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Abstract 

Double strand breaks (DSBs) are one of the most biologically significant DNA damage 

lesions. Replication stress, endogenous reactive oxygen species, exogenous sources of 

DNA damage such as ionizing radiation (IR), and genotoxic compounds are key causes 

of DNA breaks in living systems. An early known response to DNA DSBs in the cell is 

the phosphorylation of the C-terminal of the core histone protein H2AX (termed 

γH2AX when phosphorylated). It is accepted that with the passage of time, the level of 

γH2AX declines as repair of DSBs is completed; however, DSBs can remain unrepaired 

and may result in persistent γH2AX signals and the knowledge of persistent γH2AX 

signals remain relatively unexplored. DNA damage has been associated with some age-

related diseases, including the neurodegenerative disorder, Alzheimer’s disease (AD). 

The aim of this PhD thesis was to (i) investigate IR-induced persistent γH2AX 

responses in Queensland fruit fly (Q-fly) (Bactrocera tryoni), and human buccal cell as 

a model system (ii) quantify endogenous γH2AX levels in buccal cells and lymphocytes 

of individuals with mild cognitive impairment (MCI) and AD relative to healthy 

controls in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing 

(AIBL) and the South Australian Alzheimer’s Nutrition and DNA Damage (SAND) 

studies. Persistent and dose-dependent γH2AB (a homologue of γH2AX) signals were 

detected and quantified either by Western blot or laser scanning cytometry (LSC) for up 

to 17 days post-IR exposure in adult Q-flies (when irradiated as pupae). In human 

buccal cells irradiated (up to 4 Gy), LSC and visual scoring demonstrated a significant 

increase in γH2AX (n=6 individuals). Twenty-four hours after IR exposure the γH2AX 

levels remained significantly higher than baseline. The frequency of visually scored 
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γH2AX in human buccal cell nuclei showed a strong positive correlation (up to 

r=0.999) with automated LSC scored γH2AX signals. 

In the SAND study, the endogenous γH2AX levels were significantly higher in 

lymphocytes from AD (n=20) compared to MCI (n=18) and controls (n=40). Plasma 

homocysteine, creatinine, and chitinase-3-like protein 1 (CHI3L1) were positively 

correlated with lymphocyte γH2AX signals, whilst glomerular filtration rate (GFR) was 

negatively correlated. In buccal cells, the endogenous γH2AX levels were significantly 

elevated in AD (n=16), compared to MCI (n=18) and controls (n=17), from the AIBL 

study. Nuclear circularity (irregular nuclear shapes) was significantly higher in buccal 

cell nuclei from AD compared to MCI and controls and there was a positive correlation 

between nuclear circularity and γH2AX signals. The elevated γH2AX levels in 

lymphocytes and buccal cells of AD patients may indicate defects in the efficiency of 

repairing the chronic endogenous DNA DSBs contributing to the accumulation of 

unrepaired or persistent DSBs. The measurement of persistent and endogenous γH2AX 

may have application in radiation biodosimetry as well as a potential biomarker in AD.  
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Abstract 

One of the earliest cellular responses to DNA double strand breaks (DSBs) is the 

phosphorylation of the core histone protein H2AX (termed γH2AX). Persistent γH2AX 

is the level of γH2AX above baseline, measured at a given time-point beyond which 

DNA DSBs are normally expected to be repaired (and usually persist for days to 

months). This review summarises the concept of persistent γH2AX in the context of 

exogenous source induced DNA DSBs (e.g. ionizing radiation (IR), chemotherapeutic 

drugs, genotoxic agents), and endogenous γH2AX levels in normal aging and 

accelerated aging disorders. Summary of the current literature demonstrates the 

following (i) γH2AX persistence is a common phenomenon that occurs in humans and 

animals; (ii) nuclei retain persistent γH2AX foci for up to several months after IR 

exposure, allowing for retrospective biodosimetry; (iii) the combination of various 

radiosensitizing drugs with ionizing radiation exposure leads to persistent γH2AX 

response, thus enabling the potential for monitoring cancer patients’ response to 

chemotherapy and radiotherapy as well as tailoring cancer treatments; (iv) persistent 

γH2AX accumulates in telomeric DNA and in cells undergoing cellular senescence; and 

(v) increased endogenous γH2AX levels may be associated with diseases of accelerated 

aging. In summary, measurement of persistent γH2AX could potentially be used as a 

marker of radiation biodosimetry, evaluating sensitivity to therapeutic genotoxins and 

radiotherapy, and exploring the association of unrepaired DNA DSBs on telomeres with 

diseases of accelerated aging. 
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1.1 Introduction 

Double strand breaks (DSBs) in DNA may lead to genetic instabilities and gene 

mutation resulting in reduced integrity of the genome and survival of the organism 

(Dugle, Gillespie & Chapman 1976, Olive 1998). Replication stress, endogenous 

reactive oxygen species, exogenous sources of DNA damage such as ionizing radiation 

(IR), and genotoxic compounds are key causes of DNA breaks in living systems (Mah, 

El-Osta & Karagiannis 2010). To repair these lesions, the DNA damage response 

(DDR) is initiated at the site of DNA damage (Sharpless, DePinho 2007, Ward, Chen 

2004). An early known response to DNA DSBs in the cell is the phosphorylation of the 

C-terminal of the core histone protein H2AX (termed γH2AX when phosphorylated) 

(Rogakou et al. 1998, Savic et al. 2009). The phosphorylation of H2AX occurs at the 

highly conserved amino acid Ser139 contained in the SQ (serine/glutamine) motif near 

the carboxy-terminus of H2AX (Redon et al. 2002, Kinner et al. 2008). The 

phosphoinositide 3-kinase-related protein kinase (PIKK) family which includes Ataxia 

Telangiectasia Mutated (ATM), Ataxia Telangiectasia and Rad3-related protein (ATR) 

and DNA protein kinase catalytic subunit (DNA-PKcs) have all been implicated in 

H2AX phosphorylation (Redon et al. 2002, Kinner et al. 2008). However, ATM is 

considered as the main kinase for H2AX phosphorylation in response to DSBs under 

normal physiological conditions and to a greater extent when a cell is exposed to 

ionizing radiation, such as γ-radiation (Rogakou et al. 1998, Redon et al. 2002, Burma 

et al. 2001). On the other hand, during replication stress, ATR appears to be involved in 

H2AX phosphorylation at the site of stalled ‘replication forks’ and DNA-PKcs respond 

to DSBs during the non-homologous end joining process (Burma et al. 2001, Ward, 

Chen 2001, McManus, Hendzel 2005, Durocher, Jackson 2001). The role of γH2AX is 

to recruit associated DDR proteins and ensure the retention of those proteins in the 
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vicinity of DSB sites (Celeste et al. 2003, Bhogal, Jalali & Bristow 2009, Nakamura et 

al. 2010, Paull et al. 2000). γH2AX interacts with the mediator of DNA damage check 

point (MDC1), which in turn recruits p53 binding protein 1 (53BP1) at the vicinity of 

DNA DSB sites. MDC1 and 53BP1 then interact with the MRE11-RAD50-NBS1 

(MRN) complex, and contribute to efficient ATM attachment at the DNA DSBs site 

(Goodarzi, Jeggo & Lobrich 2010). Phosphorylation of H2AX is an important step in 

the DDR process and has widely been used as a marker of DNA damage (Bhogal, Jalali 

& Bristow 2009, Nakamura et al. 2010, Paull et al. 2000, Lou et al. 2006, Kobayashi 

2004, Anderson, Henderson & Adachi 2001, Furuta et al. 2003). 

It has been previously estimated in human fibroblasts that approximately 1% of H2AX 

becomes phosphorylated (γH2AX) per 1 Gy of IR (Rogakou et al. 1998). This appears 

to approximate 35 DNA DSBs, and hence one might expect 35 γH2AX foci. An 

antibody for γH2AX was designed to recognize the last nine residues of H2AX 

including the phosphorylated serine at position 139 (Rogakou et al. 1999). γH2AX 

signals appear as individual foci when cells are immunostained against fluorescence-

coupled antibodies and visualized by fluorescence microscopy. γH2AX is formed in the 

close vicinity to DSBs within seconds after cells are exposed to IR, and an individual 

γH2AX foci represents a single DSB with a ratio of 1:1 (Rogakou et al. 1998, 

Sedelnikova et al. 2002, Rothkamm, Lobrich 2003). After successful repair of DSBs, 

the γH2AX molecules are dephosphorylated by protein phosphatase 2A (PP2A) and 

γH2AX foci are no longer detectable with the γH2AX antibody (Paull et al. 2000, 

Doida, Okada 1969, Chowdhury et al. 2005, Stiff et al. 2004). 

The kinetics of γH2AX foci formation and loss have been widely investigated in 

different cell and tissue types in the context of DSBs induced after exposure ex vivo and 
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in vivo to exogenous DNA damaging agents (Rogakou et al. 1998, Madigan, 

Chotkowski & Glaser 2002, Roch-Lefevre et al. 2010, Olive, Banath 2004, Sedelnikova 

et al. 2004). Two types of γH2AX foci have been found in cells: Firstly, transient 

γH2AX foci that are associated with rapid DSB repair and dephosphorylation of γH2AX 

to H2AX, usually within minutes to hours. The second type of γH2AX foci are residual 

and tend to persist for days to months (Figure 1.1). The long-term persistence of 

“residual γH2AX” has been also termed “excess γH2AX” foci by different groups 

(Moroni et al. 2013, Lobrich et al. 2005). In this review, we have chosen to use the term 

“persistent γH2AX” (i.e. the γH2AX level assessed at a given time-point beyond which 

DSBs are expected to be repaired after initial exposures to DNA damaging agents such 

as IR, chemotherapeutic drugs, and genotoxic agent minus the baseline γH2AX level). 

Persistent γH2AX may indicate DNA DSBs that are either in the process of slow, 

ongoing repair, or DSBs that remain permanently unrepaired due to cellular senescence, 

apoptosis, or DSBs that remain unrepaired in specific genome sequences such as 

telomeres (Sedelnikova et al. 2004, Fumagalli et al. 2012, Hewitt et al. 2012, Torudd et 

al. 2005). DNA DSBs also occur during normal cellular processes including DNA 

replication, cellular senescence, and exposure to reactive oxygen species. Therefore, 

endogenous γH2AX foci are formed even in the absence of external DNA damaging 

agents such as radiation (Bonner et al. 2008). Humans and other mammals follow an 

intrinsic DNA repair mechanism to repair these endogenous DNA DSBs. However, 

small defects in the efficiency of repairing the chronic endogenous DNA DSBs for long 

periods (days, weeks, months and even years) may contribute to the accumulation of 

unrepaired DSBs on telomeres which can be reflected as persistent γH2AX (Figure 1.2). 

Measurement of persistent γH2AX in different cell and tissue types could therefore be 
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used in radiation biodosimetry and cellular radiosensitivity responses during chemo- 

and radiotherapy, and to identify regions of the genome where DSB fails to repair. 
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Figure 1.1: Schematic representation of the short-term kinetics and persistent 
γH2AX response in relation to DSB repair. The kinetics of DNA DSB repair follows 
two phases, a fast phase lasting up to a few hours which is followed by a slower phase 
that may persist for several hours to days. Upon exposure to DNA damaging agents 
such as ionizing radiation (IR), the γH2AX foci appear in the fast phase within minutes 
after the DSBs are formed, and reach a maximum level after about 30 min. This level 
then declines rapidly, and corresponds to repair of DNA DSBs. A small portion of 
γH2AX (above baseline, as indicated by the dashed line) may persist for up to several 
months (slower phase) after the initial DSB-induction event is known as the persistent 
γH2AX response (as indicated by the bold red arrows). Persistent γH2AX may represent 
unrepaired DSBs which are either in the process of slow ongoing repair, that are too 
complex to repair or associated with telomere DNA DSBs. 
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Figure 1.2: Model depicting the possible cause of chronic endogenous DSB-induced 
persistent γH2AX. The intrinsic DNA repair mechanisms to repair endogenous DSBs 
occur during common cellular processes, including DNA replication, exposure to 
reactive oxygen species and cellular senescence. The repair of endogenous DSBs is 
continuous and rapid, involving recurring transient γH2AX responses. DSBs and 
γH2AX accumulate in telomere sequences within cells and may ultimately reach a 
threshold that triggers SASP which put into action the senescence process by which 
such cells are eliminated. There is therefore two recurring waves of γH2AX foci 
expression in tissues: the first with short amplitude involving disappearance of γH2AX 
due to DSB repair and the second with wider amplitude involving elimination of cells 
with accumulated persistent γH2AX by cellular senescence processes. Abbreviations: 
DSBs, double-strand breaks; SASP, senescence associated secretory phenotype. 

IR-induced γH2AX foci formation and loss have been extensively investigated 

(Rogakou et al. 1998, Madigan, Chotkowski & Glaser 2002, Roch-Lefevre et al. 2010), 

whereas comparatively few studies have investigated endogenous γH2AX levels in 

normal aging and accelerated aging disorders. H2AX phosphorylation and DDR have 

been implicated in diseases of accelerated aging (e.g. Werner syndrome, Alzheimer’s 

disease, obesity, diabetes, sleep apnoea, prostate cancer, cataract disease, hypertension, 

and Hutchinson-Gilford progeria syndrome) in recent studies (Myung et al. 2008, 

Sedelnikova et al. 2008, Schurman et al. 2012), suggesting that lack of DNA integrity 
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due to DNA damage progressively increases with age and may contribute to or be 

caused by these accelerated aging disorders. To date, no review has explored persistence 

of γH2AX in different cell and tissue types and discussed the importance of endogenous 

levels of γH2AX, in human aging and diseases of accelerated aging. The aims of this 

review are to summarise the findings of persistence of γH2AX in the context of 

exogenous source induced DSBs in different cell and tissue types, and to further discuss 

human diseases of accelerated aging that have reported endogenous γH2AX levels as a 

marker of unrepaired DNA damage. 

1.2 Bibliographic Search 

The identification and selection of studies reported in this review was carried out 

through an extensive literature search using the PubMed database (National Library of 

Medicine, National Institutes of Health, Bethesda, MD, USA; http:// 

www.ncbi.nih.gov/PubMed, and was up-to date as on April 30th 2015. The search 

strategy was based on the following keywords: ‘‘persistent gammaH2AX”, “residual 

gammaH2AX”, “gammaH2AX kinetics”, “unrepaired DNA damage”, “irreparable 

DNA damage”, “human endogenous gammaH2AX”, “gammaH2AX in age-related 

diseases”. Eligible studies included in this review were those conducted in humans, or 

animals, written in English, reporting long-term (>4 hours) persistence of residual or 

excess γH2AX levels as a marker of either DNA damage or DNA repair (i.e. after in 

vitro or in vivo exposure to IR, and after chemotherapeutic or genotoxic drug treatment). 

Studies in blood cells or other surrogate cells, cancer tissues, biopsies, established cell 

lines or in cultured cells after treatments were included. 
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1.3 γH2AX Detection Methods 

γH2AX foci can be observed with fluorescence microscopy by immunostaining cells 

with primary γH2AX antibodies coupled with fluorescent labelled secondary antibodies. 

The discernible hallmark of γH2AX foci counting is the ability to detect a single DSB in 

an individual cell (Pilch et al. 2004, Nakamura et al. 2006, Hamasaki et al. 2007). The 

use of fluorescence can be extended to the measurement of total γH2AX protein level, 

in particular types of cells and tissues using western blot and flow cytometry techniques 

(Pilch et al. 2004, Nakamura et al. 2006, Hamasaki et al. 2007). The γH2AX foci 

counting approach has been used in numerous studies to assess the relationship between 

γH2AX foci removal and the rate of DSBs repair (Rothkamm, Lobrich 2003, Lassmann 

et al. 2010, Bouquet, Muller & Salles 2006, Taneja et al. 2004, Siddiqui et al. 2015). In 

radiation biology the number of DSBs positively correlates with γH2AX foci formation 

(Rogakou et al. 1998, Rogakou et al. 1999, Sedelnikova et al. 2002). A linear increase 

of γH2AX foci per cell was proportional to the initial radiation dose 24 h and 48 h after 

exposure to IR doses ranging from 0.2 to 5 Gy in human blood samples and skin cells 

(Redon et al. 2009). The highly dynamic changes of foci number and foci size over time 

after treatment with radiation or cytotoxic compounds can make the visual scoring time-

consuming, potentially subjective, operator-dependent, and may involve fluorescence 

bleaching due to extended evaluation time, therefore making visual scoring unsuitable 

for high-throughput applications. Several image analysis solutions for automated foci 

scoring have been developed, but were limited to low IR dose exposure resulting in 

discrete scoreable foci within the nuclei (Willitzki et al. 2013, Runge et al. 2012). 

Visual and automated scoring of γH2AX foci formation in rat thyroid cells (PC Cl3) 

demonstrated a direct correlation between γH2AX foci and radiation dose but was 

restricted up to 1 Gy of IR (Runge et al. 2012). Following exposure of cells to a dose of 
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5 Gy, visual scorers were unable to score γH2AX foci due to high density of DSBs 

which lead to γH2AX foci overlap (diffuse foci). Thus, one of the main issues when 

scoring multiple foci after exposure to a high radiation dose is the phenomenon of foci 

overlap that makes it more difficult to distinguish γH2AX as discrete entities (foci) 

(Willitzki et al. 2013). In that case, measurement of total γH2AX intensity using 

western blot or flow cytometry image analysis techniques may be sufficient to measure 

DNA damage levels by quantifying the total fluorescence for γH2AX signals. 

Flow cytometry, allows rapid measurement of total γH2AX intensity in a large number 

of heterogeneous cell populations while enabling assessment of γH2AX intensity in 

different cell cycle phases and simultaneous measurement of other cellular 

proteins/markers involved in DNA damage/repair signalling process (Brzozowska et al. 

2012). The γH2AX intensity in lymphocytes measured by flow cytometry quantitatively 

correlated with the number and size of γH2AX foci scored visually by fluorescence 

microscopy (Brzozowska et al. 2012). The IR-induced γH2AX quantification in the 

lymphocytes of prostate cancer patients during radiotherapy showed significant 

differences between patients and healthy donors by use of flow cytometry analysis; 

however, these results were not always in close agreement with results from 

fluorescence microscopy (Brzozowska et al. 2012). More recently, the use of laser 

scanning cytometry has also been proposed as a useful tool to measure cellular DNA 

content for cell cycle stage evaluation in conjunction with multiple γH2AX parameters 

(e.g. area, integral, MaxPixel) after inducing DNA damage (Siddiqui et al. 2015, Zhao 

et al. 2009, Tanaka et al. 2007). The frequency of visually scored γH2AX in human 

buccal cell nuclei showed a strong correlation with LSC measured γH2AX integral 

(Siddiqui et al. 2015). Taken together, both microscopy and cytometry-based methods 

are suitable to evaluate γH2AX formation and loss and the choice of the best γH2AX 
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assay will depend on the purpose of the study. The image cytometry and LSC methods 

have an advantage over flow cytometry because they enable counting and sizing of 

γH2AX foci but they are slower to perform. 

1.4 Long-Term Persistence of Residual γH2AX 

The decline kinetics of DNA DSB repair appears to follow two distinct phases: a fast 

phase generally lasting a few hours followed by a slower phase that may persist for 

several hours or days and may extend to several months (Riballo et al. 2004, Lobrich et 

al. 2010) (a schematic is shown in Fig. 1.1). The majority of DSBs (~80%) are repaired 

during the first phase of the repair process and the remaining portion (~20%) repair at a 

slower pace during the slower phase (Riballo et al. 2004, Lobrich et al. 2010). The slow 

γH2AX repair kinetics reported in lymphocytes from healthy donors following exposure 

to IR is consistent with the findings that showed ~25% of residual γH2AX foci at 7 

hours after exposure to 4 Gy of IR in lymphocytes (Goodhead 1994, Sharma et al. 

2015). Evidence from several studies suggests that 60% of initial IR-induced DSBs are 

transient and repair in a relatively fast manner, often with half-lives of approximately 1-

18 minutes (Kodym, Horth 1995, Nunez et al. 1995). The remaining 40% of DSBs 

repair slowly, with a repairing half-life in the range of 1.5-8 hours (Kodym, Horth 1995, 

Nunez et al. 1995, MacPhail et al. 2003b, Ward 1988, Ward 1990). DSBs measured 

several hours after an initial radiation exposure that still remain unrepaired, may be 

predictive of individual radiosensitivity to complex DNA lesions that can be lethal 

(Banath et al. 2010, Bhogal et al. 2010, Djuzenova et al. 2013). The rate of γH2AX foci 

loss and the presence of residual foci has also been correlated with cellular 

radiosensitivity and absorbed radiation dose (Taneja et al. 2004, Lobrich et al. 2010, 

Jeggo, Geuting & Lobrich 2011, MacPhail et al. 2003a, Dikomey et al. 1998, Redon et 
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al. 2010, Qvarnstrom et al. 2004). Estimation of DSB repair rate from the decline 

kinetics of γH2AX foci was reported as a useful parameter to evaluate cellular 

radiosensitivity (Sharma et al. 2015). The persistent γH2AX foci may be present in the 

form of large foci. For example, in spermatids, the persistent γH2AX foci appeared as 

larger foci at 48 h after IR exposure (Paris et al. 2011). Large persistent γH2AX foci 

were also observed in normal human fibroblasts (VH-10) and in HeLa cells after 

exposure to IR (Markova, Schultz & Belyaev 2007). Additionally, a recent study 

reported the persistence and larger size of γH2AX foci 6 hours after 3 Gy of high linear 

energy transfer radiation in a cell line lacking DNA-dependent protein kinase activity 

(Bracalente et al. 2013). Clinical studies have demonstrated that the stochastic γH2AX 

foci induction and loss after external and internal radiation exposure in different types 

of cell depend on (i) the amount or type of IR (e.g high dose (radiotherapy), low dose 

X-ray examination, or computed tomography (CT) scan), chemotherapeutic drug and

genotoxic compound used; (ii) type of sample or part of body exposed to IR; (iii) 

duration or fractionation of exposure; (iv) inter individual radiosensitivity or damage 

response; (v) methods to measure γH2AX immunoreactivity; (vi) time-points for the 

kinetics of γH2AX foci formation and loss; (vii) time elapsed between the exposure and 

the γH2AX analysis, particularly if genotoxic exposure is acute rather than chronic 

(Sharma et al. 2015, Zalenskaya, Bradbury & Zalensky 2000, Ismail, Wadhra & 

Hammarsten 2007). 

In the following sections we discuss persistence of γH2AX following in vitro and in 

vivo exposure to IR, chemotherapeutic drugs, and genotoxic agents among animals in 

different cell and tissue types (summarised in Table 1.1). 



 

14 

Table 1.1: Persistent γH2AX response among animals in different cell and tissue 
types following ionizing radiation 

Cells/tissues 
analysed 

Treatment 
Cohort/ 

characteristic of 
cells 

Outcome of γH2AX 
response 

Technique used Ref 

Human 

Lymphocytes γ rays 
2 Gy 

Cancer patients: 
(n=12) with severe 
NTT after RT 
(n=10) with little or 
no NTT and (n=7) 
healthy, non-cancer 
control 

24 h post-IR 
γH2AX ↑ by ~ 4x in 
cancer patients with 
NTT compared with 
cancer patients with 
low NTT or non-
cancer control 

Flow cytometry (Bourton et 
al. 2011) 

Lymphocytes X-rays 
1 – 2 Gy 

Children with solid 
tumors received 
chemotherapy 
(n=23), 
Healthy children 
(n=24) 

24h post-IR 
↑ foci/nucleus in 
children with solid 
tumours compared 
with age-matched 
healthy children 
↑ foci/nucleus enables 
identification 
of children at risk with
 high-grade toxicities 

Visually scored 
by fluorescence 
microscopy 

(Rube et al. 
2010) 

Lymphocytes γ rays 
2 Gy 

Healthy donor 
(n=4), AT (n=6) 
and NBS (n=4) 
patients 

72 h post IR 
↑ foci/nucleus by ~ 4-
8x in AT and NBS 
patient’s cells 

Visually scored 
by fluorescence 
microscopy 

(Porcedda 
et al. 2006) 

Lymphocytes X-rays 
4 Gy 

Breast cancer 
patient after 
radiotherapy 
Control: very little 
or no damage in 
normal tissue (n=7), 
Case: marked 
damage in normal 
tissue 
(n =7) 

24 h post-IR 
↑ foci/nucleus in case 
compared with control 

Visually scored 
by fluorescence 
microscopy 

(Chua et al. 
2011) 

PBMCs X-rays 
4 Gy  

Control: healthy 
donors (n=12) 
Case: Breast cancer 
patients undergoing 
radiotherapy (n=57) 

24 h post-IR 
↑ foci/nucleus in case 
compared with 
untreated healthy 
control 

Visually scored 
using fluorescence 
images 

(Djuzenova 
et al. 2013) 

Lymphocytes X-rays 
2 Gy 

Head and neck 
cancer patients 
undergoing 
radiotherapy 
(n=54) 
Untreated control 
(n=26) 

6 h post IR 
↑ foci/nucleus in 
lymphocytes of head-
and-neck cancer 
patients compared 
with untreated control 
group 

Image captured by 
fluorescence 
microscopy 
followed by foci 
counting using 
olympus 
microimage 
software. 

(Goutham 
et al. 2012) 

Lymphocytes low dose 
rate (14.7 
cGy/h) and 
high dose 
rate 
(0.5 
Gy/min) 

Cervix cancer 
patients (n=12) or 
endometrial 
cancer patients 
(n=17) 

24 h post-IR 
No significant changes 
in non to mild and 
moderate to severe late 
radiotoxicity 

Visually scored 
using fluorescence 
images 

(Werbrouc
k et al. 
2010) 
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Cells/tissues 
analysed 

Treatment 
Cohort/ 

characteristic of 
cells 

Outcome of γH2AX 
response 

Technique used Ref 

Leucocytes Radionuclid
e therapy 
with the 
isotope I131 

26 Patients with 
differentiated 
thyroid carcinoma 
(7 men, 19 women) 

6 days after 
administration 
↑ foci/nucleus  

Visually scored 
using fluorescence 
images  

(Lassmann 
et al. 2010) 

Lymphocytes Radionuclid
e therapy 
with the 
isotope I131 

15 patients with 
differentiated 
thyroid carcinoma 
(8 women, 7 men) 

4 days after 
administration 
↑ foci/nucleus 

Visually scored 
using fluorescence 
images 

(Doai et al. 
2013) 

Lymphocytes X-rays 
60–66 Gy 
(single dose 
2 Gy, five 
fractions per 
week) 

Head and neck 
cancer patients 
(n=31) 

24 h post-IR 
↑ foci/nucleus 
predisposed to 
increased incidence of 
severe oral mucositis 

Visually scored 
using fluorescence 
images  

(Fleckenste
in et al. 
2011) 

Lymphocytes CT- 157 to 
1,514 
mGy·cm 

Benign diseases 
(n=13) and known 
malignant 
neoplasms (n= 10) 

24 h after CT 
↑ foci/nucleus in one 
patient with rectal 
cancer showed 
exceptionally severe 
side effects after 
radiotherapy 

Visually scored 
using fluorescence 
images  

(Lobrich et 
al. 2005) 

Lymphocytes PET 
involving 
the use of 
18F-
fluorodeoxy
glucose, and 
whole-body 
CT scan 

Patients with 
history of 
lymphoma or 
leukaemia (n=33) 

24 h after combined 
PET/CT 
↑ foci/nucleus  

Visually scored 
using fluorescence 
images 

(May et al. 
2012) 

Lymphocytes PRRT Neuroendocrine 
tumors patients 
undergoing PRRT 
(n=11) 

72 h after treatment 
foci/nucleus ↓ close to 
baseline and correlated 
with absorbed dose to 
tumors and bone 
marrow 
↓ number of 
lymphocytes 

Visually scored 
using fluorescence 
images 

(Denoyer et 
al. 2015) 

Lymphocytes CT- 7.78 
per 1 Gy·cm 
and PTA of 
lower limb 
arteries 

Patients scheduled 
for CT (n=5) and 
patients scheduled 
for PTA (n=20) 

24 h after treatment 
↑ foci/nucleus 

Visually scored 
using fluorescence 
images 

(Geisel et 
al. 2008) 

Lymphocytes γ rays 
4 Gy  

Healthy donors 
(n=94) 

24 h after treatment 
↑ foci/nucleus  

Fluorescence 
microscopy, 
Image J 

(Sharma et 
al. 2015) 

Lymphocytes γ rays 
2 Gy  

Healthy donors 24 h to 4 weeks post- 
treatment 
↑foci/nucleus 

Fluorescence 
microscopy, and 
LSM 510 
software 

(Markova, 
Torudd & 
Belyaev 
2011) 

Cell lines after 
isolation of 
lymphocytes from 
SDS patients 

X-rays 
4 10 Gy 

SDS patients (n=2) 
and SDS patient's 
heterozygous father 
(n=1) 

↑ foci/nucleus in SDS 
patients compared 
with sham irradiated 
control 

Visually scored 
using fluorescence 
images  

(Morini et 
al. 2015) 
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Cells/tissues 
analysed 

Treatment 
Cohort/ 

characteristic of 
cells 

Outcome of γH2AX 
response 

Technique used Ref 

 

Fibroblasts 

 

γ rays 
0.6 Gy 

 

Normal human 
fibroblast cells 
(IMR90) 

 

270 min post-IR 
4.5 foci/nucleus 
compared to 1.5 
foci/nucleus at 
baseline 

 

Laser scanning 
confocal 
microscopy 

 

(Rogakou 
et al. 1999) 

Fibroblasts γ rays 
0.6 Gy 

WS patients 
(n=4) 
Control donors 
(n=4) 

24 h post-IR 
↑ foci/nucleus by 
~1.5x in 60 year old 
WS patients compared 
with controls 

Visually scored 
by fluorescence 
microscopy 

(Sedelniko
va et al. 
2008) 

Fibroblasts γ rays 
2 Gy 

FA patients (n=10) 
Healthy donor 
(n=6) 

24 h post-IR 
foci/nucleus ↑ by ~2.5-
8x in FA cells 
compared with non-
irradiated control and 
non-FABMF cells 

Fluorescence 
microscopy, 
Image J 

(Cantor, 
Brosh 
2014) 

Fibroblasts X-rays 
10 Gy  

Foreskin fibroblasts 
(HCA2) 

6 weeks post-exposure 
↑ foci/nucleus 

Fluorescence 
microscopy, 
Photoshop CS2 

(Rodier et 
al. 2009) 

Fibroblasts Potent 
human 
carcinogen 
chromium 
Cr(VI) 
20 μM 

 SV40-transformed 
WRN fibroblasts 
cell line (AG11395) 

24 h after treatment 
↑ foci/nucleus 

Fluorescence 
microscopy, 
Phoenix software 

(Lan et al. 
2005) 

Embryonic stem 
cells 

γ rays 
5 Gy  

H1 hES cell lines 24 h post-IR 
dephosphorylation rate 
was slower in 
irradiated hES 
compared with normal 
somatic lung 
fibroblasts 
↑ foci/nucleus in hES 
in irradiated hES 
compared with normal 
somatic lung 
fibroblasts 

Western blot (Filion et al. 
2009) 

Stem cells X-rays 
2 Gy  

Healthy volunteers 
(n = 68) and 
umbilical cord 
blood 
(n = 34) 

24 h post-IR 
Identical decline of 
foci/nucleus in all cells 
analysed 

Visually scored 
by fluorescence 
microscopy 

(Rube et al. 
2011) 

Buccal cells γ rays 
2 Gy  

5 healthy 
individuals 
(3 females, 2 males, 
aged 26-47 years) 

5 h post-IR 
↑ foci/nucleus by ~4x 
in irradiated cells 
compared with non-
irradiated control 

Immunofluoresce
nce and 
HistolabTM 
software 

(Gonzalez 
et al. 2010) 

Buccal cells γ rays 
4 Gy 

6 healthy 
individuals 
(3 females and 
3 males, aged from 
25-44 years) 

24 h post-IR 
Visually scored: % of 
cell containing foci ↑ 
by ~3x 
LSC: integral ↑ by ~3x 

Visually scored 
and laser scanning 
cytometry 

(Siddiqui et 
al. 2015) 
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Cells/tissues 
analysed 

Treatment 
Cohort/ 

characteristic of 
cells 

Outcome of γH2AX 
response 

Technique used Ref 

Mouse 

Germ cells X-rays 
4 Gy 

10- to 12-week-
old C57Bl/6J 
male mice 

% of cell containing 
foci ↑ by ~6-10x 48 h 
post IR 

Visually scored 
using fluorescence 
microscopy 

(Paris et al. 
2011) 

Heart and kidney X-rays 
3 Gy 

3 months old 
C57Bl/6 female 
mice 

23h post-IR 
% of nuclei containing 
foci ↑ by ~5-10x 

Confocal 
microscope 

(Gavrilov 
et al. 2006) 

Skin biopsies γ rays 
10 Gy 

(n=2) 4–6 week 
old radiosensitive 
strains (SCID and 
BALB/c) and 
(n=2) 
radioresistant 
strains (C57BL/6 
and C3H/HeJ) 
male mice 

7 days post-IR 
Radioresistant strains 
(13-15 foci/100-µm2 
area) > Radiosensitive 
strains (~4-6 γH2AX 
foci/ 
100-µm2 area) 

Confocal 
microscopy 

(Bhogal et 
al. 2010) 

Spinal cord X-rays 
17 Gy 
followed by 
an immediate 
additional 
dose of 19 Gy 

12 weeks old 
C3H/N female 
mice 

1 year post-IR 
Foci were detected 

Flow cytometry (Andratsch
ke et al. 
2011) 

Spleen, thymus, 
liver, lung, kidney, 
cerebellum, 
hippocampus, 
frontal cortex and 
olfactory bulb 

X-rays 
1 Gy  

Very young 
(7 and 14 
days old), 
adolescent 
(24 days old), 
young adult 
(30 days old) and 
sexually mature 
adult 
(45 days old) male 
and female mice 

24 h post-IR 
Average number of 
foci/nucleus ↑in 
Spleen>Thymus> 
Liver>Lung 
Average number of 
foci/nucleus↑ after 7 
days > 14 days>24 
days >30 days > 45 
days 

Visually scored 
using fluorescence 
microscopy  

(Hudson et 
al. 2011) 

Small intestine, 
lung, brain, heart 
and kidney 

Whole body 
X-rays 
2 Gy 

C57BL/6 mice 48 h post-IR 
~0.5 foci/nucleus, 
similar DNA repair 
kinetics were observed 
in all tissues. 

Visually scored 
using fluorescence 
microscopy 

(Rube et al. 
2008) 

Heart, small 
intestine, and kidney 

X-rays 
10 mGY,100 
mGy, and 1 
Gy 

C57BL/6 mouse 24 h post-IR 
1 Gy: ~< 1 
foci/nucleus 
100 mGy: ~< 0.2 
foci/nucleus 
10 mGy: ~< 0.06 
foci/nucleus 

Visually scored 
using fluorescence 
images 

(Grudzensk
i et al. 
2010) 

Minipig 

Skin biopsy γ rays 
~50 Gy 

14 to 16 months 
old (n=7) female 
Göttingen minipig 

70 days post-IR 
Irradiated cells: 0.14 
foci/nucleus, 
non Irradiated cells: 
0.05 foci/nucleus 

Visually scored 
using fluorescence 
images 

(Ahmed et 
al. 2012) 
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Cells/tissues 
analysed 

Treatment 
Cohort/ 

characteristic of 
cells 

Outcome of γH2AX 
response 

Technique used Ref 

(1)Lymphocytes 
(2)Fibroblasts 

γ rays 

1.8 Gy 
(2) 2 Gy 

4 months old male 
Gottingen 
minipigs 

24 h post-IR 

↑ foci/nucleus by up to 
~11x 

↑ foci/nucleus 

Visually scored 
using fluorescence 
images 

(Moroni et 
al. 2013) 

Fruit Fly 

Pupae γ rays 

0-400 Gy 

Pupae were 
allowed to emerge 
as adults 17 days 
post-IR 

17 days post-IR 

25% of nuclei 
contained ↑ γH2AvB 
compared with non-
irradiated controls 

Western Blot, 
ImageJ and LSC 

(Siddiqui et 
al. 2013) 

Syrian hamsters 

Heart, Brain, liver X-rays 

5 Gy 

Male Syrian 
hamsters 

20 h post-IR 

↑ foci positive nuclei 
in heart, brain (not 
liver) by 3- 4.5x 

Visually scored 
following laser 
scanning confocal 
microscopy 

(Firsanov et 
al. 2012) 

Abbreviations: AT - Ataxia telangiectasia, ATM - Ataxia telangiectasia mutated, CT - Computed tomography, FA - 
Fanconi anaemia, hES - Human embryonic stem cells, IR - Ionizing radiation, LSC - Laser scanning cytometry, NTT 
- Normal tissue toxicity, NBS - Nijmegen breakage syndrome, Non-FABMF - Non Fanconi anemia bone marrow
failure, PBMC - Peripheral blood mononuclear cells, PET - Positron emission tomography, PRRT - Peptide receptor
radionuclide therapy, PTA - Percutaneous transluminal angioplasty, RT - Radiotherapy, SDS - Shwachman–diamond
syndrome, WS - Werner syndrome

1.5 Persistent γH2AX in Human Cells 

1.5.1 Peripheral Blood Mononuclear Cells 

Human blood lymphocytes have several advantages that make them suitable for 

evaluating γH2AX foci formation and loss: (i) a limited quantity of blood containing 

lymphocytes is required for γH2AX assay (1-2 ml) (Sak et al. 2007); (ii) lymphocytes 

have low γH2AX background levels (0.05 to 0.1 foci/nucleus) (Rogakou et al. 1998, 

Lobrich et al. 2005, Kasten-Pisula et al. 2007); (iii) the majority of cells are in the G0 

phase of the cell cycle (Ivashkevich et al. 2012); (iv) there is minimal intra-individual 

variation in the level of γH2AX foci in different subsets of lymphocytes (Andrievski, 

Wilkins 2009); (v) there is minimal intra-individual variation in γH2AX foci number 

per lymphocytes, and therefore the assay is relatively efficient at measuring differences 
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in γH2AX between individuals (Lobrich et al. 2005, Kasten-Pisula et al. 2007, 

Andrievski, Wilkins 2009). 

Radiation therapy used in cancer treatment is applied either alone or in combination 

with chemotherapy; however, radiation therapy induces severe side-effects (acute 

effects such as erythema, edema, mucositis, dry or moist desquamation, severe skin 

changes, and late effects such as telangiectasia, fibrosis, cancer induction, brachial 

plexopathy, neurological effects) due to normal tissue toxicity (NTT) (Bourton et al. 

2011, Werbrouck et al. 2010, Fleckenstein et al. 2011, Turesson et al. 1996, Tucker et 

al. 1996). NTT has been graded by the Radiation Therapy Oncology Group into a 

standardized scale of acute and late responses after radiotherapy treatment for all tissue 

types and these scales are used to avoid severe sequelae of radiotherapy (Cox, Stetz & 

Pajak 1995). Induction and persistence of γH2AX were assessed in peripheral blood 

lymphocytes (PBLs) of cancer patients with tumors in breast, thyroid, colon, brain, 

pituitary, prostate, cervix, and larynx for up to 24 h after 2 Gy of IR exposure (Bourton 

et al. 2011). The level of γH2AX response remained elevated in lymphocytes of cancer 

patients who had experienced acute NTT as a consequence of earlier radiotherapy 

compared to cancer patients who had little or no tissue toxicity as well as non-cancer 

controls, for up to 24 h after exposure to IR (Bourton et al. 2011). Persistence of 

γH2AX was significantly higher in lymphocytes from children with pediatric cancer 

compared with age-matched control children 8 h after exposure of whole blood with 1 

Gy and 2 Gy of X-rays. While all healthy children exhibited efficient DNA repair, three 

children with pediatric cancer had impaired DNA repair capacity and two out of these 

three children developed acute normal tissue toxicity which may be indicative of 

impaired DNA repair (Rube et al. 2010). The measure of persistence of γH2AX can be a 

predictive assay in identifying those individuals at the greatest risk for the development 
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of adverse effects to radiotherapy or chemotherapy. Additionally the γH2AX assay may 

be clinically useful to monitor NTT, thus will allow fine-tuning of the applied radiation 

dose during radiotherapy for improved cancer treatments. Another study reported higher 

levels of persistence of γH2AX foci per cell in blood lymphocytes of breast cancer 

patients with chronic late toxicities after radiotherapy compared with minimal late 

toxicities up to 24 h after exposure to 4 Gy of X-rays (Chua et al. 2011). This result 

indicates that the persistence of γH2AX is likely associated with breast cancer patients’ 

radiosensitivity. In another study, the mean number of γH2AX foci per cell analyzed in 

peripheral blood mononuclear cells (PBMCs) of breast cancer patients undergoing 

radiotherapy was significantly higher compared with untreated healthy controls with 

respect to the initial (30 min after 0.5 Gy of X-rays) and residual (24 h after exposure to 

2 Gy X-rays) γH2AX foci, indicating potential use of γH2AX assay for screening 

radiosensitivity of breast cancer patients (Djuzenova et al. 2013). The level of γH2AX 

foci has also been previously measured to predict the side effects of radiotherapy among 

head and neck cancer patients (Goutham et al. 2012). Persistence of γH2AX was higher 

in lymphocytes of head and neck cancer patients compared with the untreated control 

group for up to 6 h after exposure to 2 Gy of X-rays (Goutham et al. 2012). Thus 

γH2AX would be a useful measure to identify individuals’ radiosensitivity in advance 

so that customized radiation therapy may be applied to avoid severe side-effects due to 

radiation therapy. Persistence of γH2AX was also significantly higher in lymphocytes 

of Shwachman–Diamond syndrome individuals (an autosomal-recessive disorder 

characterized by bone marrow failure and a cumulative risk of progression to acute 

myeloid leukaemia) compared to sham-irradiated cells 4 h after exposure to 4 Gy and 10 

Gy of X-rays or γ-rays (Morini et al. 2015). Interestingly, another group (Werbrouck et 

al. 2010) found no difference in the persistence of γH2AX foci in T-lymphocytes 24 h 
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after ex vivo exposure (up to 2.2 Gy) when comparing (1) none to mild and (2) moderate 

to severe, late normal tissue radiotoxicity in gynecological cancer patients (Werbrouck 

et al. 2010). Persistent γH2AX was assessed in T lymphocytes from Ataxia 

Telangiectasia (AT) patients and patients with Nijmegen breakage syndrome (NBS), a 

disease associated with the mutation in nibrin proteins (coded by NBN gene). Seventy 

two hours after exposure to 2 Gy of IR the number of γH2AX foci per cell increased in 

AT and NBS cells approximately 8- and 4-fold, respectively, compared with non-

irradiated control cells (Porcedda et al. 2006). 

γH2AX as a biomarker of toxicity and as a biodosimeter after systemic administration 

of radionuclide was investigated in vivo in several clinical studies (Lassmann et al. 

2010, Fleckenstein et al. 2011). For example, γH2AX induction and loss were assessed 

in a recent clinical study where radionuclide I131 therapy for thyroid cancer was used 

(Lassmann et al. 2010). The leucocytes were irradiated in vivo by the β-particles 

emitting from circulating 131I. γH2AX was quantified in leukocytes at different times 

and the highest number of γH2AX foci was observed at 2 h after administration of 

radionuclide therapy and thereafter declined with time; however, persistence of γH2AX 

was higher for up to 6 days compared with the number of γH2AX foci in the samples 

taken immediately before radionuclide therapy (Lassmann et al. 2010). This result 

indicates that persistence of γH2AX is a promising marker to estimate the absorbed 

radiation dose in vivo after radionuclide therapy. Another study (Doai et al. 2013) 

reported elevated persistence of γH2AX foci in lymphocytes of thyroid cancer patients 4 

days following in vivo isotope 131I radionuclide therapeutic administration, allowing 

estimation of the radiation doses absorbed with this therapy. One important factor to 

consider on the interpretation of radionuclide induced in vivo γH2AX is that 

radionuclides may be continuously present in the body and induce DSBs chronically. 
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Typically, other radiation exposures are acute and would likely represent a different 

kinetic profile of DSB formation and repair. It is also important to note that external 

irradiation treatment generally involves partial body irradiation whereas radionuclide 

therapy involves whole body exposure to irradiation. Another study showed that 

individuals who had higher levels of persistent γH2AX in PBMCs observed 24 h after 

in vivo exposure to X-rays (a single dose of 2 Gy, given once daily for 5 days per week) 

or RCT (radiotherapy in combination with chemotherapy) are likely to have an 

increased incidence of severe oral mucositis (Fleckenstein et al. 2011). Following a 

computed tomography (CT) examination, γH2AX levels in normal individuals reached 

baseline levels 24 h after the CT scan. However, one patient who had previously shown 

severe side effects after radiotherapy and had a DSB repair defect displayed a very 

much higher persistence of γH2AX foci (Lobrich et al. 2005). This result suggests that 

individuals with a defect in DSB repair may exhibit impaired γH2AX foci loss thereby 

resulting in an increased persistence of γH2AX after CT (Lobrich et al. 2005). The 

kinetics of γH2AX formation and loss were also assessed in blood lymphocytes of 

patients undergoing positron emission tomography (PET) involving the use of 18F-

Fluorodeoxyglucose (FDG), and whole body CT scan (May et al. 2012). Radiation-

induced γH2AX foci peaked 30 min after 18F-FDG administration and 5 min after CT. 

After 24 h the number of γH2AX foci per cell decreased but remained higher compared 

to the pre-exposure level suggesting γH2AX as a useful marker to monitor radiation-

induced in vivo DNA DSBs by 18F-FDG and CT separately in patients undergoing 

combined PET/CT (May et al. 2012). In a similar manner, the average number of 

γH2AX foci per lymphocyte increased in the first 30 min after LuTate administration 

(for neuroendocrine tumors) and peaked at 2 h (Denoyer et al. 2015). The number of 

γH2AX foci decreased close to the baseline value 24-72 h after treatment. The γH2AX 
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foci number in the interval from 10 min to 72 h after therapy correlated with the 

absorbed dose to tumor and bone marrow and subsequently resulted in a reduced 

number of lymphocytes. This result suggests γH2AX as a biomarker to assess 

lymphocyte cytotoxicity (Denoyer et al. 2015). Immunofluorescence was used to 

demonstrate DSB induction (γH2AX foci) and repair in individuals exposed to IR 

during percutaneous transluminal angioplasty (PTA) (Geisel et al. 2008). γH2AX levels 

were approximately 1.7 fold higher in lymphocytes after PTA treatment compared to 

lymphocytes before PTA treatment. Thus γH2AX can be used as a marker to assess in 

vivo induction and repair of DSB in individuals exposed to radiation at PTA (Geisel et 

al. 2008). Persistence of 53BP1/γH2AX was also reported in human G0 lymphocytes 

obtained from healthy volunteers 24 h to 4 weeks after exposure to 2 Gy of IR 

(Markova, Torudd & Belyaev 2011), indicating the potential use of γH2AX in 

biological dosimetry (Markova, Torudd & Belyaev 2011). Therefore, persistence of 

γH2AX following the exposure to IR in human lymphocytes could be used as a maker 

to identify the radiosensitivity and the ability of individuals to recover from IR related 

damage. The effect of age, gender, race, ethnicity, and alcohol use was investigated on 

IR-induced persistent γH2AX (24 h) in lymphocytes from healthy adults (Sharma et al. 

2015). Of these demographic variables, there was a decline of persistent γH2AX in 

lymphocytes with increasing age, although age and race influenced the early γH2AX 

responses (Sharma et al. 2015). 

1.5.2 Fibroblasts 

Persistence of γH2AX has been investigated in human fibroblasts after exposure to IR. 

In one study, γH2AX foci formed 3 min after exposure to 0.6 Gy of IR in human 

fibroblasts, γH2AX foci numbers then peaked at 30 min (11.6 foci/nucleus), and at 4.5 h 
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this level declined to 4.5 foci/nucleus which was higher compared to the level in non-

irradiated control fibroblasts (Rogakou et al. 1999). In another study, persistence of 

γH2AX was reported in human diploid fibroblasts for up to 6 days after exposure to 10 

Gy of IR (X-rays) (Rodier et al. 2009). However, the initial dose used in this study was 

very high (Rodier et al. 2009). The level of γH2AX was also tested in fibroblasts from 

Werner Syndrome patients (a disease associated with premature aging) to determine 

whether premature aging diseases is associated with a higher level of persistent γH2AX 

(Sedelnikova et al. 2008). Twenty-four hours after exposure to 0.6 Gy of IR, the level of 

γH2AX foci in the fibroblasts from a 61 year old healthy individual returned close to the 

values observed in non-irradiated controls. However, fibroblasts from a 60 year old 

Werner Syndrome patient had approximately 1.5 fold increased levels of γH2AX 

foci/nucleus compared with the non-irradiated controls (Sedelnikova et al. 2008). WRN 

protein exhibits both helicase and exonuclease activities and is mutated in Werner 

Syndrome (Baynton et al. 2003, Huang et al. 2006). WRN interacts with several 

proteins involved in the repair of DNA DSB and localizes to the sites of laser-induced 

DSB in live cells (Lan et al. 2005). A recent study reported a higher persistence of 

γH2AX/53BP1 foci in human WRN-deficient fibroblasts compared with controls for up 

to 24 h after being treated with 20 μM of the potent human carcinogen, chromium 

Cr(VI), indicating impaired DSB repair due to abnormal mismatched repair (Zecevic et 

al. 2009). This result suggests that the WRN protein may play an important role in 

repairing a specific class of DSB in human cells. Fanconi anemia is a blood disorder 

associated with a genetic defect in a cluster of proteins responsible for DNA repair and 

results in bone marrow failure (Cantor, Brosh 2014). The repair kinetics of radiation-

induced DSBs were assessed in primary fibroblasts from Fanconi anemia, non-fanconi 

anemia bone marrow failure (non-FABMF) and control cell lines based on a γH2AX 
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assay. Twenty four hours after exposure to 2 Gy of IR, the level of γH2AX foci per cell 

in Fanconi anemia cell lines was approximately 2.5 fold higher compared to that in non-

FABMF patients and approximately 8 fold higher when compared with non-irradiated 

controls (Leskovac et al. 2010). Fanconi anemia fibroblasts retained an elevated level of 

residual γH2AX foci after 24 h IR exposure, suggesting that the persistence of γH2AX 

foci could be a reliable measure to diagnose Fanconi anemia from non-FABMF and 

controls. These data suggest that persistence of γH2AX indicates impaired repair of a 

subset of IR-induced DNA DSBs in human fibroblasts and can be a useful marker to 

identify individuals with diseases of accelerated aging. 

1.5.3 Buccal Cells 

Buccal cells are an easily accessible source of tissue and have been investigated for 

radiation biodosimetry (Siddiqui et al. 2015, Gonzalez et al. 2010). The kinetics of 

γH2AX induction and loss in buccal cells were investigated by counting γH2AX foci 

for up to 5 h after exposure to 2 Gy of IR (Gonzalez et al. 2010). γH2AX signals in 

nuclei peaked at 30 min after exposure to IR, and subsequently declined over a period of 

5 h. However, the level of γH2AX remained elevated in irradiated buccal cells for 5 h 

compared to non-irradiated control cells. In a recent study by our group, γH2AX levels 

remained elevated in γ-irradiated human buccal cells compared with non-irradiated 

control cells for up to 24 h following exposure to 4 Gy of IR as measured by 

quantitative laser scanning cytometry (Siddiqui et al. 2015). These results suggest that 

radiation induced γH2AX levels in human buccal cells may remain elevated above the 

baseline γH2AX level for a relatively long time (up to 24 h). Measurement of persistent 

γH2AX responses in human buccal cells could therefore be used as a powerful and 

reliable biomarker to assess DNA damage status of individuals exposed to IR during 
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accidental catastrophic radiation exposure, or during radiation therapy, or possibly as a 

result of a DNA damaging disease process. However, the variable response to IR 

exposure between individuals should be taken into consideration when using the 

γH2AX assay for radiation biodosimetry. 

1.5.4 Stem Cells 

The kinetics of DSB repair have been investigated in IR-induced human embryonic 

stem cells (hES) by measuring the persistence of γH2AX (Filion et al. 2009). γH2AX 

levels decreased at a slower rate in hES after exposure to 5 Gy of IR, over a period of 24 

h compared with normal somatic lung fibroblasts. This result suggests that hES retain 

persistent γH2AX and are possibly less efficient at repairing DSBs (Filion et al. 2009). 

Another study quantified γH2AX foci numbers per cell after exposure to 2 Gy of IR in 

various subpopulations of stem cells (CD34+CD38-, CD34+CD38+, CD34-) derived 

from umbilical cord blood (newborn) and the bone marrow of healthy elderly 

individuals (>70 years) (Rube et al. 2011). In all cell types examined, there was a 

similar increase in the frequency of γH2AX foci numbers per cell at both 8 h and 24 h 

after 2 Gy of IR exposure (Rube et al. 2011). These results suggest that γH2AX 

response may persist in irradiated stem cells and DSBs repair efficiency could be 

similar between the stem cell populations analyzed, irrespective of the wide difference 

in donor age. 

1.5.5 Monitoring Effects of Radiotherapy on Cell Lines Using Persistent γH2AX 

Response 

Measurement of persistent γH2AX in human cell lines could be used as a powerful and 

reliable marker to identify the radiosensitivity of cells or to evaluate DNA damage 

repair capacity of cells undergoing radiotherapy treatment (Klokov et al. 2006). The 
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combination of various radiosensitizing drugs with ionizing radiation exposure leads to 

persistent DNA damage compared with radiation or drug treatment alone (summarized 

in Table 1.2). The number of persistent γH2AX foci at 12 and 24 h after irradiation was 

found to correlate with clonogenic cell survival (an in vitro cell survival assay based on 

the ability of a single cell to grow into a colony) (Smogorzewska et al. 2002, Menegakis 

et al. 2009). Since radiotherapy treatment of cancer cells is aimed to kill cancer cells 

with a minimum side effects to normal cells, measurement of persistent γH2AX in vitro 

in different cell lines has a great potential for monitoring cancer patients’ response to 

chemotherapy and radiotherapy as well as to enable tailored cancer treatments. 

Table 1.2: Persistent γH2AX response following exposure to IR, chemotherapeutic 
drugs and genotoxic agents in human cell lines 

Cell lines Treatment Outcome of γH2AX response Technique used Ref 

Cervical carcinoma 
(SiHa) 

Colon carcinoma (WiDr) 

SiHa and WiDr xenograft 
tumors 

X-rays 
Single dose: 
4 Gy, 6 Gy, and 
10 Gy 
Fractionated dose: 
1 Gy daily for 5 
days 
2 Gy daily for 5 
days 

24 h post-IR 
↑foci/nucleus correlated with the 
clonogenic cell survival 
% of cells with < 3 foci predicts cell 
survival 

Visually scored by 
fluorescence 
microscopy 
Flow cytometry 

(Klokov et al. 
2006) 

Radiosensitive head and 
neck squamous cell 
carcinoma (SCC-61), and 
prostate cancer (PC-3) 
Radioresistant head and 
neck squamous cell 
carcinoma (SQ-20b) and 
prostate cancer (DU- 145) 
(SCC-61) and (SQ-20b) 
xenograft tumors 

X-rays 
3 Gy  

24 h post-IR 
↑ foci & ↓ viability and clonogenic 
survival in radiosensitive cells 
compared with radioresistant cells 

Immunoblot 
Fluorescence 
microscopy 

(Taneja et al. 
2004) 

Cervical cancer 
(HeLa, Caski, MS751, 
C33A,SW756,SiHA) 

X-rays 
2 Gy 

24 h post-IR 
↑ intensity and foci/nucleus 
correlated with clonogenic 
surviving fraction, indicates 
↑ cellular radiosensitivity 

Flow cytometry 
and Visually scored 
by fluorescence 
microscopy 

(Banath, 
Macphail & 
Olive 2004) 

Melanoma (HT144) 
Colon carcinoma (WiDr) 
Cervical carcinoma 
(SiHa) 
Glioma (U87) 
Breast cancer (HCC1937) 
Prostate cancer (DU145) 
B lymphoblastoid 
(WIL-2NS) 
Normal cell strains 

X-rays 

10 Gy 

6 h post-IR 
↑ γH2AX intensity in radiosensitive 
cells lines compared with 
radioresistant cells 

Flow cytometry (MacPhail et 
al. 2003a) 
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Cell lines Treatment Outcome of γH2AX response Technique used Ref 

(HFL1) 

Squamous cell carcinoma 
cells of head and neck 
(FaDu and SKX) 

X-rays 
4 Gy  

24 h post-IR 
↑ foci/nucleus correlated with the 
clonogenic cell survival 
% of cells with < 3 foci predicts cell 
survival 

Visually scored by 
fluorescence 
microscopy 

(Menegakis 
et al. 2009) 

Normal 48BR fibroblasts 
Patient-derived Artemis-
deficient (CJ179 hTERT) 
fibroblasts 

γ-rays 
2 Gy  

18 h post-IR 
↑ foci/nucleus in CJ179 hTERT 
than in 48BR. 
Time dependent ↑ in γH2AX foci 
size (0.8 µm at 30 min to 1.4 µm at 
12–18 h post -IR) 

Confocal 
microscopy 

(Mohapatra et 
al. 2011) 

Cervical carcinoma HeLa 
cells 
Hepatoma (HepG2) 
Mucoepidermoid 
carcinoma (MEC-1) 

(12C6+) and X-rays 
2 and 4 Gy of 
radiation using 
carbon ions  

24 h post-IR↑ foci/nucleus ↓ 
clonogenic survival for (12C6+) 
radiation than for X-rays radiation 
indicates ↑ cellular radiosensitivity 

Visually scored by 
fluorescence 
microscopy 

(Zhao et al. 
2013) 

Adenocarcinoma (A549) 
Squamous cell carcinoma 
(NCI-H226) 
Adenosquamous 
carcinoma (NCI-H596) 

BPU + X-rays 
(4 Gy) 
4 Gy alone 

24 h post- treatment 
foci/nucleus ↑ ~2 times in cells pre-
treated with BPU + X-rays 
compared with X-rays alone 
↑ foci/nucleus, ↓ clonogenic 
survival, indicates ↑ cellular 
radiosensitivity 

Flow cytometry (Balcer-
Kubiczek, 
Attarpour & 
Edelman 
2007) 

Bronchial carcinoma 
(A549) 
Squamous cell carcinoma 
head and neck (FaDu) 
Breast carcinoma 
(MCF7) 
Lung carcinoma (H1299) 
Prostate carcinoma 
(Du145) 

Gossypol + X-ray 
(2-8) Gy 
2-8 Gy alone 

24 h post-treatment 
↑ foci/nucleus in cells pre-treated 
with Gossypol + X-rays than in X-
rays alone 
↑ foci/nucleus with ↓ clonogenic 
survival indicates ↑ cellular 
radiosensitivity 

Visually scored by 
fluorescence 
microscopy 

(Kasten-
Pisula et al. 
2007) 

Breast cancer brain 
metastatic (MDA–MB-
231-BR) 
Breast cancer brain 
metastatic (MDA– MB–
 231-BR) xenograft 
tumors  

Vorinostat + X-
rays (2 Gy) for 16 
h 
2 Gy alone 

48 h post-treatment 
↑ foci/nucleus with ↓ clonogenic 
survival in cells pre-treated with 
vorinostat + X-rays compared with 
X-rays alone 

Visually scored by 
fluorescence 
microscopy 

(Baschnagel 
et al. 2009) 

Breast cancer (MCF7) 
Astrocytoma (SF268) 

γ rays 
0.6 Gy 

270 min post-IR 
4.5 foci/nucleus compared to 1.5 
foci/nucleus at baseline 

Laser scanning 
confocal 
microscopy 

(Rogakou et 
al. 1999) 

SV40-transformed WRN 
fibroblast (AG11395) 

Potent human 
carcinogen 
chromium Cr(VI) 
20 μM 

24 h after treatment 
↑ foci/nucleus 

Fluorescence 
microscopy, 
Phoenix software 

(Lan et al. 
2005) 

Human colorectal cancer 
(HT-29) 
Human colorectal cancer 
(HT-29) xenograft tumors 

JP-1201 + X-rays 
(2 Gy) 
2 Gy alone 

24 h post-treatment 
↑ foci/nucleus with ↓ clonogenic 
survival in cells pre-treated with 
JP1201 + X-rays compared with X-
rays alone 

Visually scored by 
fluorescence 
microscopy 

(Huerta et al. 
2010) 

Colon carcinoma (HT29) 
Breast Carcinoma 
(MCF7) 
Pancreatic Carcinoma 
(MIA PaCa-2) 
Pancreatic carcinoma 
(Bx-PC3) 

Guggulsterone + 
X-rays (6 Gy) 
6 Gy alone 

24 h post-treatment 
↑ foci/nucleus with ↓ clonogenic 
survival in cells pre-treated with GS 
+ X-rays compared with IR alone 

Flow cytometry (Choudhuri et 
al. 2011) 
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Cell lines Treatment Outcome of γH2AX response Technique used Ref 

Lung cancer: 
p53 wild-type (H460 and 
A549 ) 
p53 null (H1299) 

HuaChanSu + γ-
rays (2 Gy) 

24 h post-treatment 
↑ foci/nucleus with ↓ clonogenic 
survival in cells treated with HCS + 
IR compared with IR alone 

Visually scored by 
fluorescence 
microscopy 

(Wang et al. 
2011) 

HeLa cells 
ATM deficient 
(AT5BIVA) 
DNA-PKcs deficient 
((M059J) 

Wortmannin, 
caffeine or UCN-
 01+X- rays (10 
Gy) 

24 h post-treatment 
↑ foci/nucleus in HeLa and ATM 
deficient cell lines but not in DNA-
PKcs cell lines 

Western blot, 
Visually scored by 
fluorescence 
microscopy 

(Wang et al. 
2005) 

Cervical carcinoma 
(SiHa) 

DNA damaging 
drugs 
Camptothecin, 
cisplatin, 
doxorubicin, 
etoposide, 
hydrogen 
peroxide, MNNG, 
temozolomide, 
and tirapazamine 

24 h post-treatment 
↑ foci/nucleus with ↓ clonogenic 
survival 

Visually scored by 
fluorescence 
microscopy 

(Banath et al. 
2010) 

Prostate cancer (DU145) Drugs + X-rays 
MS0019266 or 
MS0017509 + 4 
Gy IR 

6 and 24 h post-treatment 
↑ foci/nucleus, ↓ cell survival in 
cells treated with MS0019266 or 
MS0017509 + X-rays compared 
with radiation alone 

Visually scored by 
fluorescence 
microscopy 

(Fu et al. 
2012) 

Primary skin fibroblasts: 
Wild-type-(48BR) 
ATM-deficient - (AT7BI) 
DNA ligase IV-deficient- 
(411BR) 
nonhomologous end-
joining-deficient cells - 
(2BN) 

γ rays 
2 Gy IR 

14 days post-IR 
↑ level of foci/nucleus (representing 
3-6% of unrepaired DSBs) in 
patient with mutation in ATM and 
DNA ligase IV 

Visually scored by 
fluorescence 
microscopy 

(Kuhne et al. 
2004) 

Colorectal 
adenocarcinomas cancer 
model (DLD-1 and HT-
29) 
Colorectal 
adenocarcinomas cancer 
model (DLD-1 and HT-
29) tumor xenograft 

Sorafenib + X-
rays (2 Gy) 
Sorafenib alone 
2 Gy alone 

6 and 24 h post-treatment 
↑ foci/nucleus, ↓ cell survival in 
cells after treatment with Sorafenib 
+ X-rays compared with radiation 
alone or drug alone cells 

Visually scored by 
fluorescence 
microscopy 

(Kim et al. 
2013) 

Bone marrow 
mesenchymal stem cells 
(U2OS and CALU-1) 

Actinomycin D 21 days post-treatment 
↑ foci/nucleus 

Visually scored 
using fluorescence 
images 

(Minieri et al. 
2015) 

Pulmonary carcinoma 
(A549) 

Mitomycin (0.01 
and 0.02 μg/ml) 

3 to 6 days after treatment 
Concentration dependent ↑ of 
γH2AX intensity 

Laser scanning 
cytometry 

(McKenna et 
al. 2012) 

Pancreatic cancer (Panc-
1) 
Pancreatic cancer 
MiaPaCa-2 (PPP2R1A 
depleted by siRNA) 

LB100+ X-rays 
7.5 Gy + LB100 
for 2 h 

24 h post-treatment 
↑ γH2AX intensity 

Immunoblots (Wei et al. 
2013) 

Breast cancer (MCF-7) Barberine + X-
rays 
15 µM barberine 
for 24 h + 1 Gy 

12 h post-treatment 
↑ foci/nucleus in cells pre-treated 
with barberine + radiation 
compared with radiation alone 

Visually scored 
using fluorescence 
images 

(Wang, Liu 
& Yang 
2012) 

Fibroblasts (GM637) CDT + X-rays 
0.5 µg/ml CDT 
and 5 Gy of IR 

24 h post-treatment 
↑ foci/nucleus and ↑ intensity in 
cells treated with CDT compared 
with IR treated cells 

Western blot and 
Fluorescence 
microscopy, 
ImageJ 

(Fahrer et al. 
2014) 
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Cell lines Treatment Outcome of γH2AX response Technique used Ref 

Colorectal cancer 
(HCT116) 

Oxaliplatin (1–10 
µM) treatment for 
6-24 h 

24 h post-treatment 
↑ intensity in a time- and 
concentration dependent manner 

Western blot  (Chiu et al. 
2008) 

Human pancreatic cancer 
(MiaPaCa-2) 

AZD7762 
(Chk1/2 inhibitor) 
and gemcitabine 

48 h post-treatment 
↑intensity in 56% of cells 

Flow cytometry  (Morgan et al. 
2010) 

The normal human 
fibroblasts AGO1522B 
(AGO) 
Normal peripheral blood 
lymphocytes from 
patients with advanced 
cancer 

SJG-136 
(crosslinking 
agent) 

8 and 15 days post-treatment 
↑ foci/nucleus 

Visually scored 
using fluorescence 
images 

(Wu et al. 
2013) 

Glioblastoma (U251) HSV-TK + 
antiviral drug 
Ganciclovir 

24 h post-treatment 
↑ foci/nucleus 

Visually scored 
using fluorescence 
images 

(Ladd et al. 
2011) 

Bone marrow 
mesenchymal stromal 
(MSC) 

X-rays 
40 and 2000 mGy 

48 h post-treatment 
↑ foci/nucleus 

Visually scored 
using fluorescence 
images 

(Alessio et al. 
2015) 

Human mammary 
epithelial (HMEC) 

Iron-ion and γ-
rays 
1 Gy and 2 Gy 

72 h post-treatment 
↑ foci/nucleus in non-proliferative 
cells than in proliferative cells 
↑ foci/nucleus after iron-ion 
exposure than after γ-rays exposure 

Visually scored 
using fluorescence  

(Groesser et 
al. 2011) 

Normal diploid cells 
(HE49) 

X-rays 
4 Gy 

5 days post-IR 
↑ foci size and ↑% of positive 
nuclei 

Fluorescence 
microscopy, IP lab 
software 

(Suzuki et al. 
2006) 

Abbreviations: Cytolethal distending toxin (CDT), Dimethylamino benzoylphenylurea (BPU), Guggulsterone (GS), 
HuaChanSu (HCS), Herpes simplex virus thymidine kinase (HSV-TK), Mitomycin C (MMC). 

1.6 Persistent γH2AX in Mouse Cells and Tissues 

1.6.1 Germ Cells 

The persistence of γH2AX has been investigated in mouse germ cells after whole- body 

exposure to X-rays (Paris et al. 2011). Round spermatids and primary spermatocytes 

had a higher proportion of cells containing γH2AX foci (around 50% and 30%, 

respectively) compared to non-irradiated controls, 48 h after exposure to 4 Gy IR. The 

pattern of γH2AX foci within these cells changed from many innumerable foci at early 

time points (1 h) to a pattern of fewer discrete foci at 48 h post-IR (Paris et al. 2011). 

Another study showed the presence of Mdc1, 53BP1 and Rad51 proteins that are 

expressed in conjunction with γH2AX in male germ cell types for up to 16 h after 
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exposure to 4 Gy of X-rays (Ahmed et al. 2007). These results suggest that mouse germ 

cells display persistence of γH2AX following IR. 

1.6.2 Skin Biopsies 

An in vivo investigation of persistent γH2AX as a biodosimeter of initial radiation dose 

has been carried out in keratinocytes within the epidermis of radiosensitive and 

radioresistant murine skin biopsies (Bhogal et al. 2010). In this study, γH2AX foci/100 

µm2 areas of irradiated tissue sections were quantified for up to 7 days after exposure to 

a dose ranging from 1 to 10 Gy using 3D confocal microscopy. γH2AX foci were more 

persistent in radiosensitive strains compared with radioresistant strains and respective 

non-irradiated time-matched controls. Therefore, confocal microscopy may enable high 

resolution 3D image acquisition of γH2AX foci in different depths of skin biopsies, 

thereby making it possible to measure IR induced persistent γH2AX levels for many 

days after radiation exposure which could have practical application in radiation 

biodosimetry. 

1.6.3 Spinal Cord 

γH2AX induction and loss have been investigated in murine spinal cord for 1 year after 

topical application of spinal cord to an acute IR dose of 17 Gy of X-rays followed by an 

immediate additional dose of 19 Gy of X-rays (Andratschke et al. 2011). The frequency 

of γH2AX foci was higher in the blood vessel endothelium of irradiated spinal cord 

compared with non-irradiated controls where γH2AX was virtually absent. The higher 

levels of γH2AX foci were still detectable 1 year after IR exposure suggesting that the 

IR-induced γH2AX response can persist in murine spinal cord for a very long time after 

a radiation exposure event (Andratschke et al. 2011). 
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1.6.4 Other Tissues and Organs 

Variations in IR-induced DNA breaks in different animal tissues were first observed in 

1983 (Meyn, Jenkins 1983). Although, the levels of H2AX protein have been reported 

in similar amounts among mouse thymus, testis and small intestine, the proportion of 

phosphorylated H2AX differed between tissues after 30 Gy IR exposure (Yoshida et al. 

2003). It was observed that 17% of H2AX were phosphorylated in the epithelial cells in 

the villi of the small intestine compared to 37% and 94 % in thymus and testis 

respectively (Yoshida et al. 2003). This result suggests that H2AX does not always 

phosphorylate to the same extent in all tissues after exposure to IR. γH2AX has been 

previously measured in heart and kidney sections of mice after their whole body was 

exposed to 3 Gy of X-rays (Gavrilov et al. 2006). The maximum frequency of γH2AX 

positive nuclei was found in heart and kidney sections at 20 and 40 min, respectively, 

then slowly declined. After a further 23 h the number of γH2AX positive nuclei (in 

about 50% of γH2AX positive nuclei in cardiomyocytes of heart) remained persistent; 

however γH2AX positive nuclei decreased in kidney cells to the values observed in the 

control (Gavrilov et al. 2006). Furthermore, the γH2AX response was tested in mouse 

heart, brain, kidney and liver tissues for up to 5 h after whole-body exposures to 3 Gy of 

IR. The amount of γH2AX observed was lowest in the heart compared with brain, 

kidney and liver at 5 h post-IR (Firsanov et al. 2012). 

Persistence of γH2AX has been investigated in mouse spleen, thymus, liver, lung, 

kidney, cerebellum, hippocampus, frontal cortex and olfactory bulb of 7, 14, 24, 30 and 

45 day old mice (Hudson et al. 2011). The number of γH2AX foci per cell peaked at 30 

min after exposure to 1 Gy of X-rays and then declined in most tissues within 24 h. 
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However, IR-induced γH2AX foci were more persistent in the thymus and spleen of 7 

and 14 day old mice compared with mice from the older age categories. 

One study has reported that the kinetics of γH2AX foci loss were almost similar in 

small intestine, lung, brain, heart, and kidney tissues of mice 48 h after whole-body 

exposure to 2 Gy of IR (Rube et al. 2008). Similar results on the kinetics of γH2AX foci 

loss were also observed in mouse heart, small intestine, and kidney tissues for 24 h 

following whole-body exposure to 0.01, 0.1, and 1 Gy of X-rays (Grudzenski et al. 

2010). Taken together, these data suggest that the rate of initial γH2AX induction as 

well as the rate of γH2AX loss after X-ray exposure significantly varies in non-

proliferating mammalian tissues and should be taken into account when comparing 

radiation induced γH2AX responses between various tissues and species. 

1.7 Persistent γH2AX in Cells and Tissues of Other Animals 

1.7.1 Minipig Skin, Lymphocytes and Fibroblasts 

A recent study showed the presence of IR-induced γH2AX foci in ~60% of cells in 

keratinocytes within the epidermis of Göttingen minipig skin biopsies 4 h after exposure 

to 50 Gy of IR (Ahmed et al. 2012). The average radiation induced γH2AX foci number 

per epidermal keratinocyte then declined after 70 days; however, the average numbers 

of residual γH2AX foci per epidermal keratinocyte at 70 days were significantly higher 

compared to non-irradiated controls (Ahmed et al. 2012). Twenty four hours after ex 

vivo exposure to 1.8 Gy of IR, both human and minipig lymphocytes exhibited ~15% of 

the maximal γH2AX response observed at 30 min (Moroni et al. 2013). Furthermore, 

approximately 3% residual γH2AX foci were found in human and minipig fibroblasts 

for up to 24 h after 2 Gy of IR exposure. γH2AX kinetics in minipig lymphocytes after 
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exposure to different total body irradiation doses showed that persistent γH2AX foci per 

cell were proportional to the initial IR dose thus suggesting that a portion of IR-induced 

DSBs remains unrepaired (Moroni et al. 2013). 

1.7.2 Fruit Fly Pupae 

Our previous study on the Queensland fruit fly (Bactrocera tryoni) demonstrated that IR 

exposure leads to a persistent γH2AvB response (a fruit fly variant of γH2AX) that 

could be assessed during the adult phase of the life cycle when the IR exposure was 

carried out at the pupal stage (Siddiqui et al. 2013). Queensland fruit flies are able to 

withstand high doses of IR, and we reported a linear dose-response of γH2AvB (0–400 

Gy IR) 24 h after IR exposure. γH2AvB signal peaked at approximately 20 min after IR 

exposure. At 24 h post IR, the signal remained elevated but was substantially reduced 

after 5 days compared with 1 day post-IR exposure. γH2AvB response in adult 

Queensland fruit flies was persistent and dose-dependent up to 17 days after IR 

exposure. The persistent γH2AvB response can therefore be utilized as a biomarker of 

prior IR exposure of fruit flies (Siddiqui et al. 2013). This finding has several potential 

applications for the management of economically important insects, such as the sterile 

insect technique, where fruit flies are irradiated at ~70 Gy to induce reproductive 

sterility but not death of the organism or to determine whether fruit containing fruit fly 

larvae was irradiated with an appropriate dose of radiation (Siddiqui et al. 2013). 

1.7.3 Macaque Lymphocytes and Plucked Hair Bulbs 

Persistence of γH2AX was observed in lymphocytes from macaque after whole body 

irradiation with doses from 1 to 8.5 Gy (Redon et al. 2010). The number of γH2AX foci 

per cell were elevated in lymphocytes by approximately 16-fold for up to 14 days after 

exposure to 8.5 Gy of IR when compared with non-irradiated controls. Similarly, 
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γH2AX foci from plucked hair bulbs of macaques were approximately 14-fold 

increased per cell compared with non-irradiated controls up to 9 days after 8.5 Gy IR 

exposures (Redon et al. 2010). This study suggests that plucked hair bulbs are an easily 

accessible source of sample to measure persistence of γH2AX for many days after 

radiation exposure and may be adopted as a strategy for early triage during accidental 

catastrophic radiation incidents. 

1.7.4 Syrian Hamster Heart, Brain, and Liver Tissues 

The kinetics of γH2AX induction and loss were tested in heart, brain, and liver tissues 

of adult Syrian hamsters following whole-body exposure to 5 Gy of X-rays (Firsanov et 

al. 2012). The γH2AX response 24 h after IR was more persistent in heart and brain 

tissues compared with liver (Firsanov et al. 2012). These results suggest that the kinetics 

of IR-induced γH2AX induction and loss is tissue specific, being less efficient in heart 

and brain in comparison with liver (Firsanov et al. 2012). 

The results of these studies, suggest that (i) γH2AX persistence is a common 

phenomenon across species, and (ii) nuclei may retain persistent γH2AX foci for up to 

several months after IR exposure, allowing for retrospective biodosimetry. 

1.8 Persistence of γH2AX Associated with Telomeres 

Telomeres are evolutionarily conserved, specific, repetitive hexameric nucleotide 

sequences (TTAGGG) located at the end of each chromosome (Zalenskaya, Bradbury & 

Zalensky 2000) and are responsible for protecting chromosomes from improper 

recombination and degradation (McEachern, Krauskopf & Blackburn 2000). These 

repetitive sequences bind to proteins forming a protein–DNA complex known as 

Shelterin (de Lange 2005). This complex caps the end of the chromosome and prevents 
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DNA repair machinery from misidentifying the overhang located at chromosome-ends 

as a DSB. A previous study reported that Shelterin components such as telomeric 

repeat-binding factor 2 inhibits DNA end-joining by DSB repair mechanisms and 

therefore prevents end-to-end fusions of chromosomes, thus allowing DNA damage to 

accumulate at telomeres (Smogorzewska et al. 2002, McEachern, Krauskopf & 

Blackburn 2000, Bae, Baumann 2007, Passos et al. 2010). For this reason, it has been 

suggested that telomeric DNA may accumulate DSBs and could be a preferred location 

for formation of persistent DDR foci (Fumagalli et al. 2012, Hewitt et al. 2012). At 4 

days post-IR exposure, approximately 10% of γH2AX foci were co-localized at 

telomeres, whilst at 10 and 30 days post-IR, 20% and 40% of γH2AX foci were co-

localized at telomeres, respectively (Fumagalli et al. 2012). Co-localization between 

γH2AX foci and telomeres was also higher in X-ray-treated senescent human fibroblasts 

for up to 26 days after exposure to 20 Gy of IR (Hewitt et al. 2012). Findings from this 

study suggest that while the mean number of γH2AX foci per cell in the non-telomeric 

region progressively declined, the percentage of γH2AX foci co-localizing with a 

telomere signal gradually increased for up to 26 days (Hewitt et al. 2012). In order to 

demonstrate that γH2AX binds telomeric repeats and not only the sub-telomeric 

regions; quantitative real-time PCR of sub-telomeric regions were performed on 

chromatin immunoprecipitation of human dipoloid fibroblasts with an anti-γH2AX 

antibody 10 days after exposure to 20 Gy of IR. There was a strong enrichment of 

γH2AX at the sub-telomeric region of fibroblasts exposed to IR compared to non-

irradiated controls. The enrichment of γH2AX increased from the centromere towards 

the direction of the chromosome terminal region and represented an approximate 14-

fold enrichment of γH2AX at the telomere repeats, in irradiated human fibroblasts 

compared to non-irradiated human fibroblasts (Hewitt et al. 2012). The enrichment of 
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γH2AX at the telomere repeats has also been confirmed using a chromatin 

immunoprecipitation procedure followed by next generation sequencing and real-time 

PCR (Fumagalli et al. 2012). Both studies suggest that persistent γH2AX foci are not 

only associated with cytological close proximity with telomeres (the association 

observed when viewed by a microscope), but also physically associated (as measured by 

chromatin immunoprecipitation and real-time PCR) with telomeres. A schematic of the 

accumulation of γH2AX at telomeres is shown in Figure 1.3. This result supports the 

paradigm that DNA damage at telomeres may not be repaired after exposure to DNA 

damaging agents such as IR. The irreparable telomeres may therefore, trigger persistent 

DDR (reflected by persistent γH2AX response) which is associated with the formation 

of cellular senescence processes. 
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Figure 1.3: Model of persistent γH2AX as a result of endogenous and exogenous 
factors. Exogenous and endogenous factors induce DNA damage throughout the 
genome. While the DNA DSBs in non-telomere regions are efficiently repaired, DNA 
DSBs generated in telomeres are not repaired leading to persistent γH2AX. These 
unrepaired DNA DSBs likely result in the accumulation of senescent cells. The 
accumulation of senescent cells may be involved in accelerated aging processes. 
Measurement of the persistent γH2AX could potentially be used as a biomarker of 
radiation biodosimetry, radiosensitivity and accelerated aging. Adapted from (Fumagalli 
et al. 2012). 
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1.9 Senescence-Associated Persistence of γH2AX 

Unrepaired DSBs could result in either cell death or in a form of cell cycle arrest known 

as cellular senescence (d'Adda di Fagagna 2008). Cellular senescence is an irreversible 

process where cells remain alive but are unable to proliferate (Campisi, d'Adda di 

Fagagna 2007). Senescent cells can be detected by histochemical staining for 

senescence-associated β-galactosidase (SA-β-gal) activity (Dimri et al. 1995). 

Senescence-associated persistent γH2AX foci were present for up to 24 h after exposure 

to 1 Gy of IR in senescent cultured human fibroblasts, human prostate epithelial cells, 

human fibroblasts with elongated telomeres and in nuclei of whole tissues from mice 

(i.e. liver, testis, kidney, lung) (Sedelnikova et al. 2004). To characterize persistent 

γH2AX foci, a further radiation dose was applied to the same cells (i.e. mouse and 

human cells already containing IR-induced foci). After 30 min post-IR, the newly 

formed γH2AX foci were eliminated 24h post IR whilst the persistent foci, i.e. those 

from the first dose of IR, were still present 24 h after IR exposure (Sedelnikova et al. 

2004). Additionally, persistent γH2AX has been demonstrated in human diploid 

fibroblasts after exposure to 20 Gy of IR for up to 4 months (Fumagalli et al. 2012). In a 

separate experiment, senescent cells that already contained persistent γH2AX foci from 

prior IR as well as normal human diploid fibroblast cells (that were not exposed to IR) 

were irradiated to investigate the nature of persistent γH2AX foci. Whilst the newly 

formed IR-induced transient γH2AX foci were repaired, γH2AX foci in senescent cells 

(from prior treatment) remained unresolved (Fumagalli et al. 2012). This evidence 

suggests that senescent cells are associated with the accumulation of persistent γH2AX, 

which represents a subset of DSBs that are resistant to repair processes. The criteria of 

senescent-associated persistence of γH2AX after exposure to IR needs to be further 

investigated in order to be used as a potential marker of radiation biodosimetry. 
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1.10 γH2AX Responses in Aging 

Aging is a process that alters cellular function of most living organisms and is 

influenced by environmental and genetic factors (Li, Mitchell & Hasty 2008, Aubert, 

Lansdorp 2008, Lopez-Otin et al. 2013). The aging process is regulated by the 

accumulation of genetic alterations and dysregulation in epigenetic fingerprints, which 

may ultimately contribute to genomic instability, cellular senescence, apoptosis and/or 

cancer (Sinclair, Oberdoerffer 2009, Gedik et al. 2005). Imperfections or defects in 

pathways repairing DNA DSBs may either trigger the aging process or indirectly 

regulate it by cellular senescence or apoptosis (Li, Mitchell & Hasty 2008). DSBs may 

cause progressive shortening or dysfunction of telomeres when left unrepaired and may 

play a major role in the aging process of somatic cells (Harley, Futcher & Greider 1990, 

Hastie et al. 1990, Campisi 2013). This accumulation of DSBs causes persistent DDR 

coupled with p53 activation and may contribute to cellular senescence (Aubert, 

Lansdorp 2008, Sinclair, Oberdoerffer 2009, Campisi 2013, d'Adda di Fagagna et al. 

2003), a key factor in healthy and pathological aging (Campisi, d'Adda di Fagagna 

2007, Stein et al. 1991, Baker et al. 2011). Senescent cells characterized by the presence 

of γH2AX, including activity of SA-β-gal, accumulate in tissues of aged animals and 

are thought to increase during aging and age-related diseases (Dimri et al. 1995, Wang 

et al. 2009, Sikora et al. 2011). In addition to the arrest of cell proliferation, senescent 

cells display altered chromatin organization and gene expression. These changes 

involve the secretion of different proteins (such as proinflammatory cytokines, 

chemokines, growth factors, and proteases), the so-called senescence associated 

secretory phenotype (SASP) (Campisi et al. 2011, Freund et al. 2010). The secretion of 

SASP proteins by senescent cells ultimately results in chronic inflammation which is a 

cause of, or important contributor to multiple age-related diseases (Campisi et al. 2011, 
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Chung et al. 2009, Franceschi 2007). It has been reported that persistent DDR signalling 

(observed by increased γH2AX levels) can fuel the secretion of SASP cytokines (e.g. IL-

6) as compared with transient DDR signalling and is summarized in Figure 1.4 (Rodier 

et al. 2009). It is likely that accumulation of persistent DSBs may be strongly involved 

during aging and diseases of accelerated aging. 

1.10.1 Endogenous Levels of γH2AX in Individuals of Different Ages 

Several studies have examined whether endogenous levels of γH2AX is altered by the 

age of individuals. (Sedelnikova et al. 2008, Garm et al. 2013). For example, the 

frequency of γH2AX foci were measured to investigate the presence of unrepaired 

DSBs in human fibroblasts and lymphocytes from healthy young donors and older 

donors in the age range from 21 to 72 years (Sedelnikova et al. 2008). The endogenous 

γH2AX foci per cell were higher in fibroblasts and lymphocytes from older donors 

compared with younger donors (Sedelnikova et al. 2008). Studies on aging and 

senescing cell lines of epithelial and fibroblastic origin (including mice), also showed an 

increase in γH2AX foci with age (Sedelnikova et al. 2004, Sedelnikova et al. 2008, 

Wang et al. 2009, Endt et al. 2011). Recently, a longitudinal study of aging also tested 

the hypothesis that the frequency of γH2AX foci correlates with age in leukapheresis-

derived mononuclear cells from patients in the age range of 37 to 83 years; with 37 

patients over the age of 50 and 13 patients over the age of 72 (Schurman et al. 2012). 

The average number of γH2AX foci per cell was increased with age up to 57 years and 

then remained relatively stable up to the age of 83. This result was in agreement with 

other observations whereby the number of γH2AX foci per cell increased with age up to 

approximately 50 years and then subsequently plateaued (Sedelnikova et al. 2008). 

However, it is important to note in that study only 8 donors were examined in the 50 
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year old group. A more recent study (Sharma et al. 2015) reported a trend of linear 

increase in endogenous γH2AX level with age in lymphocytes from 94 healthy adults 

with the age range from 19 to 50 years. Another study investigated the presence of 

endogenous levels of γH2AX in PBMCs from a population-based sample of twins 

ranging in age from 40 to 77 years (Garm et al. 2013). In that study, γH2AX levels 

decreased with increasing donor age in human PBMCs. The reason for the discrepancies 

in the γH2AX levels with age is not known but may be partly due to the differences in 

the study populations. Interindividual variability of endogenous γH2AX response is 

known, although the effect of modulators such as age, genotype, ethnicity and race, 

hormonal responses, gender, environmental factors, and alcohol intake may impact on 

the base-line endogenous γH2AX responses, but this is not completely understood 

(Sharma et al. 2015). The endogenous γH2AX foci frequency (per cell) increased with 

age in CD34+ and CD34- stem/progenitor cells derived from both growth-factor 

mobilized peripheral blood and bone marrow cells compared to cells derived from 

umbilical cord blood (Rube et al. 2011). Furthermore, endogenous γH2AX foci were 

approximately two times higher in CD34+CD38-, CD34+CD38+ and CD34- cells 

derived from bone marrow samples of healthy elderly individuals (>70 years) compared 

with cells from umbilical cord blood (Rube et al. 2011). This indicates that different 

subtypes of stem cells and progenitor cells may accumulate unrepaired DSBs with age. 

Additionally, the frequencies of the senescent cell marker, i.e SA-β-gal activity, and 

γH2AX foci positive cells increased in the heart, skeletal muscle, kidney, eye lens, 

testis, liver, skin, lung, spleen and small intestine of 42 month old male mice compared 

with 12 month old mice (Wang et al. 2009). The levels of persistent γH2AX foci that 

co-localize with telomeres also increased with age in senescent primate fibroblasts 

(Herbig et al. 2006). These studies suggest that γH2AX response may be indirectly 
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involved in the process of normal physiological aging but its use as a robust biomarker 

of biological aging remains uncertain. 

Figure 1.4: Model depicting the possible role of persistent γH2AX/unrepaired 
DSBs in aging and diseases of accelerated aging. Replication stress, environmental 
genotoxins, dysfunctional telomeres and dysregulation in epigenetic fingerprints induce 
DSBs. When DSBs are repairable, transient γH2AX foci are removed; however, 
unrepaired DSBs marked by persistent γH2AX foci lead to cellular senescence. The 
persistence of γH2AX is also associated with increased expression of SASP. The 
deleterious effect of senescent cells and SASP includes chronic inflammation, tissue 
dysfunction promoting aging and fuelling the development of age-related disease. 
Abbreviations: DSBs, double-strand breaks; SASP, senescence associated secretory 
phenotype. 
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1.10.2 γH2AX in Chronic Diseases of Aging 

The association between the levels of γH2AX foci and age-related disease have been 

investigated in several studies (Sedelnikova et al. 2008, Schurman et al. 2012). For 

example, the frequency of γH2AX foci was apparently higher in PBMCs of 

hypertensive patients when compared to the cells from their respective controls 

(Schurman et al. 2012). However, the analysis was only significant when restricted to 

hypertensive patients that were aged more than 57 years old. In that study, the γH2AX 

foci per cell was 36% higher in hypertensive patients compared with non-hypertensive 

study participants (Schurman et al. 2012). A trend of increasing γH2AX foci per cell has 

also been reported in patients with sleep apnoea, prostate cancer and cataract disease 

patients compared to those without history of these respective conditions, although it 

should be noted that the increase observed did not reach statistical significance 

(Schurman et al. 2012). In another study, senescent fibroblasts from Werner Syndrome 

patients exhibited a higher number of γH2AX foci per cell compared to senescent 

fibroblasts from healthy donors (Sedelnikova et al. 2008). The rate of recruitment of 

DDR proteins such as Mre11 and 53BP1 to γH2AX foci was inversely correlated with 

age in both healthy and Werner Syndrome donors (Sedelnikova et al. 2008). Thus, 

recruitment of DDR proteins at the DSBs site may be less efficient with age, leading to 

accumulation of DSBs during the aging process (Sedelnikova et al. 2008, Gorbunova, 

Seluanov 2005). In a study of obesity in children, γH2AX in lymphocytes of obese 

children (n=81) and healthy controls (n=38) was 8-fold higher in obese children 

compared with non-obese children (Scarpato et al. 2011). The level of γH2AX was also 

measured in lymphocytes of adolescents with type 1 diabetes mellitus (T1DM) (n=35) 

and healthy controls (n=19) (Giovannini et al. 2014). The number of γH2AX foci per 

nucleus was approximately 50 fold higher in T1DM patients compared with healthy 
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controls (Giovannini et al. 2014). γH2AX staining has been shown to be higher in the 

nuclei of astrocytes from Alzheimer’s disease patients relative to healthy controls as 

determined by immunocytochemical techniques (Myung et al. 2008). This result 

suggests that DSBs measured by γH2AX positive immunostaining in the nuclei of 

astrocytes may be associated with impaired neuronal function and contribute to the 

pathogenesis of Alzheimer’s disease (Myung et al. 2008). Fibroblasts from patients with 

Hutchinson-Gilford progeria syndrome (a disease associated with accelerated aging) 

also reported increased amounts of endogenous γH2AX levels compared with controls 

(Liu et al. 2006). Overall, these studies show that accumulation of γH2AX foci is 

marginally increased in individuals with increased morbidity and supports the 

hypothesis of accumulation of unrepaired DSBs in pathological aging. 
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1.10.3 Biomarker search for the diagnosis of Alzheimer’s Disease

AD is the most common cause of dementia in old age, representing approximately 60–

80% of all dementia cases (Lobo et al. 2000, Tijms et al. 2013, Forlenza et al. 2013). 

According to the World Health Organization, 46.8 million people were affected by 

dementia in the year 2015 (Prince et al. 2015). Increasing rate of AD is expected to 

reach at a level of one new case at every 33 seconds by 2050 (Alzheimer's Association, 

Thies & Bleiler 2011). Currently, AD has come to a global prevalence of approximately 

24.3 million with 4.6 million new cases being diagnosed worldwide each year (Smith 

2008, Ferri et al. 2005). Furthermore, increasing trends of AD not only causes loss of 

the quality of life, health and wellbeing of those affected but also  create a significant  

financial burden at both the social and government level. AD is characterized clinically 

by abnormal behavioral and mental effects that include loss of memory, tremors, and 

absent-mindedness, and is the most common cause of dementia (Alzheimer's 

Association, Thies & Bleiler 2011, Fernandez et al. 2010, Burns, Byrne & Maurer 

2002). The onset of AD involves the accumulation of increasingly severe cognitive 

deficits, progressing from mild cognitive impairment (MCI) to AD. MCI is  

characterized by deterioration in cognitive ability that; however, does not affect the 

individuals’ ability to carry out their activities of daily living. Individuals affected by 

MCI have a higher risk of developing AD with advancing age, with estimates that vary 

between 14 and 18 percent of those over 70 years of age suffering from this condition 

(Grundman et al. 2004, Petersen et al. 2009). Currently, the ability to detect the early 

stages of AD and differentiate the stages of AD progression to guide the choice of 

therapy is limited. The Mini-Mental State Examination (MMSE) is a validated research-

based set of 30 questions considering memory loss, cognitive decline, visuospatial and 

language impairment that is currently used as a standard tool for the clinical diagnosis 
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of AD (Tombaugh, McIntyre 1992, Mitchell 2009). However, this test lacks accuracy 

for the diagnosis of AD in living subjects, and diagnostic confirmation can only be 

achieved post mortem by the examination of the senile plaques and neurofibrillary 

tangles in brain tissue from the patient (Armstrong 2006). Therefore, identification of 

other biomarkers in easily accessible tissue that can aid the diagnosis of AD may be 

useful to identify individuals at an increased risk of AD while they are still in the early 

stages of illness. 

1.10.4 Why peripheral tissue biomarkers of Alzheimer’s disease are important for 

diagnosis 

The identification of biomarkers to enable the early diagnosis of Alzheimer’s disease 

(AD) is one of the major challenges for researchers in this area. AD is characterised by 

major lesions in the brain, comprising (i) aggregated extracellular amyloid plaques 

around the neuronal bodies and (ii) neurofibrillary tangles that appear within the 

neurons. Most methods for the investigation of AD are invasive and expensive and are 

unable to establish biomarkers (Thambisetty, Lovestone 2010, Hampel & Prvulovic 

2012, Blennow & Zetterberg 2009). A successful population-based screening 

programme will require less invasive, easily accessible and inexpensive samples as well 

as a robust diagnostic test with high specificity and sensitivity at much lower cost than 

is currently available. At present investigators rely on blood, cerebrospinal fluid (CSF) 

or brain imaging for diagnosis of AD. The Pittsburgh B (PiB) compound has been used 

detect the β-amyloid protein aggregates that form senile plaques in specific regions of 

the brains of AD patients, which are readily detectable with this technique. However, 

some reports have shown that useful imaging with PiB can only be done once there has 
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been significant plaque accumulation (i.e., when the disease is already quite advanced) 

Cairns et al. 2009, Leinonen et al. 2008). 

Micronuclei are abnormal DNA fragments associated with chromosomal aberrations 

produced during cell division and are widely recognised as a biomarker for the 

assessment of genomic instability. The propensity for micronuclei formation increases 

with advancing age, and fibroblasts, a type of peripheral tissue, have displayed these 

changes in relation to AD (Migliore et al. 2011, Trippi et al. 2001). 

One of the major proteins involved in AD is the amyloid precursor protein (APP), 

which encoded on Chromosome 21 (Selkoe 2001). APP is widely expressed in many 

tissues, but is more concentrated in the synapses of neurons and plays a vital role in 

neurite growth, cell adhesion, synaptic functions and the induction of apoptosis 

(Thomas, Fenech 2007). 

Oxidative stress, which is followed by oxidised DNA base adduct 8-hydroxy-2 

dexyguanosine (8-OHdG) accumulation, is also a leading cause of neurodegenerative 

disease (Giasson et al. 2002, Migliore & Coppede 2002, Perry et al. 2002). It has been 

suggested that elevated urinary (8-OHdG) levels and serum Paraoxonase 1 (PON1) 

activity can be used to monitor disease progression in AD (Zengi et al. 2011). 

Significant telomere shortening has been observed in lymphocyte samples from AD 

patients (Jenkins et al. 2006, Panossian et al. 2003). White blood cells from AD patients 

were tested for telomere shortening and showed a significantly higher level of 

shortening in AD patients in comparison to that seen in young and healthy elderly 

controls (P<0.0001) (Thomas, O’Callaghan, Fenech 2008). Taken together, the 

evidence outlined above suggests that AD is a systemic disorder that is mirrored in 

various peripheral tissues, thereby rationalising the approach of investigating less 
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invasive cellular biomarker for the diagnosis of mild cognitive impairment (MCI) or 

AD risk. 

1.10.5 Why buccal cell is important as a material for the diagnosis of Alzheimer’s 

disease 

The buccal mucosa (BM) is of ectodermal origin, and defects in BM cells may 

potentially reflect the pathology in other tissues of ectodermal origin, such as the 

nervous system. Buccal cells could, therefore, be a potential source for the diagnosis of 

the fundamental pathological changes that occur in AD. It has been suggested that the 

ubiquitous presence and different expression levels of APP in BM could be a useful 

means to estimate the regenerative status of tissue (Kummer et al. 2002). The amounts 

of buccal cell tau protein (responsible for AD) significantly correlates with the tau 

levels in cerebrospinal fluid (CSF) and is also present at higher levels in AD subjects 

(Hattori et al. 2002). Methods like cotton swabs (Richards et al. 1993), cytobrushes 

(Richards et al. 1993, Garcia-Closas et al. 2001, King et al. 2002, Patten et al. 1996), 

‘swish and spit’ (Hayney, Poland & Lipsky 1996; Lum & Le Marchand 1998; Feigelson 

et al. 2001), a modified Guthrie card (Harty et al. 2000) and a method of rubbing the 

cheeks against the teeth to exfoliate cells (King et al. 2002) are all well-known 

techniques for buccal cell collection. These methods allow the collection of large 

quantities of buccal cells (more than 106 cells) that can subsequently be used for DNA 

analysis using PCR or other genotype tests (Hayney, Poland & Lipsky 1996, Lum & Le 

Marchand 1998, de Vries et al. 1996; Myerson et al. 1999; Guangda et al. 1999; Le 

Marchand et al. 2001) and Western blots and immunocytochemistry for the detection of 

proteins (Hattori et al. 2002, Michalczyk et al. 2004, Spivack et al. 2004). Moreover, 

buccal cells have certain important features such as stability in hypotonic solutions, 
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including water (Lee et al. 1994), and a lower propensity to disruption, which makes 

them a potential source of samples without the risk of losing their intracellular contents. 

AD is associated with genomic DNA damage, and a lack of repair capacity could 

potentially lead to genomic instability (Thomas & Fenech 2007, Fraga et al. 1990; 

Goukassian et al. 2000; Wilson, Bohr & McKinnon 2008). The buccal micronucleus 

cytome assay (BMCyte) has been developed to score DNA damage, cell death and 

regenerative potential (Thomas et al. 2007, 2009). A higher frequency of micronuclei 

(P<0.0001) in comparison with that seen in young and older controls has been observed 

in a Down’s syndrome (DS) cohort, which represents a model for premature ageing 

(Thomas et al. 2008). However, the same assay did not show a statistically significant 

micronuclei score in an AD cohort (Thomas et al. 2007). Consistent micronuclei 

frequencies were obtained when the same slides from the DS cohort were analysed by 

laser scanning cytometry (Leifert et al. 2011), a technology able to provide micronuclei 

scores in a fully automated fashion (Darzynkiewicz et al. 2011). 

Aneuploidy is an abnormal chromosomal state that has been investigated in the buccal 

cells of AD and DS patients, and in comparison, with healthy controls, both the AD and 

DS cohorts showed higher levels of aneuploidy of Chromosomes 17 and 21, which 

encode tau and APP respectively (Iqbal et al. 1989; Koo 2002; Thomas & Fenech 

2008). Additionally, the double-strand break (DSB) marker γH2AX has also been 

detected in human buccal cells following radiation (Gonzalez et al. 2010). Buccal 

samples from AD patients were tested for telomere shortening and showed significant 

shorter telomere lengths in an older AD group in comparison to that seen in older 

controls (Thomas, O’Callaghan & Fenech 2008). Taken together, this evidence forms a 
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basis to suggest that micronuclei, γH2AX, and variation in telomere length may be 

reflected in buccal cells once AD develops. 

1.10.6 Why measuring persistent γH2AX response in Q-fly is important 

Q-fly is a major insect pest in Australia. Between 2006 and 2009, the average value of

fruit fly susceptible production in Australia was approximately $5.3 billion/year, and 

exports of susceptible crops were worth around $750 million/year. Since standard post-

harvest disinfestation insecticides such as fenthion and dimethoate have been 

withdrawn, irradiation is likely to become the method of choice for disinfestation. There 

is a need to certify exported produce as having been irradiated to assess quarantine 

interceptions of live insect pests. Radiation is currently being used to sterilise Q-fly in 

the sterile insect technique (SIT) programme. The widespread use of SIT for the 

eradication of fruit fly outbreaks in some areas in Australia (e.g., South Australia) has 

resulted in them being designated as ‘fruit fly free’. The use of fluorescent dye is not 

reliable in trapped flies, and other approaches are indirect and/or inflexible (rely on 

testing the strain) and therefore require a molecular marker of prior irradiation that is 

dose-dependent across disinfestation and SIT doses. A reliable test to retrospectively 

assess radiation exposure is lacking, which reduces confidence in the context of live 

pests being detected in exported/imported fruit. In addition, the appropriate radiation 

dose to induce sterility should be optimised to achieve adequate sterility, while 

minimising the potentially deleterious effects of irradiation to Q-flies. A test that 

assesses the prior radiation dose of irradiated fruit would improve and facilitate 

commercial irradiation treatments in Australia, giving Australian producers potential 

production and market access advantages. Additionally, retrospective assessment of 

irradiation in flies used for SIT eradication programmes is another key challenge, and a 
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reliable test delivering this capacity would be of great benefit. Since persistent γH2AX 

responses have been reported in different cell and tissue types, an assay based on 

measuring, persistent γH2AX responses may be investigated for its potential as a 

method to detect and quantify prior irradiation exposure and to discriminate released 

irradiated flies from the wild population. 
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1.10.7 Aim 

The aim of this PhD thesis was to (i) investigate IR-induced persistent γH2AX 

responses in Q-fly and human buccal cells (ii) investigate endogenous γH2AX level in 

buccal cells and lymphocytes of individuals with MCI and AD relative to control. 

1.10.8 Hypotheses: 

1. γH2AX signals persist in emergent adult Q-fly and serve as an indicator of previous

acute radiation exposure.

2. Lymphocytes and buccal cells of individuals with MCI and AD exhibit a higher

level of DNA DSBs relative to healthy controls.

3. Increased endogenous γH2AX signals in lymphocytes and buccal cells of

individuals with MCI and AD is associated with other known biomarkers of MCI

and AD.
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Abstract 

The response of eukaryotic cells to ionizing radiation (IR)-induced double strand DNA 

breaks is highly conserved and involves a DNA repair mechanism characterized by the 

early phosphorylation of histone protein H2AX (producing the active form γH2AX). 

Although the expression of an induced γH2AX variant has been detected in Drosophila 

melanogaster, the expression and radiation response of a γH2AX homolog has not been 

reported in economically important fruit flies. We use Bactrocera tryoni (Diptera: 

Tephritidae, Queensland fruit fly or “Q-fly”) to investigate this response with a view to 

developing molecular assays to detect/quantify exposure of fruit flies to IR and 

consequent DNA damage. Deep sequencing confirmed the presence of a H2AX 

homolog that we have termed H2AvB (and has an identical sequence to a histone 

reported from the human disease vector Glossina morsitans). A linear dose-response of 

γH2AvB (0–400 Gy IR) was observed in whole Q-fly pupal lysates 24 h post-IR and 

was detected at doses as low as 20 Gy. γH2AvB signal peaked at approximately 20 min 

after IR exposure and at 24 h post IR the signal remained elevated but declined 

significantly by 5 days. Persistent and dose-dependent γH2AvB signal could be detected 

and quantified either by Western blot or laser scanning cytometry up to 17 days post IR 

exposure in histone extracts or isolated nuclei from adult Q-flies (irradiated as pupae). 

We conclude that IR exposure in Q-fly leads to persistent γH2AvB signals (over a 

period of days) that can easily be detected by Western blot or quantitative 

immunohistochemistry techniques. These approaches have potential as the basis for 

assays for detection and quantification of prior IR exposure in pest fruit flies. 
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2.1 Introduction 

Double strand breaks (DSBs) in chromosomal DNA may lead to genetic instabilities 

and gene mutations resulting in reduced integrity of the genome but also impaired 

health and survival (Dugle, Gillespie & Chapman 1976, Olive 1998). Phosphorylation 

of the C-terminal tails of H2AX histones in nucleosomes which are located in the 

vicinity of the break (Rogakou et al. 1998, Savic et al. 2009), is one of the earliest 

known responses to DNA DSB formation in cells. The nucleosome complex comprises 

DNA wrapped around eight histone proteins, two from each of the four core histone 

families (H4, H3, H2B, H2A), and is essential for genome health in terms of normal 

regulation of gene expression, and genome maintenance and replication (Rogakou et al. 

1999, Goll, Bestor 2002, Mendez-Acuna et al. 2010). Induction of DSBs in live 

mammalian cells triggers the phosphorylation of Ser139 contained in the SQ motif near 

the carboxy-terminus of H2AX, resulting in the formation of phosphorylated H2AX, 

termed γH2AX (Redon et al. 2002, Kinner et al. 2008). Whilst H2AX is distributed 

uniformly throughout chromatin, only H2AX molecules located in close vicinity to 

DSBs become phosphorylated (Rogakou et al. 1998, Savic et al. 2009, Rogakou et al. 

1999). Several kinase proteins are known to phosphorylate H2AX including 

phosphatidylinositol 3-OH serine/threonine protein kinase-like kinases (PIKKs), ataxia 

telangiectasia mutated (ATM), ATM and Rad-3-related (ATR) and DNA-dependent 

protein kinase (DNA-PK). However, only ATM and DNA-PKs have been shown to 

phosphorylate H2AX in response to ionizing radiation (IR) (Rogakou et al. 1998, Redon 

et al. 2002, Burma et al. 2001, Stiff et al. 2004, Olive, Banath 2004, Park et al. 2003, 

Fernandez-Capetillo et al. 2004). 
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The SQ motif in H2AX is highly conserved among animals, plants, and fungi (Downs, 

Lowndes & Jackson 2000, Friesner et al. 2005, Lang et al. 2012). This evolutionary 

conservation of the phosphorylation of the core histone protein H2AX suggests the DSB 

damage-response mechanism is a fundamental process in DNA repair, that arose prior 

to the evolutionary divergence of fungi, plants and animals. This is partly evidenced by 

the fact that SQ-specific antibodies raised against the mammalian γH2AX sequence can 

recognize DSBs in the frog Xenopus laevis, vinegar fly Drosophila melanogaster and 

bread/wine yeast Saccharomyces cerevisiae, after exposure to IR or other genotoxic 

agents (Redon et al. 2002, Rogakou et al. 1999). Antibodies that recognise 

phosphorylated H2AX in mammals have also been shown to recognise IR-induced 

H2Av (H2AX variant) in D. melanogaster (H2AvD) and binding has been shown to be 

dependent on the presence of the SQ motif (Rogakou et al. 1999, Madigan, Chotkowski 

& Glaser 2002). 

Irradiation-induced genetic damage and repair processes involving γH2AX, are relevant 

to two very different control measures applicable to management of Queensland fruit fly 

(‘Q-fly’ Bactrocera tryoni), Australia’s most economically damaging insect pest of 

horticultural crops; post-harvest irradiation and Sterile Insect Technique (SIT). 

Currently, a generic dose of 150 Gy is applied to exterminate fruit flies in infested 

produce (Follett, Armstrong 2004, Follett et al. 2011), however assurance of irradiation 

treatment of produce relies solely on certification. There are currently no routine assays 

available to detect and/or quantify prior IR exposure in economically important fruit 

flies or other insects. A direct and reliable assay to confirm irradiation would be of 

substantial value to export horticulture. In SIT, millions of Q-flies are irradiated as 

pupae (70 Gy) to induce reproductive sterility and released into the environment as 

adults where they mate with pest populations and induce reproductive failure, thereby 
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reducing pest numbers in the next generation. Fruit flies captured in monitoring traps 

then need to be assessed as being part of the SIT release or part of the outbreak. A 

generic biomarker based on the distinctive molecular processes of irradiation-induced 

DNA damage and repair would be a useful tool for this purpose. SIT is also the focus of 

various ongoing or proposed programs across the globe, aimed at a range of fly species 

(and other insects) of economic and medical concern (Oliva et al. 2012, Mastrangelo et 

al. 2012, Ant et al. 2012, Mutika et al. 2013, Kumano, Haraguchi & Kohama 2008, 

Soopaya et al. 2011) and so a biomarker for identifying sterilized insects would have 

internationally broad application. 

In the present study we identified the sequence of a H2AX protein variant from deep 

sequencing analysis of Q-fly transcripts and mass spectrometry of the irradiation-

induced protein (we have termed this variant H2AvB and the sequence has been 

deposited into the NCBI Short Read Archive; BankIt1580860 isotig00988 KC161252). 

We found that H2AvB amino acid sequence is 96.4% similar to the homolog found in 

the genetic model D. melanogaster, 54.8% similar to human H2AX, and identical in 

comparison with Glossina morsitans morsitans (the Savannah tsetse fly). Using 

Western blotting and laser scanning cytometry (LSC) techniques, we demonstrate an 

irradiation-induced short-term rapid increase in γH2AvB followed by a long-term 

(persistent) and dose-dependent γH2AvB response in Q-fly. This assay has practical 

application to confirm irradiation status of live Q-fly found in exported fruits and to 

confirm the identity of unmarked flies captured in monitoring traps during SIT releases. 
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2.2 Materials and Methods 

2.2.1 Pupal and Adult Preparation and Irradiation 

Bactrocera tryoni (Q-fly) pupae were obtained from the NSW Department of Primary 

Industries Fruit Fly Production Facility at Elizabeth Macarthur Agricultural Institute 

(EMAI, New South Wales, Australia). Pupae from this facility are routinely sent to the 

Australian Nuclear Science and Technology Organisation (ANSTO, Lucas Heights, 

NSW, Australia) for irradiation as part of the SIT control program to suppress outbreak 

populations of wild Q-flies. Individual ‘zip-lock’ plastic bags (100 x 150 mm) 

containing approximately 8,000 pupae were sealed and packed at EMAI, and 

transported directly to ANSTO in an air-conditioned vehicle. All pupae were packed on 

the day of pupation and all irradiated pupae were treated one-day post the onset of 

pupation. Bags of control and test pupae were packed together at all times during 

transport and storage to ensure that all pupae received similar conditions. To achieve a 

hypoxic atmosphere prior to irradiation, the sealed bags were held overnight at ANSTO 

in a temperature-controlled room at approximately 18oC. The following day, pupae 

were treated with IR using ANSTO’s 60Co GATRI facility delivering final doses of 0-

400 Gy at a dose rate of 5 Gy/min. We investigated doses greater than the standard 

disinfestations dose of 150 Gy up to 400 Gy, since Bactrocera fruit flies appear to be 

considerably more tolerant to IR compared with other fruit fly genera such as Ceratitis, 

Anastrepha and Rhagoletis (Follett et al. 2011). 

After irradiation, pupae were immediately transported in a closed styrofoam box in an 

air conditioned vehicle to a laboratory at Macquarie University, Sydney, where they 

were housed to emerge in 5 L plastic cages, each with a large mesh-covered ventilation 

hole in the top. Pupae were held in a laboratory maintained at 25 ± 1oC and 70 ± 5% 
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relative humidity, on a 14:10 day:night cycle including one hour dawn and dusk periods 

during which the lights turned on and off intermittently. At one and five days post IR, a 

sample of Q-fly pupae was frozen and stored at -80°C until required for assays. Other 

IR-treated pupae were allowed to emerge as adults, then collected using an aspirator and 

frozen at -80oC at 17 days post IR. Adult flies were maintained on a standard diet of 

granular sucrose and yeast hydrolysate, with water provided in soaked cotton wool. 

2.2.2 Egg Collection and Irradiation 

Adult Q-flies were housed in 5 L plastic cages with one side replaced with mesh screen 

for ventilation. Approximately 150 flies were kept per cage. After observed mating 

(post 10 days of age), each cage was provided with an egging dish comprising of a 55 

mm Petri dish containing a solution of lemon essence and water in a 140:1 ratio, 

covered with a layer of parafilm. The parafilm was pierced 5-6 times with an 

entomological pin to release the odour of lemon. After 2 days the egging dishes were 

collected and a plastic 5 ml pipette was used to transfer eggs to a 10 ml vial of water. 

Each vial contained approximately 500 eggs. Vials were then exposed to either 0 or 150 

Gy ionising radiation and then frozen at -80oC 2 h post IR. 

2.2.3 Larvae Collection and Irradiation 

Adult Q-flies were housed in 5 L plastic cages with one side replaced with mesh screen 

for ventilation. Approximately 150 flies were kept per cage. After observed mating 

(post 10 days of age), each cage was provided a collection of fresh organic chillies 

resting on a 15 cm plate. After 4 days the chillies were inspected for the presence of 

larvae. All chillies were then left a further 4 days to allow larvae to mature to 3rd instar. 

Chillies were placed into separate ‘zip-lock’ bags and then exposed to 0 or 150 Gy 

ionising radiation and maintained at 25 ± 1oC and 70 ± 5% relative humidity for 24 h. 
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Chillies were then gently sliced longitudinally in half and larvae were gently removed 

using a pair of forceps. Collected larvae were frozen at -80oC in 10 ml vials containing 

water. 

2.2.4 Whole Pupal Lysate Preparation for Western Blotting 

Whole pupae were thawed from -80°C at room temperature for 5 min. 10 pupae of each 

IR dose being investigated were placed in cold (4°C) TBS solution (50 mM Trizma 

Base, 150 mM NaCl, pH 8.0) in a Petri dish on ice. The pupae were then added to 1 ml 

lysis buffer comprising RIPA buffer (Sigma) with additional 0.9 % SDS, phosphatase 

inhibitors (25 mM NaF, 0.25 mM sodium orthovanadate, 1 mM EDTA, 1 mM 

phenylmethylsulfonylfluoride, 1 mM dithiothreitol) and a protease inhibitor cocktail 

(Sigma), and their tissues disrupted in a glass tissue homogenizer on ice until a clear 

suspension was achieved (usually ~15 passes). Lysates were centrifuged at 4°C for 5 

min at 300 xg to remove debris. Total protein from the pupal samples was quantified 

using the QuantiProTM BCA Assay kit (Sigma) as per manufacturer’s instructions, using 

bovine serum albumin (BSA) as a standard. Sample concentrations were adjusted to the 

same total protein concentration prior to gel electrophoresis. Samples were stored at -

20°C until used for Western blotting. Various amounts of total protein were added 

depending on the assay conducted and this is indicated in relevant figures. 

2.2.5 Acid Extraction of Histone Protein from Pupae and Subsequent 

Dephosphorylation 

To obtain histone proteins from pupal samples, an acid extraction technique was 

performed essentially as previously described (Shechter et al. 2007) with some 

modification. Pupae were washed twice with TBS and placed in 3 ml of hypotonic lysis 

buffer (10 mM Trizma Base pH 8.0, 1 mM KCl, 1.5 mM MgCl2, 1 mM dithiothreitol), a 
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commercial protease inhibitor cocktail and other phosphatase inhibitors (as above), in a 

glass homogenizer on ice. Pupae were then homogenized until a clear suspension was 

produced, followed by filtration with nylon net filters (filter type: 100 µm NY1H) and 

then incubation for 30 min (on a rotator at 4°C) to allow hypotonic swelling and lysis of 

cells. The crude extract was then centrifuged at 15000 xg for 10 min at 4°C to separate 

the pellet (containing nuclei) from the soluble cytosol. The pellet was then resuspended 

in 400 µl of 0.8 M H2SO4 and vortexed thoroughly until aggregates were dispersed in 

the solution. This solution was vortexed gently overnight at 4°C using a minishaker. 

After centrifugation at 15000 xg for 10 min at 4°C the pellet was discarded and the 

acid-soluble histone proteins in the supernatant were then precipitated with a 33% 

trichloroacetic acid solution. The solution containing precipitated histones was mixed 

several times producing a milky suspension. Subsequently, the histone solution was 

incubated at 4oC overnight and then again centrifuged at 15000 xg for 10 min at 4°C; 

the supernatant was then carefully discarded. The pellet of precipitated histones was 

washed 3 times with 1 ml ice-cold acetone to remove the acid from the protein sample. 

The acetone supernatant was removed and the protein pellet was air dried for 30 min at 

RT and then dissolved in 150 µl of purified H20. Finally, the histone extract was stored 

at -20°C for subsequent analyses. In some experiments, dephosphorylation of the 

purified proteins was achieved by dissolving the extracted protein pellet in 100 mM 

NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 1 mM dithiothreitol (pH 7.9) and incubated 

with (or without for negative control) 1000 U/ml calf intestinal alkaline phosphatase 

(New England Biolabs, USA) overnight at 37oC. 
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2.2.6 Total Lysates and Histone Extracts from Individual Pupae 

Total lysates or histone extracts were prepared from individual pupae by a modification 

of the above method. For total lysates, the lysis volume was decreased to 150 µl of 

RIPA buffer (final volume), and for histone extracts of single pupae the hypotonic 

buffer was decreased to 150 µl. For the single pupae total lysates, 180 µg total protein 

was used for SDS-PAGE and analysed by Western blotting, while 1.3 µg total protein 

was loaded for the histone extracts from individual pupae. 

2.2.7 Total Lysates from Irradiated Eggs and Larvae 

Samples of irradiated Q-fly eggs were homogenised in liquid nitrogen and subsequently 

lysed in 150 µl RIPA buffer giving a final protein concentration of approximately 400 

µg/ml. 3rd instar larvae (collected from 0 or 150 Gy irradiated chillies) were lysed (using 

the same method as for pupae) giving a final total protein concentration of 

approximately 7 mg/ml. 

2.2.8 Antibodies 

Anti γH2AX was prepared by Biosensis Pty Ltd. (Thebarton, South Australia, 

Australia). Affinity purified KKAATQA[PSer]QEY (human sequence) peptide 

conjugated with KLH was used as antigen to generate high titer polyclonal antiserum in 

rabbit against γH2AX. Drosophila Anti-Histone H2AvD pS137 rabbit polyclonal 

antibody (Rockland Immunochemicals Inc. Gilbertsville, PA, USA) (Madigan, 

Chotkowski & Glaser 2002) was also used to detect IR-induced histone in Q-fly. Both 

antibodies (γH2AX and H2AvD pS137) recognized a 15 kDa protein in Western blot 

analyses. Cytochrome C oxidase subunit II and β-actin antibodies (Abcam). Alexa Fluor 
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488-conjugated goat IgG was from Invitrogen (Vic, Australia) and horseradish

peroxidase-labelled secondary antibodies were from Perkin Elmer (Vic, Australia). 

2.2.9 Western Blotting 

Whole and histone-extracted lysates were diluted in Laemmli buffer (1:2 vol:vol) 

containing β-mercaptoethanol followed by heating at 95°C for 5 min, before being 

loaded on a CriterionTM-TGXTM precast polyacrylamide gels (BioRad) and subjected to 

electrophoresis. Gels were then stained with Coomassie Blue to ensure the 

electrophoresis had been successful and that similar amounts of protein were loaded in 

each well. A separate (duplicate) gel was used for Western blotting onto a 0.2 µm pore 

nitrocellulose membrane (BioRad) for 1 h at 100 V in chilled transfer buffer (25 mM 

Trizma base, 190 mM glycine, 20% methanol, pH 8.5). The membrane was washed 3 

times (5 min each) in TBST (TBS containing 0.5% Tween-20) and then blocked for one 

h at RT in TBST containing 5% BSA. Membranes were then incubated overnight at 4°C 

in γH2AX primary antibody diluted 1:1000 in TBST containing 5% BSA. Membranes 

were then thoroughly washed 3 times in TBST for 5 min each time, then incubated with 

anti–rabbit horseradish peroxidase–linked secondary antibody (PerkinElmer) at a 

dilution of 1:2000 in TBST containing 5% BSA for 2 h at RT. Probed membranes were 

then finally washed 3 times with TBST prior to imaging by enhanced 

chemiluminescence (ECL) (Western Lightning® Plus-ECL, PerkinElmer) using an 

ImageQuant LAS 4000 imager (GE Health Care). Images were saved as 8-bit TIFF files 

and band intensities (as integrals) were quantified with ImageJ software (Abramoff, 

Magalhaes & Ram 2004). Data were normalised to β-actin (loading controls) where 

possible i.e. in histone extracts this was not possible since actin was removed during the 

processing of the samples. In Western blots showing histone extracts containing 
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γH2AvB where β-actin could not be used, we also show Coomassie-stained gel bands at 

approximately 15 kDa to demonstrate similar loading of histone proteins. 

2.2.10 Immunocytochemistry to Quantify γH2AX Response Foci in Q-Fly Nuclei 

Cell nuclei obtained from adult Q-fly were extracted using a similar protocol as 

described above with the following modifications: adult Q-flies (17 days post-IR) were 

thawed from -80oC at RT for 5 min and suspended in 1.5 ml of hypotonic lysis buffer 

containing 10 mM Tris-HCl pH 8.0, 1 mM KCl, 1.5 mM MgCl2, phosphatase inhibitors 

(as above) and protease inhibitor cocktail, in a glass tissue homogenizer. Tissues were 

homogenized on ice until a clear suspension was achieved (usually 5 passes). The 

suspension was filtered using nylon net filters (filter type 100 µm NY1H) to remove 

most of the particles and then incubated for 30 min on a rotator at 4°C to allow the 

hypotonic swelling and lysis of cells, which were subsequently fixed in 1% 

formaldehyde in the same tube for 15 min at RT. Nuclei were then spotted on slides 

(using 10 µl of the suspension) and air-dried for 20 min at RT. Spotted nuclei were re-

hydrated in phosphate-buffered saline (PBS) for 15 min. Slides were then incubated in 

pre-chilled 70% ethanol for at least 20 min and washed in PBS for 15 min. Cell nuclei 

were “blocked” using TBST containing 5% BSA for 30 min at RT, and slides were then 

washed once in PBS. Primary antibody (anti-γH2AX) was added at 1:500 dilution in 

TBST containing 5% BSA and slides were incubated overnight at 4°C under a parafilm 

cover. Slides were then washed three times in PBS for 5 min each to remove unbound 

antibody, and then incubated with secondary antibody (Alexa Fluor 488-conjugated) at 

a dilution of 1:500 in TBST containing 5% BSA for 1 h at RT. Slides were again 

washed three times in PBS for 5 min each to remove unbound, or non-specifically 

bound, antibody. Nuclei staining was achieved using 4',6-diamidino-2-phenylindole 
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(DAPI) at a concentration of 0.2 µg/ml for 7 min at RT and then washed in a solution 

containing 300 mM NaCl and 30 mM trisodium citrate (pH 7.0). Spotted, DAPI-stained 

nuclei were subsequently mounted under a cover slip using mounting medium 

consisting of PBS and glycerol (1:1) and sealed to prevent desiccation prior to analysis 

by laser scanning cytometry. 

2.2.11 Laser Scanning Cytometry 

Microscope slides containing fluorescently stained nuclei were inserted into a standard 

four-slide carrier and analyzed using an iCyte® Automated Imaging Cytometer 

(CompuCyte Corporation, Westwood, MA, USA) with full autofocus function, and 

inverted fluorescence microscope with laser excitation (Argon 488 nm, and Violet 405 

nm) for quantitation of blue and green fluorescence emission. 2000–3000 nuclei were 

analyzed using iCyte cytometric analysis software version 3.4.10. The ‘‘CompuColor’’ 

feature in iCyte was used to provide nuclear staining as blue and γH2AX signal as 

green. The slides were scanned using a 40x objective and a 0.25 µm resolution step. 

Two lasers (405 nm and 488 nm) were used to excite the dyes DAPI and Alexa Fluor 

488, respectively. The two lasers were scanned over the samples in separate passes, one 

immediately following the other, to prevent any overlapping (thus compensation) of 

fluorescence signals. The emitted and filtered fluorescence was then detected by 

photomultiplier tubes in separate channels (blue and green). The nuclei and γH2AX 

events were contoured using empirically determined thresholds to exclude the scoring 

of false positives (e.g. small fluorescent debris). Any small debris or larger blue-

emitting particulate matter (which was rarely observed) was excluded from the analyses. 

Individual data points for each nuclear event were automatically generated using the 

iCyte® software and transferred to statistical analysis software (see below). 



 

67 

2.2.12 mRNA Isolation, cDNA Synthesis and 454 Sequencing 

Frozen pupae that had been irradiated with 150 Gy were divided into 3 replicate groups, 

each weighing 0.1g (10-11 pupae). mRNA was purified using a GenEluteTM Direct 

mRNA miniprep kit (Sigma) according to the manufacturer’s directions. Briefly, tissues 

were homogenized and lysed using liquid nitrogen with mortar and pestle and 1 ml of 

lysis solution containing proteinase K. mRNA extraction proceeded using oligo(dT) 

beads and eluted mRNA was precipitated overnight at -20∘C using 1 µl of 20 µg/µl 

glycogen, 0.1 volumes of 3 M sodium acetate pH 5.2, and 3 volumes of ice cold 

ethanol. Precipitated mRNA was centrifuged and the pellet washed in 70% ethanol. 

mRNA was then resuspended in 19 µl of elution buffer and checked for quantity and 

quality using a NanoDrop1000 spectrophotometer (Thermo Fisher, USA) and gel 

electrophoresis. The cDNA library was then generated according to the cDNA Rapid 

Library Preparation Method Manual (Roche). Each replicate group was ligated with 

different MID adaptors (RL 13, 14, 15; manufactured by Integrated DNA 

Technologies). Following library quantitation using a FLURO Star Optima (BMG 

Labtech, Germany), 20 µl of each replicate was then pooled together and the combined 

library diluted to a final concentration of 1x106 molecules/µl. Emulsion PCR and bead 

enrichment was performed as per the emPCR amplification method manual –Lib-L 

(Roche Applied Science, USA) using 2 library molecules per bead. Approximately 

500,000 of the enriched beads were loaded onto a PicoTiter-Plate (Roche Applied 

Science, USA) and pyrosequencing was performed using a 454 GS Junior (Roche 

Applied Science, USA) according to the manufacturer’s sequencing method manual 

(Roche) using the default parameters for cDNA. 
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2.2.13 Sequence Analysis and Homology Search 

454 sequencing of the cDNA library generated 3,166,947 bases from 91,349 reads. 

These reads were assembled into 2,512 contigs, 2,258 isotigs and 21,950 singletons 

using de novo assembly by Newbler version 2.0.1 (Roche Applied Science). Isotig 

sequences were compared to sequences in the NCBI database by BLASTn using 

Blast2goPro (www.Blast2GO.org) (Gotz et al. 2008). E-values lower than 1.0E-3 were 

considered significant. Isotig00988 (GenBank Acc No. KC161252) was found to be 

most similar to H2A of Glossina morsitans. Isotig00988 contained 748 bp and the 

nucleotide sequence was submitted to the ORF finder at NCBI 

(http://www.ncbi.nlm.nih.gov/gorf/gorf.html). The longest ORF was found to be the 

candidate H2A protein coding region. Clustal Omega (accessed through 

http://www.uniprot.org/) was used to compare the resulting amino acid sequence to 

Drosophila (accession no. P0895), Human (accession no. P16104) and Glossina 

(accession no. D3PTWO) H2A sequences. 

2.2.14 Statistical Analyses 

GraphPad Prism 5 was used to analyse data using the student’s t-test or to determine the 

correlation coefficients. Data were expressed as mean ± standard error of the mean. 

GraphPad InStat 3.1 was used for other statistical analyses. 

2.3 Results 

Our preliminary studies used an antibody that was prepared based on the human γH2AX 

sequence KKAATQA[PSer]QEY. The antibody recognized a nuclear protein of 

approximately 15 kDa that was evident in irradiated pupal samples (not shown) and is 

consistent with the molecular weight of γH2AX as observed in other species (Redon et 
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al. 2002, Rogakou et al. 1999). Although the (human) antibody provided a clear band at 

approximately 15 kDa, there was some non-specific binding detected at approximately 

75 kDa. Since there was no available γH2AX antibody specific to B. tryoni, we used an 

antibody specific to the D. melanogaster γH2AX sequence (γH2AvD) that resulted in a 

single band of approximately 15 kDa in irradiated samples. Figure 2.1, shows that 454 

sequencing revealed a H2AX protein sequence that was identical to that found in G. 

mortisans, was 96.4% similar to D. melanogaster, and only 54.8% similar to human 

H2AX. We have termed the B. tryoni H2AX homolog “H2AvB”. The SQ motif of 

H2AvB was conserved as for all other species in which the histone has been sequenced. 
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Figure 2.1: Amino acid sequence and alignment of H2A histone variants. The 
conserved SQ motif is highlighted in red text. The sequence of a H2AX homolog 
protein was identified from deep sequencing transcript analyses and mass spectrometry 
of Q-fly (B. tryoni) cells. The Q-fly H2A variant is termed H2AvB (GenBank 
Accession #KC161252). We found that H2AvB is 96.4% similar to that of the vinegar 
fly (genetic model species) D. melanogaster (H2AvD), 54.8% similar to human H2AX, 
and identical to G. morsitans (the Savannah tsetse fly). The numbers in parentheses 
represents the UniProtKB accession numbers for each sequence. Figures at the left of 
sequences represent the first amino acid position of each line. 

Phosphorylated H2AvB (γH2AvB) was detected following exposure of pupae to doses 

as low as 10 Gy of IR (Figure 2.2A). The phosphorylation of H2AvB occurred rapidly 

and could be detected at 5 min post-IR exposure, peaking at approximately 20 min post 

IR exposure (Figure 2.2B). There was a gradual decline of γH2AvB over a period of 24 

h, however, there was still significant γH2AvB present 24 h post IR exposure, 

indicating that only a proportion of γH2AvB was dephosphorylated within 24 h. As 

expected, 60 Gy IR exposure led to a higher level of γH2AvB relative to the pupae 

exposed to 10 Gy. Alkaline phosphatase treatment of a histone extract from IR-treated 

(70 Gy, 24 h post IR) pupae abolished γH2AvB detection (Figure 2.2C), confirming the 

antibody was detecting only the phosphorylated form of the H2AvB, at the SQ-motif. 

Confirming that irradiated samples at other life stages (egg versus larvae) of B. tryoni 

also elicit a γH2AvB response we have also shown an increase in γH2AvB response 



 

71 

following IR exposure at 150 Gy, the standard dose used for Q-fly post-harvest 

disinfestation (Figure 2.2D). 

 

 

Figure 2.2: Short-term kinetics of H2AvB phosphorylation in Q-fly. (A) Total pupae 
lysates were prepared and γH2AvB responses are shown to 0, 10, and 60 Gy IR at 5 
min, 20 min, 2 h, or 24 h following IR exposure. β-actin is shown on the lower panels to 
demonstrate loading controls (225 μg protein on each lane). (B) The γH2AvB signal 
from (A) was quantified using ImageJ and the data were plotted with the following 
symbols. 0 Gy (filled circles), 10 Gy (filled squares), and 60 Gy (filled triangles). (C) 24 
h post-IR exposed pupae were subjected to the acid precipitation method to extract 
histones. Treatment of samples with alkaline phosphatase (+) abolished the γH2AvB 
signal, which remained in non-treated samples (-). The data shown confirmed the IR-
induced H2AvB is in the phosphorylated form that is detected by the primary antibody. 
(D) Western blot analyses of Q-fly eggs (73 μg protein loaded; left panel) or larvae right 
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panel (105 μg protein loaded) demonstrating detectable γH2AvB signal in different Q-
fly life stages. 

The above data indicate a clear phosphorylation-dependent γH2AvB signal following IR 

exposure compared with non-irradiated samples. To further investigate the effect of IR 

on Q-fly pupae at different doses, particularly covering and exceeding the range most 

often used for SIT and to disinfest produce, pupae were exposed to a wide dose range 

(up to 400 Gy) and then frozen at -80oC 24 h post-IR. Figure 2.3A shows a 

representative Western blot demonstrating a dose-dependent increase in the γH2AvB 

signal. The maximum signal was produced at the highest tested dose of 400 Gy and 

yielded an approximate 20-fold increase above non-irradiated pupae. γH2AvB signal 

was detected in Q-fly pupae at doses as low as 20 Gy, however, in Figure 2.3A this is 

not particularly clear since this Western blot was exposed for ECL under conditions that 

would clearly show the higher end doses (>80 Gy) of the Western blot. To compare the 

results of 3 separate assays, data were normalized by using β-actin as a loading control. 

Since there were differences between imaging exposure times and therefore the band 

intensities between separate assays, the data were then further corrected to the 

“maximum” signal (i.e. at 400 Gy) to account for these potential differences in imaging 

and incubation conditions. This allowed the slope and fit of the lines of γH2AvB 

responses to be compared appropriately in separate assays as shown in Figure 2.3B 

inset. This figure also demonstrates the high linear correlation of γH2AvB with IR dose 

(r2 > 0.9). 
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Figure 2.3: The intensity of γH2AvB signal in Q-fly pupae (24 h post IR) is 
proportional to IR exposure. (A) Western blot showing the γH2AvB signal at 
approximately 15 kDa (upper panel) increases in proportion to the IR dose up to the 
maximum exposure of 400 Gy tested for this assay. The lower panel shows the β-actin 
loading controls. (B) ImageJ software was used to quantify the integral of the bands in 
(A) upper and lower panels. γH2AvB signal from three independent assays (see inset) 
was corrected for the amount of β-actin loaded and data (as % of maximum) was plotted 
against IR dose to allow for differences in incubating conditions and imaging exposure 
times. Data are mean ± SEM. 

Interestingly, our data show a very strong γH2AvB signal in Q-fly pupal lysates from 

exposures as low as 20 Gy, at least 24 h post-IR (Figure 2.3). This led us to examine 

whether the γH2AvB signal was evident at even longer time points post-IR, as this 

would potentially provide a useful biomarker to demonstrate prior IR exposure. Figure 
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2.4 demonstrates that the dose effect of IR on γH2AvB signal was clearly observed at 

24 h post-IR (for doses of 0, 70 & 240 Gy), however, at five days post–IR the γH2AX 

signal in pupal lysates was substantially reduced compared with one day post-IR (the 

same amount of total protein was loaded in all samples to allow direct comparisons). It 

should be noted that in some of our earlier Western blot assays we did occasionally 

observe a very low amount of γH2AvB signal (approximately 15 kDa) after 70 Gy 

exposure at five days post-IR, when higher amounts of total protein were loaded and 

when longer ECL exposure times were used. These preliminary observations led us to 

believe that there was indeed a measureable persistent γH2AvB signal even 5 days post-

IR exposure. Figure 2.4A (lower right panel, labelled “overexposed”) shows a longer 

development time on the same Western blot membrane and a dose-responsive γH2AvB 

signal became more evident, albeit not as intensely as achieved when analyzed at one 

day post-IR. This suggests that despite a large decline in phosphorylated γH2AvB levels 

between one and five days post-IR exposure in Q-fly pupae, a persistent or residual 

γH2AvB signal remained. 
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Figure 2.4: γH2AvB signal in Q-fly pupae was reduced at five days post-IR. (A) 
Western blot showing a dose-dependent increase in γH2AvB signal one day after IR 
exposure (0, 70 and 240 Gy). However, at five days post IR, the γH2AvB response was 
not easily visible in this representative assay until the Western blot membrane was 
allowed to develop with a longer imaging time (“overexposed”) as shown in (B). 100 µg 
protein was loaded in all lanes. 

To further examine whether we could detect γH2AvB signal at least 5 days after IR 

exposure (at the standard dose used for SIT), we investigated the effect of 70 Gy IR on 

γH2AvB signal using whole Q-fly pupal lysates 1 day and 5 days post-IR. The γH2AvB 

response was quantified by Western blot as shown in Figure 2.5A (left “pupal lysate” 

panels, lanes 1 and 2) demonstrating a significant γH2AvB signal at approximately 15 

kDa. β-actin and cytochrome c oxidase subunit II were used as loading controls and 

confirmed that equivalent amounts of protein had been loaded for each treatment. To 

confirm the specific association of the γH2AvB signal with cell nuclei and to improve 

the γH2AvB signal we isolated nuclear proteins by an acid precipitation method as 

described previously (Shechter et al. 2007). When 15 µg total nuclear protein extract 

was examined by Western blot analysis (shown in lane 5 and 6 of Figure 2.5A, labeled 

“histone extract”) the γH2AvB signal following 70 Gy IR clearly yielded a higher signal 
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than that of the equivalent amount of protein from the whole “pupal lysate” when either 

15 µg or 150 µg protein was loaded (Figure 2.5A). This enrichment of nuclear γH2AvB 

protein observed was also associated with a higher γH2AvB signal at 0 Gy. 

Nevertheless, the IR response of γH2AvB signal was clearly distinguishable from 

background levels and several fold more intense at 70 Gy compared with 0 Gy. The 

absence of any detectable signal coming from β-actin (cytoplasm) and cytochrome C 

oxidase subunit II (a mitochondrial protein) in the histone extract (Figure 2.5A, lanes 5 

and 6) demonstrate that the histone extract was relatively free from these latter proteins 

as expected, and confirmed that the nuclear extract method employed did not result in 

significant cytoplasmic or mitochondrial contamination, whilst significantly enriching 

the histone fraction. Therefore, it appears that the nuclear histone extraction method 

offers a convenient way to partially purify and concentrate low levels of persistent IR-

induced γH2AvB signal from Q-fly. Since our objective was to detect any long-term 

persistent γH2AvB signal in irradiated Q-fly pupae we subsequently used the histone 

extract method to concentrate the γH2AvB signal as outlined earlier. Figure 2.5B shows 

a representative Western blot experiment using whole lysate from Q-fly pupae (120 μg 

protein) and nuclear extracts (6 μg protein), five days post-IR. Under the same duration 

of exposure times using ECL, Figure 2.5B left panels (lane 1 and 2) show no apparent 

γH2AvB signal response to 70 Gy IR using 120 µg total protein loaded, compared to a 

strong signal using the histone extract with only 6 µg total nuclear protein loaded (i.e. 

20 times less protein, compare lanes 2 and 4 of Figure 2.5B). The IR-induced signal (70 

Gy) was clearly evident and significantly higher than the background (0 Gy) signal. 

Since Q-fly are able to survive and withstand relatively high doses of IR, we 

hypothesized that adult Q-fly specimens produced from irradiated pupae would contain 

persistent γH2AvB (as has been observed recently with minipig skin samples after 
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receiving a dose of 50 Gy IR (Ahmed et al. 2012). Figure 2.5C demonstrates that 

persistent IR-responsive γH2AvB signal was observed in adult Q-fly at 17 days post-IR, 

in nuclear extract samples. Although we did not investigate later time points, this may 

be a convenient method to identify prior IR exposure of Q-fly pupae and therefore, may 

have application for SIT. To address whether individual pupae show variation in their 

γH2AvB response following IR exposure, we scaled down the total lysate and histone 

extraction techniques in order to examine γH2AvB responses of individual pupae. 

Figure 2.5D demonstrates that when replicate individual pupae were lysed and used for 

Western blot analyses, there was some variation of the γH2AvB produced in response to 

IR as would be expected. However, on the whole, all pupae from the 0 Gy group 

(individual pupae lysates were loaded in lanes 1-6, Figure 2.5D) had significantly less 

γH2AvB signal compared individual pupae exposed to 70 Gy IR (24 h post IR), as 

shown in Figure 2.5D, lanes 7-12. The γH2AvB signal was quantified using ImageJ and 

results are shown on the right panel of Figure 2.5D, with 70 Gy (n=6) significantly 

higher (P<0.001) than 0 Gy (n=6). Furthermore, we were able to scale down the histone 

extraction method in a similar manner so that individual pupae could be subjected to the 

nuclear extraction method to increase the γH2AvB signal per total protein tested. Pupae 

exposed to 70 Gy had a significantly higher amount of γH2AvB signal (P<0.001) in the 

individual histone preparations as demonstrated by the Western blot from the single 

pupae replicates compared with 0 Gy (Figure 2.5E). 
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Figure 2.5: γH2AvB response in Q-fly pupae following 70 Gy exposure at different 
times post-IR. (A) Left panel show γH2AvB response from whole pupal lysates (150 
µg protein loaded; 0 vs 70 Gy; lanes 1 and 2). There was no clear signal at 15 kDa in the 
non-irradiated control. At 10-fold dilution of the same sample to 15 µg, the γH2AX was 
not observed in the same Western blot membrane at the same imaging exposure time 
using the ECL technique (lanes 3 and 4). However, in the same Western blot membrane 
when 15 µg total protein from the histone extract was loaded, two bands appeared at 
approximately 15 kDa in the non-irradiated sample, which likely represent 
phosphorylated and non phosphorylated H2AvB, respectively. The 70 Gy sample 
showed a far more intense signal even exceeding that observed when 10 times the 
amount of whole pupal lysate was analyzed demonstrating that nuclear extraction may 
provide a good method to concentrate the histone proteins and increase the related 
signal, for analysis of γH2AvB. The absence of cytoplasmic proteins including β-actin 
and cytochrome C oxidase subunit II proteins in the histone extract preparation 
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confirmed the relative purity of the histone extract. (B) γH2AvB signal in Q-fly pupae 
was reduced at 5 days post-IR as confirmed by analyses of total pupal lysates (lanes 1 
and 2). However, significant γH2AvB signal was observed in the histone extract from 
Q-fly pupae five days post-IR (70 Gy; lanes 3 and 4), even when probing 20 times less 
total protein. (C) 17 days post-IR (70 Gy) significant γH2AvB signal was observed in 
the histone fraction. (D) Variability in individual pupae responding to IR. Individual 
pupae were exposed to 0 Gy (n=6; lanes 1-6) or 70 Gy (n=6; lanes 7-12) and γH2AvB is 
shown for each. (E) Variation in response of individual pupae responding to IR using 
histone extracts. Individual pupae were exposed to 0 Gy (n=6; lanes 1-6) or 70 Gy (n=6; 
lanes 7-12) and the individual γH2AvB responses are shown for each. For both (D) and 
(E) all histone extracts shown were run on the same Western blot to allow direct 
comparison. Bar charts to the right represent the mean ± SEM of the band intensities 
(integral) as determined by ImageJ analyses. Lower panels in (B), (C) and (E) are 
loading controls showing the Coomassie-stained gels have equivalent amount of protein 
loaded. ***P<0.001. 

To further validate the long-term (17 days) post IR γH2AvB response (as shown in the 

Western blot in Figure 2.5C), we employed immunohistochemical methods using 

nuclear extracts in combination with laser scanning cytometry (LSC). LSC is a very 

accurate cytometric method to colocalise and quantify fluorescent events in thousands 

of nuclei (Zhao et al. 2009, Zhao, Traganos & Darzynkiewicz 2009) (which is not 

practical with visual scoring), therefore we used this method to quantify the γH2AvB 

signal in nuclei fixed on microscope slides. Representative LSC images of adult Q-fly 

nuclei stained with DAPI (blue) and demonstrating the γH2AvB signal are shown in 

Figure 2.6 (A–C). To determine whether long-term persistent γH2AvB signal could be 

observed at low and high doses, Q-fly pupae were exposed to 0, 20 or 240 Gy and then 

allowed to emerge as adults. The γH2AvB signal (green) was observed within nuclei 17 

days post-IR, in doses as low as 20 Gy. Figure 2.6D shows the mean (± SEM) integral 

fluorescence (from LSC) was significantly increased (P<0.001) following 20 Gy IR (n = 

3078 nuclei) or 240 Gy IR (n = 3571 nuclei) compared with 0 Gy IR (n = 2656 nuclei). 

Figure 2.6E demonstrates that 240 Gy IR exposure resulted in a significantly higher 

(P<0.001) percentage of nuclei containing a γH2AvB signal compared with 0 Gy (24% 

and 7%, respectively). The fluorescence integral of those nuclei with a positive γH2AvB 
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signal identified from Figure 2.6E were quantified and then reported in Figure 2.6F (as 

mean ± SEM). Figure 2.6F demonstrates that the γH2AvB signal (integral) was also 

significantly elevated in adult Q-fly nuclei 17 days post IR at the low dose of 20 Gy 

(P<0.01) as well as the higher dose of 240 Gy (P<0.05). The area of the γH2AvB signal 

in nuclei was examined as shown in Figure 2.6G. Although the area of γH2AvB signal 

appeared to be dose-dependent at 20 and 240 Gy, this increase was not statistically 

significant. The overall findings illustrated in Figure 2.6 further confirmed that γH2AvB 

signals persisted in emergent adult Q-flies for at least 17 days post IR (irradiated as 

pupae). 
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Figure 2.6: Quantification of γH2AvB signal in isolated adult Q-fly nuclei by laser 
scanning cytometry (LSC). Q-fly pupae were exposed to 0, 20 or 240 Gy IR and 
allowed to emerge as adults. At 17 days post-IR they were frozen at -80oC. Following 
hypotonic lysis and extraction of nuclei, LSC was performed on samples. 
Representative LSC images of Q-fly nuclei showing (A) DAPI only (blue), (B) 
γH2AvB signal only (green) and (C) “merged” images which show the DAPI and 
γH2AvB signal overlaid. The scale bar in (A) represents 5 µm. (D) Mean (± SEM) of 
the integral fluorescence per nucleus of all nuclei examined including nuclei that lacked 
any measurable γH2AvB signal; n = 2656, 3078 and 3571 nuclei for 0, 20 and 240 Gy 
samples, respectively. (E) The percentage of nuclei examined that contain a measurable 
γH2AvB signal above background, increased significantly from approximately 7% in 0 
Gy samples to almost 25% of nuclei in 240 Gy samples (P<0.001 by chi-squared). To 
further examine if there was a greater γH2AvB signal in the 20 and 240 Gy samples 
compared with 0 Gy samples, only those nuclei with a measurable γH2AvB signal were 
analyzed and this is reported in (F) as the mean integral (± SEM). Finally, the mean 
contoured areas of the total γH2AX signal per nucleus are shown in (G). *P<0.05, 
**P<0.01, ***P<0.001. 
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2.4 Discussion 

Phosphorylation of the C-terminal tail of H2AX proteins in nucleosomes located in the 

vicinity of DSBs is one of the earliest responses to IR-induced DNA damage (Rogakou 

et al. 1998, Olive, Banath 2004). A γH2AX homolog has not been reported previously 

in tephritid fruit flies, including the commercially important Q-fly (B. tryoni), although 

the expression of a H2AX variant (H2AvD) has been reported in the vinegar fly D. 

melanogaster (Madigan, Chotkowski & Glaser 2002). In this study we show that Q-fly 

pupae exposed to IR had an elevated level of phosphorylated H2A protein (termed 

γH2AvB). Consistent with reports for other species (Rogakou et al. 1999), irradiated Q-

fly pupae showed a strong γH2AvB signal of approximately 15 kDa when examined 

using Western blot. The γH2AvB sequence was identified using 454 sequencing and 

found to be identical to G. morsitans. The identity and partial sequence of the IR-

induced, phosphorylated histone was also confirmed by LC-ESI-MS/MS (data not 

shown, mass spectrometry was carried out by the Adelaide Proteomics Centre, 

University of Adelaide, SA, Australia). Twenty-four hours post-IR we observed a linear 

dose-response of γH2AvB up to our maximum tested dose of 400 Gy in Q-fly pupae. 

However, after 5–17 days post IR, the γH2AvB signal had declined significantly when 

analysing whole pupal lysates. In contrast, the persistent (5 days post-IR and beyond) 

γH2AvB response remained dose-responsive and was easily measurable by either 

Western blot or immunohistochemical methods such as LSC when analysing enriched 

nucleosome extracts. The dose-dependent response over doses used for SIT (70 Gy) and 

disinfestation of fruit (up to 400 Gy), shows that γH2AvB may be useful as a marker of 

previous IR exposure in assays that support these commercially important applications. 
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γH2AX is highly conserved across a wide taxonomic range of organisms (Redon et al. 

2002, Friesner et al. 2005) and is a well-characterized histone protein that is known to 

be responsive to IR-induced DSBs (Roch-Lefevre et al. 2010, Olive, Banath 2004, 

Huang, Halicka & Darzynkiewicz 2004). We identified the sequence of a H2AX 

homolog protein in the Q-fly, B. tryoni (termed H2AvB; GenBank Accession 

#KC161252). We found that H2AvB is approximately 96% similar to the vinegar fly D. 

melanogaster H2AvD, approximately 54.8% similar to human H2AX and interestingly, 

identical to the human disease vector G. morsitans (which is also the subject of SIT 

(Mutika et al. 2013)). Our preliminary experiments demonstrated that an antibody 

designed to the human c-terminal tail sequence of γH2AX, KKAATQA[PSer]QEY, 

showed similar IR-induced γH2AvB signal compared with the antibody used for 

detection of D. melanogaster γH2Av as used in this study, which revealed a protein of 

approximately 15 kDa. The C-terminal amino acid sequence of human histone H2AX 

consists of ASQEY whereas for D. melanogaster the equivalent sequence is LSQAY. 

Although the C-terminal sequence for B. tryoni is slightly different from both human 

and Drososphila, it therefore appears that the antibody recognition site is likely to be 

mostly targeted towards recognizing the SQ phosphorylation motif, which is conserved 

across species. Indeed, others have used antibodies based on the human sequence of 

phosphorylated H2AX and found that it cross-reacts with histone H2A (phosphorylated) 

variants from many diverse taxa, including plants (Rogakou et al. 1999, Friesner et al. 

2005). Therefore, it was not surprising in this study that the H2AvD antibody (based on 

the Drosophila sequence) yielded a single intense band on Western blots (following IR) 

corresponding to phosphorylated H2AvB in the B. tryoni samples. 

Many studies have analyzed the kinetics of phosphorylation and dephosphorylation of 

H2AX, with IR shown to induce maximal amounts of γH2AX in cells at times often less 
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than 10 min after exposure to IR followed by a decline in γH2AX signal over a period 

of hours (Rogakou et al. 1998, Madigan, Chotkowski & Glaser 2002, Roch-Lefevre et 

al. 2010, Olive, Banath 2004). Previous reports using Drosophila S2 tissue culture cells 

have suggested that the phosphorylation of H2Av increases within minutes following IR 

exposure, but then declines significantly after several hours (Madigan, Chotkowski & 

Glaser 2002). The rapid loss of the phosphorylated H2Av was likely due to regulated 

dephosphorylation of H2Av and was similar to that reported for radiation-induced 

phosphorylation/dephosphorylation kinetics in mammals (Rogakou et al. 1998). Indeed, 

γH2AX quantification assays have been proposed as the basis of protocols for biological 

dosimetry following IR events (Roch-Lefevre et al. 2010). Although the absolute 

number of phosphorylated γH2AX molecules declines over a period of hours and days 

post-IR, a recent study in mice showed a dose-dependent response of γH2AX foci in 

nuclei up to 7 days after exposure to IR (Bhogal et al. 2010). The residual γH2AX foci 

at 24-72 h post-IR are believed to represent misrepaired DSBs, unrepaired DNA with 

ongoing genomic instability, S-phase cells or apoptotic cells (Liu, Olive & Bristow 

2008). In Drosophila S2 cultured cells, the percentage of phosphorylated H2AX variant 

(H2Av) was shown to have reduced almost to non-irradiated levels within 3 h after the 

initial IR dose (Madigan, Chotkowski & Glaser 2002). Similarly, in cultured human 

microvascular endothelial cells exposed to 2–16 Gy IR, a transient increase in γH2AX 

signal was observed to peak at 1 h post IR and return to background levels 24 h post IR 

(Kataoka et al. 2006). The γH2AvB response we observed in whole tissue displayed 

kinetics that were less transient than that of cultured cells and persisted at measurable 

levels for at least 17 days, although the signal was considerably reduced even 1-5 days 

post IR. It should be noted that doses used in human studies are generally much less 

than applied here, as the doses used for SIT and disinfestation of insects are well 



 

85 

beyond what can be tolerated by humans. Thus, the persistence of the phosphorylated 

protein may be related to the higher IR-doses we have tested. The basis for the relatively 

high IR-tolerance of insects is not clear, however, it is conceivable that it may be partly 

related to the persistence of the phosphorylated histone. A recent study that used 

Göttingen minipig skin biopsies found that radiation induced γH2AX foci (50 Gy) were 

observed in approximately 60% of cells 4 h after IR. The number of γH2AX foci was 

found to be significantly less after 70 days following IR exposure; however, there 

remained a significantly higher number of γH2AX foci per epidermal keratinocyte 

compared with controls (Ahmed et al. 2012). In our study there was a strong positive 

linear correlation (r2>0.9) in γH2AX signal over a dose range of 0–400 Gy, 

corresponding to a 20-fold increase in signal above the background (non-irradiated) 

level. It is therefore likely that high IR doses are necessary to observe the long–term 

persistent γH2AX signals. Indeed, after 17 days post IR (240 Gy) we found that 

approximately 25% of nuclei had a measurable signal γH2AvB as determined by LSC. 

Although LSC detected a small amount of measurable background signal in 0 Gy Q-fly 

adults in approximately 7% of nuclei, we did not observe a 0 Gy γH2AvB signal by 

Western blotting (Figure 2.5C). Therefore, it appears LSC may prove to be a more 

sensitive method to detect and quantify γH2AvB signal in nuclei that are persistent 

many days after exposure to the IR event. Bonner et al. (Rogakou et al. 1999) 

previously suggested there is potentially a low level of γH2AX in non-irradiated cells. 

This is in agreement with our study (see discussion below) in which we additionally 

confirmed the necessity for the phosphorylation of putative Ser137 within the SQ motif 

of γH2AvB to allow detection by our primary antibody, through abolishing the signal 

via treatment of the histone extract with alkaline phosphatase. 
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At five days post IR exposure, we occasionally observed an IR-induced γH2AX signal 

in whole pupal lysates via Western blotting (depending on amount of protein loaded on 

gels and imaging exposure times). Therefore, the nucleosome (histone) extraction 

procedure was used and this resulted in a substantial enrichment of the γH2AvB signal 

compared with the use of the whole pupal lysates. In the non-irradiated whole pupal 

lysate we did not detect any γH2AvB. However, in the non-irradiated histone fraction, 

we observed a basal γH2AvB signal in the non-irradiated 5 day samples. However, at 17 

days (Q-fly adults) we did not observe a γH2AvB signal in the 0 Gy samples, possibly 

indicating that “basal” level of γH2AvB is life-stage specific and is dependent on the 

level of cellular differentiation. 

LSC was a successful technique for quantitation of IR-induced γH2AvB signal in Q-fly 

showing the localisation within nuclei as well as its quantitative increase in adult Q-fly 

17 days post-IR as pupae. Our LSC results support data obtained by Western blot 

analyses and also provide a visualisation of the signal, although visual scoring of foci 

was not practical. The iCyte® software allows for automated scoring and quantitation of 

nuclei and events within them, and therefore LSC could be useful for future studies to 

investigate additional parameters associated with IR induction of γH2AvB (e.g. 

γH2AvB signal related to cell cycle phases) at a tissue-specific level. Additionally, LSC 

could be used to simultaneously detect γH2AvB signal with a dependant DNA repair 

mechanism protein such as ATM or other markers such as caspases (for apoptosis), to 

yield more information on cell-cycle dynamics. 

Our work has identified γH2AvB as a potential biomarker and biodosimeter of prior IR 

exposure in Q-fly. This finding has several potential applications for the management of 

these economically important insects. Firstly, with chemical approaches facing 



 

87 

increasing restrictions, IR treatment is quickly becoming an internationally accepted 

alternative for disinfestation of horticultural produce (IAEA-TECDOC-1427 2004). 

Secondly, doses of 70 Gy applied to pupae are used to induce reproductive sterility in 

flies released during SIT pest management programs that are used to reduce Q-fly 

populations (Collins et al. 2009). The γH2AvB assay presented here (or modifications 

thereof) may have applications in both these contexts for detecting IR-induced DNA 

damage in Q-fly specimens. Given that G. mortisans is an important human disease 

vector for which SIT is being investigated, and that its homologous histone protein is 

apparently identical to γH2AvB, the assays developed here may also be applicable for 

monitoring in G. mortisans SIT programs. In addition, given that many of the DNA-

repair and apoptotic biochemical pathways are conserved between mammals and insects 

(Song 2005, Steller 2008, Sun et al. 2010), insect-based assays may be useful for 

detecting DNA-damage processes occurring in the environment as insects are 

widespread and abundant, and some species can be efficiently trapped using highly 

specific chemical lures. Tephritid fruit flies also generally meet these criteria. Future 

studies that focus on γH2AvB as a potential biomarker of IR-induced DNA damage in 

Q-fly should extend the time course following IR exposure and use tissue section 

immunohistochemistry techniques that will allow identification of tissue-specificity of 

γH2AvB signals in Q-fly. The kinetics of γH2AvB phosphoylation/dephosphoryhlation 

in different life stages of Q-fly would also be of benefit. 
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Abstract 

DNA double strand breaks are induced by ionizing radiation (IR), leading to the 

phosphorylation of the core histone protein H2AX (termed γH2AX). The understanding 

of the γH2AX responses in irradiated human buccal cells is still very limited. We used 

visual scoring and laser scanning cytometry (LSC) methods to investigate γH2AX 

signalling following exposure of human buccal cells (from six individuals) to ionizing 

radiation at 0-4 Gy. The frequency of nuclei containing 15-30 γH2AX foci was 

significantly elevated 30 min post-IR exposure (by visual scoring). Concomitantly, 

there was a significant decrease in the frequency of cells without foci following 

exposure to IR. IR-induced γH2AX signal as determined by laser scanning cytometry 

(which included γH2AX integral and MaxPixel value) increased significantly in all 

individual’s 2N nuclei 30 min post-IR and was similar for all 3 nuclear shapes 

identified. Individuals with the lowest baseline γH2AX integral (i.e. in non-irradiated 

cells) showed the greatest fold stimulation of γH2AX and significant dose-responses to 

IR doses of 1, 2, and 4 Gy. In 5 out of 6 individuals, the frequency of visually scored 

γH2AX in nuclei showed a strong correlation (up to r = 0.999) with LSC scored γH2AX 

integrals. The γH2AX response and subsequent decline varied between individuals but 

remained elevated above baseline levels 24 h post IR exposure. γH2AX response in 

irradiated human buccal cells has potential to be used as an index of baseline DNA 

damage in population studies. The variable response to IR exposure between individuals 

should be taken into consideration when using the γH2AX assay for radiation 

biodosimetry. 
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3.1 Introduction 

DNA Double strand breaks (DSBs) are one of the most biologically significant DNA 

damage lesions that leads to chromosome breakage and/or rearrangement, mutagenesis 

and loss or gain of genetic information (Dugle, Gillespie & Chapman 1976, Olive 

1998). DSBs are directly generated by exogenous agents such as ionizing radiation (IR) 

(Ismail, Wadhra & Hammarsten 2007, Riches, Lynch & Gooderham 2008), antitumor 

drugs (bleomycin, mitoxantrone, etoposide) (Tanaka et al. 2009, Turner et al. 2001) or 

by endogenously generated reactive oxygen species (Pilch et al. 2003). Mammalian 

cells respond to DSBs by activating a multitude of proteins involved in signalling and 

DNA repair pathways. Although the majority of lesions are efficiently repaired, the very 

nature of DSBs poses such a threat to cell survival that DNA damage checkpoint 

proteins may be activated to initiate cellular division arrest. This provides time for DNA 

repair to proceed before mitosis is completed or in the case of overwhelming damage, 

apoptosis ensues (Rogakou et al. 2000). Therefore, DSBs in chromosomal DNA may 

lead to reduced integrity of the genome but also impaired health and survival of 

mammalian cells (Dugle, Gillespie & Chapman 1976, Olive 1998). 

The histone proteins are intricate components of the nucleosome complex and are 

essential for genome integrity in terms of normal regulation of gene expression, genome 

maintenance and replication (Rogakou et al. 1999, Goll, Bestor 2002, Mendez-Acuna et 

al. 2010). Induction of DNA DSBs in live mammalian cells triggers the phosphorylation 

of Ser139 in the SQ motif near the C-terminal of H2AX, which results in the 

phosphorylated form of H2AX, termed γH2AX (Redon et al. 2002, Kinner et al. 2008). 

The phosphorylation of H2AX histone proteins which are located in the vicinity of the 

DSBs (Rogakou et al. 1998, Savic et al. 2009) is known as one of the earliest responses 
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to DNA DSBs in cells. Therefore, γH2AX quantification may prove to be a sensitive 

biomarker of DNA DSBs in human cells. 

Studies of the kinetics of phosphorylation and dephosphorylation of H2AX after 

exposure of cells to IR have shown induction of maximal amounts of γH2AX in cells in 

a few minutes after exposure to IR (Rogakou et al. 1998, Madigan, Chotkowski & 

Glaser 2002, Roch-Lefevre et al. 2010, Olive, Banath 2004). Subsequently, the γH2AX 

signals decline over a period of hours. However, radiation induced γH2AX signals have 

been observed to persist after 70 days post IR exposure to skin cells (Ahmed et al. 

2012). Our previous study using Queensland fruit fly (Bactrocera tryoni) demonstrated 

that IR exposure leads to persistent γH2AvB signals (a variant of γH2AX) that could be 

measured during the adult stage of the life cycle when the IR exposure was conducted at 

the pupal stage (Siddiqui et al. 2013). Therefore, it is plausible that persistent γH2AX 

may represent prior DNA damage due to misrepaired DSBs, unrepaired DSBs in 

specific sequences such as telomeric DNA, S-phase cells or apoptotic cells (Liu, Olive 

& Bristow 2008). 

Human buccal mucosa has considerable potential as an easily accessible source of cells 

to determine endogenous- or exogenous-induced DNA damage (Leifert et al. 2011, 

Darzynkiewicz et al. 2011) and has been used successfully to measure IR-induced 

γH2AX signals (Gonzalez et al. 2010, Yoon et al. 2009). In one recent study, a sub-

population of 50-100 buccal cells were scored from microscope images by semi-

automation for the presence of γH2AX foci (Gonzalez et al. 2010). Another study 

measured the absorbance of diffuse γH2AX staining in nuclei from individuals exposed 

to a low dose of ionizing radiation by examining only 25-30 cells from each individual 

(Yoon et al. 2009). However, our previous studies have demonstrated that there are 
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multiple sub-populations of buccal cell types present (Thomas et al. 2007, Thomas et al. 

2009, Francois et al. 2014a) and therefore in both of those earlier studies (Gonzalez et 

al. 2010, Yoon et al. 2009), it was likely that insufficient cells were scored to give an 

accurate representation of the entire sample population’s γH2AX response. Moreover, 

different nuclear shapes have been used as criteria to identify nuclear abnormalities in 

buccal cells (Torres-Bugarin et al. 2014). The aim of this study was to determine 

whether LSC could be used to measure multiple parameters (area, integral, MaxPixel) 

of γH2AX signals as well as the ploidy and nuclear shapes in thousands of cells. Use of 

the proposed LSC γH2AX method can overcome limitations of visual scoring methods 

by increasing scoring speed, increasing cell number measured, eliminating variation due 

to differences between scorers and scorer fatigue, and enabling the possibility of higher 

statistical power and high content analysis of multiple nuclear parameters. 

3.2 Materials and Methods 

3.2.1 Chemicals and Reagents 

Roswell Park Memorial Institute (RPMI)-1640, Fetal Bovine Serum (FBS), sodium 

pyruvate, L-glutamine/penicillin/streptomycin mix and all other chemicals were 

purchased from Sigma-Aldrich (Castle Hill, NSW, Australia) unless otherwise stated. 

Mouse monoclonal antibody anti-γH2AX (clone JBW301) was obtained from Millipore 

(Kilsyth, VIC, Australia). Dulbecco’s Phosphate Buffered Saline (DPBS) and secondary 

antibody Alexa Fluor 488 Goat anti-mouse were purchased from Life Technologies 

(Mulgrave, VIC, Australia). 
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3.2.2 Participants 

Buccal cells were collected from six healthy individuals (three females and three males) 

aged from 25 to 44 years. Participants were healthy non-smokers, not taking vitamin 

supplements and were informed of the purpose of the study. Approval for this study was 

obtained from the CSIRO Human Research Ethics Committee. 

3.2.3 Buccal Cell Collection 

Prior to buccal cell collection, each participant was first required to rinse their mouth 

twice with water. Small flat headed toothbrushes were rotated 20 times against the inner 

part of the cheeks in a circular motion. Both cheeks were sampled using separate 

toothbrushes. Heads of the brushes were transferred into 20 ml conical screw cap tubes 

(one tube per participant) each containing 15 ml of fresh pre-warmed complete medium 

(RPMI with 10% FBS, 2 mM L-Glutamine, 1 mM sodium pyruvate, 100 U penicillin 

and 100 µg/ml streptomycin) and vigorously agitated to dislodge the cells. Cells were 

centrifuged at 1000 xg for 10 min before discarding and replacing supernatant with 

fresh DPBS. This washing procedure was carried out twice. The cells were then 

resuspended in 10 ml of fresh pre-warmed (37oC) complete medium. Cell concentration 

was assessed using a haemocytometer and diluted with complete medium to reach a 

final concentration of 50,000 cells/ml. The cell suspension was then divided into four 10 

ml aliquots in 20 ml conical screw cap tubes. 

3.2.4 Buccal Cell Irradiation 

Cell aliquots were exposed to 0, 1, 2, or 4 Gy ionizing radiation (IR) using a 137Cs-γ 

IBL 437 irradiator 5 Gy/min at 25oC (Shering CIS bio international) and immediately 

incubated for 30 min at 37oC in complete medium using a portable tissue incubator. For 
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kinetics experiments, post-irradiated cells (4 Gy) and non-irradiated cells (0 Gy) were 

incubated at 37oC in complete medium for 30 min, 3 h or 24 h. Following incubation, 

cells were centrifuged at 1000 xg for 10 min and supernatant was discarded. Cells were 

then resuspended in 10 ml of 4% formaldehyde in DPBS for 15 min at room 

temperature. Following fixation cells were centrifuged at 1000 xg for 10 min and 

supernatant was removed before washing cells in 10 ml of buccal cell buffer (10 mM 

Tris, 0.1 M ethylenediaminetetraacetic, 20 mM NaCl, pH 7.0). The washing procedure 

was carried out twice, and cells were then cytocentrifuged for 5 min at 600 rpm onto 

microscopic slides to a final number of 5000 cells per cytospot using a Shandon 

Cytospin®4 (Thermo Scientific, USA). Slides were washed once with distilled water 

and air-dried for 15 min at room temperature. 

3.2.5 Staining of Buccal Cells 

A circle was drawn around each cytospot using a hydrophobic PAP pen (Dako, 

Australia) and air-dried for 10 min. Slides were rinsed in DBPS for 15 min, incubated in 

chilled 70% ethanol for 20 min and washed in DPBS for 15 min. Buccal cell cytospots 

were then treated with 150 μl of pre-warmed (37°C) pepsin solution (containing 750 

U/ml of porcine gastric mucosa pepsin) in 0.01 M HCl and then covered with parafilm 

for 30 min at 37°C in a humidified box. The slides were then washed twice with DPBS 

for 5 min. Buccal cells were then permeabilized with 1% Triton X-100 for 15 min at 

room temperature and subsequently quenched of any trace of formaldehyde by dipping 

slides into 0.1 M glycine in DPBS twice for 2 min. Slides were then rinsed three times 

in DPBS and a blocking step was performed by incubating cells in 10% goat serum for 

1 h at room temperature before being washed once with DPBS. The anti-γH2AX 

antibody was added to each cytospot at a dilution of 1:100 in DPBS containing 10% 
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goat serum and covered with parafilm overnight at 4°C in a humidified box. Slides were 

washed three times in DPBS for 5 min and a secondary antibody Alexa Fluor 488 Goat 

anti-mouse was added to each cytospot at a dilution of 1:500 in DPBS containing 10% 

FBS and covered with parafilm for 1 h at room temperature. Slides were washed three 

times in DPBS for 5 min and nuclei were counterstained with 

4, 6-diamidino-2-phenylindole (DAPI) at a concentration of 1 µg/ml for 10 min at room 

temperature. The excess DAPI was removed by rinsing the slides with a solution 

containing 300 mM NaCl and 34 mM sodium citrate. Slides were then mounted with 

coverslips and DPBS:glycerol (1:1) medium. The edges of coverslips were sealed with 

nail polish to prevent drying prior to performing LSC and visual scoring. 

3.2.6 Visual Scoring of γH2AX Foci 

Visual scoring of γH2AX foci was performed immediately after the staining procedure 

was applied using a florescence microscope (ZEISS Metasystems, Althusheim, 

Germany) under a 63x oil objective. DAPI (nuclei) and Alexa Fluor 488 (γH2AX) 

fluorescence was viewed using a blue and green filter, respectively. A minimum of 375 

cells per cytospot were scored for γH2AX foci. Since we observed three distinct shapes 

of nuclei (which may represent different stages of post-mitotic differentiation), they 

were classified into three groups based upon their morphological features i.e. round 

nuclei, long nuclei and oval nuclei. γH2AX appeared as discrete foci or as diffuse 

staining within nuclei (see Figure 3.1), therefore we categorized γH2AX scores for each 

nucleus as follows; no foci, 1-14 foci per nucleus, 15-30 foci per nucleus and diffuse 

foci (either >30 foci or diffuse nuclear staining of γH2AX i.e. wide-spread and uniform 

presence of γH2AX signal within nucleus). 



 

96 

3.2.7 Laser Scanning Cytometry Measurements of γH2AX 

Laser scanning cytometry (LSC) measurements were carried out with an iCyte® 

Automated Imaging Cytometer (Thorlabs, Sterling Virginia, USA) with full autofocus 

function as well as 405 nm and 488 nm lasers for excitation of DAPI and Alexa Fluor 

488, respectively. Fluorescence from DAPI (blue) and Alexa Fluor 488 (green) was 

collected with a photomultiplier tube. Samples were scanned in separate passes 

(consecutively) to prevent spectral overlap. The nuclei and γH2AX events were 

contoured using empirically determined thresholds to exclude the scoring of false 

positives (e.g. small fluorescent debris). The frequency (%) of nuclei containing γH2AX 

signal was recorded as well as multiple parameters within each nucleus; including the 

total γH2AX integral (a function of γH2AX intensity and size) and the MaxPixel value 

(the value of the most intense γH2AX signal/pixel within nuclei). These parameters 

were generated using the iCyte® 3.4 software and subsequently transferred into excel 

for further statistical analyses. Nuclei were also classified into round, long or oval 

shapes (Figure 3.2) by utilizing the iCyte software parameters which included area, 

circularity, perimeter and diameter as described in detail of figure legend (Figure 3.2). 

Additionally, all nuclei were separated according to their ploidy status (DNA content) 

as follows; <2N, 2N and >2N, where 2N was defined as the mean integral signal of the 

population of nuclei ± 1 standard deviation. For 2N nuclei, the peak of the nuclei count 

coincided with the mean DAPI integral. 

3.2.8 Statistical Analyses 

GraphPad Prism 6.01 (GraphPad Prism, San Diego, CA, USA) was used to analyse 

data. For visual scoring comparison of the frequency of DNA damaged cells at IR doses 

1, 2, and 4 Gy were compared to control (0 Gy) using one-way ANOVA followed by 
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Dunnett’s multiple comparison test. For LSC analyses, γH2AX data were checked for 

normality using D'Agostino and Pearson omnibus normality test. Comparison of the 

frequency of DNA damaged cells at IR doses 1, 2, and 4 Gy were compared to control 

(0 Gy) using the Kruskal-Wallis test followed by the Dunn's multiple comparisons test. 

Correlation coefficients were obtained using the Pearson correlation coefficient (r). Data 

were expressed as mean ± standard error of the mean (SEM). P<0.05 was considered 

statistically significant. 

3.3 Results 

3.3.1 Visual Scoring of γH2AX in Buccal Cells 

Representative images of nuclei are shown in Figure 3.1. Nuclei were classified into 3 

groups based upon the nuclear shape; either round, long or oval as shown in Figure 

3.1A, B and C, respectively. γH2AX foci were observed in buccal cell nuclei as shown 

in Figure 3.1A-D, even at baseline i.e. 0 Gy. The frequency (%) of buccal cell nuclei in 

6 individuals that had no γH2AX foci at baseline (0 Gy) was 11.70 ± 3.52%, 13.60 ± 

3.92% and 10.89 ± 2.80% for round, long and oval nuclei, respectively (totalling 36% 

of all nuclei) as shown in Table 3.1. Following exposure to IR the frequency of nuclei 

(all three types) containing no foci significantly decreased with increasing dose of IR 

exposure (Table 3.1). This suggested that IR exposure caused an increase in the levels 

of γH2AX in the buccal cell nuclei. On further examination, the frequency of long 

nuclei containing 15-30 γH2AX foci was significantly increased following IR exposure 

to 1 Gy (P<0.05), 2 Gy (P<0.001) and 4 Gy (P<0.0001) as shown in Table 3.1. 

Additionally, there was a significant increase in the frequency of round nuclei 

containing 15-30 γH2AX foci at 2 Gy (P<0.05) and 4 Gy (P<0.01). The frequency of 

oval nuclei containing no foci (10.89 ± 2.80%) significantly decreased to 4.04 ± 0.92%, 
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2.22 ± 0.54% and 1.69 ± 0.59% for 1 Gy (P<0.05), 2 Gy (P<0.01) and 4 Gy (P<0.01), 

respectively. i.e. there were dose-related increases in the frequency of nuclei with 15-30 

γH2AX foci across all nuclear types. However, there was no statistically significant 

increase in the frequency of oval nuclei containing 1-14 γH2AX foci, 15-30 γH2AX 

foci or diffuse γH2AX. In fact, regardless of nuclear type, there was no significant 

change in the frequency of nuclei containing diffuse γH2AX or 1-14 γH2AX foci 

following IR exposure (Table 3.1). 

 

Figure 3.1: Fluorescence images of buccal cell nuclei containing discrete or diffuse 
γH2AX foci. Buccal cell nuclei were visualised (stained with DAPI) with a 
fluorescence microscope as described in the Materials and Methods section. Nuclei 
were classified into 3 categories i.e. round nuclei (A), long nuclei (B) and oval nuclei 
(C). Discrete γH2AX foci were observed in A-C, however approximately 25% of nuclei 
at baseline demonstrated a diffuse pattern of γH2AX signal within nuclei (D). 
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Table 3.1: Visually scored γH2AX in buccal cells 

Frequency (%) of the different nuclear types classified (round, long and oval nuclei) containing γH2AX signals (n=6 
individuals, 375 cells scored for each individual) at 0, 1, 2 and 4 Gy in the 6 individuals A-E is shown. Data are 
presented as Mean ± SE. AP<0.05, BP<0.01, CP<0.001, DP<0.0001. 

3.3.2 Scoring of γH2AX in Buccal Cells by LSC 

Figure 3.3 shows a representative example of the data obtained from a single 

individual’s preliminary LSC assay (from “individual B”). To demonstrate the 

distribution of DNA content in the buccal cells, nuclei count versus DAPI integral 

(equivalent to DNA content) was plotted as shown in Figure 3.3A, whereby 2634 nuclei 

were examined. Nuclei were then classified as <2N, 2N or >2N prior to further 

analyses. Figure 3.3B shows the DAPI integral was correlated with nuclear area for the 

same 2634 nuclei as in Figure 3.3A. Figure 3.3C and 3.3D shows the γH2AX integral of 

individual B when plotted against DNA content (DAPI integral) for 0 Gy (mean = 0.131 

Nucleus shape γH2AX foci Radiation Dose 

ROUND  0 Gy 1 Gy 2 Gy 4 Gy 

0 foci 11.70 ± 3.52 4.13 ± 0.90A 1.82 ± 0.39B 1.20 ± 0.23B 

1-14 foci 3.20 ± 0.86 2.40 ± 0.91 1.69 ± 0.38 1.24 ± 0.64 

15-30 foci 10.20 ± 2.33 12.40 ± 2.54 17.87 ± 1.57A 20.00 ± 1.74B 

>30 diffuse foci 9.09 ± 1.52 10.71 ± 1.75 8.18 ± 1.70 7.78 ± 1.61 

LONG  0 Gy 1 Gy 2 Gy 4 Gy 

0 foci 13.60 ± 3.92 6.76 ± 1.97 2.49 ± 0.89B 0.71 ± 0.21B 

1-14 foci 1.92 ± 0.48 2.67 ± 0.93 1.82 ± 0.45 0.93 ± 0.33 

15-30 foci 9.14 ± 2.94 19.02 ± 1.40A 24.62 ± 1.36C 28.27 ± 2.64D 

>30 diffuse foci 8.93 ± 1.47 11.96 ± 1.67 12.40 ± 2.67 9.20 ± 3.07 

OVAL  0 Gy 1 Gy 2 Gy 4 Gy 

0 foci 10.89 ± 2.80 4.04 ± 0.92A 2.22 ± 0.54B 1.69 ± 0.59B 

1-14 foci 2.73 ± 0.55 2.18 ± 0.62 2.62 ± 0.69 0.76 ± 0.27 

15-30 foci 11.45 ± 2.91 14.22 ± 2.95 17.56 ± 1.37 15.73 ± 3.11 

>30 diffuse foci 7.15 ± 0.95 9.51 ± 1.30 6.71 ± 1.98 12.49 ± 3.46 

All nuclei types 
(round + long + oval) 

 0 Gy 1 Gy 2 Gy 4 Gy 

0 foci 36.17 ± 9.94 14.93 ± 2.80A 6.53 ± 0.90B 3.6 ± 0.60C 

1-14 foci 7.85 ± 1.66 7.23 ± 1.97 6.13 ± 1.39 2.93 ± 0.98 

15-30 foci 30.80 ± 7.72 45.63 ± 2.81 60.03 ± 2.55B 64.00 ± 6.45C 

>30 diffuse foci 25.18 ± 2.84 32.18 ± 1.97 27.28 ± 1.99 29.46 ± 7.54 
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x 106 a.u., n=2634 nuclei) and 4 Gy (mean = 3.25 x 106 a.u., n=1060 nuclei), 

respectively. 

3.3.2.1 2N nuclei 

Table 3.2 summarizes γH2AX integral measurements in buccal cells exposed to 0, 1, 2 

or 4 Gy for six individuals. All 6 individuals demonstrated a significant increase in 

γH2AX integral in buccal nuclei following exposure to IR as low as 1 Gy. The variation 

of baseline (0 Gy) γH2AX signals were variable between individuals. For example, 2 

individuals (B and E) had γH2AX signals that were less than 1 x 106 a.u. at 0 Gy, 

whereas the remaining 4 individuals had values that ranged from 1.209 to 6.067 x 106 

a.u. There was also considerable variation in the response of buccal cells to radiation 

exposure; indeed, the individuals with the lowest baseline γH2AX values (B and E) also 

showed the greatest fold increase in IR-induced γH2AX signal. For example, the 

γH2AX integral in individual B significantly increased from 0.132 x 106 a.u. at 0 Gy to 

1.009 x 106 a.u. (P<0.0001) at 1 Gy, 1.954 x 106 a.u. (P<0.0001) at 2 Gy and 2.673 x 

106 a.u. at 4 Gy (P<0.0001), representing up to a 20-fold increase of γH2AX signal in 

2N nuclei. Conversely, the individuals with the highest γH2AX integral at baseline (0 

Gy) showed the least IR-induced γH2AX signal response, although the responses were 

statistically significant. Although each individual had a significantly increased γH2AX 

integral following IR exposure; however, when the 4 IR doses were averaged (n=6 per 

IR dose), there was no significant difference between IR exposure doses compared to 0 

Gy, which was likely due to the large amount of inter-individual variation, particularly 

at baseline (0 Gy). 

Consistent with the increase in γH2AX integral post-IR as discussed above, both the 

γH2AX area (data not shown) and γH2AX MaxPixel values also increased significantly 
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with IR dose (Table 3.3). Additionally, both parameters (γH2AX area and MaxPixel) 

correlated well with the γH2AX integral values (γH2AX integral and γH2AX area 

correlation coefficients were R2=0.979 and R2=0.960 for γH2AX area and γH2AX 

MaxPixel, respectively) in buccal cell nuclei exposed to 0, 1, 2 and 4 Gy in all 

individuals (n=6) (Figure 3.4). 

3.3.2.2 <2N nuclei and >2N nuclei 

Tables 3.2 and Table 3.3 summarize γH2AX integral and MaxPixel, respectively for 

<2N and >2N nuclei from six individuals. For <2N nuclei, 3 out of 6 individuals 

showed a significant increase in γH2AX integral (Table 3.2) whereas for >2N nuclei 4 

out of 6 individuals had significantly increased γH2AX integral values at 4 Gy 

compared with 0 Gy. As expected, both the γH2AX area (not shown) and γH2AX 

MaxPixel (Table 3.3) values also increased significantly with IR dose. 

3.3.2.3 Inter- and intra-individual variation 

The variation between the six individuals examined for 2N nuclei ranged from 2.326 to 

8.942 x 106 a.u. at 4 Gy (Table 3.2). When a single individual’s γH2AX integral (2N) 

was measured on 6 separate occasions (individual B), the 4 Gy γH2AX integral ranged 

from 2.67 - 4.74 x 106 a.u. with a coefficient of variation of 20.5%. 

3.3.2.4 Nuclear shape 

In an attempt to score nuclear shape by LSC (as was done for visual scoring of buccal 

cell nuclei), we categorized nuclei as either round, long or oval by using several 

iterative processes in iCyte as shown in Figure 3.2. By using some of the features 

available within the iCyte software (area, perimeter, diameter and circularity), we 

empirically classified the buccal cell nuclei shapes and quantified the γH2AX MaxPixel 
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values as shown in (Table 3.4). For each individual, the dose-response data for each 

nuclear shape are shown at 0 – 4 Gy. For round nuclei, all 6 individuals showed a 

significant IR-induced increase in γH2AX MaxPixel values. For long nuclei, 3 out of 6 

individuals showed a significant increase, whilst for oval nuclei, 4 out of 6 individuals 

showed significant increases in MaxPixel values at 4 Gy compared with 0 Gy. 
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Figure 3.2: Identification of buccal cell nuclear shapes; round, long and oval, by 
laser scanning cytometry. The events from different scattergram regions were 
relocated and imaged (using an imaging gallery) to empirically identify the 3 different 
nuclear shapes present. (A) Individual nuclei were automatically contoured (red contour 
lines) as described in methods based on a thresholding procedure. γH2AX signal (green 
contour lines) was detected and quantified (integral or MaxPixel) within the nuclei 
following exposure to 0 – 4 Gy. (B) Nuclei having area values that ranged from 0-600 
µm2 and blue integral values that ranged from 0-4x107 (arbitrary units) in region 1 (R1) 
were analyzed in (C) by plotting their circularity (y-axis) versus nuclear area (x-axis) 
where “Round” nuclei were identified in region 2 (R2). (D) Nuclei from region 3 (R3) 
were further analyzed by plotting their perimeter/diameter ratio (y-axis) versus nuclear 
area (x-axis). Two new groups were established from R3; long nuclei were identified in 
R4 and oval nuclei in R5. Representative galleries of nuclear shape are shown for (E) 
round, (F) long and (G) oval nuclei. 
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Figure 3.3: DNA content and γH2AX quantification in buccal cell nuclei by laser 
scanning cytometry (LSC). A representative example from individual B showing: (A) 
buccal cell DNA content was calculated automatically from all nuclei by using the 
DAPI integral feature within the iCyte software; the DNA content was determined by 
categorizing nuclei as <2N, 2N and >2N. 2N was defined as the mean integral ± 1 S.D. 
Sub-2N and >2N were less and greater than 1 S.D. from the mean, respectively. 
Numbers in parentheses represent the percentage of nuclei. (B) The correlation of DAPI 
integral with nuclear area. γH2AX integral in buccal cells from individual B exposed to 
either 0 Gy (C) or 4 Gy (D) IR and γH2AX signal was plotted for all nuclei versus DNA 
content; the number of nuclei examined by LSC was n=2634 at 0 Gy and n=1060 nuclei 
at 4 Gy. 
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Figure 3.4: Correlation of γH2AX integral with γH2AX area and γH2AX MaxPixel 
by LSC. (A) Correlation of γH2AX foci area and γH2AX integral or (B) correlation of 
γH2AX MaxPixel and γH2AX integral, per nucleus scored by LSC in buccal cell nuclei 
exposed to 0, 1, 2 and 4 Gy in all individuals (n=6). The relationship of the two 
parameters fitted a second order polynomial (quadratic) resulting in correlation 
coefficients (R2) for γH2AX foci area = 0.979 and for γH2AX MaxPixel = 0.960). 
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Table 3.2: Summary of γH2AX integral (a.u. X106) by LSC in <2N, 2N or >2N 
buccal cells exposed to 0, 1, 2, or 4 Gy 

Letters denote the p-values when comparing 1, 2 or 4 Gy IR relative to 0 Gy for each individual. Data are presented 
as Mean ± SE. Numbers in parentheses represent the total number of nuclei that were scored at each IR dose. 
AP<0.05, BP<0.01, CP<0.001, DP<0.0001. 

<2N Individuals 0 Gy 1 Gy 2 Gy 4 Gy 

 
A 1.967 ± 0.293 

(n=108) 
3.509 ± 0.663 
(n=88) 

3.127 ± 0.518 
(n=102) 

4.152 ± 0.491A 

(n=111) 

 
B 0.092 ± 0.033 

(n=353) 
0.438 ± 0.101D 

(n=70) 
1.984 ± 0.203D 

(n=320) 
2.724 ± 0.540D 

(n=101) 

 
C 2.902 ± 0.570 

(n=102) 
3.500 ± 0.399 
(n=187) 

2.814 ± 0.264 
(n=366) 

2.278 ± 0.340 
(n=122) 

 
D 1.121 ± 0.119 

(n=313) 
2.915 ± 0.825 
(n=33) 

2.153 ± 0.237A 

(n=216) 
2.641 ± 0.332D 

(n=215) 

 
E 1.528 ± 0.873 

(n=155) 
2.090 ± 0.906 
(n=129) 

2.958 ± 2.327 
(n=70) 

1.057 ± 0.239 
(n=85) 

 
F 4.388 ± 0.516 

(n=74) 
5.227 ± 1.065 
(n=25) 

3.657 ± 0.458 
(n=99) 

6.440 ± 0.715 
(n=73) 

 Mean ± SE 2.000 ± 0.610 2.946 ± 0.655 2.782 ± 0.255 3.215 ± 0.761 

2N Individuals 0 Gy 1 Gy 2 Gy 4 Gy 

 
A 6.067 ± 0.298 

(n=586) 
7.484 ± 0.395A 

(n=397) 
7.745 ± 0.352C 

(n=498) 
8.942 ± 0.455D 

(n=388) 

 
B 0.132 ± 0.021 

(n=1913) 
1.009 ± 0.076D 

(n=751) 
1.954 ± 0.078D 

(n=2466) 
2.673 ± 0.122D 

(n=1312) 

 
C 3.337 ± 0.191 

(n=810) 
5.469 ± 0.179D 

(n=1626) 
4.333 ± 0.119D 

(n=3218) 
4.329 ± 0.229B 

(n=777) 

 
D 1.209 ± 0.059 

(n=1847) 
2.059 ± 0.221D 

(n=209) 
2.619 ± 0.114D 

(n=1444) 
3.877 ± 0.170D 

(n=976) 

 
E 0.511 ± 0.073 

(n=433) 
0.913 ± 0.105B 

(n=473) 
1.242 ± 0.418A 

(n=213) 
2.326 ± 0.622D 

(n=211) 

 
F 4.998 ± 0.337 

(n=379) 
6.122 ± 0.546B 

(n=148) 
5.627 ± 0.323A 

(n=433) 
8.872 ± 0.490D 

(n=326) 

 Mean ± SE 2.709 ± 1.010 3.843 ± 1.168 3.920 ± 1.007 5.170 ± 1.220 

>2N Individuals 0 Gy 1 Gy 2 Gy 4 Gy 

 
A 10.620 ± 1.536 

(n=58) 
12.040 ± 2.190 
(n=44) 

8.364 ± 1.147 
(n=73) 

9.229 ± 1.550 
(n=56) 

 
B 0.164 ± 0.047 

(n=368) 
3.052 ± 0.738D 

(n=59) 
3.478 ± 0.270D 

(n=441) 
7.388 ± 1.103D 

(n=108) 

 
C 5.389 ± 0.834 

(n=89) 
9.216 ± 1.053B 

(n=122) 
8.329 ± 0.624B 

(n=326) 
7.520 ± 0.952 
(n=89) 

 
D 1.070 ± 0.229 

(n=262) 
2.019 ± 0.527C 

(n=30) 
3.567 ± 0.456D 

(n=276) 
3.829 ± 0.451D 

(n=177) 

 
E 0.762 ± 0.286 

(n=61) 
0.640 ± 0.193 
(n=69) 

1.088 ± 0.612 
(n=33) 

2.739 ± 1.138A 

(n=34) 

 
F 4.367 ± 0.804 

(n=55) 
4.349 ± 0.941 
(n=30) 

8.736 ± 1.957 
(n=65) 

7.250 ± 0.854B 

(n=58) 

 Mean ± SE 3.729 ± 1.625 5.219 ± 1.818 5.594 ± 1.341 6.326 ± 1.015 
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Table 3.3: Summary of γH2AX MaxPixel (a.u.) by LSC in <2N, 2N or >2N buccal 
cells exposed to 0, 1, 2, or 4 Gy 

Letters denote the p-values when comparing 1, 2 or 4 Gy IR relative to 0 Gy for each individual. Data are presented 
as Mean ± SE. Numbers in parentheses represent the total number of nuclei that were scored at each IR dose. 
AP<0.05, BP<0.01, CP<0.001, DP<0.0001. 

<2N Individuals 0 Gy 1 Gy 2 Gy 4 Gy 

 
A 2994 ± 337 

(n=108) 
4241 ± 485 
(n=88) 

3728 ± 473 
(n=102) 

5614 ± 544B 

(n=111) 

 
B 332 ± 100 

(n=353) 
1820 ± 283D 

(n=70) 
2373 ± 217D 

(n=320) 
2698 ± 352 D 

(n=101) 

 
C 4092 ± 524 

(n=102) 
5356 ± 431A 

(n=187) 
4148 ± 263 
(n=366) 

4520 ± 460 
(n=122) 

 
D 2289 ± 203 

(n=313) 
3436 ± 782 
(n=33) 

2768 ± 241 
(n=216) 

3820 ± 323C 

(n=215) 

 
E 2023 ± 325 

(n=155) 
1913 ± 326 
(n=129) 

1897 ± 470 
(n=70) 

2279 ± 356 
(n=85) 

 
F 4680 ± 475 

(n=74) 
6560 ± 981 
(n=25) 

3932 ± 381 
(n=99) 

7449 ± 605B 

(n=73) 

 Mean ± SE 2735 ± 636 3887 ± 770 3141 ± 376 4396 ± 785 

2N Individuals 0 Gy 1 Gy 2 Gy 4 Gy 

 
A 5874 ± 206 

(n=586) 
6552 ± 247 
(n=397) 

7381 ± 250D 

(n=498) 
8124 ± 303D 

(n=388) 

 
B 445 ± 54 

(n=1913) 
3085 ± 152D 

(n=751) 
2593 ± 79D 

(n=2466) 
3062 ± 103D 

(n=1312) 

 
C 3598 ± 150 

(n=810) 
5484 ± 120D 

(n=1626) 
5185 ± 87D 

(n=3218) 
5064 ± 178D 
(n=777) 

 
D 2163 ± 84 

(n=1847) 
3242 ± 251C 

(n=209) 
3141 ± 100D 

(n=1444) 
4738 ± 142D 

(n=976) 

 
E 1092 ± 132 

(n=433) 
1498 ± 126B 

(n=473) 
1989 ± 289A 

(n=213) 
3274 ± 344D 

(n=211) 

 
F 5195 ± 274 

(n=379) 
6886 ± 414C 

(n=148) 
5673 ± 202 
(n=433) 

8199 ± 306D 

(n=326) 

 Mean ± SE 3121 ± 909 4457 ± 884 4327 ± 851 5410 ± 927 

>2N Individuals 0 Gy 1 Gy 2 Gy 4 Gy 

 
A 9212 ± 804 

(n=58) 
8786 ± 1025 
(n=44) 

8161 ± 819 
(n=73) 

9451 ± 1194 
(n=56) 

 
B 587 ± 120 

(n=368) 
6664 ± 984D 

(n=59) 
4012 ± 232D 

(n=441) 
6316 ± 583D 

(n=108) 

 
C 6575 ± 572 

(n=89) 
10772 ± 814C 

(n=122) 
10690 ± 426D 

(n=326) 
10658 ± 1060A 

(n=89) 

 
D 1793 ± 244 

(n=262) 
3632 ± 609 C 

(n=30) 
3759 ± 292D 

(n=276) 
5311 ± 440D 

(n=177) 

 
E 1608 ± 380 

(n=61) 
1841 ± 431 
(n=69) 

2182 ± 959 
(n=33) 

5027 ± 1410A 

(n=34) 

 
F 4938 ± 536 

(n=55) 
5210 ± 798 
(n=30) 

6983 ± 695 
(n=65) 

8133 ± 603C 

(n=58) 

 Mean ± SE 4118 ± 1376 6150 ± 1346 5964 ± 1306 7482 ± 939 
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Table 3.4: Summary of γH2AX MaxPixel (a.u.) by LSC in round, long and oval 
shaped nuclei of buccal cells exposed to 0, 1, 2, or 4 Gy 

Letters denote the p-values when comparing 1, 2 or 4 Gy IR relative to 0 Gy for each individual. Data are presented 
as Mean ± SE. Numbers in parentheses represent the total number of nuclei that were scored at each IR dose. 
AP<0.05, BP<0.01, CP<0.001, DP<0.0001. 

Round Individuals 0 Gy 1 Gy 2 Gy 4 Gy 

 
A 6435 ± 200 

(n=576) 
7443 ± 306A 

(n=277) 
7619 ± 256B 

(n=429) 
8376 ± 312D 

(n=366) 

 
B 1319 ± 54 

(n=623) 
3450 ± 143D 

(n=494) 
3686 ± 83D 

(n=1817) 
5223 ± 157D 

(n=625) 

 
C 4093 ± 131 

(n=792) 
5453 ± 117D 

(n=1484) 
5409 ± 82D 

(n=3227) 
5382 ± 134D 

(n=1227) 

 
D 2510 ± 52 

(n=1963) 
3339 ± 352 
(n=60) 

3534 ± 107D 

(n=866) 
5315 ± 136D 

(n=1015) 

 
E 1912 ± 88 

(n=431) 
2193 ± 105 
(n=323) 

2170 ± 140 
(n=133) 

3115 ± 184D 

(n=227) 

 
F 5372 ± 284 

(n=282) 
7727 ± 653B 

(n=62) 
5876 ± 220 
(n=378) 

8878 ± 305D 

(n=322) 

 Mean ± SE 3667 ± 857 4934 ± 942 4716 ± 800 6050 ± 888 

Long Individuals 0 Gy 1 Gy 2 Gy 4 Gy 

 
A 4286 ± 638 

(n=34) 
5941 ± 633 
(n=60) 

5662 ± 690 
(n=55) 

7061 ± 714A 

(n=53) 

 
B 1400 ± 90 

(n=60) 
2846 ± 236B 

(n=137) 
3690 ± 259D 

(n=198) 
3169 ± 281C 

(n=148) 

 
C 4334 ± 872 

(n=25) 
5207 ± 695 
(n=46) 

5541 ± 411 
(n=133) 

3870 ± 453 
(n=56) 

 
D 2519 ± 373 

(n=55) 
4150 ± 473 
(n=57) 

4537 ± 340B 

(n=116) 
4671 ± 427B 

(n=84) 

 
E 2473 ± 375 

(n=44) 
3666 ± 494 
(n=44) 

2894 ± 554 
(n=30) 

2753 ± 318 
(n=34) 

 
F 6951 ± 951 

(n=26) 
6936 ± 827 
(n=40) 

4682 ± 705 
(n=28) 

8880 ± 949 
(n=34) 

 Mean ± SE 3672 ± 803 4791± 621 4501 ± 436 5280 ± 984 

Oval Individuals 0 Gy 1 Gy 2 Gy 4 Gy 

 
A 6049 ± 464 

(n=124) 
6855 ± 388 
(n=167) 

7000 ± 450 
(n=155) 

7334 ± 545 
(n=106) 

 
B 1456 ± 50 

(n=1812) 
2698 ± 175D 

(n=210) 
3626 ± 114D 

(n=1030) 
3989 ± 234D 

(n=240) 

 
C 5418 ± 339 

(n=162) 
6371 ± 259 
(n=341) 

6774 ± 228B 

(n=478) 
6564 ± 298A 

(n=268) 

 
D 2578 ± 125 

(n=353) 
4030 ± 316D 

(n=115) 
3703 ± 106D 

(n=866) 
4656 ± 293D 

(n=220) 

 
E 2469 ± 166 

(n=143) 
2540 ± 142 
(n=249) 

2426 ± 247 
(n=128) 

2988 ± 339 
(n=54) 

 
F 4627 ± 284 

(n=178) 
6282 ± 551B 

(n=84) 
5071 ± 279 
(n=158) 

7836 ± 561D 

(n=91) 

 Mean ± SE  3310 ± 673 4384 ± 762 4320 ± 678 5206 ± 803 



 

109 

3.3.3 Correlation of Visually Scored γH2AX and γH2AX Integral by LSC 

The frequency of visually scored long nuclei (containing 15-30 foci) was strongly 

correlated with LSC scored γH2AX integrals in 5 out of 6 individuals (Figure 3.5). The 

Pearson correlation coefficients from individuals A-E were r = 0.945, 0.930, 0.608, 

0.964, 0.999 and one individual (individual F) showed no correlation. Indeed, for 

individual F, the LSC measured γH2AX integrals (including area and MaxPixel) 

significantly increased with IR dose (see Table 3.2, 2N nuclei, individual F). However, 

using the visual scoring criteria used here, we were unable to demonstrate significant 

differences between the frequency (%) of nuclei containing 15-30 foci at the different 

IR doses for individual F. This suggests that LSC was more sensitive to quantifying the 

small changes in IR-induced γH2AX signals in nuclei. 
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Figure 3.5: Correlation of visually scored and LSC quantified γH2AX signals in 
buccal cell nuclei exposed to 0, 1, 2 or 4 Gy IR. The frequency (%) of visually scored 
buccal nuclei containing 15-30 γH2AX foci are shown on the x-axis and the mean 
γH2AX integrals (by LSC) per 2N nuclei are shown on the y-axis for all individuals A-
E (n=6). Pearson correlation coefficients (r) and p-values are shown as insets within 
each graph. 
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3.3.4 Kinetics of γH2AX in Buccal Cells 

The time course of γH2AX was monitored at 0, 0.5, 3 and 24 h after the exposure of 

buccal cells to 4 Gy IR in 3 individuals (B, D and E). These individuals were chosen for 

γH2AX kinetics analyses since they had the greatest dose-response to irradiation at 0 - 4 

Gy. Figure 3.6A demonstrates that the mean frequency (%) of nuclei containing 15-30 

γH2AX foci, when scored visually, remained elevated for a period of up to 24 h post IR. 

A peak was reached at 30 min post IR exposure (4 Gy) and subsequently declined by 

40% at 24 h post IR (4 Gy); however, this remained significantly (P<0.0001) higher 

than the baseline value. A similar result was obtained by LSC as shown in Figure 3.6B. 

The γH2AX integral significantly increased (P<0.05) 30 minutes post IR exposure and 

then subsequently declined by 82% 24 h post IR which was not significantly different 

from the baseline value. 

 

Figure 3.6: 24 h kinetics of γH2AX foci in buccal cell nuclei assessed by visual 
scoring method or LSC. Buccal cells were exposed to 4 Gy IR and then subsequently 
incubated for 0, 0.5, 3 or 24 h prior to fixation. (A) The frequency (%) of buccal cell 
nuclei containing 15-30 γH2AX foci per nucleus was visually scored as described in 
methods. (B) γH2AX integral in 2N nuclei was determined by LSC. 
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3.4 Discussion 

The objective of the present study was to investigate the induction and persistence of 

DNA DSBs in irradiated human buccal cells. We used two scoring protocols to quantify 

ionizing radiation-induced γH2AX, a marker of DNA DSBs. Visual scoring of nuclei 

was correlated with the automated laser scanning cytometry (LSC) method developed 

here to quantify γH2AX integral (and MaxPixel) in each nucleus examined in thousands 

of buccal cells for each individual. Additionally, these LSC measurements were 

combined with quantitation of nuclear DNA content to classify cells depending on their 

DNA content (ploidy status) as well as nuclear shapes based on their area, perimeter, 

diameter and circularity. Our experimental results demonstrated that buccal cells 

exposed to IR have the capacity to accumulate γH2AX which partially remained up to 

24 h post IR exposure suggesting buccal cells have diminished capacity to repair DNA 

DSBs. We also observed a large variation in baseline levels of γH2AX and in γH2AX 

response to IR exposure. 

In the visual scoring study, we aimed to classify buccal cells into separate groups based 

upon their nuclear shapes. Since the buccal mucosa is known to consist of 

heterogeneous cell types that may have discrete functions within the mucosa (Patten et 

al. 1996, Thomas et al. 2008, Leifert et al. 2011, Darzynkiewicz et al. 2011, Francois et 

al. 2014a, Torres-Bugarin et al. 2014, Hosoya et al. 2008, Lavker, Sun 1982), we 

therefore hypothesized that our defined categories may also exhibit differences in their 

response to DNA damage induction and subsequent repair. In fact, our results 

demonstrated that γH2AX could be measured in buccal cells and that γH2AX response 

following IR varied between nuclei types as has been observed in previous studies 

(Gonzalez et al. 2010, Yoon et al. 2009, Mondal, Ghosh & Ray 2011). Long nuclei, for 
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instance, showed the largest dose response (up to 3-fold) to increasing radiation 

exposure (0, 1, 2 and 4 Gy) with a higher frequency of nuclei containing 15-30 foci. In 

contrast, no significant difference was observed for oval shaped nuclei, and a weaker 

dose response (up to 2-fold) was found in round nuclei containing 15-30 foci. 

Interestingly, there was no change in the the frequency of cells with diffuse foci 

following exposure to IR. It is likely that these “diffuse” nuclei we categorized here 

(approximately 25%) represent the necrotic or non-viable cell population expressing a 

phenotype of reduced response efficiency to DNA damage. This notion is consistent 

with previous studies showing that a relatively high proportion (up to 20%) of buccal 

cells are non-viable, necrotic, or apoptotic at baseline (Gonzalez et al. 2010, Schwartz et 

al. 2003, de Oliveira et al. 2008). For a more complete understanding of the DNA 

damage response biology of buccal cells, it would therefore be valuable in future studies 

to combine γH2AX detection with a cytoplasmic marker of cell sub-types present (if 

compatible with the current immunofluorescence protocol). Such markers could be met, 

for example, by the detection of cytokeratin proteins or other markers of epithelial cells, 

which are expressed differentially between buccal mucosa cell types depending on their 

differentiation status (Hosoya et al. 2008, Moll et al. 1982, Vaidya et al. 1989, Purkis et 

al. 1990). 

LSC has previously been shown as a useful tool to measure cellular DNA content for 

cell cycle stage evaluation in conjunction with γH2AX after inducing DNA damage 

(Zhao et al. 2009, Tanaka et al. 2007, Huang et al. 2004). It was therefore decided to 

include DNA content (measured by nuclear DAPI integral) as an additional 

measurement in our LSC protocol allowing us to classify nuclei as <2N, 2N or >2N. 

Previously, we demonstrated that approximately 60% of buccal cells are likely to be 

post-mitotic 2N nuclei (Francois et al. 2014a) which is similar to the results obtained in 
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this study (see Figure 3.3A). Our current findings support previous observations in that 

significant increases of γH2AX in buccal cell nuclei are induced by exposure to IR 

(Gonzalez et al. 2010). A significant increase in γH2AX signal in 2N nuclei up to 4 Gy 

was observed in all individuals and dose responses measured by LSC correlated with 

those measured visually. For <2N nuclei only three out of six individuals showed a 

significant increase in γH2AX at a dose of 4 Gy. Alternatively, four out of six 

individuals showed a significant increase in γH2AX at a dose of 4 Gy in >2N nuclei. 

We believe that the buccal cell <2N and >2N populations are mainly composed of 

apoptotic cells, condensed chromatin cells or cells immobilized at a cell cycle check 

point due to mitotic defects or abnormal nuclear DNA content (Francois et al. 2014a, 

Kirsch-Volders, Fenech 2001). The nature of the <2N and >2N population of cells may 

partly explain their somewhat lower response to radiation compared to the 2N cell 

population. 

Although all individuals showed an increase in γH2AX following IR exposure, when 

the individual data obtained for the six individuals was averaged, the significant 

differences between IR exposure doses compared to 0 Gy was absent in all three 

populations of nuclei (i.e. <2N, 2N and >2N). However, we believe this is due to the 

substantial differences observed in the γH2AX baseline levels at 0 Gy between the 

individuals in this study. Such variation in baseline γH2AX signal in human buccal cells 

has been observed previously when the γH2AX foci were scored. Indeed, values ranged 

from 0.08 γH2AX foci/nucleus (Gonzalez et al. 2010) to 4.08 γH2AX foci/nucleus 

(Mondal, Ghosh & Ray 2011); however, the former study excluded some buccal cell 

types from their analyses, which may partly explain the differences observed between 

previous studies. In our study, the LSC protocol was also utilized to extract data on 

γH2AX integral, MaxPixel and area measurements from within the contoured nuclei. 
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Both γH2AX MaxPixel and area correlated well with the γH2AX integral as expected, 

since the integral is a function of both γH2AX total intensity and γH2AX area. 

Furthermore, the increase in γH2AX MaxPixel and area indicates that the abundance of 

phosphorylated histone H2AX proteins accumulated at sites of DNA breakage, and that 

the accumulation of γH2AX was dose-dependent and readily quantifiable by LSC. 

Therefore, these types of quantifiable parameters (integral, intensity, area) could prove 

useful as alternative measures to quantify γH2AX responses within buccal cells that 

may be achieved with the use of other automated imaging platforms. 

Different nuclear shape morphology has been used as one of the criteria to distinguish 

nuclear abnormalities and has been used in patients with oral squamous cell carcinoma 

to assess radiosensitivity (Torres-Bugarin et al. 2014, Raj, Mahajan 2011). In this study, 

we assessed the γH2AX MaxPixel response to IR in different shaped buccal cell nuclei 

(round, long and oval). Although γH2AX MaxPixel dose-dependently increased there 

appeared to be no particular nuclear shape that was more responsive than the other. 

Nuclear shape could be a parameter used in future studies when comparing buccal cell 

nuclei at “baseline” (e.g. in studies comparing populations or disease states) as it may 

provide information on long-term (chronic) DNA damage. One advantage of LSC 

(compared with visual scoring) is that multiple parameters can be examined and 

quantified in cells (high content) simultaneously which may provide more information 

on cellular signaling. Ideally, this approach could be combined with cell morphology 

parameters to accurately identify the buccal cell-subtypes present. 

The kinetics of γH2AX response in buccal cells were investigated by measuring DNA 

damage levels up to 24 h post-IR. LSC and visual scoring demonstrated that γH2AX 

signals in nuclei peaked at 30 min after exposure to IR, which subsequently declined 
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over a period of 24 h. In some individuals the level of γH2AX remained higher than 

baseline levels 24 h after exposure, suggesting persistent DNA damage occurred. In a 

previous study investigating DNA DSBs in buccal cells, the longest time point 

following IR exposure was 5 h (Gonzalez et al. 2010). Our study, therefore, 

demonstrates for the first time that buccal cells express variable but persistent γH2AX 

responses up to 24 h post-IR. The kinetics of γH2AX can be rapid, with γH2AX 

declining over a period of hours (Rogakou et al. 1998, Madigan, Chotkowski & Glaser 

2002, Roch-Lefevre et al. 2010, Olive, Banath 2004). Persistence of DNA damage has 

also been observed in different models. For instance, a recent study that used Göttingen 

minipig skin biopsies found that IR-induced γH2AX foci was found to be significantly 

lower after 70 days post-IR exposure; however, a significantly higher number of 

γH2AX foci still remained in irradiated epidermal keratinocytes compared with controls 

(Ahmed et al. 2012). Most recently, γH2AX formation and removal in heart, brain and 

liver tissue following X-ray exposure was tested in adult Syrian hamsters; it was found 

that all tissues accumulated γH2AX but heart and brain tissues contained more 

persistent γH2AX 24 h post-IR indicating the presence of unrepaired DNA DSBs. This 

result suggested that kinetics of IR-induced H2AX phosphorylation (and γH2AX 

dephosphorylation) is tissue specific, being less efficient in heart and brain in 

comparison with liver and kidney (Firsanov et al. 2012). Since different tissues can have 

distinct γH2AX responses, it may not be possible to extrapolate buccal cell data 

generated from our study to investigations carried out on other tissues. Moreover, the 

high level of γH2AX still present in cells after 24 h suggest that buccal cells may simply 

not repair DNA damage as efficiently as other cell types. The persistent γH2AX signal 

after 24 hours could be explored for radiation biodosimetry purpose following a 

radiation accident. However, this may be limited by the large variation in baseline 
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γH2AX signal in cells not exposed to IR between individuals. Understanding the 

dietary, life-style, genotoxic exposure and genetic factors is essential prior to 

considering the possibility of using γH2AX assay in buccal cells for human 

biodosimetry. 

Although a better understanding of the biology of γH2AX response in buccal cells is 

needed, our findings suggest that buccal mucosa may be a tissue of interest in 

monitoring radiation exposure in humans or monitoring levels of DNA damage in 

patients undergoing radiotherapy. Such large-scale monitoring may be made possible 

with the use of LSC. Indeed, the full automation of this LSC method offers an efficient 

unbiased and quantifiable measure of γH2AX abundance in a large number of cells 

(thousands of cells per individual) and should be considered as an alternative method to 

visual scoring, which is labor-intensive and subject to bias. Additionally, the LSC 

protocol presented here can combine accurate measurement of γH2AX signal with 

nuclei ploidy status and by its design, can potentially incorporate the simultaneous 

measurement of other cellular proteins/markers involved in DNA damage/repair 

signaling processes. 
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Chapter 4: γH2AX Levels in Human Buccal Cells is 

Significantly Associated with Alzheimer’s Disease in the 

Australian Imaging, Biomarkers and Lifestyle Flagship Study 

of Ageing (AIBL) 
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Abstract 

In response to double-stranded breaks (DSBs) in chromosomal DNA, H2AX (a member 

of histone H2A family) becomes phosphorylated to form γH2AX. Although increased 

level of γH2AX has been reported in the neuronal nuclei of Alzheimer’s disease (AD) 

patients, the understanding of γH2AX responses in buccal nuclei of individuals with 

Mild cognitive impairment (MCI) and AD remain unexplored. In the current study, 

endogenous γH2AX level was measured in the buccal nuclei from MCI (n=18) or AD 

(n=16) patients and in healthy controls (n=17) using laser scanning cytometry (LSC). 

The γH2AX level was significantly elevated in nuclei of the AD group compared to the 

MCI and control group, and there was a concomitant increase with a significant trend 

for increase in γH2AX from the control group through MCI to the AD group. Receiver-

Operating Characteristic (ROC) curves were carried out for different γH2AX 

parameters, and γH2AX MaxPixel resulted in the greatest area under the curve (AUC) 

value of 0.7794 (p=0.0062) with 75% sensitivity and 70 % specificity for the 

identification of AD patients from control. In addition, nuclear circularity (irregular 

nuclear shapes) was significantly higher in the buccal nuclei from AD group compared 

to the MCI and control groups. This result was further supported by a positive 

correlation between the nuclear circularity and γH2AX signals. The results indicated 

that γH2AX level in buccal nuclei could be used as a potential diagnostic in identifying 

individuals with increased risk of developing MCI and AD. 
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4.1 Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disease that is characterised clinically 

by severe memory loss, cognitive deterioration and behavioural changes (Alzheimer's 

Association, Thies & Bleiler 2011, Burns, Byrne & Maurer 2002). AD is the most 

common cause of dementia in old age, representing approximately 60–80% of all 

dementia cases (Lobo et al. 2000, Tijms et al. 2013, Forlenza et al. 2013). According to 

the World Health Organization, 46.8 million people were affected by dementia in the 

year 2015 (Prince et al. 2015). It has been estimated that by the year 2030, 74.7 million 

people will be affected by AD unless effective interventions are implemented (Prince et 

al. 2015). This increase in the prevalence of AD not only reduces the quality of life, 

health and wellbeing of those affected but also causes a significant financial burden at 

both the social and economic levels (Sloane et al. 2002). 

The classic neuropathological lesions in AD consist of (i) aggregated amyloid plaques 

containing extracellular hydrophobic deposition of amyloid β peptides (Aβ) in the 

neuronal body, and (ii) neurofibrillary tangles composed of aggregates of 

hyperphosphorylated and misfolded tau protein (a microtubule-associated protein) that 

appear within the neurons (Ittner, Gotz 2011). Alzheimer’s patients are usually 

identified by neuropsychological assessment when the disease has progressed to an 

advanced stage of cognitive impairment when it is already too late to cure (Weintraub, 

Wicklund & Salmon 2012, Storandt 1991). Currently the ability to detect the early stage 

of AD and track the different stages of AD progression to guide the choice of therapy is 

limited. The Mini-Mental State Examination (MMSE) is a validated research-based set 

of 30 questions assessing memory loss, cognitive decline, visuospatial and language 

impairment that is currently used as a standard tool for the clinical diagnosis of AD 



 

121 

(Tombaugh, McIntyre 1992, Mitchell 2009). However, the test lacks accuracy for the 

diagnosis of AD in living subjects, and diagnostic confirmation can only be achieved 

post-mortem by the examination of the senile plaques and neurofibrillary tangles in the 

cerebral tissue (Armstrong 2006, Nelson et al. 2012). The most validated AD disease-

related established diagnostic biomarkers are cerebrospinal fluid (CSF) (aβ1-42, total 

tau, and phosphorylated tau), structural magnetic resonance imaging (MRI) (e.g., 

hippocampal volumetry), amyloid-positron emission tomography and 

fluorodeoxyglucose-positron emission tomography imaging (Humpel 2011, Henry et al. 

2012). Mild cognitive impairment (MCI) is an intermediate state between the cognitive 

changes of normal aging and the earliest clinical signs of dementia and is represented as 

a declining cognition that does not meet the diagnostic criteria for dementia (Gauthier et 

al. 2006).  Individuals affected by MCI have a higher risk of developing AD with an 

annual conversion rate of approximately 10-15% per year (Petersen et al. 2009, Fischer 

et al. 2007, Farias et al. 2009). Recent evidence indicates that AD is a systemic disorder 

that can be mirrored by subclinical pathologies in various peripheral tissues other than 

the brain, thereby rationalising the grounds for investigating cellular biomarkers in 

peripheral tissues for the diagnosis of MCI/AD risk (Gasparini et al. 1998, Joachim, 

Mori & Selkoe 1989, Soininen et al. 1992, Khan, Alkon 2015, Goldstein et al. 2003). 

There is a need for non-invasive biomarkers and inexpensive diagnostic approaches 

with high specificity and sensitivity to identify individuals at increased risk of 

developing MCI and AD so that early diagnosis and the initiation of preventative 

therapy is commenced to halt progression to irreversible neurological impairment. 

Human buccal mucosa has considerable potential as an easily accessible source of cells 

that can be collected in a minimally invasive manner. Defects in buccal mucosa cells 

may reflect systemic changes in pathology in other tissues of ectodermal origin, such as 
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the nervous system (Leifert et al. 2011, Francois et al. 2014a, Francois et al. 2014b). It 

has been suggested that the ubiquitous presence and different expression of β-amyloid 

precursor protein (APP) in the buccal mucosa could be a useful means to estimate the 

regenerative status of tissue (Kummer et al. 2002). Accumulation of tau protein in the 

brain is the major component of neurofibrillary tangles and is the hallmark of AD 

pathogenesis (Braak, Braak 1991, Khan, Bloom 2016). The amount of buccal cell tau 

protein was observed at higher levels in AD subjects and correlated with the levels of 

tau protein in the CSF (Hattori et al. 2002). AD is associated with genomic DNA 

damage, and lack of DNA repair capacity could potentially lead to genomic instability 

(Fraga et al. 1990, Goukassian et al. 2000, Wilson, Bohr & McKinnon 2008, Thomas, 

Fenech 2008, Bucholtz, Demuth 2013, Lovell, Xie & Markesbery 2000).  

The buccal micronucleus cytome (BMCyt) assay has been developed to score the 

cytological marker of DNA damage, cell death, and regenerative capacity of buccal 

mucosa cells (Thomas et al. 2009, Thomas, Fenech 2008). Individuals who had just 

been diagnosed with AD, but had not yet taken medication for their condition, had 

significantly reduced basal buccal cells frequency compared to unaffected age-matched 

controls suggesting reduced regenerative capacity. Aneuploidy (abnormal chromosomal 

number), has been investigated in buccal cells of AD patients in comparison with 

respective controls, with the results showing a higher aneuploidy level in chromosomes 

17 and 21, which are known to encode Tau and APP, respectively (Iqbal et al. 1989, 

Koo 2002, Thomas, Fenech 2008). A recent study showed abnormal DNA content (e.g., 

hyperploidy in nuclei; a marker of aneuploidy) in buccal mucosa cells of AD patients 

(Francois et al. 2014a). The same study also demonstrated decreased amount of neutral 

lipids as measured by Oil Red-O staining in buccal cells from MCI patients (Francois et 

al. 2014a). Buccal samples of AD patients were tested for telomere shortening and 
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displayed a significantly shorter telomere length when compared to healthy older 

controls (Thomas, O'Callaghan & Fenech 2008). A previous study suggested that DNA 

strand breaks may be increased in MCI and AD patients (Migliore et al. 2005). 

In response to double-stranded breaks (DSBs) in chromosomal DNA, H2AX (a member 

of histone H2A family and part of the chromatin structure) becomes phosphorylated to 

form γH2AX (Rogakou et al. 1998). γH2AX has also been found to be increased in 

neuronal cells of AD and with ageing in lymphocytes (Myung et al. 2008, Schurman et 

al. 2012, Silva et al. 2014). While H2AX is distributed uniformly throughout chromatin, 

only H2AX molecules located in close vicinity to DSBs become phosphorylated 

(Rogakou et al. 1998, Savic et al. 2009, Rogakou et al. 1999). The association of 

astrocyte degeneration and DNA damage with AD has been elucidated by investigating 

γH2AX signals in astrocytes from the hippocampus, which is known to be the most 

vulnerable region affected by AD (Myung et al. 2008). The results showed a 

significantly increased amount of γH2AX-immunopositive nuclei in the astrocytes of 

AD patients in comparison to healthy controls, suggesting that astrocytes may be 

associated with impaired neuronal function and contribute to the pathogenesis of AD 

(Myung et al. 2008). Additionally, a recent study reported elevated γH2AX levels in the 

hippocampal tissue of individuals with both AD pathology and clinical dementia than 

those seen in a normal ageing group (Silva et al. 2014). γH2AX has been used as a DSB 

marker in irradiated human buccal cells and was found to be dose responsive in 

different buccal cell types (Siddiqui et al. 2015, Gonzalez et al. 2010). However, buccal 

cell DNA damage involving γH2AX, an important marker of DNA damage and DNA 

damage response, has not been reported in neurodegenerative disorders such as AD.  
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Taken together, the evidence outlined above forms the basis of the hypothesis we tested 

that buccal cells from individuals with MCI and AD exhibit elevated levels of γH2AX 

compared to buccal cells from healthy controls. To test this hypothesis, the endogenous 

levels of γH2AX in buccal cells from participants in the Australian Imaging, 

Biomarkers and Lifestyle Flagship Study of Ageing (AIBL) who were either healthy 

controls, MCI cases or AD cases were measured. An automated laser scanning 

cytometry (LSC) γH2AX protocol was used to measure multiple parameters (area, 

integral, MaxPixel) of γH2AX signals, as well as the ploidy and nuclear shapes and 

senescent cells in thousands of buccal cells. 

4.2 Methods and Materials 

4.2.1 Human Ethics and Clinical Assessment of the Participants 

Approval for the Australian Imaging, Biomarkers and Lifestyle Flagship Study of 

Ageing (AIBL) was from the institutional ethics committees of Austin Health 

(Parkville, Vic, Australia), St Vincent’s Health (Fitzroy, Vic, Australia), Hollywood 

Private Hospital (Nedlands, WA, Australia), Edith Cowan University (Perth, WA, 

Australia) and CSIRO Australia. All volunteers were informed of the purpose of the 

study and gave written consent before participating in the study. The demographic and 

health characteristics of participants included in this study have been well characterized 

and reported previously (Ellis et al. 2009). Diagnosis of MCI and AD was performed 

and confirmed by experienced AIBL clinicians using a battery of neuropsychological 

tests that were selected on the basis that together then covered the main domains of 

cognition that are affected by AD and other dementias (Ellis et al. 2009). Data reported 

in this study are from a total of 51 randomly sub-sampled participants, including: (1) the 

cognitively healthy control (C) group (n=17); the MCI group (n=18) clinically 
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diagnosed with MCI; and the (3) AD group (n=16) clinically diagnosed with AD. Full 

blood pathology testing was conducted as described previously (Doecke et al. 2012, 

Faux et al. 2011). There were no blood pathology data available for 10 participants. 

4.2.2 Buccal Cell Collection and Microscopic Slide Preparation 

Prior to buccal cell collection, each participant was first required to rinse their mouth 

twice with water. Small flat headed toothbrushes were rotated 20 times against the inner 

part of the cheeks in a circular motion. Both cheeks were sampled using separate 

toothbrushes. Heads of the brushes were transferred into a 25 mL tube containing 20 

mL of Saccomano’s fixative solution and agitated vigorously to dislodge cells into the 

solution. Cells were then centrifuged at 1000g for 10 min before discarding and 

replacing supernatant with fresh 5 mL of buccal cell buffer (10mM Tris, 0.1 M 

ethylenediaminetetraacetic, 20 mM NaCl, i.e. pH 7.0. The cell suspension was drawn up 

and down for 5 times into a 10 mL syringe using 21 G needle in order to maximize the 

likelihood of getting single cells in suspension. The cell suspension was then passed 

through a 100 µm filter in a Swinex filter holder to remove clumps of cells. Cell 

concentration was assessed using a haemocytometer and cells were then cytocentrifuged 

for 5 min at 600 rpm onto microscope slides to a final number of 3,000 cells per 

cytospot using a Shandon CytospinVR 4 (Thermo Scientific, USA). Slides were washed 

once with distilled water and air-dried for 1 h and subsequently transferred to ethanol: 

acetic acid (3:1) fixative for 10 min. The slides were air-dried for 1 h and stored in 

sealed microscope boxes with desiccant at -80°C until the staining procedure was 

performed. 
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4.2.3 Preparation of Buccal Cells for Immunofluorescence 

A circle was drawn around each cytospot using a hydrophobic PAP pen (Dako, 

Australia) and air-dried for 10 min. Slides were rinsed in Dulbecco’s phosphate 

buffered saline (DBPS) for 15 min, incubated in chilled 70% ethanol for 20 min and 

washed in DPBS for 15 min. Buccal cell cytospots were then treated with 150 µl of 

prewarmed (37°C) pepsin solution (containing 750 U/ml of porcine gastric mucosa 

pepsin) in 0.01 M HCl and then covered with parafilm for 30 min at 37°C in a 

humidified box. The slides were then washed twice with DPBS for 5 min. Buccal cells 

were then permeabilized with 1% Triton X-100 for 15 min at room temperature. Slides 

were then rinsed three times in DPBS, and a blocking step was performed by incubating 

cells in 10% goat serum for 1 h at room temperature before being washed once with 

DPBS. The anti-γH2AX antibody was added to each cytospot at a dilution of 1:100 in 

DPBS containing 10% goat serum and covered with parafilm overnight at 4 0C in a 

humidified box. Slides were washed three times in DPBS for 5 min and a secondary 

antibody Alexa Fluor 488 Goat antimouse was added to each cytospot at a dilution of 

1:500 in DPBS containing 10% FBS and covered with parafilm for 1 h at room 

temperature. Slides were washed three times in DPBS for 5 min and nuclei were 

counterstained with 4,6-diamidino-2-phenylindole (DAPI) at a concentration of 1 µg/ml 

for 10 min at room temperature. The excess DAPI was removed by rinsing the slides 

with a solution containing 300 mM NaCl and 34 mM sodium citrate. Slides were then 

mounted with coverslips and DPBS: glycerol (1:1) medium. The edges of coverslips 

were sealed with nail polish to prevent drying prior to performing LSC. 
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4.2.4 Laser scanning cytometry measurements of γH2AX 

Laser scanning cytometry (LSC) measurements were carried out with an iCyte® 

Automated Imaging Cytometer (Thorlabs, Sterling Virginia, USA) with full autofocus 

function as well as 405 nm and 488 nm lasers for excitation of DAPI and Alexa Fluor 

488, respectively. Fluorescence from DAPI (blue) and Alexa Fluor 488 (green) was 

collected with a photomultiplier tube. Samples were scanned in separate passes 

(consecutively) to prevent spectral overlap. The nuclei and γH2AX events were 

contoured using empirically determined thresholds to exclude the scoring of false 

positives (e.g., small fluorescent debris). The frequency (%) of nuclei containing 

γH2AX signal was recorded as well as multiple parameters within each nucleus; 

including the total γH2AX integral (a function of γH2AX intensity and size) and the 

MaxPixel value (the value of the most intense γH2AX signal/pixel within nuclei). These 

parameters were generated using the iCyte® 3.4 software and subsequently transferred 

into excel for further statistical analyses. Nuclei were also classified into round, long, or 

oval shapes by utilizing the iCyte software parameters which included area, circularity, 

perimeter and diameter as described in the legend of Figure 4.1. Additionally, all nuclei 

were separated according to their ploidy status (DNA content) as follows; <2N, 2N, and 

>2N and cellular senescence status. For 2N nuclei, the peak of the nuclei count 

coincided with the mean DAPI integral. 

4.2.5 Statistical Analysis 

GraphPad Prism 6.01 (GraphPad Prism, San Diego, CA) was used to statistically 

analyse the data. LSC γH2AX data were checked for normality using the D’Agostino 

and Pearson omnibus normality test. Differences in relative γH2AX signals in the 

lymphocytes from control, MCI, and AD groups were compared using the Kruskal-
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Wallis test for non-Gaussian distributed data followed by Dunn’s multiple comparisons 

test. Correlation coefficients were obtained using Pearson’s correlation coefficients for 

Gaussian distributed data and Spearman’s rho for non-Gaussian distributed data. 

Analysed data are reported as mean ± standard error of the mean (SEM) with p<0.05 

considered statistically significant. Receiver-operating characteristic curves (ROC) were 

prepared for selected γH2AX parameters between the control and MCI or AD groups to 

obtain the area under the curve (AUC), sensitivity, specificity, confidence interval and 

p-value. 
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Figure 4.1: Scattergram and histogram for separation of buccal cell nuclei types by 
LSC. A representative example of DNA content scattergram and histogram for a 
participant from the control group. (A) A scattergram was generated to separate cells 
based on differences in nuclear staining and area by plotting their blue integral versus 
the area. Nuclei having area values that ranged from 0 to 600 µm2 and blue integral 
values that ranged from 0 to 4 X 107 (arbitrary units) were separated in Region 1 (R1). 
(B) Nuclei in R1 were analyzed by plotting their circularity (y-axis) versus nuclear area
(x-axis) where “Round” nuclei were identified in Region 2 (R2). (C) Nuclei from
Region 3 (R3) were further analyzed by plotting their perimeter/diameter ratio (y-axis)
versus nuclear area (x-axis). Two new groups were identified from R3; long nuclei were
identified in R4 and oval nuclei in R5. Representative galleries of round, long, and oval
nuclei different buccal cell nuclear shapes are shown in Chapter 3 Section 3.2.2.4 and
Figure 3.2. A histogram plot of the same data in R1 showing the <2N, 2N and >2N
peaks as represented in R6, R7, and R8, respectively, and the respective frequency of
DNA content events scored, with the majority of buccal cells being scored as 2N. (E).
Nuclei in R1 were plotted against nuclear area versus the ratio of the maximal pixel
intensity /area of DAPI fluorescence per nucleus. These cells had morphometric
characteristics of cellular senescence [i.e., increased nuclear size (area) combined with
decreased intensity of MaxPixel of DNA-associated fluorescence per nucleus, after
DNA staining with DAPI] were separated in R9.
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4.3 Results 

4.3.1 Clinical Characteristics of Participants 

The mean age, gender distribution (male/female), body mass index (BMI) and MMSE 

score of AIBL participants in the control, MCI and AD groups is shown in Table 4.1. 

There were no significant differences for gender ratio and BMI between the groups, 

while there was a significant difference in age (p=0.0039) between control and AD 

group. As expected, there was a significant decrease in the MMSE scores of both the 

MCI (p=0.0126) and AD (p=<0.0001) groups compared with the control group. 

Table 4.1: Clinical characteristics of participants 

 Control 
n=18 

MCI 
n=17 

AD 
n=16 

Sex (M:F) 12:6 11:6 9:7 

Age (years) 72.2 ± 1.5 78.7 ± 1.9 81.0 ± 1.8 ** 

BMI 27.0 ± 1.3 23.4 ± 1.3 24.8 ± 1.1 

MMSE score 29.1 ± 0.2 26.0 ± 0.8 * 12.8 ± 1.8 **** 

Means and standard error of the mean (SEM) are reported for each group. Significance was accepted at p<0.05. 
Abbreviations: AD, Alzheimer’s disease; F, Female; M, Male; MCI, Mild cognitive impairment; MMSE, Mini-
Mental State Examination score. *p<0.05, **p<0.01, ****p<0.0001. 

4.3.2 Scoring of γH2AX Signals in Buccal Cells by LSC 

The endogenous γH2AX levels in buccal cells from control, MCI, and AD cases were 

measured by LSC assay in order to investigate whether the γH2AX level is significantly 

increased in AD compared to control cells. Multiple parameters of γH2AX signals, 

including the total γH2AX integral (a function of γH2AX intensity and size), γH2AX 

MaxPixel (the value of the most intense γH2AX signal/pixel within a nucleus), γH2AX 

area, and the number of γH2AX events (foci) per cell were measured in all nuclei and/or 
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in cells with different DNA content (ploidy status), different nuclear shapes as well as in 

senescent cells. 

4.3.2.1 γH2AX in All Nuclei 

Table 4.2 summarises the one-way ANOVA results for the different γH2AX parameters 

(integral, MaxPixel, area and foci/nucleus) for all nuclei, which included <2N nuclei, 

2N nuclei, and >2N nuclei analysed from the control, MCI and AD groups. There was a 

significant increase in the γH2AX integral (p=0.0332) in AD cells compared to control 

cells in all nuclei (Table 4.2, 1A, and Figure 4.2, A). Consistent with the increase in the 

γH2AX integral, a significant increase in the γH2AX MaxPixel value (p=0.0199) and 

the numbers of γH2AX foci/nucleus (p=0.0234) were also observed in AD cells 

compared to control cells (Table 4.2, 1A and Figure 4.2, B and 4.2, D). Although all 

nuclei had a higher level of γH2AX (MaxPixel, foci/nucleus) in MCI cells compared to 

control cells, there was no statistically significant differences in these parameters. 

However, a significant increase in the linear trend for the γH2AX MaxPixel value 

(p=0.0124) was observed across the groups (i.e., AD > MCI > control) in all nuclei 

(Figure 4.2, B). There was also significant increase in the γH2AX MaxPixel value 

(p=0.0458) in AD cells compared to MCI cells (Table 4.2, 1A, Figure 4.2, B). 

Individual data are also presented in [Figure 4.3 (A-D)]. 

4.3.2.2 γH2AX in 2N Nuclei 

There was a significant increase in the γH2AX integral value (p=0.0485), γH2AX 

MaxPixel value (p=0.0159) and number of γH2AX foci/nucleus (p=0.0211) in AD cells 

compared to control cells (Table 4.2, 1C)). No significant increase in any of the γH2AX 

parameters was seen between the control and MCI cells and between MCI and AD cells. 
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In addition, a significant increase in the γH2AX MaxPixel value (p=0.0281) was 

observed in AD cells compared to MCI cells (Table 4.2, 1C).  

4.3.2.3 γH2AX in <2N and >2N Nuclei 

For the <2N nuclei, a significant increase in the γH2AX signals (integral, MaxPixel, 

area, foci/nucleus) was observed in AD compared to control cells, at p=0.0406, 

p=0.0216, p=0.0498 and p=0.0064, respectively (Table 4.2, 1B). The >2N nuclei 

showed significantly increased γH2AX integral, γH2AX MaxPixel, γH2AX area, 

γH2AX foci/nucleus in AD compared to control cells (Table 4.2, 1D). Additionally, 

both the γH2AX integral and γH2AX area values also increased significantly (p=0.0174 

and p=0.0414, respectively) in AD compared to MCI cells for >2N nuclei (Table 

4.2,1D).  
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Table 4.2: Summary of one-way ANOVA tests for different γH2AX parameters 
measured using LSC in different types of buccal cell nuclei 

LSC 
Con MCI AD 

Con v 
MCI 

Con vs 
AD 

MCI vs 
AD 

Mean+/-SEM Mean+/-SEM Mean+/-SEM p-value p-value p-value 

1A: All nuclei 

γH2AX integral 
(x106 a.u.) 

3.873+/- 1.733 2.280+/-0.6092 5.088+/-1.611 NS 0.0332 0.0512 

γH2AX MaxPixel 
(a.u.) 

3365+/-458.5 3931+/-673.5 6477+/-1244 NS 0.0199 0.0458 

γH2AX area (µm) 51.47+/- 21.94 29.34+/-6.624 51.62+/-9.776 NS 0.0645 0.1633 

γH2AX 
foci/nucleus 

1.510+/-0.2912 1.943+/-0.3310 2.940+/-0.3316 NS 0.0234 0.1176 

 1B: < 2N nuclei 

γH2AX integral 2.827+/-1.105 2.098+/-0.559 4.253+/-0.983 NS 0.0406 0.0619 

γH2AX MaxPixel 3459+/-476.9 3922+/-629.8 6498+/-1263 NS 0.0216 0.0745 

γH2AX area 40.29+/-16.22 27.72+/-5.742 46.54+/-7.902 NS 0.0498 0.1975 

γH2AX 
foci/nucleus 

0.8886+/-0.1652 1.366+/-0.1802 1.851+/-0.2257 NS 0.0064 0.6317 

 1C: 2N nuclei 

γH2AX integral 3.954+/-1.914 2.201+/-0.592 5.057+/-1.788 NS 0.0485 0.1273 

γH2AX MaxPixel 3309+/-445.8 3764+/-625.2 6465+/-1266 NS 0.0159 0.0281 

γH2AX area 51.56+/-23.32 29.29+/-6.655 50.13+/-10.96 NS 0.1018 0.2603 

γH2AX 
foci/nucleus 

1.660+/-0.3251 2.068+/-0.3792 3.145+/-0.3631 NS 0.0211 0.1173 

 1D: <2N nuclei 

γH2AX integral 12.58+/-6.035 3.842+/-1.039 18.20+/-4.103 NS 0.0069 0.0174 

γH2AX MaxPixel 3580+/-728.9 4879+/-921.7 8227+/-1388 NS 0.0008 0.0552 

γH2AX area 128.8+/-53.45 52.24+/-16.46 195.4+/-40.74 NS 0.0187 0.0414 

γH2AX 
foci/nucleus 

2.891+/-0.7799 4.246+/-1.499 5.711+/-0.795 NS 0.0176 0.0792 

 

 

Parameters highlighted in bold text were considered statistically significant. Data were expressed as mean ± SEM. 
Abbreviations: a.u., Arbitrary units; AD, Alzheimer’s disease; MCI, Mild cognitive impairment; NS= non-significant. 
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Figure 4.2: γH2AX signals (integral, MaxPixel, area, foci/nucleus) in all nuclei. 

A: γH2AX integral; B: γH2AX MaxPixel; C: γH2AX area; D: γH2AX foci/nucleus. 
These parameters were measured by LSC for control (n=17), MCI (n=18), AD (n=16). 
Abbreviations: a.u., Arbitrary units; AD, Alzheimer’s disease; MCI, Mild cognitive 
impairment. Data are means ± SEM. 

A B 

C D 
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Figure 4.3: Individual data of γH2AX parameters (integral, MaxPixel, area, 
foci/nucleus) in all nuclei.  

A: γH2AX integral; B: γH2AX MaxPixel; C: γH2AX area; D: γH2AX foci/nucleus. 
These parameters were measured by LSC for control (n=17), MCI (n=18), AD (n=16).  
Abbreviations: a.u., Arbitrary units; AD, Alzheimer’s disease; MCI, Mild cognitive 
impairment. Data are means. Lines within data points indicate mean.  
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Nuclear Shape 

In the previous study (see Section 3.3.2.4, Figure 3.2) we demonstrated morphological 

changes in nuclear shape parameters such as round, long, and oval (Siddiqui et al. 

2015). Therefore, in this study round, long and oval nuclei were investigated from 

control, MCI and AD cases using LSC. Table 4.3 summarises the one-way ANOVA 

results for the different γH2AX parameters (integral, MaxPixel, area and foci/nucleus) 

for round, long and oval nuclei analysed from the control, MCI and AD groups. 

4.3.3 γH2AX in round Nuclei 

There was a significant increase in the γH2AX MaxPixel value (p=0.0207) and numbers 

of γH2AX foci/nucleus (p=0.0420) in round nuclei of AD cells compared to control 

cells (Table 4.3, 1A). No significant increase of any of the γH2AX parameters was seen 

between the control and MCI cells and between MCI and AD cells. 

4.3.4 γH2AX in long Nuclei 

For long nuclei, significant increases in the γH2AX MaxPixel value (p=0.0119) and 

numbers of γH2AX foci/nucleus (0.0209) were observed in AD cells compared to 

control cells. As seen in the round nuclei, no significant increase of any of the γH2AX 

parameters was seen between the control and MCI cells and between MCI and AD cells 

(Table 4.3, 1B) 

4.3.5 γH2AX in oval Nuclei 

For oval nuclei, a significant increase in the γH2AX integral value (p=0.0264), γH2AX 

MaxPixel value (p=0.0135) and numbers of γH2AX foci/nucleus (0.0091) were 

observed in AD cells compared to control cells. However, no significant increase of any 
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of the γH2AX parameters was seen between the control and MCI cells and between 

MCI and AD cells (Table 4.3, 1C). 

It does not appear that nuclear shape substantially alters or influences the relative 

differences in the buccal cell γH2AX parameters in AD cases versus controls. 

Table 4.3: Summary of one-way ANOVA tests for different γH2AX parameters 
measured using LSC in round, long and oval nuclei from buccal cells 

LSC 
Con MCI AD 

Con v 
MCI 

Con vs 
AD 

MCI vs 
AD 

Mean+/-SEM Mean+/-SEM Mean+/-SEM p-value p-value p-value 

1A. Round  

γH2AX integral (x106 

a.u.) 
3.440+/-1.820 2.182+/-0.669 4.514+/-1.722 NS 0.1424 0.4755 

γH2AX MaxPixel 
(a.u.) 

3414+/-449.2 4061+/-695 6673+/-1274 NS 0.0207 0.0586 

γH2AX area (µm) 35.76+/-17.92 22.85+/-6.45 42.71+/-10.41 NS 0.2046 0.1749 

γH2AX foci/nucleus 1.552+/-0.287 1.716+/-0.313 2.934+/-0.403 NS 0.0420 0.0703 

1B. Long 

γH2AX integral 2.266+/-0.9230 2.168+/-0.6196 4.487+/-1.253 NS 0.0804 0.2344 

γH2AX MaxPixel 3631+/-586.4 3911+/-647.2 7692+/-1437 NS 0.0119 0.2690 

γH2AX area 35.76+/-15.19 27.54+/-6.82 42.02+/-8.43 NS 0.1659 0.5273 

γH2AX foci/nucleus 1.095+/-0.2044 1.522+/-0.6077 2.132+/-0.2940 NS 0.0209 0.5141 

1C. Oval 

γH2AX integral 3.917+/-1.734 2.341+/-0.608 5.407+/-1.635 >0.9999 0.0264 0.0574 

γH2AX MaxPixel 3398+/-495.1 3885+/-655.5 6366+/-1123 >0.9999 0.0135 0.0527 

γH2AX area 56.62+/-23.98 30.40+/-6.755 58.62+/-12.99 >0.9999 0.0535 0.1500 

γH2AX foci/nucleus 1.580+/-0.3293 2.061+/-0.3624 3.248+/-0.3491 >0.9999 0.0091 0.0862 

Parameters highlighted in bold text were considered statistically significant. Data were expressed as mean ± SEM. 
Abbreviations: a.u., Arbitrary units; AD, Alzheimer’s disease; MCI, Mild cognitive impairment; NS= non-significant. 
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4.3.6 Frequency (%) of Round, Long, and Oval Nuclei Across Control, MCI and 

AD groups. 

There was a no significant changes in the frequency (%) of round long, and oval shaped 

nuclei between control, MCI and AD group [Figure 4.4, (A-C)]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Frequency (%) of round long, and oval shaped nuclei.  

Frequency (%) of different shaped buccal cell nuclei in the control (n=17), MCI (n=18), 
AD (n=16) groups. A: Round nuclei; B: long nuclei; C: Oval nuclei. Abbreviations: 
AD, Alzheimer’s disease; MCI, Mild cognitive impairment. Data are means ± SEM.  

 

A 
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4.4 γH2AX in Senescent Nuclei 

The nuclear area and nuclear MaxPixel features available within iCyte were used to 

empirically classify senescent buccal cells and their γH2AX parameter (integral, 

MaxPixel, area foci/nucleus) values as shown in Table 4.4. There were no differences in 

the percentage of senescent cells across the groups (Table 4.5). Significant increase was 

observed for the γH2AX integral (p=0.0123) γH2AX MaxPixel (p=0.0014), γH2AX 

area (p=0.0062) and γH2AX foci/nucleus (p=0.0015) in AD senescent cells compared to 

control senescent cells. The significant increase was also observed for the γH2AX 

integral (p=0.0349), γH2AX MaxPixel (p=0.0134), and γH2AX area (p=0.0345) in AD 

senescent cells compared to MCI senescent cells (Table 4.4). 

Table 4.4: Summary of the one-way ANOVA tests for different γH2AX parameters 
in senescent nuclei 

Senescent nuclei 
Con MCI AD 

Con vs 
MCI 

Con vs AD 
MCI vs 

AD 

Mean+/-SEM Mean+/-SEM Mean+/-SEM p-value p-value p-value 

γH2AX integral 
(x106 a.u.) 

6.921+/-2.693 3.590+/-0.864 12.87+/-2.87 NS 0.0123 0.0349 

γH2AX MaxPixel 
(a.u.) 

3611+/-594 4342+/-734 7613+/-1058 NS 0.0014 0.0134 

γH2AX area (µm2) 73.18+/-27.08 49.93+/-13.34 152.8+/-30.1 NS 0.0062 0.0345 

γH2AX foci/nucleus 2.181+/-0.599 3.635+/-1.027 5.571+/-0.671 NS 0.0015 0.0761 

Parameters highlighted in bold text were considered statistically significant. Data were expressed as mean ± SEM. 
Abbreviations: a.u., Arbitrary units; AD, Alzheimer’s disease; MCI, Mild cognitive impairment; NS= non-significant. 

Table 4.5: Summary of the one-way ANOVA tests for % of senescent nuclei across 
Control, MCI, and AD  

Data were expressed as mean ± SEM. Abbreviations: a.u., Arbitrary units; AD, Alzheimer’s disease; MCI, Mild 
cognitive impairment; NS= non-significant. 

Senescent nuclei 
Con MCI AD 

Con vs 
MCI 

Con vs AD 
MCI vs 

AD 

Mean+/-SEM Mean+/-SEM Mean+/-SEM p-value p-value p-value 

Frequency (%) of 
cells 

14.59 +/- 4.047 16.11 +/- 4.430 11.13 +/- 3.150 NS NS NS 
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4.5 Nuclear Circularity, Integral, and Area in Buccal Cells 

Other nuclear parameters, such as circularity, integral and area were also measured by 

LSC in order to investigate whether there are other significant changes in nuclei from 

AD and MCI cells compared to control cells. For the nuclear integral and area, no 

significant difference was found between the control, MCI and AD groups. The nuclear 

circularity of different types of buccal cell nuclei in the control, MCI and AD groups 

was also measured using the circularity feature available with the iCyte. A high 

circularity value indicates more irregular shaped nuclei; in contrast, the lowest 

circularity value indicates a perfect circle. 

4.5.1 All Nuclei 

There was a significant increase in nuclear circularity (p=0.0075) in all nuclei of AD 

cells compared to control cells. In addition, a significant increase of nuclear circularity 

(p=0.0257) was also observed in AD cells compared to MCI cells. Circularity was also 

investigated in the different nuclear types (Figure 4.5, A). A significant increase in the 

linear trend for the nuclear circularity value (p=0.0027) was observed across the groups 

(i.e., AD > MCI > control) in all nuclei 

4.5.2 2N Nuclei 

For 2N nuclei, no statistically significant increase in nuclear circularity was observed 

between control and AD cells and between MCI and AD cells (Figure 4.5, C). However, 

significant increase in the linear trend for the nuclear circularity value (p=0.0315) was 

observed across the groups (i.e., AD > MCI > control) in 2N nuclei. 
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4.5.3 <2N and >2N Nuclei 

No significant differences in circularity in <2N nuclei was observed between the 

groups, while a significant increase was observed in >2N nuclei of AD cells (p=0.0411) 

compared to control cells, as well as in MCI cells (p=0.0254) compared to AD cells 

(Figure 4.5, B and D). 

4.5.4 Senescent Nuclei 

Nuclear circularity was also measured in senescent nuclei, which were identified using 

the nuclear area and MaxPixel features available within iCyte. There was a significant 

increase in circularity in senescent nuclei (p=0.0483) of AD cells compared to control 

cells. In addition, a significant increase of circularity (p=0.0240) was observed in AD 

cells compared with control cells (Figure 4.5, E). 
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Figure 4.5: Circularity of different types of buccal cell nuclei.  

Circularity of nuclei was measured in different types of buccal cell nuclei in the control 
(n=17), MCI (n=18), AD (n=16) groups. (A) all nuclei; (B) <2N nuclei; (C) 2N nuclei; 
(D) >2N nuclei and (E) senescent nuclei. Abbreviations: a.u., Arbitrary units; AD, 
Alzheimer’s disease; MCI, Mild cognitive impairment. Data are means ± SEM. 
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4.6 Receiver-Operating Characteristic Curve 

Since the γH2AX parameters (e.g., integral, γH2AX MaxPixel, γH2AX foci/nucleus) 

were significantly higher in AD compared to the control group for each category of 

nuclei, evaluation of diagnostic value of these parameters for discriminating AD 

patients from controls, receiver operating characteristic (ROC) curves were generated. 

The area under the curve (AUC) values for γH2AX integral, MaxPixel, and foci/nucleus 

were 0.7353 (p=0.2118), 0.7794 (p=0.0062) and 0.7684 (p=0.0086), respectively 

(Figure 4.6, A–C). Of all parameters analysed using ROC curves, the γH2AX MaxPixel 

value showed the greatest value for the identification of AD, with 75% sensitivity and 

70 % specificity. 
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Figure 4.6: ROC curves for selected LSC-measured γH2AX parameters for control 
and AD nuclei. ROC curves were generated for the γH2AX integral, γH2AX MaxPixel 
and γH2AX foci/nucleus using measurements in buccal cells from control and AD cells. 
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4.6.1 Correlation of the γH2AX Integral and Other γH2AX Parameters by Laser 

Scanning Cytometry 

To investigate the correlation between different γH2AX parameters measured by LSC, 

γH2AX integral in all nuclei was selected for investigating correlations with γH2AX 

MaxPixel, γH2AX Area, and γH2AX foci/nucleus. γH2AX MaxPixel, γH2AX Area, 

γH2AX foci/nucleus strongly correlated with γH2AX integral. Table 4.6 summarises the 

r and p-values for each of the γH2AX parameters analysed. The parameters highlighted 

in bold indicates different γH2AX parameters correlated with γH2AX integral. 
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Table 4.6: Summary of correlations tested between γH2AX integral and other 
γH2AX parameters in different types of buccal cell nuclei from the AIBL study 

Cell Types Parameters Correlation (r) CI p-value 

All nuclei γH2AX MaxPixel 0.7945 0.6643–0.8779 <0.0001 

γH2AX area 0.9264 0.8740–0.9576 <0.0001 

γH2AX foci/nucleus 0.3386 0.06947–0.5618 0.0151 

<2N nuclei γH2AX MaxPixel 0.8345 0.7258–0.9025 <0.0001 

γH2AX area 0.9254 0.8722–0.9569 <0.0001 

γH2AX foci/nucleus 0.3704 0.1056–0.5862 0.0075 

2N nuclei γH2AX MaxPixel 0.7795 0.6417–0.8685 <0.0001 

γH2AX area 0.9336 0.8859–0.9617 <0.0001 

γH2AX foci/nucleus 0.2804 0.0052–0.5162 0.0462 

>2N nuclei γH2AX MaxPixel 0.5874 0.3719–0.7428 <0.0001 

γH2AX area 0.8986 0.8280–0.9411 <0.0001 

γH2AX foci/nucleus 0.2943 0.02031–0.5272 <0.0361 

Senescent nuclei γH2AX MaxPixel 0.7643 0.6190–0.8589 <0.0001 

γH2AX area 0.9142 0.8536–0.9503 <0.0001 

γH2AX foci/nucleus 0.4159 0.1583–0.6204 0.0002 

Round γH2AX MaxPixel 0.7423 0.5867–0.8451 <0.0001 

γH2AX area 0.9495 0.9127–0.9710 <0.0001 

γH2AX foci/nucleus 0.2950 0.02105–0.5277 0.0356 

Long γH2AX MaxPixel 0.8961 0.8240–0.9397 <0.0001 

γH2AX area 0.8673 0.7775–0.9224 <0.0001 

γH2AX foci/nucleus 0.1422 -0.1389–0.4021 0.3196 

Oval γH2AX MaxPixel 0.8053 0.6808–0.8846 <0.0001 

γH2AX area 0.9455 0.9060–0.9687 <0.0001 

γH2AX foci/nucleus 0.4033 0.1436–0.6110 0.0033 

Parameters highlighted in bold text were considered statistically significant. CI; 95% confidence interval. 

 

4.6.2 Correlation of γH2AX Signals (Integral, MaxPixel) in Different Types of 

Buccal Cell Nuclei with the MMSE Score 

To investigate whether the γH2AX signals in different types of buccal cell nuclei were 

related to the advancement of cognitive decline in the subjects (a low MMSE score 

represents more cognitive decline), the correlations between the γH2AX integral, 
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γH2AX MaxPixel and MMSE scores were tested. Table 4.7 summarises the r and p-

values for each of the γH2AX parameters analysed in different types of buccal cell 

nuclei. The parameters highlighted in bold indicate that the γH2AX integral or 

MaxPixel negatively correlated with the MMSE score. 

Table 4.7: Summary of correlations between LSC scored γH2AX signals vs the 
MMSE score available from the AIBL study 

 Parameters Correlation (r) CI p-value 

All nuclei γH2AX integral -0.1899 -0.4014–0.0408 0.0959 

γH2AX MaxPixel -0.2266 -0.4331–0.0024 0.0460 

<2N nuclei γH2AX integral -0.3059 -0.5452 to -0.0205 0.0365 

γH2AX MaxPixel -0.4402 -0.6458 to -0.1751 0.0020 

2N nuclei γH2AX integral -0.3227 -0.5582 to -0.0391 0.0269 

γH2AX MaxPixel -0.4477 -0.6512 to -0.1841 0.0016 

>2N nuclei γH2AX integral -0.4616 -0.6671 to -0.1908 0.0016 

γH2AX MaxPixel -0.5200 -0.7023 to -0.2737 0.0002 

Round γH2AX integral -0.3535 -0.5816 to -0.0737 0.0148 

γH2AX MaxPixel -0.4550 -0.6565 to -0.1930 0.0013 

Long γH2AX integral -0.3039 -0.5437 to -0.0183 0.0378 

γH2AX MaxPixel -0.4141 -0.6268 to -0.1440 0.0038 

Oval γH2AX integral -0.3534 -0.5816 to -0.0736 0.0148 

γH2AX MaxPixel -0.4678 -0.6656 to -0.2086 0.0009 

Senescent γH2AX integral -0.5229 -0.7044 to -0.2773 0.0002 

γH2AX MaxPixel -0.5156 -0.6993 to -0.2680 0.0002 

Parameters highlighted in bold text were considered statistically significant. All are Spearman’s rho correlation. CI; 
95% confidence interval. 

4.6.3 Correlation of γH2AX Signals (Integral, Maxpixel) with Nuclear Circularity 

in Different Types of Buccal Cell Nuclei 

Since increased nuclear circularity was observed in AD cells compared to control and 

MCI cells, the correlation between γH2AX signals (γH2AX integral or γH2AX 

MaxPixel) and nuclear circularity was investigated in order to determine if there was a 

relationship between nuclear circularity and γH2AX signals. Table 4.8 summarises the r 

and p-values for each of the γH2AX parameters analysed in different types of buccal 
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cell nuclei. The parameters highlighted in bold indicate that the γH2AX integral and 

MaxPixel values positively correlated with nuclear circularity in the different type of 

buccal cell nuclei analysed. 

Table 4.8: Summary of correlations between LSC-scored γH2AX signals versus the 
nuclear circularity score available from the AIBL study 

 Parameters Correlation (r) CI p-value 

All nuclei γH2AX integral 0.3246 0.05378 to 0.5510 0.0201 

γH2AX MaxPixel 0.3554 0.08843 to 0.5748 0.0105 

<2N nuclei γH2AX integral 0.3737 0.1093 to 0.5887 0.0069 

γH2AX MaxPixel 0.3489 0.08101 to 0.5697 0.0121 

2N nuclei γH2AX integral 0.2971 0.02340 to 0.5294 0.0342 

γH2AX MaxPixel 0.3699 0.1049 to 0.5858 0.0076 

>2N nuclei γH2AX integral 0.5128 0.2614 to 0.6991 0.0003 

γH2AX MaxPixel 0.4389 0.1702 to 0.6468 0.0023 

Round nuclei γH2AX integral 0.4567 0.2071 to 0.6504 0.0008 

γH2AX MaxPixel 0.3700 0.1051 to 0.5859 0.0075 

Long nuclei γH2AX integral 0.3982 0.1377 to 0.6072 0.0038 

γH2AX MaxPixel 0.5460 0.3183 to 0.7142 < 0.0001 

Oval nuclei γH2AX integral 0.4644 0.2165 to 0.6561 0.0006 

γH2AX MaxPixel 0.6152 0.4090 to 0.7617 < 0.0001 

Senescent nuclei γH2AX integral 0.6050 0.3952 to 0.7548 < 0.0001 

γH2AX MaxPixel 0.6004 0.3891 to 0.7516 < 0.0001 

Parameters highlighted in bold text were considered statistically significant. All are Spearman’s rho correlation. CI; 
95% confidence interval. 

4.6.4 Correlation of γH2AX Integral in All Nuclei with Blood Parameters  

Many blood parameters have been analysed in the AIBL cohort, and the data for these 

are stored in the AIBL database. Correlation tests were carried out between each of 

these blood parameters and the γH2AX integral values in all nuclei. Table 4.9 

summarises the r and p-values obtained for each of the parameters examined. p-values 

highlighted in bold text correlated with the γH2AX integral. Total protein positively 

correlated with γH2AX integral, but there was no correlation between the γH2AX 

integral and the rest of the blood parameters. In addition, correlation tests were also 
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performed between each of these blood parameters and the γH2AX MaxPixel values. 

There was no correlation of γH2AX MaxPixel with any blood parameters when data 

from all nuclei were analysed. 

Table 4.9: Summary of the correlations tested between the γH2AX integral in 
buccal cells and blood measurements from the AIBL cohort 

Blood measurements 

Parameters Correlation (r) 95% confidence interval p-value 

Homocysteine 0.0092 -0.1537–0.4472 0.9541 

Serum folate 0.1617 -0.377–0.198 0.3125 

Vitamin B12 -0.1295 -0.4205–0.1856 0.4195 

Red cell folate 0.0005 -0.3151–0.3161 0.9975 

Calcium 0.0422 -0.2770–0.3531 0.7985 

Cholesterol -0.0270 -0.1924–0.4290 0.4261 

Triglycerides -0.118 -0.3397–0.2911 0.8704 

HDL -0.1846 -0.4726–0.1391 0.2606 

LDL 0.2371 -0.08484–0.5142 0.1461 

Albumin 0.0305 -0.2879–0.3428 0.8539 

Bilirubin -0.2013 -0.4860–0.1220 0.2191 

Urea -0.0181 -0.3318–0.2992 0.9131 

Creatinine 0.0134 -0.3035–0.3276 0.9354 

eGFR 0.0427 -0.2766–0.3535 0.7964 

Glucose -0.2302 -0.5088–0.09207 0.1586 

Total protein 0.332 0.01837–0.5862 0.0389 

ALT 0.0088 -0.3077–0.3234 0.9579 

AP 0.0101 -0.3065–0.3247 0.9514 

GGT 0.0708 -0.2504–0.3779 0.6684 

Ceruloplasmin -0.2476 -0.5224–0.07374 0.1286 

Fe -0.2834 -0.5498–0.03533 0.0804 

Transferrin 0.170 -0.1539–0.4608 0.3009 

Trsat -0.2688 -0.5387–0.05111 0.0980 

Ferritin -0.0201 -0.3336–0.2973 0.9031 

Insulin -0.1066 -0.4084–0.2163 0.5185 

Testosterone 0.1546 -0.1692–0.4483 0.3472 

LH 0.0245 -0.2933–0.3375 0.8822 

FT4 0.1808 -0.1429–0.4696 0.2707 

TSH 0.1425 -0.1812–0.4384 0.3868 

FT3 0.1999 -0.1234–0.4849 0.2223 

Cl 0.04746 -0.2722–0.3577 0.7742 

AST -0.1123 -0.4132–0.2108 0.4961 
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Blood measurements 

Parameters Correlation (r) 95% confidence interval p-value 

PCV -0.0888 -0.3933–0.2334 0.5911 

Mg 0.1919 -0.1317–0.4785 0.2418 

RCC -0.0009 -0.3165–0.3147 0.9952 

MCV -0.226 -0.5055–0.09647 0.1665 

MCH -0.2427 -0.5185–0.07897 0.1366 

MCHC -0.1327 -0.4303–0.1909 0.4206 

RDW -0.208 -0.4913–0.1152 0.2039 

ESR -0.1164 -0.4167–0.2068 0.4803 

Platelets -0.05805 -0.3669–0.2623 0.7255 

MPV -0.1251 -0.4239–0.1983 0.4481 

WCC -0.2584 -0.5307–0.06222 0.1122 

Neutrophils -0.2226 -0.5028–0.1001 0.1733 

Lymphocytes -0.1001 -0.4030–0.2225 0.5442 

Monocytes -0.2631 -0.5343–0.05722 0.1056 

Eosinophils -0.1277 -0.4261–0.1958 0.4386 

Basophils -0.2012 -0.4859–0.1222 0.2194 

Parameters highlighted in bold text were considered statistically significant. Abbreviations: ALT, alanine 
aminotransferase; AP, alkaline phosphatase; AST, aspartate aminotransferase; Cl, chloride; eGFR, estimated 
glomerular filtration rate; ESR, erythrocyte sediment rate; Fe, iron; FT3, free thyroxine; FT4, free triiodothyronine; 
GGT, gamma-glutamyl transferase; HDL, high-density lipoprotein; LDL, low-density lipoprotein; LH, luteinising 
hormone; MCH, mean cell haematocrit; MCHC, mean corpuscular haemoglobin concentration; MCV, mean 
corpuscular volume; Mg, magnesium; MPV, mean platelet volume; PCV, packed cell volume; RCC, red blood cell 
count; RDW, red cell volume distribution; Trsat, transferrin saturation; TSH, thyroid stimulation hormone; WCC, 
white cell count. 

4.6.5 Correlation of γH2AX Signals in Control, MCI and AD Nuclei with Blood 

Parameters 

Correlation tests were carried out between each of these blood parameters in the AIBL 

database and the γH2AX integral or the γH2AX MaxPixel values in control, MCI and 

AD nuclei. Table 4.10 summarises the r and p-values obtained for γH2AX integral with 

each of the blood parameters. p-values highlighted in bold text indicates significant 

correlations. Correlation tests were also performed between each of these blood 

parameters and the γH2AX MaxPixel values in control, MCI and AD nuclei (Table 

4.11). Albumin, AP, Testosterone and MCV positively correlated with γH2AX integral 

(Table 4.10) and γH2AX MaxPixel (Table 4.11) in MCI nuclei. In addition, MCH 
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positively correlated with γH2AX MaxPixel (Table 4.11) in MCI nuclei. Total protein, 

Transferrin, LH, FT4, MCH, MCHC correlated with γH2AX integral or γH2AX 

MaxPixel in control nuclei. There was no correlation of γH2AX integral or γH2AX 

MaxPixel with any blood parameters when data from AD nuclei were analysed (Table 

4.10 and Table 4.11).  
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Table 4.10: Summary of the correlations tested between γH2AX integral scores in 
buccal cells and blood parameters in the control, MCI, and AD groups from the 

AIBL cohort 

 Control MCI AD 

Homocysteine r= -0.070,  p = 0.804 r= 0.514,    p = 0.106 r = -0.175, p = 0.518 

Serum folate r = 0.193,  p = 0.491 r= 0.256,    p = 0.448 r = 0.134,  p= 0.635 

Vitamin B12 r = -0.041, p = 0.883 r = -0.293,  p = 0.382 r = -0.243, p = 0.383 

Red cell folate r = 0.288,  p = 0.299 r = 0.003,   p = 0.993 r = -0.149, p = 0.595 

Calcium r = -0.041, p = 0.884 r = -0.433,  p = 0.244 r = 0.065,  p = 0.817 

Cholesterol r = 0.467,  p = 0.079 r = -0.279,  p = 0.467 r = -0.072, p = 0.799 

Triglycerides r = 0.114,  p = 0.685 r = -0.516,  p = 0.155 r = -0.033, p = 0.906 

HDL r = 0.194,  p = 0.489 r = -0.266,  p = 0.488 r = -0.292, p = 0.292 

LDL r = 0.465,  p = 0.080 r = -0.016,  p = 0.968 r = 0.292,  p = 0.802 

Albumin r = 0.209,  p = 0.454 r = 0.724,   p = 0.027 r = -0.018, p = 0.951 

Bilirubin r = -0.286, p = 0.300 r = -0.173,  p = 0.656 r = -0.187, p = 0.504 

Urea r = 0.500,  p = 0.058 r = -0.181,  p = 0.640 r = -0.326, p = 0.236 

Creatinine r = -0.276, p = 0.320 r = 0.407,   p = 0.277 r = -0.038, p = 0.893 

eGFR r = 0.186,  p = 0.508 r =-0.259,   p = 0.502 r = 0.092,  p = 0.745 

Glucose r = -0.457, p = 0.087 r = 0.112,   p = 0.775 r = -0.175, p = 0.534 

Total protein r = 0.557,  p = 0.031 r = 0.127,   p = 0.745 r = 0.133,  p = 0.636 

ALT r = -0.224, p = 0.421 r = 0.109,   p = 0.779 r = -0.035, p = 0.901 

AP r = -0.189, p = 0.498 r = 0.681,   p = 0.043 r = -0.046, p = 0.870 

GGT r = -0.108, p = 0.700 r = -0.087,  p = 0.824 r = 0.025,  p = 0.931 

Ceruloplasmin r = -0.133, p = 0.638 r = -0.149,  p = 0.703 r = -0.294, p = 0.287 

Fe r= -0.298,  p = 0.280 r= -0.385,   p=0.306 r = -0.309, p = 0.261 

Transferrin r = 0.628,  p = 0.012 r = -0.225,  p = 0.560 r = -0.034, p = 0.904 

Trsat r = -0.344, p = 0.209 r = -0.294,  p = 0.442 r = -0.282, p = 0.308 

Ferritin r = -0.252, p = 0.366 r = 0.025,   p = 0.949 r = -0.100, p = 0.721 

Insulin r = -0.162, p = 0.565 r = 0.013,   p= 0.975 r = 0.280,  p = 0.310 

Testosterone r = -0.162, p = 0.565 r = 0.684,   p= 0.042 r = 0.175,  p = 0.532 

LH r = 0.522,  p = 0.046 r = -0.235,  p= 0.542 r = -0.177, p = 0.527 

FT4 r = 0.648,  p = 0.009 r = -0.078,  p= 0.842 r = 0.155,  p = 0.582 

TSH r = 0.228,  p = 0.411 r = 0.056,   p= 0.887 r = 0.146,  p = 0.603 

FT3 r = 0.431,  p = 0.109 r = -0.014,  p= 0.972 r = 0.115,  p = 0.684 

Cl r = -0.173, p = 0.650 r = -0.269,  p= 0.485 r = 0.173,  p = 0.538 

AST r = -0.173, p = 0.536 r = 0.032,   p= 0.935 r = -0.185, p = 0.508 

PCV r = -0.267, p = 0.335 r = 0.074,   p= 0.850 r = -0.061, p = 0.829 

Mg r = -0.016, p = 0.954 r = 0.263,   p= 0.495 r = 0.255,  p = 0.359 

RCC r = -0.081, p = 0.773 r = 0.279,   p= 0.467 r = -0.071, p = 0.799 

MCV r = -0.425, p = 0.115 r = -0.678,  p= 0.045 r = -0.045, p = 0.871 
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MCH r = -0.658, p = 0.008 r = -0.657,  p= 0.055 r = 0.054,  p = 0.848 

MCHC r = -0.689, p = 0.005 r = -0.479,  p= 0.193 r = 0.307,  p = 0.265 

RDW r = -0.197, p = 0.481 r = 0.213,   p= 0.582 r = -0.378, p = 0.165 

ESR r = -0.157, p = 0.577 r = -0.209,  p= 0.589 r = -0.186, p = 0.507 

Platelets r = 0.049,  p = 0.861 r = 0.265,   p= 0.490 r =-0.158,  p = 0.576 

MPV r = 0.057,  p = 0.844 r = -0.143,  p= 0.713 r = -0.438, p = 0.103 

WCC r = -0.163, p = 0.563 r = 0.369,   p= 0.327 r = -0.473, p = 0.075 

Neutrophils r = -0.292, p = 0.291 r = 0.588,   p= 0.096 r = -0.496, p = 0.059 

Lymphocytes r = 0.412,  p = 0.127 r = -0.356,  p= 0.347 r = -0.206, p = 0.460 

Monocytes r = -0.420, p = 0.119 r = 0.091,   p= 0.815 r = -0.335, p = 0.223 

Eosinophils r = 0.015,  p = 0.958 r = -0.517,  p= 0.154 r = -0.218, p = 0.435 

Basophils r = -0.171, p = 0.542 r = 0.408,   p= 0.275 r = -0.331, p = 0.226 

 Parameters highlighted in bold text were considered statistically significant. See abbreviations in table 4.9. 
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Table 4.11: Summary of the correlations tested between γH2AX MaxPixel scores 
in buccal cells and blood parameters in the control, MCI, and AD groups from the 

AIBL cohort 

 Control MCI AD 

Homocysteine r= 0.082, p=0.769 r= 0.487, p=0.129 r= -0.169, p=0.532 

Serum folate r = 0.107, p=0.705 r= 0.243, p=0.471 r = 0.157, p=0.576 

Vitamin B12 r = -0.073, p=0.796 r = -0.250, p=0.457 r = -0.089, p=0.750 

Red cell folate r = 0.267, p=0.336 r = 0.077, p=0.843 r = 0.054, p=0.847 

Calcium r = -0.135, p=0.631 r = -0.397, p=0.289 r = 0.105, p=0.709 

Cholesterol r = 0.322, p=0.242 r = -0.422, p=0.257 r = -0.004, p=0.988 

Triglycerides r = 0.008, p=0.975 r = -0.626, p=0.071 r = 0.145, p=0.606 

HDL r = -0.001, p=0.9990 r = -0.258, p=0.503 r = -0.299, p=0.279 

LDL r = 0.379, p=0.279 r = -0.165, p=0.672 r = 0.102, p=0.717 

Albumin r = 0.112, p=0.692 r = 0.704, p=0.034 r = 0.046, p=0.872 

Bilirubin r = -0.097, p=0.732 r = -0.174, p=0.655 r = -0.170, p=0.543 

Urea r = 0.513, p=0.050 r = -0.169, p=0.664 r = -0.374, p=0.1701 

Creatinine r = -0.186, p=0.507 r = 0.309, p=0.418 r = -0.132, p=0.6392 

eGFR r = 0.259, p=0.3511 r =-0.020, p=0.959 r = 0.205, p=0.462 

Glucose r = -0.359, p=0.1883 r = 0.347, p=0.360 r = -0.083, p=0.767 

Total protein r = 0.357, p=0.192 r = -0.048, p=0.903 r = 0.235, p=0.398 

ALT r = -0.295, p=0.2863 r = -0.025, p=0.949 r = 0.094, p=0.738 

AP r = -0.126, p=0.6545 r = 0.696, p=0.038 r = 0.090, p=0.749 

GGT r = -0.171, p=0.542 r = -0.066, p=0.865 r = 0.145, p=0.605 

Ceruloplasmin r = -0.187, p=0.504 r = -0.264, p=0.4925 r = 0.201, p=0.4725 

Fe r= -0.302, p=0.275 r= -0.564, p=0.114 r= -0.233, p=0.403 

Transferrin r = 0.550, p=0.034 r = -0.101, p=0.795 r = 0.027, p=0.924 

Trsat r = -0.354, p=0.195 r = -0.485, p=0.186 r = -0.252, p=0.364 

Ferritin r = -0.159, p=0.569 r = -0.150, p=0.699 r = -0.066, p=0.816 

Insulin r = -0.188, p=0.500 r = -0.091, p=0.815 r = 0.335, p=0.222 

Testosterone r = -0.024, p=0.932 r = 0.789, p=0.012 r = 0.152, p=0.589 

LH r = 0.280, p=0.311 r = -0.269, p=0.485 r = -0.162, p=0.563 

FT4 r = 0.604, p=0.017 r = -0.107, p=0.783 r = 0.275, p=0.322 

TSH r = -0.099, p=0.724 r = -0.131, p=0.7368 r = 0.085, p=0.763 

FT3 r = 0.557, p=0.0308 r = 0.000, p=0.999 r = 0.151, p=0.589 

Cl r = -0.197, p=0.479 r = -0.313, p=0.412 r = 0.034, p=0.905 

AST r = -0.167, p=0.553 r = -0.020, p=0.959 r = -0.092, p=0.745 

PCV r = -0.249, p=0.372 r = -0.056, p=0.885 r = -0.059, p=0.834 

Mg r = -0.284, p=0.305 r = 0.212, p=0.584 r = 0.248, p=0.372 

RCC r = -0.027, p=0.925 r = 0.200, p=0.605 r = -0.095, p=0.734 

MCV r = -0.509, p=0.053 r = -0.772, p= 0.015 r = 0.012, p=0.968 

MCH r = -0.6469, p= 0.0091 r = -0.747, p= 0.020 r = 0.131, p= 0.641 

MCHC r = -0.482, p= 0.069 r = 0.519, p=0.1517 r = 0.365, p=0.1811 
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 Control MCI AD 

RDW r = -0.334, p=0.224 r = 0.375, p=0.319 r = -0.448, p=0.093 

ESR r = -0.211, p=0.449 r = -0.096, p=0.805 r = -0.171, p= 0.541 

Platelets r =-0.100, p=0.721 r =0.332, p=0.382 r =-0.175, p=0.532 

MPV r =0.111, p=0.693 r =-0.039, p=0.9216 r =-0.494, p=0.0613 

WCC r =-0.282, p=0.309 r =0.418, p=0.263 r =-0.442, p=0.099 

Neutrophils r =-0.334, p=0.224 r =0.632, p=0.068 r =-0.439, p=0.101 

Lymphocytes r =0.227, p=0.415 r =-0.308, p=0.419 r =-0.212, p=0.449 

Monocytes r =-0.479, p=0.071 r =-0.016, p=0.967 r =-0.349, p=0.201 

Eosinophils r =0.029, p=0.918 r =-0.470, p=0.202 r =-0.243, p=0.382 

Basophils r =-0.196, p=0.482 r =0.371, p=0.326 r =-0.297, p= 2891 

Parameters highlighted in bold text were considered statistically significant. See abbreviations in Table 4.9. 
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4.7 Discussion 

The objective of this study was to investigate whether buccal cells from MCI and AD 

patients have higher levels of endogenous γH2AX (a biomarker of double strand DNA 

breaks) compared with healthy controls, with the ultimate aim of testing whether the 

buccal cell γH2AX assay might be useful as a diagnostic test for those with cognitive 

impairment and or AD. The γH2AX assay offers an excellent opportunity to robustly 

measure the levels of DNA DSBs and cellular response in individuals or populations 

and test its suitability for clinical purposes (Shukkur et al. 2006, Bader Lange et al. 

2010, Delledonne et al. 2009). The LSC method was used to quantify endogenous 

γH2AX in buccal cells from individuals who met the clinical criteria for MCI or AD 

and in healthy controls. The results of this study showed increased levels of γH2AX in 

the buccal cells of patients with AD compared to those in cells from MCI patients or 

healthy controls, and there was a concomitant increase with a linear trend from the 

control group through MCI to the AD group. This result was further supported by the 

significantly increased negative correlation between γH2AX signals and MMSE scores 

when the analysis included all subjects. The LSC protocol developed here 

simultaneously quantifies different γH2AX parameters (integral, MaxPixel, area, 

foci/nucleus) in cells with different nuclear DNA content (ploidy status) as well cells 

with different nuclear shapes, based on their area, perimeter, diameter and circularity. 

Nuclear circularity (irregular nuclear shape) was increased significantly in AD cells 

compared to control cells and there was a concomitant increase with a linear trend from 

controls through MCI to AD. A significant positive correlation was also observed 

between nuclear circularity and γH2AX signals in the different types of nuclei analysed. 

The results of this study demonstrate that buccal cells exhibit increased levels of 

endogenous γH2AX in AD cells relative to those from MCI patients and healthy 
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controls, and suggest the possibility of using γH2AX as a marker for determining those 

individuals with MCI that may be progressing to AD. 

At present the analysis of Aβ (1-42), total tau and phospho-tau-181 in CSF allows 

reliable, sensitive and specific diagnosis of AD, but the collection of CSF is an invasive 

procedure with potential random variation in AD specific biomarkers measurements 

(Fagan et al. 2007, Ingber et al. 2016, Zetterberg 2015). Thus, there is a clear need to 

search for inexpensive and minimally invasive surrogate markers to diagnose and 

monitor AD progression. The use of surrogate cells, and particularly exfoliated buccal 

cells, is of particular interest since buccal cell collection is reliable, fast, relatively 

simple, cheap, minimally invasive and painless. Since the both the human nervous 

system and buccal cells are of ectodermal origin, the regenerative potential of the brain, 

which has been found to be altered in AD, may be mirrored in the buccal mucosa. 

Studying the buccal mucosa cells from healthy individuals revealed decreased nuclear 

diameter and cell diameter with increasing age (Donald et al. 2013). Another study 

showed a decrease in the thickness of the epidermis and underlying cell layer with 

increasing age (Williams, Cruchley 1994). It is possible that the lack of regenerative 

potential of buccal cells from MCI and AD patients may be a consequence of 

accelerated ageing. A previous study has investigated the formation of micronuclei (a 

cytogenetic marker of either chromosome segregation or breakage) in buccal mucosa 

cells. An increased MN frequency was observed in patients with AD compared to age- 

and gender-matched controls (Thomas et al. 2007). The same study also reported an 

abnormal cytome profile characterised by a lower frequency of basal cells, condensed 

chromatin and karyorrhectic cells in AD patients, suggesting reduced regenerative 

capacity in buccal cells from AD patients. Another study showed a significant 1.5-fold 

increase in trisomy 21 and a significant 1.2-fold increase in trisomy 17 in buccal cells of 
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AD patients compared to matched controls (Thomas, Fenech 2008), providing further 

evidence of abnormalities in buccal cells in AD patients. 

LSC is a microscope-based quantitative image analysis technique that combines the 

advantages of flow cytometry and image analysis (Kamentsky, Kamentsky 1991, 

Henriksen et al. 2011). LSC allows the quantifiable measurement of γH2AX signals in 

large numbers of cells per sample (thousands of cells per individual) with the same LSC 

settings, making it a useful method to assess subtle cellular and nuclear changes 

between individuals. The γH2AX signals (integral, MaxPixel, area, foci/nucleus) were 

measured in nuclei from the control, MCI, and AD groups. The results from all nuclei 

demonstrated that the γH2AX signal was significantly higher in AD cells compared to 

cells from the control group, and also significantly increased in AD cells compared to 

cells from MCI patients. LSC has previously been shown to be a useful tool that 

simultaneously measures cellular DNA content for the evaluation of cell cycle stage and 

γH2AX signals after DNA damage (Zhao et al. 2009, Tanaka et al. 2007, Huang et al. 

2004). Therefore, γH2AX signals in nuclei with different DNA contents (measurement 

of the nuclear DAPI integral allows classification of nuclei as <2N, 2N, and >2N) were 

measured using the LSC protocol. The results from this study demonstrated a significant 

increase in the γH2AX signal in 2N nuclei from AD patients compared to those from 

the control and MCI groups. A number of studies have been conducted to assess the 

association between astrocyte degeneration and DNA damage in AD by investigating 

the γH2AX signals in astrocytes from the hippocampal region (Myung et al. 2008, Silva 

et al. 2014). The results from these studies demonstrated strong γH2AX staining in the 

nuclei of cells from AD patients compared to those from healthy controls. To the best of 

the researcher’s understanding, there are no earlier reports investigating the levels of 

γH2AX in buccal cells and their ability to distinguish those individuals with MCI and 
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AD from those of control patients. Since the level of DNA DSBs in buccal cells, as 

marked by γH2AX immunostaining, has not been previously used to investigate the 

pathogenesis of AD, the findings from this study support the previous observation of 

increased γH2AX signals in nuclei of astrocytes from AD patients relative to those of 

healthy controls (Myung et al. 2008, Silva et al. 2014). While the <2N and >2N nuclei 

showed a significant increase in all γH2AX parameters in AD buccal cells compared to 

control cells, no statistical significance was observed for the γH2AX area in 2N nuclei. 

In the present study, a statistically significant association of γH2AX signals (integral, 

MaxPixel, area, foci/nucleus) was not observed in MCI cells compared to control cells; 

however, there was an increasing linear trend in the γH2AX MaxPixel values observed 

in control cells, through MCI cells to AD cells, suggesting that buccal cells from MCI 

patients may be more susceptible to DNA damage than those from healthy controls. 

There are no reports investigating γH2AX in buccal cells from MCI patients compared 

to those from healthy controls; however, the insights from previous studies carried out 

in lymphocytes are in line with the observations of the current study, and demonstrate a 

significant increase in oxidative DNA damage (oxidised DNA bases) in lymphocytes 

from an MCI group compared with a control group (Migliore et al. 2005). It is of 

interest to explore whether MaxPixel γH2AX in AD nuclei represent some unique type 

of DNA damage (e.g. a site of clustered DSBs).  

ROC curve analysis was carried out to assess the diagnostic accuracy of γH2AX assay 

in identifying individuals with AD from controls. ROC curve for LSC scored γH2AX 

MaxPixel yielded the area under the ROC curve value of 0.7794 with 75% sensitivity 

and 70 % specificity for the AD (p=0.0062) group suggesting that measurement of 

γH2AX MaxPixel in the buccal cell might be useful in discriminating AD and control. 

Although the good sensitivity and specificity achieved in this study are promising for 
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the value of γH2AX assay in identifying AD from control, given the relatively low 

number of participants tested within each group, and the lack of defined γH2AX 

thresholds for determining of test positivity, we cannot recommend its routine use in 

clinical practice. Therefore, it is important to clearly demonstrate its accuracy involving 

larger numbers of participants tested within each group and standardize the γH2AX 

assay by validating the stringent cut-off point of test positivity prior to it being widely 

used routinely for differentiating AD from non-AD and from control. 

The buccal mucosa is known to consist of heterogenous cell types that may have 

discrete functions within this tissue. Different nuclear shape morphology has been used 

to distinguish nuclear abnormalities and has been used in patients with oral squamous 

carcinoma to assess radiosensitivity (Torres-Bugarin et al. 2014, Raj, Mahajan 2011). 

Therefore, the current study aimed to classify buccal cells based on their nuclear shapes 

using the features available with LSC. The results from this study demonstrated for the 

first time that the γH2AX signal was significantly higher in the round, long and oval 

nuclei of cells from AD patients compared to those from the control group, and also 

significantly increased in AD cells compared to those from patients with MCI. While 

the oval nuclei from AD cells showed the most significant increase in γH2AX signal 

(integral, MaxPixel and foci/nucleus) compared to those from control and MCI cells, 

round and long nuclei had significantly increased γH2AX MaxPixel values and numbers 

of γH2AX foci/nucleus, but this was not the case for the γH2AX integral value. Overall, 

regardless of the different nuclei with different nuclear shapes analysed, there was a 

significant increase of γH2AX signals in AD cells compared to control and MCI cells. 

For a better understanding of the DNA damage response in buccal cells with different 

nuclear shapes, it will, therefore, be valuable to combine γH2AX assays, other cellular 

markers of apoptosis and cellular signaling using the LSC protocol.  
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 In this study, irregular nuclear shapes (circularity) were measured using the 

circularity parameter of LSC in different types of nuclei (e.g., all nuclei, <2N nuclei, 2N 

nuclei, > 2N nuclei). A higher circular value indicates a more irregular nuclear shape. 

The results showed a significantly higher circularity in all nuclei of AD cells compared 

to control cells, as well as in AD cells compared to MCI cells. Nuclear circularity was 

also significantly higher in AD cells compared to control cells as well as in AD cells 

compared to MCI cells when analysed for >2N nuclei and senescent nuclei. The higher 

circularity in AD cells compared to control and MCI cells might be due partly to the 

accumulation of DNA damage leading to morphometric and cytometric alterations in 

the buccal mucosa cells of AD patients. Previously, the morphological and cytometric 

parameters of buccal cells have been assessed using microscopy and Image J analysis, 

respectively, following Papanicolaou staining (de Oliveira et al. 2008). The results from 

this study showed a significant decrease in the number of intermediate buccal cells in 

the AD group compared to the control group (de Oliveira et al. 2008). Another study 

reported an increase in trisomy 21 and trisomy 17 in buccal cells in AD cases compared 

to their respective controls (Thomas, Fenech 2008). In addition, evidence of increased 

levels of DNA damage, indicated by the formation of micronuclei (a biomarker of 

chromosome missegregation) has been previously detected in buccal cells from AD 

patients and Down Syndrome cases who have a high risk of developing AD (Thomas et 

al. 2007, Thomas et al. 2008). In this study, the γH2AX integral and MaxPixel values 

were positively correlated with nuclear circularity in the different types of buccal cell 

nuclei analysed, which may reflect the fact that DNA damage in these cells is associated 

with an irregular nuclear shape. It is possible that the increased DNA damage in those 

irregularly shaped nuclei is associated with altered nuclear lamina structure. The nuclear 

lamina is a filamentous structure under the inner nuclear membrane composed of A-type 
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and B-type lamins (Hozak et al. 1995, Dechat et al. 2008). Recent studies show that the 

deficient A-type lamin is associated with altered structural nuclear proteins with a 

variety of human diseases, including severe premature aging syndromes (Broers et al. 

2006). A-type-lamin-deficient cells have been associated with impaired DNA repair 

capacity and maintaining telomere localization, structure, length and function (Gonzalo 

2014, Gonzalez-Suarez et al. 2009). Moreover, loss of A-type-lamin-leads to 

localization of telomeres away from the nuclear membrane towards the center of the 

nucleus (Gonzalez-Suarez et al. 2009). The colocalization of γH2AX can easily 

visualize dysfunctional telomeres with a telomere DNA probe (Fumagalli et al. 2012, 

Hewitt et al. 2012, Smogorzewska et al. 2002). A previous report in human buccal cells 

of AD patients showed significantly shortened telomeres in an older AD group in 

comparison with older controls (Thomas, O'Callaghan & Fenech 2008). Therefore, it is 

plausible that the positive correlation between nuclear circularity and γH2AX in buccal 

cells of AD patients observed in this study may be linked with deficient nuclear lamin 

contributing to telomere dysfunction. Future studies should explore whether the γH2AX 

signals in buccal cells of AD patients are mostly in the nuclear periphery or aggregated 

centrally and associated with dysfunctional telomeres which may be due to deficient A-

type lamin coupled with increased nuclear circularity. It is possible that irregular 

nuclear shape caused by a defect in lamines lead to telomere dysfunction and/or 

shortening. Taken together, altered nuclear morphology, cellular structure and increased 

levels of DNA damage associated with dysfunctional telomeres in buccal cells may 

contribute to the irregular nuclear shape observed in buccal cells of AD patients. A 

further study of changes in nuclear circularity coupled with multiple DNA damage 

markers (e.g., γH2AX, 8HOdG) associated with telomere dysfunction and AD-specific 

markers (e.g., putative tau, Aβ) in buccal cells from a large patient cohort will better 
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assess the likelihood of discriminating AD and MCI patients from healthy controls 

using these tests. 

Cellular senescence is elicited in damaged cells and characterised by the presence of 

γH2AX, and senescence-associated β-galactosidase (SA- β -gal) activity, detectable by 

immunocytochemistry (Dimri et al. 1995, Sikora et al. 2011). Previous studies have 

shown increased number of senescent nuclei during ageing and in age-related diseases 

(Dimri et al. 1995, Sikora et al. 2011). It is accepted that older animals exhibit more 

senescence cell than younger animals as demonstrated by increased p16 (INK4a), 

senescence associated β-galactosidase activity, and γH2AX positive signals (Fumagalli 

et al. 2012, Wang et al. 2009, Berkenkamp et al. 2014). The morphological features of 

senescent nuclei in cultured fibroblasts after methotrexate (Mtx) treatment have been 

assessed using the features available in the iCyteR software for LSC (Zhao, 

Darzynkiewicz 2013, Zhao et al. 2010). In this study, senescent nuclei were isolated 

based on the criteria of decreased levels of DAPI staining (MaxPixel staining) paralleled 

by increases in nuclear size (area) and the simultaneous expression of senescence 

markers (e.g., the p21WAF1, p16INK4a or p27KIP1 cyclin kinase inhibitors), and 

demonstrating that senescent nuclei are flattened and larger in size. To date, the 

morphological features of senescent nuclei in buccal cells have not been assessed using 

the features available in LSC. In this study, senescent nuclei were identified by plotting 

the ratio of MaxPixel intensity of DAPI fluorescence per nucleus to nuclear area versus 

the nuclear size (area). A significant increase in the γH2AX signal was observed in 

senescent nuclei of AD cells compared to control and MCI cells for all individual 

γH2AX parameters measured by LSC, suggesting that accumulation of DNA DSBs may 

contribute to cellular senescence and impaired repairing capacity of senescent nuclei 

may ultimately contribute to the risk of developing AD. Although previous studies in 
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cultured fibroblasts have characterised the morphological features of senescent nuclei 

using immunocytochemical analysis of the expression of additional senescent markers, 

such as the p21WAF1, p16INK4a or p27KIP1 cyclin kinase inhibitors, this study did 

not confirm this, but rather attempted for the first time to identify senescent nuclei of 

control, MCI and AD cells by their morphometric features alone. It is important to note 

that senescent cell showed the strongest negative correlation for γH2AX integral and 

γH2AX MaxPixel in relation to MMSE scores. While investigating the morphological 

features of senescent buccal cells is important, it is also important for future research to 

simultaneously measure the expression of senescence markers in conjunction with DNA 

damage markers (e.g., γH2AX) and AD-specific markers (e.g., aβ1-42, total tau, and 

phosphorylated-tau) in buccal cells in order to discriminate AD and MCI patients from 

healthy controls.  

In the present study, from all of the blood parameters examined only total protein 

showed a positive correlation with buccal cell γH2AX signals when all samples were 

analysed together. Correlations between blood parameters and buccal cell γH2AX 

signals in the control, MCI and AD groups were further assessed in three separate tests. 

Although a significant correlation between buccal cell γH2AX signals and several blood 

parameters (e.g., albumin, total protein, transferrin, FT4, FT3, MCH, MCV) in control 

and MCI group was observed, in the AD group, no blood parameters showed a 

significant correlation with buccal cell γH2AX signals. The negative correlation with 

MCV and MCH are important because these are biomarkers of anemia, which was 

previously shown to be a risk factor for MCI and AD in AIBL (Faux et al. 2014). In this 

study, the positive correlation between transferrin and γH2AX signals suggests that the 

plasma transferrin levels may have a role in increasing γH2AX signals in AD. However, 

previous study showed that plasma transferrin levels decline with age in AD. These 
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results strongly suggest that the development of pathological features of AD is not 

restricted to the brain, but is associated with multiple metabolic changes occurring in 

peripheral cells (Francois et al. 2014b). 

Senescent cells are characterized by the presence of γH2AX, including the activity of 

SA-β-gal, accumulate in tissues of aged animals and are thought to increase during 

aging and age-related diseases (Dimri et al. 1995, Sikora et al. 2011). In this study, the 

senescent nuclei were identified based on morphometric features of nuclei., showing a 

significant increase in the γH2AX signal in senescent nuclei of AD cells compared to 

control and MCI cells, suggesting an added value of the evaluation of the different 

cellular biomarkers for identifying individuals at risk of developing AD. To better 

understand these results, the experiment should be performed to confirm that the 

senescent nuclei we identified have increased SA-β-gal activity. Further improvements 

of LSC protocol in identifying and scoring γH2AX in senescent nuclei are required 

before its use can be recommended without reservation. It is important to investigate 

whether sample storage condition, sample processing, slide preparation, use of γH2AX 

staining techniques and differences in the scoring criteria have an impact on the variable 

baseline γH2AX level observed within individuals.  

Evidence suggests that when the AD diagnosis is made the pathological features of AD 

are already well advanced. Early diagnosis of AD allows immediate access to 

medications and medical attention. Therefore, it is important to identify individuals 

during the pre-dementia phase where treatments may be taken in advance. The early 

treatments of AD include (i) prompt access to currently available medications for AD 

(ii) initiation of health management involving management of person depression and 

irritability (iii) remembering patient to take medications such as for diabetes, heart 
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disease or high blood pressure (iv) lowering elevated levels of raised blood 

homocysteine levels by applying high dose B-vitamins or antioxidant N-acetyl cysteine. 

These early treatments may play a significant role possibly in inhibiting or delaying the 

progression of the AD pathology. 

To date, no studies have assessed the presence of γH2AX in the buccal cells of AD 

patients relative to control and MCI patients, and the available literature on the use 

γH2AX as a DNA DSB marker in ageing populations is not yet sufficient to understand 

the association between DNA DSBs and AD. The current study is the first to 

demonstrate that buccal cells from AD patients exhibit elevated levels of DNA DSBs 

and irregular nuclear shapes relative to control and MCI cells, and support the potential 

use of γH2AX as a marker to identify individuals with an increased risk of developing 

MCI or AD. Identification of reliable biomarkers in non-invasive samples will be useful 

for early diagnosis and treatment of AD, which may prevent the onset of irreversible 

AD and reduce the overall economic and human cost of the disease. Buccal cells offer a 

sample source that is easily obtained in a relatively non-invasive manner. The LSC-

based γH2AX protocol provides a practical and inexpensive tool for assessing DNA 

DSBs in buccal cells of control, MCI and AD patients. The levels of γH2AX in buccal 

cells quantified by LSC may have prognostic implications to understand the 

pathogenesis of AD better, and offer the opportunity to monitor disease progression and 

the bioefficacy of potential preventative measure (i.e., diet, lifestyle, and therapeutics). 

Moreover, LSC provides identification and quantification of buccal cell sub-types based 

on cellular features that were previously not measurable (e.g., nuclear shape, DNA 

content, nucleus size, nucleus MaxPixel value). Scoring of buccal cell nuclear 

parameters in conjunction with multiple DNA damage parameters and AD-specific 

markers will be useful to establish a potential biomarker panel with high specificity for 
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AD patients. Thus, the combination of cytome and proteome approaches to a single 

sampling of buccal cells may significantly increase the sensitivity and/or specificity for 

AD diagnosis, which will have relevance not only for future clinical practice but also 

for the reliable prediction of those individuals who are likely to develop MCI and AD 

and also to monitor the bio-efficacy of preventative strategy. The buccal cell γH2AX 

assay may provide a useful method for AD and MCI diagnosis, particularly when 

sample collection must occur remotely and/or in disadvantaged communities unable to 

attend more expensive prognostic or diagnostic tests. In this study, a small number of 

populations were analysed, and there was lack of replication. Therefore, comprehensive 

studies using large prospective cohorts are warranted in order to validate the suitability 

of the LSC-based buccal cell γH2AX assay, particularly to identify those in the early 

stages of AD. 
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Chapter 5: Elevated γH2AX Level in Peripheral Blood 

Lymphocytes Identifies Alzheimer’s Disease in the South 

Australian Neurodegeneration, Nutrition and DNA Damage 

(SAND) Study of Aging 
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Abstract 

The initial cellular response to repair DNA double-stranded breaks (DSBs) is the 

phosphorylation of H2AX (a member of histone H2A family) to from γH2AX. 

Although increased level of γH2AX has been reported in neuronal nuclei of 

Alzheimer’s disease (AD) patients, the understanding of γH2AX responses in 

lymphocytes of individuals with Mild cognitive impairment (MCI) and AD remain 

unexplored. In the current study, endogenous γH2AX level was measured in 

lymphocytes nuclei from MCI (n=18), or AD (n=20) patients and in healthy controls 

(n=40) using laser scanning cytometry (LSC) and visual scoring. The endogenous 

γH2AX levels were significantly elevated in nuclei of AD group compared to MCI and 

control group, and there was a concomitant increase with a significant trend for an 

increase in γH2AX from the control group through MCI to the AD group. The visually 

scored % cell containing overlapping γH2AX foci displayed the best area under the 

Receiver Operation Characteristic (ROC) curve value of 0.9081 with 85 % sensitivity 

and 92 % specificity for the AD (p=<0001) group. This result was further supported by 

the significant negative correlation between the γH2AX signals and MMSE score when 

the analysis included all subjects. Plasma homocysteine, creatinine, and chitinase-3-like 

protein 1 (CHI3L1) were positively correlated with lymphocyte γH2AX signals, while 

glomerular filtration rate (GFR) was negatively correlated.  Finally, there was a blunted 

γH2AX response in the MCI and AD group compared to control group following X-ray 

radiation exposure. The results indicated that γH2AX level in lymphocytes nuclei could 

be used as a potential diagnostic in identifying individuals with increased risk of 

developing MCI and AD. 
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5.1 Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disease that is characterised clinically 

by abnormal behavioural and mental effects that include loss of memory, tremors, and 

absent-mindedness, and is the most common cause of dementia (Alzheimer's 

Association, Thies & Bleiler 2011, Fernandez et al. 2010, Burns, Byrne & Maurer 

2002). The brains of patients with AD are histopathologically characterised by two 

hallmark lesions—deposition of amyloid-β (Aβ) plaques and the development of 

neurofibrillary tangles composed of hyperphosphorylated protein tau (Ittner, Gotz 

2011). Currently, AD has reached a global prevalence of approximately 24.3 million, 

with 4.6 million new cases being diagnosed worldwide each year (Smith 2008, Ferri et 

al. 2005). The increasing rate of AD is expected to reach a level of one new case every 

33 seconds by 2050 (Alzheimer's Association, Thies & Bleiler 2011). Furthermore, this 

increase in the prevalence of AD not only reduces the quality of life, health and 

wellbeing of those affected but also causes a significant financial burden at both the 

social and economic levels (Sloane et al. 2002). 

The onset of AD involves the accumulation of increasingly severe cognitive deficits, 

progressing from mild cognitive impairment (MCI) to AD. MCI is characterised by 

deterioration in cognitive ability that; however, does not affect the individual’s ability to 

carry out their activities of daily living. Individuals affected by MCI have a higher risk 

of developing AD with advancing age, with estimates that vary between 14 and 18 per 

cent of those over 70 years of age suffering from this condition (Grundman et al. 2004, 

Petersen et al. 2009). Currently, the ability to detect the early stages of AD and 

differentiate the stages of AD progression to guide the choice of therapy is limited. The 

Mini Mental State Examination (MMSE) is a validated research-based set of 30 
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questions considering memory loss, cognitive decline, visuospatial and language 

impairment that is currently used as a standard tool for the clinical diagnosis of AD 

(Tombaugh, McIntyre 1992, Mitchell 2009). However, this test lacks accuracy for the 

diagnosis of AD in living subjects, and diagnostic confirmation can only be achieved 

post mortem by the examination of the senile plaques and neurofibrillary tangles in 

brain tissue from the patient (Armstrong 2006). Therefore, identification of other 

biomarkers in easily accessible tissue that can aid the diagnosis of AD may be useful to 

identify individuals at an increased risk of AD while they are still in the early stages of 

illness. 

The identification of biomarkers that can be used for the early detection of AD is 

challenging for the scientific fraternity. Most methods for the investigation of AD are 

too invasive and expensive and are unable to identify biomarkers (Thambisetty, 

Lovestone 2010, Hampel, Prvulovic 2012, Blennow, Zetterberg 2009). Successful 

population-based screening requires readily available, minimally invasive and 

inexpensive samples for a robust, low-cost diagnostic test that has high specificity and 

sensitivity. To detect amyloid-β protein aggregation forming senile plaques in specific 

regions of the brain, the Pittsburgh B (PiB) compound was used and found to be able to 

detect these plaques readily. However, some study reports showed that useful imaging 

with PiB depends on the accumulation of large plaques (Cairns et al. 2009, Leinonen et 

al. 2008). Although the formation of plaques containing Aβ peptides is a hallmark of 

AD (Ittner, Gotz 2011), these have also previously been detected in non-neural tissues 

such as blood, saliva, skin and other peripheral tissues (Gasparini et al. 1998, Joachim, 

Mori & Selkoe 1989, Soininen et al. 1992, Goldstein et al. 2003, Citron et al. 1994), 

suggesting that abnormalities in Aβ processing may be exhibited in peripheral tissues 

other than the brain. Several studies have reported abnormalities in platelets, red blood 
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cells, and white blood cells due to AD pathology (Tang et al. 2006, Janoshazi et al. 

2006, Hye et al. 2005). 

Previous studies have shown loss of genome integrity due to increased DNA damage 

levels in neurodegenerative disease (Migliore et al. 2011, Thomas et al. 2007, Migliore 

et al. 2005, Wang, Markesbery & Lovell 2006, Wang et al. 2005). Furthermore, several 

studies have reported increased levels of DNA damage in conjunction with elevated 

oxidative stress and a lack of DNA repair capacity in the peripheral lymphocytes of AD 

individuals compared to age-matched controls (Migliore et al. 2005, Migliore et al. 

1999). DNA double strand breaks (DSBs) are considered to be the most lethal form of 

DNA lesions, which if left unrepaired or misrepaired can alter the integrity of the 

genome and affect the survival of the organism (Dugle, Gillespie & Chapman 1976, 

Olive 1998). Phosphorylation of the C-terminal tails of the H2AX histones in the 

nucleosomes located in the vicinity of the break (Rogakou et al. 1998, Savic et al. 2009) 

is one of the earliest known responses to DNA DSB formation in cells. The nucleosome 

complex comprises DNA wrapped around eight histone proteins, two from each of the 

four core histone families (H4, H3, H2B, H2A), and is essential for normal genome 

function in terms of normal regulation of gene expression, DNA repair, maintenance of 

DNA methylation and accurate replication (Rogakou et al. 1999, Goll, Bestor 2002, 

Mendez-Acuna et al. 2010). Induction of DSBs in live cells triggers the phosphorylation 

of Ser139 contained in the SQ motif near the carboxy-terminus of H2AX, resulting in 

the formation of phosphorylated H2AX, termed γH2AX (Redon et al. 2002, Kinner et 

al. 2008). While H2AX is distributed uniformly throughout chromatin, only H2AX 

molecules located in close vicinity to DSBs become phosphorylated to form γH2AX 

(Rogakou et al. 1998, Savic et al. 2009, Rogakou et al. 1999). H2AX is phosphorylated 

by the ATM protein following ionising radiation (IR)-induced DNA damage (Rogakou 
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et al. 1998, Redon et al. 2002, Burma et al. 2001, Olive, Banath 2004, Fernandez-

Capetillo et al. 2004). 

The association of astrocyte degeneration and DNA damage with Alzheimer’s disease 

has been elucidated by investigating the γH2AX signal in astrocytes from the 

hippocampal region (known to be the most vulnerable region of the brain in AD). 

γH2AX staining has been shown to be stronger in the nuclei of astrocytes from AD 

patients compared to healthy controls, as determined by immunocytochemical 

techniques (Myung et al. 2008). This suggests that the DSBs measured by γH2AX 

positive immunostaining in the nuclei of astrocytes may be associated with impaired 

neuronal function and contribute to the pathogenesis of AD (Myung et al. 2008). 

Additionally, a recent study reported higher γH2AX levels in hippocampal tissue of 

individuals with both AD pathology and clinical dementia than was seen in a normal 

ageing group (Silva et al. 2014). 

Growing evidence shows that high blood pressure, midlife obesity, stroke and Type 2 

diabetes are associated with the risk of developing AD (Soto-Gordoa et al. 2015, 

Kivipelto et al. 2006, Li, Holscher 2007, Peters et al. 2008, Sery et al. 2014). Few 

studies have investigated endogenous γH2AX levels in normal ageing and accelerated 

ageing disorders. H2AX phosphorylation and the DNA damage response (DDR) have 

been implicated in diseases of accelerated ageing (e.g., Werner syndrome, AD, obesity, 

diabetes, sleep apnea, prostate cancer, cataract disease, hypertension and Hutchinson–

Gilford progeria syndrome) in recent studies (Myung et al. 2008, Sedelnikova et al. 

2008, Schurman et al. 2012), suggesting that lack of DNA integrity due to accumulating 

DNA damage progressively increases with age and may contribute to, or be caused by, 

these accelerated ageing disorders. Overall, these studies show that accumulation of 
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γH2AX foci is increased in individuals with greater morbidity and pathological ageing. 

This led to the hypothesis that individuals with MCI and AD may exhibit increased 

levels of γH2AX compared to healthy controls.  

Identification of susceptibility to DSBs of lymphocytes after exposure to IR may 

provide valuable information about the risk of developing diseases. Previous study has 

reported that lymphocytes from bladder cancer patients are highly susceptible to DSBs 

(i.e. measured using γH2AX assay) than control (Fernandez et al. 2013). Another study 

on mouse model has reported low induction of DNA damage responses (e.g. γH2AX 

foci and ATM protein levels) in old mice than young and mature mice suggesting 

inefficient DNA damage recognition or defect in recruiting and functioning of DNA 

repair machineries (Kovalchuk et al. 2014). In a study of obesity in children, the fold 

increase of γH2AX induction was higher in lymphocytes of obese subjects than in 

overweight subjects after treating the lymphocytes with radiomimetic mutagen 

bleomycin (Scarpato et al. 2011). We hypothesize that lymphocytes from MCI, and AD 

groups exhibit higher levels of endogenous γH2AX. We also hypothesize that 

lymphocytes from MCI, and AD groups are not able to respond to radiation-induced 

damage as efficiently as the control group. 

To test these hypotheses, (i) the endogenous levels of γH2AX in lymphocytes from 

participants in the South Australian Neurodegeneration Nutrition and DNA Damage 

study (SAND) were assessed to determine whether they could be used for identifying 

those at risk of developing AD and (ii) radiation-induced γH2AX levels in control, MCI 

and AD groups were assessed. To the researcher’s knowledge, this is the first study that 

correlates H2AX phosphorylation with the risk of developing AD in a single cohort 

study. This was done by (i) visually scoring of γH2AX foci in lymphocytes from 



 

176 

control, MCI and AD patients, and (ii) developing and utilising an automated laser 

scanning cytometry (LSC) γH2AX protocol in which multiple γH2AX parameters (area, 

integral, MaxPixel), as well as the ploidy, was measured in thousands of lymphocytes 

from control, MCI and AD patients to identify whether increased levels of γH2AX were 

associated with those who were diagnosed with MCI or AD as compared to healthy age-

and - gender matched controls. 

5.2 Materials and Methods 

5.2.1 Human Ethics and Clinical Assessment of the Participants 

This cross-sectional study was approved by the institutional ethics committees of 

CSIRO Food and Nutrition, Adelaide University, and the Calvary Hospital Human 

Research Ethics Committee. All volunteers gave written informed consent before 

participating in the study. The participants included in this study have been well 

characterised and reported previously (Lee et al. 2015). Diagnosis of MCI or AD was 

made based on the criteria outlined by the National Institute of Neurological and 

Communicative Disorders and the Stroke-Alzheimer’s Disease and Related Disorders 

Association (NINCDS-AD&DA), which are well-recognised standards used for MCI 

and AD diagnosis. Data reported in this study are from a total of 78 participants, 

including: (1) the control (C) group (n=40), which consisted of healthy age- and gender-

matched participants; (2) the MCI group (n=18), clinically diagnosed with MCI; and the 

(3) AD group (n=20) clinically diagnosed with AD. It is important to note that SAND 

cohort is completely separate from AIBL cohort. 
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5.2.2 Chemicals and Reagents 

Roswell Park Memorial Institute (RPMI) 1640, foetal bovine serum (FBS), sodium 

pyruvate, L-glutamine/penicillin/streptomycin mix, Hank’s balanced salt solution 

(HBSS), sodium citrate, 4’,6-diamidino-2-phenylindole (DAPI), Paraformaldehyde 

(PFA), glycerol and all other chemicals were purchased from Sigma-Aldrich (Castle 

Hill, NSW, Australia) unless otherwise stated. Ficoll–Paque, sterile was purchased from 

(Amersham Pharmacia Biotech). Mouse monoclonal antibody anti-γH2AX (clone 

JBW301) was obtained from Millipore (Kilsyth, VIC, Australia). Dulbecco’s 

phosphate-buffered saline (DPBS) and the secondary antibody Alexa Fluor 488 goat 

anti-mouse were purchased from Life Technologies (Mulgrave, VIC, Australia). 

5.2.3 Peripheral Blood Lymphocyte Isolation 

Whole blood was diluted in HBSS at a ratio of 1:1 and gently inverted to mix. The 

diluted blood was carefully layered on top of Ficoll solution in a TV10 tube (Techno 

Plas, S9716VSU, Australia) using a ratio of 1(Ficoll):3 (diluted blood) to minimise any 

mixing of blood with the Ficoll, as described previously (Fenech 2007). The tube 

containing diluted blood overlaid on Ficoll was centrifuged once at 400 x g for 30 min 

at 18–20oC to separate the lymphocytes. Lymphocytes are typically found at the 

interface between the plasma and the Ficoll solution, and were carefully recovered using 

a sterile plugged Pasteur pipette to avoid uptake of Ficoll. The lymphocyte suspension 

was washed three times with HBSS by gentle pipetting and then centrifuged at 180 x g 

for 10 min at room temperature to remove any residual Ficoll and plasma. The 

supernatant was removed and the pellet resuspended in 1 mL of tissue culture freezing 

medium (90 per cent FBS + 10 per cent DMSO cooled to 4°C). The lymphocyte 

suspensions were then transferred to cryovials and placed in a StrataCooler Cryo 
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preservation module (Cat #400005 32) that had been precooled to 4°C by refrigeration 

and placed in a -80°C freezer. After 24 hours, the vials were transferred to a box in the -

80°C freezer until required. 

Cryovials containing frozen lymphocytes were swabbed with 70 per cent v /v ethanol 

and thawed rapidly by agitation in pre-warmed (37oC) Milli Q water for 2–3 mins and 

removed from the water as soon as the cell suspension was thawed. The cell suspension 

was gently mixed to maximise the number of single cells in the suspension, centrifuged 

at 180 x g for 10 min and supernatant was discarded. The pellets containing 

lymphocytes were washed twice with 1 mL of DPBS, centrifuged at 180 x g for 10 min, 

and the supernatant was discarded. The cell pellet was then resuspended in 1 mL DPBS 

and divided into three aliquots: (1) 700 µL was fixed in 1 per cent PFA for 10 min in a 

cryovial at room temperature; (2) 10 µL was used to measure cell concentration and cell 

viability (Trypan blue dye exclusion assay) using a haemocytometer; and (3) the 

remaining 290 µL cell aliquot was used for radiation treatment. 

Following fixation, cells were centrifuged at 100 x g for 10 min and the supernatant was 

removed before the cells were washed with DPBS. The washing procedure was carried 

out twice, and the cell concentration was measured using a haemocytometer and the cell 

suspension was diluted with DPBS to reach a final concentration of 40,000 cells/mL. 

The lymphocytes were finally cytocentrifuged for 3 min at 200 rpm onto microscope 

slides at a concentration of 4,000 cells per cytospot using a Shandon CytospinVR 4 

(Thermo Scientific, USA). The slides were washed once with distilled water and air-

dried for 1 h at room temperature and subsequently stored in sealed microscope boxes 

with dessicant at -80°C until the staining procedure was performed. 
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For the irradiation experiments, 290 µL of the cell aliquot was centrifuged, the 

supernatant discarded and the cells resuspended in complete medium (RPMI with 10 % 

FBS, 2 mM L-glutamine, 1 mM sodium pyruvate, 100 U penicillin and 100 mg/mL 

streptomycin). The cell aliquot was exposed to 1 Gy of X-rays (Faxitron Bioptics LLC, 

USA) with a dose rate of 1 Gy/ min and 44 kVp at 25°C then immediately incubated for 

30 min at 37oC in an incubator and stored at -80°C. 

5.2.4 Staining of Lymphocytes for LSC and Visual Scoring 

Microscope slides containing lymphocytes were randomly selected, thawed at room 

temperature for 20 min and air-dried in a fume hood and then stained in random batches 

of six, including a positive control slide (to confirm all staining procedures were 

positive in each batch). A circle was drawn around each cytospot using a hydrophobic 

PAP pen (Dako, Australia) and air-dried for 10 min. Lymphocyte cytospots were 

permeabilised in PBS + 0.1 %Triton X-100 for 10 min. Following two washes with 

DPBS for 5 min each, the cells were blocked in PBS with 20 % goat serum for 30 min 

at room temperature and then washed once with DPBS. The anti-γH2AX antibody was 

added to each cytospot at a dilution of 1/500 in DPBS containing 10 per cent goat serum 

for 60 min. Slides were washed three times in DPBS for 5 min each time, and a 

secondary antibody, Alexa Fluor 488 goat anti-mouse, was added to each cytospot at a 

dilution of 1/1,500 in DPBS containing 20 per cent goat serum, for 60 min at room 

temperature. Finally, the slides were washed three times in DPBS for 5 min per wash, 

and nuclei were counterstained with 4,6-diamidino-2-phenylindole (DAPI) at a 

concentration of 1 mg/mL for 10 min at room temperature. The excess DAPI was 

removed by rinsing the slides with a solution containing 300 mM NaCl and 34 mM 

sodium citrate. Slides were then mounted with coverslips and DPBS:glycerol (1:1) 
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medium. The edges of the coverslips were sealed with nail polish to prevent drying 

prior to performing LSC and visual scoring. All the quantitative γH2AX experiments 

were done using reagents from the same batches to minimise inter-experimental 

variation. 

5.2.5 Laser Scanning Cytometry Measurements of γH2AX 

Microscope slides with lymphocytes were inserted in a four-slide carrier and analysed 

immediately after the staining procedure using an iCyte® automated imaging cytometer 

(Thorlabs, Sterling Virginia, USA) featuring a full autofocus function as well as 405 nm 

and 488 nm lasers for excitation of DAPI and Alexa Fluor 488, respectively. The blue 

and green photomultiplier tubes were used to collect fluorescence from DAPI (blue) and 

Alexa Fluor 488 (green), respectively. LSC parameters such as voltage, gain, offset 

values, contour, and threshold were determined and kept unchanged for all batch-to-

batch analyses. Samples were scanned consecutively in separate passes to prevent 

spectral overlap and nuclei, and γH2AX events were contoured using empirically 

determined thresholds to exclude the scoring of false positives (e.g., small fluorescent 

debris). The DAPI fluorescence integral of nuclei (for DNA content and nuclear ploidy), 

as well as multiple parameters within each nucleus, including the total γH2AX integral 

(a function of γH2AX intensity and size) and the MaxPixel value (the value of the most 

intense γH2AX signal/pixel within nuclei) and frequency (percentage) of cells 

containing γH2AX signals, were recorded and generated using the iCyteVR 3.4 

software and subsequently transferred into Microsoft Excel for further statistical 

analyses. Using the features available in the iCyte® software, the senescence 

characteristics of nuclei were classified to identify senescent cells as described in details 

in Section 5.2.6 and Figure 5.1. 
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5.2.6 Identification of Different Lymphocyte Nuclei by LSC 

Following a high - resolution scan using the LSC protocol as described in Section 5.2.6 

and Figure 5.1, nuclei were separated based on their DNA content (the DAPI integral) 

and the nuclear area. Nuclei with area values ranging from 0 to 210 µm2 and blue 

integral values ranging from 0 to 4 x 107 arbitrary units (a.u.) were separated in Region 

1 (R1) when plotted against the nuclear area (X-axis) and blue integral (Y-axis). The 

nuclei in R1 were denoted as ‘all nuclei’ (A). This scattergram plot separated cells from 

clumps of cells as well as from false positive events. In this version of the iCyte® 

software, cells falling outside the scan boundaries were excluded from the analysis. The 

R1 cells (Figure 5.1) were then separated based on differences in their nuclear staining 

by plotting a frequency histogram showing the number of nuclei (‘count’) versus the 

blue integral. Three regions were identified from the different peaks obtained: Region 2 

(R2, black) separated <2N nuclei from the 2N nuclei in Region 3 (R3, red), and Region 

4 (R4, magenta) indicating >2N nuclei. Gallery images of <2N, 2N, and >2N nuclei are 

shown in Figure 5.2. Nuclei in R1 were then plotted against the nuclear area (X-axis) 

versus the ratio of the maximal pixel intensity of DAPI fluorescence per nucleus to the 

nuclear area (y-axis) (Figure 5.1, C and D). Senescent nuclei were then identified based 

on the criteria of decreased levels of DAPI staining (maximal pixel intensity) paralleled 

by an increase in nuclear size (area), shown in Region 5 (R5). Gallery images R5 

(senescent nuclei) are shown in Figure 5.2 (Zhao, Darzynkiewicz 2013, Zhao et al. 

2010). Multiple parameters within each nucleus, including the γH2AX integral (a 

function of γH2AX intensity and size), the γH2AX MaxPixel value (the value of the 

most intense γH2AX signal/pixel within nuclei) and the γH2AX area, as well as nuclear 

parameters such as integral, area and circularity, were generated for R1, R2, R3, R4, and 
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R5 using the iCyte® 3.4 software and subsequently transferred into Excel for further 

statistical analyses. 
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Figure 5.1: Scattergram and histogram for Identification of cell types. A 
representative example of DNA content scattergram and histogram for a participant 
from the control group. A scattergram was generated to separate cells based on 
differences in nuclear staining and area by plotting their blue integral versus the area. 
(A) Nuclei having area values that ranged from 0 to 210 µm2 and blue integral values 
that ranged from 0 to 4 x 107 a.u. were separated in R1. (B) A histogram plot of the 
same data in the right panel showing the <2N, 2N and >2N peaks as represented in 
black, red, and magenta, respectively, and the respective frequency of DNA content 
events scored, with the majority of lymphocytes being scored as 2N. (C) A scattergram 
was generated to separate cells based on differences in nuclear staining and area by 
plotting their blue integral versus the area. (D) Nuclei in R1 were plotted against nuclear 
area versus the ratio of the maximal pixel intensity of DAPI fluorescence per nucleus to 
the nuclear area and the nuclei with morphometric characteristics of cellular senescence 
[i.e., increased nuclear size (area) combined with decreased intensity of MaxPixel of 
DNA-associated fluorescence per nucleus, after DNA staining with DAPI] were 
separated in R5. 
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Figure 5.2: Gallery of images generated by LSC of <2N nuclei, 2N nuclei, >2N 
nuclei and senescent nuclei. Gallery images of lymphocytes nuclei A: (R2: <2N 
nuclei), B: (R3: 2N nuclei), C: (R4: >2N nuclei) and D: (R5: senescent nuclei) were 
checked using the ‘Image Gallery’ function in the iCyte® 3.4 software. Gallery images 
of lymphocytes senescent nuclei showing increased nuclear size (area) and decreased 
DAPI staining (D). 
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5.2.7 Visual Scoring of γH2AX Foci 

Visual scoring of γH2AX foci was performed on microscope slides containing 

lymphocytes immediately after LSC scanning using a fluorescence microscope (ZEISS 

Metasystems, Althusheim, Germany) under a 63x oil objective. DAPI (nuclei) and 

Alexa Fluor 488 (γH2AX) fluorescence was viewed using blue and green filters, 

respectively. The presence of γH2AX foci were visualised as green fluorescence spots 

in the blue counterstained nuclei. A minimum of 400 nuclei were scored per cytospot. 

Since both discrete and overlapped γH2AX foci were observed within nuclei (Figure 

5.3), the visual scoring of γH2AX foci for each nucleus was performed as follows: no 

foci, discrete foci (e.g., nuclei containing 1 focus, 2 foci, 3 foci, >5 foci, and 

overlapping foci (likely containing >5 large γH2AX foci overlapping each other or 

diffuse nuclear staining of γH2AX foci., i.e., widespread and uniform presence of 

γH2AX signal within the nucleus). The frequency (percentage) of nuclei containing 

γH2AX foci, as well as the frequency of nuclei containing overlapped foci representing 

nuclei with severe DNA damage, were recorded. 
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Figure 5.3: Fluorescence images of lymphocytes nuclei containing discrete or 
diffuse γH2AX foci. DAPI stained nuclei were visualised with a fluorescence 
microscope as described in Section 5.2.7. Discrete γH2AX foci in each nucleus were 
scored according to six categories: No focus (A), 1 foci (B), 2 foci (C), 3 foci (D), > 5 
foci (E); however, some nuclei demonstrated an overlapping pattern of γH2AX signal 
(F). The arrow indicates discrete γH2AX foci. The scale bar in (A) represents 8 µm.  

Since overlapping γH2AX foci were observed during visual scoring, it was difficult to 

distinguish overlapping γH2AX foci from discrete γH2AX foci. Counting overlapping 

γH2AX foci may not give an accurate representation of the entire sample populations’ 

γH2AX signal or an actual number of foci/nuclei. Therefore, for visual scoring, as an 

alternative to counting γH2AX foci/nucleus, counting numbers of nuclei with clear 

bright γH2AX foci was chosen to obtain (i) % cell containing γH2AX foci and (ii) % 

cell containing overlapping γH2AX foci (Figure 5.4). It is important to note that total 

fluorescence signals (e.g. total integral or intensity of discrete and overlapping foci) 

were measured through the nuclei using LSC allowing detection of any subtle changes 

in γH2AX signals among individuals. 
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Figure 5.4: γH2AX parameters analysed by LSC and visual scoring. (A) Schematic 
showing an example of the different γH2AX parameters measured by LSC and visual 
scoring. In the schematic, the various types of γH2AX parameters are shown (γH2AX 
foci/nucleus, % cell containing γH2AX foci, γH2AX integral, γH2AX MaxPixel, and 
γH2AX area) (B) Schematic showing an example of the different γH2AX parameters 
those were chosen in this study for LSC and visual scoring. Note the blue indicating the 
nuclei and the green indicating γH2AX signal. 

5.2.8 Statistical Analysis 

GraphPad Prism 6.01 (GraphPad Prism, San Diego, CA) was used to analyse the data. 

Visual and LSC γH2AX data were checked for normality using the D’Agostino and 

Pearson omnibus normality test. Differences in relative γH2AX signals in the 

lymphocytes from control, MCI, and AD groups were compared using the Kruskal-

Wallis test for non-Gaussian distributed data followed by Dunn’s multiple comparisons 

test. In addition, for LSC and visually scored γH2AX data, comparison of the γH2AX 

signals between (i) MCI cases and age- and gender-matched controls (CON-MCI), and 

(ii) AD cases and age- and gender-matched controls (CON-AD) groups were performed 

using paired t-tests (Wilcoxon matched paired signed rank test) for non-Gaussian 

distributed data. The effect of X-irradiation on the γH2AX response in radiated and non-

irradiated lymphocytes from the control, MCI and AD group was evaluated using a t-

test for non-Gaussian distributed data (the Mann-Whitney test), which allows a 



 

188 

comparison of the γH2AX integrals between irradiated control versus non-irradiated 

control groups, irradiated MCI cells versus non-irradiated MCI cells and irradiated AD 

cells versus non-irradiated AD cells. Correlation coefficients were obtained using 

Pearson’s correlation coefficients for Gaussian distributed data and Spearman’s rho for 

non-Gaussian distributed data. Analysed data are reported as mean ± standard error of 

the mean (SEM) with p<0.05 considered statistically significant. Receiver-operating 

characteristic curves (ROC) were calculated for selected γH2AX parameters between 

the control and MCI or AD groups to obtain the area under the curve (AUC), sensitivity, 

specificity, confidence interval and p-value. p values <0.05 were considered to be 

statistically significant. 

5.3 Results 

5.3.1 Optimization of nuclear fixation to remove lymphocytes clumping  

To determine which fixative method was the most suitable to provide isolated single 

cells on the microscope slides, two fixation methods were tested. Cells were either fixed 

with 0.1 per cent PFA in PBS or with methanol, both for 10 min at room temperature. 

When lymphocytes were fixed with methanol, the majority of cells clumped, as 

visualised by bright-field microscopy, while PFA-fixed lymphocytes appeared as 

isolated single cells (Figure 5.5). Since cells in small clusters of 2–6 cells on the 

microscope slide could not be contoured separately for LSC analysis, PFA was 

considered to be the most suitable fixative to ensure isolated single lymphocyte nuclei 

were present on the microscope slides for γH2AX assays using LSC and visual scoring. 
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Figure 5.5: PFA and methanol fixation of lymphocytes for γH2AX staining and 
LSC. Lymphocyte staining was compared using two different cell fixation methods; A: 
Methanol-fixed lymphocytes appeared as clumped or a group of cell in close proximity. 
B: PFA fixation gave isolated single cells and was considered as the most suitable 
fixative for the LSC protocol. 

5.3.2 Variation of γH2AX Data 

Microscope slides containing lymphocytes previously fixed with 1 per cent PFA were 

defrosted at room temperature and stained for γH2AX analysis by LSC in batches of 12, 

including a positive control slide carrying X-irradiated (1 Gy) lymphocytes sampled 

from an individual (healthy male aged 34). The use of a control slide in each batch scan 

confirmed that all steps of γH2AX staining protocol were performed accurately in all 

batches analysed in this study. Additionally, prior to each batch scan, the same regions 

from a γH2AX positive stained slide (carrying 1 Gy exposed lymphocytes) were 

scanned using the γH2AX protocol by LSC to ensure that all settings and measurements 

of nuclei and γH2AX had not varied over the course of the study. 

The coefficient of variation of γH2AX signals (γH2AX integral by LSC, and percentage 

of cells containing γH2AX foci as determined by visual scoring) was examined in non-

irradiated lymphocytes as well as in lymphocytes exposed to 1 Gy of X-irradiation. 

Microscope slides were prepared from a single sampling of a healthy control (34 years 
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old), and cells were subsequently scored for γH2AX signals using LSC and visual 

scoring. 

When a single individual’s γH2AX integral was measured by LSC in non-irradiated 

control lymphocytes (all nuclei) slide in four separate experiments, the γH2AX integral 

ranged from 2.05 x 104 to 3.2 x 104 a.u. with a coefficient of variation of 20.5%. 

Additionally, the γH2AX integral in irradiated (1 Gy) lymphocytes (all nuclei) was 

measured by LSC in six separate experiments (within the same individual), and ranged 

from 1.27 x 106 to 2.5 x 106 a.u. with a coefficient of variation of 24.5%. 

For non-irradiated lymphocytes (all nuclei) the coefficient of variation of the percentage 

of cells containing γH2AX foci by visual scoring on four separate experiments was 

18.3%. For irradiated (1Gy) lymphocytes, the coefficient of variation of the percentage 

of cells containing γH2AX foci in six separate experiments was 11.8%. 

5.3.3 Effect of Radiation Doses on γH2AX Response in Lymphocytes 

Once the LSC and visual scoring protocols were validated, the γH2AX response for 

different doses was determined. The aim of this experiment was to determine if this 

protocol was suitable for distinguishing γH2AX signals at doses as low as 0.2 Gy X-

irradiation from the basal levels of γH2AX signals in non-irradiated samples. Within the 

dose range tested (0.2, 0.5, and 1 Gy) with a dose rate of 1 Gy/ min and 44 kVp, the 

γH2AX integral measured by LSC and the percentage of cells containing γH2AX 

increased linearly with increasing radiation doses. For visual scoring, correlation was 

r=0.9712, (p=0.0288), and for LSC measurement correlation was r=0.9961, (p=0.0039) 

(Figure 5.6). 
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Figure 5.6: Dose response of lymphocytes population using LSC measurement and 
visual scoring. Lymphocytes from an individual (healthy male aged 34) were exposed 
to three doses: 0 Gy, 0.2 Gy, 0.5 Gy, 1 Gy and γH2AX response was measured 30 min 
after X-irradiation in a single experiment. A: γH2AX response was measured using LSC 
and an increase linear trend of γH2AX integral with radiation dose was observed. B: 
Linear increase of % of cells containing γH2AX with radiation was also observed when 
the same slides were visually scored. A minimum of 400 nuclei were counted for each 
condition regardless of scoring method.  

5.3.4 Correlation of Visual and LSC Scored γH2AX Responses 

The frequency (%) of visually scored nuclei strongly correlated with the automated LSC 

method developed here to quantify γH2AX integral (and MaxPixel) as shown in Figure 

5.7. The correlation coefficients of visually scored γH2AX and the γH2AX integrals by 

LSC was r=0.9898, p=0.0102. This suggests that LSC was sensitive enough to quantify 

the small changes in IR-induced γH2AX signals in nuclei. 

. 
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Figure 5.7: Correlation of visually scored and LSC quantified γH2AX signals in 
lymphocytes exposed to 0, 1, 2, or 4 Gy IR. The frequency (%) of cells containing 
γH2AX foci is shown on the X-axis and the mean γH2AX integrals (by LSC) in all 
nuclei are shown on the Y-axis for an individual. The Pearson correlation coefficient (r) 
and p-value are shown as an inset within the graph. 

 

5.3.5 Clinical Characteristics of Participants 

The mean age, gender and MMSE score of the SAND participants in the control, MCI, 

and AD groups is shown in Table 5.1. There were no statistically significant differences 

for age and gender ratios between the groups. As expected, there was a significant 

decrease in the MMSE scores of both the MCI and AD groups compared with the 

control group. 
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Table 5.1: Clinical characteristics 

Means, standard error of the mean (SEM) are reported for each group. Significance was accepted at p<0.05. 
Abbreviations: AD, Alzheimer’s disease; F, Female; M, Male; MCI, Mild cognitive impairment; MMSE, Mini 

Mental State Examination. *p<0.05, **p<0.01, ****p<0.0001. 

 

5.3.6 Scoring of γH2AX Signals in Lymphocytes by LSC 

To investigate whether the endogenous γH2AX level is significantly increased in AD 

compared to control, γH2AX protein was measured in lymphocytes from control, MCI 

and AD cases by immunofluorescence. LSC measured multiple γH2AX parameters 

within each nucleus, including the total γH2AX integral (a function of γH2AX intensity 

and size), γH2AX MaxPixel (the value of the most intense γH2AX signal/pixel within 

each nuclei), γH2AX area, and the number of γH2AX events (foci) per cell in all nuclei 

and/or in cells with different DNA content (ploidy status) and senescent cells. 

5.3.6.1 γH2AX results using all nuclear types 

Table 5.2 summarises the one-way ANOVA results for the different γH2AX parameters 

(integral, MaxPixel, area and foci/nucleus) for each nuclear type analysed from the 

control, MCI and AD groups. There was a significant increase in the γH2AX integral 

(p=0.0023) in AD nuclei compared to control nuclei in all nuclei [Table 5.2, 1A, Figure 

5.8 (A)]. Consistent with the increase in the γH2AX integral, significant increases in 

γH2AX MaxPixel (p=0.0006), γH2AX area (p=0.0045), and γH2AX foci/nucleus 

(p=0.0080) were also observed in AD cells compared to control cells [Table 5.2, 1A, 

  Control MCI AD 

Sex (M:F) 11:28 7:13 5:15 

Age 
(years) 

75.75±1.575 (72.57-78.93) 74.60±1.955 (78.69-70.51) 76.85±2.450 (71.72-81.98) 

MMSE 
score 

28.60±0.211 (28.17-29.03) 26.28±0.559 (25.10-27.46)** 21.00±0.8645 (19.19-22.81)*** 
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Figure 5.8 (B–D)]. Although all nuclei had a higher level of γH2AX signal (integral, 

MaxPixel, area and foci/nucleus) in MCI cells compared to control cells, there was no 

statistically significant difference in these γH2AX parameters between control nuclei 

and MCI nuclei or between MCI nuclei and AD nuclei. Additionally, there was no 

statistically significant difference in any of the γH2AX parameters in MCI nuclei 

compared to AD nuclei. However, a significant increase in the linear trend for the 

γH2AX integral (p = 0.0005), γH2AX MaxPixel (p = 0.0002) and γH2AX area (p = 

0.0007) as well as for γH2AX foci/nucleus (p = 0.0262) was observed across the groups 

(i.e., AD > MCI > control) in all nuclei [Figure 5.8 (A-D)]. Individual data are also 

presented in Figure 5.9 (A-D). 
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Figure 5.8: Different γH2AX parameters (integral, MaxPixel, area, foci/nucleus) in 
all nuclei. A: γH2AX integral. B: γH2AX MaxPixel. C: γH2AX area. D: γH2AX 
foci/nucleus. These parameters were measured for control (n=40), MCI (n=18) and AD 
(n=20) groups in all cells. *, p<0.05. Abbreviations: a.u., Arbitrary units; AD, 
Alzheimer’s disease; MCI, Mild cognitive impairment. Data are means ± SEM. 

In an attempt to score the γH2AX signals in nuclei with different DNA contents, nuclei 

were categorised as 2N, <2N and >2N by plotting the nuclei count versus the DAPI 

integral (equivalent to DNA content) as described in Section 5.2.6 and Figure 5.1. 

5.3.6.2 γH2AX in 2N nuclei 

There was a significant increase in the γH2AX integral (p=0.0020) in 2N nuclei from 

AD cells compared with control cells. Similarly, significant increases in the γH2AX 

MaxPixel (p=0.0020), γH2AX area (p=0.0047) and γH2AX foci/nucleus (p=0.0103) 

were also observed in AD cells compared to control cells (Table 5.2, 1C). No significant 

increase of any of the γH2AX parameters was seen between the control and MCI cells 

A B 

D C 
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or between MCI and AD cells. Additionally, a significant increase in the linear trend 

was observed across the groups (i.e., AD > MCI > control in the 2N nuclei). 

5.3.6.3 γH2AX in <2N and >2N nuclei 

For <2N nuclei, no significant increase in the γH2AX signals (integral, MaxPixel, area, 

foci/nucleus) was observed between the three groups, whereas the >2N nuclei showed 

significantly increased γH2AX integral, γH2AX MaxPixel, γH2AX area, γH2AX 

foci/nucleus in AD compared to control cells (Table 5.2, 1B, 1D). As expected, both the 

γH2AX area and γH2AX MaxPixel values also increased significantly in AD compared 

to control cells for >2N nuclei. 
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Figure 5.9: Individual data of γH2AX parameters (integral, MaxPixel, area, 
foci/nucleus) measured by LSC in all nuclei. 

 A: γH2AX integral. B: γH2AX MaxPixel. C: γH2AX area. D: γH2AX foci/nucleus. 
These parameters were measured for control (n=40), MCI (n=18) and AD (n=20) 
groups in all cells. *, p<0.05. Abbreviations: a.u., Arbitrary units; AD, Alzheimer’s 
disease; MCI, Mild cognitive impairment. Data are means. Lines within data points 
indicate mean.  
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Table 5.2: Summary of one-way ANOVA tests for different γH2AX parameters 
measured using LSC in different types of lymphocyte nuclei 

LSC 
Con MCI AD Con v MCI Con vs AD MCI vs AD 

Mean+/-SEM Mean+/-SEM Mean+/-SEM p-value p-value p-value 

1A. All nuclei 

γH2AX integral 
(x105a.u.) 

0.5020+/- 
0.1027 

0.8062+/- 
0.1633 

1.627+/-0.429 0.0757 0.0023 >0.9999 

γH2AX 
MaxPixel (a.u.) 

1315+/- 
40.6 

1430+/- 
54.8  

1593+/- 
64.2 

0.2693 0.0006 0.1370 

γH2AX area 
(µM) 

0.4398+/- 
0.0833 

0.6672+/- 
0.1161 

1.158+/- 
0.2618 

0.0985 0.0045 >0.9999 

γH2AX 
foci/nucleus 

0.1295+/- 
0.0271 

0.1283+/- 
0.0265 

0.2452+/- 
0.0572 

0.6248 0.0080 0.4551 

1B. <2N nuclei 

γH2AX integral 0.6040+/- 
0.1674 

1.389+/- 
0.6546 

2.896+/- 
1.634 

>0.9999 0.3486 >0.9999 

γH2AX 
MaxPixel 

1183+/- 
35.1 

1394+/- 
165.8 

1488+/- 
167.0 

0.3424 0.0948 0.8475 

γH2AX area 0.5893+/- 
0.1613 

1.217+/- 
0.5427 

1.982+/- 
1.016 

>0.9999 0.3838 >0.9999 

γH2AX 
foci/nucleus 

0.1483+/- 
0.0317 

0.08229+/- 
0.0254 

0.1209+/- 
0.0297 

>0.9999 >0.9999 0.9999 

1C. 2N nuclei 

γH2AX integral 0.4369+/- 
0.0962 

0.7152+/- 
0.1741 

1.447+/- 
0.3876 

0.1756 0.0020 0.6717 

γH2AX 
MaxPixel 

1309+/- 
40.8 

1421+/- 
56.1 

1577+/- 
62.1 

0.2883 0.0009 0.1572 

γH2AX area 0.3808+/- 
0.0765 

0.5851+/- 
0.1264 

1.025+/- 
0.2371 

0.2601 0.0047 0.7275 

γH2AX 
foci/nucleus 

0.1204+/- 
0.0273 

0.1245+/- 
0.0279 

0.2267+/- 
0.0568 

0.8300 0.0103 0.3870 

1D. >2N nuclei 

γH2AX integral 1.108+/- 
0.3259 

1.704+/- 
0.5788 

3.420+/- 
0.7982 

0.4210 0.0009 0.2393 

γH2AX 
MaxPixel 

1422+/- 
80.49 

1852+/- 
282.7 

1867+/- 
89.79 

0.2945 0.0008 0.3129 

γH2AX area 1.034+/- 
0.2705 

1.369+/- 
0.2995 

2.697+/- 
0.5447 

0.5536 0.0016 0.2358 

γH2AX 
foci/nucleus 

0.2443+/- 
0.0503 

0.3063+/- 
0.0747 

0.7305+/- 
0.2383 

0.9603 0.0029 0.1671 

Parameters highlighted in bold text were considered statistically significant. Data were expressed as mean ± SEM. 
Statistical significance was accorded for p-values <0.05. 

In addition to one-way ANOVA tests for LSC and visually scored γH2AX parameters, 

comparison of the γH2AX signals between age and gender matched (i) AD and CON-

AD (ii) MCI and CON-MCI groups were performed using paired T-test. For all nuclei, 
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significant increase in the γH2AX integral (p=0.0007) was observed in AD cells 

compared to matched control cells, whereas visually scored cells showed a significant 

increase in the % of cells containing γH2AX foci (p=0.0001) and the percentage of cells 

containing overlapping γH2AX foci (p=0.0001) in AD cells compared to and CON-AD 

cells. No significant increase of any of the γH2AX parameters was seen in MCI cells 

compared to CON-MCI cells (Table 5.3). 

Table 5.3: Comparison of AD and CON-AD and MCI and CON-MCI in regards to 
γH2AX signals measured by LSC and visual scoring 

       AD CON-AD p-value     MCI CON-MCI p-value 

Integral 
Mean±SEM 

16273±4294 
(n=20) 

49730±1445 
(n=20) 

0.0007 8063±1634 
(n=18) 

53002±1645 
6(n=18) 

0.30 

Percentage of 
cells containing 
γH2AX foci 
(Mean±SEM) 

16.65±2.67 
(n=20) 

6.60±1.31 
(n=20) 

0.0001 8.68±1.24 
(n=18) 

6.35±1.30 
(n=18) 

0.138 

Percentage of 
cells containing 
overlapping 
γH2AX foci 
(Mean±SEM) 

1.31±0.30 
(n=20) 

0.02±0.02 
(n=20) 

0.0001 0.32±0.15 
(n=18) 

0.02±0.02 
(n=18) 

0.09 

Parameters highlighted in bold text were considered statistically significant. Data were expressed as mean ± SEM. 
Statistical significance was accorded for p-values <0.05. 

5.3.6.4 Effect of Age and Gender- on visually scored and LSC quantified γH2AX signals 

Paired T-tests and Pearson’s or Spearman’s rho tests were performed to find whether 

visually scored and LSC quantified γH2AX signals were affected by gender and/or 

correlated with age when combining the data from all of the groups. The % of cells 

containing overlapping γH2AX foci were significantly affected by gender but not age. 

The percentage of cells containing overlapping γH2AX foci was significantly higher 

(P=0.01) in females compared with males. The LSC quantified γH2AX integral and 

visually scored percentage of cells containing γH2AX foci was not affected by age and 

gender. γH2AX integral (all nuclei), % of cells containing γH2AX foci, % of cells 

containing overlapping γH2AX foci had no significant correlation with age (Table 5.4). 
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Table 5.4: Effect of Age and Gender on visually scored and LSC quantified γH2AX 
signals based on combined data from all groups (N=78) 

 
γH2AX integral 

(all nuclei) 
Percentage of cells containing 

γH2AX foci 
Percentage of cells containing 

overlapping γH2AX foci 

Comparison of male vs. female 

Male (N=23) 
(Mean ± SEM) 

112707±28944 13.16±1.84 0.20±0.08 

Female (N=55) 
(Mean ± SEM) 

74940±15014 7.92±1.11 0.50±0.14 

P-value NS NS 0.01 

Correlation with age 

R-value 0.14 0.21 0.023 

p-value NS NS NS 

Parameters highlighted in bold text were considered statistically significant. Data were expressed as mean ± SEM. 
Statistical significance was accorded for p-values <0.05. 

5.3.6.5 Senescent nuclei 

The Nuclear Area and Nuclear MaxPixel features available within iCyte were used to 

empirically classify senescent lymphocytes, and their γH2AX parameters (integral, 

MaxPixel, area foci/nucleus) values are shown in Table 5.5. There were no differences 

in the % of senescent cells across the groups. The γH2AX integral was significantly 

increased (p=0.0092) in AD cells compared to control cells, while a significant increase 

was also observed for the γH2AX MaxPixel (p=0.0008), γH2AX area (p=0.0157) and 

γH2AX foci/nucleus (p=0.0056) in AD cells compared to control cells (Table 5.5). 
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Table 5.5: Summary of the one-way ANOVA tests for different γH2AX parameters 
in senescent nuclei 

Senescent nuclei Con MCI AD 
Con vs 
MCI 

Con vs AD 
MCI vs 

AD 

 Mean+/-SEM Mean+/-SEM Mean+/-SEM p-value p-value p-value 

γH2AX integral 0.1170+/-0.0297 0.1307+/-0.0345 0.2743+/-0.0758 0.4677 0.0092 0.6265 

γH2AX MaxPixel 1315+/- 
40.6 

1430+/- 
54.8 

1593+/- 
64.2 

0.2380 0.0008 0.3634 

γH2AX area 1.110+/- 
0.2939 

1.150+/- 
0.2540 

2.153+/- 
0.5009 

0.4013 0.0157 0.8897 

γH2AX 
foci/nucleus 

0.2456+/-0.0698 0.2341+/-0.0545 0.3777+/-0.0681 
0.4749 0.0056 0.4938 

Parameters highlighted in bold text were considered statistically significant. Data were expressed as mean ± SEM. 
Statistical significance was accorded for p-values <0.05. 

5.3.7 Visual Scoring of γH2AX Foci 

Microscope slides containing lymphocytes stained as described in Section 5.2.4 were 

visually assessed using the criteria described in Section 5.2.7. Representative images of 

nuclei with discrete and overlapped γH2AX foci are shown in Figure 5.3 (A–F). The % 

of cells containing γH2AX foci was significantly higher (p=0.0003) in AD compared to 

those from the control group. Additionally, the percentage of cells containing γH2AX 

foci was significantly increased (p=0.0212) in AD compared to MCI. Data are 

summarised in Figure 5.10 and Table 5.6.  

There was also significant increase in the frequency (%) of nuclei containing 

overlapping γH2AX foci in AD cells compared to control cells (p=0.0001), as well as in 

AD cells compared to MCI cells (p=0.0007). In fact, regardless of the different γH2AX 

parameters analysed, this significant increase in the frequency of nuclei containing 

overlapping foci was observed in AD cells compared to control cells as well as in AD 

cells compared to MCI cells [Table 5.6, Figure 5.10, (B)]. Individual data are also 

presented in Figure 5.10 (A-B). 
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Figure 5.10: Different γH2AX parameters scored visually in all cells. A: Percentage 
of cells containing γH2AX foci. B: Percentage of cells containing overlapping γH2AX 
foci in the control (n=40), MCI (n=18) and AD (n=20) groups. *P<0.05. Abbreviations: 
a.u., Arbitrary units; AD, Alzheimer’s disease; MCI, Mild cognitive impairment. Data 
are means ± SEM. 

Table 5.6: Summary of one-way ANOVA tests for different γH2AX parameters 
measured by visual scoring in lymphocyte nuclei 

Visual Scoring 
Con MCI AD 

Con v 
MCI 

Con vs 
AD 

MCI vs 
AD 

Mean+/-SEM Mean+/-SEM Mean+/-SEM p-value p-value p-value 

% of cells with γH2AX foci 6.230+/-0.889 7.820+/- 
1.271 

16.65+/- 
2.671 

>0.9999 0.0003 0.0212 

% of cells with overlapping 
γH2AX foci 

0.020+/-0.012 0.2900+/-
0.1372 

1.310+/-0.308 0.1447 0.0001 0.0007 

Parameters highlighted in bold text were considered statistically significant. Data were expressed as mean ± SEM. 
Statistical significance was accorded for p-values <0.05. 

A B 
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Figure 5.10: Individual data of γH2AX parameters scored visually in all cells.  

A: Percentage of cells containing γH2AX foci. B: Percentage of cells containing 
overlapping γH2AX foci in the control (n=40), MCI (n=18) and AD (n=20) groups. 
*P<0.05. Abbreviations: a.u., Arbitrary units; AD, Alzheimer’s disease; MCI, Mild 
cognitive impairment. Data are means. Lines within data points indicate mean.  

5.3.8 Receiver Operator Characteristic Curve 

Receiver operation characteristic curves (ROC) were generated to determine the 

diagnostic value of these parameters for discriminating AD patients from controls. The 

accuracy of the test depends on how well the test distinguishes the group being tested 

from controls and AD patients. The area under the curve (AUC) quantifies the capacity 

of the test in discriminating between the control group and the AD group. An AUC 

value of 1 is considered to be a perfect test, while an AUC value of 0.5 is considered a 

low-efficiency test. Sensitivity represents the fraction of people within the AD group 

that the test correctly identifies as positive. On the other hand, specificity represents the 

fraction of people from the control group that the test correctly identifies as negative. 

Sensitivity and specificity were automatically calculated using each value from the data 

table. For each category of nuclei analysed by LSC, γH2AX parameters (e.g., integral, 

γH2AX MaxPixel, γH2AX area, γH2AX foci/nucleus) were significantly higher in AD 

compared to the control group. ROC curves were generated for the following 

A B 
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parameters: γH2AX integral, γH2AX MaxPixel, γH2AX area and γH2AX foci/nucleus. 

ROC curves for the γH2AX integral, γH2AX MaxPixel, γH2AX area, γH2AX 

foci/nucleus are shown in Figure 5.11 A–D, respectively. The ROC curve for the 

γH2AX integral yielded an AUC of 0.7638 (p=0.0001) for the AD group. The AUC 

values for the γH2AX MaxPixel, γH2AX area and γH2AX foci/nucleus were 0.7775 

(p=0.0005), 0.6806 (p=0.03) and 0.7200 (p=0.0006) respectively (Figure 5.11 (A-D), 

Table 5.7). Of all parameters analysed by ROC curves, the γH2AX MaxPixel showed 

the highest likelihood for identification of AD with 85 % sensitivity and 67 % 

specificity. 
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Figure 5.11: ROC curves for selected γH2AX parameters measured by LSC for 
control and AD nuclei. ROC curves were generated for the γH2AX integral, γH2AX 
MaxPixel, γH2AX area and γH2AX foci/nucleus in lymphocytes from control and AD 
groups. 

Additionally, visually scored γH2AX signals were significantly higher in AD cells 

compared with those from the control group, as well as in MCI cells compared with 

those from the AD group. ROC curves were generated for the percentage of cells 

containing γH2AX foci and the percentage of cells containing overlapping γH2AX foci 

(Figure 5.12 (A-B), Table 5.7). The ROC curve of the % of cells containing γH2AX 

foci yielded an AUC of 0.8000 (p=0001), and for the percentage of cells containing 

overlapping γH2AX foci the AUC value was 0.9081 (p=<0001). Thus, the percentage of 

cells containing overlapping γH2AX foci showed the highest likelihood for 

A 

C 

B 

D 
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identification of AD, with 85 % sensitivity and 92 % specificity. In conclusion, visual 

scoring gave better AUC outcomes than LSC scoring. 

 

 

 

 

 

 

 

 

Figure 5.12: ROC curves for visually scored γH2AX parameters for controls and 
AD. ROC curves generated for the percentage of cells containing γH2AX foci and the 
percentage of cells containing overlapping γH2AX foci analysed by visual scoring in 
lymphocytes from the control and AD groups. 

ROC curves were generated for the γH2AX integral, γH2AX MaxPixel, γH2AX area 

and γH2AX foci/nucleus in lymphocytes from control and AD groups. AUC, CI, P-

value, sensitivity and specificity values are shown for each category of γH2AX 

parameters analysed using LSC or visual scoring. Abbreviations; AUC, Area under the 

curve; CI, Confidence interval.  

A B 
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Table 5.7: Data obtained from ROC curves generated for the different γH2AX 
parameters analysed in lymphocytes using LSC and visual scoring. 

Parameters AUC CI p-value Sensitivity 

      % 

Specificity 

       % 

LSC 

γH2AX integral 0.7638 0.4-0.7 0.0001 75 62 

γH2AX MaxPixel 0.7775 0.6-0.8 0.0005 85 67 

γH2AX area 0.6806 0.5-0.8 0.0289 72 67 

γH2AX foci/nucleus 0.7200 0.5-0.8 0.0006 75 67 

Visual scoring  

% of cells with γH2AX 
foci 

0.8000 0.6-0.9 <0.0001 75 77 

% of cells with 
overlapping γH2AX 
foci 

0.9081 0.8-1.0 <0.0001 85 92 

 

5.3.9 Correlation of the γH2AX Integral and Other γH2AX Parameters by Laser 

Scanning Cytometry 

Since the γH2AX integral is a function of both γH2AX total intensity and γH2AX area, 

the γH2AX integral in all nuclei was selected for investigating correlations with other 

γH2AX parameters measured by LSC. γH2AX MaxPixel, γH2AX area and γH2AX 

foci/nucleus strongly correlated with the γH2AX integral. Table 5.8 summarises the r 

and p-values obtained for each of the parameters examined. The parameters highlighted 

in bold correlated with the γH2AX integral. 
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Table 5.8: Summary of correlations tested between γH2AX integral and other 
γH2AX parameters in different types of nuclei from the SAND study 

Cell types 
LSC 

Parameters Correlation (r) CI p-value 

All nuclei γH2AX MaxPixel 0.74 0.6195–0.8265 <0.0001 

 γH2AX area 0.9666 0.9480–0.9786 <0.0001 

 γH2AX foci/nucleus 0.3986 0.1932–0.5706 0.0003 

<2N γH2AX MaxPixel 0.8165 0.7258–0.8793 <0.0001 

 γH2AX area 0.982 0.9718–0.9885 <0.0001 

 γH2AX foci/nucleus 0.3282 0.1139–0.5133 0.0034 

2N nuclei γH2AX MaxPixel 0.7425 0.6228–0.8282 <0.0001 

 γH2AX area 0.9641 0.9441–0.9770 <0.0001 

 γH2AX foci/nucleus 0.4076 0.2035–0.5778 0.0002 

>2N nuclei γH2AX MaxPixel 0.691 0.5536–0.7918 <0.0001 

 γH2AX area 0.9096 0.8614–0.9415 <0.0001 

 γH2AX foci/nucleus 0.4624 0.2673–0.6210 <0.0001 

Senescent nuclei γH2AX MaxPixel 0.7633 0.6514–0.8427 <0.0001 

 γH2AX area 0.9268 0.8872–0.9528 <0.0001 

 γH2AX foci/nucleus 0.4159 0.2131–0.5844 0.0002 

Parameters highlighted in bold text were considered statistically significant. 

5.3.10 Correlation of γH2AX Integral by LSC and Visually Scored γH2AX 

The visually scored γH2AX parameters (percentage of cells containing γH2AX foci, 

percentage of cells containing overlapping γH2AX foci) were compared to the LSC 

scored γH2AX integrals. A strong positive correlation was observed between the 

γH2AX integral and each of the visually scored parameters. Table 5.9 summarises the r 

and p-values obtained for each of the visually scored parameters examined. The 

parameters highlighted in bold text correlated with the LSC scored γH2AX integral. 
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Table 5.9: Summary of correlations between γH2AX integral and other visually 
scored γH2AX parameters in different types of nuclei from the SAND study 

Cell types 
Visual scoring 

Parameters Correlation (r) CI p-value 

All nuclei % nuclei with γH2AX 
foci 

0.7011 0.5670–0.7990 <0.0001 

 % cell with diffuse 
γH2AX foci 

0.3914 0.1849–0.5648 0.0004 

<2N % nuclei with γH2AX 
foci 

0.2339 0.0119–0.4339 0.0393 

 % cell with diffuse 
γH2AX foci 

0.1908 -0.0331–0.3966 0.0942 

2N % nuclei with γH2AX 
foci 

0.7041 0.5710–0.8011 <0.0001 

 % cell with diffuse 
γH2AX foci 

0.4111 0.2075–0.5805 0.0002 

>2N nuclei % nuclei with γH2AX 
foci 

0.6349 0.4802–0.7513 <0.0001 

 % cell with diffuse 
γH2AX foci 

0.3636 0.1534–0.5423 0.0011 

Senescent nuclei % nuclei with γH2AX 
foci 

0.5392 0.3598–0.6802 <0.0001 

 % cell with diffuse 
γH2AX foci 

0.2648 0.0448–0.4602 0.0192 

Parameters highlighted in bold text were considered statistically significant. 

5.3.11 Correlation of LSC and Visually Scored γH2AX with MMSE score 

To investigate whether γH2AX measurements in lymphocytes were related to the extent 

of cognitive decline in the subjects, the correlation between γH2AX integral, γH2AX 

MaxPixel and MMSE scores was tested. Since γH2AX MaxPixel reached the strongest 

differences between AD and controls (p=0.006) of all the γH2AX parameters measured 

by LSC, and γH2AX MaxPixel was strongly correlated (r=0.74, p<0.0001, Table 5.8) 

with γH2AX integral, therefore the γH2AX MaxPixel value in all cells was selected for 

investigating any correlation with MMSE scores. Correlation tests were also carried out 

between each of visually scored parameters and MMSE scores to investigate whether 

the number of visually scored γH2AX foci/nucleus in lymphocytes was related to the 

advancement of cognitive decline in the subjects (Table 5.10). 
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Table 5.10: Summary of correlations between LSC scored γH2AX signals vs the 
MMSE score and between visually scored γH2AX signals and MMSE scores 

available from the SAND study 

Parameters highlighted in bold text were considered statistically significant. All are Spearman’s rho correlation. 

5.3.12 Correlation of LSC and Visually Scored γH2AX with Blood Parameters 

Many blood parameters have been analysed in the SAND cohort that are known to be 

associated with AD. Correlation tests were carried out between each of these parameters 

and the γH2AX integral values as well as with γH2AX MaxPixel values. Table 5.11 

summarises the r and p-values obtained for each of the parameters examined. 

Parameters highlighted in bold text correlated with the γH2AX integral as well as the 

γH2AX MaxPixel. 

Parameters Correlation (r) CI p-value 

γH2AX integral -0.1899 -0.4014 to 0.04083 0.0959 

γH2AX MaxPixel -0.2266 -0.4331 to 0.0024 0.0460 

% cells containing γH2AX (visually scored) -0.3188 -0.5105 to -0.09693 0.0044 

% cells containing overlapping γH2AX foci (visually scored) -0.5343 -0.6800 to -0.3479 <0.0001 
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Table 5.11: Summary of correlations tested between γH2AX Integral and other 
blood parameters available from SAND study 

 Parameters Correlation (r) CI p-value 

γH2AX Integral B12 0.0551 -0.1696 to 0.2743 0.6319 

Folate 0.1913 -0.0327 to 0.3970 0.0934 

RCF 0.1153 -0.1131 to 0.3322 0.3212 

Homocysteine 0.0992 -0.1293 to 0.3175 0.3942 

Creatinine 0.3007 0.0837 to 0.4904 0.0075 

Albumin -0.1566 -0.3690 to 0.07147 0.1768 

eGFR -0.2442 -0.4428 to -0.0229 0.0312 

B2M 0.1089 -0.1166 to 0.3236 0.3428 

Cortisol -0.0668 -0.2851 to 0.1582 0.5615 

CHI3L1 0.2089 -0.0389 to 0.4326 0.0976 

γH2AX MaxPixel B12 0.0246 -0.1991 to 0.2458 0.8309 

Folate 0.0868 -0.1385 to 0.3035 0.4502 

RCF 0.0995 -0.1289 to 0.3179 0.3926 

Homocysteine 0.0163 -0.2100 to 0.2409 0.8887 

Creatinine 0.2081 -0.0152 to 0.4116 0.0675 

Albumin -0.1305 -0.3458 to 0.0979 0.2613 

GFR -0.1925 -0.3980 to 0.0314 0.0913 

B2M 0.0889 -0.1363 to 0.3055 0.4387 

Cortisol -0.0364 0.2569 to 0.1877 0.7517 

CHI3L1 0.2939 0.0518 to 0.5034 0.0184 

Parameters highlighted in bold text were considered statistically significant. All are Pearson correlations. Parameters 
highlighted in bold text were considered statistically significant. All are Pearson correlations. 
Abbreviations: CHI3L1, Chitinase-3-like protein 1, eGFR, estimated glomerular filtration rate; ESR, erythrocyte 
sediment rate; Vitamin B12, B12. B2M, Beta-2 microglobulin, RCF, red cell folate. 

Additional correlation test between visually scored γH2AX signals (percentage of cells 

containing γH2AX foci, percentage of cells containing diffuse γH2AX foci) and each of 

these blood parameters were also performed. Table 5.12 summarises the r and p-values 

obtained for each of the parameters examined. The parameters highlighted in bold text 

correlated with the percentage of cells containing γH2AX foci and the percentage of 

cells containing diffuse γH2AX foci. It is important to note that both LSC and visual 

scoring showed correlations between creatinine, GFR, and CHI3L1 and γH2AX signals, 

suggesting that visual and LSC scored γH2AX parameters may be used to identify 

abonarmalities in blood parameters of AD patients.  
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Table 5.12: Summary of correlations between visually scored γH2AX signals and 
other blood parameters available from the SAND study 

Percentage of cells containing γH2AX foci 

Parameters Correlation (r) CI p-value 

B12 -0.0900 -0.3065 to 0.1353 0.4332 

Folate 0.1120 - -0.1134 to 0.3264 0.3290 

RCF 0.0583 -0.1695 to 0.2801 0.6172 

Homocysteine 0.1920 -0.0351 to 0.4001 0.0967 

Creatinine 0.2884 0.0703 to 0.4801 0.0105 

Albumin -0.0751 -0.2956 to 0.1530 0.5191 

eGFR -0.2189 -0.4209 to 0.0039 0.0542 

B2M  0.1183 -0.1071 to 0.3322 0.3021 

Cortisol -0.0533 -0.2726 to 0.1713 0.6432 

CHI3L1 0.2734 0.0295 to 0.4865 0.0288 

Percentage of cells containing overlapping γH2AX foci 

Parameters Correlation (r) CI p-value 

B12 -0.0043 -0.2266 to 0.2185 0.9705 

Folate 0.0304 -0.1935 to 0.2513 0.7918 

RCF 0.0005 -0.2251 to 0.2259 0.9971 

Homocysteine 0.3606 0.1471 to 0.5421 0.0014 

Creatinine 0.1511 -0.0740 to 0.3615 0.1868 

Albumin 0.1170 -0.1114 to 0.3337 0.3140 

eGFR -0.2632 -0.4589 to -0.04311 0.0199 

B2M 0.0951 -0.1303 to 0.3111 0.4077 

Cortisol 0.0087 -0.2143 to 0.2308 0.9401 

CHI3L1 0.0706 -0.1784 to 0.3110 0.5797 

Parameters highlighted in bold text were considered statistically significant. All are Pearson correlations. 
Abbreviations: CHI3L1, Chitinase-3-like protein 1, eGFR, estimated glomerular filtration rate; ESR, erythrocyte 
sediment rate; Vitamin B12, B12. B2M, Beta-2 microglobulin, RCF, red cell folate. 

5.3.13 γH2AX response of lymphocytes population after exposure to X-irradiation 

The levels of γH2AX were also tested in lymphocytes from the control, AD and MCI 

groups 30 min after exposure to X-irradiation. The γH2AX integral values increased 

significantly in the irradiated lymphocytes from the control (p=0.0001), MCI 

(p=0.0117) and AD (p=0.0210) group than in their respective non-irradiated 

lymphocytes (Figure 5.13). The results of X-irradiation treatment of lymphocytes were 

also calculated as the fold induction over the basal level of γH2AX signal. The γH2AX 
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integral increased approximately 6-fold in the irradiated control group; while in MCI 

and AD groups, the γH2AX integral increased approximately 2- and approximately 3- 

fold, respectively. 

 

Figure 5.13: The effect of X-irradiation on the level of γH2AX signalling in the 
lymphocytes from Control, MCI and AD groups. Lymphocytes were exposed to 1 
Gy X-irradiation. The γH2AX integral was measured by LSC after 30 min post-
irradiation. Error bars represent the SEM for each group. 
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5.4 Discussion 

The main objective of this study was to investigate whether MCI and AD 

patients have higher levels of endogenous DSBs than healthy controls, with the ultimate 

aim of identifying DSBs in lymphocytes for early AD diagnostic testing. The γH2AX 

assay was chosen for this analysis as it has been demonstrated to be a reliable and rapid 

measure of DNA DSBs for clinical purposes (Schurman et al. 2012, Banath, Macphail 

& Olive 2004, Scarpato et al. 2011). LSC and visual scoring methods were used to 

quantify endogenous γH2AX in peripheral blood lymphocytes of individuals who met 

clinical criteria for MCI and AD and in age-and gender-matched healthy controls. Both 

the LSC protocol and visual scoring showed increased levels of γH2AX in the 

lymphocytes of AD compared with control and MCI patients, and there was a 

concomitant increase with a significant trend for an increase in γH2AX from controls 

through MCI to AD. This result was further supported by the significant negative 

correlation between the γH2AX signals and MMSE score when the analysis included all 

subjects. The frequency of visually scored nuclei containing γH2AX signals showed a 

strong correlation with the LSC scored γH2AX integral. The LSC protocol developed 

here simultaneously quantifies the DNA content and different γH2AX parameters 

(integral, MaxPixel, area) in each nucleus in thousands of lymphocytes. Additionally, 

several significant correlations were observed between lymphocyte γH2AX signals and 

other blood parameters that were available from the SAND database (i.e., plasma 

homocysteine, creatinine, GFR, CHI3L1 that were previously shown to be increased in 

MCI and AD (Choi, Lee & Suk 2011, Zhuo, Wang & Pratico 2011, Wald, Kasturiratne 

& Simmonds 2011, Ng et al. 2014)). Finally, there was a blunted γH2AX response in 

the MCI and AD group compared to control group following X-ray exposure. These 

experimental results demonstrated that lymphocytes from AD patients exhibited 
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increased γH2AX levels relative to those in MCI patients and healthy controls, 

suggesting that this AD-associated increase in unrepaired DSBs may reflect a higher 

chronic induction of DSBs via oxidative or DNA replication stress, defective DNA 

repair, an inefficient processing of γH2AX. 

In the visual scoring study, nuclei containing γH2AX foci were counted in lymphocytes 

from the control, MCI and AD groups. The results of the visual scoring demonstrated 

that the percentage of cells containing γH2AX foci was significantly higher in AD 

compared to the control group, and also significantly increased in AD compared to 

MCI. In previous studies, γH2AX immunocytochemical staining has been shown to be 

higher in the nuclei of hippocampal astrocytes from Alzheimer’s disease patients 

relative to healthy controls as determined by immunocytochemical techniques, while 

another study reported no difference in astrocytes or neurons relative to AD progression 

(Myung et al. 2008, Simpson et al. 2010). Additionally, a recent study reported higher 

levels of expression of γH2AX in hippocampal tissues of individuals with both AD 

pathology and clinical dementia than in a normal ageing group (Silva et al. 2014). 

However, there is a lack of studies assessing the levels of γH2AX in peripheral blood 

cells of patients with AD relative to those seen in healthy controls and MCI patients. In 

line with other studies, the visually scored data suggest that the elevated levels of DNA 

DSBs in lymphocytes, as measured by the γH2AX assay, may be associated with a 

clinical diagnosis of AD and MCI. The results from the visual scoring also showed that 

the percentage of severely damaged nuclei (containing >10 foci) was significantly 

higher in AD compared to the control group and significantly increased in AD 

compared to MCI. These results are in agreement with other studies that show increased 

levels of endogenous γH2AX in lymphocytes from individuals with accelerated ageing 

disorders compared to healthy controls (e.g., Werner syndrome, obesity, diabetes, sleep 
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apnea, prostate cancer, cataract disease, hypertension and Hutchinson–Gilford progeria 

syndrome) (Schurman et al. 2012). Therefore, it is plausible that the accumulation of 

γH2AX foci is increased in individuals with accelerated ageing disorders and may be 

associated with the accumulation of DSBs in pathological ageing such as AD. In a study 

of obesity in children, severely damaged nuclei showing >50 γH2AX foci were also 

observed, and the levels of γH2AX in lymphocytes of obese children was 8-fold higher 

than those seen in non-obese children. It is likely that the severely damaged nuclei 

observed represent the necrotic or nonviable cell population with impaired DNA 

damage repair efficiency. For a complete understanding of the DNA damage response 

in lymphocytes isolated from control, MCI and AD cells, it would, therefore, be 

valuable in future studies to combine γH2AX detection with cellular markers of 

apoptosis in the different cell subtypes present (e.g., B and T lymphocytes). 

One of the advantages of using automated quantitative LSC is the efficient, unbiased 

and quantifiable measure of γH2AX signals as well as determining DNA content in a 

large number of cells (thousands of cells per individual), making it a useful method to 

measure any subtle changes between individuals. Additionally, LSC allows scanning all 

samples with the same LSC setting and thus also reduces the possibility of scorer bias 

when counting individual γH2AX foci during visual scoring where multiple scorers are 

involved. LSC has previously been shown to be a useful tool to measure γH2AX 

induction after DNA damage when combined with the analysis of cellular DNA content 

for evaluation of the cell cycle stage (Zhao et al. 2009, Tanaka et al. 2007, Huang et al. 

2004). DNA content (measured by nuclear DAPI integral) was therefore included as an 

additional measurement in the LSC protocol to allow the classification of nuclei as <2N, 

2N and >2N. The results showed that majority of lymphocytes (~83 %) were post-

mitotic 2N nuclei and that there was a significant increase in γH2AX signals in 2N 
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nuclei in AD patients compared with the control and MCI groups. Since DNA damage 

in the form of γH2AX has not been investigated in lymphocytes to assess the 

pathogenesis of AD, these findings support previous observations of stronger γH2AX 

staining in the nuclei of astrocytes from AD patients relative to healthy controls. 

However, the correlation of γH2AX in lymphocytes and astrocytes remains unknown. 

While the >2N nuclei showed a significant increase of all γH2AX parameters in AD 

lymphocytes compared to control cells, no significant increase was observed in <2N 

nuclei. Lymphocytes with <2N are likely to be apoptotic or necrotic cells or viable cells 

that are hypodiploid due to chromosome loss (Francois et al. 2014a, Kirsch-Volders, 

Fenech 2001). A further study with a larger patient cohort may provide new insights 

into mechanisms, especially if coupled with multiple types of nuclei and other 

complementary DNA damage parameters such as micronuclei and telomeres content 

and aggregation. Together, these results strongly suggest that the γH2AX assay has 

merits regarding differentiating AD from MCI and healthy controls. Although Migliore 

et al. (Migliore et al. 2005) reported a significant increase in oxidative DNA damage 

(oxidised DNA bases) and DNA strand breaks in lymphocytes from a MCI group 

compared with a control group, no significant increase of γH2AX was seen in MCI cells 

compared to control cells in this study. However, there was an increasing linear trend 

observed from control through MCI to AD cells, suggesting that lymphocytes from MCI 

patients are also more susceptible to DNA damage. The discrepancy between the results 

of this study and that of Migliore et al. (Migliore et al. 2005) may well reflect 

differences in the DNA strand breaks assays (i.e. comet vs. γH2AX) methodology, 

sample numbers and the populations under investigation. A more likely possibility is 

that the number of γH2AX molecules produced per DSB varies among individuals and 

may be reflected in the populations anlaysed in that study. It will be interesting to 
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examine in a larger cohort whether the lack of γH2AX formation per DSB is associated 

with MCI.  

The LSC measurement of γH2AX signals in lymphocytes requires setting specific 

threshold values in the iCyte software for the blue and green channels (i.e., pixel values 

that were below these threshold values were not considered as DAPI and γH2AX 

signals but as background) which allow detection of small and dim γH2AX foci. This 

threshold in LSC may cause overestimation of γH2AX signals in contrast to visual 

scoring where there was no deal with counting small and faint γH2AX foci or counting 

γH2AX foci/nuclei but counting the number of nuclei with clear bright γH2AX foci to 

obtain % cell containing γH2AX foci or % cell containing overlapping γH2AX foci. 

The ability of visually scoring to differentiate AD group from MCI and control group 

was much better than measuring overall γH2AX signals using LSC. ROC curve analysis 

was carried out to assess the diagnostic accuracy of γH2AX assay in identifying 

individuals with AD from controls for both LSC and visual scoring. The visually scored 

% cell containing overlapping γH2AX foci displayed the best area under the ROC curve 

value of 0.9081 with 85 % sensitivity and 92 % specificity for the AD group while ROC 

curve for LSC scored γH2AX MaxPixel yielded the area under the ROC curve value of 

0.7775 with 85% sensitivity and 67 % specificity for the AD group suggesting that 

measurement of % cell containing overlapping γH2AX foci by visual scoring in the 

buccal cell might be the best parameter in discriminating AD and control. This could, 

for instance, be due to counting the nuclei with overlapping γH2AX foci or counting the 

obvious bight γH2AX foci by eye. It will be interesting to examine in a large cohort 

whether visually scored parameters chosen in this study can be used as simple detection 

criteria to identify AD patients from MCI and control.  
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Accumulating evidence suggest that susceptibility of human cells to genotoxic 

compound (e.g. radiomimetic mutagen) may be useful to monitor disease status 

(Scarpato et al. 2011, Fernandez et al. 2013). In this study, the susceptibility of 

lymphocytes to genotoxic compound (e.g. ionizing radiation) was assessed by the 

treatment of lymphocytes from control, MCI, and AD groups with ionizing radiation. 

Interestingly, we observed that at 30 minutes after exposure to 1 Gy IR, lymphocytes 

from the control, MCI and AD groups exhibited different levels of induction of γH2AX 

expression. The highest level of γH2AX induction approximately 6-fold was observed 

in irradiated control lymphocytes as compared to non-irradiated control cells. There was 

an approximately 2-fold induction of γH2AX in irradiated lymphocytes from MCI 

patients compared to non-irradiated MCI cells, while γH2AX was induced 

approximately 3-fold in lymphocytes from irradiated AD lymphocytes compared to 

non-irradiated AD cells. It is possible that the high levels of endogenous γH2AX in AD 

compared to lymphocytes from the control group, may explain why the fold increase in 

γH2AX induction seen in AD cells after radiation exposure was lower than that in the 

control group. Similarly, the γH2AX induction in the MCI group was also lower than 

that in the control cells; however, the reason for the greater induction in AD cells 

compared to MCI cells remains unclear, and the difference was not statistically 

significant. These observations raise the question as to whether lymphocytes from AD 

and MCI patients are not only less able to respond to DNA damage in response to 

radiation, but are also less able to detect such damage, and show relatively lower levels 

of induction of γH2AX. There is a problem with just using one time-point post-radiation 

to measure γH2AX. It would have been better to do several time-points. Further 

research will provide valuable insight into this question. Nonetheless, these results 

clearly demonstrate that human peripheral lymphocytes from control, MCI and AD 
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patients respond differently to IR exposure, and this characteristic may provide the basis 

of a useful test for the early diagnosis of AD. 

Senescent cells characterised by the presence of γH2AX, including the activity of 

senescence-associated β-galactosidase, accumulate in skin of aged animals, and are 

thought to increase in number during ageing and in age-related diseases (Dimri et al. 

1995, Sikora et al. 2011). Previous studies have shown that senescent nuclei are 

flattened and larger in size. Using the features available in the iCys software of LSC, 

senescent nuclei from Mxt-treated cultured fibroblasts were isolated based on the 

criteria of decreased levels of DAPI staining (maximal pixel intensity) paralleled by an 

increased in nuclear size (area) and the simultaneous expression of senescence markers 

(e.g., the p21WAF1, p16INK4a or p27KIP1 cyclin kinase inhibitors) (Zhao, 

Darzynkiewicz 2013). Senescent nuclei were identified by plotting the ratio of the 

maximal pixel intensity of DAPI fluorescence per nucleus to the nuclear area versus the 

nuclear size (area), as described in Figure 4. A significant increase in the γH2AX signal 

was observed in senescent nuclei from AD cells for all individual γH2AX parameters 

measured by LSC, suggesting that senescent lymphocytes from AD patients have a 

reduced DNA repair capacity, leading to accumulation of DSBs. Alternatively, there 

was more γH2AX accumulation in cells of AD cases because of a higher frequency of 

DSBs in telomeres which are not repaired. The accumulation of DSBs and γH2AX in 

telomeres is a trigger for activation of the senescent process (Campisi 2013, Campisi et 

al. 2011). Although a previous study confirmed the presence of senescent cells using 

immunocytochemical analyses of the expression of additional senescence markers such 

as the p21WAF1, p16INK4a or p27KIP1 cyclin kinase inhibitors (Zhao, Darzynkiewicz 

2013), this study did not confirm this, but rather attempted to identify senescent nuclei 

by their morphometric characteristics alone and is therefore a weakness that still needs 
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to be addressed. Hence, these results demonstrate for the first time that LSC can be used 

to identify the nuclear morphometric characteristics of senescent nuclei in lymphocytes 

from the control, MCI and AD groups. It will be interesting to investigate morphometric 

changes in senescent nuclei along with the expression of senescence markers in 

lymphocytes from MCI and AD patients compared to control cells by using LSC 

features and therefore LSC could be used to obtain valuable information of senescence-

associated DNA damage in Alzheimer’s patients. 

Several significant correlations were observed between LSC and visually scored 

γH2AX parameters and the blood parameters that were measured in the SAND cohort 

samples. These significant correlations [i.e., creatinine levels, glomerular filtration rate 

(GFR): a measure of kidney function, homocysteine levels, and CHI3L1: an 

inflammation marker] suggest a possible mechanistic link between lymphocyte γH2AX 

and other blood markers measured in SAND. The LSC-scored γH2AX signals 

positively correlated with creatinine level, and negatively correlated with GFR. The 

percentage of cells containing γH2AX foci identified by visual scoring also showed 

significant positive correlations with creatinine levels and a negative correlation with 

GFR for nuclei with severe DNA damage (nuclei containing overlapping γH2AX foci). 

Previous studies have demonstrated that high serum creatinine levels and a low 

estimated GFR were significantly associated with poor episodic memory, considered the 

cognitive hallmark of developing AD (Ng et al. 2014). It is plausible that increased 

numbers of DSBs in lymphocytes coupled with renal dysfunction and its metabolic 

consequences may have a causative role in the development of dementia. Alternatively, 

there may a common risk factor such as the oxidative stress of DNA damage induced by 

malnutrition, accumulation of genotoxic metabolites, or due to poor kidney function. 

Thus, the γH2AX assay could be used to identify those at risk of developing AD using 
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LSC and visual scoring techniques, while the blood analytes simultaneously provide 

valuable information on the metabolic/nutrient profiles of those individuals on the risk 

of dementia. In this study, it was possible to find correlations between creatinine, GFR,  

CHI3l1 and  γH2AX signals using both the visual and LSC scoring criteria.  It will be 

interesting to examine if measuring a particular γH2AX parameter (i.e. either  γH2AX 

MaxPixel by LSC or % of cells containing overlapping γH2AX foci by visual scoring) 

is a very sensitive and simple way to identify small changes in γH2AX signals related to 

AD and abnormalities in other routine blood parameters and therefore could be used for 

routine diagnostics to determine the AD patients from MCI and control.  

Studies have shown that moderately elevated levels of plasma total homocysteine 

increase the risk of cognitive impairment in healthy ageing, with the progression of 

cognitive decline and development of AD (Smith 2008, Zhuo, Wang & Pratico 2011, 

Wald, Kasturiratne & Simmonds 2011, McIlroy et al. 2002). In this study, the 

percentage of nuclei with severe DNA damage (containing overlapping γH2AX foci) 

positively correlated with plasma homocysteine levels, indicating that individuals with 

high homocysteine levels may have a higher percentage of cells with severe DNA 

damage, suggesting a link between DNA damage and homocysteine levels in the blood. 

Lower status B vitamins (Folate, vitamin B6, and vitamin B12) are associated with 

increase DNA damage (uracil, micronuclei, DNA strand breaks) and contribute to the 

insufficient conversion of homocysteine to methionine and in turn homocysteine levels 

increase (Fenech 2012). Proof of concept for the protective effect of B vitamins has 

already been demonstrated in a small randomised controlled trial, which showed that B 

vitamin supplements delay brain atrophy and cognitive decline in people with MCI 

(Douaud et al. 2013). These authors also investigated whether lowering homocysteine 

by giving high doses of vitamin B supplements for two years could reduce the rate of 
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brain atrophy in people with pre-existing MCI. The results showed that treatment with 

B vitamins for 24 months led to a reduction in the rate of brain atrophy and the greater 

effect was observed in those who had the highest level of homocysteine. Previous study 

showed a reduction in DNA damage with folate and B12 supplementation (Fenech 

2012). The current study showed a positive correlation between the percentage of 

severely damaged nuclei (nuclei containing overlapping γH2AX foci) and plasma 

homocysteine levels, suggesting that the plasma homocysteine levels may change with 

the progression of AD or it may mean more DNA damage induction on telomeres that is 

not repaired. A further prospective longitudinal study to determine whether the use of 

vitamin B can reduce γH2AX and homocysteine levels in blood and delay disease 

progression in people with MCI is warranted. 

Elevated inflammation in AD patients is closely linked to disease pathology and is 

associated with functional disability and cognitive decline. Previous findings have 

shown elevated peripheral concentrations of inflammatory factors, including IL-1, IL-6, 

IL-12, IL-18, TNF-α, and TGF-β, in patients with AD compared to controls (Koyama et 

al. 2013, Swardfager et al. 2010). Plasma level of CHI3L1 (an inflammation marker 

(Kawada et al. 2007)) was significantly increased AD patients compared to control 

subjects and MCI patients (Choi, Lee & Suk 2011). In addition, increased plasma TNF-

α has been associated with the development of AD in patients with MCI (Tobinick 

2008). In a study of obesity in children, the relationship between DNA damage 

(measured by the presence of γH2AX) and obesity, as identified by specific plasma 

markers of inflammation, was investigated. A significant positive correlation was 

observed between the levels of γH2AX and plasma inflammatory markers (e.g., TNF-α, 

IL-6, and C-reactive protein) suggesting that obesity, involving altered metabolic 

conditions, triggers oxidative stress, which in turn augments the frequency of DNA 
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lesions in peripheral cells (Scarpato et al. 2011). In the current study, a weak positive 

correlation was observed between the LSC scored γH2AX MaxPixels and plasma levels 

of CHI3L1, as well as in the visually scored cells, the percentage of cells with γH2AX 

foci and plasma CHI3Ll levels, suggesting that the increased levels of DNA DSBs in 

lymphocytes may be linked to higher peripheral blood concentrations of inflammatory 

factors. It remains to be established whether this increased rate of DNA DSBs may 

indicate increased inflammation and ultimately the progression of dementia. Future 

investigations should include the measurement of γH2AX and CHI3L1 levels in blood 

from patients with MCI and AD to determine whether elevated γH2AX and CHI3L1 

levels are unique to AD and associated with other more AD-specific biomarkers, such 

as amyloid beta 42 (Ab42), tau protein (tau), and phosphorylated p-tau. 

Another important consideration is that lifestyle factors such as nutrition, physical 

exercise, tobacco smoking and alcohol consumption have an age-independent effect on 

the accumulation of DNA damage and telomere dysfunction in human blood cells (Song 

et al. 2010). In addition, previous studies found evidence that lifestyle interventions can 

contribute to reduced DNA damage and telomere shortening in vivo (Allgayer et al. 

2008, Hofer et al. 2008, O'Callaghan et al. 2009). Another study reported significantly 

elevated levels of DNA 8-OHdG and decreased plasma antioxidants in patients with AD 

compared with controls, suggesting that the age-related increase in oxidative stress is 

related to a decline in antioxidant defenses and that DNA repair functions may be linked 

to the development of AD (Mecocci et al. 2002).  

Many experimental studies suggest that the pathogenesis of AD is associated with 

oxidative DNA damage. 8-hydroxyguanine (8-OHG), a marker of DNA oxidation, was 

reported to be higher in several postmortem AD brain regions compared to control 

brains (Wang et al. 2005, Mecocci, MacGarvey & Beal 1994, Lyras et al. 1997). 
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Oxidative DNA damage has frequently been observed in peripheral tissues of AD 

patients and is thought to contribute to the development of AD. Increased 8-OHG was 

found in lymphocytes isolated from patients with AD compared to healthy controls, 

suggesting that oxidative DNA damage is also present in the peripheral cells of AD 

patients (Mecocci et al. 2002, Mecocci et al. 1998). In another study, increased 

oxidative DNA damage (oxidised DNA bases) was observed in lymphocytes from AD 

patients when measured using a modified version of the comet assay (Migliore et al. 

2005, Mecocci et al. 1998, Morocz et al. 2002). Several studies reported altered DNA 

repair protein in specific regions of AD brain leading to inefficient repair of chronic or 

acute oxidative damage in AD brain (Bucholtz, Demuth 2013, Lovell, Xie & 

Markesbery 2000, Jacobsen et al. 2004, Canugovi et al. 2013).  Since increased 

oxidative stress is associated with AD, the activity and abundance of DNA repair 

protein produced by oxidative stress may be associated with the pathogenesis of AD. It 

may be possible that the increased levels of DSBs observed in this study may be due to 

genetic factors, including DNA repair gene polymorphisms, contributing to a reduction 

in DNA repair protein abundance and activity. Analysing the impact of polymorphisms 

in DNA repair genes in conjunction with an accumulation of DSBs on the progression 

of AD in large case-control study would be desirable in order to increase the chance to 

identify AD and MCI patients from healthy controls. 

DNA DSBs may accumulate during abnormal cellular processes, including DNA 

replication stress, cellular senescence, and chronic exposure to the excessive amount of 

reactive oxygen species. Therefore, endogenous γH2AX foci may be formed even in the 

absence of external DNA damaging agents such as radiation (Bonner et al. 2008). 

Humans and other mammals follow an intrinsic DNA repair mechanism to repair 

endogenous DNA DSBs. The repair of endogenous DSBs is continuous and rapid, 
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involving recurring transient γH2AX responses. However, small defects in the 

efficiency of repairing the chronic endogenous DNA DSBs for long periods (days, 

weeks, months and even years) may contribute to the accumulation of DSBs on 

telomeres which are not repaired, which can be reflected as persistent γH2AX and may 

be associated with the pathogenesis AD (Fumagalli et al. 2012, Hewitt et al. 2012). 

DSBs and γH2AX accumulate in telomere sequences within cells and may ultimately 

reach a threshold that triggers senescence-associated secretory phenotype (SASP) which 

put into action the senescence process by which such cells are eliminated (Campisi et al. 

2011, Freund et al. 2010). Increased levels of γH2AX in the lymphocytes of AD 

patients as reported in this study may indicate that DSBs are either in the process of 

slow, ongoing repair, or DSBs that remain permanently unrepaired due to cellular 

senescence, apoptosis, or DSBs that remain unrepaired in specific genome sequences 

such as telomeres (Sedelnikova et al. 2004, Fumagalli et al. 2012, Hewitt et al. 2012).  

Although a better understanding of the biology of the γH2AX response in the 

lymphocytes of AD and MCI individuals is needed, this study suggests that 

lymphocytes may be a tissue of interest to confirm an early diagnosis of MCI and AD. 

There is a clear need for the development of a simple, inexpensive and minimally 

invasive test for the diagnosis of AD, ideally at the onset of illness, or to predict the risk 

of developing MCI or AD. Use of the γH2AX assay to evaluate the levels of DNA 

DSBs in combination with the already established AD biomarkers may offer a potential 

route to more accurate biomarker panels and prove to be a more accurate test than any 

single marker to predict AD. Such high content analysis is made possible with the use 

of LSC. Indeed, the full automation of LSC offers an efficient, unbiased and 

quantifiable measure of multiple parameters in a large number of cells (thousands of 
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cells per individual) and should be considered as an alternative method to visual scoring 

in a large population-based study. 
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Chapter 6: Summary of outcomes and conclusions 

6.1 Summary of outcomes  

The aim of this PhD thesis was to (i) investigate IR-induced persistent γH2AX response 

in Queensland fruit fly (Q-fly), (Bactrocera tryoni) and human buccal cells and (ii) 

investigate endogenous γH2AX level in buccal cells and lymphocytes of individuals 

with mild cognitive impairment (MCI) and AD relative to control.  Knowledge of the 

induction, regulation and function of γH2AX foci in both in vitro and in vivo model 

systems is advanced, and there is an extensive literature relating to the short-term 

kinetics of the tissue- and cell-specific γH2AX response (Rogakou et al. 1998, Bhogal, 

Jalali & Bristow 2009, Madigan, Chotkowski & Glaser 2002, Roch-Lefevre et al. 2010, 

Sedelnikova et al. 2004, Qvarnstrom et al. 2004, Rube et al. 2008). However, much less 

is known about whether the presence of persistent γH2AX, as indicative of impaired 

DNA repair, can be used as an important parameter of retrospective irradiation exposure 

in insect and human cells. Linking radiation-induced DNA damage and persistent 

γH2AX signals is of fundamental importance to establish a molecular test capable of 

detecting/quantifying a prior radiation dose and the resulting DNA damage. Moreover, 

DNA damage has also been found to be associated with diseases of accelerated ageing 

and AD. However, comparatively few studies have investigated endogenous γH2AX 

levels in AD (Rogakou et al. 1998, Soto-Gordoa et al. 2015, Kivipelto et al. 2006, Sery 

et al. 2014, Suzuki et al. 2003). At present there is a need for non-invasive biomarkers 

and available and inexpensive diagnostic approaches, preferably using peripheral 

tissues. The identification of dietary risk factors for individuals at increased risk of 

developing MCI and AD is also essential for early diagnosis, and the initiation of 
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preventative treatment can be undertaken to reduce genome damage which may 

accelerate the onset of observable symptoms. 

The results presented in this thesis offer new insight into γH2AX as a promising marker 

of DNA damage to measure prior radiation doses and diagnose AD. The study in 

Chapter 2 was designed to identify a persistent DNA damage marker in the 

commercially important pest Queensland fruit fly (Q-Fly; Bactrocera tryoni) as a 

model, which could be measured in tests to detect and quantify prior irradiation 

exposure. Q-fly are a very attractive test material because (i) Q-Fly samples can be 

easily irradiated with controlled conditions and (ii) the high radiation doses used for 

disinfestation (150 Gy) and sterile insect technique (SIT) (~70 Gy) may cause severe 

DNA damage, making live Q-fly samples containing severe DNA damage suitable for 

testing persistent DNA damage. Since there was no available γH2AX antibody specific 

for Q-fly at the time of initial screening (as the sequence was not known), we aimed to 

identify (phosphorylated) H2A sequence of B. tryoni using transcriptomics analysis by 

454 sequencing. The Q-fly H2AX homologue was sequenced and named H2AvB 

(variant Bactrocera) and subsequently used to make specific γH2AvB antibodies. 

Persistent and dose-dependent γH2AB signals were detected and quantified either by 

Western blot or LSC for a significant period after irradiation treatment (up to 17 days) 

in histone extracts or isolated nuclei from adult Q-flies. The main findings of this study, 

as discussed in Chapter 2, are (i) H2AvB protein is 96.4% similar to that of the vinegar 

fly (a genetic model species) D. melanogaster (H2AvD), 54.8% similar to human 

H2AX, and identical to G. morsitans (the Savannah tsetse fly), (ii) γH2AvB is increased 

in crude pupal lysate following 24hr post-IR in a dose-dependent manner over 0–400 

Gy and the dose dependence of this response was highly reproducible, (iii) although the 

γH2AvB signal in crude pupal lysate was reduced at 5 days post-IR, γH2AvB signal 
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significantly increased in semi-pure histone fractions and was also persistent in 

emergent adult Q-Fly irradiated at the pupal stage for up to 17 days, making H2AvB a 

good candidate for a commercial test, (v) removal of phosphorylation by treatment with 

alkaline phosphatase abolished the γH2AvB signal providing further evidence for the 

detection of the phosphorylated/active form of γH2AvB. γH2AvB signal was also 

detectable in eggs and larvae 24 hours after exposure to a disinfestation dose (150 Gy). 

A previous study in mini-pig skin cells showed that γH2AX was significantly elevated 

in irradiated cells after 70 days post-IR exposure compared to non-irradiated controls 

(Ahmed et al. 2012). Another study in mouse skin showed γH2AX signals up to 7 days 

post exposure and proposed that they may be used as a biodosimeter in accident 

scenarios (Bhogal et al. 2010). The persistent γH2AvB signals in Q-Fly could represent 

delayed or impaired DSB repair due to complex DNA damage involving cellular 

senescence, apoptosis, or DSBs that remain unrepaired in specific genome sequences, 

such as telomeres (Sedelnikova et al. 2004, Hewitt et al. 2012, Hewitt et al. 2012, 

Rogakou et al. 2000, Olive 2011). It may be possible that the clustering of damaged 

chromatin regions containing base lesions, DSBs, and abasic sites that are resistant to 

repair (Aten et al. 2004, Asaithamby, Hu & Chen 2011, Brenner, Ward 1992, Harding, 

Coackley & Bristow 2011). In summary, the outcomes from Chapter 2 indicated that IR 

exposure in Q-Fly at an early life-stage leads to persistent γH2AvB signals can easily be 

detected by Western blot, ELISA or quantitative immunofluorescence techniques. The 

γH2AvB assay has practical applications for confirming the irradiation status of live Q-

Fly found in exported or imported fruits and testing irradiated flies captured during SIT 

eradication programmes. Indeed, the basis of this assay will be further investigated in 

Australian new “SITplus” consortium to identify whether γH2AvB can be used to 
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confirm whether unmarked flies caught in monitoring traps are released irradiated 

sterile fruit flies or are instead from wild type fruit flies (Merriman 2015).  

Future studies should perhaps extend the time-course of the γH2AvB response 

following irradiation exposure to better characterise DNA repair in Q-fly. Since 

γH2AvB signal was detectable in the crude pupal lysate of Q-fly pupal brain and 

gonads, it may be worth investigating using immunohistochemistry in tissue sections or 

immunofluorescence techniques that detect whether γH2AvB signals in Q-Fly are the 

same or different in the other fabrics. Furthermore, understanding the kinetics of 

γH2AvB responses at different life stages (eggs, larvae, pupae, and adult) of Q-Fly after 

exposure to IR is warranted because if Q-Flies in the form of eggs or larvae or pupae or 

adult are found in exported or imported produce in quarantine facilities, the γH2AvB 

test may be used to confirm that the exported and imported produce had been treated 

with irradiation. This test may have potential to provide Australian producers with an 

advantage in facilitating broad use and confidence in irradiated produce. It is also 

important to investigate the confounding effect of other environmental challenges (such 

as toxins, chemicals, high and low temperature) on DNA damage in Q-fly when Q-flies 

are released in fruit fly epidemic areas as a part of a SIT programme or disinfestation 

with routine radiation doses. A key advantage of the test focusing on measuring the 

persistence γH2AvB is that the biomarker has been identified in many insect species 

and could form the basis of a similar test in other pest species such as Medfly. The next 

steps involve broadening the range of insects in which γH2AvB can be detected and 

validating/modifying the γH2AvB test for ‘field conditions’ so that it can be 

incorporated into commercial and quarantine facilities. Moreover, there is a scarcity of 

animal models to study the health risks of IR exposure in humans. The DSB repair 

kinetics (γH2AX foci loss) may be similar between humans and Q-fly. A comparative 
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assessment of DNA damage formation and repair kinetics using γH2AX assay in human 

and Q-Fly exposed ex vivo and in vivo to acute radiation doses may show similar DNA 

damage responses in human and Q-fly and may thus lay the ground for considering the 

use of common flies as an alternative animal model for γH2AX-based biodosimetry in 

the case of mass causality radiation exposure. It is important to note that in this study 

a linear dose–response of γH2AvB (0–400 Gy IR) was observed in whole Q-fly pupal 

lysates 24 h post-IR and was detected at doses as low as 20 Gy. It will be interesting to 

examine whether DNA DSB repair kinetics in Q-fly at low radiation dose (e.g. < 20 Gy 

or a wide range of acute doses of ionizing radiation.) based on the γ-H2AX assay, is 

similar to those observed in human counterparts and therefore Q-fly could be used for 

accurate estimations of radiation exposure during treatment decisions  after accidental 

radiation exposure in human.  

Scoring γH2AX foci has been proposed as an assay capable of quantifying DNA DSBs 

induced in buccal cells by IR in humans (Gonzalez et al. 2010, Yoon et al. 2009, 

Mondal, Ghosh & Ray 2011). Since buccal cells may be at different stages of 

differentiation and cell death, it is important to ensure a homogenous selection of the 

cells of interest to perform a reliable quantitative analysis of γH2AX signals. In all 

previous studies, most approaches to the γH2AX assay used a sub-population of buccal 

cells that were either manually scored by microscopy for the presence of individual 

γH2AX foci, or by measuring the relative intensity of γH2AX staining within a nucleus 

(Gonzalez et al. 2010, Yoon et al. 2009, Mondal, Ghosh & Ray 2011). Counting 

γH2AX foci by visual scoring is time-consuming and may become tiresome if many 

samples must be analysed and may cause variation when multiple scores are involved 

due to scorer fatigue. At the time of the studies reported in this thesis, there was no 

method available to quantify total γH2AX signals in large numbers of heterogeneous 



 

234 

buccal cell populations. In Chapter 3, buccal cells were separated based on their DNA 

content, and nuclear shape by LSC and a fully automated γH2AX quantification method 

was developed to quantify the levels of γH2AX in irradiated buccal cells. The 

hypothesis was that human buccal cells have different DNA contents and nuclear shapes 

and exhibit differences in their response to DNA damage induction and subsequent 

repair. LSC was used to analyse the γH2AX response in a large number of 

heterogeneous populations of buccal cells. The radiation-induced γH2AX response was 

shown to be persistent in human buccal cells when measured by LSC and visual scoring 

methods. γH2AX signals in human buccal cells following exposure to IR were detected 

and quantified either by visual scoring or LSC for up to 24 hours after exposure to IR. 

The main findings of this study, as discussed in Chapter 3, are as follows: 

(i) γH2AX signals in human buccal cells increased in a dose-dependent manner for 

30 minutes following exposure to 0, 1, 2 or 4 Gy of IR. 

(ii) LSC and visual scoring methods correlated well when measuring γH2AX 

signals in non-irradiated and irradiated buccal cells 

(iii) buccal cells exposed to IR exhibit elevated levels of γH2AX signal compared to 

the levels seen in non-irradiated controls for up to 24 h 

(iv) the persistent γH2AX response remained dose-dependent and was measurable 

by both LSC and visual scoring methods 

(v) buccal cells with different nuclear shapes (round, long, oval) were classified by 

visual scoring and LSC and the results showed that γH2AX responses vary in different 

nuclear shapes. 
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The number of baseline γH2AX foci number/cell varies greatly across publication and 

very few papers described their scoring limitation. For example, in non-irradiated 

buccal cells, using manual scoring on images the baseline γH2AX foci/nucleus varies 

from 0.08 to 4.08 foci/nucleus (Gonzalez et al. 2010). Therefore, the knowledge of 

baseline γH2AX foci response in a large population-based study is valuable in 

examining inter-individual radiosensitivity. In our study, the variation of baseline (0 

Gy) γH2AX signals was substantial between individuals and indeed that reflected on 

IR-induced γH2AX signal (i.e. the individuals with the highest 2N γH2AX signals at 

baseline (0 Gy) showed the least IR-induced γH2AX response relative to the individuals 

with the lowest baseline γH2AX values showed the greatest IR-induced γH2AX signal). 

Since all published studies scored less number of buccal cells (e.g. 25-100 buccal cells) 

to obtain baseline γH2AX foci number (Gonzalez et al. 2010, Yoon et al. 2009), and the 

fact that heterogeneous populations of buccal cells may contain both diffuse and 

discrete foci, a method to quantify total γH2AX signal in a large population of buccal 

cells was needed. In chapter 3, using LSC and average of thousands of buccal nuclei 

were scored for detection of γH2AX signals (Gonzalez et al. 2010, Yoon et al. 2009). A 

significant amount of inter-individual variation, particularly at baseline (0 Gy) could be 

the reason why the IR group in 6 individuals had no significance in dose response. One 

potential explanation for high baseline level of γH2AX in human buccal cells may 

include decrease or increase in γH2AX kinases (DNA-PK, ATM, and ATR) / 

phosphatase (PP2A) activity among individuals. Genomic instability, repair deficiency 

(e.g. BRCA1 and DNA-PK deficient cells), P53 deficiency, cellular senescence and 

telomere dysfunction have been shown to be associated with increased level of baseline 

γH2AX signals (Yu et al. 2006, Warters et al. 2005, Nakamura et al. 2009, Bartkova et 

al. 2010). Further research is therefore needed to elucidate whether these factors also 
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contribute to inter-individual variation of baseline γH2AX signals in buccal cells. In 

addition, it is also important to investigate whether the γH2AX foci loss corresponds to 

the rate of DSBs repair in human buccal cells. The confounding effect of inter-

individual variation of baseline γH2AX signals in buccal cells and its effect on IR–

induced γH2AX response is most important since this may ultimately be the critical 

parameter affecting the radiation biodosimetry outcomes and limit the use of γH2AX in 

buccal cells for this purpose. Therefore, knowledge on baseline frequency of γH2AX 

signals in buccal cells from a large cohort would facilitate reliable dose estimation and 

radiation triage.  

The LSC method developed and described in this thesis is capable of separating a large 

number of buccal cells based on their DNA content as well as nuclear shapes and 

simultaneously quantifying total γH2AX signal in non-irradiated and irradiated buccal 

cells. γH2AX signal increased significantly in all individual’s 2N nuclei 30 min post-IR 

and was similar for round, long and oval shaped nuclei. Buccal cells with high nuclear 

to cytoplasm ratio have been categorized as basal buccal cells and separated from the 

differentiated cell (Gonzalez et al. 2010, Thomas et al. 2008). Further study should 

explore whether LSC is capable of quantifying γH2AX signals in the basal buccal cells. 

This could be achieved by incorporating antibody specific to basal cell marker 

combined with a multifluorescence analysis.   

The first attempt to measure the relative intensity of γH2AX in buccal cells were made 

by Yoon et al. In that study buccal cells of individuals undergoing routine dental 

radiographic were examined (Yoon et al. 2009). The relative intensity of diffusive 

γH2AX foci intensity in 25-30 randomly selected buccal cells per individuals were 

measured using a high–power field (400 x magnifications) combined with a cell 
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measurement software package (Cell Analysis System CAS 200 optical microscope, 

Becton Dickinson, San Jose, CA). The method that we developed using LSC measured 

the total γH2AX signals within nuclei and simultaneously provided the DNA content 

information of individual nuclei. Individual data points of γH2AX integral, yH2AX 

area, γH2AX MaxPixel, nuclear integral and nuclear area of each nuclear event were 

automatically generated using the iCyte® 3.4 software. 

It is unclear whether the number of buccal cells analysed to quantify radiation-induced 

DNA damage in previous studies is sufficient to obtain an accurate representation of the 

entire sample population’s γH2AX response (Gonzalez et al. 2010, Yoon et al. 2009, 

Mondal, Ghosh & Ray 2011) or whether buccal cells from different sub-populations and 

with different nuclear shapes exhibit differences in their response to DNA damage and 

subsequent repair. In an attempt to provide a better understanding of the radiation-

induced γH2AX response in human buccal cells, LSC was used to measure multiple 

parameters (area, integral, MaxPixel) of the γH2AX signals as well as the ploidy and 

nuclear shapes in thousands of cells, as shown in Chapter 3. Besides measuring γH2AX 

signals in nuclei with different DNA content, another novel finding of the study in 

Chapter 3 was that different shaped buccal cell nuclei (round, long, and oval) were 

classified, and the γH2AX signals were significantly increased in a dose-dependent 

manner in cells of all nuclear shapes, suggesting that regardless of the nuclear shapes 

analyzed, IR-induced γH2AX signals are present in all nuclei. 

Visual scoring results showed a significantly higher frequency (%) of buccal cells 

containing 15–30 γH2AX foci up to 24 hours following exposure to 4 Gy of IR 

compared to than the non-irradiated control cells. Consistent with visual scoring, the 

LSC analysis also showed elevated levels of γH2AX than those seen in the non-
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irradiated cells at 24 hours after exposure to IR. In a previous study, the longest time 

point to measure persistent γH2AX in buccal cells was 5 hours, whereas the current 

study showed for the first time that the DNA damage response as indicated by γH2AX 

signals after exposure to IR in the buccal cell is not fully repaired and may persist up to 

24 hours. The persistent γH2AX signals in buccal cells 24 hours after 4 Gy IR are likely 

to be an indicator of delayed or impaired repair due to complex DNA damage, which 

may be lethal for the cell. Several studies reported that persistent γH2AX signals more 

than background levels (γH2AX signals in non-irradiated control) at 24 hours after IR 

exposure may be dead and dying cell (Tanaka et al. 2007, Bhogal et al. 2010, Olive 

2011). In this study, 24 hours was considered long enough to provide adequate time for 

DNA damage repair. It is possible that the cells that scored positive for γH2AX foci 24 

hours after IR exposure may be dying by apoptosis, or senescence (Olive 2011). It 

would be valuable in future studies to combine γH2AX detection with simultaneous 

expression of senescence cell markers (e.g. p21WAF1, p16INK4a or p27KIP1 cyclin 

kinase inhibitor) or apoptosis marker (e.g. caspase-3) for a better understanding of the 

biology of DNA damage response of buccal cells.  

The persistent γH2AX signal in the buccal cell up to 24 hours after IR exposure has 

implications for biodosimetry following a radiation accident. Since human buccal cells 

are relatively easy to sample and sampling causes minimal discomfort, the presence of 

persistent γH2AX signals in buccal cells after accidental radiation exposure may enable 

retrospective estimation of the radiation dose exposure and extent of damage to cells. 

The same approach could be used to determine inter-individual variation in radiation 

sensitivity which would allow tailored treatment design for each patient. However, it is 

important to note that high background levels of γH2AX signals make it difficult to 

score radiation-induced persistent γH2AX foci accurately. It is also important to 
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determine the limitations of LSC to identify the weaknesses and advantages of this 

technique compared with previously published findings from buccal cells using visual 

scoring (Gonzalez et al. 2010, Mondal, Ghosh & Ray 2011). It is evident from this 

study that the major advantage of LSC is the automated γH2AX quantification, allowing 

the unbiased and objective analysis of hundreds or thousands of cells. 

It will be of interest to investigate the threshold of γH2AX detection by the LSC 

technique, i.e., the minimum dose of IR that can produce a γH2AX signal detectable by 

LSC. A previous study has shown that the enumeration of γH2AX foci allowed the 

detection of DNA damage after dental x-ray examination (2.34 cGy) (Yoon et al. 2009). 

Thus, further studies should investigate whether the LSC method can detect γH2AX 

induced by doses of IR lower than 1 Gy in buccal cells (i.e., the radiation doses for x-

rays, CT scans, and radiotherapy). It is important to determine further why the basal 

frequency of γH2AX foci differs between individuals and the extent to which it is 

affected by genetic, environmental, lifestyle and dietary factors. A previous study in 

leukapheresis derived mononuclear cells indicate that the average number of γH2AX 

foci per cell increases with age up to 57 years and then remained relatively stable up to 

the age of 83 (Schurman et al. 2012). A study investigating baseline γH2AX signals and 

the extended time-course kinetics of persistent γH2AX signals in buccal cells across a 

large range of ages in healthy participants from both genders would give new insight 

into the effects of age on γH2AX levels.  

Chapters 4 and 5 explored the levels of endogenous γH2AX signals in combination with 

nuclear parameters using both multi-parameter LSC and visual scoring in buccal cells 

and lymphocytes of control, MCI and AD patients. Previous studies conducted in AD 

patients showed that the γH2AX signals are significantly elevated in the astrocytes of 
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AD patients in comparison to healthy controls, as well as being elevated in diseases 

related to accelerated ageing (e.g., Werner syndrome, obesity, diabetes, sleep apnea, 

prostate cancer, cataract disease, hypertension, and Hutchinson–Gilford progeria 

syndrome) (Myung et al. 2008, Sedelnikova et al. 2008, Schurman et al. 2012, Silva et 

al. 2014). The main findings described in Chapters 4 and 5 are that the levels of γH2AX 

signals in buccal cells and lymphocytes of AD patients were significantly elevated, 

compared with cells from MCI patients and healthy controls. Moreover, there was a 

linear trend in this increase from the control group through the MCI and AD groups. 

Increased nuclear circularity (i.e. irregular nuclear shape) was observed in buccal cells 

from AD patients compared to those from healthy controls, and a positive correlation 

was found between nuclear circularity and the γH2AX levels in the different types of 

nuclei analysed. Previous studies indicate that altered plasma homocysteine, creatinine, 

GFR, CHI3L1 levels is associated with the development of dementia and Alzheimer's 

disease (Smith 2008, Choi, Lee & Suk 2011, Zhuo, Wang & Pratico 2011, Wald, 

Kasturiratne & Simmonds 2011, Ng et al. 2014, McIlroy et al. 2002). Significant 

correlations were observed between lymphocyte γH2AX signals and other blood 

parameters (i.e., plasma homocysteine, creatinine, GFR, CHI3L1). Interestingly, there 

was a negative correlation between the γH2AX signals and MMSE scores. It is plausible 

that the increased levels of γH2AX signals in buccal cells of AD patients is a 

consequence of defective ability to efficiently repair endogenous DNA DSBs, leading to 

an accumulation of unrepaired DSBs on telomeres, genomic instability, repair 

deficiency, p53 mutation, replication stress, senescence, and telomere dysfunction that 

is reflected in persistent γH2AX signals and may be associated with the pathogenesis of 

AD (Fumagalli et al. 2012, Hewitt et al. 2012, Yu et al. 2006, Warters et al. 2005, 

Nakamura et al. 2009, Olive 2009, Rossiello et al. 2014). Therefore, the results from 
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Chapters 4 and 5 raise the intriguing possibility that the levels of γH2AX signals could 

provide an additional biomarker for identifying individuals with MCI and AD and 

possibly those at risk of developing dementia. 

Of particular interest is that irregular nuclear shapes as measured by nuclear (circularity) 

in buccal cells were increased significantly in AD cells compared to control cells, and a 

significant positive correlation was also observed between nuclear circularity and 

γH2AX levels in the different types of nuclei analysed. The irregular nuclear shapes in 

AD cases could represent the accumulation of DNA damage which resulted in 

morphometric and cytometric alterations in the buccal mucosa cells of AD patients. It 

has been proposed previously that DNA damage increases in buccal cells from AD 

patients (Thomas et al. 2007); however, the link between accumulation and DNA 

damage and altered nuclear shape is unknown. It has been reported that nuclear and cell 

structure of buccal cells is altered with increasing age (Donald et al. 2013, Williams, 

Cruchley 1994) whilst this study suggests that irregular nuclear shapes of buccal cells is 

associated with MCI and AD patients which may result from the accumulation of DSBs 

that may cause instability in chromosome territories and interaction of DNA with the 

nuclear membrane. Additionally, the positive correlation between nuclear circularity 

and γH2AX in buccal cells of AD patients observed in this study could be primarily due 

to deficient nuclear lamina structure thus contributing to telomere dysfunction 

(Smogorzewska et al. 2002, Gonzalo 2014, Gonzalez-Suarez et al. 2009). Irregular 

nuclear shape and γH2AX should be investigated further and future studies should 

determine whether nuclear circularity coupled with multiple DNA damage markers 

(e.g., γH2AX, 8HOdG) is associated with telomere dysfunction and AD-specific 

markers (e.g., putative tau, Aβ) in buccal cells from a large patient cohort to improve 
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the predictive capacity of diagnosing risk for AD and MCI in apparently healthy 

controls.  

Nutrients and metabolic biomarkers, including plasma homocysteine, creatinine, GFR 

and CHI3L1, have been shown to be associated with progression of cognitive decline 

and development of AD (Smith 2008, Choi, Lee & Suk 2011, Zhuo, Wang & Pratico 

2011, Ng et al. 2014). Previous studies have reported that examining multiple 

biomarkers in combination improves the demarcation between healthy controls and 

memory-impaired individuals (Doecke et al. 2012, Faux et al. 2011, Mapstone et al. 

2014). The study as described in Chapter 5 has shown significant correlations between 

lymphocyte γH2AX levels and other blood parameters that were available from the 

SAND database (i.e. plasma homocysteine, creatinine, GFR, CHI3L1). These results 

illustrate the strong link between various blood parameters and genome health and also 

support the notion of the usefulness of peripheral biomarkers of AD (Francois et al. 

2014a, Francois et al. 2014b). Therefore, it would be necessary to incorporate several 

known nutrients and metabolic biomarkers, including plasma homocysteine, creatinine, 

GFR, and CHI3L1, with the γH2AX parameters in future studies. These could be 

combined to create a panel of biomarkers to improve the diagnostic power for the early 

detection of MCI and AD. This biomarker panel could also provide useful information 

on the nutritional and metabolic status of those at risk of developing AD, thus allowing 

preventive measures to be taken, including dietary and lifestyle interventions. It is 

important to test this biomarker panel in large prospective cohorts to access its 

suitability for the identification of those in the early stages of MCI and AD. Moreover, 

it would be valuable for future studies to test the biomarker panel in different cell sub-

types (e.g., B and T lymphocytes) to improve the likelihood of identifying AD patients. 
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Chapters 4 and 5 report exciting preliminary data that show that there is an increased 

level of DNA damage, as measured by γH2AX, in buccal cells and lymphocytes of AD 

patients relative to those observed in cells from MCI patients and healthy controls, 

which opens the opportunity to consider using human buccal cells and lymphocytes as a 

reliable source of samples as an adjunct for the early diagnosis of AD. The effect of 

DNA damage in AD and response of cell to repair damaged DNA is of fundamental 

importance for better understanding of the molecular mechanisms involved in 

individuals prone to undergo neurodegeneration, such as AD individuals. The molecular 

mechanism of neurodegeneration in AD has been extensively investigated with a 

particular focus on oxidative DNA damage and repair. Reactive oxygen species (ROS) 

are produced during normal cellular metabolism as well as respiratory cycle in 

mitochondria.  The consequence of ROS production involves modification of cellular 

biomolecules, such as DNA, protein, and lipids. The effects of ROS also include 

abnormal cellular function by impacting upon telomeres, microsatellite sequences, 

promoters and sites of methylation. (Evans, Cooke 2004, Evans, Dizdaroglu & Cooke 

2004). It has been reported that lymphocytes of AD patients have significantly higher 

oxidized purine 8OHdG level than control (Mecocci et al. 1998, Gedik, Wood & 

Collins 1998). The elevated level of oxidized purines in AD patients may be due to 

either increased susceptibility of AD lymphocytes to ROS, or the increased oxidative 

stress. Repair of DNA DSBs in mammalian cells is accomplished through two major 

pathways (i) Non-Homologous End Joining (NHEJ) and (ii) Homologous 

Recombination (HR) (Khanna, Jackson 2001). In HR, a homologous DNA template is 

required for repair while NHEJ does not depend on sequence homology. Therefore, 

NHEJ tends to be a more error-prone repair pathway than HR. To repair DSB, initially, 

Ku70 and Ku80 form a heterodimer at the termini of the DSB. DNA-PKcs is then 
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recruited to form a complex with the Ku heterodimer and DNA ligase IV and XRCC4 

then ligase the ends of the DSB (Khanna, Jackson 2001, Valerie, Povirk 2003). It has 

been reported that Ku DNA binding activity is reduced in the postmortem AD mid-

frontal cortex (Love, Barber & Wilcock 1999). Poly (ADP-ribose) polymerase (PARP) 

is one of the DNA repair enzymes that is activated after DNA DSBs. A Higher 

proportion of PARP and poly(ADP-ribose) was observed in immunolabelled neurons of 

AD than in controls (Love, Barber & Wilcock 1999). The Mre11 protein complex 

consisting of Rad50, Mrel 1 and Nbsl  plays an integral role in repairing damaged DNA 

(Jacobsen et al. 2004). The reduced level of Mre11 protein complex protein has been 

reported in the neuron of AD cortex suggesting that the elevated level of DNA damage 

in AD neuron may be associated with reduced level of Mre11 1 protein complexes 

(Jacobsen et al. 2004). Putting together literature data including oxidative-induced DNA 

damage and absence or failure of the repair enzymes in AD and our findings (the 

presence elevated level of DNA DSBs as measured by γH2AX assay) in lymphocytes 

and buccal cells of AD patients, lead us to consider that accumulation of DNA damage 

in cells may result in the loss of cellular function which may be the causative factor in 

the pathogenesis of AD. The next step is to perform a large cohort study to combine the 

γH2AX assays with other cellular markers of apoptosis and intracellular signaling into 

“high content assays” using the LSC protocol. Also, to better assess the impact of cell 

death and senescence resulting from increased chromosomal aberrations, tests 

measuring apoptosis, micronuclei and changes in the kinase and phosphatase activities 

that affect the endogenous γH2AX levels should be included in the γH2AX assays to 

define the precise mechanisms of DNA damage better. 

Telomere dysfunction, resulting from erosion, breakage-fusion-bridge cycles, or other 

mechanisms, has been associated with chromosome instability and cancer progression 
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(Murnane 2012). A previous study in several melanoma cell lines showed that 

dysfunctional telomeres could be responsible for the elevated levels of endogenous 

γH2AX foci (Warters et al. 2005). DNA damage at telomeres is refractory to repair, 

whether the DNA damage is endogenously (e.g., from telomere shortening, replication 

stress) or exogenously (e.g., X-rays) induced (Fumagalli et al. 2012, Hewitt et al. 2012). 

Irreparable damage in telomeres is associated not only with replicative cellular 

senescence but also with oncogene- and DNA damage-induced cellular senescence 

(Rossiello et al. 2014). Increased background levels of γH2AX or the presence of DSBs 

on telomere ends may be indicative of replicative senescence, including premature 

senescence induced by anticancer drugs (Roninson 2003) or cancer progression. Future 

studies should investigate whether telomere shortening is linked with excessive 

endogenous γH2AX foci in buccal cells and lymphocytes of those individuals who are 

at increased risk of developing MCI and AD. 

It is clear that more studies are required to establish baseline values of γH2AX as a 

marker of DNA damage in human populations. There is mounting evidence that two 

types of γH2AX foci exist, those that are transient in nature (up to several hours in 

duration), and those foci persist for weeks and months (Markova, Torudd & Belyaev 

2011, Ahmed et al. 2012, Siddiqui et al. 2013). It is important to distinguish between 

each of these types of γH2AX foci in DNA damage repair kinetics since both provide 

very different information about the nature of DNA damage that the cell has 

experienced. For example, when lymphocytes are first isolated from the blood of 

patients it could be envisaged that transient foci are indicative of a recent acute 

damaging event, whether that be endogenous or exogenous, and demonstrates that the 

cell is currently in the process of repairing the double-stranded DNA lesion. On the 

other hand, accurately identifying those γH2AX foci that remain persistent may provide 



 

246 

information on DSBs that remain unresolvable, perhaps due to DNA repair defects or 

complexity of the lesion or DSBs in regions of the genome where repair of DSBs is 

limited, such as telomeres. Indeed, it is also essential to eliminate confounders such as 

cells undergoing apoptosis, although simple morphological criteria could be used to 

identify these cells. Determining whether a γH2AX focus indicates the site of a current 

or past DSB will require a reliable technique. It would be advantageous to build into the 

γH2AX assays some reporter of the transient vs. persistent DNA damage. Alternatively, 

upon isolation of lymphocytes from blood, the cells may be cultured for a further 24 

hours to allow ample time for dephosphorylation and clearing of any existing transient 

γH2AX signals, potentially leaving only the residual (persistent) γH2AX foci associated 

with the DNA. Another possibility is to use confocal microscopy or other techniques to 

determine the size of γH2AX foci and genome location (e.g. co-localization with 

telomeres) as a marker for persistent damage. Furthermore, measuring the spatial 

proximity of γH2AX in nuclei may identify potential clustering of γH2AX foci at the 

nuclear envelope and therefore provide additional evidence of persistent DNA damage 

at telomeres given that telomere repeats have been located in the proximity of the 

nuclear envelope (Hoze et al. 2013). 

The highly dynamic changes of foci number and foci size over time after treatment with 

radiation or cytotoxic compounds can make the visual scoring time-consuming, 

potentially subjective, operator-dependent, and may involve fluorescence bleaching due 

to extended evaluation time, and therefore unsuitable for high-throughput applications. 

One of the main issues when scoring multiple foci is the phenomenon of foci overlap 

that can lead to dose-response curves that give false saturation when γH2AX becomes 

more difficult to distinguish as discreet entities (foci). Therefore, counting overlapped 

γH2AX foci may not provide an accurate representation of the entire sample 
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population’s γH2AX signal, and this needs to be accounted for in studies scoring 

γH2AX foci. LSC collects fluorescence signal through the nuclei, making it a useful 

method for obtaining total integral or intensity and can be used to measure any subtle 

changes among individuals. However, this approach may be somewhat less accurate for 

scoring individual γH2AX foci, particularly if two or more foci are spatially arranged in 

the same vertical plane. Several image analysis solutions for automated foci scoring 

have been developed, but are restricted to a low IR dose resulting in discrete scoreable 

foci within the nuclei. In this case, measurement of total γH2AX intensity using 

Western blot or flow cytometry techniques may be sufficient to measure the DNA 

damaging effects by quantifying the γH2AX signals. This thesis (Chapter 3) showed 

that in some buccal cell sub-types (unlike other cells types, such as lymphocytes, 

cultured cells etc.), γH2AX foci can be numerous at baseline, and as a result they tend 

to have a diffuse staining pattern, making the γH2AX foci completely indistinguishable 

(Siddiqui et al. 2015). Further, results in Chapter 5 showed that the overlapping γH2AX 

foci in some lymphocytes often lead to difficulty in obtaining an accurate number of the 

foci/nucleus in the entire sample population. It has been suggested that the large 

endogenous γH2AX foci observed in mouse embryonic stem cells may be a result of 

histone hyperacetylation and abundant chromatin-remodeling complexes (Banath et al. 

2009). 

While transient IR-induced γH2AX signals are rapidly lost over time by 

dephosphorylation processes, the persistent γH2AX signals are detectable for several 

days after IR exposure. Therefore, a simple, standardised γH2AX detection technique is 

required to rapidly identify individuals exposed to critically high radiation doses so that 

initial triage and medical treatment can be made. Although the confocal microscopy 

technique enables high-resolution 3D imaging thus allowing γH2AX detection for many 
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days after IR exposure (Bhogal et al. 2010), the time required for image analysis of 

individual γH2AX foci would need optimisation when using such techniques in 

radiation biodosimetry. In a recent study, a rapid ‘96-well lyse/fix’ method was 

developed to measure γH2AX foci from finger-pricked blood samples with an estimated 

processing time of about 4 hours for 96 samples compared to 15 hours using the routine 

protocol (Moquet, Barnard & Rothkamm 2014). This protocol may be further modified 

by incorporating the simultaneous measurement of other cellular proteins/markers 

involved in DNA damage/repair signaling allowing accurate detection of persistent 

γH2AX in a large number of samples. The latter protocol may be better suited in the 

event of large-scale radiation emergency; since reliable measurement of prior radiation 

doses is required for population triage during the first few hours of a large-scale 

radiation emergency. Another study demonstrated that automated analysis of γH2AX 

using the AKLIDES platform is a rapid, efficient and reliable method to assess DNA 

DSB, requiring a minimum of 3 minutes for image acquisition and analysis of γH2AX 

foci for 100 cells per sample (Reddig et al. 2015). In the AKLIDES method, the 

threshold size of γH2AX foci was set in the range 0.25–1.2 µm. However, γH2AX foci 

that exceeded the maximum size of 1.2 µm were categorised as ‘clusters’. To 

approximate individual foci, they took the area of the cluster and divided by the mean 

focus size to obtain the estimated average number of foci in a specific cluster. This 

feature of the AKLIDES platform in evaluating clusters or overlapping γH2AX foci 

appeared to work well under their assay conditions and may need to be further 

investigated to be able to be used reliably for the clinical diagnosis of persistent DNA 

DSBs (Reddig et al. 2015). The RABiT (Rapid Automated Biodosimetry Tool for 

Radiological Triage), is a fully automated high-throughput robotic system designed to 

measure γH2AX in lymphocytes present in a single drop of blood from a fingerstick in a 



 

249 

precise and fast manner (capable of processing up to 30,000 samples per day) (Turner et 

al. 2011, Garty et al. 2010) and could also be of interest to investigate persistent DNA 

DSBs. 

Common immunofluorescence techniques allow the researcher to gain information on 

persistent γH2AX at equilibrium (essentially a snapshot in time). A better approach for 

analysing the persistence of these DSBs and also the origin and relative kinetics of 

endogenous foci is to generate cells (in vitro) with a fluorescent-tagged protein (such as 

GFP-labelled 53BP1). This protocol allows visualisation of the damaged site and 

enables one to monitor their repair in living cells (Bekker-Jensen et al. 2006, Mari et al. 

2006). A novel approach to such imaging γH2AX quantification of DSBs in live 

mammalian cells has been described using bifragment luciferase reconstitution (Li et al. 

2011). N- and C-terminal fragments of firefly luciferase genes were fused with H2AX 

and MDC1 genes, respectively. In mammalian cells following DSB formation, H2AX 

was rapidly phosphorylated and then physically associated with the MDC1 protein, thus 

joining N- and C-luciferase fragments together and ultimately resulting in reconstitution 

of luciferase activity which was assayed by analysing serial images at different time-

points after radiation. This method for imaging γH2AX–MDC1 interaction was used for 

non-invasive evaluation of DSBs repair kinetics in vivo in tumour exposed to X-rays 

and 56Fe ions over 2 weeks (Li et al. 2011). This approach can be an alternative for 

experiments requiring observations of DSB induction and repair over an extended 

period of time (Li et al. 2011). Another method was developed that incorporated 

fluorophore- and radioisotope-labelled immunoconjugates which involved modification 

of anti-γH2AX antibodies to track in vivo damage in tumours (Cornelissen et al. 2011). 

Thus radioimmunoconjugates that target γH2AX as a real-time non-invasive imaging 

method to monitor DNA damage both in vivo and in vitro, would be useful to diagnose 
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susceptibility of cancer cells to DSB undergoing radiotherapy and to monitor treatment. 

A standard method in biological dosimetry includes cytogenetic analysis in which 

chromosome aberrations such as translocation, dicentric chromosomes, and micronuclei 

are scored in peripheral blood lymphocytes. These types of methods require growth 

stimulation of lymphocytes for at least 48-72 hours since chromosomal damage can 

only be measured following ex vivo cell division (Leonard et al. 2005, Kleinerman et al. 

2006, Pinto, Santos & Amaral 2010). Thus, in the scenario of population triage during 

the first few hours after accidental catastrophic radiation exposure (when the physical 

dose is unavailable) a rapid enumeration of the level of exposure to the individual is 

required. The γH2AX assay has emerged as a useful measurement for the rapid 

identification of the retrospective estimation of IR dose exposure. Additionally, the 

γH2AX assay is highly sensitive to detect DNA damage induced by IR as low as 1.2 

mGy (Rothkamm, Lobrich 2003). However, it is limited by inter-individual variability 

in kinetics of repair and results will vary depending on the time-frame of radiation 

exposure and blood collection. For this reason, it is more likely that an approach based 

on measuring persistent γH2AX may prove to be a superior diagnostic of radiation 

exposure. The levels of H2AX protein have been reported to vary by a factor of up to 

ten between different cell types; however, the level of variation in blood cells such as 

lymphocytes is not known (Rothkamm, Horn 2009). Thus, there is a possibility that 

biological variation occurs in the levels of induced phosphorylated H2AX (γH2AX) at 

DSB sites in individuals at risk of developing AD or exposed to accidental radiation 

exposure. This could for instance be due to difference in the number of γH2AX foci 

formed at a given DNA damage level or inefficiency of cell to convert DSBs to γH2AX 

foci. Another possibility could be the number of γH2AX molecules produced per DSB 

varies among individuals. Therefore, it is necessary to determine the baseline numbers 
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of γH2AX foci/nucleus prior to monitoring the number of radiation-induced or AD-

related γH2AX foci level. Given the growing interest in the automation of counting 

γH2AX for practical applications (e.g., chemotherapy patient management), it is 

important to optimise the time required to process and analyse the assay results. 

However, it is yet to be determined whether this can be applied to routine clinical 

studies involving the diagnosis of AD or retrospectively assess if a living organism has 

been previously irradiated at precise radiation doses. 
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6.2 Conclusion 

Quantification of the γH2AX response offers a highly sensitive and specific assay for 

detecting DNA DSB formation and repair. Although the available evidence supports the 

view that the majority of IR-induced DSBs are rapidly repaired, a small proportion may 

remain unrepaired, leading to a long-term persistent γH2AX response. This persistent 

expression of γH2AX varies in different tissues and may be affected by the genomic 

status and the type of DNA damage. Several studies have demonstrated that IR-induced 

γH2AX responses may persist for extended periods of time and that this persistent 

γH2AX expression tends to occur in the telomeric DNA and cells undergoing 

senescence. For the effective measurement of the γH2AX response, criteria are required 

to distinguish persistent γH2AX foci from transient foci. Furthermore, the variable 

γH2AX response to IR exposure between different cell/tissue samples should be taken 

into consideration when using the γH2AX assay for radiation biodosimetry and the 

estimation of persistent DNA damage. Understanding the impact of persistent DNA 

DSBs, the mechanisms that create and maintain them, and genomic instability in 

relation to the development of AD is an important area in the search for an early 

diagnostic test for AD. Moreover, the measurement of persistent γH2AX signals 

provides an indicator of unrepaired DNA DSBs, which is an important parameter to 

either determine prior radiation doses or predict the effect of radiation exposure at the 

genome level. This will allow the initiation of treatment and monitoring for the 

genotoxic effects of radiation. 

This research study has opened up new opportunities in radiation biodosimetry and the 

early diagnosis of neurodegenerative diseases, such as MCI and AD, based on the 

findings that the γH2AX assay has the potential for the detection and quantification of 
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persistent γH2AX in pest fruit flies and human buccal cells. The γH2AX response and 

its subsequent decline detected in human buccal cells varies between individuals, but 

remains elevated above baseline levels and can be measured by automated LSC and 

visual scoring methods. Both lymphocytes and buccal cells of individuals with AD 

exhibited elevated levels of γH2AX, and it is feasible for the accurate diagnosis of 

genomic DNA damage, as indicated by DNA DSBs, to be correlated with different 

blood parameters in AD patients. Determining the levels of γH2AX in buccal cells and 

lymphocytes has potential clinical benefits, in that determining baseline γH2AX, 

expression levels may contribute to identifying individuals at risk of developing MCI 

and AD, as well as monitoring disease progression. A further potential application of 

quantifying γH2AX foci may be an early indicator of age-related disease risk, as an 

alteration in genomic integrity due to DSBs may accelerate ageing. The relationship 

between persistent γH2AX foci and telomere length and function requires further 

investigation to understand better telomere γH2AX biology and whether there are other 

regions of the genome (e.g. centromeres) where γH2AX accumulates and persists. With 

further research, it may be possible to determine baseline values of γH2AX in 

populations more reliably. 
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A B S T R A C T

One of the earliest cellular responses to DNA double strand breaks (DSBs) is the phosphorylation of the

core histone protein H2AX (termed gH2AX). Persistent gH2AX is the level of gH2AX above baseline,

measured at a given time-point beyond which DNA DSBs are normally expected to be repaired (usually

persist for days to months). This review summarizes the concept of persistent gH2AX in the context of

exogenous source induced DNA DSBs (e.g. ionizing radiation (IR), chemotherapeutic drugs, genotoxic

agents), and endogenous gH2AX levels in normal aging and accelerated aging disorders. Summary of the

current literature demonstrates the following (i) gH2AX persistence is a common phenomenon that

occurs in humans and animals; (ii) nuclei retain persistent gH2AX foci for up to several months after IR

exposure, allowing for retrospective biodosimetry; (iii) the combination of various radiosensitizing

drugs with ionizing radiation exposure leads to persistent gH2AX response, thus enabling the potential

for monitoring cancer patients’ response to chemotherapy and radiotherapy as well as tailoring cancer

treatments; (iv) persistent gH2AX accumulates in telomeric DNA and in cells undergoing cellular

senescence; and (v) increased endogenous gH2AX levels may be associated with diseases of accelerated

aging. In summary, measurement of persistent gH2AX could potentially be used as a marker of radiation

biodosimetry, evaluating sensitivity to therapeutic genotoxins and radiotherapy, and exploring the

association of unrepaired DNA DSBs on telomeres with diseases of accelerated aging.

� 2015 Elsevier B.V. All rights reserved.
Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Bibliographic search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. gH2AX detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4. Long-term persistence of residual gH2AX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5. Persistent gH2AX in human cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.1. Peripheral blood mononuclear cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.2. Fibroblasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.3. Buccal cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.4. Stem cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.5. Monitoring effects of radiotherapy on cell lines using persistent gH2AX response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6. Persistent gH2AX in mouse cells and tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6.1. Germ cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6.2. Skin biopsies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6.3. Spinal cord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.4. Other tissues and organs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7. Persistent gH2AX in cells and tissues of other animals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
* Corresponding author at: CSIRO Food & Nutrition Flagship, Adelaide, South Australia 5000, Australia.

E-mail address: wayne.leifert@csiro.au (W.R. Leifert).

http://dx.doi.org/10.1016/j.mrrev.2015.07.001

1383-5742/� 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mrrev.2015.07.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mrrev.2015.07.001&domain=pdf
http://dx.doi.org/10.1016/j.mrrev.2015.07.001
mailto:wayne.leifert@csiro.au
http://www.sciencedirect.com/science/journal/13835742
www.elsevier.com/locate/reviewsmr
www.elsevier.com/locate/mutres
http://dx.doi.org/10.1016/j.mrrev.2015.07.001


M.S. Siddiqui et al. / Mutation Research 766 (2015) 1–192
7.1. Minipig skin, lymphocytes and fibroblasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7.2. Fruit fly pupae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7.3. Macaque lymphocytes and plucked hair bulbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7.4. Syrian hamster heart, brain, and liver tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

8. Persistence of gH2AX associated with telomeres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

9. Senescence-associated persistence of gH2AX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

10. gH2AX responses in aging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

10.1. Endogenous levels of gH2AX in individuals of different ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

10.2. gH2AX in chronic diseases of aging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

11. Consideration of persistent gH2AX for future method development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

12. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Fig. 1. Schematic representation of the short-term kinetics and persistent gH2AX

response in relation to DSB repair. The kinetics of DNA DSB repair follows two

phases, a fast phase lasting up to a few hours which is followed by a slower phase

that may persist for several hours to days. Upon exposure to DNA damaging agents

such as ionizing radiation (IR), the gH2AX foci appear in the fast phase within

minutes after the DSBs are formed, and reach a maximum level after about 30 min.

This level then declines rapidly, and corresponds to repair of DNA DSBs. A small

portion of gH2AX (above baseline, as indicated by the dashed line) may persist for

up to several months (slower phase) after the initial DSB-induction event and is

known as the persistent gH2AX response (as indicated by the bold red arrows).

Persistent gH2AX may represent unrepaired DSBs which are either in the process of

slow ongoing repair, that are too complex to repair or associated with telomere DNA

DSBs.
1. Introduction

Double strand breaks (DSBs) in DNA may lead to genetic
instabilities and gene mutation resulting in reduced integrity of the
genome and survival of the organism [1,2]. Replication stress,
endogenous reactive oxygen species, exogenous sources of DNA
damage such as ionizing radiation (IR), and genotoxic compounds
are key causes of DNA breaks in living systems [3]. To repair these
lesions, the DNA damage response (DDR) is initiated at the site of
DNA damage [4,5]. An early known response to DNA DSBs in the
cell is the phosphorylation of the C-terminal of the core histone
protein H2AX (termed gH2AX when phosphorylated) [6,7]. The
phosphorylation of H2AX occurs at the highly conserved amino
acid Ser139 contained in the SQ (serine/glutamine) motif near the
carboxy-terminus of H2AX [8,9]. The phosphoinositide 3-kinase-
related protein kinase (PIKK) family which includes Ataxia
Telangiectasia Mutated (ATM), Ataxia Telangiectasia and Rad3-
related protein (ATR) and DNA protein kinase catalytic subunit
(DNA-PKcs) have all been implicated in H2AX phosphorylation
[8,9]. However, ATM is considered as the main kinase for H2AX
phosphorylation in response to DSBs under normal physiological
conditions and to a greater extent when a cell is exposed to
ionizing radiation, such as g-radiation [6,8,10]. On the other hand,
during replication stress, ATR appears to be involved in H2AX
phosphorylation at the site of stalled ‘replication forks’ and
DNA-PKcs respond to DSBs during the non-homologous end
joining process [10–13]. The role of gH2AX is to recruit associated
DDR proteins and ensure the retention of those proteins in the
vicinity of DSB sites [14–17]. gH2AX interacts with the mediator of
DNA damage check point (MDC1), which in turn recruits p53
binding protein 1 (53BP1) at the vicinity of DNA DSB sites. MDC1
and 53BP1 then interact with the MRE11-RAD50-NBS1 (MRN)
complex, and contribute to efficient ATM attachment at the DNA
DSBs site [18]. Phosphorylation of H2AX is an important step in the
DDR process and has widely been used as a marker of DNA damage
[15–17,19–22].

It has been previously estimated in human fibroblasts that
approximately 1% of H2AX becomes phosphorylated (gH2AX) per
1 Gy of IR [6]. This appears to approximate 35 DNA DSBs, and hence
one might expect 35 gH2AX foci. An antibody for gH2AX was
designed to recognize the last nine residues of H2AX, including the
phosphorylated serine at position 139 [23]. gH2AX signals appear
as individual foci when cells are immunostained against fluores-
cence-coupled antibodies and visualized by fluorescence micros-
copy. gH2AX is formed in the close vicinity to DSBs within seconds
after cells are exposed to IR, and an individual gH2AX foci
represents a single DSB with a ratio of 1:1 [6,24,25]. After
successful repair of DSBs, the gH2AX molecules are depho-
sphorylated by protein phosphatase 2A (PP2A) and gH2AX foci are
no longer detectable with the gH2AX antibody [17,26–28].
The kinetics of gH2AX foci formation and loss have been widely
investigated in different cell and tissue types in the context of DSBs
induced after exposure ex vivo and in vivo to exogenous DNA
damaging agents [6,29–32]. Two types of gH2AX foci have been
found in cells: Firstly, transient gH2AX foci that are associated with
rapid DSB repair and dephosphorylation of gH2AX to H2AX,
usually within minutes to hours. The second type of gH2AX foci are
residual and tend to persist for days to months (Fig. 1). The long-
term persistence of ‘‘residual gH2AX’’ has been also termed
‘‘excess gH2AX’’ foci by different groups [33,34]. In this review; we
have chosen to use the term ‘‘persistent gH2AX’’ (i.e. the gH2AX
level assessed at a given time-point beyond which DSBs are
expected to be repaired after initial exposures to DNA damaging
agents such as IR, chemotherapeutic drugs, and genotoxic agent
minus the baseline gH2AX level). Persistent gH2AX may indicate
DNA DSBs that are either in the process of slow, ongoing repair, or
DSBs that remain permanently unrepaired due to cellular
senescence, apoptosis, or DSBs that remain unrepaired in specific
genome sequences such as telomeres [32,35–37]. DNA DSBs also
occur during normal cellular processes, including DNA replication,
cellular senescence, and exposure to reactive oxygen species.
Therefore, endogenous gH2AX foci are formed even in the absence
of external DNA damaging agents such as radiation [38]. Humans
and other mammals follow an intrinsic DNA repair mechanism to[(Fig._1)TD$FIG]



[(Fig._2)TD$FIG]

Fig. 2. Model depicting the possible cause of chronic endogenous DSB-induced

persistent gH2AX. The intrinsic DNA repair mechanisms to repair endogenous DSBs

occur during common cellular processes, including DNA replication, exposure to

reactive oxygen species and cellular senescence. The repair of endogenous DSBs is

continuous and rapid, involving recurring transient gH2AX responses. DSBs and

gH2AX accumulate in telomere sequences within cells and may ultimately reach a

threshold that triggers SASP which put into action the senescence process by which

such cells are eliminated. There are therefore, two recurring waves of gH2AX foci

expression in tissues: the first with short amplitude involving disappearance of

gH2AX due to DSB repair and the second with wider amplitude involving

elimination of cells with accumulated persistent gH2AX by cellular senescence

processes. Abbreviations: DSBs, double-strand breaks; SASP, senescence associated

secretory phenotype.
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repair these endogenous DNA DSBs. However, small defects in the
efficiency of repairing the chronic endogenous DNA DSBs for long
periods (days, weeks, months and even years) may contribute to
the accumulation of unrepaired DSBs on telomeres, which can be
reflected as persistent gH2AX (Fig. 2). Measurement of persistent
gH2AX in different cell and tissue types could therefore be used in
radiation biodosimetry and cellular radiosensitivity responses
during chemo- and radiotherapy, and to identify regions of the
genome where DSB fails to repair.

IR-induced gH2AX foci formation and loss have been exten-
sively investigated [6,29,30], whereas comparatively few studies
have investigated endogenous gH2AX levels in normal aging and
accelerated aging disorders. H2AX phosphorylation and DDR have
been implicated in diseases of accelerated aging (e.g. Werner
syndrome, Alzheimer’s disease, obesity, diabetes, sleep apnoea,
prostate cancer, cataract disease, hypertension, and Hutchinson–
Gilford progeria syndrome) in recent studies [39–41], suggesting
that lack of DNA integrity due to DNA damage progressively
increases with age and may contribute to or be caused by these
accelerated aging disorders. To date, no review has explored
persistence of gH2AX in different cell and tissue types and
discussed the importance of endogenous levels of gH2AX, in
human aging and diseases of accelerated aging. The aims of this
review are to summarize the findings of persistence of gH2AX in
the context of exogenous source induced DSBs in different cell and
tissue types, and to further discuss human diseases of accelerated
aging that have reported endogenous gH2AX levels as a marker of
unrepaired DNA damage.

2. Bibliographic search

The identification and selection of studies reported in this
review was carried out through an extensive literature search
using the PubMed database (National Library of Medicine, National
Institutes of Health, Bethesda, MD, USA; http://www.ncbi.nih.gov/
PubMed), and was up-to date as on April 30, 2015. The search
strategy was based on the following keywords ‘‘persistent
gammaH2AX’’, ‘‘residual gammaH2AX’’, ‘‘gammaH2AX kinetics’’,
‘‘unrepaired DNA damage’’, ‘‘irreparable DNA damage’’, ‘‘human
endogenous gammaH2AX’’, ‘‘gammaH2AX in age-related dis-
eases’’. Eligible studies included in this review were those
conducted in humans, or animals, written in English, reporting
long-term (>4 h) persistence of residual or excess gH2AX levels as
a marker of either DNA damage or DNA repair (i.e. after in vitro or in

vivo exposure to IR, and after chemotherapeutic or genotoxic drug
treatment). Studies in blood cells or other surrogate cells, cancer
tissues, biopsies, established cell lines or in cultured cells after
treatments were included.

3. gH2AX detection methods

gH2AX foci can be observed with fluorescence microscopy by
immunostaining cells with primary gH2AX antibodies coupled
with fluorescent labeled secondary antibodies. The discernible
hallmark of gH2AX foci counting is the ability to detect a single
DSB in an individual cell [42–44]. The use of fluorescence can be
extended to the measurement of total gH2AX protein level, in
particular, types of cells and tissues using western blot and flow
cytometry techniques [42–44]. The gH2AX foci counting approach
has been used in numerous studies to assess the relationship
between gH2AX foci removal and the rate of DSBs repair [25,45–
48]. In radiation biology the number of DSBs positively correlates
with gH2AX foci formation [6,23,24]. A linear increase of gH2AX
foci per cell was proportional to the initial radiation dose 24 h and
48 h after exposure to IR doses ranging from 0.2 to 5 Gy in human
blood samples and skin cells [49]. The highly dynamic changes of
foci number and foci size over time after treatment with radiation
or cytotoxic compounds can make the visual scoring time-
consuming, potentially subjective, operator-dependent, and may
involve fluorescence bleaching due to extended evaluation time,
therefore, making visual scoring unsuitable for high-throughput
applications. Several image analysis solutions for automated foci
scoring have been developed, but were limited to low IR dose
exposure resulting in discrete scoreable foci within the nuclei
[50,51]. Visual and automated scoring of gH2AX foci formation in
rat thyroid cells (PC Cl3) demonstrated a direct correlation
between gH2AX foci and radiation dose but was restricted up to
1 Gy of IR [51]. Following exposure of cells to a dose of 5 Gy, visual
scorers were unable to score gH2AX foci due to high density of
DSBs which lead to gH2AX foci overlap (diffuse foci). Thus, one of
the main issues when scoring multiple foci after exposure to a high
radiation dose is the phenomenon of foci overlap that makes it
more difficult to distinguish gH2AX as discrete entities (foci)
[50]. In that case measurement of total gH2AX intensity using
western blot or flow cytometry image analysis techniques may be
sufficient to measure DNA damage levels by quantifying the total
fluorescence for gH2AX signals.

Flow cytometry, allows rapid measurement of total gH2AX
intensity in a large number of heterogeneous cell populations
while enabling assessment of gH2AX intensity in different cell
cycle phases and simultaneous measurement of other cellular
proteins/markers involved in DNA damage/repair signaling
process [52]. The gH2AX intensity in lymphocytes measured by
flow cytometry quantitatively correlated with the number and size
of gH2AX foci scored visually by fluorescence microscopy [52]. The
IR-induced gH2AX quantification in the lymphocytes of prostate
cancer patients during radiotherapy showed significant differences
between patients and healthy donors by use of flow cytometry
analysis; however, these results were not always in close
agreement with results from fluorescence microscopy [52]. More
recently, the use of laser scanning cytometry has also been
proposed as a useful tool to measure cellular DNA content for cell
cycle stage evaluation in conjunction with multiple gH2AX
parameters (e.g. area, integral, MaxPixel) after inducing DNA
damage [48,53,54]. The frequency of visually scored gH2AX in
human buccal cell nuclei showed a strong correlation with LSC
measured gH2AX integral [48]. Taken together, both microscopy
and cytometry-based methods are suitable to evaluate gH2AX
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formation and loss and the choice of the best gH2AX assay will
depend on the purpose of the study. The image cytometry and LSC
methods have an advantage over flow cytometry because they
enable counting and sizing of gH2AX foci but they are slower to
perform.

4. Long-term persistence of residual gH2AX

The decline kinetics of DNA DSB repair appears to follow two
distinct phases: a fast phase generally lasting a few hours followed
by a slower phase that may persist for several hours or days and
may extend to several months [55,56] (a schematic is shown in
Fig. 1). The majority of DSBs (�80%) are repaired during the first
phase of the repair process and the remaining portion (�20%)
repair at a slower pace during the slower phase [55,56]. The slow
gH2AX repair kinetics reported in lymphocytes from healthy
donors following exposure to IR is consistent with the findings that
showed �25% of residual gH2AX foci at 7 h after exposure to 4 Gy
of IR in lymphocytes [57,58]. Evidence from several studies
suggests that 60% of initial IR-induced DSBs are transient and
repair in a relatively fast manner, often with half-lives of
approximately 1–18 min [59,60]. The remaining 40% of DSBs
repair slowly, with a repairing half-life in the range of 1.5–8 h
[59–63]. DSBs measured several hours after an initial radiation
exposure that still remain unrepaired, may be predictive of
individual radiosensitivity to complex DNA lesions that can be
lethal [64–66]. The rate of gH2AX foci loss and the presence of
residual foci has also been correlated with cellular radiosensitivity
and absorbed radiation dose [47,56,67–71]. Estimation of DSB
repair rate from the decline kinetics of gH2AX foci was reported as
a useful parameter to evaluate cellular radiosensitivity [58]. The
persistent gH2AX foci may be present in the form of large foci. For
example, in spermatids, the persistent gH2AX foci appeared as
larger foci at 48 h after IR exposure [72]. Large persistent gH2AX
foci were also observed in normal human fibroblasts (VH-10) and
in HeLa cells after exposure to IR [73]. Additionally, a recent study
reported the persistence and larger size of gH2AX foci 6 h after
3 Gy of high linear energy transfer radiation in a cell line lacking
DNA-dependent protein kinase activity [74]. Clinical studies have
demonstrated that the stochastic gH2AX foci induction and loss
after external and internal radiation exposure in different types of
cell depend on (i) the amount or type of IR (e.g. high dose
(radiotherapy), low dose X-ray examination, or computed tomog-
raphy (CT) scan), chemotherapeutic drug and genotoxic compound
used; (ii) type of sample or part of body exposed to IR; (iii) duration
or fractionation of exposure; (iv) inter individual radiosensitivity
or damage response; (v) methods to measure gH2AX immunore-
activity; (vi) time-points for the kinetics of gH2AX foci formation
and loss; (vii) time elapsed between the exposure and the gH2AX
analysis, particularly if genotoxic exposure is acute rather than
chronic [58,75,76].

In the following sections, we discuss persistence of gH2AX
following in vitro and in vivo exposure to IR, chemotherapeutic
drugs, and genotoxic agents among animals in different cell and
tissue types (summarized in Table 1).

5. Persistent gH2AX in human cells

5.1. Peripheral blood mononuclear cells

Human blood lymphocytes have several advantages that make
them suitable for evaluating gH2AX foci formation and loss: (i) a
limited quantity of blood containing lymphocytes is required for
gH2AX assay (1–2 ml) [77]; (ii) lymphocytes have low gH2AX
background levels (0.05–0.1 foci/cell) [6,34,78]; (iii) the majority of
cells are in the G0 phase of the cell cycle [79]; (iv) there is minimal
intra-individual variation in the level of gH2AX foci in different
subsets of lymphocytes [80]; (v) there is minimal intra-individual
variation in gH2AX foci number per lymphocytes, and therefore,
the assay is relatively efficient at measuring differences in gH2AX
between individuals [34,78,80].

Radiation therapy used in cancer treatment is applied either
alone or in combination with chemotherapy; however, radiation
therapy induces severe side-effects (acute effects such as erythe-
ma, edema, mucositis, dry or moist desquamation, severe skin
changes, and late effects such as telangiectasia, fibrosis, cancer
induction, brachial plexopathy, neurological effects) due to normal
tissue toxicity (NTT) [81–85]. NTT has been graded by the
Radiation Therapy Oncology Group into a standardized scale of
acute and late responses after radiotherapy treatment for all tissue
types, and these scales are used to avoid severe sequelae of
radiotherapy [86]. Induction and persistence of gH2AX were
assessed in peripheral blood lymphocytes (PBLs) of cancer patients
with tumors in breast, thyroid, colon, brain, pituitary, prostate,
cervix, and larynx for up to 24 h after 2 Gy of IR exposure [83]. The
level of gH2AX response remained elevated in lymphocytes of
cancer patients who had experienced acute NTT as a consequence
of earlier radiotherapy compared to cancer patients who had little
or no tissue toxicity as well as non-cancer controls, for up to 24 h
after exposure to IR [83]. Persistence of gH2AX was significantly
higher in lymphocytes from children with pediatric cancer
compared with age-matched control children 8 h after exposure
of whole blood with 1 Gy and 2 Gy of X-rays. While all healthy
children exhibited efficient DNA repair, three children with
pediatric cancer had impaired DNA repair capacity and two out
of these three children developed acute normal tissue toxicity,
which may be indicative of impaired DNA repair [87]. The measure
of persistence of gH2AX can be a predictive assay in identifying
those individuals at the greatest risk for the development of
adverse effects to radiotherapy or chemotherapy. Additionally the
gH2AX assay may be clinically useful to monitor NTT, thus will
allow fine-tuning of the applied radiation dose during radiothera-
py for improved cancer treatments. Another study reported higher
levels of persistence of gH2AX foci per cell in lymphocytes of breast
cancer patients with chronic late toxicities after radiotherapy
compared with minimal late toxicities up to 24 h after exposure to
4 Gy of X-rays [88]. This result indicates that the persistence of
gH2AX is likely associated with breast cancer patients’ radiosen-
sitivity. In another study, the mean number of gH2AX foci per cell
analyzed in peripheral blood mononuclear cells (PBMCs) of breast
cancer patients undergoing radiotherapy was significantly higher
compared with untreated healthy controls with respect to the
initial (30 min after 0.5 Gy of X-rays) and residual (24 h after
exposure to 2 Gy X-rays) gH2AX foci, indicating potential use of
gH2AX assay for screening radiosensitivity of breast cancer
patients [66]. The level of gH2AX foci has also been previously
measured to predict the side effects of radiotherapy among head
and neck cancer patients [89]. Persistence of gH2AX was higher in
lymphocytes of head and neck cancer patients compared with the
untreated control group for up to 6 h after exposure to 2 Gy of
X-rays [89]. Thus gH2AX would be a useful measure to identify
individuals’ radiosensitivity in advance so that customized
radiation therapy may be applied to avoid severe side-effects
due to radiation therapy. Persistence of gH2AX was also
significantly higher in lymphocytes of Shwachman–Diamond
syndrome individuals (an autosomal-recessive disorder charac-
terized by bone marrow failure and a cumulative risk of
progression to acute myeloid leukemia) compared to sham-
irradiated cells 4 h after exposure to 4 Gy and 10 Gy of X-rays or
g-rays [90]. Interestingly, another group [84] found no difference
in the persistence of gH2AX foci in T-lymphocytes 24 h after ex vivo

exposure (up to 2.2 Gy) when comparing (1) none to mild and



Table 1
Persistent gH2AX response among animals in different cell and tissue types following ionizing radiation.

Cells/tissues

analyzed

Treatment Cohort/characteristic of cells Outcome of gH2AX response Technique used Ref.

Human
Lymphocytes g-rays

2 Gy

Cancer patients:

(n = 12) with severe NTT after RT

(n = 10) with little or no NTT and

(n = 7) healthy, non-cancer

control

24 h post-IR

gH2AX " by �4� in cancer

patients with NTT compared with

cancer patients with low NTT or

non-cancer control

Flow cytometry [83]

Lymphocytes X-rays

1–2 Gy

Children with solid tumors

received chemotherapy (n = 23),

Healthy children (n = 24)

24 h post-IR

" foci/cell in children with solid

tumors compared with age-

matched healthy children

" foci/cell enables identification

of children at risk with high-

grade toxicities

Visually scored by fluorescence

microscopy

[87]

Lymphocytes g-rays

2 Gy

Healthy donor (n = 4), AT (n = 6)

and NBS (n = 4) patients

72 h post IR

" foci/cell by �4–8� in AT and

NBS patient’s cells

Visually scored by fluorescence

microscopy

[91]

Lymphocytes X-rays

4 Gy

Breast cancer patient after

radiotherapy

Control: very little or no damage

in normal tissue (n = 7),

Case: marked damage in normal

tissue (n = 7)

24 h post-IR

" foci/cell in case compared with

control

Visually scored by fluorescence

microscopy

[88]

PBMCs X-rays

4 Gy

Control: healthy donors (n = 12)

Case: Breast cancer patients

undergoing radiotherapy (n = 57)

24 h post-IR

" foci/cell in case compared with

untreated healthy control

Visually scored using

fluorescence images

[66]

Lymphocytes X-rays

2 Gy

Head and neck cancer patients

undergoing radiotherapy

(n = 54)

Untreated control (n = 26)

6 h post IR

" foci/cell in lymphocytes of

head-and-neck cancer patients

compared with untreated control

group

Image captured by fluorescence

microscopy followed by foci

counting using Olympus

microimage

software

[89]

Lymphocytes Low dose rate

(14.7 cGy/h)

and high dose

rate (0.5 Gy/min)

Cervix cancer patients (n = 12) or

endometrial cancer patients

(n = 17)

24 h post-IR

No significant changes in non to

mild and moderate to severe late

radiotoxicity

Visually scored using

fluorescence images

[84]

Leucocytes Radionuclide therapy

with the isotope I131

26 Patients with differentiated

thyroid carcinoma

(7 men, 19 women)

6 days after administration

" foci/cell

Visually scored using

fluorescence images

[45]

Lymphocytes Radionuclide therapy

with the isotope I131

15 patients with differentiated

thyroid carcinoma (8 women,

7 men)

4 days after administration

" foci/cell

Visually scored using

fluorescence images

[92]

Lymphocytes X-rays

60–66 Gy (single dose

2 Gy, five fractions

per week)

Head and nick cancer patients

(n = 31)

24 h post-IR

" foci/cell predisposed to

increased incidence of severe oral

mucositis

Visually scored using

fluorescence images

[82]

Lymphocytes CT – 157 to 1514 mGy cm Benign diseases (n = 13) and

known malignant neoplasms

(n = 10)

24 h after CT

" foci/cell in one patient with

rectal cancer showed

exceptionally severe side effects

after radiotherapy

Visually scored using

fluorescence images

[34]

Lymphocytes PET involving

the use of
18F-fluorodeoxyglucose,

and whole-body

CT scan

Patients with history of

lymphoma or leukemia (n = 33)

24 h after combined PET/CT

" foci/cell

Visually scored using

fluorescence images

[93]

Lymphocytes PRRT Neuroendocrine tumors patients

undergoing PRRT (n = 11)

72 h after treatment

foci/cell # close to baseline and

correlated with absorbed dose to

tumors and bone marrow

# number of lymphocytes

Visually scored using

fluorescence images

[94]

Lymphocytes CT – 7.78 per 1 Gy cm

and PTA of lower

limb arteries

Patients scheduled for CT (n = 5)

and patients scheduled for PTA

(n = 20)

24 h after treatment

" foci/cell

Visually scored using

fluorescence images

[95]

Lymphocytes g rays

4 Gy

Healthy donors

(n = 94)

24 h after treatment

" foci/cell

Fluorescence microscopy,

ImageJ

[58]

Lymphocytes g rays

2 Gy

Healthy donors 24 h to 4 weeks post-treatment

"foci/cell

Fluorescence microscopy, and

LSM 510 software

[96]

Cell lines after

isolation of

lymphocytes

from SDS

patients

X-rays

4 10 Gy

SDS patients (n = 2) and SDS

patient’s heterozygous father

(n = 1)

" foci/cell in SDS patients

compared with sham irradiated

control

Visually scored using

fluorescence images

[90]

Fibroblasts g rays

0.6 Gy

Normal human fibroblast cells

(IMR90)

270 min post-IR

4.5 foci/nucleus compared to

1.5 foci/nucleus at baseline

Laser scanning confocal

microscopy

[23]
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Table 1 (Continued )

Cells/tissues

analyzed

Treatment Cohort/characteristic of cells Outcome of gH2AX response Technique used Ref.

Fibroblasts g rays

0.6 Gy

WS patients

(n = 4)

Control donors

(n = 4)

24 h post-IR

" foci/cell by �1.5� in 60-year-

old WS patients compared with

controls

Visually scored by fluorescence

microscopy

[40]

Fibroblasts g rays

2 Gy

FA patients (n = 10)

Healthy donor (n = 6)

24 h post-IR

foci/cell " by �2.5–8� in FA cells

compared with non-irradiated

control and non-FABMF cells

Fluorescence microscopy,

ImageJ

[102]

Fibroblasts X-rays

10 Gy

Foreskin fibroblasts (HCA2) 6 weeks post-exposure

" foci/cell

Fluorescence microscopy,

Photoshop CS2

[97]

Fibroblasts Potent human

carcinogen chromium

Cr(VI)

20 mM

SV40-transformed WRN

fibroblasts cell line (AG11395)

24 h after treatment

" foci/cell

Fluorescence microscopy,

Phoenix software

[100]

Embryonic

stem cells

g rays

5 Gy

H1 hES cell lines 24 h post-IR

dephosphorylation rate was

slower in irradiated hES

compared with normal somatic

lung fibroblasts

" foci/cell in hES in irradiated hES

compared with normal somatic

lung fibroblasts

Western blot [105]

Stem cells X-rays

2 Gy

Healthy volunteers (n = 68) and

umbilical cord blood

(n = 34)

24 h post-IR

Identical decline of foci/cell in all

cells analyzed

Visually scored by fluorescence

microscopy

[106]

Buccal cells g rays

2 Gy

5 healthy individuals (3 females,

2 males, aged 26–47 years)

5 h post-IR

" foci/cell by �4� in irradiated

cells compared with non-

irradiated control

Immunofluorescence and

HistolabTM software

[104]

Buccal cells g rays

4 Gy

6 healthy individuals (3 females

and 3 males, aged from 25 to

44 years)

24 h post-IR

Visually scored: % of cell

containing foci " by �3�
LSC: integral " by �3�

Visually scored and laser

scanning cytometry

[48]

Mouse
Germ cells X-rays

4 Gy

10- to 12-week-old C57Bl/6J male

mice

% of cell containing foci " by �6–

10� 48 h post IR

Visually scored using

fluorescence microscopy

[72]

Heart and kidney X-rays

3 Gy

3 months old C57Bl/6 female

mice

23 h post-IR

% of nuclei containing foci " by

�5–10�

Confocal microscopy [114]

Skin biopsies g rays

10 Gy

(n = 2) 4–6 week old

radiosensitive strains (SCID and

BALB/c) and (n = 2) radioresistant

strains (C57BL/6 and C3H/HeJ)

male mice

7 days post-IR

Radioresistant strains (13–15

foci/100-mm2

area)>Radiosensitive strains

(�4–6 gH2AX foci/100-mm2

area)

Confocal microscopy [65]

Spinal cord X-rays

17 Gy followed

by an immediate

additional dose

of 19 Gy

12 weeks old C3H/N female mice 1 year post-IR

Foci were detected

Flow cytometry [111]

Spleen, thymus,

liver, lung,

kidney,

cerebellum,

hippocampus,

frontal cortex

and olfactory

bulb

X-rays

1 Gy

Very young (7 and 14 days old),

adolescent (24 days old), young

adult (30 days old) and sexually

mature adult (45 days old) male

and female mice

24 h post-IR

Average number of foci/cell " in

Spleen�Thymus> Liver> Lung

Average number of foci/cell "
after 7 days>14 days>

24 days>30 days>45 days

Visually scored using

fluorescence microscopy

[115]

Small intestine,

lung, brain,

heart and

kidney

Whole body X-rays

2 Gy

C57BL/6 mice 48 h post-IR

�0.5 foci/cell, similar DNA repair

kinetics were observed in all

tissues.

Visually scored using

fluorescence microscopy

[116]

Heart, small

intestine,

and kidney

X-rays

10 mGY, 100 mGy,

and 1 Gy

C57BL/6 mouse 24 h post-IR

1 Gy: �<1 foci/cell

100 mGy: �<0.2 foci/cell

10 mGy: �<0.06 foci/cell

Visually scored using

fluorescence images

[117]

Heart, brain,

kidney

and liver

Whole body X-rays

3 Gy

C57Bl/6 mice 5 h post

gH2AX intensity " in brain,

kidney and liver compared with

heart

Western blot [120]

Minipig
Skin biopsy g rays

�50 Gy

14–16 months old (n = 7) female

Göttingen minipig

70 days post-IR

Irradiated cells: 0.14 foci/cell, non

Irradiated cells: 0.05 foci/cell

Visually scored using

fluorescence images

[118]
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Table 1 (Continued )

Cells/tissues

analyzed

Treatment Cohort/characteristic of cells Outcome of gH2AX response Technique used Ref.

(1) Lymphocytes

(2) Fibroblasts

g rays

(1) 1.8 Gy

(2) 2 Gy

4 months old male Göttingen

minipigs

24 h post-IR

(1) " foci/cell by up to �11�
(2) " foci/cell

Visually scored using

fluorescence images

[33]

Fruit Fly
Pupae g rays

0–400 Gy

Pupae were allowed to emerge as

adults 17 days post-IR

17 days post-IR

25% of nuclei contained "gH2AvB

compared with non-irradiated

controls

Western Blot, ImageJ and LSC [119]

Syrian hamsters
Heart, Brain, liver X-rays

5 Gy

Male Syrian hamsters 20 h post-IR

" foci positive nuclei in heart,

brain (not liver) by 3–4.5�

Visually scored following laser

scanning confocal microscopy

[120]

Abbreviations: AT, ataxia telangiectasia; ATM, ataxia telangiectasia mutated; CT, computed tomography; FA, fanconic anemia; hES, human embryonic stem cells; IR, ionizing

radiation; LSC, laser scanning cytometry; NTT, NORMAL tissue toxicity; NBS, Nijmegen breakage syndrome; Non-FABMF, non fanconic anemia bone marrow failure; PBMC,

peripheral blood mononuclear cells; PET, positron emission tomography; PRRT, peptide receptor radionuclide therapy; PTA, percutaneous transluminal angioplasty; RT,

radiotherapy; SDS, Shwachman–Diamond syndrome; WS, Werner syndrome.
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(2) moderate to severe, late normal tissue radiotoxicity in gyneco-
logical cancer patients [84]. Persistent gH2AX was assessed in T
lymphocytes from Ataxia Telangiectasia (AT) patients and patients
with Nijmegen breakage syndrome (NBS), a disease associated with
the mutation in nibrin proteins (coded by NBN gene). Seventy-two
hours after exposure to 2 Gy of IR the number of gH2AX foci per
cell increased in AT and NBS cells approximately 8- and 4-fold,
respectively, compared with non-irradiated control cells [91].

gH2AX as a biomarker of toxicity and as a biodosimeter after
systemic administration of radionuclide was investigated in vivo in
several clinical studies [45,82]. For example, gH2AX induction and
loss were assessed in a recent clinical study where radionuclide
I131 therapy for thyroid cancer was used [45]. The leucocytes were
irradiated in vivo by the b-particles emitting from circulating 131I.
gH2AX was quantified in leukocytes at different times and the
highest number of gH2AX foci was observed at 2 h after
administration of radionuclide therapy and thereafter declined
with time; however, persistence of gH2AX was higher for up to
6 days compared with the number of gH2AX foci in the samples
taken immediately before radionuclide therapy [45]. This result
indicates that persistence of gH2AX is a promising marker to
estimate the absorbed radiation dose in vivo after radionuclide
therapy. Another study [92] reported elevated persistence of
gH2AX foci in lymphocytes of thyroid cancer patients 4 days
following in vivo isotope 131I radionuclide therapeutic administra-
tion, allowing estimation of the radiation doses absorbed with this
therapy. One important factor to consider on the interpretation of
radionuclide induced in vivo gH2AX is that radionuclides may be
continuously present in the body and induce DSBs chronically.
Typically, other radiation exposures are acute and would likely
represent a different kinetic profile of DSB formation and repair. It
is also important to note that external irradiation treatment
generally involves partial body irradiation whereas radionuclide
therapy involves whole body exposure to irradiation. Another
study showed that individuals who had higher levels of persistent
gH2AX in PBMCs observed 24 h after in vivo exposure to X-rays
(a single dose of 2 Gy, given once daily for 5 days per week) or RCT
(radiotherapy in combination with chemotherapy) are likely to
have an increased incidence of severe oral mucositis [82]. Follow-
ing a CT examination, gH2AX levels in normal individuals reached
baseline levels 24 h after the CT scan. However, one patient who
had previously shown severe side effects after radiotherapy and
had a DSB repair defect displayed a very much higher persistence
of gH2AX foci [34]. This result suggests that individuals with a
defect in DSB repair may exhibit impaired gH2AX foci loss thereby
resulting in an increased persistence of gH2AX after CT [34]. The
kinetics of gH2AX formation and loss were also assessed in blood
lymphocytes of patients undergoing positron emission tomogra-
phy (PET) involving the use of 18F-Fluorodeoxyglucose (FDG), and
whole body CT scan [93]. Radiation-induced gH2AX foci peaked
30 min after 18F-FDG administration and 5 min after CT. After 24 h
the number of gH2AX foci per cell decreased but remained higher
compared to the pre-exposure level suggesting gH2AX as a useful
marker to monitor radiation-induced in vivo DNA DSBs by 18F-FDG
and CT separately in patients undergoing combined PET/CT [93]. In
a similar manner, the average number of gH2AX foci per
lymphocyte increased in the first 30 min after LuTate administra-
tion (for neuroendocrine tumors) and peaked at 2 h [94]. The
number of gH2AX foci decreased close to the baseline value
24–72 h after treatment. The gH2AX foci number in the interval
from 10 min to 72 h after therapy correlated with the absorbed
dose to tumor and bone marrow and subsequently resulted in a
reduced number of lymphocytes. This result suggests gH2AX as a
biomarker to assess lymphocyte cytotoxicity [94]. Immunofluores-
cence was used to demonstrate DSB induction (gH2AX foci) and
repair in individuals exposed to IR during percutaneous translum-
inal angioplasty (PTA) [95]. gH2AX levels were approximately
1.7-fold higher in lymphocytes after PTA treatment compared to
lymphocytes before PTA treatment. Thus gH2AX can be used as a
marker to assess in vivo induction and repair of DSB in individuals
exposed to radiation during PTA [95]. Persistence of 53BP1/gH2AX
was also reported in human G0 lymphocytes obtained from healthy
volunteers 24 h to 4 weeks after exposure to 2 Gy of IR [96],
indicating the potential use of gH2AX in biological dosimetry
[96]. Therefore, persistence of gH2AX following the exposure to IR
in human lymphocytes could be used as a maker to identify the
radiosensitivity and the ability of individuals to recover from
IR-related damage. The effect of age, gender, race, ethnicity, and
alcohol use was investigated on IR-induced persistent gH2AX
(24 h) in lymphocytes from healthy adults [58]. Of these
demographic variables, there was a decline of persistent gH2AX
in lymphocytes with increasing age, although age and race
influenced the early gH2AX responses [58].

5.2. Fibroblasts

Persistence of gH2AX has been investigated in human
fibroblasts after exposure to IR. In one study, gH2AX foci formed
3 min after exposure to 0.6 Gy of IR in human fibroblasts, gH2AX
foci numbers then peaked at 30 min (11.6 foci/cell), and at 4.5 h
this level declined to 4.5 foci/cell, which was higher compared to
the level in non-irradiated control fibroblasts [23]. In another
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study, persistence of gH2AX was reported in human diploid
fibroblasts for up to 6 days after exposure to 10 Gy of IR (X-rays)
[97]. However, the initial dose used in this study was very high
[97]. The level of gH2AX was also tested in fibroblasts from Werner
Syndrome patients (a disease associated with premature aging) to
determine whether premature aging diseases is associated with a
higher level of persistent gH2AX [40]. Twenty-four hours after
exposure to 0.6 Gy of IR, the level of gH2AX foci in the fibroblasts
from a 61-year-old healthy individual returned close to the values
observed in non-irradiated controls. However, fibroblasts from a
60-year-old Werner Syndrome patient had approximately 1.5-fold
increased levels of gH2AX foci/cell compared with the non-
irradiated controls [40]. WRN protein exhibits both helicase and
exonuclease activities and is mutated in Werner Syndrome
[98,99]. WRN interacts with several proteins involved in the
repair of DNA DSB and localizes to the sites of laser-induced DSB in
live cells [100]. A recent study reported a higher persistence of
gH2AX/53BP1 foci in human WRN-deficient fibroblasts compared
with controls for up to 24 h after being treated with 20 mM of the
potent human carcinogen, chromium Cr(VI), indicating impaired
DSB repair due to abnormal mismatched repair [101]. This result
suggests that the WRN protein may play an important role in
repairing a specific class of DSB in human cells. Fanconi anemia is a
blood disorder associated with a genetic defect in a cluster of
proteins responsible for DNA repair and results in bone marrow
failure [102]. The repair kinetics of radiation-induced DSBs were
assessed in primary fibroblasts from Fanconi anemia, non-fanconic
anemia bone marrow failure (non-FABMF) and control cell lines
based on a gH2AX assay. Twenty-four hours after exposure to 2 Gy
of IR, the level of gH2AX foci per cell in Fanconi anemia cell lines
was approximately 2.5-fold higher compared to that in non-FABMF
patients, and approximately 8-fold higher when compared with
non-irradiated controls [103]. Fanconi anemia fibroblasts retained
an elevated level of residual gH2AX foci after 24 h IR exposure,
suggesting that the persistence of gH2AX foci could be a reliable
measure to diagnose Fanconi anemia from non-FABMF and
controls. These data suggest that persistence of gH2AX indicates
impaired repair of a subset of IR-induced DNA DSBs in human
fibroblasts and can be a useful marker to identify individuals with
diseases of accelerated aging.

5.3. Buccal cells

Buccal cells are an easily accessible source of tissue and have
been investigated for radiation biodosimetry [48,104]. The
kinetics of gH2AX induction and loss in buccal cells were
investigated by counting gH2AX foci for up to 5 h after exposure
to 2 Gy of IR [104]. gH2AX signals in nuclei peaked at 30 min after
exposure to IR, and subsequently declined over a period of 5 h.
However, the level of gH2AX remained elevated in irradiated
buccal cells for 5 h compared to non-irradiated control cells. In a
recent study by our group, gH2AX levels remained elevated in
g-irradiated human buccal cells compared with non-irradiated
control cells for up to 24 h following exposure to 4 Gy of IR as
measured by quantitative laser scanning cytometry [48]. These
results suggest that radiation induced gH2AX levels in human
buccal cells may remain elevated above the baseline gH2AX level
for a relatively long time (up to 24 h). Measurement of persistent
gH2AX responses in human buccal cells could therefore be used
as a powerful and reliable biomarker to assess DNA damage
status of individuals exposed to IR during accidental catastrophic
radiation exposure, or during radiation therapy, or possibly as a
result of a DNA damaging disease process. However, the variable
response to IR exposure between individuals should be taken
into consideration when using the gH2AX assay for radiation
biodosimetry.
5.4. Stem cells

The kinetics of DSB repair have been investigated in IR-induced
human embryonic stem cells (hES) by measuring the persistence of
gH2AX [105]. gH2AX levels decreased at a slower rate in hES after
exposure to 5 Gy of IR, over a period of 24 h compared with normal
somatic lung fibroblasts. This result suggests that hES retain
persistent gH2AX and are possibly less efficient at repairing DSBs
[105]. Another study quantified gH2AX foci numbers per cell after
exposure to 2 Gy of IR in various subpopulations of stem cells
(CD34+CD38�, CD34+CD38+, CD34�) derived from umbilical cord
blood (newborn) and the bone marrow of healthy elderly
individuals (>70 years) [106]. In all cell types examined, there
was a similar increase in the frequency of gH2AX foci numbers per
cell at both 8 h and 24 h after 2 Gy of IR exposure [106]. These
results suggest that gH2AX response may persist in irradiated
stem cells, and DSBs repair efficiency could be similar between the
stem cell populations analyzed, irrespective of the wide difference
in donor age.

5.5. Monitoring effects of radiotherapy on cell lines using persistent

gH2AX response

Measurement of persistent gH2AX in human cell lines could be
used as a powerful and reliable marker to identify the radiosensi-
tivity of cells or to evaluate DNA damage repair capacity of cells
undergoing radiotherapy treatment [107]. The combination of
various radiosensitizing drugs with ionizing radiation exposure
leads to persistent DNA damage compared with radiation or drug
treatment alone (summarized in Table 2). The number of persistent
gH2AX foci at 12 and 24 h after irradiation was found to correlate
with clonogenic cell survival (an in vitro cell survival assay based
on the ability of a single cell to grow into a colony) [108,109]. Since
radiotherapy treatment of cancer cells is aimed to kill cancer cells
with minimum side effects to normal cells, measurement of
persistent gH2AX in vitro in different cell lines has a great potential
for monitoring cancer patients’ response to chemotherapy and
radiotherapy as well as to enable tailored cancer treatments.

6. Persistent gH2AX in mouse cells and tissues

6.1. Germ cells

The persistence of gH2AX has been investigated in mouse germ
cells after whole-body exposure to X-rays [72]. Round spermatids
and primary spermatocytes had a higher proportion of cells
containing gH2AX foci (around 50% and 30%, respectively)
compared to non-irradiated controls, 48 h after exposure to 4 Gy
IR. The pattern of gH2AX foci within these cells changed from
many innumerable foci at early time points (1 h) to a pattern of
fewer discrete foci at 48 h post-IR [72]. Another study showed the
presence of Mdc1, 53BP1 and Rad51 proteins that are expressed in
conjunction with gH2AX in male germ cell types for up to 16 h
after exposure to 4 Gy of X-rays [110]. These results suggest that
mouse germ cells display persistence of gH2AX following IR.

6.2. Skin biopsies

An in vivo investigation of persistent gH2AX as a biodosimeter
of initial radiation dose has been carried out in keratinocytes
within the epidermis of radiosensitive and radioresistant murine
skin biopsies [65]. In this study, gH2AX foci/100 mm2 areas of
irradiated tissue sections were quantified for up to 7 days after
exposure to a dose ranging from 1 to 10 Gy using 3D confocal
microscopy. gH2AX foci were more persistent in radiosensitive
strains compared with radioresistant strains and respective



Table 2
Persistent gH2AX response following exposure to IR, chemotherapeutic drugs and genotoxic agents in human cell lines.

Cell lines Treatment Outcome of gH2AX response Technique used Ref.

Cervical carcinoma (SiHa)

Colon carcinoma (WiDr)

SiHa and WiDr xenograft tumors

X-rays

Single dose:

4 Gy, 6 Gy, and 10 Gy

Fractionated dose:

1 Gy daily for 5 days

2 Gy daily for 5 days

24 h post-IR

"foci/cell correlated with the

clonogenic cell survival

% of cells with <3 foci predicts cell

survival

Visually scored by fluorescence

microscopy

Flow cytometry

[107]

Radiosensitive head and neck

squamous cell carcinoma (SCC-

61), and prostate cancer (PC-3)

Radioresistant head and neck

squamous cell carcinoma (SQ-

20b) and prostate cancer (DU-

145)

(SCC-61) and (SQ-20b)

xenograft tumors

X-rays

3 Gy

24 h post-IR

" foci & # viability and clonogenic

survival in radiosensitive cells

compared with radioresistant cells

Immunoblot

Fluorescence microscopy

[47]

Cervical cancer

(HeLa, Caski, MS751, C33A,

SW756, SiHA)

X-rays

2 Gy

24 h post-IR

" intensity and foci/cell correlated

with clonogenic surviving fraction,

indicates " cellular radiosensitivity

Flow cytometry and Visually scored

by fluorescence microscopy

[163]

Melanoma (HT144)

Colon carcinoma (WiDr)

Cervical carcinoma (SiHa)

Glioma (U87)

Breast cancer (HCC1937)

Prostate cancer (DU145)

B lymphoblastoid

(WIL-2NS)

Normal cell strains (HFL1)

X-rays

10 Gy

6 h post-IR

" gH2AX intensity in radiosensitive

cells lines compared with

radioresistant cells

Flow cytometry [68]

Squamous cell carcinoma cells of

head and neck (FaDu and SKX)

X-rays

4 Gy

24 h post-IR

" foci/cell correlated with the

clonogenic cell survival

% of cells with <3 foci predicts cell

survival

Visually scored by fluorescence

microscopy

[109]

Normal 48BR fibroblasts

Patient-derived Artemis-

deficient (CJ179 hTERT)

fibroblasts

g rays

2 Gy

18 h post-IR

" foci/cell in CJ179 hTERT compared

with 48BR.

Time dependent " in gH2AX foci size

(0.8 mm at 30 min to 1.4 mm at

12–18 h post-IR)

Confocal microscopy [164]

Cervical carcinoma HeLa cells

Hepatoma (HepG2)

Mucoepidermoid carcinoma

(MEC-1)

(12C6+) and X-rays

2 and 4 Gy of radiation using carbon

ions

24 h post-IR

" foci/cell # clonogenic survival for

(12C6+) radiation than for X-rays

radiation indicates " cellular

radiosensitivity

Visually scored by fluorescence

microscopy

[165]

Adenocarcinoma (A549)

Squamous cell carcinoma

(NCI-H226)

Adenosquamous carcinoma

(NCI-H596)

BPU + X-rays

(4 Gy)

4 Gy alone

24 h post-treatment

foci/cell " �2 times in cells pre-

treated with BPU + X-rays compared

with X-rays alone

" foci/cell, # clonogenic survival,

indicates " cellular radiosensitivity

Flow cytometry [166]

Bronchial carcinoma (A549)

Squamous cell carcinoma head

and neck (FaDu)

Breast carcinoma (MCF7)

Lung carcinoma (H1299)

Prostate carcinoma (Du145)

Gossypol + X-ray

(2–8) Gy

2–8 Gy alone

24 h post-treatment

" foci/cell in cells pre-treated with

Gossypol + X-rays compared with

X-rays alone

" foci/cell with # clonogenic survival

indicates " cellular radiosensitivity

Visually scored by fluorescence

microscopy

[78]

Breast cancer brain metastatic

(MDA–MB-231-BR)

Breast cancer brain metastatic

(MDA–MB-231-BR) xenograft

tumors

Vorinostat + X-rays (2 Gy) for 16 h

2 Gy alone

48 h post-treatment

" foci/cell with # clonogenic survival

in cells pre-treated with

vorinostat + X-rays compared with

X-rays alone

Visually scored by fluorescence

microscopy

[167]

Breast cancer (MCF7)

Astrocytoma (SF268)

g rays

0.6 Gy

270 min post-IR

4.5 foci/nucleus compared to

1.5 foci/nucleus at baseline

Laser scanning confocal microscopy [23]

SV40-transformed WRN

fibroblast (AG11395)

Potent human carcinogen chromium

Cr(VI)

20 mM

24 h after treatment

" foci/cell

Fluorescence microscopy, Phoenix

software

[100]

Human colorectal cancer (HT-29)

Human colorectal cancer (HT-29)

xenograft tumors

JP-1201 + X-rays

(2 Gy)

2 Gy alone

24 h post-treatment

" foci/cell with # clonogenic survival

in cells pre-treated with JP1201 + X-

rays compared with X-rays alone

Visually scored by fluorescence

microscopy

[168]
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Table 2 (Continued )

Cell lines Treatment Outcome of gH2AX response Technique used Ref.

Colon carcinoma (HT29)

Breast Carcinoma (MCF7)

Pancreatic Carcinoma

(MIA PaCa-2)

Pancreatic carcinoma

(Bx-PC3)

Guggulsterone + X-rays (6 Gy)

6 Gy alone

24 h post-treatment

" foci/cell with # clonogenic survival

in cells pre-treated with GS + X-rays

compared with IR alone

Flow cytometry [169]

Lung cancer:

p53 wild-type (H460 and A549)

p53 null (H1299)

HuaChanSu + g rays (2 Gy) 24 h post-treatment

" foci/cell with # clonogenic survival

in cells treated with HCS + IR

compared with IR alone

Visually scored by fluorescence

microscopy

[170]

HeLa cells

ATM deficient (AT5BIVA)

DNA-PKcs deficient (M059J)

Wortmannin, caffeine or

UCN-01 + X-rays (10 Gy)

24 h post-treatment

" foci/cell in HeLa and ATM deficient

cell lines but not in DNA-PKcs cell

lines

Western blot, Visually scored by

fluorescence microscopy

[171]

Cervical carcinoma (SiHa) DNA damaging drugs

Camptothecin, cisplatin, doxorubicin,

etoposide, hydrogen peroxide,

MNNG, temozolomide, and

tirapazamine

24 h post-treatment

" foci/cell with # clonogenic survival

Visually scored by fluorescence

microscopy

[64]

Prostate cancer (DU145) Drugs + X-rays

MS0019266 or MS0017509 + 4 Gy IR

6 and 24 h post-treatment

" foci/cell, # cell survival in cells

treated with MS0019266 or

MS0017509 + X-rays compared with

radiation alone

Visually scored by fluorescence

microscopy

[172]

Primary skin fibroblasts:

Wild-type – (48BR)

ATM-deficient – (AT7BI)

DNA ligase IV-deficient – (411BR)

nonhomologous end-joining-

deficient cells – (2BN)

g rays

2 Gy IR

14 days post-IR

" level of foci/cell (representing 3–6%

of unrepaired DSBs) in patient with

mutation in ATM and DNA ligase IV

Visually scored by fluorescence

microscopy

[173]

Colorectal adenocarcinomas

cancer model (DLD-1 and

HT-29)

Colorectal adenocarcinomas

cancer model (DLD-1 and

HT-29) tumor xenograft

Sorafenib + X-rays (2 Gy)

Sorafenib alone

2 Gy alone

6 and 24 h post-treatment

" foci/cell, # cell survival in cells after

treatment with Sorafenib + X-rays

compared with radiation alone or

drug alone cells

Visually scored by fluorescence

microscopy

[174]

Bone marrow mesenchymal stem

cells (U2OS and CALU-1)

Actinomycin D 21 days post-treatment

" foci/cell

Visually scored using fluorescence

images

[175]

Pulmonary carcinoma (A549) Mitomycin (0.01 and 0.02 mg/ml) 3–6 days after treatment

Concentration dependent " of gH2AX

intensity

Laser scanning cytometry [176]

Pancreatic cancer (Panc-1)

Pancreatic cancer MiaPaCa-2

(PPP2R1A depleted by siRNA)

LB100 + X-rays

7.5 Gy + LB100 for 2 h

24 h post-treatment

" gH2AX intensity

Immunoblots [177]

Breast cancer (MCF-7) Barberine + X-rays

15 mM barberine for 24 h + 1 Gy

12 h post-treatment

" foci/cell in cells pre-treated with

barberine + radiation compared with

radiation alone

Visually scored using fluorescence

images

[178]

Fibroblasts (GM637) CDT + X-rays

0.5 mg/ml CDT and 5 Gy of IR

24 h post-treatment

" foci/cell and " intensity in cells

treated with CDT compared with IR

treated cells

Western blot and Fluorescence

microscopy, ImageJ

[179]

Colorectal cancer (HCT116) Oxaliplatin (1–10 mM) treatment for

6–24 h

24 h post-treatment

" intensity in a time- and

concentration dependent manner

Western blot [180]

Human pancreatic cancer

(MiaPaCa-2)

AZD7762 (Chk1/2 inhibitor) and

gemcitabine

48 h post-treatment

" intensity in 56% of cells

Flow cytometry [181]

The normal human fibroblasts

AGO1522B (AGO)

Normal peripheral blood

lymphocytes from patients

with advanced cancer

SJG-136 (crosslinking agent) 8 and 15 days post-treatment

" foci/cell

Visually scored using fluorescence

images

[182]

Glioblastoma (U251) HSV-TK + antiviral drug Ganciclovir 24 h post-treatment

" foci/cell

Visually scored using fluorescence

images

[183]

Bone marrow mesenchymal

stromal (MSC)

X-rays

40 and 2000 mGy

48 h post-treatment

" foci/cell

Visually scored using fluorescence

images

[184]

Human mammary epithelial

(HMEC)

Iron-ion and g-rays

1 Gy and 2 Gy

72 h post-treatment

" foci/cell in non-proliferative cells

compared with proliferative cells

" foci/cell after iron-ion exposure

than after g-rays exposure

Visually scored using fluorescence [185]

Normal diploid cells (HE49) X-rays

4 Gy

5 days post-IR

" foci size and " % of positive nuclei

Fluorescence microscopy, IP lab

software

[186]

Abbreviations: CDT, cytolethal distending toxin; BPU, dimethylamino benzoylphenylurea; GS, guggulsterone; HCS, HuaChanSu; HSV-TK, herpes simplex virus thymidine

kinase; MMC, mitomycin C.
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non-irradiated time-matched controls. Therefore, confocal micros-
copy may enable high resolution 3D image acquisition of gH2AX
foci in different depths of skin biopsies, thereby making it possible
to measure IR induced persistent gH2AX levels for many days after
radiation exposure which could have practical application in
radiation biodosimetry.

6.3. Spinal cord

gH2AX induction and loss have been investigated in murine
spinal cord for 1 year after topical application of spinal cord to
an acute IR dose of 17 Gy of X-rays followed by an immediate
additional dose of 19 Gy of X-rays [111]. The frequency of
gH2AX foci was higher in the blood vessel endothelium of
irradiated spinal cord compared with non-irradiated controls
where gH2AX was virtually absent. The higher levels of gH2AX
foci were still detectable 1 year after IR exposure suggesting
that the IR-induced gH2AX response can persist in murine
spinal cord for a very long time after a radiation exposure event
[111].

6.4. Other tissues and organs

Variations in IR-induced DNA breaks in different animal tissues
were first observed in 1983 [112]. Although, the levels of H2AX
protein have been reported in similar amounts among mouse
thymus, testis and small intestine, the proportion of phosphory-
lated H2AX differed between tissues after 30 Gy IR exposure
[113]. It was observed that 17% of H2AX were phosphorylated in
the epithelial cells in the villi of the small intestine compared to
37% and 94% in thymus and testis respectively [113]. This result
suggests that H2AX does not always phosphorylate to the same
extent in all tissues after exposure to IR. gH2AX has been
previously measured in heart and kidney sections of mice after
their whole body was exposed to 3 Gy of X-rays [114]. The
maximum frequency of gH2AX positive nuclei was found in heart
and kidney sections at 20 and 40 min, respectively, then slowly
declined. After a further 23 h the number of gH2AX positive nuclei
(in about 50% of gH2AX positive nuclei in cardiomyocytes of
heart) remained persistent; however gH2AX positive nuclei
decreased in kidney cells to the values observed in the control
[114]. Furthermore, the gH2AX response was tested in mouse
heart, brain, kidney and liver tissues for up to 5 h after whole-body
exposures to 3 Gy of IR. The amount of gH2AX observed was
lowest in the heart compared with brain, kidney and liver at 5 h
post-IR [120].

Persistence of gH2AX has been investigated in mouse spleen,
thymus, liver, lung, kidney, cerebellum, hippocampus, frontal
cortex and olfactory bulb of 7, 14, 24, 30 and 45 days old mice
[115]. The number of gH2AX foci per cell peaked at 30 min after
exposure to 1 Gy of X-rays, and then declined in most tissues
within 24 h. However, IR-induced gH2AX foci were more
persistent in the thymus and spleen of 7 and 14-day-old mice
compared with mice from the older age categories.

One study has reported that the kinetics of gH2AX foci loss were
almost similar in small intestine, lung, brain, heart, and kidney
tissues of mice 48 h after whole-body exposure to 2 Gy of IR
[116]. Similar results on the kinetics of gH2AX foci loss were also
observed in mouse heart, small intestine, and kidney tissues for
24 h following whole-body exposure to 0.01, 0.1, and 1 Gy of
X-rays [117]. Taken together, these data suggest that the rate of
initial gH2AX induction as well as the rate of gH2AX loss after
X-ray exposure significantly varies in non-proliferating mammali-
an tissues and should be taken into account when comparing
radiation induced gH2AX responses between various tissues and
species.
7. Persistent gH2AX in cells and tissues of other animals

7.1. Minipig skin, lymphocytes and fibroblasts

A recent study showed the presence of IR-induced gH2AX foci
in�60% of cells in keratinocytes within the epidermis of Göttingen
minipig skin biopsies 4 h after exposure to 50 Gy of IR [118]. The
average radiation induced gH2AX foci number per epidermal
keratinocyte then declined after 70 days; however, the average
numbers of residual gH2AX foci per epidermal keratinocyte at
70 days were significantly higher compared to non-irradiated
controls [118]. Twenty-four hours after ex vivo exposure to 1.8 Gy
of IR, both human and minipig lymphocytes exhibited �15% of the
maximal gH2AX response observed at 30 min [33]. Furthermore,
approximately 3% residual gH2AX foci were found in human and
minipig fibroblasts for up to 24 h after 2 Gy of IR exposure. gH2AX
kinetics in minipig lymphocytes after exposure to different total
body irradiation doses showed that persistent gH2AX foci per cell
were proportional to the initial IR dose thus suggesting that a
portion of IR-induced DSBs remains unrepaired [33].

7.2. Fruit fly pupae

Our previous study on the Queensland fruit fly (Bactrocera

tryoni) demonstrated that IR exposure leads to a persistent
gH2AvB response (a fruit fly variant of gH2AX) that could be
assessed during the adult phase of the life cycle when the IR
exposure was carried out at the pupal stage [119]. Queensland fruit
flies are able to withstand high doses of IR, and we reported a linear
dose–response of gH2AvB (0–400 Gy IR) 24 h after IR exposure.
gH2AvB signal peaked at approximately 20 min after IR exposure.
At 24 h post IR, the signal remained elevated but was substantially
reduced after 5 days compared with 1-day post-IR exposure.
gH2AvB response in adult Queensland fruit flies was persistent
and dose-dependent up to 17 days after IR exposure. The persistent
gH2AvB response can therefore be utilized as a biomarker of prior
IR exposure of fruit flies [119]. This finding has several potential
applications for the management of economically important
insects, such as the sterile insect technique, where fruit flies are
irradiated at �70 Gy to induce reproductive sterility but not death
of the organism or to determine whether fruit containing fruit fly
larvae was irradiated with an appropriate dose of radiation [119].

7.3. Macaque lymphocytes and plucked hair bulbs

Persistence of gH2AX was observed in lymphocytes from
macaque after whole body irradiation with doses from 1 to 8.5 Gy
[70]. The number of gH2AX foci per cell were elevated in
lymphocytes by approximately 16-fold for up to 14 days after
exposure to 8.5 Gy of IR when compared with non-irradiated
controls. Similarly, gH2AX foci from plucked hair bulbs of
macaques were increased approximately 14-fold when compared
with non-irradiated controls, up to 9 days after 8.5 Gy IR exposures
[70]. This study suggests that plucked hair bulbs are an easily
accessible source of sample to measure persistence of gH2AX for
many days after radiation exposure and may be adopted as a
strategy for early triage during accidental catastrophic radiation
incidents.

7.4. Syrian hamster heart, brain, and liver tissues

The kinetics of gH2AX induction and loss were tested in heart,
brain, and liver tissues of adult Syrian hamsters following whole-
body exposure to 5 Gy of X-rays [120]. The gH2AX response
24 h after IR was more persistent in heart and brain tissues
compared with liver [120]. These results suggest that the kinetics
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Fig. 3. Model of persistent gH2AX as a result of endogenous and exogenous factors.

Exogenous and endogenous factors induce DNA damage throughout the genome.

While the DNA DSBs in non-telomere regions are efficiently repaired, DNA DSBs

generated in telomeres are not repaired leading to persistent gH2AX. These

unrepaired DNA DSBs likely result in the accumulation of senescent cells. The

accumulation of senescent cells may be involved in accelerated aging processes.

Measurement of the persistent gH2AX could potentially be used as a biomarker of

radiation biodosimetry, radiosensitivity and accelerated aging, adapted from [35].
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of IR-induced gH2AX induction and loss are tissue specific, being
less efficient in heart and brain in comparison with liver [120].

The results of these studies, suggest that (i) gH2AX persistence
is a common phenomenon across species, and (ii) nuclei may retain
persistent gH2AX foci for up to several months after IR exposure,
allowing for retrospective biodosimetry.

8. Persistence of gH2AX associated with telomeres

Telomeres are evolutionarily conserved, specific, repetitive
hexameric nucleotide sequences (TTAGGG) located at the end of
each chromosome [75] and are responsible for protecting
chromosomes from improper recombination and degradation
[121]. These repetitive sequences bind to proteins forming a
protein–DNA complex known as Shelterin [122]. This complex
caps the end of the chromosome and prevents DNA repair
machinery from misidentifying the overhang located at chromo-
some-ends as a DSB. A previous study reported that Shelterin
components such as telomeric repeat-binding factor 2 inhibits
DNA end-joining by DSB repair mechanisms and therefore,
prevents end-to-end fusions of chromosomes, thus allowing DNA
damage to accumulate at telomeres [108,121,123,124]. For this
reason, it has been suggested that telomeric DNA may accumu-
late DSBs and could be a preferred location for formation of
persistent DDR foci [35,36]. At 4 days post-IR exposure,
approximately 10% of gH2AX foci were co-localized at telomeres,
whilst at 10 and 30 days post-IR, 20% and 40% of gH2AX foci were
co-localized at telomeres, respectively [35]. Co-localization
between gH2AX foci and telomeres was also higher in
X-ray-treated senescent human fibroblasts for up to 26 days
after exposure to 20 Gy of IR [36]. Findings from this study
suggest that while the mean number of gH2AX foci per cell in the
non-telomeric region progressively declined, the percentage of
gH2AX foci co-localizing with a telomere signal gradually
increased for up to 26 days [36]. In order to demonstrate that
gH2AX binds telomeric repeats and not only the sub-telomeric
regions; quantitative real-time PCR of sub-telomeric regions
were performed on chromatin immunoprecipitation of human
diploid fibroblasts with an anti-gH2AX antibody 10 days after
exposure to 20 Gy of IR. There was a strong enrichment of gH2AX
at the sub-telomeric region of fibroblasts exposed to IR compared
to non-irradiated controls. The enrichment of gH2AX increased
from the centromere toward the direction of the chromosome
terminal region and represented an approximate 14-fold
enrichment of gH2AX at the telomere repeats, in irradiated
human fibroblasts compared to non-irradiated human fibroblasts
[36]. The enrichment of gH2AX at the telomere repeats has also
been confirmed using a chromatin immunoprecipitation proce-
dure followed by next generation sequencing and real-time PCR
[35]. Both studies suggest that persistent gH2AX foci are not only
associated with cytological close proximity with telomeres (the
association observed when viewed by a microscope), but also
physically associated (as measured by chromatin immunopre-
cipitation and real-time PCR) with telomeres. A schematic of the
accumulation of gH2AX at telomeres is shown in Fig. 3. This result
supports the paradigm that DNA damage at telomeres may not be
repaired after exposure to DNA damaging agents such as IR. The
irreparable telomeres may therefore, trigger persistent DDR
(reflected by persistent gH2AX response) which is associated
with the formation of cellular senescence processes.

9. Senescence-associated persistence of gH2AX

Unrepaired DSBs could result in either cell death or in a form of
cell cycle arrest known as cellular senescence [125]. Cellular
senescence is an irreversible process where cells remain alive but
are unable to proliferate [126]. Senescent cells can be detected by
histochemical staining for senescence-associated b-galactosidase
(SA-b-gal) activity [127]. Senescence-associated persistent gH2AX
foci were present for up to 24 h after exposure to 1 Gy of IR in
senescent cultured human fibroblasts, human prostate epithelial
cells, human fibroblasts with elongated telomeres and in nuclei of
whole tissues from mice (i.e. liver, testis, kidney, lung) [32]. To
characterize persistent gH2AX foci, a further radiation dose was
applied to the same cells (i.e. mouse and human cells already
containing IR-induced foci). After 30 min post-IR, the newly
formed gH2AX foci were eliminated 24 h post IR whilst the
persistent foci, i.e. those from the first dose of IR, were still present
24 h after IR exposure [32]. Additionally, persistent gH2AX has
been demonstrated in human diploid fibroblasts after exposure to
20 Gy of IR for up to 4 months [35]. In a separate experiment,
senescent cells that already contained persistent gH2AX foci from
prior IR as well as normal human diploid fibroblast cells (that were
not exposed to IR) were irradiated to investigate the nature of
persistent gH2AX foci. Whilst the newly formed IR-induced
transient gH2AX foci were repaired, gH2AX foci in senescent
cells (from prior treatment) remained unresolved [35]. This
evidence suggests that senescent cells are associated with the
accumulation of persistent gH2AX, which represents a subset of
DSBs that are resistant to repair processes. The criteria of
senescent-associated persistence of gH2AX after exposure to IR
needs to be further investigated in order to be used as a potential
marker of radiation biodosimetry.
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Fig. 4. Model depicting the possible role of persistent gH2AX/unrepaired DSBs in

aging and diseases of accelerated aging. Replication stress, environmental

genotoxins, dysfunctional telomeres and dysregulation in epigenetic fingerprints

induce DSBs. When DSBs are repairable, transient gH2AX foci are removed;

however, unrepaired DSBs marked by persistent gH2AX foci lead to cellular

senescence. The persistence of gH2AX is also associated with increased expression

of SASP. The deleterious effect of senescent cells and SASP includes chronic

inflammation, tissue dysfunction promoting aging and fuelling the development of

age-related disease. Abbreviations: DSBs, double-strand breaks; SASP, senescence

associated secretory phenotype.
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10. gH2AX responses in aging

Aging is a process that alters cellular function of most living
organisms and is influenced by environmental and genetic factors
[128–130]. The aging process is regulated by the accumulation of
genetic alterations and dysregulation in epigenetic fingerprints,
which may ultimately contribute to genomic instability, cellular
senescence, apoptosis and/or cancer [131,132]. Imperfections or
defects in pathways repairing DNA DSBs may either trigger the
aging process or indirectly regulate it by cellular senescence or
apoptosis [128]. DSBs may cause progressive shortening or
dysfunction of telomeres when left unrepaired and may play a
major role in the aging process of somatic cells [133–135]. This
accumulation of DSBs causes persistent DDR coupled with p53
activation and may contribute to cellular senescence
[129,131,135,136], a key factor in healthy and pathological aging
[126,137,138]. Senescent cells characterized by the presence of
gH2AX, including activity of SA-b-gal, accumulate in tissues of
aged animals and are thought to increase during aging and age-
related diseases [127,139,140]. In addition to the arrest of cell
proliferation, senescent cells display altered chromatin organiza-
tion and gene expression. These changes involve the secretion of
different proteins (such as proinflammatory cytokines, chemo-
kines, growth factors, and proteases), the so-called senescence
associated secretory phenotype (SASP) [141,142]. The secretion of
SASP proteins by senescent cells ultimately results in chronic
inflammation which is a cause of or important contributor to
multiple age-related diseases [141,143,144]. It has been reported
that persistent DDR signaling (observed by increased gH2AX
levels) can fuel the secretion of SASP cytokines (e.g. IL-6) as
compared with transient DDR signaling and is summarized in Fig. 4
[97]. It is likely that accumulation of persistent DSBs may be
strongly involved during aging and diseases of accelerated aging.

10.1. Endogenous levels of gH2AX in individuals of different ages

Several studies have examined whether endogenous levels of
gH2AX is altered by the age of individuals [40,145]. For example,
the frequency of gH2AX foci were measured to investigate the
presence of unrepaired DSBs in human fibroblasts and lympho-
cytes from healthy young donors and older donors in the age range
from 21 to 72 years [40]. The endogenous gH2AX foci per cell were
higher in fibroblasts and lymphocytes from older donors compared
with younger donors [40]. Studies on aging and senescing cell lines
of epithelial and fibroblastic origin (including mice), also showed
an increase in gH2AX foci with age [32,40,139,146]. Recently, a
longitudinal study of aging also tested the hypothesis that the
frequency of gH2AX foci correlates with age in leukapheresis-
derived mononuclear cells from patients in the age range of 37–83
years; with 37 patients over the age of 50 and 13 patients over the
age of 72 [41]. The average number of gH2AX foci per cell was
increased with age up to 57 years and then remained relatively
stable up to the age of 83. This result was in agreement with other
observations whereby the number of gH2AX foci per cell increased
with age up to approximately 50 years and then subsequently
plateaued [40]. However, it is important to note in that study only
8 donors were examined in the 50-year-old group. A more recent
study [58] reported a trend of a linear increase in endogenous
gH2AX level with age in lymphocytes from 94 healthy adults with
the age range from 19 to 50 years. Another study investigated the
presence of endogenous levels of gH2AX in PBMCs from a
population-based sample of twins ranging in age from 40 to
77 years [145]. In that study, gH2AX levels decreased with
increasing donor age in human PBMCs. The reason for the
discrepancies in the gH2AX levels with age is not known but
may be partly due to the differences in the study populations.
Interindividual variability of endogenous gH2AX response is
known, although the effect of modulators such as age, genotype,
ethnicity and race, hormonal responses, gender, environmental
factors, and alcohol intake may impact on the base-line endoge-
nous gH2AX responses, but this is not completely understood
[58]. The endogenous gH2AX foci frequency (per cell) increased
with age in CD34+ and CD34� stem/progenitor cells derived from
both growth-factor mobilized peripheral blood and bone marrow
cells compared to cells derived from umbilical cord blood
[106]. Furthermore, endogenous gH2AX foci were approximately
two times higher in CD34+CD38�, CD34+CD38+ and CD34� cells
derived from bone marrow samples of healthy elderly individuals
(>70 years) compared with cells from umbilical cord blood
[106]. This indicates that different subtypes of stem cells and
progenitor cells may accumulate unrepaired DSBs with age.
Additionally, the frequencies of the senescent cell marker, i.e.

SA-b-gal activity, and gH2AX foci positive cells increased in the
heart, skeletal muscle, kidney, eye lens, testis, liver, skin, lung,
spleen and small intestine of 42-month-old male mice compared
with 12-month-old mice [139]. The levels of persistent gH2AX foci
that co-localize with telomeres also increased with age in
senescent primate fibroblasts [147]. These studies suggest that
gH2AX response may be indirectly involved in the process of
normal physiological aging but its use as a robust biomarker of
biological aging remains uncertain.

10.2. gH2AX in chronic diseases of aging

The association between the levels of gH2AX foci and age-
related disease have been investigated in several studies
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[40,41]. For example, the frequency of gH2AX foci was apparently
higher in PBMCs of hypertensive patients when compared to the
cells from their respective controls [41]. However, the analysis was
only significant when restricted to hypertensive patients that were
aged more than 57 years old. In that study, the gH2AX foci per cell
was 36% higher in hypertensive patients compared with non-
hypertensive study participants [41]. A trend of increasing gH2AX
foci per cell has also been reported in patients with sleep apnoea,
prostate cancer and cataract disease patients compared to those
without history of these respective conditions, although it should
be noted that the increase observed did not reach statistical
significance [41]. In another study, senescent fibroblasts from
Werner Syndrome patients exhibited a higher number of gH2AX
foci per cell compared to senescent fibroblasts from healthy donors
[40]. The rate of recruitment of DDR proteins such as Mre11 and
53BP1 to gH2AX foci was inversely correlated with age in both
healthy and Werner Syndrome donors [40]. Thus, recruitment of
DDR proteins at the DSBs site may be less efficient with age, leading
to accumulation of DSBs during the aging process [40,148]. In a
study of obesity in children, gH2AX in lymphocytes of obese
children (n = 81) and healthy controls (n = 38) was 8-fold higher in
obese children compared with non-obese children [149]. The level
of gH2AX was also measured in lymphocytes of adolescents with
type 1 diabetes mellitus (T1DM) (n = 35) and healthy controls
(n = 19) [150]. The number of gH2AX foci per nucleus was
approximately 50-fold higher in T1DM patients compared with
healthy controls [150]. gH2AX staining has been shown to be
higher in the nuclei of astrocytes from Alzheimer’s disease patients
relative to healthy controls as determined by immunocytochemi-
cal techniques [39]. This result suggests that DSBs measured by
gH2AX positive immunostaining in the nuclei of astrocytes may be
associated with impaired neuronal function and contribute to the
pathogenesis of Alzheimer’s disease [39]. Fibroblasts from patients
with Hutchinson–Gilford progeria syndrome (a disease associated
with accelerated aging) also had increased amounts of endogenous
gH2AX levels compared with controls [151]. Overall, these studies
show that accumulation of gH2AX foci is marginally increased in
individuals with increased morbidity and supports the hypothesis
of accumulation of unrepaired DSBs in pathological aging.

11. Consideration of persistent gH2AX for future method
development

It is clear that more studies are required to determine baseline
values of gH2AX as a marker of DNA damage in human
populations. There is evidence that two types of gH2AX foci exist,
those that are transient in nature (up to several hours in duration),
and those foci persist for weeks and months. It is important to
distinguish between each of these types of gH2AX foci in DNA
damage repair kinetics since both provide very different informa-
tion about the nature of DNA damage that the cell has experienced.
For example, when lymphocytes are first isolated from the blood of
patients, it could be envisaged that transient foci are indicative of a
recent acute damaging event, whether that be endogenous or
exogenous, and demonstrates that the cell is currently in the
process of repairing the double stranded DNA lesion. On the other
hand, accurately identifying those gH2AX foci that remain
persistent may provide information on DSBs that remain
unresolvable, perhaps due to DNA repair defects or complexity
of the lesion or DSBs in regions of the genome where repair of DSBs
is limited such as telomeres. Indeed, it is also essential to eliminate
confounders such as cells undergoing apoptosis, although simple
morphological criteria could be used to identify these cells. It
would be advantageous to build into the gH2AX assays some type
of a reporter of the transient vs. persistent DNA damage.
Alternatively, the cells may be cultured for a further 24 h after
isolation to allow ample time for dephosphorylation and clearing
of any existing transient gH2AX signals, leaving only the residual
(persistent) gH2AX foci associated with the DNA. Another
possibility is to use confocal microscopy or other techniques to
determine the size of gH2AX foci and genome location (e.g.

telomeres) as a marker for persistent damage. Furthermore,
measuring the spatial proximity of gH2AX in nuclei may
demonstrate that there is clustering of gH2AX foci at the nuclear
envelope [152] and therefore, provide additional evidence of
persistent DNA damage at telomeres given that telomere repeats
have been located in the proximity of the nuclear envelope.

Whilst transient IR-induced gH2AX signals are rapidly lost over
time, the persistent gH2AX signals are detectable for several days
after IR exposure. Therefore, a simple standardized gH2AX
detection technique is required to rapidly identify individuals
exposed to critically high radiation doses so that initial triage and
medical treatment can be made. Although the confocal microscopy
technique enables high resolution 3D imaging thus allowing
gH2AX detection for many days after IR exposure, the time
required for image analysis of individual gH2AX foci would need
optimization when using such techniques in radiation biodosi-
metry. In a recent study, a rapid ‘‘96-well lyse/fix’’ method was
developed to measure gH2AX foci from finger pricked blood
samples with an estimated processing time of about 4 h for
96 samples compared to 15 h using the routine protocol [153]. This
protocol may be further modified by incorporating the simulta-
neous measurement of other cellular proteins/markers involved in
DNA damage/repair signaling allowing accurate detection of
persistent gH2AX in a large number of samples. This latter
protocol may be better suited in radiation biodosimetry following
a large-scale radiation emergency. The RABiT (Rapid Automated
Biodosimetry Tool for Radiological Triage), is a fully automated
high-throughput robotic system designed to measure gH2AX in
lymphocytes present in a single drop of blood from a fingerstick in
a precise and fast manner (capable of processing up to 30,000
samples per day) [154,155].

Common immunofluorescence techniques allow the researcher
to gain information on persistent gH2AX at equilibrium (essen-
tially a snapshot in time). A better approach for analyzing the
persistence of these DSBs and also the origin and relative kinetics
of endogenous foci is to generate cells (in vitro) with a fluorescent-
tagged protein (such as GFP-labeled 53BP1). This protocol allows
visualization of the damaged site and enables one to monitor their
repair in living cells [156,157]. A novel approach to such imaging
gH2AX quantification of DSBs in live mammalian cells has been
described using bifragment luciferase reconstitution [158]. N- and
C-terminal fragments of firefly luciferase genes were fused with
H2AX and MDC1 genes, respectively. In mammalian cells following
DSB formation, H2AX was rapidly phosphorylated and then
physically associated with the MDC1 protein, thus joining
N- and C-luciferase fragments together and ultimately resulting
in reconstitution of luciferase activity, which was assayed by
analyzing serial images at different time-points after radiation.
This method for imaging gH2AX–MDC1 interaction was used for
non-invasive evaluation of DSBs repair kinetics in vivo in tumor
exposed to X-rays and 56Fe ions over 2 weeks [158]. This approach
can be an alternative for experiments requiring observations of
DSB induction and repair over an extended period of time
[158]. Another method was developed that incorporated fluor-
ophore- and radioisotope-labeled immunoconjugates which in-
volved modification of anti-gH2AX antibodies to track in vivo

damage in tumors [159]. Thus radioimmunoconjugates that target
gH2AX as a real-time noninvasive imaging method to monitor
DNA damage both in vivo and in vitro, would be useful to diagnose
susceptibility of cancer cells to DSB undergoing radiotherapy and
to monitor treatment. A standard method in biological dosimetry
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includes cytogenetic analysis in which chromosome aberrations
such as translocation, dicentric chromosomes, and micronuclei are
scored in PBLs. These types of methods require growth stimulation
of lymphocytes for at least 48–72 h since chromosomal damage
can only be measured following ex vivo cell division [160–
162]. Thus in the scenario of population triage during the first few
hours after accidental catastrophic radiation exposure (when the
physical dose is unavailable) a rapid enumeration of the level of
exposure to the individual is required. The gH2AX assay has
emerged as a useful measurement for the rapid identification of the
retrospective estimation of ionizing radiation dose exposure.
Additionally the gH2AX assay is highly sensitive to detect DNA
damage induced by ionizing radiation as low as 1.2 mGy
[25]. However, it is limited by inter-individual variability in
kinetics of repair, and results will vary depending on the time-
frame of radiation exposure and blood collection. For this reason, it
is more likely that an approach based on measuring persistent
gH2AX may prove to be a superior diagnostic of radiation
exposure.

12. Conclusion

Quantification of gH2AX response is a highly sensitive and
specific assay for detecting DNA DSB formation and repair. Although
available evidence supports the view that the majority of IR-induced
DSBs are rapidly repaired, a small portion may remain unrepaired,
leading to a long-term persistent gH2AX response. This persistent
level of gH2AX also varies in different tissues and may be affected by
genomic status and type of DNA damaging insult. Several studies
have demonstrated that IR induced gH2AX responses may remain
persistent for a long period of time and that persistent gH2AX tends
to accumulate in telomeric DNA and in cells undergoing cellular
senescence. For effective measurement of gH2AX responses, criteria
to distinguish persistent from transient gH2AX foci are required.
Furthermore, the variable gH2AX response to IR exposure among
different cell/tissue samples should be taken into consideration
when using the gH2AX assay for radiation biodosimetry and/or
estimation of persistent DNA damage. A further application of
quantifying gH2AX foci would be as an early indicator of age-related
disease risk, as alteration in genomic integrity due to DSBs may
accelerate aging. The relationship between persistent gH2AX foci
and telomere length and function demand further investigation to
better understand telomere gH2AX biology and whether there are
other regions in the genome where gH2AX accumulates remains
unknown. With further research, it may be possible to determine
baseline values of gH2AX in populations more reliably. This will
contribute to the increasing knowledge about the rate of DSBs and
their repair in developmental and degenerative diseases and
eventually help to identify the dietary, environmental, and life-
style factors that may mitigate against excessive formation of DSBs.
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The response of eukaryotic cells to ionising radiation (IR)-
induced double-strand DNA breaks is highly conserved 
and involves a DNA repair mechanism characterised by 
the early phosphorylation of histone protein H2AX (pro-
ducing the active form γH2AX). Although the expression of 
an induced γH2AX variant has been detected in Drosophila 
melanogaster, the expression and radiation response of a 
γH2AX homologue has not been reported in economically 
important fruit flies. We use Bactrocera tryoni (Diptera: 
Tephritidae, Queensland fruit fly or ‘Q-fly’) to investigate 
this response with a view to developing molecular assays 
to detect/quantify exposure of fruit flies to IR and conse-
quent DNA damage. Deep sequencing confirmed the pres-
ence of a H2AX homologue that we have termed H2AvB 
(i.e. variant Bactrocera) and has an identical sequence to a 
histone reported from the human disease vector Glossina 
morsitans. A  linear dose–response of γH2AvB (0–400 Gy 
IR) was observed in whole Q-fly pupal lysates 24 h post-IR 
and was detected at doses as low as 20 Gy. γH2AvB signal 
peaked at ~20 min after IR exposure and at 24 h post-IR 
the signal remained elevated but declined significantly by 
5 days. Persistent and dose-dependent γH2AvB signal could 
be detected and quantified either by western blot or by 
laser scanning cytometry up to 17 days post-IR exposure in 
histone extracts or isolated nuclei from adult Q-flies (irra-
diated as pupae). We conclude that IR exposure in Q-fly 
leads to persistent γH2AvB signals (over a period of days) 
that can easily be detected by western blot or quantitative 
immunofluorescence techniques. These approaches have 
potential as the basis for assays for detection and quantifi-
cation of prior IR exposure in pest fruit flies.

Introduction

Double-strand breaks (DSBs) in chromosomal DNA may 
lead to genetic instabilities and gene mutations resulting in 
reduced integrity of the genome but also impaired health and 
survival (1,2). Phosphorylation of the C-terminal tails of H2AX 

histones in nucleosomes, which are located in the vicinity 
of the break (3,4), is one of the earliest known responses to 
DNA DSB formation in cells. The nucleosome complex 
comprises DNA wrapped around eight histone proteins, two 
from each of the four core histone families (H4, H3, H2B and 
H2A) and is essential for genome health in terms of normal 
regulation of gene expression and genome maintenance and 
replication (5–7). Induction of DSBs in live mammalian cells 
triggers the phosphorylation of Ser139 contained in the SQ 
motif near the carboxy terminus of H2AX, resulting in the 
formation of phosphorylated H2AX, termed γH2AX (8,9). 
While H2AX is distributed uniformly throughout chromatin, 
only H2AX molecules located in close vicinity to DSBs 
become phosphorylated (3,4,6). Several kinase proteins are 
known to phosphorylate H2AX including phosphatidylinositol 
3-OH serine/threonine protein kinase-like kinases, ataxia 
telangiectasia mutated (ATM), ATM- and Rad-3-related and 
DNA-dependent protein kinase (DNA-PK). However, only 
ATM and DNA-PKs have been shown to phosphorylate H2AX 
in response to ionising radiation (IR) (3,8,10–14).

The SQ motif in H2AX is highly conserved among animals, 
plants and fungi (15–17). This evolutionary conservation of the 
phosphorylation of the core histone protein H2AX suggests the 
DSB damage-response mechanism is a fundamental process 
in DNA repair that arose prior to the evolutionary divergence 
of fungi, plants and animals. This is partly evidenced by the 
fact that SQ-specific antibodies raised against the mammalian 
γH2AX sequence can recognise DSBs in the frog Xenopus 
laevis, vinegar fly Drosophila melanogaster and bread/wine 
yeast Saccharomyces cerevisiae, after exposure to IR or other 
genotoxic agents (6,8). Antibodies that recognise phosphoryl-
ated H2AX in mammals have also been shown to recognise 
IR-induced H2Av (H2AX variant) in D.melanogaster (H2AvD) 
and binding has been shown to be dependent on the presence of 
the SQ motif (6,18).

Irradiation-induced genetic damage and repair processes 
involving γH2AX are relevant to two very different control 
measures applicable to management of Queensland fruit fly 
(‘Q-fly’ Bactrocera tryoni), Australia’s most economically 
damaging insect pest of horticultural crops: post-harvest 
irradiation and sterile insect technique (SIT). Currently, a 
generic dose of 150 Gy is applied to exterminate fruit flies 
in infested produce (19,20); however, assurance of irradiation 
treatment of produce relies solely on certification. There are 
currently no routine assays available to detect and/or quantify 
prior IR exposure in economically important fruit flies or 
other insects. A direct and reliable assay to confirm irradiation 
would be of substantial value to export horticulture. In SIT, 
millions of Q-flies are irradiated as pupae (70 Gy) to induce 
reproductive sterility and released into the environment as 
adults where they mate with pest populations and induce 
reproductive failure, thereby reducing pest numbers in the 
next generation. Fruit flies captured in monitoring traps then 
need to be assessed as being part of the SIT release or part of 
the outbreak. A  generic biomarker based on the distinctive 
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molecular processes of irradiation-induced DNA damage and 
repair would be a useful tool for this purpose. SIT is also the 
focus of various ongoing or proposed programs across the 
globe, aimed at a range of fly species (and other insects) of 
economic and medical concern (21–26) and so a biomarker 
for identifying sterilised insects would have internationally 
broad application. The aim of this study was to measure the 
phosphorylation of a H2AX homologue in the Q-fly as a 
marker of prior IR exposure.

In the present study, we identified the sequence of a H2AX 
protein variant from deep sequencing analysis of Q-fly tran-
scripts and mass spectrometry of the irradiation-induced protein 
(we have termed this variant H2AvB and the sequence has been 
deposited into the NCBI Short Read Archive; BankIt1580860 
isotig00988 KC161252). We found that H2AvB amino acid 
sequence is 96.4% similar to the homologue found in the 
genetic model D.melanogaster, 54.8% similar to human H2AX 
and identical in comparison with Glossina morsitans morsitans 
(the Savannah tsetse fly). Using western blotting and laser scan-
ning cytometry (LSC) techniques, we demonstrate an irradia-
tion-induced short-term rapid increase in γH2AvB followed by 
a long-term (persistent) and dose-dependent γH2AvB response 
in Q-fly. This assay has practical application to confirm irradia-
tion status of live Q-fly found in exported fruits and to confirm 
the identity of unmarked flies captured in monitoring traps dur-
ing SIT releases.

Materials and methods

Pupal and adult preparation and irradiation
Bactrocera tryoni (Q-fly) pupae were obtained from the NSW Department 
of Primary Industries Fruit Fly Production Facility at Elizabeth Macarthur 
Agricultural Institute (EMAI, New South Wales, Australia). Pupae from this 
facility are routinely sent to the Australian Nuclear Science and Technology 
Organisation (ANSTO, Lucas Heights, New South Wales, Australia) for irra-
diation as part of the SIT control program to suppress outbreak populations 
of wild Q-flies. Individual ‘zip-lock’ plastic bags (100 × 150 mm) containing 
~8000 pupae were sealed and packed at EMAI and transported directly to 
ANSTO in an air-conditioned vehicle. All pupae were packed on the day of 
pupation and all irradiated pupae were treated 1 day post the onset of pupa-
tion. Bags of control and test pupae were packed together at all times during 
transport and storage to ensure that all pupae received similar conditions. To 
achieve a hypoxic atmosphere prior to irradiation, the sealed bags were held 
overnight at ANSTO in a temperature-controlled room at ~18°C. The following 
day, pupae were treated with IR using ANSTO’s 60Co GATRI facility deliver-
ing final doses of 0–400 Gy at a dose rate of 5 Gy/min. We investigated doses 
greater than the standard disinfestations dose of 150 Gy up to 400 Gy, since 
Bactrocera fruit flies appear to be considerably more tolerant to IR compared 
with other fruit fly genera such as Ceratitis, Anastrepha and Rhagoletis (20).

After irradiation, pupae were immediately transported in a closed styro-
foam box in an air-conditioned vehicle to a laboratory at Macquarie University, 
Sydney, where they were housed to emerge in 5-l plastic cages, each with a 
large mesh-covered ventilation hole in the top. Pupae were held in a labora-
tory maintained at 25 ± 1°C and 70 ± 5% relative humidity, on a 14:10 day:night 
cycle including 1 h dawn and dusk periods during which the lights turned on 
and off intermittently. At 1 and 5 days post-IR, a sample of Q-fly pupae was 
frozen and stored at −80°C until required for assays. Other IR-treated pupae 
were allowed to emerge as adults, then collected using an aspirator and frozen 
at −80°C at 17 days post-IR. Adult flies were maintained on a standard diet of 
granular sucrose and yeast hydrolysate, with water provided in soaked cotton 
wool.

Egg collection and irradiation
Adult Q-flies were housed in 5-l plastic cages with one side replaced with 
mesh screen for ventilation. Approximately 150 flies were kept per cage. After 
observed mating (post 10 days of age), each cage was provided with an egging 
dish comprising of a 55-mm Petri dish containing a solution of lemon essence 
and water in a 140:1 ratio, covered with a layer of parafilm. The parafilm was 
pierced five to six times with an entomological pin to release the odour of 

lemon. After 2 days, the egging dishes were collected and a plastic 5-ml pipette 
was used to transfer eggs to a 10-ml vial of water. Each vial contained ~500 
eggs. Vials were then exposed to either 0 or 150 Gy IR and then frozen at 
−80°C 2 h post-IR.

Larvae collection and irradiation
Adult Q-flies were housed in 5-l plastic cages with one side replaced with 
mesh screen for ventilation. Approximately 150 flies were kept per cage. After 
observed mating (post 10 days of age), each cage was provided a collection of 
fresh organic chillies resting on a 15-cm plate. After 4 days, the chillies were 
inspected for the presence of larvae. All chillies were then left a further 4 days 
to allow larvae to mature to third instar. Chillies were placed into separate ‘zip-
lock’ bags and then exposed to 0 or 150 Gy IR and maintained at 25 ± 1°C and 
70 ± 5% relative humidity for 24 h. Chillies were then sliced longitudinally in 
half and larvae were gently removed using a pair of forceps. Collected larvae 
were frozen at −80°C in 10-ml vials containing water.

Whole pupal lysate preparation for western blotting
Whole pupae were thawed from −80°C at room temperature (RT) for 5 min. 
Ten pupae of each IR dose being investigated were placed in cold (4°C) Tris-
buffered saline (TBS) solution (50 mM Trizma base, 150 mM NaCl, pH 8.0) 
in a Petri dish on ice. The pupae were then added to 1 ml lysis buffer compris-
ing radio-immune precipitation assay (RIPA) buffer (Sigma) with additional 
0.9% sodium dodecyl sulphate, phosphatase inhibitors (25 mM NaF, 0.25 mM 
sodium orthovanadate, 1 mM EDTA, 1 mM phenylmethylsulphonyl fluoride, 
1 mM dithiothreitol) and a protease inhibitor cocktail (Sigma) and their tissues 
disrupted in a glass tissue homogeniser on ice until a clear suspension was 
achieved (usually ~15 passes). Lysates were centrifuged at 4°C for 5 min at 
300 × g to remove debris. Total protein from the pupal samples was quantified 
using the QuantiPro™ BCA Assay kit (Sigma) as per manufacturer’s instruc-
tions, using bovine serum albumin (BSA) as a standard. Sample concentrations 
were adjusted to the same total protein concentration prior to gel electropho-
resis. Samples were stored at −20°C until used for western blotting. Various 
amounts of total protein were added depending on the assay conducted and this 
is indicated in relevant figures.

Acid extraction of histone protein from pupae
To obtain histone proteins from pupal samples, an acid extraction technique 
was performed essentially as previously described (27) with some modi-
fication. Pupae were washed twice with TBS and placed in 3 ml of hypo-
tonic lysis buffer (10 mM Trizma base pH 8.0, 1 mM KCl, 1.5 mM MgCl2, 
1 mM dithiothreitol), a commercial protease inhibitor cocktail and other 
phosphatase inhibitors (as above), in a glass homogeniser on ice. Pupae 
were then homogenised until a clear suspension was produced, followed 
by filtration with nylon net filters (filter type: 100  µm NY1H) and then 
incubation for 30 min (on a rotator at 4°C) to allow hypotonic swelling 
and lysis of cells. The crude extract was then centrifuged at 15 000 × g for 
10 min at 4°C to separate the pellet (containing nuclei) from the soluble 
cytosol. The pellet was then resuspended in 400  µl of 0.8 M H2SO4 and 
vortexed thoroughly until aggregates were dispersed in the solution. This 
solution was vortexed gently overnight at 4°C using a minishaker. After 
centrifugation at 15 000  × g for 10 min at 4°C, the pellet was discarded 
and the acid-soluble histone proteins in the supernatant were then precipi-
tated with a 33% trichloroacetic acid solution. The solution containing pre-
cipitated histones was mixed several times producing a milky suspension. 
Subsequently, the histone solution was incubated at 4°C overnight and then 
again centrifuged at 15 000 × g for 10 min at 4°C; the supernatant was then 
carefully discarded. The pellet of precipitated histones was washed three 
times with 1-ml ice-cold acetone to remove the acid from the protein sam-
ple. The acetone supernatant was removed and the protein pellet was air-
dried for 30 min at RT and then dissolved in 150 µl of purified H2O. Finally, 
the histone extract was stored at −20°C for subsequent analyses. In some 
experiments, dephosphorylation of the purified proteins was achieved by 
dissolving the extracted protein pellet in 100 mM NaCl, 50 mM Tris–HCl, 
10 mM MgCl2, 1 mM dithiothreitol (pH 7.9) and incubated with (or without 
for negative control) 1000 U/ml calf intestinal alkaline phosphatase (New 
England Biolabs, USA) overnight at 37°C.

Total lysates and histone extracts from individual pupae
Total lysates or histone extracts were prepared from individual pupae by a mod-
ification of the above method. For total lysates, the lysis volume was decreased 
to 150 µl of RIPA buffer (final volume), and for histone extracts of single pupae, 
the hypotonic buffer was decreased to 150 µl. For the single pupae total lysates, 
180 µg total protein was used for sodium dodecyl sulphate-polyacrylamide gel 
electrophoresis and analysed by western blotting, while 1.3 µg total protein was 
loaded for the histone extracts from individual pupae.
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Total lysates from irradiated eggs and larvae
Samples of irradiated Q-fly eggs were homogenised in liquid nitrogen and 
subsequently lysed in 150 µl RIPA buffer giving a final protein concentration of 
~400 µg/ml. Third instar larvae (collected from 0 or 150 Gy irradiated chillies) 
were lysed (using the same method as for pupae) giving a final total protein 
concentration of ~7 mg/ml.

Antibodies
Anti-γH2AX was prepared by Biosensis Pty Ltd (Thebarton, South Australia, 
Australia). Affinity-purified KKAATQA[PSer]QEY (human sequence) peptide 
conjugated with KLH was used as antigen to generate high titre polyclonal 
antiserum in rabbit against γH2AX and this antibody was used in preliminary 
studies. Drosophila antihistone H2AvD pS137 (γH2AvD) rabbit polyclonal 
antibody (Rockland Immunochemicals Inc., Gilbertsville, PA, USA) (18) was 
routinely used to detect IR-induced histone in Q-fly. Both antibodies (γH2AX 
and H2AvD pS137) recognised a 15-kDa protein in western blot analyses. 
Cytochrome c oxidase subunit II and β-actin antibodies were from Abcam. 
Alexa Fluor 488-conjugated goat immunoglobulin G was from Invitrogen 
(Victoria, Australia) and horseradish peroxidase-labelled secondary antibodies 
were from PerkinElmer (Victoria, Australia).

Western blotting
Whole and histone-extracted lysates were diluted in Laemmli buffer (1:2 vol:vol) 
containing β-mercaptoethanol followed by heating at 95°C for 5 min, before 
being loaded on Criterion™-TGX™ precast polyacrylamide gels (BioRad) and 
subjected to electrophoresis. Gels were then stained with Coomassie Blue to 
ensure the electrophoresis had been successful and that similar amounts of pro-
tein were loaded in each well. A separate (duplicate) gel was used for western 
blotting onto a 0.2 µm pore nitrocellulose membrane (BioRad) for 1 h at 100 V 
in chilled transfer buffer (25 mM Trizma base, 190 mM glycine, 20% methanol, 
pH 8.5). The membrane was washed three times (5 min each) in TBST (TBS 
containing 0.5% Tween-20) and then blocked for 1 h at RT in TBST containing 
5% BSA. Membranes were then incubated overnight at 4°C in primary antibody 
diluted 1:1000 in TBST containing 5% BSA. Membranes were then thoroughly 
washed three times in TBST for 5 min each time, then incubated with anti-rabbit 
horseradish peroxidase-linked secondary antibody (PerkinElmer) at a dilution 
of 1:2000 in TBST containing 5% BSA for 2 h at RT. Probed membranes were 
then finally washed three times with TBST prior to imaging by enhanced chemi-
luminescence (ECL) (Western Lightning® Plus-ECL, PerkinElmer) using an 
ImageQuant LAS 4000 imager (GE Health Care). Images were saved as 8-bit 
TIFF files and band intensities (as integrals) were quantified with ImageJ soft-
ware (28). Data were normalised to β-actin (loading controls) where possible, 
i.e. in histone extracts, this was not possible since actin was removed during the 
processing of the samples. In western blots showing histone extracts containing 
γH2AvB where β-actin could not be used, we also show Coomassie-stained gel 
bands at ~15 kDa to demonstrate similar loading of histone proteins.

Immunofluorescence to quantify γH2AvB response in Q-fly nuclei
Cell nuclei obtained from adult Q-fly were extracted using a similar protocol 
as described above with the following modifications: adult Q-flies (17  days 
post-IR) were thawed from −80°C at RT for 5 min and suspended in 1.5 ml of 
hypotonic lysis buffer, containing 10 mM Tris–HCl pH 8.0, 1 mM KCl, 1.5 mM 
MgCl2, phosphatase inhibitors (as above) and protease inhibitor cocktail, in a 
glass tissue homogeniser. Tissues were homogenised on ice until a clear suspen-
sion was achieved (usually five passes). The suspension was filtered using nylon 
net filters (filter type 100 µm NY1H) to remove most of the particles and then 
incubated for 30 min on a rotator at 4°C to allow the hypotonic swelling and 
lysis of cells, which were subsequently fixed in 1% formaldehyde in the same 
tube for 15 min at RT. Nuclei were then spotted on slides (using 10 µl of the 
suspension) and air-dried for 20 min at RT. Spotted nuclei were rehydrated in 
phosphate-buffered saline (PBS) for 15 min. Slides were then incubated in pre-
chilled 70% ethanol for at least 20 min and washed in PBS for 15 min. Cell nuclei 
were ‘blocked’ using TBST containing 5% BSA for 30 min at RT, and slides 
were then washed once in PBS. Primary antibody (anti-H2AvB) was added at 
1:500 dilution in TBST containing 5% BSA and slides were incubated overnight 
at 4°C under a parafilm cover. Slides were then washed three times in PBS for 
5 min each to remove unbound antibody and then incubated with secondary anti-
body (Alexa Fluor 488 conjugated) at a dilution of 1:500 in TBST containing 
5% BSA for 1 h at RT. Slides were again washed three times in PBS for 5 min 
each to remove unbound, or non-specifically bound, antibody. Nuclei staining 
was achieved using 4′,6-diamidino-2-phenylindole (DAPI) at a concentration of 
0.2 µg/ml for 7 min at RT and then washed in a solution containing 300 mM NaCl 
and 30 mM trisodium citrate (pH 7.0). Spotted, DAPI-stained nuclei were subse-
quently mounted under a cover slip using mounting medium consisting of PBS 
and glycerol (1:1) and sealed to prevent desiccation prior to analysis by LSC.

Laser scanning cytometry
LSC is a very accurate cytometric method to colocalise and quantify fluores-
cent events in thousands of nuclei (29,30) (which is not practical with visual 
scoring techniques); therefore, we used LSC to quantify the γH2AvB signal 
in nuclei on microscope slides. Q-fly pupae were exposed to 0, 20 or 240 Gy 
IR and allowed to emerge as adults. At 17 days post-IR, the adult Q-flies were 
frozen at −80°C. Nuclei were subsequently extracted after hypotonic lysis and 
then fixed and stained on microscope slides. LSC was performed using an 
iCyte® Automated Imaging Cytometer (CompuCyte Corporation, Westwood, 
MA, USA) with full autofocus function and an inverted fluorescence micro-
scope with laser excitation (Argon 488 nm, and Violet 405 nm) for quantitation 
of blue and green fluorescence emission. A  total of 2656 (0 Gy), 3078 (20 
Gy) or 3571 (240 Gy) nuclei were examined using iCyte cytometric analysis 
software version 3.4.10. The CompuColor feature in iCyte was used to provide 
nuclear staining as blue and γH2AX signal as green. The slides were scanned 
using a 40× objective and a 0.25  µm resolution step. Two lasers (405 and 
488 nm) were used to excite the dyes DAPI and Alexa Fluor 488, respectively. 
The two lasers were scanned over the samples in separate passes, one imme-
diately following the other, to prevent any overlapping (thus compensation) of 
fluorescence signals. The emitted and filtered fluorescence was then detected 
by photomultiplier tubes in separate channels (blue and green). The nuclei and 
γH2AvB events were contoured using empirically determined thresholds to 
exclude the scoring of false positives (e.g. small fluorescent debris). Any small 
debris or larger blue-emitting particulate matter (which was rarely observed) 
was excluded from the analyses. Individual data points for each nuclear event 
were automatically generated using the iCyte® software and transferred to sta-
tistical analysis software (see below).

mRNA isolation, cDNA synthesis and 454 sequencing
Frozen pupae that had been irradiated with 150 Gy were divided into three 
replicate groups, each weighing 0.1 g (10–11 pupae). mRNA was purified 
using a GenElute™ Direct mRNA miniprep kit (Sigma) according to the 
manufacturer’s directions. Briefly, tissues were homogenised and lysed using 
liquid nitrogen with a mortar and pestle and 1 ml of lysis solution contain-
ing proteinase K.  mRNA extraction proceeded using oligo(dT) beads and 
eluted mRNA was precipitated overnight at −20°C using 1  µl of 20  µg/µl 
glycogen, 0.1 volumes of 3 M sodium acetate pH 5.2 and three volumes of 
ice-cold ethanol. Precipitated mRNA was centrifuged and the pellet washed 
in 70% ethanol. mRNA was then resuspended in 19 µl of elution buffer and 
checked for quantity and quality using a NanoDrop 1000 spectrophotometer 
(Thermo Fisher, USA) and gel electrophoresis. The cDNA library was then 
generated according to the cDNA Rapid Library Preparation Method Manual 
(Roche). Each replicate group was ligated with different MID adaptors (RL 
13, 14, 15; manufactured by Integrated DNA Technologies). Following 
library quantitation using a FLUOstar OPTIMA (BMG Labtech, Germany), 
20 µl of each replicate was then pooled together and the combined library 
diluted to a final concentration of 1 × 106 molecules/µl. Emulsion PCR and 
bead enrichment were performed as per the emPCR amplification method 
manual, Lib-L (Roche Applied Science, USA), using two library molecules 
per bead. Approximately 500 000 of the enriched beads were loaded onto 
a PicoTiter-Plate (Roche Applied Science, USA) and pyrosequencing was 
performed using a 454 GS Junior (Roche Applied Science, USA) according 
to the manufacturer’s sequencing method manual (Roche) using the default 
parameters for cDNA.

Sequence analysis and homology search
454 sequencing of the cDNA library generated 3 166 947 bases from 91 349 
reads. These reads were assembled into 2512 contigs, 2258 isotigs and 21 950 
singletons using de novo assembly by Newbler version 2.0.1 (Roche Applied 
Science). Isotig sequences were compared to sequences in the NCBI database 
by BLASTn using Blast2goPro (www.Blast2GO.org) (31). E-values lower 
than 1.0E-3 were considered significant. Isotig00988 (GenBank Acc No. 
KC161252) was found to be most similar to H2A of G.morsitans. Isotig00988 
contained 748 bp and the nucleotide sequence was submitted to the ORF finder 
at NCBI (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). The longest ORF was 
found to be the candidate H2A protein coding region. Clustal Omega (accessed 
through http://www.uniprot.org/) was used to compare the resulting amino acid 
sequence to Drosophila (accession no. P0895), human (accession no. P16104) 
and Glossina (accession no. D3PTWO) H2A sequences.

Statistical analyses
GraphPad Prism 5 was used to analyse data using the Student’s t-test or to 
determine the correlation coefficients. Data were expressed as mean ± standard 
error of the mean (SEM). GraphPad InStat 3.1 was used for other statistical 
analyses.
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Results

Our preliminary studies used an antibody that was prepared 
based on the human γH2AX sequence KKAATQA[PSer]
QEY. The antibody recognised a nuclear protein of ~15 kDa 
that was evident in irradiated pupal samples (not shown) and 
is consistent with the molecular weight of γH2AX as observed 
in other species (6,8). Although the (human) antibody provided 
a clear band at ~15 kDa, there was some non-specific binding 
detected at ~75 kDa. Since there was no available γH2AX 
antibody specific to B.tryoni, we used an antibody specific to the 
D.melanogaster γH2AX sequence (γH2AvD) that resulted in a 
single band of ~15 kDa in irradiated samples. Figure 1 shows 
that 454 sequencing revealed a H2AX protein sequence that 
was identical to that found in G.mortisans, was 96.4% similar 
to D.melanogaster and only 54.8% similar to human H2AX. 
We have termed the B.tryoni H2AX homologue ‘H2AvB’. The 
SQ motif of H2AvB was conserved as for all other species in 
which the histone has been sequenced.

Phosphorylated H2AvB (γH2AvB) was detected following 
exposure of pupae to doses as low as 10 Gy of IR (Figure 2A). 
The phosphorylation of H2AvB occurred rapidly and could be 
detected at 5 min post-IR exposure, peaking at ~20 min post-IR 
exposure (Figure 2B). There was a gradual decline of γH2AvB 
over a period of 24 h; however, there was still significant 
γH2AvB present 24 h post-IR exposure, indicating that only a 
proportion of γH2AvB was dephosphorylated within 24 h. As 
expected, 60 Gy IR exposure led to a higher level of γH2AvB 
relative to the pupae exposed to 10 Gy. Alkaline phosphatase 
treatment of a histone extract from IR-treated (70 Gy, 24 h post-
IR) pupae abolished γH2AvB detection (Figure 2C), confirm-
ing the antibody was detecting only the phosphorylated form of 
the H2AvB, at the SQ motif. To confirm that irradiated samples 
at other life stages (egg versus larvae) of B.tryoni also elicit a 
γH2AvB response we have also shown an increase in γH2AvB 
response following IR exposure at 150 Gy, the standard dose 
used for Q-fly post-harvest disinfestation (Figure 2D).

The above data indicate a clear phosphorylation-dependent 
γH2AvB signal following IR exposure compared with non-
irradiated samples. To further investigate the effect of IR on 
Q-fly pupae at different doses, particularly covering and 
exceeding the range most often used for SIT and to disinfest 
produce, pupae were exposed to a wide dose range (up to 400 
Gy) and then frozen at −80°C 24 h post-IR. Figure 3A shows 
a representative western blot demonstrating a dose-dependent 

increase in the γH2AvB signal. The maximum signal was pro-
duced at the highest tested dose of 400 Gy and yielded an ~10-
fold increase above non-irradiated pupae. γH2AvB signal was 
detected in Q-fly pupae at doses as low as 20 Gy; however, in 
Figure 3A, this is not particularly clear since this western blot 
was exposed for ECL under conditions that would clearly show 
the higher end doses (>80 Gy) of the western blot. To com-
pare the results of three separate assays, data were normalised 
by using β-actin as a loading control. Since there were differ-
ences between imaging exposure times and therefore the band 
intensities between separate assays, the data were then further 
corrected to the ‘maximum’ signal (i.e. at 400 Gy) to account 
for these potential differences in imaging and incubation con-
ditions. This allowed the slope and fit of the lines of γH2AvB 
responses to be compared appropriately in separate assays as 
shown in Figure  3B inset. This figure also demonstrates the 
high linear correlation of γH2AvB with IR dose (r2 > 0.9).

Interestingly, our data show a very strong γH2AvB signal 
in Q-fly pupal lysates from exposures as low as 20 Gy, at least 
24 h post-IR (Figure  3). This led us to examine whether the 
γH2AvB signal was evident at even longer time points post-IR, 
as this would potentially provide a useful biomarker to demon-
strate prior IR exposure. Figure 4 demonstrates that the dose 
effect of IR on γH2AvB signal was clearly observed at 24 h 
post-IR (for doses of 0, 70 and 240 Gy); however, at 5 days 
post-IR, the γH2AvB signal in pupal lysates was substantially 
reduced compared with 1  day post-IR (the same amount of 
total protein was loaded in all samples to allow direct com-
parisons). It should be noted that in some of our earlier west-
ern blot assays we did occasionally observe a very low amount 
of γH2AvB signal (~15 kDa) after 70 Gy exposure at 5 days 
post-IR, when higher amounts of total protein were loaded and 
when longer ECL exposure times were used. These preliminary 
observations led us to believe that there was indeed a measure-
able persistent γH2AvB signal even 5 days post-IR exposure. 
Figure 4A (lower right panel, labelled ‘overexposed’) shows a 
longer development time on the same western blot membrane 
and a dose-responsive γH2AvB signal became more evident, 
albeit not as intensely as achieved when analyzed at 1 day post-
IR. This suggests that despite a large decline in phosphorylated 
γH2AvB levels between 1 and 5 days post-IR exposure in Q-fly 
pupae, a persistent or residual γH2AvB signal remained.

To further examine whether we could detect γH2AvB signal 
at least 5  days after IR exposure (at the standard dose used 

Fig. 1. Amino acid sequence and alignment of H2A histone variants. The conserved SQ motif is highlighted in red text. The sequence of a H2AX homologue 
protein was identified from deep sequencing transcript analyses and mass spectrometry of Q-fly (Bactrocera tryoni) cells. The Q-fly H2A variant is termed 
H2AvB (GenBank Accession #KC161252). We found that H2AvB is 96.4% similar to that of the vinegar fly (genetic model species) Drosophila melanogaster 
(H2AvD), 54.8% similar to human H2AX and identical to Glossina morsitans (the Savannah tsetse fly). The numbers in parentheses represent the UniProtKB 
accession numbers for each sequence. Figures at the left of sequences represent the first amino acid position of each line.
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for SIT), we investigated the effect of 70 Gy IR on γH2AvB 
signal using whole Q-fly pupal lysates 1  day and 5  days 
post-IR. The γH2AvB response was quantified by western 
blot as shown in Figure 5A (left ‘pupal lysate’ panels, lanes 1 
and 2) demonstrating a significant γH2AvB signal at ~15 kDa. 
β-Actin and cytochrome c oxidase subunit II were used as 
loading controls and confirmed that equivalent amounts of 
protein had been loaded for each treatment. To confirm the 
specific association of the γH2AvB signal with cell nuclei and 
to improve the γH2AvB signal, we isolated nuclear proteins 
by an acid precipitation method as described previously (27). 
When 15  µg total nuclear protein extract was examined by 
western blot analysis (shown in lanes 5 and 6 of Figure 5A, 
labelled ‘histone extract’), the γH2AvB signal following 70 Gy 
IR clearly yielded a higher signal than that of the equivalent 
amount of protein from the whole ‘pupal lysate’ when either 15 
or 150 µg protein was loaded (Figure 5A). This enrichment of 
nuclear γH2AvB protein observed was also associated with a 
higher γH2AvB signal at 0 Gy. Nevertheless, the IR response of 
γH2AvB signal was clearly distinguishable from background 
levels and several fold more intense at 70 Gy compared with 
0 Gy. The absence of any detectable signal coming from 
β-actin (cytoplasm) and cytochrome c oxidase subunit II (a 
mitochondrial protein) in the histone extract (Figure 5A, lanes 
5 and 6)  demonstrates that the histone extract was relatively 
free from these latter proteins as expected and confirms 

that the nuclear extract method employed did not result in 
significant cytoplasmic or mitochondrial contamination, while 
significantly enriching the histone fraction. Therefore, it appears 
that the nuclear histone extraction method offers a convenient 
way to partially purify and concentrate low levels of persistent 
IR-induced γH2AvB signal from Q-fly. Since our objective was 
to detect any long-term persistent γH2AvB signal in irradiated 
Q-fly pupae, we subsequently used the histone extract method 
to concentrate the γH2AvB signal as outlined earlier. Figure 5B 
shows a representative western blot experiment using whole 
lysate from Q-fly pupae (120 μg protein) and nuclear extracts 
(6  μg protein), 5  days post-IR. Under the same duration of 
exposure times using ECL, left panels in Figure 5B (lanes 1 and 
2) show no apparent γH2AvB signal response to 70 Gy IR using 
120 µg total protein loaded, compared to a strong signal using 
the histone extract with only 6 µg total nuclear protein loaded 
(i.e. 20 times less protein, compare lanes 2 and 4 of Figure 5B). 
The IR-induced signal (70 Gy) was clearly evident and 
significantly higher than the background (0 Gy) signal. Since 
Q-fly are able to survive and withstand relatively high doses 
of IR, we hypothesised that adult Q-fly specimens produced 
from irradiated pupae would contain persistent γH2AvB (as 
has been observed recently with minipig skin samples after 
receiving a dose of 50 Gy IR) (32). Figure  5C demonstrates 
that persistent IR-responsive γH2AvB signal was observed 
in adult Q-fly at 17 days post-IR, in nuclear extract samples. 

Fig. 2. Short-term kinetics of H2AvB phosphorylation in Q-fly. (A) Total pupae lysates were prepared and γH2AvB responses are shown to 0, 10 and 60 Gy 
IR at 5 min, 20 min, 2 h or 24 h following IR exposure. β-Actin is shown on the lower panels to demonstrate loading controls (225 μg protein on each lane). (B) 
The γH2AvB signal from (A) was quantified using ImageJ and the data were plotted with the following symbols: 0 Gy (filled circles), 10 Gy (filled squares) 
and 60 Gy (filled triangles). (C) Post-IR-exposed (24 h) pupae were subjected to the acid precipitation method to extract histones. Treatment of samples with 
alkaline phosphatase (+) abolished the γH2AvB signal, which remained in non-treated samples (−). The data shown confirmed the IR-induced H2AvB is in the 
phosphorylated form that is detected by the primary antibody. (D) Western blot analyses of Q-fly eggs (73 μg protein loaded; left panel) or larvae (105 μg protein 
loaded; right panel) demonstrating detectable γH2AvB signal in different Q-fly life stages.
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Although we did not investigate later time points, this may be a 
convenient method to identify prior IR exposure of Q-fly pupae 
and therefore may have application for SIT. To address whether 
individual pupae show variation in their γH2AvB response 
following IR exposure, we scaled down the total lysate and 
histone extraction techniques in order to examine γH2AvB 
responses of individual pupae. Figure  5D demonstrates that 
when replicate individual pupae were lysed and used for 
western blot analyses, there was some variation of the γH2AvB 

produced in response to IR as would be expected. However, 
on the whole, all pupae from the 0 Gy group (individual pupae 
lysates were loaded in lanes 1–6, Figure 5D) had significantly 
less γH2AvB signal compared with individual pupae exposed 
to 70 Gy IR (24 h post-IR), as shown in Figure 5D, lanes 7–12. 
The γH2AvB signal was quantified using ImageJ and results 
are shown on the right panel of Figure 5D, with 70 Gy (n = 6) 
significantly higher (P < 0.001) than 0 Gy (n = 6). Furthermore, 
we were able to scale down the histone extraction method in 

Fig. 3. The intensity of γH2AvB signal in Q-fly pupae (24 h post-IR) is proportional to IR exposure. (A) Western blot showing the γH2AvB signal at ~15 kDa 
(upper panel) increases in proportion to the IR dose up to the maximum exposure of 400 Gy tested for this assay. The lower panel shows the β-actin loading 
controls. (B) ImageJ software was used to quantify the integral of the bands in (A) upper and lower panels. γH2AvB signal from three independent assays (see 
inset) was corrected for the amount of β-actin loaded and data (as percentage of maximum) were plotted against IR dose to allow for differences in incubating 
conditions and imaging exposure times. Data are mean ± SEM.

Fig. 4. γH2AvB signal in Q-fly pupae was reduced at 5 days post-IR. (A) Western blot showing a dose-dependent increase in γH2AvB signal 1 day after 
IR exposure (0, 70 and 240 Gy). However, at 5 days post-IR, the γH2AvB response was not easily visible in this representative assay until the western blot 
membrane was allowed to develop with a longer imaging time (‘overexposed’) as shown in (B). Protein (100 µg) was loaded in all lanes.
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Fig. 5. γH2AvB response in Q-fly pupae following 70 Gy exposure at different times post-IR. (A) Left panel shows γH2AvB response from whole pupal lysates 
(150 µg protein loaded; 0 versus 70 Gy; lanes 1 and 2). γH2AvB was not observed in the same western blot membrane when the sample was diluted 10-fold 
to 15 µg protein (lanes 3 and 4). However, when 15 µg total protein from the histone extract was loaded, the 70 Gy sample (lane 6) showed an intense signal 
exceeding that observed from the total pupal lysates at 70 Gy (lane 2). The absence of cytoplasmic proteins (as observed in lanes 5 and 6, lower panels) including 
β-actin and cytochrome c oxidase subunit II confirmed the relative purity of the histone extract. (B) γH2AvB signal in Q-fly pupae was reduced at 5 days post-IR 
as confirmed by analyses of total pupal lysates (lanes 1 and 2). However, significant γH2AvB signal was observed in the histone extract from Q-fly pupae 5 days 
post-IR (0 and 70 Gy in lanes 3 and 4, respectively). (C) Histone fraction showing significant γH2AvB signal 17 days post-IR (70 Gy) compared with 0 Gy. (D) 
Variability of the γH2AvB response in individual pupae is shown for 0 Gy (n = 6; lanes 1–6) or 70 Gy (n = 6; lanes 7–12) in the upper panel. The lower panel 
shows the β-actin loading controls. (E) Variability of the γH2AvB response in histone extracts from individual pupae that were exposed to 0 Gy (n = 6; lanes 1–6) 
or 70 Gy (n = 6; lanes 7–12). For both (D) and (E), all samples shown were run on the same western blot to allow direct comparison. Bar charts to the right of 
(D) and (E) represent the mean ± SEM of the band intensities (integral) as determined by ImageJ analyses. Lower panels in (B), (C) and (E) are loading controls 
showing the Coomassie-stained gels have equivalent amount of protein. ***P < 0.001.
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a similar manner so that individual pupae could be subjected 
to the nuclear extraction method to increase the γH2AvB 
signal per total protein tested. Pupae exposed to 70 Gy had 
a significantly higher amount of γH2AvB signal (P < 0.001) 
in the individual histone preparations as demonstrated by the 
western blot from the single pupae replicates compared with 0 
Gy (Figure 5E).

To further validate the long-term (17 days) post-IR γH2AvB 
response (as shown in the western blot in Figure  5C), we 
employed immunofluorescence methods using nuclear extracts 
in combination with LSC. Representative LSC images of adult 
Q-fly nuclei stained with DAPI (blue) and demonstrating the 
γH2AvB signal are shown in Figure  6A–C. To determine 
whether long-term persistent γH2AvB signal could be observed 
at low and high doses, Q-fly pupae were exposed to 0, 20 or 240 
Gy and then allowed to emerge as adults. The γH2AvB signal 
(green) was observed within nuclei 17 days post-IR, in doses as 
low as 20 Gy. Figure 6D shows the mean (±SEM) integral fluo-
rescence (from LSC) was significantly increased (P < 0.001) 
following 20 Gy IR (n = 3078 nuclei) or 240 Gy IR (n = 3571 
nuclei) compared with 0 Gy IR (n = 2656 nuclei). Figure 6E 
demonstrates that both 20 and 240 Gy IR exposure resulted in a 

significantly higher percentage of nuclei containing a γH2AvB 
signal compared with 0 Gy (control). The fluorescence integrals 
of those nuclei with a positive γH2AvB signal identified from 
Figure 6E were quantified and then reported in Figure 6F (as 
mean ± SEM). Figure 6F demonstrates that the γH2AvB signal 
(integral) was also significantly elevated in adult Q-fly nuclei 
17 days post-IR at the low dose of 20 Gy (P < 0.01) as well as 
the higher dose of 240 Gy (P < 0.05). The area of the γH2AvB 
signal in nuclei was examined as shown in Figure 6G. Although 
the area of γH2AvB signal appeared to be dose dependent at 20 
and 240 Gy, this increase was not statistically significant. The 
overall findings illustrated in Figure 6 further confirmed that 
γH2AvB signals persisted in emergent adult Q-flies for at least 
17 days post-IR (irradiated as pupae).

Discussion

Phosphorylation of the C-terminal tail of H2AX proteins 
in nucleosomes located in the vicinity of DSBs is one of 
the earliest responses to IR-induced DNA damage (3,14). 
A  γH2AX homologue has not been reported previously in 
tephritid fruit flies, including the commercially important 

Fig. 6. Quantification of γH2AvB signal in isolated adult Q-fly nuclei by LSC. Representative LSC images of Q-fly nuclei showing (A) DAPI only (blue), (B) 
γH2AvB signal only (green) and (C) ‘merged’ images that show the DAPI and γH2AvB signal overlaid. The scale bar in (A) represents 5 µm. (D) Mean ± SEM 
of the integral fluorescence per nucleus of all nuclei examined including nuclei that lacked any measurable γH2AvB signal; n = 2656, 3078 and 3571 nuclei for 0, 
20 and 240 Gy samples, respectively. (E) The percentage of nuclei examined that contain a measurable γH2AvB signal above background, increased significantly 
from ~7% in 0 Gy samples to 9.3% in 20 Gy samples (P < 0.01) and to 23.7% of nuclei in 240 Gy samples (P < 0.0001 by chi-square test). To further examine 
if there was a greater γH2AvB signal in the 20 and 240 Gy samples compared with 0 Gy samples, only those nuclei with a measurable γH2AvB signal were 
analyzed and this is reported in (F) as the mean integral (±SEM). Finally, the mean contoured areas of the total γH2AvB signal per nucleus are shown in (G). 
*P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.
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Q-fly (B.tryoni), although the expression of a H2AX variant 
(H2AvD) has been reported in the vinegar fly D.melanogaster 
(18). In this study, we show that Q-fly pupae exposed to IR 
had an elevated level of phosphorylated H2A protein (termed 
γH2AvB). Consistent with reports for other species (6), 
irradiated Q-fly pupae showed a strong γH2AvB signal of 
~15 kDa when examined using western blot. The γH2AvB 
sequence was identified using 454 sequencing and found to 
be identical to G.morsitans. The identity and partial sequence 
of the IR-induced, phosphorylated histone was also confirmed 
by liquid chromatography–electrospray ionization–tandem 
mass spectrometry (data not shown, mass spectrometry was 
carried out by the Adelaide Proteomics Centre, University 
of Adelaide, South Australia, Australia). Twenty-four hours 
post-IR, we observed a linear dose–response of γH2AvB up to 
our maximum tested dose of 400 Gy in Q-fly pupae. However, 
after 5–17  days post-IR, the γH2AvB signal had declined 
significantly when analysing whole pupal lysates. In contrast, 
the persistent (5 days post-IR and beyond) γH2AvB response 
remained dose responsive and was easily measurable by either 
western blot or immunofluorescence methods such as LSC 
when analysing enriched histone extracts. The dose-dependent 
response over doses used for SIT (70 Gy) and disinfestation 
of fruit (up to 400 Gy) shows that γH2AvB may be useful as 
a marker of previous IR exposure in assays that support these 
commercially important applications.

γH2AX is highly conserved across a wide taxonomic range 
of organisms (8,16) and is a well-characterised histone protein 
that is known to be responsive to IR-induced DSBs (14,33,34). 
We identified the sequence of a H2AX homologue protein 
in the Q-fly, B.tryoni (termed H2AvB; GenBank Accession 
#KC161252). We found that H2AvB is ~96% similar to the 
vinegar fly D.melanogaster H2AvD, ~54.8% similar to human 
H2AX and, interestingly, identical to the human disease vec-
tor G.morsitans (which is also the subject of SIT) (24). Our 
preliminary experiments demonstrated that an antibody 
designed to the human C-terminal tail sequence of γH2AX, 
KKAATQA[PSer]QEY, showed similar IR-induced γH2AvB 
signal compared with the antibody used for detection of 
D.melanogaster γH2Av as used in this study, which revealed 
a protein of ~15 kDa. The C-terminal amino acid sequence 
of human histone H2AX consists of ASQEY, whereas for 
D.melanogaster, the equivalent sequence is LSQAY. Although 
the C-terminal sequence for B.tryoni is slightly different from 
both human and Drososphila, it therefore appears that the anti-
body recognition site is likely to be mostly targeted towards 
recognising the SQ phosphorylation motif, which is conserved 
across species. Indeed, others have used antibodies based on 
the human sequence of phosphorylated H2AX and found that it 
cross-reacts with histone H2A (phosphorylated) variants from 
many diverse taxa, including plants (6,16). Therefore, it was 
not surprising in this study that the H2AvD antibody (based 
on the Drosophila sequence) yielded a single intense band on 
western blots (following IR) corresponding to phosphorylated 
H2AvB in the B.tryoni samples.

Many studies have analyzed the kinetics of phosphorylation 
and dephosphorylation of H2AX, with IR shown to induce max-
imal amounts of γH2AX in cells at times often <10 min after 
exposure to IR followed by a decline in γH2AX signal over a 
period of hours (3,14,18,33). Previous reports using Drosophila 
S2 tissue culture cells have suggested that the phosphorylation 
of H2Av increases within minutes following IR exposure but 
then declines significantly after several hours (18). The rapid 

loss of the phosphorylated H2Av was likely due to regulated 
dephosphorylation of H2Av and was similar to that reported for 
radiation-induced phosphorylation/dephosphorylation kinetics 
in mammals (3). Indeed, γH2AX quantification assays have 
been proposed as the basis of protocols for biological dosim-
etry following IR events (33). Although the absolute number 
of phosphorylated γH2AX molecules declines over a period 
of hours and days post-IR, a recent study in mice showed a 
dose-dependent response of γH2AX foci in nuclei up to 7 days 
after exposure to IR (35). The residual γH2AX foci at 24–72 h 
post-IR are believed to represent misrepaired DSBs, unrepaired 
DNA with ongoing genomic instability, S-phase cells or apop-
totic cells (36). In Drosophila S2 cultured cells, the percentage 
of phosphorylated H2AX variant (H2Av) was shown to have 
reduced almost to non-irradiated levels within 3 h after the ini-
tial IR dose (18). Similarly, in cultured human microvascular 
endothelial cells exposed to 2–16 Gy IR, a transient increase in 
γH2AX signal was observed to peak at 1 h post-IR and return 
to background levels 24 h post-IR (37). The γH2AvB response 
we observed in whole tissue displayed kinetics that were less 
transient than that of cultured cells and persisted at measurable 
levels for at least 17 days, although the signal was considerably 
reduced even 1–5 days post-IR. It should be noted that doses 
used in human studies are generally much less than applied 
here, as the doses used for SIT and disinfestation of insects are 
well beyond what can be tolerated by humans. Thus, the persis-
tence of the phosphorylated protein may be related to the higher 
IR doses we have tested. The basis for the relatively high IR 
tolerance of insects is not clear; however, it is conceivable that 
it may be partly related to the persistence of the phosphoryl-
ated histone. A recent study that used Göttingen minipig skin 
biopsies found that radiation-induced γH2AX foci (50 Gy) were 
observed in ~60% of cells 4 h after IR. The number of γH2AX 
foci was found to be significantly less after 70 days following IR 
exposure; however, there remained a significantly higher num-
ber of γH2AX foci per epidermal keratinocyte compared with 
controls (32). In our study, there was a strong positive linear cor-
relation (r2 > 0.9) in γH2AX signal over a dose range of 0–400 
Gy, corresponding to a 10-fold increase in signal above the back-
ground (non-irradiated) level. It is, therefore, likely that high IR 
doses are necessary to observe the long-term persistent γH2AX 
or γH2AvB signals. Indeed, after 17 days post-IR (240 Gy), we 
found that ~25% of nuclei had a measurable γH2AvB signal as 
determined by LSC. Although LSC detected a small amount of 
measurable background signal in 0 Gy Q-fly adults in ~7% of 
nuclei, we did not observe a 0 Gy γH2AvB signal by western 
blotting (Figure 5C). Therefore, it appears LSC may prove to be 
a more sensitive method to detect and quantify γH2AvB signal 
in nuclei that are persistent many days after exposure to the IR 
event. Rogakou et al. (6) previously suggested there is poten-
tially a low level of γH2AX in non-irradiated cells. This is in 
agreement with our study (see discussion below) in which we 
additionally confirmed the necessity for the phosphorylation of 
putative Ser137 within the SQ motif of γH2AvB to allow detec-
tion by our primary antibody, through abolishing the signal via 
treatment of the histone extract with alkaline phosphatase.

At 5  days post-IR exposure, we occasionally observed an 
IR-induced γH2AvB signal in whole pupal lysates via western 
blotting (depending on amount of protein loaded on gels and 
imaging exposure times). Therefore, the nucleosome (histone) 
extraction procedure was used and this resulted in a substantial 
enrichment of the γH2AvB signal compared with the use of the 
whole pupal lysates. In the non-irradiated whole pupal lysate, 
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we did not detect any γH2AvB. However, in the nonirradiated 
histone fraction, we observed a basal γH2AvB signal in the 
non-irradiated 5-day samples.

LSC was a successful technique for quantitation of 
IR-induced γH2AvB signal in Q-fly showing the localisa-
tion within nuclei as well as its quantitative increase in adult 
Q-fly 17 days post-IR as pupae. Our LSC results support data 
obtained by western blot analyses and also provide a visual-
isation of the signal although visual scoring of foci was not 
practical. The iCyte® software allows for automated scoring 
and quantitation of nuclei and events within them, and there-
fore LSC could be useful for future studies to investigate addi-
tional parameters associated with IR induction of γH2AvB (e.g. 
γH2AvB signal related to cell cycle phases) at a tissue-specific 
level. Additionally, LSC could be used to simultaneously detect 
γH2AvB signal with a dependent DNA repair mechanism pro-
tein such as ATM or other markers such as caspases (for apop-
tosis) to yield more information on cell cycle dynamics.

Our work has identified γH2AvB as a potential biomarker 
and biodosimeter of prior IR exposure in Q-fly. This finding has 
several potential applications for the management of these eco-
nomically important insects. First, with chemical approaches 
facing increasing restrictions, IR treatment is quickly becom-
ing an internationally accepted alternative for disinfestation of 
horticultural produce (38). Second, doses of 70 Gy applied to 
pupae are used to induce reproductive sterility in flies released 
during SIT pest management programs that are used to reduce 
Q-fly populations (39). The γH2AvB assay presented here (or 
modifications thereof) may have applications in both these 
contexts for detecting IR-induced DNA damage in Q-fly speci-
mens. Given that G.mortisans is an important human disease 
vector for which SIT is being investigated and that its homol-
ogous histone protein is apparently identical to γH2AvB, the 
assays developed here may also be applicable for monitoring in 
G.mortisans SIT programs. In addition, given that many of the 
DNA repair and apoptotic biochemical pathways are conserved 
between mammals and insects (40–42), insect-based assays 
may be useful for detecting DNA damage processes occurring 
in the environment as insects are widespread and abundant, and 
some species can be efficiently trapped using highly specific 
chemical lures. Tephritid fruit flies also generally meet these 
criteria. Future studies that focus on γH2AvB as a potential 
biomarker of IR-induced DNA damage in Q-fly should extend 
the time course following IR exposure and use tissue section 
immunohistochemistry or immunofluorescence techniques that 
will allow identification of tissue specificity of γH2AvB signals 
in Q-fly. The kinetics of γH2AvB phosphorylation/dephospho-
rylation in different life stages of Q-fly would also be of benefit.
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cH2AX Responses in Human Buccal Cells

Exposed to Ionizing Radiation

Mohammad Sabbir Siddiqui,1,2 Maxime François,1 Michael F. Fenech,1 Wayne R. Leifert1*

� Abstract
DNA double strand breaks are induced by ionizing radiation (IR), leading to the phos-
phorylation of the core histone protein H2AX (termed cH2AX). The understanding of
the cH2AX responses in irradiated human buccal cells is still very limited. We used vis-
ual scoring and laser scanning cytometry (LSC) methods to investigate cH2AX signal-
ing following exposure of human buccal cells (from six individuals) to ionizing
radiation at 0–4 Gy. The frequency of nuclei containing 15–30 cH2AX foci was signifi-
cantly elevated 30 min post-IR exposure (by visual scoring). Concomitantly, there was
a significant decrease in the frequency of cells without foci following exposure to IR.
IR-induced cH2AX signal as determined by laser scanning cytometry (which included
cH2AX integral and MaxPixel value) increased significantly in all individual’s 2N nuclei
30 min post-IR and was similar for all three nuclear shapes identified. Individuals with
the lowest baseline cH2AX integral (i.e., in nonirradiated cells) showed the greatest fold
stimulation of cH2AX and significant dose-responses to IR doses of 1, 2, and 4 Gy. In 5
out of 6 individuals, the frequency of visually scored cH2AX in nuclei showed a strong
correlation (up to r 5 0.999) with LSC scored cH2AX integrals. The cH2AX response
and subsequent decline varied between individuals but remained elevated above base-
line levels 24 h post IR exposure. cH2AX response in irradiated human buccal cells has
potential to be used as an index of baseline DNA damage in population studies. The
variable response to IR exposure between individuals should be taken into considera-
tion when using the cH2AX assay for radiation biodosimetry. VC 2014 International Society

for Advancement of Cytometry

� Key terms
cH2AX; buccal cells; ionizing radiation

INTRODUCTION

DNA Double strand breaks (DSBs) are one of the most biologically significant

DNA damage lesions that leads to chromosome breakage and/or rearrangement,

mutagenesis, and loss or gain of genetic information (1,2). DSBs are directly gener-

ated by exogenous agents such as ionizing radiation (IR) (3,4), antitumor drugs

(bleomycin, mitoxantrone, etoposide) (5,6) or by endogenously generated reactive

oxygen species (7). Mammalian cells respond to DSBs by activating a multitude of

proteins involved in signaling and DNA repair pathways. Although the majority of

lesions are efficiently repaired, the very nature of DSBs poses such a threat to cell sur-

vival that DNA damage checkpoint proteins may be activated to initiate cellular divi-

sion arrest. This provides time for DNA repair to proceed before mitosis is

completed or in the case of overwhelming damage, apoptosis ensues (8). Therefore,

DSBs in chromosomal DNA may lead to reduced integrity of the genome but also

impaired health and survival of mammalian cells (1,2).

The histone proteins are intricate components of the nucleosome complex and

are essential for genome integrity in terms of normal regulation of gene expression,

genome maintenance, and replication (9–11). Induction of DNA DSBs in live mam-
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malian cells triggers the phosphorylation of Ser139 in the SQ

motif near the C-terminal of H2AX, which results in the phos-

phorylated form of H2AX, termed cH2AX (12,13). The phos-

phorylation of H2AX histone proteins which are located in

the vicinity of the DSBs (14,15) is known as one of the earliest

responses to DNA DSBs in cells. Therefore, cH2AX quantifi-

cation may prove to be a sensitive biomarker of DNA DSBs in

human cells.

Studies of the kinetics of phosphorylation and dephos-

phorylation of H2AX after exposure of cells to IR have shown

induction of maximal amounts of cH2AX in cells in a few

minutes after exposure to IR (14,16–18). Subsequently, the

cH2AX signals decline over a period of hours. However,

radiation-induced cH2AX signals have been observed to per-

sist after 70 days post IR exposure to skin cells (19). Our pre-

vious study using Queensland fruit fly (Bactrocera tryoni)

demonstrated that IR exposure leads to persistent cH2AvB sig-

nals (a variant of cH2AX) that could be measured during the

adult stage of the life cycle when the IR exposure was con-

ducted at the pupal stage (20). Therefore, it is plausible that

persistent cH2AX may represent prior DNA damage due to

misrepaired DSBs, unrepaired DSBs in specific sequences such

as telomeric DNA, S-phase cells or apoptotic cells (21).

Human buccal mucosa has considerable potential as an

easily accessible source of cells to determine endogenous- or

exogenous-induced DNA damage (22,23) and has been used

successfully to measure IR-induced cH2AX signals (24,25). In

one recent study, a sub-population of 50–100 buccal cells were

scored from microscope images by semi-automation for the

presence of cH2AX foci (24). Another study measured the

absorbance of diffuse cH2AX staining in nuclei from individ-

uals exposed to a low dose of ionizing radiation by examining

only 25–30 cells from each individual (25). However, our pre-

vious studies have demonstrated that there are multiple sub-

populations of buccal cell types present (26–28) and therefore

in both of those earlier studies (24,25), it was likely that insuf-

ficient cells were scored to give an accurate representation of

the entire sample population’s cH2AX response. Moreover,

different nuclear shapes have been used as criteria to identify

nuclear abnormalities in buccal cells (29). The aim of this

study was to determine whether LSC could be used to mea-

sure multiple parameters (area, integral, MaxPixel) of cH2AX

signals as well as the ploidy and nuclear shapes in thousands

of cells. Use of the proposed LSC cH2AX method can over-

come limitations of visual scoring methods by increasing scor-

ing speed, increasing cell number measured, eliminating

variation due to differences between scorers and scorer

fatigue, and enabling the possibility of higher statistical power

and high content analysis of multiple nuclear parameters.

MATERIALS AND METHODS

Chemicals and Reagents

Roswell Park Memorial Institute (RPMI)21640, Fetal

Bovine Serum (FBS), sodium pyruvate, L-glutamine/penicil-

lin/streptomycin mix and all other chemicals were purchased

from Sigma-Aldrich (Castle Hill, NSW, Australia) unless oth-

erwise stated. Mouse monoclonal antibody anti-cH2AX

(clone JBW301) was obtained from Millipore (Kilsyth, VIC,

Australia). Dulbecco’s Phosphate Buffered Saline (DPBS) and

secondary antibody Alexa Fluor 488 Goat anti-mouse were

purchased from Life Technologies (Mulgrave, VIC, Australia).

Participants

Buccal cells were collected from six healthy individuals

(three females and three males) aged from 25 to 44 years. Par-

ticipants were healthy nonsmokers, not taking vitamin supple-

ments and were informed of the purpose of the study.

Approval for this study was obtained from the CSIRO Human

Research Ethics Committee.

Buccal Cell Collection

Prior to buccal cell collection, each participant was first

required to rinse their mouth twice with water. Small flat

headed toothbrushes were rotated 20 times against the inner

part of the cheeks in a circular motion. Both cheeks were

sampled using separate toothbrushes. Heads of the brushes

were transferred into 20 ml conical screw cap tubes (one tube

per participant) each containing 15 ml of fresh prewarmed

complete medium (RPMI with 10% FBS, 2 mM L-Glutamine,

1 mM sodium pyruvate, 100 U penicillin and 100 mg/ml strep-

tomycin) and vigorously agitated to dislodge the cells. Cells

were centrifuged at 1000g for 10 min before discarding and

replacing supernatant with fresh DPBS. This washing proce-

dure was carried out twice. The cells were then resuspended in

10 ml of fresh prewarmed (37�C) complete medium. Cell con-

centration was assessed using a haemocytometer and diluted

with complete medium to reach a final concentration of

50,000 cells/ml. The cell suspension was then divided into

four 10-ml aliquots in 20-ml conical screw cap tubes.

Buccal Cell Irradiation

Cell aliquots were exposed to 0, 1, 2, or 4 Gy ionizing

radiation (IR) using a 137Cs-c IBL 437 irradiator 5 Gy/min at

25�C (Shering CIS bio international) and immediately incu-

bated for 30 min at 37�C in complete medium using a porta-

ble tissue incubator. For kinetics experiments, post-irradiated

cells (4 Gy) and nonirradiated cells (0 Gy) were incubated at

37�C in complete medium for 30 min, 3 h, or 24 h. Following

incubation, cells were centrifuged at 1,000g for 10 min and

supernatant was discarded. Cells were then resuspended in

10 ml of 4% formaldehyde in DPBS for 15 min at room tem-

perature. Following fixation cells were centrifuged at 1,000g

for 10 min and supernatant was removed before washing cells

in 10 ml of buccal cell buffer (10 mM Tris, 0.1 M ethylenedia-

minetetraacetic, 20 mM NaCl, pH 7.0). The washing proce-

dure was carried out twice, and cells were then

cytocentrifuged for 5 min at 600 rpm onto microscopic slides

to a final number of 5,000 cells per cytospot using a Shandon

CytospinVR 4 (Thermo Scientific, USA). Slides were washed

once with distilled water and air-dried for 15 min at room

temperature.

Staining of Buccal Cells

A circle was drawn around each cytospot using a hydro-

phobic PAP pen (Dako, Australia) and air-dried for 10 min.
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Slides were rinsed in DBPS for 15 min, incubated in chilled

70% ethanol for 20 min and washed in DPBS for 15 min. Buc-

cal cell cytospots were then treated with 150 ll of prewarmed

(37�C) pepsin solution (containing 750 U/ml of porcine gas-

tric mucosa pepsin) in 0.01 M HCl and then covered with par-

afilm for 30 min at 37�C in a humidified box. The slides were

then washed twice with DPBS for 5 min. Buccal cells were

then permeabilized with 1% Triton X-100 for 15 min at room

temperature and subsequently quenched of any trace of form-

aldehyde by dipping slides into 0.1 M glycine in DPBS twice

for 2 min. Slides were then rinsed three times in DPBS and a

blocking step was performed by incubating cells in 10% goat

serum for 1 h at room temperature before being washed once

with DPBS. The anti-cH2AX antibody was added to each

cytospot at a dilution of 1:100 in DPBS containing 10% goat

serum and covered with parafilm overnight at 4�C in a

humidified box. Slides were washed three times in DPBS for 5

min and a secondary antibody Alexa Fluor 488 Goat anti-

mouse was added to each cytospot at a dilution of 1:500 in

DPBS containing 10% FBS and covered with parafilm for 1 h

at room temperature. Slides were washed three times in DPBS

for 5 min and nuclei were counterstained with 4,6-diamidino-

2-phenylindole (DAPI) at a concentration of 1 mg/ml for 10

min at room temperature. The excess DAPI was removed by

rinsing the slides with a solution containing 300 mM NaCl

and 34 mM sodium citrate. Slides were then mounted with

coverslips and DPBS:glycerol (1:1) medium. The edges of cov-

erslips were sealed with nail polish to prevent drying prior to

performing LSC and visual scoring.

Visual Scoring of cH2AX Foci

Visual scoring of cH2AX foci was performed immediately

after the staining procedure was applied using a fluorescence

microscope (ZEISS Metasystems, Althusheim, Germany)

under a 63x oil objective. DAPI (nuclei) and Alexa Fluor 488

(cH2AX) fluorescence was viewed using a blue and green filter,

respectively. A minimum of 375 cells per cytospot were scored

for cH2AX foci. Since we observed three distinct shapes of

nuclei (which may represent different stages of postmitotic dif-

ferentiation), they were classified into three groups based upon

their morphological features i.e., round nuclei, long nuclei,

and oval nuclei. cH2AX appeared as discrete foci or as diffuse

staining within nuclei (see Fig. 1), therefore we categorized

cH2AX scores for each nucleus as follows; no foci, 1–14 foci

per nucleus, 15–30 foci per nucleus and diffuse foci (either

>30 foci or diffuse nuclear staining of cH2AX i.e., wide-spread

and uniform presence of cH2AX signal within the nucleus).

Laser Scanning Cytometry Measurements of cH2AX

Laser scanning cytometry (LSC) measurements were car-

ried out with an iCyteVR Automated Imaging Cytometer

(Thorlabs, Sterling Virginia, USA) with full autofocus func-

tion as well as 405 nm and 488 nm lasers for excitation of

DAPI and Alexa Fluor 488, respectively. Fluorescence from

DAPI (blue) and Alexa Fluor 488 (green) was collected with a

photomultiplier tube. Samples were scanned in separate

passes (consecutively) to prevent spectral overlap. The nuclei

and cH2AX events were contoured using empirically deter-

mined thresholds to exclude the scoring of false positives (e.g.,

small fluorescent debris). The frequency (%) of nuclei con-

taining cH2AX signal was recorded as well as multiple param-

eters within each nucleus; including the total cH2AX integral

(a function of cH2AX intensity and size) and the MaxPixel

value (the value of the most intense cH2AX signal/pixel within

nuclei). These parameters were generated using the iCyteVR 3.4

software and subsequently transferred into excel for further

statistical analyses. Nuclei were also classified into round,

long, or oval shapes (Fig. 2) by utilizing the iCyte software

parameters which included area, circularity, perimeter and

diameter as described in detail of figure legend (Fig. 2). Addi-

tionally, all nuclei were separated according to their ploidy

status (DNA content) as follows; <2N, 2N, and >2N, where

2N was defined as the mean integral signal of the population

of nuclei 6 1 standard deviation. For 2N nuclei, the peak of

the nuclei count coincided with the mean DAPI integral.

Statistical Analyses

GraphPad Prism 6.01 (GraphPad Prism, San Diego, CA)

was used to analyse data. For visual scoring comparison of the

frequency of DNA damaged cells at IR doses 1, 2, and 4 Gy

were compared with control (0 Gy) using one-way ANOVA

Figure 1. Fluorescence images of buccal cell nuclei containing discrete or diffuse cH2AX foci. Buccal cell nuclei were visualised (stained

with DAPI) with a fluorescence microscope as described in the Materials and Methods section. Nuclei were classified into three categories

i.e. round nuclei (A), long nuclei (B), and oval nuclei (C). Discrete cH2AX foci were observed in A–C; however, �25% of nuclei at baseline

demonstrated a diffuse pattern of cH2AX signal within nuclei (D). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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followed by Dunnett’s multiple comparison test. For LSC analy-

ses, yH2AX data were checked for normality using D’Agostino

and Pearson omnibus normality test. Comparison of the fre-

quency of DNA damaged cells at IR doses 1, 2, and 4 Gy were

compared with control (0 Gy) using the Kruskal-Wallis test fol-

lowed by the Dunn’s multiple comparisons test. Correlation

coefficients were obtained using the Pearson correlation coeffi-

cient (r). Data were expressed as mean 6 standard error of the

mean (SE). P< 0.05 was considered statistically significant.

RESULTS

Visual Scoring of cH2AX in Buccal Cells

Representative images of nuclei are shown in Figure 1.

Nuclei were classified into three groups based upon the nuclear

shape; either round, long or oval as shown in Figures 1A–1C,

respectively. cH2AX foci were observed in buccal cell nuclei as

shown in Figures 1A–1D, even at baseline i.e., 0 Gy. The fre-

quency (%) of buccal cell nuclei in six individuals that had no

cH2AX foci at baseline (0 Gy) was 11.70 6 3.52%,

13.60 6 3.92%, and 10.89 6 2.80% for round, long, and oval

nuclei, respectively (totaling 36% of all nuclei) as shown in

Table 1. Following exposure to IR the frequency of nuclei (all

three types) containing no foci significantly decreased with

increasing dose of IR exposure (Table 1). This suggested that IR

exposure caused an increase in the levels of cH2AX in the buc-

cal cell nuclei. On further examination, the frequency of long

nuclei containing 15–30 cH2AX foci was significantly increased

following IR exposure to 1 Gy (P< 0.05), 2 Gy (P< 0.001), and

4 Gy (P< 0.0001) as shown in Table 1. Additionally, there was

a significant increase in the frequency of round nuclei contain-

ing 15–30 cH2AX foci at 2 Gy (P< 0.05) and 4 Gy (P< 0.01).

Figure 2. Identification of buccal cell nuclear shapes; round, long, and oval, by laser scanning cytometry. The events from different scat-

tergram regions were relocated and imaged (using an imaging gallery) to empirically identify the three different nuclear shapes present.

A: Individual nuclei were automatically contoured (red contour lines) as described in methods based on a thresholding procedure.

cH2AX signal (green contour lines) was detected and quantified (integral or MaxPixel) within the nuclei following exposure to 0–4 Gy. B:

Nuclei having area values that ranged from 0 to 600 mm and blue integral values that ranged from 0 to 4 3 107 (arbitrary units) in Region

1 (R1) were analyzed in (C) by plotting their circularity (y-axis) versus nuclear area (x-axis) where “Round” nuclei were identified in

Region 2 (R2). D: Nuclei from Region 3 (R3) were further analyzed by plotting their perimeter/diameter ratio (y-axis) versus nuclear area

(x-axis). Two new groups were established from R3; long nuclei were identified in R4 and oval nuclei in R5. Representative galleries of

nuclear shape are shown for (E) round, (F) long, and (G) oval nuclei. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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The frequency of oval nuclei containing no foci

(10.89 6 2.80%) significantly decreased to 4.04 6 0.92%,

2.22 6 0.54%, and 1.69 6 0.59% for 1 Gy (P< 0.05), 2 Gy

(P< 0.01), and 4 Gy (P< 0.01), respectively, i.e., there were

dose-related increases in the frequency of nuclei with 15–30

cH2AX foci across all nuclear types. However, there was no

statistically significant increase in the frequency of oval nuclei

containing 1–14 cH2AX foci, 15–30 cH2AX foci or diffuse

cH2AX. In fact, regardless of nuclear type, there was no signifi-

cant change in the frequency of nuclei containing diffuse

cH2AX or 1–14 cH2AX foci following IR exposure (Table 1).

Scoring of cH2AX in Buccal Cells by LSC

Figure 3 shows a representative example of the data

obtained from a single individual’s preliminary LSC assay

(from “individual B”). To demonstrate the distribution of

DNA content in the buccal cells, nuclei count versus DAPI

integral (equivalent to DNA content) was plotted as shown in

Figure 2A, whereby 2,634 nuclei were examined. Nuclei were

then classified as <2N, 2N, or >2N prior to further analyses.

Figure 2B shows the DAPI integral was correlated with nuclear

area for the same 2,634 nuclei as in Figure 2A. Figures 2C and

2D shows the cH2AX integral of individual B when plotted

against DNA content (DAPI integral) for 0 Gy (mean 5 0.131

3 106 a.u., n 5 2,634 nuclei) and 4 Gy (mean 5 3.25 3 106

a.u., n 5 1,060 nuclei), respectively.

2N Nuclei

Table 2 summarizes cH2AX integral measurements in

buccal cells exposed to 0, 1, 2, or 4 Gy for six individuals. All

six individuals demonstrated a significant increase in cH2AX

integral in buccal nuclei following exposure to IR as low as 1

Gy. The variation of baseline (0 Gy) cH2AX signals were vari-

able between individuals. For example, two individuals (B and

E) had cH2AX signals that were less than 1 3 106 a.u. at 0 Gy,

whereas the remaining 4 individuals had values that ranged

from 1.209 to 6.067 3 106 a.u. There was also considerable

variation in the response of buccal cells to radiation exposure;

indeed, the individuals with the lowest baseline cH2AX values

(B and E) also showed the greatest fold increase in IR-induced

cH2AX signal. For example, the cH2AX integral in individual

B significantly increased from 0.132 3 106 a.u. at 0 Gy to

1.009 3 106 a.u. (P< 0.0001) at 1 Gy, 1.954 3 106 a.u.

(P< 0.0001) at 2 Gy and 2.673 3 106 a.u. at 4 Gy

(P< 0.0001), representing up to a 20-fold increase of cH2AX

signal in 2N nuclei. Conversely, the individuals with the high-

est cH2AX integral at baseline (0 Gy) showed the least IR-

induced cH2AX signal response, although the responses were

statistically significant. Each individual had a significantly

increased cH2AX integral following IR exposure; however,

when the 4 IR doses were averaged (n 5 6 per IR dose), there

was no significant difference between IR exposure doses com-

pared with 0 Gy, which was likely due to the large amount of

inter-individual variation, particularly at baseline (0 Gy).

Consistent with the increase in cH2AX integral post-IR

as discussed above, both the cH2AX area (data not shown)

and cH2AX MaxPixel values also increased significantly with

IR dose (Table 3). Additionally, both parameters (cH2AX area

and MaxPixel) correlated well with the cH2AX integral values

(cH2AX integral and cH2AX area correlation coefficients were

R2 5 0.979 and R2 5 0.960 for cH2AX area and cH2AX

Table 1. Visually scored cH2AX in buccal cells

NUCLEUS SHAPE cH2AX FOCI RADIATION DOSE

Round 0 Gy 1 Gy 2 Gy 4 Gy

0 foci 11.70 6 3.52 4.13 6 0.90A 1.82 6 0.39B 1.20 6 0.23B

1214 foci 3.20 6 0.86 2.40 6 0.91 1.69 6 0.38 1.24 6 0.64

15230 foci 10.20 6 2.33 12.40 6 2.54 17.87 6 1.57A 20.00 6 1.74B

>30 diffuse foci 9.09 6 1.52 10.71 6 1.75 8.18 6 1.70 7.78 6 1.61

Long 0 Gy 1 Gy 2 Gy 4 Gy

0 foci 13.60 6 3.92 6.76 6 1.97 2.49 6 0.89B 0.71 6 0.21B

1214 foci 1.92 6 0.48 2.67 6 0.93 1.82 6 0.45 0.93 6 0.33

15230 foci 9.14 6 2.94 19.02 6 1.40A 24.62 6 1.36C 28.27 6 2.64D

>30 diffuse foci 8.93 6 1.47 11.96 6 1.67 12.40 6 2.67 9.20 6 3.07

Oval 0 Gy 1 Gy 2 Gy 4 Gy

0 foci 10.89 6 2.80 4.04 6 0.92A 2.22 6 0.54B 1.69 6 0.59B

1214 foci 2.73 6 0.55 2.18 6 0.62 2.62 6 0.69 0.76 6 0.27

15230 foci 11.45 6 2.91 14.22 6 2.95 17.56 6 1.37 15.73 6 3.11

>30 diffuse foci 7.15 6 0.95 9.51 6 1.30 6.71 6 1.98 12.49 6 3.46

All nuclei types

(round 1 long 1 oval)

0 Gy 1 Gy 2 Gy 4 Gy

0 foci 36.17 6 9.94 14.93 6 2.80A 6.53 6 0.90B 3.6 6 0.60C

1214 foci 7.85 6 1.66 7.23 6 1.97 6.13 6 1.39 2.93 6 0.98

15230 foci 30.80 6 7.72 45.63 6 2.81 60.03 6 2.55B 64.00 6 6.45C

>30 diffuse foci 25.18 6 2.84 32.18 6 1.97 27.28 6 1.99 29.46 6 7.54

Frequency (%) of the different nuclear types classified (round, long, and oval nuclei) containing cH2AX signals (n 5 6 individuals, 375

cells scored for each individual) at 0, 1, 2, and 4 Gy in the 6 individuals A2E is shown. Data are presented as Mean 6 SE. AP< 0.05,
BP< 0.01, CP< 0.001, DP< 0.0001.
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MaxPixel, respectively) in buccal cell nuclei exposed to 0, 1, 2,

and 4 Gy in all individuals (n 5 6) (Fig. 4).

<2N Nuclei and >2N Nuclei

Tables 2 and 3 summarize cH2AX integral and Max-

Pixel, respectively for <2N and >2N nuclei from six indi-

viduals. For <2N nuclei, 3 out of 6 individuals showed a

significant increase in cH2AX integral (Table 2) whereas for

>2N nuclei 4 out of 6 individuals had significantly

increased cH2AX integral values at 4 Gy compared with 0

Gy. As expected, both the cH2AX area (not shown) and

cH2AX MaxPixel (Table 3) values also increased signifi-

cantly with IR dose.

Inter- and Intra-Individual Variation

The variation between the six individuals examined for

2N nuclei ranged from 2.326 to 8.942 3 106 a.u. at 4 Gy

(Table 2). When a single individual’s cH2AX integral (2N)

was measured on six separate occasions (individual B), the 4

Gy cH2AX integral ranged from 2.67 to 4.74 3 106 a.u. with a

coefficient of variation of 20.5%.

Nuclear Shape

In an attempt to score nuclear shape by LSC (as was

done for visual scoring of buccal cell nuclei), we categorized

nuclei as either round, long, or oval by using several iterative

processes in iCyte as shown in Figure 2. By using some of the

features available within the iCyte software (area, perimeter,

diameter, and circularity) we empirically classified the buccal

cell nuclei shapes and quantified the cH2AX MaxPixel values

as shown in (Table 4). For each individual, the dose-response

data for each nuclear shape are shown at 0–4 Gy. For round

nuclei, all six individuals showed a significant IR-induced

increase in cH2AX MaxPixel values. For long nuclei, three out

of six individuals showed a significant increase, while for oval

nuclei, four out of six individuals showed significant increases

in MaxPixel values at 4 Gy compared with 0 Gy.

Correlation of Visually Scored cH2AX and cH2AX

Integral by LSC

The frequency of visually scored long nuclei (containing

15–30 foci) was strongly correlated with LSC scored cH2AX

Figure 3. DNA content and cH2AX quantification in buccal cell nuclei by laser scanning cytometry (LSC). A representative example from

individual B showing: A: buccal cell DNA content was calculated automatically from all nuclei by using the DAPI integral feature within the

iCyte software; the DNA content was determined by categorizing nuclei as <2N, 2N, and >2N. 2N was defined as the mean

integral 6 1 S.D. Sub-2N and >2N were less and greater than 1 S.D. from the mean, respectively. Numbers in parentheses represent the

percentage of nuclei. B: The correlation of DAPI integral with nuclear area. cH2AX integral in buccal cells from individual B exposed to

either 0 Gy (C) or 4 Gy (D) IR and cH2AX signal was plotted for all nuclei versus DNA content; the number of nuclei examined by LSC was

n 5 2,634 at 0 Gy and n 5 1,060 nuclei at 4 Gy.
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integrals in five out of six individuals (Fig. 5). The Pearson

correlation coefficients from individuals A–E were r 5 0.999,

0.930, 0.964, 0.608, and 0.945 while one individual (individual

F) showed no correlation. Indeed for individual F, the LSC

measured cH2AX integrals (including area and MaxPixel) sig-

nificantly increased with IR dose (see Table 2, 2N nuclei, indi-

vidual F). However, using the visual scoring criteria used here,

we were unable to demonstrate significant differences between

the frequency (%) of nuclei containing 15–30 foci at the dif-

ferent IR doses for individual F. This suggests that LSC was

more sensitive to quantifying the small changes in IR-induced

cH2AX signals in nuclei.

Kinetics of cH2AX in Buccal Cells

The time course of cH2AX was monitored at 0, 0.5, 3,

and 24 h after the exposure of buccal cells to 4 Gy IR in 3

Table 2. Summary of cH2AX integral (a.u. X106) by LSC in <2N, 2N, or >2N buccal cells exposed to 0, 1, 2, or 4 Gy

NUCLEAR PLOIDY INDIVIDUALS 0 GY 1 GY 2 GY 4 GY

<2N A 1.967 6 0.293

(n5108)

3.509 6 0.663

(n588)

3.127 6 0.518

(n5102)

4.152 6 0.491A

(n5111)

B 0.092 6 0.033

(n5353)

0.438 6 0.101D

(n570)

1.984 6 0.203D

(n5320)

2.724 6 0.540D

(n5101)

C 2.902 6 0.570

(n5102)

3.500 6 0.399

(n5187)

2.814 6 0.264

(n5366)

2.278 6 0.340

(n5122)

D 1.121 6 0.119

(n5313)

2.915 6 0.825

(n533)

2.153 6 0.237A

(n5216)

2.641 6 0.332D

(n5215)

E 1.528 6 0.873

(n 5 155)

2.090 6 0.906

(n 5 129)

2.958 6 2.327

(n 5 70)

1.057 6 0.239

(n 5 85)

F 4.388 6 0.516

(n 5 74)

5.227 6 1.065

(n 5 25)

3.657 6 0.458

(n 5 99)

6.440 6 0.715

(n 5 73)

Mean 6 SE 2.000 6 0.610 2.946 6 0.655 2.782 6 0.255 3.215 6 0.761

Individuals 0 Gy 1 Gy 2 Gy 4 Gy

2N A 6.067 6 0.298

(n 5 586)

7.484 6 0.395A

(n 5 397)

7.745 6 0.352C

(n 5 498)

8.942 6 0.455D

(n 5 388)

B 0.132 6 0.021

(n 5 1,913)

1.009 6 0.076D

(n 5 751)

1.954 6 0.078D

(n 5 2,466)

2.673 6 0.122D

(n 5 1,312)

C 3.337 6 0.191

(n 5 810)

5.469 6 0.179D

(n 5 1,626)

4.333 6 0.119D

(n 5 3,218)

4.329 6 0.229B

(n 5 777)

D 1.209 6 0.059

(n 5 1,847)

2.059 6 0.221D

(n 5 209)

2.619 6 0.114D

(n 5 1,444)

3.877 6 0.170D

(n 5 976)

E 0.511 6 0.073

(n 5 433)

0.913 6 0.105B

(n 5 473)

1.242 6 0.418A

(n 5 213)

2.326 6 0.622D

(n 5 211)

F 4.998 6 0.337

(n 5 379)

6.122 6 0.546B

(n 5 148)

5.627 6 0.323A

(n 5 433)

8.872 6 0.490D

(n 5 326)

Mean 6 SE 2.709 6 1.010 3.843 6 1.168 3.920 6 1.007 5.170 6 1.220

Individuals 0 Gy 1 Gy 2 Gy 4 Gy

>2N A 10.620 6 1.536

(n 5 58)

12.040 6 2.190

(n 5 44)

8.364 6 1.147

(n 5 73)

9.229 6 1.550

(n 5 56)

B 0.164 6 0.047

(n 5 368)

3.052 6 0.738D

(n 5 59)

3.478 6 0.270D

(n 5 441)

7.388 6 1.103D

(n 5 108)

C 5.389 6 0.834

(n 5 89)

9.216 6 1.053B

(n 5 122)

8.329 6 0.624B

(n 5 326)

7.520 6 0.952

(n 5 89)

D 1.070 6 0.229

(n 5 262)

2.019 6 0.527C

(n 5 30)

3.567 6 0.456D

(n 5 276)

3.829 6 0.451D

(n 5 177)

E 0.762 6 0.286

(n 5 61)

0.640 6 0.193

(n 5 69)

1.088 6 0.612

(n 5 33)

2.739 6 1.138A

(n 5 34)

F 4.367 6 0.804

(n 5 55)

4.349 6 0.941

(n 5 30)

8.736 6 1.957

(n 5 65)

7.250 6 0.854B

(n 5 58)

Mean 6 SE 3.729 6 1.625 5.219 6 1.818 5.594 6 1.341 6.326 6 1.015

Letters denote the P-values when comparing 1, 2, or 4 Gy IR relative to 0 Gy for each individual. Data are presented as Mean 6 SE.

Numbers in parentheses represent the total number of nuclei that were scored at each IR dose. AP< 0.05, BP< 0.01, CP< 0.001,
DP< 0.0001.
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individuals (B, D, and E). These individuals were chosen for

cH2AX kinetics analyses since they had the greatest dose-

response to irradiation at 0–4 Gy. Figure 6A demonstrates that

the mean frequency (%) of nuclei containing 15–30 cH2AX

foci, when scored visually, remained elevated for a period of

up to 24 h post IR. A peak was reached at 30 min post IR

exposure (4 Gy) and subsequently declined by 40% at 24 h

post IR (4 Gy); however, this remained significantly

(P< 0.0001) higher than the baseline value. A similar result

was obtained by LSC as shown in Figure 6B. The cH2AX inte-

gral significantly increased (P< 0.05) 30 min post IR exposure

and then subsequently declined by 82% 24 h post IR, which

was not significantly different from the baseline value.

DISCUSSION

The objective of the present study was to investigate the

induction and persistence of DNA DSBs in irradiated human

Table 3. Summary of cH2AX MaxPixel (a.u.) by LSC in <2N, 2N, or >2N buccal cells exposed to 0, 1, 2, or 4 Gy

NUCLEAR PLOIDY INDIVIDUALS 0 GY 1 GY 2 GY 4 GY

<2N A 2,994 6 337

(n 5 108)

4,241 6 485

(n 5 88)

3,728 6 473

(n 5 102)

5,614 6 544B

(n 5 111)

B 332 6 100

(n 5 353)

1,820 6 283D

(n 5 70)

2,373 6 217D

(n 5 320)

2,698 6 352D

(n 5 101)

C 4,092 6 524

(n 5 102)

5,356 6 431A

(n 5 187)

4,148 6 263

(n 5 366)

4,520 6 460

(n 5 122)

D 2,289 6 203

(n 5 313)

3,436 6 782

(n 5 33)

2,768 6 241

(n 5 216)

3,820 6 323C

(n 5 215)

E 2023 6 325

(n 5 155)

1913 6 326

(n 5 129)

1897 6 470

(n 5 70)

2279 6 356

(n 5 85)

F 4,680 6 475

(n 5 74)

6,560 6 981

(n 5 25)

3,932 6 381

(n 5 99)

7,449 6 605B

(n 5 73)

Mean 6 SE 2,735 6 636 3,887 6 770 3,141 6 376 4,396 6 785

Individuals 0 Gy 1 Gy 2 Gy 4 Gy

2N A 5,874 6 206

(n 5 586)

6,552 6 247

(n 5 397)

7,381 6 250D

(n 5 498)

8,124 6 303D

(n 5 388)

B 445 6 54

(n 5 1913)

3,085 6 152D

(n 5 751)

2,593 6 79D

(n 5 2466)

3,062 6 103D

(n 5 1312)

C 3,598 6 150

(n 5 810)

5,484 6 120D

(n 5 1626)

5,185 6 87D

(n 5 3218)

5,064 6 178D

(n 5 777)

D 2,163 6 84

(n 5 1847)

3,242 6 251C

(n 5 209)

3,141 6 100D

(n 5 1444)

4,738 6 142D

(n 5 976)

E 1,092 6 132

(n 5 433)

1,498 6 126B

(n 5 473)

1,989 6 289A

(n 5 213)

3,274 6 344D

(n 5 211)

F 5,195 6 274

(n 5 379)

6,886 6 414C

(n 5 148)

5,673 6 202

(n 5 433)

8,199 6 306D

(n 5 326)

Mean 6 SE 3,121 6 909 4,457 6 884 4,327 6 851 5,410 6 927

Individuals 0 Gy 1 Gy 2 Gy 4 Gy

>2N A 9,212 6 804

(n 5 58)

8,786 6 1025

(n 5 44)

8,161 6 819

(n 5 73)

9,451 6 1,194

(n 5 56)

B 587 6 120

(n 5 368)

6,664 6 984D

(n 5 59)

4,012 6 232D

(n 5 441)

6,316 6 583D

(n 5 108)

C 6,575 6 572

(n 5 89)

10,772 6 814C

(n 5 122)

10,690 6 426D

(n 5 326)

10,658 6 1060A

(n 5 89)

D 1,793 6 244

(n 5 262)

3,632 6 609 C

(n 5 30)

3,759 6 292D

(n 5 276)

5,311 6 440D

(n 5 177)

E 1,608 6 380

(n 5 61)

1,841 6 431

(n 5 69)

2,182 6 959

(n 5 33)

5,027 6 1,410A

(n 5 34)

F 4,938 6 536

(n 5 55)

5,210 6 798

(n 5 30)

6,983 6 695

(n 5 65)

8,133 6 603C

(n 5 58)

Mean 6 SE 4,118 6 1376 6,150 6 1,346 5,964 6 1306 7,482 6 939

Letters denote the P-values when comparing 1, 2, or 4 Gy IR relative to 0 Gy for each individual. Data are presented as Mean 6 SE.

Numbers in parentheses represent the total number of nuclei that were scored at each IR dose. AP< 0.05, BP< 0.01, CP< 0.001,
DP< 0.0001.

Original Article

Cytometry Part A � 87A: 296�308, 2015 303



buccal cells. We used two scoring protocols to quantify ioniz-

ing radiation-induced cH2AX, a marker of DNA DSBs. Visual

scoring of nuclei was correlated with the automated laser

scanning cytometry (LSC) method developed here to quantify

cH2AX integral (and MaxPixel) in each nucleus examined in

thousands of buccal cells for each individual. Additionally,

these LSC measurements were combined with quantitation of

nuclear DNA content to classify cells depending on their DNA

content (ploidy status) as well as nuclear shapes based on their

area, perimeter, diameter, and circularity. Our experimental

results demonstrated that buccal cells exposed to IR have the

capacity to accumulate cH2AX which partially remained up

to 24 h post IR exposure suggesting buccal cells have dimin-

ished capacity to repair DNA DSBs. We also observed a large

variation in baseline levels of cH2AX and in cH2AX response

to IR exposure.

In the visual scoring study, we aimed to classify buccal

cells into separate groups based upon their nuclear shapes.

Since the buccal mucosa is known to consist of heterogeneous

cell types that may have discrete functions within the mucosa

(22,23,27,29–33); we therefore hypothesized that our defined

categories may also exhibit differences in their response to

DNA damage induction and subsequent repair. In fact, our

results demonstrated that cH2AX could be measured in buccal

cells and that cH2AX response following IR varied between

nuclei types as has been observed in previous studies

(24,25,34). Long nuclei, for instance, showed the largest dose

response (up to 3-fold) to increasing radiation exposure (0, 1,

2, and 4 Gy) with a higher frequency of nuclei containing 15–

30 foci. In contrast, no significant difference was observed for

oval shaped nuclei, and a weaker dose response (up to 2-fold)

was found in round nuclei containing 15–30 foci. Interest-

ingly, there was no change in the frequency of cells with dif-

fuse foci following exposure to IR. It is likely that these

“diffuse” nuclei we categorized here (�25%) represent the

necrotic or nonviable cell population expressing a phenotype

of reduced response efficiency to DNA damage. This notion is

consistent with previous studies showing that a relatively high

proportion (up to 20%) of buccal cells are nonviable, necrotic,

or apoptotic at baseline (24,35,36). For a more complete

understanding of the DNA damage response biology of buccal

cells, it would therefore be valuable in future studies to com-

bine cH2AX detection with a cytoplasmic marker of cell sub-

types present (if compatible with the current immunofluores-

cence protocol). Such markers could be met, for example, by

the detection of cytokeratin proteins or other markers of epi-

thelial cells, which are expressed differentially between buccal

mucosa cell types depending on their differentiation status

(32,37–39).

LSC has previously been shown as a useful tool to mea-

sure cellular DNA content for cell cycle stage evaluation in

conjunction with cH2AX after inducing DNA damage

(40–42). It was therefore decided to include DNA content

(measured by nuclear DAPI integral) as an additional mea-

surement in our LSC protocol allowing us to classify nuclei as

<2N, 2N, or >2N. Previously, we demonstrated that �60% of

buccal cells are likely to be post-mitotic 2N nuclei (27) which

is similar to the results obtained in this study (see Fig. 3A).

Our current findings support previous observations in that

significant increases of cH2AX in buccal cell nuclei are

induced by exposure to IR (24). A significant increase in

cH2AX signal in 2N nuclei up to 4 Gy was observed in all

individuals and dose responses measured by LSC correlated

with those measured visually. For <2N nuclei only three out

of six individuals showed a significant increase in cH2AX at a

dose of 4 Gy. Alternatively, four out of six individuals showed

a significant increase in cH2AX at a dose of 4 Gy in >2N

nuclei. We believe that the buccal cell <2N and >2N popula-

tions are mainly composed of apoptotic cells, condensed chro-

matin cells or cells immobilized at a cell cycle check point due

to mitotic defects or abnormal nuclear DNA content (27,43).

The nature of the <2N and >2N population of cells may

partly explain their somewhat lower response to radiation

compared to the 2N cell population.

Although all individuals showed an increase in cH2AX

following IR exposure, when the individual data obtained for

Figure 4. Correlation of cH2AX integral with cH2AX area and cH2AX MaxPixel by LSC. A: Correlation of cH2AX foci area and cH2AX inte-

gral or (B) correlation of cH2AX MaxPixel and cH2AX integral, per nucleus scored by LSC in buccal cell nuclei exposed to 0, 1, 2, and 4 Gy

in all individuals (n 5 6). The relationship of the two parameters fitted a second order polynomial (quadratic) resulting in correlation coeffi-

cients (R2) for cH2AX foci area 5 0.979 and for cH2AX MaxPixel 5 0.960.
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the six individuals was averaged, the significant differences

between IR exposure doses compared to 0 Gy was absent in all

three populations of nuclei (i.e., <2N, 2N, and >2N). How-

ever, we believe this is due to the substantial differences

observed in the cH2AX baseline levels at 0 Gy between the

individuals in this study. Such variation in baseline cH2AX

signal in human buccal cells has been observed previously

when the cH2AX foci were scored. Indeed, values ranged from

0.08 cH2AX foci/nucleus (24) to 4.08 cH2AX foci/nucleus

(34); however, the former study excluded some buccal cell

types from their analyses, which may partly explain the differ-

ences observed between previous studies. In our study, the

LSC protocol was also utilized to extract data on cH2AX inte-

gral, MaxPixel and area measurements from within the con-

toured nuclei. Both cH2AX MaxPixel and area correlated well

with the cH2AX integral as expected, since the integral is a

Table 4. Summary of cH2AX MaxPixel (a.u.) by LSC in round-, long-, and oval-shaped nuclei of buccal cells exposed to 0, 1, 2, or 4 Gy

NUCLEAR SHAPE INDIVIDUALS 0 GY 1 GY 2 GY 4 GY

Round A 6,435 6 200

(n 5 576)

7,443 6 306A

(n 5 277)

7,619 6 256B

(n 5 429)

8,376 6 312D

(n 5 366)

B 1,319 6 54

(n 5 623)

3,450 6 143D

(n 5 494)

3,686 6 83D

(n 5 1817)

5,223 6 157D

(n 5 625)

C 4,093 6 131

(n 5 792)

5,453 6 117D

(n 5 1484)

5,409 6 82D

(n 5 3227)

5,382 6 134D

(n 5 1227)

D 2,510 6 52

(n 5 1963)

3,339 6 352

(n 5 60)

3,534 6 107D

(n 5 866)

5,315 6 136D

(n 5 1015)

E 1,912 6 88

(n 5 431)

2,193 6 105

(n 5 323)

2,170 6 140

(n 5 133)

3,115 6 184D

(n 5 227)

F 5,372 6 284

(n 5 282)

7,727 6 653B

(n 5 62)

5,876 6 220

(n 5 378)

8,878 6 305D

(n 5 322)

Mean 6 SE 3,667 6 857 4,934 6 942 4,716 6 800 6,050 6 888

Individuals 0 Gy 1 Gy 2 Gy 4 Gy

Long A 4,286 6 638

(n 5 34)

5,941 6 633

(n 5 60)

5,662 6 690

(n 5 55)

7,061 6 714A

(n 5 53)

B 1,400 6 90

(n 5 60)

2,846 6 236B

(n 5 137)

3,690 6 259D

(n 5 198)

3,169 6 281C

(n 5 148)

C 4,334 6 872

(n 5 25)

5,207 6 695

(n 5 46)

5,541 6 411

(n 5 133)

3,870 6 453

(n 5 56)

D 2,519 6 373

(n 5 55)

4,150 6 473

(n 5 57)

4,537 6 340B

(n 5 116)

4,671 6 427B

(n 5 84)

E 2,473 6 375

(n 5 44)

3,666 6 494

(n 5 44)

2,894 6 554

(n 5 30)

2,753 6 318

(n 5 34)

F 6,951 6 951

(n 5 26)

6,936 6 827

(n 5 40)

4,682 6 705

(n 5 28)

8,880 6 949

(n 5 34)

Mean 6 SE 3,672 6 803 4,7916 621 4,501 6 436 5,280 6 984

Individuals 0 Gy 1 Gy 2 Gy 4 Gy

Oval A 6,049 6 464

(n 5 124)

6,855 6 388

(n 5 167)

7,000 6 450

(n 5 155)

7,334 6 545

(n 5 106)

B 1,456 6 50

(n 5 1812)

2,698 6 175D

(n 5 210)

3,626 6 114D

(n 5 1030)

3,989 6 234D

(n 5 240)

C 5,418 6 339

(n 5 162)

6,371 6 259

(n 5 341)

6,774 6 228B

(n 5 478)

6,564 6 298A

(n 5 268)

D 2,578 6 125

(n 5 353)

4,030 6 316D

(n 5 115)

3,703 6 106D

(n 5 866)

4,656 6 293D

(n 5 220)

E 2,469 6 166

(n 5 143)

2,540 6 142

(n 5 249)

2,426 6 247

(n 5 128)

2,988 6 339

(n 5 54)

F 4,627 6 284

(n 5 178)

6,282 6 551B

(n 5 84)

5,071 6 279

(n 5 158)

7,836 6 561D

(n 5 91)

Mean 6 SE 3,310 6 673 4,384 6 762 4,320 6 678 5,206 6 803

Letters denote the P-values when comparing 1, 2, or 4 Gy IR relative to 0 Gy for each individual. Data are presented as Mean 6 SE.

Numbers in parentheses represent the total number of nuclei that were scored at each IR dose. AP< 0.05, BP< 0.01, CP< 0.001,
DP< 0.0001.
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function of both cH2AX total intensity and cH2AX area. Fur-

thermore, the increase in cH2AX MaxPixel and area indicates

that the abundance of phosphorylated histone H2AX proteins

accumulated at sites of DNA breakage, and that the accumula-

tion of cH2AX was dose-dependent and readily quantifiable

by LSC. Therefore, these types of quantifiable parameters

could prove useful as alternative measures to quantify cH2AX

responses within buccal cells that may be achieved with the

use of other automated imaging platforms.

Different nuclear shape morphology has been used as

one of the criteria to distinguish nuclear abnormalities and

has been used in patients with oral squamous cell carcinoma

to assess radiosensitivity (29,44). In this study, we assessed the

cH2AX MaxPixel response to IR in different shaped buccal

Figure 5. Correlation of visually scored and LSC quantified cH2AX signals in buccal cell nuclei exposed to 0, 1, 2, or 4 Gy IR. The frequency

(%) of visually scored buccal nuclei containing 15–30 cH2AX foci are shown on the x-axis and the mean cH2AX integrals (by LSC) per 2N

nuclei are shown on the y-axis for all individuals A–E (n 5 6). Pearson correlation coefficients (r) and P-values are shown as insets within

each graph.
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cell nuclei (round, long, and oval). Although cH2AX Max-

Pixel dose-dependently increased there appeared to be no par-

ticular nuclear shape that was more responsive than the other.

Nuclear shape could be a parameter used in future studies

when comparing buccal cell nuclei at “baseline” (e.g., in stud-

ies comparing populations or disease states) as it may provide

information on long-term (chronic) DNA damage. One

advantage of LSC (compared with visual scoring) is that mul-

tiple parameters can be examined and quantified in cells (high

content) simultaneously which may provide more informa-

tion on cellular signaling. Ideally, this approach could be com-

bined with cell morphology parameters to accurately identify

the buccal cell-subtypes present.

The kinetics of cH2AX response in buccal cells were

investigated by measuring DNA damage levels up to 24 h

post-IR. LSC and visual scoring demonstrated that cH2AX

signals in nuclei peaked at 30 min after exposure to IR, which

subsequently declined over a period of 24 h. In some individ-

uals the level of cH2AX remained higher than baseline levels

24 h after exposure, suggesting persistent DNA damage

occurred. In a previous study investigating DNA DSBs in buc-

cal cells, the longest time point following IR exposure was 5 h

(24). Our study, therefore, demonstrates for the first time that

buccal cells express variable but persistent cH2AX responses

up to 24 h post-IR. The kinetics of cH2AX can be rapid, with

cH2AX declining over a period of hours (14,16–18). Persist-

ence of DNA damage has also been observed in different mod-

els. For instance, a recent study that used G€ottingen minipig

skin biopsies found that IR-induced cH2AX foci was found to

be significantly lower after 70 days post-IR exposure; however,

a significantly higher number of cH2AX foci still remained in

irradiated epidermal keratinocytes compared with controls

(19). Most recently, cH2AX formation and removal in heart,

brain, and liver tissue following X-ray exposure was tested in

adult Syrian hamsters; it was found that all tissues accumu-

lated cH2AX but heart and brain tissues contained more per-

sistent cH2AX 24 h post-IR indicating the presence of

unrepaired DNA DSBs. This result suggested that kinetics of

IR-induced H2AX phosphorylation (and cH2AX dephospho-

rylation) is tissue specific, being less efficient in heart and

brain in comparison with liver and kidney (45). Since differ-

ent tissues can have distinct cH2AX responses, it may not be

possible to extrapolate buccal cell data generated from our

study to investigations carried out on other tissues. Moreover,

the high level of cH2AX still present in cells after 24 h suggest

that buccal cells may simply not repair DNA damage as effi-

ciently as other cell types. The persistent cH2AX signal after

24 h could be explored for radiation biodosimetry purpose

following a radiation accident. However, this may be limited

by the large variation in baseline cH2AX signal in cells not

exposed to IR between individuals. Understanding the dietary,

life-style, genotoxic exposure, and genetic factors is essential

prior to considering the possibility of using cH2AX assay in

buccal cells for human biodosimetry.

Although a better understanding of the biology of

cH2AX response in buccal cells is needed, our findings sug-

gest that buccal mucosa may be a tissue of interest in moni-

toring radiation exposure in humans or monitoring levels of

DNA damage in patients undergoing radiotherapy. Such

large-scale monitoring may be made possible with the use of

LSC. Indeed, the full automation of this LSC method offers

an efficient unbiased and quantifiable measure of cH2AX

abundance in a large number of cells (thousands of cells per

individual) and should be considered as an alternative

method to visual scoring, which is labor-intensive and sub-

ject to bias. Additionally, the LSC protocol presented here

can combine accurate measurement of cH2AX signal with

nuclei ploidy status and by its design, can potentially incor-

porate the simultaneous measurement of other cellular pro-

teins/markers involved in DNA damage/repair signaling

processes.
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