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Introduction 

The MASCC/ISOO Mucositis Study Group periodically reviews the literature relating to mucositis 

pathogenesis, mechanisms and novel therapeutic approaches, and distils this to summary 

perspectives and recommendations for research. Continuing this tradition, in 2017, 164 articles 

published between January 2011 and June 2016 were identified by systematic review and critiqued 

by 15 reviewers in a bid to uncover progress made, and highlight new targets for further 

investigation. Moreover, all findings have been assessed in the context of the current state of 

knowledge discussed in the previous reviews (Al-Dasooqi et al., 2013, Anthony et al., 2006, Sonis et 

al., 2004). The approach differed slightly from the last guidelines that reviewed 90 articles, in that 

each paper was critiqued by one reviewer compared to two previously due to the substantial 

increase in new literature that needed to be included, although all other aspects including the key 

search terms, databases included, and the review form were unchanged (for further details see (Al-

Dasooqi et al., 2013). 

In the previous review, a summary of the key mediators of mucosal toxicity was provided including a 

discussion of the role of tissue structure (including the extracellular matrix and epithelial tight-

junctions [TJ]), inflammation, and the microbiome. In addition, discussion also focused on emerging 

understanding of the toxicities associated with targeted anti-cancer agents, toxicity clusters, 

biomarkers of mucosal injury and risk prediction of mucosal injury. Collectively, this was an 

exhaustive summary of the state of the field when published. This update aimed to provide a 

perspective on advances and momentum shift since 2011 in regards to understanding the 

pathogenesis (Table 1). 

 

Emerging and established mediators of toxicity 

Microbiome and host immune response 



Whilst in 2013 the literature described shifts in oral and GI flora being associated with mucosal 

injury, what can now be appreciated is that there is a complex interaction between the baseline 

composition of diverse species, as well as encompassing dynamic changes as a result of cancer 

treatment. Patient studies have looked at overall diversity of oral flora and shifts during 

chemotherapy (Ye et al., 2013) to determine relationships with oral mucositis. In vitro models of oral 

keratinocytes have also been used to demonstrate how microbes impact healing (De Ryck et al., 

2014, De Ryck et al., 2015), as well as the functional changes to the microbes themselves during 

exposure to irradiation (Vanhoecke et al., 2016, Vanlancker et al., 2016). The field has also been 

advancing rapidly in the area of intestinal mucositis, where microbial dysbiosis measured in easily 

accessible fecal samples has led researchers to postulate that gut microbiome composition can be 

used as a surrogate marker for changes leading to diarrhea (Wang et al., 2015). Furthermore, there 

appears to be mechanistic linkages with altered microbial signatures during high dose chemotherapy 

and ability to metabolise nutrients and xenobiotics (Montassier et al., 2015).   

Whilst it would be presumptuous to directly compare microbial composition in humans to animal 

models of mucositis, there has been some evidence of overlapping features that are commonly seen 

and could be used for comparative studies. This includes the observation of a general decrease in 

microbial diversity seen following cancer treatment (Pontoppidan et al., 2015, Lin et al., 2012, Nam 

et al., 2013), and a shift towards increased relative proportions of proteobacteria which include 

facultative anaerobes such as E. coli and salmonella (Stringer et al., 2013, Lin et al., 2012, Nam et al., 

2013, Montassier et al., 2014). Given these overlaps, it encourages exploring the relationship 

between microbiome shifts and mucositis further in animal models.  

Opportunities for targeting microbial-mucosal interactions has been elegantly demonstrated with 

the emergence of genetic knock out models of mucositis. The toll-like receptors (TLRs) have been a 

major area of focus due to their direct interface between microbial ligands and signaling cascades 

through epithelial, neural and immune cells (Cario, 2016). In the context of irinotecan-induced 



intestinal mucositis, germ-line deletion of TLR4 is protective (Wardill et al., 2016), as is MYD88 

(Wong et al., 2015) which is the main adapter protein for all TLRs. However, protective effects of TLR 

deletion can be receptor and drug class-specific. For example, methotrexate-induced intestinal 

mucositis is exacerbated in TLR2 knock out mice, a phenotype that is corrected when the co-

receptor MD2 is also deleted (Frank et al., 2015), yet TLR2 knock out is protective against irinotecan-

induced mucositis (Wong et al., 2015). In contrast, TLR2 deletion and TLR9 antagonism is protective 

against doxorubicin-induced intestinal mucositis (Kaczmarek et al., 2012). Evidence for a direct 

contribution of the intestinal microbes was demonstrated in germ-free mice which were protected 

against irinotecan-induced mucositis, but lost protection when colonised with a diverse microbiome 

(Pedroso et al., 2015). Furthermore, the contribution of B-glucuronidase producing microbes was 

shown to be associated with the development of mucositis, but not wholly responsible (Pedroso et 

al., 2015). 

TLR agonism may also be protective in some settings. The TLR5 agonist, CBLB502, was shown to 

reduce radiation-induced oral mucositis (Burdelya et al., 2012), whilst the natural ligand, flagellin, 

protects against radiation-induced intestinal injury (Jones et al., 2011). A TLR9 agonist could protect 

against lethal doses of whole body and abdominal radiation in mice (Saha et al., 2012). Finally, 

addition of lipopolysaccharide (LPS), the cogent TLR4 agonist, prior to abdominal radiation has 

previously been shown to reduce radiotherapy-induced mucosal barrier injury via a cyclooxygenase-

dependent manner (Riehl et al., 2000). Whether TLR agonism confers direct protection to the 

epithelium or via resident microbes is still to be shown. However, this does support recent evidence 

that consumption of probiotics can dampen mucosal injury following diverse cancer treatments 

(Bastos et al., 2016, Ciorba et al., 2012, Justino et al., 2014, Tang et al., 2016, Xie et al., 2016, Yeung 

et al., 2015, Yuan et al., 2015, Wang et al., 2013a). The evidence for probiotics is strongest in the 

setting of pelvic radiation (Gibson et al., 2013, Lalla et al., 2014a), and this suggests that the 

protective effects in rodent models of radiation-induced mucositis may be translated to the clinic. 

The potential mechanisms may relate to TLR agonism by gram-positive species such as Lactobacillus. 



However, given the variability in outcomes of probiotic clinical trials, much more exploratory work is 

needed to fully understand the microbial-mucosal interactions specific to mucositis pathogenesis.  

In contrast to intestinal microbiota, there were a lack of research articles exploring relationships 

between oral microbial composition and development of oral mucositis published during the review 

period. Although generally agreed that the oral microbiome plays a role in the susceptibility to, and 

infectious consequences of ulcerative mucositis, as well as being altered by cancer treatments, there 

is a lack of mechanistic understanding (Vanhoecke et al., 2015). Two studies explored changes in oral 

microbial composition during treatment and identified potential species important for mucositis 

pathogenesis (Ye et al., 2013, Laheij et al., 2012), although these included different cohorts and 

detection methods. As such, further work is required to unravel the complexities regarding the oral 

microflora and mucositis. 

Globally, microbiota composition and richness have been shown to influence the sensitivity to 

inflammation of the intestinal mucosa. The oral microflora has a different composition and a high 

complexity, and it is similarly influenced by the treatment. However, different bacterial species exert 

their activity in determining the risk and severity of mucositis, and their role needs to be further 

studied. 

The emerging potential to manipulate the microbiome with new treatments beyond the current 

concept of probiotics and prebiotics also delineates a clear path forward. As such, we should now 

consider the role of the microbiome in all phases of mucositis pathogenesis (Figure 1), rather than 

viewing it as a passive contributor of the ulcerative phase. 

 

Sophisticated targeting of inflammation  

The previous review identified inflammation as central to mucositis pathogenesis and expanded on 

the role of pro-inflammatory cytokines and NF-kb signaling (Al-Dasooqi et al., 2013). Although based 
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on a sound scientific rationale, the approach to inhibition of these pathways, such as with 

pentoxifylline and celecoxib, has thus far poorly translated from the preclinical (Frings et al., 2016, 

Gruber et al., 2015a, Gruber et al., 2015b) to clinical setting (Lalla et al., 2014b, Jensen et al., 2013). 

Newer studies have continued to investigate the potential for use of anti-inflammatory agents for 

mucositis management in preclinical models, although focused on broader outcome measures to 

link effectiveness with mechanisms. Since the last pathogenesis update there have been two 

preclinical studies testing IL-1ra, the naturally occurring IL-1 antagonist (Wu et al., 2011a, Wu et al., 

2011b, Xiang et al., 2011). Both studies found protection against chemotherapy-induced intestinal 

mucositis and crypt destruction in the small intestine which was attributed to apoptosis prevention.  

Other protein-based anti-inflammatory therapy have included antibodies against chemokines, CXCL4 

(Gao et al., 2014) and CXCL9 (Lu et al., 2015), indicating a more sophisticated knowledge of the 

immune contributors to mucositis pathogenesis and how it could be more precisely targeted. 

Downstream of TLR activation is the well-characterised upregulation of NFkB-dependent cytokine 

production; targeting these downstream mediators, for instance by knocking out IL-4 (Soares et al., 

2013), is protective in rodent models. This might emerge as the preferred technique when 

translating this to the clinic since it has been recently suggested that intact TLR signaling is necessary 

for adequate anti-tumour responses to chemotherapy and immunotherapy (Li et al., 2017).  

Cell-based approaches to established inflammation management have recently emerged and 

present a paradigm shift from the traditional protein and pharmaceutical compound mode of 

mucositis therapy. Mesenchymal stem cell (MSC) therapy has been investigated in autologous 

transplant to pigs and rats with radiation-induced proctitis (Linard et al., 2013, Linard et al., 2016); 

transplant of human umbilical cord MSCs to mice with radiation-induced intestinal mucositis (Wang 

et al., 2013b) and guinea pigs with radiation-induced oral mucositis (Duan et al., 2015); and finally, 

adipose-derived MSCs have shown effectiveness for resolving radiation induced colonic 

inflammation (Bessout et al., 2015). The utility of MSCs to prevent oral mucositis induced by 



fractionated radiotherapy has also shown promising results in mice; interestingly, the positive 

modulation was dependent on the timing of MSC transplantation (Schmidt et al., 2014). Collectively, 

this provides some early evidence for MSC therapy in both the setting of acute and chronic 

radiation-induced inflammation and with either bone marrow derived or peripheral sources of stem 

cells. However, whilst promising results thus far in some preclinical models of established 

inflammation, translation to the clinic will require longer term safety and further efficacy studies.  

 

Altered functional physiology 

Diarrhea occurs when there is unmatched absorptive and secretory capacity of the intestines, often 

due to enhanced motility or presence of osmotically active or inflammatory luminal contents. 

Clinical anti-diarrheal agents target secretory process and motility, yet there is a lack of attention in 

preclinical models on these as outcome measures (Grover et al., 2016, Sanchez-Lara et al., 2013). 

Models capable of assessing absorption of nutrients have been recently developed (Fijlstra et al., 

2015, Fijlstra et al., 2013, Fijlstra et al., 2011), and the role of secretory processes has been 

extensively profiled in models of inflammatory bowel disease (Gareau and Barrett, 2013). However, 

there is a dearth of papers that have directly examined changes in motility in response to cancer 

therapy, both in preclinical models and the clinic. Some papers have recently assessed changes in 

enteric neuron populations following chemotherapy (McQuade et al., 2016, Robinson et al., 2016) 

and provide mechanistic insight to the underlying functional changes. Furthermore, neural-support 

cells, enteric glia, have been shown in vitro to mitigate altered permeability following exposure to 

inflammatory cytokines (Cheadle et al., 2013). Collectively, the role of motility and particularly 

enteric neurons in the pathogenesis of mucositis is an under-researched field that has the potential 

to uncover new therapeutic targets aimed at underlying functional dysfunction in the intestines 

during mucositis. 
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Chemotherapy and radiation has been known to alter TJs and increase intestinal permeability for 

decades (Melichar et al., 2005). However, there have been recent advances in our understanding of 

the role specific TJs play and how intestinal permeability leads to not only microbiome translocation 

and subsequent activation of immune responses to mediate mucositis pathogenesis, but also may 

also be essential for systemic anti-tumour responses (Alexander et al., 2017). At the time of the last 

update, it was unknown to what extent TJ alterations contribute directly to clinical symptoms of 

mucositis. There was a single study showing an association between protection against oral 

mucositis and retention of TJ properties following radiation (Chen et al., 2011). Wardill and 

colleagues showed a relationship between endotoxin levels and diarrhea, which was linked to 

changes in TJs and FITC-dextran translocation (Wardill et al., 2014, Wardill et al., 2016). Further 

studies exploring the specific relationship between altered permeability and mucositis have been 

conducted by Biju et al, who used a surrogate maker for endotoxemia during radiotherapy in mice 

(Biju et al., 2012); Russo et al, who evaluated blood and urine markers of mucosal barrier injury in 

patients (Russo et al., 2013); and Beutheu et al, who showed that amino acid supplemented feed 

was protective against chemotherapy induced mucosal barrier injury in rats by preventing FITC-

dextran translocation (Beutheu et al., 2014). Given that TJ loss is the preceding lesion to increased 

intestinal permeability, future research should measure the ability of mucositis interventions to 

stabilise these proteins as a routine outcome measure. 

 

Photobiomodulation 

Since the MASCC/ISOO clinical practice recommendation (Lalla et al., 2014a) that low-level laser 

therapy, now termed photobiomodulation, is recommended for the prevention of oral mucositis in 

HSCT (high-dose chemotherapy with or without TBI), further assessment of the mechanisms by 

which it is protective has been investigated in both in vitro and rodent preclinical models (Silva et al., 

2015). This has elucidated that effectiveness of photobiomodulation may be specific to the 



wavelength (Isman et al., 2015, Usumez et al., 2014), total dose, distribution over time and surface , 

and class of laser treatment (Ottaviani et al., 2013). These can differentially activate tissue growth 

factors critical in healing and provide variable induction of endothelial repair. However, difficulties in 

interpretation remain due to the lack of consistency between photobiomodulation regimens in 

terms of the energy dose, duration and laser source, and in the mucositis models employed which 

have variable modes of causing oral ulceration. 

 

Potential insights from technological advances in mucositis research  

Efforts to replicate the complexities of the mucosa has led to the emergence of novel in vitro models 

of mucositis. Gut-on-a-chip and other microfluidic style technology (Kim et al., 2016) provides 

opportunities to ask more sophisticated questions in a physiologically relevant environment 

consisting of multiple cell types that differentiate into mature intestinal structures over long term 

culture. Human cell, 3-dimensional, tissue models of oral mucosa (Colley et al., 2013, Lambros et al., 

2015a, Lambros et al., 2016, Lambros et al., 2015b), and the role of co-culturing with microbial 

biofilm (De Ryck et al., 2014) provide a more comprehensive interaction of factors related to 

radiation-induced mucositis pathogenesis. Finally, intestinal organoids; crypt structures formed by 

stem cells from either humans or mice, can be genetically manipulated for expression of factors 

important in mucositis pathogenesis (Chang et al., 2016, Grabinger et al., 2016, Liu et al., 2016). It is 

expected that these approaches will overcome the reliance on monoculture models and rodents 

which been used in the past and provide an incomplete view of dynamic interactions between 

tissues during mucositis development, or lack translatability between animal and human settings, 

respectively. 

 

Perspective 



 Of the papers reviewed, there was a dominance of work carried out in rats and mice (over 

100 papers); with a modest reliance on clinically derived research (~30 papers); and a 

paucity of human in vitro evidence which likely reflects the difficulty in conducting mucositis 

research in the clinic outside of traditional interventional clinical trials. Whilst we have 

evolved over the years from the separation of oral mucositis and GI mucositis to alimentary 

mucositis in terms of underlying pathobiology, the two are still overwhelming investigated in 

“silos”. In addition, aspects such as the role of extracellular matrix in alimentary mucositis in 

the panel’s opinion have not been significantly advanced since the last update. Models 

continue to be developed for investigation of single modality cancer treatments which no 

longer reflects current clinical practice. It would be of assistance to the field if future 

research incorporated combination of classes of agents when investigating both 

mechanisms of injury and new interventions. Investigation of natural agents and plant 

derivatives (Cheah et al., 2014, Davarmanesh et al., 2013, de Freitas Cuba et al., 2016, Koohi-

Hosseinabadi et al., 2015, Sezer et al., 2011, Shi et al., 2016, Shin et al., 2013, Tang et al., 

2014, Tanideh et al., 2014, Younes-Sakr et al., 2012, Zuo et al., 2015) has shown promise 

through protection from oxidative stress pathways in oral and gastrointestinal mucositis 

models. Yet the isolated active components and specific mechanisms of protection require 

further elucidation. Finally, whilst not addressed in this review, the issue of personalised 

medicine and mucositis risk prediction is still vital and needs urgent attention. Concurrently, 

knowledge gained can also be applied to the recently appreciated area of predicting 

response to mucositis interventions. 

 

Take home messages 

 Research momentum is accelerating for mucositis pathogenesis, reflected by the increased 

publications reviewed in this update compared to the previous effort. With this has come 



utilisation of new models and interventions that target more specific mechanisms of injury. 

Technological advances have the potential to revolutionise the field of mucositis research. 

 More effort is needed to establish transdisciplinary research teams to promote discovery as 

well as translation to the clinic of mucositis interventions. An excellent example of this 

approach has been superoxide dismutase which has combined discovery science and clinical 

research to rapidly bring an effective intervention to patients. 

 Clear selection of outcome measures in animal models that reflect changes in clinical 

settings are needed to confirm effectiveness of new interventions. In particular, the non-

invasive and dynamic measurement of intestinal changes, with peripheral and fecal 

compounds such as citrulline, FITC-dextran and calprotectin, should be included as standard. 

This will improve the ability to identify the most capable agents for translation to clinical 

trials. 

 It will be vital to keep up with the emergence of novel regimens in the clinic (including 

immunotherapy) and understanding of increased complexity of mucositis pathogenesis 

related to combinations of traditional drugs, radiation and targeted agents. 

 

Table 1: Evolution of the pathobiological model of mucositis  
 

2004 Sonis Model  2013 MSG Update  2018 MSG Update 

Mucosally-restricted mechanisms  Direct cytotoxicity (irreversible 
DNA-strand breaks in basal cell 
populations leading to apoptosis) 
during initiation phase; mucosal 
atrophy in oral cavity and crypt 
ablation/villous blunting in GIT; non-
DNA injury initiated through ROS 
production  

Tight junction defects and epithelial 
barrier dysfunction highlighted as 
important factor in exacerbating 
injury; appreciation for cellular 
kinetics of ECM e.g. cell cytostasis, 
↓fibronectin/↑collagen deposits 

during primary damage 

response; AMP18 received 
attention for ability to rescue 
epithelia. 

Key mechanisms outlined in 2004 remain 
fundamental to initiation of injury. Functional 
appreciation for endotoxin and bacterial 
translocation, with subsequent innate 
immune activation.  



Inflammatory-based mechanisms  NF𝛋B- and NRF2-dependent 
damage response resulting in pro-
inflammatory cytokine production 
and MMP signaling. COX2, MAPK 
and tyrosine kinase production 
underpin tissue injury. Signal 
amplification results in worsened 
injury.  

IL-6, IL-1β and TNF⍺ considered 

key inflammatory mediators; 
inverse role for anti-inflammatory 
cytokines suggested but only 
minimally investigated.   

More complex understanding of 
inflammatory signaling. Specific targeting of 
downstream mediators (e.g. IL-1RA, IL-4) 
continues to support key role of pro-
inflammatory cytokines in mucositis.  

Host immune responses  -  -  Emerging role of TLRs in mediating mucosal 
injury indicated by genetic knockout studies 
and pharmacological interventions; role(s) in 
mucositis progression are receptor- and drug 
class-specific. Concern for translation as TLR 
signaling is necessary for adequate anti-
tumor response.  
 

Microbially-mediated mechanisms 
and host-microbe interactions  

Colonization during ulcerative 
phase; translocation predisposes to 
infectious complications.  

Dysbiosis of host microbiome (oral 
and GI) following raft of anticancer 
therapies; conclusions remains 
correlative.   

Host-microbe interactions at baseline critical 
for treatment efficacy and toxicity (key 
interest for risk stratification and prediction); 
dynamic changes in resident microbes 
continue to be characterized with 
increasingly sophisticated techniques. 
Conclusions largely remain correlative. 

Neuroimmune signaling  -  - Possible involvement of enteric glia and 
neuronal cell populations; more research 
needed. GI motility following anti-cancer 
therapy remains poorly studied.  

Other  Non-epithelial factors considered 
important: endothelial dysfunction 
and apoptosis, platelet aggregation, 
submucosal connective tissue 
alterations including fibroblast 
apoptosis; ECM remodeling and 
MMP signaling critical in healing 
phase.  

Importance of symptom clusters 
and mucosally-derived 
inflammation highlighted.  

Mesenchymal stem cells assessed for 
therapeutic efficacy.   
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Fig 1. Impact of microbiota on all phases of mucositis, including pre-therapy risk. Some mechanisms 

likely overlap across regions of the alimentary canal, although the intestinal microbiome has been 

most extensively studied in recent literature. 
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