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Graph Partitioning in the Analysis of Pressure Dependent Water1

Distribution Systems2

Sylvan Elhay1 Jochen Deuerlein2 Olivier Piller3 Angus R. Simpson4
3

June 6, 20174

Abstract5

The forest core partitioning algorithm (FCPA) and the fast graph matrix partitioning algorithm (GMPA) have6

been used to improve efficiency in the determination of the steady-state heads and flows of water distribution7

systems which have large, complex network graphs. In this paper a single framework for the FCPA and the8

GMPA is used to extend their application from demand dependent models to pressure dependent models (PDMs).9

The PDM topological minor (TM) is characterized, important properties of its key matrices are identified and10

efficient evaluation schemes for the key matrices are presented. The TM captures the network’s most important11

characteristics: it has exactly the same number of loops as the full network and the flows and heads of those elements12

not in the TM depend linearly on those of the TM. The inverse of the TM’s Schur complement is shown to be the13

top, left block of the inverse of the full system Jacobian’s Schur complement, thereby providing information about14

the system’s essential behaviour more economically than is otherwise possible. The new results are applicable to15

other nonlinear network problems such as in gas, district heating and electrical distribution.16

Keywords: graph partitioning, water distribution system, pressure dependent analysis, network security, water17

management, topological minor18

19

INTRODUCTION20

Water distribution system (WDS) analysis has, in the past, most often assumed demand dependent modeling21

(DDM) but the mathematically correct steady-state heads and flows solutions to some DDM problems are not phys-22

ically realizable. This is because the model assumes that all the demands are fully delivered and sometimes the23
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mathematics requires that the associated pressures are negative. The steady-state pressures in a system give impor-24

tant information about spatial interconnections and the energy available in a system, so accurately modelled pressures25

are important to WDS designers. Pressure dependent modelling (PDM), in which the flow delivered at nodes is reduced26

below the desired demand if there is insufficient pressure, provides more realistic pressure calculations (and avoids27

physically unrealistic negative pressures at consumer demand nodes). Considerable effort has been devoted to issues28

in system resilience following natural disasters: damage assessment, system degradation or failure, network subgraph29

disconnection. The European ResiWater Project (ResiWater 2017) is an example of such research. Pressure dependent30

modelling plays an important role in addressing these problems. One point of focus in this paper is the extension of31

partition-based DDM problem solution improvements to PDM problems. Although the results are presented in the32

language of WDS analysis, they are equally applicable to nonlinear network problems such as arise in gas, district33

heating, mass-spring systems and electrical distribution (Dolan & Aldous 1993, Birkhoff 1963).34

WDSs are often large and complex interconnected networks. When WDSs are optimised, for example in pipe sizing,35

operational control or when solving inverse problems such as calibration or state estimation, the computational cost36

of optimization can become a prohibitive, or at least a limiting, factor in the study. This has led to research into the37

partitioning of networks into smaller, manageable pieces. Early efforts concentrated on simplifying and decomposing38

the network graph and using meta-models (e.g. van Zyl et al. (2006)). In this approach, only main inlets (the39

water sources) and outlets (aggregated demands at town scale) were represented. When it is important to know the40

pressure levels in the network, partitioning methods were shown to be particularly useful for operational and reliability41

analyses (see Deuerlein (2008) and Simpson et al. (2014)). Within this approach, no skeletonization is made, but rather42

a domain decomposition is used to efficiently and exactly solve the nonlinear equations on smaller parts of the system43

while updating the full system’s solutions with linear operations. The domain decomposition method by Giustolisi &44

Laucelli (2011) lumps all the interior nodes to the two end nodes (for each link) and arrives at an approximate solution45

that is decoupled from interior nodes. They solve the nonlinear hydraulic equations on the simplified network. Unlike46

the Deuerlein et al. (2016) solution, their method suffers from some level of approximation in the PDM case where,47

as will be explained in this paper, it is impossible to decouple solving for the interior forest nodes from the rest of48

the solution process without making some approximations. Giustolisi & Laucelli (2011), however, did not propose49

disaggregation. In a separate development, the Reformulated Cotree Flows Method (RCTM) of Elhay et al. (2014)50

partitions the network’s arc-node incidence matrix (ANIM: the terms ’arc’ and ’link’ are used interchangeably in this51

paper) into trapezoidal form and uses that form in the design of an efficient null-space method.52

Elsewhere the effort has focused on network partitioning to address problems such as failure, security and relia-53

bility, detection of sources of contamination intrusions and sensor placement. In some cases partitioning is used for54

sectorization, a technique that can assist in network management, limit water age and that can improve the effective-55

ness of measurement in leak detection. For example, Estrada (2006) investigated network vulnerability by considering56
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“good expansion” and “degree distribution” properties of networks. Tzatchkov et al. (2006) describe a sectorization57

technique which divides large, highly interconnected city distribution networks into smaller networks, each with one58

or at most two supply points, thereby localizing any disruptions to supply. Similarly, Perelman et al. (2015) investi-59

gated three different schemes for partitioning a WDS into smaller, almost independent subzones with approximately60

balanced loads and minimal interconnections while Perelman & Ostfeld (2011) investigated node clustering through61

connectivity analysis. Di Nardo et al. (2016) considered network partitioning through weighted spectral clustering and62

Herrera et al. (2010) proposed semi-supervised learning strategies in the application of spectral clustering. In a recent63

interesting paper, Yazdani et al. (2011) “employ the link-node representation of water infrastructures and exploit a64

wide range of advanced and emerging network theory metrics and measurements to study the building blocks of the65

systems and quantify properties such as redundancy and fault tolerance”. Laucelli et al. (2012) used a stochastic66

variation of nodal demands, background leakages, pipe resistances, etc. in an attempt to identify those nodes which67

are least capable of delivering the required capacity. They conclude that the DDM approach is inferior to the PDM68

approach for this purpose. Lan et al. (2015) propose an optimization scheme which anticipates a restricted set failures69

and builds into the optimized network design the capacity to handle those particular failures. For a comprehensive re-70

view the major concepts and results recently achieved in the study of the structure and dynamics of complex networks71

see Boccaletti et al. (2006).72

In contrast with the methods described above, partitioning is used in this paper (i) to improve solution methods73

without using approximations such as skeletonization or clustering and (ii) to provide analysis data which is exactly74

what one would get by solving the full network system but which is found much more economically by examining what75

could be considered the kernel of the system (once again without approximation).76

Various authors have investigated ways to accelerate the hydraulic solution algorithms by improving the efficiency77

of the solution methods for the linear systems involved in the Global Gradient Algorithm (GGA) of Todini & Pilati78

(1988). It has become commonly accepted that the (direct) sparse Cholesky (SC) method with node reordering (NR)79

is superior to other classical direct and indirect methods for solving these linear systems. Recently, it was shown80

that Algebraic Multigrid Methods can be applied to these problems (Zecchin et al. 2012) and they were shown to81

outperform the SC+NR method for large networks. On the other hand, other results show that the SC+NR method82

may be significantly improved for large systems by using a nested dissection, node reordering method (Giustolisi83

et al. 2011).84

In other developments, Diao et al. (2014) consider the partitioning of the ANIM into the shape of a block arrow85

matrix, sometimes called a block bordered matrix, in order to speed up the analysis and Chiplunkar et al. (1990) used86

an approach reminiscent of the null space method but with damping applied to the Newton method. Their partitioning87

into a spanning tree and cotree is similar to that of the RCTM.88

More recently, efforts by Puust et al. (2011) and Crous et al. (2012) to speed up hydraulic modelling have considered89
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solving the system hydraulics on parallel architectures and using graphical processing units, both of which are now90

commonly found in personal computers. Not surprisingly, parallelisation based on the GGA has been shown to speed91

up simulations for large networks (see e.g. Guidolin et al. (2011) and Wu & Lee (2011)). Preliminary results based on92

models of real networks show than the sparse Cholesky method is superior to the conjugate gradient method, and that93

the parallelized code is faster than the serial code for networks with more than 4,000 nodes. For small and medium94

size networks there is no gain in computation time because of the cost of inter-processor communication. However,95

for networks of more than 4,000 nodes, there is a slight reduction in computation time (Piller et al. 2012).96

The first partition-based acceleration strategy of present interest for DDM problems is the work of Simpson et al.97

(2014) which introduced the Forest Core Partitioning Algorithm (FCPA) that separates the linear forest heads and98

flows calculations from the nonlinear core heads and flows calculations. This speeds up the solution process for99

DDM networks which have a significant forest subgraph element. Later, in Deuerlein et al. (2016), a fast Graph100

Matrix Partitioning Algorithm (GMPA) for solving the DDM water distribution system equations was proposed. This101

development also essentially identifies the linear part of the network core and treats it with linear processes rather102

than the more time-consuming nonlinear solvers. The truly nonlinear part of the network core, the topological minor103

identified in Deuerlein et al. (2016) and sometimes called the supergraph, can be thought of as giving a condensed104

view of the network’s main elements.105

The flows in a DDM network’s external forest satisfy a linear system and can be determined a priori. The heads106

of the DDM network’s external forest can be found a posteriori. Although the heads and flows of a PDM network’s107

external and internal forests cannot be determined a priori, they follow from the heads and flows of the topological108

minor (which are modelled by a nonlinear system) by a linear process. The facts that (i) the pipes and nodes in109

the internal and external forests exhibit behaviour that depends linearly on the behaviour of the pipes and nodes110

in the topological minor and (ii) the topological minor has precisely the same number of loops as the full network111

(and it is the loops which introduce the nonlinearity into the problem) means that, in some sense, the topological112

minor of a network drives the key behavioural characteristics of the whole network (Deuerlein et al. 2016). Thus, in113

many instances the topological minor encapsulates the most important behavioural elements that interest the network114

engineer. The matrices in the topological minor are frequently very much smaller that the corresponding matrices in115

the full system. They can therefore offer much more manageable analysis elements when dealing with networks which116

have very large complex graphs.117

The French-German collaborative research project SMaRT-OnlineWDN , jointly funded by the French National118

Research Agency and the German Federal Ministry of Education and Research, has investigated the importance of the119

topological minor in real-time monitoring, water security and contamination response. In one of that project’s papers,120

Deuerlein et al. (2014) propose graph decomposition as a basis for the simplification and enhancement of solution121

algorithms for problems related to the management of water supply security. That approach allows streamlined views122
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of the network and fast identification of affected areas. The technique has application in areas which include sensor123

placement, source identification and decision support for response actions.124

One objective of the present paper is to provide a single framework for both the FCPA and GMPA and to extend125

their applicability to PDM problems. The single framework developed in this paper is applicable to both DDM and126

PDM problems. Importantly, the methods presented make no approximations to the topology of the network: there127

is no skeletonization or lumping and the heads and flows results, which are produced, are precisely those obtained by128

solving for the whole network. The partitioning framework presented in this paper for PDM problems separates the129

linear and nonlinear parts of the problem into a global part (the topological minor) and a local part (the internal and130

external forests) just as it does for DDM problems. However, the coupling that exists between the delivered flows and131

the pressures in PDM problems updates both these quantities at each iteration in the solution process.132

Another objective in this paper is the characterization and fundamental properties of the matrices in the topological133

minor for the PDM case. It is seen that knowledge of these properties leads to significant computational savings when134

dealing with the topological minors. It is shown that one of the matrices central to operating with the topological135

minor system has a block diagonal structure. This decoupling means that computation with this matrix, and therefore136

much of the analysis, is well-suited to parallel and distributed computing. From the point of view of serial computing,137

this property means that larger network problems can be analysed on a computing platform with given memory138

capacity.139

The rest of this paper is organized as follows: the next section deals a brief review of the partitioning schemes140

which are brought together in this study and outlines the main contributions of the paper. The section following141

sets out some definitions and notation and the section following that describes the unifying framework that brings142

together the partitioning techniques published previously by the authors. The unifying framework is then applied to143

PDM problems and an example network provided to illustrate the technique. Some applications are briefly outlined144

and then some conclusions are drawn. The last part of the paper is made up of appendices which have various proofs,145

briefly discuss numerical considerations and software and indicate the availability of the data on which the examples146

in the paper rely.147

148

NETWORK PARTITIONING149

Much of the research effort for methods which determine the steady-state heads and flows of WDSs has focused on150

exploiting the very structured nature of the nonlinear equations which model the system. The diagonality of the head151

loss submatrix and the sparseness of the ANIM, which are the main components of the DDM, have been at the heart152

of new approaches that deliver the solutions to the systems much more quickly than would be otherwise possible.153

For many real networks, what appears at first sight to be a fully nonlinear problem turns out, on closer inspection,154

to be partly nonlinear and partly linear. Partitioning the network’s ANIM can lead to savings in computation time155
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that are significant where much of the network problem is linear such as, for example, in all-pipes models which include156

house connection pipes. The more time-consuming nonlinear solvers have to deal only with that part of the network157

which is truly nonlinear.158

Partitioning schemes have also been used to solve the system equations as a null space problem (see e.g. (Elhay159

et al. 2014)) rather than as the more often preferred range space approach of the GGA. The null space approach can160

deliver significant benefits in networks with fewer loops. The development of the partitioning schemes discussed in this161

paper began with Deuerlein (2006) showing that, for DDM problems, the hydraulic steady-state equations of the forest162

can be solved independently from the core. Then the idea of separating the linear and nonlinear parts of the DDM163

problem so that the nonlinear solver need only be applied to the smaller nonlinear part while the linear part was solved164

with linear techniques was extended by the FCPA. The FCPA partitions the graph of the network into an external165

forest and a core. The forest, in this context, is the union of all the trees that connect to nodes in the core and the core166

is the part of the graph which is composed of one or more loop blocks possibly connected by bridge components. That167

work was further extended with the development of the GMPA by Deuerlein et al. (2016) who showed that the core168

of the FCPA can be further subdivided into bridge components and looped blocks. Many looped cores have nodes in169

series: nodes which are part of a loop but which have index two. Following the nomenclature introduced in Deuerlein170

et al. (2016), a set of such nodes in series, each together with one pipe to which it is connected, is called an internal171

tree and the union of all such trees in a graph is called the graph’s internal forest. The GMPA partitions the nodes172

of the blocks into supernodes (degree > 2) and internal tree nodes (degree = 2), i.e. into two parts: (i) a core (which173

is often small), called the topological minor, and (ii) the internal forest. An internal tree running between nodes A174

and B is considered to have a pseudo-link, called a superlink, connecting A and B. The superlink, the internal tree175

branches and one arbitrarily chosen internal cotree link, together form a pseudo-loop. The supernodes, the tree’s end176

nodes A and B, form part of the topological minor. The nonlinear solver is required only for the blocks in such a177

system and this often results in a nonlinear part of the DDM problem with significantly smaller dimension.178

The main results in this paper concern179

(a) the development of a unified framework for three permutation schemes: FCPA, GMPA and the Schilders factor-180

ization181

(b) the extension of the FCPA and GMPA schemes for DDM problems to the case of PDM problems182

(c) the presentation of a network’s topological minor system in a unified setting that includes both the FCPA and183

the GMPA184

(d) the properties of the topological minor system and the matrices which define it185

(e) the algorithmic exploitation of a network graph’s topological minor and it’s ANIMs, and186
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(f) the proof that the inverse of the topological minor’s Schur complement is precisely the (1, 1) block of the inverse187

of the full Jacobian’s Schur complement. Point (e) bears on the sensitivity analysis of large networks by using188

the sensitivity matrices for the much smaller topological minor. It also has application to the problems of sensor189

placement and calibration.190

Although the term ’links’ in this paper applies to pipes, all the results, with slight generalization, apply if the191

links include pumps, valves and control devices. Details of numerical considerations and the data for the networks192

considered in this paper can be found below in the section entitled “Numerical considerations and software”.193

194

DEFINITIONS AND NOTATION195

Consider a DDM or PDM WDS that has np links, sometimes referred to as arcs, and nj nodes, sometimes referred196

to as vertices, at which the heads are unknown. Denote by q = (q1, q2, . . . , qnp
)T ∈ Rnp the vector of unknown flows in197

the system, h = (h1, h2, . . . , hnj )T ∈ Rnj the unknown heads at the nodes in the system and r(q) = (r1, r2, . . . , rnp)T198

the vector of pipe resistance factors. Let nf ≥ 1 denote the number of reservoirs or fixed-head nodes in the system,199

let A denote the np × nj , full rank, unknown-head ANIM, let Af denote the ANIM for the fixed-head nodes and let200

e` denote the elevations of the fixed-head nodes. Denote by n the exponent used in the head loss formula: n = 2 for201

the Darcy-Weisbach model and n = 1.852 for the Hazen-Williams model. Furthermore, denote by G ∈ Rnp×np the202

diagonal matrix whose diagonal elements are defined as [G]jj = rj |qj |n−1. Then, Gq is the vector whose elements203

model the head losses of the pipes in the system. In general, (e.g. for the Darcy-Weisbach formulae) r = r(q)204

but for the Hazen-Williams formula r is independent of q. Denote the vector of the fixed demands at the nodes205

with unknown-head by d = (d1, d2, . . . , dnj )T ∈ Rnj . Denote by ω(h,d) ∈ Rnj the vector whose elements are the206

consumption function values at the nj nodes of the system. Denote θ = (D1, D2, . . . , Dnp
)T ∈ Rnj the vector of pipe207

diameters. Throughout what follows, the symbol O denotes a zero matrix and o denotes a zero column vector of208

appropriate dimension for the particular case. Furthermore, it will be assumed that any matrix inverses which are209

shown do exist.210

Turning now to PDM problems in particular, let h denote the head at a node, hm denote that node’s minimum211

pressure head, hs denote its service pressure head and d denote its demand. Denote also z(h) = (h− hm)/(hs − hm).212

Suppose that γ(t) is a bounded, smooth, monotonically increasing function which maps the interval [hm, hs]→ [0, 1].213

The consumption, or demand, function at a node is defined by214

ω(h, d) =


0 if z(h) ≤ 0

dγ(z(h)) if 0 < z(h) < 1

d if z(h) ≥ 1

. (1)215

The steady-state flows and heads in a WDS with PDM are usually found as the zeros of the nonlinear system of the216
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np + nj equations217

f(q,h) =

(
G(q)q −Ah− a

−ATq − ω(h,d)

)
def
=

(
ρe

ρc

)
= o, (2)218

where a = A2e`, ρe is called the energy residual and ρc is called the continuity residual. A natural way to approach219

the solution of (2) is to use a Newton iteration based on the Jacobian of f ,220

J(q,h) =

(
F (q) −A

−AT −E(h)

)
, (3)221

where F (q) and E(h) are diagonal matrices which are such that (i) the terms on the diagonal of F (q) are the q-222

derivatives of the corresponding terms in G(q)q and (ii) the terms on the diagonal of E are the h-derivatives of223

the corresponding terms in ω(h,d). It is assumed in what follows that the diagonal terms of F and E are non-224

negative. The Newton iteration for (2) proceeds by taking given starting values q(0), h(0) and repeatedly computing,225

for m = 0, 1, 2, . . ., the iterates q(m+1) and h(m+1) from226

(
F (q(m)) −A

−AT −E(h(m))

)(
q(m+1) − q(m)

h(m+1) − h(m)

)
= −

(
ρ
(m)
e

ρ
(m)
c

)
227

until, if the iteration converges, the relative difference between successive iterates is sufficiently small. For many228

engineering settings a heads tolerance of 1 mm and a flows tolerance of 10−3 L/s is usually sufficient. In this research229

setting the authors have used relative stopping tolerances of 10−10 to ensure that the numerical behaviour of the230

methods is clearly exposed. In what follows the Jacobian J (m) will be denoted simply by J where there is no231

ambiguity. In the damped Newton method the iterative scheme is then formally, provided that J is invertible,232

(
q(m+1)

h(m+1)

)
=

(
q(m)

h(m)

)
− σ(m+1)J−1

(
ρ
(m)
e

ρ
(m)
c

)
(4)233

where σ(m+1) is a step-length variable used to assist convergence. Denote234

(
c
(m+1)
q

c
(m+1)
h

)
= J−1

(
ρ
(m)
e

ρ
(m)
c

)
.235

Once the vector ( cTq cTh )
T

is found as the solution of236

J

(
c
(m+1)
q

c
(m+1)
h

)
=

(
ρ
(m)
e

ρ
(m)
c

)
, (5)237

the new iterates can be computed using (4). The block equations for (5) are, simplifying the notation again,238

Fcq −Ach = ρe and −AT cq −Ech = ρc. (6)239
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Multiplying the first equation in (6) on the left by ATF−1 and adding the result to the second equation gives240

c
(m+1)
h = −

(
E +ATF−1A

)−1 (
ATF−1ρe + ρc

)
and c

(m+1)
q = F−1(Ach + ρe).241

Thus, when the terms, c
(m+1)
q , and c

(m+1)
h , have been found, the new iterate can be computed as242

(
q(m+1)

h(m+1)

)
=

(
q(m)

h(m)

)
− σ(m+1)

(
c
(m+1)
q

c
(m+1)
h

)
. (7)243

The system (7) is the PDM counterpart of the GGA method for the DDM problem. The method is reliable and244

robust, provided a suitable line search algorithm such as that proposed by Goldstein is used to choose σ(m+1) (see245

Elhay et al. (2016) for details).246

The results presented throughout this paper are applicable to demand driven model (DDM) problems by replacing247

the consumption function ω(h,d) by the fixed demands d throughout. This has the consequence of making E = O248

and redefining ρc in (2) as ρc = −ATq − d. DDM problems seldom need line search methods and so the step length249

variable would take the value σ = 1 in (4), further simplifying the system.250

Note that the Schur complement inverse −S−1F of J , where SF is defined by SF = E + ATF−1A ∈ Rnj×nj is251

central to the theory of PDM head and flow first-order sensitivities to changes in network parameters (Piller et al. 2016).252

Thus, the matrix −S−1F can be seen in Piller et al. (2016) to be the main component of the matrices of first-order253

sensitivities of the PDM heads and flows in the network to changes in demands, relative roughnesses, resistance factors254

and diameters.255

In what follows, for simplicity and where there is no ambiguity, a matrix will be referred to as a Schur complement256

even though, strictly speaking, its negative is the Schur complement.257

258

A UNIFIED FRAMEWORK FOR THE FCPA AND GMPA PARTITIONINGS259

The following terminology will be used in this paper. A tree is a connected graph that has no loops. A tree with260

at least one leaf node that is connected to a node in the core, called its root node, is called an external tree. Note261

that the root node of a tree is not a part of the tree incidence matrix and that the ANIM of a tree is always square262

and invertible (Diestel 2010). A tree that is part of a looped network (i.e. a set of nodes in series together with one263

pipe for each) will be called an internal tree. Furthermore, the ANIM of a tree can always have its rows and columns264

permuted to lower triangular form. It will be assumed in what follows that the matrix L of (8) is the ANIM for a tree265

or a union of trees (either external, internal or both) and that it has been permuted to lower triangular form.266

267

Three different permutation schemes268

The permutation schemes used in the FCPA, GMPA and the RCTM, from which the main results of the paper269

follow, can be put into a common framework. To do this, the rows and columns of a ANIM, A, are permuted by270
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(orthogonal) permutation matrices, P and R, to give the block structure271

PAR =


n3 n1

n1 A11 L

n2 A21 A22

 (8)272

where (i) A11 ∈ Rn1×n3 , (ii) A22 ∈ Rn2×n1 , (iii) A21 ∈ Rn2×n3 and (iv) L ∈ Rn1×n1 is invertible. There always exists273

such a set of permutations if A has full rank, a natural requirement for the WDSs under consideration. There are274

many permutations of the form (8) three of which will be now be discussed in more detail.275

The FCPA permutations: The FCPA, produces a partitioning of the form of (8) in which (i) L, is a lower276

triangular ANIM which represents the external forest, (ii) A11 is the ANIM which holds the pipes of the external277

forest which connect to the nodes of the core, (iii) A21 is the ANIM of the core and (iv) A22 = O, since no pipes in278

the core connect to nodes of the external forest. Note that the node in the core to which a tree attaches, referred to279

as the ‘root node of the tree’, is actually part of the core but not the forest.280

The GMPA permutations: By contrast with the FCPA, the GMPA which is applied after the FCPA has281

partitioned the external forest of the graph from its core, produces a partitioning of the form of (8) in which (i) L282

can be chosen to be, in addition to lower triangular, also bidiagonal, (ii) A11 represents the links in the internal283

forest which connect to supernodes in the core, (iii) A21 represents the links which are internal cotree chords and the284

supernodes (iv) A22 represents the nodes in the trees to which the internal tree chords connect. Property (i) follows285

from the fact that all the nodes in the internal forest have index two since they represent nodes in series. Deuerlein286

et al. (2016), in order to simplify the exposition, did not consider the external forest. They assumed that the external287

forest had already been separated from the network by the FCPA.288

The Schilders permutations: The Schilders permutations used in the RCTM to generate a matrix L, which is289

the lower triangular spanning tree for the network graph, and A22 which is the network graph’s co-tree. Matrices A11290

and A21 are null in this case.291

292

The unified framework293

The properties of the submatrices of the permuted ANIM, A, are of considerable interest in this context and are294

discussed in more detail in what follows. In order to generalize the FCPA and GMPA results to PDM problems295

it is necessary to explicitly include the permutations which involve both the external and internal forests in the296

partitioning. One of the contributions of this paper is to present a method for achieving this in a new unified setting.297

The permutations required for this can be found in three steps as follows.298

299
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The FCPA step300

The ANIM, A, is first partitioned using the FCPA into the form301

P̃AR̃ =


ñ3 ñ1

ñ1 Ã11 L̃

ñ2 Ã21 O

. (9)302

Here, ñ1 is the number of pipes (and nodes) in the external forest, ñ2 is the number of pipes in the core and ñ3 is303

the number of nodes in the core. The matrix in (9) is shown schematically in the major blocking of Fig. 3.304

The network shown in Fig. 1 was derived from a network used in Deuerlein et al. (2016) to illustrate the GMPA305

by adding an external forest comprising pipes 11, 12 and 13 and nodes 9, 10 and 11. All the pipes in the network306

have diameters 300 mm, lengths 1000 m, roughnesses 0.25 mm, and the nodes have demands of 50 L/s and zero307

elevation. The source head is 100 m. All the nodes have the (same) consumption function given by Eq. (1) with308

γ(t) = t2(3 − 2t). The service pressure head is set at hs = 20 m and the minimum pressure head is set at hm = 0309

m. Solved as a PDM problem the steady-state solution delivers 43% of the required demand. The steady-state flows,310

heads, nodal deliveries, demands and deliveries as percentages of demands are shown in Table 6. This network is used311

in what follows to illustrate, among other things, the stages in the partitioning schemes. Its ANIM is given in Table312

1.313

The right-hand matrix in (9) (i.e. after the FCPA has been applied) for the network in Fig. 1 is shown in Table 2.314

315

The combined FCPA and GMPA steps316

Then, the FCPA core ANIM, Ã21, is further partitioned by the GMPA into the form317

P̂ Ã21R̂ =


n̂3 n̂1

n̂1 Â11 L̂

n̂2 Â21 Â22

. (10)318

where the nodes of index two (the nodes of the internal forest) are represented in L̂ and Â22. The matrix in (10) is319

shown schematically in the (2, 1) major block of Fig. 3. Here, n̂1 is the number of pipes (and nodes) in the internal320

forest, n̂2 is the number of pipes in the topological minor and n̂3 is the number of supernodes. The matrix after both321

sets of permutations is shown in Fig. 3: the FCPA permutations are shown as πs, πp for the pipes and πv and πt for322

the nodes and the Ã11 block is partitioned into two column blocks as shown in Fig. 3 and the permuted matrix Ã21323

of (10) for Fig. 1 is shown in Table 3.324
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325

The Schilders permutations326

Next, the Schilders (2009) factoring which was used in the RCTM is applied to permute the rows and columns of327

the submatrix made of the blocks shown on the left in (11) to get328

P


Ã11 b L̃

L̂
O

Â22

R =

(
L

A22

)
(11)329

which are the right-hand blocks of the final form (8), also shown in Fig. 4. The dimensions of the blocks in (11)330

can be seen in Fig. 3. The Schilders factoring merges the spanning trees of the internal and external forests into a331

single invertible lower triangular matrix L. Furthermore, A22 is the matrix with the co-trees of the forest but, since L332

represents the nodes in the external and internal forests, it is not necessarily bidiagonal. In fact, L is block diagonal333

with lower triangular blocks. Now, the columns of L and A22 represent the nodes in the internal and external forests,334

the rows of A11 and L represent the links in the internal and external forests, the columns of A11 and A21 represent335

the supernodes of the core and the rows of A21 and A22 represent the cotree chords of the core. The submatrix shown336

on the left of (11) for the network in Fig. 1, before the permutations P and R are applied to it, is shown in Table 4.337

The final permuted ANIM matrix for the network shown in Fig. 1 is displayed in Table 5.338

In summary, the three steps of the unified approach are: (i) apply the FCPA to the ANIM A, (ii) apply the GMPA339

to the (FCPA) core and (iii) apply the Schilders factoring to get a single lower triangular matrix which is the spanning340

tree for the external and internal forests.341

342

Why the FCPA should come first343

Applying the GMPA before the FCPA or applying only either the FCPA or the GMPA can produce a larger than344

necessary topological minor and is therefore not recommended. Furthermore, applying only the GMPA to a network345

which has an external forest loses the FCPA advantage of being able to determine the external forest flows (linearly)346

at the outset in DDM problems.347

348

APPLYING THE UNIFIED FRAMEWORK TO PDM PROBLEMS349

The partitioning of the graph’s ANIM suggests a conformal partitioning of the system’s full Jacobian which allows350

the generalization to PDM problems and which is the basis for all the results that follow in this paper. Let P be the351

row permutation matrix and R be the column permutation matrix which together incorporate both the forest-core352

and graph matrix partitionings for the matrix A and which lead to the form shown in (8). Then, partitioning F and353
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E conformally with (8) allows the following partitioning of J354

(
P

RT

)(
F −A

−AT −E

)(
P T

R

)
355

=

(
PFP T −PAR

−RTATP T −RTER

)
356

=



n1 n2 n3 n1

n1 F 1 O −A11 −L

n2 O F 2 −A21 −A22

n3 −AT
11 −AT

21 −E1 O

n1 −LT −AT
22 O −E2


(12)357

where, in addition to (8),

(
F 1

F 2

)
= PFP T and

(
E1

E2

)
= RTER are defined. In what follows the block358

four-by-four Jacobian matrix on the right will be the focus. Any variables involved in calculations with the permuted359

Jacobian which need to be in the original (un-permuted) order can easily be recovered using the matrices P and R360

and their transposes. Therefore, the primary system to be considered is361


F 1 O −A11 −L

O F 2 −A21 −A22

−AT
11 −AT

21 −E1 O

−LT −AT
22 O −E2




φ1

φ2

φ3

φ4

 =


w

x

y

z

 . (13)362

The system (13) can be seen as a rearrangement of (5) if w,x,y and z are defined to match the (appropriately363

permuted) right-hand-side of (5). In that case the solutions to the system, φ1,φ2,φ3,φ4 have important interpreta-364

tions: the vector φ1 represents the Newton corrections to the flows for the pipes in the external and internal forests,365

φ4 represents the Newton corrections to the heads at the nodes of the external and internal forests, φ2 represents366

the Newton corrections to the flows in the topological minor superlinks in the core and φ3 represents the Newton367

corrections to heads at the nodes of the topological minor (the supernodes). The form and structure of the nonlinear368

subsystem which models the behaviour of the topological minor heads and flows corrections provides some interesting369

insights and it is now presented. This subsystem is characterized in Lemma 1.370

Lemma 1 The vectors φ2 and φ3 of (13) satisfy371


n2 n3

n2 B11 −B12

n3 −BT
12 −B22

(φ2

φ3

)
=

(
u1

u2

)
(14)372
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where373

W = E2 +LTF−11 L ∈ Rn1×n1 (15)374

B11 = F 2 +A22W
−1AT

22 ∈ Rn2×n2 (16)375

B12 = A21 −A22W
−1LTF−11 A11 ∈ Rn2×n3 (17)376

B22 = E1 +AT
11L

−TE2W
−1LTF−11 A11 ∈ Rn3×n3 (18)377

u1 = x−A22W
−1
[
z +LTF−11 w

]
∈ Rn2 (19)378

u2 = y +AT
11L

−T (E2W
−1(z +LTF−11 w)− z) ∈ Rn3 (20)379

Proof. See the Appendices.380

The matrix381

B =

(
B11 −B12

−BT
12 −B22

)
(21)382

is the topological minor’s Jacobian, the equivalent of the full system’s Jacobian in (3). However, it differs from the383

full Jacobian in an important respect. The matrix B12 in its (1, 2) block is not necessarily an ANIM in the case of a384

PDM problem. In fact, B12 can be considered to have two components. From (17) and (15) it follows that385

B12 = A21 −A22W
−1LTF−11 A11386

= A21 −A22W
−1
(
LTF−11 L

)
L−1A11387

= A21 −A22W
−1 (W −E2)L−1A11 , so388

B12 = (A21 −A22L
−1A11) +A22W

−1E2L
−1A11 (22)389

and so its first component, A21−A22L
−1A11, is fixed and is the ANIM for the network’s topological minor but there390

is also a second component which depends on the heads. The matrix B for the example network shown in Fig. 1 and391

which is given in (29) illustrates this point. The ANIM for that network before permutation is shown in Table 1 and392

after permutation in Table 5.393

A number of other observations can be made about B and its components. The matrix, −W is easily seen to be394

the Schur complement of the matrix395 (
F 1 −L

−LT −E2

)
396

and its inverse is the main component of the matrix of PDM first-order sensitivities (Piller et al. 2016) of the (internal397

and external) forest heads to changes in the (internal and external) forest node demands, relative roughnesses, diame-398

ters and resistance factors. Here F 1 is the diagonal matrix of (> 0 for the Darcy-Weisbach head loss model) derivatives399
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of the (internal and external) forest head losses, E2 is the diagonal matrix of the (≥ 0) derivatives of the forest node400

consumption functions and L is the ANIM for the forest. The matrix W is symmetric, positive definite because it401

is the sum of a diagonal non-negative matrix and the product LTF−11 L which is such that, for any non-vanishing402

x ∈ Rn1 , xTLTF−11 Lx =
∥∥∥F− 1

2
1 Lx

∥∥∥2
2
> 0. From the sensitivity matrix formulae given in Piller et al. (2016) it follows403

that the quantity F−11 LW−1 is proportional to the first-order change in inflow from a tree node into a tree link.404

It is shown in what follows that the matrices B11 and B22 are diagonal. The matrix B11 is made up of two terms:405

the first, F 2, which has the head loss derivatives due to the network internal cotree links (Deuerlein et al. 2016) and406

the second, A22W
−1AT

22, which measures the contribution to the head loss derivatives attributable to the internal407

and external forest. The matrix B22, which gives the derivatives of the supernode consumption functions, also has two408

components. The first, E1, has the contribution to the derivatives of the consumption function due to the supernode409

itself, while the second term, AT
11L

−TE2W
−1LTF−11 A11, characterizes the contribution to the derivatives of the410

consumption functions at the supernodes made by the external and internal forests.411

Denote412

SB
def
= B22 +BT

12B
−1
11 B12 ∈ Rn3×n3 . (23)413

The matrix −SB is the Schur complement of the matrix, B, in (21) and, once again, its inverse is the main414

component in the matrix of PDM first-order sensitivities of the heads in the topological minor to changes in the415

demands, relative roughnesses, diameters and resistance factors.416

The two lemmas that follow give the solution φT = (φT
1 ,φ

T
2 ,φ

T
3 ,φ

T
4 )T of the full system (13) in terms of the417

topological minor system.418

Lemma 2 With the definitions in Lemma 1, provided all the inverses exist,419

φ3 = −S−1B (u2 +BT
12B

−1
11 u1) and φ2 = B−111 (u1 +B12φ3). (24)420

Lemma 3 With the definitions of Lemma 1 and Lemma 2,421

φ4 = −W−1
(
LTF−11 (w +A11φ3) + z +AT

22φ2

)
and φ1 = −L−T

(
E2φ4 + z +AT

22φ2

)
.422

The proofs of Lemma 2 and Lemma 3 follow immediately by substitution.423

For completeness, it is worth mentioning that the submatrices in the system (14) for the case where only the FCPA424
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is used simplify, in view of the fact that A22 = O in that case, to425

W = E2 +LTF−11 L ∈ Rn1×n1 , B11 = F 2 ∈ Rn2×n2 , B12 = A21 ∈ Rn2×n3 ,

B22 = E1 +AT
11L

−TE2W
−1LTF−11 A11 ∈ Rn3×n3 ,

u1 = x ∈ Rn2 , u2 = y +AT
11L

−T (E2W
−1(z +LTF−11 w)− z) ∈ Rn3

426

For the case where the FCPA (and not the GMPA) is used in a DDM problem the Newton system for the steady-427

state heads and flows assumes the block lower triangular form, for some w(m) and x(m),428


F 1 O −A11 −L

O F 2 −A21

−AT
11 −AT

21

−LT




q
(m+1)
1

q
(m+1)
2

h
(m+1)
3

h
(m+1)
4

 =


w(m)

x(m)

d1

d2

 (25)429

with d1 being the core demands and d2 the forest demands. The partitioning in (25) offers another formal proof of the430

well-known fact that when the GGA is applied to a DDM problem, the forest flows achieve their steady-state values431

after the first iteration. This is because the last block equation in (25) has the form −LTq
(m+1)
1 = d2, and so q

(m+1)
1432

is clearly independent of m. It is clear from the form of the Jacobian in (13) that the FCPA on its own cannot resolve433

the forest flows independently of the core flows when PDM is used. One of the main contributions of this paper is to434

extend the application of the FCPA to the case of PDM.435

The topological minor system (14) provides insights into the connectivity and hydraulic behaviour of a WDS436

network. The superlinks and supernodes characterize the main elements of the network when the linear components437

(the internal and external forests, the heads and flows of which can be found by linear processes) are factored out.438

Dealing with the much smaller topological minor therefore presents an attractive option. The submatrix dimensions,439

np, nj , n1, n2 and n3, for the eight case study networks N1 to N8 used in Elhay et al. (2016) are shown in Columns440

2-6 of Table 7. From these data it can be seen that in all cases the Schur complements of the topological minor’s441

Jacobians have much smaller dimension (n3) than the Schur complements of the full system’s Jacobians (nj). For442

example, the N8 Schur complement has dimension n3 = 3, 202 while the full Jacobian Schur complement has dimension443

nj = 17, 971. Thus, where the topological minor can be used in place of the full Jacobian, significant savings can be444

realized.445

The diagonality of the matrices B11 and B22 also confers significant computational efficiencies when dealing with446

the system (14): in particular the inversion of B11 becomes trivial. These properties are proved, and their implications447

discussed, next.448

449

Properties of the matrices in the topological minor system and the Schur complements450
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The matrix L is block diagonal with lower triangular blocks and so LTL and LLT and their inverses are block451

diagonal with (generally) full diagonal blocks. Consequently, the matrix W = E2+LTF−11 L, and its inverse are block452

diagonal with (generally) full diagonal blocks. Using these properties it is possible to show that both of the topological453

minor matrices B11 = F 2 +A22W
−1AT

22 and B22 = E1 +AT
11L

−TE2W
−1LTF−11 A11 are diagonal. This makes the454

inversion of B11 in (23) (24) trivial and adds to the efficiency of sparse matrix arithmetic with these matrices. The455

proofs of these computationally important properties are given in the Appendices.456

As previously noted, the inverse, S−1F , of the Schur complement of the full Jacobian J is a matrix which is central457

to the first-order sensitivity theory of WDSs. In view of the blocking in (12), the Schur complement of J can be458

written459

SF = E +ATF−1A460

=

(
E1

E2

)
+

(
AT

11 AT
21

LT AT
22

)(
F−11

F−12

)(
A11 L

A21 A22

)
461

=

(
E1 +AT

11F
−1
1 A11 +AT

21F
−1
2 A21 AT

11F
−1
1 L+AT

21F
−1
2 A22

LTF−11 A11 +AT
22F

−1
2 A21 W +AT

22F
−1
2 A22

)
462

def
=


n3 n1

n3 H11 H12

n1 HT
12 H22

. (26)463

The next result provides a way of computing the (1, 1) block of S−1F without computing the inverse of the whole464

matrix. The importance of the (1, 1) block will be discussed shortly.465

Lemma 4 The (1, 1) block of S−1F is S−1H =
(
H11 −H12H

−1
22H

T
12

)−1
466

(
H11 H12

HT
12 H22

)−1
=

(
S−1H ×

× ×

)
(27)467

provided the inverses exist.468

So, the (1, 1) block of S−1F is itself the inverse of the Schur complement, SH , of the Jacobian’s Schur complement469

blocked as in (26).470

Proof. A simple calculation shows that if471

(
H11 H12

HT
12 H22

)(
X Y

Y T Z

)
= I. then X =

(
H11 −H12H

−1
22H

T
12

)−1
= S−1H .472

473
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The next result is one of the main contributions of this paper.474

Lemma 5 Provided all the inverses exist,475

SB = B22 +BT
12B

−1
11 B12 = H11 −H12H

−1
22H

T
12 = SH (28)476

The proof is given in the Appendices.477

This lemma shows that S−1H is the inverse of the Schur complement of the topological minor system (14) . In478

other words, the (1, 1) block of the inverse of the Schur complement for the full Jacobian SF = E +ATF−1A is the479

inverse of the Schur complement of the topological minor system SB = B22 +BT
12B

−1
11 B12. The expression for SB480

is particularly convenient computationally because, as has been shown, both B11 and B22 are diagonal. But more481

importantly, the behaviour of the system which is of most interest is condensed into the topological minor and this482

allows the analysis to be focused on a much smaller network. The time savings which follow from not having to invert483

a large Schur complement and instead using the inverse of the smaller topological minor’s Schur complement may484

mean the difference between an infeasible and a practical calculation in the sensitivity analysis of large networks. The485

matrix S−1B for the illustrative network shown in Fig. 1 is given in (30).486

487

Efficient calculation of the diagonal matrices B11 and B22488

The very special structural properties of the matrices in the topological minor system can be exploited to reduce489

the computational burden involved in the analysis of the systems. In view of the fact that the matrix B11 =490

F 2 +A22W
−1AT

22, is diagonal, only the diagonal elements of the second term eTj A22W
−1AT

22ej , j = 1, 2, . . . , n2,491

where ej ∈ Rn2 is the j-th column of an identity, need be computed. The pipes in the core are represented in the492

submatrix (A21 A22 ). The nodes of the core are represented in A21 and nodes of the internal forest which connect493

to pipes in the core are represented in A22. So any row of A22 can either be all zero or else have a single nonzero494

which is ±1. Consequently, eTj A22 = σêTi for some i, where êi ∈ Rn1 is i-th column of an identity and σ ∈ {−1, 0, 1}.495

Thus, it is only necessary to compute the diagonal terms êTi W
−1ê for those cases where σ is not zero. As a first step,496

the following scheme can be used.497

Suppose that the matrix L has b lower triangular blocks (some may be 1× 1 blocks, of course) with the j-th block498

having dimension mj and row and column indices in the ordered set sj = {s1, s2, . . . , smj}. Then,
∑b

j=1mj = n1.499

Denote by X(sj , sj) the submatrix of X made up of the rows and columns indexed in sj , with a similar notation for500

vectors. The following scheme computes the diagonal elements of B11 economically.501

(a) For each j = 1, 2, . . . , b:502

(i) compute the j-th mj ×mj block of W as W (sj , sj) = E2(sj , sj) +L(sj , sj)
TF−11 (sj , sj)L(sj , sj).503
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(ii) Solve the system W (sj , sj)xj = e(sj), (e(sj) ∈ Rn1 is the j-th unit vector). This computes the vector504

xj = W−1ej .505

(iii) The jth component of xj is the required diagonal term of B11.506

The diagonal matrix A22W
−1AT

22 is non-negative definite but even if its j-th diagonal element vanishes because507

the j-th row of A22 is zero, B11 is still symmetric positive definite because of F 2.508

The same block inverses of W−1 that are used in the computation of B11 can be used in the computation of the509

expression B22 = E1 +AT
11L

−TE2W
−1LTF−11 A11. The triangular blocks of L and its transpose mean that those510

terms require only a forward- or back-substitution thereby making the computation of B22 quite economical. The511

blocks on the diagonal of W−1 are decoupled from one another. Because of this, parallel or distributed computing512

withW−1 can be done very efficiently, a significant advantage when dealing with very large networks. Fig. 5 shows the513

frequency distribution of block sizes for the largest (np = 19, 647) case study network used in this paper. The matrix514

W−1 has dimension 14, 769 but most of the 5, 292 blocks have quite modest dimension suggesting that exploiting the515

block diagonal nature of W−1 will be very advantageous.516

Further significant computational savings may be available in analysing a network such as N8. The steady-state517

PDM flows and heads for N8 (with all demands amplified by a factor of 5 to make it a true PDM problem) were518

computed. Of the 15, 332 nodes with positive demands only 3, 119 deliver less than the required demand (i.e. are519

in the so-called partial delivery mode) while 12, 213 deliver the required demand. In a case such as this, the block520

calculations described above can be simplified for all the blocks which represent nodes that are not in a PDM state.521

Thus, there are then the following simplifications for those blocks: (i) the matrix W simplifies to W = LTF−11 L and,522

(ii) recalling (22), B12 = A21 −A22L
−1A11 and can be precomputed before iterations start. In addition, those parts523

of φ1 (which represents the forest flows) and φ4 (which represents the forest heads) which correspond to blocks that524

are not in a PDM state can be handled as a DDM case would be. For networks such as this these savings can be525

important.526

527

Which of SB or SH should be used in calculation?528

It is natural to ask which of the equivalent expressions, SB , or SH in (28) is preferable in practice since they529

produce the same matrix result. The computation time for many sparse matrix calculations such as matrix inversion530

is roughly proportional to the number of nonzeros in the matrix. On the face of it, inverting the matrices B11 and531

H22 in SB and SH , respectively, present the biggest computational burdens. The relevant facts here are that (i)532

B11 is diagonal and so computing B−111 B12 is no more than a row scaling of B12, but the matrix H22 ∈ Rn1×n1 is533

not, in general, diagonal and (ii) using the case study networks considered in this paper as a guide suggests that the534

matrices H22 usually have many more nonzeros than the corresponding matrices B11. Table 7 shows, for the eight535
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case study networks, the number of pipes np, the number of nodes nj , the submatrix dimension parameters n1, n2536

and n3, together with the number of nonzeros in B11, H22 and the ratio of those two numbers as a percentage. In537

view of the much greater number of nonzeros in H22 for all cases and the fact that H22 is not diagonal, implying a538

greater computational burden in the inversion, the expression for SB must be preferred. The cases of Networks 5 and539

6 are particularly persuasive since there B11 has 3% or less of the number of nonzeros in H22.540

541

AN EXAMPLE NETWORK542

Example 1 In this section the partitioning of the network shown in Fig. 1 is discussed in more detail and the key543

matrices in the topological minor are displayed.544

Table 1 shows the network’s ANIM before any partitioning. The internal forest has been chosen to include nodes545

3, 4, 5, 6, 7 and 8 and pipes 2, 3, 4, 5, 6 and 7. The topological minor of this network is shown in Fig. 2 (a) and546

the corresponding internal and external forest component is shown in Fig. 2 (b) with the internal tree chords, 1, 8, 9,547

10, shown as dotted lines. Thus, pipes 2, 3 are internal tree branches and pipes 11 and 13 are external tree branches.548

These four pipes are represented by the first 4×4 block shown in the matrix L in Table 5. Note that node 4 has index549

4 at start but after the external forest has been partitioned, it has index 2 and so qualifies for the internal forest. For550

this case np = 13, nj = 11, n1 = 9, n2 = 4 and n3 = 2. Table 5 shows the ANIM after FCPA, GMPA and Schilders551

factoring have all been applied. The matrix L in this case has 3 diagonal blocks which are lower triangular and which552

have dimensions 4 × 4, 1 × 1 and 4 × 4. The steady-state flows, heads, nodal deliveries, demands and deliveries as553

percentages of demands are shown in Table 6. To compute the topological minor, the matrices F 1, F 2, E1 and E2 of554

(12) are found by applying the permutations P and R to the Jacobian (3) and together with L, which is the top-right555

block of the matrix shown in Table 5, are used to compute W = E2 +LTF−11 L and hence B11, B12 and B22 using556

(16) to (18). The resulting topological minor matrix B of (21) is then557

B =

(
B11 B12

BT
12 B22

)

=



308.2942 0 0 0 1 0

0 126.4176 0 0 −0.7476 1

0 0 70.9984 0 −0.3231 1

0 0 0 85.0870 −0.2860 1

1 −0.7476 −0.3231 −0.2860 −0.0168 0

0 1 1 1 0 −0.0037



(29)558

and B11, B22 are indeed diagonal. As noted earlier, B12 is not a true ANIM because some nodes are in a PDM state.559
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The form of the partitioned ANIM matrix in Table 5 illustrates the three block types which are possible on the560

block diagonal of L: (i) a generally full lower triangular block, (ii) a diagonal block (in this case of dimension 1× 1)561

and (iii) a lower bidiagonal block. The first block in W represents the union of two trees: one made up of the internal562

forest pipes 2 and 3 and the other made up of the external forest pipes 11 and 13. Similarly, the last block in W563

represents the union of two trees: the internal forest pipes 5, 6 and 7 and external forest pipe 12. The corresponding564

block structure of W−1 is clearly evident:565

W−1 =



47.4 29.3 26.8 26.8 0 0 0 0 0

29.3 55.3 50.6 50.6 0 0 0 0 0

26.8 50.6 69.8 46.3 0 0 0 0 0

26.8 50.6 46.3 69.8 0 0 0 0 0

0 0 0 0 67.3 0 0 0 0

0 0 0 0 0 47.2 30.8 25.3 23.2

0 0 0 0 0 30.8 57.2 47.0 43.1

0 0 0 0 0 25.3 47.0 64.3 58.9

0 0 0 0 0 23.2 43.1 58.9 77.2



566

Note that even though the last block of E2 +LTF−11 L is tridiagonal, its inverse is generally full.567

The matrix S−1B is, in accordance with (28), precisely the top-left block of S−1F .568

S−1F =

 45.9586 16.9873

16.9873 33.0132
×

× ×

 =

(
S−1B ×

× ×

)
(30)569

and −S−1B is the main component of the matrix of first-order sensitivities of the heads and flows at the supernodes,570

1 and 2, to changes in the demands, relative roughnesses, diameters and resistance factors at those nodes. The full571

matrix of the first-order sensitivities of the heads, hi, to demands, di is shown in Table 8. Note that, unlike the572

DDM case, this PDM sensitivity matrix is not symmetric. The top-left 2 × 2 block of this matrix is the heads to573

demands sensitivity matrix for the topological minor. It could have been computed much more economically by right-574

multiplying the 2× 2 block shown in (30) by a 2× 2 diagonal matrix which has the d-derivatives of the consumption575

functions for nodes 1 and 2 (see Piller et al. (2016) for explicit formulae to compute these sensitivity matrices from576

−S−1B and see Deuerlein et al. (2017) for a discussion of DDM sensitivity matrices). There is no reason that the heads577

of the nodes in the topological minor should be the most sensitive in the network – reducing the diameter of a pipe578

can increase the sensitivity of a nearby node to arbitarily high levels. But the nodes of the topological minor are, as579

explained earlier, the most important.580
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�581

Example 2 The public domain Balerma network which was used in Reca & Martinez (2006) is a convincing example582

of a real life network in which the topological minor has significantly smaller dimension that of the full system. The583

full network had np = 454 pipes, nj = 443 nodes and nf = 4 sources. The full network is displayed in Fig. 6.584

The supergraph matrix A21 for this network has dimension 27× 16 and the (internal and external) forest has 427585

elements. Fig. 7 Shows the network core after the FCPA has been applied and Fig. 8 shows the supergraph. The586

external forest is shown in Fig. 9.587

�588

589

APPLICATIONS OF THE PARTITIONING590

The matrix SB has application in several problems. As one example, the matrix which measures the first-order591

sensitivity of the PDM steady-state heads in a network to changes in the demands is S−1F T , T a diagonal matrix.592

Thus, it is the inverse of the Schur complement of J with its columns scaled. For large networks it may be prohibitively593

time consuming to invert such a large matrix. On the other hand, inverting the Schur complement, SB , of the much594

smaller topological minor matrix for the same network may well be practical and, since the most important aspects595

of the network’s behaviour are encapsulated in the topological minor, this may be of more value. It is important596

to note in the context of sensitivity analysis, that the inverse of the Schur complement of the Jacobian figures in597

the expressions for the sensitivities of the steady-state heads and flows with respect to demands, resistance factors,598

roughnesses and pipe diameters. These remarks apply equally to DDM problems albeit with simplified formulae.599

The inverse of the Jacobian’s Schur complement also plays a central role in the calibration problem where, for600

example, the demands in a network are to be determined. In that case the demands at the topological minor nodes601

might be those most likely to be required since they influence network behaviour more strongly than other nodes.602

Once again, working with the smaller topological minor Schur complement will be more efficient.603

In Elhay et al. (2016) a technique for solving PDM WDS problems by using a weighted least squares Gauss-Newton604

iteration was presented. Indicative tests suggest that using the partitioned solution scheme of (13) and exploiting the605

block structure of the matrix W and the diagonality of B11 and B22 to compute the Gauss-Newton descent direction606

leads to shorter execution times. Importantly, the independence of the blocks on the diagonal of W−1 means that607

each block can be treated on its own and that the simpler DDM formulae can be used where the nodes in a block are608

not in a PDM state.609

610

CONCLUSIONS611

In this paper the permutations used in (i) the FCPA which separate a network’s external forest from its core,612
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and (ii) the GMPA which separates a network core’s internal forest from the rest of the core, and (iii) the Schilders613

permutations are put into a unified framework. Using this framework, the FCPA and the GMPA schemes for DDM614

problems have been extended to deal with PDM problems. All the PDM results in this paper are applicable to DDM615

problems by applying the appropriate simplifications.616

The Jacobian for the PDM topological minor has been derived and important structural properties of matrices617

involved in the topological minor have been established and formally proved. These include the diagonality of the618

matrices B11 and B22 and the block diagonal structure of the matrix W . It is also shown that for an example network619

with about 20,000 pipes the matrix W has many small blocks, a property which can be exploited to economize on620

computation, especially in a parallel or distributed computing environment.621

It is shown that, S−1B , the inverse of the Schur complement for the Jacobian of the topological minor, is precisely622

the (1, 1) block of, S−1F , the inverse of the Schur complement for the Jacobian of the full system. The matrix S−1B is623

central to the study of first order sensitivities of heads and flows to changes in system demands, resistance factors,624

roughnesses, relative roughnesses, and diameters. Given the significant computational cost of inverting SF for a625

large system, the possibility of computing only its (1, 1) block, S−1B , is both attractive and helpful since in many626

cases the topological minor encapsulates the most important information about a network. Schemes for the efficient627

calculation of the matrices B11, B22 and W−1 and working with the topological minor subsystems are also given.628

The partitioning technique and the matrix properties in this paper are illustrated with a small example network. The629

relevance of these results to some important applications in water distribution analysis are briefly described.630

A useful contribution to the field would be the application of the partitioning technique to assess the resilience of631

large networks with pressure deficiencies that result from critical events.632
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APPENDICES728

729

PROOF OF LEMMA 1730

The first and last block equations of (13) can be written as731

(
F 1 −L

−LT −E2

)(
φ1

φ4

)
=

(
w +A11φ3

z +AT
22φ2

)
.732

Thus,733 (
F 1 −L

O −E2 −LTF−11 L

)(
φ1

φ4

)
=

(
I O

LTF−11 I

)(
w +A11φ3

z +AT
22φ2

)
734

and provided that W
def
= E2 +LTF−11 L is invertible735

φ4 =
[
−W−1AT

22

]
φ2 +

[
−W−1LTF−11 A11

]
φ3 −W

−1
[
z +LTF−11 w

]
. (31)736

From the fourth block equation737

φ1 = −L−T
(
E2φ4 + z +AT

22φ2

)
738

or739

φ1 =
[
L−T (E2W

−1 − I)AT
22

]
φ2 +

[
L−TE2W

−1LTF−11 A11

]
φ3 +

[
L−T (E2W

−1(z +LTF−11 w)− z)
]
. (32)740

The second and third block equations of (13) can be written741

F 2φ2 −A21φ3 −A22φ4 = x (33)742

−AT
11φ1 −A

T
21φ2 −E1φ3 = y (34)743

Substituting the expressions for φ1,φ4 into these equations and collecting terms gives a system in the two unknowns744

φ2,φ3. Substituting the expression for φ4 in (31) into (33) gives745

[
F 2 +A22W

−1AT
22

]
φ2 −

[
A21 −A22W

−1LTF−11 A11

]
φ3 = x−A22W

−1
[
z +LTF−11 w

]
. (35)746
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Substituting the expression for φ1 in (32) into (34) gives747

−
[
AT

21 +AT
11L

−T (E2W
−1 − I)AT

22

]
φ2

+
[
−E1 −AT

11L
−TE2W

−1LTF−11 A11

]
φ3

= AT
11L

−T (E2W
−1(z +LTF−11 w)− z) + y.

(36)748

Lemma 6 If W = E2+LTF−11 L, and L are both invertible, then (A21−A22W
−1LTF−11 A11)T = AT

21+AT
11L

−T (E2W
−1−749

I)AT
22.750

Proof. I −W−1E2 = W−1(W − E2) = W−1(LTF−11 L) and so W−1LTF−11 = (I −W−1E2)L−1. Now,751

W is symmetric so W−T = W−1 and (W−1LTF−11 )T = L−T (I − E2W
−1) whence −(A22W

−1LTF−11 A11)T =752

AT
11L

−T (E2W
−1 − I)AT

22 from which the identity quickly follows.753

Thus, (36) can be rewritten as754

−
[
A21 −A22W

−1LTF−11 A11

]T
φ2

+
[
−E1 −AT

11L
−TE2W

−1LTF−11 A11

]
φ3

= AT
11L

−T (E2W
−1(z +LTF−11 w)− z) + y.

(37)755

This completes the proof because relations (35) and (37) define the ((n2 + n3)× (n2 + n3)) system (14) of Lemma 1.756

757

PROOF THAT B11 IS DIAGONAL758

Proof.759

The matrix L and its inverse, L−1 are block diagonal with (possibly signed) unit lower triangular diagonal blocks.760

As a result the matrix W−1 is also block diagonal but with generally full diagonal blocks. Denote R = A22L
−1.761

From the formulae in (15) and (16) it follows that B11 = F 2 +A22W
−1AT

22 = F 2 +A22

(
E2 +LTF−11 L

)−1
AT

22 =762

F 2 +A22L
−1
(
L−TE2L

−1 + F−11

)−1
L−TAT

22 = F 2 +RU−1RT .763

The columns of R are (not necessarily distinct) signed unit vectors. To see this first consider the special case of764

one of the blocks which will be denoted by L ∈ Rn4×n4 , on the diagonal of L and the corresponding submatrix below765

it, A22 ∈ Rn5×n4 . The inverse of L, which must itself be lower triangular, is generally full and the following argument766

shows that the elements below the diagonal of L
−1

are all in {−1, 0, 1}. Denote by ej the jth column of an identity767

matrix of appropriate dimension, denote the elements ofL by Lij and consider the solution of the systemLx = ej which768

determines x, the j-th column ofL
−1

. Now, x1 = x2 = . . . = xj−1 = 0 becauseL
−1

is lower triangular so eTj Lx = eTj ej769

reduces to Ljjxj = 1 from which it follows that xj = Ljj = ±1. Suppose now that xj+1, xj+2, . . . , xj+k−1 ∈ {−1, 0, 1},770

k > 1. Then eTj+kLx = eTj+kej = 0 which can be written as Lj+k,mxm +Lj+k,j+kxj+k = 0, some 1 ≤ m < j+k, since771
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any row of L has at most two nonzeros. It follows, since Lj+k,j+k = ±1, that xj+k = −Lj+k,j+kLj+k,mxm ∈ {−1, 0, 1}.772

Thus, all the elements from the main diagonal down of L
−1

are in {−1, 0, 1} and the diagonal elements of L
−1

are773

exactly those of L.774

Now, n4 − 1 of the columns of A22 are zero and just one column, say column m, is an n5 unit vector, êk, some k.775

This is because A22 is the ANIM for the nodes in the internal or external trees which are connected to pipes in the776

core, i.e. the root nodes of the internal or external trees. Thus, each block of L represents one tree and so has only777

has one root node and consequently there is exactly one nonzero in A22 for each block in L. Then, A22 = êke
T
m and778

so the product R = A22L = êke
T
mL is a matrix of the same dimensions as A22 with the mth row of L in its kth row.779

Thus, R is a matrix each column of which is either zero or the same unit vector with possibly different sign and R780

can be written as an algebraic sum of matrices of the form êke
T
s for various s.781

Suppose now that U
−1 ∈ Rn4×n4 is the (generally full) diagonal block of782 (

L−TE2L
−1 + F−11

)−1
which corresponds to L and A22. Then RU

−1
is an algebraic sum of matrices of the form783

êke
T
s U
−1

, various s, each of which is a matrix with the sth row of U
−1

in its kth row. As a consequence RU
−1

is a784

matrix with zeros everywhere except in the kth row where it has linear combinations of the rows of U
−1

. Multiplying785

RU
−1

on the right by R
T

, a sum of matrices of the form esê
T
k , various s, clearly produces a diagonal matrix since786

all the terms in the sum are products of the form êke
T
s U
−1
etê

T
i = βêkêi, some scalar β, and all these terms vanish787

except those for which k = i. In other words, only products of the same unit vectors produce terms which are nonzero788

and those terms are therefore on the diagonal.789

Example 3

If L =



-1 0 0 0 0

1 -1 0 0 0

1 0 -1 0 0

0 1 0 -1 0

0 1 0 0 -1


then L

−1
=



-1 0 0 0 0

-1 -1 0 0 0

-1 0 -1 0 0

-1 -1 0 -1 0

-1 -1 0 0 -1


. (38)790

Suppose that ê3 is the third unit vector of dimension four and e5 is the fifth unit vector of dimension five and that791

A22 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

 = ê3e
T
5 .792

[pbsys.tex: 1:46, June 6, 2017] Page 29



Then the product A22L
−1

= ê3e
T
5 L is a matrix with the fifth row of L

−1
as its third row and zeros elsewhere.793

R = A22L
−1

=


0 0 0 0 0

0 0 0 0 0

-1 -1 0 0 -1

0 0 0 0 0

 = −ê3eT1 − ê3eT2 − ê3eT5 .794

Now, if795

U
−1

=



4 8 2 1 5

2 6 3 7 3

4 4 2 6 5

4 4 6 7 3

4 6 1 5 6


then

RU
−1

=


0 0 0 0 0

0 0 0 0 0

-10 -20 -6 -13 -14

0 0 0 0 0


= −10ê3e

T
1 − 20ê3e

T
2 − 6ê3e

T
3 − 13ê3e

T
4 − 14ê3e

T
5

796

and so797

RU
−1
R

T
=


0 0 0 0

0 0 0 0

0 0 44 0

0 0 0 0

 = 44ê3ê
T
3 .798

�799

Now L has block diagonal form, with lower triangular blocks, and so U−1 is block diagonal with generally full800

diagonal blocks. Thus, the argument above can be applied independently to each block, showing that all the off-801

diagonal elements of B11 vanish. It follows that B11 = F 2 +RU−1RT , which is the sum of a non-negative definite802

term, RU−1RT , and a positive definite diagonal term, F 2, is diagonal, positive definite.803

804

PROOF THAT B22 IS DIAGONAL805

The proof that B22 is diagonal relies on the following lemma.806

Lemma 7 Suppose that each column of the matrix A ∈ Rm×n, is a (possibly signed) unit vector in Rm (the columns807

of A need not be distinct). Then, AAT is diagonal. Moreover, if D ∈ Rn×n is a diagonal matrix then ADAT is also808

diagonal.809

Proof. Suppose {ei}, ei ∈ Rm and {ui},ui ∈ Rn are sets of unit vectors and that S is a set of indices {si},810

1 ≤ si ≤ m and T is a set of indices {ti}, 1 ≤ ti ≤ n. The matrix A can be written A =
∑

i∈S,j∈T eiu
T
j where any811

term uj can appear in this sum only once since the columns of A are unit vectors. Then, in view of the orthogonality812
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of the ui, AA
T =

∑
i∈S αieie

T
i where ei appears αi times in the sum expression for A. Thus, the product is clearly813

diagonal.814

The rest of this section is concerned with the proof that B22 is diagonal.815

Proof. The matrix B22 admits the alternate expression (see Eq. (42))816

B22 = E1 +AT
11F

−1
1 A11 −AT

11F
−1
1 LW−1LTF−11 A11.817

The rows of A11 are either zero or are (possibly signed) unit vectors (have exactly one nonzero) because L is lower818

triangular, invertible and (A11 L ) is part of an ANIM, the rows of which represent links and the columns of which819

represent vertices. Therefore, in view of Lemma 7, the product AT
11F

−1
1 A11 is diagonal. So, it suffices to show that820

the term AT
11F

−1
1 LW−1LTF−11 A11 is diagonal.821

Consider, as in the case of the proof of the diagonality of B11, the special case where L, one of the diagonal blocks822

of L, has the form shown in (38). The first row of A11, the corresponding submatrix block of A11, has a single ±1823

and the rest of the matrix is zero and so A11 = e1ê
T
k for some k. Consequently, if F 1 denotes the block of the F 1824

matrix corresponding to L, then A11F
−1
1 = αe1ê

T
k for some scalar α. It follows, if W

−1
is the diagonal block of W−1

825

corresponding to L, that α2e1ê
T
kLW

−1
L

T
êke

T
1 is a matrix with zeros everywhere with the possible exception of the826

diagonal element of row 1.827

Now, every diagonal block of L has a corresponding submatrix block in A11 which has a single nonzero element828

and the argument above can be applied independently to each block of L. Therefore, the matrix B22 is the sum of829

three diagonal terms. In general, B22 will not be invertible.830

Example 4 Suppose L is as in (38), that A11 is831

A11 = ê1e
T
3 =



0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


and that LW

−1
L

T
=



2 3 3 3 4

2 2 4 4 4

3 1 3 2 3

1 2 3 5 4

3 4 2 3 5


.832

It follows immediately that833

AT
11LW

−1
L

T
A11 = ê3e

T
1 LW

−1
L

T
e1ê

T
3 =



0 0 0 0

0 0 0 0

0 0 2 0

0 0 0 0


.834
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�835

836

PROOF THAT SH = SB837

The statement SH = SB expands out, on substitution for the various matrices involved, to838

E1 +AT
11F

−1
1 A11 +AT

21F
−1
2 A21

−
(
AT

11F
−1
1 L+AT

21F
−1
2 A22

)(
E2 +LTF−11 L+AT

22F
−1
2 A22

)−1
×(

LTF−11 A11 +AT
22F

−1
2 A21

)
= E1 +AT

11L
−TE2W

−1LTF−11 A11+(
AT

21 −A
T
11F

−1
1 LW−1AT

22

)(
F 2 +A22W

−1AT
22

)−1
×(

A21 −A22W
−1LTF−11 A11

)
.

839

The proof is somewhat tedious but straightforward.840

Proof. From the definition of H22841

H22 = W +AT
22F

−1
2 A22 so842

A22W
−1H22 =

(
F 2 +A22W

−1AT
22

)
F−12 A22843

= B11F
−1
2 A22 (39)844

From the definition of H12845

B12 = A21 −A22W
−1(HT

12 −A
T
22F

−1
2 A21) so846

B−111 B12 = B−111 (A21 +A22W
−1AT

22F
−1
2 A21)− F−12 A22H

−1
22H

T
12 (using (39))847

= F−12

(
A21 −A22H

−1
22H

T
12

)
(40)848

Now, multiplying (40) on the left gives849

AT
21B

−1
11 B12 = AT

21F
−1
2 A21 −AT

21F
−1
2 A22H

−1
22H

T
12850

= (H11 −E1 −AT
11F

−1
1 A11)−AT

21F
−1
2 A22H

−1
22H

T
12851

= (H11 −E1 −AT
11F

−1
1 A11)− (H12 −AT

11F
−1
1 L)H−122H

T
12852

= (H11 −H12H
−1
22H

T
12)−E1 −AT

11F
−1
1 A11 +AT

11F
−1
1 LH−122H

T
12853
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and so854

AT
21B

−1
11 B12 +E1 +AT

11F
−1
1 A11 −AT

11F
−1
1 LH−122H

T
12 = H11 −H12H

−1
22H

T
12 (41)855

The following statements follow from (40):856

AT
22B

−1
11 B12 −AT

22F
−1
2 A21 +AT

22F
−1
2 A22H

−1
22H

T
12 = 0857

AT
22B

−1
11 B12 −HT

12 +AT
22F

−1
2 A22H

−1
22H

T
12 +HT

12 −A
T
22F

−1
2 A21 = 0858

AT
22B

−1
11 B12 −H22H

−1
22H

T
12 +AT

22F
−1
2 A22H

−1
22H

T
12 +LTF−11 A11 = 0859

AT
22B

−1
11 B12 − (H22 −AT

22F
−1
2 A22)H−122H

T
12 +LTF−11 A11 = 0860

AT
22B

−1
11 B12 − (E2 +LTF−11 L)H−122H

T
12 +LTF−11 A11 = 0861

AT
22B

−1
11 B12 −E2H

−1
22H

T
12 −L

TF−11 LH−122H
T
12 +LTF−11 A11 = 0862

AT
22B

−1
11 B12 −E2H

−1
22H

T
12 +LTF−11 A11 − (W −E2)H−122H

T
12 = 0863

AT
22B

−1
11 B12 +LTF−11 A11 −WH−122H

T
12 = 0864

AT
11F

−1
1 LW−1AT

22B
−1
11 B12 +AT

11F
−1
1 LW−1LTF−11 A11 −AT

11F
−1
1 LH−122H

T
12 = 0865

(AT
21 −B

T
12)B−111 B12 +AT

11F
−1
1 LW−1LTF−11 A11 −AT

11F
−1
1 LH−122H

T
12 = 0866

AT
21B

−1
11 B12 −BT

12B
−1
11 B12 +AT

11F
−1
1 LW−1LTF−11 A11 −AT

11F
−1
1 LH−122H

T
12 = 0867

Thus, B22 +AT
21B

−1
11 B12 +AT

11F
−1
1 LW−1LTF−11 A11−AT

11F
−1
1 LH−122H

T
12 = B22 +BT

12B
−1
11 B12 and the result868

is proved if it can be shown, in view of (41), that869

B22 +AT
21B

−1
11 B12 +AT

11F
−1
1 LW−1LTF−11 A11 −AT

11F
−1
1 LH−122H

T
12 =

AT
21B

−1
11 B12 +E1 +AT

11F
−1
1 A11 −AT

11F
−1
1 LH−122H

T
12

870

or that B22 = E1 +AT
11F

−1
1 A11−AT

11F
−1
1 LW−1LTF−11 A11. Now, I−F−11 LW−1LT = L−TLT −F−11 LW−1LT =871

L−T
(
W −LTF−11 L

)
W−1LT = L−TE2W

−1LT and multiplying on the right by F−11 A11 gives872

F−11 A11 − F−11 LW−1LTF−11 A11 = L−TE2W
−1LTF−11 A11873

AT
11F

−1
1 A11 −AT

11F
−1
1 LW−1LTF−11 A11 = AT

11L
−TE2W

−1LTF−11 A11874

E1 +AT
11F

−1
1 A11 −AT

11F
−1
1 LW−1LTF−11 A11 = E1 +AT

11L
−TE2W

−1LTF−11 A11 (42)875

= B22 (43)876

and the result is proved.877

878
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SUMMARY OF THE PROCESS TO DETERMINE B, THE JACOBIAN OF THE TOPOLOGICAL879

MINOR880

In this section we summarize the process of permuting the ANIM and finding the matrices which define the881

topological minor.882

Given the block matrices F , E and A in (3):883

(a) Use the FCPA, which is described in Simpson et al. (2014), to produce the row and column permutations P̃ and884

R̃ of (9) which, when applied to A, partition the forest element of the network from the core.885

(b) Use the GMPA, which is described in Deuerlein et al. (2016), to find the permutations P̂ and R̂ of (10) which,886

when applied to the ANIM of the core Ã21, identify the topological minor and partition it from the internal887

forest.888

(c) Integrate the permutations P̃ , P̂ and R̃, R̂.889

(d) Apply the Schilders factoring, described in Elhay et al. (2014) to find the permutations P and R of (11).890

(e) Integrate the permutation P and R with those of step (c) to find the overall permutations P and R which give891

the final form (8).892

(f) Use the scheme described in the section headed “Efficient calculation of the diagonal matrices B11 and B22” to893

compute the matrices which make up the topological minor and which are defined in (15) to (18). This completes894

the computation of the matrix B of (21).895

(g) The Schur complement, SB , of the topological minor can be computed, if required, using (23).896

(h) The quantities φ1,2,3,4 of (13) can be computed, if required, using the results of Lemma 2 and Lemma 3.897

898

NUMERICAL CONSIDERATIONS AND SOFTWARE899

All the calculations reported in this paper were done using a suite of codes specially written by the first author for900

Matlab, (Mathworks 2016) which exploit the sparse matrix arithmetic facilities available in that package. Four Matlab901

Mex files which are C implementations of four of the Matlab programming language codes in the suite were used.902

Matlab arithmetic conforms to the IEEE Double Precision Standard and so machine epsilon for all these calculations903

was 2.2×10−16. The Matlab software was run on a PC with a Windows 7, 64-bit operating system with an i7-4700MQ904

processor.905

906

SUPPLEMENTAL DATA907
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The data files for some of the networks in this paper are publicly available:908

(a) The EPANET .inp files for the network shown in Fig. 1 and the networks N1, N3, N4 and N7 which are listed909

in Table 7 is avialable online in the ASCE Library (www.ascelibrary.org). The other four networks N2, N5, N6910

and N8 are not freely available either because they are proprietary or because of security concerns.911

(b) The EPANET .inp file for the Balerma network is available from912

http://emps.exeter.ac.uk/engineering/research/cws/resources/913

benchmarks/design-resiliance-pareto-fronts/data-files/.914

TABLES AND FIGURES915

A =

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

p1 −1 0 0 0 0 0 0 0 0 0 0
p2 1 0 −1 0 0 0 0 0 0 0 0
p3 0 0 1 −1 0 0 0 0 0 0 0
p4 1 0 0 0 −1 0 0 0 0 0 0
p5 1 0 0 0 0 −1 0 0 0 0 0
p6 0 0 0 0 0 1 −1 0 0 0 0
p7 0 0 0 0 0 0 1 −1 0 0 0
p8 0 −1 0 0 1 0 0 0 0 0 0
p9 0 −1 0 1 0 0 0 0 0 0 0
p10 0 −1 0 0 0 0 0 1 0 0 0
p11 0 0 0 −1 0 0 0 0 1 0 0
p12 0 0 0 0 0 0 0 −1 0 1 0
p13 0 0 0 −1 0 0 0 0 0 0 1

Table 1: The ANIM for the network in Fig. 1 before permutation into the form shown in Fig. 4. The links (pipes)
are labeled pi and the vertices (nodes) are labeled vi

P̃AR̃ =

( ñ3 ñ1

ñ1 Ã11 L̃
ñ2 Ã21 O

)
=

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

p11 0 0 0 −1 0 0 0 0 1 0 0
p12 0 0 0 0 0 0 0 −1 0 1 0
p13 0 0 0 −1 0 0 0 0 0 0 1

p1 −1 0 0 0 0 0 0 0 0 0 0
p2 1 0 −1 0 0 0 0 0 0 0 0
p3 0 0 1 −1 0 0 0 0 0 0 0
p4 1 0 0 0 −1 0 0 0 0 0 0
p5 1 0 0 0 0 −1 0 0 0 0 0
p6 0 0 0 0 0 1 −1 0 0 0 0
p7 0 0 0 0 0 0 1 −1 0 0 0
p8 0 −1 0 0 1 0 0 0 0 0 0
p9 0 −1 0 1 0 0 0 0 0 0 0
p10 0 −1 0 0 0 0 0 1 0 0 0

Table 2: The ANIM for the network in Fig. 1 after FCPA permutation into the form shown in (9). The links (pipes)
are labeled pi and the vertices (nodes) are labeled vi. Here ñ1 = 3, ñ2 = 10 and ñ3 = 8.
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P̂ Ã21R̂ =

( n̂3 n̂1

n̂1 Â11 L̂
n̂2 Â21 Â22

)
=

v1 v2 v3 v4 v5 v6 v7 v8

p2 1 0 −1 0 0 0 0 0
p3 0 0 1 −1 0 0 0 0
p4 1 0 0 0 −1 0 0 0
p5 1 0 0 0 0 −1 0 0
p6 0 0 0 0 0 1 −1 0
p7 0 0 0 0 0 0 1 −1

p1 −1 0 0 0 0 0 0 0
p8 0 −1 0 0 1 0 0 0
p9 0 −1 0 1 0 0 0 0
p10 0 −1 0 0 0 0 0 1

Table 3: The GMPA permuted ANIM Ã21 for the core of the network in Fig. 1. It has the form shown in (10). The
links (pipes) are labeled pi and the vertices (nodes) are labeled vi. Here n̂1 = 6, n̂2 = 4 and n̂3 = 2.

 Ã11 b L̃

L̂
O

Â22

 =

v3 v4 v5 v6 v7 v8 v9 v10 v11

p11 0 −1 0 0 0 0 1 0 0
p12 0 0 0 0 0 −1 0 1 0
p13 0 −1 0 0 0 0 0 0 1

p2 −1 0 0 0 0 0 0 0 0
p3 1 −1 0 0 0 0 0 0 0
p4 0 0 −1 0 0 0 0 0 0
p5 0 0 0 −1 0 0 0 0 0
p6 0 0 0 1 −1 0 0 0 0
p7 0 0 0 0 1 −1 0 0 0

p1 0 0 0 0 0 0 0 0 0
p8 0 0 1 0 0 0 0 0 0
p9 0 1 0 0 0 0 0 0 0
p10 0 0 0 0 0 1 0 0 0

Table 4: The submatrix shown on the left of (11) for the network of Fig. 1 before the Schilders permutation into the
form shown in on the right of (11). The links (pipes) are labeled pi and the vertices (nodes) are labeled vi.

PAR =

( n3 n1

n1 A11 L
n2 A21 A22

)
=

v1 v2 v3 v4 v11 v9 v5 v6 v7 v8 v10

p2 1 0 −1 0 0 0 0 0 0 0 0
p3 0 0 1 −1 0 0 0 0 0 0 0
p13 0 0 0 −1 1 0 0 0 0 0 0
p11 0 0 0 −1 0 1 0 0 0 0 0
p4 1 0 0 0 0 0 −1 0 0 0 0
p5 1 0 0 0 0 0 0 −1 0 0 0
p6 0 0 0 0 0 0 0 1 −1 0 0
p7 0 0 0 0 0 0 0 0 1 −1 0
p12 0 0 0 0 0 0 0 0 0 −1 1

p1 −1 0 0 0 0 0 0 0 0 0 0
p8 0 −1 0 0 0 0 1 0 0 0 0
p9 0 −1 0 1 0 0 0 0 0 0 0
p10 0 −1 0 0 0 0 0 0 0 1 0

Table 5: The final ANIM for the network in Fig. 1 after permutation with the FCPA and GMPA into the form shown
in Fig. 4. The links (pipes) are labeled pi and the vertices (nodes) are labeled vi. Here n1 = 9, n2 = 4 and n3 = 2
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i qi (L/s) hi (m) ω(hi) (L/s) di (L/s) ω(hi)
di

%

1 238.2 12.9 35.6 50.0 71.2

2 68.3 8.4 19.1 50.0 38.3

3 44.4 9.7 23.9 50.0 47.9

4 67.8 8.3 18.8 50.0 37.7

5 66.6 9.8 24.1 50.0 48.2

6 42.0 9.9 24.5 50.0 49.1

7 22.1 8.6 19.9 50.0 39.8

8 43.7 8.3 18.6 50.0 37.2

9 −10.3 8.1 17.9 50.0 35.9

10 −14.2 8.0 17.7 50.0 35.4

11 −17.9 8.1 17.9 50.0 35.9

12 −17.7 − − − −

13 −17.9 − − − −

Table 6: The steady state flows, qi, heads hi, the nodal deliveries, ω(hi), the demands, di and nodal deliveries as
precentages of demands for the network shown in Fig. 1.

ID np nj n1 n2 n3 nnz(B11) nnz(H22)
nnz(B11)

nnz(H22)
%

N1 934 848 688 246 160 246 1816 14

N2 1118 1039 883 235 156 235 2255 10

N3 1976 1770 1429 547 341 547 3597 15

N4 2465 1890 1086 1379 804 1379 2134 65

N5 2508 2443 2321 187 122 187 6591 3

N6 8584 8392 8042 542 350 542 23016 2

N7 14830 12523 8425 6405 4098 6405 19819 32

N8 19647 17971 14769 4878 3202 4878 36609 13

Table 7: The number of nonzeros in the matrices B11 and H22 for the eight case study networks when both the FCPA
and GMPA permutations were used.
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

h1 −21.4 −7.1 −9.3 −6.3 −11.4 −8.6 −4.4 −3.4 −5.0 −3.0 −5.6

h2 −13.1 −14.1 −10.8 −9.9 −12.3 −5.9 −3.9 −3.9 −7.8 −3.5 −8.8

h3 −13.8 −8.6 −19.5 −10.5 −9.5 −5.8 −3.3 −2.9 −8.3 −2.7 −9.3

h4 −12.0 −10.1 −13.4 −13.3 −9.7 −5.2 −3.2 −3.0 −10.5 −2.7 −11.8

h5 −16.8 −9.7 −9.5 −7.6 −17.6 −7.0 −4.0 −3.4 −5.9 −3.1 −6.7

h6 −12.4 −4.6 −5.7 −4.0 −6.9 −29.3 −13.0 −8.2 −3.1 −7.4 −3.6

h7 −7.8 −3.8 −4.0 −3.1 −4.8 −16.0 −25.8 −15.6 −2.4 −14.1 −2.7

h8 −6.4 −4.0 −3.8 −3.1 −4.5 −10.8 −16.7 −23.6 −2.4 −21.3 −2.7

h9 −9.9 −8.3 −11.0 −11.0 −8.0 −4.3 −2.7 −2.5 −26.1 −2.3 −9.7

h10 −6.1 −3.8 −3.6 −2.9 −4.2 −10.2 −15.8 −22.3 −2.3 −25.4 −2.6

h11 −11.1 −9.4 −12.4 −12.4 −9.0 −4.9 −3.0 −2.8 −9.7 −2.5 −17.9

Table 8: The PDM first order steady-state sensitivities of heads, hi, in the network shown in Fig. 1 to the nodal
demands, di. Unlike the case for DDM, this PDM sensitivity matrix is not symmetric.
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Figure 1: The example network used to illustrate the partitioning scheme. It is a network from Deuerlein et al. (2016)
but with an external forest added.

[pbsys.tex: 1:46, June 6, 2017] Page 38



12 1 2
(4,8)

(2,3,9)

(5,6,7,10)

1

(a)

3 4

6 7 8

5

11

9

10

2 9

3

4 8

5 10
6 7

1

13
11

12

(b)

Figure 2: (a) The topological minor of the example network of Fig. 1 showing the internal tree branches and chords (in
parentheses) which underlie the superlinks, and (b) the corresponding internal and external forest elements together
with the internal cotree chords. The internal tree chords (links 1, 8, 9, 10) are shown with dashed lines.

Figure 3: An arc-node incidence matrix A showing both the FCPA partitioning (∼) and the GMPA partitioning (̂).
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Figure 4: An arc-node incidence matrix A showing the final partitioning after the FCPA and GMPA permutations
have been applied.

Figure 5: The frequency distribution of block sizes for the largest case study network N8 used in this paper. The
matrix W−1 for this network has nblks = 5, 292 blocks on the diagonal.
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Figure 6: The full Balerma network

Figure 7: The core of the Balerma network after the FCPA has been applied. The cyan coloured nodes are the root
nodes of trees in the external forest, the red nodes are the internal bridge nodes and the remaining nodes (and sources)
are blue.
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Figure 8: The topological minor of the Balerma network

Figure 9: The Balerma network’s external forest. The cyan coloured nodes are the external forest’s root nodes, the
the light brown nodes are leaves of the external forest trees and the remaining nodes of the external forest are, apart
from the single red node which connects a tree to a bridge, dark brown.
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