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Abstract

The aim of this thesis is to contribute to the field of fisheries science and population modelling,
having as subject matter the stocks of southern rock lobster (Jasus edwardsii) exploited by the
commercial fisheries of the Southern Zone in South Australia (SZRLF) and the Western Zone
in Victoria (WZRLF), Australia. The utility of a statistic known as “catch rate” is explored in
regard to inferences drawn about the population and catchability of these southern rock lobster
stocks. This thesis is in the form of “by publication” and contains three papers, two of which
are published (“Paper One” and “Paper Three”) while one is submitted and under review
(“Paper Two”).

Studies on some crab and lobster fisheries have shown that natural anomalies in water
temperature can substantially impact catch rates. Paper One involved a multivariate regression
study of abiotic environmental influences considered to act through catchability on daily catch
rates of the SZRLF stock, finding that moon phase, bottom temperature, and wave action were
retained in the final model but explained relatively little variance or trend in catch rate.
However, the study determined several qualitative outcomes regarding the nature of the
influences on catch rates that were not previously reported in the literature for southern rock
lobster. Mean catch rate was estimated to be 10% greater just prior to full moon than at new
moon, wave height lagged at three days had a positive influence, while bottom temperature and
(contemporary) wave height had a negative influence. Similar findings were determined for
WZRLF except for moon phase. Paper One compared these outcomes to those from studies on
other lobster species, and proposed several hypotheses as explanations.

In Paper Two a GLM analysis was performed on WZRLF catch rates that included vessel
identifier as a covariate, which represents a fishery influence on catchability, and found that it
was substantially more influential on the trend in catch rate than was observed for the
environmental influences reported in Paper One. Results suggest that the composition of the
WZRLF vessel fleet changed over the years due to vessels exiting from the fishery being on
average less efficient at fishing than the rest of the fleet, and hence driving an increase in net
catchability and an overly optimistic assessment of the stock. Alternative forms of diagnostic
indices were developed to study changes in vessel-driven catchability. The underlying
mechanisms of vessel fleet dynamics were investigated and discussed in relation to other
fisheries.

In Paper Three, novel multi-year depletion models were developed based on extending the
Leslie-Davis model. These were applied to data of the SZRLF, producing estimates not only
of catchability and yearly trend in relative abundance, but also absolute exploitable abundance
and yearly recruitment numbers. Although making strong assumptions about catchability and
recruitment for a period in each year, during the rest of the fishing year it avoids the need for
such assumptions nor requires fishing effort data. Results compared reasonably with those of
a more sophisticated but data hungry integrated stock assessment model.
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Introduction

Background

The aim of this thesis is to contribute to the field of fisheries science and population modelling,
having as subject matter the stocks of southern rock lobster (Jasus edwardsii) exploited by the
commercial fisheries of the Southern Zone in South Australia (SZRLF) and the Western Zone
in Victoria (WZRLF), Australia. Southern rock lobster is an important economic species for
Australia, valued at around $112.8 million for the SZRLF in 2015/16 (Econsearch, 2017). The
central theme is the use of a statistic known as “catch rate” (also known as catch-per-unit-effort
or “CPUE”), together with total catch, to infer information about population size, trend, and
“catchability” of the southern rock lobster stocks of the SZRLF and the WZRLF. Other
fisheries for Jasus edwardsii include those in the South Australian Northern Zone, the
Victorian Eastern Zone, Tasmania, and New Zealand.

Lobsters in the SZRLF and the WZRLF are caught in devices known as “pots” that are
cages with an opening allowing lobsters to reach bait inside. The pots are dropped to the sea
floor, with each pot capable of trapping and holding several lobsters, which are retrieved by
fishers typically after one day. The most resolved form of catch rate used in the analyses for
this thesis is that defined for an individual fisher over a 24 hour period - the ratio of the total
catch to the total number of pots set and hauled (potlifts). Similarly, catch rates can be defined
for time steps of day, month, or year, by summing the catch and potlifts (fishing effort) over
fishers and dividing total catch by total effort.

Note that in this thesis the terms “CPUE” and “catch rate” are used interchangeably. By
“abundance” is meant either the absolute number of lobsters in a population or the biomass
(weight of all lobsters), depending on whether the catch data used to model the population was
in terms of the number (Paper Three) or weight of the animals caught (Papers One and Two).
The term “relative abundance” is assumed to mean a measure of true abundance, but one that
is dimensionless (no information on absolute population size), representing a completely
precise and unbiased index of abundance. Hence, CPUE, based as it is on data, can at best be
considered as a good proxy index for relative abundance. Instead of “abundance”, the term of
identical meaning namely “absolute abundance” is used depending on the context to highlight
a contrast with “relative abundance”.

Catch rates are commonly used in fisheries science and stock assessments as indices of
relative change in population size (i.e. abundance) by assuming direct proportionality between
catch rate and population size, meaning for example that when catch rate doubles in one year
that population size also doubles. This inference about change in population size relies on the
absence of other influences on catch rates that may change over time. This is rarely the case,
however, and effective monitoring of marine stocks for sustainability management of a fishery
requires study of other potential influences on catch rates. Such potential influences may
change what is known as “catchability” (Hilborn and Walters, 1992; Arreguin-Sanchez, 1996)
because they alter how easily, or efficiently, animals are caught. Catch rates are often regressed
against available data sources that are assumed to reflect different components of catchability,
and when time is represented as an additional independent variable such regressions are known
as catch rate standardizations. However, catch rate standardization informs only on relative
changes in abundance, whereas if data on the total amount of catch or effort is considered in
combination with catch rate, models that attempt to estimate the absolute level of abundance,
such as biomass dynamics, delay-difference, and depletion models (Hilborn and Walters, 1992)



can be applied. Catch rate standardization, as well as several absolute abundance models of
relevance to this thesis, are described in the literature review further below.

The SZRLF and the WZRLF, apart from being spatially contiguous and fished using similar
fishing gear, are also broadly similar in terms of both commercial fishery management and
lobster stock attributes (Linnane et al., 2010; Plaganyi et al., 2018), although the total
commercial catch from the SZRLF is several times larger than from the WZRLF (in 2014, 1244
t versus 325 t). These fisheries have closely related lobster recruitment processes (Linnane et
al., 2010, 2014; Hinojosa et al., 2017). Recreational and indigenous fisheries constitute a
relatively minor (< 5%) fraction of total catch for both the SZRLF and the WZRLF (Plaganyi
et al., 2018). The commercial sectors of the SZRLF and the WZRLF are similar in terms of
gear limitations, temporal closures (SZRLF June-September; WZRLF females June to mid-
November and males mid-September to mid-November), minimum legal size limits (SZRLF
98.5 mm CL; WZRLF females 105 mm and males 110 mm), protection of spawning females,
and the use of yearly Total Allowable Commercial Catch (TACC) with individual transferable
quota (ITQ) (PIRSA, 2013; Linnane et al., 2017; VFA, 2017; VSG, 2017). Catch is recorded
both in terms of mass (kg) and number of “landed” lobsters (live, non-spawning, legal sized)
in both fisheries.



Summary of paper objectives

This work is a “thesis by publication". The three main papers were the result of co-authorship,
with myself as primary author having produced the bulk (~ 90%) of the conception and
development of the material. The first and third papers were published in scientific journals as
detailed below, and involved studies on respectively the abiotic catchability and absolute
abundance of the lobster stock in South Australia’s SZRLF. The second paper focusses on the
estimation of relative abundance of the lobster stock in Victoria’s WZRLF, and is currently
submitted and under review.

Paper One: Feenstra, J., McGarvey, R., Linnane, A., Punt, A.E., Bean, N., 2014. Environmental
influences on daily commercial catch rates of South Australia’s southern rock lobster (Jasus
edwardsii). Fish. Oceanogr. 23, 362-374.

Abiotic environmental influences have been shown in studies on a variety of lobster species to
have had a substantial impact on trends in commercial catch rates. The study presented in this
paper had the aim of determining the extent to which environmental factors, for which we
possess data, may be impacting on daily catch rates of southern rock lobster (Jasus edwardsii)
in the SZRLF by inducing non-stationarity in catchability. A multivariate weighted linear
regression was applied, involving environmental data sources as covariates and total potlifts to
scale the variance given the highly variable levels of daily fishing effort. The covariates used
in the analyses were bottom water temperature, wave height and period, moon phase, wind
stress, and sea surface height. In addition to reporting on the proportion of variance explained
by the environmental factors, and the impact on trend in catch rates, the study determined
several qualitative outcomes regarding the nature of the influences on catch rates that were not
previously reported in the literature for southern rock lobster.

Paper Two: Feenstra, J., McGarvey, R., Linnane, A., Haddon, M., Matthew, J., Punt, AE.
Impacts on CPUE from vessel fleet composition changes in an Australian lobster (Jasus
edwardsii) fishery. Submitted to New Zealand Journal of Marine and Freshwater Research.
(Under review.)

Generalized linear modelling was used to estimate standardized catch rates for the southern
rock lobster (Jasus edwardsii) stock of the WZRLF, and to determine the direction and extent
of induced trend in catchability due to the dynamics of vessel entry and exit into the fishery
over time. In particular, less efficient vessels exiting over time can induce an upward bias in
the yearly trend of nominal (raw) catch rates, resulting in an overly optimistic indication of the
trend in relative abundance that may lead to overexploitation of the stock. The underlying
mechanisms of vessel fleet dynamics were investigated, and results discussed including in
relation to the influence on the TACC and ITQ management. Several diagnostic indices were
created to assist in quantifying discrepancies between trends in nominal and standardized catch
rates.

Paper Three: Feenstra, J., Punt, AE., McGarvey, R. 2017. Inferring absolute recruitment and
legal size population numbers of southern rock lobster (Jasus edwardsii) in South Australia's
Southern Zone fishery using extended forms of depletion modelling. Fisheries Research 191:
164-178.

An extension of the Leslie-Davis depletion model was developed, referred to here as EDM
(extended depletion model), and applied to the SZRLF, providing a new and simple approach
to stock assessment for this resource. It produces estimates for all years of absolute exploitable
abundance as well as the number of recruiting animals to the fishery. EDM achieves this by




simultaneously estimating recruitment for all years, which involves combining features of
population dynamics from classic within-year depletion models and between-years delay-
difference models. EDM requires total fishery catch in number over a fishing year, but monthly
catch rate data for only part of the year (for the SZRLF during three months in peak fishing
season) when no recruitment and constant catchability are assumed. It neither requires
assumptions about catchability, nor the availability of fishing effort data, for the rest of the
fishing year. A hybrid model (EDM-CSA) was developed that combines EDM and catch-
survey analysis (CSA), expanding EDM by fitting to a yearly recruitment index based on
discarded undersize lobsters, which unlike CSA does not require a catchability ratio of legal-
size to undersize animals to be assumed a priori. Abundance and recruitment estimates from
EDM and EDM-CSA were compared with estimates from a more complex, but data hungry,
length-based integrated stock assessment model (LenMod). Further outcomes using the EDM
framework included the development of a statistical test that checks the validity of the
assumption of constant catchability across years, and a generalization of EDM to allow
modelling of non-linearity in the CPUE-abundance relationship such as hyperstability. These
modelling tools were used to analyse the problematic discrepancy between trend in nominal
commercial catch rate and the fishery-independent survey measurements of relative abundance
over 2008-2014.



Literature review

Modelling of relative abundance

Catchability and trend in catch rate

Catchability can be defined in terms of the proportion of a population of fish that is caught by
a unit of fishing effort (Paloheimo and Dickie, 1964; Ricker, 1975). Hence, for "E" units of
fishing effort at time "t" (day, month, or year), g*E(t)=C(t)/N(t), where "q" is catchability, "C"
is catch, "N" is population size (abundance). Rearranging the aforementioned equation, we
have CPUE(t) = C(t)/E(t) = g*N(t), noting that this assumes that CPUE data are directly and
linearly proportional to abundance, with catchability as the constant of proportionality.

The above assumes that catchability is stationary. However, Ricker (1975) noted that
catchability often varies over time, and that when the source of that variability is not accounted
for in fisheries models, it is likely to be the single most important issue to impact stock
assessments. Non-stationarity in catchability can be modelled as the product of separable
factors informed by time series of measured data on various sources of influence. This basic
multiplicative model for CPUE states that catchability components are assumed to impact
CPUE independently of each other, and from abundance, the latter being scaled by each of the
catchability components.

The multiplicative model of CPUE is often assumed when conducting a process known as
"catch rate standardization", typically involving CPUE data regressed on various covariates
that are assumed to relate to catchability, and with an independent variable for time assumed
to represent relative abundance (Quinn and Deriso, 1999; Maunder and Punt, 2004). CPUE
standardization has the aim of estimating and presenting the above mentioned time variable.
Similarly, the extent to which trends and variability in CPUE data are explained by the various
sources of catchability is also of interest as part of CPUE standardization. In contrast to
standardized CPUE, a CPUE data index that is based directly on the catch and effort data (e.qg.
sum of catch divided by sum of effort) is sometimes referred to as “raw” or “nominal CPUE.

Since CPUE, ideally, is desired to be an unbiased index for relative abundance over time,
usually by year, CPUE standardization models often estimate a yearly trend as a series of
estimated coefficients (one per year), referred to as the “year effect”, using a separate variable
from the other quantities that are intended to represent components of catchability. Each of the
coefficients of the year effect have a value relative to a common “reference” or “base” year
that is assumed to have a coefficient value of 0 on the log-scale to avoid parameter
confounding, this being so for log-linear regression models with an independent intercept
parameter (Maunder and Punt, 2004). Similarly, covariate data for catchability may be
modelled as discrete variables (e.g. spatial fishing block, fishing vessel identifier), with each
covariate variable having parameters estimated relative to a reference category of value 0 (e.g.
a particular block or vessel). Covariate data on catchability may also be continuous, such as
temperature recorded in degrees Celsius, with the estimated parameter being the slope of the
CPUE response to changes in the covariate. Hence, the concept of catchability in CPUE
standardization is different than in fisheries population dynamics models (see further below)
in that only relative measures of catchability and abundance are represented, the absolute
values of these two quantities being unavoidably confounded with their product represented by
the independent intercept parameter.



As a simple demonstration of the potential benefit of including covariate data suppose there
exists a fishery that consists of only two vessels (1 and 2) and where catchability for vessel 1
IS twice that of vessel 2. If in one year vessel 2 fishes with only half as much effort as vessel 1
when in the previous year they fished with equal effort, and supposing that there has been no
change in abundance between those two years, then the yearly CPUE statistic has nevertheless
increased by 11%. Maunder and Punt (2004) provide an illustration of a similar example for a
two-fisher fishery. Inclusion of fishing record data at the resolution of vessel-by-trip means
that in the process of CPUE standardization, which is typically carried out by regression,
assuming a given form of error in the dependent variable (CPUE), the changing levels of
participation by the vessels is accounted for and separated from the trend in the year factor
(Bentley et al., 2012).

Two error distributions for CPUE data that are commonly used, when the multiplicative
model of CPUE is assumed, are the lognormal and the gamma distributions. Lognormal errors
are modelled using multivariate linear regression on the log-transformed CPUE data values.
Gamma errors can be modelled using Generalized Linear Models (GLMs), often with a log-
link function connecting the expected (mean) CPUE with a linear combination of covariate
terms (McCullagh and Nelder, 1989; Maunder and Punt, 2004; Venables and Dichmont, 2004).
In both error models, the standard deviation of the errors is assumed to be proportional to mean
CPUE, unlike normally distributed error (i.e. constant variance with mean), which is often
unreasonable for CPUE data.

Interactions between time and other factors in the model are possible, and represent a
different slope for the response of CPUE to change in temperature in different years, or a
different response intercept parameter for each spatial fishing block in different years (i.e.
separate time trend per spatial block). However, interactions with year are often avoided when
standardizing CPUE given difficulties with interpreting the index of yearly relative abundance
that is primarily sought (Maunder and Punt, 2004; Wilberg et al., 2010). Interactions between
variables other than year in a CPUE standardization, such as between those representing
different sources of catchability, do not present such problems.

Non-linear dependence of CPUE on catchability is implicitly captured in the case of
covariate data that may be reported in categorical units, but that are naturally ordered (e.g.
depth in units of 10 m), since each individual category, also known as a "level” of the covariate,
may vary independently from other levels though relative to a common reference level as noted
above. Similarly, the use of separate year levels is an example of how non-linear trend in time
of abundance can be captured. It is possible to either convert a continuous explanatory variable
into a categorical variable divided into appropriate levels (Maunder and Punt, 2004; Su et al.,
2008), or less arbitrarily, use a class of model known as GAM, or generalized additive model
(Venables and Dichmont, 2004; Wood, 2006) to model general non-linear dependence of
CPUE on sources of catchability. GAMs make explicit the determination of the shape of the
non-linear response of CPUE.

Environmental factors

Catch rates of crustaceans in commercial fisheries can be strongly affected by extreme ambient
environmental conditions that may directly impact abundance. However, what constitutes
extreme conditions is specific to a species and fishery, and can occur over a narrow range for
a given environmental variable. For example, Zisserson and Cook (2017) determined that for
snow crab on the western Scotian Shelf in the southernmost snow crab fishery in the Atlantic
Ocean, the population had undergone substantial mortality over December 2012 to February
2013 along with sharp drops in CPUE, as a result of unusually elevated bottom water



temperatures ranging between 7 °C and 10 °C. Given that snow crab are cold-water-adapted
over -1 to +6 °C, the authors linked this to experimental studies which showed that exposure
of snow crab to those elevated temperatures for more than 21 days led to negative metabolic
states. Similarly, Pearce and Balcom (2005) reported increased mortality of American lobster
for the Long Island Sound fishery, concluding that this was due to above average water
temperatures in 1999 placing additional stress on animals that were already diseased from
parasite infections. In contrast, Mills et al. (2013) reported on anomalous warming events in
2012 that increased the abundance of legal size American lobster in the fisheries of the
northeast Atlantic Ocean as a result of increased growth rates. Hence, given that crustacean
mortality events may result from unusual changes in ambient natural conditions, it is not too
extreme an inference to suggest that at somewhat less unusual levels of environmental change
animals may not die but merely alter their behaviour and in so doing alter their catchability.

Correlation between environmental variables and CPUE can depend on the temporal scale
of the analysis, with the finer scales more likely to be impacted directly by catchability factors
in contrast to growth and recruitment (Koeller, 1999). Paper one in this thesis is a study of the
impacts on daily CPUE of the SZRLF by environmental variables for which data were available
at the time of the study, namely bottom water temperature, wave height and period, moon
phase, wind stress, and sea surface height. Despite spanning the period 1998-2008, the seasons
2003-2005 were not modelled due to lack of covariate data (mainly temperature), and similarly
so for some months during the rest of 1998-2008 as detailed in Paper One, leaving 1,258 days
in the analysis. The main methods of the SZRLF study were also applied to a similar but smaller
data set for the WZRLF, and results reported in Paper One. The literature on crustacean
fisheries indicates that catchability can be impacted by the environmental factors available in
the SZRLF study of Paper One, as will be alluded to below. However, given that regression
models do not indicate causes for estimated effect outcomes, and available environmental
covariates typically are proxies for more direct factors influencing animal behaviour that may
interact with other (including unmeasured) factors, inferences about reasons for the estimated
effects are necessarily likely to be speculative to some extent.

Even for water temperature, which is perhaps a more direct measure available on a lobster’s
ambient environment, the CPUE response may be qualitatively different for different studies
on the same species. For example, Watson and Jury (2013) studying American lobster found
that most studies reported a positive relationship between temperature and CPUE (the earliest
being McLeese and Wilder, 1958) and which often was explained in terms of heightened
lobster activity and metabolism with increased temperatures. They also noted some studies
report a negative temperature-CPUE relationship (Courchene and Stokesbury, 2011) or no
conclusive relationship (Jury, 1999), and they suggested that these three different types of
outcomes might be due to different temperature ranges being studied by different researchers.
They indicated that the temperature-CPUE relationship is more likely to be positive, nil, or
negative, in response to respectively colder, intermediate, or higher temperatures.

Another potential temperature-metabolism mechanism, and one that is proposed in Paper
One, is that of aerobic scope for activity (SFA) which was shown for southern rock lobster in
the laboratory to peak around the acclimatized temperature (13 °C) and to reduce on either side
of that temperature (Crear and Forteath, 2000). Given that at higher values of SFA a lobster
can utilize its metabolism for more work (Crear and Forteath, 2000), it is hypothesized in Paper
One that a lobster’s capacity to actively forage for food may hence be optimal around the
acclimatized temperature in a fishery. Note that the SFA hypothesis is not incompatible with
the conclusions by Watson and Jury (2013) given that the acclimatized temperature may differ
between studies. However, de Lestang et al. (2009) for western rock lobster, reported that
catchability rose with increasing temperature, but only when animals were in their sedentary
phase and not when they were migrating. They suggested that when animals are sedentary a



small increase in temperature may lead to increased appetite and consequently foraging
activity, which then increases the pot encounter rate, while animals that are migrating have pre-
existing high levels of pot encounters irrespective of temperature. Ziegler et al. (2004)
modelled seasonal variation in catchability of southern rock lobster in a scientific reserve in
south-east Tasmania, Australia, as a sinusoidal function of water temperature and incorporating
proportions of lobsters moulting or mating. Results from that analysis indicated a positive
dependency of catchability on temperature, except for females during their moulting period.

Stoner (2004) reviewed the environmental literature on fish regarding feeding behaviour in
relation to baited fishing gear, and noted that turbidity and light levels can impact directly on
sensory abilities of animals, which in turn can affect activity levels, and feeding capability and
motivation. He further notes that, for example, chemical cues stimulate fish to move towards
bait, which can be impacted by turbidity, but then when the fish approaches closer to the bait,
vision may become more important. Fishes living in turbid waters or in deep shelf
environments may have low light thresholds, but catchability will decrease when light levels
fall below such thresholds (Stoner, 2004). For the SZRLF, concerning southern rock lobster,
fishers anecdotally report improved catch rates on days either just prior to full moon or just
after large swells, and these hypotheses were investigated in Paper One.

Aside from some degree of increased turbulence during high swells, in the aftermath of
such swells sediments are stirred into the water column along the South Australian continental
shelf (Middleton and Bye, 2007). Srisurichan et al. (2005) found increased catch rates of
western rock lobster on days after high swells and attributed this to increased food availability
and protection from predators. Cobb (1995) suggested that crustaceans have more difficulty
following bait odour trails during periods of turbulence and greater fluid velocities, but Major
and Jeffs (2017) determined that the effect of this strongly varies between species of
crustaceans and depends on hydrodynamics. Ihde et al. (2006) found no difference in sublegal
catch rates of southern rock lobster between new moon and full moon in south-eastern
Tasmania, but higher catch rates during the new moon have been reported for other spiny
lobsters (Morgan, 1974; Yamakawa et al., 1994; Srisurichan et al., 2005). Movements of the
Japanese spiny lobster displays a strong diurnal pattern, being predominantly active during the
hours of the night, but it was found that lobster activity was suppressed under controlled
conditions at night if the brightness level was increased above a threshold value (Nagata and
Koike, 1997). These authors implied that these conditions could potentially be met at night
around full moon at 15 meters depth around Shima Peninsula, and noted that the latter’s lobster
fisheries reported little catch on days of the full moon. However, for southern rock lobster
studies have determined little change in lobster activity in relation to modified light conditions
(MacDiarmid et al., 1991; Williams and Dean, 1989). Given that effects of both light level and
turbidity on catchability conceivably may vary with depth of the lobsters, Paper One included
sensitivity analyses by running models separately for inshore (<= 40 m) and offshore (> 40 m),
and the impact of cloud cover was also investigated.

Drinkwater (2006) reported that for the eastern Canadian fishery of American lobster,
which experiences ocean upwelling and downwelling, wind affects catchability primarily due
to its influence on bottom water temperatures, consistent with the classical Ekman response.
That conclusion is relevant to the SZRLF as it is also subject to upwelling and downwelling
(Schahinger, 1987; Middleton et al., 2007). Hence, it may be predicted that bottom water
temperature will have a stronger influence than wind on CPUE. This was investigated in Paper
One for which wind was included in the starting model prior to backward model selection.
Exploratory data analysis found that there was a noisy but linear relationship between the
covariates for alongshore wind stress and bottom water temperature, which however involved
only modest correlation (-0.32; P < 0.001). The latter outcome suggests little associated
collinearity concerning the wind and temperature covariates. Further regarding collinearity, the



exploratory data analysis found that the maximum correlation between the covariates was
between Sea Surface Height and temperature, with both Pearson and Spearman coefficients of
+0.53.

There exists a potential problem for the SZRLF concerning interpretation of the estimated
temperature effect as being due to catchability rather than abundance. As explained in Paper
One, the SZRLF environment features seasonality of bottom water temperature within a year
that partly coincides with seasonality of lobster abundance and vulnerability, these being driven
by changes in growth and population depletion (due to fishing). This suggests the possibility
of confounding in the CPUE standardization between the estimated categorical ‘month’ effect
(proxy for seasonal abundance) and the temperature effect, something that is not an issue for
moon phase and wave effects. Hence, the ‘month’ effect may reflect some of the influence on
CPUE of temperature, or the temperature effect may partly reflect population dynamics.
Similarly, the ‘month’ effect potentially may be inadequate to account for finer temporal scale
population dynamics. Paper One considered these aspects of confounding and explored it using
sensitivity analyses. ldeally, such problems would be minimized in a context of classic
controlled experiments in which levels of some factors are varied in relation to other factors.
However, the very nature of exploited wild populations means such controlled conditions rarely
are possible. Alternatively, use of a series of research surveys in a no-fishing area, involving
sampled locations with measures of absolute abundance, provides another potential means to
model dependency of catchability on water temperature (Ziegler et al, 2004).

Note that daily totals of potlifts varied substantially for the SZRLF data used in Paper One,
with a 10" percentile value of 500 potlifts, 25" percentile of 2,400 potlifts, median of 7,000
potlifts, and 75" percentile of 10,000 potlifts, unlike at coarser levels of temporal resolution
such as month or year which varied much less. This high level of day-to-day variability in effort
leads to high variability in the precision of CPUE, with the variance of the errors in CPUE
scaling inversely with levels of effort. This follows sample size considerations (Cochran,
1977), and means that CPUE data is likely to vary much more for a day involving little fishing
than on a day with normal levels of fishing, regardless of whether these two days differ much
in their covariates. As explained in Paper One, this was accommodated in the multivariate
weighted linear regression analysis using a variance weight that is a power function of potlifts.

Fishery factors

Given the relatively minor estimated impact of environmental influences on CPUE for both the
SZRLF and the WZRLF (see Paper One, and Conclusion), a reasonable question is to wonder
whether factors such as changing vessel composition of the fishing fleet over time impacts
CPUE more. Previously, a CPUE standardization on commercial fisheries data for the WZRLF
by Walker et al. (2013) had, along with other variables, included a covariate that combined
information on vessel registration and fisher license into an alpha-numeric identifier. That
study, substantial and detailed as it was, did not focus on the extent to which vessel information
influenced the trend in relative abundance nor on the associated vessel entry-exit dynamics of
the fleet.

Paper Two studies the effects on CPUE trend over a long time frame (1978-2014) of a large
and diverse data set of vessel composition information on the WZRLF fleet. At the time of
writing Paper Two such data were not available for the SZRLF due to lack of an unambiguous
and up-to-date database key to track consistent vessel information over time. The simple
illustration provided above of a two-vessel fishery fleet is an example of a phenomenon
hypothesized to have occurred for substantial periods in the WZRLF, namely of an increasing
trend in net fleet catchability due to disproportional numbers of individual vessels of low



catchability (low fishing power or efficiency) exiting the fishery. This has been shown for many
other fisheries and species as being of importance when determining a more accurate trend of
relative abundance, including for crustacean fisheries - O’Neill and Leigh (2007) and Braccini
et al. (2012) for Australian eastern king prawn, and Eigaard and Munch-Petersen (2011) for
Danish northern shrimp. The mechanisms driving net increases in catchability of a fleet over
many Yyears can involve variously the rate of turnover of vessels of differing individual
catchabilities, technological improvements to individual vessels (Ye and Dennis, 2009; Bishop,
2006; Branch et al., 2006), and the existence of TACC/ITQ management (Branch et al., 2006;
Pascoe et al. 2013). These factors are further discussed in relation to CPUE standardization
results for the WZRLF in the Conclusion, while the possible existence and consequences of
technological changes to vessels having occurred in the WZRLF is discussed here further
below.

Bentley et al. (2012) found an effect on CPUE of New Zealand trevally due to changes in
fleet composition, and they developed a diagnostic index to assist exploration and identification
of covariates that influence the trend in catchability. They showed that such covariates may not
necessarily explain a large proportion of the variance in CPUE, but that those covariates do
show changes in their effort distribution over time. Bentley et al. (2012) calculated a yearly
“influence” index (denoted “I”) for a covariate in order to provide a measure of the impact on
the trend of nominal CPUE, from yearly changes in the distribution of effort among coefficients
of the covariate effect estimated in the CPUE standardization. For example, for the vessel effect
(Vessel), index “I” is calculated in a year as the exponential of the weighted (by record count)
mean of estimated Vessel coefficients normalized to 1 across the years. For a given year, the
larger the value of “I” the greater the net contribution by Vessel to the value of nominal CPUE
compared to its net contribution in a year with a lower “I”” value. Bentley et al. (2012) used a
figure showing combined coefficient—distribution—influence information (“CDI”) for each
covariate. However, the net contribution of Vessel to the trend in total catchability is not easily
apparent from plots, and another type of index for graphing is suggested in Paper Two and
described next.

The absolute value of “I”” for two covariates in a given year do not compare directly due to
their separate normalization factors. However, ratios between years for a given covariate do
compare appropriately with the same ratio for another covariate (normalization constants
cancel). Similarly, for a given year, the product of the “I” for each covariate all multiply
together to provide a valid “I” for total catchability (due to the same number of records having
been used in the normalization constants of each covariate). Since total catchability depends
on all the covariates in a model, it is useful to plot on the same graph “I”” for the covariate, “I”
for total catchability, and “I” for total catchability excluding the covariate to discern
contribution to trend in total catchability by a particular covariate of interest. If desired, this
approach can be extended to compare two covariates simultaneously in relation to total
catchability, by adding the “I”” of an additional covariate to the plot and adjusting the “I” series
for the “excluding” case.

A further index is introduced in Paper Two that quantifies the direction and extent of yearly
changes in net total catchability. This index is constructed (see “V” in equation 2 of Paper Two)
entirely using nominal and standardized CPUE, with the latter mean-scaled to nominal CPUE,
which thus allows proportionate differences between two years in nominal and standardized
CPUE to reflect changes in the absolute size of catchability. When “V” is shown on the same
graph as the nominal and standardized CPUE series, it may be used as a tool to help characterize
discrepancies between nominal and standardized CPUE more easily, which can be of interest
in stock assessments (Maunder and Punt, 2004; Maunder and Punt, 2013). “V” will be impacted
by high noise levels in the nominal CPUE series, although for a commercial fishery with many
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thousands of data points for each year such levels of noise may be less common (and may be
discerned from the errors on standardized CPUE).

Regarding technology uptake by individual vessels, it is probable that this occurred for the
WZRLF, at least up to the mid-1990s, in terms of upgrades to on-board equipment such as
GPS. Catchability for spiny rock lobsters in the Western Australian rock lobster fishery has
been estimated to have increased over the years prior to 1995 by between 1-3% per year due to
adoption by individual vessels of echo sounders and GPS (Fernandez et al., 1997). Similarly,
another study on the same species by de Lestang et al. (2009) found a 0.5-2.2% increase in
fishing power over the period 1986-2005. The Australian northern prawn fishery is another
example of an Australian crustacean fishery in which vessels have undergone substantial
changes in fishing power due to the adoption of on-board equipment (GPS, plotters) (Robins
et al. 1998).

The consequences for standardization of CPUE of individual vessels adopting better
technology include a positive bias in the estimated change of relative abundance over time (Ye
and Dennis, 2009). It is separate from the effects of changes in net vessel fleet composition
because these relate only to differences in catchability among vessels (Bishop, 2006). Although
the impact of bias in individual vessels may lessen to an extent when turnover of vessels is
high, such as in the WZRLF (over 1978-2014, most reside < 10 years, few > 20 years), because
vessels exist in the fishery for less time, and so accumulation of inaccuracy per vessel is lower.
Models that incorporate pertinent covariate data on vessel specific attributes are best equipped
to capture changes in attributes of individual vessels (Bishop, 2006; Ye and Dennis, 2009).
Such data were unfortunately not available for the WZRLF.

Caveats on the estimation of catchability and abundance

The trend in relative abundance inferred by CPUE standardization, and the absolute abundance
levels estimated by population dynamics models (see below), only relate to the animals that
can be directly accessed by the fishing gear, with such abundance also known as exploitable,
vulnerable, or available abundance. For example, a fraction of animals across a certain size
range may be inaccessible by fishing gear, or alternatively the biology of an animal at certain
times may mean reduced movements with hypothesized lower probability of encountering gear
(Miller, 1990) such as during moulting by females later in the fishing season for southern rock
lobster (Ziegler et al., 2004). Hence, the estimated catchability is strictly a constant of
proportionality between CPUE and exploitable abundance, rather than between CPUE and total
abundance (Maunder et al., 2006). This suggests, for example, that yearly nominal CPUE can
change between years merely due to a change in fishing effort from the middle or later in the
year to earlier in the year, if the proportion of animals that is vulnerable is different earlier
compared to later in the year (Bentley et al., 2012). In this case, inferences about changes in
relative abundance may be misleading, but standardized CPUE should correctly indicate the
trend in abundance with year, assuming that a factor for month is included in the
standardization, and no unmeasured influences exist that varies within a year independently
from exploitable abundance.

Implicit assumptions of the CPUE standardization models, and for many population
models, exist in regard to the spatial dimension of analyses (Paloheimo and Dickie, 1964;
Hilborn and Walters, 1992; Quinn and Deriso, 1999; Walters, 2003; Maunder et al., 2006),
including most fundamentally that the total spatial extent of the population under study does
not change over time and that it is closed to immigration and emigration. Similarly, inferences
regarding estimated relative abundance at the zone scale often assume that the spatial
distribution does not change over time in levels for one or more of the following: fishing effort,
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animal abundance, or catchability. For example, in CPUE standardization a factor may exist in
the model for fishing block, but if that is assumed to represent spatially-varying catchability
then it must be assumed that animal abundance is spatially uniform given that in CPUE
standardization varying amounts fishing effort is the norm rather than the exception. Inclusion
of a spatial block covariate in a CPUE standardization may only partially account for spatial
heterogeneity in catchability given that in some fisheries the reporting blocks represent a large
spatial extent and fisher movement within which is not captured by the data (e.g. SZRLF, up
to season 2016).

Space-time assumptions are often unmet given both the nature of the fishing process and
natural population dynamics, but may be worth identifying, explaining, and attempting to
model. For example, if a fishing zone initially had relatively uniform lobster abundance, after
which fishers concentrated effort in a specific subsection of that fishing zone while ignoring
other areas in the fishing zone that also contain animals, then over time CPUE for the whole
zone may decrease more rapidly than abundance. This is due to the zonal CPUE statistic being
based on a part of the whole fishing zone that suffers a disproportionate degree of depletion,
and this phenomenon is an example of hyperdepletion (Hilborn and Walters, 1992; Arreguin-
Sanchez, 1996; Harley et al., 2001). If after some time fishers shift most effort into other areas
of the fishing zone that meanwhile increased their lobster abundance due to reduced levels of
fishing, then this may give rise to hyperstability of CPUE (Hilborn and Walters, 1992;
Arreguin-Sanchez, 1996; Harley et al., 2001) since CPUE will increase more rapidly than
abundance for the whole zone.

Density dependence in catchability can arise from natural competition between animals
around fishing gear (Stone, 2004) and can lead to hyperdepletion or hyperstability of CPUE.
For example, if smaller lobsters are deterred from entering pots due to the presence of larger
lobsters near those pots (Frusher and Hoenig, 2001; Ihde et al., 2006), then this may lead to
hyperstability if it is assumed that CPUE decreases less rapidly than abundance due to
catchability increasing with decreasing abundance. That is, at lower levels of abundance it is
assumed that there is less competition around pots thus allowing some lobsters to be caught
that would not have been when abundance was higher.

One way in which hyperdepletion and hyperstability has been accounted for in population
dynamics models is to model CPUE(t) as g*(N(t)"beta), where “t” is time, “N” is abundance,
“q” is a stationary catchability parameter, and “beta” is a new parameter to quantify non-
linearity between CPUE and abundance. Note that CPUE(t) = g*(N(t)"(beta-1))*N(t) and
hence this models non-linear density dependence of catchability, with hyperdepletion indicated
when beta is estimated > 1, and hyperstability when < 1 (Hilborn and Walters, 1992; Wilberg
et al., 2010). The parameter beta can be difficult to estimate without independent information
on relative abundance. However it is important to account for density dependence if it exists,
or at least determine the direction and extent of bias from not accounting for it, as it will mean
the risk of stock collapse is underestimated (hyperstability) or alternatively the TACC may be
set too conservatively (low) (hyperdepletion) in fisheries linking the TACC to CPUE (e.g. the
SZRLF). Studies have indicated the presence of the hyperstability form of density dependent
catchability for southern rock lobster the fisheries off Tasmania (Ziegler et al., 2003) and New
Zealand (Haist et al., 2009), and in South Australia's northern zone (Linnane et al., 2010). Paper
Three includes an analysis aimed at determining the extent of density dependence in
catchability for South Australia's southern zone.

Modelling of absolute abundance
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Models for CPUE standardization, aside from CPUE data, incorporate no explicit catch data
on the total numbers or weight of all the animals removed from a population being fished.
Hence, such models do not involve equations to represent the natural and fishing history of an
exploited population, and they cannot estimate total exploitable abundance. Models exist that
are “catch-conditioned”, meaning that they model depletion of a population by removal of total
catch that is assumed to be without error and hence is not fitted. Note that in the case of total
catch this needs to include more than all animals landed by the commercial fishery, but
additionally requires (if these exist) catch from the recreational fishery, as well as animals
caught but discarded as dead. The “EDM” and “LenMod” models described further below,
which were applied to the SZRLF data, are catch-conditioned and incorporate both commercial
dead discards and recreational catch.

Biomass dynamics models

Biomass dynamics models, also known as surplus production models, use total catch and CPUE
provided in weight of animals (Schaefer 1954, 1957; Polacheck et al. 1993; Breen and
Kendrick, 1998; Smith and Addison, 2003). A discrete equation form for such models is,
B(t+1) = B(t) + g(B(t)) - C(t), where "B" is exploitable biomass at time "t", "C" is total catch
in weight, and "g" models the production of new biomass as a function of existing biomass
alone.

Note that this model formulation does not allow recruitment to be estimated explicitly, and
instead models population reproduction along with growth and natural mortality, using the
surplus production function "g" (Smith and Addison, 2003). Population stability is achieved
when a natural increase in biomass is balanced by human exploitation as catch in weight.
Outcomes vary greatly depending on the form of the production function (Maunder, 2003) and
many biomass dynamics models ignore any biomass-independent yearly variation in
recruitment. Estimation outcomes can be very sensitive to having enough contrast in the
abundance index for which CPUE is often employed. Ideally data periods fitted should include
both high and low CPUE levels to enable the production function to be estimated (Hilborn and
Walters, 1992).

Delay-difference models

Delay-difference models use total catch and CPUE provided as either in weight or numbers of
animals (Deriso, 1980; Schnute 1985, 1987; Smith and Addison, 2003). In terms of discrete
time and population (rather than biomass), this involves a spatially-closed population birth-
death equation where the population is the stock of exploitable animals, births are recruits to
that population, and deaths are represented by two components namely animals that died due
fishing and those that died naturally (old-age, predators). Symbolically, N(t+1) = N(t) + R(t) -
C(t) — M(t), where "N" is exploitable abundance at time "t", “R” is the number of recruits
(“recruitment”), "C" is total catch in number, and “M” is the number of animals that die
naturally (often applied as a known natural survival factor to “N”). If biomass is to be estimated
then the data needs to be in terms of weight, and the birth component would involve an
additional term that is proportional to biomass representing growth of fishable animals to
heavier body weights, involving further forms of parameterization (Quinn and Deriso, 1999).
Recruitment can be estimated directly as an estimated parameter representing a pulse
addition to the population at time “t”, or else using an assumed “‘stock-recruitment” function
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(Deriso, 1980). Note that, considering only the former approach and the case of "knife-edged”
fisheries (involving a minimum legal size limit) modelled using yearly time-steps, the
estimated recruitment is in reality composed of an aggregation of undersized animals in various
age groups of the previous year that grew above the legal size limit by the start of the current
year. In general, these models require auxiliary information on natural mortality, recruitment
and/or growth for realistic results (Quinn and Deriso, 1999; Smith and Addison, 2003).

CSA (Catch-survey analysis)

CSA is an example of a delay-difference model that, additional to CPUE and total catch in
numbers of animals, requires an index of recruitment to be fit. CSA originated from the work
of Collie and Sissenwine (1983), and since then modified versions of that model have been
applied to many crustacean species (Smith and Addison, 2003; Paper Three).

The population dynamics equation is N(t+1) = (N(t) + R(t))*exp(-M) - C(t), where "N",
“R”, “C” are as described for delay-difference models above, and “t” is in years. However, here
“M” is the yearly rate of natural mortality, and the appearance of “M” in the population
dynamics equation may be varied slightly according to the fraction into the year catch is
assumed to be taken. The basic implementation of CSA involves modelling mean CPUE as
“q*N(t)” where “q” is a stationary catchability parameter, and similarly the mean recruitment
index is recruitment as “qr*R(t)” where “qr” is another stationary catchability parameter. The
CPUE data and the recruitment index are fit simultaneously, assuming log-normally distributed
independent observation errors.

CSA is an example of what is known as an open system depletion model (Smith and
Addison, 2003) in that, unlike the more elementary within-year Leslie-Davis closed depletion
models (described further below), recruitment into the population is modelled. CSA fits to
yearly data simultaneously across multiple years, estimating recruitments in each of those years
and from which start-year abundances can be inferred. CSA requires relatively little data given
that it provides estimates of both recruitment and population size, and in particular it does not
need age or length composition data, which are more expensive to obtain and is less commonly
available. Cadrin (2000) compared CSA to biomass dynamics models, fitting both models to
simulated data, and found that CSA performed better than the latter under reasonable levels of
uncertainty in the data.

Note that CSA additionally requires an externally informed constraint on “q” and “qr”,
typically by fixing the ratio of these two parameters at a pre-specified value. The parameter
estimates from CSA are very sensitive to the value of the ratio of the catchability parameters
(Cadrin, 2000; Mesnil 2003, 2005).

Leslie-Davis depletion models

All model types described above have the following in common: their population dynamics are
yearly, a single (two for CSA) catchability parameter is estimated which is shared by all years,
and the model is fitted to data for all years simultaneously. An alternative class of model that
estimates start-period abundance, but not recruitment, are Leslie-Davis depletion models
(Leslie and Davis, 1939; Ricker, 1975), which are applied for periods within a year and
generally are not fit to multiple years of data simultaneously.

These models require CPUE and total catch at several times within a period during the year
for which it is assumed there is no recruitment or natural mortality, nor changes in catchability.
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As no natural mortality or recruitment is assumed (and no movement in or out of the study
area), these models are broadly known as closed system depletion models (Smith and Addison,
2003). The assumption of uniformity of catchability is in common with biomass dynamics and
delay-difference models. However, Leslie-Davis models are particularly sensitive to this
assumption (Miller and Mohn, 1993; Smith and Addison, 2003).

The Leslie-Davis depletion model utilizes the closed system condition by fitting to CPUE
data over several time steps for which exploitable abundance is modelled as a strictly
decreasing quantity due to animals being caught (rats in traps, for Leslie and Davis, 1939).
Hence, when abundance is plotted against cumulative catch the line is linear and decreasing,
and fitting to CPUE data occurs via a linear regression with cumulative catch as the covariate.
The magnitude of the slope provides the catchability parameter, with the ratio of the intercept
to the slope providing the value for initial abundance. Note that if additionally it is assumed
that there is no growth among animals in the exploitable population, then using total catch and
CPUE in weight of animals caught can be used to estimate initial exploitable biomass (instead
of abundance).

Depletion models, along with biomass dynamics models, are commonly used in data-
limited fisheries (Smith and Addison, 2003; Edwards et al., 2012). The requirement of
depletion models is that there is a period within a year for which no recruitment occurs to the
exploitable population may be reasonable for crustaceans as they grow only during discrete
periods in a year. For southern rock lobster fisheries, growth for individual lobsters occurs over
only a few weeks (Musgrove, 2000) and collectively occurs over a few specific months
(MacDiarmind, 1989) that varies slightly from fishery to fishery (Prescott et al., 1996;
McGarvey et al., 1999; Ziegler et al., 2004). Furthermore, southern rock lobster fisheries in
South Australia include a minimum legal size limit that is set high enough to protect the
majority of immature animals after accounting for rates of growth (McGarvey et al. 1999;
Linnane et al. 2008, 2017). Hence, for SZRLF’s southern rock lobster the process of
recruitment to the fishery can be considered to be primarily due to growth from undersize
lobsters, instead of occurring as instantaneous and direct entries into the fishery over the legal
size range. This latter observation is important for CSA and EDM-CSA (described below),
given these fit to recruitment index data that are assumed to be proportional to the population
of undersized animals.

EDM (Extended Depletion Model)

EDM was developed in Paper Three with the aim of allowing yearly recruitments, as well as
start-year exploitable abundance to be estimated, using only total catch and CPUE in numbers
of animals and a value for the natural mortality rate. It uses the Leslie-Davis depletion model’s
capacity to infer information on start-period abundance from data on within-year depletions,
and combines this with the information on recruitment that is inherent in the between-year
population dynamics, which is typical of delay-difference models. EDM needs to fit to CPUE
for only part of each available fishing year during which it makes the same assumptions as the
Leslie-Davis depletion model, and so for the rest of the fishing year it does not need data on
CPUE or total fishing effort nor assumptions on catchability. EDM was applied to the SZRLF
and the resulting recruitment and abundance estimates compared to those obtained from a more
sophisticated, but data hungry, integrated stock assessment model (LenMod, see below).

The literature indicates that there have been relatively few models that estimate yearly
recruitment with such minimal data as EDM. As noted further above, delay-difference models
can achieve similar results, but in practice require either additional demographic information
or need to be fit to auxiliary data sources as for example by CSA. Studies on alternative multi-
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year depletion models may deliver similar outcomes to EDM, but differ crucially in requiring
variously two or more of the following conditions to exist for the full period of fishing within
each year, namely stationary catchability parameters, CPUE or catch be fit, effort data to exist,
or no recruitment to occur (Bailey and Elner, 1989; Polovina et al., 1995; Gonzalez-Yanez et
al., 2006; Ehrhardt and Deleveaux, 2009; Robert et al., 2010; Babcock et al., 2015; Roa-Ureta,
2015). Robert et al. (2010) and Babcock et al. (2015) applied Bayesian multi-year depletion
models that link catchability between years via drawing it from a random distribution specified
by priors. Robert et al. (2010) modelled catchability as a random walk process to capture
autocorrelations and gradual changes between years, but required a priori values for a vector
of proportions to assign in-season recruitments from an estimated yearly recruitment
parameter. More generally, under data-limited conditions Bayesian population dynamics
models potentially suffer from insufficiently “informative” priors on catchability, and when
this is the case maximum likelihood estimation should be used (Thorson and Cope, 2017).

Note that fitting the CPUE data simultaneously for all years means that EDM in common
with biomass dynamics and delay-difference models, gains a more robust estimate of
catchability than would be obtained from applying the Leslie-Davis model separately in each
year. Hence, if for only a few years there is high observation error, weak population depletion
(Magnusson and Hilborn, 2007), or within-year change in catchability, then the estimates of
recruitment and abundance may still be reasonable in those years, assuming that catchability is
well informed by the fits to the data in the other years. Conversely, if EDM is fit to only a few
years of available data then its estimates must become more sensitive in the same manner as
for Leslie-Davis models (Miller and Mohn, 1993; and further above). It is possible to estimate
whether catchability changes over time by fitting EDM to subsets of the data, and using the
likelihood ratio statistic as a test for significance of the variation. For the SZRLF fisheries-
independent CPUE data exists and was used in Paper Three to help interpret estimates from
EDM.

Two fundamental extensions of EDM were developed in Paper Three. One model is a
modification to EDM so that it can fit to a recruitment index, with the resultant model named
“EDM-CSA” to indicate it is a hybrid model between EDM and CSA. EDM-CSA thus
potentially benefits from more information on a fishery than EDM, at the cost of estimating
one additional parameter. However, unlike CSA it does not require an external constraint on
the ratio of catchabilities. For the SZRLF the recruitment index was based on discarded
undersize lobsters. Non-linear density-dependence of catch rates on abundance is a common
and serious problem as described further above. A generalized form of EDM was developed
that allows an additional parameter to be estimated in the CPUE-abundance relationship to
account for a degree of non-linearity, namely “beta” as per section “Caveats on the estimation
of catchability and abundance” in this Introduction.

Caveats on demographically aggregated models

The models described above involve population dynamics on a stock of animals aggregated
across length and sex attributes. That is, the stock that is modelled over time is the exploitable
abundance defined as the sum of the length-sex specific products of capture probability and
abundance. An assumption of uniform, though not necessarily maximum, length-sex
vulnerability is implicitly assumed by biomass dynamics, delay-difference, and depletion
models to maintain a consistent definition of exploitable abundance over time. If this
assumption is invalid then changes in the length-sex distribution of the population over time
will change the net vulnerability of the population and consequently exploitable abundance.
Hence, CPUE may change even if both the total abundance above legal size and the catchability
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do not change. That is, consider at time “t”, CPUE(t) = q(t)*N(t), where “q” is catchability that
is independent of “N” which is the exploitable abundance, then the latter may change directly
because of a change in demographic composition instead of a change in total catch or total
numbers recruiting above legal size. In practice this means that in population models that are
not resolved at a relevant demographic resolution, bias will be expressed in both catchability
and abundance-related parameters. One attempt to address this problem is to include the “beta”
form of non-linear CPUE observation equation described further above, but this will be
inadequate unless the beta parameter could be linked to external demographic information.
Note that these issues are separate to the problem described further above on caveats regarding
the effects on CPUE of changing levels of fishing effort within a year, which may occur even
if both length-sex vulnerability and length-sex population proportions remain uniform but for
which the level of catchability differs within a year.

This suggests a weakness of fishery models that do not quantify demographic
subcomponents of a population since the demography very likely does change over time as a
result of heterogeneity in recruitment and growth processes. Hence, the exploitable abundance
may change in ways not accounted for only by changing levels of total catch and recruitment,
and further, such changes may differ from changes that occur to total abundance (Maunder et
al., 2006).

Length-sex structured integrated models

Models that incorporate data on the length-sex demographic composition of the catch (in
addition to total catch and CPUE) can represent and estimate at the resolution of length-sex for
both total population and vulnerability. Hence, length-sex structured models can model
changes in exploitable abundance more realistically over time by quantifying change in the
length-sex structure of the population being fished (Punt et al., 2013). Provision of estimates
of total abundance, instead of only exploitable abundance, may be of interest when constructing
stock assessment indicators (Maunder et al., 2006; Linnane et al., 2017). However, unless a
model is also spatially structured (i.e. models sub-regions of a fishing zone), it relies on an
implicit assumption that the length-sex distribution of the population is homogeneous across
the total area fished whenever the spatial distribution of fishing effort changes. Yet, even with
inclusion of spatial sub-regions, when movement between the sub-regions is also modelled,
there can be a substantial problem of parameter confounding between mortality and movement
when associated parameters are estimated simultaneously (McGarvey et al., 2010).

Length-sex structure population models are examples of integrated models because they fit
to several sources of data simultaneously (Maunder and Punt, 2013; Punt et al., 2013). In the
case of length-sex structure models these include length-sex catch composition data that often
are sourced from survey samples such as is the case for SZRLF (Linnane et al., 2017). These
models, aside from accounting for mortality for individual length-sex classes, also incorporate
growth among individual length-sex classes using transition matrices, and their population
dynamics can be represented as (Punt et al., 2013): N(t) = X(t—1)*S(t—1)*N(t—1) + R(t), where
“N(t)” is a vector of total abundance (not exploitable abundance) by length-sex class at time
“t”, “X” 1s a length transition matrix that may be sex-specific, “S” is a diagonal matrix of
survival probabilities, and “R” is a vector of the number of recruiting animals. Total absolute
abundance at time “t” is then represented by the sum over length-sex classes, restricted to legal
size classes in "knife-edged™ fisheries. In catch-conditioned models the “S” matrix may be
implemented as the product of a natural survival factor (often fixed and non-specific by length-
sex) multiplied by a matrix 1-H(t) where “H” is a diagonal matrix of harvest fraction by length-
sex classes.
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A component in stock assessment reporting for the SZRLF involves outputs, such as
monthly total biomass above legal size and harvest fraction, from an integrated length-sex
structured model of the type described above, the implementation of which is referred to here
as “LenMod”. LenMod is based on the original model specifications as described by Punt and
Kennedy (1997), and has since been used in scientific studies (McGarvey et al., 2010, 2015)
and South Australian stock assessments (e.g. Linnane et al., 2017), undergoing various
modifications over the years. LenMod is catch-conditioned on total catch weight that includes
dead discarded lobsters and catch by the recreational fishery. The “X” length transition matrix
IS sex- and month-specific, with entries estimated externally using a growth model as described
by McGarvey and Feenstra (2001). The SZRLF fishing season starts in October of each
calendar year, and LenMod fits to monthly data available for each month over October-May
aggregated over the entire fishing zone. The CPUE observation equation models linear
proportionality to exploitable abundance, and separate catchability parameters are estimated
for each of the eight months, with separate sets estimated for the period before and since
inception of TACC (in season 1993). The version of LenMod that was used in Paper Three
(appendix B of McGarvey et al., 2015; online supplementary material B for Paper Three),was
non-spatial, estimated vulnerability by length-sex class as the product of a sex-specific logistic
function of length class and a month-specific vulnerability proportion by sex. Parameter
estimation is by maximum likelihood, and optimization was performed using Automatic
Differentiation Model Builder (ADMB) which is a C++ software environment that is
commonly used to optimize objective functions for fishery stock assessments in Australia and
the world (Fournier et al., 2012; Punt et al., 2013; Dichmont et al., 2016a, 2016b).
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ABSTRACT

The extent to which catchability of southern rock lob-
ster (Jasus edwardsii) due to short-term environmental
factors, rather than abundance, may be affecting legal-
size catch rates from the South Australian Southern
Zone rock lobster fishery was examined. Multivariate
weighted linear regression was applied to daily aggre-
gated commercial catch rates using several environ-
mental covariates in addition to year and month.
Model pruning via backward selection identified the
following variables as being significantly related to
catch rate: wave height and period, lagged wave
height, bottom temperature, moon phase, and a spatial
block index. These variables explained 7% of the total
variance in log-transformed daily catch rates and
another 84% was explained by month and year. A neg-
ative relationship was found between catch rate and
each of bottom temperature and same-day wave
height, while the relationships between catch rate and
days prior to full moon, and average wave height over
the past 3 days were positive.
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INTRODUCTION

The southern rock lobster (Jasus edwardsii) fishery is
the highest valued wild commercial fishery in South
Australia being worth $81.3 million from 1557 tonnes
of production for the 2010/2011 financial year (Knight
and Tsolos, 2012). The fishery is divided into two
management regions (Fig. 1), the Northern and
Southern Zones (Linnane and Crosthwaite, 2009), the
latter being the focus of this study. The zones are fur-
ther sub-divided into Marine Fishing Areas (MFAs)
for reporting purposes. The Southern Zone has pro-
vided around 80% of the total state rock lobster catch
in recent years (Knight and Tsolos, 2012), the bulk of
which was caught in MFAs 55, 56, and 58 (Fig. 1).

Both input and output controls are used to manage
the Southern Zone fishery (Sloan and Crosthwaite,
2007). Fishing seasons extend from October to May of
the following year (seasons are referred to here by
start-of-season year) and lobsters below the minimum
legal size of 98.5 mm carapace are returned to the
water. Each fisher may own no more than 100 pots,
and the total number of licences in the fishery is
limited to 181. Since 1993, an annual total allowable
commercial catch (TACC) system has been in place,
with the TACC for the 2010 season set to 1250 tonnes
(Linnane et al., 2011). The current harvest strategy
decision rule is designed to maintain exploitation
rates at desired levels (Punt et al., 2012). Catch per
unit effort (catch rate) is used as the principal index of
relative abundance in modelling and stock assessment
for J. edwardsii fisheries in Australia and New Zealand.
In South Australia, since 2011, the TACC quota for
each fishing season is directly set via a tabular harvest
control rule which takes, as input, nominal catch rate
from the previous season. However, factors other
than abundance may impact catch rates, and these
are often assumed to act as a time-varying multiplica-
tive factor on abundance, known as catchability
(Arreguin-Sanchez, 1996).

Temperature is known to impact catch rates for
many species of lobster. The most common result
found in the literature is that of a positive association
between catch rates (or catchability) and temperature
for species such as Homarus americanus (McCleese and

© 2014 John Wiley & Sons Ltd
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Wilder, 1958; Drinkwater et al., 2006), Homarus rock lobster fishers anecdotally report observations of

gammarus (Smith et al., 1999; Schmalenbach, 2009),
Panulirus cygnus (Morgan, 1974; de Lestang et dl.,
2009), and J. edwardsii (Ziegler et al., 2004). However,
Courchene and Stokesbury (2011), who compared lob-
ster trap catches with SCUBA dive surveys, reported a
negative association between H. americanus catch
rates and bottom temperature.

Ocean swell off the South Australian coast is asso-
ciated with rapidly changing sea-states, including
storm fronts that pass close to the coast (Middleton
and Bye, 2007). Significant sediment re-suspension
may occur along the continental shelf from high swells
and bottom currents (Middleton and Bye, 2007).
Fishers in Western Australia have reported that lobster
daily catch rates were influenced by sea swell, wind
strength, tidal movement and water turbidity (Morgan,
1974). In addition, sea swell on the days prior to fish-
ing had a significant positive impact on catch rates of
P. cygnus (Srisurichan et al., 2005). A study of Pariba-
cus japonicus catch rates also found a positive associa-
tion with large swells (Yamakawa et al., 1994). The
literature on the relationship between ocean swell and
catch rates for J. edwardsii is limited. However, South
Australian rock lobster fishers anecdotally report
improved catches on the days after a large swell.

The lunar cycle is reported to affect catch rates of
other species of rock lobster, P. cygnus (Morgan, 1974;
Srisurichan et al., 2005) and P. japonicus (Yamakawa
et al., 1994), with higher catch rates generally linked
to periods around the new moon. South Australian

© 2014 John Wiley & Sons Ltd, Fish. Oceanogr., 23:4, 362-374.
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improved catch rates in the days just prior to the full
moon.

Wind-induced cold water upwelling is a regular
feature of the South Australian Southern Zone fishery
during November to March (Lewis, 1981; Schahinger,
1987), and may occur over periods of 3-10 days
(Middleton and Bye, 2007). Known locally as the
‘Bonney upwelling’, upwelling reduces bottom temper-
atures and increases nutrient content, with oceanic
water forced broadly up onto the relatively narrow
continental shelf between Cape Jaffa and Portland
(Fig. 1). In accordance with upwelling dynamics
(Middleton et al., 2007), correlations have been found
among bottom temperatures, sea surface height (SSH),
local alongshore winds, and alongshore currents for
the Bonney Coast region, with lags ranging from 0 to
3 days (Schahinger, 1987).

The primary aim of this study was to examine the
short-term catchability effects on daily catch rates,
within the Southern Zone rock lobster fishery, of
environmental variables including bottom tempera-
ture, waves, moon phase, wind, and SSH, with the
outcomes also being of interest to the stock assessment

of the fishery.

METHODS
Data

Commercial fishing data were recorded as daily totals
by commercial fishers and entered into a daily logbook,
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submitted monthly. Compulsory reporting information
includes fishing effort (daily potlifts) and landed catch
in weight (kg) of live non-spawning legal-sized lobsters
(Linnane et al., 2011). Daily catch rates (kg potliftfl)
for the Southern Zone fishery were calculated for each
day of fishing from October 1998 to May 2009, by first
aggregating catch and effort over fishers for each day,
and then dividing the total daily catch weight by the
total daily potlifts.

Each fisher also reported daily depth, in the form
of an average daily depth, and the principal MFA
block where fishing took place. A spatial block index
was computed to reflect the average MFA fished by
all fishers on a given day, and similarly a single depth
covariate was created by averaging the reported
depths from all fishers. The spatial block index is a
daily-aggregated quantity which was used to capture
known biological trends, such as density and growth
(McGarvey et al., 1999), going from northwest to
southeast along the coast in the study region. Integer
values were assigned to each of the four main MFAs
following sequentially along the coast, namely,
1 =51, 2=55 3=56, 4=58 (which make up
>99% of the data), with the daily spatial block index
calculated as the average of these integers over all
fishers.

Environmental covariates included bottom tem-
perature, wind, SSH, moon phase, and ocean wave
(swell) information, with most data being at the
sub-daily level of resolution. The period from mid-
day to midday (midnight centred), rather than the
more conventional midnight to midnight period,
was used in the aggregation to the daily level. This
period was selected because fishers set baited pots
overnight and haul them in at first light over a 24-h
period.

The wave data set was output from the WAVE-
WATCH 1III wind-wave model run by the US
National Weather Service (http://polar.ncep.noaa.
gov/). Outputs from the model were obtained for a
location ~80 m deep (point ‘@’ in Fig. 1), from Febru-
ary 1997 to March 2010, and included wave height
(m) and wave period (s).

Daily average bottom temperatures (°C) were
compiled from hourly recordings from a TidBit bot-
tom temperature logger, maintained by SARDI
Aquatic Sciences, located at ~60 m depth off Sout-
hend (point ‘b’ in Fig. 1). These data extended from
January 1999 to September 2009, although very few
data exist between seasons 2003 and 2005 inclusive
and for several months during seasons 1998, 2001,
2002, and 2006. Sea surface temperature (SST) was

not used because, during summer, the water column

is stratified by temperature (Lewis, 1981), and sharp
upwelling events of cold bottom water flow onto the
shelf that are not always shown in satellite SST
photographs.

SSH (m) was sourced from a location along the
coast at Portland (point ‘¢’ in Fig. 1). The raw data,
obtained from the Australian Bureau of Meteorology
(BoM), were filtered to remove tidal effects and inco-
herent low energy fluctuations of little energy. Larger
oceanic water movements such as coastally trapped
waves and upwellings remained in the filtered SSH
series. The data extended from February 1993 to
March 2010, except January 1999, for which data was
missing.

Wind data, also obtained from BoM, were sourced
from Cashmore airport near Portland (point ‘¢’ in
Fig. 1). The data extended from January 1990 to
September 2009, except for January 2000, which had
no data. Components of the data include wind speed
(ms™'), wind direction (degrees True), and wind
stress (Pascals) for total and alongshore directions
(—45° True).

Moon phases were obtained by first accessing data
on moon fraction illuminated at midnight from 1994
to 2009 from the US Naval Observatory website
(http://aa.usno.navy.mil/data/docs/MoonFraction.php)
for the Chamorro time zone which is 30 min ahead of
the study region’s time zone. Eight discrete ordered
moon phases were then created by defining eight peri-
ods per lunar cycle, each spanning a change of 25% in
moon fraction illumination, with the first phase vari-
able centred on 0% illumination describing the new
moon period.

The number of days that could be used in the
analysis was substantially reduced by the lack of data
for some of the environmental covariates. Bottom
temperature was the least available of all covariates
which resulted in about a 50% reduction of sample
days between 1998 and 2008. Days with data were
also deleted if these would otherwise form very spar-
sely represented months or seasons. The final number
of days in the model was 1258 (Table 1) with an
overall geometric mean catch rate of 1.2 kg per
potlift. Month values were defined from 1 to 8, in
order from start to end of the fishing season (October
to May), with month 9 being the off-season (June to
September inclusive; May to September prior to

2003).
Model

The model assumes that lobster catch rate for day ¢,
U, is a multiplicative function of K,, daily catchability,
and lobster abundance B,, as follows:

© 2014 John Wiley & Sons Ltd, Fish. Oceanogr., 23:4, 362-374.
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Table 1. Number of days and geometric mean catch rate per fishing season and month, used in the modelling. Sn and Mn are
the model fishing season and month.

Off-season
Mn 1 Mn 2 Mn 3 Mn 4 Mn 5 Mn 6 Mn7 Mn8 (June—
(October) (November) (December) (January) (February) (March) (April) (May) September) All
Sn 1998 0 0 0 9:1.1 28:1.0 27:1.0 30:0.8 0 0 94:0.9
Sn 1999 30:1.4 30:1.5 29:1.5 0 27:1.3 27:1.2  14:14 0 0 157: 1.4
Sn 2000 30:1.5 30: 1.6 29: 1.6 31: 1.7 28:1.4 26:1.4 9:1.7 0 0 183: 1.5
Sn 2001  26:1.6 30: 1.7 29:1.9 29:2.0 27:1.6 0 0 0 0 141: 1.8
Sn 2002 0 0 0 24:2.3 28:1.7 29:2.0 22:1.9 0 0 103: 1.9
Sn 2003 0 0 0 0 0 0 0 0 0 0
Sn 2004 0 0 0 0 0 0 0 0 0 0
Sn 2005 0 0 0 0 0 0 0 0 0 0
Sn 2006 27:1.4 27:1.3 30:1.4 19:1.4 0 0 0 0 0 103: 1.4
Sn 2007 28:1.2 30: 1.1 31: 1.1 31:1.3 29:1.1 31:0.9 30:0.7 31:0.5 O 241: 1.0
Sn 2008  30:0.7 30:0.8 31:0.8 30:0.9 25:0.8 31:0.7 28:04 31:04 O 236: 0.6
All 171: 1.2 177:1.3 179:1.3 173:1.5 192:1.2 171: 1.1 133:0.9 62:04 O 1258:1.2

function of potlifts was considered appropriate for

U = KBz, (1) the regression weights, @, = (pots-lifted-on-day-t)"™
where & ~ LN(/, ¢?) is the independently log-nor- (m = 1). A power function allows for a rapid mono-
mally distributed observation error with distribution tonic increase (with daily potlifts) in the weighting

, 2 over the lower range of potlifts and more slower
parameters 4 = 0 and ¢?. . 1g ) ph ik el
Equation 1 is linear when the catch rates are log- increases among potlifts in the higher range. The lar-

transformed (Venables and Dichmont, 2004): ger the value of m, the less 2 is reduced for days with
high potlifts relative to days with low potlifts. The

¥ = log(Us) = i + e, @) condition m > 1 was suggested by cluster sampling
where 7y, is a normally distributed response variable, considerations (Cochran, 1977), involving temporal
with mean parameter p, = E(y,) = log(K.B,), and change in inter-fisher variability and in spatial auto-
variance parameter 6> = Var(y,), with e, ~ N(0, o?) correlation among catches of individual potlifts, as
being independently normally distributed errors. o7 is well as by the right-skewedness observed in Fig. 2b.
time-dependent to account for the existence of large Analyses (results not shown) suggest that m = 3 was
variation in daily fishing effort (25th, 50th, and 75th optimal by balancing outcomes from residual diagnos-
percentiles of 2400, 7000, and 10 000 potlifts), and is tic plots and the small sample corrected Akaike’s infor-
modelled as 67 = a%w,, where , is a variance weight- mation criterion (AIC.). Compared with unweighted
ing that is a function of potlifts (specified below). Mul- regression, m =3 reduced both over-dispersion
tivariate linear regression was performed assuming a (Fig. 2d) and non-normality (Fig. 2c) in the residuals.
mean response i, = g, + f, where ¢, = log(K,) and
fe = log(B,), with g, and f, linear combinations of envi- Model selection and implementation

ronmental covariates and season-month terms, respec-
tively. None of the days used in the analysis had a
total daily catch weight of 0.

The data were restricted to days for which all the cova-
riates as well as fishery data were available, after which
model pruning via backward selection was performed.
Forward selection was not chosen as it potentially is

Regression weights more prone, than backward selection, to inappropriate
The unweighted (@, = 1) regression exhibited a quan- exclusion of important subsets of covariates (Guyon
tile—quantile (QQ) plot of standardised residuals and Elisseeff, 2003). AIC. was used, as the ratio of
(Fig. 2a) that indicated non-normality, and the plot number of days with data to the number of model
of residuals versus daily potlifts (Fig. 2b) was non- parameters is small (<20) (Burnham and Anderson,
homogeneous (right-skewed funnel shaped) with 2002). At each step, the term deleted was the one
over-dispersion in residuals for days with low effort. resulting in the reduced model with the lowest AIC,,
Relative precision in catch rate was assumed to vary until deletion of any remaining terms decreased AIC,

directly with fishing effort (daily potlifts), and a power by less than 2 units (Burnham and Anderson, 2002).
© 2014 John Wiley & Sons Ltd, Fish. Oceanogr., 23:4, 362-374.
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After this a further step-wise selection process was
performed by deleting, at each step, the term that
decreased the weighted regression’s adjusted proportion
variance explained statistic (adjR?) the least, until
deletion of any remaining terms decreased adjR* by
more than 0.25%. The adjR” criterion was applied to
avoid retention of covariates that accounted for very
little variability in the data (Maunder and Punt, 2004).
However, due to regression weighting the R statis-
tic does not exactly represent the proportion of varia-
tion explained in the log-transformed catch rates by
the covariate data, but rather it is a measure of propor-
tion of variation in weighted log-transformed catch
rates that can be accounted for by the weighted cova-
riates. This potentially results in a positive bias in R*
because the weighted data are likely to be less noisy
than the unweighted data (Willett and Singer, 1988).

Obs. number

distances versus daily observation label.

The starting model included covariate main effects
plus their bivariate interactions with fishing season and
month. Included also were moving averages, lagged var-
iously over 1-5 days, of wave height, bottom tempera-
ture, and alongshore wind stress, covariates thought, on
a priori physical grounds, to be related in a potentially
delayed way to catch rate. The initial model for the
mean of log-transformed catch rates, to which were also
added the interaction and lag terms, is as follows:

U = Sn+ Mn + Sn : Mn + WaveH + WaveP + T
-+ Moon + SSH + Wtau + WtauAS + MFAi

+ Depth, (3)

where Sn is fishing season (factor) and Mn is
month (factor), hence Sn + Mn + Sn:Mn a
monthly time-trend component. WaveH is wave

is

© 2014 John Wiley & Sons Ltd, Fish. Oceanogr., 23:4, 362-374.
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height, WaveP is wave period, T is bottom tempera-
ture, Moon is moon phase (factor), SSH is sea surface
height, Wtau is total wind stress, WtauAS is along-
shore wind stress, MFAi is average spatial block
(index), and Depth is average depth.

The statistical software used for all the modelling
was R [version 2.13.0 (2011-04-13) Copyright (C)
2011; The R Foundation for Statistical Computing
ISBN 3-900051-07-0]. Standard diagnostic output
plots of residuals were examined to identify influential
data points, residual trends, and non-normality. The
extent of autocorrelation in the residuals was also
examined, which, for example, may exist due to data
sampling being fisheries-dependent; this was done by
plotting the autocorrelation and partial autocorrela-
tion functions (ACF and PACF) of the residuals.

Inferences on catch rates

The ratio of mean catch rates was calculated to pro-
vide a relative measure of impact on estimated mean
catch rate attributable to a given change in a particu-
lar covariate. The inter-quartile range (IQR) of each
covariate quantifies the 50% range of observed daily
values about the median, and provides a more mean-
ingful comparison metric of change in covariates than
unit change when different measurement scales are
involved (e.g. 1 degree Celsius and 1 metre). Con-
sider, for a given day t, the change in estimated mean
catch rate, from E(u,) to E(u]), due only to a change
in the value of the ith covariate, X,; when it is
increased by an amount equal to its interquartile
range, that is, X{’i = X,; +IQR,. The ratio of mean
catch rates, E(u;)/E(u,), hence equals exp (IQR; *f,),
where f; is the estimated effect parameter, which fol-
lows from the definition of a log-normal mean, hypo-
thetical constant levels of other covariates and fishing
effort ( Gtz = O'iz), for both catch rate models.

Since the logarithm is a monotonic function, and
the probability distribution of f; is approximately
normal, the confidence interval for the ratio of mean
catch rates, based on the standard errors of the estimated
parameters involved and the IQR value, is given by

exp(IQR; * f; = /2 n—k * SE(f) *IQR;), (4)

where n is number of days, k is number of parameters, t
is the t-statistic, and o is the significance level.

Data sensitivity models

Spatial heterogeneity in catch rates was explored by
separately fitting the final model to aggregated catch
and effort data divided either per inshore—offshore

depth zone (<40 m and >40 m) or per MFA block (55,
56, and 58). Effects of spatial heterogeneity in bottom

© 2014 John Wiley & Sons Ltd, Fish. Oceanogr., 23:4, 362-374.
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temperature were also investigated by separately fitting
time-temperature sub-models (i.e., Sn + Mn + Sn:
Mn + T) per MFA block (55, 56, and 58), using data
from additional bottom temperature loggers at similar
depth to the Southend logger (but with fewer data) sit-
uated off Robe (for MFA 55) and off Port Macdonnell
(for MFA 58), in addition to the data from the Sout-
hend logger (for MFA 56). Two additional covariates
were obtained from BoM for the purpose of examining
causal influences for the moon phase effect; an 8 level
cloud cover factor (0 for clear, 8 for totally overcast)
and its interaction with moon phase were added to the
final model, and another model involved substitution
in place of moon phase the observed daily minimum
sea level in metres above Tide Gauge Zero.

RESULTS

Final model

The model retained was

U, = Sn + Mn + Sn : Mn + WaveH + WaveP + T
+ Moon + MFAi + Mn : WaveH +Sn : T

+ WaveHLagAvg. (5)

The interaction terms Sn:T and Mn:WaveH were
relative to 1998 and month 1, respectively. The only
lagged covariate term selected was a moving average
of wave height over a lag period involving the most
recent 3 days (WaveHLagAvg). All retained terms
were highly statistically significant. The total number
of estimated parameters was 72.

Influential data points (Fig. 2f), violations of mean-
variance homogeneity (Fig. 2¢), and non-normality in
residuals (Fig. 2c) were not detected, supporting the
assumption of log-normally distributed observation
errors for catch rates. Further diagnostic analyses (results
not shown) indicated no high collinearity among covari-
ates and no strong non-linearity in the response of log-
transformed catch rates for any of the covariates, but
residuals exhibited modest first-order autoregression
(AR1 coefficient of 0.27). The latter outcome increased
the magnitude of standard errors for effect parameters by
between 4% and 21% in a generalised least squares for-
mulation of the final model with a fixed AR1 covariance
structure. Weakening the regression weights in the final
model, by using 8 instead of 3 for m in w,, resulted in a
decrease of 1.5% in adjR?, while strong weighting by
using an m value of 1 increased adjR? by 1.7%.

Variance explained by model terms

Each row in Table 2 provides statistics comparing a
model that differs from the final model only by
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omission of the regression terms indicated. The
(adjusted) proportion of total variance in log-trans-
formed catch rates explained by all the terms (includ-
ing time) in the final weighted regression model was
91.3%. Exclusion from the final model of all the

Table 2. Impact of excluding given combinations of terms
from the final model.

Increase Decrease Estimated
Term excluded in AICc inadjR® parameters
None (final model) 0 0 72
MFAi 176.5 0.013 71
Moon 117.7  0.009 65
Sn:T 29.5  0.003 65
T+ Sn:T 121.1  0.010 64
WaveP 1753  0.013 71
WaveHLagAvg 65.7  0.005 71
Mn:WaveH 70.2  0.006 65
WaveH + Mn:WaveH 193.5  0.015 64
WaveH + Mn:WaveH + 223.0 0.018 63
WaveHLagAvg
WaveP + WaveH + 303.6  0.025 62
Mn:WaveH +
WaveHLagAvg
All covariate terms 709.4  0.070 46
(time-only model)
Mn + Sn:Mn + 1067.0  0.125 27
Mn:WaveH
Sn + Sn:Mn + Sn:T 2281.3  0.469 27

covariates resulted in a loss of 7.0% explained vari-
ance, leaving 84.3% of total variance attributable to
the time-trend with the season factor explaining more
variance than the month factor. Exclusion of only all
the wave covariates (height and period) indicated that
these were the most important environmental covari-
ates explaining in total 2.5% of variance. Similarly,
0.9%, 1%, and 1.3% of variance were explained by each
of moon phase, temperature, and MFAI, respectively.

Waves

Table 3 provides the ratios of relative impact on mean
catch rates from IQR increases in covariates, and the
corresponding confidence intervals. Prediction inter-
vals (uncertainty for catch rates per random individual
day) were also calculated for all covariates, and these
were an order of magnitude or more wider (results not
shown) than the confidence intervals, reflecting high
overall daily variability in catch rates. The estimated
coefficients for same-day wave height were negative
for months 3-8, but negligible for months 1 and 2,
with coefficients of variation indicating high relative
uncertainty. The largest effect was during month 8
when a 1.1 m increase in wave height resulted in an
estimated reduction to mean catch rate of 14% (95%
CI: =18 to —10). IQR did not vary much between
months, meaning that an increase in wave height of
1.1 m (used for each month) is reasonably representa-
tive for any of the months.

Table 3. Coefficient estimates, coefficients of variation (CV), and effect impacts on mean daily catch rates for given interquar-
tile range (IQR) increases in covariates. Provided also are 95% confidence (CI) interval limits. IQR column values in brackets
refer to IQRs specific per time period but were not used in calculations.

Final model term Estimate CcvV exp(IQR*Est.) 95% CI IQR
WaveH + Mnl:WaveH —0.013 0.88 0.98 0.96, 1.01 1.1 (1.1)
WaveH + Mn2:WaveH 0.010 1.27 1.01 0.98, 1.04 1.1 (1.1)
WaveH + Mn3:WaveH —0.094 0.14 0.90 0.87,0.93 1.1 (1.0)
WaveH + Mn4:WaveH —0.094 0.14 0.90 0.87,0.93 1.1 (1.1)
WaveH + Mn5:WaveH —0.089 0.16 0.90 0.88,0.93 1.1 (1.0)
WaveH + Mn6:WaveH —0.059 0.23 0.94 0.91,0.96 1.1 (1.1)
WaveH + Mn7:WaveH —0.097 0.15 0.89 0.87,0.92 1.1 (1.1)
WaveH + Mn8:WaveH —0.133 0.16 0.86 0.82,0.90 1.1 (1.3)
T + Sn1998:T —0.101 0.18 0.80 0.74, 0.86 2.2(2.2)
T + Sn1999:T —0.020 0.61 0.96 0.91, 1.01 2.2(1.6)
T + Sn2000:T —0.069 0.13 0.86 0.83, 0.89 2.2(2.0)
T + Sn2001:T —0.021 0.51 0.95 0.91, 1.00 2.2(1.9)
T + Sn2002:T —0.123 0.21 0.76 0.68, 0.85 2.2 (0.6)
T + Sn2006:T —0.090 0.26 0.82 0.74,0.91 2.2(1.3)
T + Sn2007:T —0.038 0.33 0.92 0.87,0.97 2.2(2.5)
T + Sn2008:T —0.027 0.34 0.94 0.90, 0.98 22(2.2)
WaveHLagAvg 0.045 0.12 1.05 1.04, 1.06 1.0
WaveP 0.035 0.07 1.07 1.06, 1.08 1.9
MEFAi —0.250 0.07 0.95 0.94, 0.95 0.2
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Wave period was estimated with a positive coeffi-
cient with mean catch rate increasing by 7% (95% CI:
6-8) for an increase of 1.9 s in period. Model selection
indicated both wave period and wave height covari-
ates helped explain the data, although there was minor
positive correlation between these data sources (Pear-
sonr = 0.33, P < 0.001).

A positive coefficient was estimated for average
wave height over the previous 3 days, which implies
that the larger the average swell over the last 3 days,
the larger the estimated mean catch rate on the day of
fishing. For an increase of 1.0 m in lagged average
wave height, an increase in mean catch rate occurs of
5% (95% CI: 4-6). Lags of 3 and 4 days were deter-
mined most appropriate using AIC. and adjR? (Fig. 3).

The final model applied separately to catch rate
data restricted inshore and offshore indicated a stron-
ger (particularly for same-day) result inshore than off-
shore, with exclusion of WaveH + Mn:WaveH
offshore decreasing adjR*> by only 0.2% (increasing
AIC. 7) but inshore decreasing adjR* by 3.4%
(increasing AIC, 329). The MFA-specific model did
not show as strong a contrast in results, although
exclusion of WaveH + Mn:WaveH in MFA 58
decreased ade2 by 3.2% (increasing AIC. 312) com-
pared with 0.9% (76) and 1.0% (109) for MFAs 55
and 56, respectively.

Temperature

A negative effect was estimated for all seasons in
response to an increase in temperature. For example,

Figure 3. AIC, statistics for a range of models differing in
the lagged moving average wave height covariate as a func-
tion of the lag averaging period.

~1420
~1425 -
~1430

~1435

AlCc
[ ]
[

—1440

~1445 S

~1450

-1455 T T T T T T 1

Lag period (days)

© 2014 John Wiley & Sons Ltd, Fish. Oceanogr., 23:4, 362-374.

29

an increase of 2.2 °C during fishing season 2000 was
estimated to decrease mean catch rate by 14% (95%
Cl: —17 to —11) (Table 3). Temperature effects, all of
which were negative, varied considerably among fish-
ing seasons, with weakest impact during 1999 and
2001. IQR in temperature also varied substantially
among fishing seasons (Table 3), implying that an
increase in temperature of 2.2 °C is not equally likely
for all seasons.

The same qualitative results were obtained by
fitting the final model to inshore—offshore and MFA-
specific catch rate data sets, and from the three MFA-
specific temperature sub-models, indicating no major
spatial differences. All these sensitivity models pro-
vided strong support (>10 increase in AIC. and >0.5%
decreases in adjR?) for a negative temperature effect
on catch rates.

Moon phase

The estimated effect of a change in moon phase on
mean catch rate is approximately cyclic, increasing up
to and including the phase prior to the full moon, at
which a 10% increase on new moon mean catch rate
is achieved (Fig. 4). Mean catch rate decreases steadily
after full moon, to 4% below the new moon levels for
phases between the full and new moons.

Separate models by inshore—offshore and MFA
indicated trivial differences spatially in the moon
phase effect. Inclusion of cloud cover increased AIC,
by 84 and contributed trivially to adjR®. Excluding
moon phase and adding either minimum tide levels or

high-low tidal differences increased AIC. by over 100,

Figure 4. Final model estimated relative (to the new moon)
mean catch rate response by moon phase and the 95% confi-
dence intervals.
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suggesting that these covariates, although related to
moon phase, do not capture the process which impacts
catch rates.

Spatial block index

The spatial block index covariate in the final model
was estimated with a negative coefficient (Table 3),
reflecting higher catch rates further north along the
Bonney Coast. However, the inshore—offshore analysis
revealed that this spatial block effect inshore was not
supported. Exclusion of the term MFAi from the
inshore model led to a reduction in AIC, by 2.2 and
trivial changes in adjR?, compared with an increase in
AIC. of 160 and a decrease in adjR* of 1.7% for the
offshore model.

DISCUSSION

This study identified several environmental variables
which impact on the daily catch rates of J. edwardsii
within the Southern Zone rock lobster fishery of South
Australia. These variables were wave height and per-
iod, lagged wave height, bottom temperature, and
moon phase. Given the specified regression weighting
by potlifts, these variables, together with a spatial
block index, explained 7.0% of total variance in log-
transformed daily catch rates. Another 84.3% was
explained by a time-trend involving season and month.

A similar outcome was obtained from an analysis
which applied the methodology in this paper to a
smaller but equivalent data set for the Western Zone
rock lobster fishery of Victoria (results not shown). A
negative relationship was found between catch rate
and each of bottom temperature and same-day wave
height, whereas the relationship to same-day wave period
and average wave height over the past 3 days was posi-
tive, but moon phase was not retained in the final model.

The time—environment interaction terms Mn:
WaveH and Sn:T may be influenced by longer term
changes in catch rates, due to both abundance and
catchability potentially varying on longer time scales,
and between which the model cannot easily distin-
guish (Maunder and Punt, 2004). However, model
sensitivity which excluded the time—environment
interaction terms provided similar environmental
effect outcomes (results not shown) to those from the
final model. A further sensitivity test was then con-
ducted that excluded all interaction terms involving
time (Mn:WaveH, Sn:T, and Sn:Mn) to obtain a less
ambiguous time-trend index (Hinton and Maunder,
2004), which produced a yearly effect pattern (Fig. 5)
exhibiting only minor differences from the pattern in
the yearly log-transformed catch rate data.

To gauge the impact of using catch rate data at the
fine scale of individual fisher records, a sensitivity
model was run based on the final model that included
a factor variable with fisher licence identifiers as levels,
and which had term MFAIi replaced with a factor vari-
able with MFA block label as levels. For each of the
covariates the qualitative outcome of this run was fully
concordant (results not shown) with those from the
daily aggregated analysis presented in this paper.
Although all estimated terms were strongly retained
according to AICc, the model only explained 57.5%
of total variance in log-transformed fisher catch rates,
with the time-trend involving season and month
explaining 43.6% and environmental variables 2.9%.
Maunder and Punt (2004) reported that the R? statis-
tic would generally be greater for a coarser level of data
aggregation than at a finer resolution. Note that the
estimated MFA coefficients showed a negative linear
trend with MFA block (Fig. 6), supporting the use of a
single linear spatial coefficient (MFAi) in the final
model. The year effect pattern (Sn), obtained from a
version of this model that excluded all the interaction
terms, also exhibited (Fig. 5) relatively minor differ-
ences with the pattern in the yearly log-transformed
catch rate data. As the available environmental data
were not measured per individual fisher, this paper
used daily fisher-aggregated catch rates.

Figure 5. Estimated mean catch rate response (log-trans-
formed) by fishing season for the final model excluding inter-
actions (solid line), final model excluding interactions using
individual fisher data (dashed line), and log-transformed data
catch rate (empty squares). Data catch rates were calculated
as season total catch/total potlifts, and model series were
scaled to have an equal mean with the data series.
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Figure 6. Estimated mean catch rate response (log-trans-
formed) by coastal MFA block for the final model using indi-
vidual fisher data and the 95% confidence intervals.
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The impact on modelling outcomes of within-year
smoothing of the time-trend was examined to help
determine the extent of confounding influences on the
estimation of environmental effects. The discrete
monthly term Mn + Sn:Mn was replaced with a natu-
ral cubic spline smoothing function (Venables and
Dichmont, 2004) for the final model but without the
time-interaction terms. All of the environmental
effects were strongly retained by AIC, (>10), and signs
of all estimated coefficients were unchanged for each
of the three models (results not shown), defined by
approximate levels of time-trend smoothing for weekly
(ade2 = 92.6%, very flexible), monthly (90.5%, dis-
crete monthly was also 90.5%), and linear (84.3%,
least flexible) trend. The ade2 values in the same
three models due to all environmental effects com-
bined (and temperature, moon phase) were 4.6%
(0.4%, 0.1%), 5.7% (0.6%, 0.9%), and 7.5% (2.3%,
0.9%), respectively. The weekly time-trend appeared
very choppy, while also confounding with moon phase
substantially (as expected). But the linear time-trend
was too simple to account enough for longer term
processes that occur throughout the fishing season
(discussed below), as was indicated by a notable trend
in the residuals across days within season (figure not
shown).

Waves

The results indicate that daily mean catch rate is lower
when waves are higher, but that mean catch rate is
also lower when the average wave height over the

© 2014 John Wiley & Sons Ltd, Fish. Oceanogr., 23:4, 362-374.
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previous 3—4 days was lower. Srisurichan et al. (2005)
reported a similar outcome for P. cygnus concerning a
positive response of legal-sized catch rate to lagged
wave heights, and noted that swell may produce condi-
tions favouring greater protection from predators by
increasing bottom turbidity and food availability.

Weissburg and Zimmer-Faust (1993) found that
predation by blue crabs (Callinectes sapidus) was opti-
mal in slow-flowing water, and Cobb (1995) suggested
that turbulence and greater fluid velocities make it
harder for crustaceans to follow bait odour trails.
Hence, the feeding ability of lobsters may be reduced
during a swell when turbulence is greatest, leading to a
reduction in same-day catch rates. The wave height
effect was much stronger inshore, which may relate to
greater turbulence when waves pass through shallower
water.

It is not clear why the same-day wave height effect
is insubstantial in October and November. An expla-
nation for the positive effect of same-day wave period
is also not clear, though this result does imply that
mean catch rate increases when waves pass less
frequently.

Temperature

Bottom temperature was found to have a negative
effect on mean catch rate across season and spatial
location, after taking into account the factor month,
which incorporates some aspect of the temperature
cycle. This finding is contrary to most studies in the
literature on lobsters which report a positive associa-
tion between catch rate and temperature (see Intro-
duction). However, Courchene and Stokesbury (2011)
reported a similar result for H. americanus comparing
catch rates at optimal versus extreme temperatures,
concluding that catchability was impacted via reduced
lobster mobility at high temperatures, and noting also
that increased lobster growth rates at such tempera-
tures may result in avoidance of traps by moulting lob-
sters. But the modelling in our study did not indicate
that the negative effect of temperature on catch rate
was restricted to particular months such as those
known for moulting or cold-water upwelling (term
Mn:T was not retained). In addition, catch rates were
observed to decline over quite a large temperature
range of 12-17 °C (total range 9.5-17.6 °C, median
14.2 °C; figure not shown), although variables other
than temperature also may have contributed to the
noted decline.

Indeed, some confounding in the relationship
between catch rates and environmental catchability
variables is suggested due to the processes of popula-
tion growth and population depletion by fishing
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pressure. For the Southern Zone fishery, bottom tem-
peratures are low at the onset of summer (Lewis, 1981)
and the legal-sized population is incremented by
lobsters growing into legal-size during the previous
(warmer) months of October—November (MacDiar-
mid, 1989), whereas for the rest of the season, bottom
temperatures are higher and population depletion
occurs due to continued fishing pressure. Hence during
the early part of the season, temperatures are higher
and catch rates lower than in summer with the highest
catch rates and lowest temperatures, after which tem-
perature rise and catch rates fall to lowest levels by
end of season. This implies that the estimated negative
effect on catch rate attributed to temperature may be
confounded with the processes described above.
Indeed, total variance explained by temperature
increased to 5.1% for a main effects version of the final
model that was without the month factor terms, but
for which plots of residuals versus month (figure not
shown) indicated a clear trend and suggests the exis-
tence of important unmeasured influences.

Moulting of J. edwardsii takes place over a period of
several weeks (Musgrove, 2000), as does the impact on
the region’s population due to fishing, and these longer
term processes are accounted for by the estimated
monthly time-trend (Sn + Mn + Sn:Mn) component
in the model. The results of the spline modelling
(see above) showed that the difference in variance
explained, due to temperature, between the linear and
the monthly time-trend models was much greater than
between the monthly and weekly models. Yet this may
indicate remaining minor unmeasured confounding
influences on the shorter time-scales or else that too
much variability in log-transformed catch rate was
smoothed out by the weekly time-trend (as was the
case for moon phase). Note that the estimated temper-
ature effect on catch rates may also be confounded on
the time-scale of between seasons. Total variance
explained by temperature was 5.9% for a main effects
version of the final model that was without the season
factor terms; this, however, also exhibited a trend in
residuals versus season (figure not shown) that was
close to the trend in data log-transformed catch rates,
implying that unmeasured influences are likely to be
dominant on this time-scale.

A metabolic index known as the aerobic scope
for activity (SFA), which is a physiological measure
of spare capacity to do sustained work (Crear and
Forteath, 2000), suggests a potential mechanism
influencing catch rates via dependence of SFA on
ambient bottom temperature. The SFA expresses the
relationship between active and standard respiratory
consumption of an animal, impacting on motor

performance and behaviour, and differs between
species and within species spatially (Crear and
Forteath, 2000; Lagerspetz and Vainio, 2006; Drink-
water et al., 2010). All organisms have an optimal
temperature range, and for laboratory-held intermo-
ult J. edwardsii, the SFA was reported by Crear and
Forteath (2000) as increasing from 5 °C up to a
maximum at the acclimatised temperature of 13 °C,
beyond which it dropped to 21 °C. Crear and
Forteath (2000) noted that 13 °C is not an atypical
ambient temperature for J. edwardsii in its natural
environment (median of 14.2 °C in our study) and
implied it may be near its preferred temperature.
Maximum SFA frequently exists at the preferred tem-
perature (Lagerspetz and Vainio, 2006), which, if as
assumed, occurs around 13 °C, suggests that activities
such as foraging, including the finding of bait, may be
less effective above this temperature.

An alternative explanation is that temperature acts
as a proxy index for another (unmeasured) variable
impacting on catch rates. Changes in bottom tempera-
ture in the Bonney Coast region are linked with
changes in other variables such as current velocity
(Schahinger, 1987), salinity, dissolved oxygen, and
nitrate concentrations (Lewis, 1981), which may
impact on lobster catchability or activity (Morgan,
1974; Zimmer-Faust et al., 1984; Cobb, 1995; Crear
and Forteath, 2000).

Moon phase

Mean catch rate was estimated to be highest during
the phase just prior to the full moon and lowest prior
to the new moon, regardless of spatial location or
cloud cover. This contrasts with a Tasmanian con-
trolled field experiment study on size-dependent trap-
ping inhibition of J. edwardsii, which found no
significant difference in spring sublegal-sized catch
rates (for either sex) between the new moon and full
moon (Ihde et al., 2006). The finding that catch rates
for some other species of rock lobster are affected by
moon phase is substantiated in the literature (Morgan,
1974; Yamakawa et al., 1994; Srisurichan et al., 2005),
although these involved peak catch rates around the
new moon. There exist studies on catch rates of other
crustaceans that do indicate the same timing in rela-
tion to moon phase found in the present study. For
example, Courtney et al. (1996) working on eastern
king prawns (Penaeus plebejus) found that catch rates
peaked shortly before the full moon and declined for
about 7 days afterwards, especially for males, implicat-
ing potential sex-specific factors.

In terms of nightly movement activity of

J. edwardsii, MacDiarmid et al. (1991) found no
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significant correlation between the proportion of
lobsters active at night in New Zealand and the num-
ber of hours of moonlight. Similarly, Williams and
Dean (1989) reported no increase in the length of
the lobster active period when hours of darkness in
summer were increased to match the winter length of
darkness. The present finding concerning the pattern
of timing connecting catch rates to moon phase,
together with the above studies, suggest that a moon
phase effect on catch rates is likely to involve more
than a direct response to moon light levels alone,
such as a degree of endogenous timing (Williams and

Dean, 1989).

Spatial block index

An outcome of higher estimated catch rates further
north along the Bonney Coast was found, and
determined to apply mainly for offshore waters
(>40 m depth). This appears not to be directly
related to known higher mean lobster weight further
north (McGarvey et al., 1999), as exploratory data
analyses provided little indication of a difference
between inshore and offshore in mean weight trend
with spatial block index. Alternatively, the number
of lobsters offshore may be greater further northwest,
and that inshore there is a more uniform spatial
spread. Evidence for this comes from spatial mapping
of catch rates of legal-sized lobster from fishery-inde-
pendent sampling (Linnane and Crosthwaite, 2009;
Linnane et al., 2011), indicating patches of very
high catch rates offshore and particularly further
north.

Conclusions for stock assessment

Overall, the outcome is that of a real, but compara-
tively small, impact on daily catch rates of J. edwardsii,
due to short-term environmental catchability effects,
for South Australia’s Southern Zone fishery. This study
could not confirm that environmental variables were
the likely cause, through catchability, of major
changes in catch rates such as the steep decline
observed over the period 2003 to 2009 (Linnane et dl.,
2010). It should be noted that modelling did not
explicitly incorporate longer term influences due to
growth or fishing practices.
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Impacts on CPUE from vessel fleet composition changes in an Australian
lobster (Jasus edwardsii) fishery.

ABSTRACT

The Australian Victorian Western Zone rock lobster fishery is assessed using
standardised catch-per-unit-effort (CPUE). Nominal CPUE declined over 1978-2009,
but this underrepresents the estimated decline in abundance, while since 2009
standardised CPUE rose notably less than nominal CPUE. We identify vessel as a key
factor that explains the discrepancy between nominal and standardised CPUE. The
composition of the fleet changed since 2009, under the pressure of constraining total
allowable catch quotas, with vessels exiting the fishery having substantially lower
estimated catchability, which increased the average fishing power of the fleet. New
diagnostic indices were constructed to quantify discrepancies between trends in nominal
and standardised CPUE that assisted in identifying periods during which both
catchability and vessel composition changed.

KEYWORDS: southern rock lobster, Jasus edwardsii, entry and exit of vessels, rising
catchability, fleet dynamics, standardised CPUE

Introduction

In Victoria, Australia, the Western Zone rock lobster fishery (WZRLF) for Jasus edwardsii is
divided into three regions for assessment purposes, extending east from the Victorian border
with South Australia to Apollo Bay (Figure 1; Linnane et al. 2016). Commercial fishing is
undertaken using baited pots that are generally set and hauled within 24 hours, with the fishing
year extending from mid-November to mid-September (Linnane et al. 2016). Management
measures include a minimum legal size, protection of ovigerous females and limited access,
and since 2001, a Total Allowable Commercial Catch (TACC) based on individual transferable
quota (ITQ) units, and restrictions on the number of licences and pots (VDPI 2009; VFA 2017).

Catch rates, or catch per unit of effort (CPUE), is taken as a relative index of biomass,
and used to set annual TACCs in other J. edwardsii fisheries off southern Australia (DPIPWE
2015; McGarvey et al. 2016) and New Zealand (Breen et al. 2008; Breen et al. 2009). Nominal
yearly CPUE, computed here as total reported yearly catch divided by total yearly effort, may
deviate substantially from the true trend in biomass if catchability varies over time (Punt et al.
2013), in which case a process of “standardisation” is applied to obtain a more representative
index of biomass trend (Maunder & Punt 2004). In the WZRLF, TACC-setting procedures
have used standardised CPUE as a primary input (Linnane et al. 2016; VSG 2017; VFA 2017).

In reviewing the WZRLF harvest strategy (VFA 2017), it was observed that nominal
CPUE rose more substantially than standardised CPUE since 2009. We examine the hypothesis
that changes over 1978-2014 in the composition of the fleet led to changes in average
catchability (c.f. Hilborn and Walters 1992), particularly since 2009 when vessels of low
fishing power left the fishery. The aim of this study was to identify the most influential factors
involved in the differences in trends between nominal and standardised CPUE, and to
investigate the above hypothesis concerning the role of fleet entry and exit dynamics on
catchability.
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Materials and Methods

Daily commercial fishing data are fishery-dependent and since 1978 have been reported in
mandatory logbooks that are submitted monthly (VDPI 2009, VFA 2017), as landed (live, legal
sized, non-spawning) lobster catch (kg) and fishing effort expended (number of pot lifts). Since
introduction of quota management in 2001, fishers are additionally required to weigh and report
their catch within 20 minutes after landing via a telephone based interactive voice response
system, and enter details in catch disposal records (VFA 2017). The covariates used in the
standardisation of CPUE were fishing year (1978-2014), month (November to July
individually, August-September combined), as well as available fisheries information that was
assumed to potentially impact CPUE namely depth category (< 40 m, >= 40 m), region
(Portland, Warrnambool, Apollo Bay; Figure 1), fisher identifier (237 fishers), and vessel
identifier (500 vessels). The daily catch records were pre-processed, which involved removing
records with incorrect or missing covariate data, followed by removal of fishers present in the
fishery for less than 200 days in total or who fished during fewer than three fishing years (to
reduce the influence of inexperienced fishers). Subsequently records were removed that had no
catch (0.8%). Nominal yearly CPUE was then computed as the ratio of total annual catch to
total effort.

A generalised linear model (GLM) was fitted to 347,259 data points, assuming a gamma
error distribution and a log-link function (Maunder & Punt 2004):

CPUE ~ Year + Month + Region + Depth + Fisher +Vessel (1)

Alternative error models (gamma inverse, lognormal, normal), were tested, but did not
result in improved residual diagnostics or AICc (results not shown). Also tested were three
models with two-factor interactions, namely Month:Depth, Month:Region, and Depth:Region.
These however, only explained an additional 0.14%, 0.17%, and 0.06% deviance and trivially
impacted the estimated year trend (results not shown). Model fitting was conducted in R 3.3.2
(R Core Team, 2016) using function glm from package stats. Backward model selection was
performed starting from the full model (Equation 1), and an increase of less than 2 units in
AICc (Burnham & Anderson 2002) was used to identify redundant terms.

The standardised CPUE index was calculated as the exponential of the Year effect,
which was assumed to indicate the yearly trend in lobster biomass. 95% confidence intervals
were constructed for each year as the exponential of lower and upper limits of the 95%
confidence intervals on Year. The index was scaled to have a mean (over 1978-2014) equal to
that of the nominal CPUE. Given the focus of this study on analysing differences between
nominal and standardised CPUE, an index, V, was constructed to more easily identify annual
changes in these differences. V is a measure of annual relative change in nominal CPUE due to
modelled factors unrelated to abundance (i.e. catchability and observation error), and is defined
as follows:

y _ (CPUE]' —CPUE}) - (CPUE]', - CPUE} ) @
’ CPUE"
where CPUE;Q' is the standardised (and scaled) CPUE for year y, and CPUE;“ is the nominal

CPUE for yeary.

A yearly “influence” index for the Vessel effect was calculated following the approach
of Bentley et al. (2012), as the exponential of the weighted (by record count) mean Vessel
coefficient (normalised to a value of 1 over 1978-2014). The net impact on yearly CPUE also
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depends on sources of catchability other than Vessel, and hence two additional influence
indices were constructed to assist analysis: the product of influence values for all non-year
covariates other than Vessel, and the product of influence values over all the non-year
covariates (total catchability).

The consequences of changes in fleet composition were examined in more detail using
influence indices for three subsets of the fleet in each year: vessels that make their initial entry
into the fishery (“Entering”), vessels that leave the fishery (“Exiting”), and all other vessels
(“Remaining”). These three influence indices were calculated for vessels that were in the
fishery for more than one year, and as the exponential of the weighted (by record count) mean
vessel coefficient, divided by the exponential of the weighted mean over all vessels
(“Entering”, “Exiting”, and “Remaining” combined) and years (1978-2014), followed by
smoothing to improve visualisation of trends using a second-order moving average.

Results

Each of the covariates was retained in the final model, which explained 46.8% of the deviance.
Residual diagnostic plots did not suggest any substantial model violations, although some
departure from normality was evident in the standardised deviance residuals at the extreme
ends of the theoretical quantile range (Figure S1). Year explained relatively little deviance
compared to either Vessel and Fisher combined or Month, while there was significant anti-
correlation between estimated coefficients for Vessel and Fisher (Pearson -0.49, Spearman -
0.47, over fitted data points), with these covariates not explaining much of the deviance on
their own (Table 1). Removal of either Vessel or Month from the model led to a change in the
trend of standardised CPUE towards that of nominal CPUE, with the effect of Vessel being
greater than that of Month (Figure S2). Removing each of Fisher, Depth, or Region had only
minor effects on the trend (Figure S2). These outcomes suggest that Vessel most directly
impacts on nominal CPUE.

Nominal CPUE underrepresents the decline in estimated abundance inferred from
standardised CPUE during 1979-1987 and 1991-1998, while exaggerating a rise in abundance
during 2009-2013, the extent of which is indicated by positive values of V (Figure 2). The
nominal CPUE series presented in Figure 2 is based on a ratio estimator, which was compared
with nominal CPUE calculated as a geometric mean revealing a similar trend with the latter
approximately 5% lower over 1978-1981 and 6% higher over 2010-2013 after rescaling to a
common mean (Figure S3).

Figure 3A shows a marked increasing trend in the Vessel influence during 1979-1987,
when the non-vessel influence was more stable. In contrast, both Vessel and non-vessel
influences exhibit an upward trend during 2010-2012, which led to increasing catchability over
this period. Catchability declines during 1988-1991 because even though Vessel influence rises
over these years, this is more than offset by the decline in non-vessel influence. Fisher
influence increased markedly over 1991-1998 (Figure S4), contributing to a rise in catchability
due to non-vessel influences (Figure 3A). Nominal CPUE remains relatively stable during
1992-1995 while standardised CPUE declines (Figure 2), which is driven by a rapid increase
in total catchability that is due more strongly to the rise in Vessel influence than by the rise in
non-vessel influences (Figure 3A).

Influence values of vessels that permanently exit from the fishery in most years is well
below that of the rest of the fleet (Figure 3B). Vessels leave during a period when total vessel
influence increases (Figure 3A). For example, the exiting vessels have consistently lower
fishing power than the other vessels before 1987 and during 2009-2012 (Figure 3B). In
contrast, the magnitude of the discrepancy in fishing power between entering and exiting

41



vessels during 2005-2009 was small, with exiting vessels having slightly more power (Figure
3B), and total vessel influence was relatively flat (Figure 3A). However, catchability decreased
substantially during 2005-2009 due to decreasing influence from non-vessel sources of
catchability (Figure 3A), and nominal CPUE decreased more rapidly over this period than
standardised CPUE (Figure 2).

Although the yearly vessel entry-exit dynamics is volatile, fleet size grew until 1989,
and declined steadily thereafter (Figure 4). Since 1998, the number of vessels exiting the
fishery is notably higher than the number entering (Figure 4), with the latter declining rapidly
just prior to introduction of TACC in 2001 and again during 2006-2009 when the fishery
restructured and the level of TACC dropped substantially (VFA 2017).

The dynamics of changing fleet composition over time in the WZRLF was evaluated
further by plotting for each year a kernel density function of the exponential of Vessel
coefficients based on the count of daily fishing records per vessel (Figure 5). Three pertinent
trends in these distributions were evident for the period 2001-2014: (1) lower total number of
days fished since 2009 (less area inside each violin distribution); (2) a smaller proportion of
vessels with low fishing power since 2009; (3) no evidence of new vessels increasing the
maximum fishing power.

Discussion

There are notable periods of increasing divergence between nominal and standardised CPUE
over 1978-2014 (Figure 2), linked with periods of increasing or decreasing catchability
determined predominantly by the Vessel effect with periods of increasing catchability more
prevalent including during 2009-2013 (Figures 2, 3A). A greater proportion of vessels in 2010-
2013 had higher fishing power compared to vessels in 2001-2009 (Figure 5), which was driven
primarily by less efficient vessels exiting the fishery after 2009 rather than more efficient
vessels entering the fishery as quantified in figures 3B and 4.

The trend in standardised CPUE will be biased upwards by technology “creep” over
time in individual vessels (Ye and Dennis 2009). However, this study cannot draw conclusions
regarding impacts of technology upgrades on individual vessels because changes in fleet
composition relate to differences in catchability among vessels, but we lack data on vessel
characteristics (e.g. terrain detection equipment, plotter software) required to model changes
in fishing power by vessel (Ye and Dennis 2009; Hoyle and Okamoto 2011).

Studies on other fisheries have drawn similar conclusions regarding an upward trend in
catchability of CPUE having been substantially induced by less effective vessels leaving the
fishery. These include O’Neill and Leigh (2007) and Braccini et al. (2012) for Australian
eastern king prawn (Melicertus plebejus), Hoyle et al. (2010) for bigeye tuna (Thunnus obesus),
Hoyle and Okamoto (2011) for bigeye and yellowfin (Thunnus albacares) tunas in the Western
and Central Pacific Ocean, Eigaard and Munch-Petersen (2011) for Danish northern shrimp
(Pandalus borealis), Bentley et al. (2012) for New Zealand trevally (Caranx lutescens), and
Holdsworth and Kendrick (2012) for New Zealand striped marlin (Kajikia audax). However,
Starr et al. (2013) reported that for New Zealand southern rock lobster stocks (areas CRA7/8)
vessel effect explained a substantial amount of model deviance despite it marginally impacting
the trend in standardised CPUE. This result, together with our findings, underscores that more
generally, proportion of deviance explained by a non-year covariate effect is not always related
to its influence on year trend of standardised CPUE (c.f. Bentley et al. 2012).

Although the fleet size has been decreasing since inception of TACC in 2001 (Figure
4), the level of TACC only reduced over period 2006-2009 (from 450 to 240 t), after which it
remained relatively stable (VFA 2017). The TACC had not substantially constrained the fishery
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until after 2009 (VFA 2017), with the ability of the fishery to catch the TACC being inversely
proportional to the level of TACC and directly proportional to the available fishable biomass.
However, when TACC reduces it may become uneconomic to fish with vessels of lower fishing
power (Pascoe et al. 2013), which suggests a potential explanation for the outcome from our
study that vessels with particularly low fishing power exiting the fishery during 2009-2012
(Figure 3B). More generally, studies on other fisheries and species have reported that fleet
restructuring and setting of TACC can induce the exiting of vessels with low fishing power
(Marchal et al. 2013; Pascoe et al. 2013; Solis et al. 2014).

Conclusion

Rising catchability can be mediated by a range of processes. However, here we have
demonstrated that the dynamics of vessel entry and exit into a fishery can be a dominant
process. Thus, in the case of the WZRLF, even for a period when the technology of fishing
may not be advancing, selective changes in fleet composition due to exiting of less efficient
operators under conditions of sufficiently low TACC, can result in nominal CPUE overstating
rises in stock abundance. GLM standardisation, combined with appropriate catchability metrics
such as those used in this study, provide a simple and direct mechanism for detecting and
analysing fleet compositional effects.
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Figures

Figure 1. Map of the Western Zone rock lobster fishery (WZRLF) of Victoria, Australia,
showing the three reporting regions (Portland, Warrnambool, Apollo Bay) and the 40 m depth
contour boundary.
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Figure 2. CPUE indices and the CPUE annual discrepancy index by fishing year for the
WZRLF of Victoria, Australia. Left axis: Nominal CPUE (filled circle line) and standardised
CPUE (open circle line). The standardised CPUE series, shown with bars indicating 95%
confidence intervals, was rescaled to have a mean equal to that of the nominal series. Right
axis: v, (Equation 2), representing the percent change in nominal CPUE due to catchability

and observation error.
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Figure 3. Indices of catchability by fishing year based on terms estimated in Equation 1, for the
WZRLF of Victoria, Australia. A, Influence values shown for all non-year covariate effects
combined (continuous line), for Vessel (open circle line), and all non-year effects combined
except for Vessel (open triangle line); B, Influence values for each of vessels (fishing > 1 year)
entering the fishery (dashed), exiting (dotted), or remaining (solid), smoothed using a second-
order moving average.
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Figure 4. Vessel fleet statistics by fishing year for the WZRLF of Victoria, Australia. Left axis:
Proportion of all vessels entering (dashed line) or exiting (dotted line) the fishery. Right axis:
Count of all vessels in the fishery by fishing year (continuous line). Vessels in the fishery for
only one year were excluded for both axes.

0.30
— —- Proportion of vessels entering - 120
----- Proportion of vessels exiting
0.25 - 1‘ Count of all vessels in the fishery
J - 100
0.20
c L
S 80
= c
Q@ 0.15 8
S— - 60 O
o
0.10 L 40
0.05 L 20
000 I I I | I I I 0

I
1978 1982 1986 1990 1994 1998 2002 2006 2010 2014

Fishing year

49



Figure 5. Kernel density functions by fishing year of the exponential of Vessel coefficients
estimated in Equation 1, for the WZRLF of Victoria, Australia. The area of the density function

in a year is scaled to the total number of days fished by all vessels in that year.
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Tables

Table 1. Impact of excluding one or more covariate terms from the final model, quantified by
AlICc (the sample size corrected AIC) and adjusted R? (the deviance explained proportion).
The number of data points is 347,2509.

Model covariate excluded Increase in De_crease in  Estimated
AlCc adjusted R?>  parameters

None (final model) 0 0 732
Region 1719 0.3% 730
Depth 2942 0.4% 731
Fisher 12552 1.9% 549
Vessel 18297 2.8% 286

Year 19549 2.9% 696
Month 86588 14.3% 723
Vessel and Fisher 89341 14.9% 49

All except Year and Month 122884 21.4% 46

All except Year 211500 41.5% 37
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ABSTRACT

An extended depletion model (EDM) is presented that estimates both a time-series of the number of
animals recruiting to legal size as well as start-year exploitable population size. EDM requires total catch
in numbers for all months, but fits only to monthly catch rates of legal size lobsters over a restricted
period during each year, aggregating catch and recruitment over the remaining months. Applied to a
South Australian southern rock lobster (Jasus edwardsii) fishery over 1994-2014, catch rates for January,
February, and March were fit under assumptions of no recruitment and equal catchability during these
months of high catches. No assumptions are made about catchability during April-December. A hybrid
model, EDM-CSA, combines EDM and catch-survey analysis (CSA), by additionally fitting to a recruit-
ment index. Comparisons were made with estimates from a length-based integrated stock assessment
model (LenMod). All parameter estimation was by maximum likelihood. Mean estimates of recruitment
from the models differed by no more than 3% and of population size by no more than 12%. Trends in
recruitment and population size were similar among models. A likelihood ratio test using EDM detected
a significant increase in catchability from 2011 to 2012, which was sustained during 2012-2014, and
that was corroborated by fisheries-independent survey data. Hyperstability in fishery catch-rates was

also supported.

Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved.

1. Introduction

The commercial fishery for southern rock lobster (Jasus edward-
sii) in South Australia’s Southern Zone (SZ) (Fig. 1) was valued at
AU$88.9 million for the 2013/14 financial year, based on a pro-
duction of 1247 tonnes (EconSearch, 2015). The sea-floor in the
region consists of a mainly homogeneous patch of limestone reef,
which is a suitable habitat for the southern rock lobster (Lewis,
1981; Linnane et al., 2015). Fishing gear has changed little over
time, consisting of steel-framed baited pots that are set individually
overnight and hauled at first light. The dimensions of lobster pots,
including mesh and escape gap size, are regulated, along with many
other aspects of the fishery (Sloan and Crosthwaite, 2007; PIRSA,
2013), including since 1983 a minimum legal size (MLS) of 98.5 mm

* Corresponding author at: South Australian Research and Development Institute
(Aquatic Sciences), PO Box 120, Henley Beach, South Australia 5022, Australia.
E-mail address: john.feenstra@adelaide.edu.au (J. Feenstra).

http://dx.doi.org/10.1016/j.fishres.2017.02.019
0165-7836/Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved.
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carapace length and a prohibition on the retention of egg-bearing
female lobsters. Since 1993, total allowable commercial catches
(TACCs) have been in place, implemented as individual transfer-
able quotas. A yearly quota setting harvest control rule involving
the targeting of a constant exploitation rate was implemented in
2011 and refined in 2013 (PIRSA, 2013; McGarvey et al., 2016).
Leslie-DeLury depletion models (Leslie and Davis, 1939; De
Lury, 1947), sometimes simply referred to as depletion models, in
their basic form involve estimation of an initial abundance level
of a closed population subject to a series of successive deple-
tions informed by a combination of two of the following three
data sources: (a) the absolute numbers of animals removed, (b)
effort statistics on the removal process, and (c) relative capture
rates. Recently, several methods have emerged that explicitly incor-
porate recruitment into the exploitable population in depletion
models. Species to which these methods have been applied include
spiny lobster Panulirus argus (Gonzalez-Yanez et al., 2006; Ehrhardt
and Deleveaux, 2009; Babcock et al., 2015), octopus Octopus vul-
garis (Robert et al., 2010), squid Loligo gahi (Roa-Ureta, 2012), and
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Fig. 1. Southern Zone (and part Northern Zone) rock lobster fisheries of South Australia, with numbers showing marine fishing area blocks.

Spanish mackerel Scomberomorus commerson (Roa-Ureta, 2015).
Maynou (2015) applied the multi-annual generalised depletion
model of Roa-Ureta (2015) to striped red mullet Mullus surmule-
tus and cuttlefish Sepia officinalis. These methods involve catch and
effort data for the legally exploitable component of the population.
They do not utilise data on animals recruiting to the fishery.

Catch-survey analysis (CSA) is a modified form of depletion
modelling that involves a yearly time-step and infers the annual
numbers and the trend of recruiting animals into a legal size
exploitable population by fitting to a catch rate data series on the
recruiting animals, referred to here as a pre-recruit index (“PRI”),
as well as to catch rates for the fully recruited exploitable pop-
ulation (Collie and Sissenwine, 1983). CSA has been applied to
several species, including American lobster Homarus americanus
(Conser and Idoine, 1992), blue king crab Paralithodes platypus
(Zheng et al., 1997; Collie et al., 2005), blue crab callinectes sapidus
(Kahn and Helser, 2005), shrimp Pandalus borealis (Cadrin et al.,
1999; Cadrin, 2000), while Conser (1995) applied it to Icelandic cod
Gadus morhua, Icelandic Haddock Melanogrammus aeglefinus, red-
fish Sebastes marinus, and the Canadian redfishes Sebastes fasciatus
and Sebastes mentella. Information on catchability is typically pro-
vided by pre-specifying the ratio of catchability for newly recruiting
animals to that for fully recruited animals. Absolute abundance
estimates from CSA are very sensitive to this ratio (Mesnil, 2003,
2005).

The SZ southern rock lobster fishery is relatively data-rich and
has attracted substantial modelling efforts over time to moni-
tor the status of the stock, including application of an integrated
population dynamics model (here denoted “LenMod”) (Punt and
Kennedy, 1997; Hobday and Punt, 2001; Punt, 2003; McGarvey
et al, 2010; Linnane et al.,, 2015; McGarvey et al., 2015) that
represents the population by length and sex, and fits to catch
rates and survey-derived data on monthly length-sex composi-
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tions. This paper compares estimates of start-January population
size for 1994-2014 and yearly recruitment for 1994-2013, between
LenMod, which allows catchability to differ by month and includes
factors for population vulnerability (to fishing) by month and sex,
and two multi-annual depletion models referred to as EDM and
EDM-CSA. EDM is an extended depletion model that simultane-
ously estimates all recruitment parameters together with a single
catchability parameter, and fits to monthly catch rate data over a
restricted period during the year, accounting for both catch and
recruitment aggregated over the remaining period of the year.
EDM-CSA is a combination of EDM and CSA which also fits to PRI
data and estimates an extra catchability parameter for recruiting
animals. Sensitivity of EDM to catchability assumptions is exam-
ined, and a statistical test based on EDM is adapted to detect yearly
changes in catchability. The implications of the depletion modelling
are discussed.

2. Materials and methods
2.1. Data

Daily totals of catch and effort are recorded by commercial
fishers in logbooks, submitted monthly. Compulsory information
collected include fishing effort (potlifts), landed catch in weight
(kg) and in numbers of live non-spawning legal size lobsters, as
well as voluntary data on discarded catch such as numbers of dead,
undersize, and spawning lobsters (Linnane et al., 2015). The mean
depth and main marine fishing area blocks fished are also recorded.
The reporting blocks making up South Australia’s SZ fishery are 46,
50, 51, 54, 55, 56, and 58 (Fig. 1), with the bulk of the data coming
from blocks 55, 56, and 58. The fishing season starts in October and
ends in May of the following year (April for years prior to 2004).
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EDM fits to monthly catch rate data constructed as the sum
of commercial landed catch in numbers divided by the sum of
commercial potlift counts, for each of January to March and for
each calendar year during 1994-2014. EDM is conditioned on total
monthly catch in numbers consisting of commercial landed catch
inflated by a factor of 1 plus the ratio of dead discard catch in
numbers divided by landed catch in numbers, and by a factor of
1 plus the ratio of recreational catch in weight divided by com-
mercial landed catch in weight, the latter based on extrapolations
from recreational fishing surveys since 1998. The mean across
1994-2014 of the inflation factors for commercial dead discard
catch are respectively 1.08, 1.07, and 1.06 for January-March, and
those for the recreational factors are 1.06, 1.05, and 1.12. EDM-CSA
additionally requires an index that is directly proportional to the
number of lobsters recruiting across the MLS. The PRI data series is
based on monthly counts of discarded undersized lobsters divided
by potlifts (Linnane et al., 2015). Reporting of discarded under-
sized lobsters is on a voluntary basis since season 2000, and for PRI,
effort is calculated only for fishers who recorded data on counts of
undersized lobsters.

LenMod is conditioned on monthly total catch in weight (kg),
and for fishing seasons 1983-2013 fits to the following data:
monthly commercial landed catch rates constructed as the sum
of commercial landed catch in weight (kg) divided by the sum of
commercial potlift counts, monthly commercial landed catch in
numbers, monthly catch rates for numbers of discarded spawn-
ing lobsters, and for 1991 onwards counts of lobsters by sex and
4 mm length bins (lowest bin of 82.5-86.5 mm). The latter counts
were obtained from a volunteer fisher catch sampling program
that measures up to 30,000 lobsters annually (Linnane et al., 2015).
Additionally, LenMod fits to catch rate data on live non-spawning
lobsters of legal size from fishery-independent monitoring sur-
veys (FIMS) for two or three months per year from 2006 onwards
(Linnane et al., 2015).

The catch sampling program mainly consists of volunteer fishers
reporting on up to three of their pots set during a fishing trip and
which can also involve research staff as onboard observers (Linnane
et al., 2015). The sampling protocols for this program have varied
over time, along with the proportion of vessels that participate (as
high as 40% in season 2007 to as low as 15% in season 2013; Linnane
et al, 2011, 2015). The aggregate count of potlifts across January-
March per season is predominantly less than 1% of commercial
logbook fishing effort (Supplementary Fig. S1(a)). There is no clear
trend over time or among MFAs, but sampling for the northern area
(MFAs 51 and 55) is typically reported at a greater proportion of
commercial effort compared to the southern area (MFAs 56 and
58) (Supplementary Fig. S1(a)). Similarly, the relative amount of
reported effort involving undersized lobster information on com-
mercial logbooks since 2000 was 80% or above for MFAs 51 and 55,
which is greater than for MFAs 56 and 58 by factors of between 1.3
and 2 (Supplementary Fig. S1(b)). Total commercial fishing effort
for the main northern area (MFA 55) fluctuates, but for most years
is near or above the level for MFAs 56 and 58 (Supplementary Fig.
S1(c)).

Table 1 summarises the data sources and time periods for each
of EDM, EDM-CSA, LenMod, and the EDM sensitivity models (details
provided below).

2.2. EDM

Akey assumption of depletion models is that within-year catch-
ability is constant over the period of depletion during which data
are fit. Moulting for southern rock lobster is considered to occur
mainly during two periods of the year, October to November for
males and April-June for females (MacDiarmid, 1989), although
there is some indication of spatial variability in this timing, with
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it occurring earlier in Tasmania (Ziegler et al., 2004) and later in
South Australia (Prescott et al., 1996; McGarvey et al., 1999). Dif-
ferences between the sexes in the timing of moulting can result in
substantial variation in catchability (Ziegler et al., 2004). Substan-
tial numbers of female lobsters are found in spawning condition
during October and November in the SZ fishery (Linnane et al.,
2015), and this leads to a change across part of the year in the
composition of the population that is accessible by the fishery
since spawning females are required to be returned to the water.
Feenstra et al.(2014) found relatively minor effects of environmen-
tal impacts on catchability for the SZ fishery. Movement of lobsters
in or out of the SZ fishery is considered negligible, with movements
predominantly being of relatively small extent and consisting of
the inshore-offshore kind (Linnane et al., 2005). Hence January to
March inclusive was considered as the most reasonable period for
which to assume a uniformly exploitable population, no recruit-
ment, and constant catchability. The suitability of January to March
in meeting these assumptions is explored by sensitivity analysis
(Section 3.2).

The model year is defined as starting in January and ending in
December, but with catch rate data fit only for January to March
inclusive, which we will denote as the “fitted depletion period” or
simply the “depletion period”. Remaining catch and all recruitment
during therest of the year are modelled using a single time-step that
will be denoted as the “amalgamated period”. The start-January
exploitable (available and vulnerable) population, defined as the
number of live, non-spawning, legal size lobsters, N;( for year t
(‘0’=January), is modelled for T(21) years from 1994 to 2014 inclu-
sive. We now describe the ‘base’ form of EDM that assumes a single
catchability coefficient over January to March and all years mod-
elled.

Start-month exploitable population Nt for February to April
(m=1, 2, 3) of year t, assuming natural mortality occurs contin-
uously during each month, and catch is taken instantaneously
mid-month is:

m-1 m-1
-E M; me1 —O.SM,-—E (-DM;

Nt,m —e j=0 N[.O _ § e j=i
i=0

where C;; is the total catch in numbers (landed commercial, recre-
ational, and dead discards) for month i of year t, and M; is the
instantaneous rate of natural mortality during month i. Eq. (1)
can be derived from expansion and collection of terms in the
basic recursive equation Ngm =(e~%Mm-1N¢ 1 — Cpppq)e~0Mm-1,
Values for M; were determined from a value for yearly natural mor-
tality rate, M of 0.1 y~! according to the proportion of days per year
for each month i.

The recruitment to the legal-size exploitable population, and
the total catch across the amalgamated period, for each year t, are
assumed to have been taken instantaneously fractions Tr; and Tc;
into this period respectively. The exploitable population at the start
of year t+1, N+1,0, is hence defined by the equation

Ci (1)

11
Nt+1,0 — N[,mm e—Mum + Rte—m—Trt)Mam _ e—(]—Tft)Mam Z Ct‘i (2)
i=mgq

where myq equals 3 (April) and so Nt m,, is the exploitable pop-
ulation size at the start of the amalgamated period and during
Msa—1

which Mg, M — Z M; | is the natural mortality rate and
Jj=0

Rt is the number of lobsters growing into legal size, Tc; ranges
between 0.800 and 0.855, calculated as the point at which half of
the total catch during the amalgamated period was taken, and Tr¢
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Models used in the study and their data requirements. Note: “Legal size” refers to live non-spawning lobsters of legal size, and “season” refers to period October to May

identified by the calendar year in October.

Model

Data

EDM (base)

EDM-sensitivity:
EDM (base) fit separately for subsets of months.
EDM (base) fit separately for subsets of years.
EDM (base) fit separately for smaller subsets of years.

EDM (base) fit separately for subsets of years +yearly
catchability.

EDM (base) fit separately for subsets of years +yearly
catchability and sigma; fully-yearly resolved model.
EDM (base) with natural mortality estimated.

EDM (base) with § estimated.

EDM (base) with 8 estimated separately for subsets of
months.

EDM-CSA

LenMod

Total catch (legal size numbers) and commercial catch rate (legal size
numbers/potlifts) for each of months January, February, and March over
calendar years 1994-2014. Total catch (legal size numbers) aggregated over
April-December.

Dec.-Jan., Jan.-Feb., Feb.-Mar., Mar.-Apr.

1994-2007, 2008-2014

1994-1997, 1998-2001, 2002-2005, 2006-2009, 2010-2014; and 1994-1995,
1996-1999, 2000-2003, 2004-2007, 2008-2011, 2012-2014.

1994-2007, 2008-2014, 1994-2014

1994-2007, 2008-2014, 1994-2014

Same as base.
Same as base.
Dec.-Jan., Jan.-Feb., Feb.-Mar., Mar.-Apr.

As for EDM (base), but additionally requires data on commercial PRI
(undersize discard numbers/potlifts) over years 1994-2013.

Total legal size catch (both in numbers and in weight) and commercial catch
rate (legal size weight/potlifts), for each month during seasons 1983-2013.
Commercial catch rates for numbers of discarded spawning lobsters for
October-December during 1983-2013. FIMS catch rates (legal size
weight/potlifts) for up to three months a season since 2006. Counts of lobsters
per sex and 4 mm length bins from the volunteer fisher catch sampling
program, for each month during seasons 1991-2013.

equals 0.472 based on the half-way point between the midpoints
of two assumed periods of growth namely 15 May and 1 November
(MacDiarmid, 1989).

The monthly catch rate data, for each of the months January to
March and the Tyears, are fit using maximum likelihood, assuming
independent and identical log-normally distributed observation
errors, for which the negative log-likelihood function (excluding
additive constants) is

Msq—11994+T—1

NLLgpy = Z Z

m=0 t=1994

(o 5 (log(Cpuerm) — 10g(iNe.m-0.5))

o2

2

+ log(a)) 3)
where N¢m+0.5=0.5(Nt,m +Nim+1) is the mean of start-month pop-
ulation size for months m and m+1 of year t, Cpue;m is the
commercial landed catch rate (number of lobsters/potlifts) for
month m and year t, which is assumed to be linearly proportional
to Ntm+o5, q; is the legal size catchability parameter, and o is the
standard deviation of the observation error on log(Cpuey,). In addi-
tion to q; and o, the other directly estimated parameters are Nigg4,0
and R; for each of T-1 years. The value for ¢ is constant across
months and years, which implies that the level of precision for
each of the monthly catch rate is the same. The period before TACC
(1984-1993) is not modelled because this would necessitate sep-
arate catchability parameters for before and after TACC (1994+)
introduction, and effectively the running of two structurally iden-
tical EDM models.

2.3. EDM sensitivity

The sensitivity of the outputs from EDM was explored to changes
in the months defining the depletion period (January-March for
the base model). EDM fits were performed for four alternative two-
month periods: December to January, January to February, February
to March, and March to April. For each two-month period, the yearly
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extent involved 1994-2013 inclusive, with 2014 left out for con-
sistency, given data for December 2014 to January 2015 were not
available.

Base EDM was also applied separately to subsets of consecu-
tive years to examine the sensitivity of the outputs to assumed
stationarity of catchability (q;) among years. Two non-overlapping
divisions of the period 1994-2014 were analysed, namely
{1994-1997, 1998-2001, 2002-2005, 2006-2009, 2010-2014}
and {1994-1995, 1996-1999, 2000-2003, 2004-2007,2008-2011,
2012-2014}, to obtain an indication of the effect of choice of year
grouping on outcomes. Further insights were then sought by apply-
ing, for each of periods 1994-2007, 2008-2014, 1994-2014, both
the base EDM and also a fully yearly-resolved form of the base EDM
that has parameters ¢ and q; varying by year. Trends in estimated
start-month population size from the base and yearly-resolved
forms of EDM were compared with trends in (landed) catch rates
for the commercial fishery and the FIMS, for summer months with
FIMS sampling, namely January of 2010, 2011, 2012, and February
of 2008, 2009, 2013, and 2014.

The likelihood ratio test (LRT) was used to evaluate the assump-
tion of constant catchability among years given that the base EDM is
a nested sub-model of the yearly-resolved EDM. It was also used to
compare the base EDM against a model that varied only g, (instead
of both o and q;) among years, in order to test the effect of free-
ing catchability by year when observation error was assumed to be
time-invariant.

The possibility of estimating natural mortality was investigated.
A likelihood profile was constructed for natural mortality based on
arange of values considered as potentially reasonable for rock lob-
sters in general namely 0.05-0.25y~! (Johnston and Bergh, 1993).

Hyperstability in fishery catch rates (Hilborn and Walters, 1992;
Wilberg et al., 2010) was examined since this has been reported for
other southernrock lobster stocks, in Tasmania (Ziegleretal.,2003),
New Zealand (Haist et al., 2009), and South Australia (Linnane et al.,
2010). Hyperstability was modelled using two approaches, one
involving a new EDM run (“free-beta EDM") in which catchability

is modelled as QINfz;LoAs where B is the extent to which catch-rates
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change non-linearly with abundance. The second approach (Sup-
plementary material A) aims to estimate B by regressing fishery
catch rate on FIMS catch rate, assuming the latter is representative
of true population size. The first approach has been applied by Haist
etal.(2009),Roa-Ureta (2012,2015),and Maynou (2015), while the
second approach has been applied to many marine species includ-
ing by Harley et al. (2001), Hansen et al. (2005), Erisman et al.
(2011), and Ward et al. (2013), with the bulk of all aforementioned
studies reporting hyperstability (8 < 1) rather than hyperdepletion
(B>1). If hyperstability is present in this fishery then free-beta
EDM should more accurately model population dynamics, but
potentially at the cost of lower estimation precision (Thorson and
Berkson, 2010). The regression approach typically suffers from
measurement errors (Fuller, 1987) in the fishery-independent data,
which in this study was examined using the SIMEX method (Gould
et al., 1997, 1999; Supplementary material A). Determination of
hyperstability is important since ignoring it (i.e., assuming 8=1)
when present leads to overestimation of population size especially
when true population is low.

2.4. EDM-CSA

The population dynamics model for EDM-CSA is identical to that
for EDM. However, an additional data source s fit, the PRI series, and
one new parameter, the recruitment catchability (g,), is estimated
along with the legal size catchability parameter (q;) and the other
parameters in EDM. CSA, unlike EDM-CSA, parameterises qr as the
product of q; times q/qy, with the latter fixed at a pre-determined
value since q; and gr/q, are in practice highly negatively correlated
(Conser, 1994). PRI data based on commercial fishery logbooks are
considered more reliable from November to March (Linnane et al.,
2015), and so the index is formed as the mean of November and
December PRI.

The number of lobsters recruiting across the MLS each year is
implicitly assumed to consist of a constant proportion (p) of the
undersize population, and PRI is assumed to be directly propor-
tional to the number of undersized animals, and hence recruitment
is modelled to be directly proportional to PRI in expectation, since
qr=qs/p where gs is the catchability of the undersize population.
The proportions of the total number of sampled undersized lobsters
among the four 4 mm length bins below the MLS vary relatively
little among seasons, though during 1993-1999 the highest under-
size length bin (94.5-98.5) proportion was consistently below that
during 2000-2013 except for 2009 (Supplementary Table S1). Aside
from relative length frequencies Supplementary Table S1 also con-
tains information on undersize length selectivity and growth which
together were used to obtain an approximation (calculations not
shown) for the total yearly proportion of undersized lobsters that
grow to above MLS, namely 78%. This suggests that, aside from data
quality aspects regarding the voluntary data, the SZ fishery PRI data
series may reasonably be expected to be representative of relative
changes in yearly recruitment into the fishery.

The negative log-likelihood function for EDM-CSA is NLLgpy
plus a term for PRI, which is as follows assuming independent log-
normally distributed observation errors for the PRI data (excluding
additive constants):

1994+T—2
NLLgpm—csa = NLLgpy + Z

=1994
<O.5

(log(PRI¢) — log(grRe))’
Ao
where PRI; is the PRI index datum for year t, and the variance of the
observation error on log(PRI;) is assumed to equal o2 multiplied by
a pre-specified multiplier constant (A). The value for A was set to 1

(4)

+ log()\o‘sa)>
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given the absence of quantitative information on the relative level
of precision of the PRI data. The recruitment for the last year is not
estimated, but may be approximated using PRI data for that year.

2.5. LenMod

The implementation of LenMod currently used as part of South
Australian stock assessments involves a population structured
by season, month (October to May), sex and 4-mm length cat-
egories (Linnane et al., 2015). Fishing mortality is accounted for
via removal from the population of the total catch each month.
Yearly natural mortality is fixed at 0.1 y~!. Growth is captured using
size-transition matrices modelled separately per sex at the end of
December and at the end of May (McGarvey and Feenstra, 2001).
The smallest length-class has a lower limit of 82.5 mm.

LenMod was fit over fishing seasons 1983-2013 to monthly
data as described in Section 2.1, allowing estimation of yearly set-
tlement (new mainly undersized animals), recruitment to legal
size, monthly sex-specific vulnerability, monthly catchability, and
length selectivity, using maximum likelihood. Separate catchabil-
ity parameters were estimated for the pre-TACC and TACC periods
(seasons 1993+). The exploitable, or vulnerable, population (i.e.,
accessible to the fishing gear, and which is compared to EDM-
estimated numbers) at the start of each month is computed as the
sum-product of lobster numbers in each length bin of legal size
and sex multiplied by factors for length-selectivity and monthly
sex vulnerability. See Supplementary material B for more details.

2.6. Retrospective analysis

The sensitivity of model estimates of exploitable population
size in January of the terminal year was examined to successive
data set reductions by removing the last year of fitted data back
to terminal year 2006 (which is the first year of FIMS data fit by
LenMod), and was performed for base EDM, EDM-CSA, LenMod,
and free-beta EDM. Mohn’s rho (Mohn, 1999) was calculated for
each of the models, using the formula and associated comparative
rule-of-thumb (for long lived species) developed by Hurtado-Ferro
et al.(2014). Hence if Mohn's rho is outside of the interval —0.15 to
+0.20 it potentially (Hurtado-Ferro et al., 2014) indicates bias due
to unsuitable structural model assumptions such as time-constant
catchability (Mohn, 1999). Time series of start-January exploitable
population size were plotted and compared for each of model and
data set fit.

3. Results
3.1. Base models

Both commercial catch rates and total catch decline steeply
across January-March (Fig. 2), which is consistent with an initial
population that is reasonably depleted by fishing and may indicate
a fishing history that is sufficiently informative for use by deple-
tion methods (Magnusson and Hilborn, 2007). Overall, the EDM
fit appears adequate as indicated by the residual diagnostic plots
(Supplementary Fig.S2). However, the residual spread among years
(Supplementary Fig. S2(f)) indicates relatively high imprecision for
2012-2014, which is also suggested by Figs. 2 and 3. The catch
rate data points decline against cumulative catch in a reasonably
linear manner for 2008-2014, unlike the period pre-2008 which
involves some years where one month is out of alignment with the
other two months (Fig. 3). This non-linearity in monthly patterns
of catch rate data pre-2008 may be due to several reasons such as
observation error in catch rates, ephemeral timing in recruitment,
hyperstability-hyperdepletion, or arbitrary changes in catchability
but between which it is difficult to distinguish without auxiliary
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Fig. 2. Top: Time series of predicted catch rates (number of lobsters/number of potlifts) by EDM and EDM-CSA, observed commercial catch rate, and total catch in number
of lobsters (commercial, dead, recreational) by calendar year by EDM time periods: January, February, March, and April-December amalgamated (only catch). Bottom: The
LenMod equivalent time series displayed only for time steps in common with EDM (January-March) and calendar years 1994-2014, noting that LenMod catch and catch rate

are in terms of catch in weight.

information (Miller and Mohn, 1993). EDM underestimates January
catchrates and overestimates those for March for years 2012-2014,
whereas this is not evident for pre-2008 for which January tends to
be overestimated (Fig. 3).

EDM-CSA estimation is less precise post-2003 than pre-2003 for
both catchrate (Supplementary Fig. S3(f)) and particularly PRI (Sup-
plementary Fig. S4(f)). Catch rate is worst fitin 2012 and 2013 while
PRIis worst fitin 2010 and 2012. An apparent declining trend in the
residuals of PRI over the low to intermediate range of predicted PRI
(Supplementary Fig. S4(c)) is associated with clustering of residuals
post-2003, involving overestimation for 2004-2007 and, except for
2010, underestimation for 2008-2013 (Supplementary Fig. S4(f)).

LenMod tends to underestimate catch rate at high values of
1.70 and above (Supplementary Fig. S5(d)) due to underestima-
tion in the peak catch rate period of calendar years 2002-2006 for
January-March (Fig. 2) and December (results not shown), while
catch-rates are overestimated between 1994 and 2001 (Fig. 2).
There is a large difference for 1992-1993 in residuals (Supplemen-
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tary Fig. S5(f)) that may be reflective mostly of LenMod estimating
a different set of monthly catchability parameters for 1983-1992
and for 1993-2013. There is also a long-term trend in the residu-
als for years involving considerable overestimation in season 1993,
which gradually changes to underestimation in 2003 and subse-
quently diminishes across 2003-2009 (Supplementary Fig. S5(f)).
The reason for this long-term trend in the residuals is not readily
discernable, though in comparison to EDM more months of the year
and more types of data are fit (Table 1, Section 2), and so a poten-
tial factor could be spatio-temporal heterogeneity in the levels of
sampling within and between data sources. Similarly, the trend
in the residuals observed for EDM-CSA may perhaps be related to
data quality issues in the PRI series. For example, both catch sam-
pling and voluntary reporting of undersized lobsters on logbooks
disproportionately sample the northern area of the fishery (Sup-
plementary Fig. S1(a) and (b)) which contain lower densities of
undersize lobsters (Linnane et al., 2015). However, reassuringly the
mean estimated yearly recruitment levels from EDM and EDM-CSA
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Fig. 3. Predicted catch rate (number of lobsters/number of potlifts) by EDM (base) as lines, and observed commercial catch rate as points, versus cumulative total catch
in number of lobsters (commercial, dead, recreational) across the fitted depletion period of January to March in each year. The cumulative catch shown is the mean of the
cumulative total catch for the current and previous months, which is compatible with predicted catch rate since that is defined to be proportional to mid-month population

(see Section 2).

were respectively only 3% and 2% higher than from LenMod, and
trends in recruitment from all three models were similar (Fig. 4).
For 2009-2013 the 95% confidence intervals' for the EDM esti-
mates narrowed (i.e. were more precise), while discrepancy with
LenMod estimates increased (Fig. 4) and the 95% confidence inter-
vals of EDM and LenMod show minimal or no overlap (Table 2).
Overall the EDM estimates of recruitment were less precise than
for EDM-CSA, especially since 2001, with the LenMod estimates

! The confidence intervals were calculated based on the likelihood surface about
the optimum parameter estimates, using the delta method to obtain approximate
standard errors for the population quantities, with the parameter estimation and
standard errors for EDM, EDM-CSA, and LenMod calculated using ADMB (version
11.1 for MS Visual C++ 2010 Express 64 bit). See Fournier et al. (2012) for information
on ADMB algorithms.
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most precise as indicated by CV levels (Table 2). Concordance with
PRI appears greater for EDM-CSA than for EDM (Fig. 4 (bottom) and
Fig. 5 (top)), and a close association is evident between recruitment
estimates from EDM and EDM-CSA relative to LenMod at all levels
of recruitment (Fig. 5 (bottom)).

Estimates of start-January exploitable population numbers do
not differ substantially in trend nor in absolute level between EDM,
EDM-CSA, and LenMod, except that LenMod estimates a moder-
ately higher level prior to 2002 (Fig. 4). The mean estimated yearly
population levels from EDM and EDM-CSA respectively during
1994-2014 were 4% and 12% below the mean from LenMod. Table 2
indicates that both EDM and EDM-CSA estimates of population size
are approximately half as precise as those from LenMod which has
a mean CV of 3.6%. The influence of the FIMS catch rate data on
LenMod estimates of population size is minor, as determined from
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comparison to estimates from LenMod when the FIMS data were
removed (results not shown).

Estimates of catchability for January-March from LenMod and
EDM are similar, but the LenMod 95% confidence intervals are nar-
rower (Table 3). Also evident from Table 3 (and Fig. 2) is that
EDM fits the catch rates in numbers better than LenMod fits the
catch rates in weight, which may in part be due to LenMod being
required to balance multiple data sets in addition to commercial
catchrates (Table 1). Finally, LenMod estimates qualitatively differ-
ent female population vulnerability factors (accessibility to fishing)
for October-November compared to April-May for which females
are substantially less vulnerable by about 70%, while for the period
in common with EDM of January-March it estimates females to be
20-25% less vulnerable (Table 3).

3.2. Sensitivity analyses

Catchability from EDM differed substantially among several of
the alternative two-month fitted depletion periods (Fig. 6). The
catchability estimate for depletion period December-January was
73% less than that of January-February, for March-April was 150%
greater than that of February—March, while January-February was
16% less than that of February-March (Fig. 6). The catchability
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estimates from base EDM for the period January-March fell well
within the 95% confidence intervals of EDM for depletion periods
January-February and February-March, unlike EDM estimates for
depletion periods December-January and March-April (Fig. 6).
Base EDM when applied separately to subsets of years esti-
mated the catchability prior to 2008 to be lower than that after
2008, and for 2012-2014 the estimated catchability was 2.35
times that estimated for 1994-2014, the latter lying well out-
side of the 95% confidence intervals for the 2012-2014 estimate
(Fig. 7). Significantly large catchability estimates for individual
years 2012, 2013, and 2014 is also indicated by Fig. 8 (lower
panel). Yearly-resolved EDM fits to data for 1994-2014 resulted
in very imprecise (CV>50%; results not shown) catchability esti-
mates for several years during 1994-2007, while catchability for
years during 2008-2014 were estimated with lower levels of uncer-
tainty (CV <15%; Fig. 8 (bottom)). An apparent increasing trend over
1994-2009 in catchability (Fig. 7) may be spurious due to the level
of observation error. The LRT p-values for tests comparing base EDM
fits across 1994-2007,2008-2014, and 1994-2014 against the cor-
responding yearly-resolved model fits were respectively 0.00723,
<1.0E-7, and <1.0E-7, providing evidence for temporal variation
in catchability over 1994-2007, which is more strongly indicated
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Coefficient of variation (CV) and 95% confidence intervals (CI) for estimates of yearly recruitment and start-January exploitable population numbers from EDM (base),
EDM-CSA, and LenMod. Cell values consist of CV% with 95% CI in parentheses in units of millions.

Year Recruitment Exploitable population numbers
EDM EDM-CSA LenMod EDM EDM-CSA LenMod

1994 4.5%(2.7-3.3) 4.9% (2.6-3.2) 4.4% (2.3-2.7) 7.4% (2.7-3.6) 7.9% (2.5-3.4) 3.6% (3.7-4.3)
1995 5.0% (2.5-3) 4.9%(2.4-2.9) 4.8%(2.3-2.8) 7.4%(2.9-3.9) 7.5%(2.7-3.6) 3.6%(3.5-4)
1996 6.1%(1.8-2.3) 5.3%(2-2.4) 4.4%(2.4-2.8) 7.3%(3.1-4.1) 7.1%(2.8-3.7) 3.6%(3.5-4)
1997 4.1%(2.7-3.2) 45%(2.6-3.1) 4.1%(2.8-3.2) 7.1%(2.5-3.3) 7.7% (2.3-3.1) 3.7% (3.3-3.9)
1998 42%(3.2-3.7) 4.6%(3.1-3.7) 3.4% (3.6-4.1) 7.1% (2.8-3.7) 7.5% (2.5-3.4) 3.5% (3.6-4.1)
1999 4.7%(3.5-4.2) 5.0% (3.5-4.2) 3.6%(3.7-4.3) 7.3% (3.2-4.3) 7.6%(2.9-4) 3.3% (4.3-4.9)
2000 5.7% (3.2-4) 5.6% (3-3.7) 4.2% (2.9-3.4) 7.7% (3.7-5) 8.1% (3.4-4.7) 3.4% (4.8-5.5)
2001 6.9% (2.8-3.6) 6.0% (2.8-3.5) 4.3%(2.5-3) 8.0% (4.1-5.6) 8.1%(3.6-5) 3.5% (4.8-5.5)
2002 7.8% (2.5-3.5) 6.3% (2.8-3.6) 4.7% (2.5-3) 8.1% (4.3-6) 8.2% (3.9-5.4) 3.4% (4.7-5.4)
2003 8.7% (2.2-3) 6.7% (2.3-2.9) 4.8%(2.3-2.8) 8.0% (4.7-6.5) 7.9% (4.5-6.2) 3.3%(5-5.7)
2004 7.4% (2.5-3.3) 6.5% (2.3-3) 4.7%(2.2-2.6) 8.0% (4.4-6.1) 8.1% (4.2-5.8) 3.3% (4.7-5.4)
2005 8.0%(2.1-2.8) 6.5% (2.1-2.8) 43%(2.1-2.4) 7.9% (4.3-5.9) 7.9% (3.9-5.3) 3.3% (4.3-4.9)
2006 6.6% (2.4-3.1) 5.7% (2.4-3) 4.0% (2.2-2.6) 7.7% (4-5.4) 7.7% (3.6-4.8) 3.2%(3.9-4.4)
2007 8.5%(1.5-2.1) 6.5%(1.6-2.1) 4.4%(1.6-1.9) 7.6% (3.7-5) 7.0%(3.3-4.4) 3.2%(3.5-4)
2008 8.6% (1.2-1.6) 5.8%(1.4-1.8) 45%(1.3-1.5) 7.3%(2.9-3.9) 7.0% (2.6-3.4) 3.4%(2.9-3.3)
2009 4.9%(1.5-1.9) 4.9%(1.6-2) 3.3% (2-2.3) 7.2%(2.1-2.7) 7.8% (1.9-2.5) 3.7% (2.2-2.5)
2010 4.9% (3.2-3.9) 4.2%(2.9-3.4) 2.8%(2.7-3.1) 7.1% (1.8-2.4) 8.1% (1.7-2.4) 3.4% (2.3-2.7)
2011 7.1%(1.6-2.1) 5.6%(1.7-2.1) 3.7%(2.2-2.6) 7.3% (3.2-4.2) 6.6% (2.8-3.7) 3.2%(3.1-3.5)
2012 6.8% (1.3-1.7) 5.2%(1.6-2) 4.5%(1.8-2.2) 7.6% (2.4-3.3) 7.6%(2.1-2.8) 3.7%(2.8-3.3)
2013 4.5%(2.3-2.7) 4.9% (2.1-2.5) 7.4%(1.5-2) 7.5%(1.9-2.6) 8.4%(1.8-2.6) 4.1%(2.7-3.2)
2014 7.7%(2.3-3.1) 8.0% (2.1-2.9) 6.0% (2.4-3)
Mean CV% 6.2% 5.5% 4.3% 7.5% 7.7% 3.6%

Table 3

Monthly values of estimated catchability from LenMod with 95% confidence intervals and maximum likelihood estimates of monthly observation error standard deviation
(sigma) for 1993-2013, relative female vulnerability (male=1), and corresponding EDM (base) estimated catchability with 95% confidence intervals and sigma.

October November December January February March April May
LenMod - Catchability x10-7 2.83 3.00 431 4.45 432 447 4.18 431
-95% C.I. - lower 2.62 2.79 4.04 4.20 4.04 4.14 3.77 3.87
-95% C.I. - upper 3.04 3.20 4.57 4.70 4.61 4.79 4.60 4.74
EDM - catchability 4.67 4.67 4.67
-95% C.I. - lower 3.90 3.90 3.90
- 95% C.I. - upper 5.43 5.43 5.43
LenMod - sigma 0.18 0.12 0.08 0.18 0.21 0.18 0.28 0.30
EDM - sigma 0.06 0.06 0.06
LenMod - female vulnerability 1.20 144 1.05 0.79 0.78 0.75 0.54 0.28

for 2008-2014. Similarly, comparing base EDM and a model freeing
only catchability parameters across years resulted in LRT p-values
of <1.0E-7 for both 2008-2014 and 1994-2014, but the p-value
was 0.317 for 1994-2007.

Fig. 8 (top) indicates similar trends in estimates of population
size for base EDM and yearly-resolved EDM during 2008-2011,
but during 2012-2014 the base EDM estimates remained around
2008-2011 levels or above while yearly-resolved EDM estimates
declined substantially. Differences in trends between the com-
mercial logbook and FIMS catch rates closely mirror differences
between the population estimates from base EDM and yearly-
resolved EDM except for 2011 (Fig. 8 (top)). Note that there is
an element of confounding in Fig. 8 due to 2010-2012 involving
January while the other years involve February, but nevertheless
the more rapid decline inferred by yearly-resolved EDM estimates
remains when Januaries 2010-2012 are ignored.

The estimate of M was 0.18 y~! which is within a range of pre-
viously reported values for a broad range of rock lobster species
(Johnston and Bergh, 1993), but the CV was 232% and all pairwise
parameter correlations were above 0.95 in magnitude (between
catchability and M it was 99.99%). The CV on catchability was 33%,
which is an increase on that from base EDM of 8%. The profile
likelihood for M (Supplementary Fig. S6) further supports these
conclusions, indicating little change in the log-likelihood over a
wide range of values for M. Avalue for Mof 0.1 y~! was assumed rea-
sonable based on a range of 0.05-0.13 y~! for Jasus lalandii reported
by Johnston and Bergh (1993).
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The estimate of S was 0.529 (95% CI 0.371-0.687) for the free-
beta EDM run, which supports the hyperstability hypothesis given
that B=1 is well above the upper 95% limit. However, 8 and g,
are highly correlated (—99.95%), although a likelihood profile for 8
supports the narrow confidence interval determined for 8 (Supple-
mentary Fig. S7), and similarly EDM with g estimated is favoured
over base EDM as indicated by an LRT p-value of 0.001995. The
mean estimated population size from free-beta EDM was 29% less
than base EDM, but mean recruitment was only 4% less. When pop-
ulation size is low (and catchability high) the discrepancy with base
EDM estimates is greatest (Supplementary Fig. S8), while inter-
estingly estimated levels over 2012-2014 are close to those from
yearly-resolved EDM (Fig. 8 (top)). Free-beta EDM displays a simi-
lar pattern of susceptibility to very strong deviations in catchability
when applied outside of January-March (Fig. 6).

The estimate of B from regressing logged commercial fish-
ery catch rate on logged FIMS catch rate was 0.395 (95% CI
0.067-0.722), and this differed little from the results from using
SIMEX (Supplementary material A). This provides further support
to the hyperstability hypothesis. Note that, aside from the mea-
surement error aspect, estimating 8 using regression may perform
poorly when there is insufficient contrast in the data (Harley et al.,
2001), but for this study contrast was adequate given the ratio of
maximum to minimum catch rate values for the fishery data was
2.3 and for FIMS was 5.8.
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Fig. 5. Scatter plot of (top) EDM, EDM-CSA, and LenMod estimated recruitment to legal size versus pre-recruit index (PRI), and a scatter plot (bottom) of EDM and EDM-CSA
estimated recruitment versus corresponding LenMod estimates with a diagonal (dotted) guideline indicating perfect agreement.

3.3. Retrospective analysis

The value of Mohn’s rho for each of base EDM, free-beta EDM,
EDM-CSA, and LenMod were +0.19, +0.33, +0.22, and +0.07 respec-
tively. This suggests that for all models, the trend in estimated
population size is revised downwards as more data are added, and
which is consistent with the hypothesis of a rise in true catchabil-
ity over the years. Applying the Mohn'’s rho interval rule-of-thumb
strictly suggests that this indication of bias may be classed as sub-
stantial only for free-beta EDM and EDM-CSA. The retrospective
time series plots (Fig. 9) confirm that there is downward revision
of population estimates with more data fit, and that for all models
this was most severe for the pre-2008 period. Over 2008-2014 free-
beta EDM was more impacted than EDM and EDM-CSA. LenMod
displays the least overall bias and does so mainly in the terminal
year whereas the other models were impacted for most of the time
series.
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4. Discussion
4.1. Outcomes

There was close agreement between the three base models
in the long-term trends and mean absolute levels of both esti-
mated exploitable population numbers and recruitment to legal
size (Fig. 4). The PRI data were highly correlated with recruitment
estimates from EDM-CSA (Pearson r=94%), free-beta EDM (92%),
LenMod (89%), and EDM (85%), which for the two EDM models
is noteworthy considering these do not fit to data that directly
inform recruitment (Table 1). The level of precision of the esti-
mated population numbers and recruitment from the three base
models was high (CV<10%, Table 2), as was the free-beta EDM
except for 2008-2014 for which CVs were roughly double those
from EDM (Supplementary Table S2). LenMod estimates were most
precise, which perhaps is related to the much larger number of data
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points (Table 1) for only a small number of additional parameters.
The EDM-CSA estimated parameters q; and g, were well deter-
mined (CV of 8% and 2%) and not highly correlated with each other
(r=31%), which suggests no need to fix q;/q;, as is typically the case
for CSA. The models are similar in so far as they are catch con-
ditioned and include fitting of catch rates, and hence all critically
depend to some extent on population depletion between moulting
times.

The sensitivity of base and free-beta EDM to changes in the tim-
ing of the fitted depletion period did not indicate serious problems
with the assumptions of no recruitment and constant catchabil-
ity across January-March (Fig. 6). The strongly contrasting results
by EDM when applied to December-January and March-April
(Fig. 6), potentially indicate violation of assumptions, given that
some recruitment is known to occur during December (Prescott
et al., 1996; McGarvey et al., 1999) and female availability to fish-
ing in April is reduced due to the approach of the moulting period
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(MacDiarmid, 1989)as lobsters are then less likely to forage actively
(Miller, 1990; Ziegler et al., 2004). These hypotheses regarding bias
are supported by Miller and Mohn (1993) who found that depletion
models would overestimate start-period abundance when recruit-
ment occurred during the assumed depletion periods, and that
decreasing catchability during depletion periods resulted in under-
estimation of abundance.

Depletion modelling in which a common catchability parame-
ter is estimated across all years allows for more robust estimates
of abundance for the years with higher observation errors, and it
allows situations with few data points per fitted depletion period
to be utilised given sufficient years of data. However, catchabil-
ity can in reality change over time and one approach is to model
such change by an assumed form of non-linearity for catchabil-
ity (e.g. free-beta EDM). Another approach described by Wilberg
et al. (2010) is to model catchability as a step function of year (e.g.
yearly-resolved EDM). The retrospective analysis results are con-
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sistent with the possibility of an increase in catchability having
occurred since 2008 (Fig. 9), which is also suggested by estimates
of catchability from yearly-resolved EDM (Fig. 8 (bottom)), par-
ticularly over 2011-2012. Likelihood ratio tests on EDM strongly
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reject (p-value <1.0E-7) the null hypothesis of constant catcha-
bility during 2008-2014. Independent corroboration of a change
in catchability during 2008-2014 comes from the divergence in
trends between fishery catch rates and FIMS catch rates (Fig. 8),
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with the latter considered to be less biased as an indicator of true
population trend (Linnane et al., 2015).

A hypothesis concerning changing catchability is that of hyper-
stability in the fishery catch rates (see Results). Linnane et al.
(2015) report a spatial shift in fishing effort within the SZ fish-
ery over recent seasons, which could induce hyperstability if the
shift was towards higher density areas (Hilborn and Walters, 1992;
Wilberg et al., 2010; Erisman et al., 2011; Ward et al., 2013). Fish-
ers may target areas of higher catch rates (Linnane et al., 2015)
or chase concentrations of higher priced smaller lobsters (Linnane
and Crosthwaite, 2009). The latter behaviour could result in either
hyperstability or hyperdepletion (localised depletion) depending
on fleet and stock dynamics (Wilberg et al., 2010), although this
study has found support for hyperstability in the regression of fish-
ery catch rates on FIMS catch rates. However, over 2008-2014 the
trend in estimated population size from free-beta EDM does not
match that of the FIMS catch rates (Fig. 8). Thorson and Berkson
(2010) report from simulation studies that the presence of both
a separate yearly trend in catchability (e.g. due to technological
improvements) and density-dependence can be difficult to model
without auxiliary information and may lead to biases.

4.2. Modelling

EDM is similar to the multi-annual depletion models of Ehrhardt
and Deleveaux (2009) and Roa-Ureta (2015) in the sense that those
models simultaneously estimate all annual recruitment parameters
using a monthly population dynamic equation. However, unlike
EDM, the generalised depletion model of Roa-Ureta (2015) is con-
ditioned on complete and exact fishing effort during the year,
although it allows catchability to vary non-linearly with abundance
and effort but with the associated parameters (e.g. B) assumed
constant across all months of fishing. The models developed by
Ehrhardt and Deleveaux (2009) and Bailey and Elner (1989) con-
strain annual recruitment to an amalgamated period, but their
amalgamated period is strictly the fishery closed season. In prin-
ciple, EDM requires no data on fishery-scale total effort, providing
representative catch rates can be obtained from surveys over the
fitted depletion period.

Royer et al. (2002) and Young et al. (2004) have also devel-
oped sub-yearly time-step depletion models that included use of
indices of recruitment which were assumed to be without error,
and each year was modelled separately with no inter-annual pop-
ulation dynamics. Similarly, Medley and Ninnes (1997) applied a
daily depletion model to catch and effort data to obtain a relative
index of yearly recruitment that was then assumed to be with-
out error inside a yearly depletion model. However, EDM-CSA,
in common with CSA studies, directly estimates yearly absolute
recruitment levels by fitting to PRI data. The uncertainty in abun-
dance estimates for CSA will be underestimated using maximum
likelihood or bootstrapping of the data if uncertainty involving the
fixed value for g,/q; is ignored (Brooks and Deroba, 2015).

4.3. Conclusions

This paper has shown that estimates from EDM compare rea-
sonably with those from LenMod as applied to the SZ southern rock
lobster fishery. More generally, EDM may be of use in single-stock
fisheries in which data are limited, or as an auxiliary tool in more
data-rich fisheries, where total catch in numbers are available (or
inferable from mean weight) and a suitable fitted depletion period
exists over a part of the fishing season. Similarly, EDM-CSA may be
of use when pre-recruit index data are also available, regardless of
whether there exist external constraints on catchability. The EDM
estimation framework can detect significant arbitrary changes in
catchability between years and complement inferences from fish-
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ery independent surveys. Overall, results from this study suggest
that the assumption of constant catchability in lobster fishery mod-
els requires further consideration, particularly where catch rate
hyperstability poses a risk to accurate stock assessment.
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Conclusion

Brief summary of contributions

This thesis has sought to provide outcomes for concerning the southern rock lobster (Jasus
edwardsii) stocks of the SZRLF and the WZRLF in terms of identifying influences that impact
on nominal catch rate through the mechanism of catchability. Identifying such influences on
catch rate is important, aside from a purely scientific viewpoint, as catch rate forms a
fundamental part of lobster stock assessments, which are conducted annually to monitor the
sustainability of the stocks. In this thesis, studies were conducted that reported new findings
on the nature of catchability of southern rock lobster due to the influence of abiotic
environmental factors. However, it was further found that the quantitative impact on nominal
catch rate by these environmental factors was relatively minor, and that a fishery factor, namely
the entry/exit dynamics of fishing vessels, influenced the yearly trend of nominal catch rate
more substantially. Another objective of the thesis was to develop and apply a novel method
to estimate absolute exploitable abundance and recruitment given only data on catch and catch
rate. This was achieved, and the method was applied to the data for the SZRLF, with results
compared against those from an integrated population dynamics model used for stock
assessment.

Outcomes and implications

In Paper One it was found that for the SZRLF the environmental covariates did not contribute
substantially to either the trend or variance in CPUE. However, several covariates were retained
after model selection, and Paper One details their effects on CPUE and compares them with
results reported in the literature. The impact of moon phase was non-linear over the cycle of
the moon, predicting an increase in mean CPUE of 10% at full moon compared to new moon,
and a decrease of 4% compared to new moon for phases between the full and new moon. Wave
period, and wave height lagged at three days, had an estimated positive influence on mean
CPUE, while bottom temperature and (contemporary) wave height had a negative influence.
The outcomes for full moon and lagged wave height are consistent with the anecdotal reports
by some fishermen. Interestingly, the negative impact on CPUE by wave height was much
stronger when the model was restricted to data for the inshore (< 40 m) than when it was
restricted to the offshore (> 40 m), which suggests turbulence as a direct mechanism impacting
on catchability. However, there was no significant contrast indicated between the inshore and
offshore models for the estimated moon phase effect, supporting hypotheses involving
endogenous timing. The same methodology was applied to the WZRLF, except sensitivity
analyses were not conducted, which found similar qualitative outcomes and magnitudes to the
SZRLF study, but moon phase was not supported as a significant influence. Inferences and
implications were provided in Paper One, but below follows further discussion.

Paper One also determined that wind and sea surface height were not influential predictors
for CPUE of the SZRLF and the WZRLF. This is potentially due to these covariates being
naturally connected to bottom temperature (Drinkwater et al. 2006; Koeller, 1999; Schahinger,
1987), so they may provide no additional information on catchability that is not reflected in
bottom temperature given the latter is probably a more direct influence in a lobster’s immediate
environment. Koeller (1999), studying the influence on American lobster catch of wind and
temperature, urged caution when interpreting causal relationships between these three
quantities over smaller (< 100 km) spatial scales and sub-yearly steps, due to potential
confounding with changes in effort at different fishing locations driven by changing winds.
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Unlike the snow crab fishery studied by Zisserson and Cook (2017), for the SZRLF over
1998-2008 no catastrophic impacts on CPUE are known to have occurred through the direct
influence of temperature on mortality. The results from Paper One show that for the SZRLF,
temperature does impact catchability, but only to a small extent. Southern rock lobster in the
SZRLF appear resistant to the rapid drops in bottom temperature that occur several times over
November-March in most years as a result of the “Bonney upwelling”. This may suggest that
the physiological mechanism of thermal acclimatization (Lagerspetz and Vainio, 2006)
operates on southern rock lobsters by determining an appropriate preferred temperature and
aerobic scope for activity (SFA) response curve (Crear and Forteath, 2000) conditioned on the
range of temperatures they experience. One explanation for the estimated negative response of
mean CPUE to temperature is based on the SFA hypothesis for catchability developed in Paper
One. Suppose that the temperature for optimal SFA for the lobster stock is below the median
value of the temperatures used in Paper One (14.2 °C), then the aerobic activity involved in
foraging for food (and bait) will be increasingly inefficient at temperatures above the SFA
optimal temperature. The possibility that within-year growth and depletion is confounded with
temperature-driven catchability was investigated in Paper One by replacing the month factor
covariate with spline functions of time smoothed to approximately weekly, monthly, or linear
levels, which indicated only minor confounding at the sub-monthly scale.

In Paper Two the effects of vessel identifier was studied for the WZRLF by including it as
a covariate in the CPUE standardization, along with fisher identifier, month, depth, and spatial
block. The results indicated that changes occurred in the vessel composition of the fleet for
much of 1978-2014, which contributed substantially to an increasing trend in net yearly
catchability, meaning that the trend in standardized CPUE is more pessimistic than for nominal
CPUE. In particular, it was found that the increases in estimated net catchability occurred
predominantly for periods when the average catchability of exiting vessels was well below that
of the rest of the fleet. Analysis in Paper Two was improved by contrasting the influence index
(“TI”) of vessels with that of the combined non-vessel factors in the CPUE standardization, along
with the index “V” that quantified discrepancies between nominal and standardized CPUE in
terms of the magnitude of annual changes in total catchability. Moreover, the average annual
increase in “I” for vessels over 1978-1995 for the WZRLF was 1.3%, which falls well within
limits estimated for increases in fishing power reported from studies on the western rock lobster
(Panulirus cygnus) fisheries in Western Australian that utilized time series of on-board
equipment data (Fernandez et al., 1997; de Lestang et al., 2009). However, inferences drawn
about catchability increases are limited in relation to improvements in vessel technologies for
the WZRLF, given the lack of a time series of vessel data on changes in on-board equipment.

Catchability for the WZRLF is more complex than a simple upward influence on
catchability due to vessel effects since introduction of TACC in 2001. The fleet contracted over
2000-2014 (Figure 4 in Paper Two), but an upward trend in vessel influence on catchability
over that period was only estimated over 2000-2003 and 2009-2012. The literature on the
function of TACC/ITQ in fisheries suggests that fleet reductions are associated with less
efficient owners selling their quota to more efficient owners (e.g. Branch et al., 2006; Pascoe
et al., 2013). Concerning 2009-2012 Paper Two suggested that this may have occurred due to
the level of both TACC and lobster biomass by then having fallen sufficiently low to make it
uneconomic to fish with vessels of low catchability. In contrast, Leon et al. (2015) found that
for the Tasmanian TACC/ITQ lobster fishery, changes in permanent quota ownership were
linked not to technical efficiency of the operators but to their financial capacity and that exiting
of vessels was associated with operators of lower financial capacity, with this occurring only
during periods of increasing biomass. However, the results reported here for the WZRLF,
indicate that standardized CPUE respectively increased, decreased, and increased during 2000-
2003, 2004-2008, and 2009-2012, and that these periods involve respectively low, high, and
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low fishing efficiency of exiting vessels. The link between periods of stock growth and vessel
efficiency for the WZRLF is not observed for the period prior to TACC inception.

In Paper Three the novel multi-year depletion models EDM and EDM-CSA were applied

to data for the SZRLF estimating yearly absolute recruitment numbers and start-January
exploitable abundance for 1994-2014. The depletion period was January-March, over which
no recruitment or change in catchability was assumed to occur. Aside from biological
considerations, this was supported by sensitivity analyses testing alternative two-month
depletion periods, which indicated that only over January-February and February-March did
estimates of catchability not differ significantly (Fig. 6 of Paper Three). EDM and EDM-CSA
estimates agreed reasonably well with those estimated by LenMod for both the mean level of
estimated recruitment (within 3%) and abundance (within 12%). The density-dependent “free-
beta” version of EDM indicated the presence of a significant degree of hyperstability (beta of
0.529, 95% CI 0.371-0.687) for CPUE of the SZRLF. Hyperstability was also supported by
another analysis conducted in Paper Three that regressed commercial fishery CPUE on the
CPUE from fishery-independent monitoring surveys (FIMS), following the approach of Harley
et al. (2001).
Paper Three included an investigation into why the trend in the FIMS CPUE was more
pessimistic than that in commercial fishery CPUE over calendar years 2008-2014 for the
SZRLF. EDM was fit separately to data sets per individual year, revealing that estimated
catchability roughly doubled over 2012-2014 compared to the common catchability estimate
from EDM fit simultaneously to 1994-2014 (“base EDM”). Moreover, the trend in FIMS CPUE
over 2008-2014 is closer to that exhibited by the abundance estimates from yearly fit EDM
than to the trends in either the abundance estimates from base EDM, free-beta EDM, or
commercial fishery CPUE. More generally, comparison of yearly-applied and base EDM
estimates of catchability could be very beneficial for fisheries with no FIMS CPUE data by
indicating the presence and direction of a change in catchability among years. However, a
caveat exists on the detection of a change between years in catchability when that is associated
with a change to catchability within the fitted depletion period of EDM (Miller and Mohn,
1993).

Ideas for Further Research

e The CPUE standardization and diagnostic analyses for the WZRLF could be repeated
for the SZRLF. CPUE standardization was recently conducted for the SZRLF that
showed only a minor difference in trend between standardized and nominal CPUE, but
that did not include a covariate for vessel identifier as there was none. However, it may
be feasible to construct a proxy index for vessel identifier that is unique and consistent
through time, based on information that is external to the research catch-effort database.
If this proves successful, CPUE standardization for the SZRLF will be better informed
than it is currently by accounting for changes in catchability induced by changes in
vessel fleet composition.

e The WZRLF analysis should be extended by adding a term for interactions between
year and vessel effects to the CPUE standardization model. This would effectively
model a separate relative abundance index per vessel (Maunder and Punt, 2004).
However, interpretation of the results of this analysis would need careful consideration,
since although adding such interaction terms may provide a proxy method to test for
effects of technology upgrades to on-board vessel equipment, it may also confound with
other factors (Maunder and Punt, 2004). The influence (“I”’) indices described in Paper
Two would also need modification.
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The EDM model framework could be further developed to provide a diagnostic
indicator on the consistency of catchability between years that is implicitly assumed in
the interpretation of yearly CPUE statistics as a measure of relative abundance. This
could be important given that yearly CPUE is a fundamental input into the SZRLF’s
harvest strategy algorithm which determines the level of TACC each year (Linnane et
al., 2017). For example, exploratory data analysis suggests that a substantial shift in the
within-season distribution of fishing effort occurred away from January-March to
earlier in the fishing season (October-December) going from season 2010 to 2011. This
potentially implies a change in net catchability during these periods as a result of
changing lobster vulnerability and fishery factors. The nature of such changes in
catchability would need further investigation. Note also that improved CPUE
standardization of the kind suggested further above may also be beneficial.

EDM may be able to provide valid start-January exploitable biomass and catchability
estimates, given catch and CPUE are also reported by the SZRLF in weight of animals
caught (instead of numbers of animals). However, this would overestimate recruiting
biomass given that growth among legal sized lobsters during the amalgamated period
(April-December) would be included in the estimates. In order to obtain both valid
estimates of recruitment as well as biomass, it may be possible to develop the EDM
population dynamics model by adding a term for growth of contemporary biomass
using growth parameterization such as that described for delay-difference models by
Smith and Addison (2003).

Running the various forms of EDM (base, EDM-CSA, free-beta EDM, and yearly
EDM) with data extended to calendar year 2017 may be worthwhile. Similarly, it would
be interesting to simulation test EDM fitted to data generated under varying regimes of
(assumed) true length-sex vulnerability, using data simulated from a length-sex fishery
model such as LenMod. Other aspects such as the sensitivity of EDM to hyperstability
in CPUE could also be examined. One motivation for these suggested tasks is that the
version of LenMod that was used as part of the SZRLF stock assessment at the time the
analysis was performed for the EDM analysis in Paper Three, modelled the same length
vulnerability function for all months within a season. Since then LenMod sensitivity
modelling work (on data to season 2016) was conducted that involved varying length
vulnerability within a season, and which resulted in lower estimated net length-sex
vulnerability than was estimated by the previous version of LenMod.
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Supplementary material for Paper Two

Figure S1

Residual diagnostic plots of the main model as per equation 1 of the main text.
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Figure S2

Standardised CPUE (mean scaled to nominal CPUE) for models as equation 1 in Methods of
the text but with single terms excluded.
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Figure S3

Comparison between nominal CPUE trends: via the ratio estimator (as per Methods in the text)
and via the geometric mean.
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Figure S4

Influence” statistics by year for each of the non-year terms in the GLM equation 1 described in
Methods of the text.
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Depth influence by fishing year
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Supplementary material for Paper Three

A. Relationship between fishery catch rates and FIMS catch rates.

The power parameter, 3, in the hypothesized power relationship between commercial fishery
logbook catch rates and FIMS catch rates was estimated using log-log regression. The results
(Fig. A.1) showed no pathology in residual diagnostics (results not shown). The estimate of 3
was 0.395 (95% CI 0.067-0.722), which would indicate statistically significant hyperstability.

However, measurement error in the FIMS catch-rates would negatively bias [ in direct
proportion to the ratio of the variance in the log of fishery catch rates to the sum of the variances
in the log of the fishery catch rates and the log of the FIMS catch rates (Fuller, 1987). Hence
the size of the potential bias will depend on the (unknown) level of error in the fishery catch
rates as well as the error in the FIMS catch rates. Hence a simulation-extrapolation method
(SIMEX: Gould et al., 1997, 1999) was applied using measurement error variances for the
FIMS catch rates. Variances for the FIMS catch rates since season 2006 have recently been
calculated (personal communication) using a method designed for systematic sample means
and which account for the spatial autocorrelation typical of clustering species. The CV% values
for legal size catch rates for each of the summer FIMS surveys for calendar years 2007-2014
inclusive (seasons 2006-2013) ranged between 5% and 10%, and a value for summer FIMS
survey of calendar year 2006 was assumed to equal that of the 2007 survey. The original FIMS
data series together with the survey variances were then used to generate a simulated data set
of 10,000 replicate FIMS catch rate series, with each replicate series produced by adding a
given level of normally distributed error to the original FIMS data values. This was repeated
for several sets of 10,000 replicates, with each set differing by assuming a different multiplier
constant (lambda) of the variance defining the normal distribution of errors. Log-log
regressions of the original fishery catch rates on each of the replicate FIMS catch rate data
series were then performed, and for each simulated data set a sample mean (across 10,000
values) of B was computed. Then, following the SIMEX methodology, an unbiased estimate
was obtained by plotting each mean  value versus lambda that indicated a linear relationship,
and that was then used to extrapolate to where lambda equals -1 to obtain the SIMEX estimate
for B.

The resulting extrapolated value for 3 equaled 0.401 (Fig A.2), and implies only a minor
amount of negative bias in the log-log regression estimate. Similarly, the sample standard
deviation of the 10,000 (3 values for the simulation with lambda equal to 1 was 0.028, and this
lead to the standard error on 3 increasing from 0.138 (original regression) to 0.141, suggesting
only minor underestimation of the total error on f.
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for calendar years 2006-2014.
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B. Specifications of the length-structured model (LenMod).

Overview

Various versions of the initial model formulation (Punt and Kennedy, 1997) have formed part
of stock assessments for southern rock lobster off Tasmania, Victoria and South Australia for
many years (e.g., Punt and Kennedy, 1997; Hobday and Punt, 2001; Punt, 2003; McGarvey et
al., 2010; Linnane et al., 2015). The model is known as “LenMod” in South Australia, and a
condensed form of model specifications can be found in McGarvey et al. (2015), while this
present specification is a more detailed form that is as found in Linnane et al. (2015) but for a
small number of modifications. LenMod is a population dynamics model that operates on a
fishing season defined over, for the Southern Zone Rock Lobster Fishery, T = 9 time-steps
(months), starting with the opening of the fishing season in October (i=1) to May (i=8), with a
multi-month June-September (i=9) time step covering each closed winter season. The duration
of the i time-step (i=1,..,T) in units of years is denoted t.. Lobster size-classes are in 4 mm

bins, the lowest length bin defined as 82.5-86.5 mm CL, with 29 bins for males and 21 for

females. The model population array, N;H , Is the number of lobsters by length bin (1), sex (),

fishing season (y; hereafter referred to as year), and month (i).

The population dynamics model

Basic dynamics
The equation that specifies N;,i,l takes account of natural mortality M (instantaneous yearly

rate), fishing mortality, growth, and settlement under the assumption that harvest occurs before
growth and settlement:

N;,i+1,| = Z XIS',I,i N;,i,l' e {1- H: HOQD; Ry (1)
-

yil

where:
X/1; is the fraction of the animals of sex s in size-class /’ that grow into size-class | during

time-step i; € is the fraction of the settlement that occurs to sex s during time-step i (
ZZQ,S =1); @, is the proportion of the settlement of animals of sex s that occurs to size-
s i

class I,

I:I;i,,. is the exploitation rate on animals of sex s in size-class /” at the start of time-step i of
year y over all fleets; and

R, is the settlement of animals during year y:

— _ 2/2
R,=R " @

where: R is mean settlement, ¢, is the “settlement residual” for yeary, o , is the standard
deviation of the random fluctuations in settlement for year y:
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~2

~2 ~(Ysart—Y)
O'é y= It if Y < Yan (3)
© o otherwise

Oy is the extent of variation in settlement for years after Y, and 7 determines the extent to
which oy, changes with time (7 <1 means that the settlement will be closer to the mean

settlement for the years before Y.).
Egg production is given by the following equation for the case in which spawning is assumed
to occur at the start of time-step I, of year y:

|§y = ZQ| N;,im,l 4)
|

where Q, is the expected number of eggs produced by a mature female in size-class I, and N

f

is the time-step in which spawning occurs (month 1) and N, |

females.

being the total number of such

Catches

C,. which is the landed catch in weight data by fleet f during time-step i of year y. In addition

to landed catch, commercial data includes information on spawning lobsters and those brought
up dead in the pots, while four surveys (1998, 2001, 2004, and 2007) are used as the basis to

estimate catches for the recreational fleet. Cyfyi is used in defining the fully-selected

exploitation rate for fleet f during time-step i of year y, Fyfi , Is calculated as follows:
f 1+ dyfi)Cyfi

Fi: ~'s ~s's's s —Mt; (5)
g Izzsy:if,l (1- pi,I)Vi W, Ny,i,le M2

where

d;,i is the ratio of the discarded dead catch to the legal-size catch for fleet f (only for
commercials, and is O for recreationals);

V:® is the relative vulnerability of males to females during time-step i (V,* =1 for males);

f)ﬁl is the proportion of mature animals of sex s in length-class | which are returned live during
time-step i because they are spawning (0 for males); and
S~;i,, is the vulnerability by length for the gear used on animals of sex s in size-class | during
time-step i of year y incorporates the legal minimum size as:
if L +AL <LML,
0 if >LML,

§;” - S;M otherwise (6)

S: (L +AL —LML,) / AL

§s,f :S~S

yil =9yi1, as the same gear is assumed for commercial and recreational fishers.
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L is the lower limit of size-class | for sex s, ALj is the width of a size-class | for sex s (4 mm),
LML is the legal minimum size during year y, Sjyiy, is the vulnerability of the gear used on

animals of sex s in size-class I. (There were no changes in LML, which is 98.5 mm carapace
length, over the whole time series for the Southern Zone Rock Lobster Fishery.)
F\, is used to define H,,. as follows:

H;,m = Zgjn (1_ r)is,l)vis Fyf,i (7)

Initial conditions

It is impossible to project this model from unexploited equilibrium owing to a lack of historical
catch records for the entire period of exploitation. Instead, it is assumed that the population
was in equilibrium with respect to the average catch over the first five years for which catches

are available in year Vg, —20. This approach to specifying the initial state of the stock differs

from that traditionally adopted for assessments of rock lobster off Tasmania and Victoria (Punt
and Kennedy 1997; Hobday and Punt 2001) in that no attempt is made to estimate an initial

exploitation rate. The settlements for years Yq,: —20 to Yy, —1 are treated as estimable so

that the model is not in equilibrium at the start of year Y -

The objective function
The objective function summarises the information collected from the fishery and contains
contributions from four data sources:

a) Commercial catch and independent catch rates,

b) length-sex frequency data from sampling of commercial pot lifts, and

c) commercial catches in number.

Catch-rate data
The contribution of the catch-rate data for the commercial fishery to the likelihood function is
given by:

1 ((nl yC?mm _gn(quomm B;,iComm))z
" 1 oz 8.
Ll. UH I;?mmmaci?mb p[ 2(O_C b)2 ( a)

qii

while the contribution of fishery-independent monitoring survey (FIMS) index data to the
likelihood function is given by

anFI_MS—ﬁn A FIMS y Comm Be,_Comm 2
_ (K7 — in(@™"q”™ B, »] )

1
= ex
Li-b HH K )I/:'IiMS /27Z O_;:’(i)mb p{ 2( O_Comb)Z

q,i

where:

Comm

g is the commercial catchability coefficient;

| Comm
y,i

is the catch-rate index for the commercial fleet for year y and time-step i;

ach’mb is the standard deviation of the observation error for the commercial fleet and FIMS

surveys combined for time-step i;
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FIMS

ﬁ is the FIMS catchability coefficient; and

K[ is the FIMS catch-rate index for time-step i of year y.
FIMS catch rates are available (since 2005 for the Southern Zone Rock Lobster Fishery) and

are derived from sampling pots spaced evenly across transects which span a larger spatial
region than that of the concentrated fishing grounds, where catchability by month is assumed

Comm

to be the same as that for the commercial fishery. The maximum likelihood estimates for g

comb \vere obtained analytically, while the value for ™ was estimated as part of the non-

Comb

and Ogi

Comm

linear search procedure. A separate set of ¢~ " and o,; " were estimated for the years prior

to TACC introduction (seasons 1983-1992 for the Southern Zone Rock Lobster Fishery) and
the period thereafter.

Bej-c"mm is the exploitable biomass available to the commercial fishery (and recreational
fishery) during time-step i of year y:

ij"mm_ZZv sy,,ws ‘M”ZNy,l(l Hy,|/2) 9)

Length-frequency data

Length and sex frequency data are available from a sampling program which has been
conducted since 1991. This program involves voluntary reporting on the contents of pot lifts
by some commercial fishers. The observed fraction, during time-step i of year y by the

commercial fishery, of the catch (in number) of animals of sex s in size-class | (including
undersize) is denoted o5 17™" . The model-estimate of this quantity, 255" , takes account

of the vulnerability of the gear and the numbers in each size-class and sex:

p‘;f::)mm y||V (1 p|| ylllzzsyllv (l pl|)Nyl| (103.)

s,Comm

The observed value of o, is assumed to be multinomially distributed, giving the
length-sex frequency likelihood function (ignoring multiplicative constants):

L, = HHHH( peGm (10.b)

s,Comm

where /7,7 s the observed number of lobsters in the sampling program in time-step i of

year y of sex s and size-class | , and o is a down-weighting constant factor to reduce
influence of this data relative to the catch-effort data sets (since catch sampling is not random
and selectivity is not stationary). Undersize length-sex frequencies are fit as part of the full
length-sex frequency data from the sampling program, with the model catch number
predictions given by:

V (1 pl I)N i, Iethi/2 (113.)

y||

The length-sex frequencies for spawners are also assumed to be multinomial samples, except
the model catch number predictions are:

V pl| ||e_Mti/2 (11b)

y||
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Catch-in-number
The commercial catches in number, Cyi, are assumed to be lognormally distributed. The
contribution of these data to the likelihood function is therefore given by:

1
S8 P

where C), = ZZVﬁ s (=N, e 2E7™ and o™ is the standard deviation of the

observation error in catch numbers for the commercial fleet, assumed to apply over all time.
The spawner discards are also fitted under the assumption that they are lognormally distributed.

_(¢nC}l —(nC) ™)

2
20y

(12)

Parameter estimation

Table B.1 lists the parameters of the population dynamics model and the objective function,
and highlights those parameters assumed to be known exactly and those parameters whose
values are estimated by fitting the model to the data. Vulnerability-at-length for each fleet is
estimated, separately for each sex, by a logistic function of length, and is the same for
commercial and recreational fishers. Female vulnerability by time-step is estimated. Female
spawner fractions are based on auxiliary information.

A constraint is placed on the settlement residuals to stabilise the estimation and prevent
confounding with mean recruitment. The following term was included in the objective
function:

P=05)(g,)*/(ck,): (13)
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Table B.1.

Parameters of the length-structured model (LenMod) model and their sources for the
Southern Zone Rock Lobster Fishery.

Parameter  Description Value
&y The settlement residuals for year y Estimated
gn(ﬁ ) Mean settlement Estimated
Or The extent of variation in settlement for years after Y. 0.5
T The extent to which o7, , changes with time 0.8
Xz, Growth transition matrix Matrices by sex for months 3
o and 8.

M Natural mortality 0.1yrt?
A Relative vulnerability of males to females by time-step Estimated
gs Vulnerability of the gear by sex, size-class, time-step, and Estimated as sex-specific

vl year. logistic functions of length
Be Proportion of mature spawning animals by sex, size-class

h and time-step
o Fraction of the settlement by time-step and sex Estimated

First six length bins: males =

s : : . 0.35, 0.2, 0.15, 0.15, 0.1, 0.05;

D, Proportion of the settlement of animals by sex and size-class fernales = 0.45, 0.25, 0.15, 0.1,
0.05,0

Q Egg production as a function of size
W,? Mass as a function of size and sex Power function of length
I, The time-step in which spawning occurs 1
quomm ’ dHMs iCatchablllty for the commercial fleet and FIMS by time-step Estimated
o Comb Standard deviation of the observation errors for time-step i Estimated

al for the commercial fleet and FIMS surveys combined.
O_'Sl:omm Stande_1rd deviation of the observation error in commercial Estimated

catch in numbers

10 Down-weighting factor for length-sex data 0.0125
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C. Tables:
Supplementary Table S1

Undersize length frequencies per season (January-March) in 4 mm length bins, normalized to
1 across the four bins, from the catch sampling data. Below the length frequencies are provided
length selectivity per bin mid-point estimated by LenMod (mean across sex) and the probability
of growth from each bin to above legal size derived from growth transition matrices (mean
across sex and month) that are inputs into LenMod. Note: Frequencies for November-
December differed trivially to those for January-March.

4 mm length bins

Season (Jan.-Mar.) 82.5- 86.5- 90.5- 94.5-
86.5 90.5 94.5 98.5

1993 0.11 0.21 0.31 0.37

1994 0.13 0.25 0.31 0.31

1995 0.11 0.20 0.30 0.39

1996 0.12 0.21 0.30 0.37

1997 0.12 0.22 0.29 0.37

1998 0.10 0.20 0.32 0.39

1999 0.09 0.19 0.29 0.43

2000 0.06 0.15 0.31 0.48

2001 0.08 0.17 0.30 0.44

2002 0.05 0.15 0.29 0.51

2003 0.09 0.17 0.28 0.46

2004 0.07 0.17 0.30 0.46

2005 0.09 0.19 0.29 0.43

2006 0.07 0.16 0.30 0.47

2007 0.10 0.17 0.27 0.45

2008 0.10 0.18 0.29 0.43

2009 0.15 0.24 0.30 0.31

2010 0.09 0.18 0.30 0.43

2011 0.10 0.19 0.28 0.42

2012 0.12 0.19 0.28 0.41

2013 0.09 0.23 0.31 0.37

Mean relative frequency 0.10 0.19 0.30 0.41

Selectivity (LenMod) 0.36 0.78 0.87 0.88

Growth probability to above legal 0.57 0.69 0.81 0.92
size
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Supplementary Table S2

Coefficient of variation (CV) and 95% confidence intervals (CI) for estimates of yearly
recruitment and start-January exploitable population numbers from EDM (base) and free-beta
EDM. Cell values consist of CV% with 95% CI in parentheses in units of millions.

Recruitment Exploitable population numbers

Vear EDM (base) EDM (free-beta) EDM (base) EDM (free-beta)
1994 4.5% (2.7-3.3) 4.3% (2.6-3.1) 7.4% (2.7-3.6) 11.0% (1.5-2.3)
1995 5.0% (2.5-3) 5.0% (2.4-2.9) 7.4% (2.9-3.9) 10.3% (1.7-2.6)
1996 6.1% (1.8-2.3) 5.9% (1.7-2.1) 7.3% (3.1-4.1) 9.8% (1.9-2.7)
1997 4.1% (2.7-3.2) 3.5% (2.6-3) 7.1% (2.5-3.3) 11.8% (1.3-2)
1998 4.2% (3.2-3.7) 4.0% (3.1-3.6) 7.1% (2.8-3.7) 10.9% (1.5-2.4)
1999 4.7% (3.5-4.2) 5.4% (3.5-4.3) 7.3% (3.2-4.3) 9.3% (2-2.9)
2000 5.7% (3.2-4) 7.5% (3.1-4.2) 7.7% (3.7-5) 8.2% (2.7-3.7)
2001 6.9% (2.8-3.6) 9.8% (2.7-3.9) 8.0% (4.1-5.6) 8.2% (3.3-4.5)
2002 7.8% (2.5-3.5) 11.9% (2.4-3.9) 8.1% (4.3-6) 8.8% (3.7-5.2)
2003 8.7% (2.2-3) 15.2% (1.6-3) 8.0% (4.7-6.5) 9.5% (4.2-6.1)
2004 7.4% (2.5-3.3) 11.8% (2.1-3.3) 8.0% (4.4-6.1) 8.8% (3.8-5.4)
2005 8.0% (2.1-2.8) 13.2% (1.6-2.7) 7.9% (4.3-5.9) 8.3% (3.6-5)
2006 6.6% (2.4-3.1) 9.4% (2-2.9) 7.7% (4-5.4) 7.8% (3.1-4.2)
2007 8.5% (1.5-2.1) 12.5% (1.2-2) 7.6% (3.7-5) 8.1% (2.7-3.7)
2008 8.6% (1.2-1.6) 7.3% (1.2-1.6) 7.3% (2.9-3.9) 10.6% (1.7-2.5)
2009 4.9% (1.5-1.9) 3.1% (1.6-1.8) 7.2% (2.1-2.7) 13.6% (0.9-1.6)
2010 4.9% (3.2-3.9) 4.7% (3-3.6) 7.1% (1.8-2.4) 13.7% (0.8-1.3)
2011 7.1% (1.6-2.1) 7.5% (1.4-1.9) 7.3% (3.2-4.2) 9.4% (2-2.9)
2012 6.8% (1.3-1.7) 5.2% (1.3-1.6) 7.6% (2.4-3.3) 13.6% (1.1-2)
2013 4.5% (2.3-2.7) 3.8% (2.1-2.5) 7.5% (1.9-2.6) 16.0% (0.7-1.4)
2014 7.7% (2.3-3.1) 14.0% (1.1-1.9)
Mean CV%  6.2% 7.6% 7.5% 10.5%
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D. Figures:
Supplementary Figure S1
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Supplementary Fig. S1. Time series of effort per data source. (a): Reporting rates of effort of
the catch sampling data series as a proportion of the corresponding total commercial fishery
effort per combined MFA 51+55 and 56+58, and calendar year (January-March). MFAs 51 and
55 are aggregated for data confidentiality reasons, and similarly so for MFAs 56 and 58. (b):
Reporting rates of effort with PRI data as a proportion of the corresponding total commercial
fishery effort per MFA and calendar year (January-March). (c): Time series of total effort for
each of the four major MFA reporting blocks (51, 55, 56, 58) of the South Australian rock
lobster Southern Zone commercial fishery, as number of potlifts aggregated over January to
March per calendar year.
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Supplementary Figure S2
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Supplementary Fig. S2. EDM catch rate fit diagnostic plots consisting of (a) histogram of
standardized residuals, (b) quantile-quantile plot, (c) trend in standardized residuals versus
predicted catch rate, (d) predicted catch rate versus observed catch rate, (e) trend in
standardized residuals versus model month (January (0) to March (2)), and (f) trend in
standardized residuals versus calendar year (1994-2014). Standardized residuals are defined as
log(observed catch rate) minus log(predicted catch rate) divided by the (maximum likelihood)
standard deviation.
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Supplementary Figure S3
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Supplementary Fig. S3. EDM-CSA catch rate fit diagnostic plots consisting of (a) histogram
of standardized residuals, (b) quantile-quantile plot, (c) trend in standardized residuals versus
predicted catch rate, (d) predicted catch rate versus observed catch rate, (e) trend in
standardized residuals versus model month (January (0) to March (2)), and (f) trend in
standardized residuals versus calendar year (1994-2014).
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Supplementary Figure S4
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Supplementary Fig. S4. EDM-CSA PRI fit diagnostic plots consisting of (a) histogram of
standardized residuals, (b) quantile-quantile plot, (c) trend in standardized residuals versus
predicted PRI, (d) predicted PRI versus observed PRI, (e) box plot of standardized residuals,
and (f) trend in standardized residuals versus calendar year (1994-2013).
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Supplementary Figure S5
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Supplementary Fig. S5. LenMod catch rate fit diagnostic plots consisting of (a) histogram of
standardized residuals, (b) quantile-quantile plot, (c) trend in standardized residuals versus
predicted catch rate, (d) predicted catch rate versus observed catch rate, (e) trend in
standardized residuals versus model month (October (1) to May (8)), and (f) trend in
standardized residuals versus fishing season (1983-2013). For reference the vertical line is
placed prior to the first season from which EDM and EDM-CSA model time commences,
namely season 1993 (calendar year 1994, January).
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Supplementary Figure S6
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Supplementary Fig. S6. Negative log-likelihood values for EDM runs for different fixed
values of natural mortality. The triangle marks the value (0.1) for natural mortality assumed by
base EDM, and the diamond is the estimated value for natural mortality when it was freely
estimated.
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Supplementary Figure S7
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Supplementary Fig. S7. Negative log-likelihood values for EDM runs for different fixed
values of 3. The triangle marks the value for 3 assumed by base EDM (3 = 1), and the diamond
is the estimated value for B when it was freely estimated (free-beta EDM).
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Supplementary Figure S8
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Supplementary Fig. S8. Time series of estimated start-January exploitable population
numbers from base EDM and free-beta EDM with corresponding catchability (top), and
recruitment to legal size (bottom) series from base EDM and free-beta EDM. The maximum
likelihood 95% confidence intervals for base EDM estimates are the shaded areas. Pre-recruit
index (PRI) data points (of November-December) are added to the lower panel and are scaled
so that the mean equals that of the EDM estimated recruitment series.
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