how our visual system operates, alongside the potential cognitive shortcuts 

that may lead to pitfalls in judgement or accuracy, can be used to better understand and assist 

applied settings. For example, change detection may impact eyewitness testimony statements 

(Simons, & Ambinder, 2005). Change blindness occurs in a significant proportion of 

observers when a mask or noise has interrupted view of a scene, such as a car blocking the 

view of a suspected perpetrator or person of interest. This may lead observers to reporting 

inaccurate details, such as the characteristics of a person and risks causing a potential 

miscarriage of justice (Lindsay, Wells & Rumpel, 1981). Insight into how our visual system 

works can enable critical thinking when such real-world situations involve careful and hold 

significant consequences should an error in judgement be made. 

Ultimately, while we may believe we are seeing an incredibly rich, detailed world, 

these findings suggest that this richness is underpinned by surprisingly sparse global 
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representations. For more detail is not necessarily better, nor more advantageous in detecting 

changes within complex natural scenes, or in generating a gist of a visual ensemble. It 

appears our sparse perception may not be so sparse after all.  
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Contributions 

The project idea was jointly conceived by my supervisor and I, whereby we worked 

together to refine the concept and design of both experiments. I carried out the literature 

review and assembled the ethics application for approval from the School of Psychology. I 

preregistered the project on the Open Science Framework with guidance from my supervisor.  

My supervisor programmed the experiments and I piloted them seven times to test the 

user interface along with various averaging methods. I contributed to the generation of the 

average images, the preparation and recording of the video instructions. I also ran the 60 

computer simulations across both experiments. 

I coordinated and carried out all of the data collection for both experiments. I made a 

new Google email address for the experiment to assist scheduling of participant sessions. 

Additionally, I made a spreadsheet to track the sequence number for each trial and to verify 

participant compensation had been received. I created participant recruitment posters and 

distributed them across social media and North Terrace campus. I also recruited participants 

via the RPS. My supervisor programmed an application for extracting the raw data from the 

60 individual .txt files, and provided guidance on using R and R Markdown. I performed all 

data analyses in R (version 3.5.2) using RStudio (version 1.2.1335). 
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Appendix E 

R code and output for Experiment 1: Descriptives 

 

Area Under the Curve: 

 

Proportion Correct: 
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Confidence: 
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ANOVA and Mauchly’s Test for Sphericity 
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Polynomial contrasts 
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Appendix G 

R output for Experiment 1: Confidence Analyses 

 

ANOVA and Mauchly’s Test for Sphericity 
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Appendix H 

R output for Experiment 2: Descriptives  

 

Area Under the Curve: 

 

Proportion Correct: 
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Confidence: 
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Appendix I 

R output for Experiment 2: Discriminability Analyses 

 

t-test  
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ANOVA and Mauchly’s Test for Sphericity 
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Polynomial contrasts 
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Appendix J 

R output for Experiment 2: Confidence Analyses 

 

ANOVA 

 

 

Mauchly’s Test for Sphericity 
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Polynomial contrasts 

 




