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Dense Monocular Reconstruction using Surface Normals

Chamara Saroj Weerasekera, Yasir Latif, Ravi Garg, Ian Reid

Abstract— This paper presents an efficient framework for
dense 3D scene reconstruction using input from a moving
monocular camera. Visual SLAM (Simultaneous Localisation
and Mapping) approaches based solely on geometric methods
have proven to be quite capable of accurately tracking the
pose of a moving camera and simultaneously building a map
of the environment in real-time. However, most of them suffer
from the 3D map being too sparse for practical use. The
missing points in the generated map correspond mainly to areas
lacking texture in the input images, and dense mapping systems
often rely on hand-crafted priors like piecewise-planarity or
piecewise-smooth depth. These priors do not always provide the
required level of scene understanding to accurately fill the map.
On the other hand, Convolutional Neural Networks (CNNs)
have had great success in extracting high-level information from
images and regressing pixel-wise surface normals, semantics,
and even depth. In this work we leverage this high-level scene
context learned by a deep CNN in the form of a surface
normal prior. We show, in particular, that using the surface
normal prior leads to better reconstructions than the weaker
smoothness prior.

I. INTRODUCTION

The ability to carry out dense and accurate 3D mapping
of the environment is desirable in applications such as
autonomous navigation, robotic manipulation, augmented re-
ality, etc. Doing so merely using input from a moving monoc-
ular/stereo camera is attractive as cameras are ubiquitous,
compact, power efficient, and not limited by range. Visual
SLAM (Simultaneous Localisation and Mapping) systems
have evolved to the point where they are capable of many
feats such as accurate and real-time camera tracking and 3D
mapping [1], [2], [3], with some capable of fully dense live
3D reconstruction [4], [5].

Less attention has been paid to the application of high-
level scene understanding to aid the mapping process. Some
work has introduced constraints such as Manhattan world
assumptions, or piecewise planar priors [6], [7], [8]. Other
stronger priors have also been leveraged, such as known
objects [9], [10], while other works have made use of
smoothness assumptions to “fill in” regions where there is
insufficient photometric variation [4], [11]. For example, [4]
requires hand crafted priors on depth (piecewise constant
disparity) to fill in the regions of low texture. High-level
scene context (e.g. offices having a desk, on top of which a
monitor, keyboard, etc. often lie in a specific configuration)
is usually ignored in pure-geometry based SLAM systems.

In our work we recognise that recent advances in deep
learning techniques mean that priors about surface orien-
tation can be captured within a multi-layer Convolutional
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Fig. 1. Reconstruction using smoothness regularizer (top left) and normal
prior (top right), an RGB image in the sequence (bottom left), and corre-
sponding predicted normals (bottom right). Note the more accurate high-
fidelity reconstruction obtained using the normal prior. A live comparison
video is available at https://youtu.be/atq1EhX-75k.

Neural Network (CNN) which regresses image patches to
local surface normal values [12], [13]. The predictions are
likely to be backed by the capacity of neural networks to
grasp high-level concepts such as object type and scene
layout, and relative orientation to one another, in addition to
low-level cues such as shading [14]. The improvements they
can bring to traditional reconstruction techniques are also
demonstrated in recent work like [15]. Motivated by this,
we here present the first framework for real-time monocular
dense mapping that efficiently combines both the benefits of
deep CNNs and well-established geometry-based methods.

In particular, we use normal predictions from a learned
neural network [12] as a strong prior and aim to estimate
a map which (i) minimizes photometric cost and (ii) is
consistent with the single-view normal predictions. To that
end we incorporate a depth/normal consistency term in our
energy minimization framework which acts as a regularizer
to fill in the gaps in the map with very little texture. We
closely follow [4]’s energy minimization method for mapping
where our proposed regularizer replaces the inverse-depth
smoothness prior used in [4].

We extensively evaluate the proposed method quantita-
tively against the traditional hand-crafted smoothness regu-
larizer such as [4], and pure learning-based system like [12]
on a diverse range of indoor sequences in a large dataset
like raw NYU-D V2 [16]. Our benchmarking highlights



limitations of both pure learning-based and pure-geometry-
based systems, which are addressed by the proposed method.

II. BACKGROUND AND RELATED WORK

The problem of monocular SLAM is well studied and con-
sists of estimating the structure of the environment together
with the location of the camera at any given moment. The en-
vironment is generally represented as a collection of points,
whose density varies from sparse [3] to semi-dense [2] to
dense [4], [17]. Geometry-based methods rely on minimizing
multi-view photometric error/feature-correspondences under
the assumption that the environment is sufficiently textured.
Therefore, in featureless regions they are unable to reason
about the environment’s geometry sufficiently well. This is
particularly an issue for dense mapping. Several hand-crafted
priors have thus been proposed to address this. Some of
them include smoothness in disparity/depth priors [4], [11],
[17] or Manhatton/piewise-planar priors [6], [18], [7], [19],
[8]. Another line of work [20], [9], [21], [10], [22], [23]
used a limited set of detected object classes as a prior for
reconstruction.

Single-image surface normal estimation/prediction has
been a topic of interest over the years. Early work includes
estimating normals using shape from shading [14], and other
low-level image features [24]. More recently, learning based
approaches such as [25], [26], especially those using neural
nets [12], [27] have achieved state-of-the art performance
in normal prediction. In [12], an efficient multi-scale CNN
was proposed for estimation of depth, surface normals, and
semantic labels. In their neural network architecture, all three
tasks shared common weights for the course scale, and the
finer scales received additional input from the output of the
courser scales. A separate line of work aim to reconstruct
purely based on normal information [28].

More closely aligned with our work, in [29], a formula-
tion to integrate normals with photometric consistency for
reconstruction was proposed. The normals were computed
based on local-planar patch fitting that maximized photo-
consistency. In [30] surface normals from detected object
classes were used to formulate a regularizer to penalize re-
construction errors. More recently, in [15], in a direction very
similar to ours, a method was proposed for refining single-
image depth predictions, or stereo-based depth estimates
using surface normal predictions from a neural network.
Pixel-wise classification scores of a discrete set of surface
normals were used to construct a Wulff shape which served
as a regularization function to penalize incorrect pairwise
depth relationships. The experiments in [15] however were
limited to improving stereo reconstruction and single-view
depth predictions, and the formulation utilized discretized
normal predictions.

III. METHOD

Our proposed framework incrementally generates a fully
dense reconstruction of a scene from a video sequence given
pixel-wise surface normal maps of keyframes and photomet-
ric evidence from a series of overlapping images correspond-

ing to those keyframes. The following sub-sections elaborate
on the key components.

A. Notations

The following notations and conventions will be used in
this section. K is the camera intrinsic matrix. Ir ∈ R3 is a
M × N keyframe image and In ∈ R3 is a M × N image
in the set of images overlapping Ir. We assume images are
undistorted. up = (u, v)T is a pixel location in Ir, where
p = 1, ...,MN ∈ P is a pixel location-based index. u̇p =
(u, v, 1)T is up in homogeneous form, and x̃p := K−1u̇p.
For a pixel up, dp and ρp are the corresponding depth and
inverse-depth respectively, and d and ρ are MN ×1 vectors
of stacked dp and ρp values respectively. Tnr ∈ SE(3)
is a matrix describing the transformation of a point from
camera coordinates of Ir to that of In. π(.) and π−1(., .)
are the projection and back-projection operations, such that
π(K−1u̇p/ρp) = up and π−1(up, ρp) = K−1u̇p/ρp. The
predicted surface normal vectors n̂p ∈ R3 are normalized in
Euclidean space and are in camera coordinates of Ir.

B. Energy Formulation for Mapping

We formulate depth estimation of a keyframe as an energy
minimization problem. Closely following [4] our energy
function consists of a dataterm and a regularization term as
follows and will be minimized with respect to ρ:

E(ρ) =
∑
p∈P

1

λ
Eφ(ρp) + En̂(ρp), (1)

where λ controls the regularization strength.
Eφ is the dataterm that computes the photometric error

for a keyframe Ir accumulated over N overlapping frames:

Eφ(ρp) =
1

N

N∑
n=1

∥∥∥I′r(up)− I
′

n(π(Tnrπ
−1(up, ρp)))

∥∥∥
1

(2)
For added robustness in the photometric matching, we

concatenate the RGB channels of Ir and In with an ad-
ditional image gradient-based channel, computed using eqn.
(6), forming I

′

r and I
′

n respectively. Using eqn. (2) a cost
volume [4] can be created that stores average photometric
error for a discrete set of inverse depth labels l ∈ L, for
each pixel up. Sections D and E contain more information
pertaining to cost volume creation.

Our proposed regularization term is based on the rela-
tionship between a pair of 3D points and its corresponding
normal (Fig. 2) in the camera coordinates of Ir:

〈n̂p, dqx̃q − dpx̃p〉 = 0, (3)

where 〈 , 〉 is the dot product operator and q ∈ N (p)
corresponds to a pixel location in the neighbourhood of that
of p. Equation (3) can be simplified as:

dq〈n̂p, x̃q〉 − dp〈n̂p, x̃p〉 = 0

dqcpq − dpcpp = 0

ρpcpq − ρqcpp = 0

(4)
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Fig. 2. A neighbouring 3D point pair and corresponding surface normal.

where cpq and cpp are constants equal to n̂p · x̃q and n̂p · x̃p
respectively. Thus we can minimize the following energy,
penalizing inconsistent inverse depth values:

En̂(ρp) = gp
∥∥∇ρ

p

∥∥
ε

(5)

where ∇ρ
p denotes a vector of operations as follows:

∇ρ
p =

[
ρpcpi − ρicpp
ρpcpj − ρjcpp

]
.

The indices i and j correspond to pixel locations neighbour-
ing that of p in the positive x and y directions in the image
plane. Note that we have restricted the neighbourhood pair-
wise connectivity to the latter for computational efficiency.

The image-edge based weight gp = g(Ir,up) where

g(I,u) = e−α‖∇I(u)‖β2 (6)

reduces regularization at image edges, under the assumption
that these regions align with depth discontinuities, and also
have higher data-term quality. α and β are tunable parame-
ters.

The Huber norm, defined as

‖x‖ε =


‖x‖22
2ε

if ‖x‖2 ≤ ε

‖x‖1 −
ε

2
otherwise

, (7)

also minimises penalties at surface discontinuities, and makes
the overall energy more robust to errors in normal predic-
tions.

In the special case when cpq = cpp = −1 which occurs
when n̂ = (0, 0,−1)T , i.e. the normal is pointed directly at
the camera, eqn. (5) reduces to the smoothness prior used
in [4]. Hence ours is a more general form that can enforce
inverse depth relationships for arbitrary surface orientations
visible to the camera. Adding more flexibility, we introduce
a tunable parameter γ which balances smoothness/normals
regularization:

cpq ⇐ (1− γ)cpq − γ
cpp ⇐ (1− γ)cpp − γ

(8)

where γ is a value between 0 and 1. The parameter γ
could also be a function of the normal prediction uncertainty
estimated using a technique such as in [31].

C. Optimisation of Keyframe Inverse Depths

The objective can be written as follows:

min
ρ
E(ρ) =

∑
p∈P

1

λ
Eφ(ρp) + gp

∥∥∇ρ
p

∥∥
ε

(9)

Based on the Legendre-Fenchel transform, the convex
problem minρ

∑
p∈P gp

∥∥∇ρ
p

∥∥
ε

is equivalent to [32]:

min
ρ

max
q

∑
p∈P

{
〈∇ρ

p ,qp〉 − δq(
qp
gp

)− ε

2

‖qp‖22
gp

}
, (10)

where qp = [qpx, qpy]
T is the dual variable and q =

[q1, ...,qMN ]T . δq(qp/gp) = 0 if ‖qp/gp‖2 ≤ 1 and ∞
otherwise.

Following [4] and [33], we introduce a linking term
1
2θ ‖ρp − ap‖

2
2 into (9) and replace Eφ(ρp) with Eφ(ap),

where ap is an auxiliary variable. We define a to be a vector
such that a = [a1, ..., aMN ]T .

The objective (9) can now be written as:

min
ρ,a

max
q

E(ρ,a,q) (11)

where

E(ρ,a,q) =
∑
p∈P

Ea(ap, ρp) + 〈∇ρ
p ,qp〉

− δq(
qp
gp

)− ε

2

‖qp‖22
gp

(12)

and
Ea(ap, ρp) =

1

λ
Eφ(ap) +

1

2θ
‖ρp − ap‖22 . (13)

The energy in eqn. (12) can be optimised by performing
gradient ascent on dual variables qp, p ∈ P , followed by
gradient descent on primal variables ρp, p ∈ P , and an
exhaustive point-wise search in the discrete label space L
for finding ap that minimizes Ea(ap, ρp), p ∈ P [34][4].
This process is repeated iteratively while decreasing θ slowly.
The variable updates within the primal and dual steps and
the point-wise search can occur in parallel, and thus (12)
can be optimized efficiently in GPU hardware [34]. Using
a sparse pairwise graph structure for the regularization term
adds to the gradient computation efficiency.

Using the method in [4] we compute the upper and lower
bounds for the exhaustive search since the required search
space in L grows narrower as θ decreases, and also perform
a single Newton step on the optimal a at each time step for
achieving sub-label accuracy (using numerical derivatives of
Ea w.r.t a around its current discrete solution [4]). Algorithm
1 summarizes the steps for obtaining the solution.

In Algorithm 1, ∇qp denotes the following operation:

∇qp = (qpxcpi − qrxcrr) + (qpycpj − qsycss), (14)

where r and s correspond to pixel locations neighbouring that
of p in the negative x and y directions in the image plane.
Note that ∇ρ

p and ∇qp can be considered a generalization of
the gradient and divergence operations. The dual and primal
step sizes are denoted by σq and σρ respectively.



Algorithm 1: Optimisation procedure for solving for
optimal inverse depth values ρp = ap, p ∈ P for a
keyframe Ir

1 Initialize qp = 0, p ∈ P ;
2 Initialize ap = ρp = argminap∈LEφ(ap), p ∈ P ;
3 Initialize θ = θstart;
4 Compute gp, cpq , and cpp, p ∈ P, q ∈ N (p);
5 repeat
6 qp ⇐ (qp + σq∇ρ

p)/(gp + σqε), p ∈ P ;
7 qp ⇐ gpqp/max(1, ‖qp‖2), p ∈ P ;
8 ρp ⇐ (ρp + σρ(−∇qp + 1

θap))/(1 +
σρ
θ ), p ∈ P ;

9 Compute bounds for point-wise search [4] ;
10 ap ⇐ argminap∈LEa(ap, ρp), p ∈ P ;
11 Do Newton-step on ap (if step-size < bin size) [4] ;
12 Decrease θ ;
13 until convergence;

D. Camera Tracking and Frame selection

We use the framework in [3] for accurate feature-based
camera tracking, and providing the required transformation
Tnr for computing the photometric cost. The choice of Ir
and its overlapping frame set greatly influence the reliability
of the data term. We consider a pre-defined frame window
of size N = Np+Nf around Ir, where Np is the maximum
number of past overlapping keyframes (large-baseline) to
consider, and Nf is the maximum number of future overlap-
ping frames (small-baseline) to consider. The past keyframes
are selected with the help of [3]’s covisibility graph, and
they are stored in a fixed length rolling buffer in GPU
memory so that they need not be re-copied. Setting the future
frame count to 0 allows for “just-in-time” reconstruction
as demonstrated in the video accompanying Fig. 1, while
increasing it correspondingly increases the mapping latency.
Each keyframe change in the tracker [3] sets a flag that
indicates sufficient motion to initialize a new Ir. Once the
flag is set, and the previous keyframe’s cost volume update
and inverse depth optimisation is complete, the current image
in the sequence is set as Ir. Fig 3 illustrates the data flow and
steps undertaken during a single keyframe reconstruction.

E. Scaling Camera Translations

As an optional step we scale camera translations to a fixed
scale to facilitate the choice of a consistent set of inverse
depth labels L. This is due to the inherent scale ambiguity in
monocular SLAM which may require the inverse depth label
range to be manually tuned every time the system is re-run.
For automatically recovering the approximate scale we use
absolute depth predictions from [12] which are predicted in
parallel with surface normals and bear minimal overhead to
prediction time (sub-section F). These depth predictions are
able to provide a rough idea about the scene’s scale, having
learnt approximately the relationship between object features
and their typical size. Note that we use depth predictions only
for scale recovery and hence up-to-scale reconstructions are
possible without it.

We do a 1-point RANSAC based least-square fit to find
the approximate multiplicative scale factor that will align
[3]’s sparse 3D map with the corresponding CNN depth
predictions for the current keyframe. This scale is then used
to normalize the camera translations in Tnr, which in turn
enables the use of a fixed set of inverse depth labels (based
on metric units) for the cost volume. We perform a running
average of the scale factors recovered for each Ir to improve
the reliability of the scale factor estimate.

F. Surface Normals Prediction

For regressing surface normals directly from the keyframe
image, we utilize the multi-scale CNN model proposed in
[12]. We use their VGG model variant with VGG-16-based
convolutional layers in scale 1 followed by 2 fully connected
layers. The input RGB image to the network is first resized
to 320x240 and then centre cropped to 304x228. The crop-
ping is required as the network was trained with randomly
cropped images at that same crop resolution. Scale 1 mainly
operates on a courser image resolution and extracts more
global features. Scales 2 and 3 consist of fully convolutional
layers which operate on fine and finer image resolutions
respectively and extract more local features. Scales 2 and 3
receive upsampled output from the preceding courser scales
[12].

The network at scale 3 simultaneously regresses a surface
normal map and depth map for the input keyframe image
at 147x109 resolution. In spite of the low-resolution output
a major portion of the scene detail is still captured. We
bilinearly upsample the predictions by a factor of 2 to the
corresponding region in the 320x240 input image. The small
amount of missing information at the border of the resulting
normal/depth map is due to effects of cropping at the input
and intermediate layers in the network. We do not perform
inverse depth regularization in this border region.

We replicated [12]’s model in the efficient Caffe [36]
framework and transferred the learnt weights. Their model
has been trained on millions of indoor images (data augmen-
tation included) in the training set of the raw NYU-Depth
V2 dataset [16]. The combined prediction time for a surface
normal map and depth map in Caffe is ≈ 40ms in GPU
mode.

G. Volumetric Fusion

As a post-processing step, the depth maps resulting from
the optimisation are fused into a global volumetric model
based on truncated signed distance function, using the open-
source InfiniTAM system [37]. The overall framework is
summarized in Fig. 3.

IV. EVALUATION

Using the smoothness regularizer (γ = 1 in eqn. (8)) as the
baseline, we explore the improvements after using the surface
normals regularizer (γ = 0) on a large number of sequences
in several video datasets. All our experiments are conducted
on a standard desktop PC with an Intel i7 4790 CPU and a
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Keyframe Cost Volume Update for Overlapping I1, …, IN [GPU] 
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Ir 

Fig. 3. Key components of the framework and data flow. The depicted steps are repeated for each keyframe Ir . Our GPU implementation is based on
CUDA [35]. Camera tracking [3] runs in the main CPU thread. Cost volume update and CNN normal prediction both run on GPU on two independent
CUDA streams, and are managed in parallel with the main thread. Optimisation and depth map fusion run subsequently on GPU and are also managed in
parallel with the main thread. Similar to [4] the optimisation time T is dependent on the optimisation parameters like step sizes and θ scheduling policy,
and is ≈ 50 ms/keyframe for fast but less accurate reconstructions, and ≈ 800 ms/keyframe for more accurate but higher latency reconstructions. Mapping
latency (time between successive keyframe reconstructions) is ≈ (33+max(40,max(33Nf , 2(N − 1))+ 2)+ T +2) ms where N = Np +Nf is the
total number of images overlapping Ir . If the number of future frames Nf is set to 0, minimum mapping latency for reasonable accuracy is ≈ 150 ms in
practice. Frequency of keyframe reconstruction also depends on amount of camera translation which determine when a keyframe change should occur.

Nvidia GTX 980 4GB GPU. We also compare against single-
view CNN depth predictions from [12] to observe how well
a pure-learning based approach compares with our combined
learning and photometric error-based approach.

In our experiments we bilinearly downsample input images
to 320x240 to ensure low-latency fusions and smooth oper-
ation for the entire pipeline. This is at a slight compromise
of data-term quality. The neural network also takes in input
at this resolution which made the choice more appropriate.
Given hardware speed and memory constraints, the reduced
resolution also allowed the use of a relatively large label set
L for the cost volume. We use a fixed inverse depth range
of 0 to 4 with 256 bins, sufficient for reconstructing small
to large scale environments. Note that no finetuning of the
network is done on any of the sequences used for evaluation.
This allows us to test the generalization capabilities of the
neural network.

We performed quantitative comparisons using the RGB-
D tracking feature in [3] as (i) it allowed for ease of
repeatability of experiments (more consistent camera pose
estimates and keyframes selected, no scale ambiguity) and
(ii) it leaves out errors in camera poses when comparing
the two regularization methods. The qualitative results were
generated using regular monocular tracking.

We first tune λ for the two regularizer types using test
scenes in the raw NYU-D V2 dataset, so that the optimal λ
can be chosen. Following [12] we split the raw NYU-Depth
dataset [16] into test and train scenes based on the official
dataset split, using scenes that don’t contain train images
for testing. This gives 247 different indoor test sequences
out of which we choose 25 by sampling every tenth test
sequence to roughly correspond to all the different types
of indoor scene categories present in the raw test set [16].

Fig. 4. Average keyframe RMS reconstruction error (m) w.r.t regularization
strength (λ) on the raw NYU-D V2 test sequences. Notice that the error for
the normal-based regularizer remain lower.

The plot of RMS error vs λ for the two regularizers are
provided in Fig. 4. It can be seen that as we vary λ, the
error compared to the ground-truth remains lower for the
normals-based regularization. This is because even though
the regularization strength is high, the normals guide the
depths to the right solution more accurately, while with the
smoothness regularizer, a higher strength causes piecewise
planar reconstructions that are fronto-parallel to the keyframe
image plane. This effect is more apparent in areas where
there is little texture as expected.

Quantitative results on these sequences for the following
error and accuracy measures are given in Table I. Note
that dp and dgtp denote regularized depth and groundtruth



Fig. 5. Qualitative results on NYU raw dataset ’bathroom 0003’ test sequence. Phong shaded fused reconstruction using smoothness prior (top left),
phong shaded fused reconstruction using normals prior (top middle), a rgb keyframe image in the sequence (top right), surface normal rendering of
fused smoothness-prior reconstruction (bottom left), surface normal rendering of fused normal-prior reconstruction (bottom middle), corresponding normal
predictions for rgb keyframe image (bottom right). Note the more accurate reconstruction of textureless regions like the inside of the round sink using the
normal-prior. A live comparison video is available at https://youtu.be/BRLN-1MTZtw.

Fig. 6. Qualitative results on NYU raw dataset ’bedroom 0048’ test sequence. Input rgb image (top left), reconstructed keyframe depth map with
smoothness regularizer (top middle), fused reconstruction using smoothness regularizer (top right), keyframe surface normal prediction (bottom left),
reconstructed keyframe depth map with normal-based regularizer (bottom middle), fused reconstruction using normal-based regularizer (bottom right). Note
the more accurate reconstruction of the wall and floor overall when using the normal prior.

Fig. 7. Qualitative results on TUM dataset ’fr2 desk’ sequence. From left-to-right are fused reconstruction using smoothness prior, fused reconstruction
using normals prior, a rgb keyframe image in the sequence, and corresponding normal predictions for rgb keyframe image.



Error (lower is better) Accuracy (higher is better)
rms (m) log abs.rel sq.rel δ < 1.25 δ < 1.252 δ < 1.253

NYU-D V2 Raw 25 Test Scenes
CNN Depth [12] 0.637 0.226 0.163 0.135 0.738 0.937 0.982

P.E. + Smoothness 0.522 0.206 0.123 0.111 0.834 0.949 0.979
P.E. + Normals 0.449 0.174 0.086 0.076 0.893 0.964 0.985

TUM dataset ’fr2 desk’ CNN Depth [12] 1.141 0.368 0.227 0.261 0.543 0.820 0.923
P.E. + Smoothness 0.678 0.254 0.132 0.127 0.788 0.889 0.963

P.E. + Normals 0.654 0.242 0.119 0.115 0.829 0.898 0.963

ICL-NUIM dataset ’lr kt0’ CNN Depth [12] 0.829 0.426 0.295 0.261 0.472 0.781 0.905
P.E. + Smoothness 0.322 0.175 0.123 0.058 0.828 0.966 0.998

P.E. + Normals 0.221 0.118 0.073 0.024 0.936 0.991 0.998

TABLE I
QUANTITATIVE RESULTS ON 25 RAW NYU-D V2 DATASET TEST SEQUENCES, TUM DATASET ’FR2 DESK’ SEQUENCE, AND ICL-NUIM DATASET ’LR

KT0’ SEQUENCE. P.E. = PHOTOMETRIC ERROR. THE AVERAGE ERRORS AND ACCURACY ARE FOR KEYFRAME RECONSTRUCTIONS AGAINST KINECT

DEPTH MAPS (WHERE VALID DEPTHS ARE AVAILABLE). THE RESULTS HERE ARE SHOWN FOR THE OPTIMAL LAMBDA VALUES FOR NORMALS AND

SMOOTHNESS REGULARIZER BASED ON FIG. 4, BUT WITH HIGHER NUMBER OF ITERATIONS WHICH ALLOWED FOR HIGHER ACCURACY IN THE

RECONSTRUCTIONS.

depth respectively of a pixel location corresponding to p.
rms:

√
1
|P |
∑
p∈P ‖dp − d

gt
p ‖2

log rms :
√

1
|P |
∑
p∈P ‖log(dp)− log(d

gt
p )‖2

abs. rel: 1
|P |
∑
p∈P

|dp−dgtp |
dgtp

sq. rel: 1
|P |
∑
p∈P

‖dp−dgtp ‖
2

dgtp

Accuracies: % of dp s.t. max( dp
dgtp
,
dgtp
dp

) = δ < thr

The errors are computed at locations where both Kinect
raw depth data is available and where depth regularization
is performed (regions excluding the small border where
predictions are not made). The regularized depth maps and
CNN depth predictions are bilinearly upsampled to 640x480
resolution prior to evaluating against the raw Kinect depth
maps. Note that the same optimisation and cost-volume-
related parameters were used for comparing the two reg-
ularizer types. We follow the same θ scheduling policy
as [4] with similar choice of parameters. The table, in
particular the low threshold accuracy column, help validate
that the normal-prior helps in recovering the fine details in
the scene. Qualitative comparisons are shown for two NYU
raw test sequences in Figures 5 and 6. The improvements in
reconstruction in terms of both fine detail and global scene
structure are apparent, especially in textureless regions.

The same experiments were carried out on the TUM
dataset [38] and the living room sequence ’lr kt0’ in the ICL-
NUIM dataset [39]. Quantitative results for these sequences
are also shown in Table I, and qualitative results for the
TUM sequence is shown in Fig 7. Again a similar trend to
that observed before can be seen. It can also be seen that
CNN depth predictions do not generalize to new scene types
as well as the other two methods.

While our experiments were limited to reconstructing
indoor environments, the same framework in theory can be
used for building dense maps of outdoor scenes, given the
large depth range covered by the cost volume and large-
scale volumetric fusion capabilities of [37]. However, the
neural network (which is trained on indoor scenes) will likely
require finetuning to adapt – this is yet to be validated.

The main difficulty here is in acquiring densely labelled
outdoor depth maps (required for generating ground truth
normals) for training, although an unsupervised learning
scheme similar to [40] should help in this regard.

V. CONCLUSION

In this work we presented a simple yet efficient solution
that jointly exploits low-level geometry-based photometric
evidence and high-level scene information captured from a
multi-scale CNN architecture in the form of surface normals,
for improving the accuracy of dense reconstructions in cases
where otherwise there is very little photometric evidence.
It was seen that incorporating learnt surface orientations
enabled smooth and accurate reconstructions especially in
areas with little photometric evidence to guide the solution.
Deep learning has enabled prediction of geometry of objects
and scenes directly from a single image and this alleviates
the need for prior assumptions about scene structure, and
handcrafted scene priors that are otherwise required for
dense reconstruction. It was also seen that these networks
are capable of generalizing to new types of environments
well enough for practical use. We believe this work is a
step forward in unifying the two complementary tasks of 3D
reconstruction and scene understanding, aiding purely vision-
based autonomous robots.
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