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Abstract 

Understanding the process of fluid flow through fractured rock in subsurface engineering 

applications has been an active field of research for decades. Accurate modelling of the process 

is essential to providing guidance for the development of underground projects and reduction 

of associated risks. This work focuses on the study of flow behaviours in a single rock fracture 

with complex void geometry, which is fundamental to larger scale flow-related problems in 

fractured rocks.  

In this research, the effects of aperture variation, tortuosity and local roughness of fracture 

surfaces are quantified over segmented areas to develop a more accurate modified cubic law 

that improves flow prediction in rock fractures with rough walls. To account for the flow non-

linearity when inertial effects become significant, new approximate analytical solutions of two-

dimensional (2D) Navier-Stokes equations are derived under both the pressure boundary 

condition (PBC) and flow rate boundary condition (FBC) using the perturbation method. 

Considering the slowly varying feature of fracture apertures, the ratio of aperture variation to 

fracture length, instead of the commonly used ratio of mean aperture to fracture length, is used 

as the perturbation parameter in our solutions. The derived solutions are applied to 2D 

symmetric wedges and sinusoidal fractures, and it is found that the FBC solution provides more 

accurate flow estimations, due to a more precise quantification of inertial effects. The derived 

FBC solution is then extended to asymmetric geometries for more realistic representations of 

fracture voids at pore-scale. A non-linear Reynolds equation is then developed based on the 

derived FBC solution for rough rock fractures and results have shown a close agreement with 

both experiments and flow simulations in capturing the non-linear feature of flow through the 

fracture. 
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Chapter 1: Introduction 

This section presents a brief description of the research background, a review of the current 

literature, a summary of research objectives and research findings, and finally an outline of the 

thesis. The work presented in this thesis aims to address the problem of fluid flow in a rock 

fracture with the complex void geometry and provides conceptual flow models using semi-

analytical and analytical approaches. Note this introduction is closely related to the presented 

work and does not mean to provide a comprehensive review of research that covers the whole 

area of the problem. Other important aspects related to this problem, not covered in this thesis, 

include techniques for measuring fracture void geometry, aperture distribution analysis, 

experimental laboratory work and etc. 

1.1 Fluid flow in rock fractures 

 

Figure 1.1  A randomly generated DFN model using FracSim3D (Xu and Dowd 2010).  

For decades, the process of fluid flowing through subsurface fractured rock masses has 

interested and puzzled engineers and researchers in different fields. The process is critical for 

a wide range of applications from the extraction of natural resources to hazardous waste 

disposal. These underground engineering applications require an in-depth knowledge of the 
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process to achieve maximal performance with minimal risk (Berkowitz 2002; Hunt and Sahimi 

2017; Jing and Stephansson 2007; Pyrak-Nolte et al. 1988; Tsang and Tsang 1989; Zimmerman 

and Bodvarsson 1996). The difficulty of predicting flow in fractured rocks is strongly 

associated with the anisotropic behaviour of rocks as a result of natural or man-made fractures 

on varying scales (Berkowitz 2002; Xu et al. 2015). Rock fractures often have a dominant 

impact on the hydraulic properties of rock masses due to the large gap between their 

permeability and matrix permeability, especially for low permeability rocks such as granite. In 

theory, each fracture of a fracture network system should be considered when working on the 

problem of flow in fractured rocks (Jing and Stephansson 2007), which leads to the discrete 

fracture network (DFN) approach (see Figure 1.1). Therefore, as a basic element, 

understanding the flow behaviours in a single rock fracture is fundamental to studying flow 

problems in fractured rock masses (Brush and Thomson 2003; Zimmerman 2005). 

1.1.1 Fracture void geometry 

When a rock fracture is considered bounded by two surfaces as shown in Figure 1.2, the fracture 

void is essentially the gap between the top and bottom surfaces that provides the space for fluid 

to pass through under a given pressure gradient. The hydraulic properties of the fracture are 

thus controlled by the behaviours of flow when travelling within the fracture void. In general, 

surface roughness and contact are widely considered to have significant impact on the fracture 

hydraulic properties, although contact areas can be seen as a result of the variable aperture field 

due to surface roughness (Brown 1987; Zimmerman and Bodvarsson 1996). 

For rock fractures, both surfaces are mostly rough with relatively small-scale asperities 

(Oron and Berkowitz 1998; Patir and Cheng 1978; Zimmerman et al. 1991). These roughness 

and asperities contribute to a variable aperture field located on an uneven mid-surface, and 

provide additional resistance to flow and reduce progressively the overall fracture permeability 

as the surface roughness increases (Brush and Thomson 2003; Lee et al. 2014). The well-

known parabolic velocity profile for flow within two perfectly smooth and parallel surfaces 

breaks down when the surface roughness is introduced; increasingly more eddies are formed 

near the asperities as the velocity increases to enhance the inertial effects (Zou et al. 2017). 

Different quantifications of surface roughness have been used to study surface properties such 

as friction and light reflection, in which surface profiles are statistically characterized using, 

for example, root mean square (RMS), the first derivative of the RMS, the second derivative of 

the RMS, Z4, structure function and fractal dimension (Sayles and Thomas 1977; Yu and 
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Vayssade 1991). In the field of rock engineering, the joint roughness coefficient (JRC) is 

widely used to quantify the effect of roughness on the shear strength of fractures and is also 

correlated with the hydraulic properties of fractures (Barton 1982; Barton 1973). For hydraulic 

properties of fractures, a perhaps more commonly used parameter to describe fracture surface 

roughness is the relative roughness, defined as the ratio of the aperture standard deviation to 

mean aperture (Brush and Thomson 2003; Zimmerman et al. 1991).  

 

Figure 1.2 Fracture void geometry and associated fracture properties, after Hakami (1995). 

Contact can be defined as the fracture areas where the aperture equals zero or a defined 

value (Hakami 1995; Walsh 1981). Since the matrix permeability is considered negligible 

compared with the fracture permeability, fracture contact areas can effectively block and alter 

flow pathways. With the increase of fracture contact areas, flow is more suppressed to limited 

tortuous pathways with less available space for fluid to pass, and hence the fracture 

permeability is reduced accordingly (Zimmerman et al. 1992). Walsh (1981) applied the 

effective medium approach to derive an analytical solution for the effective permeability of a 

fracture with uniformly-distributed circular contact areas. A later extension by Obdam and 

Veling (1987) considered the contact areas to be elliptical. However, contact areas in a real 
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rock fracture usually have irregular shapes and complex spatial distributions, the practical 

applications of these analytical expressions are therefore limited (Zimmerman et al. 1992). 

1.1.2 Governing equations 

The process of single-phase saturated incompressible flow in a rock fracture at steady-state is 

governed by the three-dimensional (3D) Navier-Stokes equations (NSE) (Brush and Thomson 

2003; Zimmerman and Bodvarsson 1996). With mass conservation, they can be expressed as: 

𝜌(𝒖 ∙ ∇)𝒖 = −∇𝑃 + 𝜇∇2𝒖                                                            (1.1) 

∇ ∙ 𝒖 = 0                                                                        (1.2) 

where u is the velocity, P is the pressure and μ is the dynamic viscosity. The first term on the 

left-hand sides of equations (1.1) is the advective term that accounts for inertia forces, the 

second term represents the pressure gradient and the last term describes the viscous forces. The 

NSE become Stokes equations (SE) when the inertial terms are negligibly small compared to 

the viscous terms (i.e., Reynolds number Re=0), which is common to many subsurface 

applications where flow travels very slowly within the fractures (Oron and Berkowitz 1998; 

Zimmerman et al. 1991). The SE can be expressed as: 

∇𝑃 = 𝜇∇2𝒖                                                                      (1.3) 

An exact analytical solution to NSE is restricted to a few special cases e.g. Poiseuille flow 

through planar plates and the Jeffery-Hamel problem (Nicholl et al. 1999; Oron and Berkowitz 

1998). However, the complexity of 3D fracture void geometry obviously prohibits any direct 

use of these solutions. There are many numerical approaches to solving the 3D NSE in variable 

aperture fields that are randomly generated or measured directly from real rock fractures (Brush 

and Thomson 2003; Nazridoust et al. 2006; Zimmerman et al. 2004). These approaches include 

the finite difference method (FDM), the finite volume method (FVM), and the finite element 

method (FEM). Although numerical solutions of the NSE provide accurate flow predictions, 

the current computational costs have constrained the application to small-scale problems 

(Brush and Thomson 2003; Xiong et al. 2018). 

1.2 Traditional approaches to modelling fluid flow in a single rock fracture 

When studying the process of fluid flow in fractured rocks, compromises are often made in the 

representation of fracture geometry and/or selection of flow governing equations to enable a 

reasonable and applicable approach to the problem. The choices made for the fracture 
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representation and flow governing equation are often interconnected to some extent. The 

parallel planar plates representation of fracture geometry is used in the derivation of the well-

known cubic law (Snow 1969; Witherspoon et al. 1980), as shown in Figure 1.3. The Reynolds 

equation can be obtained if the fracture geometry is assumed to vary slowly over the aperture 

field (Brown 1987; Zimmerman et al. 1991). A number of asymptotic solutions to the NSE 

have been derived for apertures that vary in a sinusoidal fashion (Hasegawa and Izuchi 1983; 

Kitanidis and Dykaar 1997; Sisavath et al. 2003). Each of these approaches has its own merits 

when applied to the same problem, although emphases are placed upon different aspects.   

 

Figure 1.3 Illustration of the concept of the parallel plates assumption, after Dietrich et al. 

(2005). 

1.2.1 Cubic law 

The cubic law (CL) is arguably the most well-known model for flow in rock fractures 

(Dippenaar and Van Rooy 2016; Zimmerman 2005). Since the fracture aperture is normally on 

a much smaller scale relative to fracture length and width, a fairly reasonable simplification is 

to neglect the aperture variability and assume that the rock fracture is bounded by two parallel 

planar walls with a constant aperture (Snow 1969). With no-flux and no-slip boundary for the 

walls, the CL can be analytical derived from the NSE in the form (Brush and Thomson 2003): 

𝑄 = −
𝑏3𝑊

12𝜇

∆𝑃

𝐿
                                                              (1.4) 

where Q is the volumetric flow rate, b is the fracture aperture, W is the fracture width and L is 

the fracture length. The application of equation (1.4) is straight-forward. Dynamic viscosity (µ) 

is a known parameter for the chosen fluid for most of the practices regarding flow in subsurface 

fractured rocks; length, width and aperture are the dimensions of the fracture; with a known 

pressure boundary condition, the volumetric flow rate can be easily obtained from equation 

(1.4). The hydraulic properties of the fracture, e.g. permeability and transmissivity, can also be 

assessed as shown in Table 1.1. In general, all these parameters are used to describe how well 

flow can pass through rock fractures under a given pressure gradient. The validity of the CL 
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has been previously evaluated by straight flow experiments in tension fractures within granite 

samples, with a deviation factor varying from 1.05 to 1.21 (Witherspoon et al. 1980). 

Table 1.1 Definitions of various fracture hydraulic properties  

Terms Definitions References 

Transmissivity 𝑇 =
𝑏3

12𝜇
 (Nicholl et al. 1999) 

Permeability 𝑘 =
𝑏2

12
 (Zimmerman et al. 1991) 

Conductivity 𝐶 =
𝜌𝑔𝑏2

12𝜇
 (Witherspoon et al. 1980) 

Resistance 𝑅 =
12𝜇𝐿

𝜌𝑔𝑏3𝑊
 (Yang et al. 1995) 

Frictional factor 𝐹 =
2Δ𝑃 ∙ 𝑏3

𝜌𝐿𝑄2
 (Nazridoust et al. 2006) 

1.2.2 Reynolds equation 

The CL assumption breaks down for rock fractures with rough surfaces where the aperture can 

no longer be considered constant throughout the fracture plane (Basha and El-Asmar 2003). 

As a further extension to CL, the Reynolds equation (RE) is commonly used to model flow in 

rock fractures with a variable aperture field (Zimmerman et al. 1991), and is given by 

𝜕

𝜕𝑥
[𝑏3(𝑥, 𝑦)

𝜕𝑃

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝑏3(𝑥, 𝑦)

𝜕𝑃

𝜕𝑦
] = 0                                 (1.5) 

The RE can be derived from the NSE under certain geometrical and kinematical conditions 

(Zimmerman 2005). It can also be derived simply by assuming that the CL is applicable at each 

local position and therefore, the RE is also referred as the local cubic law (Zimmerman et al. 

1991). Oron and Berkowitz (1998) concluded that the RE is valid when the following 

geometrical and kinematical conditions are met: 

𝜀 ≪ 1, 𝛿2 ≪ 1, 𝑅𝑒 ∙ 𝑀𝑎𝑥(𝜀, 𝛿) ≪ 1 

where ε and δ are, respectively, the local roughness parameter and aspect ratio defined in Oron 

and Berkowitz (1998), their mathematical expressions can also be found in Section 2.2.1. These 

conditions essentially define a slowly varying aperture field (i.e., gradual aperture variation 
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along the flow direction) and negligible inertial effects relative to viscous effects, which, in 

practice, can be considered to hold for flow in rock fractures. More specifically for the creeping 

flow condition, Brush and Thomson (2003) found that, compared with the SE, the error 

produced by using the RE is within ±10% when the following geometrical conditions are met 

𝜎𝑏/𝑏𝑚 < 1, 𝜎𝑏/𝜆𝑏 < 0.2, 𝑏𝑚/𝜆𝑏 < 0.5 

where bm is the mean aperture, σb is the aperture standard deviation and λb is the aperture 

correlation length. The RE enables the incorporation of aperture variation along both directions 

of the fracture plane and in-plane tortuosity, which are not considered in the CL. It also agrees 

qualitatively with the laboratory observation that the fracture hydraulic properties depend 

mainly on the variability of the aperture field and extent of fracture surface contact (Brush and 

Thomson 2003; Konzuk and Kueper 2004). An over-estimation of 20% in the flow rate was 

found when comparing the RE with flow tests in fracture replicas in Yeo et al. (1998). Similar 

flow over-estimation is also observed in Brush and Thomson (2003); Nicholl et al. (1999). 

1.2.3 Approximate analytical solution 

In principle, the RE uses the same fundamental assumption of flow between planar plates, only 

the CL relationship is applied locally at each position of the fracture rather than globally. As a 

result of the one-dimensional (1D) Poiseuille flow assumption, the flow component 

perpendicular to the fracture plane is assumed negligible in the RE and inertial effects are 

ignored (Basha and El-Asmar 2003; Oron and Berkowitz 1998). To account for the neglected 

flow features, approximate analytical solutions to the two-dimensional (2D) NSE are derived 

as further extensions to the CL assumption. 

Wang (1978) derived an approximate analytical solution to Stokes flow using the 

perturbation method for a 2D fracture with a periodic variation geometry, and the ratio of mean 

aperture to fracture length was used as the perturbation parameter. Hasegawa and Izuchi (1983) 

used the same perturbation parameter to obtain a perturbation solution to the 2D NSE under 

the pressure boundary condition (PBC) for a channel with a sinusoidal top wall and a flat 

bottom wall. Kitanidis and Dykaar (1997) conducted a similar perturbation analysis of Stokes 

flow in a fracture bounded by two sinusoidal walls, where the dissipated energy due to the 

viscous force is balanced by the work done by the surface force. Basha and El-Asmar (2003) 

conducted and evaluated perturbation solutions for flow in fractures with various geometrical 

configurations (Figure 1.4) using the same perturbation parameter. Sisavath et al. (2003) 

applied a different perturbation parameter, the ratio of aperture amplitude to fracture length, 
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and derived the perturbation solution to the problem of two-dimensional Stokes flow in a 

fracture with two sinusoidal walls under a flow rate boundary condition (FBC). The PBC and 

FBC solutions generally take these forms respectively: 

𝑄 = 𝑄0 + 𝜖𝑄1 + 𝜖2𝑄2 +⋯                                                  (1.6) 

∆𝑃 = ∆𝑃0 + 𝜖∆𝑃1 + 𝜖2∆𝑃2 +⋯                                             (1.7) 

Apparently, the derived 2D solutions cannot directly solve flow problems in realistic 3D rock 

fractures (Zimmerman 2005). However, these solutions can provide theoretical understanding 

of the phenomena including the permeability reduction and generation of immobile zones due 

to surface roughness (Kitanidis and Dykaar 1997; Sisavath et al. 2003). In addition, the validity 

of the CL and RE are often examined using these analytical solutions as references (Yeo et al. 

1998). These derived expressions can also potentially be extended to develop conceptual 

models for solving more realistic flow problems in fracture networks (Basha and El-Asmar 

2003). 

 

Figure 1.4 Fracture geometry configurations, after Basha and El-Asmar (2003). 

1.3 Recent development in cubic law based models 

The limitations of the CL and RE in quantifying the hydraulic properties of fractures with 

complex void geometries have long been recognized from theoretical analyses and 

experimental studies (Hasegawa and Izuchi 1983; Nicholl et al. 1999; Oron and Berkowitz 

1998; Zimmerman and Bodvarsson 1996). More recently, solving the NSE and SE by 
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numerical approaches has also shown that both the CL and RE tend to over-estimate the overall 

flow, even with the same measured aperture fields (Brush and Thomson 2003; Xiong et al. 

2011). Further modifications and improvements have been attempted to ‘correct’ both the CL 

and RE for more accurate flow prediction in rough rock fractures. These approaches generally 

include modifications at the scale of a single fracture and at the local pore-scale (Konzuk and 

Kueper 2004). 

1.3.1 Modification at the scale of a single facture 

Table 1.2. Summary of typical formulas for equivalent hydraulic aperture bH. 

Notations Expressions References 

AM 𝑏𝐻 =
1

𝑊𝐿
∫ ∫ 𝑏(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐿

0

𝑊

0

 (Brown 1987) 

GM 𝑏𝐻 = 𝑏𝑀 [1 + (
𝜎𝑏
𝑏𝑚

)
2

]

−0.5

 (Renshaw 1995) 

ZRF 𝑏𝐻 = 𝑏𝑀 (
1 − 𝛼

1 + 𝛼
)
1/3

 (Walsh 1981) 

PC 𝑏𝐻 = 𝑏𝑚(1 − 0.9𝑒−0.56〈𝑏〉/𝜎𝑏)
1/3

 (Patir and Cheng 1978) 

BA 𝑏𝐻 =
𝑏𝑀

2

𝐽𝑅𝐶2.5
 (Barton 1982) 

NA 𝑏𝐻 =
𝑏𝑚 − 𝜎𝑏
(1 + 𝜃)1/3

 (Nazridoust et al. 2006) 

For the application of the CL in fractures with non-planar surfaces, an extra factor f is often 

introduced to account for the additional geometrical effect. The modified version of the CL is 

then given by: 

𝑄 = −
𝑏3𝑊∆𝑃

12𝜇𝐿
𝑓 = −

𝑏𝐻
3𝑊∆𝑃

12𝜇𝐿
                                                (1.8) 

where bH is the equivalent hydraulic aperture. bH can be formulated using statistical approaches, 

empirical approaches or a combination of both to include parameters such as mechanical 

aperture bM, mean aperture bm, aperture standard deviation σb, contact ratio α, JRC and 

tortuosity θ. Some typical formulas are listed in Table 1.2. The incorporation of geometrical 

effects on the flow behaviours provides a direct approach for the correction of the CL. However, 
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both statistical and empirical approaches fail to consider accurately the mid-surface undulation 

and flow channelling effects (Brush and Thomson 2003). The application of these approaches 

is therefore limited to fractures with little flow tortuosity and/or insignificant surface contact. 

For example, Konzuk and Kueper (2004) conducted a flow experiment in a rough single rock 

fracture and found that AM, GM and ZRF can over-estimate flow by a factor over 1.5.  

1.3.2 Modification at the pore-scale 

 

Figure 1.5 Different definitions of fracture aperture with the short-dashed arrow representing 

vertical aperture, the dotted arrow representing the aperture perpendicular to the cell centreline 

(Ge 1997) and the bold dashed arrow representing segment aperture, after Oron and Berkowitz 

(1998). 

The overall fracture hydraulic properties depend on the geometrical and topological manner in 

which the pore-scale cells are located, as measured from rock fractures (Zimmerman and 

Bodvarsson 1996). To account for the hydraulic properties of local pore-scale cells, several 

alternative definitions of aperture have been developed based on the measured vertical aperture 

that represents the separation distance between top and bottom surfaces. Ge (1997) suggested 

that the flow direction follows mainly the direction of the average angle of top and bottom 

surfaces between adjacent measured vertical apertures and hence the aperture should be 

measured perpendicular to the local flow direction (see Figure 1.5). Brush and Thomson (2003) 

have defined the aperture in a similar way, with the difference that the flow direction is assumed 

to follow the direction of the local mid-surface, which connects the centre points of two 

measured apertures. Under the required geometrical conditions, aperture can also be defined 

over a segment that represents the average undulation of the top and bottom surfaces at a 

predefined scale, as suggested in Oron and Berkowitz (1998). When an aperture definition is 

selected, the link transmissivity TL (TL=bL
3) between adjacent apertures can be obtained using 

established averaging schemes (Nicholl et al. 1999), which include: 
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Arithmetic average: 

𝑏𝐿
3 =

𝑏𝑖
3+𝑏𝑗

3

2
                                                                 (1.9) 

Harmonic average: 

𝑏𝐿
3 =

2𝑏𝑖
3𝑏𝑗

3

𝑏𝑖
3+𝑏𝑗

3                                                                 (1.10) 

Midpoint average: 

𝑏𝐿
3 = (

𝑏𝑖+𝑏𝑗

2
)
3

                                                             (1.11) 

Harmonic average: 

𝑏𝐿
3 = √𝑏𝑖

3𝑏𝑗
3
                                                             (1.12) 

where bL is the approximated local aperture, bi and bj are adjacent apertures of the local cell. 

Considering the geometrical effect at local pore-scale, a modified version of the RE can then 

be derived as given by 

𝜕

𝜕𝑥
[𝑇𝐿(𝑥, 𝑦)

𝜕𝑃

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝑇𝐿(𝑥, 𝑦)

𝜕𝑃

𝜕𝑦
] = 0                                   (1.13) 

For different aperture definitions, modified versions of the CL can also be formulated 

accordingly. The improvements to the standard CL and RE with additional pore-scale 

modifications are evident. Konzuk and Kueper (2004) found that using the perpendicular 

aperture and GM approximation method, the error associated with the modified CL was 

reduced by over 30%; and for the modified RE, around 18% of error reduction was observed 

when similar pore-scale modifications were incorporated. However, many of these 

modifications are incorporated based on assumed local flow direction and/or subjective choice 

of averaging scheme, and their performance can sometimes be affected by the resolution of 

aperture fields (Oron and Berkowitz 1998).  

1.4 Research objectives and contributions 

The main objective of this work is to broaden the understanding of the geometrical and 

kinematical impacts on fracture hydraulic properties and establish mathematical models to 

quantify accurately the flow behaviour in rock fractures with complex void geometries. This 

work has contributed to knowledge of the field in the following aspects: 
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1. Quantification of aperture variation, tortuosity and local roughness effects on flow 

behaviours at segment-scale to improve the overall flow prediction at single-fracture-

scale under the linear flow condition. 

2. Derivation of approximate analytical solutions to the two-dimensional Navier-Stokes 

equations using the perturbation method to extend the scope of application with more 

accurate quantification of inertial effects. 

3. Establishment of geometrical and kinematical criteria for the validity evaluation of the 

cubic law and Reynolds approximation based on the derived perturbation solutions. 

4. Development of a non-linear model for flow in a rock fracture with complex void 

geometry considering both geometrical and kinematical effects. 

1.5 Thesis outline 

In Chapter 2, an improved version of the cubic law is proposed by incorporating the effects of 

flow tortuosity, aperture variation and local roughness. The model development starts using 

proper assumptions for the characteristic flow direction over a fracture segment under given 

geometrical criteria from previous studies. The flow tortuosity and aperture variation are then 

quantified according to the assumed flow direction throughout the fracture area. The local 

roughness of top and bottom surfaces is approximated statistically by considering the fact that 

greater pressure drops always take place in smaller apertures. Finally, a modified cubic law is 

proposed by incorporating all these geometrical effects. The proposed model is validated 

against numerical solution of the three-dimensional Navier-Stokes equations using 

synthetically generated fractures with different surface roughness quantified by Z2 and JRC. 

Approximate analytical solutions are derived in Chapter 3 using the perturbation method 

for more accurate quantification of the geometrical and kinematical effects on flow in two-

dimensional symmetric fractures. The ratio of aperture variation to length is used as the 

perturbation parameter, instead of the commonly used ratio of mean aperture to length. This 

allows a less strict geometrical requirement for the application of the perturbation solutions, 

hence extending the scope of application to a wider range of fracture cases. The perturbation 

solutions are derived for both the pressure boundary condition (PBC) and flow rate boundary 

solution (FBC); the solutions are evaluated by flow simulation using the Navier-Stokes 

equations. Compared with the PBC solution, the FBC solution demonstrates a closer agreement 

with flow simulation due to its more accurate quantification of inertial effects. 
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For Chapter 4, the FBC perturbation solution derived in Chapter 3 is extended to 

asymmetric cases to quantify more realistically the flow behaviours in fractures at pore-scale. 

The effects of aperture variation, aspect ratio, fracture asymmetry and Reynolds number on the 

hydraulic properties of local cells are quantified and discussed. A non-linear flow model is 

developed based on the extended FBC solution and its validity has been verified with flow 

experiments and simulations in rock fractures with different degrees of relative roughness and 

contact ratios. Results show that the proposed model demonstrates a non-linear flow behaviour 

similar to that from simulations as the Reynolds number increases. This non-linear feature is 

not seen in previously developed cubic law based models. The developed non-linear flow 

model can be used as an alternative to the standard Reynolds equation to study flow-related 

problems in fractured rocks, particularly when inertial effects cannot be ignored. 

Finally, Chapter 5 summarizes the overall work presented in the thesis, in terms of major 

findings, limitations and potential follow-up work in the future.  

The developed models and derived solutions all start with the attempt to quantify flow 

behaviours in two-dimensional fracture geometries. Therefore, to avoid any confusion, one 

may note that for such a two-dimensional geometry, the vertical and horizontal axes considered 

in the remaining chapters follow, respectively, the fracture aperture and flow directions. 
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Abstract 

The purpose of the study is to develop a modified cubic law (MCL) for single-phase saturated 

laminar flow in rough rock fractures. Based on the fundamental assumptions made for the cubic 

law (CL), the proposed MCL incorporates modifications to the aperture field by considering 

flow tortuosity, aperture variation and local roughness effects. We assess the performance of 

the MCL by applying it to synthetic fractures with different surface roughness and compare the 

outputs to numerical simulation results from solving the Navier-Stokes equations and previous 

versions of CL-based models. In general, the MCL performs well in predicting the volumetric 

flow rate in synthetic fractures with deviations (D) from simulation results ranging from -11.13% 

to 8.35% and an average effective deviation (|𝐷|̅̅ ̅̅ ) of 4.72%. The proposed model retains the 

simplicity of CL-based models and improves the accuracy of flow prediction in terms of single-

phase saturated laminar flow in rough rock fractures and it can be extended to analyse other 

hydro-related problems. 
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2.1 Introduction 

Rock masses commonly include fractures or faults resulting from either tectonic activities or 

human disturbances. These fractures, at different scales, often act as active conduits for fluid 

flow (e.g. water). A sound knowledge of the controlling mechanism of fluid flow in rock 

fractures is of interest in various research fields and engineering applications including 

groundwater flow, solute transport, enhanced geothermal systems and hazardous waste 

disposal (Xu et al. 2015; Yeo et al. 1998; Zimmerman and Bodvarsson 1996). Modelling the 

complex behaviour of flows in fractured rock masses requires a fundamental understanding of 

the hydraulic behaviour of discrete single fractures.  

The Navier-Stokes equations (NSE) are widely accepted as the governing equations for 

steady-state incompressible flow in rock fractures (Zimmerman 2005; Zou et al. 2015). By 

considering mass conservation, they can be written as: 

𝜌(𝒖 ∙ ∇)𝒖 = −∇𝑃 + 𝜇∇2𝒖                                                        (2.1) 

∇ ∙ 𝐮 = 0                                                                    (2.2) 

where 𝒖 is the velocity and 𝑃 is the pressure. Although in theory the NSE provide an exact 

description of three-dimensional flow in rock fractures, the computational cost required to 

solve the three-dimensional partial differential equations is prohibitive for applications beyond 

microscopic scale (Brush and Thomson 2003).  

The common approach to modelling fluid flow through rock fractures is to assume that a 

fracture consists of two smooth parallel plates separated by a constant aperture (Snow 1969). 

Under this assumption, the cubic law (CL) can be derived (Zimmerman and Yeo 2000) and has 

the following form: 

𝑄 = −
𝑊𝜌𝑔𝑏3

12𝜇

∆𝐻

𝐿
                                                               (2.3) 

where Q is the volumetric flow rate, W is the fracture width, 𝜌 is the fluid density, g is the 

gravitational acceleration, 𝑏  is the fracture aperture, 𝜇  is the dynamic viscosity, 𝐻  is the 

hydraulic head and 𝐿 is the fracture length. 

The CL is widely used for flow prediction in rock fractures in many fields due to its 

simplicity. However, real fractures are often formed by two surfaces with anisotropic 

roughness and varying aperture, which lead to a three-dimensional non-uniform tortuous flow 
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field rather than the one-dimensional Poiseuille flow assumed by the CL (Brown 1987; Brush 

and Thomson 2003). Numerous laboratory experiments indicate that the CL may produce 

significant errors in the prediction of flow through rock fractures (Tsang 1984; Witherspoon et 

al. 1980). Another approach is to account for the spatial variability of the fracture aperture by 

assuming that a particular CL applies at each explicit location. This is known as the local cubic 

law (LCL) and can be derived from the NSE using lubrication theory (Zimmerman et al. 1991); 

it is also called the Reynolds equation and takes the form: 

∇ ∙ [
𝜌𝑔𝑏3

12𝜇
∇𝐻] = 0                                                              (2.4)  

The validity of the LCL has been questioned in previous studies. It assumes a flat plane for the 

fracture mid-surface, whereas rough fractures are more likely to have a tortuous mid-surface 

(Ge 1997; Wang et al. 2015), which is incompatible with the assumption of a parabolic velocity 

profile and can result in an over-estimation of the flow rate by a factor of at least 1.75 (Konzuk 

and Kueper 2004). 

To avoid the computational cost of solving the NSE and improve the performance of the 

over-simplified CL and LCL, research has been focused on developing alternative models 

based on modifying the CL and LCL. Statistical parameters (e.g. relative roughness 

(Nazridoust et al. 2006), surface roughness parameters (Patir and Cheng 1978)) and empirical 

parameters e.g. joint roughness coefficient (Olsson and Barton 2001) (JRC) are incorporated 

to modify the CL by using data from flow experiments or values generated by the LCL to 

derive a relationship between the vertical aperture (also known as apparent aperture) and 

hydraulic aperture. As these models ignore flow behaviours at the local pore-scale, their 

performance varies significantly with the fracture void geometry. Ge (1997) derived an 

alternative flow governing equation based on aperture field modification, in which the aperture 

at each location is modified by considering the geometric properties of every local cell (see 

Figure 2.1). This approach is supported by Konzuk and Kueper (2004), who evaluated the 

modified aperture field with CL-based models and found that the CL, calculated with either 

the geometric mean aperture or incorporating surface roughness factors, predicted the flow rate 

within ±10% of the observed values for Reynolds number less than 1. Wang et al. (2015) 

developed an improved CL-based model by extending Ge’s approach to account for the 

roughness effect of local cells as a means of aperture field modification. However, the validity 

of modifying the aperture field in terms of the geometric properties of each local cell may 

depend on the resolution of the aperture field data and variations of both aperture and surface 
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roughness (Berkowitz 2002; Dippenaar and Van Rooy 2016; Oron and Berkowitz 1998). Oron 

and Berkowitz (1998) conducted a leading-order approximation to the two-dimensional NSE 

and concluded that the CL assumption may be valid within certain segments as long as both 

the non-dimensional local roughness parameter and aspect ratio of the segments are 

significantly less than 1 (i.e. both walls are relatively smooth and the segment length is much 

longer than the segment half-aperture). However, in the absence of non-segmented area 

treatment and quantification of the local roughness effect, its application to fracture flow 

prediction is limited. 

 

Figure 2.1 Different definitions of fracture aperture with black arrows representing the vertical 

aperture, dotted arrows for the aperture perpendicular to the local cell centreline (Ge 1997) and 

the bold dashed arrow for the segment aperture (Oron and Berkowitz 1998). The bold dashed 

lines are the segment walls and the dashed lines refer to the centrelines of the local cells. One 

typical local cell is illustrated as the area marked by the red block.   

The purpose of this work is to present a modified cubic law (MCL) with improved 

performance in terms of predicting the volumetric flow rate in rough rock fractures. The 

aperture field was modified by considering the effects of flow tortuosity, aperture variation and 

local roughness. Numerical simulations of fracture flow were conducted in synthetic fractures 

with varying surface roughness and aperture by solving the NSE to assess the validity of the 

proposed MCL. Previous models were also used for comparisons to further test the robustness 

of the MCL presented here. 
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2.2 Model development 

2.2.1 Assumptions for flow direction in segments 

 

Figure 2.2 Illustration of one segment with Bs the half-aperture and Ls the segment length (Oron 

and Berkowitz 1998).  

We begin by making assumptions for the flow direction field of a three-dimensional fracture 

with surface roughness. Take a cross-section of a fracture segment, as shown in Figure 2.2; Bs 

is the average half-aperture and Ls is the length of this fracture segment.  It can be assumed that 

Poiseuille flow holds in the segment and the flow direction is governed by the segment 

geometry when Bs is much smaller than Ls and the roughness of both walls along the segment 

is limited (Oron and Berkowitz 1998). These two conditions require: 

𝛿 =
𝐵𝑠

𝐿𝑠
≪ 1                                                                  (2.5) 

𝜀 = max⁡ (
𝜎𝑢

𝐵𝑠
,
𝜎𝑙

𝐵𝑠
) ≪ 1                                                        (2.6) 

where 𝛿 is the aspect ratio and 𝜀 is the non-dimensional local roughness parameter; 𝜎𝑢 and 𝜎𝑙 

are the standard deviations of the roughness variations of upper and lower walls, respectively. 

Under both conditions, the representative flow direction follows the orientation of the 

geometric centreline of the segment (Ge 1997). The segments of each fracture can be 

determined by calculating 𝛿  and 𝜀  along each fracture cross-section using their assigned 

maximum values. We discuss the range and determination of 𝛿 and 𝜀 in Section 2.4.1. 

2.2.2 Consideration of flow tortuosity 

At the scale of a single fracture, flow tortuosity is defined as the ratio of the three-dimensional 

flow path length to straight-line distance of the fracture length (Walsh and Brace 1984). In this 

study, the tortuosity 𝜏 of each segment is defined as the ratio of flow path distance df to the 

straight-line distance ds projected on the fracture plane: 

x 

z 

B

s 

L

s 
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𝜏 = 𝑑𝑓/𝑑𝑠                                                                 (2.7) 

The vertical aperture at each location within the approximated segment with walls of averaged 

straight lines (see Figure 2.2) can be determined according to the geometry of the approximated 

segment. As the aperture, defined in the CL, should be perpendicular to the flow direction, 

vertical apertures need to be translated into flow-oriented apertures defined as the segment 

aperture bsf. We use the formula proposed by Ge (1997) to obtain the relation between the 

vertical aperture and bsf within the segment: 

𝑏𝑠𝑓 = 𝑏𝑣
2 cos𝛼𝑢 cos𝛼𝑙

cos
𝛼𝑢−𝛼𝑙

2
⁡(cos𝛼𝑢+cos𝛼𝑙)

= 𝑏𝑣 ∙ 𝐹𝑡                                       (2.8) 

where bv is the vertical aperture, αu and αl are the inclination angles of the upper and lower 

walls, respectively. Connective transmissivity (Brush and Thomson 2003; Nicholl et al. 1999) 

(T) between each local cell within the segment can be approximated using the harmonic mean 

of adjacent apertures:  

𝑇 =
2𝑏(𝑖)3𝑏(𝑖+1)3

𝑏(𝑖)3+𝑏(𝑖+1)3
                                                            (2.9) 

2.2.3 Quantification of local roughness effect 

When equations (2.5) and (2.6) are satisfied (𝛿  and 𝜀 are much smaller than 1), a fracture 

segment with complex roughness may be approximated, as shown in Figure 2.2, by two straight 

lines representing the average variability of the upper and lower walls. However, 𝜀 increases 

as the roughness of the segment increases, which increases the approximation errors of the 

average lines and the deviation needs to be included as a modifying factor. Since the majority 

of pressure drop is expected to take place in smaller apertures (Nazridoust et al. 2006), the 

effective aperture be is used to estimate the effect of smaller apertures and can be defined as: 

𝑏𝑒 = 𝑏𝑠𝑓 (1 −
𝜎𝑢+𝜎𝑙

2𝐵𝑠
) = 𝑏𝑠𝑓 ∙ 𝐹𝑙𝑟                                              (2.10) 

Note that the range of the local small-scale roughness considered here is from the grid 

spacing scale to the scale of the segment; roughness on scales less than the grid spacing is not 

included. The example shown in Figure 2.2 is solely for illustrative purposes and is not intended 

as a direct representation of our model. 
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2.2.4 Modified aperture field 

Once the segments are determined, the set of apertures within each segment can be easily 

calculated and transferred into a modified aperture field bmodified by combining equations (2.8), 

(2.9) and (2.10). For example, a set of apertures in the x direction can be described as: 

𝑏𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑(𝑥) = 𝑇𝑣
1/3 ∙ 𝐹𝑡 ∙ 𝐹𝑙𝑟                                              (2.11) 

where bmodified(x) is the modified aperture in the x direction, Tv is the connective transmissivity 

between adjacent vertical apertures, 𝐹𝑡 is the tortuosity factor defined in equation (2.8) and Flr 

is the local roughness modification factor defined in equation (2.10). As the fracture has been 

divided into a series of segments that satisfy the geometric conditions in equations (2.5) and 

(2.6), vertical apertures can be modified using equation (2.11). However, there may be some 

parts of the fracture area that do not satisfy the geometrical conditions. Following Ge’s 

approach, to improve aperture estimation in these cases, the vertical aperture is modified by 

the geometric properties of each local cell. In these local cells, the walls are smooth, which 

means that Flr is equal to 1 and equation (2.11) becomes: 

𝑏𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑(𝑥) = 𝑇𝑣
1/3 ∙ 𝐹𝑡                                                (2.12) 

The entire aperture field is a combination of a series of modified apertures from equation (2.11) 

or (2.12) and can be described as: 

𝑏𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑(𝑥, 𝑦) = [𝑏𝑓(𝑥, 1), 𝑏𝑓(𝑥, 2),…… , 𝑏𝑓(𝑥, 𝑦)]                        (2.13) 

2.2.5 Modified cubic law 

As the aperture field has been modified to account for flow tortuosity, aperture variation and 

local roughness effects, we modify the fracture length L in the formulation of the standard CL 

for flow tortuosity. For each cross-section in the x direction, the flow path distance, 𝐷𝑓, is the 

sum of the flow path lengths of each segment and cell and thus 𝐷𝑓 and the fracture length L are 

related by: 

𝐷𝑓 = ∑𝑑𝑓(𝑥) = ∑𝜏(𝑥)𝑑𝑠(𝑥) = 𝐹𝑙𝑒𝑛𝑔𝑡ℎ ∙ 𝐿                                   (2.14) 

Finally, given the discrepancy between the hydraulic aperture and geometric aperture, an 

extra factor (Renshaw 1995; Wang et al. 2015) is introduced to correct the calculated flow rate 

to give a more accurate flow prediction based on the modified aperture field. The proposed 

MCL is formulated as: 
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 𝑄 =
𝜌𝑔<𝑏𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑>

3

12𝜇Flength
𝑊

∆𝐻

𝐿
[1 + (

𝜎𝑏𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

<𝑏𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑>
)2]

−1.5

                              (2.15) 

where <bmodified> is the arithmetic mean of the modified aperture field and σbmodfied is the 

standard deviation of the modified aperture field. 

2.3 Methodology 

2.3.1 Synthetic three-dimensional rough fractures 

     

 

                    

Figure 2.3 Height distribution of five rough surfaces generated with JRC of 7, 9, 11, 13 and 19 

denoted as S1, S2, S3, S4 and S5, respectively. 

Three-dimensional synthetic fracture surfaces were generated using the program SynFrac, 

which has been shown to reproduce the geometric properties of natural fractures and fracture 

surfaces (Ogilvie et al. 2006). Surface roughness was quantified using the root mean square 

first derivative value Z2 (Myers 1962), and the joint roughness coefficient (JRC) (Barton 1973) 

of each surface was back-calculated using the formula proposed by Jang et al. (2014): 

𝐽𝑅𝐶 = 54.57𝑍2
0.394 − 19.13          𝑅2 = 0.962                                    (2.16) 

Five fracture surfaces were selected with JRC values of 7, 9, 11, 13 and 19, as displayed 

in Figure 2.3. The range of JRC values was chosen because the purpose of this study is to derive 

S5 

S3 S4 

S2 S1 
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a modified CL for rough fractures; JRC values less than 7 were not included in the current 

research. The length and width of all surfaces were set to 102.3 mm. We used a grid spacing 

of 0.1 mm for surface generation, which corresponds to 1024×1024 points per surface. The 

statistical and geometric parameters of the generated surfaces are given in Table 2.1.  

Table 2.1 Statistical and geometric parameters of five generated surfaces. 

 

The generated surfaces were duplicated and spaced vertically to form fractures with top 

and bottom surfaces. To introduce the effect of shear displacement, shifts from 1 to 25 mm 

were applied to the top surface along the x direction, which results in a mis-alignment of the 

two surfaces, hence a variable two-dimensional aperture field (with the mean vertical aperture 

from 0.46 to 6.21 mm and relative roughness from 0.10 to 1.84 mm). In total, forty-five 

fractures with different surface roughness and variable apertures were created and used for 

flow simulations.  

2.3.2 Numerical simulation for solving the NSE in rough fractures 

Fracture flow simulations were conducted by solving the NSE using the computational fluid 

dynamics (CFD) code implemented in the finite element software package COMSOL 

Multiphysics. Here, gravitational effects were ignored and we applied a pressure drop of 0.1 

Pa/m between the flow inlet and outlet. A no-slip boundary was assigned to both surfaces and 

sides to assume no interaction with the rock matrix. We used standard property values for water: 

density ρ=1000 kg/m3 and dynamic viscosity μ=0.001 Pas. The mesh was refined by increasing 

the number of mesh elements for each simulation until the difference between two successive 

simulation results was within 1%. Each fracture was discretised into approximately 11 million 

tetrahedral elements (see Figure 2.4) with larger elements away from the boundaries and 

smaller elements along them; the overall average element size is around 0.2 mm. A minimum 

aperture of 0.01 mm was assigned to maintain mesh quality and avoid difficulties in mesh 

generation. Due to the computational requirements, all the numerical experiments were 

conducted either on a remote server or the High Performance Computer (HPC) workstation at 

Parameters S1 S2 S3 S4 S5

Length (mm) 102.3 102.3 102.3 102.3 102.3

Width (mm) 102.3 102.3 102.3 102.3 102.3

Resolution (mm
2
) 0.01 0.01 0.01 0.01 0.01

Z2 (-) 0.15 0.19 0.22 0.26 0.40

JRC (-) 7.02 9.05 11.01 12.98 19.07
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the University of Adelaide. Each simulation took more than 12 hours on the remote server to 

reach a steady-state solution and about 2 hours on the HPC workstation.  

 

Figure 2.4 Example of mesh generation for fracture S2SH2 (with 2 mm shear displacement) 

with approximately 11 million tetrahedral elements.  

2.3.3 Comparison with other models 

To test the performance of our proposed MCL, we compared the volumetric flow rate 

calculated from the MCL to that from the CFD simulations; the deviation DMCL is quantified 

as: 

𝐷𝑀𝐶𝐿 =
𝑄𝑀𝐶𝐿−𝑄𝑁𝑆𝐸

𝑄𝑀𝐶𝐿
× 100%                                                   (2.17) 

in which QMCL is the volumetric flow rate calculated using the MCL and QNSE is the volumetric 

flow rate at the outlet boundary calculated from numerical simulations.  

Results from the standard CL and two CL-based models proposed by Konzuk and Kueper 

(2004) and Wang et al. (2015), respectively, were used to assess the performance of MCL. The 

CL-based model proposed by Konzuk and Kueper (2004) uses the aperture modification that 

is based on the ‘perpendicular aperture’ concept from Ge (1997), and the geometric mean 
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approach to estimate the hydraulic aperture (denoted as bKonzuk) from the vertical aperture field. 

The volumetric flow rate for this model is obtained by substituting bKonzuk for the aperture b in 

the standard CL: 

𝑄 =
𝜌𝑔𝑏𝐾𝑜𝑛𝑧𝑢𝑘

3

12𝜇
𝑊

∆𝐻

𝐿
                                                          (2.18) 

The modified CL proposed by Wang et al. (2015) also uses the concept of ‘perpendicular 

aperture’ to incorporate the flow tortuosity effect and addresses the roughness effect of local 

cells. A scale factor proposed by Renshaw (1995) is included to further modify the CL. Their 

model is expressed as: 

𝑄 =
𝜌𝑔<𝑏𝑊𝑎𝑛𝑔>

3

12𝜇
𝑊

∆𝐻

𝐿
[1 + (

𝜎𝑏𝑊𝑎𝑛𝑔

<𝑏𝑊𝑎𝑛𝑔>
)2]−1.5                                  (2.19) 

where bWang represents the modified aperture field and σbWang is the standard deviation of the 

modified aperture field. 

The volumetric flow rates calculated using the standard CL and two CL-based models were 

compared with QNSE and the deviations, DCL, DKonzuk and DWang were calculated using equation 

(2.17) by replacing QMCL with the calculated volumetric flow rates QCL, QKonzuk and QWang. 

2.4 Results 

2.4.1 Appropriate ranges for δ and ε 

To determine appropriate values of δ and ε to use in the MCL, we first analysed the ranges of 

both parameters in the context of the physical meanings implicit in their definitions.  

Take the middle segment S from a cross-section of one conceptual fracture, in which the 

segment has a half-aperture of B1 and a segment length L1. As shown in Figure 2.5a, the aspect 

ratio, δs, of S is less than 1 and it is obvious that the representative flow direction depends on 

the segment geometry that follows the orientation of its centreline. δS increases as B1 increases 

and when δS is greater than 1 (Oron and Berkowitz 1998), as seen in Figure 2.5b, the flow 

direction no longer follows the centreline orientation of segment S but is more likely to depend 

on the geometrical properties of adjacent segments. Physically, the aspect ratio, δs, determines 

whether the flow in each segment is governed largely by its geometrical properties with 

negligible influence from adjacent segments.  
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Figure 2.5 Flow direction in segment S for (a) δS<1, the arrow represents the flow direction 

that follows the orientation of the segment centreline, and (b) δS>1, the black arrows indicate 

flow direction and the red dashed-line arrow is the segment centreline orientation. 

Although this assumption becomes more valid as δ becomes much less than 1, a smaller δ 

leads to a stricter criterion for forming segments. It is, therefore, necessary to find a suitable 

limit for δ so that the segments can be determined with acceptable errors. We set the maximum 

δ as 0.5, which is commonly used as the upper limit of the aspect ratio to derive perturbation 

solutions for the NSE (e.g. Basha and El-Asmar 2003), and the range of δ becomes: 

0 < 𝛿 ≤ 0.5                                                            (2.20)  

Similar to the aspect ratio, we determined an appropriate range for the local roughness 

parameter ε. As Poiseuille’s law was assumed valid for flow in each segment, flow is 

predominantly in the central area within the fracture and only a small portion of flow takes 

place near both walls (Oron and Berkowitz 1998). As demonstrated in Figure 2.6, 10% of the 

fracture area near each wall (20% of the entire fracture area) accounts for only ~5% of total 

flow discharge through the fracture and only about 20% of total flow discharge through 20% 

of the fracture area close to the walls (40% of the entire fracture area). To prevent wall 

roughness from approaching the fracture centre, which would lead to significant disturbances, 

we set 0.25 as the maximum value for ε and its range is given as: 

0 < 𝜀 ≤ 0.25                                                            (2.21) 

a b 

S S 𝜹𝒔 =
𝑩𝟏

𝑳𝟏
 < 𝟏 𝜹𝒔 =

𝑩𝟏

𝑳𝟏
 > 𝟏 



P a g e  | 31 

 

 

 

Figure 2.6 Relationship between the flow discharge percentage and near-wall area percentage 

for Poiseuille flow with parabolic velocity profile. 

2.4.2 Segmented area and determination of δ and ε 

The proportion of the area of identified segments in each fracture was evaluated for δ from 0.1 

to 0.5 and ε from 0.15 to 0.25, respectively. As shown in Figure 2.7, when both δ and ε are at 

their minimum values (δ=0.1 and ε=0.15), the average proportion of segmented area identified 

out of the entire fracture area, Paverage, is around 16%, while Paverage increases to over 98% as δ 

and ε both reach their maximum values (δ=0.5 and ε=0.25). This indicates that, as the criterion 

for forming segments is less strict, more segments can be identified, which is as expected.  

As discussed in Section 2.2.4, equation (2.12) was applied to modify the vertical apertures 

of non-segmented areas based on the geometry of each local cell, which may lead to additional 

deviations. Therefore, to minimize the influence of non-segmented areas, we only expect the 

MCL to produce accurate results when the non-segmented area is less than 5% of the total 

fracture area, which means that the proportion of segmented area, Ps, of each fracture should 

be no less than 95%. For all 45 fractures to meet this requirement with the same δ and ε, four 

combinations of δ and ε were identified: δ=0.4 and ε=0.2 (denoted as C1, with only one case 

having Ps=89%), δ=0.5 and ε=0.2 (C2), δ=0.4 and ε=0.25 (C3) and δ=0.5 and ε=0.25 (C4), 

respectively. 
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Figure 2.7 Average proportion of segmented area of all fractures (Paverage) for δ from 0.1 to 0.5 

and ε from 0.15 to 0.25. 

2.4.3 Comparison with CFD results 

The distributions of U/Umax in two sets of fractures with surface roughness of 7 and 19 and 

shifts of 1, 3, 5, 10 and 20 mm are plotted in Figure 2.8. When surfaces are smoother and both 

upper and lower surfaces are well matched (e.g., S1SH1), flow is evenly distributed with no 

apparent preferential path; as surfaces become rougher, or more misaligned during the shear 

displacement (e.g., S5SH3 and S5SH20), channelling effects are clearly apparent in more 

conductive regions. The phenomenon of preferential flow channels in fractures is widely 

reported in the literature (e.g. Pyrak-Nolte et al., 1988; Tsang and Tsang, 1989; Xiong et al., 

2011).  

The performance of the MCL was tested against numerical simulation results of fracture 

flow in terms of the volumetric flow rate. As shown in Figure 2.9, on average, deviations are 

within ±11% of the CFD results for all δ and ε combinations, with DC1, DC2, DC3 and DC4 

ranging from -11.13% to 8.35%, -9.37% to 10.65%, -11.13% to 8.34% and -9.37% to 10.65%, 

respectively. The average effective deviation |𝐷|̅̅ ̅̅  of each combination is also shown in Figure 

2.9, in which |𝐷|̅̅ ̅̅
𝐶1= 4.72%, |𝐷|̅̅ ̅̅

𝐶2= 6.14%, |𝐷|̅̅ ̅̅
𝐶3= 4.66% and |𝐷|̅̅ ̅̅

𝐶4 = 6.14%.  
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Figure 2.8 The ratio of velocity magnitude U to the maximum velocity Umax distributed within 

the fracture with JRC of 7 and 19 (i.e. S1 and S5) and with shifts of 1, 3, 5, 10 and 20 mm 

(denoted as SH1, SH3, SH5, SH10 and SH20).  

S1SH1 S1SH3 

S1SH5 S1SH10 

S5SH1 

S5SH5 

S5SH20 S5SH10 
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U / Umax 
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|𝑫|̅̅ ̅̅
𝑪𝟑=4.66% 

δ=0.4, ε=0.2 

δ=0.5, ε=0.2 

δ=0.4, ε=0.25 

|𝑫|̅̅ ̅̅
𝑪𝟏=4.72% 

|𝑫|̅̅ ̅̅
𝑪𝟐=6.14% 
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Figure 2.9 Deviation, D, of each fracture in terms of relative roughness. D is defined as the 

difference between the volumetric flow rate calculated from numerical simulation and that 

derived from the MCL with four combinations of δ and ε and the selected results O1, which 

are denoted as DC1, DC2, DC3, DC4 and DO1. Relative roughness is defined as the ratio of the 

vertical aperture standard deviation to mean aperture (Brush and Thomson 2003; Wang and 

Cardenas 2016). 

As the same δ and ε were assigned in the MCL to predict the volumetric flow rate for all 

the fractures, we further examined the model performance by selecting the minimum δ and ε 

for each fracture while ensuring that Ps of every fracture was at least 95% (denoted as O1). As 

shown in Figure 2.9 and Table 2.2, the deviation of the results from O1, DO1, ranges from -

13.99% to 9.87% with the average effective deviation |𝐷|̅̅ ̅̅
𝑂1  equalling 4.46%. |𝐷|̅̅ ̅̅

𝐶1, |𝐷|̅̅ ̅̅
𝐶2, 

δ=0.5, ε=0.25 

O1 

|𝑫|̅̅ ̅̅
𝑶𝟏=4.46% 

|𝑫|̅̅ ̅̅
𝑪𝟒=6.14% 
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|𝐷|̅̅ ̅̅
𝐶3, |𝐷|̅̅ ̅̅

𝐶4and |𝐷|̅̅ ̅̅
𝑂1 for each JRC case are also plotted. As seen in Figure 2.10, |𝐷|̅̅ ̅̅

𝐶1 and 

|𝐷|̅̅ ̅̅
𝐶3 are in good agreement for smaller JRC, |𝐷|̅̅ ̅̅

𝐶2 and |𝐷|̅̅ ̅̅
𝐶4 have nearly identical results 

except for JRC=13. In general, |𝐷|̅̅ ̅̅
𝐶1, |𝐷|̅̅ ̅̅

𝐶3 and |𝐷|̅̅ ̅̅
𝑂1 are within 6.00% and |𝐷|̅̅ ̅̅

𝐶2 and |𝐷|̅̅ ̅̅
𝐶4 

are within 8.00%, for all JRC cases. 

Table 2.2 Average effective deviation of the standard CL (|𝐷|̅̅ ̅̅
𝐶𝐿 ), the model proposed by 

Konzuk and Kueper (2004) (|𝐷|̅̅ ̅̅
𝐾𝑜𝑛𝑧𝑢𝑘), the formulation from Wang et al. (2015) (|𝐷|̅̅ ̅̅

𝑊𝑎𝑛𝑔) 

and the MCL in the current study (|𝐷|̅̅ ̅̅
𝐶1 and |𝐷|̅̅ ̅̅

𝑂1). 

Fractures set 
|𝐷|̅̅ ̅̅

𝐶𝐿  

(%) 

|𝐷|̅̅ ̅̅
𝐾𝑜𝑛𝑧𝑢𝑘 

(%) 

|𝐷|̅̅ ̅̅
𝑊𝑎𝑛𝑔  

(%) 

|𝐷|̅̅ ̅̅
𝐶1 

(%) 

|𝐷|̅̅ ̅̅
𝑂1 

(%) 

JRC7 24.51 10.29 12.82 5.81 3.97 

JRC9 18.08 7.31 8.21 3.15 3.70 

JRC11 24.87 9.16 11.55 3.79 3.28 

JRC13 29.04 10.63 12.01 5.66 5.98 

JRC19 33.78 10.13 12.33 5.21 5.39 

All fractures 26.06 9.50 11.38 4.72 4.46 

Results from C1 and O1 were selected for comparison with other models. As shown in 

Figure 2.11 and Table 2.2, the proposed MCL outperforms the other three models not only in 

general results but also in each JRC case. The deviation (D) of flow prediction by the MCL 

(C1) ranges from -11.13% to 8.35% and the average effective deviation (|𝐷|̅̅ ̅̅
𝐶1) is 4.72%. For 

the standard CL and formulations of Konzuk and Kueper (2004) and Wang et al. (2015), |𝐷|̅̅ ̅̅
𝐶𝐿 , 

|𝐷|̅̅ ̅̅
𝐾𝑜𝑛𝑧𝑢𝑘 and |𝐷|̅̅ ̅̅

𝑊𝑎𝑛𝑔  are 26.06%, 9.50% and 11.38%, respectively. The average effective 

deviations of all the tested models in each JRC case are given in Table 2.2, from which it can 

be seen that the proposed MCL has the best performance with all average effective deviations 

less than 6%.  
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Figure 2.10. Average effective deviation |𝐷|̅̅ ̅̅  for fractures with different JRC using parameters 

from C1, C2, C3, C4, C5 and O1 in the MCL. 

 

Figure 2.11 Box-Whisker plot showing the distributions of deviation D from the standard CL, 

the model proposed by Konzuk and Kueper (2004), the formulation in Wang et al. (2015) and 

the MCL in the current study (C1 and O1).  

|𝐃
|

̅̅
̅̅
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2.5 Discussion 

2.5.1 Performance of the MCL 

The proposed MCL performed well for the fractures used in this study with the deviations of 

predicted volumetric flow rate within ±11% of the CFD simulation results. The average 

effective deviation for the fractures used in this study is 5.4% (all four combinations, C1, C2, 

C3 and C4). 

The performance of the proposed MCL depends largely on the combined effect of δ, ε and 

Ps. Theoretically, the MCL provides more accurate results when δ and ε are significantly less 

than 1 and Ps is close to 100% (i.e. segment aperture is much smaller than segment length, 

smooth segment walls and high proportion of segmented area). However, on one hand, smaller 

δ and ε lead to stricter criterion to form segments (i.e. more non-segmented area), which affects 

the performance of the MCL. On the other hand, maintaining high Ps requires increasing δ and 

ε so that more segments can be identified but increasing δ and ε will increase the deviation of 

the prediction. Nevertheless, from the range analysis of these parameters in our study, even the 

least strict geometric condition (C4) still provides a |𝐷|̅̅ ̅̅  of 6.14%. 

Roughness parameters (e.g. JRC) may vary for different fracture sizes and scales. However, 

the scale effect has a negligible impact on the performance of the MCL since no scale-

dependent parameters are included in the formulation. It is also worth noting that since the 

general hydraulic behaviours of entire segments are considered in the MCL instead of local 

individual cells, the influence of grid spacing on MCL may also be trivial as long as the grid 

spacing is sufficiently small to capture the essential roughness effects. The MCL accounts for 

the effect of small-scale roughness on scales from the grid spacing to segment scale; roughness 

on scales less than the grid spacing is not included in the construction of the fracture geometry. 

To check that the effect of roughness on scales less than the grid spacing is insignificant and 

the current grid spacing is capable of capturing the essential roughness, we calculated the 

correlation length of the aperture field in each fracture (ranging from 0.36 to 5.81 mm). The 

grid spacing in current study (0.1 mm) is less than one-third of the minimum correlation length 

(0.36 mm) of all fractures used in the study, which satisfies the requirement for grid spacing as 

discussed by Reimus et al. (1993) and Konzuk and Kueper (2004). 

A sensitivity analysis has been conducted to examine the effect of different grid spacing 

on the general flow behaviour. As the three-dimensional fractures used in this study comprise 

a series of two-dimensional profiles, we extracted two-dimensional fracture profiles at y=0.05 
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m from all 45 fractures and reconstructed them using six different grid spacings from 0.1 to 1.0 

mm. Flow simulations with the same settings (e.g. fluid properties and boundary conditions) 

were conducted in these reconstructed fractures (270 in total) and the volumetric flow rates of 

fractures with different grid spacings were compared (see Figure 2.12).  

 

Figure 2.12. Box-Whisker plot showing the deviation D of the flow rate in fractures with grid 

spacings from 0.2 to 1.0 mm. For the results with solid boxes, D is defined as (QGS-

Qfiner)/Qfiner×100% (denoted as D2), where Qfiner is the flow rate of fractures with a finer grid 

spacing (e.g., for 0.3 mm grid spacing case, QGS is the result from 0.3 mm grid spacing and 

Qfiner is the result from 0.2 mm grid spacing). For the results with dashed boxes, D is defined 

as (QGS-Q0.1)/Q0.1×100% (denoted as D2), where QGS is the flow rate of fractures with different 

grid spacing and Q0.1 is the flow rate of fractures with 0.1 mm grid spacing.  Note that the red 

bars represent the mean of deviation rather than the second quartile. 

As can be seen from the solid boxes, the mean D1 decreases from 2.44% to nearly 0.55% 

as the grid spacing reduces and tends to stabilize at 0.4 mm, which is slightly higher than the 

minimum correlation length. We also compared the results from different grid spacings with 

that of the 0.1 mm grid spacing, as shown with dashed boxes. For the 0.3 mm case, where the 

grid spacing is slightly smaller than the minimum correlation length, its deviation D2 is, on 

average, 1.23%. When the grid spacing is 0.2 mm, the difference decreases, on average, to 
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0.55%. These results further indicate that the small-scale roughness, on scales less than the grid 

spacing, would have only a limited effect on the general flow behaviour as long as the grid 

spacing is less than the correlation length of the fracture aperture field. 

2.5.2 Limitations of the current study 

The main limitation of the current study is in the treatment of non-segmented areas, in which 

it is assumed that the flow direction is governed by each local fracture cell. The validity of such 

an assumption relies on both the aspect ratio of each cell and the alternation of the centreline 

orientation between adjacent cells. This assumption may be violated when either the aspect 

ratio is not small enough for the cell geometry to sufficiently constraint the flow or when the 

flow behaviour of nearby cells has a dominating impact on other cells. Thus, the non-

segmented area should be limited to a small proportion of the total fracture area in order to 

provide accurate results. In extreme cases when no segment can be formed (Ps=0%), the 

aperture field will be modified by each local cell, which is effectively the same approach as Ge 

(1997) and Konzuk and Kueper (2004). Note that in-situ rock fractures are always in contact 

over a certain portion of the fracture area and hence, no segment will be formed in these contact 

areas where the apertures are zero. As our model is based on two-dimensional analyses, its 

performance may be affected in cases where strong flow channelling occurs due to fracture 

surfaces in contact. However, our aperture modification can still be applied in fractures with 

contacts and can improve the estimation of the aperture once the three-dimensional open 

channels are identified and transformed into two-dimensional ones. Further studies are 

currently in progress. 

Another limitation is the assumption made for local roughness effect, where 𝐹𝑙𝑟 is used to 

estimate smaller apertures in each segment. Even when 𝐹𝑙𝑟 is the same for two segments, the 

local roughness effects may vary for different combinations of upper and lower wall geometry 

(i.e. wall alignment and roughness). For example, take two fracture segments with the same 

standard deviation of asperity height for both walls and the same mean aperture; one is perfectly 

matched and the other is mismatched. The local roughness will have different effects on the 

flow behaviours in these two segments but 𝐹𝑙𝑟 is the same. Although this variation has only a 

small impact on the general performance of the MCL when the geometrical and dynamical 

conditions are met, it would further improve the accuracy of the model if the local roughness 

effect is evaluated based on the various geometric combinations of segment walls with different 

roughness and alignment. 
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2.6 Summary 

The modified cubic law (MCL) developed in this study has improved the performance (in terms 

of quantifying flow fields) of the standard cubic law (CL) by incorporating in the aperture field 

the modifying factors of flow tortuosity, aperture variation and local roughness effects. Flow 

simulations were conducted in 45 synthetic fractures with different surface roughness and 

aperture variations to test the performance of the proposed MCL.  

In general, the proposed MCL provides improved flow predictions compared with those of 

the standard CL and previous versions of CL-based models. The deviation (D) of flow 

predictions from CFD simulations for synthetic fractures using the MCL (C1) ranges from -

11.13% to 8.35% and the average effective deviation (|𝐷|̅̅ ̅̅ ) is 4.72%, while for the standard CL 

and the formulations of Konzuk and Kueper (2004) and Wang et al. (2015), the average 

effective deviations are 26.06%, 9.50% and 11.38% respectively. Moreover, the MCL (C1) 

performs the best under different surface roughness conditions with |𝐷|̅̅ ̅̅  less than 6% for all 

JRC cases used in this study. The proposed MCL provides a more accurate estimate of the 

hydraulic properties of the single fracture at low Reynolds number and it may be extended to 

study the hydraulic behaviours in fracture networks and other hydro-related problems in rough 

rock fractures. 
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Abstract 

Flow in fractures or channels is of interest in many environmental and geotechnical 

applications. Most previously published perturbation analyses for fracture flow assume that the 

ratio of the flow in the fracture aperture direction to flow in the fracture length direction is of 

the same order as the ratio of the mean fracture aperture to fracture length and hence the 

dominant flow is in the fracture length direction. This assumption may impose an overly-strict 

requirement for flow in the fracture length direction to be dominant, which limits the 

applicability of the solutions. This study uses the ratio of the aperture variation to fracture 

length as the perturbation parameter to derive perturbation solutions for flow in two-

dimensional fractures under both the pressure boundary condition (PBC) and flow rate 

boundary condition (FBC). The solutions are cross-validated with direct numerical solutions 

of the Navier-Stokes equations and solutions from published perturbation analyses using the 

geometry of two-dimensional symmetric wedges and fractures with sinusoidal varying walls. 

The study shows that, compared with the PBC solution, the FBC solution is in a closer 

agreement with simulation results and provides a better estimate of the fracture transmissivity 

especially when inertial effects are more than moderate. The improvement is due mainly to the 

FBC solution providing a more accurate quantification of inertial effects. The solutions 

developed in this study provide improved means of analysing the hydraulic properties of 

fractures/channels and can be applied to complex flow conditions and fracture geometries. 
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3.1 Introduction 

Fluid flow through fractured geological media is a vital process in a variety of environmental 

and geotechnical applications including underground water systems, petroleum and geothermal 

reservoirs, underground rock excavations and hazardous waste disposal (e.g., Hunt and Sahimi 

2017; Pyrak-Nolte and Nolte 2016; Xu et al. 2015; Zimmerman and Bodvarsson 1996). 

Although most problems that arise in these engineering applications are at large-scale, a sound 

knowledge of the controlling mechanism of fluid flow at pore-scale is essential to providing 

important insights and directions for solving problems at larger scales (Berkowitz 2002; 

Kitanidis and Dykaar 1997). 

Flow in fractures or channels is normally treated as a steady-state incompressible fluid 

flowing within two parallel planar plates separated by a constant aperture so that the flow 

behaviours can be described by the cubic law (CL), where the flow rate is related to the cube 

of the fracture aperture for a given pressure or hydraulic gradient (e.g., Lomize 1951; 

Witherspoon et al. 1980). Fractures and channels, occurring naturally or as the result of human 

disturbance, commonly have a complex void geometry and hence, have a varying aperture field 

(e.g., Brown 1987; Zou et al. 2017). To account for the spatial variability of fracture aperture, 

the Reynolds equation, also known as the local cubic law (LCL), is widely used to improve the 

flow estimation in rough-walled fractures by assuming that the CL applies at each explicit 

location throughout the fracture (Zimmerman et al. 1991). However, the validity of using the 

LCL to describe the fracture flow has frequently been questioned in previous experimental and 

numerical studies. For example, Yeo et al. (1998) observed that, on average, the LCL over-

estimates the flow rate measured from experiments by a factor of 1.85. Brush and Thomson 

(2003) conducted a numerical analysis and found that the LCL over-estimates the flow rate by 

a factor up to 1.25, even when inertial effects are not considered. Numerous studies have since 

focused on developing alternative models by modifying the CL and LCL. Some studies (e.g., 

Nazridoust et al. 2006; Olsson and Barton 2001; Patir and Cheng 1978) attempted to 

incorporate statistical and empirical parameters into the CL using data from experiments or 

numerical simulations to estimate the equivalent hydraulic aperture (Brown 1987). Other 

approaches included modifications to the aperture field by considering the effects of aperture 

variation and flow tortuosity at the local scale (Ge 1997; Konzuk and Kueper 2004) or fracture 

segment scale (Oron and Berkowitz 1998; Wang et al. 2018). Although these approaches may 

have improved the prediction of flow, the fundamental CL assumption remains, in which flow 

is always one-dimensional with negligible inertial effects, either globally or locally. This 
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assumption limits the ability of previous CL-based models to accommodate more complex flow 

conditions and fracture geometries that are widely encountered in realistic problems. 

Physically, the complexity of the flow behaviours in a fracture with complex void 

geometry can be well-described by the three-dimensional Navier-Stokes equations 

(Zimmerman 2005). However, solving the three-dimensional Navier-Stokes equations 

numerically in this case is expensive in terms of computational time and memory requirements 

(Brush and Thomson 2003; Wang et al. 2018). In this context, many approximate solutions to 

the two-dimensional Navier-Stokes equations are derived through perturbation expansion; 

conceptual models can then be developed based on these approximate solutions to provide 

better estimates of flow in fractured rocks (Basha and El-Asmar 2003). Wang (1978) derived 

a perturbation expansion to Stokes flow in a two-dimensional periodic fracture by assigning a 

pressure difference between the inflow and outflow boundaries using the ratio of the mean 

aperture to fracture length as the perturbation parameter. Kitanidis and Dykaar (1997) derived 

a similar perturbation solution to Stokes flow in a fracture bounded by two sinusoidal walls. 

Basha and El-Asmar (2003) conducted and evaluated the perturbation analysis for fracture flow 

in various fracture wall configurations with the same perturbation parameter. In these studies, 

inertial effects are either neglected or the Reynolds number is defined by the discharge of flow 

through parallel plates separated by the mean aperture over the kinematic viscosity, which may 

lead to deviations in the quantification of inertial effects. In addition, using the ratio of the 

mean aperture to fracture length as the perturbation parameter may impose an overly-strict 

requirement for the domination of flow in the fracture length direction over flow in the fracture 

aperture direction, which limits the application scope of the solutions (Zimmerman 2005). 

Sisavath et al. (2003) derived a perturbation solution to the problem of two-dimensional flow 

in a fracture with two sinusoidal walls by prescribing a discharge at the flow inlet boundary 

with the ratio of the amplitude to fracture length as the perturbation parameter, but the inertial 

effects are not incorporated in their study. Throughout these analyses, the solutions are in 

different forms for the pressure boundary condition (PBC), obtaining the flow rate with a given 

pressure difference, and the flow rate boundary condition (FBC), obtaining the pressure 

difference with a given flow rate. However, to the best of our knowledge, there is no published 

study with a detailed evaluation or comparison of the PBC and FBC solutions and thus the 

ability of both solutions to describe flow through fractures is not clear. 

The purpose of this study is to improve the analysis of the hydraulic properties of fractures 

for complex flow conditions and varying fracture geometries by conducting perturbation 
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analysis. The derived solutions can provide a theoretical basis for the analysis of, for example, 

fracture transmissivity (e.g., Basha and El-Asmar 2003; Hasegawa and Fukuoka 1980; Nicholl 

et al. 1999) and eddy formation at local positions (e.g., Hasegawa and Izuchi 1983; Kitanidis 

and Dykaar 1997). In this work, perturbation solutions to the two-dimensional Navier-Stokes 

equations were derived for both the PBC and FBC. The stream function under the PBC was 

derived using an approach similar to the method proposed by Kitanidis and Dykaar (1997) but 

with an additional consideration of inertial effects, the stream function for the FBC was 

obtained largely by following the approach discussed by Van Dyke (1987). With the auxiliary 

condition, the perturbation solutions were derived to the second-order. The derived solutions 

were tested with two-dimensional symmetric wedges using the ratio of the aperture variation 

to fracture length as the perturbation parameter. The solutions based on two different boundary 

conditions were then compared with numerical simulation results in terms of different wedge 

geometries and different Reynolds number in the range of 0.1 to 20, which covers three main 

flow regimes. Fractures with sinusoidal varying walls were also used for additional validations. 

In general, the FBC solution was found to be in a closer agreement with the simulation results 

especially when inertial effects are more than moderate. Perturbation solutions from previous 

studies were also used in a comparative study of fracture transmissivity to examine further the 

performance of the FBC perturbation solution presented in this study. Compared with 

previously published perturbation solutions, the FBC solution improves the accuracy of the 

estimated transmissivity and can be applied to a wider range of fracture geometries (i.e., no 

constraint on the ratio of the mean aperture to fracture length).  

3.2 Problem formulation 

3.2.1 Governing equations 

Consider a steady-state flow in a two-dimensional fracture (normal to the mean plane of a 

generic fracture in three-dimensions) with a slowly varying aperture (Van Dyke 1987; 

Kitanidis and Dykaar 1997) as shown in Figure 3.1, in which the fluid is incompressible and 

the walls are impermeable. The fracture length and width are in the x and y directions, 

respectively. For flow in subsurface fractures, the governing equations are given by the Navier-

Stokes equations (NSE), assuming that the gravity forms the only body force and with the 

condition for mass continuity (e.g., Crandall et al. 2010; Zimmerman and Bodvarsson 1996): 

 𝑢
𝜕𝑢

𝜕𝑥
+𝑤

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝜈 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)⁡ (3.1) 
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 𝑢
𝜕𝑤

𝜕𝑥
+ 𝑤

𝜕𝑤

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑦
+ 𝜈 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
)  (3.2) 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑦
= 0  (3.3) 

where u and w are velocities in the x and y directions, respectively, ρ is the fluid density, P is 

the reduced pressure and ν is the kinematic viscosity of the fluid. The first two equations are 

effectively momentum continuity equations and the third describes mass conservation. The first 

two terms on the left-hand sides of equations (3.1) and (3.2) are the advective terms that account 

for inertial forces, the third term represents the pressure gradient and the last two terms are for 

viscous forces. Equations (3.1) and (3.2) become Stokes equations when inertial terms are 

negligibly small compared to viscous terms (i.e., Reynolds number Re=0) and become Euler 

equations when viscous effects are neglected (Kundu and Cohen 2008). 

  

Figure 3.1 Illustration of a two-dimensional fracture with a slowly varying aperture. 

3.2.2 Boundary conditions 

Non-slip boundary and impermeable wall (no flux across the fracture walls) conditions are 

assumed for both the top and bottom walls, leading to: 

 𝑢|𝑦=𝑓𝑡(𝑥) = 0, 𝑤|𝑦=𝑓𝑡(𝑥) = 0⁡  (3.4) 

 𝑢|𝑦=𝑓𝑏(𝑥) = 0, 𝑤|𝑦=𝑓𝑏(𝑥) = 0⁡  (3.5) 

where ft(x) and fb(x) are functions that describe the geometry of the top and bottom walls as 

shown in Figure 3.1. The fracture aperture H is then given by ft(x)-fb(x) that varies along the 

horizontal axis 𝑥 to provide a varying aperture in the fracture length direction. 

A non-zero pressure difference between the inflow and outflow boundaries produces a flow 

Q through the fracture, resulting in the following boundary conditions: 

 𝑃|𝑥=𝑥1 = 𝑃(𝑥1)⁡⁡  (3.6) 
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 𝑃|𝑥=𝑥2 = 𝑃(𝑥2)⁡⁡  (3.7) 

Where x1 and x2 are the locations of the fracture inflow and outflow boundaries and hence the 

length of fracture considered is l=x1-x2 and the pressure difference is ∆P=P(x1)-P(x2). 

3.2.3 The stream function 

The stream function Ψ is defined by 

𝑢 =
𝜕Ψ

𝜕𝑦
, 𝑤 = −

𝜕Ψ

𝜕𝑥
  (3.8) 

Substituting the stream function into the governing equations and cancelling out the pressure 

terms after differentiating equations (3.1) and (3.2) over⁡𝑦 and 𝑥, respectively, we find that the 

defined stream function must satisfy: 

          
𝜕

𝜕𝑦
(
𝜕Ψ

𝜕𝑦

𝜕2Ψ

𝜕𝑥𝜕𝑦
−

𝜕Ψ

𝜕𝑥

𝜕2Ψ

𝜕𝑦2
) −

𝜕

𝜕𝑥
(−

𝜕Ψ

𝜕𝑦

𝜕2Ψ

𝜕𝑥2
+

𝜕Ψ

𝜕𝑥

𝜕2Ψ

𝜕𝑥𝜕𝑦
) = 𝜈 (

𝜕4Ψ

𝜕𝑥4
+ 2

𝜕4Ψ

𝜕𝑥2𝜕𝑦2
+

𝜕4Ψ

𝜕𝑦4
)  (3.9) 

Equation (3.9) becomes the bi-harmonic equation under the Stokes flow condition, where the 

terms on the left-hand side of the equation become zero (Kitanidis and Dykaar 1997; Wang 

1978). 

3.2.4 The auxiliary condition 

As the pressure terms are eliminated in equation (3.9), an auxiliary relationship needs to be 

derived to relate the pressure term to the stream function. Since a steady-state flow is prescribed 

under a given pressure difference, the mean pressure difference over the fracture aperture in 

the length direction can be assumed to equal a constant mean pressure difference (Hasegawa 

and Izuchi 1983), leading to: 

∆𝑃 = ∫
1

𝐻(𝑥)

𝑥2

𝑥1
(∫

𝜕𝑃

𝜕𝑥
𝑑𝑦

𝑓𝑡(𝑥)

𝑓𝑏(𝑥)
) 𝑑𝑥  (3.10) 

The pressure derivative ∂p/∂x can easily be obtained from equation (3.1) and, after 

inserting the stream function, it becomes: 

 
𝜕𝑃

𝜕𝑥
= 𝜇 (

𝜕3Ψ

𝜕𝑥2𝜕𝑦
+

𝜕3Ψ

𝜕𝑦3
) + 𝜌 (

𝜕Ψ

𝜕𝑥

𝜕2Ψ

𝜕𝑦2
−

𝜕Ψ

𝜕𝑦

𝜕2Ψ

𝜕𝑥𝜕𝑦
)  (3.11) 

in which μ is the dynamic viscosity. Equation (3.10), together with equation (3.11), provides 

the auxiliary condition that gives the relationship between the mean pressure difference and 

stream function. The final solution is obtained by solving equation (3.9), using associated 

boundary conditions, together with equation (3.10). 
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3.3 Solutions 

3.3.1 Solution for the pressure boundary condition 

Under the pressure boundary condition, a known pressure difference is assigned between the 

inflow and outflow boundaries, hence we are seeking to derive the amount of discharge through 

the fracture at the given pressure difference. First, all distance terms are made dimensionless 

by dividing them by the mean fracture aperture Hm. Then the discharge per unit width, Q, and 

the stream function are divided by Qm to become dimensionless. Qm is the discharge per unit 

width in a fracture with a uniform aperture Hm, and can be given by the CL as: 

 𝑄𝑚 = −
𝐻𝑚
3

12𝜇

∆𝑃

𝑙
  (3.12) 

The following additional non-dimensional variables are also used in the derivation: 

 𝑋 = 𝜖𝑥,      𝑌 =
𝑦

ℎ(𝑋)
=

𝑦

ℎ(𝜖𝑥)
 ,    𝑅𝑝 =

𝑄𝑚

𝜈
 . (3.13) 

where ϵ is a small dimensionless parameter that describes the gradual change of aperture along 

the fracture length i.e. the ratio of the aperture variation to length, ω/l (Van Dyke 1987; 

Sisavath et al. 2003), which is the perturbation parameter used in this study; ℎ is half the 

fracture aperture; and Rp is the Reynolds number defined under the PBC. Note that, for 

simplicity, we keep the same symbols in the derivation below, but these symbols are now the 

dimensionless counterparts of their original definitions. With these dimensionless variables, 

equation (3.9) becomes 

𝑅𝑝 [
𝜖

ℎ

𝜕Ψ

𝜕𝑌

𝜕

𝜕𝑋
(
1

ℎ2
𝜕2Ψ

𝜕𝑌2
) +

𝜖3

ℎ

𝜕Ψ

𝜕𝑌

𝜕3Ψ

𝜕𝑋3
− 𝜖3

𝜕Ψ

𝜕𝑋

𝜕2

𝜕𝑋2
(
1

ℎ

𝜕Ψ

𝜕𝑌
) −

𝜖

ℎ3
𝜕Ψ

𝜕𝑋

𝜕3Ψ

𝜕𝑌3
] = 𝜖4

𝜕4Ψ

𝜕𝑋4
+

2𝜖2
𝜕2

𝜕𝑋2
(
1

ℎ2
𝜕2Ψ

𝜕𝑌2
) +

1

ℎ4
𝜕4Ψ

𝜕𝑌4
  (3.14) 

Consider a symmetric fracture for which x varies from 0 to l and y varies from -h to h. The 

dimensionless auxiliary condition is given by 

1 = −
1

12𝜔
∫ ∫ 𝜖2 [

2ℎ𝑋
2

ℎ3
𝜕Ψ

𝜕𝑌
−

ℎ𝑋𝑋

ℎ2
𝜕Ψ

𝜕𝑌
−

ℎ𝑋

ℎ2
𝜕

𝜕𝑋
(
𝜕Ψ

𝜕𝑌
) −

ℎ𝑋

ℎ2
𝜕

𝜕𝑋
(
𝜕Ψ

𝜕𝑌
) +

1

ℎ

𝜕2

𝜕𝑋2
(
𝜕Ψ

𝜕𝑌
)] +

1

ℎ3
𝜕3Ψ

𝜕𝑌3
+

1

0

𝜔

0

𝑅𝑝 {
𝜖

ℎ2
𝜕Ψ

𝜕𝑋

𝜕2Ψ

𝜕𝑌2
−

𝜖

ℎ

𝜕Ψ

𝜕𝑌
[−

ℎ𝑋

ℎ2
𝜕Ψ

𝜕𝑌
+

1

ℎ

𝜕

𝜕𝑋
(
𝜕Ψ

𝜕𝑌
)]} ⁡𝑑𝑌 𝑑𝑋   (3.15) 

The associated boundary conditions are  

𝜕Ψ

𝜕𝑌
|
𝑌=±1

= 0,⁡⁡⁡Ψ|𝑌=±1 = ±
𝑄

2
. (3.16) 

Using the perturbation parameter, ϵ, the stream function and discharge can be expressed as the 

sum of different order terms: 



P a g e  | 53 

 

 

 Ψ = Ψ0 + 𝜖Ψ1 + 𝜖2Ψ2 +⋯   (3.17) 

 𝑄 = 𝑄0 + 𝜖𝑄1 + 𝜖2𝑄2 +⋯   (3.18) 

The terms up to the second-order are obtained by substituting equations (3.17) and (3.18) 

into (3.14) to (3.16). Retaining the terms at different orders after derivation, the stream function 

up to the second-order terms can be found as: 

 Ψ0 = 𝑄0 (
3

4
𝑌 −

1

4
𝑌3)   (3.19) 

 Ψ1 =
3𝑅𝑝𝑄0

2ℎ𝑋

1120
(5𝑌−11𝑌3 + 7𝑌5 − 𝑌7) +

1

4
𝑄1(3𝑌 − 𝑌3)  (3.20) 

Ψ2 =
𝑅𝑝

2𝑄0

3449600
[ℎ𝑋

2(2875𝑌−8222𝑌3 + 8778𝑌5 − 4488𝑌7 + 1155𝑌9 − 98𝑌11) −

ℎℎ𝑋𝑋(1213𝑌−3279𝑌
3 + 3234𝑌5 − 1518𝑌7 + 385𝑌9 − 35𝑌11)] +

3𝑄0

40
(4ℎ𝑋

2 − ℎℎ𝑋𝑋)(𝑌−2𝑌
3 + 𝑌5) +

9𝑅𝑝𝑄1ℎ𝑋

560
(5𝑌−11𝑌3 + 7𝑌5 − 𝑌7) +

1

4
𝑄2(3𝑌 −

𝑌3)   (3.21) 

where hX and hXX are the first and second derivative of h with respect to X, respectively. 

Equations (3.19) to (3.21) become identical to the stream function obtained in Kitanidis and 

Dykaar (1997) when Rp is 0. The associated discharge up to the second-order terms can be 

given as: 

 𝑄0 = (∫
1

8𝜔ℎ3

𝜔

0
𝑑𝑋)

−1

  (3.22) 

     𝑄1 = ∫
9𝑅𝑝𝑄0

3ℎ𝑋

280𝜔ℎ3
𝑑𝑋

𝜔

0
  (3.23) 

         𝑄2 = ∫
3𝑄0

2ℎ𝑋
2

40𝜔ℎ3
−

𝑄0
2ℎℎ𝑋𝑋

20𝜔ℎ3

𝜔

0
+

9𝑅𝑝𝑄0
2𝑄1ℎ𝑋

140𝜔ℎ3
+

13𝑅𝑝
2𝑄0

4

26950𝜔ℎ3
(ℎ𝑋

2 −
3

4
ℎℎ𝑋𝑋)𝑑𝑋  (3.24) 

The detailed derivation is given in Appendix A1. 

3.3.2 Solution under the flow rate boundary condition 

For the flow rate boundary condition, a given flow rate Q is initially assigned and the solution 

that we are seeking is for the pressure difference between the flow boundaries. All distance 

terms within the fracture are made dimensionless by dividing them by the mean fracture 

aperture Hm and the stream function is made dimensionless by dividing it by half the discharge 

Q/2. Then the mean pressure difference ∆P is divided by the mean pressure difference per unit 

width of a fracture with a uniform aperture, ∆Pm, given by the CL as: 

  ∆𝑃𝑚 = −
12𝜇𝑙𝑄

𝐻𝑚
3   (3.25) 

The same symbol is used for the mean pressure difference, ∆P, but it is now dimensionless. 

Now introduce the following non-dimensional variables: 



P a g e  | 54 

 

 

 𝑋 = 𝜖𝑥,     𝑌 =
𝑦

ℎ(𝑋)
=

𝑦

ℎ(𝜖𝑥)
 ,   𝑅𝑞 =

𝑄/2

𝜈
  (3.26) 

Note that the first two variables are the same as those defined earlier but the Reynolds number 

Rq defined here differs from that in the previous section. Using these non-dimensional variables, 

equation (3.9) becomes 

𝑅𝑞[
𝜖

ℎ

𝜕Ψ

𝜕𝑌

𝜕

𝜕𝑋
(
1

ℎ2
𝜕2Ψ

𝜕𝑌2
) +

𝜖3

ℎ

𝜕Ψ

𝜕𝑌

𝜕3Ψ

𝜕𝑋3
− 𝜖3

𝜕Ψ

𝜕𝑋

𝜕2

𝜕𝑋2
(
1

ℎ

𝜕Ψ

𝜕𝑌
) −

𝜖

ℎ3
𝜕Ψ

𝜕𝑋

𝜕3Ψ

𝜕𝑌3
] = 𝜖4

𝜕4Ψ

𝜕𝑋4
+

2𝜖2
𝜕2

𝜕𝑋2
(
1

ℎ2
𝜕2Ψ

𝜕𝑌2
) +

1

ℎ4
𝜕4Ψ

𝜕𝑌4
  (3.27) 

Given the fracture symmetry, the dimensionless auxiliary condition is given by 

∆𝑃 = −∫ ∫
1

24𝜔
[𝜖2

𝜕2

𝜕𝑋2
(
1

ℎ

𝜕Ψ

𝜕𝑌
) +

1

ℎ3
𝜕3Ψ

𝜕𝑌3
] +

𝑅𝑞

24𝜔
[
𝜖

ℎ2
𝜕Ψ

𝜕𝑋

𝜕2Ψ

𝜕𝑌2
−

𝜖

ℎ

𝜕Ψ

𝜕𝑌

𝜕

𝜕𝑋
(
1

ℎ

𝜕Ψ

𝜕𝑌
)] 𝑑𝑌

1

0

𝜔

0
𝑑𝑋  (3.28) 

and the associated boundary conditions are given by (Van Dyke 1987):  

𝜕Ψ

𝜕𝑌
|
𝑌=±1

= 0,⁡⁡⁡Ψ|𝑌=±1 = ±1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡  (3.29) 

The stream function and mean pressure difference can be written as a sum of different order 

terms: 

 Ψ = Ψ0 + 𝜖Ψ1 + 𝜖2Ψ2 +⋯  (3.30) 

 ∆𝑃 = ∆𝑃0 + 𝜖∆𝑃1 + 𝜖2∆𝑃2 +⋯  (3.31) 

The solution of the stream function up to the second-order terms is obtained by substituting 

equations (3.30) and (3.31) into (3.27) and (3.29), and has the form as: 

 Ψ0 =
1

2
(3𝑌 − 𝑌3)  (3.32) 

 Ψ1 =
3𝑅𝑞ℎ𝑋

280
(5𝑌−11𝑌3 + 7𝑌5 − 𝑌7)  (3.33) 

Ψ2 =
𝑅𝑞

2

431200
[ℎ𝑋

2(2875𝑌−8222𝑌3 + 8778𝑌5 − 4488𝑌7 + 1155𝑌9 − 98𝑌11) −

ℎℎ𝑋𝑋(1213𝑌−3279𝑌
3 + 3234𝑌5 − 1518𝑌7 + 385𝑌9 − 35𝑌11)] +

3

20
(4ℎ𝑋

2 −

ℎℎ𝑋𝑋)(𝑌−2𝑌
3 + 𝑌5)  (3.34) 

The stream function under the FBC, equations (3.32) to (3.34), are in agreement with the stream 

function obtained in Van Dyke (1987). The associated mean pressure difference for the first 

three order terms are obtained by inserting the stream function into equation (3.28): 

 ∆𝑃0 = ∫
1

8𝜔ℎ3

𝜔

0
𝑑𝑋  (3.35) 

 ∆𝑃1 = −∫
9𝑅𝑞ℎ𝑋

140𝜔ℎ3

𝜔

0
𝑑𝑋  (3.36) 
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 ∆𝑃2 = −∫
3ℎ𝑋

2−2ℎℎ𝑋𝑋

40𝜔ℎ3

𝜔

0
+

13𝑅𝑞
2

13475𝜔ℎ3
(2ℎ𝑋

2 −
3

2
ℎℎ𝑋𝑋) 𝑑𝑋  (3.37) 

The detailed derivation process is given in Appendix A2. 

3.4 Flow in two-dimensional wedges 

3.4.1 Perturbation solutions 

 

Figure 3.2 Two symmetric wedges with (a) one diverging wedge and (b) one converging wedge. 

Flow in various fracture geometries has been studied by considering fracture walls as parallel 

plates, saw-tooth shaped walls and sinusoidally-varying walls (e.g., Crandall et al. 2010; 

Nicholl et al. 1999; Sisavath et al. 2003). Among these approximations, fracture is found to be 

well described by a series of connected wedges (e.g., Brush and Thomson 2003; Nicholl et al. 

1999; Wang et al. 2018) and we use a wedge-shaped fracture to obtain the final solutions in 

this section. Consider a two-dimensional symmetric wedge as shown in Figure 3.2, the upper 

wall can be described as: 

 𝑓𝑡(𝑥) = ℎ(𝑥1) +
ℎ(𝑥2)−ℎ(𝑥1)

𝑙
𝑥  (3.38) 

The aperture along the wedge length can be obtained as 

 𝐻(𝑥) = 𝑓𝑡(𝑥) − 𝑓𝑏(𝑥) = 𝐻(𝑥1) ±
𝜔

𝑙
𝑥  (3.39) 

where ω=∣H(x2)-H(x1)∣; H(x2)-H(x1) is positive (+) when the wedge is diverging and 

negative (-) when it is converging. An appropriate choice of the perturbation parameter ϵ would 

be ω/l, which describes the relative aperture variation along the wedge length (Van Dyke 1987). 

Substituting equation (3.39), in dimensionless form, into equations (3.22) to (3.24) and (3.18), 

the discharge to the second-order can be obtained, in dimensional form, as follows: 
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𝑄 = −
𝐻𝑚

3

12𝜇

∆𝑃

𝑙
⁡{(1 −

𝜔2

4𝐻𝑚
2)

2

± 𝜖
9𝑅𝑝

70
(1 −

𝜔2

4𝐻𝑚
2)

4

+ 𝜖2 [
3

20
(1 −

𝜔2

4𝐻𝑚
2)

2

+
131𝑅𝑝2

3850
(1 −

𝜔2

4𝐻𝑚
2)

6

]}      

                    (3.40) 

Substituting equation (3.39), in dimensionless form, into equations (3.35) to (3.37) and (3.31), 

the pressure difference to the second-order can be obtained, in dimensional form, as: 

 ∆𝑃 = −
12𝜇𝑙𝑄

𝐻𝑚
3 (1 −

𝜔2

4𝐻𝑚
2)

−2

[1 ∓ 𝜖
9𝑅𝑞

35
− 𝜖2 (

3

20
+

52𝑅𝑞
2

13475
)]  (3.41) 

 Note that the perturbation parameter physically represents the extent of aperture variation 

relative to length, although the derived perturbation solutions, i.e., equations (3.24) and (3.37), 

were tested in wedges with linear profile walls in this section, both solutions can easily be 

applied to other wall geometries, e.g., sinusoidal or parabolic profiles. In fact, as long as the 

wall profile functions ft(x) and fb(x) are defined, hX and hXX can be evaluated to obtain 

perturbation solutions. In addition, we derived and tested the solutions for fractures with 

sinusoidal walls in Appendix B. As a gradual change of aperture is assumed to maintain the 

dominant flow along the length direction in the present study, abrupt changes of aperture can 

negate this assumption and hence the derived solutions are not applicable in these cases. 

However, gradual aperture variation is normally considered and reported in practice (e.g. 

Kitanidis and Dykaar 1997; Zimmerman 2005), which ensures the dominant flow in one main 

direction (i.e., the influence of flow in y direction on the flow dominant feature is not 

significant).  

3.4.2 Comparison with simulation results 

To examine the validity of the perturbation solutions derived in this study, flow simulations in 

two-dimensional wedges were conducted by solving the NSE directly using COMSOL 

MultiPhysics. Two geometrical parameters, the ratio of the aperture variation to mean aperture 

(ω/Hm) and the ratio of the aperture variation to fracture length (ϵ), were used to determine the 

wedge geometry. Mean aperture Hm was fixed to 1 mm while ϵ was given varying values to 

demonstrate different extents of aperture variation. Inertial effects were quantified by the 

Reynolds number as defined by (Zimmerman et al. 2004):  

 𝑅𝑒 =
𝑄

𝑣
  (3.42) 
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Figure 3.3. Comparison of the discharge obtained from the PBC solution and simulation results. 

The plots show the effects of the perturbation parameter ϵ and the Reynolds number Re; (a) Q 

at different ϵ, where Q is the volumetric flow rate from different solutions normalized by Qm; 

(b) Q at different Re. Dq is defined as (Qsolution-Qsimulation)/Qsimulation×100%; Qsolution is the 

volumetric flow rate obtained from the CL, 0-order solution, 1-order solution and 2-order 

solution; and Qsimulation is the volumetric flow rate obtained from the simulations; (+) refers to 

the case of a diverging wedge and (-) a converging wedge.  
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Figure 3.4. Comparison of the pressure difference obtained from the FBC solution and 

simulation results showing the effects of the perturbation parameter ϵ and Reynolds number 

Re; (a) ∆P at different ϵ, ∆P is the pressure difference from different solutions normalized by 

∆Pm; (b) ∆P at different Re. Dp is defined as (∆Psolution-∆Psimulation)/∆Psimulation×100%; ∆Psolution 

is the pressure difference obtained from the CL, 0-order solution, 1-order solution and 2-order 

solution; and ∆Psimulation is the pressure difference obtained from simulations; (+) refers to the 

case of a diverging wedge and (-) a converging wedge.  
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Water was used as the fluid in the simulations with density ρ=1000 kg·m-3 and dynamic 

viscosity μ=0.001 Pa·s. The boundary conditions used in the simulation were exactly the same 

as those used in the derivation of the perturbation solutions, i.e., non-slip boundary and 

impermeable wall as given in equations (3.4) and (3.5). Mesh was refined until there was a 

negligible difference between two successive refinements. Both diverging and converging 

wedges were included in the current study. The volumetric flow rate at the inflow boundary 

and the pressure difference between inflow and outflow boundaries can be obtained directly 

from simulations. The derived solution, equation (3.40), was assessed against the simulation 

results in terms of the effects of wedge geometry and Re. In Figure 3.3a, results from the CL 

(using the arithmetic mean of the aperture) and perturbation solutions at different orders are 

compared with the simulation results with ϵ ranging from 0.15 to 0.60 and ω/Hm fixed at 0.3. 

Re is set to 2 so that inertial effects are insignificant (Wang et al. 2018; Zimmerman et al. 2004). 

In general, the second-order (referred as 2-order hereafter) solution provides results that are the 

closest to the simulation results with deviation Dq ranging from -2.4% to 4.5% and mean 

effective deviation |𝐷𝑞|
̅̅ ̅̅ ̅ of 1.6%. The successive improvement as more terms are included is 

clearly demonstrated. As ϵ increases, the degree of violation of the assumption of slow aperture 

variation along the fracture length increases and, therefore, all results deviate increasingly from 

the simulation results as ϵ increases. 

Inertial effects were studied by fixing ϵ at 0.1 and ω/Hm at 0.2 with Re ranging from 0.1 to 

20, which covers three main flow regimes including the Darcy-flow regime (Re<1), weak 

inertial regime (1<Re<10) and strong inertial regime (Re>10) (Zimmerman et al. 2004). For 

the weak inertial regime, Darcy-type flow can still be considered valid for engineering 

applications, but this assumption loses its validity and leads to increasingly greater deviation 

as the Reynolds number passes its critical value (Oron and Berkowitz 1998; Xiong et al. 2018; 

Zimmerman et al. 2004). As can be seen in Figure 3.3b, simulation results show that the 

assumption of Darcy-type flow can be considered valid when Re<10 with about ±10% of 

deviation at Re=10. The flow rates obtained from simulation, Qsimulation, are mostly 

axisymmetric for diverging and converging cases, whereas the results from the 2-order 

perturbation solution show a strong non-axisymmetric behaviour as Re surpasses the critical 

value, due to the asymmetry in the formulation for the two cases, see equation (3.40). Similar 

non-axisymmetric behaviours for the 2-order solution can also be observed in Figure 3.3a. 

Generally, good agreement is observed between the results from the 2-order perturbation 

solution and simulation results, with Dq ranging from -2.7% to 7.9% and mean effective 
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deviation |𝐷𝑞|
̅̅ ̅̅ ̅ of 1.7% for 0.1<Re<20. In the strong inertial regime, |𝐷𝑞|

̅̅ ̅̅ ̅ increases to 2.5% 

while |𝐷𝑞|
̅̅ ̅̅ ̅ is 1.3% when Re<10. 

The perturbation solution under the FBC, equation (3.41), was also tested using the same 

set of simulation results as shown in Figure 3.4. From Figure 3.4a and 3.4b, the 2-order pressure 

difference obtained from the FBC solution agrees even better with the simulation results with 

Dq ranging from -2.1% to 2.0% for 𝜖 from 0.15 to 0.60 when inertial effects are weak (Re=2) 

and the mean effective deviation |𝐷𝑝|
̅̅ ̅̅ ̅ is 1.1%. Similar to the PBC, results from the FBC 

increasingly deviate from simulation results when Re>10. Overall, Dq ranges from -3.2% to 

3.7% and the mean effective deviation |𝐷𝑝|
̅̅ ̅̅ ̅ is 1.6% when Re is in the range of 0.1 to 20. When 

Re is greater than 10, |𝐷𝑝|
̅̅ ̅̅ ̅ increases to 2.0% whereas |𝐷𝑝|

̅̅ ̅̅ ̅ is less than 1.4% under the flow 

regime with weak inertial effects. 

3.4.3 Comparison with previous perturbation solutions  

A wide range of definitions were used in previous studies to describe the ability of a fracture 

to pass fluid, these include the fracture permeability k, friction factor f, resistance R and 

transmissivity T (e.g., Nazridoust et al. 2006; Nicholl et al. 1999; Yang et al. 1995; Zimmerman 

and Bodvarsson 1996). The definitions are based mostly on the incorporation of the equivalent 

hydraulic aperture in their formulations. In this section, we further assess the performance of 

our derived perturbation solution by comparing the obtained results with previously published 

studies. The FBC solution, equation (3.41), is compared with the perturbation solutions (up to 

2-order) proposed by Kitanidis and Dykaar (1997) and Basha and El-Asmar (2003) in terms of 

estimating the fracture transmissivity T and equivalent hydraulic aperture 𝐻𝑒 . In both studies, 

the same boundary condition is adopted by imposing a pressure difference between inflow and 

outflow boundaries, which results in solutions for discharge in a similar form to equation (3.40).  
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Figure 3.5. Results of comparing the FBC perturbation solution derived in the current study 

with perturbation solutions from Kitanidis and Dykaar (1997) and Basha and El-Asmar (2003) 

at different perturbation parameter ϵ (a); and different Reynolds number Re (b). Transmissivity 

T is defined as T=He
3, where He is the equivalent hydraulic aperture obtained from flow 

simulations, perturbation solutions in the current study and previous studies of Kitanidis and 

Dykaar (1997) and Basha and El-Asmar (2003), normalized by Hm. Deviation DH is defined as 

(He-HeS)/HeS×100%, which quantifies the accuracy in terms of estimating He, in which HeS is 

the equivalent hydraulic aperture obtained from flow simulations.  
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Kitanidis and Dykaar (1997) ignored inertial effects by setting Re=0 and, therefore, the 1-

order term vanishes and the solution leads to identical results for both the diverging and 

converging cases (see Figure 3.5). Basha and El-Asmar (2003) considered inertial effects and 

defined the Reynolds number the same as Rp in equation (3.13). Since the ratio of the mean 

aperture to fracture length, Hm/l, is used as the perturbation parameter for series expansion in 

both Kitanidis and Dykaar (1997) and Basha and El-Asmar (2003), their solutions are not 

applicable in conditions where Hm/l≥1. However, results in Figure 3.5a indicate that equation 

(3.41) still provides an accurate estimate of T even when Hm/l is greater than 1, with |𝐷𝐻|̅̅ ̅̅ ̅̅ , the 

mean effective deviation in terms of equivalent hydraulic aperture, equal to 0.4% (Hm/l ranging 

from 1 to 2). To compare our results with previously reported solutions at varying Re, as seen 

in Figure 3.5b, Hm/l is fixed to 0.5. As shown by the plotted crosses, results from Kitanidis and 

Dykaar (1997) are constant throughout the entire range of Re regardless of whether wedges are 

converging or diverging because inertial effects are ignored. Results from Basha and El-Asmar 

(2003), plotted as diamond shapes, are in good agreement with the simulation results at low Re 

but start to deviate at Re=10 especially for the converging case. Equation (3.41) agrees well 

with the simulation results over the entire range of Re for both diverging and converging 

wedges with the smallest mean effective deviation |𝐷𝐻|̅̅ ̅̅ ̅̅  of 0.5%, in terms of the estimated 

value of He. 

3.5 Discussion 

3.5.1 Validity of the cubic law and Reynolds approximation 

The CL is widely used to estimate flow in fractures in a variety of engineering applications by 

using the constant mean aperture as the equivalent hydraulic aperture. If we accept that a 

deviation of ±10% or less validate the use of the CL for fracture flow prediction, the criteria 

for applying the CL can be derived from equations (3.40) and (3.41): 

 |(1 −
𝜔2

4𝐻𝑚
2)

2

{1 ± 𝜖
9𝑅𝑝

70
(1 −

𝜔2

4𝐻𝑚
2)

2

+ 𝜖2 [
3

20
+

131𝑅𝑝
2

3850
(1 −

𝜔2

4𝐻𝑚
2)

4

]} − 1| ≤ 10%  

 (3.43) 

 |(1 −
𝜔2

4𝐻𝑚
2)

−2

[1 ∓ 𝜖
9𝑅𝑞

35
− 𝜖2 (

3

20
+

52𝑅𝑞
2

13475
)] − 1| ≤ 10%  (3.44) 

The validity of the CL depends on small ω over both the mean aperture and fracture length 

with small Re. The former represents the geometrical condition in which the fracture wall 

geometry approaches parallel plates as ω decreases. The latter accounts for the dynamical 

condition in which inertial effects are negligibly small compared with viscous effects (Oron 
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and Berkowitz 1998). These two conditions combined determine the validity of applying the 

CL to flow predictions for rock fractures.   

Under both the pressure and flow rate boundary conditions, the 0-order terms effectively 

represent the Reynolds approximation to fracture flow. Similar criteria can be derived from the 

perturbation solutions by assuming that a deviation of ±10% or less is acceptable for the 

Reynolds equation to hold valid: 

 |±𝜖
9𝑅𝑝

70
(1 −

𝜔2

4𝐻𝑚
2)

2

+ 𝜖2 [
3

20
+

131𝑅𝑝
2

3850
(1 −

𝜔2

4𝐻𝑚
2)

4

]| ≤ 10%  (3.45) 

 |∓𝜖
9𝑅𝑞

35
− 𝜖2 (

3

20
+

52𝑅𝑞
2

13475
)| ≤ 10%  (3.46) 

The Reynolds approximation is valid when ω is small over the fracture length and small 

Re, suggesting a slow variation of fracture aperture with negligible inertial effects, which are 

two fundamental assumptions for deriving the Reynolds equation from the NSE (Zimmerman 

et al. 1991). Figure 3.6 shows the curves of ϵ and Re thresholds, below which the combined 

contribution from higher-order terms (i.e., 1-order and 2-order) is within ±10% of the 0-order 

terms for the diverging wedge case based on equations (3.45) and (3.46). The curves can 

therefore be considered as the limits in pairs of ϵ and Re values where below the curves the 

Reynolds approximation can provide a reasonable estimate of flow. 

 

Figure 3.6 Combinations of 𝜖 and R where below the curves, higher-order terms are within ±10% 

of the 0-order terms for diverging cases. R represents Rp for the PBC and Rq for the FBC as 

defined in Section 3.3, where 𝜔/𝐻𝑚 is set to 0.9.  
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3.5.2 Effect of aperture variation 

 

Figure 3.7. Effect of ω/Hm on the 0-order solution (Reynolds approximation). 0-order 

transmissivity T0=H0
3 and H0 is the equivalent hydraulic aperture from the 0-order solution 

normalized by the mean aperture Hm.  

From the dimensional solutions in Section 3.4.1, the aperture variation ω along the fracture 

length contributes to the deviation of results from the CL through both the perturbation 

parameter ϵ and ω/Hm. It can be seen from equations (3.40) and (3.41) that higher-order terms 

approach 0 (i.e., perturbation solutions approach the Reynolds approximation) and the 

solutions become dominated mainly by 0-order terms when ω is much smaller than the fracture 

length. 0-order terms approach 1 (i.e., Reynolds equation approaches the CL) when ω is much 

smaller than the mean aperture. The effect of ϵ has been discussed in previous sections and we 

now look at the effect of ω/Hm. Figure 3.7 illustrates the effect of ω/Hm on the 0-order solution, 

in which T0 increases from 0.64, when ω/Hm is 0.9, to 0.98 when ω/Hm=0.2. The contribution 

of the Reynolds approximation to the solutions, which depends solely on the value of ω/Hm, 

decreases as the values of ϵ and Re increase (see Figures 3.3 and 3.4). Therefore, higher-order 

terms need to be included to provide a better estimate when either the aperture variation along 

the fracture length becomes significant or the inertial terms have greater effects. 
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3.5.3 Inertial effects 

 

Figure 3.8. Rp normalized by Re at different Re for diverging and converging cases.  

Inertial effects are commonly quantified by the Reynolds number, which describes the ratio of 

inertia to viscous forces. Our results indicate that perturbation solutions start to deviate from 

the numerical simulation results when entering the strong inertial regime (see Figure 3.3 and 

3.4). This is due to the fact that as Re surpasses its critical value, higher-order terms (e.g., the 

2-order in this study) begin to show more contribution than lower order terms (e.g., the 0-order 

term in this study), therefore, more higher-order terms (e.g., 3-order) need to be incorporated 

to provide more accurate results. However, from Figure 3.4b, our 2-order FBC solution is still 

a good match with simulation results even when Re is greater than 10. Another reason for the 

relatively sharp increase in the deviation of equation (3.40) from the numerical simulation 

results in the converging case (in Figure 3.3b) is a result of over-estimating the Reynolds 

number using Rp. As can be seen in Figure 3.8, the over-estimation of the Reynolds number for 

converging cases increases to more than 10% when Re=8 and over 20% at Re=16. This over-

estimation of inertial effects leads to a further increase in the proportion of contributions from 

higher-order terms, resulting in a greater over-prediction of the discharge for the converging 

wedge case. This does not happen with the FBC cases since the known discharge Q is in the 

definition of Rq. In addition, the mismatch between Rp and Re increases as Re increases, which 

leads to more deviation for terms higher than 0-order when Re is above moderate values. 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.1 1 10 100

R
p
/R

e

Re

Diverging

Converging



P a g e  | 66 

 

 

3.6 Conclusions  

In this study, two sets of perturbation solutions have been derived under both the pressure 

boundary condition (PBC) and flow rate boundary condition (FBC) for flow in two-

dimensional fractures with slowly varying apertures. The stream function, up to the second-

order, is derived for both boundary conditions. Solutions are then obtained by incorporating 

the auxiliary condition, which defines a mean pressure difference along the fracture length. To 

demonstrate the application, the solutions have been applied to two-dimensional symmetric 

wedges and fractures with sinusoidal varying walls using the ratio of aperture variation to 

fracture length, ω/l, as the perturbation parameter. The results from our perturbation solutions 

are then compared with numerical simulation results by solving directly the Navier-Stokes 

equations and results from published perturbation solutions. In general, our solutions for both 

boundary conditions agree well with the numerical simulation results. For flow in wedge-

shaped fractures, the PBC solution has an effective deviation |𝐷𝑞|
̅̅ ̅̅ ̅ of 1.6% for ϵ ranging from 

0.15 to 0.6 at Re=2; and an effective deviation |𝐷𝑞|
̅̅ ̅̅ ̅ of 1.7% for Re ranging from 0.1 to 20 when 

ϵ=0.1. The solution for the FBC has a slightly better performance with an effective deviation, 

|𝐷𝑝|
̅̅ ̅̅ ̅, of 1.1% and 1.6% for the same combinations of ϵ and Re. Closer agreement can be found 

for the FBC solution over the PBC solution for higher Re, mainly due to the mismatch between 

Re and Rp, where Qm is used instead of the exact discharge, Q, to describe the inertial effects 

in the PBC. It is, therefore, concluded that the FBC solution provides a more accurate estimate 

of the fracture transmissivity and equivalent hydraulic aperture.  

Criteria for the validity of applying the cubic law and Reynolds approximation have also 

been derived based on the second-order perturbation solutions. In addition to the required 

geometrical conditions, both the cubic law assumption and Reynolds approximation are only 

valid for weak or negligible inertial effects. In this sense, the perturbation solutions derived in 

this study provide better alternatives for analysing the hydraulic properties of fractures and 

channels for more complex flow conditions and a wider range of geometries. The present work 

does not solve directly the problem of flow in a fracture network (Jiang et al. 2014; Jiang et al. 

2013; Xu et al. 2018b). However, as in a few existing studies (e.g., Huang et al. 2018; Richeng 

et al. 2018) where the complex discrete fracture geometric properties (e.g., surface roughness 

and contacts) are incorporated in the fracture network for flow modelling, the solutions 

presented in this work may be extended to study such problems once the fracture network 

geometrical information is provided, although further work may be needed. 



P a g e  | 67 

 

 

Appendix A: Derivation of perturbation solutions 

In this appendix, we summarise the derivation process of the stream function and perturbation 

solutions (to the second-order) under both the pressure and flow rate boundary conditions. 

A1 Perturbation solution under the pressure boundary condition 

Equation (3.14) can be expanded in terms of the perturbation parameter ϵ using equation (3.17) 

with terms of different orders. For the 0-order: 

 
𝜕4Ψ0

𝜕𝑌4
= 0  (3.47) 

Integrating equation (3.47) over Y and making use of the 0-order boundary condition: 

 
𝜕Ψ0

𝜕𝑌
|
𝑌=±1

= 0, Ψ0|𝑌=±1 = ±
𝑄0

2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡  (3.48) 

the stream function at the 0-order can be obtained: 

 Ψ0 = 𝑄0 (
3

4
𝑌 −

1

4
𝑌3) (3.49) 

Substituting the 0-order stream function into the auxiliary condition i.e., equation (3.15) and, 

after integration, the 0-order discharge is derived as: 

 𝑄0 = (∫
1

8𝜔ℎ3

𝜔

0
𝑑𝑋)

−1

  (3.50) 

Following the same procedure, using the 1-order terms and equation (3.14): 

 
𝜕4Ψ1

𝜕𝑌4
= −2𝑅𝑝ℎ𝑋

𝜕Ψ0

𝜕𝑌

𝜕2Ψ0

𝜕𝑌2
− 𝑅𝑝ℎ𝑋𝑌

𝜕Ψ0

𝜕𝑌

𝜕3Ψ0

𝜕𝑌3
− 𝑅𝑝ℎ

𝜕Ψ0

𝜕𝑋

𝜕3Ψ0

𝜕𝑌3
   (3.51) 

Integrating equation (3.51) over Y and making use of the 1-order boundary condition: 

 
𝜕Ψ1

𝜕𝑌
|
𝑌=±1

= 0, Ψ1|𝑌=±1 = ±
𝑄1

2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡   (3.52) 

the stream function at the 1-order is obtained: 

 Ψ1 =
3𝑅𝑝𝑄0

2ℎ𝑋

1120
(5𝑌−11𝑌3 + 7𝑌5 − 𝑌7) +

1

4
𝑄1(3𝑌 − 𝑌3)   (3.53) 

Substituting the 1-order stream function into the auxiliary condition and, after integration, the 

1-order discharge is derived: 

 𝑄1 = ∫
9𝑅𝑝𝑄0

3ℎ𝑋

280𝜔ℎ3
𝑑𝑋

𝜔

0
  (3.54) 

Similarly, for the 2-order: 
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𝜕4Ψ2

𝜕𝑌4
= 𝑅𝑝[ℎ

3 𝜕Ψ0

𝜕𝑌

𝜕

𝜕𝑋
(
1

ℎ2
𝜕2Ψ1

𝜕𝑌2
) − 2ℎ𝑋

𝜕Ψ1

𝜕𝑌

𝜕2Ψ0

𝜕𝑌2
− ℎ𝑋𝑌

𝜕Ψ1

𝜕𝑌

𝜕3Ψ0

𝜕𝑌3
− ℎ

𝜕Ψ0

𝜕𝑋

𝜕3Ψ1

𝜕𝑌3
− ℎ

𝜕Ψ1

𝜕𝑋

𝜕3Ψ0

𝜕𝑌3
] −

2 [(6ℎ𝑋
2 − 2ℎℎ𝑋𝑋)

𝜕2Ψ0

𝜕𝑌2
+ (6ℎ𝑋

2 − ℎℎ𝑋𝑋)𝑌
𝜕3Ψ0

𝜕𝑌3
]   (3.55) 

Using the same approach, the solution of the 2-order stream function is: 

Ψ2 =
𝑅𝑝

2𝑄0

3449600
[ℎ𝑋

2(2875𝑌−8222𝑌3 + 8778𝑌5 − 4488𝑌7 + 1155𝑌9 − 98𝑌11) −

ℎℎ𝑋𝑋(1213𝑌−3279𝑌
3 + 3234𝑌5 − 1518𝑌7 + 385𝑌9 − 35𝑌11)] +

3𝑄0

40
(4ℎ𝑋

2 −

ℎℎ𝑋𝑋)(𝑌−2𝑌
3 + 𝑌5) +

9𝑅𝑝𝑄1ℎ𝑋

560
(5𝑌−11𝑌3 + 7𝑌5 − 𝑌7) +

1

4
𝑄2(3𝑌 − 𝑌3)                             

(3.56) 

Substituting the 2-order stream function into the auxiliary condition to give the solution of the 

2-order discharge: 

 𝑄2 = ∫
3𝑄0

2ℎ𝑋
2

40𝜔ℎ3
−

𝑄0
2ℎℎ𝑋𝑋

20𝜔ℎ3

𝜔

0
𝑑𝑋 + ∫

9𝑅𝑝𝑄0
2𝑄1ℎ𝑋

140𝜔ℎ3

𝜔

0
𝑑𝑋 + ∫

13𝑅𝑝
2𝑄0

4

26950𝜔ℎ3
[ℎ𝑋

2 −
3

4
ℎℎ𝑋𝑋]

𝜔

0
𝑑𝑋  

 (3.57) 

Note that the Reynolds number Rp here is defined as the discharge of a fracture with a constant 

aperture, divided by the kinematic viscosity. 

A2 Perturbation solution under the flow rate boundary condition 

The stream function at each order under the flow rate boundary condition can be derived using 

a similar approach to that discussed in the previous section but with a different form of 

boundary condition, i.e., equation (3.29). Following the same procedure, the stream function 

up to the 2-order can be obtained as shown in equations (3.32) to (3.34). Expanding the 

auxiliary condition by substituting equation (3.30) into equation (3.28) and retaining up to the 

2-order: 

∆𝑃 = −∫ ∫
1

24𝜔
[𝜖2

𝜕2

𝜕𝑋2
(
1

ℎ

𝜕Ψ0

𝜕𝑌
) +

1

ℎ3
𝜕3Ψ0

𝜕𝑌3
+

𝜖

ℎ3
𝜕3Ψ1

𝜕𝑌3
+

𝜖2

ℎ3
𝜕3Ψ2

𝜕𝑌3
] +

𝑅𝑞

24𝜔
[
𝜖

ℎ2
𝜕Ψ0

𝜕𝑋

𝜕2Ψ0

𝜕𝑌2
−

1

0

𝜔

0

𝜖

ℎ

𝜕Ψ0

𝜕𝑌

𝜕

𝜕𝑋
(
1

ℎ

𝜕Ψ0

𝜕𝑌
) +

𝜖2

ℎ2
𝜕Ψ0

𝜕𝑋

𝜕2Ψ1

𝜕𝑌2
−

𝜖2

ℎ

𝜕Ψ0

𝜕𝑌

𝜕

𝜕𝑋
(
1

ℎ

𝜕Ψ1

𝜕𝑌
) +

𝜖2

ℎ2
𝜕Ψ1

𝜕𝑋

𝜕2Ψ0

𝜕𝑌2
−

𝜖2

ℎ

𝜕Ψ1

𝜕𝑌

𝜕

𝜕𝑋
(
1

ℎ

𝜕Ψ0

𝜕𝑌
)] 𝑑𝑌 𝑑𝑋 

 (3.58) 

Substituting the stream function solutions (equations (3.32) to (3.34)) into equation (3.58) and, 

after integration and rearrangement, the pressure difference up to the 2-order is: 

 ∆𝑃 = ∫
1

8𝜔ℎ3

𝜔

0
− 𝜖

9𝑅𝑞ℎ𝑋

140𝜔ℎ3
− 𝜖2 [

3ℎ𝑋
2−2ℎℎ𝑋𝑋

40𝜔ℎ3
+

13𝑅𝑞
2

13475𝜔ℎ3
(2ℎ𝑋

2 −
3

2
ℎℎ𝑋𝑋)] 𝑑𝑋  (3.59) 

Note that the Reynolds number Rq here is defined as half of the given fracture discharge divided 

by the kinematic viscosity. 
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Appendix B: Flow in a two-dimensional fracture with periodic aperture 

variations 

 

Figure B1. An example of a periodically varying fracture with sinusoidal wall profiles 

The proposed perturbation solutions were tested further for the fracture case with sinusoidal 

wall profiles, as shown in Figure B1. The dimensionless half aperture is given by (Basha and 

El-Asmar 2003; Hasegawa and Izuchi 1983): 

 ℎ(𝑥) = ℎ𝑚[1 − 𝑎 cos(
2𝜋𝑥

𝑙
)]  (3.60) 

where hm is the mean half aperture and α is the magnitude of wall roughness (Zimmerman et 

al. 1991), the perturbation parameter here is given by ϵ=ω/l (ω=4a). Substituting equation 

(3.60), together with equation (3.26), into the derived dimensionless PBC perturbation solution, 

one can obtain the dimensional solution up to 2-order (Gradshteyn and Ryzhik 2014) as: 

                                          𝑄 =⁡−
𝐻𝑚

3

12𝜇

∆𝑝

𝑙
𝑄0 [1 − 𝜖2𝜋2

1−𝑎2

16(2+𝑎2)
(
1

5
+

26𝑅𝑝
2𝑄0

2

13475
)] (3.61) 

                                                        𝑄0 =
2(1−𝑎2)5/2

2+𝑎2
 (3.62) 

where the Reynolds approximation, equation (3.62), can also be found in e.g., Basha and El-

Asmar (2003); Zimmerman et al. (1991). Using the same procedure for the FBC condition, one 

can obtain: 

                            ∆𝑝 = −
12𝜇𝑙𝑄

𝐻𝑚
3

2+𝑎2

2(1−𝑎2)5/2
[1 + 𝜖2𝜋2

1

32(1−𝑎2)3/2
(
1

5
+

104𝑅𝑞
2

13475
)]   (3.63) 

y

x

𝑓𝑡 = 𝑓(𝜖𝑥)
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Figure B2. Comparison of the discharge obtained from the PBC solution and simulation results. 

The plots show the effects of the perturbation parameter ϵ and Reynolds number Re. (a) Q at 

different ϵ, and (b) Q at different Re, where Q is the volumetric flow rate from different 

solutions normalized by Qm.  
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Figure B3. Comparison of the pressure difference obtained from the FBC solution and 

simulation results showing the effects of the perturbation parameter ϵ and Reynolds number 

Re. (a) ∆P at different ϵ, and (b) ∆P at different Re. ∆P is the pressure difference from different 

solutions normalized by ∆Pm. 
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Similar to Section 3.4.2, equations (3.61) and (3.63) were compared with simulation results. 

In general, both solutions agree well with simulation results as shown in Figures B2a and B3a, 

for different ϵ in the range of 0.12-0.60, where Re and α/hm are set at 2 and 0.3. The mean 

effective deviation of PBC and FBC solutions from the numerical solution are generally 

identical at 1.2%. For different Re in the range of 0.1-30, the results are shown in Figures B2b 

and B3b, where ϵ and α/hm are set at 0.4 and 0.2, respectively. The mean effective deviation of 

the PBC solution from the numerical solution is 1.6%, while the FBC solution has more 

accurate results with a mean effective deviation of 1.4%. 
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Abstract 

This study presents a non-linear Reynolds equation (NRE) for single-phase flow through a rock 

fracture. The fracture void geometry is considered formed by connected wedge-shaped cells at 

pore-scale, based on the measured aperture field. An approximate analytical solution to the 

two-dimensional Navier-Stokes equations is derived using the perturbation method to account 

for flow non-linearity in wedge-shaped geometries. The derived perturbation solution shows 

that the main contributors to the general flow behaviours in local wedges are the degree of 

aperture variation relative to mean aperture, the ratio of the aperture variation to length, the 

Reynolds number and the degree of wedge asymmetry. The transmissivity of the entire fracture 

is then solved with a field of varying local cell transmissivity along both longitude and latitude 

directions on the fracture plane. The performance of the proposed NRE is tested against flow 

experiments and flow simulations by solving numerically the three-dimensional Navier-Stokes 

equations for three cases of rock fractures with different void geometries. Results from the 

proposed model are in close agreement with those obtained from simulations and experiments. 

The pressure difference obtained from the NRE demonstrates the same non-linear behaviour 

as that obtained from the simulations in the strong inertial regime. Overall, the mean 

discrepancy between the proposed model and flow simulations is 5.7% for Reynolds number 

ranging from 0.1 to 20, indicating that the proposed NRE captures well the flow non-linearity 

in rock fractures.  
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4.1 Introduction 

Flow often passes preferentially through fractures in sub-surface rocks with low permeability 

in a wide range of engineering applications including oil/gas recovery from fractured reservoirs, 

heat extraction from deep enhanced geothermal systems and hazardous waste disposal in 

underground repositories (Brown 1987; Hunt and Sahimi 2017; Mallikamas and Rajaram 2010; 

Tsang and Tsang 1987; Xu et al. 2015; Zimmerman and Bodvarsson 1996). As a basic element 

of understanding a complex fracture system, knowledge of flow behaviours in a single fracture 

is fundamental to addressing flow-related problems in fractured rock masses (Pyrak-Nolte et 

al. 1988; Zou et al. 2017). Rock fractures can normally extend to metres or greater in length 

and width while the apertures are mostly on the scale of millimetres or microns (Brown et al. 

1998; Konzuk and Kueper 2004; Xu et al. 2018). An initial simplifying approach to modelling 

flow through a rock fracture is to assume that the fracture is bounded by two parallel planar 

walls with a constant aperture (Lomize 1951; Snow 1951; Witherspoon et al. 1980). This 

approximation yields the cubic law, which relates linearly the flow rate to the cube of the 

fracture aperture at a given pressure gradient (Renshaw 1995; Tsang and Witherspoon 1981). 

The cubic law has since been widely used to study flow-related problems in rock fractures. 

However, from experiments and numerical simulations, the applicability of the cubic law 

approximation to modelling fluid flow in realistic rock fractures is problematic as fracture 

surface roughness can generate a variable aperture within the fracture plane and this effect is 

not considered in the cubic law (Konzuk and Kueper 2004; Neuzil and Tracy 1981; 

Witherspoon et al. 1980). To account for the spatially varying feature of fracture apertures, the 

Reynolds equation has been adopted to include the aperture variation of local cells at pore-

scale (Brown 1987; Walsh 1981). The Reynolds equation assumes that the cubic law holds at 

each local aperture position under the geometrical and kinematical conditions of gradual 

aperture change and negligible inertial effects (Brush and Thomson 2003; Oron and Berkowitz 

1998). Although the Reynolds approximation is consistent with the laboratory observation that 

the variable aperture field and the extent of the fracture surface contact both play essential roles 

in determining fracture hydraulic properties, flow is found over-estimated by up to 47% when 

compared with experimental results (Nicholl et al. 1999; Yeo et al. 1998). This discrepancy 

may largely be due to the inaccurate quantification of the effect of aperture variability and not 

considering the spatial undulation of fracture mid-surface, which can lead to tortuous flow 

paths (Brush and Thomson 2003; Lee et al. 2014; Mallikamas and Rajaram 2010).  
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To improve the performance of the classic models (i.e. the cubic law and Reynolds 

equation), modifications have been incorporated to quantify the effect of fracture surface 

roughness on flow behaviours. For example, Ge (1997) proposed a modified version of the 

Reynolds equation by considering the effect of local tortuosity and later evolved into the 

concept of perpendicular aperture, where the originally measured local vertical apertures were 

adjusted to be perpendicular to the assumed local flow directions. Oron and Berkowitz (1998) 

conducted a leading-order approximation to the two-dimensional (2D) Navier-Stokes 

equations (NSE) and argued that the fracture aperture should be determined by the geometry 

of each identified fracture segment. Nicholl et al. (1999) obtained the transmissivity of a local 

wedge-shaped cell from the analytical solution under the creeping flow condition and also 

evaluated different approximate formulations for the local transmissivity, e.g., using arithmetic 

and harmonic average schemes. Others attempted to improve directly the cubic law by 

introducing modifying factors from surface roughness indices (e.g. Olsson and Barton, 2001) 

and statistical quantifications of surface roughness effects (e.g. Nazridoust et al., 2006). In 

general, a number of the modified cubic law based models have been found to improve the 

flow prediction of the classic models (Konzuk and Kueper 2004). However, most of the pore-

scale modifications are based on subjective choices of aperture definition for local cells or 

applying direct average schemes to adjacent apertures. As a result, their robustness can be 

affected by the resolution of the aperture field (Berkowitz 2002). For modifications at the scale 

of a single fracture, the validity of these approaches may vary from case to case and the applied 

modifications are often less successful when strong channelling effects are present. In addition, 

inertial effects are either totally neglected in previously published cubic law based models or 

the flow dynamical condition is restricted to the Darcy flow regime where the Reynolds number 

(R) is less than one. 

The three-dimensional (3D) Navier-Stokes equations (NSE) can provide an accurate 

description of flow through rock fractures with complex and irregular void geometry 

(Zimmerman and Bodvarsson 1996). The exact analytical solution to the NSE is only available 

for limited cases e.g. fractures with parallel planar walls. Solving numerically the NSE for 3D 

rock fractures with fine representation of the void geometry is computationally demanding, 

which has restricted its application to mostly small-scale problems (Brush and Thomson 2003; 

Wang et al. 2018; Zou et al. 2017). In this context, a further extension to the cubic law 

assumption was made by deriving approximate analytical solutions to the NSE using the 

perturbation method for 2D fractures with sinusoidally, linearly and quadratically varying 
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apertures (Basha and El-Asmar 2003; Hasegawa and Izuchi 1983; Kitanidis and Dykaar 1997). 

Previous studies have shown that the results from perturbation solutions are consistent with 

numerical simulation results (Sisavath et al. 2003; Wang et al. 2019). However, the application 

of these solutions to realistic rock fractures is rather limited. One problem associated with the 

2D perturbation solutions is that the aperture can only vary in one direction, but in realistic 3D 

rock fractures, the variation of apertures should be in both longitude and latitude directions 

(Zimmerman 2005). In two-dimensional fractures, flow is blocked and the overall fracture 

transmissivity becomes zero when the two fracture walls are in contact. However, in realistic 

3D rock fractures, fluid flows around the contact area through available close channels and the 

overall fracture transmissivity is not determined by a series of parallel 2D channels but rather, 

a complex 3D tortuous channel network (Tsang and Tsang 1987; Zimmerman et al. 1992). 

The purpose of this study is to propose a non-linear flow model that accounts for the effects 

of fracture void geometry and inertia on the hydraulic properties of rock fractures. The 

proposed non-linear version of the Reynolds equation is based on representing the measured 

fracture void geometry with a series of connecting wedges formed using adjacent apertures in 

both longitude and latitude directions along the fracture plane, which is a common 

approximation approach for the fracture void geometry (Brush and Thomson 2003; Ge 1997). 

The perturbation solution to the NSE is derived to the second-order for two-dimensional 

wedge-shaped fractures using the ratio of the aperture variation to length as the perturbation 

parameter. This study differs from previous perturbation analyses in that the derived 

perturbation solution is used to describe the flow behaviours in wedge-shaped local cells rather 

than obtaining the transmissivity of the entire fracture. Pressure and flow fields are then solved 

in a varying pore-scale transmissivity field along both directions of the fracture plane with a 

constant pressure difference between inflow and outflow boundaries to obtain the overall 

fracture transmissivity. The performance of the proposed non-linear version of the Reynolds 

equation is assessed by comparing the predictions with experimental measurements and results 

from solving numerically the 3D NSE in three rock fractures. These fractures have different 

relative surface roughness and contact ratios and the assessment is done for the range of R from 

0.1 to 20, which covers the Darcy flow regime (R<1), weak inertial regime (1<R<10) and strong 

inertial regime (R>10) (Zimmerman et al. 2004).  
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4.2 Material and method 

4.2.1 Problem formulation 

Without loss of generality, a fracture is assumed to be horizontal with longitudinal (x) and 

latitudinal (y) extents. When estimating or simulating flow in a single rock fracture, the fracture 

void geometry is widely approximated by simply connecting the measured adjacent elevation 

points of the top and bottom surfaces (Brown 1987; Brush and Thomson 2003; Konzuk and 

Kueper 2004). As a result, this approximation discretises the fracture void geometry into a 

series of two-dimensional (2D) connected wedges in both longitude and latitude directions, as 

shown in Figure 4.1. Finding the solution for the transmissivity of each 2D wedge and then 

solve the flow/pressure field of the 3D fracture is used in the original and modified versions of 

the Reynolds equation (e.g. Ge, 1997; Nicholl et al., 1999; Brush and Thomson, 2003).  

 

Figure 4.1 Illustration of a series of two-dimensional connected local wedges along the 

longitude direction x; a similar set of connected wedges can also be formed along the latitude 

direction y. 

Considering a single 2D wedge as shown in Figure 4.2, the top and bottom wall functions 

can be defined as: 
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where bt and bb are, respectively, the top and bottom wall functions in the x direction; h is the 

aperture given by h=bt-bb; x1 and x2 are the locations of the two wedge edges, the length l is 

thus defined by l=x2-x1; hm is the mean aperture given by hm=h(x2)/2+h(x1)/2; a is defined as 

the difference between the two wedge edges i.e., a=h(x2)–h(x1); c describes the wedge 

asymmetry defined by c=bt(x2)-bt(x1)+bb(x2)-bb(x1), where c/2 is equal to the elevation 

difference between the two mid-points at both ends of the wedge. 

0

0.1

0.2

0.3

0.4

0.5

0.6

z

x

ℎ(𝑥1, 𝑦) ℎ(𝑥2, 𝑦)

𝑥1 𝑥2



P a g e  | 82 

 

 

 

Figure 4.2 Illustration of a local wedge along the x direction, the red solid line connects the 

mid-points at both edges of the wedge. 

The governing equations for the incompressible steady-state flow within the wedge-shaped 

representation of local cell are given by the Navier-Stokes equations (NSE) together with the 

condition for mass continuity (Basha and El-Asmar 2003; Zimmerman and Bodvarsson 1996): 

 𝜌(𝑢
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𝜕𝑢
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+

𝜕𝑤

𝜕𝑧
= 0  (4.5) 

where u and w are velocities in the x and z directions, respectively; ρ is the fluid density; p is 

the reduced pressure; and μ is the dynamic viscosity of the fluid.  

For the boundary conditions, a flow rate q per unit width of the fracture (in y) is produced 

with a pressure difference ∆p between the inflow and outflow boundaries; both the top and 

bottom walls are considered having non-slip and impermeable wall features (no flux across the 

walls). 

4.2.2 Perturbation solution 

Exact analytical solution to the NSE is currently only available for limited cases e.g. fractures 

with parallel planar walls, which leads to the cubic law (CL). In this study, perturbation 

expansion is used to find the approximate analytical solution for more complex wall geometries. 

The derivation of the perturbation solution follows mostly the work by Wang et al. (2019) with 

an additional extension to consider geometric asymmetry. This section provides a brief 

description of the approach and one can refer to the previous study for the detailed derivation 

process.  
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The stream function ψ is defined by 

             𝑢 =
𝜕ψ

𝜕𝑧
, 𝑤 = −

𝜕ψ

𝜕𝑥
.  (4.6) 

Substituting the stream function into the NSE in section 4.2.1, the stream function is found to 

satisfy the following relation: 
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For the auxiliary condition, the mean pressure difference over the fracture width and length can 

be assumed to equal a given constant mean pressure difference (Hasegawa and Izuchi 1983), 

leading to: 

    ∆𝑝 = ∫
1
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where the pressure derivative ∂p/∂x can be obtained from equation (4.3) using the stream 

function: 
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Equation (4.8) provides the auxiliary condition that establishes the relationship between the 

mean pressure difference and stream function. The final solution is obtained by solving 

equation (4.8) with the stream function under associated boundary conditions. 

The stream function and pressure difference can be made dimensionless and expressed as 

expanded series with a small parameter ϵ: 

 Ψ = Ψ0 + 𝜖Ψ1 + 𝜖2Ψ2 +𝑂(𝜖3)  (4.10) 

 ∆𝑃 = ∆𝑃0 + 𝜖∆𝑃1 + 𝜖2∆𝑃2 +𝑂(𝜖3)   (4.11) 

where ϵ in this study is defined as ϵ=ω/L, and L is the dimensionless length given by L=l/hm; 

ω is the dimensionless absolute aperture variation defined as ω=|a|/hm; Ψ is the dimensionless 

stream function defined as Ψ =ψ/q; ∆P is the dimensionless pressure difference given as ∆P 

=∆p/∆pm and ∆pm is the pressure difference of flow through a fracture with a uniform aperture 

defined from the CL as: 

           ∆𝑝𝑚 =
12𝜇𝑙𝑄

ℎ𝑚
3   (4.12) 

The solution of the stream function up to the second-order can be derived by substituting 

equation (4.10) into the dimensionless version of equation (4.7) with the associated boundary 

conditions. The dimensionless pressure difference for the first three terms can then be obtained 

from equation (4.8) as 
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(4.15) 

where X is defined as X= ϵx/hm; H is the dimensionless aperture defined as H=h/hm, H′ and H″ 

are the first and second derivatives of H with respect to X; R is the Reynolds number defined 

as R=ρq/μ; Bb is the dimensionless bottom wall function defined as Bb=bb/h.  

4.2.3 Non-linear Reynolds equation 

The equivalent hydraulic aperture hT of the wedge can be defined by multiplying hm by an extra 

modification factor:  

        ℎ𝑇 = ℎ𝑚 ∙ 𝐹𝑝 (4.16) 

where Fp is a modification factor based on the perturbation solution (PS) given by Fp
3=∆pm /∆p. 

Essentially, the equivalent hydraulic aperture of each local wedge within a fracture can be 

obtained from equation (4.16). Incorporating inertial effects can encourage more flow for 

diverging wedge-shaped cell whereas flow is more discouraged for the converging cases (see 

Figure 4.8). Note the limitation of the PS as discussed by Basha and El-Asmar (2003); Wang 

et al. (2019), where an increasingly greater error in the PS is associated with the increase of R. 

Therefore, an assumption is made that the equivalent hydraulic aperture for each local wedge-

shaped cell, when incorporating inertial effects using equation (4.16), should be within the size 

of inflow and outflow apertures under the creeping flow condition. With equation (4.16), the 

proposed non-linear flow model can thus be written in the form: 

                                          
𝜕

𝜕𝑥
[ℎ𝑇

3(𝑥, 𝑦)
𝜕𝑝

𝜕𝑥
] +

𝜕

𝜕𝑦
[ℎ𝑇

3(𝑥, 𝑦)
𝜕𝑝

𝜕𝑦
] = 0   (4.17) 

Equation (4.17) is in a similar form to the Reynolds equation except that the original 

measured apparent aperture h is replaced by hT to incorporate the varying local fracture 

geometry and inertial effects. Equation (4.17) can thus be seen as a nonlinear version of the 

Reynolds equation (NRE) and is solved iteratively in this work using an approach similar to 

that described in Moreno et al.(1988) due to the nonlinearity of Fp.  
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4.3 Model validation 

4.3.1 Flow simulation in three-dimensional rock fractures 

A single fracture (F0.0) was created from an intact granite block using the Brazilian indirect 

tensile loading and the fracture surface morphology was obtained using an advanced 

stereotopometric scanning system as described in Xiong et al.(2018), with both fracture 

surfaces having a dimension of 150 mm×150 mm. The spatial variations of the fracture 

apertures are shown in Figure 4.3a and the corresponding statistical distribution is shown in 

Figure 4.3b, together with the probability density functions. To account for the effect of surface 

contact on flow behaviours, two additional cases were considered where the fracture was 

assumed to be under compression in the direction normal to the fracture plane with normal 

relative displacements of 0.3 mm and 0.5 mm directly applied to the obtained fracture geometry 

of F0.0. These two cases with different contact areas were denoted as F0.3 and F0.5, 

respectively. In total, three different rock fractures were used in this study for the purpose of 

validation and some of their statistics are listed in Table 4.1. The spacing of the scanned grid 

was 0.1 mm in both the x and y direction, with an accuracy of ±25 μm. In this study, the grid 

spacing was optimized to 1 mm to reduce the computational workload for solving the NSE in 

complex 3D geometry with highly detailed surface topography (Zimmerman et al. 2004; Zou 

et al. 2017) while retaining the main geometric effect on flow behaviours. A comparison of the 

results of flow simulations and experiments shows close agreement with a mean absolute error 

of 3% as found in Xiong et al.(2018), indicating that the essential fracture geometry 

information has been well captured.   

Table 4.1 Fracture geometry statistics* 

 F0.0 F0.3 F0.5 

Mean aperture hm (mm) 1.67 1.37 1.18 

Aperture standard deviation σ (mm) 0.70 0.69 0.68 

Relative roughness σ/hm (-) 0.42 0.50 0.58 

Contact ratio Cr (%) 1.64 3.81 7.03 

<ω/hm > (-) 0.16 0.21 0.25 

<ϵ> (-) 0.24 0.23 0.23 

<|c/hm |> (-) 0.20 0.27 0.32 

*<ω/hm> describes the average of ω/hm
 in all wedge-shaped cells; <ϵ> is the average 

perturbation parameter; and <|c/hm |> is the average of absolute c/hm
 of all wedge-shaped cells. 
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(a) 

 

(b) 

Figure 4.3 Aperture distribution of F0.0 for (a) spatial aperture variation where white areas are 

surface contact areas and (b) probability density function of the measured aperture field fitted 

with truncated normal, lognormal and gamma distributions.  

a 

b 
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Figure 4.4 Flow streamlines of the three fracture cases for (a) R=1 and (b) R=20, where blue 

represents the minimum velocity and red is the maximum velocity. The grey areas are fracture 

voids with little flow and white areas are surface contact areas. The inflow q for all simulations 

is along the x direction. 
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Flow simulations in this work were conducted by solving numerically the 3D NSE with 

computational flow dynamics (CFD) code FLUENT in ANSYS. No-flux and non-slip 

boundary conditions were set for fracture walls. Water (at 15°C) was considered in this study 

with a density ρ=999.1 kg/m3 and a dynamic viscosity μ=0.00114 kg/m·s. The mesh scheme 

was optimized to reduce the mesh-related effect on flow simulations. In general, over 1.5 

million hexahedron mesh elements were constructed for each fracture. The inflow boundary 

was assigned a constant mass flow rate and the outflow boundary was set with a constant 

pressure condition. The mass flow rate was progressively increased in the flow simulations, 

corresponding to R ranging from 0.1 to 20.  

To demonstrate the general flow paths within the fractures, flow streamlines are plotted in 

Figure 4.4 using 1000 equally spaced sampling points at the inflow boundary along the three 

fractures tested in this study for R=1 and R=20. As illustrated in Figure 4.4, the flow pattern of 

F0.0 is generally consistent with the aperture distribution shown in Figure 4.3a, where the main 

flow paths and high velocity zones occur in large aperture locations. A comparison of the 

distributions of streamlines of F0.0, F0.3 and F0.5 shows that the streamlines become more 

tortuous as more contact areas are introduced.  For F0.0, the streamlines spread more uniformly 

along the inflow boundary and on the fracture plane, whereas they become more concentrated 

and tortuous for F0.5. As expected, the surface contact has a strong impact on the general flow 

behaviours as it alters the flow paths by forcing the fluid to travel around the contact areas. In 

addition, contact areas are generally surrounded by small apertures and therefore relatively 

little flow is expected to pass through the available channels near the contact areas. 

Consequently, the majority of the flow is forced to travel in limited but well-connected tortuous 

channels with larger apertures as more surface contact areas are present, leading to stronger 

and well-documented channelling effects for flow in rock fractures. 

4.3.2 Model performance 

As mentioned in the previous section, fixed mass flow rates were assigned to the inflow 

boundary of all fractures in flow simulations to attain the corresponding R for each case, as 

shown in Figure 4.5. The pressure at the inflow boundary can then be directly obtained from 

flow simulations and the pressure difference ∆p is calculated accordingly. From the simulation 

results, ∆p demonstrates a non-linear increase as R increases from 0.1 to 20, which suggests a 

non-linear decrease in fracture transmissivity with greater inertial effects. In addition, the 

degree of flow non-linearity is further enhanced as the contact area increases, as caused by 



P a g e  | 89 

 

 

more tortuous flow paths and the formation of eddies near the contact region. To demonstrate 

the robustness of the proposed NRE in describing this flow non-linearity in realistic 3D rock 

fractures, the pressure differences evaluated from equation (4.17) are compared with those 

from flow simulations at different R, as shown in Figure 4.5. The deviation is defined as the 

relative error in estimating the fracture transmissivity: 

                                              𝐷 =
𝑇𝑚𝑜𝑑𝑒𝑙−𝑇𝑟𝑒𝑎𝑙

𝑇𝑚𝑜𝑑𝑒𝑙
× 100%   (4.18) 

where Tmodel is the fracture transmissivity obtained from the NRE and Treal is the fracture 

transmissivity obtained from numerical simulations.  

 

Figure 4.5. The pressure difference ∆p between the inflow and outflow boundaries of tested 

fractures for R ranging from 0.1 to 20, obtained from flow simulations, experiments and the 

proposed NRE.  

In general, the two are in close agreement for all three cases, with the deviation Ds ranging 

from 1.9% to 10.3% with a mean of 5.7%. For F0.0, Ds ranges from 4.6% to 8.6% and the 

mean deviation <Ds> is 6.0%. A slightly higher <Ds> of 6.2 % is observed for F0.3 with Ds in 

the range of 4.0% to 9.9%. F0.5 has the lowest <Ds> of 4.9% in this case and the range of Ds 

is from 1.9% to 10.3%. The distribution of Ds with 0.1<R<20 for all three cases can be found 

in Figure 4.6. In Figure 4.5, two flow test results given in Xiong et al. (2018) for F0.0 at R=1.5 

and R=10.1 were also displayed. The corresponding deviations are 5.9% and 6.6%, respectively, 
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suggesting reasonably accurate estimates of real fracture transmissivity from the proposed flow 

model.  

 

Figure 4.6. Deviation from flow simulations Ds for the proposed NRE, linear version of NRE, 

arithmetic mean (AM) (Bear 1979; Nicholl et al. 1999), harmonic mean (HM) (Bear 1979; 

Nicholl et al. 1999) and the model of Ge (1997), where the mean deviations of these models 

are 5.7%, 9.2%, 25.9%, 13.4% and 15.3%, respectively, as represented by dashed lines.  

Further assessments of the NRE were made by comparing the values of Ds with those 

obtained from previously proposed flow models including the modified Reynolds equation in 

Ge (1997) and Reynolds equation with two average schemes for local transmissivity 

(arithmetic mean AM and harmonic mean HM) (Bear 1979; Nicholl et al. 1999). Ds from the 

linear version of equation (4.17) (i.e. setting R=0 for Fp) is also calculated as an additional 

comparison to demonstrate the difference in estimating the fracture transmissivity when 

neglecting inertial effects. Overall, the highest deviation is observed for AM with a mean of 

25.9% and a maximum of 33.2%. Both the HM and Ge model deviate by less than 15% when 

R is less than 6; however, the deviation rises to 25.4% and 22.2%, respectively, as R increases 

to 20. Among all the tested linear models, the linear version of equation (4.17) demonstrates 

the lowest Ds with <Ds> of 6.1% for R less than 10 when the flow non-linearity is weak. Ds 

from the NRE and its linear version are virtually identical for R less than 1, which is in 

agreement with the results of Zimmerman et al. (2004) that flow can be considered to have 
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linear behaviour in the Darcy flow regime when R<1. The proposed NRE outperformed other 

models in the entire range of R with the lowest <Ds> of 5.7%. <Ds> of the NRE is 4.1% for the 

weak inertial regime and becomes 7.5% when entering the strong inertial flow regime. 

4.4 Discussion 

4.4.1 Flow in pore-scale wedges 

The flow behaviours in pore-scale wedges are mainly affected by wedge geometry (i.e. aperture 

variation and wedge asymmetry) and flow dynamics (i.e. Reynolds number). The zero-order 

PS, equation (4.13), is effectively the Reynolds approximation that merely considers the effect 

of aperture variation on flow. The first-order term of the PS, equation (4.14), has incorporated 

inertial effects, which have opposite impacts for diverging and converging cases (Basha and 

El-Asmar 2003); whereas the second-order term of the PS, equation (4.15), takes into account 

additionally the effect of wedge asymmetry. When the wedge geometry becomes the same as 

fracture with two parallel planar walls, the derived PS becomes the classic CL solution and 

Fp=1.  

 

Figure 4.7 Effect of C on the normalized transmissivity T obtained from the PS (obtained 

transmissivity is normalized by the transmissivity from the CL using the arithmetic mean 

aperture), where the solid and dashed lines are for diverging (+) and converging (-) cases, 

respectively.  
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The degree of wedge asymmetry in this study is described by C (C=c/hm) and to evaluate 

its effect on flow behaviours, ϵ and ω/hm are fixed at 0.1 and 0.2, respectively. As shown in 

Figure 4.7, T decreases as the absolute value of C increases (i.e., as the degree of asymmetry 

increases). At R=10, as the absolute value of C changes from 0 to 0.3, T decreases from 1.13 

to 1.08 for cases of diverging wedges and from 0.87 to 0.83 for converging ones. This suggests 

that flow is increasingly discouraged as the degree of wedge asymmetry increases and the effect 

becomes more pronounced with greater R. It is also evident that the effect of C on wedge 

transmissivity is symmetrical for both cases of diverging and converging wedges, meaning that 

the same effect on flow behaviour can be expected for the same degree of wedge asymmetry, 

regardless of whether C is positive or negative. T from the zero-order and first-order PS is 

independent of C as no asymmetry effect is considered. 

 

Figure 4.8 Effect of R on T obtained from the Reynolds approximation (RA) and PS, where the 

solid and dashed lines are for diverging (+) and converging (-) cases, respectively. 

The effect of Reynolds number R on transmissivity T for Reynolds approximation (RA) 

and PS is illustrated in Figure 4.8, where R ranges from 0.1 to 20, with ϵ, ω/hm and C fixed at 

0.1, 0.2 and 0.3, respectively. As shown in Figure 4.8, inertial effects can have opposite effects 

on flow for diverging and converging cases. For converging wedges, more energy is dissipated 

due to the viscous effect as R increases, resulting in a decrease of T from 0.97 to 0.76 as R 

increases from 0.1 to 20; whereas for the diverging case, T increases from 0.97 to1.28 for the 
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same range of R due to the fact that inertial effects encourage more flow with weak viscous 

effect (Basha and El-Asmar 2003; Wang et al. 2019). From Figure 4.8, the transmissivity 

obtained from the perturbation solution TPS appears to be symmetrical for diverging and 

converging cases. However, on close examination, TPS increases by 32% for diverging wedges 

while it decreases by 22% for the converging ones in the same range of R. The transmissivity 

from the Reynolds approximation TRA remains the same for different R as the inertial effects 

are ignored during the derivation of the Reynolds equation. 

 

Figure 4.9 Effect of ϵ on T obtained from the PS, where the solid and dashed lines are for 

diverging (+) and converging (-) cases, respectively. 

Figure 4.9 shows the effect of ϵ on T obtained from the PS, where ϵ ranges from 0.1 to 0.3 

with ω/hm and C both fixed at 0.2. T increases for diverging wedges but decreases for 

converging ones as ϵ increases from 0.1 to 0.3. For R=10, T for diverging wedges increases 

from 1.11 to 1.41 in the examined range of ϵ, whereas T decreases from 0.86 to 0.65 for 

converging wedges. In addition, the effect of ϵ on T is progressively enhanced as R increases, 

indicating that greater errors are produced for adopting the cubic law assumption when the 

aperture variation and inertial effects become more significant. 
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4.4.2 Limitations 

The main limitation of this study arises from the PS in describing the flow behaviours of wedge-

shaped fractures. The premise of its validity lies in the assumptions that the variation of aperture 

along the fracture length direction is gentle to modest and the dominant flow is in the fracture 

length direction (hence the perturbation parameter ϵ is small). This assumption can be violated 

as the degree of aperture variation increases. However, the feature of gradual aperture change 

is mostly considered and reported for rock fractures (e.g. Zimmerman et al., 1992; Basha and 

El-Asmar, 2003; Sisavath et al., 2003; Wang et al., 2019) and therefore the validity of the 

assumption is warranted in most cases. In addition, the perturbation method provides an 

approximate analytical solution to the problem where more higher-order terms need to be 

incorporated due to high Reynolds number. The error associated with the second-order 

perturbation solution is of the third-order of ϵ and is therefore estimated to be small for fractures 

with gradual aperture changes. The comparison study with the CFD simulation in Wang et al. 

(2019) shows a mean absolute discrepancy of 1.6% for similar wedge-shaped cells when the 

inertial effects are moderate. 

Another limitation of the proposed NRE results from using 2D wedges to represent 3D 

fracture void geometries, i.e., assuming no variation of fracture aperture in the third dimension 

for each local cell. In reality, flow demonstrates much more complex behaviour in 3D voids 

that may include whirling backflows and transverse flow, particularly for high Reynolds 

number, whereas more regular rotational flow with closed streamlines occurs typically in 2D 

representations (Zou et al. 2017). This limitation appears in most existing analytical flow 

models that solve the flow using aperture fields (e.g. Brown, 1987; Ge, 1997; Konzuk and 

Kueper, 2004; Wang et al., 2018). Future work may focus on accounting for the contribution 

of local 3D pore-scale flow to the overall flow nonlinearity, and the transmissivity estimation 

of the entire fracture.  

4.5 Conclusions 

In this study, a non-linear flow model, NRE, has been proposed to improve the flow estimation 

for rock fractures with complex void geometry (rough fracture walls with surface contacts) and 

in flow regimes with moderate inertial effects. The NRE is based on a two-dimensional 

perturbation solution that can accurately estimate the transmissivity at local wedge-shaped cells 

by considering the effects of cell geometry and flow inertia. From the derived perturbation 

solution, it is found that flow through local wedge-shaped cells is mainly affected by the ratio 
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of aperture variation to mean aperture, the ratio of aperture variation to length, the degree of 

wedge asymmetry and the Reynolds number. With the derived solution, flow can then be 

solved for the entire fracture with varying transmissivity at locations within the fracture. To 

examine the performance of the proposed model, flow simulations in rock fractures with 

different relative surface roughness and contact ratios were performed for Reynolds numbers 

ranging from 0.1 to 20, which considers three main flow regimes (from weak to strong inertial 

effects). It has been found that results from the proposed model agree well with simulation 

results, showing that the pressure difference increases non-linearly as the Reynolds number 

increases, and demonstrates that the proposed model can well capture the non-linear behaviour 

of flow. In general, the absolute deviation of the proposed model from simulation results, in 

terms of the estimated transmissivity, is in the range of 2.0% to 10.3% with a mean deviation 

of 5.7% for all examined fracture cases. In addition, there is an absolute deviation of less than 

5.0% between the results from the proposed model and those of flow experiments. In general, 

the proposed NRE captures well the flow non-linearity in rock fractures with complex void 

geometry under flow regimes with weak to moderate inertial effects. This provides a more 

accurate description of flow behaviours in rock fractures and can be used to study further the 

flow-related problems. 
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Chapter 5: Thesis Summary 

5.1 Conclusions 

This work provides analyses of linear and non-linear flow behaviours by considering local 

fracture geometries at pore-scale to develop flow models at the scale of a single rock fracture. 

A modified cubic law has been developed to improve the linear flow prediction of the standard 

cubic law by incorporating the effects of flow tortuosity, aperture variation and local roughness. 

To model the flow non-linearity, approximate analytical solutions to the two-dimensional 

Navier-Stokes equations are derived under both the pressure boundary condition (PBC) and 

flow rate boundary condition (FBC) using the perturbation method. The derived solutions are 

validated against numerical simulations by applying them to the geometry of symmetric 

wedges and fractures with sinusoidal profiles. The FBC solution demonstrates an improved 

flow estimation over the PBC solution, due to a more accurate quantification of inertial effects. 

The derived FBC solution is then extended to cover asymmetric cases for a more realistic 

representation of the pore-scale fracture geometry. A non-linear version of the Reynolds 

equation is developed based on the extended FBC solution to provide a more accurate flow 

prediction and to capture the feature of flow non-linearity, which is not sufficiently considered 

in previous flow models for rock fractures with the complex void geometry. 

5.2 Limitations 

The fundamental limitation of the modified cubic law and non-linear version of the Reynolds 

equation, developed in this research, is in using the two-dimensional pore-scale geometry to 

approximate the realistic local fracture geometry in three-dimensions. Although the error 

produced in this approach can be constrained to a reasonable level with fine measurements of 

the fracture void geometry, three-dimensional flow obviously demonstrates quite different 

behaviours and some of the physical phenomena observed in three-dimensions (e.g., complex 

three-dimensional whirling flow) may not occur in two-dimensions, especially for flow in the 

strong inertial regime.  

In addition, as a one-dimensional cubic law based model, the proposed modified cubic law 

is not able to incorporate the flow channelling effect in two-dimensions. Hence, the 

performance of the modified cubic law may not be warranted in cases where strong channelling 

effects are present due to a variable aperture field. 
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Another limitation in the non-linear Reynolds equation developed in this research is 

associated directly with the validity of the perturbation solution that constitutes the basis of the 

non-linear Reynolds equation. As mentioned in Chapter 3, the perturbation solution is derived 

to the second-order to account for aperture variation, aspect ratio, inertial effects and geometry 

asymmetry. However, as inertial effects become stronger, more higher-order terms need to be 

included to maintain an accurate quantification of the flow behaviours at pore-scale. 

This thesis focuses mainly on flow behaviours at the scale of a single rock fracture and 

aims to provide flow models with improved performance in estimating fracture hydraulic 

properties. However, rock masses often contain fractures that intersect with each other to form 

complex fracture networks. Thus, the performance of the proposed models in simulating fluid 

flow in fracture networks can be affected by e.g., fracture intersections, and further evaluations 

on the model performance in such cases are needed. 

5.3 Future work 

The thesis has provided detailed analyses of the geometrical and kinematical effects on flow 

behaviours in a single rock fracture with complex void geometry. A modified cubic law and 

non-linear version of the Reynolds equation are developed to improve the flow estimation in 

rough rock fractures. For many subsurface projects in fractured rocks, fluid flow is often 

coupled with mechanical, thermal and/or chemical processes. As the two flow models are 

generally dependent only on the fracture void geometry, in the future work, both models may 

be conveniently used as the flow governing equations to study a series of coupled processes, 

providing that the contribution to the alteration of fracture void geometry from each process is 

well quantified.  

The mathematical models presented in this work can also be further improved. The 

modified cubic law can potentially be extended to account for flow channelling effects by 

introducing a robust path searching method to find the main two-dimensional flow paths within 

a three-dimensional rock fracture. A direct improvement to the derived perturbation solution is 

to include more higher-order terms and more general boundary conditions (e.g., permeable 

walls), although the complexity associated with the derivation process and solution formulation 

is expected to increase. For the non-linear version of the Reynolds equation, the focus of the 

future work should be on providing an accurate quantification of flow through more realistic 

pore-scale geometry to improve the overall flow estimation at the scale of a fracture.   

  




