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Abstract 

The aim of this thesis is to contribute to the field of fisheries science and population modelling, 

having as subject matter the stocks of southern rock lobster (Jasus edwardsii) exploited by the 

commercial fisheries of the Southern Zone in South Australia (SZRLF) and the Western Zone 

in Victoria (WZRLF), Australia. The utility of a statistic known as “catch rate” is explored in 

regard to inferences drawn about the population and catchability of these southern rock lobster 

stocks. This thesis is in the form of “by publication” and contains three papers, two of which 

are published (“Paper One” and “Paper Three”) while one is submitted and under review 

(“Paper Two”). 

Studies on some crab and lobster fisheries have shown that natural anomalies in water 

temperature can substantially impact catch rates. Paper One involved a multivariate regression 

study of abiotic environmental influences considered to act through catchability on daily catch 

rates of the SZRLF stock, finding that moon phase, bottom temperature, and wave action were 

retained in the final model but explained relatively little variance or trend in catch rate. 

However, the study determined several qualitative outcomes regarding the nature of the 

influences on catch rates that were not previously reported in the literature for southern rock 

lobster. Mean catch rate was estimated to be 10% greater just prior to full moon than at new 

moon, wave height lagged at three days had a positive influence, while bottom temperature and 

(contemporary) wave height had a negative influence. Similar findings were determined for 

WZRLF except for moon phase. Paper One compared these outcomes to those from studies on 

other lobster species, and proposed several hypotheses as explanations. 

In Paper Two a GLM analysis was performed on WZRLF catch rates that included vessel 

identifier as a covariate, which represents a fishery influence on catchability, and found that it 

was substantially more influential on the trend in catch rate than was observed for the 

environmental influences reported in Paper One. Results suggest that the composition of the 

WZRLF vessel fleet changed over the years due to vessels exiting from the fishery being on 

average less efficient at fishing than the rest of the fleet, and hence driving an increase in net 

catchability and an overly optimistic assessment of the stock. Alternative forms of diagnostic 

indices were developed to study changes in vessel-driven catchability. The underlying 

mechanisms of vessel fleet dynamics were investigated and discussed in relation to other 

fisheries. 

In Paper Three, novel multi-year depletion models were developed based on extending the 

Leslie-Davis model. These were applied to data of the SZRLF, producing estimates not only 

of catchability and yearly trend in relative abundance, but also absolute exploitable abundance 

and yearly recruitment numbers. Although making strong assumptions about catchability and 

recruitment for a period in each year, during the rest of the fishing year it avoids the need for 

such assumptions nor requires fishing effort data. Results compared reasonably with those of 

a more sophisticated but data hungry integrated stock assessment model. 

  



iii 

 

Declaration 

  



iv 

 

Acknowledgements 

I would like to thank my supervisors for their patience and timely support, and especially 

Professor André Punt for his prompt and pertinent editing. I thank SARDI, Dr Richard 

McGarvey, and Dr Adrian Linnane, for being flexible in the provision of reduced hours of 

employment, hence enabling me to strike an appropriate thesis-work-life balance. I would also 

like to thank The University of Adelaide, the School of Mathematical Sciences, and Professor 

Nigel Bean for providing me the opportunity to undertake this degree. 

  



1 

 

Introduction 

Background 

 

The aim of this thesis is to contribute to the field of fisheries science and population modelling, 

having as subject matter the stocks of southern rock lobster (Jasus edwardsii) exploited by the 

commercial fisheries of the Southern Zone in South Australia (SZRLF) and the Western Zone 

in Victoria (WZRLF), Australia. Southern rock lobster is an important economic species for 

Australia, valued at around $112.8 million for the SZRLF in 2015/16 (Econsearch, 2017). The 

central theme is the use of a statistic known as “catch rate” (also known as catch-per-unit-effort 

or “CPUE”), together with total catch, to infer information about population size,  trend, and 

“catchability” of the southern rock lobster stocks of the SZRLF and the WZRLF. Other 

fisheries for Jasus edwardsii include those in the South Australian Northern Zone, the 

Victorian Eastern Zone, Tasmania, and New Zealand. 

Lobsters in the SZRLF and the WZRLF are caught in devices known as “pots” that are 

cages with an opening allowing lobsters to reach bait inside. The pots are dropped to the sea 

floor, with each pot capable of trapping and holding several lobsters, which are retrieved by 

fishers typically after one day. The most resolved form of catch rate used in the analyses for 

this thesis is that defined for an individual fisher over a 24 hour period - the ratio of the total 

catch to the total number of pots set and hauled (potlifts). Similarly, catch rates can be defined 

for time steps of day, month, or year, by summing the catch and potlifts (fishing effort) over 

fishers and dividing total catch by total effort.  

Note that in this thesis the terms “CPUE” and “catch rate” are used interchangeably. By 

“abundance” is meant either the absolute number of lobsters in a population or the biomass 

(weight of all lobsters), depending on whether the catch data used to model the population was 

in terms of the number (Paper Three) or weight of the animals caught (Papers One and Two). 

The term “relative abundance” is assumed to mean a measure of true abundance, but one that 

is dimensionless (no information on absolute population size), representing a completely 

precise and unbiased index of abundance. Hence, CPUE, based as it is on data, can at best be 

considered as a good proxy index for relative abundance. Instead of “abundance”, the term of 

identical meaning namely “absolute abundance” is used depending on the context to highlight 

a contrast with “relative abundance”. 

Catch rates are commonly used in fisheries science and stock assessments as indices of 

relative change in population size (i.e. abundance) by assuming direct proportionality between 

catch rate and population size, meaning for example that when catch rate doubles in one year 

that population size also doubles. This inference about change in population size relies on the 

absence of other influences on catch rates that may change over time. This is rarely the case, 

however, and effective monitoring of marine stocks for sustainability management of a fishery 

requires study of other potential influences on catch rates. Such potential influences may 

change what is known as “catchability” (Hilborn and Walters, 1992; Arreguin-Sanchez, 1996) 

because they alter how easily, or efficiently, animals are caught. Catch rates are often regressed 

against available data sources that are assumed to reflect different components of catchability, 

and when time is represented as an additional independent variable such regressions are known 

as catch rate standardizations. However, catch rate standardization informs only on relative 

changes in abundance, whereas if data on the total amount of catch or effort is considered in 

combination with catch rate, models that attempt to estimate the absolute level of abundance, 

such as biomass dynamics, delay-difference, and depletion models (Hilborn and Walters, 1992) 
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can be applied. Catch rate standardization, as well as several absolute abundance models of 

relevance to this thesis, are described in the literature review further below.  

The SZRLF and the WZRLF, apart from being spatially contiguous and fished using similar 

fishing gear, are also broadly similar in terms of both commercial fishery management and 

lobster stock attributes (Linnane et al., 2010; Plaganyi et al., 2018), although the total 

commercial catch from the SZRLF is several times larger than from the WZRLF (in 2014, 1244 

t versus 325 t). These fisheries have closely related lobster recruitment processes (Linnane et 

al., 2010, 2014; Hinojosa et al., 2017). Recreational and indigenous fisheries constitute a 

relatively minor (< 5%) fraction of total catch for both the SZRLF and the WZRLF (Plaganyi 

et al., 2018). The commercial sectors of the SZRLF and the WZRLF are similar in terms of 

gear limitations, temporal closures (SZRLF June-September; WZRLF females June to mid-

November and males mid-September to mid-November), minimum legal size limits (SZRLF 

98.5 mm CL; WZRLF females 105 mm and males 110 mm), protection of spawning females, 

and the use of yearly Total Allowable Commercial Catch (TACC) with individual transferable 

quota (ITQ) (PIRSA, 2013; Linnane et al., 2017; VFA, 2017; VSG, 2017). Catch is recorded 

both in terms of mass (kg) and number of “landed” lobsters (live, non-spawning, legal sized) 

in both fisheries. 
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Summary of paper objectives 

 

This work is a “thesis by publication". The three main papers were the result of co-authorship, 

with myself as primary author having produced the bulk (~ 90%) of the conception and 

development of the material. The first and third papers were published in scientific journals as 

detailed below, and involved studies on respectively the abiotic catchability and absolute 

abundance of the lobster stock in South Australia’s SZRLF. The second paper focusses on the 

estimation of relative abundance of the lobster stock in Victoria’s WZRLF, and is currently 

submitted and under review.  

 

Paper One: Feenstra, J., McGarvey, R., Linnane, A., Punt, A.E., Bean, N., 2014. Environmental 

influences on daily commercial catch rates of South Australia’s southern rock lobster (Jasus 

edwardsii). Fish. Oceanogr. 23, 362-374.  

Abiotic environmental influences have been shown in studies on a variety of lobster species to 

have had a substantial impact on trends in commercial catch rates. The study presented in this 

paper had the aim of determining the extent to which environmental factors, for which we 

possess data, may be impacting on daily catch rates of southern rock lobster (Jasus edwardsii) 

in the SZRLF by inducing non-stationarity in catchability. A multivariate weighted linear 

regression was applied, involving environmental data sources as covariates and total potlifts to 

scale the variance given the highly variable levels of daily fishing effort. The covariates used 

in the analyses were bottom water temperature, wave height and period, moon phase, wind 

stress, and sea surface height. In addition to reporting on the proportion of variance explained 

by the environmental factors, and the impact on trend in catch rates, the study determined 

several qualitative outcomes regarding the nature of the influences on catch rates that were not 

previously reported in the literature for southern rock lobster. 

 

Paper Two: Feenstra, J., McGarvey, R., Linnane, A., Haddon, M., Matthew, J., Punt, AE. 

Impacts on CPUE from vessel fleet composition changes in an Australian lobster (Jasus 

edwardsii) fishery. Submitted to New Zealand Journal of Marine and Freshwater Research.  

(Under review.) 

Generalized linear modelling was used to estimate standardized catch rates for the southern 

rock lobster (Jasus edwardsii) stock of the WZRLF, and to determine the direction and extent 

of induced trend in catchability due to the dynamics of vessel entry and exit into the fishery 

over time. In particular, less efficient vessels exiting over time can induce an upward bias in 

the yearly trend of nominal (raw) catch rates, resulting in an overly optimistic indication of the 

trend in relative abundance that may lead to overexploitation of the stock. The underlying 

mechanisms of vessel fleet dynamics were investigated, and results discussed including in 

relation to the influence on the TACC and ITQ management. Several diagnostic indices were 

created to assist in quantifying discrepancies between trends in nominal and standardized catch 

rates. 

 

Paper Three: Feenstra, J., Punt, AE., McGarvey, R. 2017. Inferring absolute recruitment and 

legal size population numbers of southern rock lobster (Jasus edwardsii) in South Australia's 

Southern Zone fishery using extended forms of depletion modelling. Fisheries Research 191: 

164-178.  

An extension of the Leslie-Davis depletion model was developed, referred to here as EDM 

(extended depletion model), and applied to the SZRLF, providing a new and simple approach 

to stock assessment for this resource. It produces estimates for all years of absolute exploitable 

abundance as well as the number of recruiting animals to the fishery. EDM achieves this by 
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simultaneously estimating recruitment for all years, which involves combining features of 

population dynamics from classic within-year depletion models and between-years delay-

difference models. EDM requires total fishery catch in number over a fishing year, but monthly 

catch rate data for only part of the year (for the SZRLF during three months in peak fishing 

season) when no recruitment and constant catchability are assumed. It neither requires 

assumptions about catchability, nor the availability of fishing effort data, for the rest of the 

fishing year. A hybrid model (EDM-CSA) was developed that combines EDM and catch-

survey analysis (CSA), expanding EDM by fitting to a yearly recruitment index based on 

discarded undersize lobsters, which unlike CSA does not require a catchability ratio of legal-

size to undersize animals to be assumed a priori. Abundance and recruitment estimates from 

EDM and EDM-CSA were compared with estimates from a more complex, but data hungry, 

length-based integrated stock assessment model (LenMod). Further outcomes using the EDM 

framework included the development of a statistical test that checks the validity of the 

assumption of constant catchability across years, and a generalization of EDM to allow 

modelling of non-linearity in the CPUE-abundance relationship such as hyperstability. These 

modelling tools were used to analyse the problematic discrepancy between trend in nominal 

commercial catch rate and the fishery-independent survey measurements of relative abundance 

over 2008-2014. 
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Literature review 

Modelling of relative abundance 

Catchability and trend in catch rate 

 

Catchability can be defined in terms of the proportion of a population of fish that is caught by 

a unit of fishing effort (Paloheimo and Dickie, 1964; Ricker, 1975). Hence, for "E" units of 

fishing effort at time "t" (day, month, or year), q*E(t)=C(t)/N(t), where "q" is catchability, "C" 

is catch, "N" is population size (abundance). Rearranging the aforementioned equation, we 

have CPUE(t) = C(t)/E(t) = q*N(t), noting that this assumes that CPUE data are directly and 

linearly proportional to abundance, with catchability as the constant of proportionality. 

The above assumes that catchability is stationary. However, Ricker (1975) noted that 

catchability often varies over time, and that when the source of that variability is not accounted 

for in fisheries models, it is likely to be the single most important issue to impact stock 

assessments. Non-stationarity in catchability can be modelled as the product of separable 

factors informed by time series of measured data on various sources of influence. This basic 

multiplicative model for CPUE states that catchability components are assumed to impact 

CPUE independently of each other, and from abundance, the latter being scaled by each of the 

catchability components. 

The multiplicative model of CPUE is often assumed when conducting a process known as 

"catch rate standardization", typically involving CPUE data regressed on various covariates 

that are assumed to relate to catchability, and with an independent variable for time assumed 

to represent relative abundance (Quinn and Deriso, 1999; Maunder and Punt, 2004). CPUE 

standardization has the aim of estimating and presenting the above mentioned time variable. 

Similarly, the extent to which trends and variability in CPUE data are explained by the various 

sources of catchability is also of interest as part of CPUE standardization. In contrast to 

standardized CPUE, a CPUE data index that is based directly on the catch and effort data (e.g. 

sum of catch divided by sum of effort) is sometimes referred to as “raw” or “nominal CPUE. 

Since CPUE, ideally, is desired to be an unbiased index for relative abundance over time, 

usually by year, CPUE standardization models often estimate a yearly trend as a series of 

estimated coefficients (one per year), referred to as the “year effect”, using a separate variable 

from the other quantities that are intended to represent components of catchability. Each of the 

coefficients of the year effect have a value relative to a common “reference” or “base” year 

that is assumed to have a coefficient value of 0 on the log-scale to avoid parameter 

confounding, this being so for log-linear regression models with an independent intercept 

parameter (Maunder and Punt, 2004). Similarly, covariate data for catchability may be 

modelled as discrete variables (e.g. spatial fishing block, fishing vessel identifier), with each 

covariate variable having parameters estimated relative to a reference category of value 0 (e.g. 

a particular block or vessel). Covariate data on catchability may also be continuous, such as 

temperature recorded in degrees Celsius, with the estimated parameter being the slope of the 

CPUE response to changes in the covariate. Hence, the concept of catchability in CPUE 

standardization is different than in fisheries population dynamics models (see further below) 

in that only relative measures of catchability and abundance are represented, the absolute 

values of these two quantities being unavoidably confounded with their product represented by 

the independent intercept parameter. 
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As a simple demonstration of the potential benefit of including covariate data suppose there 

exists a fishery that consists of only two vessels (1 and 2) and where catchability for vessel 1 

is twice that of vessel 2. If in one year vessel 2 fishes with only half as much effort as vessel 1 

when in the previous year they fished with equal effort, and supposing that there has been no 

change in abundance between those two years, then the yearly CPUE statistic has nevertheless 

increased by 11%. Maunder and Punt (2004) provide an illustration of a similar example for a 

two-fisher fishery. Inclusion of fishing record data at the resolution of vessel-by-trip means 

that in the process of CPUE standardization, which is typically carried out by regression, 

assuming a given form of error in the dependent variable (CPUE), the changing levels of 

participation by the vessels is accounted for and separated from the trend in the year factor 

(Bentley et al., 2012).  

Two error distributions for CPUE data that are commonly used, when the multiplicative 

model of CPUE is assumed, are the lognormal and the gamma distributions. Lognormal errors 

are modelled using multivariate linear regression on the log-transformed CPUE data values. 

Gamma errors can be modelled using Generalized Linear Models (GLMs), often with a log-

link function connecting the expected (mean) CPUE with a linear combination of covariate 

terms (McCullagh and Nelder, 1989; Maunder and Punt, 2004; Venables and Dichmont, 2004). 

In both error models, the standard deviation of the errors is assumed to be proportional to mean 

CPUE, unlike normally distributed error (i.e. constant variance with mean), which is often 

unreasonable for CPUE data. 

Interactions between time and other factors in the model are possible, and represent a 

different slope for the response of CPUE to change in temperature in different years, or a 

different response intercept parameter for each spatial fishing block in different years (i.e. 

separate time trend per spatial block). However, interactions with year are often avoided when 

standardizing CPUE given difficulties with interpreting the index of yearly relative abundance 

that is primarily sought (Maunder and Punt, 2004; Wilberg et al., 2010). Interactions between 

variables other than year in a CPUE standardization, such as between those representing 

different sources of catchability, do not present such problems. 

Non-linear dependence of CPUE on catchability is implicitly captured in the case of 

covariate data that may be reported in categorical units, but that are naturally ordered (e.g. 

depth in units of 10 m), since each individual category, also known as a "level" of the covariate, 

may vary independently from other levels though relative to a common reference level as noted 

above. Similarly, the use of separate year levels is an example of how non-linear trend in time 

of abundance can be captured. It is possible to either convert a continuous explanatory variable 

into a categorical variable divided into appropriate levels (Maunder and Punt, 2004; Su et al., 

2008), or less arbitrarily, use a class of model known as GAM, or generalized additive model 

(Venables and Dichmont, 2004; Wood, 2006) to model general non-linear dependence of 

CPUE on sources of catchability. GAMs make explicit the determination of the shape of the 

non-linear response of CPUE. 

Environmental factors 

 

Catch rates of crustaceans in commercial fisheries can be strongly affected by extreme ambient 

environmental conditions that may directly impact abundance. However, what constitutes 

extreme conditions is specific to a species and fishery, and can occur over a narrow range for 

a given environmental variable. For example, Zisserson and Cook (2017) determined that for 

snow crab on the western Scotian Shelf in the southernmost snow crab fishery in the Atlantic 

Ocean, the population had undergone substantial mortality over December 2012 to February 

2013 along with sharp drops in CPUE, as a result of unusually elevated bottom water 



7 

 

temperatures ranging between 7 °C and 10 °C. Given that snow crab are cold-water-adapted 

over -1 to +6 °C, the authors linked this to experimental studies which showed that exposure 

of snow crab to those elevated temperatures for more than 21 days led to negative metabolic 

states. Similarly, Pearce and Balcom (2005) reported increased mortality of American lobster 

for the Long Island Sound fishery, concluding that this was due to above average water 

temperatures in 1999 placing additional stress on animals that were already diseased from 

parasite infections. In contrast, Mills et al. (2013) reported on anomalous warming events in 

2012 that increased the abundance of legal size American lobster in the fisheries of the 

northeast Atlantic Ocean as a result of increased growth rates. Hence, given that crustacean 

mortality events may result from unusual changes in ambient natural conditions, it is not too 

extreme an inference to suggest that at somewhat less unusual levels of environmental change 

animals may not die but merely alter their behaviour and in so doing alter their catchability.  

Correlation between environmental variables and CPUE can depend on the temporal scale 

of the analysis, with the finer scales more likely to be impacted directly by catchability factors 

in contrast to growth and recruitment (Koeller, 1999). Paper one in this thesis is a study of the 

impacts on daily CPUE of the SZRLF by environmental variables for which data were available 

at the time of the study, namely bottom water temperature, wave height and period, moon 

phase, wind stress, and sea surface height. Despite spanning the period 1998-2008, the seasons 

2003-2005 were not modelled due to lack of covariate data (mainly temperature), and similarly 

so for some months during the rest of 1998-2008 as detailed in Paper One, leaving 1,258 days 

in the analysis. The main methods of the SZRLF study were also applied to a similar but smaller 

data set for the WZRLF, and results reported in Paper One. The literature on crustacean 

fisheries indicates that catchability can be impacted by the environmental factors available in 

the SZRLF study of Paper One, as will be alluded to below. However, given that regression 

models do not indicate causes for estimated effect outcomes, and available environmental 

covariates typically are proxies for more direct factors influencing animal behaviour that may 

interact with other (including unmeasured) factors, inferences about reasons for the estimated 

effects are necessarily likely to be speculative to some extent. 

Even for water temperature, which is perhaps a more direct measure available on a lobster’s 

ambient environment, the CPUE response may be qualitatively different for different studies 

on the same species. For example, Watson and Jury (2013) studying American lobster found 

that most studies reported a positive relationship between temperature and CPUE (the earliest 

being McLeese and Wilder, 1958) and which often was explained in terms of heightened 

lobster activity and metabolism with increased temperatures. They also noted some studies 

report a negative temperature-CPUE relationship (Courchene and Stokesbury, 2011) or no 

conclusive relationship (Jury, 1999), and they suggested that these three different types of 

outcomes might be due to different temperature ranges being studied by different researchers. 

They indicated that the temperature-CPUE relationship is more likely to be positive, nil, or 

negative, in response to respectively colder, intermediate, or higher temperatures.  

Another potential temperature-metabolism mechanism, and one that is proposed in Paper 

One, is that of aerobic scope for activity (SFA) which was shown for southern rock lobster in 

the laboratory to peak around the acclimatized temperature (13 °C) and to reduce on either side 

of that temperature (Crear and Forteath, 2000). Given that at higher values of SFA a lobster 

can utilize its metabolism for more work (Crear and Forteath, 2000), it is hypothesized in Paper 

One that a lobster’s capacity to actively forage for food may hence be optimal around the 

acclimatized temperature in a fishery. Note that the SFA hypothesis is not incompatible with 

the conclusions by Watson and Jury (2013) given that the acclimatized temperature may differ 

between studies. However, de Lestang et al. (2009) for western rock lobster, reported that 

catchability rose with increasing temperature, but only when animals were in their sedentary 

phase and not when they were migrating. They suggested that when animals are sedentary a 
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small increase in temperature may lead to increased appetite and consequently foraging 

activity, which then increases the pot encounter rate, while animals that are migrating have pre-

existing high levels of pot encounters irrespective of temperature. Ziegler et al. (2004) 

modelled seasonal variation in catchability of southern rock lobster in a scientific reserve in 

south-east Tasmania, Australia, as a sinusoidal function of water temperature and incorporating 

proportions of lobsters moulting or mating. Results from that analysis indicated a positive 

dependency of catchability on temperature, except for females during their moulting period. 

Stoner (2004) reviewed the environmental literature on fish regarding feeding behaviour in 

relation to baited fishing gear, and noted that turbidity and light levels can impact directly on 

sensory abilities of animals, which in turn can affect activity levels, and feeding capability and 

motivation. He further notes that, for example, chemical cues stimulate fish to move towards 

bait, which can be impacted by turbidity, but then when the fish approaches closer to the bait, 

vision may become more important. Fishes living in turbid waters or in deep shelf 

environments may have low light thresholds, but catchability will decrease when light levels 

fall below such thresholds (Stoner, 2004). For the SZRLF, concerning southern rock lobster, 

fishers anecdotally report improved catch rates on days either just prior to full moon or just 

after large swells, and these hypotheses were investigated in Paper One.  

Aside from some degree of increased turbulence during high swells, in the aftermath of 

such swells sediments are stirred into the water column along the South Australian continental 

shelf (Middleton and Bye, 2007). Srisurichan et al. (2005) found increased catch rates of 

western rock lobster on days after high swells and attributed this to increased food availability 

and protection from predators. Cobb (1995) suggested that crustaceans have more difficulty 

following bait odour trails during periods of turbulence and greater fluid velocities, but Major 

and Jeffs (2017) determined that the effect of this strongly varies between species of 

crustaceans and depends on hydrodynamics. Ihde et al. (2006) found no difference in sublegal 

catch rates of southern rock lobster between new moon and full moon in south-eastern 

Tasmania, but higher catch rates during the new moon have been reported for other spiny 

lobsters (Morgan, 1974; Yamakawa et al., 1994; Srisurichan et al., 2005). Movements of the 

Japanese spiny lobster displays a strong diurnal pattern, being predominantly active during the 

hours of the night, but it was found that lobster activity was suppressed under controlled 

conditions at night if the brightness level was increased above a threshold value (Nagata and 

Koike, 1997). These authors implied that these conditions could potentially be met at night 

around full moon at 15 meters depth around Shima Peninsula, and noted that the latter’s lobster 

fisheries reported little catch on days of the full moon. However, for southern rock lobster 

studies have determined little change in lobster activity in relation to modified light conditions 

(MacDiarmid et al., 1991; Williams and Dean, 1989). Given that effects of both light level and 

turbidity on catchability conceivably may vary with depth of the lobsters, Paper One included 

sensitivity analyses by running models separately for inshore (<= 40 m) and offshore (> 40 m), 

and the impact of cloud cover was also investigated. 

Drinkwater (2006) reported that for the eastern Canadian fishery of American lobster, 

which experiences ocean upwelling and downwelling, wind affects catchability primarily due 

to its influence on bottom water temperatures, consistent with the classical Ekman response. 

That conclusion is relevant to the SZRLF as it is also subject to upwelling and downwelling 

(Schahinger, 1987; Middleton et al., 2007). Hence, it may be predicted that bottom water 

temperature will have a stronger influence than wind on CPUE. This was investigated in Paper 

One for which wind was included in the starting model prior to backward model selection. 

Exploratory data analysis found that there was a noisy but linear relationship between the 

covariates for alongshore wind stress and bottom water temperature, which however involved 

only modest correlation (-0.32; P < 0.001). The latter outcome suggests little associated 

collinearity concerning the wind and temperature covariates. Further regarding collinearity, the 
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exploratory data analysis found that the maximum correlation between the covariates was 

between Sea Surface Height and temperature, with both Pearson and Spearman coefficients of 

+0.53. 

There exists a potential problem for the SZRLF concerning interpretation of the estimated 

temperature effect as being due to catchability rather than abundance. As explained in Paper 

One, the SZRLF environment features seasonality of bottom water temperature within a year 

that partly coincides with seasonality of lobster abundance and vulnerability, these being driven 

by changes in growth and population depletion (due to fishing). This suggests the possibility 

of confounding in the CPUE standardization between the estimated categorical ‘month’ effect 

(proxy for seasonal abundance) and the temperature effect, something that is not an issue for 

moon phase and wave effects. Hence, the ‘month’ effect may reflect some of the influence on 

CPUE of temperature, or the temperature effect may partly reflect population dynamics. 

Similarly, the ‘month’ effect potentially may be inadequate to account for finer temporal scale 

population dynamics. Paper One considered these aspects of confounding and explored it using 

sensitivity analyses. Ideally, such problems would be minimized in a context of classic 

controlled experiments in which levels of some factors are varied in relation to other factors. 

However, the very nature of exploited wild populations means such controlled conditions rarely 

are possible. Alternatively, use of a series of research surveys in a no-fishing area, involving 

sampled locations with measures of absolute abundance, provides another potential means to 

model dependency of catchability on water temperature (Ziegler et al, 2004). 

Note that daily totals of potlifts varied substantially for the SZRLF data used in Paper One, 

with a 10th percentile value of 500 potlifts, 25th percentile of 2,400 potlifts, median of 7,000 

potlifts, and 75th percentile of 10,000 potlifts, unlike at coarser levels of temporal resolution 

such as month or year which varied much less. This high level of day-to-day variability in effort 

leads to high variability in the precision of CPUE, with the variance of the errors in CPUE 

scaling inversely with levels of effort. This follows sample size considerations (Cochran, 

1977), and means that CPUE data is likely to vary much more for a day involving little fishing 

than on a day with normal levels of fishing, regardless of whether these two days differ much 

in their covariates. As explained in Paper One, this was accommodated in the multivariate 

weighted linear regression analysis using a variance weight that is a power function of potlifts. 

Fishery factors 

 

Given the relatively minor estimated impact of environmental influences on CPUE for both the 

SZRLF and the WZRLF (see Paper One, and Conclusion), a reasonable question is to wonder 

whether factors such as changing vessel composition of the fishing fleet over time impacts 

CPUE more. Previously, a CPUE standardization on commercial fisheries data for the WZRLF 

by Walker et al. (2013) had, along with other variables, included a covariate that combined 

information on vessel registration and fisher license into an alpha-numeric identifier. That 

study, substantial and detailed as it was, did not focus on the extent to which vessel information 

influenced the trend in relative abundance nor on the associated vessel entry-exit dynamics of 

the fleet.  

Paper Two studies the effects on CPUE trend over a long time frame (1978-2014) of a large 

and diverse data set of vessel composition information on the WZRLF fleet. At the time of 

writing Paper Two such data were not available for the SZRLF due to lack of an unambiguous 

and up-to-date database key to track consistent vessel information over time. The simple 

illustration provided above of a two-vessel fishery fleet is an example of a phenomenon 

hypothesized to have occurred for substantial periods in the WZRLF, namely of an increasing 

trend in net fleet catchability due to disproportional numbers of individual vessels of low 
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catchability (low fishing power or efficiency) exiting the fishery. This has been shown for many 

other fisheries and species as being of importance when determining a more accurate trend of 

relative abundance, including for crustacean fisheries - O’Neill and Leigh (2007) and Braccini 

et al. (2012) for Australian eastern king prawn, and Eigaard and Munch-Petersen (2011) for 

Danish northern shrimp. The mechanisms driving net increases in catchability of a fleet over 

many years can involve variously the rate of turnover of vessels of differing individual 

catchabilities, technological improvements to individual vessels (Ye and Dennis, 2009; Bishop, 

2006; Branch et al., 2006), and the existence of TACC/ITQ management (Branch et al., 2006; 

Pascoe et al. 2013). These factors are further discussed in relation to CPUE standardization 

results for the WZRLF in the Conclusion, while the possible existence and consequences of 

technological changes to vessels having occurred in the WZRLF is discussed here further 

below. 

Bentley et al. (2012) found an effect on CPUE of New Zealand trevally due to changes in 

fleet composition, and they developed a diagnostic index to assist exploration and identification 

of covariates that influence the trend in catchability. They showed that such covariates may not 

necessarily explain a large proportion of the variance in CPUE, but that those covariates do 

show changes in their effort distribution over time. Bentley et al. (2012) calculated a yearly 

“influence” index (denoted “I”) for a covariate in order to provide a measure of the impact on 

the trend of nominal CPUE, from yearly changes in the distribution of effort among coefficients 

of the covariate effect estimated in the CPUE standardization. For example, for the vessel effect 

(Vessel), index “I” is calculated in a year as the exponential of the weighted (by record count) 

mean of estimated Vessel coefficients normalized to 1 across the years. For a given year, the 

larger the value of “I” the greater the net contribution by Vessel to the value of nominal CPUE 

compared to its net contribution in a year with a lower “I” value. Bentley et al. (2012) used a 

figure showing combined coefficient–distribution–influence information (“CDI”) for each 

covariate. However, the net contribution of Vessel to the trend in total catchability is not easily 

apparent from plots, and another type of index for graphing is suggested in Paper Two and 

described next. 

The absolute value of “I” for two covariates in a given year do not compare directly due to 

their separate normalization factors. However, ratios between years for a given covariate do 

compare appropriately with the same ratio for another covariate (normalization constants 

cancel). Similarly, for a given year, the product of the “I” for each covariate all multiply 

together to provide a valid “I” for total catchability (due to the same number of records having 

been used in the normalization constants of each covariate). Since total catchability depends 

on all the covariates in a model, it is useful to plot on the same graph “I” for the covariate, “I” 

for total catchability, and “I” for total catchability excluding the covariate to discern 

contribution to trend in total catchability by a particular covariate of interest. If desired, this 

approach can be extended to compare two covariates simultaneously in relation to total 

catchability, by adding the “I” of an additional covariate to the plot and adjusting the “I” series 

for the “excluding” case. 

A further index is introduced in Paper Two that quantifies the direction and extent of yearly 

changes in net total catchability. This index is constructed (see “V” in equation 2 of Paper Two) 

entirely using nominal and standardized CPUE, with the latter mean-scaled to nominal CPUE, 

which thus allows proportionate differences between two years in nominal and standardized 

CPUE to reflect changes in the absolute size of catchability. When “V” is shown on the same 

graph as the nominal and standardized CPUE series, it may be used as a tool to help characterize 

discrepancies between nominal and standardized CPUE more easily, which can be of interest 

in stock assessments (Maunder and Punt, 2004; Maunder and Punt, 2013). “V” will be impacted 

by high noise levels in the nominal CPUE series, although for a commercial fishery with many 
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thousands of data points for each year such levels of noise may be less common (and may be 

discerned from the errors on standardized CPUE).  

Regarding technology uptake by individual vessels, it is probable that this occurred for the 

WZRLF, at least up to the mid-1990s, in terms of upgrades to on-board equipment such as 

GPS. Catchability for spiny rock lobsters in the Western Australian rock lobster fishery has 

been estimated to have increased over the years prior to 1995 by between 1-3% per year due to 

adoption by individual vessels of echo sounders and GPS (Fernandez et al., 1997). Similarly, 

another study on the same species by de Lestang et al. (2009) found a 0.5-2.2% increase in 

fishing power over the period 1986-2005. The Australian northern prawn fishery is another 

example of an Australian crustacean fishery in which vessels have undergone substantial 

changes in fishing power due to the adoption of on-board equipment (GPS, plotters) (Robins 

et al. 1998). 

The consequences for standardization of CPUE of individual vessels adopting better 

technology include a positive bias in the estimated change of relative abundance over time (Ye 

and Dennis, 2009). It is separate from the effects of changes in net vessel fleet composition 

because these relate only to differences in catchability among vessels (Bishop, 2006). Although 

the impact of bias in individual vessels may lessen to an extent when turnover of vessels is 

high, such as in the WZRLF (over 1978-2014, most reside < 10 years, few > 20 years), because 

vessels exist in the fishery for less time, and so accumulation of inaccuracy per vessel is lower. 

Models that incorporate pertinent covariate data on vessel specific attributes are best equipped 

to capture changes in attributes of individual vessels (Bishop, 2006; Ye and Dennis, 2009). 

Such data were unfortunately not available for the WZRLF.  

Caveats on the estimation of catchability and abundance 

 

The trend in relative abundance inferred by CPUE standardization, and the absolute abundance 

levels estimated by population dynamics models (see below), only relate to the animals that 

can be directly accessed by the fishing gear, with such abundance also known as exploitable, 

vulnerable, or available abundance. For example, a fraction of animals across a certain size 

range may be inaccessible by fishing gear, or alternatively the biology of an animal at certain 

times may mean reduced movements with hypothesized lower probability of encountering gear 

(Miller, 1990) such as during moulting by females later in the fishing season for southern rock 

lobster (Ziegler et al., 2004). Hence, the estimated catchability is strictly a constant of 

proportionality between CPUE and exploitable abundance, rather than between CPUE and total 

abundance (Maunder et al., 2006). This suggests, for example, that yearly nominal CPUE can 

change between years merely due to a change in fishing effort from the middle or later in the 

year to earlier in the year, if the proportion of animals that is vulnerable is different earlier 

compared to later in the year (Bentley et al., 2012). In this case, inferences about changes in 

relative abundance may be misleading, but standardized CPUE should correctly indicate the 

trend in abundance with year, assuming that a factor for month is included in the 

standardization, and no unmeasured influences exist that varies within a year independently 

from exploitable abundance. 

Implicit assumptions of the CPUE standardization models, and for many population 

models, exist in regard to the spatial dimension of analyses (Paloheimo and Dickie, 1964; 

Hilborn and Walters, 1992; Quinn and Deriso, 1999; Walters, 2003; Maunder et al., 2006), 

including most fundamentally that the total spatial extent of the population under study does 

not change over time and that it is closed to immigration and emigration. Similarly, inferences 

regarding estimated relative abundance at the zone scale often assume that the spatial 

distribution does not change over time in levels for one or more of the following: fishing effort, 
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animal abundance, or catchability. For example, in CPUE standardization a factor may exist in 

the model for fishing block, but if that is assumed to represent spatially-varying catchability 

then it must be assumed that animal abundance is spatially uniform given that in CPUE 

standardization varying amounts fishing effort is the norm rather than the exception. Inclusion 

of a spatial block covariate in a CPUE standardization may only partially account for spatial 

heterogeneity in catchability given that in some fisheries the reporting blocks represent a large 

spatial extent and fisher movement within which is not captured by the data (e.g. SZRLF, up 

to season 2016). 

Space-time assumptions are often unmet given both the nature of the fishing process and 

natural population dynamics, but may be worth identifying, explaining, and attempting to 

model. For example, if a fishing zone initially had relatively uniform lobster abundance, after 

which fishers concentrated effort in a specific subsection of that fishing zone while ignoring 

other areas in the fishing zone that also contain animals, then over time CPUE for the whole 

zone may decrease more rapidly than abundance. This is due to the zonal CPUE statistic being 

based on a part of the whole fishing zone that suffers a disproportionate degree of depletion, 

and this phenomenon is an example of hyperdepletion (Hilborn and Walters, 1992; Arreguin-

Sanchez, 1996; Harley et al., 2001). If after some time fishers shift most effort into other areas 

of the fishing zone that meanwhile increased their lobster abundance due to reduced levels of 

fishing, then this may give rise to hyperstability of CPUE (Hilborn and Walters, 1992; 

Arreguin-Sanchez, 1996; Harley et al., 2001) since CPUE will increase more rapidly than 

abundance for the whole zone. 

Density dependence in catchability can arise from natural competition between animals 

around fishing gear (Stone, 2004) and can lead to hyperdepletion or hyperstability of CPUE. 

For example, if smaller lobsters are deterred from entering pots due to the presence of larger 

lobsters near those pots (Frusher and Hoenig, 2001; Ihde et al., 2006), then this may lead to 

hyperstability if it is assumed that CPUE decreases less rapidly than abundance due to 

catchability increasing with decreasing abundance. That is, at lower levels of abundance it is 

assumed that there is less competition around pots thus allowing some lobsters to be caught 

that would not have been when abundance was higher. 

One way in which hyperdepletion and hyperstability has been accounted for in population 

dynamics models is to model CPUE(t) as q*(N(t)^beta), where “t” is time, “N” is abundance, 

“q” is a stationary catchability parameter, and “beta” is a new parameter to quantify non-

linearity between CPUE and abundance. Note that CPUE(t) = q*(N(t)^(beta-1))*N(t) and 

hence this models non-linear density dependence of catchability, with hyperdepletion indicated 

when beta is estimated > 1, and hyperstability when < 1 (Hilborn and Walters, 1992; Wilberg 

et al., 2010). The parameter beta can be difficult to estimate without independent information 

on relative abundance. However it is important to account for density dependence if it exists, 

or at least determine the direction and extent of bias from not accounting for it, as it will mean 

the risk of stock collapse is underestimated (hyperstability) or alternatively the TACC may be 

set too conservatively (low) (hyperdepletion) in fisheries linking the TACC to CPUE (e.g. the 

SZRLF). Studies have indicated the presence of the hyperstability form of density dependent 

catchability for southern rock lobster the fisheries off Tasmania (Ziegler et al., 2003) and New 

Zealand (Haist et al., 2009), and in South Australia's northern zone (Linnane et al., 2010). Paper 

Three includes an analysis aimed at determining the extent of density dependence in 

catchability for South Australia's southern zone. 

Modelling of absolute abundance 
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Models for CPUE standardization, aside from CPUE data, incorporate no explicit catch data 

on the total numbers or weight of all the animals removed from a population being fished. 

Hence, such models do not involve equations to represent the natural and fishing history of an 

exploited population, and they cannot estimate total exploitable abundance. Models exist that 

are “catch-conditioned”, meaning that they model depletion of a population by removal of total 

catch that is assumed to be without error and hence is not fitted. Note that in the case of total 

catch this needs to include more than all animals landed by the commercial fishery, but 

additionally requires (if these exist) catch from the recreational fishery, as well as animals 

caught but discarded as dead. The “EDM” and “LenMod” models described further below, 

which were applied to the SZRLF data, are catch-conditioned and incorporate both commercial 

dead discards and recreational catch.  

Biomass dynamics models 

 

Biomass dynamics models, also known as surplus production models, use total catch and CPUE 

provided in weight of animals (Schaefer 1954, 1957; Polacheck et al. 1993; Breen and 

Kendrick, 1998; Smith and Addison, 2003). A discrete equation form for such models is, 

B(t+1) = B(t) + g(B(t)) - C(t), where "B" is exploitable biomass at time "t", "C" is total catch 

in weight, and "g" models the production of new biomass as a function of existing biomass 

alone. 

Note that this model formulation does not allow recruitment to be estimated explicitly, and 

instead models population reproduction along with growth and natural mortality, using the 

surplus production function "g" (Smith and Addison, 2003). Population stability is achieved 

when a natural increase in biomass is balanced by human exploitation as catch in weight. 

Outcomes vary greatly depending on the form of the production function (Maunder, 2003) and 

many biomass dynamics models ignore any biomass-independent yearly variation in 

recruitment. Estimation outcomes can be very sensitive to having enough contrast in the 

abundance index for which CPUE is often employed. Ideally data periods fitted should include 

both high and low CPUE levels to enable the production function to be estimated (Hilborn and 

Walters, 1992). 

Delay-difference models 

 

Delay-difference models use total catch and CPUE provided as either in weight or numbers of 

animals (Deriso, 1980; Schnute 1985, 1987; Smith and Addison, 2003). In terms of discrete 

time and population (rather than biomass), this involves a spatially-closed population birth-

death equation where the population is the stock of exploitable animals, births are recruits to 

that population, and deaths are represented by two components namely animals that died due 

fishing and those that died naturally (old-age, predators). Symbolically, N(t+1) = N(t) + R(t) - 

C(t) – M(t), where "N" is exploitable abundance at time "t", “R” is the number of recruits 

(“recruitment”), "C" is total catch in number, and “M” is the number of animals that die 

naturally (often applied as a known natural survival factor to “N”). If biomass is to be estimated 

then the data needs to be in terms of weight, and the birth component would involve an 

additional term that is proportional to biomass representing growth of fishable animals to 

heavier body weights, involving further forms of parameterization (Quinn and Deriso, 1999).  

Recruitment can be estimated directly as an estimated parameter representing a pulse 

addition to the population at time “t”, or else using an assumed “stock-recruitment” function 
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(Deriso, 1980). Note that, considering only the former approach and the case of "knife-edged" 

fisheries (involving a minimum legal size limit) modelled using yearly time-steps, the 

estimated recruitment is in reality composed of an aggregation of undersized animals in various 

age groups of the previous year that grew above the legal size limit by the start of the current 

year. In general, these models require auxiliary information on natural mortality, recruitment 

and/or growth for realistic results (Quinn and Deriso, 1999; Smith and Addison, 2003).  

CSA (Catch-survey analysis) 

 

CSA is an example of a delay-difference model that, additional to CPUE and total catch in 

numbers of animals, requires an index of recruitment to be fit. CSA originated from the work 

of Collie and Sissenwine (1983), and since then modified versions of that model have been 

applied to many crustacean species (Smith and Addison, 2003; Paper Three).  

The population dynamics equation is N(t+1) = (N(t) + R(t))*exp(-M) - C(t), where "N", 

“R”, “C” are as described for delay-difference models above, and “t” is in years. However, here 

“M” is the yearly rate of natural mortality, and the appearance of “M” in the population 

dynamics equation may be varied slightly according to the fraction into the year catch is 

assumed to be taken. The basic implementation of CSA involves modelling mean CPUE as 

“q*N(t)” where “q” is a stationary catchability parameter, and similarly the mean recruitment 

index is recruitment as “qr*R(t)” where “qr” is another stationary catchability parameter. The 

CPUE data and the recruitment index are fit simultaneously, assuming log-normally distributed 

independent observation errors.  

CSA is an example of what is known as an open system depletion model (Smith and 

Addison, 2003) in that, unlike the more elementary within-year Leslie-Davis closed depletion 

models (described further below), recruitment into the population is modelled. CSA fits to 

yearly data simultaneously across multiple years, estimating recruitments in each of those years 

and from which start-year abundances can be inferred. CSA requires relatively little data given 

that it provides estimates of both recruitment and population size, and in particular it does not 

need age or length composition data, which are more expensive to obtain and is less commonly 

available. Cadrin (2000) compared CSA to biomass dynamics models, fitting both models to 

simulated data, and found that CSA performed better than the latter under reasonable levels of 

uncertainty in the data. 

Note that CSA additionally requires an externally informed constraint on “q” and “qr”, 

typically by fixing the ratio of these two parameters at a pre-specified value. The parameter 

estimates from CSA are very sensitive to the value of the ratio of the catchability parameters 

(Cadrin, 2000; Mesnil 2003, 2005). 

Leslie-Davis depletion models 

 

All model types described above have the following in common: their population dynamics are 

yearly, a single (two for CSA) catchability parameter is estimated which is shared by all years, 

and the model is fitted to data for all years simultaneously. An alternative class of model that 

estimates start-period abundance, but not recruitment, are Leslie-Davis depletion models 

(Leslie and Davis, 1939; Ricker, 1975), which are applied for periods within a year and 

generally are not fit to multiple years of data simultaneously.   

These models require CPUE and total catch at several times within a period during the year 

for which it is assumed there is no recruitment or natural mortality, nor changes in catchability. 
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As no natural mortality or recruitment is assumed (and no movement in or out of the study 

area), these models are broadly known as closed system depletion models (Smith and Addison, 

2003). The assumption of uniformity of catchability is in common with biomass dynamics and 

delay-difference models. However, Leslie-Davis models are particularly sensitive to this 

assumption (Miller and Mohn, 1993; Smith and Addison, 2003).  

The Leslie-Davis depletion model utilizes the closed system condition by fitting to CPUE 

data over several time steps for which exploitable abundance is modelled as a strictly 

decreasing quantity due to animals being caught (rats in traps, for Leslie and Davis, 1939). 

Hence, when abundance is plotted against cumulative catch the line is linear and decreasing, 

and fitting to CPUE data occurs via a linear regression with cumulative catch as the covariate. 

The magnitude of the slope provides the catchability parameter, with the ratio of the intercept 

to the slope providing the value for initial abundance. Note that if additionally it is assumed 

that there is no growth among animals in the exploitable population, then using total catch and 

CPUE in weight of animals caught can be used to estimate initial exploitable biomass (instead 

of abundance). 

Depletion models, along with biomass dynamics models, are commonly used in data-

limited fisheries (Smith and Addison, 2003; Edwards et al., 2012). The requirement of 

depletion models is that there is a period within a year for which no recruitment occurs to the 

exploitable population may be reasonable for crustaceans as they grow only during discrete 

periods in a year. For southern rock lobster fisheries, growth for individual lobsters occurs over 

only a few weeks (Musgrove, 2000) and collectively occurs over a few specific months 

(MacDiarmind, 1989) that varies slightly from fishery to fishery (Prescott et al., 1996; 

McGarvey et al., 1999; Ziegler et al., 2004). Furthermore, southern rock lobster fisheries in 

South Australia include a minimum legal size limit that is set high enough to protect the 

majority of immature animals after accounting for rates of growth (McGarvey et al. 1999; 

Linnane et al. 2008, 2017). Hence, for SZRLF’s southern rock lobster the process of 

recruitment to the fishery can be considered to be primarily due to growth from undersize 

lobsters, instead of occurring as instantaneous and direct entries into the fishery over the legal 

size range. This latter observation is important for CSA and EDM-CSA (described below), 

given these fit to recruitment index data that are assumed to be proportional to the population 

of undersized animals. 

EDM (Extended Depletion Model) 

 

EDM was developed in Paper Three with the aim of allowing yearly recruitments, as well as 

start-year exploitable abundance to be estimated, using only total catch and CPUE in numbers 

of animals and a value for the natural mortality rate. It uses the Leslie-Davis depletion model’s 

capacity to infer information on start-period abundance from data on within-year depletions, 

and combines this with the information on recruitment that is inherent in the between-year 

population dynamics, which is typical of delay-difference models. EDM needs to fit to CPUE 

for only part of each available fishing year during which it makes the same assumptions as the 

Leslie-Davis depletion model, and so for the rest of the fishing year it does not need data on 

CPUE or total fishing effort nor assumptions on catchability. EDM was applied to the SZRLF 

and the resulting recruitment and abundance estimates compared to those obtained from a more 

sophisticated, but data hungry, integrated stock assessment model (LenMod, see below). 

The literature indicates that there have been relatively few models that estimate yearly 

recruitment with such minimal data as EDM. As noted further above, delay-difference models 

can achieve similar results, but in practice require either additional demographic information 

or need to be fit to auxiliary data sources as for example by CSA. Studies on alternative multi-
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year depletion models may deliver similar outcomes to EDM, but differ crucially in requiring 

variously two or more of the following conditions to exist for the full period of fishing within 

each year, namely stationary catchability parameters, CPUE or catch be fit, effort data to exist, 

or no recruitment to occur (Bailey and Elner, 1989; Polovina et al., 1995; Gonzalez-Yanez et 

al., 2006; Ehrhardt and Deleveaux, 2009; Robert et al., 2010; Babcock et al., 2015; Roa-Ureta, 

2015). Robert et al. (2010) and Babcock et al. (2015) applied Bayesian multi-year depletion 

models that link catchability between years via drawing it from a random distribution specified 

by priors. Robert et al. (2010) modelled catchability as a random walk process to capture 

autocorrelations and gradual changes between years, but required a priori values for a vector 

of proportions to assign in-season recruitments from an estimated yearly recruitment 

parameter. More generally, under data-limited conditions Bayesian population dynamics 

models potentially suffer from insufficiently “informative” priors on catchability, and when 

this is the case maximum likelihood estimation should be used (Thorson and Cope, 2017). 

Note that fitting the CPUE data simultaneously for all years means that EDM in common 

with biomass dynamics and delay-difference models, gains a more robust estimate of 

catchability than would be obtained from applying the Leslie-Davis model separately in each 

year. Hence, if for only a few years there is high observation error, weak population depletion 

(Magnusson and Hilborn, 2007), or within-year change in catchability, then the estimates of 

recruitment and abundance may still be reasonable in those years, assuming that catchability is 

well informed by the fits to the data in the other years. Conversely, if EDM is fit to only a few 

years of available data then its estimates must become more sensitive in the same manner as 

for Leslie-Davis models (Miller and Mohn, 1993; and further above). It is possible to estimate 

whether catchability changes over time by fitting EDM to subsets of the data, and using the 

likelihood ratio statistic as a test for significance of the variation. For the SZRLF fisheries-

independent CPUE data exists and was used in Paper Three to help interpret estimates from 

EDM. 

Two fundamental extensions of EDM were developed in Paper Three. One model is a 

modification to EDM so that it can fit to a recruitment index, with the resultant model named 

“EDM-CSA” to indicate it is a hybrid model between EDM and CSA. EDM-CSA thus 

potentially benefits from more information on a fishery than EDM, at the cost of estimating 

one additional parameter. However, unlike CSA it does not require an external constraint on 

the ratio of catchabilities. For the SZRLF the recruitment index was based on discarded 

undersize lobsters. Non-linear density-dependence of catch rates on abundance is a common 

and serious problem as described further above. A generalized form of EDM was developed 

that allows an additional parameter to be estimated in the CPUE-abundance relationship to 

account for a degree of non-linearity, namely “beta” as per section “Caveats on the estimation 

of catchability and abundance” in this Introduction. 

Caveats on demographically aggregated models 

 

The models described above involve population dynamics on a stock of animals aggregated 

across length and sex attributes. That is, the stock that is modelled over time is the exploitable 

abundance defined as the sum of the length-sex specific products of capture probability and 

abundance. An assumption of uniform, though not necessarily maximum, length-sex 

vulnerability is implicitly assumed by biomass dynamics, delay-difference, and depletion 

models to maintain a consistent definition of exploitable abundance over time. If this 

assumption is invalid then changes in the length-sex distribution of the population over time 

will change the net vulnerability of the population and consequently exploitable abundance. 

Hence, CPUE may change even if both the total abundance above legal size and the catchability 
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do not change. That is, consider at time “t”, CPUE(t) = q(t)*N(t), where “q” is catchability that 

is independent of “N” which is the exploitable abundance, then the latter may change directly 

because of a change in demographic composition instead of a change in total catch or total 

numbers recruiting above legal size. In practice this means that in population models that are 

not resolved at a relevant demographic resolution, bias will be expressed in both catchability 

and abundance-related parameters. One attempt to address this problem is to include the “beta” 

form of non-linear CPUE observation equation described further above, but this will be 

inadequate unless the beta parameter could be linked to external demographic information. 

Note that these issues are separate to the problem described further above on caveats regarding 

the effects on CPUE of changing levels of fishing effort within a year, which may occur even 

if both length-sex vulnerability and length-sex population proportions remain uniform but for 

which the level of catchability differs within a year.  

This suggests a weakness of fishery models that do not quantify demographic 

subcomponents of a population since the demography very likely does change over time as a 

result of heterogeneity in recruitment and growth processes. Hence, the exploitable abundance 

may change in ways not accounted for only by changing levels of total catch and recruitment, 

and further, such changes may differ from changes that occur to total abundance (Maunder et 

al., 2006).  

Length-sex structured integrated models 

 

Models that incorporate data on the length-sex demographic composition of the catch (in 

addition to total catch and CPUE) can represent and estimate at the resolution of length-sex for 

both total population and vulnerability. Hence, length-sex structured models can model 

changes in exploitable abundance more realistically over time by quantifying change in the 

length-sex structure of the population being fished (Punt et al., 2013). Provision of estimates 

of total abundance, instead of only exploitable abundance, may be of interest when constructing 

stock assessment indicators (Maunder et al., 2006; Linnane et al., 2017). However, unless a 

model is also spatially structured (i.e. models sub-regions of a fishing zone), it relies on an 

implicit assumption that the length-sex distribution of the population is homogeneous across 

the total area fished whenever the spatial distribution of fishing effort changes. Yet, even with 

inclusion of spatial sub-regions, when movement between the sub-regions is also modelled, 

there can be a substantial problem of parameter confounding between mortality and movement 

when associated parameters are estimated simultaneously (McGarvey et al., 2010). 

Length-sex structure population models are examples of integrated models because they fit 

to several sources of data simultaneously (Maunder and Punt, 2013; Punt et al., 2013). In the 

case of length-sex structure models these include length-sex catch composition data that often 

are sourced from survey samples such as is the case for SZRLF (Linnane et al., 2017). These 

models, aside from accounting for mortality for individual length-sex classes, also incorporate 

growth among individual length-sex classes using transition matrices, and their population 

dynamics can be represented as (Punt et al., 2013):  N(t) = X(t−1)*S(t−1)*N(t−1) + R(t), where 

“N(t)” is a vector of total abundance (not exploitable abundance) by length-sex class at time 

“t”, “X” is a length transition matrix that may be sex-specific, “S” is a diagonal matrix of 

survival probabilities, and “R” is a vector of the number of recruiting animals. Total absolute 

abundance at time “t” is then represented by the sum over length-sex classes, restricted to legal 

size classes in "knife-edged" fisheries. In catch-conditioned models the “S” matrix may be 

implemented as the product of a natural survival factor (often fixed and non-specific by length-

sex) multiplied by a matrix 1-H(t) where “H” is a diagonal matrix of harvest fraction by length-

sex classes. 
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A component in stock assessment reporting for the SZRLF involves outputs, such as 

monthly total biomass above legal size and harvest fraction, from an integrated length-sex 

structured model of the type described above, the implementation of which is referred to here 

as “LenMod”. LenMod is based on the original model specifications as described by Punt and 

Kennedy (1997), and has since been used in scientific studies (McGarvey et al., 2010, 2015) 

and South Australian stock assessments (e.g. Linnane et al., 2017), undergoing various 

modifications over the years. LenMod is catch-conditioned on total catch weight that includes 

dead discarded lobsters and catch by the recreational fishery. The “X” length transition matrix 

is sex- and month-specific, with entries estimated externally using a growth model as described 

by McGarvey and Feenstra (2001). The SZRLF fishing season starts in October of each 

calendar year, and LenMod fits to monthly data available for each month over October-May 

aggregated over the entire fishing zone. The CPUE observation equation models linear 

proportionality to exploitable abundance, and separate catchability parameters are estimated 

for each of the eight months, with separate sets estimated for the period before and since 

inception of TACC (in season 1993). The version of LenMod that was used in Paper Three 

(appendix B of McGarvey et al., 2015; online supplementary material B for Paper Three),was 

non-spatial, estimated vulnerability by length-sex class as the product of a sex-specific logistic 

function of length class and a month-specific vulnerability proportion by sex. Parameter 

estimation is by maximum likelihood, and optimization was performed using Automatic 

Differentiation Model Builder (ADMB) which is a C++ software environment that is 

commonly used to optimize objective functions for fishery stock assessments in Australia and 

the world (Fournier et al., 2012; Punt et al., 2013; Dichmont et al., 2016a, 2016b). 
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Impacts on CPUE from vessel fleet composition changes in an Australian 

lobster (Jasus edwardsii) fishery. 

ABSTRACT 

The Australian Victorian Western Zone rock lobster fishery is assessed using 

standardised catch-per-unit-effort (CPUE). Nominal CPUE declined over 1978-2009, 

but this underrepresents the estimated decline in abundance, while since 2009 

standardised CPUE rose notably less than nominal CPUE. We identify vessel as a key 

factor that explains the discrepancy between nominal and standardised CPUE. The 

composition of the fleet changed since 2009, under the pressure of constraining total 

allowable catch quotas, with vessels exiting the fishery having substantially lower 

estimated catchability, which increased the average fishing power of the fleet. New 

diagnostic indices were constructed to quantify discrepancies between trends in nominal 

and standardised CPUE that assisted in identifying periods during which both 

catchability and vessel composition changed. 

KEYWORDS:  southern rock lobster, Jasus edwardsii, entry and exit of vessels, rising 

catchability, fleet dynamics, standardised CPUE 

Introduction 

In Victoria, Australia, the Western Zone rock lobster fishery (WZRLF) for Jasus edwardsii is 

divided into three regions for assessment purposes, extending east from the Victorian border 

with South Australia to Apollo Bay (Figure 1; Linnane et al. 2016). Commercial fishing is 

undertaken using baited pots that are generally set and hauled within 24 hours, with the fishing 

year extending from mid-November to mid-September (Linnane et al. 2016). Management 

measures include a minimum legal size, protection of ovigerous females and limited access, 

and since 2001, a Total Allowable Commercial Catch (TACC) based on individual transferable 

quota (ITQ) units, and restrictions on the number of licences and pots (VDPI 2009; VFA 2017). 

Catch rates, or catch per unit of effort (CPUE), is taken as a relative index of biomass, 

and used to set annual TACCs in other J. edwardsii fisheries off southern Australia (DPIPWE 

2015; McGarvey et al. 2016) and New Zealand (Breen et al. 2008; Breen et al. 2009). Nominal 

yearly CPUE, computed here as total reported yearly catch divided by total yearly effort, may 

deviate substantially from the true trend in biomass if catchability varies over time (Punt et al. 

2013), in which case a process of “standardisation” is applied to obtain a more representative 

index of biomass trend (Maunder & Punt 2004). In the WZRLF, TACC-setting procedures 

have used standardised CPUE as a primary input (Linnane et al. 2016; VSG 2017; VFA 2017).  

In reviewing the WZRLF harvest strategy (VFA 2017), it was observed that nominal 

CPUE rose more substantially than standardised CPUE since 2009. We examine the hypothesis 

that changes over 1978-2014 in the composition of the fleet led to changes in average 

catchability (c.f. Hilborn and Walters 1992), particularly since 2009 when vessels of low 

fishing power left the fishery. The aim of this study was to identify the most influential factors 

involved in the differences in trends between nominal and standardised CPUE, and to 

investigate the above hypothesis concerning the role of fleet entry and exit dynamics on 

catchability.  
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Materials and Methods 

Daily commercial fishing data are fishery-dependent and since 1978 have been reported in 

mandatory logbooks that are submitted monthly (VDPI 2009, VFA 2017), as landed (live, legal 

sized, non-spawning) lobster catch (kg) and fishing effort expended (number of pot lifts). Since 

introduction of quota management in 2001, fishers are additionally required to weigh and report 

their catch within 20 minutes after landing via a telephone based interactive voice response 

system, and enter details in catch disposal records (VFA 2017). The covariates used in the 

standardisation of CPUE were fishing year (1978-2014), month (November to July 

individually, August-September combined), as well as available fisheries information that was 

assumed to potentially impact CPUE namely depth category (< 40 m, >= 40 m), region 

(Portland, Warrnambool, Apollo Bay; Figure 1), fisher identifier (237 fishers), and vessel 

identifier (500 vessels). The daily catch records were pre-processed, which involved removing 

records with incorrect or missing covariate data, followed by removal of fishers present in the 

fishery for less than 200 days in total or who fished during fewer than three fishing years (to 

reduce the influence of inexperienced fishers). Subsequently records were removed that had no 

catch (0.8%). Nominal yearly CPUE was then computed as the ratio of total annual catch to 

total effort.  

A generalised linear model (GLM) was fitted to 347,259 data points, assuming a gamma 

error distribution and a log-link function (Maunder & Punt 2004): 

 CPUE Year Month Region Depth Fisher Vessel       (1) 

Alternative error models (gamma inverse, lognormal, normal), were tested, but did not 

result in improved residual diagnostics or AICc (results not shown). Also tested were three 

models with two-factor interactions, namely Month:Depth, Month:Region, and Depth:Region. 

These however, only explained an additional 0.14%, 0.17%, and 0.06% deviance and trivially 

impacted the estimated year trend (results not shown). Model fitting was conducted in R 3.3.2 

(R Core Team, 2016) using function glm from package stats. Backward model selection was 

performed starting from the full model (Equation 1), and an increase of less than 2 units in 

AICc (Burnham & Anderson 2002) was used to identify redundant terms.  

The standardised CPUE index was calculated as the exponential of the Year effect, 

which was assumed to indicate the yearly trend in lobster biomass. 95% confidence intervals 

were constructed for each year as the exponential of lower and upper limits of the 95% 

confidence intervals on Year. The index was scaled to have a mean (over 1978-2014) equal to 

that of the nominal CPUE. Given the focus of this study on analysing differences between 

nominal and standardised CPUE, an index, V, was constructed to more easily identify annual 

changes in these differences. V is a measure of annual relative change in nominal CPUE due to 

modelled factors unrelated to abundance (i.e. catchability and observation error), and is defined 

as follows:  

 1 1

N

( ) ( )N S N S

y y y y

y

y

CPUE CPUE CPUE CPUE
V

CPUE

   
  (2) 

where 
S

yCPUE  is the standardised (and scaled) CPUE for year y, and 
N

yCPUE  is the nominal 

CPUE for year y. 

A yearly “influence” index for the Vessel effect was calculated following the approach 

of Bentley et al. (2012), as the exponential of the weighted (by record count) mean Vessel 

coefficient (normalised to a value of 1 over 1978-2014). The net impact on yearly CPUE also 
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depends on sources of catchability other than Vessel, and hence two additional influence 

indices were constructed to assist analysis: the product of influence values for all non-year 

covariates other than Vessel, and the product of influence values over all the non-year 

covariates (total catchability).  

The consequences of changes in fleet composition were examined in more detail using 

influence indices for three subsets of the fleet in each year: vessels that make their initial entry 

into the fishery (“Entering”), vessels that leave the fishery (“Exiting”), and all other vessels 

(“Remaining”). These three influence indices were calculated for vessels that were in the 

fishery for more than one year, and as the exponential of the weighted (by record count) mean 

vessel coefficient, divided by the exponential of the weighted mean over all vessels 

(“Entering”, “Exiting”, and “Remaining” combined) and years (1978-2014), followed by 

smoothing to improve visualisation of trends using a second-order moving average. 

Results 

Each of the covariates was retained in the final model, which explained 46.8% of the deviance. 

Residual diagnostic plots did not suggest any substantial model violations, although some 

departure from normality was evident in the standardised deviance residuals at the extreme 

ends of the theoretical quantile range (Figure S1). Year explained relatively little deviance 

compared to either Vessel and Fisher combined or Month, while there was significant anti-

correlation between estimated coefficients for Vessel and Fisher (Pearson -0.49, Spearman -

0.47, over fitted data points), with these covariates not explaining much of the deviance on 

their own (Table 1). Removal of either Vessel or Month from the model led to a change in the 

trend of standardised CPUE towards that of nominal CPUE, with the effect of Vessel being 

greater than that of Month (Figure S2). Removing each of Fisher, Depth, or Region had only 

minor effects on the trend (Figure S2). These outcomes suggest that Vessel most directly 

impacts on nominal CPUE. 

Nominal CPUE underrepresents the decline in estimated abundance inferred from 

standardised CPUE during 1979-1987 and 1991-1998, while exaggerating a rise in abundance 

during 2009-2013, the extent of which is indicated by positive values of V (Figure 2). The 

nominal CPUE series presented in Figure 2 is based on a ratio estimator, which was compared 

with nominal CPUE calculated as a geometric mean revealing a similar trend with the latter 

approximately 5% lower over 1978-1981 and 6% higher over 2010-2013 after rescaling to a 

common mean (Figure S3). 

Figure 3A shows a marked increasing trend in the Vessel influence during 1979-1987, 

when the non-vessel influence was more stable. In contrast, both Vessel and non-vessel 

influences exhibit an upward trend during 2010-2012, which led to increasing catchability over 

this period. Catchability declines during 1988-1991 because even though Vessel influence rises 

over these years, this is more than offset by the decline in non-vessel influence. Fisher 

influence increased markedly over 1991-1998 (Figure S4), contributing to a rise in catchability 

due to non-vessel influences (Figure 3A). Nominal CPUE remains relatively stable during 

1992-1995 while standardised CPUE declines (Figure 2), which is driven by a rapid increase 

in total catchability that is due more strongly to the rise in Vessel influence than by the rise in 

non-vessel influences (Figure 3A). 

Influence values of vessels that permanently exit from the fishery in most years is well 

below that of the rest of the fleet (Figure 3B). Vessels leave during a period when total vessel 

influence increases (Figure 3A). For example, the exiting vessels have consistently lower 

fishing power than the other vessels before 1987 and during 2009-2012 (Figure 3B). In 

contrast, the magnitude of the discrepancy in fishing power between entering and exiting 
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vessels during 2005-2009 was small, with exiting vessels having slightly more power (Figure 

3B), and total vessel influence was relatively flat (Figure 3A). However, catchability decreased 

substantially during 2005-2009 due to decreasing influence from non-vessel sources of 

catchability (Figure 3A), and nominal CPUE decreased more rapidly over this period than 

standardised CPUE (Figure 2). 

Although the yearly vessel entry-exit dynamics is volatile, fleet size grew until 1989, 

and declined steadily thereafter (Figure 4). Since 1998, the number of vessels exiting the 

fishery is notably higher than the number entering (Figure 4), with the latter declining rapidly 

just prior to introduction of TACC in 2001 and again during 2006-2009 when the fishery 

restructured and the level of TACC dropped substantially (VFA 2017).  

The dynamics of changing fleet composition over time in the WZRLF was evaluated 

further by plotting for each year a kernel density function of the exponential of Vessel 

coefficients based on the count of daily fishing records per vessel (Figure 5). Three pertinent 

trends in these distributions were evident for the period 2001-2014:  (1) lower total number of 

days fished since 2009 (less area inside each violin distribution); (2) a smaller proportion of 

vessels with low fishing power since 2009; (3) no evidence of new vessels increasing the 

maximum fishing power. 

Discussion 

There are notable periods of increasing divergence between nominal and standardised CPUE 

over 1978-2014 (Figure 2), linked with periods of increasing or decreasing catchability 

determined predominantly by the Vessel effect with periods of increasing catchability more 

prevalent including during 2009-2013 (Figures 2, 3A). A greater proportion of vessels in 2010-

2013 had higher fishing power compared to vessels in 2001-2009 (Figure 5), which was driven 

primarily by less efficient vessels exiting the fishery after 2009 rather than more efficient 

vessels entering the fishery as quantified in figures 3B and 4. 

The trend in standardised CPUE will be biased upwards by technology “creep” over 

time in individual vessels (Ye and Dennis 2009). However, this study cannot draw conclusions 

regarding impacts of technology upgrades on individual vessels because changes in fleet 

composition relate to differences in catchability among vessels, but we lack data on vessel 

characteristics (e.g. terrain detection equipment, plotter software) required to model changes 

in fishing power by vessel (Ye and Dennis 2009; Hoyle and Okamoto 2011).   

Studies on other fisheries have drawn similar conclusions regarding an upward trend in 

catchability of CPUE having been substantially induced by less effective vessels leaving the 

fishery. These include O’Neill and Leigh (2007) and Braccini et al. (2012) for Australian 

eastern king prawn (Melicertus plebejus), Hoyle et al. (2010) for bigeye tuna (Thunnus obesus), 

Hoyle and Okamoto (2011) for bigeye and yellowfin (Thunnus albacares) tunas in the Western 

and Central Pacific Ocean, Eigaard and Munch-Petersen (2011) for Danish northern shrimp 

(Pandalus borealis), Bentley et al. (2012) for New Zealand trevally (Caranx lutescens), and 

Holdsworth and Kendrick (2012) for New Zealand striped marlin (Kajikia audax). However, 

Starr et al. (2013) reported that for New Zealand southern rock lobster stocks (areas CRA7/8) 

vessel effect explained a substantial amount of model deviance despite it marginally impacting 

the trend in standardised CPUE. This result, together with our findings, underscores that more 

generally, proportion of deviance explained by a non-year covariate effect is not always related 

to its influence on year trend of standardised CPUE (c.f. Bentley et al. 2012).  

Although the fleet size has been decreasing since inception of TACC in 2001 (Figure 

4), the level of TACC only reduced over period 2006-2009 (from 450 to 240 t), after which it 

remained relatively stable (VFA 2017). The TACC had not substantially constrained the fishery 
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until after 2009 (VFA 2017), with the ability of the fishery to catch the TACC being inversely 

proportional to the level of TACC and directly proportional to the available fishable biomass. 

However, when TACC reduces it may become uneconomic to fish with vessels of lower fishing 

power (Pascoe et al. 2013), which suggests a potential explanation for the outcome from our 

study that vessels with particularly low fishing power exiting the fishery during 2009-2012 

(Figure 3B). More generally, studies on other fisheries and species have reported that fleet 

restructuring and setting of TACC can induce the exiting of vessels with low fishing power 

(Marchal et al. 2013; Pascoe et al. 2013; Solís et al. 2014). 

Conclusion 

Rising catchability can be mediated by a range of processes. However, here we have 

demonstrated that the dynamics of vessel entry and exit into a fishery can be a dominant 

process. Thus, in the case of the WZRLF, even for a period when the technology of fishing 

may not be advancing, selective changes in fleet composition due to exiting of less efficient 

operators under conditions of sufficiently low TACC, can result in nominal CPUE overstating 

rises in stock abundance. GLM standardisation, combined with appropriate catchability metrics 

such as those used in this study, provide a simple and direct mechanism for detecting and 

analysing fleet compositional effects. 
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Figures 

Figure 1. Map of the Western Zone rock lobster fishery (WZRLF) of Victoria, Australia, 

showing the three reporting regions (Portland, Warrnambool, Apollo Bay) and the 40 m depth 

contour boundary. 
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Figure 2.  CPUE indices and the CPUE annual discrepancy index by fishing year for the 

WZRLF of Victoria, Australia. Left axis: Nominal CPUE (filled circle line) and standardised 

CPUE (open circle line). The standardised CPUE series, shown with bars indicating 95% 

confidence intervals, was rescaled to have a mean equal to that of the nominal series. Right 

axis: 
yV (Equation 2), representing the percent change in nominal CPUE due to catchability 

and observation error. 

 

  



48 

 

Figure 3. Indices of catchability by fishing year based on terms estimated in Equation 1, for the 

WZRLF of Victoria, Australia. A, Influence values shown for all non-year covariate effects 

combined (continuous line), for Vessel (open circle line), and all non-year effects combined 

except for Vessel (open triangle line); B, Influence values for each of vessels (fishing > 1 year) 

entering the fishery (dashed), exiting (dotted), or remaining (solid), smoothed using a second-

order moving average. 
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Figure 4. Vessel fleet statistics by fishing year for the WZRLF of Victoria, Australia. Left axis: 

Proportion of all vessels entering (dashed line) or exiting (dotted line) the fishery. Right axis: 

Count of all vessels in the fishery by fishing year (continuous line). Vessels in the fishery for 

only one year were excluded for both axes. 

 

  



50 

 

Figure 5. Kernel density functions by fishing year of the exponential of Vessel coefficients 

estimated in Equation 1, for the WZRLF of Victoria, Australia. The area of the density function 

in a year is scaled to the total number of days fished by all vessels in that year. 
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Tables 

Table 1.  Impact of excluding one or more covariate terms from the final model, quantified by 

AICc (the sample size corrected AIC) and adjusted R2 (the deviance explained proportion). 

The number of data points is 347,259. 

 

Model covariate excluded 
Increase in 

AICc 

Decrease in 

adjusted R2 

Estimated 

parameters 

None (final model) 0 0 732 

Region 1719 0.3% 730 

Depth 2942 0.4% 731 

Fisher 12552 1.9% 549 

Vessel 18297 2.8% 286 

Year 19549 2.9% 696 

Month 86588 14.3% 723 

Vessel and Fisher 89341 14.9% 49 

All except Year and Month 122884 21.4% 46 

All except Year 211500 41.5% 37 
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Paper Three 

This paper was published. 

 Feenstra, J., Punt, AE., McGarvey, R. 2017. Inferring absolute recruitment and legal size 

population numbers of southern rock lobster (Jasus edwardsii) in South Australia's Southern 

Zone fishery using extended forms of depletion modelling. Fisheries Research 191: 164-178. 
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Conclusion 

Brief summary of contributions 

This thesis has sought to provide outcomes for concerning the southern rock lobster (Jasus 

edwardsii) stocks of the SZRLF and the WZRLF in terms of identifying influences that impact 

on nominal catch rate through the mechanism of catchability. Identifying such influences on 

catch rate is important, aside from a purely scientific viewpoint, as catch rate forms a 

fundamental part of lobster stock assessments, which are conducted annually to monitor the 

sustainability of the stocks. In this thesis, studies were conducted that reported new findings 

on the nature of catchability of southern rock lobster due to the influence of abiotic 

environmental factors. However, it was further found that the quantitative impact on nominal 

catch rate by these environmental factors was relatively minor, and that a fishery factor, namely 

the entry/exit dynamics of fishing vessels, influenced the yearly trend of nominal catch rate 

more substantially. Another objective of the thesis was to develop and apply a novel method 

to estimate absolute exploitable abundance and recruitment given only data on catch and catch 

rate. This was achieved, and the method was applied to the data for the SZRLF, with results 

compared against those from an integrated population dynamics model used for stock 

assessment.  

Outcomes and implications 

In Paper One it was found that for the SZRLF the environmental covariates did not contribute 

substantially to either the trend or variance in CPUE. However, several covariates were retained 

after model selection, and Paper One details their effects on CPUE and compares them with 

results reported in the literature. The impact of moon phase was non-linear over the cycle of 

the moon, predicting an increase in mean CPUE of 10% at full moon compared to new moon, 

and a decrease of 4% compared to new moon for phases between the full and new moon. Wave 

period, and wave height lagged at three days, had an estimated positive influence on mean 

CPUE, while bottom temperature and (contemporary) wave height had a negative influence. 

The outcomes for full moon and lagged wave height are consistent with the anecdotal reports 

by some fishermen. Interestingly, the negative impact on CPUE by wave height was much 

stronger when the model was restricted to data for the inshore (< 40 m) than when it was 

restricted to the offshore (> 40 m), which suggests turbulence as a direct mechanism impacting 

on catchability. However, there was no significant contrast indicated between the inshore and 

offshore models for the estimated moon phase effect, supporting hypotheses involving 

endogenous timing. The same methodology was applied to the WZRLF, except sensitivity 

analyses were not conducted, which found similar qualitative outcomes and magnitudes to the 

SZRLF study, but moon phase was not supported as a significant influence. Inferences and 

implications were provided in Paper One, but below follows further discussion. 

Paper One also determined that wind and sea surface height were not influential predictors 

for CPUE of the SZRLF and the WZRLF. This is potentially due to these covariates being 

naturally connected to bottom temperature (Drinkwater et al. 2006; Koeller, 1999; Schahinger, 

1987), so they may provide no additional information on catchability that is not reflected in 

bottom temperature given the latter is probably a more direct influence in a lobster’s immediate 

environment. Koeller (1999), studying the influence on American lobster catch of wind and 

temperature, urged caution when interpreting causal relationships between these three 

quantities over smaller (< 100 km) spatial scales and sub-yearly steps, due to potential 

confounding with changes in effort at different fishing locations driven by changing winds.  
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Unlike the snow crab fishery studied by Zisserson and Cook (2017), for the SZRLF over 

1998-2008 no catastrophic impacts on CPUE are known to have occurred through the direct 

influence of temperature on mortality. The results from Paper One show that for the SZRLF, 

temperature does impact catchability, but only to a small extent. Southern rock lobster in the 

SZRLF appear resistant to the rapid drops in bottom temperature that occur several times over 

November-March in most years as a result of the “Bonney upwelling”. This may suggest that 

the physiological mechanism of thermal acclimatization (Lagerspetz and Vainio, 2006) 

operates on southern rock lobsters by determining an appropriate preferred temperature and 

aerobic scope for activity (SFA) response curve (Crear and Forteath, 2000) conditioned on the 

range of temperatures they experience. One explanation for the estimated negative response of 

mean CPUE to temperature is based on the SFA hypothesis for catchability developed in Paper 

One. Suppose that the temperature for optimal SFA for the lobster stock is below the median 

value of the temperatures used in Paper One (14.2 °C), then the aerobic activity involved in 

foraging for food (and bait) will be increasingly inefficient at temperatures above the SFA 

optimal temperature. The possibility that within-year growth and depletion is confounded with 

temperature-driven catchability was investigated in Paper One by replacing the month factor 

covariate with spline functions of time smoothed to approximately weekly, monthly, or linear 

levels, which indicated only minor confounding at the sub-monthly scale. 

In Paper Two the effects of vessel identifier was studied for the WZRLF by including it as 

a covariate in the CPUE standardization, along with fisher identifier, month, depth, and spatial 

block. The results indicated that changes occurred in the vessel composition of the fleet for 

much of 1978-2014, which contributed substantially to an increasing trend in net yearly 

catchability, meaning that the trend in standardized CPUE is more pessimistic than for nominal 

CPUE. In particular, it was found that the increases in estimated net catchability occurred 

predominantly for periods when the average catchability of exiting vessels was well below that 

of the rest of the fleet. Analysis in Paper Two was improved by contrasting the influence index 

(“I”) of vessels with that of the combined non-vessel factors in the CPUE standardization, along 

with the index “V” that quantified discrepancies between nominal and standardized CPUE in 

terms of the magnitude of annual changes in total catchability. Moreover, the average annual 

increase in “I” for vessels over 1978-1995 for the WZRLF was 1.3%, which falls well within 

limits estimated for increases in fishing power reported from studies on the western rock lobster 

(Panulirus cygnus) fisheries in Western Australian that utilized time series of on-board 

equipment data (Fernandez et al., 1997; de Lestang et al., 2009). However, inferences drawn 

about catchability increases are limited in relation to improvements in vessel technologies for 

the WZRLF, given the lack of a time series of vessel data on changes in on-board equipment. 

Catchability for the WZRLF is more complex than a simple upward influence on 

catchability due to vessel effects since introduction of TACC in 2001. The fleet contracted over 

2000-2014 (Figure 4 in Paper Two), but an upward trend in vessel influence on catchability 

over that period was only estimated over 2000-2003 and 2009-2012. The literature on the 

function of TACC/ITQ in fisheries suggests that fleet reductions are associated with less 

efficient owners selling their quota to more efficient owners (e.g. Branch et al., 2006; Pascoe 

et al., 2013). Concerning 2009-2012 Paper Two suggested that this may have occurred due to 

the level of both TACC and lobster biomass by then having fallen sufficiently low to make it 

uneconomic to fish with vessels of low catchability. In contrast, Leon et al. (2015) found that 

for the Tasmanian TACC/ITQ lobster fishery, changes in permanent quota ownership were 

linked not to technical efficiency of the operators but to their financial capacity and that exiting 

of vessels was associated with operators of lower financial capacity, with this occurring only 

during periods of increasing biomass. However, the results reported here for the WZRLF, 

indicate that standardized CPUE respectively increased, decreased, and increased during 2000-

2003, 2004-2008, and 2009-2012, and that these periods involve respectively low, high, and 
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low fishing efficiency of exiting vessels. The link between periods of stock growth and vessel 

efficiency for the WZRLF is not observed for the period prior to TACC inception.  

In Paper Three the novel multi-year depletion models EDM and EDM-CSA were applied 

to data for the SZRLF estimating yearly absolute recruitment numbers and start-January 

exploitable abundance for 1994-2014. The depletion period was January-March, over which 

no recruitment or change in catchability was assumed to occur. Aside from biological 

considerations, this was supported by sensitivity analyses testing alternative two-month 

depletion periods, which indicated that only over January-February and February-March did 

estimates of catchability not differ significantly (Fig. 6 of Paper Three). EDM and EDM-CSA 

estimates agreed reasonably well with those estimated by LenMod for both the mean level of 

estimated recruitment (within 3%) and abundance (within 12%). The density-dependent “free-

beta” version of EDM indicated the presence of a significant degree of hyperstability (beta of 

0.529, 95% CI 0.371–0.687) for CPUE of the SZRLF. Hyperstability was also supported by 

another analysis conducted in Paper Three that regressed commercial fishery CPUE on the 

CPUE from fishery-independent monitoring surveys (FIMS), following the approach of Harley 

et al. (2001).  

Paper Three included an investigation into why the trend in the FIMS CPUE was more 

pessimistic than that in commercial fishery CPUE over calendar years 2008-2014 for the 

SZRLF. EDM was fit separately to data sets per individual year, revealing that estimated 

catchability roughly doubled over 2012-2014 compared to the common catchability estimate 

from EDM fit simultaneously to 1994-2014 (“base EDM”). Moreover, the trend in FIMS CPUE 

over 2008-2014 is closer to that exhibited by the abundance estimates from yearly fit EDM 

than to the trends in either the abundance estimates from base EDM, free-beta EDM, or 

commercial fishery CPUE. More generally, comparison of yearly-applied and base EDM 

estimates of catchability could be very beneficial for fisheries with no FIMS CPUE data by 

indicating the presence and direction of a change in catchability among years.  However, a 

caveat exists on the detection of a change between years in catchability when that is associated 

with a change to catchability within the fitted depletion period of EDM (Miller and Mohn, 

1993). 

 

Ideas for Further Research 

 The CPUE standardization and diagnostic analyses for the WZRLF could be repeated 

for the SZRLF. CPUE standardization was recently conducted for the SZRLF that 

showed only a minor difference in trend between standardized and nominal CPUE, but 

that did not include a covariate for vessel identifier as there was none. However, it may 

be feasible to construct a proxy index for vessel identifier that is unique and consistent 

through time, based on information that is external to the research catch-effort database. 

If this proves successful, CPUE standardization for the SZRLF will be better informed 

than it is currently by accounting for changes in catchability induced by changes in 

vessel fleet composition.   

 The WZRLF analysis should be extended by adding a term for interactions between 

year and vessel effects to the CPUE standardization model. This would effectively 

model a separate relative abundance index per vessel (Maunder and Punt, 2004). 

However, interpretation of the results of this analysis would need careful consideration, 

since although adding such interaction terms may provide a proxy method to test for 

effects of technology upgrades to on-board vessel equipment, it may also confound with 

other factors (Maunder and Punt, 2004). The influence (“I”) indices described in Paper 

Two would also need modification. 
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 The EDM model framework could be further developed to provide a diagnostic 

indicator on the consistency of catchability between years that is implicitly assumed in 

the interpretation of yearly CPUE statistics as a measure of relative abundance. This 

could be important given that yearly CPUE is a fundamental input into the SZRLF’s 

harvest strategy algorithm which determines the level of TACC each year (Linnane et 

al., 2017). For example, exploratory data analysis suggests that a substantial shift in the 

within-season distribution of fishing effort occurred away from January-March to 

earlier in the fishing season (October-December) going from season 2010 to 2011. This 

potentially implies a change in net catchability during these periods as a result of 

changing lobster vulnerability and fishery factors. The nature of such changes in 

catchability would need further investigation. Note also that improved CPUE 

standardization of the kind suggested further above may also be beneficial. 

 EDM may be able to provide valid start-January exploitable biomass and catchability 

estimates, given catch and CPUE are also reported by the SZRLF in weight of animals 

caught (instead of numbers of animals). However, this would overestimate recruiting 

biomass given that growth among legal sized lobsters during the amalgamated period 

(April-December) would be included in the estimates. In order to obtain both valid 

estimates of recruitment as well as biomass, it may be possible to develop the EDM 

population dynamics model by adding a term for growth of contemporary biomass 

using growth parameterization such as that described for delay-difference models by 

Smith and Addison (2003). 

 Running the various forms of EDM (base, EDM-CSA, free-beta EDM, and yearly 

EDM) with data extended to calendar year 2017 may be worthwhile. Similarly, it would 

be interesting to simulation test EDM fitted to data generated under varying regimes of 

(assumed) true length-sex vulnerability, using data simulated from a length-sex fishery 

model such as LenMod. Other aspects such as the sensitivity of EDM to hyperstability 

in CPUE could also be examined. One motivation for these suggested tasks is that the 

version of LenMod that was used as part of the SZRLF stock assessment at the time the 

analysis was performed for the EDM analysis in Paper Three, modelled the same length 

vulnerability function for all months within a season. Since then LenMod sensitivity 

modelling work (on data to season 2016) was conducted that involved varying length 

vulnerability within a season, and which resulted in lower estimated net length-sex 

vulnerability than was estimated by the previous version of LenMod.  
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Supplementary material for Paper Two 

Figure S1 

Residual diagnostic plots of the main model as per equation 1 of the main text.
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Figure S2 

Standardised CPUE (mean scaled to nominal CPUE) for models as equation 1 in Methods of 

the text but with single terms excluded. 
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Figure S3 

Comparison between nominal CPUE trends: via the ratio estimator (as per Methods in the text) 

and via the geometric mean. 
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Figure S4 

Influence" statistics by year for each of the non-year terms in the GLM equation 1 described in 

Methods of the text. 
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Supplementary material for Paper Three 

A. Relationship between fishery catch rates and FIMS catch rates. 

The power parameter, , in the hypothesized power relationship between commercial fishery 

logbook catch rates and FIMS catch rates was estimated using log-log regression. The results 

(Fig. A.1) showed no pathology in residual diagnostics (results not shown). The estimate of  

was 0.395 (95% CI 0.067-0.722), which would indicate statistically significant hyperstability. 

However, measurement error in the FIMS catch-rates would negatively bias    in direct 

proportion to the ratio of the variance in the log of fishery catch rates to the sum of the variances 

in the log of the fishery catch rates and the log of the FIMS catch rates (Fuller, 1987). Hence 

the size of the potential bias will depend on the (unknown) level of error in the fishery catch 

rates as well as the error in the FIMS catch rates. Hence a simulation-extrapolation method 

(SIMEX: Gould et al., 1997, 1999) was applied using measurement error variances for the 

FIMS catch rates. Variances for the FIMS catch rates since season 2006 have recently been 

calculated (personal communication) using a method designed for systematic sample means 

and which account for the spatial autocorrelation typical of clustering species. The CV% values 

for legal size catch rates for each of the summer FIMS surveys for calendar years 2007-2014 

inclusive (seasons 2006-2013) ranged between 5% and 10%, and a value for summer FIMS 

survey of calendar year 2006 was assumed to equal that of the 2007 survey. The original FIMS 

data series together with the survey variances were then used to generate a simulated data set 

of 10,000 replicate FIMS catch rate series, with each replicate series produced by adding a 

given level of normally distributed error to the original FIMS data values. This was repeated 

for several sets of 10,000 replicates, with each set differing by assuming a different multiplier 

constant (lambda) of the variance defining the normal distribution of errors. Log-log 

regressions of the original fishery catch rates on each of the replicate FIMS catch rate data 

series were then performed, and for each simulated data set a sample mean (across 10,000 

values) of  was computed. Then, following the SIMEX methodology, an unbiased estimate 

was obtained by plotting each mean  value versus lambda that indicated a linear relationship, 

and that was then used to extrapolate to where lambda equals -1 to obtain the SIMEX estimate 

for .  

The resulting extrapolated value for  equaled 0.401 (Fig A.2), and implies only a minor 

amount of negative bias in the log-log regression estimate. Similarly, the sample standard 

deviation of the 10,000  values for the simulation with lambda equal to 1 was 0.028, and this 

lead to the standard error on  increasing from 0.138 (original regression) to 0.141, suggesting 

only minor underestimation of the total error on  . 
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Fig. A.1 Linear regression of logged commercial logbook catch rate (numbers of lobsters / 

number of potlifts) on logged FIMS catch rate (numbers of lobsters / number of potlifts). The 

catch rates are those for summer months involving FIMS sampling (January-February surveys) 

for calendar years 2006-2014.  
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Fig. A.2 Trend in sample mean estimates of  from 10,000 replicates for each of several levels 

of simulated observation error in the FIMS catch rates as a function of error variance multiplier, 

according to the SIMEX method.  
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B. Specifications of the length-structured model (LenMod). 

Overview 

Various versions of the initial model formulation (Punt and Kennedy, 1997) have formed part 

of stock assessments for southern rock lobster off Tasmania, Victoria and South Australia for 

many years (e.g., Punt and Kennedy, 1997; Hobday and Punt, 2001; Punt, 2003; McGarvey et 

al., 2010; Linnane et al., 2015). The model is known as “LenMod” in South Australia, and a 

condensed form of model specifications can be found in McGarvey et al. (2015), while this 

present specification is a more detailed form that is as found in Linnane et al. (2015) but for a 

small number of modifications. LenMod is a population dynamics model that operates on a 

fishing season defined over, for the Southern Zone Rock Lobster Fishery, T = 9 time-steps 

(months), starting with the opening of the fishing season in October (i=1) to May (i=8), with a 

multi-month June-September (i=9) time step covering each closed winter season. The duration 

of the ith time-step (i=1,..,T) in units of years is denoted 
it . Lobster size-classes are in 4 mm 

bins, the lowest length bin defined as 82.5-86.5 mm CL, with 29 bins for males and 21 for 

females. The model population array, , ,

s

y i lN , is the number of lobsters by length bin (l), sex (s), 

fishing season (y; hereafter referred to as year), and month (i). 

 

The population dynamics model 

 

Basic dynamics 

The equation that specifies , ,

s

y i lN  takes account of natural mortality M (instantaneous yearly 

rate), fishing mortality, growth, and settlement under the assumption that harvest occurs before 

growth and settlement: 

   , 1, ', , , , ' , , '

'

{1 }iMts s s s s s

y i l l l i y i l y i l i l y

l

N X N e H R


        (1) 

where: 

', ,

s

l l iX  is the fraction of the animals of sex s in size-class l’ that grow into size-class l during 

time-step i; 
s

i  is the fraction of the settlement that occurs to sex s during time-step i (

1s

i

s i

  ); 
s

l  is the proportion of the settlement of animals of sex s that occurs to size-

class l; 

, , '

s

y i lH  is the exploitation rate on animals of sex s in size-class l’ at the start of time-step i of 

year y over all fleets; and  

yR  is the settlement of animals during year y:  

    
2

,( ) /2y R y

yR R e
 

       (2) 

where: R  is mean settlement, y  is the “settlement residual” for year y, ,R y  is the standard 

deviation of the random fluctuations in settlement for year y: 
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start( )2

2

, 2

y y

R

R y

R

 





 


  if

otherwise

starty y     (3) 

R  is the extent of variation in settlement for years after starty , and   determines the extent to 

which ,R y  changes with time ( 1   means that the settlement will be closer to the mean 

settlement for the years before starty ). 

 Egg production is given by the following equation for the case in which spawning is assumed 

to occur at the start of time-step of year y: 

    
f

, ,my l y i l

l

B Q N       (4) 

where lQ  is the expected number of eggs produced by a mature female in size-class l, and m
i  

is the time-step in which spawning occurs (month 1) and f

, ,my i lN being the total number of such 

females.  

 

Catches 

,

f

y iC  which is the landed catch in weight data by fleet f during time-step i of year y. In addition 

to landed catch, commercial data includes information on spawning lobsters and those brought 

up dead in the pots, while four surveys (1998, 2001, 2004, and 2007) are used as the basis to 

estimate catches for the recreational fleet. ,

f

y iC  is used in defining the fully-selected 

exploitation rate for fleet f during time-step i of year y, , is calculated as follows: 

, ,

, /2,

, , , , ,

(1 )

(1 ) i

f f

y i y if

y i Mts f s s s s

y i l i l i l y i l

l s

d C
F

S p V W N e






    (5) 

where  

,

f

y id  is the ratio of the discarded dead catch to the legal-size catch for fleet f (only for 

commercials, and is 0 for recreationals);  
s

iV  is the relative vulnerability of males to females during time-step i (
s

iV =1 for males); 

,

s

i lp is the proportion of mature animals of sex s in length-class l which are returned live during 

time-step i because they are spawning (0 for males); and 

, ,

s

y i lS  is the vulnerability by length for the gear used on animals of sex s in size-class l during 

time-step i of year y incorporates the legal minimum size as:  

 , , , ,

, ,

0

( LML ) /

s s

y i l y i l

s s s s

y i l l l y l

S S

S L L L




 


   

 

if LML

if LML

otherwise

s s

l l y

s

l y

L L

L

  



   (6) 

,

, , , ,

s f s

y i l y i lS S , as the same gear is assumed for commercial and recreational fishers. 

mi

,

f

y iF
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s

lL  is the lower limit of size-class l for sex s, 
s

lL  is the width of a size-class l for sex s (4 mm), 

LMLy is the legal minimum size during year y, , ,

s

y i lS  is the vulnerability of the gear used on 

animals of sex s in size-class l. (There were no changes in LMLy , which is 98.5 mm carapace 

length, over the whole time series for the Southern Zone Rock Lobster Fishery.) 

, is used to define , , '

s

y i lH  as follows: 

    , , , , , ,(1 )s s s s f

y i l y i l i l i y i

f

H S p V F      (7) 

 

Initial conditions 

It is impossible to project this model from unexploited equilibrium owing to a lack of historical 

catch records for the entire period of exploitation. Instead, it is assumed that the population 

was in equilibrium with respect to the average catch over the first five years for which catches 

are available in year 20starty  . This approach to specifying the initial state of the stock differs 

from that traditionally adopted for assessments of rock lobster off Tasmania and Victoria (Punt 

and Kennedy 1997; Hobday and Punt 2001) in that no attempt is made to estimate an initial 

exploitation rate. The settlements for years 20starty   to 1starty   are treated as estimable so 

that the model is not in equilibrium at the start of year starty . 

 

The objective function 

The objective function summarises the information collected from the fishery and contains 

contributions from four data sources:  

a) Commercial catch and independent catch rates,  

b) length-sex frequency data from sampling of commercial pot lifts, and 

c) commercial catches in number. 

Catch-rate data 

The contribution of the catch-rate data for the commercial fishery to the likelihood function is 

given by: 

Comm Comm ,Comm 2

, ,

1. 2Comm
,, ,

( n n( ))1
exp

2( )2

e

y i i y i

a CombComb
y i q iy i q i

I q B
L

I  

 
   

 
  (8.a) 

while the contribution of fishery-independent monitoring survey (FIMS) index data to the 

likelihood function is given by  

FIMS FIMS Comm ,Comm 2

, ,

1. 2FIMS
,, ,

( n n( ))1
exp

2( )2

e

y i i y i

b CombComb
y i q iy i q i

K q q B
L

K  

 
   

 
  (8.b) 

where: 
Comm

iq is the commercial catchability coefficient; 

Comm

,y iI  is the catch-rate index for the commercial fleet for year y and time-step i; 

,

Comb

q i  is the standard deviation of the observation error for the commercial fleet and FIMS 

surveys combined for time-step i; 

,

f

y iF
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FIMSq  is the FIMS catchability coefficient; and 
FIMS

,y i
K  is the FIMS catch-rate index for time-step i of year y.  

FIMS catch rates are available (since 2005 for the Southern Zone Rock Lobster Fishery) and 

are derived from sampling pots spaced evenly across transects which span a larger spatial 

region than that of the concentrated fishing grounds, where catchability by month is assumed 

to be the same as that for the commercial fishery. The maximum likelihood estimates for 
Comm

iq

and ,

Comb

q i were obtained analytically, while the value for 
FIMSq was estimated as part of the non-

linear search procedure. A separate set of 
Comm

iq and ,

Comb

q i were estimated for the years prior 

to TACC introduction (seasons 1983-1992 for the Southern Zone Rock Lobster Fishery) and 

the period thereafter. 
,Comm

,

e

y iB  is the exploitable biomass available to the commercial fishery (and recreational 

fishery) during time-step i of year y: 

 

  
/2,

, , , , , , ,(1 / 2)iMte Comm s s s s s

y i i y i l l y i l y i l

s l

B V S W e N H


      (9) 

Length-frequency data 

Length and sex frequency data are available from a sampling program which has been 

conducted since 1991. This program involves voluntary reporting on the contents of pot lifts 

by some commercial fishers. The observed fraction, during time-step i of year y by the 

commercial fishery, of the catch (in number) of animals of sex s in size-class l (including 

undersize) is denoted 
,Comm

, ,

s

y i l . The model-estimate of this quantity, 
,Comm

, ,
ˆ s

y i l , takes account 

of the vulnerability of the gear and the numbers in each size-class and sex: 

,Comm ' ' ' '

, , , , , , , , , ' , ' , , '

' '

ˆ (1 ) / (1 )s s s s s s s s s

y i l y i l i i l y i l y i l i i l y i l

s l

S V p N S V p N       (10.a) 

The observed value of 
,Comm

, ,

s

y i l  is assumed to be multinomially distributed, giving the 

length-sex frequency likelihood function (ignoring multiplicative constants): 

 
,Comm
, ,,Comm

2 , ,
ˆ

s
y i ln

s

y i l

y i l s

L


       (10.b) 

where 
,Comm

, ,

s

y i ln  is the observed number of lobsters in the sampling program in time-step i of 

year y of sex s and size-class l , and   is a down-weighting constant factor to reduce 

influence of this data relative to the catch-effort data sets (since catch sampling is not random 

and selectivity is not stationary). Undersize length-sex frequencies are fit as part of the full 

length-sex frequency data from the sampling program, with the model catch number 

predictions given by: 

   
/2

, , , , ,(1 ) iMts s s s

y i l i i l y i lS V p N e


      (11.a) 

The length-sex frequencies for spawners are also assumed to be multinomial samples, except 

the model catch number predictions are: 

   
/2

, , , , ,
iMts s s s

y i l i i l y i lS V p N e


      (11.b) 
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Catch-in-number 

The commercial catches in number, ,

N

y iC , are assumed to be lognormally distributed. The 

contribution of these data to the likelihood function is therefore given by: 

 

,Comm 2

, ,

3 2

,

ˆ( n n )1
exp

22

N N

y i y i

N
f y i Ny i N

C C
L

C 

 
  

 
 

    (12) 

where 
/2 Comm

, , , , , , ,
ˆ (1 ) iMtN s s s s

y i i y i l i l y i l y i

s l

C V S p N e F


  and 
Comm

N  is the standard deviation of the 

observation error in catch numbers for the commercial fleet, assumed to apply over all time. 

The spawner discards are also fitted under the assumption that they are lognormally distributed. 

 

Parameter estimation 

Table B.1 lists the parameters of the population dynamics model and the objective function, 

and highlights those parameters assumed to be known exactly and those parameters whose 

values are estimated by fitting the model to the data. Vulnerability-at-length for each fleet is 

estimated, separately for each sex, by a logistic function of length, and is the same for 

commercial and recreational fishers. Female vulnerability by time-step is estimated. Female 

spawner fractions are based on auxiliary information. 

A constraint is placed on the settlement residuals to stabilise the estimation and prevent 

confounding with mean recruitment. The following term was included in the objective 

function: 

   
2 2

,0.5 ( ) / ( ).y R y

y

P         (13) 
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Table B.1. 
Parameters of the length-structured model (LenMod) model and their sources for the 

Southern Zone Rock Lobster Fishery. 

 

Parameter Description Value Sources 

y  The settlement residuals for year y Estimated  

n( )R  Mean settlement Estimated  

R
 

The extent of variation in settlement for years after starty   0.5 Assumed 

  The extent to which ,R y changes with time 0.8 Assumed 

', ,

s

l l iX  Growth transition matrix 
Matrices by sex for months 3 

and 8. 

Estimated using method of 

McGarvey and Feenstra (2001). 

M Natural mortality  0.1 yr-1 Conventional assumption 

s

iV  Relative vulnerability of males to females by time-step Estimated  

, ,

s

y i lS  
Vulnerability of the gear by sex, size-class, time-step, and 

year. 

Estimated as sex-specific 

logistic functions of length 
 

,

s

i lp  
Proportion of mature spawning animals by sex, size-class 

and time-step 
 Estimated externally 

s

i  Fraction of the settlement by time-step and sex Estimated  

s

l
 

Proportion of the settlement of animals by sex and size-class 

First six length bins: males = 

0.35, 0.2, 0.15, 0.15, 0.1, 0.05; 

females = 0.45, 0.25, 0.15, 0.1, 

0.05, 0 

Assumed 

lQ  Egg production as a function of size  Estimated externally 

s

lW  Mass as a function of size and sex Power function of length Estimated externally 

mi  
The time-step in which spawning occurs 1  

Comm

iq ,
FIMSq   

Catchability for the commercial fleet and FIMS by time-step 

i  
Estimated  

,

Comb

q i  
Standard deviation of the observation errors for time-step i 

for the commercial fleet and FIMS surveys combined. 
Estimated  

Comm

N  
Standard deviation of the observation error in commercial 

catch in numbers 
Estimated  

  Down-weighting factor for length-sex data 0.0125 Assumed 

 



94 

 

 

C. Tables: 

Supplementary Table S1 

 

Undersize length frequencies per season (January-March) in 4 mm length bins, normalized to 

1 across the four bins, from the catch sampling data. Below the length frequencies are provided 

length selectivity per bin mid-point estimated by LenMod (mean across sex) and the probability 

of growth from each bin to above legal size derived from growth transition matrices (mean 

across sex and month) that are inputs into LenMod. Note: Frequencies for November-

December differed trivially to those for January-March. 

 

 4 mm length bins   

Season (Jan.-Mar.) 82.5-
86.5 

86.5-
90.5 

90.5-
94.5 

94.5-
98.5 

1993 0.11 0.21 0.31 0.37 
1994 0.13 0.25 0.31 0.31 
1995 0.11 0.20 0.30 0.39 
1996 0.12 0.21 0.30 0.37 
1997 0.12 0.22 0.29 0.37 
1998 0.10 0.20 0.32 0.39 
1999 0.09 0.19 0.29 0.43 
2000 0.06 0.15 0.31 0.48 
2001 0.08 0.17 0.30 0.44 
2002 0.05 0.15 0.29 0.51 
2003 0.09 0.17 0.28 0.46 
2004 0.07 0.17 0.30 0.46 
2005 0.09 0.19 0.29 0.43 
2006 0.07 0.16 0.30 0.47 
2007 0.10 0.17 0.27 0.45 
2008 0.10 0.18 0.29 0.43 
2009 0.15 0.24 0.30 0.31 
2010 0.09 0.18 0.30 0.43 
2011 0.10 0.19 0.28 0.42 
2012 0.12 0.19 0.28 0.41 
2013 0.09 0.23 0.31 0.37 

Mean relative frequency 0.10 0.19 0.30 0.41 
Selectivity (LenMod) 0.36 0.78 0.87 0.88 

Growth probability to above legal 
size 

0.57 0.69 0.81 0.92 
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Supplementary Table S2 

 

Coefficient of variation (CV) and 95% confidence intervals (CI) for estimates of yearly 

recruitment and start-January exploitable population numbers from EDM (base) and free-beta 

EDM. Cell values consist of CV% with 95% CI in parentheses in units of millions. 

 
 Recruitment  Exploitable population numbers 

Year 
EDM (base) EDM (free-beta) EDM (base) EDM (free-beta) 

1994 4.5% (2.7-3.3) 4.3% (2.6-3.1) 7.4% (2.7-3.6) 11.0% (1.5-2.3) 

1995 5.0% (2.5-3) 5.0% (2.4-2.9) 7.4% (2.9-3.9) 10.3% (1.7-2.6) 

1996 6.1% (1.8-2.3) 5.9% (1.7-2.1) 7.3% (3.1-4.1) 9.8% (1.9-2.7) 

1997 4.1% (2.7-3.2) 3.5% (2.6-3) 7.1% (2.5-3.3) 11.8% (1.3-2) 

1998 4.2% (3.2-3.7) 4.0% (3.1-3.6) 7.1% (2.8-3.7) 10.9% (1.5-2.4) 

1999 4.7% (3.5-4.2) 5.4% (3.5-4.3) 7.3% (3.2-4.3) 9.3% (2-2.9) 

2000 5.7% (3.2-4) 7.5% (3.1-4.2) 7.7% (3.7-5) 8.2% (2.7-3.7) 

2001 6.9% (2.8-3.6) 9.8% (2.7-3.9) 8.0% (4.1-5.6) 8.2% (3.3-4.5) 

2002 7.8% (2.5-3.5) 11.9% (2.4-3.9) 8.1% (4.3-6) 8.8% (3.7-5.2) 

2003 8.7% (2.2-3) 15.2% (1.6-3) 8.0% (4.7-6.5) 9.5% (4.2-6.1) 

2004 7.4% (2.5-3.3) 11.8% (2.1-3.3) 8.0% (4.4-6.1) 8.8% (3.8-5.4) 

2005 8.0% (2.1-2.8) 13.2% (1.6-2.7) 7.9% (4.3-5.9) 8.3% (3.6-5) 

2006 6.6% (2.4-3.1) 9.4% (2-2.9) 7.7% (4-5.4) 7.8% (3.1-4.2) 

2007 8.5% (1.5-2.1) 12.5% (1.2-2) 7.6% (3.7-5) 8.1% (2.7-3.7) 

2008 8.6% (1.2-1.6) 7.3% (1.2-1.6) 7.3% (2.9-3.9) 10.6% (1.7-2.5) 

2009 4.9% (1.5-1.9) 3.1% (1.6-1.8) 7.2% (2.1-2.7) 13.6% (0.9-1.6) 

2010 4.9% (3.2-3.9) 4.7% (3-3.6) 7.1% (1.8-2.4) 13.7% (0.8-1.3) 

2011 7.1% (1.6-2.1) 7.5% (1.4-1.9) 7.3% (3.2-4.2) 9.4% (2-2.9) 

2012 6.8% (1.3-1.7) 5.2% (1.3-1.6) 7.6% (2.4-3.3) 13.6% (1.1-2) 

2013 4.5% (2.3-2.7) 3.8% (2.1-2.5) 7.5% (1.9-2.6) 16.0% (0.7-1.4) 

2014   7.7% (2.3-3.1) 14.0% (1.1-1.9) 

Mean CV% 6.2%  7.6%  7.5%  10.5%  
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D. Figures: 

Supplementary Figure S1 
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Supplementary Fig. S1. Time series of effort per data source. (a): Reporting rates of effort of 

the catch sampling data series as a proportion of the corresponding total commercial fishery 

effort per combined MFA 51+55 and 56+58, and calendar year (January-March). MFAs 51 and 

55 are aggregated for data confidentiality reasons, and similarly so for MFAs 56 and 58. (b): 

Reporting rates of effort with PRI data as a proportion of the corresponding total commercial 

fishery effort per MFA and calendar year (January-March). (c): Time series of total effort for 

each of the four major MFA reporting blocks (51, 55, 56, 58) of the South Australian rock 

lobster Southern Zone commercial fishery, as number of potlifts aggregated over January to 

March per calendar year. 
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Supplementary Figure S2 
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Supplementary Fig. S2. EDM catch rate fit diagnostic plots consisting of (a) histogram of 

standardized residuals, (b) quantile-quantile plot, (c) trend in standardized residuals versus 

predicted catch rate, (d) predicted catch rate versus observed catch rate, (e) trend in 

standardized residuals versus model month (January (0) to March (2)), and (f) trend in 

standardized residuals versus calendar year (1994-2014). Standardized residuals are defined as 

log(observed catch rate) minus log(predicted catch rate) divided by the (maximum likelihood) 

standard deviation. 
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Supplementary Figure S3 
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Supplementary Fig. S3. EDM-CSA catch rate fit diagnostic plots consisting of (a) histogram 

of standardized residuals, (b) quantile-quantile plot, (c) trend in standardized residuals versus 

predicted catch rate, (d) predicted catch rate versus observed catch rate, (e) trend in 

standardized residuals versus model month (January (0) to March (2)), and (f) trend in 

standardized residuals versus calendar year (1994-2014). 
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Supplementary Figure S4 

 
     

  



103 

 

Supplementary Fig. S4. EDM-CSA PRI fit diagnostic plots consisting of (a) histogram of 

standardized residuals, (b) quantile-quantile plot, (c) trend in standardized residuals versus 

predicted PRI, (d) predicted PRI versus observed PRI, (e) box plot of standardized residuals, 

and (f) trend in standardized residuals versus calendar year (1994-2013). 
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Supplementary Figure S5 
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Supplementary Fig. S5. LenMod catch rate fit diagnostic plots consisting of (a) histogram of 

standardized residuals, (b) quantile-quantile plot, (c) trend in standardized residuals versus 

predicted catch rate, (d) predicted catch rate versus observed catch rate, (e) trend in 

standardized residuals versus model month (October (1) to May (8)), and (f) trend in 

standardized residuals versus fishing season (1983-2013). For reference the vertical line is 

placed prior to the first season from which EDM and EDM-CSA model time commences, 

namely season 1993 (calendar year 1994, January). 
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Supplementary Figure S6 
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 Supplementary Fig. S6. Negative log-likelihood values for EDM runs for different fixed 

values of natural mortality. The triangle marks the value (0.1) for natural mortality assumed by 

base EDM, and the diamond is the estimated value for natural mortality when it was freely 

estimated. 
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Supplementary Figure S7 
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 Supplementary Fig. S7. Negative log-likelihood values for EDM runs for different fixed 

values of . The triangle marks the value for  assumed by base EDM ( = 1), and the diamond 

is the estimated value for  when it was freely estimated (free-beta EDM). 
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Supplementary Figure S8 
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Supplementary Fig. S8. Time series of estimated start-January exploitable population 

numbers from base EDM and free-beta EDM with corresponding catchability (top), and 

recruitment to legal size (bottom) series from base EDM and free-beta EDM. The maximum 

likelihood 95% confidence intervals for base EDM estimates are the shaded areas. Pre-recruit 

index (PRI) data points (of November-December) are added to the lower panel and are scaled 

so that the mean equals that of the EDM estimated recruitment series. 

 

 




