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Abstract Optimization of model parameters is a ubiquitous task in hydrological and environmental
modeling. Currently, the environmental modeling community tends to favor evolutionary techniques over
classical Newton-type methods, in the light of the geometrically problematic features of objective functions,
such as multiple optima and general nonsmoothness. The companion paper (Qin et al., 2018, https://doi.org/
10.1029/2017WR022488) introduced the robust Gauss-Newton (RGN) algorithm, an enhanced version of
the standard Gauss-Newton algorithm that employs several heuristics to enhance its explorative abilities and
perform robustly even for problematic objective functions. This paper focuses on benchmarking the RGN
algorithm against three optimization algorithms generally accepted as “best practice” in the hydrological
community, namely, the Levenberg-Marquardt algorithm, the shuffled complex evolution (SCE) search (with
2 and 10 complexes), and the dynamically dimensioned search (DDS). The empirical case studies include
four conceptual hydrological models and three catchments. Empirical results indicate that, on average, RGN
is 2–3 times more efficient than SCE (2 complexes) by achieving comparable robustness at a lower cost, 7–9
times more efficient than SCE (10 complexes) by trading off some speed to more than compensate for a
somewhat lower robustness, 5–7 times more efficient than Levenberg-Marquardt by achieving higher
robustness at a moderate additional cost, and 12–26 times more efficient than DDS in terms of
robustness-per-fixed-cost. A detailed analysis of performance in terms of reliability and cost is provided.
Overall, the RGN algorithm is an attractive option for the calibration of hydrological models, and we
recommend further investigation of its benefits for broader types of optimization problems.

1. Introduction

Optimization of model parameters is a key step in environmental model calibration. In many hydrological
(rainfall-runoff) models, parameters are not measurable and are hence estimated through calibration against
observed data using objective functions to quantify the model goodness of fit. In hydrological modeling, the
response of interest is typically streamflow, using objective functions such as the sum of squared errors (SSE),
Nash-Sutcliffe efficiency (NSE), and related functions (Doherty, 2005; Hill et al., 2015; Tolson & Shoemaker,
2007). Probabilistic modeling, for example, using Bayesian techniques, also leads to optimization problems
when searching for the maximum of the posterior distribution (e.g., Kuczera et al., 2016). In many common
instances, posterior distributions and likelihood functions take the form of SSE functions, further highlighting
the connection between optimization and probabilistic analysis.

The performance of an optimization algorithm—namely, its reliability in finding the best-fit parameter set at
a low computational cost—depends on the properties of the objective function. It is well-known that for
models that are strongly nonlinear with respect to their parameters, SSE-type objective functions depart from
a well-behaved quadratic shape and exhibit irregular features, most notably multiple optima (Bates & Watts,
2007). In hydrological contexts, model multioptimality has been vividly illustrated by Duan et al. (1992),
Kavetski and Clark (2010), and many others. Ideally, the optimization algorithm should find the best—glo-
bal—optimum; however, in practice this is difficult to achieve and may depend on the initial solution esti-
mates (i.e., on the starting points of the search). Another degeneracy frequently encountered in
environmental models is nonsmooth dependence of model responses on model parameters, which trans-
lates into nonsmoothness of the objective function surface (Kavetski & Kuczera, 2007). Other problematic fea-
tures include high parameter correlations, flat (insensitive) regions in the objective function, and so forth.
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In response to these numerical challenges, a wide range of optimization algorithms have been developed in
the hydrological and broader mathematical/engineering literature. In general, optimization methods can be
classified into multiple groups: local versus global depending on their ability to find the global optimum,
smooth versus nonsmooth depending on their assumptions about the smoothness of the objective function
surface, deterministic versus stochastic depending on whether the search is randomized, and so forth. The
distinction between local versus global methods is of particular relevance to this work:

• Local methods, in particular traditional gradient-based algorithms such as Newton-type methods, which
assume the objective function is continuous (smooth) and near quadratic. Newton-type methods include
Gauss-Newton-type algorithms tailored to SSE objective functions (e.g., the Levenberg-Marquardt [LM]
algorithm), quasi-Newton algorithms applicable to general objective functions, and others (Nocedal &
Wright, 2006). Newton-type methods tend to converge fast, but typically only to the optimum “nearest”
to the initial search point, making them ill-suited for problems with macroscale multioptimality.
Moreover, due to their reliance on derivatives, Newton-type methods often behave erratically in the pre-
sence of microscale roughness;

• Global methods, such as the shuffled complex evolution (SCE) algorithm (Duan et al., 1992), the dynami-
cally dimensioned search (DDS) algorithm (Tolson & Shoemaker, 2007), AMALGAM (Vrugt et al., 2009),
and others. These methods are designed to improve the chance of convergence to the global optimum
from a broader range of initial points, and to be less susceptible to microscale roughness. However, global
optimization tends to be computationally costly in terms of the number of objective function calls, and sus-
ceptible to the curse of dimensionality (Tolson & Shoemaker, 2007).

In hydrological modeling, current perceptions favor evolutionary optimization methods, on the basis of their
general robustness and better global convergence properties. Evolutionary optimizationmethods are used in
the studies of Duan et al. (1992), Tolson and Shoemaker (2007), Vrugt et al. (2009), Arsenault et al. (2014), and
others. Nonetheless, Newton-type methods continue to be used in studies including Doherty (2005), Kavetski
et al. (2007), Qin et al. (2017) and others, with their speed being of particular importance in computationally
challenging problems (Hill et al., 2015).

Interest in revisiting Newton-type methods arises from the conclusions of several recent studies. First,
Kavetski et al. (2018) have argued that the ultimate characteristic of interest in practical applications is not
robustness on its own but rather efficiency defined as the ability to find desired optima at a low cost. They
showed that in 8 of 12 modeling scenarios the LM algorithm was more efficient than the SCE algorithm
because its much cheaper cost per invocation allowed it to match SCE’s robustness through multiple invoca-
tions. Achieving global convergence through multiple invocations is the essence of the “multistart” approach
(Kavetski et al., 2007; Skahill & Doherty, 2006; Tolson & Shoemaker, 2007) but in practice is necessarily con-
strained by the computational cost of a single algorithm invocation. Second, there are opportunities for
improving the performance of Newton-type methods. Some of these avenues are model-intrusive, for exam-
ple, smoothing the model and/or objective function (Kavetski & Kuczera, 2007) or, somewhat analogously,
using smooth emulators (Koziel & Leifsson, 2013). Other avenues include using q-gradient techniques that
seek to inform the Newton search direction by the objective function shape at the larger scale to avoid being
misled by local irregularities (Gouvêa et al., 2016). Motivated by these ideas, Qin et al. (2018) introduced the
robust Gauss-Newton (RGN) algorithm—a modification to the Gauss-Newton (GN) algorithm that dramati-
cally improves its robustness characteristics. The aspiration of the RGN approach is to achieve robustness
comparable to evolutionary methods at a fraction of the computational cost, hence yielding higher overall
efficiency. Empirical tests confirm that the RGN algorithm vastly improves on the standard GN algorithm
(Qin et al., 2018). The logical question taken up in this study is then—how does RGN compare against estab-
lished “best-practice” evolutionary and Newton-type algorithms?

2. Aims

The aim of this paper is to compare the RGN algorithm against a selection of optimization methods generally
considered as best practice in the hydrological community, over a range of representative hydrological mod-
els and catchments. More specifically, our aims are to

1. benchmark the RGN algorithm against SCE, LM, and DDS over four hydrological models and three catch-
ments, using reliability, cost, and efficiency metrics of algorithm performance and
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2. compare the convergence characteristics of RGN versus SCE, focusing on the rate of progress of the algo-
rithms and on the convergence patterns.

The remainder of this paper is organized as follows. Section 3 reviews the theory of least squares model opti-
mization and provides key background on the RGN algorithm and the benchmarking algorithms. Section 4
describes the case study setup and performance metrics. Section 5 reports the case study results, followed by
section 6, which discusses and interprets the empirical findings using theoretical insights. Section 7 sum-
marizes the main conclusions and outlines directions for further work.

3. Theory and Algorithms
3.1. Least Squares Calibration Problem

The classical form of the model calibration problem is given by the optimization of an objective function Φ
with respect to the parameters θ = {θk, k = 1,⋯,Nθ} of a hydrological model H(θ; x),

θ optð Þ ¼ argmin
θ

Φ θð Þ; θ Lð Þ ≤ θ ≤ θ Hð Þ (1)

where θ(opt) is the optimal parameter set, θ(L) and θ(H) are the lower and upper bounds, and x represents other
model inputs (such as time series of precipitation, potential evapotranspiration, and others).

The objective function serves as a measure of mismatch between themodel predictions of a quantity of inter-
est (here streamflow time series y given inputs x) and observed data ey. The model-data mismatch is typically
quantified using functions derived from SSE criteria,

ΦSSE θð Þ ¼ 1
2
r θð ÞT r θð Þ ¼ 1

2
∑r2t θð Þ (2)

r θð Þ ≔ r θ;ey; x½ � ¼ ey� H θ; xð Þ (3)

where ey ¼ feyt; t ¼ 1;⋯;Neyg is the vector of observed responses, r is the vector of model residuals, and T
denotes the transpose operation. To avoid clutter, we omit the dependence of r(θ) and Φ(θ) on x and ey.
SSE-type objective functions are ubiquitous in hydrology and general modeling. In addition to their intuitive
appeal, the SSE formulation can be derived from the general statistical technique of least squares inference
(e.g., Bates & Watts, 2007; Kavetski, 2018). While in its simplest form the SSE function assumes the residuals
follow a Gaussian distribution, the SSE formulation can be readily extended to allow for heteroscedasticity
and skew of residual errors (e.g., Bates & Campbell, 2001; Kuczera, 1983; McInerney et al., 2017).

Alternative objective functions that fall outside the SSE family include, for example, metrics based on sums of
absolute (rather than squared) errors (e.g., Zhao, 1992). The optimization of non-SSE objective functions is
beyond the immediate scope of this study but is of interest from a more general perspective. We comment
on the applicability of the contributions of this work to the optimization of general objective functions
towards the end of the presentation.

3.2. Gauss-Newton and Related Methods

The Gauss-Newton algorithm and related techniques are based on the solution of the normal equations,

JTJ δ ¼ �JT r (4)

where J = ∂r/∂θ, defined as fJt;k ¼ ∂rt=∂θk ; t ¼ 1;⋯;Ney; k ¼ 1;⋯;Nθg, is the Jacobianmatrix of the function
r(θ) defining the residual errors in equation (3). In most cases, the hydrological model equations do not lend
themselves to analytical differentiation, and the model Jacobian is estimated using finite difference
approximations.

Equation (4) represents a special case of the more general Newton equations, tailored to take advantage of
the structure of the SSE function in equation (2) (Nocedal & Wright, 2006). It forms the basis for two important
types of algorithms:
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1. conventional Gauss-Newton algorithms, which use a linesearch along the Gauss-Newton direction δ to
safeguard the solution of equation (4), and

2. the LM algorithm, which uses trust region techniques to constrain and reorient the search direction within
a region where the quadratic approximation assumed by equation (4) appears to be accurate.

The RGN is an enhanced version of the conventional Gauss-Newton algorithm and is outlined in section 3.3.
The LM algorithm, used as one of the benchmarking algorithms, is described in section 3.4.1.

3.3. RGN Algorithm

The RGN algorithm is obtained by enhancing the standard GN algorithm with a set of three heuristic schemes
to boost its exploratory capabilities and improve its behavior in the presence of multiple-optima, microscale
noise and flat regions in the objective function. The next sections outline these heuristics.
3.3.1. Large Sampling Scale to Capture Large-Scale Features of Objective Function
The large sampling scale (LSS) heuristic allows the RGN algorithm to “see” as much of the search region
as necessary to continue making progress and contributes the lion’s share of robustness improvements
achieved by the RGN algorithm (Qin et al., 2018). Recall that the region over which the Gauss-Newton
approximation is constructed is controlled by the magnitude of the finite difference perturbations used
when approximating the derivatives J in equation (4). These perturbations essentially “sample” the objec-
tive function; we refer to their magnitude as the sampling scale. Traditional GN algorithms use small
sampling scales h in order to match the (local) analytical gradient as much as practical. In these applica-
tions, sampling scales, expressed as a fraction of current solution values, range from around 10�8 in Press
et al. (2007) and the IMSL library (Rogue Wave Software, 2017), to around 10�2 (or slightly larger) in the
PEST software tool (Doherty, 2005). The RGN algorithm takes an opposite perspective and makes the sam-
pling scale as large as possible as long as progress is being made. Here progress is gauged by the success
of the linesearch algorithm in locating a solution satisfying the sufficient decrease conditions. If a new
point is found that satisfies the sufficient decrease condition, the sampling scale is increased for the next
iteration; otherwise, it is decreased to redo the current iteration. Qin et al. (2018) established that artificial
restrictions on the sampling scale tend to degrade RGN’s global convergence; hence, we initialize the
sampling scale to its largest value possible for a central difference scheme, namely, to half the width
of the entire feasible solution region.
3.3.2. Best-Sampling Point Scheme to Take Advantage of Free Information
The best-sampling point (BSP) scheme keeps track of the best objective function value sampled during the
difference approximation. If this point improves on the objective function value at the end of the line-
search, the RGN algorithm discards the linesearch results and adopts the BSP point as the starting point
for its next iteration. The BSP scheme provides a free opportunity to accelerate progress using already-
available information; empirical results suggest it is most beneficial for detecting new and better regions
of attraction, hence improving robustness beyond what is achieved by the LSS scheme on its own (Qin
et al., 2018).
3.3.3. Null-Space Jump Scheme to Escape Near-Flat Regions
The normal equations are typically solved using either the QR algorithm (e.g., Nocedal & Wright, 2006) or the
singular value decomposition (SVD) algorithm (e.g., Doherty, 2005). The SVD algorithm is particularly robust
—but also slower—because it explicitly constructs the set of singular values of the matrix JTJ. The set of sin-
gular values provides a mechanism for obtaining an approximate solution to near-singular systems, which in
the context of optimization arise when the algorithm is in a “flat” region of the objective function. The trun-
cation of singular values reduces the displacement in the null (insensitive) space and is frequently used to
reduce noise in the solution of linear least squares problems (Press et al., 2007). The null-space jump (NSJ)
scheme consists of tightening the truncation threshold, to make truncation less likely—and hence allow
the algorithm tomake large “noisy” jumps from the current location even in directions that are close to insen-
sitive. Although somewhat contrary to standard SVD usage, which seeks to prevent noisy solutions (Doherty,
2005), the NSJ scheme was empirically found to help the RGN algorithm escape from “flat” regions (Qin et al.,
2018). Note that the parameter bounds and linesearch sufficient decrease conditions act as safeguards to pre-
vent this approach from producing meaningless results. The NSJ scheme tends to be activated only when
optimizing hydrological models with highly correlated parameters (e.g., FUSE-536 with 14 parameters, see
case study section), but in such modeling scenarios, its inclusion can improve optimization efficiency by as
much as a factor of 4 (Qin et al., 2018).
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3.3.4. Other Details
The heuristics described in sections 3.3.1–3.3.3 represent the core innovations behind the RGN algorithm. We
refer to Qin et al. (2018) for a detailed description and empirical evaluation of the contributions of each
individual heuristic. In addition, the RGN algorithmmakes use of an active set method to handle the box con-
straints (parameter bounds), where the search direction is projected along the search boundaries. The termi-
nation criteria used in RGN are listed in Appendix A and closely follow the approach used in PEST
(Doherty, 2005).

3.4. Benchmarking Algorithms

This section describes the industry-standard optimization methods used for benchmarking the
RGN algorithm.
3.4.1. LM Algorithm
The LM algorithm is a common approach for least-squares calibration (Nocedal & Wright, 2006) and is widely
used in environmental modeling applications. An industry-standard implementation of the LM algorithm is
provided by the software package PEST, which offers many options and enhancements (Doherty, 2005).
PEST is widely used in the calibration of environmental models, notably groundwater models (Doherty, 2003).

In this study the standard LM algorithm is used, with the model Jacobian estimated using central differences
with sampling scales set to default PEST values (2% of current parameter values with a minimum of 0.01).
Termination criteria listed in Appendix A are used (same as in the RGN algorithm).

Note that the trajectory repulsion approach (TRA; Skahill & Doherty, 2006), one of several PEST algorithmic
options, is not used in this study. First, TRA is intended as an improvement of the multistart technique rather
than of the GN algorithm. Second, the use of TRA could confound our convergence study because TRA seeks
to reduce the probability of repeatedly finding the same optimum—whereas we specifically quantify robust-
ness as repeated convergence to the desired optimum. The use of TRA within a multistart application of RGN
will be investigated in a separate study.
3.4.2. SCE Algorithm
The SCE algorithm is a stochastic evolutionary optimization algorithm widely accepted as “best practice” in
the hydrological community (Behrangi et al., 2008; Duan et al., 1992; Qin et al., 2017; Tolson & Shoemaker,
2007; Tolson & Shoemaker, 2008), due to its general robustness in locating the global optimum even for
highly irregular objective functions.

The SCE algorithm is controlled by a number of settings, most notably the number of complexes. A large
number of complexes ensures a thorough but more expensive exploration of the search space, whereas a
low number of complexes sacrifices some robustness in return for reduced cost. The original recommenda-
tion was 2–25 depending on the number of parameters and degree of difficulty of the problem (Duan et al.,
1993; Sorooshian et al., 1993). Subsequent work has suggested a lower number of complexes, as low as 2, to
accelerate convergence especially in the early stages (Behrangi et al., 2008). To ensure robust conclusions, we
consider two SCE configurations at the “book-ends” of its robustness-cost trade-off: SCE-nc10 uses 10 com-
plexes, and SCE-nc2 uses 2 complexes.

Our SCE implementation is terminated if any of the following criteria are met: (a) scaled changes in the “best-

so-far” objective function value, ∣Φ i�1ð Þ
best � Φ ið Þ

best∣=max ðjΦ ið Þ
bestj;Φ scaleð ÞÞ, are below tolerance τΦ = 10�5 over

NΔΦ≈0 = 3 consecutive iterations (complex shuffles), whereΦ(scale) is the typical scale of the objective function

(here Φ(scale) = 1.0); or (b) total number of objective function evaluations, N maxð Þ
Φ , exceeds 106.

3.4.3. Dynamically Dimensioned Search
The DDS algorithm is another global optimizer widely used in hydrology (Arsenault et al., 2014; Tolson &
Shoemaker, 2007; Yen et al., 2015), especially in the calibration of computationally expensive models. DDS
employs a search strategy based on a random Gaussian walk over a gradually reducing subspace of the fea-
sible search region.

Unlike the other optimization algorithms used in this study, DDS is not used with a convergence criterion and
instead operates on a prespecified computational budget. In this work, the DDS budget is set to 800 objective
function evaluations for the HYMOD, SIXPAR, and SIMHYD hydrological models, and to 2,500 evaluations for
the FUSE model. These budgets are set empirically, in order to approximately match the cost of RGN
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optimization (see section 5.1) and thus enable a comparison of “robustness per given cost.” The other DDS
setting, its scaling perturbation expressed as a fraction of the search space, is set to 0.2 (Tolson &
Shoemaker, 2007).

4. Empirical Study Material and Methods

Two experiments are used to benchmark the RGN algorithm. The selection of hydrological models and catch-
ments is the same as in the companion paper (Qin et al., 2018) and is succinctly reviewed in section 4.1.
Section 4.2 describes the design of each experiment, followed by section 4.3, which details the evaluation
metrics and criteria.

4.1. Hydrological Models and Data

Four lumped daily-step conceptual hydrological models are used, namely, the five-parameter HYMODmodel
(Boyle, 2001), the six-parameter SIXPAR model (Duan et al., 1992), the seven-parameter SIMHYD model
(Chiew & Siriwardena, 2005), and the 14-parameter FUSE-536 model (Clark & Kavetski, 2010). The character-
istics of these models are summarized in Table 1. As noted in Qin et al. (2018), the four models are computa-
tionally fast, which allows extensive in-depth investigation of optimization algorithm performance, and
present a range of parameter dimensionality (from 5 to 14 parameters) and geometric complexity of the
objective function (from smooth to very rough).

The four hydrologicalmodels are applied in three Australian catchments, namely, Tambo River, Bass River, and
Coopers Creek. These catchments have runoff coefficients of 0.11, 0.30 and 0.46, respectively; their hydrocli-
matology is summarized in Table 2 of the companion paper. The data used for model calibration include
observed rainfall, estimated PET and observed daily runoff; temperature data are not used because the catch-
ments do not experience snowfall. The calibration periods are listed in Table 2 of the companion paper.

4.2. Experimental Setup
4.2.1. Experiment 1: Benchmark RGN Against SCE, LM, and DDS
The purpose of this experiment is to benchmark the RGN algorithm against the best-practice optimization
algorithms listed in section 3.4. All optimization algorithms under consideration are invoked within a multi-
start framework. The multistart framework represents a stochastic optimization strategy in its own right; in
this study, it is employed to estimate average performance characteristics including reliability, cost, and effi-
ciency ratios (section 4.3). For RGN, LM, and DDS, a single “start,” that is, a single algorithm invocation, corre-
sponds to launching the algorithm from a single initial point, whereas for SCE, it involves seeding an entire

Table 1
Hydrological Models Used in the Case Study and Typical Characteristicsa of Their Objective Function Surfaces

Model Typical characteristics of objective function surfaces References

HYMOD Multiple optima; smooth surface with continuous derivatives; near-
Gaussian shape in the vicinity of optima

Boyle (2001); Qin et al. (2017)

SIXPAR Multiple optima; smooth surface with minor discontinuities in the
derivatives; non-Gaussian shape even close to an optimum,
including long curved ridges and localized insensitive regions

Gupta and Sorooshian (1985);
Duan et al. (1992); Qin (2017)

SIMHYD Multiple optima; smooth surface with minor discontinuities in the
derivatives; non-Gaussian shape even close to an optimum,
including long curved ridges. Some insensitive regions are localized,
other insensitive regions may span large portions of the feasible
space (i.e., some model parameters appear largely insensitive)

Chiew and Siriwardena (2005);
Qin (2017); Qin et al. (2017)

FUSE-536b

(FUSE)
Multiple optima; highly nonsmooth surface with sharply
discontinuous derivatives and staircase structure; strongly non-
Gaussian irregular shape even close to an optimum; higher-
dimensional than the other models in this study, with some
evidence of insensitive parameters

Kavetski and Clark (2010);
Qin (2017); Qin et al. (2017)

aThe objective function characteristics are related to the mathematical structure and constitutive functions within the
model equations. The model behavior will depend, to some extent, on the forcing data in the catchment of applica-
tion. bHere FUSE-536 is deliberately set to use the explicit Euler time stepping scheme in order to create a challenging
objective function surface for the purposes of this study (Qin et al., 2018). The hydrological models HYMOD, SIXPAR, and
SIMHYD also use explicit Euler or similar time stepping techniques for at least some of their fluxes.
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initial population of complexes. To provide a consistent algorithm comparison, the ith invocation of all algo-
rithms uses the same (randomly selected) initial search point; for the ith invocation of SCE, this is achieved
replacing one of the search points in the initial population. For the optimization of the HYMOD, SIMHYD,
and SIXPAR models, we use M = 10,000 invocations. For the optimization of FUSE we use M = 1,000 invoca-
tions because of the higher computational cost of this hydrological model.
4.2.2. Experiment 2: Analysis of Individual Search Trajectories
The purpose of this experiment is to investigate the convergence behavior of individual search trajectories of
RGN and SCE. We consider the pattern and rate of optimization progress in individual algorithm invocations,
and the variability across multiple invocations, in order to gain insights into algorithm robustness and cost
characteristics. In addition, we check for cases (if any) of termination criteria artificially inflating computa-
tional costs. An example of undesirable behavior is when an algorithm makes quick initial progress and finds
a “good” solution, but then spends many iterations refining it to meet unduly stringent termination criteria.
This behavior is not only costly but also undesirable because it confounds the benchmarking of the algo-
rithms and practical recommendations thereof.

The analysis is carried out for multiple invocations of the RGN and SCE algorithms. For each invocation, we
plot the trace of the current “best” objective function value after each iteration versus the corresponding
number of function calls. Note that the number of function calls tracked includes the cost of the initial point
or, in the case of SCE, the initial population of points. By overlaying the traces corresponding to 100 invoca-
tions of each algorithm, we can inspect convergence patterns and detect occurrences (if any) of the undesir-
able behavior described above.

4.3. Performance Attributes and Metrics

Optimization algorithm performance is summarized by its robustness, computational cost, and efficiency.
Here, robustness is defined as the ability to reliably find a desired optimum (global or tolerable, see below)
irrespective of the initial search point and consistently across multiple modeling scenarios (optimization pro-
blems). Efficiency is defined as the ability to find the desired optimum at low computational cost (Kavetski
et al., 2018; Qin et al., 2018).
4.3.1. Reliability and Cost
“Global reliability,” or G-reliability, is used to quantify the ability of the algorithm to find the global optimum,

RG ¼ RðΦNSE;Φ
⌣

NSE; 1%Þ (5)

whereRðψ;ψ⌣; τψÞ is a general reliability metric, defined as the fraction ofM algorithm invocations, with final
solution estimates ψ = {ψm;m = 1,⋯,M}, that find a solution within a tolerance τψ of the “best-known” hydro-
logical model performance metric ψ⌣. Note that the best-known metric value refers to the best metric value
obtained in a given modeling scenario (combination of catchment and hydrological model) using all optimi-
zation algorithms considered in this study. The hydrological model performance is gauged in terms of the
NSE (Nash & Sutcliffe, 1970) rather than the SSE objective function itself.

“Tolerable reliability,” or T-reliability, is used to quantify the ability of the algorithm to find a solution that is at
worst “tolerable” or “acceptable” (Arsenault et al., 2014; Qin et al., 2018; Tolson & Shoemaker, 2007),

RT ¼ RðΦNSE;Φ
⌣

NSE; 10%Þ (6)

The computational cost is reported in terms of the average number of objective function calls across multiple
algorithm invocations (irrespective of whether the particular invocation found an optimum of interest).
4.3.2. Efficiency Ratios
The number of algorithm invocations required to find a desired optimumwith confidence level α is estimated
as (Kavetski et al., 2018)

MX;α ¼ roundUp
log 1� αð Þ
log 1�RXð Þ

� �
(7)

where the function roundUp[z] denotes the smallest integer greater than or equal to z, so that MX,α ∈ {1, 2, 3,
…}. Equation (7) is safeguarded by constrainingRX ∈ [0 + ϵR, 1� ϵR] where ϵR = 1/(M + 1) is set according to
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the number of invocations used in the performance assessment; values of RX outside this range are trun-
cated accordingly. The subscripts X are used to refer to quantities related to global and tolerable optima,
X = G and T, respectively.

We report the median value and interquartile range (IQR) of MX,α for each algorithm. These characteristics
are relevant to the modeler’s specification of the number of invocations M to be carried out in a new appli-
cation (Kavetski et al., 2018). An algorithm with low variability in MX,α is said to have “high consistency”: The
modeler can be more certain in setting the value of M and achieving the confidence level α in finding the
desired optimum.

An algorithm that has both high reliability and high consistency is referred to as robust—it is able to consis-
tently find desired optima of many different problems (Kavetski et al., 2018). Note that robustness on its own
is desirable but insufficient—it says nothing about the computational cost of employing the algorithm.
Typically, there is a trade-off between robustness and cost, and these characteristics must be considered
jointly when benchmarking optimization algorithms. This trade-off is quantified using the efficiency ratio
metric (Kavetski et al., 2018) described next.

The efficiency ratio for any two optimization algorithms, say A and B, for a given confidence level α is

κ A=Bð Þ
X;α ¼ C Bð Þ

X;α

C Að Þ
X;α

¼ M Bð Þ
X;α�N Bð Þ

Φ

M Að Þ
X;α�N Að Þ

Φ

(8)

whereCX;α ¼ MX;α�NΦ is the total cost (in terms of the total number of objective function calls) of finding the
desired optimum with confidence level α, and NΦ is the average number of function calls per invocation.

The quantity κ A=Bð Þ
X;α represents the “efficiency ratio” of Algorithms A versus B: Algorithm A “typically” requires

κ A=Bð Þ
X times fewer objective function calls than Algorithm B to achieve confidence level α.

In this study, we set α = 95% and report MG,95% and MT,95% for every optimization algorithm. The G- and T-

efficiency ratios, κ RGN=·ð Þ
G;95% and κ RGN=·ð Þ

T ;95% , respectively, are computed by comparing RGN to every benchmarking

algorithm. To reduce clutter, we use the shorthand notation MX = MX,95% and κX = κX,95%.

5. Results
5.1. Experiment 1: Comparison of RGN Against SCE, LM, and DDS

This section reports the results of benchmarking the RGN algorithm against the SCE, LM, and DDS algorithms.
Figure 1 presents bar graphs of the G- and T-reliabilities and average costs of the algorithms for the 12
catchment/model scenarios. In what follows, we define high reliability as being >95%, an algorithm as being
competitive if its reliability is within 10% of its competitor, and two algorithms as being similarly-poor if their
reliabilities are below 20% and within 10% of each other. Figure 2 presents the estimated number of invoca-
tions required by each algorithm to find either the global or tolerable optimumwith 95% confidence. Figure 3
reports the estimated G- and T-efficiency ratios of RGN relative to the benchmarking algorithms.
5.1.1. Comparison of RGN Against SCE-nc10
Figure 1 shows that, overall, RGN approaches the robustness of SCE-nc10, with occasionally worse G-
reliability and similar T-reliability, but at a significantly lower cost. More specifically,

• G-reliability: RGN is competitive with SCE-nc10 in 3 of 12 scenarios, uncompetitive in 5 scenarios, better
than SCE-nc10 in 1 scenario, and similarly-poor in 3 scenarios. RGN and SCE-nc10 both achieve a high relia-
bility in 2 HYMOD and 1 SIMHYD scenarios. Out of the 5 scenarios where RGN falls short of SCE, it maintains
a good reliability in 4 scenarios—for example,R RGNð Þ

G ¼ 83% compares well toR SCE-nc10ð Þ
G ≈100% in SIXPAR

Coopers. In the HYMOD Tambo scenario, RGN achieves R
RGNð Þ
G ¼ 43% , whereas SCE-nc10 fails with

R
SCE-nc10ð Þ
G ¼ 0:03%. Finally, RGN and SCE-nc10 both struggle to locate the global optimum in all 3 FUSE

scenarios, with the best reliability being 12.8%.
• T-reliability: RGN and SCE-nc10 achieve a high reliability in 7 scenarios, including all the HYMOD
and SIMHYD scenarios. In the remaining 5 scenarios, which comprise the FUSE and SIXPAR scenarios,
SCE-nc10 maintains a high T-reliability,R SCE-nc10ð Þ

T ≥99%, while RGN performs moderately to slightly worse,
with R

RGNð Þ
T of 65–92%.
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• Computational cost: RGN invocations are substantially cheaper than SCE-nc10. In the HYMOD, SIXPAR, and
SIMHYD scenarios, the number of objective function calls per invocation, NΦ, required by RGN is in the
range of 330–790, whereas for SCE-nc10, it is in the (approximate) range of 2,300–6,000. In the FUSE sce-
narios, N RGNð Þ

Φ ≈1,650� 2,500 and N SCE-nc10ð Þ
Φ ≈22,000� 40,500. In relative terms, RGN is cheaper by factors

of 3 to 11 in the HYMOD, SIXPAR, and SIMHYD scenarios, and by factors of 9 to 24 in the FUSE scenarios.
Figure 2 compares the estimated number of invocations MX required by RGN and SCE-nc10 to find global or
tolerable optima with 95% confidence:

• Global optimum: Over all scenarios, M RGNð Þ
G ranges from 1 to 120 with a median of 4.5 and an IQR of 36.5,

while M SCE-nc10ð Þ
G ranges from 1 to 9,985 with a median of 1 and an IQR of 2,253 (due to SCE having low

G-reliability in 4 scenarios). Excluding the FUSE scenarios, M RGNð Þ
G ranges from 1 to 10 with a median of 3

and an IQR of 4.5, and M SCE-nc10ð Þ
G ranges from 1 to 9,985 with a median of 1 and an IQR of 1.0. The FUSE

Figure 1. Reliability and cost of the RGN algorithm benchmarked against the LM, SCE-nc10 (labeled SCE1), SCE-nc2 (labeled SCE2), and DDS algorithms. G-reliability
RG (chance of finding a solution within 1% of the best-known NSE), T-reliability RT (chance of finding a solution within 10% of the best-known NSE), and com-
putational cost NΦ (average number of objective function calls within a single algorithm invocation) are reported. The HYMOD, SIXPAR, and SIMHYD scenarios use
10,000 invocations, and the FUSE scenarios use 1,000 invocations. Algorithm abbreviations: DDS = dynamically dimensioned search; LM = Levenberg-Marquardt;
NSE = Nash-Sutcliffe efficiency; RGN = robust Gauss-Newton; SCE = shuffled complex evolution.
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scenarios tend to require appreciably more invocations: M RGNð Þ
G ranges from 47 to 120, and M SCE-nc10ð Þ

G

ranges from 22 to 3,000.
• Tolerable optimum: M RGNð Þ

T ranges from 1 to 3 with a median of 1 and an IQR of 1, while M SCE-nc10ð Þ
T ¼ 1 in

all 12 scenarios.
Figure 3 compares the efficiency of RGN relative to SCE-nc10:

• G-efficiency: RGN matches or outperforms SCE-nc10 in all 12 scenarios, with G-efficiency ratios
κ RGN=SCE-nc10ð Þ
G ranging from 1 to 5,300 with a median of 8.6.

Figure 2. Number of invocations required by the optimization algorithms to find a desired (global or tolerable) optimum
with 95% confidence, MX,95%. Results are distinguished for different hydrological models (symbol color) and catchments
(symbol shape). Scenarios with zero G-reliability are flagged by black circles. The points have been jittered slightly to
avoid overlaps. Algorithm abbreviations: DDS = dynamically dimensioned search; LM = Levenberg-Marquardt;
RGN = robust Gauss-Newton; SCE = shuffled complex evolution.

Figure 3. Efficiency ratios of the RGN algorithm with respect to the benchmarking algorithms, κ RGN=·ð Þ
X;95% . G- and T-efficiency

ratios are displayed (filled and empty symbols) for a confidence level of 95% in finding the desired optimum. Results are
distinguished for different hydrological models (symbol color) and catchments (symbol shape). Scenarios where one or
both optimization algorithms have zero reliability are flagged with black circles. The points have been jittered slightly to
avoid overlaps. Algorithm abbreviations: DDS = dynamically dimensioned search; LM = Levenberg-Marquardt;
RGN = robust Gauss-Newton; SCE = shuffled complex evolution.
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• T-efficiency: RGN substantially outperforms SCE-nc10 in all 12 scenarios, with T-efficiency ratios
κ RGN=SCE-nc10ð Þ
T ranging from 3.2 to 11.4 with a median of 7.4.

5.1.2. Comparison of RGN against SCE-nc2
We now compare RGN against SCE-nc2, which was previously recommended as a more efficient SCE config-
uration (Section 3.4.2). Figure 1 shows that, overall, RGN has comparable, if not better, robustness than SCE-
nc2 at a slightly lower cost. We also see that SCE-nc10 is more robust but costlier than SCE-nc2. More
specifically,

• G-reliability: RGN is competitive with SCE-nc2 in achieving high G-reliability in 3 of 12 scenarios, uncom-
petitive in 4 scenarios, better than SCE-nc2 in 2 scenarios, and similarly-poor in all 3 FUSE scenarios.
RGN and SCE-nc2 achieve a high RG in 2 HYMOD and 1 SIMHYD scenarios. In 3 of the 4 scenarios
where RGN is outperformed by SCE, RGN maintains good reliability, R RGNð Þ

G ≈50� 84%. RGN is more
G-reliable than SCE-nc2 in the HYMOD Tambo scenario (by over 40%) and in the SIMHYD Bass scenario
(by 16%).

• T-reliability: RGN and SCE-nc2 achieve high T-reliability in 6 of 12 scenarios, namely, in all HYMOD and
SIMHYD scenarios. In the remaining 6 scenarios,R SCE-nc2ð Þ

T ranges from 42% to 100%, whileR RGNð Þ
T ranges

from 65% to 96%; SCE-nc2 is more T-reliable in 4 of these 6 scenarios.
• Computational cost: RGN invocations are cheaper than SCE-nc2 in all but 1 scenario (HYMOD Tambo).
The cost difference is much lower than in the RGN versus SCE-nc10 comparison (section 5.1.1). In the
HYMOD, SIXPAR, and SIMHYD scenarios, N SCE-nc2ð Þ

Φ ranges from (approximately) 490 to 1,600, whereas
N RGNð Þ
Φ of RGN ranges from 330 to 790. In the FUSE scenarios, N SCE-nc2ð Þ

Φ ≈4,000� 8,000, whereas
N RGNð Þ
Φ ≈1,650� 2,500. In relative terms, RGN is cheaper than SCE-nc2 by factors ranging from 0.7 to

3.0 in the HYMOD, SIXPAR, and SIMHYD scenarios, and by factors ranging from 1.6 to 5.0 in the
FUSE scenarios.

Figure 2 compares the estimated number of invocationsMX required by RGN and SCE-nc2 to find global and
tolerable optima with 95% confidence:

• Global optimum: Over all scenarios, M RGNð Þ
G ranges from 1 to 120 with a median of 4.5 and an IQR of 36.5,

while M SCE-nc2ð Þ
G ranges from 1 to 30,000 with a median of 2 and an IQR of 2,275. Excluding the FUSE

scenarios, M RGNð Þ
G ranges from 1 to 10 with a median value 3 and an IQR of 4.5, and M SCE-nc2ð Þ

G ranges from
1 to 30,000 with a median 1 and an IQR of 3.0. In the FUSE scenarios, M RGNð Þ

G ranges from 47 to 120, and
M SCE-nc2ð Þ

G ranges from 110 to 3,000.
• Tolerable optimum: M RGNð Þ

T ranges from 1 to 3 with a median of 1 and an IQR of 1, while M SCE-nc2ð Þ
T ranges

from 1 to 6 with a median of 1 and IQR of 0, and in 10 of 12 scenarios M SCE-nc2ð Þ
T ¼ 1.

Figure 3 compares the efficiency of RGN relative to SCE-nc2:

• G-efficiency: RGN outperforms SCE-nc2 in 9 of 12 scenarios, with G-efficiency ratios κ RGN=SCE-nc2ð Þ
G

ranging from 1.2 to 3,330 with a median of 2.95. The 3 exceptions are the SIMHYD Tambo, SIXPAR
Tambo, and SIXPAR Bass scenarios, where the G-efficiency ratios are 0.44, 0.53 and 0.89, respectively.

• T-efficiency: RGN outperforms SCE-nc2 in 10 of 12 scenarios, with T-efficiency ratios κ RGN=SCE-nc2ð Þ
T

ranging from 1.2 to 9.7 with a median of 2.2. The 2 exceptions in this case are the FUSE Tambo and
HYMOD Tambo scenarios, where the T-efficiency ratios are 0.8 and 0.7, respectively.

5.1.3. Comparison of RGN against LM
Figure 1 shows that RGN is overall significantly more robust but always costlier than LM. More specifically,

• G-reliability: RGN outperforms LM in 8 of 12 scenarios, is worse in 1 scenario, and marginally better but
nonetheless similarly-poor in all 3 FUSE scenarios, where both RGN and LM struggle to locate the glo-
bal optimum. In the 8 scenarios, RGN improvements over LM range between +20% in HYMOD Bass
and over +80% in SIXPAR Coopers. In the FUSE scenarios, LM has zero reliability while RGN has reliabil-
ities of 3–7%.

• T-reliability: RGN and LM are highly T-reliable in 2 of 12 scenarios. In the remaining 10 scenarios, RGN con-
sistently outcompetes LM andmaintains high T-reliability in 4 of those scenarios. In all 3 FUSE scenarios, the
T-reliability of RGN ranges from 65% to 92% while for LM it ranges from 2% to 20%.

• Computational cost: LM invocations are consistently and significantly cheaper than RGN. In the HYMOD,
SIXPAR, and SIMHYD scenarios, N LMð Þ

Φ ranges from 150 to 480, while N RGNð Þ
Φ ranges from 330 to 790. In

the FUSE scenarios, N LMð Þ
Φ ranges from 590 to 720, and N RGNð Þ

Φ ranges from 1,650 to 2,500. In relative
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terms, RGN is always costlier than LM, by factors ranging from 1.3 to 4.8 in the HYMOD, SIXPAR, and
SIMHYD scenarios, and by factors ranging from 2.3 to 3.5 in the FUSE scenarios.

Figure 2 compares the estimated number of invocationsMX required by RGN and LM to find global and toler-
able optima with 95% confidence:

• Global optimum: Over all scenarios, M RGNð Þ
G ranges from 1 to 120 with a median of 4.5 and an IQR of 36.5,

while M LMð Þ
G ranges from 1 to 15,000 with a median of 103 and an IQR of 2,993. Excluding the FUSE sce-

narios, M RGNð Þ
G ranges from 1 to 10 with a median value 3 and an IQR of 4.5, and M LMð Þ

G ranges from 1 to
15,000 with a median 22 and an IQR of 173. In the FUSE scenarios, M RGNð Þ

G ranges from 47 to 120, and
M LMð Þ

G requires 3,000 invocations.
• Tolerable optimum: M RGNð Þ

T ranges from 1 to 3 with a median of 1 and an IQR of 1, while M LMð Þ
T ranges

from 1 to 1,069 with a median of 9 and an IQR of 70.
Figure 3 compares the efficiency of RGN relative to LM:

• G-efficiency: RGN outperforms LM in 11 of 12 scenarios, with G-efficiency ratios κ RGN=LMð Þ
G ranging from 1.1

to 960 with a median of 7.2. The single exception is the SIMHYD Tambo scenario, where the G-efficiency
ratio is 0.4.

• T-efficiency: RGN outperforms LM in 9 of 12 scenarios, with T-efficiency ratios κ RGN=LMð Þ
T ranging from

1.1 to 170 with a median of 5.3. The 3 exceptions are the HYMOD Bass, HYMOD Tambo, and SIMHYD
Coopers scenarios, where the T-efficiency ratios are about 0.6.

5.1.4. Comparison of RGN against DDS
Figure 1 shows that RGN is always more robust than DDS using the budget selected in this study. More
specifically,

• G-reliability: RGN outperforms DDS in all 12 scenarios. In the HYMOD, SIMHYD, and SIXPAR scenarios, RGN
outperforms DDS substantially, with improvements in reliability ranging from 3% to 81%. In the FUSE sce-
narios, R RGNð Þ

G is low and ranges from 2.5% to 6.3%, yet at least the global optimum is found; in contrast,
R

DDSð Þ
G ¼ 0.

• T-reliability: RGN outperforms DDS in all scenarios. In the HYMOD, SIMHYD, and SIXPAR scenarios, RGN
significantly outperforms DDS in all but one scenario (SIMHYD Coopers Creek), where both DDS and
RGN have high T-reliability. In the FUSE scenarios, where R

DDSð Þ
T has low values in the range of <1% to

16%, R RGNð Þ
T has clearly higher values in the range of 65% to 92%.

• Computational cost: DDS invocations use a predetermined budget as the termination criteria. In this work
the DDS budget is assigned to approximately match the typical cost of RGN invocations, with 800 objective
function calls for HYMOD, SIXPAR, and SIMHYD, and 2,500 calls for FUSE.

Figure 2 compares the estimated number of invocationsMX required by RGN and DDS to find global and tol-
erable optima with 95% confidence:

• Global optimum: Over all scenarios, M RGNð Þ
G ranges from 1 to 120 with a median of 4.5 and an IQR of 36.5,

whileM DDSð Þ
G ranges from 7 to 3,000 with a median of 44.5 and an IQR of 2,280. Excluding the FUSE scenar-

ios,M RGNð Þ
G ranges from 1 to 10 with amedian value 3 and an IQR of 4.5, andM DDSð Þ

G ranges from 7 to 178 with
amedian of 15 and an IQR of 96. In the FUSE scenarios,M RGNð Þ

G ranges from 47 to 120, andM DDSð Þ
G is as high as

3,000.
• Tolerable optimum:M RGNð Þ

T ranges from 1 to 3 with a median of 1 and an IQR of 1, whileM DDSð Þ
T ranges from

1 to 748 with a median of 6 and an IQR of 34.
Figure 3 compares the efficiency of RGN relative to DDS:

• G-efficiency: RGN outperforms DSS in all scenarios, with G-efficiency ratios κ RGN=DDSð Þ
G ranging from 2.1 to

80 with a median of 26.
• T-efficiency: RGN outperforms DDS in all scenarios, with T-efficiency ratios κ RGN=DDSð Þ

T ranging from 1.5 to
380 with a median of 12.

5.2. Experiment 2: Analysis of search trajectories

Figure 4 presents trace plots of objective function value against the number of objective function calls after
each iteration of the RGN and the two SCE configurations, for 100 invocations starting from different initial
seeds. These plots provide visual information about the algorithms’ patterns and rates of convergence,
and whether termination criteria are unduly affecting the optimization cost. Five scenarios depicting a
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range of behavior are presented, namely HYMOD Coopers Creek, HYMOD Tambo River, SIMHYD Bass River,
FUSE Coopers Creek, and SIXPAR Bass River. Note that the trajectories are plotted starting from the
number of function calls needed to initialize the algorithms: while RGN requires a single initial point, SCE
requires the initialization of its entire population of complexes, each comprising (2 × Nθ) + 1 individual
solution estimates. For this reason, SCE-nc2 and SCE-nc10 trajectories start, respectively, at just below 60
and slightly above 110 function calls.

First, we consider the progress pattern throughout individual invocations. RGN and both SCE configurations
exhibit similar types of behavior. Initially, individual invocations tend to converge rapidly towards a local opti-
mum. From then on, three distinct convergence patterns are observed: (i) some invocations converge to the
global optimum gradually, as seen in Panel A for all RGN and SCE invocations; (ii) some invocations jump shar-
ply to better attractor regions; for example, in Panel B, many RGN invocations eventually jump from NSE of
0.58 to NSE of 0.61; and (iii) some invocations are trapped by local optima; this behavior is seen in Panel C
where RGN and both SCE algorithms can get trapped by the same three optima, with NSE 0.73, 0.725,
and 0.70.

Second, we compare the rate of progress of RGN and SCE, complementing the cost summaries in Figure 1.
RGN clearly converges much faster than either SCE configuration. For example, in Panel A, most RGN invoca-
tions approach the global optimum of NSE 0.429 very rapidly, reaching an NSE of 0.426 after just 200 function
calls and terminating after at most 500 function calls; in contrast many SCE-nc10 invocations reach an NSE of
0.426 only after as many as 2,000 function calls. RGN’s speed advantage over SCE-nc2 is smaller but still very
substantial, with the latter starting to converge after about 800 function calls. Qualitatively similar behavior is
seen in Panels C/H and D/I, where RGN is much faster than SCE-nc10 and moderately faster than SCE-nc2.

Third, we consider the variability in the behavior of individual invocations. Across multiple invocations of a
single algorithm, all three types of behavior listed above can occur, and a range of costs can be incurred,
for example, as seen in Panel C for both the RGN and SCE-nc10 applications. That said, some scenarios do
exhibit consistent algorithm performance—either consistently good or consistently poor. In some scenarios
all optimization invocations converge without trouble (Panel A), whereas in Panels B and G all SCE-nc10 and
SCE-nc2 invocations converge to a local optimum (whereas nearly 50% of the RGN invocations are success-
ful). This shows of course that some objective functions are tougher to crack than others.

Finally, we consider the evidence of invocations with unduly long and nonproductive traces near termina-
tion. The overall behavior of the traces is as expected, displaying initially steep trajectories that gradually

Figure 4. Traces of individual optimization trajectories of RGN and SCE (nc10 and nc2) algorithms, shown as the “best” objective function value found as optimization
progresses plotted against the corresponding computational cost. Results for representative scenarios (models and catchments) are shown. Algorithm abbreviations:
RGN = robust Gauss-Newton; SCE = shuffled complex evolution.
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level off. There is some evidence of plateaus before termination in several scenarios, for example, in Panels A,
B, and E for SCE-nc10; in Panels G for SCE-nc2; and in Panel C for RGN. For example, in Panel E, SCE-nc10
spends over 5,000 function calls with little or no improvement in the objective function value before the algo-
rithm is terminated, increasing costs from 3,000 to 8,000 function calls. Such expensive plateaus are not unex-
pected because SCE is set to require 3 complex reshuffles with no significant improvement before
terminating, and such reshuffles are expensive when 10 complexes are used. However in some cases, notably
for RGN and SCE-nc10 in Panels B and D, similar plateaus are eventually broken and better optima found. As a
tight tolerance can see an algorithm invocation through such plateaus, relaxing the tolerance in an attempt
to reduce costs is not a safe option, as it risks premature convergence and a substantial loss of reliability.

6. Discussion

We now discus and interpret the results of benchmarking the RGN algorithm. Our focus is on practical recom-
mendations founded on consideration of trade-offs between reliabilityRX versus invocation cost NΦ, as well
as variability in the estimated number of invocationsMX (section 4.3.2). The ideal practical algorithm will have
high efficiency (low cost to find the desired optimum with high confidence) and high consistency (low varia-
bility in the number of required invocations). Armed with these perspectives, we now discuss the perfor-
mance of RGN relative to each benchmarking algorithm (section 6.1), and summarize our final
recommendations and ideas for further work (Section 6.2).

6.1. Interpretation of Performance Benchmarking

In comparison to SCE, RGN nearly matches its reliability—with RGN reliability often as high asR RGNð Þ
T ¼ 80�

100%—but using 3–24 times fewer objective function calls than SCE-nc10 and 0.7–5 times fewer function
calls than SCE-nc2 (section 5.1). This is an important finding because the SCE algorithm is generally consid-
ered amongst the most robust and widely used global optimization techniques used in hydrological model
calibration (Tolson & Shoemaker, 2007). Yet RGN is sufficiently reliable and so much faster than either SCE
configuration, that a fraction of its computational savings can be traded-off for virtually the same level of
robustness as SCE, still leaving RGN with a savings surplus. This explains the substantial efficiency gains of
RGN over both SCE configurations, with median G- and T-efficiency ratios of 8.6 and 7.4, respectively, over
SCE-nc10, and 2.9 and 2.2, respectively, over SCE-nc2.

We note that SCE-nc10 exhibits the hallmarks of a robust (highly reliable and consistent) global optimizer,

with M SCE-nc10ð Þ
T ¼ 1 in all 12 scenarios. This characterization is somewhat tempered by the fact that, while

M SCE-nc10ð Þ
G has the ideal median of 1, its IQR is very high, 2,253, due to a failure in 4 scenarios. The high robust-

ness of SCE-nc10 comes at a major computational cost per invocation, and RGN offers better efficiency by the
virtue of being almost as reliable, but considerably cheaper. Remarkably, RGN has better consistency, with the

IQR of M RGNð Þ
G as low as 37.

In comparison, SCE-nc2 is less consistent than SCE-nc10: M SCE-nc2ð Þ
G has a median 2 and IQR of 2,275, and

M SCE-nc2ð Þ
T has a median 1 and IQR of 0. This performance suggests that SCE-nc2 is appreciably inferior to

SCE-nc10 in terms of reliability and consistency, and cannot be considered to be in the same class of global
performance. As such, RGN achieves similar robustness and consistency to SCE-nc2, and generally outper-
forms it by being somewhat faster per invocation.

Importantly, RGN appears to be more robust than SCE-nc10 and SCE-nc2 under extreme conditions. In parti-

cular, in the FUSE scenarios, M RGNð Þ
G is at most 120, whereas M SCE-nc10ð Þ

G and M SCE-nc2ð Þ
G reach as high as 3,000.

With reference to the mathematical structure of RGN and SCE, it follows that, when used with large-sampling
scales, quadratic approximations require fewer samples to provide global search directions of comparable
quality to the (shuffled) populations of simplexes. There are also instances (HYMOD and FUSE scenarios)
where none or virtually none of the SCE-nc10 and SCE-nc2 invocations locate the global optimum, whereas

RGN is moderately successful (R RGNð Þ
G ¼ 43% in the HYMOD Tambo scenario andR

RGNð Þ
G ¼ 2:5� 6:3% in the

FUSE scenarios)—this highlights that no optimization algorithm can truly guarantee global convergence (Gill
et al., 1981).
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In comparison to LM, RGN achieves clearly better reliability, for example, in 3 SIXPAR scenarios we find

R
LMð Þ
G ≈ 0% versus R

RGNð Þ
G ≈ 50� 80%—but at the expense of an appreciable increase in computational

cost, by factors of 1.3–4.8 depending on the scenario (Section 5.1). G-efficiency ratios of RGN over LM
range from 1.1 to 960 in 11 of 12 scenarios, and the T-efficiency ratios range from 1.1 to 170 in 9
scenarios. This efficiency gain implies that, in the majority of scenarios, the increased reliability of RGN
more than compensates for its cost and tips the efficiency ratio in its favor. RGN is less G-efficient in 1 sce-

nario (κ RGN=LMð Þ
G ¼ 0:4) and less T-efficient in 3 scenarios (κ RGN=LMð Þ

T ¼ 0:6).

Overall, LM is a typical local optimizer: computationally fast but suffering from both low reliability and con-
sistency especially when applied to geometrically complex objective functions. The low reliability of LM
manifests in low G- and T- reliability, and its low consistency manifests in high variability in MX. RGN is sub-

stantially more G-consistent than LM: the IQR ofM LMð Þ
G is very high, 2,993, whereas the IQR ofM RGNð Þ

G is much

lower, 37. RGN’s advantage over LM is even stronger in terms of T-consistency: the IQR ofM LMð Þ
G is 70 whereas

the IQR ofM RGNð Þ
T is just 1! The cost penalty of (a single invocation of) RGN compared to LM is appreciable but

does not outstrip the improvement in reliability, resulting in RGN being overall more efficient. This finding
confirms the gains in robustness identified in the companion paper (Qin et al., 2018) against the standard
GN algorithm.

As the underlying approximations of the objective function by quadratic surfaces with Hessian H ≈ JTJ
are similar in RGN and LM, the improved reliability and consistency of RGN can be attributed to the use
of large sampling scales. This interpretation is consistent with the companion paper, which established
the major gains in robustness when the standard GN algorithm is augmented with the LSS, BSP and NSJ
schemes. The increase in computational cost of RGN compared to LM is consistent with the discussion in
the companion paper—enhanced exploration generally results in increased costs.

In comparison to DDS, RGN dominates in terms of achieving consistently higher reliabilitiesRG andRT for a
comparable (by construction) cost-per-invocation NΦ. The G-efficiency ratios of RGN over DDS are as high as
2.1–80, and T-efficiency ratios are even higher, 1.5–380. This finding indicates that, when applied with a large
sampling scale, the quadratic Gauss-Newton approximation is substantially better at exploring the objective
function surface than the near-random Gaussian Markov Chain search strategy underlying DDS. For example,
at any scale, quadratic surfaces can stretch to adapt to highly correlated parameter surfaces—this is clearly
impossible for a random search using an uncorrelated Gaussian distribution in a randomly selected subset
of dimensions.

DDS is close to a random search and hence is liable to be inefficient when the objective function has highly
structured features, such as parameter correlations. Overall, DDS appears non-robust, at least for the consid-
ered set of model calibration scenarios: it suffers from both low reliability and consistency, especially
when applied to geometrically complex objective functions. The low reliability of DDS manifests in low G-

and T- reliability, and the low consistency manifests in IQRs of M DDSð Þ
G and M DDSð Þ

T as high as 2,300 and 34
respectively. As such, RGN outperforms DDS by being both substantially more reliable and consistent
for about the same computational budget.

Finally, note that our efficiency metric is based on an estimate of the total cost required to find desired
optima (global and/or local) with a prescribed confidence level, and may be sensitive to the selected termi-
nation criteria. Experiment 2 suggests no evidence of termination criteria unduly affecting cost. That said, for
slow models, it could be that budget-based measures of efficiency are more appropriate (Tolson &
Shoemaker, 2007). But even in this respect RGN is hardly ceding any ground: it clearly converges faster than
both SCE algorithms even during initial phases of the search—contradicting a common perception that
Newton-type methods suffer from an initially slow convergence (Press et al., 2007).

6.2. Algorithm Recommendations and Further Work

In summary, the empirical results indicate that RGN offers appreciable efficiency gains over the current best-
practice algorithms SCE, LM, and DDS included in the benchmarking. RGN is recommended in preference to
both SCE-nc10 and SCE-nc2 to find the global optimum. In the case study scenarios, RGN required a median
of 5 (and at most 120) invocations to achieve 95% confidence in finding the global optimum—a lower and
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tighter range than its competitors. Importantly, RGN consistently incurred a lower total cost in terms of the
total number of objective function calls. If a tolerable optimum is required, RGN can be used with a median
of 1 (and most 3) invocation—similar to SCE-nc10 and SCE-nc2, but once again generally faster in terms of
total number of function calls.

The ideal practical algorithm would have both high efficiency and consistency. None of the algorithms
benchmarked in this work meet this ideal, due to a loss of reliability when faced with highly irregular objec-
tive function surfaces. RGN appears to come closest to this ideal, offering less variability in its performance
than even the SCE algorithm. However, this conclusion is contingent on the hydrological models and catch-
ments used in the empirical analysis. While the 12 modeling scenarios represent some of the spectrum of
objective function pathologies encountered in conceptual rainfall-runoff modeling, broader assessment is
recommended as the next step to confirm the generality of the findings. This broader assessment should also
include the application of RGN to heavily parameterized computationally slow distributed hydrological and
river basin models.

A practical limitation of the RGN algorithm—and any Gauss-Newton-type method including the LM method
—is that they are designed for Least Squares objective functions. To tackle more general model calibration
setups, the extension of RGN heuristics to other gradient-based algorithms, such as quasi-Newton methods,
is of interest. The use of regularization approaches to improve the conditioning of the Jacobian matrices in
the RGN algorithm is also of interest and is expected to help in the solution of high-dimensional and other-
wise poorly-posed inverse problems (Doherty & Skahill, 2006; Tonkin & Doherty, 2005). Finally, RGN offers
opportunities to provide better initial points for probabilistic uncertainty analysis using frequentist and
Bayesian methods, as well as to provide estimates of parameter covariance using its (LSS) approximation
of the Hessian matrix (Kavetski, 2018).

7. Conclusions

Parameter optimization is a key step in the application of hydrological models. The companion paper intro-
duced a RGN algorithm for model optimization using least squares objective functions, which are widely used
in practical applications. This paper focuses on benchmarking the RGN algorithm against optimization algo-
rithms arguably accepted as best practice in hydrological modeling. Three benchmarking algorithms are
used, namely the stochastic SCE and DDS algorithms, and the Gauss-Newton-type LM algorithm from the
PEST package (Doherty, 2005). The benchmarking is carried out using four hydrological models with objec-
tive functions ranging from smooth to very rough, 3 catchments with a range of runoff ratios, yielding a total
of 12 modeled scenarios.

The following empirical findings are obtained:

1. The RGN algorithm approaches the robustness of the SCE algorithm, while retaining the low cost of
Newton-type algorithms. In terms of efficiency, which reflects the cost of finding the desired optimum
with 95% confidence, RGN outperforms SCE with 10 complexes in all 12 scenarios, by factors with a med-
ian of 8.6 and 7.4 in terms of finding global and tolerable optima respectively. In comparison to SCE with
2 complexes, RGN is more efficient in 10 of 12 scenarios, by factors with a median of 3 and 2.2 in terms of
finding global and tolerable optima respectively. However, neither RGN nor SCE are “guaranteed” to
achieve global convergence, and their performance, in particular the chance to find the global optimum,
deteriorates when working with nonsmooth models such as FUSE with explicit time stepping;

2. The RGN algorithm achieves clearly higher reliability than the LM algorithm at a moderate additional com-
putational cost. In terms of efficiency in finding the global optimum, RGN outperforms LM in 11 of 12 sce-
narios by a median factor of 7.2, and in terms of efficiency in finding tolerable optima in 9 of 12 scenarios
by a median factor of 5.3.

3. The RGN algorithm achieves clearly higher reliability than the DDS algorithm. RGN outperforms DDS in all
12 scenarios, with gains by a median factor of 26.1 in terms of finding global optima and gains by a med-
ian factor of 12.7 in terms of finding tolerable optima. Note that the comparison with DDS was con-
structed as “reliability-per-fixed-cost”;

4. RGN has a low median number and comparatively low variability in the estimated number of invocations
required to find global and tolerable optima with 95% confidence, making it attractive for practical appli-
cations. Based on performance over the 12 scenarios, a single RGN invocation is likely to be sufficient to
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find a tolerable optimum; of the order of 120 invocations (but a median of just 4.5 invocations) might be
needed to find the global optimum. In this respect, RGN is clearly preferable to LM and DDS. Although
RGN performance is on average comparable to SCE-nc10 and SCE-nc2, RGN appears more robust when
the objective function is highly irregular geometrically;

5. RGN makes quick progress during the early stages of optimization, with progress generally slowing down
as the search nears the optimal regions. This pattern is qualitatively similar to the convergence patters of
the SCE algorithm, which contradicts the notion that Newton-typemethods are fast only once close to the
optimum, and confirms the general robustness and global convergence properties of the RGN algorithm.
In some instances, plateaus are observed at various stages of the RGN and SCE optimization trajectories,
indicating the need to set the termination tolerance in a way that balances the risks of premature (false)
convergence versus wasted effort at the end of the optimization.

The RGN algorithm achieves high robustness at a moderate cost, ultimately offering major efficiency benefits
over the benchmarking algorithms used in this study. On the basis of our empirical findings, we recommend
the RGN algorithm for practical optimization of hydrological models to least squares objective functions.
Future work will explore the benefits of RGN in more general model calibration contexts, including the use
of non-SSE objective functions, the optimization of computationally slow highly parameterized hydrological
and river system models, the use of regularization approaches, and the use of optimization as a building
block for probabilistic modeling and uncertainty analysis.

Appendix A: Termination criteria for RGN and PEST
In this work, the RGN and LM algorithms employ the termination criteria used in the PEST package and the
broader optimization literature (Doherty, 2005; Duan et al., 1992; see also Qin et al., 2018). Iterations are ter-
minated when any of the following criteria are met:

1. Function-based criterion: objective function value, Φ(i) = Φ(θ(i)), has not decreased over NΔΦ=0 = 4 conse-
cutive iterations;

2. Function-based criterion: (scaled) reductions in the objective function value, (Φ(i+1) � Φ(i))/
max (|Φ(i+1)| ,Φ(scale)), below a tolerance, τΦ = 10�5, over NΔΦ≈0 = 5 consecutive iterations;

3. Solution-based criterion: (scaled) changes in parameter values, max1≤k≤Nθ∣θ
iþ1ð Þ
k � θ ið Þ

k ∣=maxðjθ iþ1ð Þ
k j;

θ scaleð Þ
k Þ, below a tolerance, τθ = 10�5, over NΔθ≈0 = 5 consecutive iterations;

4. Iteration-based criterion: maximum number of iterations, N maxð Þ
iter ¼ 102, is exceeded;

The algorithmic settings above are based on the recommended values in the PEST manual (Doherty, 2005);
they are seen as reasonable values, especially in terms of benchmarking against PEST.
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