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ABSTRACT

The Early Cambrian tabulate-like corals, Flindersipora bowmani Lafuste

1991, illoorowipora chamberensis Fuiier & ienkins i994, Arrowipora

fromensis Fuller & Jenkins 1995, Adelaideipora cancelli gen. et sp. nov and

Adelaideipora lafustei sp. nov, Flindersipora uldanami sp. nov and

Biinmanipora hawkerensis gen. et Sp. nov, occur in the Moorowie

Formation of the eastern Flinders Ranges, South Australia. They are found

in a reefal environment in associat¡on with archaeocyaths and

calcimicrobial accretions which give indications of a crowded high energy

habitat. Although recrystallization has occurred, the original skeletal

architecture of the corals is well preserved.

The gene¡a Ftindersipora, Moorowipora, Arrowipora and Adelaideipora, the

iaiter three particularly, have tabuiate-iike characteristics, inciuding the

cerioid, sometimes fasciculate form of the corallum, wedge-shaped to

spine-like septa and strongly developed tabulae or dissepiment-like

tabulae.

Moorowipora chamôerensrs has some skeletal structures in common with

Tabuiacortus kordeae Handfield, whiie Arrowipora fromertsis is similar in

form to some members of the family Micheliniidae (Waagen & Wentzel,

1886), which have a time range from the Late Silurian to the Late Permian.

Similarities in skeletal structure exist between the genus Adelaicieipora and

Nyctopora Nicholson, 1879, while Blinmanipora hawkerensis resembles

several Ordovician lichenariid corals.

Statistical analysis of corallite diameter in Flindersipora bowmani,

Moorowipora chamöerensrs anci ihe iwo species oi Adeíaicieipora, inciicate

significant differences substantiating their taxonomic separation. However,

the statistical difference in the corallite diameters of Flindersipora uldanami,

lvloorowipora and Adelaideipora is not cleariy evideni and is not oí vaiue in

the differentiation of these species.
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GLOSSARY OF TERMS

A. CORAL COLONY

CORALLUM. The complete compound skeleton.

MASSIVE corallum. Corallites not separated by space

CERIOID corallum. Massive corallum where corallites are contiguous
or prismatic.

FASCICULATE corallum. Straight or curved corallites that are not
laterally contiguous.

CORALLITE. Exoskeleton, built by individual polyps

MID-LINE, MEDIAL-LINE OR SUTURE. The junction of two adjoining
corallites, which in life compnsed epitheca, recrystallized carbonates
appear as either light or dark lines.

INCREASE. Addition of corallites to a compound corallum

PARRICIOAL, A term applied to the type of increase in which tabularium
of parent corallite ceases to grow distally.

OFFSETS. New corallites formed in a compound corallum

B. GORALLITE

CALICE. Distal space of each corallite formally occupied by a polyp.

SEPTAL ELEMENTS. Radially and longitudinally arranged in outer parts
of the tabularium.

TABULAE.
corallite.

Horizontal skeletal elements which extend across the

TABELLAE. Small convex plates which do not extend across the tabular-
ium, and the edges of which may lie on a wall, one another or tabulae.

DISSEPIMENTS. Small domed plates forming cyst-like enclosure in
marginarium (peripheral part of interior of corallite).

TRABECULA. Pillar of radiating calcareous fibres comprising skeletal
elements in structure of septum and related components.

TABULARIUM. The axial part of the interior of corallites where horizontal
skeletal elements are developed.



MURAL PORES. Circular or oval holes in the wall between adjoining

corallites.

WALLS. Peripheral stereozone normally sheathed externally by epitheca.

a

b

c

e

a. calice
b. septal elements
c. walls
d. tabulae
e. tabellae and dissePiments
f. trabeculae

d

f

From Hill (1981)
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CHAPTER 1

1.1 INTRODUCTION

The Early Cambrian corals, Flindersipora bowmani Lafuste 1991 , Moorowipora

chamberensrs Fuller & Jenkins 1994, Arrowipora fromensis Fuller & Jenkins

1gg5, Adetaideipora cancel/i gen. et sp. nov, and Adelaideipora lafuste,, sp.

nov.. Ftindersipora uldanami, sp. nov. and Blinmanipora hawkerensts gen. et

sp. nov. (the latter four described herein), occur in slumped reefal blocks within

a megabreccia, sited close to the disused Moorowie Mine (Fig' 1).

The Moorowie Mine is situated about 1 km. south of the eastern end of Mount

Chambers Gorge in the eastern Flinders Ranges, South Australia, about 400

km north of Adelaide. The ai'ea compi'ises sediments of the Early Cambrian

Hawker Group and possible Middle Cambrian, Billy Creek Formation, with

remnants of the Late Neoproterozoic Umbertana Group present in diapiric

intrusives. The area is extensively faulted with the small diapiric intrusions

comprising the older Neoproterozoic carbonate breccias and gangue, occui'i'ing

along fault zones. of which the major ones are the Arrowie Fault just west and

the Wertaloona Fault, about 500 metres east of the mine site. Limestones are

often dolomitised and silicified (Mount 1970; Hart 1989; Polito 1993).

The corals are preserved as upright coralla relative to bedding, and commonly

are in life position within individual slump blocks. These slumped blocks occur in

the middle part of the fi,4oorolvie Foi'mation and was originally i'eefal sy"stem.

The corals occur in association with both fragmental and encrusting remains of

the calcimicrobes Renalcis Vologdin 1932, Giruanella Nicholson & Etheridge

1878 and Epiphyton Bornemann.1886, as well as archaeocyaths. The

ai-chaeocyaths may also occur in life position or more commonly as curi'ent

deposited debris.

Archaeocyaths and corals provided a substrate for each other and the

calcimicrobes, though overall, coral colonies are rare elements within the biota.

1
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The three previously described genera, Flindersipora, Moorowipora and

Anowipora, bare little resemblance to each other or to Blinmanipora

hawkerensis, but the genus Adelaideipora has some morphological

characteristics in common with both Flíndersipora and Moorowipora.

2



1.2 SOUTH AUSTRALIA

1.2.1 Regional geology and geological history

The Flinders Ranges overlap the Early Cambrian Arrowie Basin, and form part

of the Adelaide Geosyncline (Gravestock and Hibburt, 1991). During the Early

Cambrian, the saddle-shaped Arrowie Basin e><tended fi'om the Stuart Shelf in

the west, to the Barrier Ranges in the east. opening into the Officer Basin and

Warburton Basins to the north and the Stansbury Basin to the south (Fig. 2).

The latter basin has Cambrian sediments of generally deeper water aspect,

while in the Otficer Basin sediments accumulated in a shallow sea (Gravestock

and Hibburt, 1991). A broad central shelf was situated between the Stuart Shelf

and the Willyama Block. This configuration was probably inherited from the late

Proterozoic, with the two distinct depocentres of the Officer and Stansbury

Basins accumulating marine sediments during most of the Early Cambrian.

Within the Adelaide Geosyncline, the Cambrian depositional sequences were

terminated by the Late Cambrian-Early Ordovician Delarmerian Orogeny, which

extensively deformed and metamoi"phosed sediments in the southe¡'n region of

Kangaroo lsland and the Fleurieu Peninsula (Jenkins 1990; Mancktelow 1990;

Toteff 1990; Preiss 1990). Less deformed Cambrian sediments in the Flinders

Ranges, on Yorke Peninsula, the north east coast of Kangaroo lsland and near

Sellick Hill on the Fleurieu Peninsula, pi'esei've bi'oad overall Cambrian faunal

assemblages.

Within this region, many normal and reverse faults truncate and rarely repeat

sedimentary sequences. These faults may be associated with early basin

subsidence, and probably were ¡'eactivated during later defoi'mation events,

such as the Tertiary separation of Australia from the Antarctic, which initiated

last-stage uplift of the Adelaide Geosyncline (Wellman & Greenhalgh 1988).

Faulting, uplift and subsequent erosion has removed direct connection between

3
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the Cambrian sequences of major regions. However, correlations are possible

based on fossil faunas.
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1.2 SOUTH AUSTRALIA

1.2.2 History of Early Cambrian fossil discoveries

Early Cambrian fossils from South Australia were first described in the mid-late

nineteenth century. Early researchers include Tepper (1879;1881) who

described the first archaeoc'yaths from near Ardrossan on Yorke Peninsula,

mistaking them for Silurian tabulate corals (Zhuravelev & Gravestock 1994).

Tate (1892), described trilobite moults and Hyoliths in the same region.

Etheridge (18S9;1890;1905;1919) described archaeocyaths; Howchin's work

(1 S97; 1 907; 1922), was more generalized.

ln the early part of this century, reef associated organisms, predominantly

archaeocyaths, were investigated by researchers including Taylor (1910),

Bedford R. & Bedford lV. R. (1934;193G) and Bedford, R. & Bedford, J.

(1936:1937:1939), and while Chapman (1940) described one of the first known

Early Cambrian sponges. From about the middle of this century numerous

researches have added to the knowledge of Early Cambrian fossils in South

Australia, with Daily (1956;'!963;1969; 1972;1976b;1976c;1990) and Debrenne

(1969; 197O.1973:1974a,1974b) being two of the principal workers'

Daily's (1956) recognition of the sequential occurrence of ten faunal assemb-

lages, was probably the first attempt at biostratigraphic correlation in South

Austi'alia. Walter (1967), and more recently Gravestock ("1984), have studied

archaeocyaths in stratigraohic order. Bengtson et al. (1990), concentrated on

describing Early Cambrian trilobites and shelly fossils from the various regions

in South Australia, subsequently erecting zones based predominantly on

ti'ilobite species.

The Early Cambrian corals from the Moorowie Mine area were first collected in

the mid to late 1980's by the Late Brian Daily and Brent Bowman.

5



Additions to the collection were made in 1989 by John Hart. No information was

published until 1991, when Lafuste et. aldescribed the first taxon Flindersipora

bowmani.

6



CHAPTER 2
FLINDERS RANGES

2.1 Depositional environments and stratigraphy

The Moorowie Formation and its lateral equivalents, the upper part of the

Wilkawillina Limestone, Mernmerna Formation [= Parara Limestone, Dalgarno &

Johnson (1962)j and Oi'apai'inna Shale, foi'm part of the Early" Cambi'ian

Hawker Group of Dalgarno (1964).

The lower part of the Hawker Group consists of lowstand and strandline shallow

marine sediments of the Uratanna and Parachilna Formations, interpreted as

being the beginning of sequence C'f .1 of Gi'avestock & Hibburt (1991), (Fig. 3).

The sandstones and carbonates of the above formations are followed

stratigraphically by stromatolitic mudflats and ooid shoals of the Woodendinna

Dolomite (Haslett 1975', Gravestock & Hibburt 1991). Together with the lower

l{ilkawillina Limestone they arê i"epresented throughout the Flindei's Ranges,

being deposited when shallow seas covered most of the Arrowie Basin.

The lower Wilkawillina Limestone generally consists of platform derived

archaeocyathan-calcimicrobe limestone with a predominance of rubbly and

ai-gillaceous limestone. A distinctive thin ;'ed-stained band or 'hoi'izon'

considered to terminate this succession is widely recognized throuqh the

Flinders Ranges and on Yorke Peninsula. (James & Gravestock 1990). At most

localities this boundary is an erosional horizon, but at some sites constitutes a

condensed section. This 'Flinders t,lnconformity' (..lames & Gi'avestock 'î990),

reoresents a hiatus resulting from a fall in sea level, with characteristics such as

surface karst and large open fractures.

The Flinders Unconformity marks the beginning of sequence C1.2, and is

regarded as a transgressive systems tract related to an increase in basin

subsidence (Gi'avestock & Hibbuit '1991), Iinked to lithosphei'ic stretching

(Jenkins 1990).

7
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The Mernmerna Formation, Oraparinna Shale, upper Wilkawillina Limestone,

Moorowie Formation, Bunkers Sandstone and Narina Greywacke interfinger to

fo¡.m discontinuous sequences govei'ned by depositionai environments

(Gravestock & Hibburt 1991, Fig 3). The Mernmerna Formation consists of

predominantly grey to black, rhythmically bedded or massive calcareous shales,

mudstones and limestones. The Oraparinna Shale is characteristically olive-

green to brown\khaki gíeen in colour, and composed of micaceous and

calcareous shales, mudstones and siltstones. The Mernmerna Formation and

Oraparinna Shale are shelf-slope and slope to basin carbonates, which display

characteristics of carbonate turbidites, starved basins and both aerobic and

dysaerobic environments of a starved basin (James & Gravestock 1990;

Gravestock & Hibburt 1991).

The stratigraphically lower part of the Mernmerna Formation correlates with the

C 1 ,2 transgressive cycle of Gravestock and Hibburt (1991 ).

The Bunkers Sandstone consists of calcareous sandstone and sandy limestone

(Daily 1956; Clarke 1990; Gravestock & Hibburt 1991), the base of which

coi'responds with the lowstand base of the C1.3 transgressive cycie of

Gravestock & Hibburt (1991). During this transgressive cycle bioherm

complexes and reefs rimmed the deeper waters (James & Gravestock 1990).

The sediments and fauna contained within the boundstones and rudstones of

the lJloorowie Formation and uppe¡'Wilkawillina Limestone, reflect shallower

areas. The interfingering upper Mernmerna Formation and Oraparinna Shale

represent deeper water facies, and are also present in the Moorowie Mine

region (Gravestock & Hibburt 1991).

I



2,2 Biostratigraphy and Regional correlations

F. bowmani has been found in bioherms in the lower Oraparinna Shale at Ten

Mile Creek (Figs 1 & 3), as well as near the Moorowie Mine. Archaeocyaths

attached to F. bawmani at Moo¡'owie, include the colonial form Ajacicyathus

aequitriens. which is a principal reef builder at this locality (Lafuste et al. 1991).

At Ten Mile Creek, trilobite and echinoderm fragments form hash beds in the

Oraparinna Shale, and associated archaeocyaths include four species of

Pycnoidocyatfius, as '"vell as one species each of both Erugatocyaffius and

Thalamocyafhus. These stratigraphic levels correlate with Faunal Assemblage 9

of Daily (1956), with additional fossil fauna having been recognized in Unit 8 of

Mount (1970), which underlies and interfigures with the megabreccia containing

the coral colonies at Moorowie. Lafuste et al. (1991) equate this stratigraphic

level with the Pararaia ianeae Zone of Jell (1990).

2.3 lnternational Gorrelations

ln his re-evaluation of the biostratigraphy of the Early Cambrian, non-

archaeocyathan fossil assemblages of the Flinders Ranges, Jell (1990) erected

fou¡' distinct assemblage Zones dominated by trilobites which are widely

recognized in the local Early Cambrian. The Abadiella huoi Zone, followed by

lhe Pararaia tatei Zone, occur above the base to about the middle of the

Mernmerna Formation in the Flinders Ranges and the Parara Limestone on

Yoi'ke Peninsula. These zones include Daily's (1956) Faunal Assemblages

3,5,6, and 4 and 7 resoectivel¡1, and correlate with the Parabadiella and

Eoredlichia Zones of China. The South Australian zones have also been

correlated with the Egyngolia Zone of Mongolia and the Prouktaspis Zone of

Siberia, as wel! as assemblages containing similar small skeletal fossils in

Morocco. The local zones evidently overlao with the latest Atdabanian (Jell

1eeo).

The Pararaia bunyerooensrs Zone occurs immediately above the P. tatei Zone

in the Flinders Ranges. This zone includes Daily's F.A. I but cannot as yet be

9



correlated outs¡de Australia, while the Pararaia ianeae Zone (F.A. 9,11,12) can

only be correlated by the association of the trilobites Serrodiscus, Afops and

Kootenia. These trilobites occur within zones in Russia, China and America,

and together with monoplacophoran molluscs, indicate a late Botomian age (Jell

1990; Jell ef al. 1992).

2.4 Bioherm complexes

Bioherm complexes which form a major part of the of the Moorowie Formation,

upper WilkaÛllina and Ajax Limestones are composed predominantly of

archaeocyaths, the calcimicrobes Renalcis, Epiphyton and Giruanella, as well

as sponges and spongiomorphs. Five different kinds of build-ups have been

recognized by James & Gravestock (1990), based on the predominance of one

or more of the above fauna. The abundance or scarcity of these taxa tends to

reflect a spatial zonation, controlled by environmental factors on eithe¡^ the

platform or shelf (James & Gravestock 1990).

Type 1.

Calcimicrobe boundstones, complex intergrowths of Renalcis and Botomaella,

sítuated on platform interiors of lowest '"',ratei' energy. These buildups are

common in the Andamooka Limestone and rare in the upper Wilkawillina

Limestone.

Type 2.

Archaeocyath boundstones, composed of archaeocyaths, usually encrusted by

spongiomorphs, Giruanella and Rena/crs, situated on the interioi' outer platfoi'm

and signalling slightly more energetic environments.

Type 3.

Archaeocyath-Renalcrs boundstones may be either

1. Renalcis dominant
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2. Archaeocyath dominant, occurring on low-energy inner shelf locations,

constituting the most common buildups in the Wilkawillina Limestone.

Type 4.

Epiphyton-archaeocyath boundstones, common in high energy open shelf

locations, but not as common as Renacrs dominated buildups.

Type 5.

Giruanella-Epiphyton-Renalcis boundstones, complex intergrowths of archaeo-

cyaths, and Giruanella, with less abundant Epiphy'ton and Rena/crs. Common to

high energy outer shelf margins.

The talus blocks of the Moorowie Formation including the coral remains were

derived from Type 5 shelf margin buildups (James & Gravestock 1990; Lafuste

et al. 1991). The high energy marine environment was responsible for the

influxes of sediment burying the framework of the live coral colonies, as well as

abrading surfaces, evident on corallites and calcimicrobes.

11



CHAPTER 3
THE MOOROWIE FORMATION

3.1 Local geology

The Moorowie Formation, is interpreted by Lafuste et al. (1991), as being part of

a prograding shoreline, comprising 'near shore shale and siltstone, shelf margin

oolite and reef limestone, dissected by high energy shallow submarine

channels' (Lafuste et al. 1991: p.699). This stratigraphic level represents part of

a suggested third transgressive/highstand phase of the Early Cambrian,

associated with the onset of tectonic activity (Gravestock & Hibburt 1991), with

synsedimentary faulting ci'eating numerous fractu¡"es, on-shelf depressions and

islands which shed terrigenous clastic sediments (James & Gravestock 1990).

The lithological units which form the Moorowie Formation, reflect varying

depositional environments, varying from shallow intertidal to deep water basin

facies (fi4ount 1970; Hart '1989; Savarese ef a/. '1993; Polito 1993).

The Moorowie Formation was divided into five informal members, (units 7-11)

by Mount (1970), the Pinyatta Member; Wookata shale Member; Kandramooka

Member (which comprises the megabreccia); Pack Creek fvlember and the

Brillig Catch Member (Mount 197Q. Polito 1992). The Moorowie Formation

stratigraphically overlies a lower six older units [units 1-6 (Mount 1970)],

comprising (in upward stratigraphic order) the upper Wilkawillina Limestone

(unit'1), the lower Parara Limestone (=lolvei" Mernmerna Formation) (unit 2), the

Bendiuta Formation (unit 3), and the upper Parara Limestone (=upoer

Mernmerna Formation), which includes units 4,5 and 6.

The Moorowie Formation is stratigraphically overlain by the early Middle

Cambrian Edeowie Limestone Member and Billy Creek Formation (Mount

,r ô7^\tvrv,r.
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Figure 4, The Moorowie Formation which includes units 7-11 of Mount
(1970). Megabreocia occurs in the middle of the Formation, at section G
(Mount 1970), measuring approximately 99 metres in thickness.
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The units within the Moorowie Formation commonly exhibit rapid lateral facies

changes, with the megabreccia present in only few localities.

Section G of Mount (1970) contains the thickest megabreccia sequence and is

used as the reference section for stratigraphy (Fig. 4).

Unit 7 of Mount (1970), the lowest unit in the Moorowie Formation, is thickly

bedded silty to sandy archaeocyathan limestone.

This unit is followed by a Unit 8, which comprises red-brown to purplish colour-

ed micaceous shale. The beds are well laminated and contain ripple, marks

indicative of shallow water deposition. Fossils within this unit correlated with

Daily's F.A. I (Mount 1970).

Unit 9 comprising the megabreccia, forms the middle part of the Moorowie

Formation and is divided into lower and upper sub-units. The corals occur in

upper parts of the lower sub-unit within ¡'eefal boundstones that have slid or

tumbled as large talus blocks into a more basinal setting. (Mount 1970: Hart

1989; Lafuste et al. 1991 ; Savarese ef a/. 1993; Fuller & Jenkins 1994).

Unit l0 within the Moorowie Formation comprises purple micaceous shales with

thickly laminated grey limestone above a conglomerate base, with

archaeocyaths and rai'e cobbles (Mount 1970).

Unit 1l is the upper unit of the Moorowie Formation. This unit consists of

massive grey limestone with minor interbedded intraclast conglomerates and/or

chert granules (Mount 197A; Polito 1993). This unit probably equates with the

upper Oraparinna Shale, as it is overlain by the Edeowie Limestone and the

early Middle Cambrian Billy Creek Formation.

The reefal system of unit 9, formed on a high energy shelf margin, and is

composed of type 5 buildups (James & Gravestock 1990). Savarese et al.
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(1993) interpreted the reefal system as being established in a high energy

marine environment encroaching over marginal fans. The fans formed from

coarse breccia are suggested to have resulted from local uplift which unroofed

the Moorowie diapir. The reef structures do not aopear to be in their original

placement, but several distinct lithofacies and biofacies associations have been

recognized. These are represented individually in jumbled and displaced talus

blocks that were derived from a markedly zoned i'eefal complex (Fuller &

Jenkins 1994). As such it is not presently possible to reconstruct the different

talus associations back into their original palimspastic placement.

Seven major clast lithologies are recognized within the megabreccia by Hart

(1e8e).

1. A pseudofenestral boundstone, compi'ising propoftionally about 10% of the

talus, being dark to medium grey in colour and containing 30-60% cavities and

Renalcis.

2. Less than 15o/o of the megabreccia is stromatolitic-archaeocyath

boundstone, a massive dark to medium gíey, rarely i"ed limestone, containing

up to 4oo/o a¡chaeocyaths and sparse colonies of Renalcis.

3. Less than 3o/o ol the megabreccia is an archaeocyath dominated (-50%),

archaeocy ath- Ren a lcrs boundstone.'

4. A massive dark grey, Epiphyton boundstone containing about 50% calci-

microbes and rare archaeocyaths, together with the following Epiphyton-

archaeocyath boundstones, comprise about 70o/o of the megabreccia.

5. The Epiphyton-archaeocyath boundstones contain the corals which are de-

scribed herein. The percentage of archaeocyaths and calcimic¡'obes both vary

between one and sixty percent of the content.

6. A stromatactis mudstone comprising <1o/o, of the megabreccia.

7. Carbonate sandstone, comprising>2o/o of the megabreccia.

The corals, together with archaeocyaths and the calcimicrobes, Renalcis,

Gi¡vanella and Epiphyton occur in closely associated reefal blocks, which reach

to about 10m in maximum dimension. Within individual blocks, the organisms
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are commonly preserved in life position, the corals commonly form encrusting to

upright tall often pagoda-shaped colonies, the latter up to 60-70 cms high. The

blocks containing the corals are still pi'edominantly 'right way up' and hence it

may be inferred that they slid sideways rather than tumbled to their present

position near the approximate top of the talus pile. Their close juxtaposition side

by side implies that their total down slope movement occurred over no great

distance, and these megaclasts may even represent a para autochthonous part

of the reef complex. lndividual colonies tend to be widely spaced, with the

dominant associated faunal elements varying markedly.

3.2 lnterpretation of the Megabrecc¡a

The above lithological variations within the megabreccia reflect a zoned reef

complex. The Archaeocyath-Renalcis boundstones indicate a type 3 archaeo-

cyathan dominated assemblage, representative of moderate to high energy

open shelf environments (James & Gravestock 1990). The Epiph¡rfon bound-

stone is possibly equivalent to a type 4 assemblage, representing high energy

open shelf to shelf margin environments, while lhe Epiphyton-Archaeocyath

boundstone is indicative of high energy shelf margin tl-pe 5 buildups (James &

Gravestock 1990). The stromatactis mudstone may be compared with the

stromatactoid mud mounds of James & Gravestock (1990), and the c¿rbonate

sandstone comprised a peritidal deposit.

The above facies for the megabreccia at Moorowie, have close counterparts in

the model cross section of a carbonate platform and reefal buildups proposed

by James & Gravestock (1990 p. 476), for the time of the Hawker Group.

It appears possible that the reef at Moorowie may have formed on or around the

Moorowie diapir and represent a relatively small zoned reef complex. The

distinctive biofacies possibty formed in areas some hundreds of meti'es broad

imolying that the main reef front had a fringing geometry.

15



Lemon (1985), theorized that with uplift of a diapir, basrns are created adjacent

to it, deepening, with increased subsidence due to salt withdrawal in response

to upvuard movement of the central diapiric core.

The different lithologies within the present megabreccia probably reflect the

mass collapse of different parts of the reef as a result of tectonic movement or

progradation of the platrorm. The rapid slumping of the talus into deeper water

in the adjacent basins evidently protected the carbonate frameworks from

vadose diagenesis, resulting in the remarkably pristine preservation of the

fauna.
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CHAPTER 4
THE CORALS

4.1 Preseruation

The available material containing the coral specimens, was mainly collected

some years ago by Mr. Brent Bowman, then a technical assistant at the

University of Adelaide. lt is not known whether any of the six corals occur

together, but it is known that they were principally collected from a relatively

small area spanning a linear distance of 150m or so, and over an apparent

stratigraphic interval of no more than a few metres. Sorauf & Savarese (1995)

índicate that F. bowmani occurs at a higher stratigraphic level than M.

chamberensis.

The corals from the Moorowie Mine locality, show a very similar mode of

preservation. A¡l their skeletal structures have been recrystallized, while

domains within many corallites are eithe¡'ferroan sparry calcite or recrystallized

fine sediment. which appears similar to that surrounding the colonies. During

life, colonies appear to have been repeatedly, but partially covered by

centimetre thick layers of fine sediment. Many corallites were incompletely

smothered, causing the death of zooids and allowing only a limited number to

continue their growth. The survivors rejuvenated new parts of the corallum and

with subsequent growth, corallites grew either inclined or spread laterally above

the lenses of sediment. Evidence of smothering is particularly noticeable in

specimens of A. fromensis (Fig. 5), A. cancelli(Figs 'Í2A,B,C), A. lafustei(Figs

14C & 15A) and F. uldanami (Fig. 16C). These taxa commonly exhibit the

above growth patterns either as shelves across sediment filled cavities, or by

forming new colonies which appear to arise from one or a few remaining

corallites. lsolated areas in few corallites contain fine sediment, which may have

resulted from infiltrated into damaged areas of corallites while still occupied by

the living organism, or after life.
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The ferroan calcite, particularly evident in specimens of 8. hawkerensis,

precipitated as an authigenic component during diagenesis. lt varies in colour

fi'om light to darker fawn, or is sometimes orange-brown to da¡'k brown,

commonly giving a multi-hewed appearance to the colony. ln longitudinal

section, corallites are commonly partially filled by the ferroan calcite to a depth

of up to three centimetres (Figs 18C,D). Adjacent corallites may be coloured to

a similar depth or alternatively only two o¡'th¡'ee spaces between tabulae may

be filled by ferroan calcite. ln transverse section calices replaced by ferroan

calcite often form blocks or meandering lines, although others are randomly

filled (Figs 184,8).

Cavities within and surrounding the various colonies are commonly lined with

calcimicrobe encrustations of Renalcis, Giruanella and Epiphyton (Figs

5,9,124,8,C). These not only encrusted live colonies, but may have provided a

substrate on which some colonies formed.

Small archaeocyaths are commonly associated with the coral colonies. Some

archaeocyaths appear to be in life position and adjacent to parts of colonies,

indicating that either the corals and/or the archaeocyaths may be providing a

substrate for the other. Other archaeocyaths appear to have been transoorted.

being contained within sediment filled cavities, lying on their side relative to

bedding (Fig. 5).

Periodic, energetic influxes of sediment appear to have eroded some exposed

skeletal parts of corals with broken or truncated calices common. The effects of

this erosion is also apparent on colonies of calcimicrobes and archaeocyaths

(Fuller and Jenkins 1994: 1995).

Most of the specimens examined contain fine fractures, possibly related to post

diagenetic deformation of the corallum. Fine fractures in the holotypes and

paratypes of A. f¡omensis, A. cancelli, A. lafustei, F. uldanami, B. hawkerensis

are generally re-cemented with calcite, while a larger fracture in the holotype of
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M. chamberensrs is filled with fine sediment. This fracture continues across both

corallites and the cavities between them, while the material filling the fracture

appears to originate fi'om a small pocket immediately adjacent to one side of the

corallum.

The available longitudinal and transverse cut thin sections, generally have

areas where the corallites are oblique in section, with only limited areas in true

longitudinal oi"transvêrse i"elief. Oblique sections commonl¡¡ present geome-

tries that exaggerate particular dimensions or morphological characteristics of

corallites. This may occur due to the overall irregular shape of the corallum, or

when corallites diverge outward, sometimes being steeply inclined. Oblique

corallites obsei-"-ed in transvei'se cut thin sections, tend to look more meandroid,

while those in longitudinal cut, are usually observed to be shorter.
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4.2 SYSTEMATIC PALAEONTOLOGY

Phylum: CNIDARIA

Glass: ANTHOZOA

order: ?TABULATA OR ?TABULACONIDA

The ordinal classification of the Moorowie corals is unclear. Skeletal

characteristics are tabulate-like and these corals are possibly early

representatives of the Tabulata. However, Scrutton (1997), has proposed a new

Order, Tabulaconida, for Early Gambrian 'true corals', and postulated that these

evolved from closely related non-skeletonized polyp-like organisms and became

extinct during the Middle to Late Cambrian. lnto this group he has placed the

two previously described Moorowie corals, Moorowipora chamôerensrs and

Arrowipora fromensis, with Flindersipora bowmani being a questionable

member. However, it is possible that total extinction of this group did not occur

in the Cambrian and this division continued through the Gambrian and was the

ancestors of Ordovician tabulate corals.

Type specimens; The specimens described in this paper are held in the

palaeontology collection at the South Australian Museum (SAM).

4.2:1

Family: uncertain

Genus: Arrowipora Fuller & Jenkins 1995

Type species.' Arrowipora fromensís Fuller & Jenkins 1995

Early Cambrian (Late Botomían) Moorowie Formation

Flinders Ranges South Australia
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Figure 5.

Arrowipora fromensrc

Fuller & Jenkins (f 995)
Figs. 2 & 3

5A. Holotype SAM P34167 (complete specimen), illustrating
sub-rectangular shelves extending from a large colony (x1.a).

58. Holotype SAM P34167 (reverse side of A), with shelf-like
projections over adjacent sediment (x1.4).





Etymology: For the Arrowie Basin, an Early Cambrian shallow marine basin

extending over much of the area of the present Flinders Ranges.

Diagnosis.' Corallum large, massive cerioid, comprising polygonal corallites;

corallites prismatic and irregularly cylindrical; walls divided by a medial plane,

thick, wavy to crenate, sometimes almost straight; tabulae numerous, rarely

complete, commonly dissepiment-like tabellae; septa numerous or absent,

numbering up to 35 in each corallite; where present, septa form short wedge to

spine-like projections into the lumen; mural pores absent.

Anowipora fromensrs Fuller & Jenkins 1995

FIGS 5 -7; TABLE I

1995 Anowipora fromensis FULLER & JENKINS, figs 2-5

1997 Arrowipora fromensis SCRUTTON, figs 19k-19m.

Etymology: For nearby Lake Frome.

Diagnosis.' As for genus.

Material

Two sets of polished slab counterparts, and numerous smaller pieces. One set

comprises triangular shaped polished slabs approximately 25 cm tall and 23 cm

wide (Fig. 5), the other set, two triangular polished slabs approximately 34 cm

normal to bedding and 28 cm parallel to bedding. Both contain either two or

more coralla or the disjunct parts of one large corallum which formed numerous

irregularly rectangular platy shelves. The material was collected from the

Moorowie Formation, near the Moorowie Mine.

Type specimens.' Holotype SAM P34167, a polished slab of a broken part of a

corallum and thin sections SAM P34167-'1, SAM P34167-2. Paratypes: SAM

P31962-1, SAM P31962-2, polished slab counterparts; and thin section SAM

P34168-1.
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Figure 6.

Arrowipora fromensis

Fuller & Jenkins (1995)
Fig.4

Longitudinal sections of Holotype SAM P34167

6A & B. (Adjoining sections) illustrating general shape of the
corallites, tabulae, vertical and basal corallite walls (Y2.4).

6C. lllustrating the irregular surface of the walls and upper
surface of tabulae. Two fractures which post date growth are
observed mid to lower right of figure, together with the
recrystallized fabric within the corallite. (x10.6).

6D. Enlarged section (x2.4) of corallite (lower right Fig. 58)
illustrating tabulae with possible septal spinules on the upper
surface.

6E. Higher magnification (xaO) of a corallite section illustrating
diverging fibres of a vertical wall (a); and the similar structure of
the basal wall of parricidal corallites which continue to grow
following increase (b); and tabulae (c).
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DescriPtion

Colony large, more than 24 cm tall and extending laterally well in excess of 23

cm: the described materiai represents fragments broken either from one colony

or possibly several associated colonies. !n longitudinal section the corallum may

broaden upward, or more commonly, wide shelves extend laterally over

adjacent sediment. Shelves are either irregularly rectangular in shape, with

corallites tending to diverge slightly, or are plate-like with corallites often more

inclined. Individual shelves measure up to 70 mm high and 130 mm in width

(Fig. S). The upper surface of the shelves is irregularly horizontal to concave,

and calices may extend up to 7 mm past the upper-most tabellae. ln transverse

section (Figs 7A,B,C), the cerioid corallites, are seen as 5-8 (generally 6) sided

polygons, varying between 6.5 and 14 mm in diameter, being generally 7 '11

mm.

Walls vary between 0.1 and 1.0 mm, and are wavy to almost straight. The inner

surfaces of the walls are irregular, due to the insertion of numerous tabellae and

septal spines. ln thin sections, a medial line divides the walls of adjoining

corallites (Figs 7A,C).

In transverse section, at low magnifications (up to X 40) straight to slightly

diverging fìbres crossing the walls between adjacent corallites are commonly

interrupted by the medial line (Figs 7A-D). ln longitudinal section, fibrous

elements diverge outward and upwards from the medial line and commonly

protrude into the lumen giving the walls an irregular appearance. The walls

which truncate parent corallites and form the base of subsequent corallites, are

composed of vertical to slightly- inclined fibres. They arise fl"om the vertical walls

and are usually V-shaped, but may be undulating horizontal or inclined (Figs

6C, D, E).

ln longitudinal section (Figs 5 & 6A,B,C), individual corallites are prismatic to

irregularly cylindrical and up to 14 mm wide and 47.5 mm long. Corallites vary

lit¡e in diameter and length, prior to the addition of new corallites (increase).
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Figure 7.

Arrowipora fromensis

Fuller & Jenkins (1995)
Fig.5

74. Transverse section of Holotype SAM P34167 (x3.2).

78. (x3.2), transverse section of Paratype SAM P34168;

showing variation in corallite shape and septa. Tabulae are

observed as irregular lines within the corallites: the midline of
the wall (arrowed) may be seen in some adjoining corallites.

7C. Enlarged section (x10.5) of 5A illustrating septa, wall

irregularities, midline (a) and tabulae (b). The recrystallized
fabric is observed within the corallite.

7D. Corallite walls (xa0) showing the bundles of fìbres

transverse to the wall (arrowed) in sections of the specimen.





lncrease is both lateral and peripheral intracalicular, parricidal within the

established body of the colony (Figs 5 & 6A,B).

Tabulae are numerous, commonly formed by incomplete, globose and

dissepiment-like tabellae. Uncommonly, some are continuous across very

narro.yv corallites. Tabellae may arise from the vuall, or from adjacent tabellae,

extending inward and curving downwards to meet uoon other tabellae. They are

very thin, generally less than 0.06mm, often wavy and rarely straight. Small

prgections often occur on the upper surface of tabulae (Fig. 6D). ln transverse

section, tabellae are seen as wavy and crenate lines arising from the walls and

anastomosing with adjacent tabellae (Figs 7A,B,C). At low magnification. the

fibrous structure of the tabellae is similar to that of the walls, with some bundles

extending to give the small projections on the upper surface. ln longitudinal

section, the fibrous elements are normal to the base of the tabellae.

ln transverse section, septal spines are either numerous or absent, numbering

35 or less, and tend to be diffìcult to distinguish from other irregularities on the

wall (Figs 7A,B,C). ll/here present, they are short (up to 0.25 mm in length),

blunt triangular or spine-like in shape. generally equal in length. and distance

from each other (about 0.25 to 0.5 mm). They are commonly present on some

walls while absent on others within a single corallite. Septal spines appear to be

the continuation of bundles of fibres extending from the fib¡'ous '"vall, usually

terminating as, or being seen as fan-shaped tufts (see preservation). ln

longitudinal section, the generally upturned septal spines are observed to

occasionally form short vertical rows on corallite walls.
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4.2=2

Family: uncertain

Genus: Moorowipora Fuller & Jenkins 1994

Type species: Moorowipora chamberensis Fuller & Jenkins 1994

Early Cambrian (Late Botomian) Moorowie Formation

Flinders Ranges South Australia

Etymology: For the type locality near the Moorowie Mine in the eastern

Flinders Ranges.

Diagnosis.' Corallum small, varying from massive cerioid to fasciculate,

comprising polygonal, oval or rounded corallites. Corallites are long, tuberoid to

irregularly cylindrical. Walls are thin, wavy to crenate, rarely straight. Tabulae

are irregularly spaced, mostly complete, concave upwards to undulating

horizontal. Septa absent, or number up to 20 in each corallite. Where present,

septa are randomly spaced, short and form wedge to spine-like projections into

corallites, arising from inward angulations of the wall. Pores appear to be

absent.

Moorowipora chamöerensrs Fuller & Jenkins 1994

FIGS I - 11; TABLE I

1994 Moorowípora chamberensis FULLER & JENKINS, figs2-7

1995 Moorowípora chambercnsis SOROUF & SAVARESE, pts 1-3

1997 Moorowipora chamberensis SCRUTTON, figs 199,19h,19j.

Etymology: For nearby Mt Chambers.

Diagnosis: As for genus.

Material

The holotype, paratypes and several other colonies come from one rock sample

measuring 27O mm long, 230 mm wide and 120 mm thick: taken from a large
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Figure 8.

li oo row i po ra ch a möerensis

Fuller & Jenkins (1994)
Fig.2

lnterpretive sketch (longitudinal sec{ion) of holotype SAM P34165;
illustrating cone to fan shaped colony; the form of individual corallites
and protocorallite (a), tabulae (b), septa (c), calice (d), lateral increase
(top centre & right) and peripheral intracalicular increase (x 2.5).
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Figure 9.

Moo rowipo ra c h a mberensis

Fuller & Jenkins (1994)
Fig.3

Longitudinal sections of holotype sAM P34165; illustrating
areas of the colonY.

9A & B. Upper part of the colony with walls extending above

the corallum, showing manner of increase and corallite

structure evident (x4.)

9G. Base of colonY (x 4)

9D. Higner magnification of (B) showing normal and thickened

tabulae (lower left), and oblique projections of outer wall (centre

right x 15).





boulder within the Moorowie Formation, near the Moorowie Mine in the eastem

Flinders Ranges. lndividual colonies are small, the holotype being less than 50

mm tall and about 30 mm wide. Colonies appea¡'to be isolated f¡'om each other,

surrounded by an orange-fawn silty limestone matrix.

Type specimens; Holotype SAM P34165, four thin sections, SAM P34165-1;

SAM P34165-2; Paratypes SAM P34166-1; SAM P34166-2.

Description

ln transverse section (Fig. 10), corallites show gradation into two distinct habits,

massive cerioici ancj fascicuiate dencjroici. ln fascicuiaie habit, coraiiites rareiy

touch, are circular to slightly oval in shape and vary in diameter from 0.95 to

3.75 mm. Corallites with massive habit are rather irregularly shaped 5 or 6 sided

polygons, sometimes oval or rectangular, rarely circular; they vary individually in

diameter from 0.77 to 3.5 mm.

Walls are thin, varying between 0.1 and 0.15 mm in thickness and show a relic

fibrous structure (Figs 9 &10). A midline is apparent between many adjoining

corallites. !\/alls are wavi- to slightly crenate, being i'ounded in isolation or

adjacent to small spaces in the corallum, with a tendency to become straighter

and less distinct where they merge with the walls of adjoining corallites.

ln longitudinal section (Figs I & 9), each colony is generally small, numbering

from 2 or 3 to about 16 corallites. Colonies are either cone to fan shaped,

diverging outr,vai'd fi'om a single protocorallite; or more i'ectangulai', whei'e they

appear to arise from several adjacent corallites. lncrease is both lateral and

peripheral intracalicular, producing one, two or more off-sets (Figs I &9).

lndividual corallites are tuberoid to irregularly cylindrical in shape and vary

greatly in width and length (up to 19.5 mm), prior to increase (formation of a

new co¡'allite). The base is i"ounded and blunt, the protocoi'allite producing 3 oi"4

short septa prior to the formation of an initial tabulae.
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Figure 10.

M o o row i p o ra c h a mberensís

Fuller & Jenkins (1994)
Figs.4 & 5

Transverse sections and interpretive sketches of holotype SAM
P34165.

104. Transverse section of holotype SAM P34165; part of
corallum showing both cerioid and fasciculate areas (x 3.3)

108 & G. Fasciculate (x 10)

l0D & E. Cerioid areas of the corallum

Differences can be seen in corallite shape, septa, (x 10.5) and
new walls divides corallites formed during offset formation.
Rejuvenation of corallites (C & D) is evident top right and
bottom centre.
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The calice is prominent extending between 2.5 and 4.75 mm past the last

tabulae (Figs 9B,D).

Tabulae are mostly complete, mainly convex upward or undulating horizontal,

often down turned where they meet the wall (Figs 8 & 9). They are irregularly

spaced, but commonly occur at the same level in adjacent corallites. The

distance between them is highly variable (0.35-2.1 mm), while the thickness of

tabulae varies from 0.002 to 0.01 mm.

Septa number up to 20 in fasciculate corallites, are very short (0.01-0.2 mm),

generally equal in length, triangular to wedge shaped, often indistinct. They

foi'm pi'otrusions on the wall of the corallite at sites of inward ci'easing (Fig. 1C),

ln massive, cerioid corallites in the main body of the corallum, there may be uo

to 10 septa or septa may be absent. Septa are randomly spaced; long and short

septa may alternate, or only long or short septa may be present. Septa are

wedge to spine like in shape. Septa are genei'ally longer than in the fasciculate

corallites. ln longitudinal section septa are observed as continuous vertical

laminar plates intersecting normally with tabulae.

Microstructure

The microstructure was studied at magnifìcations up to X 200, and photographs

were taken uncjer poiarizeci iight. in transverse section at iow magnit-ication

(Fig. 10), relic fibrous elements, rvhich form the sclerenchyma and apparently

represent indications of original biocrystals, appear as continuous lineae across

the wall and into the septa. At higher magnification (Figs 114,8) the interlocking

fibrous elements foi'm ti'iangular to rectangular shaped bundles, composed of

narrow parallel-sided and blade-like geniculate structures up to 164 um long

and 37 um wide. These are angled upwards and outwards from the centre of

each corallum. The bundles have the appearance of crossing, or being stacked

ove¡' underlying layers.
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Figure 11.

M o o row i po ra c h a möerenslb

Fuller & Jenkins (f 994)
Figs. 6 & 7

llA & B. Transverse section and interpretive sketch of
holotype SAM P34165; illustrating triangular to rectangular
bundles of fibres extending across the walls of the corallite.
Notations x-x1 and y-y1 define boundaries of illustration, m is
midline of the wall (x 44).

lîC. Longitudinal section (cartoon sketch) showing large
crystals of the recrystallization fabric (a) incorporating the wall
of compound corallites (b) Relic biocrystal fibres diverge
upward and outward.
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Near the midline of walls the fibres are often less oblique and have a slightly

ditferent orientation, appearing to be broader and more randomly oriented.

ln longitudinal section at magnifications of X100 to X200, the mid-plane of the

wall seems to have been composed of irregularly shaped, crenate, interlocking

platelets which individually ¡'epresent the fib¡'ous lineae of ti'ansverse cuts.

Platelets may be almost rectangular, vertical to slightly inclined. occasionally

almost horizontal in the middle of the wall. They commonly diverge outward

towards the top of corallites (Fig. 1 1C). Wall platelets are more elongate and

wider than the fibre bundles seen in transverse section, being up to 190 um in

length and 138 um in width.

Tabulae are continuous with the inner edge of the wall, which converges slightly

around them. The structure of the tabulae is similar to the septa and wall in

transverse section, with bundles of fib¡'es being mainly ti'iangulai', oi" ii'i'egularly

shaped. Triangular bundles of fibres are up to 360 um in length, and 308 um in

width. ln tabulae of normal thickness, adjoining triangular bundles interlock

forming a crenate upper and lower surface. A more complicated interlocking

pattern is formed in thickened tabulae.
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4.2:3

Family: uncertain

Genus: Adelaideipora gen. nov.

Eai1y Camb¡"ian (Late Botomian) Moorowie Foi'mation

Flinders Ranges South Australia

Etymology: For Adelaide the capital city of South Australia.

Diagnosis.'Corallum small, massive cerioid to fasciculate; with oval, rounded

polygonal or slightly meandroid corallites which are prismatic, long, and

cylindrical or sometimes cone-shaped. Walls are thin, often parallel to each

other, straight to slightly curved. with short segments between septa and

separated by a medial plane. Septa are plate like and number up to 18, are

either long or short, and may or may not alternate. Tabulae are regularly

spaced, occasionally iri"egulai'. Tabulae vary little in thickness, are generally

complete and commonly horizontal, occasionally slightly concave up or

undulate. Pores if present, are few in number.

Type species: Adelaideipora cancel/i sp. nov

FIGS 12 & 13; TABLE 2

Etymology:_ Cancelli, Latin for lattice or grating, in referring to the shape and

placement of tabulae, giving a lattice like appearance to the coral in longitud-

:-^t ^^^+i^áit rc¡r sguul.t t.

Diagnosis; Tabulae generally horizontal, strongly developed and evenly
spaced, septa number up to 18, corallite diarneter up to -?.75nnnn.

Material:

The holotype and paratype are from the same rock sample measuring 150 mm

long, g5 mm wide and 100 mm thick evidenily taken from a larger bouider of
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Figure 12.

Adelaideipora cancelli

12A.. Holotype SAM P34169 (rock slab), illustrating part of a
larger colony arising from a single corallite after smothering of
Paratype SAM P34170, situated stratigraphically below the
holotype (x 1.a).

128. Paratype SAM P34170, (rock slab), illustrating
rectangular shelves extending from the colony, truncated and
smothered across the corallum (x 1.4).

12C. Paratype SAM P34171 (rock slab), with shelf-like
projections across adjacent sediment and smothering of
corallites at the top of the corallum (x 1.4).

12D. Holotype SAM P34169, transverse section of the
corallum, showing cerioid corallites and pores (arrowed) (x a.3).





reef talus within the Moorowie Formation, near the Moorowie Mine. The

holotype comprises a corallum, measuring about 70 mm tall and about 75 mm

wide, arising from a single corallite. The lowei^ part of the colony is cut in

longitudinal section, while the upper part is more oblique. The corallum is

truncated, with corallites broken and covered by sediment.

The paratype measures more than 55 mm high and 55 mm wide and is part of

a larger colony positioned at a lower level in than the holotype in the rock

specimen.

A second rock specimen has part of one colony and small fragments of possibly

3 other coralla, the preservation of which is similar to that of the holotype and

paratype.

Type specimens; Holotype: P34169, two thin sections SAM P34169-1

P34169-2: Paratype 1: SAM P3417O-1: Paratype 2: SAM P34171

specimen).

SAM

(rock

Description:

ln longitudinal section the corallum of the holotype broadens outward from a

single corallite, forming a narrow cone shape (Fig. 124). The part of the coraiiite

appears to have been broken and dislocated laterally over adjacent sediment,

forming a shelf, while the opposite side of the colony has been covered with

sediment. The colony continued to grow from this point, diverging outward,

where it is more oblique in section. The paratypes have shetf-like projections

over the underlying sediment where corallites have diverged outward and have

subsequently been truncated (Figs 128,C) A'stepped'appearance is shown by

both colonies (Figs 12B'C).

ln transverse section (Figs 12D & 134) cerioid corallites are seen as irregularly

circular to oval, varying in individual diameter between 2.20 and 3.75 mm.
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Figure 13.

Adelaideipo ra c a n c el I i

l3A. Holotype SAM P34169, transverse section, illustrating
form of corallites and septal insertion (x 8.4).

l38. Holotype SAM P34169, longitudinal section of part of the
colony showing straight walls, tabulae and septal plates and
peripheral intracalicular increase (arrow)(x 4.6).

l3C. Paratype SAM P34170. Longitudinal section of part of
the colony showing straight walls, tabulae and septal plates (x
5.6).

l3D. Holotype SAM P34169. Enlarged longitudinal section
illustrating mid-line in the walls (arrowed and at bottom left side)
and septal plates (x 16.7).
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Meandroid corallites are polygonal or rectangular in shape, the latter being up to

3.60 mm long and 0.90 mm in width.

Walls are thin, varying between 0.10 and 0.30 mm in thickness, and are wavy to

crenate, particularly the exterior walls of corallites at the margins of the colony.

ìfJalls form shoit segments between the many septa bases, with a medial line

apparent between most adjoining corallites (Fig. 13A).

ln Iongitudinal section (Figs 138,C), the walls of individual corallites are straight

to slightly curved, the shape of corallites being long, narrow cylindrical or

occasionally cone-shaped when arising from the base of the colony and

broadening. Corallites are aporoximately 6.3 to 11.2 mm in length in the

holotype, and up to 25 mm long in the paratype, prior to increase (addition of

new corallites). At increase up to four daughter corallites may be produced.

lncrease is both lateral and peripheral intracalicular, but does not appear to be

parricidal as the original corallite continues grow (Fig.13B).

Vertical walls tend to be slightly curved or straight and are relatively smooth.

However, in some corallites small protuberances jut out into the lumen (Fig.

13D). This ii"i'egulai'sui{¿ce appeai"s to be caused by the biocrystal st¡'ucture of

the wall. Even at low magnification (x20). a medial line and biocrystal fibres can

be seen in the walls, diverging outward at an angle towards the calice (Fig.

13D). Vertical alternating light and dark elements are also apparent and occur

predominantly vuhere v''alls are slightly thickened.

Tabulae mostly complete, horizontal, straight to slightly curved, rarely wavy or

concave down (Figs 138,C). Tabulae are also strongly developed and evenly

spaced, level with those in both individual corallites, as v¡ell as seeming to

extend through adjoining corallites. The regular spacing gives the colony a

'lattice' appearance. The distance between tabulae varies from 0.20 to 0.90

mm, (up to 1.05 mm in the paratype), but is usually between 0.65 and 0.75 mm.

Thickness of the tabulae is bef,vêên 0.06 and 0.20 mm, but generally between
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0.10 and 0.16mm. Tabulae at the base of the holotype are in the upper range of

thickness (0.18 to 0.20 mm), being generally thicker than tabulae towards the

top of the corallum o¡' in the paratype.

Septa number from 5 to 18, although 7 to 12 is more common (Figs 12D &

13A). Septa vary in length from 0.15 to 0.73 mm, being generally between 0.30

and 0.65 mm, and vary between C.C9 and 0.15 mm in thickness (0.'12 to C.15

mm average). Long and short septa may or may not alternate. Septa in the

meandroid corallites are commonly short and more similar in length than those

of the cerioid corallites. Septa may be either slightly curved or straight, arising at

inward creasing of the walls, sometimes bearing blunt spines at their axial

margins. ln longitudinal section septa are observed as vertical laminate plates

intersecting normally with tabulae (Figs 138,C). Pores are rare, their individual

diameters measuring between 0.1 1 and 0.30 mm.
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4.2:4

Type species: Adelaideipora lafustei sp. nov.

FIGS 14 - 158; TABLE 2

Etymology: For the late Jean G. Lafuste, of the Museum National d'Histoire

Naturelle, Paris, France, who described Flindersipora bowmani, the first coral

from the Moorowie Formation.

Diagnosis; Septa number up to 14, tabulae are usually down turned,

sometimes undulating horizontal and regularly spaced for the most part,

sometimes more randomly inserted, and corallite diameter is generally" less than

A. cancelli.

Material

The holotype and paratype are colonies from two different rock samples taken

from a iarger bouicjer of reef talus within ihe Moorowie Formation, near ihe

l\/lnnrnrrria t\lina

Type specimens,' Holotype: P36699, two thin sections SAM P36699-1: SAM

P36699-2: Paratype 1: SAM P36700-1: SAM P36700-2.

Description:

ln longitudinal section, the holotype comprises a rejuvenated fan shaped

coraiium, measuring 25 mm taii anci 37 mm wicie, positioneci higher in ihe

seCiment abo.,,e ancther corallum rrhich is more than 29 mm tal! anC more than

33 mm wide (Fig. 14C). The upper corallum arises from a single corallite from

the lower; the upper corallum is viewed mostly in longitudinal section, while the

r^..,^- i^ ^l..li^.,arvvvcr rÐ vl.,lrvus.
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Figure 14.

Ade I a ide i po ra I afu ste i

14A. Holotype SAM P36699, transverse section, illustrating
form of corallites and septal insertion and pores (arrowed) (x 4).

14B. Holotype SAM P36699. Enlarged transverse section
showing faint midline in the wall (arrowed), crenate walls and
spine-like septa (x 8.2).

14C. Holotype SAM P36699. Longitudinal section of part of
the fan-shaped colony arising from a single corallite and
smothered corallites of a colony stratigraphically below (x 3.7).

14D. Paratype SAM P36700. Transverse section of part of the
colony showing form of the corallites, septal insertion and pores
(arrowed) (x 3.7).





The upper corallum is truncated, with corallites broken at the edge of the

specimen, while those in the lower appear to have been partially smothered,

v¡ith some corallites extending into the sediment about 1.7 mm above the last

tabulae (Fig. 1aC). The oaratype is part of a larger colony measuring more than

33 mm tall and 51 mm wide (Fig. 154). The centre of the colony is viewed in

longitudinal section, becoming more oblique towards the edges due to the

inclination of the co¡'allites. Corallites are genei'ally ti"uncated at the top of the

specimen, a few smothered corallites near the middle extend into the sediment

about 1.8 mm past the last tabulae (Fig. 15D).

ln transverse section (Figs 14A,8), the cerioid corallites of the holotype are

generally irregular polygons, sometimes oval, varying in individual diameter

between 1.30 and 3.41 mm, in the paratype, 1.25 to 3.54 mm (Fig. 14D).

Meandroid corallites are elongated polygonal or rectangular in shape. this often

reflecting a cut section that is somewhat oblique.

Walls are thin, varying between 0.11 and 0.20 mm (generally 0.15-0.16 mm) in

the holotype; 0.09-0.15 mm and generally 0.14-0.15 mm in the paratype. They

aí'e !va\r/ to ci'enate, sometimes straighter b,etween meandroid coi'allites (Figs

14A,B,D). Walls form short segments between the many septa bases. with a

medial line occasionally visible between adjoining corallites (Fig. 148).

ln longitudinal section (Figs 14C & 15A), corallites are long, irregularly cylin-

drical and usually diverge outwards. lncrease is both peripheral intracalicular

and lateral at the edges of the colony.

Vertical walls tend to be slightly wavy, sometimes straight, commonly appearing

jagged where septa, observed as continuous vertical laminar plates, join the

wal!.

Tabulae complete, slightly concåve down, sometimes straight, rarely wavy.

Tabulae are narrow and evenly spaced within individual corallites and often
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across adjoining corallites (Figs 14C & 15A). The distance between tabulae

varies from 0.30 lo 2.46 mm, (generally 1.0 to 1.5 mm) in the holotype and 0.57

to 1.65 mm (genei"ally 0.80 to 1.2A mm in the pai'atype). Thickness of the

tabulae is between 0.06 and 0.12 mm. but generally 0.06 mm in the holotype.

and 0.06 to 0.14 mm (generally 0.06 to 0.07 mm) in the paratype.

Septa number from 6 to 14, in both the holotype and paratype, although g to 13

is more common (Figs 14A,B,D). Septa are strongly developed and vary in

length from 0.20 to'1.35 mm (C.45 to 1.50 mm in the paratype), the thickness

varying between 0.15 and 0.25 mm (generally 0.15 mm) in the holotype. and

0.10 to 0.21 mm (generally 0.12 to 0.16 mm) in the paratype. Long and short

septa may or may not alternate, or only long septa may be present in a corallite.

Septa are vertical laminai'plates and may be eithei'slightl'y cui".¿ed or straight,

arising at inward creasing of the walls, occasionally bearing small spines. Pores

are rare, their individual diameter measuring between 0.14 and 0.33 mm in the

both the holotype and paratype (Figs 148,C).
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Figures l5A & l5B

Adelaideipo ra lafu stei

l5A. Paratype SAM P36700, longitudinal section, showing
corallites extending above part of the corallum, walls and evenly
spaced tabulae (x 3.3).

l5B. Paratype SAM P36700. Enlarged longitudinal section,
showing tabulae and septal plates (x 9.5).

Figures l5C & 15D

FIi n de rsipo ra u ldan a m i

lsG. Paratype SAM P34173. Transverse part of the colony
illustrating form of the corallum and spine-like septa (x 3.7).

l5D. Paratype SAM P34173. Longitudinal part of the colony
situated adjacent to transverse section (C), showing walls,
tabulae and septal Plates (x 3.7).
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4.2=5

Family: uncertain

Genus: Flindersipora Lafuste 1991

Eai1y" Cambi'ian (Late Botomian) Moo¡"o',vie Formation

Flinders Ranges South Australia

Type species; Flindersipora uldanami sp. nov

FIGS 15C - 16D; TABLE 3

Etymology: Uldanami, the name of a mythical aboriginal from a legend centred

around Moorowie and Mt. Chambers Gorge.

Diagnosis.' Corallum small, massive cerioid to meandroid; comprising oval,

rounded polygonal or slightly meandroid corallites which are prismatic, long,

irregularly cylindrical to tubei'oid. Commonly fine wavy often discontinuous

threads of sclerenchyma cross the lumen. Walls are thin, wavv to crenate,

rarely straight, with short segments between septa and separated by a medial

plane. Septa are vertical laminar plates and number up to 16, are either long or

short, and may or may not alternate. Tabulae are ii'i'egularly spaced, generally

complete, undulating horizontal to concave, relativel¡r even in thickness. Pores

are few in number.

Material

The holotype and paratype are different colonies from rock samples taken from

a iarger boulcjer of reef iaius within ihe Moorowie Formation, near the Moorowie

ttline. The holotype measures more than 100 nnm tall and 120 mm wide and is

part of a larger corallum. The paratype comprises 2-3 small fan-shaped coralla

(in longitudinal section) and shows part of one of these in transverse section.

The largest fan shaped corallum measures morê than 55 mm tall and 55 mm

wide.
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Figure 16

FI i n ders ipo ra u lda n a m i

l6A, Holotype SAM P34172, transverse section illustrating
spine-like septa, pores (thin arrow), midline in the wall (thick
arrow) and thin sclerenchyma threads across the lumen (x7.$.

168. Holotype SAM P34'172. Enlarged transverse section
illustrating spine-like septa and thin sclerenchyma threads
across the lumen (x 10.4).

l6C. Holotype SAM P34172. Longitudinal section of part of
the colony showing walls, tabulae, septal plates and corallites
extending above the corallum (x 3.5).

l6D. Holotype SAM P34172. Enlarged longitudinal section of
part of the colony showing walls with midline (arrowed), tabulae
and septal plates (x7.2).





Type specimens,' Holotype: P34172, two thin sections SAM P34172-1: SAM

P34172-2: Paratype: SAM P34173-1.

Description:

The holotype is part of a massive colony, apparently more or less dome

shaped. The paratype is seen in transverse, longituciinal ancj oblique sections

(Figs 15C,D). ln longitudinal section, a corallum fans outwards from a narrower

base adjacent to the transverse section, probably arising from the side of the

colony observed in transverse cut.

ln transverse section (Figs 15C & 164,8), corallites are cerioid to meandroid,

mostly rounded polygonal, sometimes elongated polygonal in shape at the

margins of the colony. lndividual corallite diameter varies between 1.50 and

3.00 mm. while meandroid corallites may be up to 3.75 mm. Walls are thin.

varying between 0.10 and 0.22 mm in thickness. They are wavy to crenate,

particularly on the exterior walls of corallites at the margin of the colony, but

commonly straighter between meandroid coi'allites. Walls form shoft segments

between the base of septa, with a medial line apparent between most adjoining

corallites (Figs 1 6A,D).

ln longitudinal section (Figs 15D & 16C,D), individual corallites are long,

irregularly cylindrical to tuberoid, generally increasing in diameter prior to

increase (addition of new corallites). lt appears that only one or fy/o daughtei'

corallites are produced at a time. lncrease is peripheral intracalicular or lateral

at the margins of colonies. Vertical walls tend to be wavy or curved, rarely

straight, and relatively smooth (Figs 15D, 16D), they are commonly thickened

and difficult to distinguish due to vertical lines in longitudinal section mainly

representing septa.

Tabulae mostly complete, undulating horizontal or concave down, occasionally

dissepiment-like. Tabulae strongly developed and rather evenly spaced.
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The distance between tabulae varies from 0.14 to 1.25 mm, being more evenly

spaced at 0.19 to 0.80mm in the paratype. Thickness of the tabulae is between

0.05 and 0.14 mm, or generally between 0.C9 and 0.'1'lmm (Figs 15D & 1GC,D).

Septa number from 9 to 16, although 11 to 14 is more common, and vary in

length from 0.15 to 0.85 mm, being generally between 0.45 and 0.75 mm, and

are between 0.10mm and0.22 mm in thickness, (generally 0.15 mm to 0.20

mm). Septa tend to be appi'oximately the same length in individual corallites,

some of which may have more than two smaller septa together along the same

wall, or occasionally altemate. Septa in the meandroid corallites are often

smaller and similar in length. Septa are spine-like and may be either slightly

curved or straight, arising at an inward creasing of the walls, sometimes bearing

small spines (Figs 164,8). ln longitudinal section septa are observed as vertical

laminate plates intersecting normally with tabulae, commonly appearing to

thicken the walls of the corallites (Fig. 16D). Fine wavy and often discontinuous

lines evident in the lumen (in transverse section) and probably repi'esent

sections of uneven or dissepiment-like tabulae (Figs 15C & 16A,8). Pores are

rare, individually measuring between 0.12 mm and 0.15 mm in diameter.
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4.2:6

Family: uncertain

Genus: Flindersipora Lafuste 1991

Early Camb¡'ian (Late Botomian) Moorowie Formation

Flinders Ranges South Australia

Type species; Flíndersipora bowmani Lafuste 1991

FIGS 17 A& 8,.TABLE 3

1991 Flindersipora bowmaniLAFUSTE ET AL. , Pls 6&7, Figs 3-9

1992 Flindersipora bowmani SCRUTTON

1994 Flindersipora bawmaniFULLER & JENKINS

1995 Flindersipora bowmaniFULLER & JENKINS

1995 Flindersipora bowmaniSOROUF & SAVARESE

1997 Flindersipora bowmaniSCRUTTON Figs 18a & b.

Diagnosis: Massive cerioid corallum made of rounded polygonal or slightly

meandroid corallites. Walls are rather thin, scarcely straight, generally

crenulated, in short segments between septal bases. Septa are vedical

laminae. strongly developed, varying in numberfrom 6 to 16 in each corallite:

they may or may not show alternation in length; their edges bear very blunt

spines. Tabulae are irregularly spaced, variable in density; they are generally

incomplete and foi' the most pañ concavê upward. Pores a¡'e ¡'educed in

diameter and few in number. The sclerenchyma, identical in wall and septa is

made of vertical to inclined biocrystals strongly embossed which for the greatest

part are plane or slightly folded platelets. The skeleton is abundantly spotted by

dark specks generally transverse to wall and septa (Lafuste et al. 1991; p.708).
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Figure l7

Flindersipora bowmani

17A. Holotype SAM P31576, transverse part of the colony
illustrating the form of corallites and septal insertion (x 6.0).

178. Holotype SAM P31576. Longitudinal section of part of
the colony showing walls, tabulae, septal plates and midline of
the walls (arrowed) (x 4.0).

17C. SAM P34174, transverse section of part of the colony
illustrating the form of corallites, septal insertion, being similar in
form to the holotype (A), (x 6.3).

17D. SAM P34174. Longitudinal section of part of the colony
showing waqlls, tabulae, septal plates, coralllties which extend
above the corallum and lateral increase (right of colony), (x 4.0).

17Ê. SAM P34174. Enlarged longitudinal section of part of the
colony (D), showing midline of the walls (arrowed), tabulae and
septal plates (x 8.7).
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Fli ndersi pora bowm ani (P3417 4l

FIGS 17 C - E; TABLE 3

Material

Numerous pieces broken from a larger colony of unknown size, part of which is

inciineci at about 40 ciegrees to ihe beciding, SAM P34174, two thin sections

SAN4 P34174-1 SAttJ P34174-2.

Description

ln transverse section (Fig. 17G) corallites are cerioid to meandroid, mostly

roundecj polygonal, sometimes elongated poiygonai in shape at the edges of

the colony. lndividual corallites vary between 1 .22 and 2.08 mm in diameter. !n

longitudinal section (F¡g. 17D), individual corallites are long, irregularly cylind-

rical to tuberoid, generally increasing in diameter prior to increase (addition of

ne."v corallites). lnci'ease is periphei'al intracalicula¡'or lateral, particularly at the

margins of colonies. (Fig. 17D). Vertical walls are generally relatively straight

and smooth, or sometimes curved or wavy. Walls vary between 0.14 and 0.30

mm in thickness, and are wavy to crenate, commonly straighter between

meandroid corallites. Walls form short segments betw'een the base of septa,

with a medial line often visible between some adjoining corallites (Fig. 17E).

Tabulae strongly developed and rather evenly spaced, mostly complete, mainly

concave upward or undulating horizontal. The distance between them varies

from 0.04 and 1.80 mm (generally 0.90 to'1.20 mm). Thickness of the tabulae

is between 0.09 and 0.25 mm.

Septa vary in number from 6 lo 12, while septal length is between 0.20 and 0.50

mm; long and short may or may not alternate. Septa are usually straight or may

be slightly curved, ai'ising at a inward ci'easing of the walls (Fig. 17C). In

longitudinal section septa are observed as vertical laminate plates intersecting

normally with tabulae. (Figs 17C,D).
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4.2:7
Family: uncertain

Genus: Blinmanipora gen. nov.

Type species: Blinmanipora hawkerensrs sp. nov.

Early Cambrian (Late Botomian) Moorowie Formation

Flinders Ranges South Australia

Etymology: For the nearby town of Blinman

Diagnosis; Corallum large, massive cerioid, comprising irregularly polygonal,

sometimes meandroid corallites; corallites long, slender, generally parallel sided

to ii'regularly cylindrical; walls thin, sometimes straight, generally wavy to

crenate: tabulae regularly spaced, usually complete, may be undulating

horizontal to concaveup or concavedown and dissepiment-like; septal spines

are rare and poorly developed, generally absent; mural pores probably absent.

Blinmanipora hawkerensís sp. nov.

FIG 18; TABLE 1

Etymology: For the town of Hawker in the Central Flinders Ranges.

Diagnosis. Septa often absent or number up to 7, corallite diameter up to 4mm

Material

The material shows sections of probably one colony broken from a larger

specimen, attachecj to or growing arounci smail archaeocyaths. The

calcirnicrobe Girvanel/a encrusts part of the colony'. The corallum is truncated

abruptly, most corallites are white recrystallized spar, but many are ferroan

calcite of varying colours (see preservation). The walls and structures within the

corallites are generall'y white and are prominent against the dai'ker sections.
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Figure l8

B I i n m a n ipo ra h awke rensis

l8A. Holotype SAM P36387-1, (x 4.0) and

l88. Holotype SAM P36387-2, transverse section of part of
the colony illustrating the form of corallites, sometimes filled
with ferroan calcite, and incomplete walls (x 6.8).

l8C. Holotype SAM P36387. Longitudinal section of part of
ihe colon'y showing walls, the vai"iation in the insertion of
tabulae and septal plates. The lumen is often filled with ferroan
eaicite (x 3.5).

l8D. Enlarged longitudinal section of part of the colony (C),
illustrating light and dark elements visible in some walls lvhich
may be an indication of a midline, and clacite biocrystals which
extend into the ferroatr calcite filled lumen (x i2.0).

18E. Enlarged transverse section of the colony (B), illustrating
'poi'e-like' gaps in corallite walls which may represent
incomplete walls (x 12.5).
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Type specimens; Holotype: P36387, three thin sections SAM P36387-1: SAM

P36387-2: SAM P36387-3.

Description

The described material compi'ise fragments about 130 mm wide and 50 mm ta!!

broken from one larger colony. The colony is massive with no indication of

overall shape.

ln transverse section (Figs 184,8), corallites are seen as irregularly shaped 4-8

sided meandroid polygons varying between 0.9 and 4.0 mm in diameter, but

generally being between 1.0 and 2.5 mm. Walls are thin, varying between 0.12

and 0.25 mm thick, and are crenate to wavy, rarely straight. A medial line is

sometimes present between the walls of adjoining corallites. lncomplete walls

are common, creating a gap between either new walls growing across the

corallite approaching original walls, or where two new walls grow towards each

other and have not met (Fig.18E). The gap between walls appears'pore like'

when observed in transverse section.

ln longitudinal section (Figs 18C,D), individual corallites vary little in diameter

and length. They are long and slender, parallel sided or irregularly cylindrical.

Corallites are generally between 1.0 and 2.5 mm in width and in excess of 40

mm in length prior to the addition of new corallites (increase). Walls are rarely

straight with corallites tending to follow the shape of those adjoining.

Tabulae are numerous and most are regularly spaced, commonly complete,

undulating horizontal or concave upward; alternatively, tabulae may be globose

and dissepiment-like tabellae (Figs 18C,D). Tabellae may ai'ise from the wall,

extend inward and curve downwards to meet other tabellae. Tabulae are thin,

varying in thickness from 0.05 to 0.13 mm, while the distance between complete

tabulae varies between 0.28 and 1.40 mm.

ln transverse section, septa are generally absent, but rarely up to 7 may occur

in larger corallites (Figs 184,8). Where septa are present, they form short
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spines (up to 0.20 mm in length), being slightly curved or straight, arising from

inward creasing of the walls. Septa-like protuberances are usually inward

extensions of the corallite wall growing across the corallite during axial

intracalicular increase, which may be unequal bipartite (Figs 18A,B,E).

42



TABLE 1

M. chamberensisA. fromensis B. hawkerensis
(holotype) (holotype) (holotype)

Corallite (D) 2.95-3.75 6.5-14.0
(7-11)

0.94.0

Walls (T) 0.10-0.15 0.10-1.00 0.12-0.25

Septa (N) o-20 0-35 o-7

Septa (L) 0.01-0.02 <o.25 <0.20

Septa (T) 0.10-0.30 0.09-0.20 0.12-0.25

Tabulae (S) 0.35-2.1 Var 0.25-1.40

Tabulae (T) 0.002-0.01 <0.06 0.05-0.13

Pores (W)

Dimensions of the main skeletal characteristics of corals.

Figures in brackets are average or moÍe general meâsurements.

(D) Diameter (W) W¡dth (L) Length (N) Number
(S) Spacing between (T) Thickness

Measurements in mm,

?



TABLE 2

Corallite (D) 2.20-3.75 1.30-3.40 1.25-3.54

Walls (T) 0.10-0.30 0.11-0.20 0.09-0.15

Septa (N)

Septa (L)

Septa (T)

Tabulae (S)

Tabulae (T)

A. cancelli
(holotype)

5-18
(7-12)

0.15-1.35
(0.30-0.6s)

0.09-0.15
(0.12-0,15)

0.20-0.90
(0.65-0.7s)

0.09-0.16
(0.10-0.12)

A. lafustei
(holotype)

6-',14
(e-13)

0.20-1.35

0.15-0.25
(0.15)

0.30,2.46
(1.50)

0.06-0.12
(0.06-0.10)

A. lafusteí
(paratype)

6-14
(e-13)

0.14-1.1 5
(0.5s-1.1s)

0.10-o.21
(0.12-0.16)

0.57-1.65
(0.80-1.20)

0.06-0.14
(0.06-0.07)

Pores (W) 0.1 1-0.30 0.14-0.33 0.14-0.33

Dimensions of the main skeletal charac'teristics of corals.

Figures in brackets are average or more general measurements.

(D) Diameter W) W¡dth (L) Length (N) Number
(S) Spacing between (T) Thickness

Measurements in mm



TABLE 3

Corallite (D) 2.5-3,0 1.2-2.9 f .s-3.0

Walls (T) 0. 15-0.25 0.14-0.30 0j0-0.22

Septa (N)

Tabulae (T)

F. bowmani
(holotype)

0.20-8.0
(0.25-0.30)

<0.30
(0.1s)

F. bowmani
(34174)

6-12
(7-e)

0.20-0_50

0.12-O.21
(0.1e-0.20)

0.04-l.80
(0.e0-1.20)

0.9-0.25

F. uldanami
(holotype)

9-16
(11-14)

0.15-0.85
(0.45-0.75)

0.10-o.22
(0.15-0.20)

a.ß-o.25

0.05-0" 14
(0.0e-0.11)

6-18
(12-18)

Septa (L) 0,60-0.80

Septa (T) 0.20-0.25

Tabulae (S)

Pores (W) 0.13-0.40 0.13-0.18 0.12-0.15

Dimensions of the main skeletal characteristics of corals.

Figures in brackets are average or more general measurements.

(D) Diameter (W) W¡dth (L) Length (N) Number
(S) Spacing between (T) Thickness

Measurements in mm



4.3 Microstructure
Complete recrystallization of the colonies has occurred, and some of the

skeletal structures observed may be artefacts of diagenesis. However, an

indication of the primary mici'ost¡'ucture of the skeleton can be seen in some

patchy domains within most of the colonies of M. chamberensrs, A. fromensis,

A. cancelli, A. lafustei and F. uldanami. The microstructure of these taxa are

generally similar, although A. fromensis has additional fibrous elements not

observed in the other three genera.

The edges of the possible primary biocrystal platelets are distinguished by

crenate, to wavy lines of minute inclusions within the much coarser crystals

comprising the recrystallized fabric (F¡g. i 0). Narrow, iath-like zones, showing

irregular efinction under polarized light occur at some places approximately

transverse to skeletal elements where secondary carbonate crystals penetrate

the coral skeleton. This suggests a residual overprint of the original mineralogy

disturbing the optical continuity of the subsequent recrystallization. These relic,

rather robust fibrous elements, which evidently formed the sclerenchyma

(calcareous skeleton of corallites), are seen as either lineations across the walls

of corallites (in transverse section) and/or divergent bundles (in longitudinal

section) giving walls a 'feather like' appearance. The fibi'ous elements can be

seen at low magnifications (X 20) and appear to be similar in M. chamberensrs,

A. fromensrs, A. cancelli, A. lafustei and F. uldanami. A similar microstructure

has been documented in F. bowmani. No primary biocrystal platelets have been

observed in B. hawkerens,'s.

Elements of A. fromensis also show fan-shaped arrays of possible 'biofibres'

which protrude into the lumen of corallites. ln longitudinal section, upturned

spines along some corallite walls (Figs 6C,E), and spines situated on the upper

surface of some tabulae (Fig. 6D) are represented by bundled fibres, giving

both the wall and tabulae a bumpy appearance. In transverse section, most

septa appear to terminate in fan-shaped arrays of fibres, or similar arrays arise

from the walls (Fig. 7D). The bundled fibres resemble ti'abeculae, though fan-
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shaped tufts in carbonates can result from diagenesis (Oekentorp 1989). By

comparison with the other taxa examined, a primary origin for the present

structures is pi'eferred.
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4.4 Dimorphism and Dimetrism

Dimorphism and dimetrism commonly occur in tabulate corals. The former may

be shown as ditferences in corallite size, shape and internal structures, while

dimetrism includes variation (of measui'ements) in the thickness and length of

septa, thickness of walls and tabulae, the distance between tabulae and the

presenUabsence of squamlae (Oliver 1968; 1975; Scrutton 1989). Dimetrism in

favositid corals appears to be more common in colonies which are rapidly

expanding with diverging corallites, than within more parallel, converging

colonies (Scrutton & Powell 1981;Scrutton 1989).

lntracolonial and intraspecific differences in morphology are probably

environmentally controlled and may reflect a particular micro-environment. The

factors which contribute to these variations, include the adjacent sediment and

the position of corallites in the colonv. lntracolonial variation in corallites may

also result from;

L cyclomorphic variation, with the tissue density of corals reflected as seasonal

growth banding. ln less dense zones septal structures may be weakly

developed or absent, tabulae more widely spaced, and walls thinner than the

darker, denser zones;

2. astogenetic variation, where the internal structures and colony form may

vary with the growth of corallites at the early stages, older age or lateral spread

of the colony;

3. topomorphic variation, resulting from a disturbance to the colony, like

sediment smothering or re-orientation. The corallites subsequently produced, or

those at the peripheral part of the colony, may be diffe¡-ent to those with more

vertical growth, or near the central part of the colony (Oliver 1968: Scrutton

1 e88).
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tnterspecific variation is more likely controlled genetically, with some structures

in tabulate corals being constrained, while others are highly variable. However,

the internal structures of some tabuiate coi'als are so simple, that diffe¡'entiating

species is difficult (Scrutton 1988).

The two different morphological forms observed mainly in M. chamberensis,

probably reflect the mode of increase, which appears to be dimorphic, being

related to the position of individual corallites within the corallum. Corallites

within the fasciculate area, which generally occurs at the periphery of the

colony, appear to have resulted from lateral increase. Offsets branch away from

the main colony producing isolated corallites which rarely touch and are

therefore unaffected by crowding (Figs I -',',). Such coi'ailites are thus round to

slightly oval in transverse section. Peripheral intracalicular increase is most

common in the massive, cerioid parts, and where a solitary corallite has

become established (Figs I A 9). Usually one, two or more offsets are produced

at the same time, with new walls gi'owing from sites of septal insertion across

the calice. Both methods of increase commonly occur at different stages of

growth within the same corallite, and are probably related to the amount of

space surrounding it. This kind of dimorphism corresponds to the astogenic

variation of Oliver (1968) and Scrutton (1988).

The variable distance between tabulae and the presence or absence of septa

do not appear to be linked to any particular stage of growth, a comparable

characteristic noted to occu¡'in some tabulates (Hill, 198i)'

ln M. chamberensr,s, septa are primarily represented in the protocorallite and

immature corallites, while at other stages of growth they may or may not be

present.
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CHAPTER 5
STATISTICAL ANALYSIS
OF THE MOOROWIE CORALS

5.1 Previous studies
Measurement of the cross-section corallites has been suggested as a possible

taxonomic character to distinguish tabulate coral species. This character is

believed to be iess variable and least affected by diagenesis than the number

and thickness of septa, and thickness of tabulae and walls (Sutton 1966; Stel

1978; Scrutton & Powell 1981; Scrutton 1981; Lee & Noble 1988). The average

diameterof 'adult'corallites has been used by Sutton (1966) and Lee & Noble

(1988), while Stel (1978), Scrutton & Powell (1981) and Scrutton (1981),

advocate using a electronic or mechanical planimeter to measure the mean

area of corallites to achieve more accurate results.

The above studies involved measurements of 'mature'corallites from serial thin

sections taken at various levels in coral colonies. The corallite diameters of

Fayosifes muitipora and Palaeafavosites ftÇosus, together with other

morphological characters, were examined by Scrutton & Powell (1981) to

determine the periodic development of dimetrism. Lee & Noble (1988) studied

two specimens of both Favosifes forbesi and Paleofavosites sp. taken from

different stratigraphic levels from the West Point Formation of Quebec.

5.2 Material and method

The average corallite diameter method was used in this study to determine if

this morphological character could be useful in statistic¿lly distinguishing be-

tween genera and/oi'species of the Moo¡'orvie corals. Seriai thin seciions of the

various colonies were not available due to the scarcity of some of the material.

Seven available transverse thin sections were used, one from each of the

following corals; M. chamberensrs (holotype); A. cancel/i (holotype); ,q. hfustei
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(holotype and paratype); F. bowmani (holotype); F. bowmani (34174); F

uldanami(holotype).

A. fromensrs, F. uldanami(paratype), and B. hawkerensrs were not used in the

study, because:

1. corallites in the former are much larger in diameter (up to 14 mm), this being

a distinguishing character:

2. the thin section oÍ F. uldanami (paratype), is small, has only six corallites

which fit the specifications (below), and is thus unsuitable;

3. B. hawkerensrs shows little similarity in cross section to the seven above

samples and may not be a coral.

ln three of the thin sections, twenty five, was the lowest number of corallites

available for measuring, therefore, each sample or set of measurements

contains the measured diameters al 25 individual corallites from the seven

different coralla. The largest and least elongate or meandroid corallites were

measured from each thin section. The largest corallites were chosen because

they were most likely to be at the 'mature' stage, while elongated or meandroid

corallites could be oblique in section, thus affecting results.

Maximum and minimum diameters were taken from the exterior wall of each

corallite (midline), or where this was not visible, at a medial position relative to

ihe thickness of the measured corallite's wall. The ma<imum diameter was

taken at the widest point, and where the minimum diameter varied, the average

between and widest and narrowest minimum diameter was used.

Measurements were taken using a microscope and callipers to 111000 mm then

rounded to two decimal places. The twenty five mean diameters of each thin

section were placed into 0.25 mm classes and used for the resulting histograms

(Figs 194-G).
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Figure 19C. Histogram of Adelaideipora cancelli (holotype),
showing frequencies of mean corallite diameter taken aL0.25
mm intervals. Average mean diameter is 2.58 mm, with a
variance of 0.1704 (Table 4).
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Two statistical tests were used to ascertain similarities or differences between

the seven measured taxa:

Test 1. Cumulative distribution function (cdO graphs, combined with the

Kolmogorov-smirnov 'two-sample'test, which can be based on a small number

of samples (Cheeney i983), were used to cornpare the seven ciasses.

Cumulative proportions, based on the freqr.rency distribution of mean corallite

diameter (from the histograms) were plotted, with two classes appearing on

each graph (Figs 20 A-M). The test statistic for the Kolmogorov-Smirnov 'two-

sample' test, is maximum discrepancy (D), measured on the vei'tical scale

between the two cdfs-

At a=0.0S (a is the size of the critical region, a regression constant), the critical

value of D is 0.34.

D=0.34 is derived from 1.22N' (one-tail application at a=0.05), where

N'= square root of [(N1+N2)/1N,x N2)1,

N,, being the number of measurements in the fìrst group and

N, being the number of measurements in the second group'

The critical region contains all the values of D=0.34 and above.

When comparing the maximum discrepancy between two curves, if the value of

'D' falls into the critical region the hypothesis that 'the sets of measurements

are from identical populations and discrepancies are due to fluctuations in

sampling'is re¡ected.

Test 2. Computer analysis using ANOVA (one-way Analysis of Variance),

indicated that there were statistically significant differences between the seven

sets of measurements of data, [F(6,168¡=21 .77' p<'0C1], where

F (is the measLlre of differences between the sets of measllrements);

6 (the number of sets -1);

168 (sum of the seven sets -1 {175-7});

21.77 (value of F);

p<.001 (probability of getting F value <1:1000)'
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TABLE 4

H- chanhrensis (h)

A. cancell¡ (h)

A. lafustet (h)

A. lafustet (P)

F. bunanl (h)

F. bownanl (31174)

N

25

25

25

25

25

25

25

r.D. (m)

2.08 - 2.91

2.16 - 3.73

1.29 - 2.91

1.63 - 3.01

1.61 - 2.15

1.36 - 2.57

1.48 - 2.68

l. (nn)

2.57

2-58

2.21

2.20

1.87

1 .89

2.06

s2

0.05/10

0.1704

o.2027

0.1401

0.0510

0.0823

o.0915F. uldananí (h)

l{. =

ll.D. =

A.

s2.

(m)

ilrmber of adult corallites sampled.

Range of mean dlameters. llean of maximum diamter and

minimum dianpter (mtn. dian. taken nonnal to first

measurement).

Average llean Dlameter'

Variance.

mi I I lmeters.



TABLE 5

Table of significant differences.

(Tukey HSD approach)

The asterisk indicates a statistically significant difþrence at a=0-05-

The numbers rehr to the p value, ie. the probability that the finding

could have been obtained purely by chance when there is no signi-
ficant difÞrence in fact Present.

Therefore a lo¡r figure (the lowest is 0), suggests a real difÞrence
and a large figure (maximum of 1), suggests no difference, ie. there
is just clrance involved.

ft(h) tb(õ) Fa(h) Aúh) At(h) At(p) Itdht
it(h) t.0 o.47 o.m' 0.01' 0.01. 0.00-

ft(t) 0.80 0.(xl* 0.02t 0.0r 0.00û

Fa(h) 0.00'
I0.72 lO.eS 0.oo'

A4t 0.00* 0.tr 0.6ô

At(h) ir.o 0.01'

AI(P) 0.ol'

tu4h)



The value of F = 21.77, indicates a real ditference between the sets of

measurements which are not due to chance.

ln order to find which measurement sets were different from each other, the

Tukey's Honestly Significant Difference (HSD) approach for significant

dif¡erences (for p<0.05, the probabitity of chance oi' not at i:2A (Tabachnick &

Fidell 1996), produced the results which appear on Table 5.

ln the above test a low figure (lowest is 0) indicates a real difference, while a

large figure (maximum 1,0) suggest no difference, that is, only chance involved.

5.3 Results and Discussion

(Figs l9A-G; 204-M) & Table 5

The two statistical tests produced similar results from the seven sets of

measurements. An obvious anci exceiient correlation exists between the holo-

type and paratype of A. lafusfei, '+,,here D=0.04 (Fig 204) and there is a p value

of 1.0 (Table 5). These two specimens differ significantly from A. cancelli, the p

value being 0.00 (Table 5), and D=0.52 (Fig. 208). From the statistical analysis,

two species of Adelaideipora can be differentiated, with the added confirmation

of a very close correlation between the holotype and oaratype ol A. lafustei.

A. lafustei also differs significantly from M. chamberensrs and F. bowmani(Figs

20C,D; Table 5), although the results indicate little difference between A.

lafustei and F. uldanami (Fig. 2AE; Table 5). A. cancelli, however, dif,rers

significantly from F. uldanami (Fig. 2OF , Table 5), and F. bowmani (Figs 20F,G;

Table 5), although little difference is observed between A. cancelli and M.

chamberensrs (Fig. 20H; Table 5).

The results also indicate no significant difference between F. bowmani

(holotype), and specimen P34174 (Fig. 201; Table 5).
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Figure 20C.Cumulative distribution tunction (cdf) graph of Adet-
aideipora lafustei (holotype) and Mootowipora chambe¡ensrs (holo-
type). Cumulative proportions are based on the ftequency distribution
of mean corallite diameter, from histograms 19A & D. The maximum
discrepancy (D) =0.48, is outside the critical value of D=0.34 (see
method ), while the Tukey HSD value of p=9.91 (Table 5), indicates
that the two samples are significantly different.
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Figure 2OD. Cumulative distribution function (cdfl graph of
Adelaideipora lafustei (holotype) and Flinde¡sipo¡a bowmani
(holotype). Cumulative proportions are based on the frequency
distribution of mean corallite diameter, from histograms l9A & E.

The maximum discrepancy (D) =0.36, is outside the critical value of
D=0.34 (see method), while the Tukey HSD value of p=Q.Q1 (Table
5), indicates that the two samples are significantly different.
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Figure zOE. Cumulative distribution function (cdf) graph oÍ Adel-
aideipora lafustei (holotype) and Flindersipora uldanami (holotype).
Cumulative proportions are based on the ftequency distribution of
mean corallite diameter, ftom histograms 19A & G. The maximum
discrepancy (D) =0.2O, is below the critical value of D=0.34 (see
method), and the Tukey HSD value of p=Q.72 (Table 5), indicates
that the two samples could come from the one taxon based on mean
corallite diameter.
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Figure 201. Cumulative distribution function (cdfl graph oÍ Flinde¡s-
ipora bowmani (holotype and P34'174). Cumulative proportions are
based on the frequency distribution of mean corallite diemeter, from
histograms 19E & F. The maximum discrepancl (D)=a.12, well below
the critical value of D=0.34 (see method), and a Tukey HSD value of
p=1.0 (Table 5), indicate that the two samples come from the one
taxon.
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Figure 2OJ. Gumulative distribution function (cdf) graph of Ffinders-
ipon bowmani (holotype) and Flindersipora uldanami (holotype).
Cumulative proportions are based on the frequency distribution of
mean corallite diameter, from histograms 19E & G. The maximum
discrepancy (D) =O.24, is below the critical value of D=0.34 (see
method ), and the Tukey HSD value of p-0.47 (Table 5), indicate that
the two samples could come from the one taxon based on mean
corallite diameter.
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Figure 20K. Cumulative distribution function (cdD graph ol Ftinders-
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mean corallite diameter, from histograms 19F & G. The maximum
discrepancy (D) =O.24, is below the critical value of D=0.34 (see
method), and the Tukey HSD value of p=Q.60 (Table 5), indicate that
the two samples could come from the one taxon based on mean
corallite diameter.
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discrepanc! (D)=a.60, is well outside the critical value of D=0.34 (see
method), while the Tukey HSD value of p=9.90 (Table 5), indicates
that the two samples are significantly different.
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Figure 20M. Cumulative distribution function (cdÐ graph ol Flinder-
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method), while the Tukey HSD value of p=Q.QO (Table 5), indicates
that the two samples are significantly different.



A similar, but less significant result, is observed between both specimens of F.

bowmaniand F. uldanami(Figs 20J,K; Table 5), while both these classes differ

significantly fi-om M. chambê,€r?s,.e (Figs 20L, M; Table 5).

From the results it appears that statistical analysis of mean corallite diameter

may have a valid use in discriminating between some genera and/or species,

but not others. The results tend to support the systematic examination of the

Moorowie corals in that there is a significant difference between Moorowipora

and the two species of Flindersipora, as well A. lafustei. The similarity between

M. chamberensrs and A. cancelli as well as between A. lafustei and F.

uldanami, is predominantly in the diameter of the corallites (see discussion and

Tables 1 - 4), with other morohological characteristics being different. The

statistical analysis of mean corallite diameter would therefore probably be of

little value in differentiating these taxa.

The two Flindersipora spp., while observed to be morphologically different, also

have characteristics in common, (see discussion and Tables 3 & 4). Dimetrism

and dimoi'phism through the adaptation to a wide range of envii-onmentai

conditions, may affect the size of corallites. Lee & Noble (1988) found that

corallite size is too variable to be used, and species cannot be discriminated by

mean corallite diameter. However, this method may be helpful in the final

designation of genera or sPecies.
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CHAPTER 6
DISCUSSION

THE MOOROWIE CORALS

6.1 General affinities
Until recently, it was considered that the genus Lichenaria which has a time

range from the basal to the early/Late Ordovician was the most ancient tabulate

coral. lts colonial form is cerioid and simple in morphology, it has tabulae, is

aseptate, and may have rare mural pores (Bassler 1950: Flower 1961: Mcleod

1979; Scrutton 1984; Laub 1984). M. chamberensrs, A. fromensrs, the genera

Adetaideipora and Flindersipora have skeletal characteristics which

demonstrate an affinity to the tabulates (including septa, which are not present

in lichenarids). These are (1) the cerioid and/orfasciculate form of the colony;

(2) walls separated by a medial line reflecting individual corallites (Scrutton

1987); (3) the spine-like to wedge shaped septa occasionally situated in

iongitudinal rows (Hill 1981); (4) individual corallites which spread above the

pockets of sediment within the colony, this habit being usual for cnidarians

following influxes of sediment (Scrutton 1979); (5) lateral increase common,

with peripheral intracalicular increase being described in some Favositidae by

Hiil (1ee1).

The observed relic microstructure in M. chamberensis and A. fromensis

appears to be similar to the pinnate (clinogonal) fibrous structure of some

iabuiates (H¡ll, 1981; p.F452), including iichenarids, although the extent of the

modifying influence of diagenesis is uncertain.

F. bowmani is regarded as being a'doubtful coral'by Scrutton (1992; 1997),

and not recognized as a tabulate, a view supported by Zhuravlev ef a/. (1993),

and Sorauf & Savarese (1995). This is mainly due to the apparent lack of a mid-

line in the wall; the method of increase (longitudinal fìssion, more commonly

associated with Ordovician tetradiids which have been removed from the

\
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Cnidaria); and the arrangement of septa, being unlike most tabulate corals

(Scrutton 1992;1997). Tabulae are also regarded as'sparse'(Scrutton 1997).

While F. bowmani may not be i'egarded as a tabulate, P341'74 (and othei'

specimens) do have some morphological characteristics (not observed in the

thin sections of holotype) which appear to be more'coral-like'. P34174 shows

possible evidence of peripheral increase near the edges of the colony, and

extension of corallites above the final tabulae (Fig. 16D). Sections of the colony

also appear to have continued growing after sediment fouling. The mid-line in

the wall, although not as obvious as seen in M. chamôerensrs, A. fromensis and

Adelaideipora, is sometimes faintly seen between some of the corallites, while

tabulae are not always sparse; those in P34174 are relatively evenly spaced

and often close together.

M. chamberensrs and A. fromensis have been accepted as 'undisputed corals',

but together with other Early and Middle Cambrian corals are not regarded as

tabulates. They are also considered by Scrutton (1997), not to be ancestral to

the Ordovician tabulate corals, and to have a mode of increase more

characteristic of rugose corals.

The Moorowie corals with their tabulate-like characteristics may be either early

representatives of the tabulates, or belong to a new group of corals with

convergent evolution contributing to their similarities. These alternatives have

been suggested by Lafuste et al. (1991) for F bowmani. Scrutton (1992; 1997),

regards the latter possibility as most likely, with skeletal cnidarians being

derived from closely related non-skeletonized anemones, which were possibly

present in both during ihe Early Cambrian and Ordovician. The skeletal

descendants of the Early Cambrian corals are suggested to have become

extinct by the end of the Cambrian. However, it is possible that the corals did

not become totally extinct, and due to either the mode of preservation and/or

the incomplete fossil record, the corals are not recognized, but were ancestral

to the Ordovician tabulate corals. Without further evidence of corals in the fossil

record, particularly those represented in the Early and Middle Cambrian being
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recognized from the Late Cambrian, Scrutton's theory above, appears to be a

possible explanation.

Two orders are proposed by Scrutton (1997), for the Cambrian coral clades.

Tabulaconida, which includes the 'true corals' of the Early Cambrian, and

Cothoniida, the tvliddle Cambi'ian corais, .'vhiie the doubtful or unassigned coral-

like organisms are regarded as coralomorphs. The term Coralomorpha has

been used for the group of coral-like Cambrian organisms of doubtful coral

affÌnities (Scrutton 1 997).
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6.2 Comparisons with other corals
A. fromensis is unlike any of the previously described Cambrian corals

suggested by Scrutton (1979) to have tabulate affìnities, but does have skeletal

characteristics in ctmmon with sonie of ihe Late Siiui ian io Laie Pe¡-mian

micheliniids.

The diagnostic characteristics for the genus Michelinia De Koninck 1841,

include thin to moderately thick walls with a medial suture, short septal

irabeculae, tabulae incomplete and globose sometimes with septal spinules on

the upper surface, and large mural pores (Hill. 1981). The walls and tabulae are

similar to those seen in A. fromensis, but, this taxon lacks mural pores.

Michelinia expansa White, 1883 (=fabellaephyllum peculiare Stumm, 1948)

from the Early Carboniferous of Arizona, is similar to A. fromensis with respect

to the forr¡ of the colony, the size and shape of corallites and the arrangement

of tabellae. Corallites are Lro to 15 mm in diameter in the former and 14 mm in

the latter. Corallites are also of a similar shape, being generally 4, 5, or 6 sided,

but differ by the lack of septa in M. expansa. A noticeable similarity between

the iwo is the placement, size and shape of the tabeiiae. They are incomplete

and globose and are arranged in similar manner in both taxa, arising from either

the walls or adjacent tabellae. The tabellae in A. fromensis, appear to be less

globose, spaced slightly further apart, and have a more irregular and wavy
.-, ,,4.-.-+^âÐur rau('Ð.

Although A. fromensrs resembles some of the micheliniids, because of the long

time separation between them (about 120 million years) it is highly unlikely that

ihey are ¡-elated and it is i'-,roi'e pi'obable iheir skeietai simiia¡'ities i-esuit f¡'om

convergent evolution. A. fromensrs may belong in the Family Micheliniidae. but

its inclusion would imply a time range well outside the confidence limits based

on Carboniferous occurrences.
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When compared with other Cambrian corals suggested to have tabulate

affinities (Scrutton 1979), Moorowipora chamberensis is closest in its

morphology lo Tabulaconus kardae Handfield '1909, f¡'om the Early Cambrian

(Botomian) of east central Alaska and British Columbia. ln vertical section, M.

chamberensrs and T. kordae ditfer in shape of the corallites, which are more

tubular in appearance in the former. Height and width vary, with mature

co¡'allites being up to 19.5 mm long and 5.C mm wide in lú. chamberens'rs, vuhile

T. kordae corallites are up to 65 mm long and 27 mm in width in the colonial

form (Debrenne et al. 1987). The tabulae also differ, being undulating horizontal

to concave upward in M. chamôerensrs and either horizontal or slightly concave

downward in T. kordae. lncomplete tabulae are more dissepiment like and walls

are generally thicker in the latter (Handfield 1969; Debrenne et al. 1987). The

microstructure of both corals is significantly different in transverse section, being

geniculate fibres in M. chamberensis, and concentric light and dark wavy

laminations in T. kardae (Debrenne et al. 1987). Tabulae also dif,er, being

formed from bundles of fibres efending upward and downward from a medial

line in the former, unlike the two layered light and dark zones of L kordae

(Debrenne et al. 1987). However, platelets (longitudinal section) in the walls of

M. chamberensis are of simiiar shape, but genei'ally larger. M. chamberensis

may belong in the family Tabulaconidae, a view supported by Sorauf and

Savarese (1995) and Scrutton (1997).

M. chamberensrs is distinguished from Lipopora /rssa and L. daseia Jell & Jell

1976, from the early Middle Cambrian of western New South Wales, by the

presence of tabulae and the shape and arrangement of septa, although ihe

corallites of L. /issa are of similar length and width. Cambrotrypa montanensis

Fritz & Howell 1955, from the Middle Cambrian of British Colombia, is

distinguished from M. chamberensis by the more slender corallites and the

absence of tabulae and septa. According to Zhuravlev et al. (i993; p. 309),

most of the Early Cambrian coralomorphs 'described by Korde (1963:

1984,a,b;1986;1990), are partly synonyms of already described khasaktiids or

hydroconozoans and partly nomina dubia or nulla'.
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The corals within the genus Adelaideipora, bare some resemblance to the

genus Nyctopora Nicholson, 1879, species of which have time ranges from the

?early Ordovician to the early Silurian, with different taxa collected from most

continents, including central eastern Australia (H¡ll 1981).

The most notable similarity between the two genera is the placement and shape

of the tabulae, which are in almost horizontal rows, and horizontal to slightly

curved downward in shape. ln Nyctopora, tabulae also tend to vary between

closely crowded Barts and sections where they are widely spaced, interpreted

as marking immature and mature sections of the colony (Bassler 1950). This is

observed to a minor degree in A. cancelli, with little evidence of this in A.

lafusteí. The number of septa in Nyctapora tends to occur in a primary series of

8, with a secondary series (Bassler 1950), while in A. cancellithey number up to

18, and A. Iafustei, up to 14, generally being randomly dispersed.

B. hawkercnsrs some has more morphological characteristics in common with

lichenarid corals, than the other described species from Moorowie. Septa are

absent in corals assigned to the genus Lichenaria, and are usually absent, or

present commonly as new walls in B. hawkerensrs. Placement and shape of

tabulae in the two genera differ, being sparse, horizontal and complete in

Lichenaria, while in B. hawkerensrs they are common, and variable in distance

and shape.

Lichenaria was originally assigned to the order CHAETETIDA (Okulitch 1936),

with the majority of this group now recognized as being closer in morphology to

sponges, than corals. Lichenana, however, still seems to be recognized as an

early Ordivician coral (Scrr,rtton 1997). Due to the similarities which exist

(although there are differences) between the two above genera, B. hawker-

ensis is precariously regarded as a coral, but with further investigation may be

i'egai'ded as a coralomoi'Ph.

I
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6.3 The Moorowie Corals

(Figs. 21 A, B & G; Tables l4)
When comparing the seven Early Cambrian corals from the Moorowie location,

ii is apparent that the genera Flindersipora ano Adelaicieipora have some

skeletal characteristics in common, while the other three genera Arrowipora,

Moorowipora and Blinmanipora, are different from each other and as well as

from Flindersipora and Adelaideipora. Placement of the seven taxa in two

dimensional characte¡'fields (Figs 2'1A,B,C), show that, althotigh separated by

variations in their measured characters, F. bowmani, F. uldanami, A. cancelli

and A. lafustei, tend to cluster away from Arrowipora, Moorowipora and

Blinmanipora.

A. fromensrs is the coral most unlike the other six taxa, with its large corallites

and dissepiment-like tabulae. A. fromensis is distinguished from the genus

Flindersipora 5y the size and genei'al form of the colony, the position and shape

of tabulae and septa, as well as the mode of increase.

The main differences between A. fromensrs and M. chamberensis are in the

size and form of the colonies, the size and shape of the corallites, and the

arrangement and shape of tabulae. Although both ai'e cei'ioid in coloniai foi'm,

the former is much larger and usually has parallel corallites, while those in M.

chamberensis are generally divergent. Corallites are prismatic to cylindrical and

up to 14 mm in diameter and 47.5 mm in length in A. fromensrs, but much

smalier (up io 5 min in diametei-and i9.5 mr¡ in iength), and iubeioid io

irregularly cylindrical in M. chamberensrs. The presence or absence of seotal

spines is common to both corals; when present they are about the same size

and shape.

Tabulae differ greatly, being incomplete, globose and dissepiment-like (tabellae)

in A. fromensis and complete, undulating horizontal to concave up-ward in M.

chamberensis. Although the mic¡'ostructui-e has not been studied at high

magnification there are some similarities between the above corals at low
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Figure 21 A. Cartoon sketch illustrating the placement of the seven
Moorowie Corals in a two dimensional character field, based on
maximum septel length and maximum number of septal.

Mc Moorowipora chamberensis
Af Anowipora fromensis
Bh Blinmanipora hawkerensis
Al Adelaideipora latustei
Ac Adelaideipora cancelli
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Figure 21 B. Cartoon sketch illustrating the placement of the seven
Moorowie Corals in a two dimensional character field, based on mean
corallite diameter and maximum septal length.

Mc Moorowipora chamberensis
Af Anowipora fromensis
Bh Blinmanipora hawkerensis
Al Adelaideipora latustei
Ac Adelaideipora cancelli
Fb Flindersipora bor,trmani
Fu Flindersipora uldanami
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Figure 21 C. Cartoon sketch illustrating the placement of the seven
Moorowie Corals ¡n a two dimensional character field, based on mean
corallite diameter and minimum number of septa.

Mc Moorowipora chamberensis
Af Anoruipora fromensis
Bh Blinmanipora hawkerensis
Al Adelaideipora lafustei
Ac Adelaideipora cancelli
Fb Flindersipora bowmani
Fu Flindersipora uldanami
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magnification. These include the parallel fibrous elements of the sclerenchyma

evident in transverse section, and the parallel to diverging fibrous elements in

iongitudinal section. Fan-like arrays of fibres are not present in !ú.

chamberensis.

A medial line within walls of adjacent corallite occurs in all the corals. Medial

lines in the walls are common in tabulate corals, and represent the external

epitheca (Hill, 1981).

M. chamberensrs also differs from the genus Flíndersipora Lafuste 1991,

although there are some similarities in microstructure. M. chamberensrs is

cerioid to fasciculate and has wedge to spine shaped septa up to 0.2 mm in

length arising from continuous walls 0.1 to 0.15 mm thick. ln contrast F. bow-

mani is meandroid to cerioid, and has 6 - 18 strongly developed, straight to

slightly curved septa up to 0.8 mm in length, with the edges of septa bearing

very short blunt spines. !v'alls form very shoÉ segments between the septa and

are 0.15 to 0.25 mm in thickness (Lafuste et al., 1991). ln F. bowmanitabulae

are mostly concave downward, and closely spaced (0.2 to 0.3 mm), but are

undulating horizontal to concave and more regularly spaced in M.

chamberensis. The mode of inci'ease is by iongitudinal fission in the forme¡'

while both lateral and intracalicular oeripheral increase occurs in the latter.

ln transverse section, the microstructure of both corals is similar, with walls

consisting of geniculate fibres which diverge and converge in two directions. ln

veftical section, plaielets i¡ lil. chamberensrs are iess eiongate and bi'oader

when compared with F. bowmanillafuste et al. 1991).

The holotype of F. bowmani was examined in order to determine the differ-

ences which may exist between it and the new species, F. uldanamr, as well as

additionai specimens of F. bav¡mani(P34174), and the genus Adelaideipoia. in

F. bowmani (holotype), tabulae are mostly complete and concave. there are 6-
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18 strongly developed slightly curved septa, the edges of which bear very short

blunt spines; the walls are very short segments between the septa. lncrease is

by longitudinal fission (Lafuste et. al199i).

The genera Flindersipora and Adelaideipora are very similar in transverse

section, the form of the coralla being cerioid to fasciculate, in both. Corallites

a¡'e rounded polygonal to meandroid, and similar in size except for A. cancelli

where they are larger (Table 2.). Corallite walls in F. uldanami are thinner than

those of F. bowmani. The number of septa falls within the approximate

variability of F. bowmani, while septal length varies little between the species.

Septal width is more variable in F. uidanami, being generally narrower in F.

bowmani.

Variations in the thickness of walls, spacing and thickness of tabulae as well as

the thickness and length of septa, in the Flindersipora corals might, on their

own, be seen as intercolonial morphological traits, due to environmental factors

and not of taxonomic importance- However, the most important differences

between F. uldanami and F. bowmani, are the shape of the corallites in

longitudinal section, as well as the shape and pattern of insertion of the

tabulae. Corallites in F. bawmani are long, slender and sub-parailel. Tabulae

very irregularly spaced 0.20 to 8.0 mm in the holotype, (with only some being

0.2 to 0.3 mm apart); they are generally complete, mostly concave upward,

sometimes regular but scarcely horizontal (Lafuste et al. 1991). Corallites in F.

uldanamiare long irregulariy cylindrical to tuberoid and more bulbous in shape

than F. bowmani (holotype). The distance between tabulae is commonly

variable but not as great as in F. bowmani. Tabulae are crenate to wavy

horizontal, concave down, or dissepiment-like. They are rarely straight, the

corallites have a 'disoi'dered'appearance when compai'ed to F. bawmani

There are morphological similarities between the corals, but the above

variations are considered to indicate that F. bowmani and F. uldanami are

different species.
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The specimen of F. bowmani (P34174), described above, ditfers slightly from

the holotype described by Lafuste (1991). These differences include variation in

wall thickness, distance between tabulae and septal iength. Corallite diamete¡'

shows little variation in P34174, being 1.27 lo 2.91 mm, while in the holotype

the diameter varies from 2.5 to 3.00 mm. The thickness of the walls is

fractionally more variable in P34174, being between 0.14 and 0.30 mm, while

wall thickness in the holotype varies from 0.15 to 0.25 mm.

The distance between tabulae is greater and more variable in the holotype,

being from 0.20 mm and up to 7-8 mm; while the distance between tabulae in

specimen P34174 varies between 0.04 and 1.80 mm. However, tabulae are

thinner in the latter specimen (0.09 to 0.25 mm) than the holotype, which varies

between 0.15 and 0.30 mm. Septa tend to be longer in the holotype, being

between 0.60 and 0.80 mm, while they are 0.20 to 0.50 mm in length in

P34174. The septal number is 6-16 in the holotype and 6-12 in P34174, the

latter falling into the range described for the holotyoe.

The variation observed in the distance between tabulae, thickness of walls and

length of septa in the holotype and other specimens of F. bowmani, may be due

to dimetrism, with environmental conditions af,ecting growth. Smaller corallite

diameter, closer spacing of tabulae, thicker walls and smaller septa have been

linked together as intemal structures reflecting dimetrism in tabulate corals

(Scrutton & Powell 1981; Scrutton 1988).

Corallites in A. cancelli and A. lafustei, are not as long and slender as in F.

bowmani, they tend to be more uneven in width and often diverge outward.

Tabulae in both Adelaideipora species are straight, rarely wavy, often

fractionally curve downward, but in all specimens examined are not concave

upward to the degree evident in F. bowmani. The spacing of tabulae in both the

holotype and paratype of A. cancelli is even and regular with little variation in

the distance between them, although varying more in A. lafustei.
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A. cancettiis distinguished from A. lafustei by the length and number of septa,

being 5-18 (generally 7-12) in the former and 6-14 (generally 9-13) in both the

holotype and pai'atype of the latter. Septal length is usually shoi-ter in A. canceíli

being generally 0.30-0.65 mm (sometimes up to 1.35 mm), while the septa in

A. tafuster, measure upto 1.35 mm, thewidth generally being aboutthe same.

The tabulae are relatively evenly spaced in both species, being 0.80 to 1.50 mm

in A. lafustei, and 0.20 to 0.90 mm in A. cancelli, the latter being more

consistently even, with tabulae usually 0.65 to 0.75 mm apart. The shape of the

tabulae varies, however, tabulae in A. Iafusfei they are usually slightly curved

downward or sometimes straight, while those in A. cancelli are usually straight

or .vvavy, rarely curved downward. Walls and tabulae are slightly thinner in A.

tafustei, tabulae being generally 0.06 to 0.10 mm thick, and usually 0.10 to 0.12

mm thick in A. cancelli. The slight morphological variations which exist between

these two taxa are probably not a result of environmental conditions, but are

more likely a reflection of genetic variation.

The two above species do not resemble A. fromensis with the only

characteristics in common with M. chamberensrs, being the similar shape and

size of corallites.

When compared with the other Moorowie corals, B. hawkerensrs has some

general morphological characteristics in common with A. fromensrs. ln trans-

veíse section, corallites in the former are more ii-regularly shaped, some-times

meandroid, often having very wavy and crenulate walls. and are thinner (0.12 to

0.2S mm); while walls in A. fromensrs tend to be straighter and thicker (0.'1 to

1.00 mm). The diameter of corallites is much smaller in B. hawkerensis, being

between 0.90 and 4.00 mm, while they vary beftveen 6.5 and 14 mm in Á.

fromensis. Septa mav be absent in both taxa. However when present, they

number up to seven in B. hawkerensrs and 35 in A. fromensrs, although the

length is similar. ln longitudinal section in both taxa, corallites are long

irregularly cylindrical, up to 40 mm long in B. hawkerens;s and up to 47.5 mm
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long in A. fromensrs, but tend to be more parallel in the former. Tabulae are

randomly oriented, being complete, undulating horizontal or concave upward,

occasionally globose and dissepiment-like in Ð. hawkerensig which differs from

A. fromensrs where they are always globose and dissepiment-like tabellae. B.

hawkerensrs does not appear to have the distinctive mid-line in corallite walls

(unlike A. fromensrs), although a mid-line is sometimes faintly observed. The

available specimens of B. hawkerensis are truncated, and do not show

evidence of corallites extending above the corallum-

A relatively close relationship appears to exist between the genera Flindersipora

and Adetaideipora indicating that the four taxa may have originated from a

common ancestor prior to the late Early Cambrian. However, divergence

probably occurred early in the evolution of these corals, as variations in corallite

size, the insertion of tabulae together with the length and number of septa are

different in the four taxa. The other three genera Arrowipora, Moorowipora and

Blinmanipora probably evolved from different ancestral polyps as advocated by

Scrutton (1997).
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CHAPTER 7
CONCLUSIONS

The variation observed in the corals from this ancient reefal environment,

indicates that during the Early Cambrian, there was rapid diversification in their

skeietal morphology, or near concurrent skeletonization among several ¡'elated

anemone-like cnidarians.

The five coral genera from the Moorowie Formation, Arrowipora, Moorowipora

Adelaideipora, Flindersipora, and Blinmanipora, are different in the general form

and detailed architecture of their skeleton. The fìrst two gerìêra in particular

have tabulate-like characteristics in common with some Ordovician tabulates.

While F. bowmani has been acknowledge 'as a doubtful coral' by Scrutton

(1992;1997), further specimens indicate this species does have coral-like

skeletal characteristics. The skeietal morphology of B. hawkerensis ex-hibits

structures observed in many of the more 'primitive' Ordovician tabulates, some

of which have now, however, been removed from the Cnidaria. Thus this genus

may possibly be regarded as a coralomorph, not a true coral.

The results of statistical analysis carried out on seven of the Moorowie corals,

using the average diameter of 'mature' corallites, indicate that this may be a

valid method of discriminating between some early Camb¡-ian coral genera and

\or species. The graphs show that Adelaideipora, Flindersipora and Moorowi-

pora are distinct taxa, while the holotype and paratype of A. lafustei are also

observed to be almost identical, while being discriminated from A. cancelli.

Although much of the general architecture is similar, differences in the skeletal

morphology of the Early Cambrian and Ordovician tabulate corals (particularly

septal insertion), appears to exist (Scrutton 1997). The time gap betw"een the

Early Cambrian and the Early Ordovician, together with the oaucity of fossil

coral evidence from the Middle and Late Cambrian (Scrutton 1997), indicates,
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that it is probably reasonable that Cambrian corals be grouped into a separate

order.
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APPENDIX

CORALLITE DIAMETERS

Maximum, minimum and mean diameter measurements

used in the statistical analysis of the Moorowie corals.

M. chamberensis (holotyPe)

A. cancelli(holotype)

A. lafustei (holotype)

A. lafustet (paratype)

F. bowmani (holotype)

F. bowmani (34174)

F. uldanami (holotype)



þ1. chamberensís (h) A. cancelJ-i (h)

ì,iA)(. DIÀÌ.!
2.L4
2.2L
2.54
2.6L
2.65
2.69
2.69
2.7 4

2.75
2.8L
2.83
2.46
2.99
3.05
3.07
3.09
3.09
3.09
3.L2
3.15
3. 19
3.19
3.24
3.31
3.31

MEAI{
2.O8
2.L9
2.2t
2.34
2.48
2.54
2.53
2.59
2.6t
2.43
2.5L
2.3L
2.93
2 .47
2.52
2.73
2.56
2.87
2.77
2.54
2.74
2.48
2.45
2.98
2.9L

MIN. DIA}4.
2.OL
2.L7
1.87
2.L4
2.3L
2.39
2.37
2.44
2.45
2.O5
2.L7
1.75
2.46
1.89
L.91
2.37
2.O2
2.53
2.4L
1.93
2.28
1 .81
2.42
2.64
2.49

MA:K.DIÀI{.
2.2L
2.42
2.59
2.6L
2.6L
2.6L
2.6L
2.64
2.7L
2.7L
2.8L
2.46
2.92
2.94
3.O2
3.25
3.26
3.31
3.38
3.41
3.51
3.52
3.63
3.75
3.75

MIN. DTÀ}f.
2.tL
2.42
2.3L
2.24
2.44
2.L5
2.3L
2.2A
2.59
L.76
2.L5
2.7t
1 .89
1 .88
2.2L
2.42
2.42
2.49
2.54
1 .95
2.t5
3.2L
3.41
2.5L
3.7t

MEAI{
2.t6
2.42
2.45
2.45
2.53
2.34
2.46
2.44
2.65
2.24
2.48
2.79
2.4L
2.4L
2.62
3.04
2.84
2.9L
2.96
2.64
2.83
3. 66
3.52
3. 13
3. 73

A. ]'afustei (h) A. lafusËej' (p)

I'ÍA:K.DrÀM.
t.4L
1.83
1.83
1.93
1.95
2.O2
2.t5
2.2t
2.25
2.3L
2.32
2.34
2.34
2.39
2.5t
2.52
2.63
2.7L
2.75
2.86
2.92
3.11
3.18
3.35
3.41

MIN.DIAI4.
1 .16
L.79
t.7L
1 .54
1 .81
L.75
1 .51
2.LL
1.49
2.O9
1 .04
2.L5
1.13
2.OL
2.46
1.91
2.24
1.81
2.55
2.39
2.67
2.63
2.24
2.7L
2.4L

ÈrÐ(.DrÀùf .

.75

.74

.78

.86

.91

.93

.93

.96

.13

.27

.29

.46

.51

.57

.61

.7L

.15

.76

.71

.81

.91

.01

.18

.54

.54

MIN.DIAÞÍ
1 .51
1 .78
1 .78
1 .86
1 .59
1.81
1.85
L.7t
1 .63
1 .78
l.7t
L.73
1 .89
1 .93
2.O4
1 .97
1.78
1 .86
2.O7
2.29
2.39
3. O1

2.46
2.2L
2.49

MEA}T

L.29
1 .81
L.77
L.74
1.88
1 .89
1.83
2.L6
1 .87
2.2t
1.68
2.25
t.7 6
2.2t
2.49
2.22
2 .44
2.26
2.65
2.63
2.79
2.A7
2.71
3.03
2 -9L

1

1

1

1

1

1

1

1

2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3

MEÀN

1 .63
1.78
1 .78
1 .86
1 .75
1 .87
1 .89
1 .84
1.88
2.O3
2.OL
2.09
2.21
2.2s
2.33
2.34
2.27
2.3t
2.42
2.55
2.65
3.01
2.82
2.88
3.01

Measurements in mri.



l,fAX. DfÀItl.
L.75
1 .79
1.85
1.85
1 .89
1.91
1 .91
1.94
1 .94
1.98
2.Ot
2.Ol
2.06
2.O7
2.O9
2.LL
2.t6
2.25
2.4L
2.4t
2.6L
2.69
2.79
2.85
2.94

llAX. DIÀÌ"Í.
L.57
L.75
L.76
1 .83
1 .85
1 .89
1.89
2.Ol
2.Ot
2.O2
2.O3
2.O9
2.L2
2.L7
2.L9
2.2L
2.29
2.32
2.32
2.44
2.47
2.49
2.62
2.67
2.9L

MIN . DIÀ}I. MEÀI{
1.14 1.36
1.55 1.65
1.51 1.6¿
1 .71 L.77
1.54 1.69
L.32 1.61
L.42 1.66
1 .09 1.55
1.59 1.81
1.88 1.95
1.88 1.96
1.11 1.61
L.52 r.82
L.72 1.95
1.85 2.O2
L.82 2.O2
1.14 t.72
t.52 L.92
1.65 1.99
2.O2 2.23
L.42 1.95
1.49 1.99
2.L3 2.34
2.29 2.48
2.22 2.57

F. boYmani (h)

MIN. Dl.âl'f
1 .46
1 .48
1.14
L.2A
1 .66
1 .81
L.67
L.52
1 .57
L.46
1 .56
1.88
L.47
1.95
1.54
L.49
1 .35
1 .51
L.47
1.41
1.81
1.95
2.05
L.42
1.35

F. bovmaní l34L74l

MEAIi¡

1. 61
1.64
1.49
L.57
1 .78
1 .86
L.79
1.73
L.76
L.72
L.79
1 .95
L.77
2.OL
L.A2
1 .81
L.76
1.88
L.94
1.91
2.2t
2.32
2.42
2.L4
2.L5

F. uldanamí (h)

I'ÍA:K. DIÀù{
1 .51
L.72
1 .85
1.91
L.92
2.Ol
2.O5
2.LL
2.t2
2.L5
2.t5
2.2t
2.2L
2.25
2.32
2.41
2.45
2.55
2.55
2.65
2.7t
2.7L
2.92
3 .01
3. 01

MIN. DIÀIV1.

1-45
.65
.42
.81
.7L
.95

.55

.95

.81

.61

.7L

.61

.92

.45

.01

.71

.81

.61

.25

MEAIiI

1 .48
1 .69
t.64
1 .86
L.A2
1.98
1.88
1 .83
2.04
1 .98
1 .88
1 .96
1.91
2.O9
L.87
2.2L
2.LT
2.35
2.44
2.05
2.36
2.7L
2.37
2.3L
2.68

7L

.4t
01

.75
15

.4L

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2
1

2
2
1

2
2
1

1

2

Measurements in nun




