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 
Abstract—A refractive index (RI) fiber sensor with low 

detection limit but large dynamic range is proposed and 
demonstrated using an exposed core microstructured 
optical fiber. The exposed-core fiber is highly birefringent 
due to its asymmetry and also supports multimode 
propagation, thus can be used simultaneously as a Mach-
Zehnder and Sagnac interferometer. The Mach-Zehnder 
interference is significantly more phase-sensitive to RI due 
to a longer effective path length difference. This leads to a 
lower detection limit compared to that for the Sagnac 
interferometer, which has a larger free spectral range (FSR) 
that allows the dynamic range of the RI measurement to be 
extended. By combining these two interferometers, the 
proposed sensor achieves a detection limit of as low as 
6.02×10-6 refractive index units (RIU) while maintaining a 
large dynamic range from 1.3320 RIU to 1.3465 RIU. The 
proposed sensor also has the advantages of bio-
compatibility, low cost, high stability, small size, ability to 
operate remotely and simple to be fabricated. 
 

Index Terms—Refractive index sensor, Optical fiber 
applications, Optical sensors, Interferometers.  
 

I. INTRODUCTION 

efractive index sensing is an important tool that can be 
applied to a wide variety of industrial, chemical and 

biological applications. This is because many physical and 
chemical parameters can be measured by monitoring the change 
of RI, such as gas concentration [1-3], humidity [4, 5], solution 
concentration [6], temperature [7], magnetic field [8-10], pH 
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[11], biomolecules [12], and DNA [13]  
In biochemistry, RI based sensing offers a pathway to avoid 

the conventional method that utilizes fluorescence labelling for 
detection. Functionalization with fluorescent tags is typically 
complex and expensive and the technique suffers from photo-
bleaching of organic fluorophores [14]. In order to simplify 
preparation procedures, achieve high sensitivity, and avoid the 
high cost and photo-bleaching of fluorescent tags, optical fiber 
RI-based biosensors have been studied extensively [15, 16] as 
the optical fiber platform offers a number of advantages, 
namely small size, bio-compatibility, immunity to 
electromagnetic interference, and the potential for remote 
operation. There are numerous optical fiber sensing 
mechanisms that have been demonstrated for use as RI sensors, 
with examples including Mach-Zehnder (MZ) interferometers 
[12, 17-21], Fabry-Perot interferometers [22, 23], surface 
plasmon resonance [24, 25], fiber Bragg-gratings [26-28], long-
period fiber gratings [29-31], and Sagnac (SG) interferometers 
[13, 32]. There are typically trade-offs in performance 
depending on the mechanism used. For example, fiber Bragg 
gratings and long period gratings offer the ability to measure 
RI, but suffer from low sensitivity [26-29]. On the other hand, 
surface plasmon resonance based sensors offer sensitive 
measurement of RI, but at the expense of high optical loss and 
the potential instability of thin metal films [6, 24, 25]. 

Interferometric RI sensing techniques, such as Mach-
Zehnder [12, 21], Fabry-Perot cavity [23] and Sagnac [13, 32] 
interferometers, as well as whispering gallery mode resonators 
[33, 34], can offer very high sensitivity. For example, in [21, 
23, 32] the RI sensitivities of proposed Mach-Zehnder, Fabry-
Perot and Sagnac interferometers are 1.01×104, 3.09×104, and 
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1.25×104 nm/RIU, respectively. However, such sensors require 
complicated device fabrication processes, such as micro/nano-
machining of channels [23] and optical resonators [34]. They 
also have fragility issues, as they are made from fiber tapers 
[13, 32]. Above all, these types of sensors often have a trade-
off between sensitivity and measurement dynamic range due to 
the periodicity of interference spectra. If the RI changes too 
significantly between spectral scans, there will be an 
unaccounted 2π phase shift. This leads to a trade-off between 
sensitivity and dynamic range. As an example, in [32] Y. Han 
et al. proposed a single-mode micro-fiber Sagnac loop 
interferometer based on single-mode micro-fiber, which 
exhibited relatively a high sensitivity to the RI of 1.25×104 
nm/RIU, but with a relatively small dynamic range of only 
4.8×10-4 RIU.  

In principle, the dynamic range of traditional interferometric 
techniques can be increased by accounting for 2π phase shifts 
by continuously measuring RI. However, correcting for the 2π 
phase shift is only possible if the biochemical-binding event 
happens in a slower period than the signal acquisition time, 
leaving out the potential use in monitoring fast binding 
biochemical events. In addition, in some remote measurements, 
such as ocean monitoring, RI sensors are required to work for 
long periods and thus continuous monitoring may not be 
possible, but long-term changes in RI may be larger than the 
small dynamic range.  

Recently, Chen et al. demonstrated a dual-cavity Fabry–
Perot interferometer formed by cleaved single mode fiber and a 
small refractive-index-modified defect in the fiber core to 
achieve both high sensitivity and a large dynamic range [35]. 
However, the proposed sensor is an intensity modulated fiber-
optic sensor, which is subject to influence from vibration, light 
source fluctuations and end-face contamination. 

In our previous work, we achieved a high sensitivity 
refractive index sensor using the exposed-core microstructured 
optical fiber Mach-Zehnder interferometer with a simple 
fabrication process that overcomes the fragility issues 
associated with traditional micro-fibers [12]. However, the 
sensor still has a relatively small dynamic range of 2.1×10-3 
RIU. We also achieved a high wavelength sensitivity and 
relatively large dynamic range biosensor using a Sagnac-
interferometer [36]. However, this sensor has a higher detection 
limit (DL) compared with [12]. 

In this paper, we demonstrate a method to combine the two 
interferometric modalities, a Mach-Zehnder interferometer and 
a Sagnac loop interferometer, in a single optical fiber sensing 
platform to realize a high sensitivity, low detection limit and 
wide-dynamic range RI sensor. Our proposed approach 
combines the relatively high sensitivity and low detection limit 
of the Mach-Zehnder interferometer with the relatively large 
dynamic range of the Sagnac interferometer in a unified sensor 
structure that is simple and cost-effective.  

II. OPERATING PRINCIPLE 

A. Hybrid interferometer based on exposed microstructured 
optical fiber 

Fig. 1 (a) shows a schematic diagram of the proposed hybrid 
interferometer based on the exposed-core fiber (ECF). ECF is a 
microstructured optical fiber with two enclosed air holes and an 
open side, which allows external liquid to directly access to 
evanescent field, as shown in Fig. 1 (b). The sensor was 
fabricated by splicing a section of ECF between two single 
mode fibers (SMFs) in a Sagnac loop, forming a hybrid Mach-
Zehnder/Sagnac interferometer. The ECF was packaged within 
a flow cell to measure different RI liquids. The asymmetry of 
the fiber core creates an optical birefringence, leading to 
birefringence based interference (Sagnac interferometer), while 
the high numerical aperture of ECF allows for propagation of a 
number of higher order modes, creating interference patterns 
between different modes (Mach-Zehnder interferometer). 

The operation principle of the proposed sensor is as follows: 
Light from a broad-band source is split into clockwise and 
counterclockwise beams via a 3 dB coupler as it enters the loop, 
as shown in Fig. 1 (a). A net phase difference is accumulated as 
the two polarization fundamental modes (red and purple lines 
in Figs. 1 (a) and (c)) through the length of the birefringent ECF, 
leading to Sagnac interference when the clockwise and 
counterclockwise beams are recombined at the 3 dB coupler 
[8]. Meanwhile, when the light enters the ECF from the lead-in 
SMF, higher order modes (black lines in Fig. 1 (c)) are excited 
and propagate along the ECF core. At the ECF/SMF splicing 
point, the higher order modes of the ECF are coupled into the 

Fig. 1 (a) Schematic diagram and experimental setup of the proposed 
sensor system. (b) Schematic cross section of the ECF. (c) Schematic 
diagram of the Sagnac interferometer and Mach-Zehnder 
interferometer: red line refers to the x-polarized fundamental mode, 
purple line refers to the y-polarized fundamental mode and black lines 
refer to the higher order (h) modes. 
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core of the SMF and the Mach-Zehnder interference occurs 
between the different order modes due to different propagation 
constants. A hybrid interference pattern composed of both 
Mach-Zehnder and Sagnac interferences is then formed in the 
transmission spectrum of the structure. 

For both interferences types the interference spectrum can be 
modelled by a simple two-mode interference equation, 

 

1 2 1 22 cosoutI I I I I    ,       (1) 

 
where I1 and I2 are light intensities of two different modes, and 
 is the phase difference between them. For the Sagnac 
interference, the interference occurs between x-polarization and 
y-polarization fundamental modes. In this case, I1 and I2 are 
light intensities of x-polarization and y-polarization 
fundamental modes and the phase of the Sagnac interference, 
SG, can be expressed as, 
 

2

λ
SG

L
B


  ,          (2) 

 
where λ is the free space wavelength, L is the length of the ECF, 
and B is the birefringence of the ECF and is defined as the 
difference between the effective indices of the x-polarization 
and y-polarization fundamental modes. Note that the higher 
order modes are typically more weakly excited compared with 
the fundamental mode and thus the birefringence effect on 
higher order modes can be ignored.  

Due to the high numerical aperture of the ECF, it is a 
multimode fiber. The number of modes in an optical fiber can 
be estimated by calculating the normalized frequency using a 
step-index optical fiber model, so-called V-parameter, which is 
described as: 

2 2
1 2

2 a
V n n




  ,      (3) 

where n1 and n2 are the refractive indices of the core and 
cladding, respectively, and a is the radius of the core. For the 
exposed-core fiber, a = 3.75, n2 = 1, and n1 = 1.4469 when the 
wavelength of operation is 1300 nm. This gives a value of V = 
18.94. The number of modes, M, that can be guided by the ECF 

is estimated to be 145 using the approximation
2

2
4VM  . 

Note that M is an estimated value as the ECF is not a standard 
step index fiber. However, only a few modes are involved in the 
interferometer as only a few modes are coupled via the spliced 
SMF, as detailed in our previous work [12]. For the Mach-
Zehnder interference, the interference might occur between any 
two different higher order modes. Thus, the Mach-Zehnder 
interference spectrum is the superposition of several individual 
interferences. However, the individual Mach-Zehnder 
interference patterns can be de-multiplexed using fast Fourier 
transform (FFT), allowing for analysis of each constituent 
interference pattern. In this case, the phase for a specific pair of 
propagation modes {i,j} forming an interference can be 
expressed as, 
 

2
MZ eff

L
n




  ,        (4) 

 
where  eff i jn n n    is the effective index difference between the 

i-order and j-order modes. The free spectral range (FSR) is the 
wavelength spacing between two adjacent minima/maxima. For 
Sagnac and Mach-Zehnder interferences, FSRs can be 
expressed as, 
 

2

SGFSR
BL


 ,         (5) 

and 
2

MZ
eff

FSR
n L





.        (6) 

 
From (2) and (4), we can get the phase of Sagnac and Mach-
Zehnder interferences respectively change with the change of B 
and neff, which are functions of external RI, next,. For a fixed 
length L of the fiber, with a change in the external RI, the 
changes in phase, φSG and φMZ , of two interferences caused 
by the change of B and neff can be respectively expressed as, 
 

2

λSG

L
B

   ,       (7) 

and 
 

2
( )MZ eff

L
n




    .     (8) 

 
Thus, the transmission spectrum of the structure is the result 

of superimposing Sagnac interference and Mach-Zehnder 
interference. The phase (φSG or φMZ) associated with each 
interference pattern formed by a pair of modes can be obtained 
by first applying an FFT on the transmission spectra. Each 
interference pattern shows a peak in the FFT. For each peak, the 
value of the phase is taken from the complex value of the FFT 
peak associated with an interference pattern in the FFT 
spectrum. The value of phase will change with respect to 
changes in the ambient medium and thus can be independently 
tracked. FFT techniques are widely used for de-multiplexing 
interference spectra [12, 36, 37]. Not only can this technique be 
used for de-multiplexing interference spectra, but has been 
shown to be more precise than other methods of tracking 
interference spectrum shifts, such as peak tracking or function 
fitting [38]. 

B.  Mode distribution of the exposed-core microstructured 
optical fiber 

In order to understand the mode distribution of the ECF and 
the resulting sensitivity, the structure was investigated using a 
finite-element method (COMSOL v5.2). The simulation 
geometry was imported from a scanning electron microscope 
(SEM) image of the ECF, as shown in Fig.2 (a). The core and 
cladding diameters of the ECF were 7.5 µm and 160 µm, 
respectively. Fig. 2 (b) shows the geometry of the theoretical 
model, where blue represents air, grey represents the silica core 
of the ECF, and green represents the exposed side for sensing. 
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The refractive index of the silica core was defined by the 
standard Sellmeier equation for fused silica glass. At a 
wavelength of 1300 nm the refractive index of the ECF is 
1.4469. In our simulation, the exposed side was set as water, 
with RI of 1.332. Figs. 2 (b) and (c) are the simulated 
distributions for the x-polarized and y-polarized fundamental 
modes, respectively, at a wavelength, λ, of 1.30 µm. From the 
effective index of the modes shown in Figs. 2 (c) and (d) it can 
be seen that there is a phase birefringence of 

-5=7.461 10x y
eff effB n n    at λ = 1.30 µm in the ECF. This phase 

birefringence allows the ECF to be used within a Sagnac 
interferometer.  

Depicted in Figs. 2 (e) and (f) are two examples of higher 
order modes that can propagate within the core of the ECF. 
From Figs. 2 (c), (d), (e) and (f) we can see that there are 
effective index differences between different order modes, for 
example, the effective index difference between the modes 

shown in Figs. 2 (c) and (e) is 1 -38.099 10=effn   and between the 

modes in Figs. 2 (d) and (e) is 2 38.024 10effn   . These effective 

index differences allow the ECF to be used as a Mach-Zehnder 
modal interferometer. The values of  1

effn  and  2
effn  are much 

higher than B, making the free spectral ranges of the Mach-

Zehnder interferences much smaller than that for the Sagnac 
interference (see (5) and (6)).  

C. Numerically predicted refractive index sensitivity  

The numerical model was utilized to determine the 
sensitivity of the ECF to RI variations when in either a Sagnac 
or Mach-Zehnder interferometer configuration. This was 
implemented by changing the RI of the sensing-liquid, which 
was filled in the exposed side of Fig. 2 (b). Fig. 3 (a) shows a 
linear relationship between birefringence of the ECF at λ = 1.30 
µm and external RI. It can be seen that the birefringence of the 
ECF increases with external RI.  

The Mach-Zehnder interferences mainly occur between low-
order modes, for example, x-fundamental mode and the second 
order mode (Fig. 2 (e)), and y-fundamental mode and the 

second order mode. However, the difference between 1
effn and

2
effn  ( 57.5 10  ) is relatively small compared to their value. 

Therefore these two interferences are essentially identical, that 
is, similar free spectral range and sensitivity to external RI. The 
effective index difference between the x-fundamental mode and 
the higher order mode shown in Fig. 2 (e) with different external 

Fig. 2.  Effective mode indices and norm of the electric fields of the first 
three modes in the core region with  = 1.30 m. (a) A scanning electron 
microscope (SEM) image of the ECF. (b) Geometry of the theoretical 
model, blue represents air, grey represents the silica core of the ECF and 
green represents the exposed side for sensing. (c), (d), (e) and (f) are the 
simulated electric field distributions of the x-polarized fundamental mode, 
y-polarized fundamental mode and two example higher order modes when 
the exposed side was set as water, respectively. 

 

Fig. 3  (a) Phase birefringence, B, with different external RI and (b) the 
effective index difference between the x-fundamental mode and a higher 
order mode in Fig. 2 (e), neff, with different external RI, with  = 1.30 
m. 
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RI is shown in Fig. 3 (b), which shows that increasing the 
external RI leads to a decrease in neff. The different modes 
have different proportions of optical field in the exposed core, 
thus leading to a smaller neff when the external RI is increased 
[36]. The change of the external RI with both B and neff of the 
fiber leads to phase changes for both the Sagnac spectra and 
Mach-Zehnder spectra.  

According Fig. 3 (a), the change of B (B) can be expressed 
as,

SGk extB n   , where next is the change of the external RI and 

kSG is the slope in Fig. 3 (a). Combining with (7), the phase 
sensitivity of the Sagnac interference spectrum can be 
expressed as, 

 

SG

2
= k

λ
/SG SG ext

L
S n

   .     (9) 

 
For a 20 cm ECF sensor, the phase sensitivity of the Sagnac 
interference spectrum to external RI is 233 rad/RIU by using 
(9). Similarly, the phase sensitivity of the Mach-Zehnder 
interference spectrum can be expressed as, 
 

MZ/
2

k
λMZ eMZ xt

L
S n

    ,     (10) 

 
where kMZ is the slope in Fig. 3 (b). Using this equation, the 
phase sensitivity of the Mach-Zehnder interference spectrum to 
external RI is -2,446 rad/RIU. For a 2π period, the RI 
measurement range of the Sagnac and Mach-Zehnder 
interferometers are 0.0270 RIU and 0.00257 RIU, respectively. 

It can be concluded that the Mach-Zehnder interferometer 
has a higher phase sensitivity but a narrower dynamic range, 
while the Sagnac interferometer has a larger dynamic range but 
suffers from a lower phase sensitivity. Thus, if we monitor 
phase change of the Sagnac and Mach-Zehnder interference at 
the same time, the co-existence of high sensitivity and a large 
dynamic range can be achieved. 

III. EXPERIMENTAL RESULTS 

A. Fabrication and transmission characterization  

Exposed-core fiber was fabricated as previously described 
[28, 39]. Briefly, three 2.8 mm holes were ultrasonically drilled 
into the centre of a 20 mm fused silica glass rod. A 1 mm slot 
was then cut from one hole to the surface, which forms the open 
slot seen in Fig. 2(a). The preform was then drawn to 160 µm 
outer diameter fiber using a 6 m draw tower at approximately 
2000°C, using positive pressure to inflate the two closed holes. 
A 20 cm length of ECF was fusion-spliced into a fiber loop 
mirror using the same splicing conditions previously reported 
[28]. Briefly, the ECF was spliced to conventional single mode 
fiber (SMF28e) using an arc splicer (Fujikura FSM-100P). 
Standard splicing parameters were used, except slightly lower 
arc power, increased arc duration, and manual core alignment. 

Light from a broad-band supercontinuum source (NKT 
Photonics SuperK Extreme) was split into two beams 
(clockwise and counterclockwise) via a 3 dB coupler and the 

two beams were recombined at the 3 dB coupler, leading to a 
Sagnac interference spectrum. Meanwhile, the Mach-Zehnder 
interference occurred between the different modes of the ECF 
due to the SMF-ECF-SMF structure. The resulting combined 
interference spectrum was then measured by using an optical 
spectrum analyzer (OSA, Ando-6315E) with a resolution of 
0.05 nm, as shown in Fig. 4 (a). It should be noted that the 
Mach-Zehnder interference is much weaker than the Sagnac 
interference because the higher order modes are typically 
weakly excited.  

Fig. 4 (b) shows the FFT spectrum of the combined 
interference spectrum shown in Fig. 4 (a).  In our paper, FFT is 
performed on the spectrum with a linear y-axis and the mean 
value has been removed. The main peak (Peak 1) at 0.00999 
nm-1 in the FFT spectrum corresponds to the Sagnac 
interference, while two lower peaks, Peak 2 at 0.699 nm-1 and 
Peak 3 at 0.759 nm-1, represent two Mach-Zehnder 
interferences. According Fig. 2, the effective index difference 
between the x-fundamental mode and the higher order mode is 
smaller than the difference between the y-fundamental mode 
and the higher order mode. As a smaller effective index 

Fig. 4  (a) Transmission spectrum of the sensor in deionized water and (b) 
FFT of the spectrum in (a). SG indicates the Sagnac interference spectrum 
with low-frequency interference. MZ (inset) shows the high-frequency 
Mach-Zehnder interference. 
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difference leads to a larger FSR, Peak 2 therefore represents the 
interference between the x-fundamental mode and the higher 
order mode, and Peak 3 represents the interference between y-
fundamental mode and the higher order mode. In our paper, 
Peak 2 was used selected as the Mach-Zehnder interference 
sensing peak. Considering (5) and (6), we determine that B is 
8.44210-5 and neff, is 5.90710-3, which are close to the 
theoretical values of 7.46110-5 and 8.02410-3.  

B. Refractive index sensing 

The experiment setup for RI sensing is shown in Fig.1 (a). 
The ECF was placed into a silica capillary flow cell (inner 
diameter of 650 μm). External RI was changed by flowing NaCl 
solutions of different concentration through the flow cell via a 
pump (LongerPump BT100-1F). All experiments were 
operated in a temperature controlled laboratory to avoid the 
influence of temperature. Spectra were recorded while different 
concentrations (0-1% with 0.1% steps) of sodium chloride in 

deionized water solutions were passed through the flow-cell, 
with three example spectra shown in Fig. 5 (a). Fig. 5 shows 
that the Sagnac interference spectra shifted to shorter 
wavelengths with increasing concentration, while the Mach-
Zehnder interference spectra shifted to longer wavelengths with 
increasing concentration. The absolute phase change with 
respect to concentration was monitored for both the Sagnac and 
Mach-Zehnder interferences via the fast Fourier transform of 
the spectra, as shown in Fig. 5 (b).  

We set the phase of the first spectrum, with 0% NaCl 
concentration, as the original phase. The phase change (∆φ) for 
different NaCl concentrations relative to the original phase 
value is obtained by subtracting the value of the original phase. 
The phase sensitivities of the Sagnac interference and Mach-
Zehnder interference to concentration are 0.693 rad/% and 
3.985 rad/%, respectively. Converting to RI sensitivities [40], 
the sensitivities are estimated to be 432 rad/RIU and 2,487 
rad/RIU, respectively. This compares to the theoretical values 
of 233 rad/RIU and 2,446 rad/RIU, respectively. The difference 
can be caused by errors associated with light source and 
detector stability, recording and importing the exposed-core 
fiber image for numerical modelling, and the NaCl solutions 
[36]. For a 2π period, the RI measurement range of the Sagnac 
and Mach-Zehnder interferometers are 0.0145 RIU and 0.00253 
RIU, respectively. 

C. Detection limit and measurement range 

Detection limit (DL) is the minimum concentration or 
minimum amount of analyte in a sample that can be reliably 
distinguished from zero. It is a critical parameter to evaluate the 
performance of the sensor. It can be deduced by taking into 
account the noise in the transduction signal [41]. We use the 
definition of DL as [42]: 

DL 3.3 / S ,         (11) 

where σ is the standard deviation of the response and S is the 
slope of the calibration curve. The standard deviation of the 
response can be obtained by measuring the standard deviation 
of the blank response. In our case, the blank response was 
obtained when the sensor was immersed in pure water.  

To get the blank responses and determine the DLs for the two 
interferometer modes the exposed-core fiber was immersed into 
pure water for 30 min and the spectrum for each was recorded 
every two minutes. The phase changes at different times were 
obtained by subtracting the average phase from the real-time 
phase and are presented in Fig. 6, which shows the blank 
responses of the two sensing schemes. 

The phase changes in Fig. 6 are due to the experimental 
conditions in the laboratory (temperature fluctuation, flow rate 
of the sensor) and stability of the light source and detector. The 
standard deviation, σ1, of the Sagnac interference was measured 
to be 0.00186 rad and the standard deviation, σ2, of Mach 
Zehnder interference was 0.00454 rad. Using the standard 
deviations from the data in Fig. 6 and the phase sensitivities 
from Fig. 5 (b), the DLs were determined using (11) and are 
shown in Table 1. The results show that the Mach Zehnder 
interferometer, which has the higher phase sensitivity to RI, 
indeed offers a lower detection limit compared to the Sagnac 
interferometer. 

Fig. 5  (a) Spectra of the proposed platform subjected to the different 
NaCl concentrations and (b) the absolute phase change, |∆φ|, at the 
frequency of 0.0099 nm-1 corresponding to the Sagnac interference, 
and 0.689 nm-1 representing the primary Mach-Zehnder interference. 
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TABLE 1 

INDEXES OF THE SAGNAC AND MACH-ZEHNDER INTERFEROMETER 

Type 
Standard 

deviation of 
∆φ (rad) 

Concentration 
DL (%) 

RI DL  
(RIU) 

Dynamic 
range (RIU) 

Sagnac 
interferometer 

0.00186 0.00886 
1.42×1

0-5 
0.0145 

Mach-
Zehnder 

interferometer 
0.00454 0.00376 

6.02×1
0-6 

0.0025 

 
To demonstrate the ability to measure small concentrations, 

the ECF sensor was immersed in small concentrations of 
sodium chloride solution, as shown in Fig. 7. Figs. 7 (a) and (b) 
are the phase changes of the Mach-Zehnder interference spectra 
and Sagnac interference spectra with different concentrations, 
respectively.Fig.7 shows that the Mach-Zehnder interferometer 
has a better ability to resolve low concentrations compared with 
Sagnac interferometer, such as the concentration of 0.0125% 
(ΔRI = 2.0010-5 RIU) or 0.025% (ΔRI = 4.0010-5 RIU). 

However, as previously discussed, the Mach-Zehnder 

interferometer has a smaller dynamic range than the Sagnac 
interferometer. Fig. 8 shows the absolute phase changes of the 
Sagnac interference spectrum and Mach-Zehnder interference 
spectrum by immersing the ECF into different concentrations 
in the range of 0-8%. For the Mach-Zehnder interferometer, 
large external RI change leads to an unaccounted 2π phase shift, 
as shown in Fig. 8 (b). The black dash line is the adjusted 
absolute phase change of the Mach-Zehnder interference by 
adding 2kπ, where k is an integer. Fig. 8 shows that the dynamic 
range of Sagnac interferometer is almost six times more than 
the Mach-Zehnder interferometer. Therefore, we can achieve a 
low DL and large dynamic range by simultaneously monitoring 
both interferometers due to the simultaneous existence of both 
interferences in a single optical fiber sensing platform.  

The sensor can achieve accurate measurement when the RI 
value is over the measuring RI range of the Mach-Zehnder 
interferometer by first determining the RI value via Sagnac 
interferometer and then further accurately measuring via the 
Mach-Zehnder interferometer. For example, if we measure a 
solution with 5.0% sodium chloride, it cannot be measured via 

Fig. 6.  The phase change of the sensor by immersing the ECF into water 
for 30 min. (a) Sagnac interferometer. (b) Mach-Zehnder interferometer. 
The red and black lines represent one standard deviation over the 
measurement duration. 

 

Fig. 7.  Absolute phase changes of the sensor with subtle change in the 
concentration of sodium chloride. (a) Absolute phase change of the 
Sagnac interference spectrum. (b) Absolute phase change of the Mach-
Zehnder interference spectrum. 
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a single Mach-Zehnder interferometer because the phase 
change is over 2π and there are several concentrations 
corresponding to this phase value, as shown by the blue dash 
line in Fig. 8 (b). However, we can first determine the 
concentration via the Sagnac interferometer, which gives, in 
this example, a value of 5.0% ± 0.00268%, where the error is 
obtained by dividing the standard deviation by the sensitivity of 
the Sagnac interferometer, that is, σ/S = 0.00268%. We can then 
accurately measure the concentration via the phase change of 
Mach-Zehnder interferometer plus 2kπ. In this example, the 
value of k = 2 is obtained via the Sagnac interferometer, 
yielding a final measurement of concentration to be a more 
precise value of 5.0% ± 0.00114%. 

IV. CONCLUSION 

A high-sensitivity, low-DL, large dynamic range RI sensor 
combining Sagnac and Mach-Zehnder interferences has been 

proposed and experimentally demonstrated for the first time in 
a single exposed-core microstructured optical fiber. It was 
achieved by combining the high sensitivity and low detection 
limit of the Mach-Zehnder interferometer with the large 
dynamic range of the Sagnac interferometer. The theoretical 
and experimental analysis shows that the sensor could resolve 
the problem of trade-off between high sensitivities, high 
detection limit and large dynamic range present in most 
interferometric RI sensors. The experimental results 
demonstrate that the proposed sensor has a high RI sensitivity 
of up to 2,487 rad/RIU, a low RI detection limit of 6.02×10-6 
RIU, while maintaining a relatively large dynamic range from 
1.3320 RIU to 1.3465 RIU.  

The proposed sensor is particularly useful for applications 
where the sensing event occurs faster than the sensor 
acquisition time or the long-term changes in external RI larger 
than the small dynamic range. This could be fast biochemical-
binding events or remote measurements, such as ocean 
monitoring, where sensors are required to work for long periods 
with minimal power consumption. Other merits of the proposed 
sensor includes bio-compatibility, small size, low cost, and is 
more robust, stable and simple to fabricate compared to tapered 
micro-fibers. 
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