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landmarks. Some studies use control subjects who are age and/or weight matched, other

studies use controls not matched for these parameters. Yet other studies use no control

subjects at all. Chapter 5 and Chapter 6 of this thesis provide a review of the literature where

lateral cephalometric radiographs have been used to assess subjects with obstructive sleep

apnoea syndrome.

The imaging of the upper airway is obviously no treatment in itself. One of the problems as

with many medical conditions, is the cure may not be acceptable to the patients with the

condition. In the case of obstructive sleep apnoea syndrome tracheostomy will cure the

patient of the upper airway obstruction however at a personal cost not accepted by most

patients. The standard treatment for obstructive sleep apnoea syndrome since l98l has been

nasal continuous positive airway pressure ventilation, reported by Sullivan et al (1981). This

modality is reported in the literature to be efficacious however compliance remains an issue.

Chapter 7 considers the non-surgical treatment modalities that have been and are used in the

treatment of obstructive sleep apnoea syndrome. Surgical treatment for obstructive sleep

apnoea syndrome, apart from tracheostomy, has been reported in the literature since 1981

when Fujita reported uvulopalatopharyngoplast¡i as a surgical technique for the treatment of

snoring and obstructive sleep apnoea s¡mdrome. Since that time a number of surgical

procedures have been reported with varying degrees of success. These surgical modalities

reported in the literature are considered in Chapter 8.

On the basis of the literature review, several aims were established using material from the

Oral and Maxillofacial Surgery unit, The University of Adelaide and the Thoracic Medicine

Unit, The Rr:yal Adelaide Hospital. The objectives of the study were to:

l. Acquire cephalometric data on 100 consecutive patients undergoing a

polysomnographic overnight sleep study for investigation of a suspected sleep

breathing disorder as assessed by a thoracic medicine physician.

2. Quantiff the airway dimensions of this series of patients using measurements

previously reported in the literature.

3. Establish whether BMI has any predictive value for OSA.

4. Establish whether neck circumference is related to BMI or the incidence of OSA.

5. Establish whether age or sex has any influence on the incidence of OSA.

6. Compare airway dimensions measured from the lateral cephalometric radiograph and

the severity of OSA to determine if any measurement is predictive for the presence of

OSA.
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7. Compare airway dimensions measured from lateral cephalometric radiograph and

quantiff any differences between the study population of OSA patients and simple

snorers compared with comparable results reported in the literature.

8. Investigate the sources of error in cephalometry and quantify the error associated with

the present study.

9. Quantiff the error associated with selected cephalometric variables used in this study.

10. Determine if lateral cephalometnc radiographs are a useful adjunct to treatment

planning for patients with OSA.

Chapter 9 and Chapter 10 report the methodology used in order to achieve the aims of the

study.

Chapter I I reports the results of this study. The linear and angular variables measured from

the lateral cephalometnc radiographs was initially assessed with respect to body mass index

(BMI) and respiratory disturbance index (RDD. Subjects were then divided upon the basis of

RDI into groups of "snorers" and "obstructive sleep apnoeics". Further statistical evaluation

was then performed on the groups. To allow comparison with other results from the

literature, the division by RDI was performed three times, at an RDI 10, l5 and 20 events per

hour. These results are discussed and compared with the findings in the literature in Chapter

12.

Chapter 13 summarises the key findings of this thesis and suggests areas of future

investigation to further our understanding of the upper airway changes reported in obstructive

sleep apnoeic subj ects.

A glossary of terms is provided at Chapter 14.

The Appendix is a copy of the consent and patient information given to participants prior to

their enrolment in this study.
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1.1 Introduction

Sleep is a physiological function that occurs for most people on a regular basis, despite our

best attempts, at times, to deny its call. Sleep is the antithesis of wakefulness, and for many

it is seen as a waste of time, slowing our ability to extract all we can from life. Conversely

others in our midst value sleep above all else, or so it may seem. A number of sleep

disorders have been identified, not restricted simply to insomnia or hypersomnolence and

these will be discussed in Section 1.3.

For most the sleep - wake cycle follows a circadian rhythm, with sleep occurring nocturnally

and wakefulness occurring during daylight hours. The average adult sleeps 7 to 8 hours per

night although epidemiological studies suggest a range exists from 4 hours to greater than 9

hours. There are variations to sleep time at the extremes of age that are not suggestive of

pathological sleep, however there is an increased mortality rate in people who are at the

extremes of this distribution (Kryger el at, 1994).

Environmental factors such as occupation, psychological disfurbance st¡ch as <lepression,

pharmacological use such as caffeine or physical disease such as renal failure may alter this

pattern. The production of symptoms that are troubling to a person, or that produce adverse

physiologic changes constitutes a sleep disorder.

Sleep disturbance is a considerable problem for a large number of the population. Insomnia

has been reported to have a prevalence of 20 - 30% (Soldaton and Lugaresi, 1987) in adults

whilst hypersomnolence has been reported to occur in 5o/o (Soldaton and Lugaresi, 1987) to

10.9% (Johns and Hocking, 1997) of the population. Other sleep disorders such as night

terrors, sleepwalking and confusional arousals have been reported in 2 - 4"/o of the population

(Ohayon et al, 1999).

The study of sleep and determination of pathological states associated with disordered sleep

are relatively new areas of medical endeavour, becoming prominent over the last twenty five

years.

Understanding of normal sleep is essential if clinicians are to recognize disordered sleep. To

this end a large amount of time and research effort has been expended resulting in an ability

to measure a variety of parameters related to physiologic functioning and thus define sleep

"stages". A sleep study, or polysomnogram will be discussed in Section 1.4. There is

however a way to go before we truly understand the mechanisms of sleep and its variations

which constitute "pathological" or disordered sleep. Obstructive sleep apnoea is but one of a

multitude of sleep disorders, its characteristics with respect to alteration of sleep physiology

will be discussed in Section 1.5.
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1.2 Normal Sleep

Sleep onset in a normal person is usually associated with set rituals and occurs at the same

time each evening. Sleep occurs under favourable circumstances in about ten minutes. sleep

may be inhibited by a number of conditions including pain, anger, stress or any significant

disease or discomforting problem such as excessive temperature or unfamiliar surroundings.

Normal sleep is defined in terms of behaviour and electroencephalographic (EEG) patterns

that are associated with physiologic processes. A rhythm is established of sleep followed by

wakefulness and is heavily influenced by the light - dark cycle. Related to this rhythm is

maintenance of the body by way of hormone release governing cell division, growth, immune

function, metabolism and body temperature cycle.

Normal sleep is of two general t)pes, referred to as rapid eye movement (REM) and non-rapid

eye movement (NREM) sleep. Polysomnography that measures a number of physiologic

parameters will be discussed in section 1.4. The pertinent measures that are used to define

sleep stage are the EEG and the electro-oculogram (EOG). The understanding of NREM

sleep and its pattems is studied in relation to EEG changes that allow division of sleep into

four stages. These stages are characterized by an increase in the arousal threshold and a

slowing of the EEG measuring cortical activity.

Stage I sleep - is a transient phase of sleep usually occurring at sleep onset but may also be

entered briefly at the end of body movement or a period of REM sleep.

This stage of sleep is often perceived as pleasant wakefulness, which is an illusion often

experienced. At this stage people are unaware they are losing consciousness and believe

themselves to still be awake. This may have unfortunate consequences when people are

behind the wheel of a car, in a lecture theatre or other inappropriate situation.

Stage 1 sleep is passed through rapidly at the beginning of a sleep period. EEG changes

associated with this period of sleep are a change from alpha waves (8 to 12 HZ) with eyes

open to beta rhythms (14 and faster Hz) with eyes closed and finally theta waves (3 to 6 Hz)

when stage 1 sleep is entered.

Stage 2 sleep is also entered transiently upon falling asleep but is often the predominant phase

of NREM sleep experienced towards the end of a normal sleep period. EEG changes in this

phase are the appearance of so-called sleep spindles. These are bursts of alpha-like 10 - 14

Hz waves amongst the background theta waves.

Stage 3 sleep usually only seen during the first half of sleep. This is a period of deep sleep

with the EEG slowing producing delta waves.
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Stage 4 sleep is also only entered during the first half of sleep. This stage sees further

slowing of the EEG with the rhythmic slow ìvaves showing synchronization (Pegram and

Lucas, 1995).

REM sleep replaces NREM sleep after approximately 90 minutes, which is called the normal

REM latency period. REM sleep can be recognized on an EEG as a return to a mixed

frequency pattern similar to stage I NREM sleep. REM sleep is thought to be the time

dreaming occurs, as dream recall is most vivid when people are awakened at this time.

Studies have been performed whereby subjects have been selectively deprived of REM sleep

and NREM dream recall has been increased. This may be a purely adaptive mechanism

whose significance is not known (Cziesler and Richardson, 1998). A pattern of NREM sleep

followed by a period of REM sleep is seen throughout the night, usually cycling at intervals

of 90to 110minutes. Towardsmorningtheperiodsof REMsleepincreaseindurationand

NREM sleep stages 3 and 4 are not entered, with stage 2 sleep becoming the predominant

phase of NREM sleep entered.

Changes in body position occur most frequently in preparation for and following REM sleep.

Generally four to five cycles of NREM/REM sleep are experienced during an eight hour

period of sleep. Despite the EEG during REM sleep resembling that seen during wakefulness

i.e. rapid low voltage waves there is an increased threshold for arousal by sensory stimulation

during this period of sleep.

Alterations in many of the bodies functional systems occur during sleep including the

cardiovascular, respiratory, neuromuscular and endocrine systems. The significance of these

changes in people suffering obstructive sleep apnoea compared with nonapnoeic people are

most marked for cardiovascular, respiratory and neuromuscular systems.

Cardiac changes during sleep are principally a slowing of the heart rate relative to awake

resting values. This has been postulated to result from decreased sympathetic outflow dunng

NREM sleep (Snyder et al, 1964). These authors did note the heart rate varies with the stage

of sleep. They found the mean rate during REM sleep approaches awake resting values in

most subjects. Gillis and Flemons (1994) suggested cardiac muscle has increased

refractoriness at night, dependant upon circadian rhythms. This results in a slowing of the

heart rate, an increase in atrio-ventricular conduction time and prolonged refractory periods.

Cardiac dysrhlthmias are most likely to occur during REM sleep.

Blood pressure measurements during sleep are found to decrease in both normotensive and

hypertensive individuals compared with waking values. Zachanah et al (1988) reported the

average mean blood pressure decrease dunng NREM sleep was to a level 80% of that

measured when subjects were awake.
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Respiratory changes during normal sleep include altered gas exchange in the pulmonary

alveoli resulting in altered blood gas concentrations from those measured during wakefulness

(White et al, 1985). They reported an increase PaCOz of 2 - 8 mm Hg and a decrease in

PaO2 of 3 - 10 mm Hg. These authors also noted the metabolic rate decreased 10 - 20%

from baseline levels recorded when subjects were awake. Mechanical alterations in

respiration, such as increased upper airway resistance (Hudgel et al, 1984) and physiologic

alterations such as depressed respiratory drive (White, 1986) have been suggested as possible

causes of the respiratory gas changes in non-apnoeic individuals.

Muscle tone has been measured and reported to vary with the sleep stage. During NREM

sleep spinal reflexes and skeletal muscle tone are decreased, these are further inhibited during

REM sleep (Chandler, 1988). There are periods of sleep, particularly during REM sleep

where this inhibition may be temporarily overcome. Brief periods of movement occur and

are often associated with autonomic changes, including alteration of respiratory drive. There

is also a typical increase in frequency of movement prior to and emerging from REM sleep.

During normal sleep there is a decrease in tonic and phasic activity of the muscles of the

upper airway. The result of this decrease in muscle activity at rest (tonic activity) and during

respiration (phasic activity) is an increase in airway resistance. The increased resistance is

approximately 2 - 3 times greater in NREM sleep than resistance to air movement during

wakefulness. There is also increased resistance in the upper airway during inspiration when

compared to expiration. During sleep there is a loss of respiratory responses to wakeful

stimuli resulting in a decreased sensitivity of the respiratory system, including the

musculature to alterations in upper airway resistance. An additional down-regulation of

sensitivity of the upper airway is noticeable by the marked attenuation or complete abolition

of the cough reflex during sleep (Czeisler and Richardson, 1998).

Endocrine changes during sleep in a normal population have been measured extensively.

Most hormones are secreted rh¡hmically due to interaction between sleep and circadian

patterns. Prolactin and growth hormone seem to be dependant upon the sleep - wake cycle

with pulses of these hormones released during the deepest (or stage 4 NREM) sleep. This

phase of sleep is most regularly entered during the first third of a sleep cycle.

TSH (and ACTH), cortisol and melatonin are principally circadian dependant for their

rhythmic secretion. Pulses of cortisol and TSH occur during superficial phases of sleep,

particularly towards the end of a sleeping period and this may act to prepare the body for

physical activity which has been suppressed (Luboshitzþ, 2000).

These mechanical and physiologic changes occurring nafurally dunng sleep may be

accentuated in patients with OSA and contribute to the disease severity. The understanding
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of these basic physiologic responses of the body to sleep is important when considering the

effects of sleep disorders upon the body, particularly OSA. The fact that OSA adversely

effects sleep quality leads us to suspect long term adverse health effects. This will be further

discussed in Chapter 4.

1.3 ClassÍfication of Sleep Disorders

Sleep disorders have been classified in a number of ways, the following discussion relates to

the classification proposed by the American Sleep Disorders Association. This classification

proposes four broad categories of sleep disorder, namely dyssomnias (Table 1.3-1),

parasomnias (Table 1.3-2), sleep disorders associated with medical/psychiatric disorders

(Table 1.3-3) and proposed sleep disorders (Table 1.34). Most sleep disorders are

characterized by insomnia, hypersomnia, parasomnia or a sleep-wake schedule disturbance.

A dyssomnia is simply a disturbance of sleep that is caused by an intrinsic disorder of sleep, a

disturbance in the circadian rhythm or a disturbance of sleep caused by an external factor.

Insomnia is difficulty in initiating or maintaining sleep and is a characteristic feature of many

dyssomnias. This is reportedly the most frequent cause of a sleep disorder and may be

transient or persistent. Insomnia is not generally a complaint of those patients with

obstructive sleep apnoea. Most people experience transient insomnia at some time related to

pain or anxiety. These may be related to medical conditions or environmental and

psychiatric conditions respectively.

Hypersomnia is a dyssomnia that manifests as excessive amounts of sleep or daytime

sleepiness (somnolence) or both. H¡rpersomnia is seen commonly in patients with depression

or with excessive use of alcohol or depressant medications. Somnolence is a common

complaint of people with obstructive sleep apnoea or narcolepsy. Narcolepsy is an often

dangerous condition involving excessive daytime sleepiness and abnormal REM sleep

patterns, with REM sleep within 10 minutes of sleep onset. There is associated hypnagogic

and hypnopompic hallucinations , cataplexy and sleep paralysis. People are unable to resist

the urge to sleep and it can lead to motor vehicle and industrial accidents.

Circadian rh¡hm sleep disorders involve a misalignment between the desired and actual sleep

periods. The cause may be as simple as jet travel, particularly in an east-west direction or

shift work, particularly where the roster changes rapidly therefore not permitting time for the

body to adapt. Other circadian rhythm sleep disorders are more difficult to define in terms of

aetiology and relate to sleep onset too early or too late fbr the petson's lit-estyle.

Parasomnias occur suddenly during sleep or at the junction of sleep and waking. They

manifest as unusual or undesirable actions, thoughts or misperceptions. Most commonly,
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stage 3 or stage 4 NREM sleep is the period of the sleep cycle in which they occur and thus

most people have poor recall fo¡ the parasomnic event. Arousal disorders usually occur in

the first third of sleep in a NREM stage 3 or stage 4 period. Sleep terror disorder is not a

nightmare rather the person awakens suddenly. often screaming loudly before either

awakening disorientated or falling asleep. These episodes are not always recalled. Sleep

walking is similar except the patient leaves the bed and moves around. This condition occurs

most commonly in children between the ages of four and eight. Night terrors and sleep

walking are thought to be related and occasionally a neurological abnormality, especially in

the temporal lobe, is discovered on EEG analysrs.

Sleep-wake transition disorders are generally benign conditions. The most cornmon

manifestation is sleep talking (somniloquy) which occurs in both children and adults and

usually consists of only a few words. These episodes are not usually recalled.
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Table 1.3-l: Dyssomnias

lntrinsic Sleep Disorders

Psychophysiologic insomnia

sleep state misperception

ldiopathic insomnia

Narcolepsy

Recurrent hypersomnia

ldiopathic hypersomnia

Posttraumatic hypersomnia

Obstructive sleep apnoea syndrome

Central sleep apnoea syndrome

Central alveolar hypoventilation syndrome

Periodic limb movement disorder

Restless legs syndrome

lntrinsic sleep disorder not othen¡¡ise specified

Circadian Rhythm Sleep Disorders

Time-zone change fiet lag) syndrome

Shift-work sleep disorder

lrregular sleep-wake pattern

Delayed sleep phase syndrome

Advanced sleep phase syndrome

Non-24-hour sleep-wake disorder

Circadian rhythm sleep disorder not otherwise specified

Extrinsic Sleep Disorders

lnadequate sleep hygiene

Environmental sleep disorder

Altitude insomnia

Adjustment sleep disorder

lnsufficient sleep syndrome

Limit-setting sleep disorder

Sleep-onset association disorder

Food allergy insomnia

Nocturnal eating (drinking) syndrome

Hypnotic-dependant sleep disorder

Stimulant-dependant sleep disorder

Alcohol dependant sleep disorders

Toxin-induced sleep disorder

Extrinsic sleep disorder not otherwise specified
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Nightmares are a very comrnon parasomnia and are an example of a parasomnia occurring

during REM sleep (Table 1.3-2). This disorder usually occurs towards the end of the sleep

cycle. Up to fifty percent of people report suffering occasional nightmares. Bruxism is a

conunon disorder that occurs in l0 to 20 per cent of the population. The patient usually

presents complaining of facial muscle aches or headache. On clinical examination there is

evidence of tooth wear. The sleeping partners of the patient are often able to confirm the

clinical suspicion. The typical age of onset is 17 to 20 years, and spontaneous remission

usually occurs by age 40. Sudden infant death syndrome and infant sleep apnoea are also

classified as parasomnias occurring during REM sleep.

Table 1.3-2: Parasomnias

Arousal Disorders

Confusional arousals

Sleep walking

Sleep terrors

Sleep-wake Transition Disorders

Rhythmic movement disorder

Sleep starts

Sleep talking

Nocturnal leg cramps

Parasomnias Usually Associated With REM Sleep

Nightmares

Sleep paralysis

I mpaired-sleep-related penile erections

Sleep-related penile erections

REM sleep related sinus arrest

REM sleep behaviour disorder

Other Parasomnias

Sleep bruxism

Sleep enuresis

Sleep-related abnormal swallowing syndrome

Nocturnal paroxysmal dystonia

Sudden unexplained nocturnal death syndrome

Primary snoring

lnfant sleep apnoea

Congenital central hypoventilation syndrome

Sudden infant death syndrome

Benign neonatal sleep myoclonus

Other parasomnia not otherwise specified
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Psychiatric disorders may present with many different symptoms of disordered sleep

including insomnia (e.g. major depressive disorder, generalized anxiety disorder, adjustment

diso¡der with anxiety) and hypersomnolence (e.g. major depressive disorder, dysthymic

disorder).

Neurologic disorders, particularly those of a degenerative nature are corunonly associated

with sleep disorders. Dementia and Parkinsonism are two corûnon medical conditions that

may result in altered sleep patterns. Sleep related headaches are of the typical cluster pattern

or similar to unilateral headaches. This latter headache is termed chronic paroxysmal

hemicrania and is a vascular headache that occurs almost exclusively in association with

REM sleep.

Almost any medical condition that causes pain or discomfort may produce concomitant

symptoms of insomnia. Treatment of the underlying medical condition will usually alleviate

the sleep disturbance.

Table 1.3-3: Sleep Disorders Associated With MedicatÆsychiatric Disorders

Associated With Mental Disorders

Psychoses

Mood disorders

Anxiety disorders

Panic disorders

Alcoholism

Associated With Neurologic Disorders

Cerebral degenerative disorders

Dementia

Parkinsonism

Fatal familial insomnia

Sleep-related epilepsy

Electrical status epilepticus of sleep

Sleep-related headaches

Associated With Other Medical Disorders

Sleeping sickness

Nocturnal cardiac ischaemia

Chronic obstructive pulmonary disease

Sleep-related asthma

Sleep related gastro-oesophageal reflux

Peptic ulcer disease

Fibrositis syndrome

l0



Table 1.34 lists sleep disorders that do not fit any of the above categories and may or may

not be true sleep disorders. They principally describe physical symptoms (e.g. fragmentary

myoclonus, sleep related laryngospasm) associated with medical conditions or alterations in

sleep architecture (e.g. short or long sleepers) that are markedly different from the general

population. These proposed sleep disorders are not agreed by all sleep researchers to be

identifiable sleep disorders and may indeed not represent sleep disorders at all.

Table 1.3-4: Proposed Sleep Disorders

Short sleeper

Long sleeper

Subwakefulness syndrome

Fragmentary myoclonus

Sleep hyperhidrosis

Menstrual-associated sleep disorder

Pregnancy-associated sleep disorder

Terrifying hypnagogic hallucinations

Sleep-related neurogenic tachypnoea

Sleep-related laryngospasm

Sleep choking syndrome

1.4 Polysomnography

Polysomnography involves the measurement of various physiologic and clinical parameters

during sleep to determine variations from normal and hence the presence or absence of sleep

disorders. There are a number of sleep disorders, as mentioned in Section 1.3 and qualitative

and quantitative measurement of sleep disturbance in these disorders depends upon the

findings of a polysomnographic recording.

Polysomnography typically involves monitoring for seven hours of sleep with measurement

of the electrophysiologic variables to determine sleep stage. The variables measured are:

l. Electro-encephalogram (EEG); and

2. Electro-oculogram (EOG).

The EEG measures cortical electrical activity following attachment of at least two electrodes

to the scalp. The recording of this electncal activity forms the basis of defining the stages of

NREM sleep. Eye movement is recorclecl by an EOG and this in combination with the EEG

is used to determine when a patient has entered REM sleep.
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Respiratory parameters are also typically measured during a polysomnographic sleep study.

The parameters measured by the sleep laboratory at the Royal Adelaide Hospital are:

1. Respiratory inductive plethysmography;

2. Oro-nasal airflow; and

3. Pulse oximetry.

Chest wall and abdominal movement is measured by respiratory inductive plethysmography.

The correlation with the respiratory cycle and movement of these muscles may help define the

fype of breathing disorder. For example if there is chest and abdominal muscle movement

during an apnoeic episode then central sleep apnoea is an unlikely cause, because in this

condition neural drive to all the respiratory muscles is temporarily abolished. Conversely

movement of respiratory muscles during an apnoeic episode is more likely to point to a

diagnosis of obstructive sleep apnoea where there is obstruction of the upper airway. Oro-

nasal airflow is measured using a thermistor. This device detects a difference in the

temperature between inspired and expired air and can help with timing of the respiratory

cycle. Pulse oximetry is used to measure blood arterial oxygen concentration in a non-

invasive manner. This parameter is used as a measure to detect oxygen desaturation that

does occur during apnoeic or hypopnoeic episodes.

Additional physiologic parameters measured during a typical overnight polysomnographic

sleep study at the Royal Adelaide Hospital include:

l. Three lead electro-cardiogram (ECG) continuous monitoring;

2. Electro-myogram (EMG);

3. Snoring by means of a small microphone; and

4. Video recording of patients during an apnoeic episode.

Cardiac abnormalities during sleep are a comrnon phenomenon and some authors have

suggested an increased incidence of cardiac arrhythmia associated with oxygen desaturation.

Oxygen desaturation is invariably present in obstructive episodes and may be used as a

criterion for classification of severity of disease and response to treatment (Powell and Riley,

1995). This is reviewed in more detail in Chapter 2. Electromyographic recording of the

tibialis anterior muscles which is essential for the diagnosis of a sleep disorder involving

periodic limb movement (restless legs s¡mdrome). Figure 1.4-1 shows a subjectprepared for

overnight monitoring in the Royal Adelaìde Hospital sleep laboratory.
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Figure 1.4-1 Patient undergoing polysomnography
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The raw physiologic data obtained from a sleep study is usually presented both graphically

and numerically in table format. Figure 1.4-2 shows a sample sleep study. This data is then

analysed by a respiratory physician who notes such information as:

l. Sleep latency;

2. Early morning awakening;

3. Sleep efficiency;

4. Apnoea index;

5. Hypopnoea index;

6. Nocturnal myoclonus index;

7. REM latency; and

8. Sleep-onset REM period.
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Figure 1.4-2 Sample sleep study data
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The definition of sleep latency is not clear, with some investigators measuring the time from

lights out until the first EEG sign of sleep, whilst others measure from the time of tuming off

the lights until the subject has entered stage2 sleep (Carskadon et al, 1986; Thorpy, 1992).

The accepted standard for normal sleep latency is greater than ten minutes. For sleep studies

at the Royal Adelaìde Hospital lights are turned off between 2230 aÑ2300. Early morning

awakening is determined by recording the period of time that elapses from the final arousal

from sleep and the termination of the sleep study. Most sleep studies conclude at 0700.

Sleep efficiency is determined by the following formula expressed as a percentage: Total

sleep time/ total time of the sleep record x 100. Apnoeic events are recorded as the cessation

of airflow for greater than l0 seconds. This is expressed as an Apnoea Index, which is the

number ofapnoeic events per hour of sleep. Hypopnoeic events are recorded when oxygen

saturation falls below 95o/o in a subject who normally saturates at97%o on room air. This

parameter is often combined with the apnoeic events to form the ApnoeaÆIypopnoea Index

(AHD which is simply the total number of apnoeic or hypopnoeic events per hour of sleep.

The nocturnal myoclonus index records the number of periodic leg movements per hour.

REM latency is the elapsed time from entering the first stage 1 sleep period until the first

REM period of the night. A sleep-onset REM period is not normally entered during the first

l0 minutes of sleep.

Polysomnography is the gold standard by which sleep disorders are diagnosed. History,

either from the subject themselves, or from a person who observes the subject sleeping, may

allow a diagnosis of a sleeping disorder to be made without resort to a time intensive

overnight sleep study. fr some cases, such as nightmare or sleep enuresis history is sufficient

for diagnosis. Other conditions, such as obstructive sleep apnoea require correlation of

history with objective findings of physiologic parameters during sleep. There is agreement

that this slmdrome is diagnosed upon measurement of various physiologic parameters as the

patient sleeps in addition to findings during clinical examination. There is disagreement in

the literature over which parameters must be measured for a "sleep study" to be valid (Pack,

1993). This author contends that the inclusion of all measuring parameters for a standard

overnight polysomnographic sleep study had not been well substantiated in the literature. A

meta analysis of the literature regarding diagnosis of obstructive sleep apnoea (Ross et al,

2000) reported the gold standard for diagnosis of obstructive sleep apnoea as reported in the

literature was overnight polysomnography. They suggested of the alternative diagnostic

procedures reported in the literature, only partial channel or partial time polysomnography

looked promising for the replacement of full overnight polysomnography. Partial channel

polysomnography records blood oxygen saturation (oximetry), airflow and thoraco-abdominal

movement. Partial time polysomnography records sleep for only a small portion of the sleep
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cycle, as opposed to standard ovemight polysomnography which records all sleep in an eight

hour period

1.5 Obstructive Sleep Apnoea Syndrome

Patients suffering from a sleep apnoea syndrome have a dyssomnia classified as an intrinsic

sleep disorder (see Table 1.3-l). Gastaut et al (1969) further classified sleep apnoea

syndromes into:

1. Central apnoea;

2. Upper airway (obstructive) apnoea; and

3. Mixed sleep apnoea.

ln central sleep apnoea the neural drive to respiratory muscles is transiently abolished' This

form of sleep apnoea is uncommon and not as easily treated as other forms of sleep apnoea

(White, lgg4). Upper airway (obstructive) apnoea involves mechanical obstruction of the

upper airway during sleep Mixed sleep apnoeic subjects have elements of central and upper

airway (obstructive) aPnoea.

Obstructive sleep apnoea has been defined at the 1990 meeting of the American Sleep

Disorders Association as being " . chaÍzcterized by repetitive episodes of upper airway

obstruction that occur during sleep, usually associated with a reduction in blood oxygen

saturation..." with associated features of daytime sleepiness and snoring (Thorpy, 1990)'

This definition highlights the importance not only of obstruction but also the often associated

reduction in blood oxygen saturation. This decrease in blood oxygen saturation may occur

when the upper airway is totally obstructed, during and apnoeic episode, or dunng partial

upper airway obstruction. Loud, persistent snoring with episodes of choking or cessation of

breathing are coÍrnonly reported by people sleeping in close proximity to a person with

obstructive sleep apnoea. Daytime sleepiness is a very common complaint of people with

obstructive sleep apnoea and its likely aetiology will be discussed in further detail in Chapter

3. One of the problems with this definition is it fails to define the number of obstructive

episodes that must occur before being considered pathologic. Another shortcoming is the

failure to dehne whether oxygen desaturation alone, in the absence of total upper airway

obstruction is pathologic.

Guilleminault et al (1975) dehnerJ aprìoea as the "cessation of airflow at the nose and mouth

lasting at least l0 seconds". During an obstructive episode respiratory effort continues in

contrast to central apnoea where respiratory effort ceases'
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Guilleminault (1978) and Block et al (1979) u¡ere two of the early pioneers in quantification

of OSA. They found apnoeic events occurring with greater frequency than five per hour

were unusual in the normal population. Thus an AI > 5 \Ã/as proposed as one of the

diapgrostic criteria which when present on a sleep study indicated the patient was suffering

OSA. Gould et al (1988) performed polysomnographic recording of patients who exhibited

the clinical signs of OSA such as excessive daytime sleepiness and hypertension. They

found a group of patients who did not obstruct their upper airway but who had a significant

decrease in airflow and an associated arterial oxygen desaturation. This reduction in airflow

with associated arterial oxygen saturation may be defined as hypopnoea. This work helps

justifu the inclusion of hypopnoea in the index of measurements when diagnosing OSA from

a sleep study.

Further problems arise when the additional criterion of hypopnoea is added. At what point

do we consider an hypopnoeic episode significant? Do we count only those hypopnoeas that

cause a greater than 50% reduction in airflow, or do we consider any decrease in airflow

significant? Do we only count those hypopnoeic episodes associated with arterial oxygen

desaturation or arousal? Another factor complicating the use of hypopnoea in the assessment

of OSA is the interlaboratory variability in the detection of hypopnoeic episodes.

Notwithstanding the above problems with detecting and quantiffing a hypopnoea most

investigators utilize the respiratory disturbance index (RDI) or apnoea hypopnoea index

(AHD to quantify the degree of sleep disordered breathing. These indices give a measure of

combined apnoeic and hypopnoeic events per hour of sleep in the criteria for diagnosis of a

patient with OSA and allow more objective comparison between populations. There is no

consensus as to what number of respiratory events must occur per hour to be pathologic.

Several investigators have documented an increase in morbidity and mortality associated with

an abnormal RDI on polysomnographic testing, this is discussed in Chapter 2.

The severity of OSA is determined by the number of apnoeas per hour of sleep, the Apnoea

Index (AI) or by the combined total of apnoeas and hypopnoeas per hour of sleep, the

ApnoeaÆIypopnoea Index (AIII). Episodes of apnoea generally last from 20 - 40 seconds

during NREM sleep, but may last up to 100 seconds during REM sleep. These obstructive

episodes may occur from 200 - 600 times per night (Thawley, 1985).

Most authors consider an AI > 5 or an AHI > 10 per hou¡ of sleep to be pathologic. Several

studies indicate that mortalit¡r increases in-patients who remain untreated for their OSA if the

AHI > 20 (for detail see Chapter 2). This increase in mortality is associated with an

increased incidence of vascular disease or of accidents, occurring at work or in a motor

vehicle that the affected person is driving.
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Guilleminault et al (1976) stated the diagnosis of OSA is confirmed if the polysomnograph

shows at least 30 apnoeic episodes in REM and NREM sleep over a seven-hour period of

nocturnal sleep. Some of these episodes must appear in a repetitive sequence in NREM

sleep.

The incidence of obstructive sleep apnoea in the population is not clearly available in the

literature. The principle reason is the failure of clinicians to agree on a set of criteria that

allows diagnosis of obstructive sleep apnoea. This makes comparison between studies

difficult. Young et al (1993) reported on a random sample of 602 people who underwent an

overnight polysomnographic sleep study. They concluded that 2%o of women and 4Yo of men

met their criteria for diagnosis of obstructive sleep apnoea. These subjects had an AHI > 5

and reported daytime somnolence. If AHI > 10 alone were the criteria then 10.5% of men

and 3.60/o of women would be diagnosed with obstructive sleep apnoea. Ferini-Strambi et al

(1999) reported an incidence of obstructive sleep apnoea amongst women tobe 7.7Yo (RDI >

10) The incidence in other studies has been reported as low as lo/o (Lavie, 1983) in an

Israeli working population to 42o/o (Ancoli-Israel, 1987) who studied an elderly population.

A recent report by Tsai et al (1999) scored ninety-four randomly selected ovemight

polysomnographic sleep studies to determine what effect various definitions for the apnoea-

hypopnoea index has on the prevalence of obstructive sleep apnoea. They considered the

data in three groups: the first (Type A) had hypopnoea 10 seconds and a > 4olo decrease in

oxygen saturation (SaO2); the second (Type B) had hypopnoea 10 seconds and a > 4%o

decrease in oxygen saturation (SaOz) or an arousal; whilst the third group (Type C) had

hypopnoea 10 seconds and an electroencephalographic arousal only. Comparing the three

goups they found that an extra case of obstructive sleep apnoea would be diagnosed every 14

to 3l sleep studies if the Type B definition was used instead of Type A.

Young et al (1997) reported on 4925 employed adults who had been screened by

questionnaire for sleep disordered breathing (including obstructive sleep apnoea). A subset

of 1090 underwent overnight polysomnography to estimate the screen detected obstructive

sleep apnoea. They estimate from their results that thc prcvalence of undiaguosed moderate

or severe obstructive sleep apnoeawas 93"/o of women and 82o/o of men with obstructive sleep

apnoea.

There is a male predisposition to the development of obstructive sleep apnoea with two

studies reporting approximately 85%o of subjects diagnosed as being male (Guilleminault and

Dement, 1978; and Kales et al, 1985). This bias has been reported to continue into old age

with Ancoli-Israel (1987) reporting l9o/o of women and 3lYo of men studied to have

obstructive sleep apnoea. The average age of participants in this study was 72.4 years.
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The incidence of obstructive sleep apnoea increases with age. Ancoli-Israel (1989) reported

increasing incidence with age. Jennum and Wildschiodtz (1987) reported an increase

incidence in the Danish population they studied from the fourth to the seventh decade. They

reported 1.5%o of subjects to have an AHI > 30 in the fourth decade rising to l2o/o in the

seventh. Interestingly Bixler et al (1998) reported increasing prevalence of obstructive sleep

apnoea with age but decreasing severity.

Many hypotheses have been forwarded in an attempt to explain the pathologic mechanism of

upper airway obstruction and OSA. Remmers et al (1978) suggested obstruction may result

when there is an imbalance between the activity of the upper airway muscles and thoracic

muscles. The thoracic muscles produce a subatmospheric pressure that allows inflation of

the lungs but also places a closing pressure on the upper airway.

Howard (1971) thought the upper airway could be likened to a Starling resistor. He

determined that the upper airway behaved like a collapsible not a rigid tube. During normal

sleep resistance to closure (or obstruction) of the upper airway is balanced principally by

pharyngeal muscle tone. During sleep pharyngeal muscle tone decreases and there is an

increased resistance to airflow two to three times that encountered whilst awake (Hudgel and

Hendricks C, 1988). If sufficient proximal resistance to airflow exists e.g. nasal obstruction

then the critical closing pressure in the distal pharynx can be exceeded and the airway will

collapse. Patency of the upper airway depends upon:

1. Upstream resistance; and

2. Transmural pressure with-in the collapsible segment.

When the upstream resistance to airflow is high there is a tendency for collapse because the

pressure within the more distal pharynx will be more subatmospheric than if the resistance

were low. The tone in these muscles decreases during sleep, especially stage 4 and REM,

predisposing to collapse. Similarly if there is a high tissue pressure, such as that produced by

adipose tissue or oedema in the pharyngeal wall, there may be tendency for collapse. Sub-

atmospheric pressure is the collapsing force, usually opposed by upper airway musculature

contracting in synchrony with the respiratory muscles. This hypothesis is consistent with the

findings of many studies that collapse seems to occur alalocalized site in subjects with OSA

and narrowing occurs aT a localized site in normal subjects. This will be reviewed more

extensively in Chapter 7.

Eisele et al (1997) electrically stimulated the hypoglossal nerve, causing contraction of

genioglossus and protrusion of the tongue resulting in increased airflow in the upper airway of

patients suffering OSA. The effect of this observation is interesting from two perspectives.

Firstly it is suggestive that muscle tone of the upper airway musculature, including the tongue
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has an influence on the volume of air passing into the upper airway. Secondly it suggests

that protrusion of the tongue by surgical or non-surgical means may be beneficial for OSA

patients in that the volume of air entering the upper airway is increased. Non-surgical

management of OSA is discussed in Chapter 7. Unfortunately the investigators did not

measure the effect CN VItr stimulation had on the AHI index, and therefore it is not possible

to directly conclude there is any therapeutic benefit for OSA patients in altering the tone of

genioglossus muscle.

A familial relationship for the development of OSA has been sought by a number of authors.

Guilleminault et al (1995) suggested craniofacial familial features can be a strong indicator of

risk for the development of OSA, however this group had problems gaining large numbers of

relatives and age-matched controls to complete the study. They also had problems with data

collection, particularly the lateral cephalometric radiograph. Redline et al (1995) also

reported a significantly greater incidence of sleep disordered breathing in the first degree

relatives of patients with OSA than among control patients. Again this study did not use

polysomnography to confirm OSA among family or control subjects. Mathur and Douglas

(1995) studied first degree relatives of people diagnosed with obstructive sleep apnoea and

age, sex, height anrl weight matched controls. They excluded people with a BMI > 30 kglm2

or those with gross retrognathia, hypothyroidism, acromegaly or neuromuscular disorders. A

significant difference was found between the controls and the first degree relatives when the

parameters of snoring, daytime sleepiness and AHI were compared. Lateral cephalometric

radiographs were also taken of all subjects in this study and the findings suggest the first

degree relatives had a nanower upper airway, a retrognathic maxilla and mandible and a

longer, thicker soft palate. They concluded there is a strong familial component in the

incidence of obstructive sleep apnoea that may be caused by differences in facial structure.

Obstructive sleep apnoea has only been well characterized over the past 25 years and much

investigative work remains before we understand this condition. The diagnosis of obstructive

sleep apnoea is controversial with respect to which physiologic parameters are the most

accurate predictors of severity. Polysomnography is an important diagnostics tool however

clinical history also plays a role in diagnosis. The mechanics of upper airway collapse are

not fully understood and the significance of airway narrowing in predisposing to obstructive

sleep apnoea is yet to be determined.
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Chapter 2

Complications of Obstructive Sleep Apnoea
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2.1 Introduction

Obstructive sleep apnoea syndrome is a result of intermittent narrowing and collapse of the

upper airway. The immediate effect of this is to decrease airflow (hypopnoea) or cease

airflow completely (apnoea). Oxygen saturation may fall if the hypopnoea or apnoea are

prolonged and./or occur frequently. Narrowing of the upper airway and the resulting

increased resistance to airflow that occurs in obstructive sleep apnoea causes partial collapse

of a segment in the upper airway. Fluttering of the pharyngeal walls or the soft palate causes

snoring. Obstructive sleep apnoea is characterized by snoring and there is a spectrum from

occasional snorers through heavy, persistent snorers to the varying degrees of obstructive

sleep apnoea. These are the obvious and common characteristics of subjects with obstructive

sleep apnoea. There is however, a number of other changes seen in the patient with

obstructive sleep apnoea that may have far reaching consequences. Our unde¡standing of

obstructive sleep apnoea, and the apparent increased morbidity and mortality associated with

this condition, has led to a large body of research being undertaken to document the clinical

and physiological changes occurring that contribute to this increased morbidity and mortality.

Alterations in the cardiovascular and respiratory systems are most easily seen to contribute to

increased morbidity and mortality. Endocrine and neurologic effects have also been linked to

obstructive sleep apnoea. Hypersomnolence is the most coÍrnon complication of obstructive

sleep apnoea and this symptom has been linked to decreased cognitive function in this

population. Benaim et al (1992) reported an increase in mortality being associated with age,

those patients aged less than fifty years old were at greater risk of dying than patients with the

same severity of OSA aged greater than fifty years old. This finding has driven many

clinicians to target younger subjects with obstructive sleep apnoea for treatment.

The cardiovascular and respiratory changes that occur in subjects with obstructive sleep

apnoea will be considered first before a review of the reported complications associated with

these systems. These two systems are probably the most commonly affected by obstructive

sleep apnoea. There is also a high incidence of cardiovascular and respiratory disease within

the general community and the associated morbidity with chronic disease of either of these

systems may be increased by the development of obstructive sleep apnoea.

2.2 Cardiovascular Changes in Obstructive Sleep Apnoea

In non-apnoeic subjects a number of changes r-rccur in thc cardiovascular system during sleep.

These include alterations in the balance of the autonomic nervous system with decreased heart

rate due to increased parasympathetic and decreased sympathetic nervous system activity
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(Baust and Bohnert, 1969). There is also a decrease in systemic blood pressure which peaks

in NREM sleep at 80% of the awake pressure (Coccagna et al, l97I). In addition to these

changes there is increased myocardial tissue refractoriness which is circadian dependant.

This further contributes to the slowing in heart rate, delays atrioventricula¡ conduction and

prolongs the refractory period of cardiac muscle (Gillis and Flemons, 1994). The most

coÍtmon arrhythmia seen in non-apnoeic subjects are sinus bradycardia and sinus anhythmia'

A number of changes in the cardiovascular system have been noted in subjects diagnosed with

obstructive sleep apnoea s¡mdrome. In common with all changes to this system some are

related principally to the heart whereas others have their pathogenesis in the vascular system.

The haemodynamic changes occur in response to a combination of frustrated inspiratory

effort, hypercapnia, hypoxia and arousal at the cessation ofan apnoeic event.

A number of changes have been noted to occur only during apnoeic episodes. Obstruction

causes increased effort to inspire air against the obstruction and is associated with a decrease

in arterial blood pressure (Lea et al, 1990). Pleural pressure (the pressure in the apace

between the lungs and the chest wall) is reduced by the inspiratory effort. This increase in

negative intrathoracic pressure causes an increase in left ventricular afterload (Karam et al,

1984) and reduced left ventricular emptying. Clinically this is analogous to left-sided cardiac

failure. There is decreased left ventricular stroke volume and compromised cardiac ouþut

(Tolle et al, 1983) during apnoea. Associated with these changes is bradycardia caused by

increased vagal activity (Tilkian et al, 1978). Hypoxia has also been shown to contribute to

bradycardia (Zwillich et al, 1982). The bradycardia is related to the duration of the apnoea.

Gainer (1987) postulated that these hypoxic episodes may also contribute to the deposition of

atheromatous plaques in the walls of the large blood vessels.

ln addition to compromised left ventricular function, right ventricular workload has also been

noted to increase during apnoea. The venous return inc¡eases during an apnoeic event

because of the decrease in pleural pressure (Guyton et al, 1957), although this is probably

limited by collapse of the great veins (Natori eT al, 1979). Cardiac ouþut is adversely

affected because of decreased left ventricular compliance due to distension of the right

ventricle by the increased venous return (Tolle et al, 1983).

A documented association with obstructive sleep apnoea is a decrease in arterial oxygen

saturation during an apnoeic or hypopnoeic episode (Davies et al, 1993). This group of

investigators noted that the population of obstructive sleep apnoeic patients they were

studying was generally obese. They speculated underlying cardiovascular disease may be

associated with the obesity and this may simply be exacerbated by the obstructive sleep

apnoea not caused by it. Bradley (1992) reported pulmonary hypertension in association
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with OSA probably results from a combination of OSA, obesity and diffuse obstmctive

airways disease, a so-called overlap syndrome. Chaudhary et al (1984) also reported the

presence of pulmonary oedema, secondary to cardiac failure, in patients with obstructive sleep

apnoea.

Dunng apnoeic periods blood pressure has been noted to increase. Shephard (l 985) reported

an increase during apnoea of both the diastolic and systolic blood pressure of approximately

25%o, peal<tng at the cessation of the apnoea. The aetiology of this intermittent hypertensive

episode is likely to be sympathetically mediated and related both to increased heart rate and

increased peripheral vascular resistance. There has been reported a sympathetically mediated

tachycardia during arousal (Davies et al, 1993). Multiple studies (Briskin et al, 1978 and

Hedner et al, 1988) have shown that activation of the sympathetic nervous system plays an

important role in the systemic hypertensive response during apnoeic episodes of OSA

patients. lnterestingly, recent studies have not implicated OSA in the development of

daytime hypertension (Hedner et al, 1990; Hoffstein and Mateika, 1994; and Stradling and

Crosby, 1991). Left ventricular hyperfrophy, often found in patients with longstanding

hypertension and indicating cardiac compensation, has been demonstrated in patients with

obstructive sleep apnoea and no daytime hypertension (Hedner et al, 1990). Age and obesity

appear to be the factors correlated most closely with hypertension in this group of patients.

A large number of sleep apnoeic subjects have been noted to have cardiac arrh¡hmia

however there is disagreement in the literature as to whether there is a significantly increased

incidence in obstructive sleep apnoeic subjects. Greater than 75Yo of obstructive sleep

apnoeic subjects have been reported to demonstrate a sinus bradytachyarrhythmia

(Guilleminault et al, 1983). The pattern of these changes v/as as noted as an initial

bradycardia changing to tachycardia at the cessation ofan apnoeic event.

The development of cardiac arrhythmia is reportedly greater in patients with OSA than in

simple snorers. A large polysomnographic study of 458 consecutive patients found 1251214

(58%) of patients diagnosed with OSA also showed an arrh¡hmia compared with I03l2l4

(42%) of simple snorers (p<0.001) (Hedner et al, 1988). Hung et al (1990) reported an

association between obstructive sleep apnoea and myocardial infarction in men. A possible

cause of these myocardial infarctions is the anh¡hmia so coÍrmonly reported in this group of

patrents.

In contrast to these studies Flemons et al (1993) compared non-apnoeic controls with

obstructive sleep apnoeic subjects using Holter monitors and found no significant difference

in the prevalence of cardiac arrhythmias.
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2.3 Respiratory Changes in Obstructive Sleep Apnoea

The respiratory parameters of arterial carbon dioxide and oxygen partial pressure and

oxyhaemoglobin saturation have been reported to alter in "normal" individuals during sleep

White et al (1985) reported a fall in the arterial partial pressure of oxygen of 3 - l0 mm Hg

and a concomitant fall in arterial oxygen saturation of 2%o. They also reported an increase in

the arterial partial pressure of carbon dioxide of 2 - 8 mm Hg. The mechanism of these

changes has not been confirmed although they generally reflect a decrease in gaseous

exchange.

The most obvious alteration affecting the respiratory system during sleep in an obstructive

sleep apnoeic patient is repetitive distinct episodes of decreased airflow (hypopnoea) or

cessation of airflow (apnoea) of at least ten seconds duration. These events are often

associated with a greater Than2o/o decrease in arterial oxygen saturation. Lugaresi et al (1994)

measured intrathoracic pressures on obstructive sleep apnoeic subjects and found these

pressures are up to five times lower than that needed for quiet awake tidal breathing. This

causes high flow rates in the upper airway and as discussed in Chapter 1 increased flow rates,

particularly across narrorÃ/ areas of the airway may contribute to further narrowing or collapse.

Obesity, which is commonly associated with obstructive sleep apnoea, has been noted to

result in ventilatiorVperfusion mismatching (Tucker and Sieker, 1960). A mismatch of this

sort results when there is an area of lung that is perfused 'with blood but is not filled with air

during inspiration. Conversely a mismatch may occur, such as in pulmonary embolism,

when an area of lung is no longer perfused by blood but air is still causing the alveoli to

expand during inspiration. Obesity may contribute to the former ventilation/perfusion

mismatch scenario causing hypoxia. There may also be a decrease in lung oxygen stores and

therefore further impairment of ventilation, such as another apnoeic or hypopnoeic event may

cause more rapid oxygen desaturation.

This can be seen in any patient with pulmonary disease. Davila (1995) reported patients with

pulmonary disease desaturate faster during apnoeic events because of their position on the

oxyhaemoglobin dissociation curve (Figure 2.3-l). Further obstruction, either total or partial

would potentiate this desaturation. They would gradually move farther from the plateau

region of the curve with repeated obstructions, resulting in faster desaturation, thus

complicating their problems. There has also been reported a rightward shift of the

oxyhaemoglobin dissociation curve due to increased levels of 2,3-diphosphoglycerate

(Maillard et al, l99l). This substance is an intermediate in red blood cell synthesis and binds

preferentially to deoxyhaemoglobin. The levels of this intermediary are increased during
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acclimatization to altitude until erythropoietin stimulates increased production of

erythrocytes. The net effect is to make oxygen more readily available to the tissues. This

has been proffered as a possible mechanism however given patients with obstructive sleep

apnoea have a chronic condition it might be expected relative polycythaemia would be the

compensatory mechanism seen, although to my knowledge this has not been reported in the

literature.
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Figure 2.3-1 Oxyhaemoglobin dissociation curve

2.4 Hypersomnolence

Daytime sleepiness (hypersomnolence) is a common complaint of patients with OSA. The

incidence of reported hypersomnolence in a sample of the population varies from five to

twelve per cent (Bixler eI al, 1979; Klink and Quan, 1987; and Lavie, 1983)' Excessive

sleepiness is not restricted to people with obstructive sleep apnoea and simple sleep

deficiency will cause some degree of hypersomnolence in most people, varying with the

amount of sleep lost. The mechanism for excessive sleepiness in people with obstructive

sleep apnoea is reportedly microarousal at the conclusion of an apnoeic event. Guilleminault

et al (1995) reported normal subjects had a range ofarousal during sleep offive to fifteen per

hour. They also induced EEG arousal using auditory stimuli in a group of normal subjects.

These arousals lasted 1 1 seconds. They reported decreased sleep latency in this group
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(measured by multiple sleep latency test scoring) after one night of sleep fragmentation

without sleep deprivation.

Moldofsþ (1992) suggested dividing sleepiness into three broad categories:

1. Mild sleepiness

No involountary sleep, frequent yawning, impaired concentratìon with momentary

inattention, lapses in performing a vigilancè test or irritability.

2. Moderate sleepiness

Falling asleep against persons wishes whilst passively engaged in a sedentary activity.

3. Severe sleepiness

Involountary or unwanted sleep attacks when the person is engaged in some physical

actlvrty.

These grades ofsleepiness are one subjective system for classifying the degree ofsleepiness a

patient is experiencing based on history alone. Other clinical rating scales for sleepiness have

been developed, both self rating techniques and performance tasks. These tests may be

valuable in the assessment of patients when considering the initial diagnosis. They are widely

used by Sleep Physicians when determining the necessity for a polysomnographic sleep study.

An example of such a questionnaire is shown in Figure 2.4-1, the Epworth Sleep

Questionnaire.

More subjective testing of patients somnolence can be determined by the multiple sleep

latency test or the maintenance of wakefulness test which are both polysomnographic

procedures. The basis of the multiple sleep latency test is that the degree of sleepiness can be

measured by how quickly a subject will fall asleep if given the opporlunity to do so.

Typically a subject will be located in a quiet room and seated in a comfortable chair at various

times throughout the day. The patient is monitored and sleep latency is measured by the time

it takes for the subject to fall asleep This test is considered by many authors to be the gold-

standard for assessment of somnolence (Carskadon et al, 1986; Thorpy, 1992). The accepted

normal sleep latency is a time greater than ten minutes for sleep onset, moderate sleep latency

if sleep occurs between five and ten minutes of the test commencing and severe sleep latency

if sleep occurs within five minutes.
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How likely are you to doze off or fall asleep in the situations described below, in contrast to

feeling just tired?

This refers to your usual way of life in recent times. Even if you haven't done some of these

things recently, try to work out how they would have affected you.

Use the following scale to choose the most appropriate number for each situation:

0 : Would never doze

I : Slight chance of dozing

2 : Moderate chance of dozing

3 = High chance of dozing

Situation Chance of dozing

Sitting and reading Watching TV

Sitting, inactive in a public place (e.g. a theatre or a meeting)

As a passenger in a car for an hour without a break

Lying down to rest in the afternoon when circumstances permit

Sitting and talking to someone

Sitting quietly after a lunch without alcohol

In a car, while stopped for a few minutes in the traffic

A score above seven indicates increased somnolence and further sleep history and appropriate

investigation is indicated.

Figure 2.4-lEpworth Sleepiness Questionnaire (Adapted from Johns, 1991)

The maintenance of wakefulness test, as the name suggests, is a test of a subject's abilityto

remain awake. Subjects are monrtored and are seated in a comfortable chair in a dimly lit

room. The sleepiness of a subject is measured by how rapidly they fall asleep during the day

in surroundings conducive to sleep. Variations in sleep latency for normal subjects will vary

depending upon the definitions used to determine when the subject is sleeping. There is no

accepted standard across the literature. Doghramji et al (1997) considered this problem and

performed maintenance of wakefulness testing on 64 healthy subjects. They measured sleep

latency to onset of brief sleep and sleep latency to onset of sustained sleep. Brief sleep was

defined as a microsleep or onset of any stage of sleep. For their subjects they determined a

mean sleep latency of 18.1 +l- 3.6 minutes and a lower normal limit (two standard deviations
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below the mean) of 10.9 minutes for the onset of brief sleep. Using the criteria of sleep

latency to onset of sustained sleep they measured a mean sleep latency of 35 .2 +l- 7 .9 minutes

and a lower normal of 19.4 minutes. A drawback of these tests is that they are time

consuming and therefore costly to perform.

There is not a simple relationship between respiratory disturbance during sleep, as measured

by counting the number of apnoeic and hypopnoeic events per hour. A study by Young et al

(1993) reported nine per cent of women and 24%o of men aged 30 to 60 years had an RDI > 5,

although only 2%o of women anð 4%o of men had both a RDI > 5 plus self-reported excessive

sleepiness. They defined excessive sleepiness based upon patient history of excessive

sleepiness during the day on at least two days per week, waking up unrefreshed irrespective of

the time spent sleeping or the experience of uncontrollable daytime sleepiness that interfered

with daily living. This study suggests either an RDI of five is too low to be useful in

identifying subjects with excessive daytime sleepiness or there are additional mechanisms

actively contributing to hypersomnolence in a subgroup of the population with RDI > 5.

The clinical significance of hypersomnolence and the impact on survival of people suffering

obstructive sleep apnoea syndrome has been investigated with respect to motor vehicle and

industrial accidents. Gonzalez-Rothi et al (1988) compared the incidence of motor vehicle

accidents or near misses between a group of 78 subjects diagnosed with obstructive sleep

apnoea and 28 control subjects. They found 32%o of the apnoeic subjects had experienced

this situation compared withTo/o of the control group. Jennum et al (1993) reported more

strikrng results with 50 subjects admitting they fell asleep whilst driving and 54%o had

subsequently had an accident because offalling asleep.

Findley et al (1986) reported an association between driving performance and OSA, with

patients who were hypoxic (SaO2 < 90yo asleep and SaO2 < 75 mmHg awake) documented

with markedly delayed reaction times and difficulty maintaining concentration. 8/9 patients

in this study were classified as cognitively impaired and the degree of hypoxaemia was

significantly correlated with the degree of cognitive impairment in these patients.

Findley et al (1989) tested subjects on driving simulators and found untreated OSA patients

do significantly worse in both city and country driving. Treated these same patients show no

significant difference in driving ability from control subjects.

2.5 EndocrineDisorders

Atrial natriuretic peptide release is increased during apnoeic events, probably due to an

increase in atrial transmural pressure caused by decreased pleural pressure (Guyton et al,
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1957). The release of this peptide probably causes the sleeping natriuresis seen in untreated

obstructive sleep apnoeic patients (Krieger et al, l99l).

Another finding in many obese OSA patients is an increased fasting insulin level. Strohl

(1996) investigated the relationship between obesity, insulin level and OSA. Weight

matched obese control subjects (AHI < 5) have an insulin level 50% of that found in patients

with an AHI > 20. This finding is consistent with the elevated catecholamine levels found

during the day and increased nocturnal serum cortisol levels of OSA patients.

2.6 Neurologic Complications

Neurological disease is a contributing factor in a small number of cases of obstructive sleep

apnoea. A diverse range ofneurologic diseases have been associated with obstructive sleep

apnoea and the majority are postulated to interfere with the neural control of the muscles of

the upper airway, thus increasing the likelihood of partial or complete obstruction. Direct

spinal cord injury resulting in signs of obstructive sleep apnoea in four patients was reported

by Bonekat et al (1990).

Obstructive sleep apnoea has been suggested as an underlying cause of pulmonary

hypertension and failure to thrive in severely intellectually impaired children. Seid et al

(1990) reported on ten such children who were diagnosed with obstructive sleep apnoea but

did not have adenotonsillar hypertrophy, the most common cause of upper airway obstruction

in children. They performed surgery on the soft palate (uvulopalatopharyngoplasty) and also

the adenotonsillar lymphoid tissue and successfully treated the upper airway obstruction in ten

of the children. The cause of obstructive sleep apnoea in this group of children was thought

to be palatal hypotonicity and redundancy ofthe soft palate.

Amold-Chiari malformation is a condition where the cerebellar tonsils and associated

meninges (meningocele) or meninges and cord (meningomyelocele) herniate through the

foramen magnum and incompletely closed cervical spinal canal. This malformation may

rcsult in pressure being placed on the lower cranial nerves and associated vocal cord

obstruction. This mechanism has been reported as a cause of airway obstruction during sleep

(Holinger and Holinger, 197 6).

Shy-Drager syndrome usually presents with signs of autonomic dysfunction initially, before

progressing to develop other neurologic dysfunction within five years. This is syndrome is

an example of multiple system atrophy accompanied by autonomic failure. This syndrome is

associated with laryngeal dysfunction and it has been postulated may be a cause of obstructive

sleep apnoea in this group of patients (Kavey et al, 1989).
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Amyotrophic lateral sclerosis is the most common progressive motor neuron disease that

initially effects upper or lower motor neurons, but in the late stages of the disease most

patients exhibit signs of involvement of both systems. Degenerative lesions in the brainstem

and cerebellum may cause initial problems with chewing, swallowing, and movements of the

face and tongue. Other problems encountered may include autonomic deficits. Five of ten

subjects exhibiting these signs were found to have obstructive sleep apnoea (Chokroverty et

aI,1984).

Duchenne muscular dystrophy is an X-linked recessive disorder that has been associated with

sleep disordered breathing and obstructive events (Hill et al,1992). This disease is slowly

progressive and nocturnal disordered breathing associated with arterial oxygen desaturation

are late-stage events. Peripheral muscle weakness occurs first with progressive impairment

of respiratory muscles such that a cotnmon cause of death in the second decade is pulmonary

infection.

In the developed world polio is much less prevalent than in the past, however post

poliomyelitis syndrome has been implicated as a cause of obstructive sleep apnoea (Steljes et

al, 1990). There is impairment of respiratory muscle function in many of these patients.

Vocal cord wealness or hypotonicity of the muscles of the upper airway during sleep have

been implicated as the cause of obstruction (Bye et al, 1990).

Obstructive sleep apnoea syndrome may occur because of other pathologic processes or in

association with them. Not all of these diseases are life threatening, however there is a clear

association between obstructive sleep apnoea in people less than 50 years of age and

premature death, principally from cardiovascular causes. The cost to the person and

community of an probable increased demand on health services due to comorbidities

associated with obstructive sleep apnoea also needs to be considered when assessing the need

to manage a person with this condition. Most people suffering from obstructive sleep apnoea

are unaware of the potential seriousness of the condition and the possibility of decreased life

expectancy if it remains untreated.

Many patients with obstmctive sleep apnoea are overweight or obese. Most studies reporting

a link between cardiovascular complications and obstructive sleep apnoea do not mention

whether the obstructive sleep apnoea is causing the cardiovascular morbidity or whether

obesity is the main culprit. It is likely that the obstructive sleep apnoeic patient who is

hypersomnolent and lacks energy will tend to lead a sedentary life, thus increasing the

likelihood of increasing weight. The increase in weight may lead to increased fat deposition

in the pharyngeal walls, thus exacerbating the airway narrowing'

32



The hypersomnolent obstructive sleep apnoeic patient is also more likely to be involved in

motor vehicle accidents. This poses a threat not just to the patient but also those in the

community around them. There are no reports on the incidence of industrial accidents

associated with obstructive sleep apnoea however it is easily hypothesized this would be the

case based upon reports of increased motor vehicle accidents. The social and financial costs

of such accidents are not small and provide further evidence for the continued investigation

and management of obstructive sleep apnoea syndrome.
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Chapter 3

Imaging of the Upper Airway
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3.1 Anatomy of the Upper AirwaY

The definition of obstructive sleep apnoea syndrome is obstruction of the upper airway and

the presence of hypersomnolence and snoring (Thorpy, 1990). Research into the

pathogenesis of obstructive sleep apnoea syndrome has not surprisingly been most concerned

with upper airway anatomy in such patients. Comparison with non-apnoeic control subjects

who may or may not snore is the most commonly used control'

The upper airway may be divided into four anatomic areas for convenience:

1. the nose;

2. the nasopharynx;

3. the oropharynx; and

4. the hypopharynx.

Patency of these areas may be compromised by a number of anatomical and iatrogenic

alterations that may be of importance in patients with obstructive sleep apnoea. Knowledge

of the structure and function of the various components of the upper airway is important for

clinicians that consult patients with suspected or confirmed obstructive sleep apnoea

syndrome. The clinician must understand variations from normal and whether differences

noted may constitute a pathologic change, thus contributing to the incidence or severity of

obstructive sleep apnoea syndrome. Al1 examinations of patients suspected of suffering

obstructive sleep apnoea syndrome begin, as is usual, with a detailed history and clinical

examination with partìcular emphasis on the upper arrway.

3.1.1 Nose

The nasal cavity extends from the nostrils anteriorly, communicating with the external

environment to the posterior nasal choane posteriorly, communicating with the nasopharynx.

The nasal cavity is divided along its entire length by a septum, consisting of cartilage

anteriorly and bone posteriorly.

The nasal cavity is extensive in anteroposterior and vertical dimensions, but narrowed in its

lateral dimensions, especially superiorly where it lies between the orbits. The lateral nasal

wall has three projections into the nasal cavity, the superior, middle and inferior nasal

conchae. The area beneath these projections is called a meatus. The paranasal sinuses

(sphenoid, ethmoid, frontal and maxillary sinuses) all communicate directly with the nasal

cavtfy.
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The nasal airway serves not only as a valve for gaseous exchange but also modifies the

properties of inhaled air. The intemal surface area of the nose is large, covered superiorly by

olfactory mucous membrane and inferiorly by respiratory mucous membrane. The line of

demarcation is the superior nasal conchae.

The purpose of the ciliated columnar or cuboidal respiratory epithelium is to warm, moisten

and clean inspired air. There is a rich plexus of veins in the submucosal tissue that

accomplishes the warming process. These areas are best developed over the nasal conchae.

The respiratory epithelium also contains mucous secreting goblet cells and mucous glands.

The secretions moisten inspired air and also cause the surface of the nasal respiratory

epithelium to be sticþ. This traps inspired particles. Additionally hair is present which acts

to filter larger particles from inhaled air.

Hudgel (1992) proposed that three anatomic abnormalities of the nose might contribute to

upper airway obstruction. Firstly, nasal obstruction (with mouth closed) leading to an

obstructed airway. Secondly, nasal congestion and mouth breathing, with subsequent

posterior displacement of the mandible and attached soft tissues might narrow the

hypopharyngeal airway. Thirdly, nasal congestion producing turbulent airflow causes a large

inspiratory pressure drop across the nose resulting in potential collapse of the pharyngeal

airway due to negative pressures developed.

3.1.2 Nasopharynx

The nasopharynx extends from the posterior border of the nasal turbinates to a horizontal

tangent on the upper border of the soft palate. During breathing the position of the soft palate

is maintained by tonic activity of tensor veli palatini muscles and levator veli palatini (Tangel

et al, 1991). Tensor veli palatini arises from the uppff end of the posterior border of the

medial pterygoid plate (scaphoid fossa) and the lateral side of the cartilagenous auditory tube.

The muscle fibres converge and form a tendon that passes through buccinator muscle and

loops medially around the pterygoid hamulus. The tendons from the right and left sides join

to form the palatine aponeurosis. The motor supply is denved from the mandibular division

of the trigeminal nerve. Levator veli palatini arises anterior and medial to the carotid canal,

located on the petrous temporal bone and the adjacent cartilagenous portion of the auditory

canal. The muscle passes superiorly to the superior constrictor and inserts into the posterior

border of the palatine aponeurosis between the two heads of palatopharyngeus. The motor

supply arises from the pharyngeal plexus clerive<l from the glossopharyngeal and vagus

nerves.
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The posterior border of the nasopharynx comprises the superior constrictor. This muscle is a

thin sheet arising from the lower two thirds of the posterior border of the medial pterygoid

and from the posterior end of the mylohyoid line on the lingual side of the mandible.

Between the upper and lower origins fibres arise from the pterygomandibular raphe where

they meet fibres of buccinator muscle. The superior constrictor muscles are paired and meet

in the posterior pharyngeal wall at the pharyngeal ligament and raphe. Superiorly this

pharyngeal ligament inserts into the pharyngeal tubercle on the basilar part of the occipital

bone. The motor nerve supply to the superior constrictor arises from the pharyngeal plexus

ofnerves.

Hudgel (1,992) suggested the patency of this section of the upper airway could be

compromised by local mass lesions, such as lymphatic tissue, scarring secondary to surgery,

underdevelopment of the bony skeleton or enlargement of the soft palate musculature. The

enlargement of the soft tissue may result from oedema or hypertrophy. Lymphatic tissue

most commonly hypertrophied in the nasopharynx is the pharyngeal tonsil, or adenoid, which

is located beneath the mucous membrane lining the upper part of the posterior wall. Skeletal

malposition might presumably arise from underdevelopment or by retroposition of a normal

maxilla. This would effectively place the soft palate attached to the posterior maxilla closer

to the posterior pharyngeal wall.

3.1.3 Oropharynx

The oropharynx extends from the tangent on the upper border ofthe soft palate to the tip of

the epiglottis. The oral cavity opens into the oropharynx anteriorly through the

oropharyngeal isthmus, bounded on either side by the palatoglossal arch, formed by the

palatoglossus muscle. The palatoglossus muscle arises from the palatine aponeuorosis

laterally and is inserted into the side of the tongue. The left and nght muscles act to elevate

the posterior tongue and narrow the oropharyngeal isthmus. This occurs normally during

swallowing. The motor supply to this muscle arises from the pharyngeal plexus. A second

ridge of soft tissue lies posterior to the palatoglossal arch, the palatopharyngeal arch, formed

by the palatopharyngeus muscle. The palatopharyngeus muscle arises by two heads, one

attached to the posterior border of the hard palate and one from the posterior surface of the

palatine aponeurosis. They are separated by the insertion of levator veli palatini. The

muscle inserts into the posterior border of the thyroid cartilage and the inferior constrictor

muscle. The motor supply to this muscle arises from the pharyngeal plexus. This muscle

acts to elevate the larynx and pharynx or to depress the soft palate. The palatine tonsil is

located between these two soft tissue elevations. During inspiration these muscle contract

and dilate the oropharyngeal airway (Hudgel, 1992).
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The middle constrictor arises anteriorly from the stylohyoid ligament, the lesser cornu and the

upper border of the greater cornu of the hyoid bone. Similar to the superior constrictor the

fibres from each side converge in the midline posteriorly and form the pharyngeal raphe.

The upper fibres pass superficial to the lower fibres of the supenor constrictor, whilst the

lower fibres pass behind the inferior constrictor. As for the superior constrictor, the motor

supply arises from the pharyngeal plexus.

The tongue is a large muscle that lies in the oral cavity and the oropharynx. The size, tone

and position of the tongue influence the patency of the oropharyngeal airway. In addition

Hudgel (1992) has identified enlargement of the palatine tonsils or soft palate, by oedema or

hypertrophy, to be possible sources of anatomic narrowing of the oropharynx.

3.1.4 Hypopharynx

The hypopharynx extends from the tip of the epiglottis to the inferior border of the cricoid

cartilage. The tongue makes up the anterior wall of the hypopharynx. The muscles of the

tongue are divided into intrinsic and extrinsic groups. lntrinsic muscles determine the shape

of the tongue whilst the extrinsic muscle determine the position of the tongue. The

genioglossus is a midline muscle, ansing from the hyoid and extending into the body of the

tongue. The remaining extrinsic muscles (hypoglossus, styloglossus, chondroglossus and

palatoglossus) arise laterally and control tongue position. The hypoglossal nerve provides

motor supply to these muscles, with the exception of palatoglossus, which is supplied by the

pharyngeal plexus.

The position of the hyoid may alter the dimensions of the hypopharynx. When the muscles

attached to the hyoid bone contract to stabilize its position the muscles of the tongue and

pharynx can exert their effects. The muscles attached to the hyoid bone can be grouped as

suprahyoid and infrahyoid muscles. In addition to opposing one another and stabilizing

hyoid bone position the suprahyoid group elevate the hyoid bone whilst the infrahyoid group

depress the hyoid bone.

Hudgel (1992) identified macroglossia, mandibular retrognathia or posterior or superior

displacement of the hyoid as possible anatomic variations contributing to narrowing of the

hypopharyngeal airway.

In addition to the above factors obstructive sleep apnoea has complicated specific anatomic

abnormalities. These factors are listed in Table 3.1-1. This table lists anatomic

abnormalities that may affect the soft tissues such as an ectopic thyroid or lymphoma, the

hard tissues such as micrognathia or rheumatoid arthritis affecting the temporomandibular

joint or conditions that may affect both hard and soft tissue such as acromegaly.
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Table 3.1-1: Anatomic Abnormalities Complicated by Obstructive Sleep Apnoea (from Hudgel'
te92)

Anatomic Abnormalities Gomplicated by Obstructive Sleep Apnoea

Adenoid and tonsillar hypertrophy in children and adults

Glottic web

Vocal cord paralysis

Acromegaly

Lymphoma or Hodgkin's disease within the pharyngeal lymphoid tissue

Micrognathia of various causes

Ectopic thyroid

Upper airway radiation oedema or fibrosis

Retrognathia (congenital or secondary to trauma), inadequate repair of fractures

Systemic diseases involving the mandible e.g. RA

Correction of velopharyngeal incompetence in infants

Severe kyphoscoliosis

Cushings disease or syndrome

Hudgel et al (1988) also listed physiologic abnormalities reported in the literature that may

predispose to obstructive sleep apnoea (Table 3.1-2). These physiologic abnormalities may

arise due to impaired functioning of the nervous system such as epilepsy, hormonal changes

such as hypothyroidism or drug effects such as excessive use ofsedatives.

Table 3.1-2: Physiologic Abnormalities Predisposing to Obstructive Sleep Apnoea (from Hudgel,
re88)

Ph¡æiologic Abnormalities Predisposing to Obstructive Sleep Apnoea

Poliomyelitis, muscular dystrophy, amyotrophic lateral sclerosis and other diseases with bulbar
incoordination secondary to brain stem abnormalities

Acquired dysautonomia

Diaphragm pacing for primary alveolar hypoventilation

Hypothyroidism

Flurazepam and other sedative-hypnotic agents induced

Testosterone administration

Epilepsy

Encephalitis
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Fujita (1987) has proposed a classification system for the upper airway to allow easy

reference to the site of obstruction. He classified the level of upper airway obstruction into

four categories based upon visual inspection. Patients with Type I obstruction had an

oropharyngeal narrowing with a normal palatal arch. Type [Ia obstruction consisted of a

narrowing of the oropharynx coupled with a low palatal arch and relative macroglossia. The

hypopharyngeal airway was norïnal. Type trb obstruction occurred where both the

oropharynx and hypopharynx were narrowed. Type Itr obstruction involved narrowing of the

hypopharynx with a normal oropharynx.

Assessment of the upper airway to determine the site of obstruction has involved many

modalities. The inability to visualize the upper airway in three dimensions during an apnoeic

episode is the basic problem faced by all that investigate the patient suspected ofobstructive

sleep apnoea. Computer tomography scans and magnetìc resonance imaging are obviously

capable of producing three-dimensional images, however the problem lies in obtaining this

image during an obstructive episode.

Imaging of a patient during an obstructive episode is not easily obtained, particularly CT or

MRI imaging for a multitude of reasons. These include the requirement, particularly with

MRI for the patient to remain stationary during the imaging process for an extended period of

time (five minutes or more). Secondly many patients would find it difficult to sleep within a

machine. The patient would be unlikely to fall asleep in a position suitable for imaging, and

if they did would the position be similar to that usually assumed during sleep in their own

bed?

Imaging of the upper airway has been performed using direct visualisation, sleep

nasendoscopy, plain radiography, CT and MRI. No one imaging modality has been shown

conclusively to predict or demonstrate the site of obstruction.

3.2 Direct Visualisation

Direct visualization of the uppff airway has been attempted by a number of authors, however

distortion of the anatomy is a potential problem. The simplest method of direct visualization

is inspection of the oral cavity, including the soft tissues of the palate and tonsils. Direct

visualization is also used to assess the nasopharynx. The nose and nasopharynx are assessed

for septal deviation, turbinate hypertrophy and the presence of nasal polyps or masses.

Obviously this method of visual assessment has significant limitations, not least of which is

the limited segment of the upper airway seen. Inspiration also causes enlargement of the
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airway, therefore the clinician must be aware of the phase of respiration the patient is in when

assessing the patency of the upper airway.

Notwithstanding the above reservations regarding the efficacy of direct visualization of the

tissues of the oral cavity and soft palate this is an important examination when investigating

any patient with suspected upper airway obstruction. Gross anatomical abnormalities may

still be detected with this method of examination.

The nasal airway is little mentioned in the literature concerning obstructive sleep apnoea.

The nose may contribute significantly to upper airway resistance, reportedly up to one third of

upper airway resistance occurs in the nasal airway.

Deviation of the nasal septum (usually cartilaginous), hypertrophic nasal conchae, nasal

polyps from obstructed glands or other masses may obstruct nasal airflow. Patients

presenting for investigation of suspected obstructive sleep apnoea need these problems

rectified for two reasons. In some patients this may be therapeutic, in others it may improve

compliance with therapy such as nCPAP by decreasing the ventilatory pressures required.

Series et al (1993) reporled relief of airway obstruction may be accomplished by decreasing

the resistance in the nasal airway, especially in mild obstructive sleep apnoea patients or

snoring patients. The treatment may involve the use of nasal decongestants, steroids or

dilators or surgical correction of underlying anatomic anomalies.

Patients diagnosed with obstructive sleep apnoea and who are to be treated therapeutically

with nCPAP may also benefit from thorough examination and correction of underlying nasal

pathology. Lower pressures may be needed when titrating nCPAP thus potentially improving

patient compliance through greater comfort.

Examination of the oral cavity should be next on the clinical examination. Particular notice

should be taken of the soft palate, the width of the hard palate, the tonsils and the tongue.

Abnormal size of these structures has been variously reported as contributing to obstnrctive

sleep apnoea. Additionally, when examining the oral cavity and oropharynx, the patient will

open their mouth to maximum interincisal distance, a position of thcir jaws almost certainly

not achieved and maintained dunng sleep The effect of mouth opening utilizes muscles of

the tongue and upper airway, thus moving them from their position of rest.

Mallampati et al (1985) proposed a rating system based on the degree of visualization of the

tongue, tonsillar pillars, soft palate and uvula. This clinical rating divides patients into three

grades with an increased probability of snoring and obstructive sleep apnoea with increasing

grade. The assessment is made with the patient having a wide open mouth and extended

tongue (see Figure 3.2-l).
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l. Grade I allows visualization of the tonsillar pillars, soft palate and uvula with at least

5mm between the uvula and the tongue;

2. Grade 2 allows visualization of the tonsillar pillars and soft palate, but the tongue

base obscures the tip of the uvula;

3. Grade 3 allows visualization of the soft palate only.
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Figure 3.2-1 Grading of the oropharynx (after Mallampati)
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Differentiation must be made between an enlarged tongue or soft palate causing the

obstructed view of the uvula. Macroglossia may be evidenced by abnormal tongue thrusting

on swallowing, elevation of the tongue above the occlusal plane of the mandibular teeth or

obvious indentations on the lateral border of the tongue in dentate patients. Relative

macroglossia may occur in patients with a deficient maxilla, such as a person with trisomy 21

or with a deficient mandible.

Soft palate enlargement may only involve the uvula, alternatively there may be generalized

hypertrophy extending to include the posterior pillar of the fauces. Anatomic variation in

uvula length is marked, and a better estimation of the tendency for an enlarged uvula may not

be length but volume. A long, thin urula may well have its tip below the level of the tongue

and not visible on inspection of a patient with their mouth open. This pattern however is

unlikely to cause obstruction of the uppff airway, however a shorter uvula with increased

lateral or AP dimensions is more likely to effectively obstnrct the upper airway'

Identification of a problem with the soft tissue size of the tongue or soft palate by clinical

examination should be attempted and further investigated by diagnostic imaging where

appropriate. All patients with enlarged soft tissues are not obstructive sleep apnoeics, but

where a high index of suspicion is held it obligates the clinician to fully investigate the

patlent.

Adult pati'ents with obstructive sleep apnoea may have enlarged tonsils, however more

commonly the relative prominence of the tonsils is due to displacement of the tonsillar fossa

by lateral pharyngeal wall enlargement. This is most likely to be due to fat depositions in the

submucosal tissue. The presence or absence of tonsils in the obstructive sleep apnoea patient

treated by UPPP has not been reported of significance in the success or otherwise of this

treatment. It seems likely that the presence or absence of tonsillar tissue may not play a large

role in the development of upper airway obstruction, except in the case of obvious tonsillar

hypertrophy. The rationale for removal of tonsils that are prominent due to underlying

submucosal adipose tissue deposits lies in the difficulty in safely and effectively removing

this adipose tissue.

Clinical examination of the soft tissues of the posterior oral cavity obviously presents a

problem in patients who have undergone previous palatal ablation surgery for "simple

snoring" and are later diagnosed as obstructive sleep apnoeic patients.

Although many investigators have sought an anatomical basis for obstruction it is probable

that a functional element also exists. Hudgel and Hendncks (1988) suggested an additional

factor must be responsible when noting that at the conclusion of an apnoeic event there is

sudden opening of the upper airway. The airway resistance for the next few breaths is low,
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suggesting there is not a fixed anatomic narowing. He also noted that increasing the drive to

breath during sleep, such as increasing PaCO2, causes a reduction or complete elimination of

the ventilatory oscillations and apnoeas.

3.3 Nasendoscopy

Fibre optic nasendoscopy has been widely used in assessment of the upper airway (Crumley

et al, 1987; Skatvedt, 1993; and Woodson and Wooten, 1994). This modality has been used

in an attempt to visualize the upper airway of patients awake or asleep, upright or supine.

An early study using endoscopy by Crumley et al (1987) assessed patients post UPPP. Some

of these patients had failed to respond to surgery. The authors found the upper airway at the

soft palate was narrower antero-posteriorly than laterally. They also found the antero-

posterior dimension at the tongue base decreased in size when patients moved from an upright

to suprne posttron.

The authors compared these findings with those using cine-CT in awake and asleep patients

and found greater accuracy using this imaging modality. The reasons for this are principally

because the cine-CT scan could be done with the patients asleep, whereas the nasendoscopy

was performed with patients awake.

They concluded that endoscopic visualization of the uppff airway was incapable of predicting

failures from UPPP. The site of obstruction did differ in awake and asleep patients, with

asleep patients often obstructing at more than one site. This indicates that studies on awake

patients to identiff sites of airway narrowing may not correlate with sites of narrowing and

obstruction when asleep. There is also the added problem that more than one site of the

upper airway on some patients contributes to the obstructive events during sleep,

complicating the diagnosis of the site of obstruction and potentially its management.

Some investigators have utilised the Mueller manouwe in an attempt to precipitate upper

aìrway ohstruction in an awake patient. This manouwe has been postrrlate<l to reflect upper

airway compliance during wakefulness. These studies hypothesize the site of obstruction

produced correlates to that which occurs during sleep.

Blocking the external nares and asking the subject to inspire against this obstruction, keeping

the mouth closed throughout performs Mueller's manouwe. There is no movement of air

between the atmosphere and the upper airway but a closing pressure is produced within the

upper airway. The patient is usually in a seated position during performance of this

manouvre. Imaging, either direct or indirect, may then be used to assess the degree and

pattern of collapse.
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Skatvedt (1993) used fibreoptic nasopharyngoscopy and pressure measurements of patients

performing the Mueller manouwe and attempted to correlate these findings with manometric

measurements of obstruction during sleep. He found no correlation between the level of

obstruction during sleep as measured by manometry and the findings of measurement of the

waking Mueller's manouwe.

Skatvedt (1993) postulated Mueller's manouwe is not a satisfactory method of determining

the site of upper airway obstruction during sleep. Instead it can only identiff the degree and

orientation of upper airway collapse whilst awake. There is no certainty that the same pattern

ofobstruction occurs during sleep based upon these findings.

3.4 Manometry

Nasendoscopy has been combined with pressure measurements using a manometer. The

manometer measul'es pressure in the upper airway during sleep, and the authors used this

information to compare site of obstruction during sleep and site visualized by nasendoscopy.

SkaWedt (1993) reported that only 5120 palients had the same site of obstruction, or absence

of obstruction demonstrated with both methods. Significantly 12/20 patients failed to show

obstruction whilst awake with nasendoscopy, but did demonstrate obstruction whilst asleep

with manometry. These results reinforce those found by other authors that direct

measurement of the airway in awake patients may fail to detect obstruction that is present in

the sleeping subject.

Woodson & Wooten (1994) examined awake obstructive sleep apnoea patients upper airway

by clinical evaluation and nasendoscopy. An attempt was made to correlate findings at this

examination with findings of upper airway obstruction in the same group of patients with

manometry and videoendoscopy during sleep. When using manometry complete obstruction

must occur for registration, however the use of videoendoscopy allowed measurement of

severely narrowed upper airway that was not necessarily occluded.

The group consisted of 22 palients, on clinical examination 19 were classified as Fulita type

IIb (tongue base obstruction only). The other 3 patients were classified as Fujita type tra

with obstruction limited to the palate. Manometry found almost opposite results, with only 5

patients found to have initial obstruction at the tongue base. The remaining 17 patients had

no evidence of tongue base obstruction with either manometry or endoscopy, obstruction

being confined to the palate.
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This study is interesting for the different measures of obstructive episodes found at different

times during the respiratory cycle. The following are the incidence of sleeping tongue base

obstruction objectively measured by this study:

1. Manometric early inspiration 5121 Qa%);

2. Manometric late inspiration ll/21(52%);

3. Endoscopic late inspiration 14119 (74%); and

4. Endoscopic expiration 8ll9 (42%).

These results indicate that for both methods of objective measurement variations are found

depending upon the phase of the respiratory cycle the measurement is taken. No attempt was

made by the authors of this study to determine which measurements are physiologically or

clinically signifi cant.

The authors found the only characteristic found on physical examination that correlated with

tongue base obstmction during sleep was near total collapse of the tongue base on supine

endoscopy. Importantly they found no correlation between Muellers manouwe and tongue

base collapsibility during sleep.

Shepard and Thawley (1990) utilized manometry to determine the effect of body position,

sleep state and UPPP on the regions over which the upper airway collapses during sleep.

They studied 18 obese (BMI 37+/-2 k{m2 range 25 - 48 kglm2) patients with an AflI 62+l-

8/h.

They found the region of collapse remained constant throughout the night for a given sleep

state and body position. During NREM sleep 10/18 (56%) had collapse of the

nasopharyngeal segment only, whilst in 6/18 (33%) collapse extended into the oropharynx.

In only 2ll8 (11%) was collapse initiated in the oropharlmx.

The area of collapse was found to alter according to the sleep stage. 719 (78%) had collapse

of their upper airway extend caudally dr.rring REM sleep.

Only 2ll0 patients had alteration of site of obstruction following change of position from

supine to the lateral cubitus position.

This study reinforces the fact that obstructive sleep apnoea may be due to collapse of multiple

segments of the upper airway. It also shows that nasopharyngeal collapse of the upper

airway cannot always be satisfactorily treated with UPPP.
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3.5 Somnofluoroscopy

Other imaging modalities have been used in an attempt to identifli patients who may respond

to UPPP for treatment of obstructive sleep apnoea. Katsantonis and Walsh (1986) utilized

somnofluoroscopy to record the airway whilst patients were undergoing polysomnography.

This study demonstrated five different pattems of airway collapse:

1. oropharyngeal initiation propagating into the hypopharynx;

2. hypopharyngeal initiation propagating into the oropharynx;

3. nasopharynx only;

4. oropharynx only; and

5. hypopharinx only.

These results obviously differ from the previous study of Shepard and Thawley (1990) who

used rnanometry to assess the location of upper airway collapse. Katsantonis and Walsh

(1986) also report that20126 (77%) of had upper airway obstruction corresponded with the

narrowest site of the upper airway. They also report an obstructive event generally

corrunences at the end of the expiratory phase of respiration, this is in contrast to Woodson &

Wooten (1994) who found with endoscopy only 42o/' of patients obstructed at this phase of

the respiratory cycle.

3.6 CT and MRI

CT studies in awake apnoeic and non-apnoeic patients have been performed to assess the

changes in upper airway shape that occur during normal respiration (Schwab, Gefter,

Hoffman et al, 1993; Schwab, Gefter, Pack et al, 1993). Four distinct changes in airway

dimensions have been described during the respiratory cycle.

There is an increase in upper airway volume at the beginning of iuspiratiou, presumably due

to the action of dilatory muscles. During the remainder of inspiration the volume of the

upper airway remains relatively constant, postulated to represent equilibrium between the

upper airway dilator muscles and negative intraluminal airway pressure tending to cause

collapse of the airway. Airway volume increases again at the beginning of expiration to its

maximum size. During this time the¡e is a change from negative intraluminal pressure to

positive intraluminal pressure. The end of expiration sees the airway collapse to varying

degrees, no longer being maintained open by intraluminal pressure or the action of dilatory

muscles.
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The conclusion intuitively reached from these studies is that the upper airway is most

vulnerable to collapse at the end of expiration.

Kuna et al (1983) utilised cine-CT and Mueller's manouvre in their study of upper airway

collapse on awake patients. They found obstructive sleep apnoea patients upper airway's

collapsed in a lateral to medial direction with this manouwe, whilst control patients upper

airway's collapsed in an antero-posterior direction.

A study using MRI by Schwab et al (1995) compared 21 subjects with obstructive sleep

apnoea (AHI>I5 events/h), 21 subjects who snored and/or had mild obstn¡ctive sleep apnoea

(AHI<I5 events/h) and2l normal subjects (AHI<3 eventslh). These subjects were not age or

weight matched with significant differences (p<0.0001) between all groups for both BMI and

age. Patients with obstructive sleep apnoea were older and significantly heavier than either

other group.

This study found the airway was narrower in the apnoeic patient, and that this narrowing is

predominately in the lateral direction. There were no signifrcant differences in A-P upper

airway dimension between the apnoeic and normal patients. In apnoeic patients the spatial

orientation offat in the subcutaneous tissues ofthe pharynx differs from control subjects, as

does the volume of fat jn the lateral and posterior pharyngeal walls. Interestingly there was

not an increased amount of fat at the site of airway narrowing, indicating that this fat is

probably not causing compression of the upper airway alone. The authors also measured the

distance between the mandibular rami of apnoeic and control subjects and found no

significant difference between the two groups.

CT has also been utilized to allow three-dimensional viewing of the upper airway. Studies

using this modality necessitate the patient is awake, and again the effect of sleep on the upper

airway cannotbe directly assessed using this method. Shephard et al (1990) compared l7

obstructive sleep apnoea patients with 13 controls (not age or weight matched) by CT imaging

and assessment of airway collapsibility by way of continuous negative airway pressure

(CNAP). They found no evidence of excessive fat around the airway of either group,

although the obstructive sleep apnoea patients had BMI of 36+l-2kd^'. They found the

minimum airway cross sectional area was located in the velopharyngeal segment in and 16/17

(94%) of obstructive sleep apnoea patients 12113 (92%) of controls. The authors found no

difference in the collapsibility of the airway between the two groups. CPAP at 1Ocm of H2O

increased the minimum airway cross sectional area in the obstructive sleep apnoea and control

groups 59%o and 62%o respectively. They measured this area at 0, +10 and -5cm of H2O, with

the minimum upper airway cross sectional area being 36 - 41% smaller at all pressures in

obstructive sleep apnoea patients compared with the controls.

48



Lowe et al (1995) used CT to evaluate the airway of 80 patients with obstructive sleep apnoea

and compared them with 25 controls not matched for age or weight. The measure of upper

airway volume found significantly larger tongue volume (p<0.000), soft palate volume

(p<0.000) and upper airway soft tissue volume (p<0.001) in the apnoeic population. These

authors concluded increased BMI probably accounted for the difference in these soft tissue

measurements between the two groups.

3.7 Lateral Cephalometry

Cephalometry is the most widely reported method of imaging the upper airway of patients

with obstructive sleep apnoea. A lateral cephalometric radiograph is widely used by oral and

maxillofacial surgeons in treatment planning for orthognathic surgery and by orthodontists

prior to treatment. Compared with a CT of the upper airway a lateral cephalometric

radiograph is low cost and exposes the patient to a small radiation dose.

The advantages of using a lateral cephalometric radiograph include:

L Longitudinal comparison is possible, thus allowing time based analysis of natural or

therapeutically induced changes in craniofacial anatomy;

2. Comparison of the size and shape of craniofacial structure among different

individuals is possible in a reproducible and quantifiable manner.

3. Comparisons of relative size, shape and position of anatomic structures within the

same individual as in the counterpart analysis.

The major disadvantage of a lateral cephalometric radiograph is its two-dimensional

representation of a three-dimensional structure (Hans and Goldberg, 1993). Many studies

have been performed using these radiographs to determine if meaningful conclusions may be

drawn from them about the three-dimensional structure of the UAW from this two

dimensional image. Figure 3.7-l shows an example of a lateral cephalometric radiograph.
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Figu re 3.7 -l Later al cep halom etric radiograph
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Gender and racial variation in the incidence of OSA and the cephalometric measures of the

upper airway and facial skeleton have been reported (Lee et al, 1997; Lowe et al, 1996;

Redline et al, 7997). African-American, Hispanic and Caucasian subjects, both male and

female, had cephalometric variables compared by Lee et al (1997). Racial differences were

found with the cephalometric measures of maxillary and mandibular anteroposterior position

in male subjects. African-American subjects had a more prognathic maxilla than Hispanic or

Caucasian men, whilst African-American men had a more prognathic mandible than

Caucasian counterparts. There were no racial differences in cephalometric measures between

women. Gender differences were reported between Caucasian men and women. The

women were found to have a significant difference in the length of the soft palate, the

distance from the hyoid bone to the mandibular plane and the width of the posterior nasal

space at the level of the tongue. The study did not specif, whether these distances were

increased or decreased in Caucasian women compared to Caucasian men. Lowe et al (1996)

separated subjects on the basis of skeletal pattern (Classl, tr or Itr) and gender. They found

female subjects with obstructive sleep apnoea had increase soft palate and tongue dimensions

compared to an homologous control group, but no difference in skeletal measurement on

lateral cephalometnc radiographs. Redline et al (1997) compared African-Americans with a

Caucasian population. They found the African-American population with an increased RDI

were younger and concluded that young African-Americans may be at increased nsk for

obstructive sleep apnoea.

Other studies have been published in the literature reporting differences in some craniofacial

measures from lateral cephalometric radiographs in other racial groups when compared to a

Caucasian population. Differences have been found in Japanese (Alcade et al, 1998; and

Miyajima et al, 1996), Chinese (Cooke and Wei, 1988; Shen etal,1994) Korean (Parket al,

1989) and African-American (Lee et al, 1997; and Redline eT al, 7997).

Despite a large number of studies reported in the literature regarding lateral cephalometric

radiographs and obstructive sleep apnoea, direct comparison between studies is often difficult.

Many studies purport to measure the same parameter e.g. pharyngcal airway width but use

different landmarks. Some studies use control subjects who are age and/or weight matched,

other studies use controls not matched for these parameters. Yet other studies use no control

subjects at all.

The more severe the obstructive sleep apnoea the greater the number and severity of

abnormalities measured (deBerri-Borwiecki et al, 1988). Another finding from this study is

the tendency for obstructive sleep apnoeic patients to have a retrognathic, dolichofacial

(elongated) appearance with a narrowed postenor alrway space.
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Pracharktam et al (1994) suggested there is a mismatch between the head form and the facial

form of obstructive sleep apnoea patients. They found most obstructive sleep apnoea patients

in a small sample had brachycephalic (round-short) head, leptoproscopic (long-narrow) form

whilst controls were randomly distributed.

A large study by Lowe et al (1996) of 347 obstructive sleep apnoea patients and 101 controls

divided the subjects into groups according to the Angle Classification. They found some

parameters to be significantly different for all obstructive sleep apnoea patients irrespective of

the occlusal relationship of the teeth. The signifrcant measurements are generally for soft

tissue parameters such as soft palate length and thickness and tongue length. lnterestingly

they found the obstructive sleep apnoea patients with an Angle Class I relationship had a

significantly smaller maxilla and a significantly smaller and more posteriorly positioned

mandible than contr<¡l subjects with the same occlusal relationship. Other authors have found

similar results (Battagel and L'Estrange, 1996)

These findings of bimaxillary retrusion are compatible with an Angle Class I relationship if
the anterior cranial base length is also reduced. The patients with an Angle Class II

relationship had a significantly smaller maxilla than control subjects with the same occlusal

relationship. This latter group also had a significantly narrowed velopharyngeal and

oropharyngeal upper airway compared with control subjects. These findings are consistent

with the evidence that when considering abnormalities of cephalometric measurements on

obstructive sleep apnoea patients the skeletal proportions must also be examined.

Tsuchiya et al (1992) proposed, on the basis of measurements made from lateral

cephalometnc radiographs for 84 obstructive sleep apnoea patients and 18 control subjects,

that two distinct groups of obstructive sleep apnoea patients exist. The first, more numerous

group of patients are characterized by soft tissue abnormalities. The second group is

characterized by skeletal abnormalities. These authors further analysed the two groups of

patients and found those with predominately soft tissue abnormalities had a high BMI and low

apnoea index. Conversely, a low (or normal) BMI and a high apnoea index characterized

those patients with skeletal abnormalities. Partinen et al (1988) also supported this hypothesis

in their published results.

Hoffstein et al (1991) and Pracharktam et al (1994) have considered the upper airway

anatomy on cephalometric radiographs in the supine and upright position. They did not find

any signifìcant differences in the cephalometric analysis of upright and supine patients.

In contrast Ono et al (1996) reported neck extension and anterosupenor movement of the

hyoid bone in obstructive sleep apnoeic subjects with a Class I malocclusion. Yildirim et al

(1991) measured the dimensions of the upper airway on subjects with obstructive sleep

I
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apnoea and a control group without evidence of sleep disordered breathing. They found in

all subjects the retropalatal airway became narrower on changing position from upright to

supine, whilst the retroglosssal (oropharyngeal airway) space increased anteroposteriorly. A

follow-up study conducted by the same group (Douglas et aL, 1993) measured the effects of

breathing and posture on the activity of the genioglossus muscle. They found the

genioglossus had increased EMG activity supine compared with sitting in subjects with

obstructive sleep apnoea and control subjects without sleep disordered breathing. They did

not conclude that the increased genioglossus activity results in increased retroglossal space

because other muscles attached to the hyoid may also be involved. The possibility is raised,

however, that the genioglossus may act alone or in concert with other regional muscles to

position the tongue and hyoid anterosuperiorly, accounting for the increase in retroglossal

airway space noted on cephalometnc radiographs. They postulated the increased EMG

activity was due to the effects of gravity on the tongue mass, causing a reflex increase in tone.

Pae et al (1994) also compared lateral cephalometric radiographs taken upright and supine on

subjects with obstructive sleep apnoea and a control group. They found significant

differences between the two groups, both in terms of which dimensions altered and the degree

to which they changed. In obstructive sleep apnoeic subjects the retropalatal anteroposterior

dimension of the upper airway is significantly decreased when supine, as reported by Yildirim

et al (1991). There was no significant change in this dimension in the control group.

Interestingly there was a significant increase in soft palate thickness in the control group when

supine which was not evident in the obstructive sleep apnoeic group. Similarly the

obstructive sleep apnoeic subjects had a significantly decreased retroglossal (oropharyngeal)

airway space when supine. This dimension did not change in the control group when

cephalometric radiographs taken upright and supine were compared. Tongue cross-sectional

area was correspondingly increased in obstructive sleep apnoeic subjects when supine, but not

in controls. Oropharyngeal airway space was decreased significantly in both groups when

supine, and did not differ significantly between the two groups. In the control group the

hyoid was found to be anterosuperiorly displaced on changing from an upright to supine

position. No such movement was demonstrated in the obstructive sleep apnoeic goup.

Loube et al (1995) measured soft tissue variables on upright lateral cephalometric radiographs

on obstructive sleep apnoea patients and control patients at different phases of the respiratory

cycle. They found no significant differences in soft tissue measurements during inspiration

or expiration in obstructive sleep apnoea patients or control subjects. They did however note

that the length of the soft palate was significantly greater in obstructive sleep apnoea patients

than control subjects.
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The absence of teeth has also been reported to alter some parameters measured in the

assessment of obstructive sleep apnoeic subjects. Tallgren et al (1983) reported the

craniocervicofacial changes that occurred in the twelve months, as measured by lateral

cephalometric radiograph, following the extraction of all teeth and provision of full dentures'

These subjects were not investigated for the presence or absence of symptoms related to

obstructive sleep apnoea. They found a mean increase in the distance from the cervical spine

to the hyoid bone, suggesting this was due to upward and forward rotation of the mandible.

The eighteen patients had no uniform change in head posture or cervical column posture.

Individual patients with pronounced autorotation of the mandible did show a coresponding

retroclination of the cervical column and decrease in the craniocervical angle.

Many authors have attempted to determine what influence, if any obesity plays in the upper

airway structure of patients with obstructive sleep apnoea. Mayer et al (1996) studied 120

consecutive patients investigated for sleep disorders (94 obstructive sleep apnoea and 46

simple snorers) and found for all patients BMI significantly correlated with AHI at the 5Yo

level. They also found the shape of the uppû airway in awake subjects is more dependant on

BMI than the AHI. When subjects were divided upon the basis of BMI and age, they found

only those with a BMI < 27 kglm2 or less than 52 years old had significantly different upper

airway anatomy. This study therefore concluded upper airway changes visible on lateral

cephalometric radiographs or CT scan, in obstructive sleep apnoea patients, are independent

of BMI.

Neck circumference has also been measured in a number of studies at the level of the

cricothyroid membrane (Davies et al, 1992; Davies and Stradling,7990;Katz et al, 1990; and

Hoffstein and Mateika,1992). Neck circumference has been compared to BMI as a predictor

of incidence and severity of obstructive sleep apnoea. Davies et al (1992) used neck

circumference corrected for height and reported this to be a better predictor of the presence of

obstructive sleep apnoea than obesity alone as measured by the BMI. They studied 150

patients by questionnaire, polysomnography, BMI and neck circumference. They found a

significarrt correlation between neck circumference correctcd for height and obstructive sleep

apnoea (r2 : 0.38).

This is in direct contrast to a similar study by Ono et al (1996) who examined 61 obstructive

sleep apnoea patients and 10 control subjects and found a significant correlation (at the 5%

level) between BMI and AHI. Lowe et al (1995) and Zucconi et al (1993) have also

suggested a relationship between BMI and upper airway findings. These authors also found a

significant correlation between BMI and neck circumference in all patients. The division of

patients into groups according to neck circumference (presumed to be an indicator of obesity)

was reported by Ferguson et al (1995). On the basis of their results they proposed three
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groups of patients, agreeing with Tsuchiya et al (1992) but adding an intermediate group of

patients with some craniofacial abnormalities and intermediate neck circumference (obesity).

The frnding of an increased neck circumference in many subjects with an increased AHI and

who are obese suggests there may be a relationship between these three variables (Katz et al,

le90).

The use of neck circumference as a measure of obesity has been compared to the use of

abdominal obesity. There are conflicting findings over which measure is a more reliable

predictor of obesity, particularly related to subjects with obstructive sleep apnoea. Hoffstein

and Mateika (1992) found that both measures were significantly increased in subjects with

obstructive sleep apnoea compared with non-apnoeic controls. When apnoeic and non-

apnoeic subjects were matched exactly for BMI and age neck circumference had a greater

predictive capacity for obstructive sleep apnoea. Grunstein et al (1993) reported waist

circumference to be a better predictor of obstructive sleep apnoea than neck circumference or

BMI. They concluded from their findings that the relationship between obesity and

obstructive sleep apnoea cannot be explained by fat deposition in the neck alone.

Neck circumference was also been reported to be increased in a population of snoring subjects

without evidence <¡f obstructive sleep apnoea compared to non-snoring control subjects

Zamarron et al, 2000). Davies and Stradling (1990) concluded that variation in neck

circumference was likely to be of primary importance in determining the relationship between

general obesity, hyoid position, soft palate length and OSA. Using multiple stepwise

regression analysis they found only neck circumference and retroglossal space were

independently significant correlates with decreases in arterial oxygen saturation during sleep.

Nelson and Hans (1997) studied 142 habitual snorers with and without evidence of apnoeic

activity. They found obesity to be an independent variable important in increasing apnoeic

activity. Furthermore they found the largest predictor of apnoeic activity in nonobese

subjects to be tongue length, followed by middle cranial fossa alignment and age. Obese

individuals had an increased mandibular plane to hyoid bone distance as the most reliable

predictor, followed by tongue length. This paper suggests different variables measured from

a lateral cephalometric radiograph may be of importance when considering obese and

nonobese subjects.

This realization may necessitate the use of different cephalometric norms when comparing

obese and nonobese patients for obstructive sleep apnoea indicators using lateral

cephalometric radiographs. This practice is tamiliar f'or surgeons and orthodontists involved

in the practice of surgical correction of dentofacial deformities. Different norrns are used
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when comparing, for example, Caucasian and south east Asian people cephalometrically

dunng workup for orthognathic surgery.

Attempts have been made to correlate cephalometric and demographic data to produce a

predictive model of patients suffering obstructive sleep apnoea. Battagel et al (1996) derived

two four variant discriminant models we¡e derived, both of which accurately predicted the

presence of obstructive sleep apnoea. The first model used the whole population and used

BMI, S-N, soft palate thickness and soft palate area. The second model used only those

subjects suffering obstructive sleep apnoea with a BMI < zskglr# , soft palate area, soft

palate thickness and the intermaxillary space. If this model or one similar were to be

developed it would greatly assist the identification of patients suffering obstructive sleep

apnoea who may not otherwise be recognised.

From the preceding review of the literature it is obvious there is no consensus on the most

appropriate investigation to visualize and identify the point of upper airway obstruction on

patients with obstructive sleep apnoea. The conflicting findings between many groups using

the same modality also point to possible problems with landmark identification, patient

positioning and an understanding of the mechanism of upper airway collapse.
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Chapter 4

Errors in Lateral CephalometrY
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4.1 Introduction

Analysis of radiographs to diagnose and plan treatment as well as assessing treatment

outcomes underpins a large volume of orthodontic and surgical literature. The ability to

reproducibly duplicate radiographic records on the one patient, or on a group of patients

allows meaningful comparison to be made between patients based upon the radiographic

record.

The lateral cephalometric radiograph is widely used in the orthodontic and oral and

maxillofacial surgery specialties. This radiograph is a cost effective way of imaging the

dentoskeletal and soft tissue profile of a living subject, unlike other forms of imaging. Cross-

sectional studies, such as this study, are possible because of the ability to obtain the

radiograph with each patient in an identical, reproducible head position.

Brodie (1955) noted the lateral cephalometric radiograph permitted either cross-sectional or

longitudinal (serial) evaluation of cranial changes. Brown (1965) noted the use of

measurements based upon the lateral cephalometric radiograph were only useful if errors of

estimation do not affect the true angles and distances measured.

Houston (1983) and Buschang (1987) divided errors associated with the measurement and

interpretation of information from lateral cephalometric radiographs into two broad

categorles:

l. Systematic error; and

2. Random error.

Systematic etrors can be minimized by standardizing equipment and technique (Brown et al,

1970) as they are introduced by observer and equipment bias. Observer bias most commonly

arises because of unconscious weighting of the data obtained from the radiograph in order to

support the hypothesis proposed by the researcher.

Random etrors arise as chance events. Such events may arise because of incorrect

positioning of the patient or the film in the cephalostat or inaccurate landmark identification

due to poor film quality or equivocal landmark definition.

Gravely and Murray-Benzies (1974) proposed an alternate classification of cephalometric

errors related specifically to cephalometry. Projection errors were said to arise from

inaccuracies inherent in recording a three dimensional object (the skull) as a two dimensional

image. The projection error varied according to the distance from the landmark to the film.
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Tracing errors were said to arise from incorrect landmark identification and etrors in the

measurement of landmark distances and angles.

Battagel (1993) described the following as potential differences that may arise when

comparing two groups of individuals using lateral cephalometric radiographs:

1. Between group - real differences between the samples;

2. Between individual - representing biological variation; and

3. With-in individual - representing the measurement error.

Obviously differences in group one and group two may be differences that are relevant to the

investigation being undertaken and therefore are often not a result of error. What must be

minimized in these groups is error associated with either concluding there is a difference

when in fact no significant difference exists, or conversely failing to identify a significant

difference between groups or individuals when one exists.

The third group of errors must be minimized or the study becomes irrelevant. The sources of

measurement error when considering lateral cephalometric radiographs can be divided into

six broad categories:

1. Errors ofprojection;

2. Errors of landmark identification;

3. Errors of digitizing;

4. Errors of measurement,

5. Errors attributable to operator variability; and

6. Errors of superimposition.

A variety of methods have been used in an attempt to overcome these inaccuracies, and these

will be discussed in the following sectrons.

4.2 Errors of Projection

Projection erors may arise from misalignment of the x-ray source, the cephalostat, the film or

the subject (Ahlqvist et al, 1983; Carlsson, 1967; and Eliasson et al, 1982).

Projection errors associated with lateral cephalometric radiography rù/ere defined by Carlsson

(1967) as "those arising in the projection of the skull, and including the enlargement,

departures from parallelity between the median and film planes, especially when the patient is
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fitted on the cephalostat, deviations on the position of the focus in relation to an imaginary

line tll'ough the ear rods, and geometric unsharpness due to the area of focus."

Baumrind and Frantz (19712) also proposed "foreshortening of distances between points lying

in different planes and by radial displacements of all points and structures not on the principal

axis" were an addition source of projection error due to film distortion.

Positioning of the patient accurately within the cephalostat and correct loading of the film

cassette are thus seen to be critical in minimizing the projection error. Both Carlsson (1967)

and Ahlqvist (1986) have quantihed the degree oferror.

Carlsson (1967) found that whilst errors of projection occurred, these errors were small in

relation to the total error of the method.

Ahlqvist et al (1986) concluded from theoretical calculations that head rotation in the

cephalostat +\- five degrees results in an error less than 1olo. Head positioning greater than

five degrees from ideal results in a much greater error, however they noted that rotations of

this magnitude should be obvious to the alert radiographer and thus corrected prior to film

exposure.

A nunrber of other authors (Houston et al, 1986; Midtgard et al,1974; and Solow, 1966) also

concluded that projection errors should not be statistically significant if the lateral

cephalometric radiograph is taken carefully by an experienced radiographer.

4.3 Errors of Landmark ldentification

Landmark identification has been discussed widely in the literature and may be a source of a

number of errors, both systematic and random.

Random eïrors on lateral cephalometric radiograph interpretation relate to either to inaccurate

landmark measurement or poorly defined landmarks leading to ambiguity in their

identification (Baumrind and Frantz,l97la; Brown et al,7970; Chate, 1987; Houston, 1983,

Midtgard etaL,1974; van der Linden, l97l; Vincent and West, 1987)'

The source of random error associated with landmark identification has been most commonly

found to result from imprecise landmark identification and inaccurate landmark definition

(Broch et al, 1981; Chate, 1987; and Houston, 1983). These authors, amongst others

(Baumrind and Frantz, l97la; Miller and Baumrind, 7973; and Savage et al, 1987) have

encouraged more precise landmark definition to minimize these errors. When considering

the literature of lateral cephalometry related to OSA there is even more va¡iation in landmark

definitìon with respect to the soft tissue of the upper airway than in conventional landmark
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use.

definition of lateral cephalometry for orthodontic, anthropologic and orthognathic surgical

In conventional lateral cephalometry, the bony landmarks menton and pogonion, despite

precìse landmark definition, are in fact highly variable in location. This relates to the fact

these points are located on a geometric shape (the mandibular symphysis) that may alter

according to the horizontal reference plane and the degree of jaw opening (Moyers and

Bookstein, 1979).

Inaccurate landmark identification has been reported to result in an average error of

magnitude five times that ascribed to errors of measurement (Savara and Takeuchi, 1979). A

characteristic pattern of error associated with landmark identification has been described by a

number of authors (Baumrind and Frantz, l97la; Broch et al, 1981; and Richardson, 1966).

Broch et al (1981) concluded "the reliability of the landmark identification depends on five

factors:

1. Characteristics ofthe cranial structures;

2. The general quality of the head plate;

3. Blurring of the anatomical structures caused by secondary radiation or movement

during exposure;

4. Precise landmark recording; and

5. The accuracy ofthe operator.

The use of radiopaque liquids swallowed by the patient prior to exposure of the radiographic

film has been used to enhance the visibility of soft tissue landmarks.

Cooke and Wei (1991) used retaken radiographs on2212 year-old children to determine the

error in landmark identification between x number of points. They reported the error

percentage for both dentoskeletal and soft tissue measurements was doubled, on average, on

retaken radiographs compared with repeat measurements on the same radiograph.

They found, in common with other cephalometric studies, that landmarks in the midsagittal

plane had the least variation in error. On renreasured radiographs the landmarks producing

the greatest method error (>l rnm or 1o) were variables including Go, incisor long axes and

the functional occlusal plane. On retaken radiographs the greatest method elTors were for P-

ANS and any measurement involving the Frankfort horizontal plane.

Miles et al (1995) reported significant error in the identification of the vertical position of the

soft palate resulted in errors of measurement of soft palate length. This study used three

separate investigators measuring landmarks commonly identified in the OSA literature one
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week apart on 20 randomly selected radiographs and l0 superior quality radiographic films.

ANOVA indicated most other landmarks could be reliably identified.

4.4 Errors of Digitizing

The digitization of radiographic landmarks is also used in a bid to improve the accuracy of

cephalometric radiographs. The only source of error associated with the measurement of

landmarks by digitizing is landmark identification (Bergin et aL,7978; Broch et al, l98l and

Richardson, 1981).

Broch et al (1981) replicated the co-ordinate system when digitizing and found the error was

no greater than 0.03mm in either the x or y axes. A similar magnitude of error was reported

by Savage et al (1987).

Richardson (1981) compared the accuracy of cephalometric measurements using a digitizer

and traditional methods. He found little difference in accuracy between the two methods.

The major source of recording error has been reported as point identification (Houston et al,

1986; Sandler, 1988), and this remains a constant problem irrespective of the method of

recording the points.

Cohen (Igg4) and Sandler (1988) have found the accuracy of point identification is little

affected by direct digitization or the use of an intermediate tracing stage prior to digitization'

4.5 Errors of Measurement

Digitizing cephalometric radiographs has almost eliminated measurement errors (Bondevik et

al, l98l;and Broch et al, 1981). Double determination of points on a lateral cephalometric

radiograph and digitizing both series followed by calculating the mean of the points has been

suggested as the best method of eliminating the measurement error (Baumrind and Frantz,

l97la;1971b).

l. Dahlberg's Statistic

Using this method, proposed in i940 by Dahlberg, measurements of a single point are

repeated on each radiograph for each of a series of patients. This measurement is compared

and the standard deviation of each of the repeated measurements from its own pair mean is

calculated. The formula for this measure of error ts:

S(error):
2N
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Se is the standard deviation of the difference of each of the two measurements from their

mean; d is the difference between the first and second measurement; and n is the number of

radiographs recorded.

2. Chebib and Burdick's Method

This method describes the error associated with a single variable using a number of repeated

measurements. This is represented mathematically as:

2s

k

e is the expected error associated with each measureinent; s is the standard deviation of the

error of each measurement; and k is the number of times each point is measured-

The Dahlberg and Chebib and Burdick equations are mathematically related. When

radiographs are digitized twice the use of Chebib and Burdick's method approximately halves

the error reported compared with the use of Dahlberg's equation.

3. Houston Estimate of Random Error

This estimate is described as the variance of the difference between repeated measurements.

Mathematically the equation derived is identical to that described by Dahlberg'

4. Bjork's Quotient

Described in 1947 this method uses repeat measurements to compare the standard error of the

mean differences alrd the mean differences themselves. This method is based upon the

assumption that for a difference to be significant it must be three times the standard error of

the measurement.

5. Houston's Estimate of Systematic Error

Houston separates systematic and random error, unlike Dahlberg and Chebib and Burdick.

Houston used a one sample t test between a number of repeated measurements and examined

them at the 10% level ofsignificance.
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4.5.1 The Co-efficient of Reliability

The reliability of a measurement assessment may also be used to express the accuracy of a

measurement. Midtgard et al (1974) related the error between two separate measurements

and the variance of the landmark measurement in the sample population.

4.5.2 Confidence Limits

A confidence limit rvithin which a measurement lies can be determined by the product of the

Dahlberg statistic and a value of t dependent upon the level of probability chosen and the

number of the sample. The 95%o confidence level is that most frequently chosen, the t value

is obtained from the 0.05 level of significance column in a standard t table.

Battagel (1993) analyzed 246 radiographs using the above methods and determined that

mathematically the Dahlberg statistic is the most accurate means of evaluating measurement

error. The limiting factor in using the Dahlberg statistic only is its inability to take into

account the proportionate size of the error in relation to the measurement itself. The use of

the coefficient of reliability as proposed by Midtgard was found to be useful, provided its

limitations are also recognized. These limitations are most apparent in studies with a small

population with large differences in the indices measured. Widening the scope of the study

increases the variance and improves the coefficient of reliability. In a study with widely

disparate samples this may not be helpful, and breaking the population into subgroups, such

as by Angle Classification may improve the relevance of the coefficient of reliability.

Trpkova eT al (1997) used meta analysis to identify the accuracy of localization of

cephalometric landmarks in the x and y plane. This analysis was also used to determine

which landmarks were most easily and accurately identified and therefore which landmarks

are most likely to be useful landmarks when comparing results between studies. Fifteen bony

landmarks commonly quoted in the literature when referring to the cephalometric radiograph

were assessecl.

The results showed that an acceptable error when plotting any of these landmarks was 0.59

mm total error for the x co-ordinate and 0.56 mm total error for the y co-ordinate.

Earlier, Midtgard et al (1974) digitized landmarks on tracings of 25 lateral cephalometnc

films and found the variance of the error as a percent of the total variance was less than three

per cent for four of seven distances. Distances from nasion to point A and nasion to point B

were found to exceed this variance and it was attributed to difficulty in landmark

identification.
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Errors of measurement are increased for points not located on the midsagittal plane due to

magnification. Bergersen (1980) measured these errors using lateral and frontal

cephalometric radiographs. He found errors in all measured planes did not exceed seven per

cent and formulated tables to allow compensation for these errors.

4.6 Intra-observer and Inter-observer Variability

Differences in landmark identification has been determined by having a single person trace

and identify points on a lateral cephalometric radiograph on two separate occasions and two

or more people trace and identify points on the same lateral cephalometric radiograph. The

former is used to determine intra-observer variability whilst the latter measures inter-observer

variability.

Errors have been found both intra-observer (Solow, 1966; Stabrun and Danielsen, 1982) and

inter-observer (Baumrind and Frantz,lgTlb' Stabrun and Danielsen, 1982; Vincent and West,

1937). These studies suggest that intra-observer error is generally less than inter-observer

effors. Savage et al (1987) and most other authors ascribe this finding to different

interpretation of landmark location.
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Chapter 5

Lateral Cephalometric Examination of the Upper Airway - Hard

Tissue
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5.1 Introduction

The use of lateral cephalometric radiographs in the assessment of the skeletal relationships

and the soft tissue profile is well established. The lateral cephalometric radiograph is easily

obtained and there are well defined landmarks that can be identified and measurements taken

to allow comparison of skeletal and soft tissue position. These measurements are easily

compared with known norrns for a particular population. Oral and Maxillofacial surgeons

and fthodontists routinely utilise these radiographs in diagnosis and planning of procedures

for patients undergoing treatment for a skeletal based malocclusion.

One of the difficulties in the surgical management of the obstructive sleep apnoea patient is

determining the site of upper airway obstn¡ction. The lateral cephalometric radiograph has

been utilised by a large number of investigators in attempts to measure differences in position

of reliable skeletal and soft tissue landmarks. If there are significant differences in skeletal or

soft tissue position between obstructive sleep apnoea patients and controls with out

obstructive sleep apnoea it has been postulated a lateral cephalometric radiograph may

identify the areas of significance.

A large number of authors have used lateral cephalometric radiographs to assess the skeletal

and soft tissue dimensions in the obstructive sleep apnoeic patient. Unfortunately not all

studies have utilised the same anatomic points to measure these dimensions. Direct

comparison between many of these studies is therefore difficult.

The literature concerning the assessment of the skeleton and upper airway on subjects with

obstructive sleep apnoea has been reviewed. The results of this review will be presented by

anatomic area. The skeletal components of the cranium, facial bones and cervical spine that

are usually assessed from lateral cephalometric radiographs are the cranial base, the maxilla,

mandible and the inter-relationship between these two structures, facial height, bony

pharyngeal dimensions, dental measurements and the cervical spine. Linear and angular

measures can be taken for many of these structures and will be presented under the

appropnate sectlon.

5.2 Cranial Base

The cranial base serves as the superior attachment for the muscles of the pharynx posteriorly

and anteriorly serves as the upper extent of the facial skeleton. Obstructive sleep apnoea, as

mentioned in Chapter 3, has been associated with various craniofacial anomalies and it has

been suggested by Shprintzen (1992) and Glander and Cisneros (1992) that the apnoea may

be associated with cranial base abnormalities.
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The anterior cranial base extends from nasion anteriorly at thejunction ofthe nasal bones and

nasal process of the frontal bone to sella, the midpoint of the pituitary fossa in the sphenoid

bone. The posterior cranial base extends from sella anteriorly to basion at the anterior

margin of foramen magnum. Other points have been identified on the cranial base and used

in cephalometric studies of subjects with obstructive sleep apnoea and are fully described in

the glossary.

A number of authors have measured the length of the anterior and posterior cranial base and

found the length to be significantly shorter in obstructive sleep apnoea subjects. Andersson

and Brattstrom (1991); Bacon et al (1989); Battagel and L'Estrange (1996); Sakakibara et al

(1999), Tangugsorn et al (1995a); and Zucconi et al (1993) reported obstructive sleep apnoea

patients had a significantly shorter anterior cranial base. Sakakiba¡a et al (1999) found no

significant difference in the length of the anterior cranial base between obese obstructive

sleep apnoea subjects and controls. Zucconi et al (1993) reported no significant difference

between obstructive sleep apnoea subjects and non-snoring controls, howeve¡ there was a

significantly shorter anterior cranial base in obstructive sleep apnoea subjects when compared

with snoring controls. Other authors have found no significant difference in anterior cranial

base length (deBerry-Borowiecki et al, 1988; and Strelzow et al, 1988).

The posterior cranial base is less commonly decreased in length in obstructive sleep apnoea

subjects (Andersson and Brattstrom, 1991; and Tangugsorn et al, 1995a). Sakakibara et al

(1999) also considered this parameter and found no significant difference in lengfh between

any ofthe groups studied.

Other linear measurements of the cranial base have reported by a few authors. deBerry-

Borowiecki et al (1988) measured the length of the anterior portion of the anterior cranial

base. They found no significant difference in this length between obstmctive sleep apnoea

subjects and controls. This group of authors also measured the distance from sella to

articulare and found no difference between obstructive sleep apnoea subjects and controls.

This dimension was also measured by Sakakibara et al (1999) and no difference was found

between any group of subjects.

The total length of the cranial base, from nasion to basion has been found signihcantly

decreased by Sakakibara et al (1999) only between obese and non-obese obstructive sleep

apnoea subjects. This length was also significantly shorter in the population studied by

Tangugsorn et al (1995a) and Zucconi et al (1993).

Overall the literature indicates the cranial base may be shorter anteroposteriorly in obstructive

sleep apnoea subjects when compared to control populations.
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Table 5.2-1 records the authors and the linear measurements of the cranial base. Definitions

of the landmarks used may be found in the glossary.

Table 5.2-1: Cranial Base - Linear Measurements

S-N S-Ba N-SC Ar'S N'Ba

Andersson et al (1991)

Bacon et al (1989)

Battagel et al (1996)

deBerry-Borowiecki et al (1988)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Zucconi et al (1993)

Zucconi et al (1993)

AvsC
AvsC
AvsC
AvsC

A1 vsC
A2vsC
A1 vs A2

AvsC
AvsC
AvsC
AvsS

0.001 0.001

0.01

0.01

U

U

U

U

U

U

U

U

U

U

U

0.001

0.001

0.01

NS

0.001

NS

0.001

NS

0.001

NS

0.05

0.01

1

NS

NS

0.00

NS

NS

NS

NS NS

NS

NS

NS

A: obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S : snoring, non-apnoeic subjecl; Al = non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 Low

apnoea index / High BMI

The angular measurements of the cranial base are determined by the angle between three

landmarks, a plane with true horizontal or vertical planes or by the angle between two planes.

The angular measures formed by landmarks are the angle between nasion - sella - basion (N-

S-Ba) or the angle between nasion - sella - articulare (N-S-k). The plane sella - nasion

may be compared to a true vertical plane (SN/Ver) whilst the Frankfort Horizontal may be

compared to a true horizontal plane (FH/Hor). The angle formed by the intersection of the

planes sella - nasion and Frankfort Horizontal are also compared. A final angle formed by

the planes of the middle cranial fossa can be measured from a lateral cepahalometric

radiograph.

The cranial base angle (N-S-Ba) has been found to be significantly more acute in patients

with obstructive sleep apnoea compared with control subjects (Andersson and Brattstrom,

1991; Battagel and L'Estrange, 1996; Steinberg and Fraser, 1995). This finding however,

has not been duplicated in all populations studied (Bacon et al, 1989; deBerry-Borowiecki et

?1, 1988; Hochban and Brandenburg, i994; Johns et al, 1998; Lyberg et al, 1989a;

Pracharktam eT al, 1994; Pracharktam el al, 1996; Sakakibara et at, 7999; Tangugsom et al,

1995a; and Zucconi et al, 1993).
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A divergent facial skeleton, as measured by the angle between the cranial base and Frankfort

Horizontal has been reported in some studies (deBerry-Borowiecki et al, 1988; and Lyberg et

al, 1995a). Mayer and Meier-Ewert (1995) and Strelzow et al (1988) did not find this

comparison significantly different in thei¡ population. The angulation of the Frankfort

horizontal compared with true horizontal was not found significantly different in obstructive

sleep apnoea subjects studied by Pracharktam et al (1994).

Pracharktam et al (1994) reported obstructive sleep apnoea subjects had a retruded mandible

as measured by MCF, a relationship between the jaws and the nasion-sella line. This was not

supported by their research conducted in 1996 (Pracharktam et al, 1996).

The inclination of the anterior cranial base relative to true vertical has been measured by

Sakakibara et al (1999) and Tangugsom et al (1995a). The latter authors found a

significantly steeper anterior cranial base inclination as measured by this angle in obstructive

sleep apnoea subj ects. The former group reported no significant difference in anterior cranial

base inclination as measured by this parameter.

Table 5.2-2 records the authors and the angular measurements of the cranial base.

Definitions of the landmarks used may be found in the glossary. Figure 5.2-1 shows the

measurements of the cranial base diagrammatically.

Table 5.2-2: Cranial Base - Angular Measurements
',|

rrJ

:
Ba-S-N SN/FH N-S-Ar MCF FH/Hor SN/Ver

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

Andersson et al (1991)

Battagel et al (1996)

deBerry-Borowiecki et al
(1 e88)
Hochban et al (1994)

Johns et al (1998)

Lyberg et al (1995a)

Mayer et al (1995)

Pracharktam et al (1994)

Pracharktam et al (199fi)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Steinberg et al (1995)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Zucconi et al (1993)

Zucconi et al (1993)

AvsC
AvsC
AvsC

AvsC
AvsS
AvsC
AvsC
AvsS
AvsS

A1 vsC
A2vsC
Alvs A2

AvsC
AvsC
AvsC
AvsC
AvsS

0.01

0.01

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

0.0001

0.01

NS

0.045 NS

0.05

NS

NS

NS

NS

NS

NS

0.01

A = obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S = snoring, non-apooeic subject; Al = non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 t-ow

apnoea index / High BMI
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Figure 5.2-1 Cranial base cephalometric measures
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5.3 Maxilla

The maxilla is a paired bone consisting of a body and four processes. The body is hollow,

forming the maxillary antrum and roughly pyramidal in shape. The base of the pyramid lies

anteriorly and the apex lies caudally. The superior surface of the body of the maxilla forms

part of the floor of the orbit. The medial surface of the maxilla forms part of the lateral nasal

wall. The anterior surface forms the external surface of the maxilla whilst the posterior

surface of the maxilla forms the anterior wall of the infratemporal fossa.

The maxilla has four processes that arise from the body. The frontal process projects

upwards to articulate with the frontal bone. These processes form part of the medial orbital

wall, the lateral nose and the nasal bridge behind the nasal bones. The zygomatic process of

the maxilla projects laterally to form the anterior portion of the zygomatic arch. This

process articulates with the zygomatic bone, which forms the central portion of the zygomatic

arch. The palatine process is a horizontal bony shelf that projects medially to articulate with

the palatine process of the contralateral maxilla. The two palatine processes form the anterior

two thirds of the palate. The maxilla, like the mandible, has an alveolar process that develops

with the eruption of teeth and is resorbed following the loss of teeth. Thus the vertical height

of the maxilla will vary depending upon the presence or absence of teeth.

The anterior nasal spine is a midline structure formed by the left and right maxillae. It is

located immediately inferior to the anterior nasal aperture. The posterior nasal spine is a

similar structure located at the posterior extent of the bony palatine processes of the maxilla.

Both these structures provide landmarks useful in cephalometry.

The absolute length of the bony maxilla can be measured from the posterior nasal spine to the

anterior nasal spine or to point A, the point of maximum concavity on the anterior maxilla

below the anterior nasal spine. The cephalometric studies that consider thìs measurement are

not conclusive regarding a difference between obstructive sleep apnoea subjects and controls.

Andersson and Brattstrom (1991); deBerry-Borowiecki et al (1988); Lowe et al (1996);

Pracharktam et al (1994); Sakakrbara et al (1999); Strelzow et al (1988); Tangugsom et al

(1995a); and Tsuchiya et al (1992) found obstructive sleep apnoea subjects had a decreased

anteroposterior length of the maxilla. In contrast Johns et al (1998); Lowe et al (1995);

Lyberg et al (1989a); Mochizuki et al (1996); Pracharktam et al (1996); and Zucconi et al

(1993) found no difference in maxillary length. Interestìngly obstructive sleep apnoea

subjects who had a lateral cephalometric radiograph taken supine dicl not have a decreased

maxillary length, but did when the same subject was radiographed upright (Lowe et al, 1996).

No explanation or theory was offered as to the aetiology of this finding. The most likely

r'l
!l
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explanation would be an observer error in location of the landmarks on the maxilla used to

define the length of the maxilla. All obstructive sleep apnoea subjects in this study with a

Class III dental malocclusion had no significant difference in maxillary length when measured

from a supine or upright radiograph. Sakakibara et al (1999) found no significant difference

between obese obstructive sleep apnoea subjects and controls, or between obese and nonobese

obstructive sleep apnoea subjects. Tsuchiya et al (1992) reported low AHVhigh BMI

subjects did not have a significantly shorter maxilla than a control population, and there was

no significant differerrce in maxillary length between the two obstructive sleep apnoea groups.

Bacon et at (1989) found obstructive sleep apnoea subjects in their population had a

significantly shorter face measured anteroposteriorly compared with a nonsnoring control

population. Table 5.3-1 records the authors and the linear measurements of maxillary

position. Definitions of the landmarks used may be found in the glossary.

Table 5.3-1: Maxilla - Linear Measurements

ANS-PNS Dc-A PNS-A

Andersson et al (1991)

Bacon et al (1989)

deBerry-Borowiecki et al (1988)

Johns et al (1998)

Lowe et al (1995)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996)ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1995a)

Mochizuki et al (1996)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Zucconi et al (1992)

Zucconi et al (1992)

AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsS
AvsS

A1 vsC

A2vsC
Alvs A2

AvsC
AvsC
A3vsC

A4vsC
A3 vs 4.4

AvsC
AvsS

U

U

U

U

U

U

S

U

S

U

S

U

U

U

U

U

U

U

U

U

U

U

U

U

U

0.01

0.001

NS

NS

0.002

NS

0.031

NS

NS

NS

NS

0.01

NS

0.05

NS

I
I
I

I

0.001

NS

NS

0.05

0.01

0.05

NS

NS

NS

NS

NS

0.05

A = obstructive sìeep apnoea subject; C: non-snoring, non-apnoeic subject; S = snoring, non-apnoeic subject; Al = non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 l-ow
apnoea ìndex / High BMI
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The position of the maxilla, particularly in its anteroposterior dimension is of interest because

of the postulate that a retrognathic maxilla may contribute to obstruction of the upper airway

at the level of the soft palate. The simplest measure of the anteroposterior position of the

maxilla is in relation to the cranial base. The maxilla was found to be retrognathic in

obstructive sleep apnoea subjects by deBerry-Borowiecki et al (1988); Hochban and

Brandenburg (199Ð; Strelzow et al (1988) and Tsuchiya et al (1992). The majority of

authors who have considered this parameter have not demonstrated significant retrognathia

(Bacon et al, 1989; Johns et al, 1998; Lowe et al,1'995; Lyberg et al, 1989a; Maltais et al,

1991; Mayer and Meier-Ewert, 1995; Mochizuki et al,1996; Ono et al,1996; Pracharktam et

aL,7996; Sakakibara etal,l999;Tangugsornetal, lgg5a;Zucconietal,1992;andZucconiet

al, 1993). Tsuchiya et al (1992) reported a significantly retrognathic maxilla in a subgroup of

obstructive sleep apnoea subjects with a high AHVlow BMI. The maxillary depth, measured

by comparing the inclination of a line from nasion to point A relative to Frankfort horizontal,

was not significantly different between obstructive sleep apnoea subjects and controls

(Hochban and Brandenburg, 1994).

The effective anteroposterior dimension of the maxilla can be quantified by measuring the

angle between the palatal plane and the vertical line from the sphenoethmoidal junction

through the pterygomaxillary fissure (Pracharktam et al, 1994). The palatal plane was

significantly rotated counter clockwise in obstructive sleep apnoea subjects compared with a

control population. Thìs indicates a significantly shorter effective dimension of the maxilla

in obstructive sleep apnoea subjects.

The maxillary angulation has also been considered relative to horizontal planes, either the

cranial base (sella - nasion) or Frankfort horizontal. Hochban and Brandenburg (1994) have

reported a dorsocaudal rotation ofthe palatal plane relative to the cranial base in obstructive

sleep apnoea patients. This means the maxillary length is effectively decreased. Bacon et al

(1989) and Lowe et al (1996) did not find this angle to differ significantly in obstructive sleep

apnoea populations studied. Interestingly Hochban and Brandenburg (1994) did not find a

difference in palatal plane inclination relative to Frankfort horizontal.

The angulation between the postenor wall of the maxilla and the constructed cranial base Ar-

N was considered by Pracharktam et at (1994) and Pracharktam et al (1996). ln the first

study this angle was more obtuse in obstructive sleep apnoea patients, indicating a more

cautlal position of the posterior naxilla in this group. The second study failcd to dcmonstrate

a significant difference in this dimension between obstructive sleep apnoea subjects and

controls.
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Table 5.3-2 records the authors and the angular measurements of maxillary position'

Definitions of the landmarks used may be found in the glossary. Figure 5.3-l shows the

cephalometric measurements of the maxilla.

Table 5.3-2: Maxilla - Angular Measurements

SNA A-P SN/ANS-PNS lnclination

Bacon et al (1989)

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Johns et al (1998)

Lowe et al (1995)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1995a)

Maltais et al (1991)

Mayer et al (1995)

Mochizuki et al (1996)

Ono et al (1996)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Zucconi et al (1992)

Zucconi et al (1993)

AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsC
AvsS
AvsS

A1 vsC

A2vsC
Alvs A2

AvsC
AvsC
A3vsC
A4vsC
A3 vs A4

AvsC
AvsS

U

U

U

U

U

U

S

U

S

U

S

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

NS

0.018

0.05

NS

NS

NS

NS

NS

NS

NS

NS1

0.053

NS

0.02

NS

NS

NS

NS

NS

NS

N52

0.014

NS

NS

NS

NS

0.05

NS

0.05

NS

NS

NS

NS

N54

A = obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S = snoring, non-apnoeic subject; A1 = non-obese

obstructive sleep apnoea subject; A2 = Obese obslructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 l-ow

apnoea index / High BMI

I FII./NA; 2 ANS-PNS/FH; 3 ANS-PNS/PM; 4 Ar-N/PM
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Figure 5.3-1 Maxillary cephalometric measures
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5.4 Mandible

The mandible is an unpaired bone consisting of a horizontal body and two vertical rami. The

body is U-shaped when viewed axially whilst the rami are flared laterally and longer

anteroposteriorly than mediolaterally. A projection superiorly from the ramus, the condylar

neck is crowned with the articular element of the mandible, the condyle. A bone projection

from the anterior superior border of the ramus, named the coronoid process, serves as the

mandibular insertion of the temporalis muscle. Similar to the maxilla, the mandible also has

an alveolar process that forms the bony support for the dentition.

Investigators seekrng a possible anatomic pathologic basis for obstructive sleep apnoea have

extensively studied the size of the mandible and its position relative to other craniofacial

structures

The length of the mandible has been considered in totaliþ-, measuring from the mandibular

condyle to the mandibular symphseal region. Andersson and Brattstrom (1991) report the

total length of the mandible is significantly shorter in patients with obstructive sleep apnoea

compared with control subjects. This finding rÀ/as not reported in other studies that measured

total mandibular length (Bacon et al, 1989; Johns et al, 1998; Lyberg et al, 1989a; and

Tangugsorn et al, 1995a).

The conventional understanding of mandibular length from a cephalometric radiograph is in

an anteroposterior direction, measured from the gonion, or angle of the mandible to the

symphysis anteriorly. This length has been measured significantly shorter in obstructive

sleep apnoea subjects by a number of authors (Andersson and Brattstrom, 1991; Battagel and

L'Estrange, 1996; Lowe eT al, 7996; Sakakibara et al, 1999; Strelzow et al, 1988; Tangugsorn

et al, 1995a; Zucconi eT al, 1992; and Zucconi et al, 1993). Other obstructive sleep apnoea

populations have not had a signifìcantly shorter mandibular body when compared with a

control group (deBerry-Borowiecki et al, 1988; Lowe et al, 1995; Lyberg et al, 1989a; and

Tsuchiya et al, 7992). A number of different landmarks have been used as anterior and

posterior limits for this linear measurement on the mandibular body.

Lowe et al (1996) found the mandibular body was significantly shorter in only one group of

obstructive sleep apnoea patients - those with a class I dental malocclusion who had an

upright cephalometric radiograph. Sakakibara et al (1999) found no significant decrease in

mandibular length in any obstructive sleep apnoea patient when measured from gonion to

menton. Using the same population and measuring mandibular length the same study

reported a decrease in mandibular length when measured from gonion to retrognathion. This

decreased mandibular length was found in nonobese obstructive sleep apnoea subjects
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compared to controls and to obese obstructive sleep apnoea subjects. Tangugsorn et al

(1995a) reported no significant decrease in mandibular body length from gonion to

prognathion, however pogonion was significantly more caudal in obstructive sleep apnoea

subjects than controls when measured from nasion perpendicular.

The vertical height of the ramus of the mandible is increased in some populations (deBerry-

Borowiecki et al, 1988; and Strelzow et al, 1988). Lowe et al (1995) and Sakakibara et al

(1999) did not find this dimension significantly different in any of the groups studied. The

height of the anterior mandible has also been reported to be significantly increased in subjects

with obstructive sleep apnoea when measured from the tip of the lower central incisor to the

lower border of the mandibular symphysis (Andersson and Brattstrom, 1991).

Pracharktam eT a\ (1994) and Pracharktam et al (1996) considered the ratio between the

ramus width anteropostenorly and the length of the middle cranial fossa. They found the

ramus width to be significantly smaller in the obstructive sleep apnoea population in the

earlier study and suggested this measurement confirmed a smaller dimension of the

oropharyngeal airway at this level.

Table 5.4-1 records the authors and the linear measurements of mandibular position.

Definitions of the landmarks used may be found in the glossary.
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Table 5.4-l: Mandible - Linear Measurements

Total AP Vertical -
Anterior

Ramus Proportion

Andersson et al (1991)

Andersson et al (1991)

Battagel et al (1996)

Battagel et al (1996)

deBerry-Borowiecki et al
(1 e88)
deBerry-Borowiecki et al
(1 s88)
Johns et al (1998)

Lowe et al (1995)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1995a)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Tangugsorn et al (1995a)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Zucconi et al (1992)

Zucconi et al (1992)

Zucconi et al (1993)

Zucconi et al (1992)

AvsS U

AvsC U

AvsC U

AvsC S

AvsC U

AvsC S

AvsC U

AvsC S

AvsC U

AvsC U

AvsC U

A1 vsC U

A2vsC U

A1 vsA2 U

A1 vsC U

A2vsC U

A1 vsA2 U

AvsC U

AvsC U

AvsC U

AvsC U

A3vsC U

A4vsC U

A3vsA4 U

AvsC U

AvsC U

AvsS U

AvsC U

AvsC
AvsS
AvsC
AvsC
AvsC

AvsC U

u 0.01

U

U

U

U

0.001

0.0024

0.0025

N52

N55

Hei ht

0.0206

0.056

0.053

NSl

N57

N57

N52

o.oo42

N52

N52

N52

N52

N52

N58

N54

N54

N54

0.00110

NSlO

0.00110

0.052

0.055

NS8

0.0511

N52

N52

NS2

0.052

0.054

0.012

0.054

0.01s

N59

NS

N56

N56

N56

A = obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S: snoring, non-apnoeic subject; Al = non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject; A3 High apnoea index / l¡w BMI; A4 t¡w
apnoea index / High BMl.

lCd-Gn;2Go-Gn;3Id-Gn;4Go-Me;5Go-B;6Ar-Go;7Ar-Pg¡;8Go-Pgn;9Ram/MCF;l0G-VL;llPg

Angular measurements of mandibular landmarks can be used to describe the anteroposterior

relationship of the mandible to other craniofacial structures. The simplest of these is an
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angular measure between the cranial base (sella - nasion) and point B on the anterior

mandible. This angle may be influenced by the angulation of the cranial base, but is

nevertheless commonly used when analysing mandibular position from cephalometric

radiographs.

Angle SNB has been found by a number of authors to be more acute in obstructive sleep

apnoea patients than control populations, indicating a retrognathic mandibular position

(Hochban and Brandenburg, 1994; Lowe et al, 1995; Lowe et al, 1996; Tangugsorn et al,

1995a; and Tsuchiya et al, 1992). Other authors have not found a significant difference in

this angular measure of mandibular position between obstructive sleep apnoea and control

populations (Battagel and L'Estrange, 7996; deBerry-Borowiecki et al, 1988; Johns et al,

1998; Lyberg et al, 1989a; Maltais et al, 1991; Mayer and Meier-Ewert, 1995; Mochizuki et

a\, 1996; Pracharktam et al, 7996; Strelzow et al, 1988; Zucconi et at, 1992; and Zucconi et al,

1993). Lowe et al (1996) found a more acute angle SNB in patients with a Class I dental

malocclusion, and this was a significant finding whether the cephalometric radiograph was

taken upright or supine. There was no significant difference between obstructive sleep

apnoea subjects and controls with other patterns of dental malocclusion'

The angle between the cranial base (sella - nasion) and pogonion is similar to angle SNB but

is more greatly influenced by the development or not of the bony chin. Tangugsorn et al

(1995) is the only author to have found a significant decrease in this angle in obstructive sleep

apnoea subjects. Lyberg et al (1989a) and Sakakibara et al (1999) who also used this angular

measurement have found no significant difference between obstructive sleep apnoea subjects

and controls.

The angulation of the mandibular plane relative to either the cranial base (sella - nasion) or

Frankfort horizontal may indicate the relative prognathism of the mandible. Those subjects

with a steep mandibular plane angle have a clockwise rotation of the mandible, and thus a

more caudal positioned jaw. This might be expected in patients who have a tendency to

obstruct their upper airway. A number of authors have indeed found this to be the case, with

obstructive sleep apnoea subjects more likely to have a steep mandibular plane angle

(Andersson and Brattstrom, 1991; Bacon et al, 1989; Johns et al, 1998; Lowe et al, 1995l,

Loweet aL,1996; Strelzowetal, 1988;Tangugsorn eTal,7995a;andTsuchiyaetal,1992).

Other authors have not found a steeper mandibular plane angle in obstructive sleep apnoea

subjects (deBerry-Borowiecki et al, 1988; Hochban and Brandenburg, 1994; Maltais et al,

1991; and Ono et al, 1996).

Lowe et al (1996) found obstructive sleep apnoea subjects with a class I dental malocclusion

had an increased mandibular plane angle on cephalometric radiographs taken upright, but
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there was no difference if the radiograph was taken supine. There u/as no significant

difference in this measurement for obstructive sleep apnoea subjects with other patterns of

dental malocclusion. Interestingly Strelzow et al (1988) found an increased mandibular plane

angle in obstructive sleep apnoea subjects when compared to the cranial base, but not when

compared to Frankfort horizontal. This finding cannot be explained alone on divergent

cranial base and Frankfort horizontal as there \À/as no significant difference between the two

groups when the angle between these reference planes was compared. Tsuchiya et al (1992)

reported an increased mandibular plane angle compared to the cranial base in obstructive

sleep apnoea subjects with a high AHI and low BMI when compared to non-apnoeic controls

and obstructive sleep apnoea subjects with a low AHI and high BMI. This latter obstructive

sleep apnoea group did not have a significantly increased mandibular plane angle when

compared with non-apnoeic controls.

The gonial angle is the angle between the vertical component of the mandible (ramus) and the

horizontal component (body). An increased gonial angle indicates a clockwise rotation of the

mandibular body relative to the ramus. An increase in this angle might be expected to have

the same effect as an increase in the mandibular plane angle relative to a horizontal cranial

reference line. Tangugsorn et al (1995a) found an increased gonial angle in obstructive sleep

apnoea subjects, but no other author has found this to be true in their population (Battagel and

L'Estrange, 1996; deBerry-Borowiecki et al, 1988; Hochban and Brandenburg,1994; Lyberg

etal,1989a; Strelzowetal, lg88;Tsuchiya etal,7992; andZucconietal,1992).

Table 5.4-2 records the authors and the angular measurements of mandibular position.

Definitions of the landmarks used may be found in the glossary. Figure 5.4-1 shows the

parameters of the mandible measured from a lateral cephalometric radiograph.
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Table 5.4-2: Mandible - Angular Measurements

Mandibular S-N-B S-N'Pg Gonial
Plane

0.05Andersson et al (1991)

Bacon W et al (1989)

Battagel et al (1996)

deBerry-Borowiecki et al (1988)

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Hochban et al (1994)

Johns et al (1998)

Lowe et al (1995)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) Il

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1995a)

Maltais et al (1991)

Mayer et al (1995)

Mochizuki et al (1996)

Ono et al (1996)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Zucconi et al (1992)

Zucconi et al (1993)

AvsC U

AvsC U

AvsC U

AvsC U

AvsC U

AvsC U

AvsC U

AvsS U

AvsC U

AvsC U

AvsC S

AvsC U

AvsC S

AvsC U

AvsC S

AvsC U

AvsC U

AvsC U

AvsS U

AvsC U

AvsC U

A1 vsC U

A2vsC U

A1 vsA2 U

AvsC U

AvsC U

AvsC U

A3vsC U

A4vsC U

A3vsA4 U

AvsC U

AvsS U

0.051

N56

NSl

N54

NS1

N54

0.014

0.021

0.0331

NS1

N51

NS1

NS1

N51

NS1

0.051

N54

0.0011

0.011

NS1

0.051

NS

NS

0.02

NS

NS

0.01

0.003

0.006

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

0.01

N52

N53

N52

N53

N55

0.01s

N57

N57

N57

N53NS

0.01

0.01

0.05

0.05

NS

NS

A = obstructive sìeep apnoea subject; C = non-snonng, non-apnoeic subject; S: snoring, non-apnoeic subject; Al = non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 Low

apnoea index / High BMI.

I SN/Co-Gn;2 Ar-Go-Me; 3 Ar-Go-Gn; 4 FH/Go-Cn; 5 RUML; 6 SN/Go-B; 7 Not defined
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Figure 5.4-1 Mandibular cephalometric measures
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5.5 Maxilla and Mandible Inter-relationship

There have been relatively few efforts to measure differences in length between the maxilla

and mandible using a linear scale. The linear measures used have included the difference

between the maxillary and mandibular length, the length from the pharyngeal wall to the

lower incisors ol tongue tip, or the distance from the posterior nasal spine to point B.

Battagel and L'Estrange (1996) found a significantly decreased intermaxillary space length

measured from the pharyngeal wall to the lingual aspect of the lower incisor tooth in

obstructive sleep apnoea patients when compared to control subjects. Pracharktam et al

(1994) and Pracharktam et al (1996) used an almost identical reference line and found no

significant difference in length between obstn¡ctive sleep apnoea subjects and controls.

Strelzow et al (1988) found a significant decrease in the distance PNS - B in obstructive sleep

apnoea subjects, however deBerry-Borowiecki et al (1988) did not.

The area between the maxilla and mandible has been measured using a variety of landmarks.

Only two authors have found a significantly decreased area (Battagel and L'Estrange,1996:'

and Tangugsom et al, 1995b).

Table 5.5-l records the authors and the linear measurements of the relationship between the

maxilla and the mandible. Definitions of the landmarks used may be found in the glossary.

Table 5.5-1: Maxilla and Mandible Inter-relationship - Linear Measurements

Length Area

Battagel et al (1996)

deBerry-Borowiecki et al (1 988)

Lowe et al (1995)

Pracharktam et al ('1994)

Pracharktam et al (1996)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Tangugsorn et al (1995b)

AvsC
AvsC
AvsC
AvsS
AvsS
AvsS

A1 vsC

A2vsC
A1 vs A2

AvsC
AvsC

0.001

N52

N53

N54

N54

N55

U

U

U

U

U

U

U

U

U

U

U

0.052

0.035

NS

NS

NS

NS

NS

0.01

A = obstructive sleep apnoea subject; C: non-snoring, non-apnoeic subject; S: snoring, non-apnoeic subject; Al = non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 Low
apnoea rndex / High BMI

I PhW-Ll; 2 PNS-B; 3 Go-Gn subtract ANS-PNS; 4 PhW-TT; 5 Ar-A/Ar-B

Comparison of maxillary and mandibular position ¡elative to each other is most easily done

using the angle A-N-B. This measures the anteroposterior relationship of the maxilla and
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mandible. A skeletal class I relationship results in a positive A-N-B angle whilst a skeletal

class III relationship results in a negative A-N-B angle.

The majority of authors who have considered angle A-N-B have found no significant

difference between obstructive sleep apnoea subjects and controls (Andersson and Brattstrom,

1991; Battagel and L'Estrange, 1996; Bacon et al, 1989; deBerry-Borowiecki et al, 1988;

Hochban and Brandenburg, 1994;Lyberg et al, 1989a; Maltais et al, 1991; Ono et al,1996;

Sakakibara et al, 7999; Tangugsorn et al, 1995a; and Tsuchiya et al, 1992). Lowe et al

(1995) found a significantly increased angle in obstructive sleep apnoea subjects, indicative of

a retrognathic mandible relative to the maxilla in this population. Subjects with a dental class

I malocclusion also had an increased A-N-B angle if they suffered obstructive sleep apnoea.

This finding was significant for both upright and supine cephalometric radiographs (Lowe et

al, 7996). This paper reported no significant difference in this angle for subjects with a

dental class II or dental class III malocclusion.

The angle between the maxillary plane and mandibular plane has been measured to determine

the divergence of the facial skeleton. Andersson and Brattstrom (1991) and Strelzow et al

(1988) found obstructive sleep apnoea subjects had a more divergent facial pattem than non-

apnoeic controls. Other authors have found no significant difference in this measure of facial

type (deBerry-Borowiecki et al, 1988; and Hochban and Brandenburg, 1994).

The angulation of the occlusal plane to the cranial base was found to be less acute in

obstructive sleep apnoea subjects than controls by Bacon et al (1989). Lowe et al (1996)

found no significant difference in this angle for obstructive sleep apnoea subjects unless they

had an upright cephalometric radiograph and a dental class I relationship in which case this

angle was signihcantly increased. This indicates a divergent facial profile.

Table 5.5-2 records the authors and the angular measurements of the relationship between the

maxilla and the mandible. Definitions of the landmarks used may be found in the glossary.

Figure 5.5-l shows the cephalometric measures of maxillary-mandibular inter-relationship.
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Table 5.5-2: Maxilla and Mandible Inter-relationship - Angular Measurements

ANS-PNS/Go-Gn SN/OP A-N-B

Andersson et al (1991)

Bacon et al (1989)

Battagel et al (1996)

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Lowe et al (1995)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1995a)

Maltais et al (1991 )

Ono et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Tangugsorn et al (1995b)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC

A1 vsC

A2vsC
A1 vs A2

AvsC
AvsC
A3vsC
A4vsC
A3 vs A4

0.05

0.044

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

0.02

0.027

0.011

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

U

U

U

U

U

U

U

S

U

S

U

S

U

U

U

U

U

U

U

U

U

U

U

0.05

NS

NS

0.05

NS

NS

NS

NS

A = obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S: snoring, non-apnoeic subject; Al = non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject; A3 High apnoea index / [.ow BMI; A4 Low
apnoea index / High BML
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5.6 Facial Height

Facial height may be considered anteriorly and posteriorly using a number of landmarks and

reference lines. The anterior facial height may be considered as total face height from the

anterior cranium to the lower border of the mandible. This length may be divided into upper

facial height from the anterior cranium to the maxillary plane (essentially this measures the

dimensions of the nasal cavity). The lower facial height is measured from the maxillary

plane to the lower border of the anterior mandible. Many authors have considered the

anterior facial height of obstructive sleep apnoea subjects and compared them with control

subjects. There is no standard measure of anterior facial height and a large number of

landmarks have been used.

Total anterior face height in obstructive sleep apnoea subjects was increased in all studies

(Andersson and Brattstrom, 1991; deBerry-Borowiecki et al, 1988; Lowe et al,1995:. Lyberg

et al, 1989a; and Strelzow et al, 1988) except (Sakakibara et al, 1999) who found no

significant difference compared with a control population.

Upper anterior facial height has not been consistently increased or decreased in obstructive

sleep apnoea populations. A smaller upper facial height in obstructive sleep apnoea subjects

was found in one population (Lowe et al, 1995). In contrast deBerry-Borowiecki et al

(1988); Johns et al (1998); and Strelzow et al (1988) measured an increase in upper anterior

facial height in their obstructive sleep apnoea subjects. Most other authors have not found

any significant difference in upper anterior facial height between obstructive sleep apnoea

subjects and controls (Andersson and Brattstrom, 1991; Bacon et al, 1989; Lowe et aL,7995;

Lyberg et al, 1989a; Maltais et al, 1991; Pracharktam et al, 1994; Pracharktam eT al,7996;

Sakakibara eTal,1999; and Tangugsorn et al, 1995a).

Lower anterior facial height has also produced conflicting results. Some studies (Bacon et al,

1989; deBerry-Borowiecki et al, 1988; Lowe et al, 1995; Strelzow et al, 1988; and

Tangugsorn et al, i995a) have found an increased lower anterior facial height in obstructive

sleep apnoea subjects. Whilst other populations have not differed significantly between

obstructive sleep apnoea subjects and controls (Andersson and Brattstrom, 1991;Johns et al,

1998; Lyberg et al, 1989a; and Sakakibara et al, 1999). Strelzow et al (1988) did not find any

increaseindistanceA-BorA-Gn,howeverdistanceANS-Bwasincreasedinobstructive

sleep apnoea subjects. This suggests the increased anterior facial height in this group of

obstructive sleep apnoea subjects was in the maxillary basal bone.

The height of the palatal vault was measured by Johns et al (1998) and found not to differ

significantly between obstructive sleep apnoea subjects and controls. The ratio of the
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distance of the upper facial height and lower facial height was measured by Tangugsorn et al

(1995a). They found this ratio to be significantly smaller in obstructive sleep apnoea

subjects, principally because of an increase in their anterior lower facial height.

Table 5.6-1 records the authors and the linear measurements of facial height. Definitions of

the landmarks used may be found in the glossary.

Table 5.6-1: Facial Height - Linear Measurements

UFH LFH TFH Palate UFH/LFH

Andersson et al (1991)

Bacon et al (1989)

deBerry-Borowiecki et al (1988)

deBerry-Borowiecki et al (1988)

deBerry-Borowiecki et al (1988)

Johns et al (1998)

Lowe et al (1995)

Lyberg et al (1989a)

Maltais et al (1991)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Strelzow et al (1988)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Zucconl et al (1993)

Zucconi et al (1993)

AvsS
AvsC
AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC

A1 vsC

A2vsC
A1 vs A2

AvsC
AvsC
AvsC
AvsC
AvsC
AvsS

U NS,

UNS
u 0.0002

U

U

u 0.047

u 0.01

U NS1O

U NS7

U NS12

U NS12

U NS7

U NS7

U NS7

u 0.052

U

U

U NS7

U

U

NS.'

0.01

0.0003

0.001s

0.0216

N58

0.03

NS11

N58

0.05'

0.0084

0.001

0.051

NS13

N513

NS13

0.054

N59

NS8

NS8

NS8

N53

0.05s

N56

0.00111

NS8

NS8

0.001

A = obstructive sleep apnoea subject; C: non-snoring, non-apnoeic subject; S: snoring, non-apnoeic subject; Al = non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject; A3 High apnoea index / [,ow BMI; A4 t-ow

apnoea ìndex / High BMl.

lN-Gn;24-N;34-B;48-N;5ANS-B;6A-Gn;7ANS-N;8ANS-Me;9Ocl-Pal 6;l0N(ANS-PNS; llGn(ANS-PNS;12
Me (ANS-PNS; 13 N-Me.

Posterior facial height is measured from the cranial base to the lower border of the mandible.

This may be divided into upper posterior facial height, which extends from the cranial base to

the maxilla, and lower posterior facial height, which extends from the maxilla to the lower

border of the mandible. As with most cephalometric distances the choice of landmark and

reference lines varies between studies, as indicated in Table 5.6-2.

Total posterior facial height was significantly decreased in the obstructive sleep apnoea

population studied by Andersson and Brattstrom (1991); Tangugsorn et al (1995a). In
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contrast, Hochban and Brandenburg 099Ð; and Strelzow et al (1988) measured a

significantly increased total posterior facial height in obstructive sleep apnoea subjects.

Other authors (deBerry-Borowiecki et al, 1988; and Sakakibara et al, 1999) have measured no

significant difference in this dimension between obstructive sleep apnoea subjects and a

control population.

Posterior upper facial height has been measured in three cephalometric studies with

conflicting results.

Strelzow et al (1988) measured a significantly increased distance from the sphenoidal rostrum

to the posterior nasal spine in obstructive sleep apnoea subjects; measured a significantly

decreased distance from sella to the maxillary plane whilst Lyberg et al (1989a) found no

significant difference in upper posterior facial height between obstructive sleep apnoea

subjects and controls.

Lower posterior facial height has been measured by a larger number of authors, but with no

greater consensus ofresult. Obstructive sleep apnoea subjects had a significantly increased

lower posterior facial height in studies by Hochban and Brandenburg Q99Ð; Pracharktam et

al (1996); and Strelzow et al ( 1 988). A decreased lower posterior facial height in obstructive

sleep apnoea subjects has been reported by Tangugsorn et al (1995a). Other authors

(deBerry-Borowiecki et al, 1988; Lowe et al, 1995; Lyberg et al, 1989a; Pracharktam et al,

1994; Zucconi et al, 7992; and Zucconi et al, 1993) have found no significant difference in

lower posterior facial height between obstructive sleep apnoea subjects and controls.

The ratio between posterior lower and middle facial height was decreased in obstructive sleep

apnoea subjects, indicating a decreased lower facial height in obstructive sleep apnoea

subjects. Lyberg et al (1989a) and Tangugsorn et al (1995a) found no significant difference

in ratio between upper and lower posterior facial height. This latter group of authors did find

a significant increased ratio in obstructive sleep apnoea subjects which was attributed to the

increased lower anterior facial height of their obstructive sleep apnoea population.

Table 5.6-2 records the authors and the angular measurements of facial height. Definitions of

the landmarks used may be found in the glossary. Figure 5.6-1 shows the cephalometric

measures of facial height.
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Table 5.6-2: Facial Height - Angular Measurements

UFH LFH TFH UFH/LFH AFH/PFH

Andersson et al (1991)

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Lowe et al (1995)

Lyberg et al (1989a)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Zucconi et al (1993)

Zucconi et al (1993)

AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC

A1 vsC

A2vsC
A1 vs A2

AvsC
AvsC
AvsC
AvsS

U

U

U

U

U NS3

U

U

U

U

U

u 0.057

u 0.053

U

U

N52

0.0052

NS

N54

N55

0.0455

0.052

0.054

N52

N52

0.05'

NSl

0.051

NS1

NS1

NSl

0.051

0.01

NS

0.016

NS 0.001

,l+

u

A = obstructive sleep apnoea subject; C: non-snoring, non-apnoeic subject; S : snoring, non-apnoeic subject; Al : non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject.

lS-Go;2 PNS-Go; 3 S (ANS-PNS;4 Go (ANS-PNS; 5 Post. In. Mx. Ht.; 6 LFH/lvfFH; 7 SR-PNS.
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*
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Figure 5.ó-1 Facial height cephalometric measures
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5.7 Bony Pharynx

The dimensions of the bony pharynx have also been considered at various levels. The soft

tissue drape is influenced by the position of the underlying skeletal tissue, and consideration

of skeletal pharyngeal position is therefore justified.

The most commonly assessed distances are those between the most posterior point on the

bony hard palate and the anterior inferior margin of foramen magnum (Ba) or the most

anterior superior point on the first cervical verteb¡a (AA). A fairly consistent finding in most

studies of the bony pharynx is a decrease in distance PNS - Ba in obstructive sleep apnoea

subjects (Bacon et al, 1989; Hochban and Brandenburg, 1994; Lyberg et al, 1989a;

Sakakibara et al, 1999; Tangugsorn et al, 1995a; and Zucconi et al, 1993). Sakakibara et al

(1999) did not find a significant decrease in pharyngeal width at this level for obese

obstructive sleep apnoea subjects, however non-obese obstructive sleep apnoea subjects had a

significantly narrowed airway at this level both compared to nonapnoeic controls and obese

obstructive sleep apnoea subjects. Zucconi et al (1993) found no signiñcant difference

between obstructive sleep apnoea subjects and snoring controls, however nonsnoring controls

had a significantly larger distance at this level.

Mochizuki et al (t996); Pracharkfam et al (199Ð; and Pracharktam et al (1996) did not find a

significant difference in this dimension between obstructive sleep apnoea subjects and control

subjects.

Andersson and Brattstrom (1991); Sakakibara et al (1999); Strelzow et al (1988); and

Tangugsorn et al (1995a) found the linear distance PNS - AA significantly decreased in

obstructive sleep apnoea patients compared with controls. This is in contrast to other authors

who have measured no significant difference in this distance between obstructive sleep

apnoea and control subjects (deBerry-Borowiecki et al, 1988; Hochban and Brandetrburg,

1994; Johns et al, 1998; and Mayer and Meier-Ewert, 1995).

Other isolated measurements of the bony pharynx have been made, principally at the

nasopharyngeal level of the pharynx. Table 5.7-1 records the authors and the measures of the

bony pharynx. Dehnitions of the landmarks used may be found in the glossary. Figure

5.7-1 shows diagrammatically the cephalometric measures of the bony pharynx.

I
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Table 5.7-1: Bony Pharyngeal Measurements

PNS. PNS.
Ba AA

PNS- Ba-
Ar PhW

PNS-
SR

Ba-
PM

Go-
Phw

Andersson etal (1991)

Bacon et al (1989)

deBerry-Borowiecki et
al (1988)
Hochban et al (1994)

Johns et al (1998)

Lyberg et al (1989a)

Mayer et al (1995)

Mochizuki et al (1996)

Pracharktam et al
(1 ee4)
Pracharktam et al
(1 ee6)
Sakakibara et al (1999)

Sakaklbara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Tangugsorn et al
(1 995a)
Zucconi et al (1993)

Zucconi et al (1993)

AvsS
AvsS
AvsS

AvsC
AvsS
AvsC
AvsC
AvsS
AvsS

AvsS

A1 vsC

A2vsC
A1 vs A2

AvsC
AvsC

AvsC
AvsS

U

u 0.01

U

u 0.001

U

u 0.01

U

UNS
UNS

UNS

u 0.001

UNS
u 0.001

U

u 0.001

u 0.01

UNS

0.05

NS

NS

NS

0.001

0.001

0.02

0.05

0.01

0.05 NS

0.05

NS

NS

NS

A = obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S = snoring, non-apnoeic subject; Al = non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject.
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5.8 DentalMeasurements

There are no consistent findings on lateral cephalometric radiographs from dental

measurements alone that are significant for obstructive sleep apnoea patients compared with

controls. The dental anomalies reported by some authors are probably related to dental

compensation for skeletal abnormalities in the obstructive sleep apnoea population.

When considering the overbite or overjet relationship of the central incisors only Lowe et al

(1996) found a significant diffe¡ence between obstructive sleep apnoea subjects and controls.

They found obstructive sleep apnoea subjects with a dental Class II malocclusion had a

significantly increased overjet when compared with non-apnoeic controls with the same

dental malocclusion. Battagel and L'Estrange (1996); Lowe et al (1995); Lowe et al (1996);

Lyberg et al (1995a); Ono et al (1996); Tangugsorn et al (1995) and Tsuchiya et al (1992)

found no signiñcant difference in central incisor overbite or overjet relationships.

Lowe et al (1995) measured the length of the upper and lower central incisors and molars.

They found a significantly increased length of the upper central incisor in obstmctive sleep

apnoea subjects compared with controls. There were no other significant differences for the

parameters measured.

Although not measured from lateral cephalometric radiographs there is a suggestion from one

group of authors that a constricted maxilla may contribute to the development of obstructive

sleep apnoea. This group used models of 40 patients with obstructive sleep apnoea and 2l

nonsnoring nonapnoeic controls. They found 20140 (50%) of obstructive sleep apnoea

patients had a posterior crossbite, compared with only 1l2l(5%) of the control subjects

(p<0.001). There was significantly smaller intercanine, interpremolar, intermolar and

maxillary lengths in obstructive sleep apnoea patients compared with control subjects

(p<0.0s).

Table 5.8-l records the authors and the linear measurements of the dentition. Definitions of

the landmarks used may be found in the glossary.
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Table 5.8-1: Dentition - Linear Measurements

OB OJ ADH MxM MdMH

Battagel et al (1996)

Lowe et al (1995)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1995a)

Ono et al (1996)

Tangugsorn et al (1995b)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
A3vsC
A4vsC
A3 vs A4

U

U

U

S

U

S

U

S

U

U

U

U

U

U

NS NS

NS

NS

NS

O.O1 NS NS

0420.

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

A = obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S = snoring, non-apnoeic subject; Al = non-obese
obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 Low
apnoea index / High BMl.

The angular dental measurements that may be taken f¡om lateral cephalometric radiographs

determine the inclination of the central incisors relative to horizontal or vertical planes of

reference. The angulation between the upper and lower incisors may also be measured.

Lowe et al (1996) found the upper incisors of obstructive sleep apnoea subjects were more

upright than those of non-apnoeic controls. This was only true for obstructive sleep apnoea

subjects with a class I dental malocclusion. Battagel and L'Estrange (1996); Ono et al (1996)

and Tsuchiya et al (1992) found no difference in upper incisor angulation. The lower

incisors were significantly proclined in obstructive sleep apnoea subjects with a dental class I

malocclusion (Lowe eL al, 1996) or those obstructive sleep apnoea subjects with a high

apnoea index and low BMI (Tsuchiya er. al,1992). Battagel and L'Estrange (1996) founcl no

significant difference in incisor angulation.

Bacon et al (1989) found no significant difference in the angulation between the upper and

lower incisors of obstructive sleep apnoea or control subjects.

The significance of dental measurements in obstructive sleep apnoea is to show dental

compensation for underlying skeletal abnormalities.

Table 5.8-2 records the authors and the angular measurements of the dentition. Definitions

of the landmarks used may be found in the glossary. Figure 5.8-1 shows diagrammatically

the dental measurements from a lateral cephalometric radiograph.
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Table 5.8-2: Dentition - Angular Measurements

UI/L1 U1/ANS.
PNS

UI/N-A Ll to
MP

U1/S.N LI/G
o-Gn

L1t
N.B

Bacon et al (1989)

Battagel et al
(1se6)
Lowe et al (1995)

Lowe etal (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al(1996) lll

Lowe et al (1996) lll

Ono et al (1996)

Tsuchiya et al
(1 se2)
Tsuchiya et al
(1 es2)
Tsuchiya et al
(1 992)

AvsC U

AvsC U

AvsC U

AvsC U

AvsC S

AvsC U

AvsC S

AvsC U

AvsC S

AvsC U

A3vsC U

A4vsC U

A3vsA4 U

NS

NS

NS

0.037

0.035

NS

NS

NS

NS

NS

NS

NS

NS

0.002

NS

NS

NS

NS

NS

NS

NS

NS

0.05

NS

NS

A = obstructive sleep apnoea subject; C : non-snoring, non-apnoeic subject; S : snoring, non-apnoeic subject; A I = non-obese

obstructive sleep apnoea subject; A2 : Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 Low
apnoea index / High BMl.
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Figure 5.8-1 Dentition cephalometric measures
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5.9 Cervical Spine

The measurement of natural head posture has been reported using cephalometric radiographs

in populations with obstructive sleep apnoea. The literature suggests head posture is

maintained to ensure a patent airway and is influenced by sight, hearing, vestibular

orientation, and mass and contour of the head.

Only one linear measure involving the cervical spine posture has been reported. The dìstance

from C2 to a perpendicular dropped from sella was found significantly smaller in obstructive

sleep apnoea subjects (Battagel and L'Estrange, 1996).

Table 5.9-l records the authors and the linear measurements of the cervical spine.

Definitions of the landmarks used may be found in the glossary.

Table 5.9-l: Cervical Spine - Linear Measurements

c2-s

Battagel and L'Estrange (1996) A vs C U 0.003

A = obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S: snoring, non-apnoeic subject; Al = non-obese
obstructìve sleep apnoea subject; A2 : Obese obstructive sleep apnoea subject; A3 High apnoea index / l-ow BMI; A4 t ow
apnoea index / High BMI

Angulation of the cranium and facial skeleton to the cervical spine is used as the measure of

head posture. The reference lines may be a tangent to the second cervical vertebra (OPT); a

tangent to the second and fourth cervical vertebrae (CVT); or arbitrary horizontal and vertical

reference lines.

The differences reported by all authors who found a significant difference between

obstructive sleep apnoea subjects and controls was a more upright head posture. Sakakibara

et al (1999) reported significant differences for most measures of head posture between obese

and non-obese obstructive sleep apnoea subjects, but no significant differences between either

obstructive sleep apnoea group and matched controls.

The horizontal plane did not prove effective in differentiating between obstructive sleep

apnoea subjects and controls in any of the studies included, despite other parameters

indicating a more upright head posture in obstructive sleep apnoea subjects.

Table 5.9-2 records the authors and the angular measurements of the dentition. Definitions

of the landmarks used may be found in the glossary. Figure 5.9-1 shows diagrammatically

the cephalometric measurements of the cervical spine.
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Table 5.9-2: Cervical Spine - Angular Measurements

/Ver /OPT /CVT /Hor

Battagel et al (1996)

Ozbek et al (1998)

Ozbek et al (1998)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Tangugsorn et al (1995a)

Tangugsorn et al (1995a)

NS1 0.OO1r 0.001r

AvsC
AvsC
AvsC
AvsS

A1 vsC
A1 vsC
A1 vsC

A2vsC
A2vsC
A2vsC
Alvs A2

Alvs A2

Alvs A2

AvsC
AvsC

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

0.038

0.052

0.053

N54

NSl

0.051

N51

N54

N55

NS1

N54

N55

0.021

0.024

0.025

0.0015

0.0014

N52

N53

N52

N53

0.002

N52

N52

N52

NSl

N54

NSl

N54

0.022

0.023

N55

N54

0.0014

0.0015

A = obstructive sleep apnoea subjecu C: non-snoring, non-apnoeic subject; S: snoring, non-apnoeic subject; Al = non-obese

obstructive sleep apnoea subject; A2: Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 Low

apnoea index / High BMI. I S-N; 2 OPT; 3 CVT; 4 ANS-PNS; 5 FH
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Chapter 6

Lateral Cephalometric Examination of the Upper Airway - Soft

Tissue

103



6.1 Introduction

The soft tissues of the upper airway can be visualized on a lateral cephalometric radiograph.

They present as softer opacities than skeletal landmarks and may therefore be mo¡e difficult

to identifu accurately.

The literature concerning the assessment of the soft tissue and its relationship to the upper

airway on subjects with obstructive sleep apnoea has been reviewed. The results of this

review will be presented by anatomi c aÍea. The anatomic areas to be considered in this

chapter are shown at diagrammatically at Figure 6.1-1 as they would appear on a lateral

cephalometric radiograph. The soft tissue structures whose position can be determined from

a lateral cephalometric radiograph include the soft palate, the tongue, the hyoid bone and the

pharynx. Linear, angular and some sagittal cross-sectional area measures can be taken for

many of these structures and will be presented under the appropriate section.
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Figure 6.1-l Soft Tissue Cephalometric Measurements
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6.2 Soft Palate

The soft palate is visible on lateral cephalometric radiographs as a radiopacity extending from

the posterior nasal spine caudally and often lying in contact with the pharyngeal surface of the

tongue. The soft palate demarcates the nasopharynx inferiorly and the oropharynx

superiorly.

The soft palate consists of an aponeurosis to which is attached several muscles. The tensor

veli palatini muscle is the main muscle of the soft palate and acts to tense the palatine

aponeurosis so the other muscles can act. The levator veli palatini inserts into the palatine

aponeurosis and acts to elevate the soft palate ventrally. The palatoglossus and

palatopharyngeus constitute little of the soft palate image on the lateral cephalometric

radiograph.

The palatopharyngeal sphincter is a separate group of muscle fibres arising from the posterior

border of the hard palate and run horizontally backwards encircling the pharynx. They form

a ridge (Passavant's ridge) on the anterior aspect of the pharyngeal wall and when the soft

palate is elevated these fibres contract, allowing the soft palate to more easily contact the

posterior pharyngeal wall.

The nerve supply to the soft palate musculature arises from the pharyngeal plexus (CN XI),

with the exception of tensor veli palatini which is innervated by the mandibular division of

CN V.

The width of the soft palate is arbitrarily measured as the greatest width of the soft tissue

shadow of the soft palate. deBerry-Borowiecki et al (1988); Hochban and Brandenburg

Q99Ð; Lowe et al (1996); Lyberg et al(1989b); Ono et al (1996); Strelzow et al (1988); and

Tangugsorn et al (1995b) have all reported the greatest width of the soft palate is significantly

greater in patients with obstn¡ctive sleep apnoea than in their respective control groups. In

contrast to these studies Andersson and Brattstrom (1991); Battagel and L'Estrange (1996);

Bacon et al (1989); Mayer et al (1996); and Sakakibara et al (1999) did not find a wider soft

palate rn obstructive sleep apnoea patients.

Lowe et al (1996) divided their obstructive sleep apnoea patients into groups according to

their dental malocclusion and the position of the patient when the lateral cephalometric

radiograph was taken. They found subjects with a class III dental malocclusion did not have

a greatly increased width of the soft palate and that soft palate width varied according to

patient position.
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Ono et al (1996) did not find a significant difference in soft palate thickness between

obstructive sleep apnoea and control subjects on lateral cephalometric radiographs taken in a

supine position.

Bacon et al (1989); deBerry-Borowiecki et al (1988); Hochban and Brandenburg 099Ð;

Lowe et al (1996); Lyberg et al (1989b); Maltais et al (1991); Mayer et al (1996); Mochizuki

et al (1996); Ono et al (1996); Pracharktam et al (1996); Sakakibara et al (1999); Strelzow et

al (1988); Tangugsorn et al (1995b); and Ztcconi et al (1993) found the distance from the

postenor nasal spine to the tip of the uvula to be significantly greater in patients with

obstructive sleep apnoea than control patients. Lowe et al (1996) found this difference was

significant only for patients with a Class I or Class tr div 1 malocclusion, and only on the

lateral cephalometric radiograph taken with the patient upright. Sakakibara et al (1999)

found no relationship to obesity and soft palate length in obstructive sleep apnoea patients.

ln contrast to these studies Andersson and Brattstrom et al (1991); Battagel and L'Estrange

(1996); Johns et al (1998); Mayer and Meier-Ewert (1995); and Pracharktam et al (1994) did

not find a significani difference in this parameter when companng obstructive sleep apnoea

subjects with controls.

The angle of the soft palate to the maxillary plane was significantly decreased in the

obstmctive sleep apnoea patients stuciied by Lyberg et al (1989b) and Tangugsorn et al

(1995b). This partially explains the increased contact length between the tongue and soft

palate in obstructive sleep apnoea patients in this study. This angle was not significantly

increased in the populations of Battagel and L'Estrange (1996) or Hochban and Brandenburg

(1ee4).

Battagel and L'Estrange (1996); deBerry-Borowiecki et al (1988); Lowe et al (1996); Lyberg

et al (1989b); Mochizuki et al (1996); Ono et al (1996); Sakakibara et al (1999); Strelzow et

al (1988); and Tangugsom et al (1995b) reported the area ofthe soft palate to be significantly

greater in patients with obstructive sleep apnoea compared with control groups. Sakakibara

et al (1999) found soft palate area was not related to obesity in obstructive sleep apnoea

patients. This was not found in populations studied by Pracharktam et al (1994). Lowe et al

(1996) found in patients with a Class III dental malocclusion no significant difference in

palatal area.

The limits of the soft palate shadow on the lateral cephalometric radiograph were not

specified by Battagel and L'Estrange (1996); deBerry-Borowiecki et al (1988), Lowe et al

(1996), Sakakibara et al (1999); Strelzow et al (1988) and Pracharktam et al (1994).

Lyberg et al (1989b) determined soft palate area by measuring along the anterior and posterior

contour of the soft palate. The superior outline v/as a line through point pterygomaxillare
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(pm) perpendicular to the line joining point pm and point U. Ono et al (1996) measured the

area confined by the outline of the soft plate that starts and ends at PNS through P.

Mochizuki et al (1996) measured the area of the soft tissue shadow behind the posterior nasal

spine to determine the soft palate area. Tangugsorn et al (1995b) defined the outline of the

soft palate as lines along the anterior and posterior contour of the soft palate, the superior

border was a line through pterygomaxillare (pm) perpendicular to the pm-U line.

The contact length between the dorsum of the tongue and the soft palate was increased in

some populations (Lyberg et al, 1989b and Tangugsom et al, 1995b).

Table 6.2-1 records the authors, the linear and angular measurements of the soft palate.

Definitions of the landmarks used may be found in the glossary. Figure ó.2-l shows

diagrammatically the measurements of the soft palate on a lateral cephalometric radiograph.

108



Table 6.2-l: Soft Palate - Linear and Angular Measurements

UD UL UV ANS.PNS.UT CL

Andersson et al (1991)

Battagel et al (1996)

Bacon et al (1989)

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Johns et al (1998)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1989b)

Maltais et al (1991)

Mayer et al (1995)

Mayer et al (1996)

Mochizuki et al (1996)

Ono et al (1996)

Ono et al (1996)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Tangugsorn et al (1995b)

Zucconi et al (1992)

AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsS
AvsS

A1 vsC

A2vsC
A1 vs A2

AvsC
AvsC
AvsS

U

U

U

u 0.000

u 0.005

U

u 0.007

SNS
u 0.023

s 0.034

UNS
SNS
u 0.001

U

U

UNS
U

u 0.05

SNS
U

U

UNS
UNS
UNS
u 0.05

u 0.001

U

NS

NS

0.010

0.0001

NS

0.002

NS

0.009

NS

NS

NS

0.001

0.01

NS

0.01

0.01

0.05

0.05

NS

0.013

0.02

0.001

NS

0.05

0.001

0.05

0.014

0.05

0.000

0.000

NS

0.001

0.031

NS

NS

0.001

0.01

0.05

0.05

NS

0.001

0.001

NS

0.05

0.001

NS

NS

NS

0.01 0.01

0.05 0.001

A = obstructive sleep apnoea subject; C: non-snoring, non-apnoeic subject; S: snoring, non-apnoeic subject; A1 = non-obese
obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject.
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6.3 Tongue

The tongue is a skeletal muscle that is very mobile and occupies much of the space of the oral

cavity and a substantial volume in the hypopharynx. The so-called anterior two thirds of the

tongue in the oral cavity is in fact only approximately one third of the volume of the tongue.

The tongue is necessary for swallowing and speech. The muscles of the tongue are broadly

categorised as intrinsic or extrinsic muscles. The intrinsic muscles act to change the shape of

the tongue whist the extrinsic muscles act to alter the position of the tongue within the oral

cavrty.

The extrinsic muscles may arise from the hyoid bone inferiorly (hyoglossus, chondroglossus),

the genial tubercles on the lingual aspect of the mandibular symphysis anteriorly

(genioglossus), the styloid process of the temporal bone superolaterally (styloglossus) or from

the palatine aponeurosis superomedially (palatoglossus).

The bulk of the tongue that is distinguished on a lateral cephalometric radiograph consists of

the intnnsic muscles, the genioglossus and the geniohyoid. The tongue base, consisting

primarily of genioglossus extends caudally into the oropharynx and forms the vallecula at its

most caudal point.

The outline of the tongue in the oral cavity may be difficult to distinguish on a lateral

cephalometnc radiograph and consequently various radiopaque solutions have been used to

demarcate the surface of the tongue (Baftagel and L'Estrange,1996; Lowe et al, 1995; Lowe

eT al, 1996; Ono et al, 7996; Ozbek et al, 1998; Pae et al, 1994; Pracharktam et at, 7994;

Pracharkfam et al,1996; and Tsuchiya et al, 1992).

The length of the tongue from its apex to base has been measured from the tongue tip to the

vallecula, or the tongue base on an extension of the mandibular plane or to the tip of the

epiglottis. The length of the tongue was increased when measured to the tongue base by

deBerry-Borowiecki et al (1988); Hochban and Brandenburg Q99Ð; Lowe et al (1996);

Pracharktam et al (1994); Pracharktam et al (1996); Sakakibara et al (1999); and Strelzow et

al (1988). The length of the tongue was increased when measured to the vallecula by

deBerry-Borowiecki et al (1988) also found an increase in tongue length when measured to

the tip of the epiglottis. This is in contrast to Hochban and Brandenburg (1994) who found

no difference in this dimension.

Lowe et al (1996) found no significant difference in tongue length between obstructive sleep

apnoea subjects with a Class I or Class II dental malocclusion on supine radiographs.

Interestingly they did find a significant difference for obstructive sleep apnoea subjects with a

Class III dental malocclusion on supine cephalometric radiographs, but not on upright
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radiographs. Sakakibara et al (1999) found non-obese obstructive sleep apnoea subjects did

not have a significantly increased tongue length. Other authors have also reported no

increase in tongue length for obstructive sleep apnoea subjects (Lyberg et al, 1989b; and

Tangugsorn et al, 1995a).

Tongue depth is a measure of the caudal extension of the tongue base or vallecula to skeletal

reference points on the maxilla, mandible or cranium. A majority of authors who have

measured this relationship have found the tongue lying more caudally in obstructive sleep

apnoea subjects than control subjects (deBerry-Borowiecki et al, 1988; Hochban and

Brandenburg, 1994; Johns et al, 1998; Lyberg et al, 1989b; Sakakibara et al, 1999; Strelzow

et al, 1988; and Tangugsorn et al, 1995b). This increase in depth of the vallecula places the

tongue in a more inferior and posterior position compared with control subjects. This may

allow obstruction of the upper airway to occur more readily in these patients than control

subjects by placing the bulk of the tongue closer to the relatively more nalrow hypopharynx.

deBerry-Borowiecki et al (1988) did not find a significant difference in the position of the

tongue base with respect to gonion. Mayer and Meier-Ewert (1995) found no signihcant

decrease in distance PNS-TB between obstructive sleep apnoea subjects and controls.

Tongue height measures the "thickness" or "bulk" of the tongue. A perpendicular line to the

reference line TT-V is taken such that the perpendicular is maximum length. Hochban and

Brandenburg (199Ð; Lowe et al (1996) and Sakakibara et al (1999) all found this

perpendicular to be significantly longer in obstructive sleep apnoea patients. Lowe et al

(1996) reported no significant difference on supine radiographs or for obstructive sleep

apnoea subjects with a Class I dental malocclusion in the upright position. Sakakibara et al

(1999) reported no difference in this tongue dimension between obstructive sleep apnoea sub-

groups. Johns et al (1998) and Lyberg et al (1989b) found no significant increase in this

dimension for obstructive sleep apnoea subjects.

A measure of the position of the inferior tongue with respect to the anterior mandible has also

been considered. This measurement indicates how posterior the inferior tongue lies.

Hochban and Brandenburg (1994) and Strelzow et al (1988) found this length significantly

increased in obstructive sleep apnoea patients. deBerry-Borowiecki et al (1988) and Hochban

and Brandenburg (1994) found no difference in other measures of this relationship of the

tongue to the mandible in obstmctive sleep apnoea subjects. Lyberg et al (1989b) considered

the proximity of the vallecula to the cervical spine and found no significant difference

between obstructive sleep apnoea subjects and controls.

Tongue area has been measured by a number of investigators, most of whom found a

significantly increased area in obstructive sleep apnoea subjects compared to control subjects
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(deBerry-Borowiecki et al, 1988; Mochizuki et al, 1996; Pracharktam et al, 1996; Sakakibara

et al, 1999; Strelzow et al, 1988; and Tangugsorn et al, 1995b).

The area of the tongue was defined by deBerry-Borowiecki et al (1988) as the area

determined by measuring the superior limit of the tongue and the line contained between the

apex of the tongue (TT), the genial tubercle (G), the hyoid bone (H) and a line parallel to

Frankfort Horizontal (FH) up to the epiglottic apex (EA). Lowe et al (1996) defined the area

ofthe tongue as the area enclosed by the dorsal configuration ofthe tongue surface and lines

that connect tongue tip (TT), retrognathion (RGN), the hyoid (H) and the epiglottic base (Eb).

Mochizuki et al ( I 996) defined the area of the tongue as the soft tissue shadow above the line

connecting the vallecula, the upper edge of the hyoid bone and the mental spine. The area of

the tongue defined by Pracharktam et al (1994) enclosed the lines joining the tongue tip (Tt)

along retrognathion surface to menton, the base of the epiglottis (Eb) and dorsum of the

tongue. Sakakibara et al (1999) measured tongue area in a similar manner to deBerry-

Borowiecki et al (1988), replacing point EA with vallecula (V). Lyberg et al (1989b) and

Tangugsorn et al (1995b) defined the upper outline by the dorsal contour ofthe tongue from

vallecula (V) through point H to the tongue tip (T). The lower outline was defined by lines

connecting vallecula (V), point AH on the hyoid, the genial tubercle (GE) and the tongue tip

(r).

Strelzow et al (1988) <iid not clearly defìne the soft tissue shadow measured to determine the

tongue area.

Battagel and L'Estrange (1996); Lowe et al (1996); Lyberg et al (1989b); and Pracharktam et

al (1994) reported no significant difference in tongue area between obstructive sleep apnoea

subjects and controls.

The proportion of the oropharyngeal area occupied by the tongue \¡/as measured by two

authors, both finding the tongue occupying a greater proportion of this area in obstructive

sleep apnoea subjects (Battagel and L'Estrange, 1996; and Tangugsom et al, 1995b).

Nelson and Hans (1997) found tongue length to be a predictor of obstructive sleep apnoca

severity in both obese and nonobese subjects.

Table 6.3-1 records the authors and the linear measurements of the tongue. Definitions of the

landmarks used may be found in the glossary.

\,
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Table 63-1: Tongue - Linear Measurements

V - TT Depth Height Length Area Proportion

Battagel et al (1996)

deBerry-Borowiecki et
al (1988)
deBerry-Borowiecki et
al (1988)
Hochban et al (1994)

Hochban et al (1994)

Hochban et al (1994)

Hochban et al (1994)

Johns et al (1998)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1995b)

Mayer et al (1995)

Mochizukiet al (1996)

Pracharktam et al
(1 es4)
Pracharktam et al
(1 ee6)
Sakakibara et al
(1 sss)
Sakakibara et al
(1 ese)
Sakakibara et al
(1 eee)
Strelzow et al (1988)

Tangugsorn et al
(1 995b)

AvsC
AvsC

AvsC

AvsC
AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsS

AvsS

A1 vsC

A2vsC

A1 vs A2

AvsC
AvsC

U

u 0.003

u 0.0083

u 0.0001

u 0.0058

U NS3

U

U

0.0001

N54

0.0026

0.0001e

0.000111

0.0112

0.0113

0.01 16

N56

0.001

0.001

NS

0.0512

0.051s

0.0001

NS

NS

NS

0.015

NS

0.030

NS

NS

0.02

0.001

NS

N52

N55

0.017

NSlO

NS14

0.0510

NS

0.002

0.01

U

S

U

S

U

S

U

U

U

U

U

U

U

U

U

U

0.045

NS

0.045

NS

NS

0.041

NS

NS

NS

NS

NS

NS

NS

NS

0.011s

0.0061s

NS

0.001

0.001

0.0515

NS

0.05

NS

0.004

0.001

0.001

0.001

0.05

0.001

0.01

I

A = obstructive sleep apnoea subject; C : non-snoring, non-apnoeic subject; S : snonng, non-apnoeic subject; Al : non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject.
I PNS-TB;2 B-TB;3 TT-ET;4Go-TB;5 Cn-TB;6TB-PNS;7V-Me;8 TT-TB; 9V-S; l0TB-B; ll V-ANS; 12

TB- ANS; l3 PNS- EB; l4 V-C spineparallel to FH; l5 TT-EB; 16 V-FH.

The tongue assumed a more upright position, as measured by V-TTÆH in the obstructive

sleep apnoea populations ofLyberg et al (1989b); and Tangugsorn et al (1995b), however this

was not the case t'or the population studied by Hochban and Brandenburg (1994).

Table 6.3-2 records the authors and the angular measurements of the tongue. Definitions of

the landmarks used may be found in the glossary. Figure 6.3-1 shows diagrammatically the

tongue measurements taken on a lateral cephalomefic radiograph.

ll
I
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Table 63-2: Tongue - Angular Measurements

V-TT/Go-Gn V-TT/FH

Hochban et al (1994)

Lyberg et al (1995b)

Tangugsom et al (1995b)

Avs

AvsC
AvsC

U

U

U

NS NS

0.001

0.05

l

A: obstructive sleep apnoea subject; C : non-snoring, non-apnoeic subject
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Figure 6.3-l Tongue cephalometric measures
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6.4 Hyoid Bone

The hyoid is a thin U-shaped bone suspended below the lower border of the mandible, above

the larynx. The hyoid consists ofa central body and two posterolateral bonyprojections, the

greater comu. The lesser cornu is a bony prominence at the junction of the body and greater

cornu.

The body of the hyoid serves as the attachment of genioglossus, geniohyoid, mylohyoid and

part of hyoglossus (suprahyoid) muscles as well as sternohyoid and omohyoid (infrahyoid)

muscles. The fibrous sling of the digastric muscle and the attachment of stylohyoid lie on the

greater cornu near its origin from the body of the hyoid. The middle constrictor and posterior

part of hyoglossus are attached to the upper border of the greater cornu. The medial surface

of the greater cornu serves as the attachment of the thyrohyoid membrane. The lesser comu

serves as the inferior attachment of the stylohyoid ligament.

The linear distance between the mandibular plane and a perpendicular to the most anterior

superior point on the body of the hyoid has been measured by a large number of authors.

This distance has was increased in populations studied by Andersson and Brattstrom (1991);

Hochban and Brandenburg 099Ð; Lowe et al (1996); Lyberg et al (1989b); Maltais et al

(1991); Mayer et al (1996); Mochizuki et al (1996); Pracharktam et al (1994); Pracharktam et

al (1996); Sakakibara et al (1999); Tangugsorn et al (1995a) and Tsuchiya et al (1992). No

difference between obstructive sleep apnoea subjects and controls was found for patients with

a Class tr dental malocclusion or Class III dental malocclusion if the radiograph was taken

supine (Lowe et al, 1996). Sakakibara et al (1999) found no difference in this dimension

between obese and non-obese obstructive sleep apnoea subjects. Patients with a high AHI

and low BMI did not have a signifìcant increase in this distance compared with a control

population (Tsuchiya et al, 1992), however this group had a significant decreased distance

compared with the low AHVhigh BMI group. Other authors reported no significant

difference between obstructive sleep apnoea subjects and controls for this measurement

(Battagel and L'Estrange, 1996; and Mayer and Meier-Ewert, 1995).

The vertical position of the hyoid is determined by its relationship to a point on the skeleton

lying superiorly or a constructed reference line. A number of different landmarks have been

used to enable this vertical relationship of the hyoid to be determined. All authors who found

a significant difference in vertical position of the hyoid between obstructive sleep apnoea

subjects and controls found the hyoid was placed more caudally in the obstructive sleep

apnoea subject (deBerry-Borowiecki et al, 1988; Hochban and Brandenburg, 1994; Johns et

al, 1998; Lowe et al,1996; Lyberg et al, 1989a; Pracharktam et al, 1996; Strelzow et al, 1988;
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Tangugsorn et al, 1995a; and Tsuchiya et al, 1992). Lowe et al (1996) found the hyoid was

not caudally placed in obstructive sleep apnoea subjects with a Class tr or Class Itr dental

malocclusion on either upright or supine cephalometric radiographs. Lyberg et al (1989)

found the hyoid was not caudally placed in relation to the cranial base, but obstructive sleep

apnoea subjects had a caudally placed hyoid in relation to a perpendicula¡ line to Frankfort

horizontal. Tsuchiya et al (1992) found the high AHI/low BMI group had a normally placed

hyoid, but the low AHVhigh BMI group had a caudally placed hyoid with respect to controls

and the high AHVlow BMI group. Battagel and L'Estrange (1996) found no significant

difference in the vertical position of the hyoid.

The vertical position of the hyoid has been measured in relationship to C3 by Tangugsom et

al (1995a) who found a significantly caudal relationship of the hyoid in obstructive sleep

apnoea subjects.

The anteroposterior position of the hyoid (or horizontal position) has been considered. One

of the problems with the assessment of this parameter is the tangential nature of many of the

distances measured. There is no true honzontal assessment of hyoid position using these

measures because most relate to a landmark on the anterior maxilla or mandible. All these

constructed lines have a significant vertical component and may therefore diminish the

sensitivity of the horizontal position of the hyoid because of the vectors involved. A better

estimate of the anteroposterior position of the hyoid is by its relationship to the cervical spine.

The horizontal distance to a point or reference line on the cervical spine allows a true

horizontal measurement to be taken, with little or no vertical component.

The anteroposterior position of the hyoid varies markedly between populations studied.

Some authors have reported a more postenorly placed hyoid in obstructive sleep apnoea

subjects (Hochban and Brandenburg, 1994; Lowe eT al, 1996; Pracharktam et at, 7994; and

Strelzow et al, 1988). Others have found no difference between obstructive sleep apnoea

subjects and controls for this parameter (Battagel and L'Estrange, 1996; deBerry-Borowiecki

et al, 1988; Hochban and Brandenburg, 7994; Lowe et aL, 7996; Strelzow et al, 1988; and

Tsuchiya et al, 1992). Battagel and L'Estrange (1996) even found a more anterìorly place

hyoid in obstructive sleep apnoea subjects with respect to point B.

The horizontal relationship to the cervical spine has usually been considered with respect to

C3 as this is the vertebrae at which the hyoid usually lies in closest vertical proximity.

Variable results have been found in this relationship. Tangugsorn et al (1995a) measured a

significantly decreased distance from the hyoid to C3 for obstn¡ctive sleep apnoea subjects.

Lowe et al (1996) reported a similar result for patients with a Class I dental malocclusion on

upright cephalometric radiographs and for subjects with a Class III dental malocclusion on
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supine radiographs. They found no significant differences in this relationship for all other

groups studied. Sakakibara et al (1999) found the hyoid to be significantly closer to the

cervical spine in obese obstructive sleep apnoea subjects compared to normal controls and

non-obese obstructive sleep apnoea subjects. They found no significant difference between

non-obese obstructive sleep apnoea subjects and controls for this dimension. Tsuchiya et al

(1992) found this dimension was significantly larger in low AHllhigh BMI subjects compared

with controls. There v/as no significant difference between the high AHVlow BMI group and

controls or between the two obstructive sleep apnoea groups.

Table 6.4-1 records the authors and the linear measurements of the hyoid bone. Definitions

of the landmarks used may be found in the glossary.
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Table 6.4-l: Hyoid Bone - Linear Measurements

H - MP Vertical Horizontal C-Spine

Andersson et al (1 991 )

Andersson et al (1991)

Battagel et al (1996)

Battagel et al (1996)

deBerry-Borowiecki et al (1988)

deBerry-Borowiecki et al (1988)

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Hochban et al (1994)

Hochban et al (1994)

Hochban et al (1994)

Johns et al (1998)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al(1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll
Lowe et al (1996) lll

Lyberg et al (1995a)

Lyberg et al (1995a)

Maltais et al (1991)

Mayer et al (1995)

Mayer et al (1996)

Mochizuki et al (1996)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Strelzow et al (1988)

Strelzow et al (1988)

Tangugsorn et al ('1995a)

Tangugsorn et al (1995a)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Zucconi et al (1992)

AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsS
AvsS
AvsS

A1 vsC
A2vsC
Alvs A2

AvsC
AvsC
AvsC
AvsC
AvsC
A3vsC
A4vsC
A3 vs A4

AvsC

0.05

0.01

NS

0.0001

0.01

0.003

0.001

0.031

NS

o.047

NS

0.001

0.0094

0.0016

0.0438

0.00014

0.05e

0.0112

0.00513

0.00513

NS13

NS13

NS13

NS13

N54

0.00116

NSr

0.0117

0.0422

N53

N55

N57

0.00052

0.0510

N57

0.00511

NS14

NS14

NS14

0.03214

NS14

NS14

0.0515

0.0518

N55

NS15

NS15

0.0515

U

U

U

U

U

U

U

U

U

U

U

U

U

S

U

S

U

S

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

0.05

NS

0.01

0.01

0.001

0.000

0.001

0.001

NS

0.0311s

NS15

NS15

NS15

0.0011s

NS15

NS15

NS19

0.0011e

0.0011e

0.001

NS

0.01

0.05

0.001

0.056

0.054

0.058

0.0014

0.00116

NS13

0.0113

0.0113

NS2O

0.00121

NS22

0.0122

NS22

A = obstructive sleep apnoea subject; C: non-snoring, non-apnoeic subjecç S = snoring, non-apnoeic subject; Al : non-obese
obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject; High apnoea index,/[.ow BMI; A4 Low apnoea
index/High BMI

I H/ANS-PNS;2H-B;3ANS-H; 4S H;5Gn-H;óAr-H;7 H-PhW;8Go-H;9H-AA; l0 H-Me; lt H-phW(Me-H); 12
PNS-H; l3 H-Hl; l4 H-RGn; l5 Cl - H; l6 H (FH; 17 H-Ver; l8 H-PhW (Go-H); t9 H-VL; 20 AH-C3 Hor; 2l AH-C3 Ver;22
C3-H,

The angular position of the hyoid can be related principally to its vertical position in relation

to otherreference lìnes ofthe cranial or facial skeleton.
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The authors who have considered the angular relationship between the hyoid and mandibular

plane, and the cranial base and the line from the hyoid passing through articulare are in

agreement (deBerry-Borowiecki et al, 1988; Hochban and B¡andenburg, 7994; and Strelzow

et al, 1988). They have all found an increase in the angular relationship of the hyoid and

therefore agree it is inferiorly placed in respect to the cranium and the mandible. Strelzow et

al (1988) did not find an increase in the angle between the cranial base and the body of the

hyoid.

The angle between the hyoid and a line joining the third cervical vertebrae and point

retrognathion was measured by Pracharktam et al (1994). They found an increase in this

angle in obstructive sleep apnoea patients and concluded that this showed an inferiorly placed

hyoid in this group.

Table 6.4-2 records the authors and the angular measurements of the hyoid bone. Definitions

of the landmarks used may be found in the glossary. Figure 6.4-l shows diagrammatically

the measurements of hyoid bone position on a lateral cephalometric radiograph.

Table 6.4-2: Hyoid Bone - Angular Measurements

Go-Gn-H N-S/Ar-H N-S-H C3-RGn-H

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Pracharktam et al (1994)

Strelzow et al (1998)

AvsC
AvsC
AvsS
AvsC

0.000

0.005

0.05

0.017

0.0001

0.05

0.042

0.0001

NS

0.001

U

U

U

U

A = obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S = snoring, non-apnoeic subject.
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6.5 NasopharyngealAirway

The upper airway is a radiolucent area on the lateral cephalometric radiograph that extends

superiorly to the skull base, inferiorly to the pharyngoesophageal inlet, anteriorly to the

posterior surface of the soft palate and tongue and posteriorly to the posterior wall of the

pharynx.

The upper airway is divided into the nasopharynx (the area above the level of the soft palate),

oropharynx (the area below the soft palate and above the hyoid) and the hypopharynx (the

area below the hyoid and above the pharyngoesophageal inlet). The area bounded by lines

connecting the cephalometric landmarks pharyngeal tubercle (PhT), sphenoidal rostrum (SR),

posterior nasal spine (PNS), anterior tubercle of atlas (ATA) and the pharyngeal tubercle

(PhT) is defined as the nasopharyngeal space by deBerry-Borowiecki et al (1988). Lowe et

al (1996) and Ono et al (1996) defined this area as being outlined by a line between point R,

the posterior nasal spine (PNS), the point of intersection on the posterior pharyngeal wall of
an extension of the palatal plane and the shadow of the posterior pharyngeal wall superiorly to

point R. Strelzow et al (1988) defined the nasopharyngeal boundaries as lines connecting the

posterior nasal spine (PNS), sphenoidal rostrum (Sr), articulare (Ar) and inferiorly along the

posterior pharyngeal wall to a line from the atlas to the posterior nasal spine (PNS).

The measurements of the upper airway differ in most studies by using different landmarks or

reference lines, making direct comparison difficult. Authors have generally considered the

nasopharyngeal airway at the level of the posterior nasal spine, the tip of the uvula and a point

on the dorsum of the soft palate, usually the most dorsal and superior point. The distance is

measured from these three points to the posterior wall of the pharynx along various reference

planes.

Andersson and Brattstrom (1991); Hochban and Brandenburg Q99Ð; Lyberg et al (1989b);

Sakakibara et al (1999); Solow et al (1996); and Tangugsom et al (1995b) found a

significantly decreased distance between the PNS and pharyngeal wall in obstructive sleep

apnoea patients. Sakakibara did not find a significant difference in this space between obese

and non-obese obstructive sleep apnoea subjects. Other authors have not found this

dimension to be significantly less in their obstructive sleep apnoea population compared to a

control group (deBerry-Borowieckr et al, 1988; and Strelzow et al, 1988).

Battagel and L'Estrange (1996); deBerry-Borowiecki et al (1988); Johns et al (1998); Lowe et

al (1996); Pracharktam et al (1994); Sakakibara et al (1999); Solow et al (1996); and Strelzow

et al (1988) measured a significant difference in the distance between the soft palate and the

pharyngeal wall (nasopharynx) in obstructive sleep apnoea subjects compared with controls.
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Lowe et al (1996) did not find a significantly decreased space between the soft palate and the

pharyngeal wall in obstructive sleep apnoea subjects with a Class Itr dental malocclusion.

Sakakibara et al (1999) found no significant difference in this measurement between obese

and non-obese obstructive sleep apnoea subjects.

Mochizuki et al (1996); Pracharktam et al (1996) found no significant decrease in the

pharyngeal airway space at the level of the soft palate between obstructive sleep apnoea and

control subjects.

The distance from the tip of the soft palate (uvula) and the posterior pharyngeal wall was

significantly less in some obstructive sleep apnoea populations compared with either snoring

or non-snoring controls (Battagel and L'Estrange 1996; deBerry-Borowiecki et al, 1988;

Hochban and Brandenburg, 1994; Lowe et al 1996; Lyberg et al, 1989b; Sakakibara et al,

1999; Solow et al, 1996; and Tangugsorn et al, 1995b).

Lowe et al (1996) found no significant decrease in this airway dimension in patients with a

Class Itr dental malocclusion, or in patients with a Class tr dental malocclusion if the lateral

cephalometric radiograph was taken in a supine position. found no significant difference in

this dimension between obese and non-obese obstructive sleep apnoea subjects.

Several othe¡ authors (Johns et al, 1998; and Mayer and Meier-Ewert, 1995) did not find a

significant decrease in distance between the uvula and pharyngeal wall in obstructive sleep

apnoea subjects.

Few authors have measured the area of the nasopharynx from lateral cephalometric

radiographs. deBerry-Borowiecki et al (1988); Lowe et al (1996) and Ono et al (1996) found

no significant difference in this area for obstructive sleep apnoea subjects, whereas Strelzow

et al (1988) found obstructive sleep apnoea subjects had a significantly decreased

nasopharyngeal area compared with a control population.

Table 6.5-l records the authors, the linear and angular measurements of the nasopharyngeal

airway. Definitions of the landmarks used may be found in the glossary. Figure 6.5-l

shows diagrammatically nasopharyngeal cephalometric airway measurements.
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Table 6.5-1: Nasopharyngeal Airway Measurements

PNS - PhW UP-PhW UT'PhW Area

Andersson et al (1991 )

Battagel et al (1991)

Battagel et al (1991)

Battagel et al (1991)

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Hochban et al (1994)

Johns et al (1998)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1989b)

Mayeretal (1995)

Mochizukiet al (1996)

Ono et al (1996)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Solow et al (1996)

Solow et al (1996)

Strelzow et al (1988)

Tangugsorn et al (1995b)

AvsC U

AvsC U

AvsC U

AvsC U

AvsC U

AvsC U

AvsC U

AvsS U

AvsC U

AvsC S

AvsC U

AvsC S

AvsC U

AvsC S

AvsC U

AvsC U

AvsS U

AvsC U

AvsS U

AvsS U

A1 vsC U

A2vsC U

A1 vsA2 U

AvsC U

AvsC U

AvsC U

AvsC U

0.001'

0.0002

0.0002'3

0.0004

0.002s

0.0052

0.0055

0.0016

NS5

0.00011

0.00017

0.001e

NS

NS

NS

NS

NS

NS

NS

NS

0.05

0.018

0.000s

0.035e

0.000e

0.001e

N59

N59

N55

0.000s

o.o27s

0.01e

N59

N59

N59

0.001e

N59

0.0017

0.0017

N57

0.0110

0.0017

NS11

0.0017

N57

0.0511

0.05e

N59

0.0017

0.0017

N57

0.00111

0.0017

0.0017

N57

0.00111

0.0511

0.0017

A = obstnrctive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S : snoring, non-apnoeic subject; Al = non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject.

I Distance along extension of line ANS-PNS; 2 Distance along a horizontal line; 3 The most posterior point on the dorsum of the

soft palate; 4 Disunce along a horizontal line through the lower incisor tip; 5 Distance along a line parallel to FH; 6 Distance

along extension of the occlusal plane; 7 Distance alòng line PNS-Ba (or parallel) between soft palate and pharyngeal wall; 8

Distãnce along line parallel ro ËH at midpoint of soft palate; 9 Distance along line parallel to Go-B; l0 Distance along line

parallel to Go-B; I I Reference line not defìned.

t25



Oc

Po

PN5

Figure 6.5-1 Nasopharyngeal Airway cephalometric measures'

ANS

B
T

126













Table ó.7-1: Hypopharyngeal Airway Measurements

ET.PhW TB-PhW V-PhW Area

AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS

A1 vsC

A2vsC
A1 vs A2

AvsC
AvsC
AvsC
AvsC

U

U

U

S

U

S

U

S

U

U

U

U

U

U

U

U

NS 0.038 0.003deBerry-Borowiecki et al (1988

Hochban et al (1994)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Mochizuki etal(1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Solow et al (1996)

Strelzow et al (1988)

Strelzow et al (1988)

Tangugsorn et al (1995b)

NS

0.001

0.020

0.000

NS

NS

0.046

NS

NS

0.031

NS

NS

NS

N52

0.001

NS

NS

0.053

NS

NS

0.05

NS

A = obstructive sìeep apnoea subject; C = non-snoring, non-apnoeic subject: S = snoring, non-apnoeic subject; A1 = non-obese

obstructìve sleep apnoJa subject; A2 = Obese obstructive sleep apnoea subject'

I Combined area ofthe oropharynx and the hypopharynx; 2 Linear distance between the poslerior tongue base and the

pharyngeal wal'l passing through the tip of the epiglotiis; 3 Linear distance from the epiglottis apex to the pharyngeal wall'
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Chapter 7

Non-surgical Management of Obstructive Sleep Apnoea
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7.1 Introduction

The management of obstructive sleep apnoea syndrome has been principally non-surgical

since the initial reports of the successful use of nasal continuous positive airway pressure

ventilation by Sullivan et al (1981). The decision on when to treat a patient presenting with

snoring and evidence of upper airway obstruction is complicated by the differing opinions on

what constitutes a diagnosis of obstructive sleep apnoea and on whether such a diagnosis is of

clinical significance for the person. For example, it seems the greatest risk of complications

associated with obstructive sleep apnoea are in people aged less than hfty years of age

(Benaim et al, 7992). Does this mean people aged greater than fifty years who show

evidence of obstmctive sleep apnoea should be aggressively treated, or can more latitude be

given to this group? ln Chapter 2 the literature regarding the medical complications

associated with obstructive sleep apnoea was reviewed, and many investigators have found an

increase in mortality with an AHI>20 events per hour. This parameter would therefore seem

a reasonable line of demarcation for treatment.

The literature also shows that people who experience less frequent episodes of airway

obstructive sleep apnoea may still be afflicted wìth excessive daytime sleepiness or snoring

that is troublesome to sleeping partners. Should these factors also be considered when

determining who should be treated? There is no clear answer from the literature, however

there are several suggested protocols for determining who should be treated for upper airway

obstruction during sleep.

Powell and Riley have published extensively on the diagnosis and management of obstructive

sleep apnoea. They have suggested a protocol to identify those people with obstructive sleep

apnoea who may benefìt from treatment, whether surgical or non-surgical Powell and Riley

(1993). They include one subjective measure and four objective measures derived from

polysomnographic study in their criteria, which are:

l. Excessive daytime sleepiness;

2. AHI > 20 or pathologic excessive daytime sleepiness with an AHI < 20;

3. Oxygen desaturation < 90o/o;

4. Arrhythmia's associated with obstructive events; or

5. Negative oesophageal pressures associated with sleep fragmentation.

Patients with obstructive sleep apnoea may present with one or more of these criteria and the

authors recommend treatment if one of the five criteria is met. Treatment of obstn-rctive

sleep apnoea may be non-surgical or surgical. In this chapter the non-su¡gical management
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of obstructive sleep apnoea will be considered, whilst Chapter 8 will review the surgical

treatment of this condition.

Non-surgical management of obstructive sleep apnoea may involve weight loss (Browman et

a1,1984; Harman et al, 1982; and Smith et al, 1985), pharmacotherapy, physical repositioning

of the skeletal or soft tissues of the UAV/ without surgery, head and neck extension collars

and sleep position modification (Cartwright, 1984; and Cartwright et al, 1985).

The "gold standard" of treatment, surgical or non-surgical, of obstructive sleep apnoea has

been nCPAP since its description by Sullivan et al (1981)'

Movement of the tissues of the UAW without surgery has been achieved by a number of

intraoral appliances worn by the patient whilst sleeping. These appliances either advance the

mandible, thus advancing the soft tissues attached to the mandible and increasing postenor

airway space, or by advancement of the tongue with similar effect on the oropharyngeal

alrway.

7.2 Weight Loss

Obesity is known to be a physical characteristic of many patients suffering from obstructive

sleep apnoea, and there is an increased incidence of obstructive sleep apnoea in patients who

are obese compared with the normal population (Young et al, 1993). 'Weight loss is effective

in reducing the AHI, the extent of arterial oxygen desaturation and the amount of sleep

disruption seen in patients with obstructive sleep apnoea.

Smith et al (1985) reported on 6 obese patients who lost an average 20 kg of weight. All had

a lower AHI, less oxygen desaturations and less hypersomnolence than control patients whose

weight remained unchanged for the period of the study.

Harman et al (1982) reported on four patients who underwent jejeuno-ileal bypass. The

patients had weight loss from an average 231 kg preoperatively to I23 kg postoperatively.

All patìents suffered obstructive sleep apnoea with preoperative AHI ranging from 15 to 196

events/hour. Postoperatively the AHI fell to 0.20 to 0.98 eventslhour. Browman et al (1984)

reported upon one patient with multiple sleep studies over a three year period and

considerable variation in weight. The patient showed a disproportionate decrease in his AHI

compared with weight loss. At a weight of 1l1kg the patient had an AHI of 59.6

eventslhour, with a decrease to 85 kg the AHI fell to 3.1 events/hour.

Partinen et al (1988) conducted a retrospective study of 198 patients diagnosed with

obstructive sleep apnoea syndrome who were treated by tracheostomy (71 patients) or weight

loss (127 patients). At a minimum five year follow up 14 patients had died. A1l these
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patients were treated conservatively by weight loss. This group of patients had a lower mean

apnoea index (43 eventsÆrour versus 69 eventslhour) and lower mean BMI (31 kg/m'z versus

34kglÍÔ than the group treated by tracheostomy.

Weight loss has been suggested for patients suffering a variety of medical conditìons' Foreyt

and Goodnck (1993) have demonstrated that patients who lose weight are unlikely to

maintain their new weight and most return to their previous condition despite the best

intentions. Patients studied over a three to five year period showed an average duration of

behavioural change of 18 weeks, with an average weight loss of 0.5 kg per week' 33o/, of

patients had returned to their baseline weight at 52 weeks and almost all patients showed a

gradual return to baseline weight over the 3 - 5 year follow up.

Alteration of sleep position has also been shown to influence the level of AHI experienced by

some patients with obstructive sleep apnoea. Both snoring and obstructive sleep apnoea

appear to be more severe with patients in the supine position. Cartwright (1984) reported

that24 unselected obstructive sleep apnoea patients had a 100% increase in their AHI when

sleeping supine as compared to the lateral cubitus position. He found sleep position

modification to be adequate treatment in some of this group. This treatment is found to be

most effective for patients who are close to their ideal weight and is rarely sufficient treatment

of obstructive sleep apnoea as a single modality.

7.3 Pharmacology

A number of pharmacological agents have been utilized to increase ventilatory drive or

stimulate UAW muscles. Many of these medications have unwanted side effects and this

results in non-compliance by patients.

Pharmacological treatment of obstmctive sleep apnoea relies upon increased muscle

neurological activity during sleep or decreasing the period of time spent in REM sleep. The

most commonly used agent is the tricyclic antidepressant, Protriptyline (Bonora et al, 1985;

and Brownell et al, 1982). These medications act to decrease the number of oxygen

desaturations during nREM sleep, suppresses REM sleep and specifically increases the tone

of UAW muscles. Side effects of this medication are anticholinergic in nature i.e'

xerostomia, urinary retention, constipation and impotence.

The requirement for life-long medication and the relative ineffectiveness of agents used in the

control of obstructive sleep apnoea has meant they are not first line choices of treatment.
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7.4 Nasal Continuous Positive Airway Pressure

The fi¡st report of the use of nCPAP for treatment of obstructive sleep apnoea was by Sullivan

et al (1981). This report of the abolition of obstructive sleep apnoea by continuous airway

pressgre applied through the nares on five patients with obstructive sleep apnoea

revolutionized the treatment of obstructive sleep apnoea. Since this pioneering report the

nCPAP has been the gold standard for management of obstructive sleep apnoea against which

all other modalities must be compared. See Figure 7 .4-l for an exampie of a patient utilising

nCPAP during a polysomnographic sleep study.

138



Figure 7. -lTitration of nCPAP in the sleep laboratory
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Sullivan et al (1981) hypothesized the effectiveness of nCPAP lies in its ability to splint the

airway open. This is achieved by blowing air into the UAW through a mask covering the

nares. The pressure needed to maintain patency varies between patients and must be titrated,

usually during an overnight sleep study.

Not all patients require the same level of pressure applied by nCPAP to abolish apnoeic

episodes. The pressure required is <lOcm H2O as reduced cardiac ouþut and renal function

have been reported at pressures greater than this (Sullivan et a1.,1981).

AHI and neck circumference was found to be the strongest variables in predicting the

intensity of nCPr\P required in a study by Miljeteig and Hoffstein (1993) involving 208

patients where BMI, neck circumference and waist circumference ìvere measured in patients

confirmed as suffering obstructive sleep apnoea by polysomnography.

nCPAP has been postulated to work via a number of different mechanisms:

1. Pneumatic splinting of the UAW (Rapaport et al, 1983; and Sullivan et al, 1981);

2. Nasal stimulation resulting in reflex UAW muscle activation (Kaufman and

Wright, 1969; and Rapaport et al, 1983);

3. Increased functional residual capacity increasing pharyngeal patency (Hoffstein et

al, 1984); or

4. Increased systemic oxygenation leading to decreased hypoxic cerebral depression

and respiratory drive instability (Santiago et al, I 984).

Unfortunately up to 54%o of patients do not comply with nCPAP therapy because of physical

or psychological reasons (Kribbs et al, 1993). In these patients it is necessary to treat their

obstructive sleep apnoea using a different method.

Patients may by intolerant to nCPAP for a number of reasons, usually related to the mask or

airflow pressure generated. Strollo et al (1995) in their review noted that side effects of

nCPAP may be either mask or airflow related.

Complaints regarding the mask may be related to poor fit and resultant leak or to a feeling of

claustrophobia experienced by some patients. Ill fitting masks may cause skin abrasion or

rash and conjunctivitis from an air leak. It may by possible to manufacture the mask to fit

better, and a variety of different masks are available. In extreme cases a custom fit mask may

need to be manufactured for the patient.

A patient who experiences claustrophobia whilst wearing the mask presents a difficult

problem to overcome. Harris et al (1990) used a nasal pillow to replace the nasal mask.
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Figure 7.5-1 Non-adjustable Mandibular Repositioning Appliance
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Figure 7.5-2 Adjustable Mandibular Repositioning Appliance
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Meurice et al (1996) reported an increase in upper zirway collapsibility when the mouth was

held open 15mm b¡r a plastic appliance but no decrease in posterior airway space. This study

was performed on six non-obese patients who did not suffer from obstructive sleep apnoea

and who consumed no medication or alcohol prior to polysomnographic study. The expected

change in cephalometric parameters was only significant for a decreased MP-H (p<0.001) and

a significant increase in ANS - Gn (p<0.01). The authors concluded mouth opening might

move the mandible posteriorly leading to a decrease in the size of the oropharyngeal lumen

and predisposing it to obstruction. They further suggested this posterior rotation of the

mandible decreases the length of the suprahyoid muscles and therefore decreases their

contractile effi ciency.

The possible clinical significance of this finding is the knowledge that treatment of

obstructive sleep apnoea by an mandibular repositioning appliance invariably involves

increasing the patients interincisal distance whilst the appliance is in situ. If the mandible is

not protruded adequately there may be a tendency to exacerbate the obstructive events that the

appliance is designed to prevent. This study is small and a larger sample size would lend

more credibility to the results however until disproved it should be taken into consideration

when treating patients with a mandibular repositioning appliance for obstructive sleep apnoea

or even simple snoring.

A recent trend has been for general dentists to construct mandibular advancement appliances

of varying design in order to "treat" snoring and or obstructive sleep apnoea of their patients,

often at a fraction of the cost and time involved in other treatment modalities. Loube and

Strauss (1997) published the results of a questionnaire survey of 355 dentists, all of whom

belong to the Sleep Disorders Dental Society. This association is a group of dentists,

predominately North American who aims to treat obstructive sleep apnoea patients by use of

mandibular repositioning appliances. Only 124 of the questionnaires were returned (35%).

95%o of respondents used pretreatment polysomnography, but disturbingly only 18% of

members routinely used post-treatment polysomnography. Incredibly, despite voluminous

evidence in the literature to the contrary,To/o ofthese dentists believe subjective reports are an

adequate substitute for post treatment polysomnography and 37o/o believe nocturnal pulse

oximetry, pre or post treatment is an adequate substitute for polysomnography. Nocturnal

pulse oximetry has a sensitivity of 90 - 98% but a specificity of only 48 - 7 5% for obstructive

sleep apnoea, considerably less than that for polysomnography (Levy et al, 7996; Series et al,

1993; and Yamashiro and Kryger, 1995).
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7.5.1 Protocol for Dental Appliance Therapy

The following is a suggested protocol for dental appliance therapy proposed by the Sleep

Disorders Dental Society:

1. Medical assessment;

2. Polysomnogram;

3. Referral to dentist;

4. Dental examination;

5. Trial appliance (3 -717);

6. Final appliance;

7. Adjustment and evaluation (2-3112);

8. Repeatpolysomnogram;

9. Dental appliance modification, remake as required;

10. Repeat adjustment and evaluation;

i 1. Physician for ongoing evaluation;

Follow-up as required.

Kloss et al (1986) firstpublished the use of mandibular advancement appliances specifically

for the management of obstructive sleep apnoea. A mandibular repositioning appliance

should be used during sleep for life, be comfortable and preferably involve full occlusal

coverage in order to prevent vertical changes to the dentition over time.

Studies of mandibular repositioning appliance and their effect on obstructive sleep apnoea are

often marred by the failure to adequately assess the severity of the obstructive sleep apnoea

by use of polysomnography. Clark et al (1993) studied 24 patients with obstructive sleep

apnoea and the effect of an mandibular repositioning appliance with mandibular advancement

75o/o of the maximum possible for the patients. All patients had a polysomnographic sleep

study preappliance however only l5 patients underwent a repeat study with the appliance in

place. Reasons given for failure to obtain the second sleep study included a subjective

assessment by the patient that their symptoms had not changed, inability of the patient to

tolerate the mandibular repositioning appliance or inability of the patient to afford a second

sleep study.

Results of this study showed a decrease in respiratory distress index (RDI, an event based on

a combination of a l0 second airflow cessation and a 3o/o oxygen saturation level decrease)
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from a mean of 48.4 +l- 33.4 events/Tr pretreatment to I2.3 +l- 20.6 events/h¡ post-treatment.

This represents 14124 (58%) patients with a reduced RDI with the mandibular repositioning

appliance in position. Importantly 13/15 patients with a reduced RDI fell below the threshold

of 20 events/hr that is associated with increase risk of mortality. The authors had a

reasonable tength of follow-up on a large number of their patients and 12/23 patients were

still regularly using the applianc e at 36 months or greater post insertion.

7.5.2 Comparison of Dental Appliances and nCPAP

Clark et al (1996) performed a cross-over study where patients used nCPAP for 2152 and an

mandibular repositioning appliance for 2152. Each of the 2l subjects had pre- and post-

treatment polysomnographic sleep studies. The advancement provided by the mandibular

repositioning appliance was 650/o of maximum. The results of the study are presented in

Table 7.5-1. The authors found that in severe cases of obstructive sleep apnoea the

mandibular repositioning appliance was less effective at lowering the AHI to acceptable

levels when compared with nCPAP.

Table 7.5-1: Comparison of nCPAP and mandibular repositioning appliance (Clark et al, 1996)

NCPAP (events/hour) Mandibular Repositioning Appliance
(events/hour)

Pretreatment AHI

Post treatment AHI

33.86 +/- 14.30

1 1 .15 +/- 3.93

33.86 +Ê 14.30

19.94 +l- 12.75

A similar study by Ferguson et al (1996) assessed the use of nCPAP and a mandibular

repositioning appliance on 27 patients who suffered obstructive sleep apnoea. The

mandibular repositioning appliance advanced the mandible 3mm less than maximal protrusion

and produced a maximal incisal opening of 7mm. Successful treatment of obstructive sleep

apnoea in this study was defined as an AHI<I0 and resolution of symptoms. This study used

patients suffering mild to moderate obstructive sleep apnoea (AHI range 15 - 50 pre

treatment).

The results of this study showed both treatments were successful at treating obstructive sleep

apnoea (see Table 7.5-2), however nCPAP produced a lower AHI in more patients

(mandibular repositioning appliance 19125 AIIL9.7 +l- 7.3 events hr c.f. nCPAP 20125 AflI

3.5 +l-1.6 events/lr). Both treatment modalities significantly decreased AHI at the 5%o level.

6125 palienls were non-compliant with the mandibular repositioning appliance c.f. 4125 with

nCPAP. The level of oxygen desaturation (SaO2) was significantly improved with nCPAP
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but not with the mandibular repositioning appliance (p<0.005). Interestingly side effects

were more coÍunon and the patients less satisfìed with nCPAP (p<0.005) despite the fact is

was less efficacious at reducing the AHI and also at dec¡easing daytime sleepiness (p<0.005).

12 patients were successfully treated by mandibular repositioning appliance according to the

criteria of this study and 1 I of these patients chose to continue its use long term in preference

to nCPAP.

Table 7.5-2: Comparison of nCPAP and mandibular repositioning appliance (Ferguson et al,
r9e6)

nGPAP (events/hour) Mandibular Repositioning Appliance
(events/hour)

Pretreatment AHI

Post treatment AHI

17.5 +l- 13.2

3.6 +l- 1.7

19.7 +l- 13.8

9.7 +l- 7.3

7.5.3 Side Effects of Dental Appliances

Side effects of mandibular repositioning appliance use have been reported by a number of

authors, and many of these side effects are similar to those reported for nCPAP. O'Sullivan

et al (1995) reported the treatment of obstructive sleep apnoea by way of an mandibular

repositioning appliance in 37 patients with obstructive sleep apnoea that advanced the

mandible 75%o of maximal protrusion and caused maximal incisal opening of lOmm.

Unfortunately this study included both simple snorers and obstructive sleep apnoea patients

and the data was not reported separately for each group. 14126 patients with an AHI > 20 on

pre treatment polysomnography had a post treatment AHI <
polysomnography. This was significant in the authors' opinion, as all these subjects were

unable or unwilling to tolerate nCPAP for treatment of their obstructive sleep apnoea. The

adverse side effects reported in this study from the use of an MRA is shown in Table 7.5-3.

Tahle 7.5-3: Side effects of mandihular repositioning appliances reported by snoring and
obstructive sleep apnoeic subjects (O'Sullivan et al, 1995)

Side Effect Number of subjects affected

Jaw discomfort on waking

Jaw discomfort on waking lasting longer than three weeks

Excessive salivation

Dry mouth

Gingival irritation

Bruxism

38t57 (67%',)

16157 (2go/o',)

11t57 (19V")

12t57 (21o/o)

4t57 (7%)

3t57 (5%\
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Schmidt-Nowara et al (1991) provided further evidence as to the effectiveness of mandibular

repositioning appliance in treating mild to moderate obstructive sleep apnoea. Their study

consisted of 20 people (19 males and 1 female) with an average AHI pre treatment of 47.4

and an average AHI post treatment of 19.7. Only 7120 patients achieved an AHI<20 i.e.

effective treatment of their obstructive sleep apnoea. In this study the mandibular

repositioning appliance was constructed with an average maximal incisal opening of 7.2 +l- 2

mm and an edge to edge incisal relationship.

The above study also constructed mandibular repositioning appliance for snoring patients,

totaling 7l patients with an mandibular repositioning appliance for treatment of snoring or

obstructive sleep apnoea. They report 75o/o of patients (51171) were still using the

mandibular repositioning appliance at an average 7 months post insertion (range 2 - 25

months). There were 25 %o of patients (I7l7l) no longer wearing the mandibular

repositioning appliance, and only one cited TMJ discomfort as the reason.

Compliance is a major problem in any non surgical treatment modality for obstructive sleep

apnoea, whether it be nCPAP, mandibular repositioning appliance or weight loss. Long term

compliance for the use of a mandibular repositioning appliance has been reported between

48o/o (Nadazawa et al, 1992) and 52%o (Clark et al, 1993) at three years.

Eveloff et al (1994) in a small study of l9 patients challenged the widely held assumption that

mandibular repositioning appliance gained some of their therapeutic effect by increasing the

posterior airway space. In 19 patients studied there was no significant difference in posterior

airway space on lateral cephalometric radiographs taken with or without the appliance. 10119

patients were reported as responders, defined by the authors as an AHI<10 on

polysomnographic sleep study with the appliance in place. All patients in this study were

mild to moderate sufferers of obstructive sleep apnoea with the average AHI falling from34.7

+l-5.31o 12.9+l-2.4 across the l9 subjects. There was a significant decrease in the MP-H in

all patients studied. The length of the soft palate (PNS-P) was not significantly different

between responders and nonresponders on the baseline cephalometnc radiograph, however

this measurement was significantly shorter in patients who responded to the appliance when

the lateral cephalometric radiograph was repeated. This change in soft palate length has also

been reported by Bonham et al (1988) who used a modified orthodontic functional appliance

to advance the mandible in patients with obstructive sleep apnoea syndrome.

This study raises the interesting possibility that advancement of the mandible may impact

upon the soft palate such that the upper airway space is increased. Advancement of the

mandible could be expected to result in advancement of those soft tissues directly attached to

the mandible. The soft palate and ulula, consisting of tensor veli palatini and levator veli
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palatini has no direct attachments to the mandible. The authors do not comment upon the

mechanism for this change seen in soft palate dimensions. Further study should be done to

determine if mandibular advancement by surgery results in the same change in palatal

dimension, or if the measured alteration in soft palate lengfh on lateral cephalometric

radiography is dependent upon the presence of an intraoral mandibular repositioning

appliance. If this change in soft palate length is seen only with a mandibular repositioning

appliance what is the mechanism of its action upon the soft palate musculature. Is there

increased resting tone in these muscles or is there a vector of force placed upon the

attachments of these muscles such that they shorten? Only further research into this effect

may provide answers.

:l
r.[J

I 150



Chapter 8

Surgical Management of Obstructive Sleep Apnoea
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8.1 Introduction

A number of surgical procedures have been advocated in the literature for the treatment of

obstructive sleep apnoea, either as primary therapy or as an adjunct to other treatment.

Tracheostomy was the method of treatment, as reported by Kuhlo et al (1969) prior to the

advent of nCPAP by Sullivan et al (1981). This obviously is successful in all patients

suffering obstructive sleep apnoea, however there is significant morbidity associated with this

therapy and it is little used as definitive treatment at this time unless the patients life is in

immediate danger.

Surgical treatment is aimed at either reducing the soft tissue of the UAW or at altering the

skeletal framework over which this soft tissue is draped. Many of the surgical therapies

advocated for the treatment of obstructive sleep apnoea were originally used for other

purposes, however with the increase in knowledge of obstructive sleep apnoea in the last few

decades many of these procedures have taken on new clinical importance. Surgical treatment

for obstructive sleep apnoea reported in the literature includes tracheostomy; nasal

reconstruction; UPPP; mandibular osteotomy involving movement of the genial tubercles and

hyoid; bimaxillary advancement; or base of tongue resectron.

In assessing the obstructive sleep apnoea patient for possible surgical treatment it obviously

obligates the surgeon to determine as accurately as possible the site of obstruction for each

patient and hence tailor the surgery accordingly.

The surgical management of obstructive sleep apnoea is aimed at relievìng the site of UAW

obstruction by removing soft tissue or by altering the skeletal base upon which soft tissue is

draped.

Surgical correction of aberrant UAW anatomy in this group of patients should be performed

as there is a reasonable success reported in the literature of effective treatment of obstructive

sleep apnoea when surgery of the affected area of the UAW is undertaken. This is not to say

all patients suffering obstmctive sleep apnoea are surgical candidates, and it might be argued

surgery should be reserved only for those patients who fail to tolerate other treatments for

their sleep disorder.

Consideration prior to surgery must be given to comorbidities and the potential difficulties

associated with the perioperative management of these patients. Prior to surgery there must

be optimization of these comorbidities in order to decrease potential complications. This

may include weight loss, strict control of hypertension and the use of a CPAP machine in the

days leading up to surgery.
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The correction of underlying anatomic anomalies should be undertaken because this may

prevent the patient from a life reliant on CPAP, or worse still non-compliance to CPAP and

ineffective management of this potentially life-threatening condition.

8.2 Tracheostomy

Tracheostomy obviously required no information regarding the site of obstruction of the

UAW as it simply bypassed the UAW completely. The first treatment for obstructive sleep

apnoea syndrome was tracheostomy, and was described by Coccagna et al (1972). This was

effective in 100% of cases of obstructive sleep apnoea however the morbidity assocìated with

this procedure is high and alternative treatments were sought.

Conway et al (1981) performed tracheostomy on 11 patients fo¡ treatment of obstructive sleep

apnoea found 9/11 had complete reversal of their symptoms within two days of surgery. One

patient developed a post operative wound infection. Other post operative infectious problems

included pneumonia and recurrent, purulent bronchitis. Haemoptysis and tracheal

obstruction developed four to twelve months post tracheostomy in several patients. The most

frequent morbidity associated tracheostomy was psychosocial. Preoperatively 8/11 patients

reported psychosocial problems, with 10/11 patients reporting these problems postoperatively.

Their symptoms included disability, depression, adjustment reactions, marital discord and

alcohol or drug abuse or dependency.

A second study published in the same year reviewed frfty patients who had undergone

tracheostomy for management of obstructive sleep apnoea (Guilleminault et al, l98l). They

reported a number of complications, acute, subacute, local and general. They noted these

complications ìr¡/ere resolved such that there were no ongoing clinical symptoms and patients

were able to return to normal social and family activity. As expected, temporary occlusion of

the stoma caused recurrence of the obstnrctive sleep apnoea, thereby confirming tracheostomy

to provide symptomatic relief only.

8.3 Nasal Surgery

Decreased nasal air entry has been postulated to contribute to the development of obstructive

sleep apnoea (Olsen, 1991) and surgery can be directed at any aberrant anatomy in this area.

Surgery to decrease the resistance to airflow through the nasal cavity has been undertaken in

an effort to decrease the incidence and severity of more distal upper airway narrowing and

occlusion dunng sleep. Dayal and Phillipson (1985) and Hester et al (1995) both reported

small numbers of patients who underwent nasal surgery to increase airflow as management
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for obstmctive sleep apnoea. Neither study used polysomnographic measures in follow-up to

assess the effectiveness of surgery, although both claim subjective improvement in patients

and Hester et al (1995) report an improvement in arterial oxygen saturation measures in 12/15

(80%) of subjects.

As mentioned in Chapter 1 (Howard, l97l) likened the upper airway to a Starling resistor.

Blakley and Mahowald (1987) postulated that if the nose acts as a Starling resistor then -

increased nasal resistance will cause a greater degree ofnegative pharyngeal pressure. They

tested this hypothesis by measuring the upper airway resistance on 37 subjects with no

evidence of upper airway obstruction during sleep and 53 patients with polysomnographically

proven obstructive sleep apnoea. This resistance was measured by determining the amount

of negative pressure (i.e. pressure below normal atmospheric pressure) generated in the

postenor nasopharynx. They found that the subjects with obstructive sleep apnoea did have

increased nasal resistance compared to the control subjects, however there was no correlation

between the severity of nasal obstruction and the severity of obstructive sleep apnoea as

measured by AHI or oxygen desaturation. They concluded that nasal resistance may play a

role in the pathogenesis of obstructive sleep apnoea but it was not the major contributing

factor in upper airway narrowing or occlusion.

A similar study measuring combined nasal resistance and highest unilateral nasal resistance

by Atkins et al (1994) found no significant difference in nasal airway resistance between a

population of snoring subjects and those with obstructive sleep apnoea. There was also no

correlation between the degree of nasal airway resistance and the AHI. Miljeteig et al (1992)

also measured bilateral and unilateral nasal airway resistance on 683 subjects with obstructive

sleep apnoea or simple snoring to determine its possible relationship with obstructive sleep

apnoea. They too found no correlation between the degree of nasal resistance and the

development of upper airway narrowing or occlusion during sleep.

Maxillary constriction in the lateral dimensions is known to increase nasal resistance to

airflow and increase the incidence of mouth breathing. Expansion of the maxilla, either

surgically or with orthodontic assistance is known to improve nasal airflow. Ten subjects

diagnosed with mild obstructive sleep apnoea (AHI 79.4 +l- 4 and minimum SaO2 89 +l- 1%)

and a constricted maxillary arch underwent rapid maxillary expansion. Four patients had

surgical expansion of their maxilla whilst the other six patients underwent surgically assisted

rapid maxillary expansion in conjunction with orthodontic treatment (Cistulli et al, 1998).

One subject failed to improve, seven had their AHI < 5, and the remaining two had an AHI <

10. This study indicates that if there is evidence of reduced nasal airflow then surgery

directed at the maxilla, rather than the nose per se may be of benefit if their is constriction of

the maxillary arch.
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Inflammation of the nasal mucosa has been postulated to contribute to increased nasal

resistance to airflow. This pathology is not amenable to surgical correction but nasal

decongestants may be of some benefit. Rubinstein (1995) examined the nasal lavage fluid

for markers of inflammation in eight obstructive sleep apnoeic subjects and six control

subjects. All subjects v/ere non-smokers and had fluid removed in the evening and early the

following moming. There was a significantly increased concentration of markers of

inflammation (polymorphonuclear leucocytes, bradykinin and vasopressin) in the subjects

with obstructive sleep apnoea. The author suggested nasal inflammation may play a role in

nasal airflow limitation in obstructive sleep apnoeic subjects. This also suggests there may

be a group of patients who do not have aberrant nasal anatomy contributing to restriction of

nasal airflow. Surgery in all patients exhibiting signs of nasal airflow limitation contributing

to their obstructìve sleep apnoea is therefore not necessarily indicated'

8.4 Uvulopalatopharyngoplasty

Uvulopalatopharyngoplasty (UPPP) is commonly used in the treatment of simple snoring, the

removal of redundant palatal mucosa and associated tonsillar pillars acts to decrease, and in

some cases abolish snoring in some patients.

Ikematsu (1964) first described the surgical procedure, uurlopalatopharyngoplasty (UPPP), as

a surgical treatment for snonng.

Fujita et al (1981) reported UPPP as a surgical procedure to enlarge the potential airway space

in the oropharynx, thus alleviating the obstructive episodes in obstructive sleep apnoea

patients. This report of a small series of 12 patients reported an average preoperative AHI of

54 events/hr and postoperative AHI 27.9 events per hour. 8lI2 (66%) had an AHI < 20 post

op and therefore were considered successfully treated,2lI2 (16%) had a decrease in AHI but

the level remained above 20 events per hour and were therefor considered failures.

Signihcantly 2l12 (16%) of patients had an increased AHI postoperatively, a most unfortunate

outcome for the patients involved.

Larsson eT al.,(1994) showed evidence that the effectiveness of UPPP in the management of

obstructive sleep apnoeamay decrease with time.

Katsantonis and Walsh (1986) performed a study on 26 patients with obstructive sleep apnoea

using somnofluoroscopy as the imaging modality before and after UPPP. They found 15i26

(58%) of patients obstmcted at a level above a horizontal line drawn through C2

(corresponding to the tip of the soft palate in most patients).
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A1126 patients underwent UPPP irrespective of the site of obstruction, only 11126 (42%) were

deemed as responding successfully to the surgery with an AHI < 50%o the initial level and

SaO2<85% less than I5o/oper hour of sleep.

These criteria are somewhat questionable as it is generally recognized that AHI<20 should be

the criteria for success of any treatment regime for obstructive sleep apnoea. Patients with an

AHI above this level are at greater risk of developing systemic comorbidities related to their

obstructive sleep apnoea (see Chapter 2). Furthermore this study failed to quantifo pre and

post surgery AHI for any individual patient, or even an average fo¡ the group. The important

finding was 3/15 (20%) patients who obstructed in the nasopharyngeal segment failed to

respond to UPPP. This study again demonstrated that there would appear to be multiple

factors contributing to UAW obstruction in some patients with obstructive sleep apnoea and

these patients cannot be classified according to anatomical factors alone.

Shepard and Thawley (1990) reported on six patients before and after UPPP with all

obstructing in the nasopharynx and three with extension into the oropharynx. All patients

continued to obstruct post operatively with only one patient deemed a success by the authors

as measured by AHI (decrease from 52 events/h to 23 events/h). The average AHI

preoperatively for this group was 7l +/-16 eventsÆr and decreased to average 69 +/- l7

eventslh postoperatively. The three patients obstructing in the nasopharynx preoperatively

continued to do so postoperatively. The fourth patient continued to collapse in the

oropharyrx, another had extension into the hypopharynx whilst the final patient had collapse

confined to the nasopharyngeal segment.

Selection of procedure according to the anatomic problem is a seemingly obvious statement.

When UPPP was fi¡st advocated as a treatment modality for obstructive sleep apnoea, Fujita

et al (1981) utilized direct visualization to determine the site of obstruction. These authors

examined and operated on 12 patients and found all patients examined had a shallow

oropharyngeal space, a relatively large uvula and wide posterior pillar mucosa. The

posterior wall of the oropharynx contained redundant mucosa and was wrinkled. In only

50% of the patients was the tongue base enlarged. The patients,ù/ere examined in the supine

position as it was felt that the palatopharyngeal arch might be lowered in some patients in this

position, although appeanng patent when the patient was upright.

One of the problems of UPPP has been a failure rate of up To 50Yo in some studies. Riley et

al (1985) reported a small study of l4 patients with obstructive sleep apnoea treated by UPPP

and found nine patients failed in the goal of decreasing AHI to 20 events/hr or less.
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They examined lateral cephalometric radiographs of all patients and found that in eight of

these patients had an inferiorly positioned hloid (MP - H) and all had significantly shorter

palatal lengths (30.3 mm) compared with the five treatment successes (36 mm).

Woodson et al (1997) utilized lateral cephalometric radiographs in the assessment of patients

undergoing UPPP. They found responders (defrned as a postoperative AHI < 20) had shorter

total and lower airway lengths and a longer posterior mandibular height (p<0.05) than

nonresponders.

Complications of UPPP have been repofed in the literature and range from nasopharyngeal

stenosis to death. Fairbanks (1990) conducted a retrospective study by questionnaire of 72

locations in the United States that performed UPPP for treatment of obstructive sleep apnoea.

The study was aimed at determining the complications associated with this procedure. There

was no estimate made of the total number of UPPP procedures performed across the 72

locations. There were 16 fatalities and seven near fatalities. Airway loss postoperatively

occurred in 17 cases. Nasopharyngeal stenosis occurred in 46 patients and there was

permanent palatal incompetence resulting in fluid regurgitation in 42 patients and speech

impediment in seven patients. Haemorrhage \¡/as estimated by respondents to occur at the

same rate as for tonsillectomy (reported aT. l%o fo 7%o of patients) and wound dehiscence and

infection u/as "common".

Riley et al (1993) reported nasal reflux in 72%o of patients postoperatively with resolution of

all cases.

A review of the literature by Sher (1995) cited the following as the most common

compli cations encountered following UPPP :

1. Loss of airway resulting in patient death;

2. Haemorrhage, with a similar incidence to tonsillectomy;

3. Palatal incompetence leading to nasal reflux, although this rarely persists;

4. Altered voice quality;

5. Nasopharyngeal stenosis; and

6. Changes in swallowing and throat sensatlon.

He et al (1988) noted that treatment by tracheostomy or nCPAP significantly increased the

survival of patients suffering obstructive sleep apnoea, however there was no significant

increase in survival between patients treated by UPPP and those patients who declined all

lnterventlon.
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8.5 Tongue Reduction Surgery

Some authors, to increase the oropharyngeallhypopharyngeal airway space, have also

advocated tongue reduction surgery. There are no series reported in the lite¡ature indicating

success for this treatment as the sole treatment modality.

Shukowsþ first published the concept of tongue advancement as a treatment for UAV/

obstruction in 191 1. He reportedly sutured the tongue around the lower incisors on an infant

with micrognathia.

In 1946 Douglas described a surgical procedure whereby the ventral surface of the tongue was

denuded and sutured to the lower lip, inducing a sublingual scar that held the tongue forward.

Macroglossia, either relative or absolute has been implicated in the development of

obstructive sleep apnoea in some studies. Two main approaches have been used to treat this

condition dependant upon the diagnosis. For patients with relative macroglossia surgery to

increase the volume of the oral cavity, or at least advance the tongue within the oral cavity to

avoid obstruction in the posterior oropharynx has been attempted. The procedure varies

however the net effect is advancement of the genial tubercles and hence advancement of the

main body of the tongue (see Section 8.7).

Patients diagnosed with absolute macroglossia may be treated by tongue reduction surgery,

pnncipally reduction in muscle bulk of the posterior one third of the tongue. This procedure

causes signif,rcant morbidity immediately post operatively, and usually requires intensive

airway management until the oedema subsides.

8.6 Hyoid Suspension

Hyoid suspension has been advocated to increase the hypopharyngeal cross-sectional area.

This procedure may be done alone or in combination with genial tubercle advancement. The

combination procedure also advances the tongue, opening the airway at the base of the

oropharynx.

For patients whose site of obstruction lies in the oropharynx or hypopharynx there is limited

or no benefit from UPPP. Riley et al (1989) advocates surgical advancement of the tongue

base if there is no obvious skeletal deficiency on a lateral cephalometric radiograph. To

avoid altering the profile of the patient the surgery involves genial advancement and removal

of the buccal cortex of the bony window containing these structures, hyoid myotomy and

suspension of the hyoid to the mandible. This suspension may be performed by way of a

fascia lata graft or thick non resorbable suture (Riley et al, 1994).
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8.7 Genial Advancement

Riley et al (1939) studied a group of 55 patients, assessing them pre operatively for site of

obstruction by way of nasendoscopy and lateral cephalometric radiography.

Polysomnographic sleep studies were performed on all subjects pre and post operatively.

42155 paTients had obstruction at the oropharyngeal and hypopharyngeal levels (Fujita type

II), whilst 6 had obstruction confined to the hypopharynx (Fujita type Itr), and 7 had

previously endured a failed I-IPPP. All patients underwent genioglossus advancement, the

range of advancement reported was 8 - l8 mm, with an average of 13 mm.

This study found 37 patients responded to the surgery, with the AHI falling below 20 and the

SaO2 normal or with only minimal falls below 90%. 26137 patients had a UPPP combined

with the inferior mandibular osteotomy and hyoid suspension procedure. 1ll17 patients who

pre operatively experienced hypertension for which they took medication became

normotensive post operatively. Other studies report similar success I2l15 (80%).

Patients who failed to respond satisfactorily post operatively consisted of 16/18 patients who

had UPPP and the inferior mandibular osteotomy and hyoid suspension procedure, 1/18 had

UPPP only and l/18 had an inferior mandibular osteotomy and hyoid suspensìon procedure

only.

Johnson and Chinn (1994) reported on seven patients treated with concur¡ent UPPP and

genial tubercle advancement and two patients treated sequentially with these surgeries.

Seven of the patients had a postoperative RDI < 10 which was deemed successful treatment.

8.8 Mandibular Advancement

Mandibular advancement alone has not been widely reported in the literature for the surgical

management of obstructive sleep apnoea. This procedure has been combined most

commonly with hyoid suspension (Riley et al, 1986) and genial tubercle advancement (Riley

et al, 1989). Kuo et al (1979) first reported mandibular advancement for the treatment of

obstructive sleep apnoea. Powell et al (1983) reported a single case where an obstructive

sleep apnoeic patient who had a retrognathic mandible underwent a mandibular advancement

osteotomy. This procedure was performed after a number of other interventions, both

surgical and non-surgical, had failed.

Isono (1995) investigated the effect mandibular advancement has on the pressure generated in

the upper airway. They studied 13 patients under general anaesthetic and total muscle

paralysis with obstructive sleep apnoea, inducing apnoeic events by manipulating nasal

airflow. They then maximally advanced the mandible (manually) and in 12113 patients the
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upper airway renained patent at nasal airflow pressures that had previously resulted in

apnoea. They concluded from this study that the upper airway is increased in width at the

base of the tongue and the nasopharynx as a result of mandibular advancement. This

confirms the principle behind the use of mandibular repositioning appliances and indicates

surgical advancement in patients with a retrognathic mandible should be considered.

Mandibular advancement alone is not a widespread surgical treatment for obstructive sleep

apnoea. The incidence of a skeletal Class II malocclusion in the Australian Caucasian

population is reported to be 11.1% (Clinch, 1951). Surgery to advance the mandible would

produce an unacceptable malocclusion in approximately 90o/o of cases if subjects with

obstructive sleep apnoea had the same proportion of skeleltal malocclusions as the general

population. Reversible, non-surgical advancement by means of mandibular repositioning

appliances is common. The use of these devices was reviewed in Chapter 7.

8.9 BimaxillaryAdvancement

A final procedure to move the skeletal base involves a bimaxillary osteotomy. Treatment of

obstructive sleep apnoea by maxillomandibular advancement has been advocated over the last

decade or so in selected patients who generally do not tolerate nCPAP and for whom other

treatment may have failed.

Orthognathic surgery has been used for many years for the treatment of skeletal abnormalities

of the maxillofacial region for both functional and aesthetic reasons. More recently this type

of surgery has been advocated as a possible treatment for patients with obstructive sleep

apnoea.

The literature describing orthognathic surgical treatment of obstmctive sleep apnoea reports

maxillary osteotomies principally being at the Le Fort I level and mandibular advancement

via bilateral sagittal split osteotomy. Riley et al (1987) recommend maxillary advancement

of 4 - 8 mm (average 6 mm) and mandibular advancement of 12 -24 mm (average 16 mm).

Riley et al (1990) compared the results of treating obstructive sleep apnoea with bimaxillary

advancement osteotomy or nCPAP. They found in a group of 30 patients no significant

difference between either treatment modality when comparing any of the respiratory variables

measured an average of 12.6 months postoperatively (range 6 - 24 months). Furthermore

when comparing the baseline polysomnographic results with nCPAP and surgery the results

were highly significant (p<0.00001 ).
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Bimaxillary advancement was successful in 89/91 patients and produced comparable

polysomnographic results to nCPAP (Riley et al, 1993). The mean follow up for these

patients was nine months and the results are reproduced as Table 8.9-1.

Table 8.9-l: Results of bimaxillary surgery on 91 patients from Riley et al (f 990)

Preoperative nGPAP Postoperative

RDI (events/hr)

SaOz min (%)

BMI(kg/m2)

68.3 +Ê 23.3

63.2 +l- 17.5

31.1 +/- 6.3

7.6 +/- 5.9

87.0 +/- 3.9

8.4 +l- 5.9

86.6 +Ê 3.4

30.5 +/-5.9

These authors had proposed a surgical protocol for the management of obstructive sleep

apnoea and 24191had undergone previous genioglossus advancement with hyoid myotomy

and UPPP. This surgery had been unsuccessful with the RDI and SaOz improving only

marginally (75.1 to 56.3 events/hour and 64.0 to 7I9% minimum SaOz). Seven of the ninety

one patients had a skeletal deformity as determined from lateral cephalometric radiographs

and the remaining 58 patients were from outside referral centres who had undergone

unsuccessful IIPPP.

A finding of some studies using lateral cephalometric radiographs is a deficiency antero -
posterior of the maxilla and mandible with resultant airway narrowing. Hochban et al (1994)

reported on a group of2l patients suffering obstructive sleep apnoea and fitting these criteria

whom underwent bimaxillary advancement. Patients were excluded from this study if they

were suffering multi-organ disease, chronic alcoholism, drug abuse or if they had a BMI>30.

Additionally only those patients with an AHI>20 were considered for surgery.

The aim of the surgery was to advance the patients maxilla and mandible 1Omm, this goal was

achieved 1n l9l2l patients. 1121. paTienT had their maxilla advanced 7mm and the mandible

l4mm, whilst the last patient had the maxilla advanced 4mm and the mandible l4mm. The

surgery involved a Le Fort I osteotomy and a bilateral sagittal split ostcotomy advanccmcnt.

Preoperatively the mean AHI was 44.9 +l- 77.5 eventsflu and post operatively the AHI was

3.6 +l- 4.7 events,/hr (p<0.001). Additionally the percentage of time spent with SaO2 < 90o/o

compared with total sleep time fell from a mean of I1.5+/-12.5 to 1.0 +/- 1.1 (p<0.001). The

respective results for these parameters for the same patients on nCPAP were AHI 2.5 +l- 2.3

eventslhr and SaO2 0.7 +l- 0.8, which were not significantly different from the results

produced by surgery.

Cephalometric analysis of this group of 21 patients postoperatively showed, as expected a

significant alteration in the antero - posterior position of the maxilla and mandible. They also
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that at five, ten or twenty years these patients are once again experiencing moderate to severe

obstructive sleep apnoea?

Riley et al (2000) published a long-term review of forfy patients who had undergone

bimaxillary advancement for obstructive sleep apnoea. The mean follow up for this group

was 61.0 +l-24.7 months. Thirry-six of the patients remained satisfactorily treated over this

period when measured by polysomnographic data, whilst four patients had experienced

recurrence of their obstructive sleep apnoea. The results of this study are summarized in

Table 8.9-2 and Table 8.9-3.

The RDI for those patients successfully treated is interesting as the number of events per hour

continued to decrease in the long term, falling from a mean 9.3 events/hour to 7.6

eventslhour. This is in contrast to those results published by Conradt et al (1997). There

was a small increase in BMI for both groups, although the greatest increase was in the fou¡

subjects who ultimately failed surgical treatment. The four patients who failed treatment in

the long term had more severe obstructive sleep apnoea as measured by both SaO2 min and

RDI. They responded less convincingly to surgery at six months although there is no

significant difference in RDI or SaO2 min measured at this time.

Table 8.9-2: Long-term results of36/40 patients successfully treated for obstructive sleep apnoea
by bimaxillary surgery adapted from Riley et al (2000).

Preoperative 6/12 Postoperative Long-term

RDI (events/hour)

SaO2 min (%)

BMI(kg/m2)

69.9 +/- 25.9

69.8 +Ê 15.5

31.7 +/- 6.6

9.3 +/- 5.3

85.6 +/- 4.6

31.4 +/- 6.3

7.6 +l- 5.1

86.3 +i- 3.9

32.2 +l- 6.4

Table 8.9-3: Long-term results of 4140 patients unsuccessfully treated for obstructive sleep

apnoea by bimaxillary surgery adapted from Riley et al (2000).

Preoperative 6/12Postoperative Long-term

RDI (events/hour)

SaO2 min (%)

BMI(kg/m2)

83.2 +l- 37.9

66.5+/- 13.5

28.7+l- 7.1

10.5 +Ê 6.7

87.5 +l- 1.7

28.0 +l- 6.7

43.O +l- 28.6

81.7 +Ê 3.8

30.6 +/- 9.2

Ongoing research and debate in the literature has surrounded the stability, both short term and

long term of these surgical procedures. Correction of skeletal abnormalities of the

maxillofacial region in obstructive sleep apnoea patients generally involves advancement of
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one or both jaws. Surgical treatment of patients with no underlying skeletal abnormality

involves the advancement of both the maxilla and mandible in order to maintain proper dental

relationship and a functional occlusion. The difficulty encountered when comparing the

literature on maxillomandibular advancements in non - obstructive sleep apnoea patients and

extrapolation to obstructive sleep apnoea patients is the magnitude of the advancement.

Generally the advancement in surgery for obstructive sleep apnoea is at least lOmm in each

jaw, often near the upper limit in surgery for correction of skeletal discrepancies.

Numerous studies in the literature have been directed at determining the stability of the

maxilla and or mandible following advancement surgery (Ching, 1995; Hing 1989; Luyk and

Ward-Booth, 1985; Rubens et al, 1988; and Van Sickels et al, 1986). The possible

differences when considering the surgical advancement of obstructive sleep apnoea patients

jaws are the magnitude of the advancement. Most authors advocate a minimum desirable

advancement of 10mm for surgical management of obstructive sleep apnoea (Hochban et al,

1994; Riley et al, 1987; and Nimkarn et al, 1995). There are few studies of relapse in the non

obstructive sleep apnoeic patient who have undergone advancement of this size in one jaw,let

alone both.

The method of fixation has a bearing on the stability of orthognathic surgery. The most

common method of fixation is miniplates in the maxilla and miniplates and or bicortical

screws in the mandible.

Relapse following orthognathic surgery is considered to occur in the short-term or the long-

term and it is hypothesized the mechanisms are different.

Short-term relapse following BSSO mandibular advancement occurs within the first 6-8152

postoperatively and is due to movement at the osteotomy site. Gassamann et al (1990) used

three bicortical screws for fixation following BSSO mandibular advancement. They

suggested relapse is due to stretching of the soft tissue envelope and a small area of bony

contact between the two bone segments. They found both these factors u/ere more important

as the magnitude of linear advancement increased. Blomqvist and Isaksson (1994) confirmed

this finding.

Methods of securing the condyle into its correct position during a BSSO abound in the

literature because of reports that condylar distraction and subsequent settling into its anatomic

position may be a factor in early relapse. Hing (1989) found no correlation between early

relapse and condylar displacement at the time of surgery in a study of 47 patients undergoing

BSSO advancemenl+l-Le Fort I osteotomy.

A number of authors have reported the use of skeletal wires and maxillomandibular fixation

in patients undergoing large (>lOmm) BSSO advancements (Mayo and Ellis, 1987; and Van
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Sickels, 1991) and found decreased short term relapse when compared to patients with

bicortical screw fixation only.

Long-term relapse is postulated to occur because of condylar remodeling. Merlo< and Van

Damme (1994) and Scheerlinck et al (1994) have reported progressive condylar resorption in

patients undergoing large mandibular advancements. These authors report a change in the

shape of the condyle from normal to finger shape and an associated loss of height and a later

decrease in posterior facial height. This type of resorption has been seen where the BSSO

fixation was wire osteosynthesis (Schendel and Epker, 1980), miniplates (Scheerlink et al,

1994) or bicortical screws (Van Sickels, 1991).

Maxillary advancement at the Le Fort I level less than 1Omm has been found to be a relatively

stable procedure provided rigid fixation is used (Egbert et al, 1995; Louis et al, 1993; and

Luyk and Ward-Booth, i985). Small surgical advancements of the maxilla less than 5 mm

have been found to be the most stable (Louis et al, 1993; and Luyk and Ward-Booth, 1985).

In contrast, Louis et al (1993) found no significant difference in the amount of relapse

between separate groups undergoing advancement of the maxilla 12.3 +l- 2.8 mm or 4.7 +l-

0.8 mm. They did note a tendency for greater relapse in the group with the larger

advancement but concluded that the use of rigid fixation minimized the relapse. This surgery

was performed on patients having maxillomandibular advancement for treatment of

obstructive sleep apnoea and confirms that many patients with this condition undergo large

advancements in an attempt to cure their condition.

Nimkarn et al (1995) studied l9 patients with an average maxillary advancement of 7.5 mm,

mandibular advancement of 10mm and chin advancement of 4 mm and considered two

questions. The first was to examine the long term stability of the maxillary and mandibular

position on these patients. The second question was to find any association between the

magnitude of the advancement and the amount of post operative movement.

The cephalometric landmarks used by the authors in the horizontal plane were A point and B

point and in the vertical plane ANS, PNS and gonion. The cephalometric radiographs were

taken pre operatively, one month post operatively and greater Than 12 months post operative.

Unfortunately there is no information given as to the average or mean follow up period of the

patients, and 12 months post operative should arguably be considered medium term follow

up. The authors counter this argument by quoting a MS Thesis (Nimkarn, 1994) that showed

no significant difference in the stability of the landmarks measured for this surgical

population between medium - (12 to 48 months) and long - term (>48 months) follow up.

All patients had a Le Fort I advancement and BSSO advancement with fixation by rigid plate

and screw fixation in the maxilla and three bicortical screws on each side of the mandible.
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The results of this study showed no significant difference in position of the landmarks

measured on the immediate post operative radiograph and that taken at a period greater than

l2 months post operative.

Relapse at 61.0 +/- 24.7 months was reported by Riley et al (2000). The mean advancement

for forry subjects was 7.25 +l- 1.2 mm (mandible), 10.9 +l- 2.5 mm (maxilla) and 13.3 +/- 1.8

mm (genial tubercles). They reported relapse only for the mandible as being 0.76 mm,

without a standard deviation across the forty patients. Thirry-six of these patients were

deemed to have been successfully treated at long term follow up according to

polysomnographic criteria.

Whilst considering the possibilities for treatment of obstructive sleep apnoea by skeletal

advancement it is prudent also to consider whether skeletal setback surgery has any effect on

the PAS and indeed if it may provoke obstructive sleep apnoea or other sleep disorders in

previously normal patients. Hochban et al (1996) conducted a prospective study to consider

these questions. Sixteen patients undergoing a bilateral sagittal split osteotomy for

mandibular prognathism were included. This study involved patients undergoing

polysomnographic sleep studies prior to surgery and one year post operatively. The authors

found no evidence of sleep disorders in any of the patients, either pre or post operatively. On

a lateral cephalometric radiograph they did find that pre operatively all patients had a larger

PAS than control subjects did, and post operatively the PAS was reduced to that of the control

subjects. Greco et al (1990) had earlier published a paper reporting a decrease in posterior

airway space following mandibular setback for treatment of mandibular prognathism when

comparing preoperative and postoperative lateral cephalometric radiographs.

Complications of bimaxillary surgery for the treatment of obstructive sleep apnoea are the

same as those encountered during this surgery to correct skeletal problems in other

populations. Riley et al (1990) found transient paraesthesia of the mental nerve is colnmon,

although 87 o/o resolved at 6 - l2ll2 was reported amongst this population of predominately

older people.

The complicating factor with this population lies not with the procedure, but with the

additional risk posed by the morbidly obese patient undergoing any surgical procedure. Risk

management strategies for patients undergoing surgery who have obstructive sleep apnoea

have been recommended by Riley et al (1997) and in a review of the literature by Ronderos

and Boyd, (1995). They recommend nCPAP use preoperatively and all patients who

routinely used nCPAP preoperatively should continue its use in the immediate postoperative

period. Awake fibre-optic intubation is recommended if there is increased neck

circumference or mandibular skeletal deficiency or if the anaesthetist or surgeon expects a
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difficult intubation. Aggressive management of hypertension is necessary, even in patients

with no previous history of hypertension. Narcotic analgesics may be used if the patient is

monitored closely. They recommend ICU monitoring in the first night post operatively and

continuous monitoring by pulse oximetry throughout the duration of hospitalization.

Surgery for obstructive sleep apnoea offers the potential for long term amelioration of the

signs and symptoms of obstructive sleep apnoea. There is a group of patients who don't

respond to surgery. It remains to be determined whether these patients have failed treatment

because surgery was directed at the wrong area of the upper airway or if some other factor is

involved. There are a large number of surgical treatment options available and most are not

reversible, or reversible with great difficulty. Surgery for treatment of obstructive sleep

apnoea should not be offered lightly and patients must be fully consented with respect to the

surgical procedure and the possibility that it will not result in effective treatment of their

condition.
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Chapter 9

Materials and Methods

ló8



9.1 Selected Patients

Patients were recruited for this study from referals to the Thoracic Medicine Department,

Royal Adelaide Hospital. All patients had been referred by general medical practitioners for

investigation of symptoms suggestive of obstructive sleep apnoea syndrome. These

symptoms include snoring, hypersomnolence, irritability, fatigue, moming headaches and

frequent nocturnal gasping and choking as noted by a partner.

All patients attending the sleep Medicine Clinic Ouþatients were assessed by a Consultant or

Registrar and questioned on their sleep habits and symptoms. Those patients suspected of

sleep disordered breathing severe enough to warrant investigation by ovemight

polysomnography were asked to participate in this study. There was no compulsion for

patients to enroll and not all Thoracic Medicine Consultants in the clinic did refer patient for

the study. Parameters measured dunng the sleep study include:

l. Electro-encephalogram;

2. Electro-oculogram;

3. Nasal and oral airflow with thermistors;

4. Thoracic and abdominal muscle movement;

5. Oxygen saturation by way of a pulse oximeter;

6. Electro-cardiogram by three lead recording;

7. Body position;

8. Snoring loudness; and

9. Video monitoring of the patients throughout the study period.

A standard protocol is followed for all patients undergoing a polysomnographic study in the

sleep laboratory at the Royal Adelaide Hospital.

A copy of the information provided to the patient and the consent form are included in the

Appendix. Ethics approval was sought and obtained from the ethics committee of the Royal

Adelaide Hospital to record lateral cephalometric radiographs on patients agreeing to

participate in the study who were being investigated for obstructive sleep apnoea.

Those patients willing to participate in the study were asked to attend the Adelaide Dental

Hospital for recording of a lateral cephalometric radiograph and measurement of neck

circumference after this initial consult appointment. Those patients who could not attend at
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that time were asked to present to the Adelaide Dental Hospital on the morning after their

overnight sleep study.

Those patients requiring a sleep study had a delay of no more than three weeks between

recording of the lateral cephalometric radiograph and recording of the sleep study.

This method of patient selection and recording of the lateral head radiograph was chosen so

the investigator did not lnow which patients were OSA or simple snorers as defined by

polysomnographic study. It also ensured we received a population sample that was not

biased toward those with OSA syndrome.

9.2 Radiographic Technique

Radiographs \¡/ere obtained at the Radiology unit at the Adelaide Dental Hospital using Fuji

HR-S film (24 cm x 30 cm). The film was inserted into a Kodak Lanex cassette with regular

screens. The cassettes were inserted into the film holder. A film to midsagittal distance of

16cm was used for all cases. Lateral cephalometnc radiographs were obtained for all patients

enrolled in the study on a single radiographic machine (Philips Super 50 CP lateral

cephalometer). All subjects were aligned in a reproducible manner within the cephalostat.

Those patients wearing dental prostheses had a cephalometric radiograph taken with the

prostheses in position and a separate exposure with the prostheses removed.

9.3 Tracing and Digitizing Procedure

All radiographs were traced onto acetate paper in a darkened room on a lightbox by the same

investigator. A cardboard frame was placed around the radiograph to exclude extraneous

light. The cephalometric landmarks (hard and soft tissue) were identified and marked onto

the acetate paper with a 0.05mm diameter B lead pencil. The SN-7 line was constructed on

each tracing, originating at sella and at seven depgees to the sella - nasion line. The location

of each cephalometric point was recorded with the film orientated to the SN-7 line.

The radiographic tracings were digitized to enable accurate recording of linear and angular

measures from the tracings. Each tracing was placed on the digitizer tablet and orientated to

the line FH. The digitizer was a Hewlett Packard 9874A configured Ío an Apple IIe

computer. The software program Cephs, developed by Brown (1986, personal

communication) was used to record and manipulate the data obtained from the radiographic

tracings. Patient details Unit Record Number, age and gender were entered. The

magnification factor of 8.8% was corrected. This program accepts the digitized record and

"transforms" the carlesian coordinates relative to line FH. Each traced landmark point was
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aligned centrally in a crosshair and notated by depressing a perimeter button on the circular

cursor. The data for the points were transformed by the software program and saved to a 3.5"

computer disc. The one investigator recorded all data.

The investigator remained unaware of the status of the patient with respect to their sleep study

during this phase of the study.

9.4 Reference Points and Lines

The angle formed between the cranial base and Frankfort horizontal has been measured to

determine the angulation of the cranial base. The sella - nasion line was used extensively in

this study to allow angular measures of anteroposterior position of the hard and soft tissue

structures of interest. Frankfort horizontal was also used in a similar manner. Frankfort

horizontal closely approximates the natural head position (Bjerin, 1957) and the influence of

growth on the angulation of this line is limited. The average angle between Frankfort

horizontal and sella - nasion has been studied extensively and found to be approximately 70.

Koskr and Virolainen (1956) measured 100 cephalometric radiographs and found a mean

difference of 6.80 :l- 0.26 for this angle. Fifty male subjects were examined by Wei (1968)

and they reported a mean difference of 7 .2o +l- 0.42.

9.4.1 Hard Tissue Points ldentified on a Lateral Cephalometric Radiograph

Figure 9.4.11shows these hard tissue landmarks.

Sella (S): The centre of the pituitary fossa of the sphenoid bone determined by inspection

(van der Linden, L971; Vincent and West, 1987).

Nasion (N): The most anterior point of the frontonasal suture (Brown, 1973)

Orbitale (Or): The lowest point on the average of the right and left borders of the bony orbit

(Riolo eT at,1974).

Porion (Po): The most supenor pornt on the external auditory meatus (Vincent and West,

1987). The external auditory meatus has three radiolucent areas which distinguish it from the

internal auditory meatus: the fenestrum vestibulae superiorly; the fenestrum cochlea

posteriorly; and the promontory anteriorly (Yen, 1960).

Anterior nasal spine or acanthion (ANS): The tip of the median sharp bony process of the

maxilla at the lower margin of the anterior nasal opening (Riolo et al, 7974).

Posterior nasal spine (PNS): The most posterior point at the sagittal plane on the bony hard

palate (Riolo et al,1974).
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Articulare (Ar): The point at the junction of the contour of the external cranial base and the

dorsal contour of the condylar processes projected in the midsagittal plane (Brown, 1973).

Down's Point A or subspinale (A): The deepest point in the midsagittal plane between the

anterior nasal spine and supradentale, usually around the level ofand anterior to the apex of

the maxillary central incisors (Burstone, 1978).

Down's Point B or supramentale (B): The deepest point in the midsagittal plane between

infradentale and pogonion, usually anterior to and slightly below the apices of the mandibular

incisors (Burstone, 1978). According to Moyers (1987) B point cannot be determined of the

chin profile is flat.

Menton (Me): The most inferior point on the symphseal outline (Riolo et al, 1974).

Gonion (Go): The point of intersection of the line tangent to the lower border and the tangent

to the posterior border of the ramus.

Hyoid (II): The most superoanterior point on the body of the hyoid bone (Athanasiou et al,

1ee1)

Cervical vertebra 4 (C4): The most anterior inferior point of the fourth vertebral corpus (Pae

et al, 7994).

Cervical vertebra 3 (C3): The most anterior inferior point of the third vertebral corpus (Pae

eT al, 1994).

Upper incisal apex (AS): The root tip of the maxillary central incisor (Riolo et at, 1974).

Upper incisal edge (U1): The incisal edge of the maxillary central incisor (Riolo et al, 1974).

Lower incisal apex (AI): The root tip of the mandibular central incisor (Riolo et at, 1974).

Lower incisal edge (L1): The incisal edge of the mandibular central incisor (Riolo et al,

te74).

Mandibular Mid-point (Hl): The point of perpendicular intersection between a line from H

to the plane C3-RGn (from Pae eT al, 1994).

Retrognathion (RGn): The most posterior point of the mandibular symphysis along a line

perpendicular to the FH (Frankfort Horizontal) plane (Pae et al,1994).
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9.4.2 Soft Tissue Points ldentified on a Lateral Cephalometric Radiograph

Figure 9.4.2-2 shows the soft tissue landmarks used in this study.

Dorsal tongue protrusion (TP): The point on the dorsal surface of the tongue where line Go-

B intersects the dorsal surface (from Pae etal,1994).

Epiglottis base (Eb): Base of the epiglottis. The deepest point of the epiglottis (Pae et al,

1ee4).

Epiglottis tip (Et): Apex of the epiglottis (deBerry-Borowiecki et al, 1988)

Tongue tip (TT): The border between the ventral and dorsal surfaces of the tongue tip (Pae et

al,1994).

Uvula thickness ventral (Utill): The point of intersection on the oral surface of the soft

palate of a line perpendicular to PNS-P through the thickest portion of the soft palate (from

Pae et al,1994).

Uvula thickness dorsal (UW2): The point of intersection on the pharyngeal side of the soft

palate of a line perpendicular to PNS-P through the thickest portion of the soft palate (from

Pae et at,1994).

Soft palate tip (UT): Apex of the soft palate: the lowest point on the soft palate (deBerry-

Borowiecki et al, 1988).

Soft palate protrusion (UP): The greatest posterior convexity of soft palate (deBerry-

Borowiecki et al, 1988).

Pharyngeal wall 1 (PhWl): Point of intersection on the caudal pharyngeal wall on a line

parallel to Frankfort Florizontal passing through the tip of the soft palate (UT) (deBerry-

Borowiecki et al, 1988).

Pharyngeal wall 2 (PhW2): Point of intersection on the caudal pharyngeal wall on a line

parallel to Frankfort Horizontal passing through (deBerry-Borowiecki et al, 1988).

Pharyngeal wall 3 (PhW3): Point of intersection on the caudal pharyngeal wall on a line

parallel to Frankfort Horizontal passing through the posterior nasal spine (PNS) (deBerry-

Borowiecki et al, 1988).

Pharyngeal wall 4 (PhW4): Point of intersection on the caudal pharyngeal wall on a line

parallel to Go-B passing through the point of greatest posterior convexity of the soft palate

(UP) (Lowe et al, 1996).
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Pharyngeal wall 5 @hW5): Point of intersection on the caudal pharyngeal wall on a line

parallel to Go-B passing through the tip of the soft palate (UT) (Lowe et al, 1996).

Pharyngeal wall 6 (PhW6): Point of intersection on the caudal pharyngeal wall along an

extension of the line Go-B (Lowe et al, 1996).
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9.5 Calculation of Linear and Angular Variables

The variables \Ã'ere selected from those reported by Bacon W et al (1989), Battagel and

L'Estrange (1996), deBerry-Borowiecki et al (1988), Lowe et al (1996), Pae et al (1994) and

Tsuchiya et a|(1992). A second program by Brown (1996, personal communication), New

Scorer, was used to compute all measurements. A menu within the program allows a variety

of combinations between any of the digitized points. Twenty linear (Figure 9.5.1-1) and nine

angular variables (Figure 9.5.2-2) were calculated from the digitized points and stored as disk

hles. The results were tabulated on Microsoft Excel 97 spreadsheets for final editing and

statistical evaluation.

9.5.1 Constructed Linear Variables

MxUL: Maxillary unit length: The linear distance from the anterior nasal spine (ANS) to the

posterior nasal spine (PNS) (Lowe et al, 1996).

MdUL: Mandibular unit length: The linear distance from menton (Me) to gonion (Go) (Lowe

et al, 1996).

TGL: Tongue length: The linear distance between TT and Eb (Pae et al,1994).

PNS-UT: Soft palate length: The linear distance between PNS and UT (deBerry-Borowiecki

et al, 1988).

UWI - tIW2: Maximum palate thickness: The maximum thickness of the soft palate

measured on a line perpendicular to the line PNS-P (Pae et al,1994).

UT - PhWl: Linear distance from the tip of the uvula to the posterior pharyngeal wall

measured along a line parallel to the Frankfurt horizontal (deBerry-Borowiecki et al, 1988).

UP - PhW2: Linear distance from the point of greatest posterior convexity of the soft palate

to the posterior pharyngeal wall measured along a line parallel to the Frankfuf horizontal

(deBerry-Borowiecki et al, 1988).

PNS - PhW3: Linear distance from the posterior nasal spine to the posterior pharyngeal wall

measured along a line parallel to the Frankfurt honzontal (deBerry-Borowiecki et al, 1988).

UP - PhW4: Superior posterior airway space: The thickness of the airway behind the soft

palate along a line parallel to the Go-B point plane intersecting with the point of greatest

convexity on the posterior soft palate (Pae et al,7994).

UT - PhW5: Middle airway space: The thickness of the airway along a line parallel to the

Go-B point plane through UT (Pae et al,7994).
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TP - PhW6: Inferior airway space: The thickness of the airway along a line extended through

the Go-B point plane (Pae et al,1994).

II - C4: Linear distance between H and C4 (Lowe et al, 1996).

H - C3: Linear distance between H and C3 (Tsuchiya et al, 1992).

MP - H: Linear distance along a perpendicular from H to the mandibular plane (Pae et

at.,1994)

Me - H: Linear distance from Me to H (Battagel and L'Estrange, 1996).

Ar - H: Linear distance from Ar to H (deBerry-Borowiecki et al, 1988).

S - H: Distance between sella and the most anterior superior point on the body of the hyoid

(deBerry-Borowiecki et al, 1988).

TT - ET: Distance from the apex of the tongue to the tip of the epiglottis (deBerry-

Borowiecki et al, 1988).

VAL: Linear distance between PNS and Eb (Lowe et al, 1996).
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9.5.2 Constructed Angular Variables

<SNA: Anteroposterior maxillary position: Angle between the cranial base (S-N) and

subspinale (A) (deBerry-Borowiecki et al, 1988).

<SNB: Anteroposterior mandibular position: Angle between the cranial base (S-N) and

supramentale (B) (deBerry-Borowiecki et al, 1988).

<SN - MP: Facial divergence: Angle between the cranial base (S-N) and the mandibular

plane (Go-Me) (deBerry-Borowiecki et al, 1988).

<U1 - SN: Upper incisor inclination: Angulation of the upper incisor (AS-UI) relative to the

cranial base (S-N) (Lowe et al, 1995).

< Ll - MP: Lower incisor inclination: Angulation of the lower incisor (AI-L1) relative to the

mandibular plane (Go-Me) (Lowe et al, 1995).

<SN - MxUL: Palatal plane angulation: Angle between the cranial base (S-N) and the palatal

plane (ANS-PNS) (Bacon et al, 1989).

<N - S - H: Angular measure of vertical hyoid position: Angle between the cranial base (N -
S) and the hyoid bone (H) (deBerry-Borowiecki et al, 1988).

<Go - Me - H: Angular measure of vertical hyoid position: Angle between the body of the

mandible (Go - Me) and the hyoid bone (H) (deBerry-Borowiecki et al, 1988).

<NS - ArH: Angular measure of vertical hyoid position: Angle between the cranial base (N -
S) and the line Ar - H (deBerry-Borowiecki et al, 1988).

<H - Hl: (H - RGn - C3) (Pracharktam et al, 1994)

< A - N - B: Angular measurement of the anteroposterior position of the maxilla and

mandible (Lowe et al, 1995)
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9.6 Statistical Analysis

The linear and angular variables were transcribed from a hard copy of the data produced by

the computer program Cephs and entered into a Microsoft Excel 97 software program on a

PC. The data was analysed using the statistical component of this software program. Charts

were produced from the tables generated in the Microsoft Excel 97 software program.

Statistical analyses performed were a Pearson correlation, Student's paired t-test and a

Pearson's chi-square test with Yates' continuity corection where appropriate. Confirmation

of these results was obtained by submitting the data for analysis by the Department of

Statistics, University of Adelaide who performed the above statistical analyses on Apple Mac

computers using S-plzs code software.

Statistical analysis of the subjects was undertaken by examining the sample as a whole, and

following subdivision into groups based upon RDI. Division based upon RDI arbitrarily

separated the population into "snoring" patients and those with obstructive sleep apnoea. An

RDI of 10, 15 and 20 events per hour was used for these analyses.

For the whole group comparisons the independent variable was RDI for the first analyses and

BMI for the second. The dependant variables for these analyses were those cephalometric

measures defined at Chapter 10.5.1 Constructed Linear Variables and at Chapter 10.5.2

Constructed Angular Variables. Additional dependant variables used were minimum arterial

oxygen saturation (SaO2), neck circumference, sex, age and BMI or RDI (depending upon

which was the independent vanable for the analysis).

A limited statistical analysis was undertaken comparing the position of the maxilla, mandible

and cranial base relative to the Caucasian cephalometric norms utilised by our unit.

Orthognathic surgery undertaken within our unit requires presurgical and postsurgical

cephalometric analysis of all patients by Oral and Maxillofacial surgeons and Orthodontists.

Known cephalometric norms for a Caucasian population are used during these planning

procedures. For patients from a different ethnic background alternative values are used

where they have been reported in the literature

Additional examination of the data was undertaken to determine the maxillary and mandibular

position based upon constructed cephalometric angles and consideration of BMI and RDI.

The length of the cranial base (S - N) and the angle of the cranial base (Ba - S - N) was also

compared with RDI and skeletal pattem. This was undertaken after the distribution of

skeletal pattem was revealed. Distance S -N and angle Ba- S -N were manually measured

from the onginal cephalometnc tracings by the one investigator.
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Chapter 10

Errors of the Method
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10.1 Materials and Methods

The validity of the results of a study involving the tracing and digitizing of cephalometric

radiographs requires knowledge of the magnitude of error involved in these processes. The

magnitude of error associated with these processes was determined by a series of double

determinations for thirteen lateral cephalometric radiographs from ten subjects. These

radiographs were randomly selected by the author from the ninety four subjects with complete

records who were assessed in this study.

Repeat tracing and digitizing was performed two weeks following the completion of the initial

analysis of the full set of ninety four lateral cephalometric radiographs by the one investigator.

The same method was used in this process. The repeat tracing of the ten radiographs was

performed in a darkened room with a light box. Tracings were orientated on the digitizer table

and secured with cellulose tape. The thirfy four cephalometric landmarks and two fiducial points

(x and y) were recorded on a Hewlett Packard 9874 digitizer configured to an Apple IIe

computer (Figure 10.1-1). The cephalometric points were identified and placed in the central

cross-hair cursor and registered by depressing a perimeter button. The position of the cursor

when the button was depressed is transformed into an x and y co-ordinate by the computer.

Magnification of 8.8% was corrected, as for the initial series.

The software program transforms the x and y cartesian co-ordinates relative to a nominated

reference line, in this instance x - y served as a line of reference. Professor Tasman Brown, The

University of Adelaide, developed the software. The error associated with the digrtizing

equipment has been assessed by Farrer (1984) and reported to be +/- 0.01 mm under normal

operating conditions.

The transformed numerical data was transferred to a PC with Microsoft Excel 97 software for

further analysis of each of the thirfy four points to assess the magnitude of error. Scattergrams

were produced to illustrate the reproducibility of each point in accordance with the method

described by Broch et al (1981). The origin for each point was designated as the first reading for

each point. The points on each scattergram represent the difference between the first and second

recording of each landmark.
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The differences between the first and second determinations for each cephalometric landmark

were recorded as the mean difference (lr4¿¡r), the standard error of the mean difference E(lvf¿ir)

and the standard deviation of a single determination (S enor). The Student's t:test for paired

values was used to assess whether differences between the fîrst and second determinations

differed significantly from zero aT the 5%o (t:2.262) and I%o (t:3.250) levels for 12 degrees of

freedom. Table 10.1-1 lists the respective formulae.

Table 10.1-l: Statistical Analysis of the Error of the Method

Moin

E (Mo¡r)

S (error)

t value

Mean difference between two determinations

Standard enor of the mean difference

Standard deviation of a single deviation

Student's paired t-test

I¿¡n/N

S¿in/{N

{L¡r2l2N

Mo¡tr/E (M¿,n)
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Results

187



11.1 Introduction

One hundred and four subjects were enrolled in the study between December 1997 and May

1998. There were records for of 74 males and 30 females. The age and sex distribution of

the subjects is included at Table 11.1-1. The mean age of this population is 50.5 years which

is significantly greater than the mean age of patients undergoing orthognathic surgery in our

unit. Ching (1995) reported the mean age of these patients to be 23 years. This difference in

age precluded the use of these lateral cephalometric radiographs as a control population as

Lewis and Roche (198S) reported growth of the craniofacial skeleton, as measured on lateral

cephalometric radiographs, continuing into the fifth decade in some subjects. They reported

the total increments in growth of the cranial base and the mandible ranged from 1.01 to 5.53

mm after age 18 until the cessation of growth between ages 29 and 39 years. They concluded

this growth ìs imporlant because it is markedly greater than the errors of measurement.

Table l1.l-1 : Age and Sex Distribution of Enrolled Subjects

Sex Number Mean Age (yrs) Std. Dev. Min. Max. Range

Male

Female

Total

74

30

104

51.6

47.9

50.5

13.0

9.6

't2.2

21

27

21

58

41

58

79

68

79

One hundred and wo patients underwent overnight polysomnography of whom ninety-four

had results able to be included in the study. Twenty-two subjects did not have a record of

their neck circumference and are therefore excluded from analysis of the group when this

variable is compared. Five patients had the results of the sleep study and their cephalometric

radiograph but did not have a record of their BMI with the sleep study or in the hospital

casenotes. These patients were excluded from analyses that used BMI as one of the variables

in the statistical analysis. Eleven patients were missing upper central incisor teeth and six

patients were missing lower central incisor teeth thus excluding them from analyses when

these variables are required.

Nine patients who enrolled in the study and had lateral cephalometric radiographs were

excluded. One patient had a sleep study however no record of the results could be found in

the patients casenotes. One patient had an inconclusive sleep study, managing just 1i

minutes of sleep during the period of the sleep study. This patient who was judged by the

thoracic medicine physicians to be suffering OSA on clinical grounds but this could not be

further defined. Two patients agreed to participate and had a lateral cephalometric
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radiograph but then declined a sleep study. Five other patients did not have results of their

sleep study available.

There were25 patients who wore a dental prosthesis (15 with OSA,7 simple snorers and 3

patients for whom polysomnographic results were not available). The radiographs utilised

for statistical purposes in this study were those taken with the dental prosthesis removed.

One patient had a lateral cephalometric radiograph taken without the hyoid bone in the

radiographic field. For this patient the parameters involving the hyoid bone could not be

determined. All other subjects had complete lateral cephalometric radiographs for the

purposes of this study.
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11.2 Linear Variable Results

The linear measurements for the subjects included in the statistical analysis and comparison

of results is shown in Table 11.2-1. This table also reports the median, standa¡d deviation

and the range of each linear variable. There has been no separation of the subjects on the

basis of BMI or RDL

Table 11.2-1: Linear Measurements of Cephalometric Parameters

Mean Median Standard Deviation Minimum Maximum

I
ì

MxUL

Go-H

MdUL

TGL

PNS - UT

UW1 . UW2

UT. PhWl

UP - PhW2

PNS . PhW3

UP. PhW4

UT - PhWS

TP -PhW6

H-C4

H-C3

MP. H

Me-H

Go-H

Ar-H

S.H

FH

TT. ET

NS- FH

VAL

s-B

S.N

52.02

41.07

40.54

76.94

42.22

10.42

20.00

35.13

32.87

2.06

11.15

20.70

40.68

39.66

23.09

44.08

41.17

87.56

'1 13.83

75.14

74.39

2.43

71.29

47.33

77.27

51.57

41.58

41.56

76.44

41.85

10.30

19.42

35.34

32.24

1.62

10.77

20.31

40.19

39.72

22.10

44.19

41.62

88.49

1 15.38

76.15

74.85

2.61

71.46

47.50

77.75

63.59

95.91

88.05

98.11

57.27

15.93

41.2

53.44

49.11

34.67

23.1

40.59

82.88

81.80

74.1

64.59

95.91

138.71

162.80

86.6

95.14

11.80

86.91

55.04

84.5

3.79

8.38

6.41

7.25

5.31

1.84

6.62

6.13

6.30

3.46

3.85

7.92

8.41

7.47

8.21

7.74

8.44

10.28

10.45

8.33

7.24

4.39

7.35

3.96

4.27

43.06

25.23

58.96

62.43

31.06

6.5

4.72

14.1

19.88

0.05

3.98

6.62

24.31

23.O1

2.06

4.8

25.23

58.37

92.82

7.71

59.93

-8.70

53.80

36.24

64.5
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11.3 Angular Variable Results

The mean angular measurements for the subjects included in the statistical analysis and

comparison of results is shown in Table I 1.3-1. This table also reports the median, standard

deviation and range of the measurement for each angular variable. There has been no

separation of the subjects on the basis of BMI or RDL

Table 11.3-l: Angular Measurements of Cephalometric Parameters

Mean Median Standard Deviation Minimum Maximum

ri
rlJ

<SNB

<SNA

<ANB

<SN - MP

<U1 . SN

<L1 - MP

<SN - MxUL

<NSH

<Go-Gn-H

<NS - ArH

<H. H1

<N-S.B

<Ba-S-N

84.04

83.26

0.78

29.46

106.29

89.23

2.57

85.01

32.23

72.88

19.52

124.15

123.83

84.41

84.27

0.36

29.81

108.00

90.00

2.15

84.90

30.90

73.24

18.09

124.O0

123.00

5.18

4.98

3.62

6.81

8.68

1.87

4.12

5.19

10.87

5.80

10.80

6.39

6.20

67.17

70.70

-9.50

13.44

64.00

64

-7.86

70.1

8.85

59.74

-10.96

106.47

108

93.50

94.98

7.72

48.48

117.14

115

15.74

96.24

94.79

88.36

72.81

139.58

140

11.4 Significant Correlations With RDI

A Pearson correlation statistical tcst was pcrformed on ninety four patients with results from

an overnight polysomnographic sleep study and a cephalometric radiograph. The

independent variable in the first analysis was the respiratory disturbance index (RDI). All

cephalometric constructed linear and angular variables were correlated with RDI. Additional

non-cephalometric variables considered were age, sex, BMI and neck circumference. The

data is reported as significant at the p<0.01 or p<0.05 level. Results where there is no

significant correlation are not reported.
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11.4.1 Body Mass lndex (BMl)

The mean body mass index for the total subject population was 32.28 +l- 0.72 kg/m2 and

ranged from a maximum value of 51.5 kglm2 to a minimum of 18.9 kg/tl. The correlation

co-efficient r : 0.53 was signihcant at the 0.01 level of significance with 92 degrees of

fieedom. Figure lI.4-1 shows diagrammatically the relationship of BMI to RDI with a

positive correlation between the two variables.
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11.4.2 Minimum Arterial Oxygen Saturation (SaOz)

The minimum arterial oxygen saturation (SaO) ranged from a minimum of 49Yo to a

maximum of 95%o with a mean value of 80.44 +l- 1.42o/o. This value represents the minimum

measured SaOz at any time during the polysomnographic study. The correlation co-efficient

r: -0.53 was significant at the 0.01 level with 92 degrees of freedom. Figure ll.4-2 shows

the relationship of SaO2 to RDI with a negative correlation between the two variables

indicating arterial oxygen saturation decreases as RDI increases.
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11.4.3 Neck Circumference (NC)

The neck circurnference was known for only seventy two subjects for whom BMI was also

known. There was a positive relationship between RDI and neck circumference. The mean

neck circumference was 41.7 +/- 0.51 cm with a range from 33 cm to 5l cm. The correlation

co-efficient r = 0.47 which is significant at the 0.01 level with 70 degrees of freedom. Figure

ll.4-3 shows the positive relationship between neck circumference and RDL
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11.4.4 Distance from Hyoid to the Fourth Cervical Vertebra (H - C4)

The average distance from the most anterosuperior point on the hyoid bone to the most

anterosuperior point on the fourth cervical vertebra (H - Co) was 40.43 +l' 0.76 mm with a

maximum value of 82.88 mm and a minimum valt¿e of 27.71 mm. This was significant at the

0.05 level with a correlation co-efficient of r : 0.21 and 93 degrees of freedom. The

distance H-C¿ increases as RDI increases and this relationship is diagrammatically shown in

Figure 11.44.
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11.4.5 Distance from Hyoid to the Third Cervical Vertebra (H - C3)

The distance from the most anterosuperior point on the hyoid bone to the most anteroinferior

point on the third cervical vertebra (H - Cr) ranged from a minimum of 26.69 mm to a

maximum of 96-24 mm. The average distance between these two points for all subjects was

43.04 +l- 1.48 mm. The correlation co-efficient r :0.21was significant at the 0.05 level

with 93 degrees of freedom. Figure 11.4-5 shows the relationship of H-C¡ to RDI and

indicates this distance increases as RDI increases.
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11.4.6 Distance from the Mandibular Plane to Hyoid (MP - H)

The perpendicular distance from the most anterosuperior point on the hyoid bone to the

constructed mandibular plane (MP - H) was found to be significantly correlated to RDI at the

0.05 level of significance with a correlation co-efficient r : 0.24. The mean value for this

distance across all 94 subjects was 22.99 +l- 0.67 mm with a range from 2.06 mm to 36.74

rnm. The distance MP-H increases as RDI increases, this relationship is shown in Figure

tt.4-6.
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11.4.7 Pharyngeal Length (PNS - Eb)

The height of the pharynx measured from the posterior nasal spine to the base of the epiglottis

(PNS - Eb) was found to correlate significantly with RDI. The mean distance between these

two cephalometric landmarks was 76.15 +/- 1.66 mm. The maximum distance was 138.00

mm and the minimum 53.84 mm. The correlation co-efficient r : 0.22 was significant at the

0.05 level with 93 deglees of freedom. Figure ll.4-7 shows the relationship of pharyngeal

length to RDI and indicates as pharyngeal length increases so too does RDI.
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A summary of the landmarks and measures that were significantly correlated with RDI is

presented in Table 11.4-1. Hyoid position was most likely to correlate with RDI, as

measured by the horizontal hyoid distance to the cervical spine and the vertical distance to the

lower border of the mandible.

Table 11.4-l: Significant Correlations Between BMI and Measured Variables

Mean SD Min Max P Value

BMI

SaOz

NC

H-C4

H-C3

MP-H

32.28kg1m2

80.44 o/o

41 .7 mm

40.43 mm

43.04 mm

22.99 mm

0.72

1.42

0.51

0.76

1.48

0.67

0.01

0.01

0.01

0.05

0.05

0.05

18.9

49

33

27.71

26.69

2.06

51.5

95

51

82.88

96.24

36.74

11.5 Significant Correlations with BMI

A Pearson correlation statistical test was performed on eighty nine patients with results from

an overnight polysomnographic sleep study, a cephalometric radiograph and a record of their

BML The independent variable in the analysis was the body mass index (BMI). All

cephalometric constructed linear and angular variables were correlated with BMI. Additional

non-cephalometric variables considered were age, sex, RDI and neck circumference. The

data is reported as significant at the p<0.01 or p<0.05 level. Results where there is no

significant correlation are not reported.
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11.5.1 Minimum Arterial Oxygen Saturation (SaOz)

There was a significant negative correlation between the minimum arterial oxygen saturation

(SaOr) and BMI. The correlation co-efficient r: -0.43 was significant at the 0.01 level with

88 degrees of freedom. The average minimum SaO2 was 79.41 +/- l.3l % with a maximum

value of 96o/o and a minimum value of 46%o. The minimum arterial oxygen saturation

decreased as RDI increased and this is illustrated diagrammatically in Figure 1 1.5-1 .
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11.5.2 Neck Circumference (NC)

The mean neck ci¡cumference of the total population for whom this parameter and BMI was

known was 41.76 +l- 0.53 cm with a maximum value of 5l cm and a minimum value of

33cm. Seventy subjects were assessed for these two parameters. A significant correlation at

the 0.01 level was found with the correlation co-efficient r : 0.59. The relationship between

neck circumference and BMI was positive indicating an increasing neck circumference as

BMI increased. This relationship is illustrated in Figure Il.5-2.
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11.5.3 Angle Sella - Nasion - Subnasale (SNA)

The angle formed between the points sella, nasion and subspinale (S - N - A) is a measure of

the anteroposterior position of the maxilla with respect to the cranial base. The mean

measure of this angle was 83.83 +/- 0.55 degrees with a range of values from 70.70 degrees to

94.98 degrees. The correlation co-efficient r : 0.21 was significant at the 0.05 level with 88

degrees of freedom. This angle inc¡eased as BMI increased and is illustrated

diagrammatically in Figure 1 1.5-3.
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11.5.4 Angle Sella - Nasion - Supramentale (SNB)

The angle formed between the points sella, nasion and supramentale (S - N - A) was

significantly correlated with BMI. This angle is a measure of the anteroposterior position of

the mandìble with relation to the cranial base. The mean angle formed between these three

points was 83.12 +/- 0.53 degrees with a maximum value of 93.5 degrees and a minimum

value of 67.17 degrees. The correlation co-efficient r : 0.23 is significant at the 0.05 level at

88 degrees of freedom and indicates an increasing angle as BMI increases. Figure 11.54

illustrates this signifrcant correlation.
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11.5.5 Upper lncisal Angulation (U1 - SN)

The angle formed between the upper central incisor and the cranial base (Ul - SN) was

significantly correlated with BMI. The correlation co-efficient r: 0.23 is significant at the

0.05 level with 66 degrees of freedom. A number of subjects did not have their upper central

incisor teeth which explains the smaller number of subjects in this population grouping. The

average upper central incisor angulation was 106.78 +/- 1.01 degrees with a minimum

angulation of 64.25 degrees and a maximum of 123.02 degrees. Figure 11.5-5 shows the

positive co¡relation between upper central incisor angulation and BMI.
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11.5.6 Distance from Hyoid to the Fourth Cervical Vertebra (H - C4)

The average distance from the most anterosuperior point on the hyoid bone to the most

anterosuperior point on the fourth cervical vertebra (H - Cn) was 40.41 +l- 0.78 mm with a

maximum value of 8 I .07 mm and a minimum value of 27 .71 mm. This was significant at the

0.01 level with a correlation co-efficient of r : 0.32 and 88 degrees of freedom. The

distance H-Ca increases as RDI increases and this relationship is diagrammatically shown in

Figure 11.5-6.
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11.5.7 Distance from Hyoid to the Third Cervical Vertebra (H - C3)

The distance from the most anterosuperior point on the hyoid bone to the most anteroinferior

point on the third cervical vertebra (H - Cr) ranged from a minimum of 26.69 mm to a

maximum of 81.80 mm. The average distance between these two points for all subjects was

39.85 +/- 0.80 mm. The correlation co-efficient r :0.32 was significant at the 0.01 level

with 88 degrees of freedom. Figure 11.5-7 shows the relationship of H-C¡ to RDI and

indicates this distance increases as RDI increases.
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11.5.8 Distance from Hyoid to Menton (H - Me)

The perpendicular distance from the most anterosuperior point on the hyoid bone to the

menton (Me - H) was found to be significantly correlated to RDI at the 0.05 level of

significance with a correlation co-efficient r : 0.23. The mean value for this distance across

all 90 subjects was 44.80 +l- 0.74 mm with a range from 30.42 mm to 64.59 mm. The

distance Me-H increases as RDI increases, this relationship is shown in Figure 11.5-8.

ttêltsBl

I
c

mm 3¡n

B,I

0

,r

I

I

0t

ôhl0

t

t0

00

a 
t ttt

I
rrrt rt r

I

a

ooo 
o

0

t

It

0
0

lf

I

0
t
t

t
t

I

1l

0

0

I

I

I
a0

Il¡

0

t

0

It

t
t
t

0

Figure ll.5-8 Me - H vs BMI

ZXD

207

rm {m tm



Table 11.5-1 summarises the variables that were found to significantly correlate with BMI

across the whole sample.

Table 11.5-1: Significant Correlations Between BMI and Measured Variables

Mean SD Min Max P Value

SaOz

NC

SNA

SNB

U1 -SN

H-G4

H-C3

H-Me

79.41 o/o

41.76 mm

83.830

83.120

106.780

4O.41mm

39.85 mm

44.8 mm

46

33

70.70

67.17

64.25

27.71

26.69

30.42

96

51

94.98

93.5

123.02

81.07

81.80

64.59

1.31

0.53

0.55

0.53

1.01

0.78

0.80

0.74

0.01

0.01

0.05

0.05

0.05

0.01

0.01

0.05

11.6 Group Differences \ilith Cut-off RDI 10

The following analyses were performed following the division of the population into two

groups. These groups were determined by the RDI recorded for an individual subject in their

polysomnographic study. Those subjects with an RDI < 10 will be referred to as Type I

Snorers and those with an RDI > l0 as Type I OSA subjects.

The two groups did not contain 50o/o of the sample each, with Type I Snorers comprising 35

subjects and Type I OSA subjects numbenng 59. This difference was not enough to preclude

the use of a two tail t - test assuming equal variance. Statistical analysis was performed on

the same variables as for the Pearson correlation (Section Il.2 and Section 11.3) and

additionally sex and age distribution was considered for the two groups.

Only those measures that were statistically significant at the p<0.01 or p<0.05 level of

significance will be discussed. The variables that are significantly different between the two

groups of subjects are reported in Table 11.6-2.

11.6.1 Sex

Division of the Type I Snorers and Type I OSA subjects on the basis of sex is presented in

Table 11.6-1. A Pearson's chi-square test with Yates'continuity correction gives a
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significance of p:0.0255. There is a strong correlation between group and sex with only

15% of the OSA group being female but 40% of the snoring group being female.

Table 11.6-1: Sex of study patients separated by RDI: 10

Sex

OSA

Snorer

Female

10

14

Male

49

21

r'i
q

I

11.6.2 Age

Analysis of the age of the subjects in the Type I Snorer and Type I OSA groups shows a

significant difference between the two. A standard two sample t - test gives p - value of

0.0074 for the difference in the mean age of the two samples. The subjects in the Type I

snoring group on average 6.55 years younger than the subjects comprising the Type I OSA

group. The mean age of the subjects with an RDI < l0 is 45.74 years, whilst the mean age of

patients with an RDI > l0 is 52.29 years.

11.6.3 Body Mass lndex (BMl)

The difference in BMI between the two groups was significant at the lo/olevel with a p-value

< 0.000. Thirty two subjects \À/ere in the Type I snoring group and had a mean BMI of

28.87kg1m2, whilst the Type I OSA group had a mean BMI of 34.27 kglmz.

11.6.4 Minimum Arterial Oxygen Saturation (SaO2)

The average minimum SaO: for the Type T snoring group was 85.94% whilst the average

minimum SaOz for the Type I OSA group was 7637%. This was significantly different with

a p-value < 0.000.

11.6.5 Neck Circumference (NC)

The neck circumference was significantly smaller in the Type I snoring group compared with

the Type I OSA group. The average neck circumference in the Type I snoring group was

38.75 cm whilst in the Type I OSA group it was 43.74 cm. This difference was highly

significant with p<0.000.
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11.6.6 Distance Hyoid to Fourth Cervical Vertebra (H - C4)

The distance from the most anterosuperior point on the hyoid bone to the most anterosuperior

point on the fourth cervical vertebra was significantly different between Type I snoring

subjects and those with Type I OSA (p:0.001). The average distance from hyoid to the

fourth cervical vertebra was 37.66 mm in the Type I snoring group whilst this distance was

41.69 mm in the Type I OSA group.

11.6.7 Distance Hyoid to Third Cervical Vertebra (H - C3)

The distance from the most anteroinferior point on the body of the third cervical vertebra to

the most anterosuperior point on the body of the hyoid bone was significantly less in the Type

I snoring group compared with the Type I OSA group (p:0.001). The average distance from

the hyoid to the third cervical vertebra was 36.91 mm in the Type I snoring group, whilst the

Type I OSA group had an average distance of 41.12 mm.

11.6.8 Distance Sella to Hyoid (S- H)

The distance from sella to hyoid, which is a measure of the height of the pharynx, was less in

the Type I snoring group than the Type I OSA group (p:0.003). The average distance for

this dimension in the Type I snoring group was 110.37 mm whilst in the Type I OSA group it

was 116.06 mm.

11.6.9 Soft Palate Thickness (UW1 - UW2)

The thickness of the soft palate at its widest point was significantly smaller in the Type I

snoring group compared with the subjects with Type I OSA (p:0.008). The average

thickness of the soft palate's widest point was 9.81 mm in the Type I snoring group, whilst in

the Type I OSA group this measurement was 10.83 mm.

1 1 .6.10 Distance Articulare to Hyoid (Ar - H)

The distance from point articulare on the mandibular condyle to the most anterosuperior point

on the body of the hyoid was significantly greater in subjects with Type I OSA compared to

subjects in the Type I snoring group (p:0.017). This distance is a measure of the height of

the bone pharynx. The average distance in the Type I OSA group was 89.20 mm whilst in

the Type I snoring group this distance averaged 84.68 mm.

r'l
rtt

Ê
I
I

I

l 210



11.6.11 Maxillary Length (MxUL)

The maxilla was shorter in its anteroposterior dimension in patients who snored compared

with patients who were diagnosed with Type I OSA (p:0.030). The average maxillary length

in the Type I snoring group was 50.99 mm whilst the average length in Type I OSA patients

was 52.74mm.

11.6.12 Distance Mandibular Plane to Hyoid (MP - H)

The perpendicular distance from the constructed mandibular plane to the most anterosuperior

point on the hyoid bone was significantly less in Type I snoring patients compared to those

with Type I OSA (p=0.052). The average distance from the mandibular plane to hyoid was

2I.37 mm in Type I snoring subjects, whilst those with Type I OSA had an average distance

of 24.07 mm.

11.6.13 Distance Gonion to Hyoid (Go - H)

The distance from point gonion at the mandibular angle to the most anterosuperior point on

the body of the h)'oid bone was significantly less in patients who snored compared with

patients with Type I OSA (p:0.052). The average distance from gonion to the hyoid bone

was 39.44 mm in subjects in the Type I snoring group compared with those subjects in the

Type I OSA group who had an average distance of 42.00 mm.

11.6.14 Hyoid Angle (<H - H1)

The angle between the most anterosuperior point on the body of the hyoid, point

retrognathion on the mandibular symphysis and point gonion at the mandibular angle was

significantly more acute in patients who snored compared with patients in the Type I OSA

group (p:0.047). The average measure for this angle in the Type I snoring group was 16.90o

whilst in the Type I OSA group the average for this angle was 20.86".

1 1.6.15 Pharyngeal Length (VAL)

The length of the pharynx, as measured from the posterior nasal spine to the base of the

epiglottis, was significantly shorter in patients who snore compared to those with Type I OSA

(p:0.05a). The average distance for subjects in the Type I snoring group was 70.13 mm

compared To73.l1 mm in those subjects in the Type I OSA group.
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Table ll.6-2: Signilicant Variables with Group Separation RDI > l0

Mean
Snorer OSA

Standard Deviation
Snorer OSA

Maximum
Snorer OSA

Minimum
Snorer OSA

p Value

BMI

SaO2

NC

H-C4

H-C3

S-H

UW1 - UW2

Ar-H

MxUL

MP. H

Go-H

<H. H1

VAL

28.87

85.94

38.75

37.66

36.91

1 10.37

9.81

84.68

50.99

21.37

39.44

16.90

70.13

34.27

76.37

43.74

41.69

41.12

1 16.06

10.83

89.20

52.74

24.O7

42.00

20.86

73.11

5.01

7.59

3.57

5.17

5.78

8.29

1.63

7.80

2.92

6.81

6.13

9.41

7.12

7.04

13.17

3.76

5.88

5.82

8.79

1.83

9.17

4.11

6.13

6.01

9.04

7.12

42.2

96

46

47.74

49.77

124.6

13.67

98.32

57.76

32.57

51.',|7

34.62

82.97

51.5

94

51

56.38

55.41

129.53

15.93

102.82

63.59

36.74

5't.92

39.31

86.9

18.9

69

33

27.71

27.25

94.01

6.5

69.7

44.24

2.06

25.32

-10.96

53.84

22.5

46

35.5

29.18

26.69

93.06

6.7

58.37

43.06

10.96

27.59

0.24

57.27

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.02

0.03

0.05

0.05

0.05

0.05

.I
-ùj

:

t
I

Jr
I
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ll.7 Group differences with cut-off RDI 15

The following analyses were performed following the division of the population into two

groups. These groups were determined by the RDI recorded for an individual subject in their

polysomnographic study. Those subjects with an RDI < 15 will be referred to as Type II

snorers and those with an RDI > 15 as Type II OSA subjects.

The two groups contained approximately 50% of the sample each, with snorers comprising 45

subjects and OSA subjects numbering 49. Statistical analysis was performed on the same

variables as for the Pearson corelation (Section 10.2 and Section 10.3) and additionally sex

and age distribution was considered for the two groups.

Only those measures that were statistically significant at the 0.01 or 0.05 level of significance

will be discussed. The variables that are significantly different between the two groups of

patients are reported in Table 11.7-2.

11.7.1 Sex

Division of the Type II snoring and Type II OSA subjects on the basis of sex is presented in

Table 11.7-1. A Pearson's chi-square test with Yates'continuity correction gives a

significance of p:0.0255. There is a strong correlation between group and sex with 15% of

the Tlpe II OSA group being female but 40o/o of the Type II snoring group being female.

Table 11.7-1: Sex of patients separated by RDI = 15

Sex

OSA

Snorer

Female

9

15

Male

40

30

t
I

11.7.2 Age

Analysis of the age of the subjects in the Type II snoring and Type II OSA groups shows a

significant difference between the two. A standard two sample t - test gives p - value of

0.051 for the difference in the mean age of the two groups. The subjects in the Type II

snoring group on average 6.55 years younger than the subjects comprising the Type II OSA

I
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group. The mean age of the patients with an RDI < 15 (snorer) is47.42 years, whilst the

mean age of patients with an RDI > 15 (Type tr OSA) is 52.08 years.

11.7.3 Body Mass lndex (BMl)

The difference in BMI between the two groups was significant at the 0.01 level with a p-value

of 0.000. Forly one subjects were in the Type II snoring group and had a mean BMI of 29.10

kg/^',whilst the Type II OSA group had a mean BMI of 35.10k{m2.

11.7.4 Minimum Arterial Oxygen Saturation (SaOz)

The average minimum SaOz for the Type II snoring group was 84.56%o whilst the average

minimum SaO2 for the Type II OSA group was 75.35o/o. This was significantly different

with a p-value of 0.000.

11.7.5 Neck Circumference (NC)

The neck circumference was significantly smaller in the Type II snoring group compared with

the Type II OSA group. The average neck circumference in the Type II snoring group was

39.45 cm whilst in the Type II OSA group it was 43.14 cm. This difference was highly

signifi cant with p:0.000.

11.7.6 Distance Hyoid to Fourth Cervical Vertebra (H - C4)

The distance from the most anterosuperior point on the hyoid bone to the most anterosuperior

point on the fourth cervical vertebra was significantly diffcrcnt bctwccn Type tI snoring

subjects and those with Type II OSA (P:0.007). The average distance from hyoid to the

fourth cervical vertebra was 38.45 mm in the Type II snonng group whilst this distance was

41.78 mm in the Type II OSA group.

11.7.7 Distance Hyoid to Third Cervical Vertebra (H - C3)

The distance from the most anteroinferior point on the body of the third cervical vertebra to

the most anterosuperior point on the body of the hyoid bone was significantly less in the Type

I
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II snoring group compared with the Type tr OSA group (p0.006). The average distance

from the hyoid to the third cervical vertebra was 37.79 mm in the Type II snoring Broup,

whilst the Type tr OSA group had an average distance of 4l . I 8 mm.

11.7.8 Pharyngeal Length (VAL)

The length of the pharynx, as measured from the posterior nasal spine to the base of the

epiglottis, was significantly shorter in patients who snore compa¡ed to those with Type II

OSA (p:0.007). The average distance for subjects in the Type II snoring group was 69.86

mm compared to 73.99 mm in those subjects in the Type tr OSA group.

11.7.9 Distance Sella to Hyoid (S - H)

The distance from sella to hyoid, which is a measure of the height of the pharynx, was less in

the Type II snoring group than the Type II OSA group (p:0.008). The average distance for

this dimension in the Type II snoring group was 111.32 mm whilst in the Type II OSA group

it was 116.35 mm.

11.7.10 Tongue Length (TGL)

Tongue length as measured from the tip of the tongue to the base of the epiglottis (vallecula)

was significantly shorter in Type II snoring subjects than in those subjects with Type II OSA.

The mean tongue length for the Type II snoring group was 75.51 cm whilst the mean length

was79.64 cm in the Type II OSA subjects. This difference was signifìcant at the 0.01 level

of significance with p:0.010.

11.7.11 Soft Palate Thickness (UW1 - UW2)

The thickness of the soft palate at its widest point was significantly smaller in the Type II

snoring group compared with the subjects with Type II OSA (p:0.018). The average

thickness of the soft palate's widest point was 10.02 mm in the Type II snoring group, whilst

in the Type II OSA group this measurement was 10.85 mm.

11.7.12 Hyoid Angle (<H - H1)

The angle between the most anterosuperior point on the body of the hyoid, point

retrognathion on the mandibular symphysis and point gonion at the mandibular angle was
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significantly more acute in patients who snored compared with patients in the Type tr OSA

group (p:0.029). The average measure for this angle in the Type II snoring group was

16.98" whilst in the Type tr OSA group the average for this angle was 21.6f .

11.7.13 Distance Mandibular Plane to Hyoid (MP - H)

The perpendicula¡ distance from the constructed mandibular plane to the most anterosuperior

point on the hyoid bone was significantly less in Type tr snoring patients compared to those

with Type tr OSA (p:0.032). The average distance from the mandibular plane to hyoid was

21.43 mm in Type II snoring subjects, whilst those with Type II OSA had an average distance

of 24.58 mm.

11.7.14 Angle Between Hyoid and Mandibular Plane (.Go - Gn - H)

The angle constructed by joining the cephalometric points on the mandible gonion and

gnathion and the most anterosuperior point on the hyoid bone was significantly less in Type II

snoring patients compared to those with Type II OSA (p:0.032). The average angle formed

between the mandibular plane and hyoid was 30.090 in Type II snoring subjects, whilst those

with Type II OSA had an average angle of 34.210.

11.7.15 Tongue Length (TT - Et)

The distance from the tongue tip to the most superior point on the tip of the epiglottis was

significantly greater in subjects with Type II OSA than their Type II snoring counterparts

(p:0.037). The mean tongue length as measured between these landmarks was 73.23 mmin

the Type II snoring group whilst the OSA group had a mean distance of 76.64 mm.
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Table ll.7-2: Significant Variables with Group Separation RDI > 15

Mean
Snorer OSA

Standard Deviation
Snorer OSA

Maximum
Snorer OSA

Minimum p Value
Snorer OSA

BMI

SaO2

NC

H-C3

H-G4

VAL

S-H

TGL

UW1 - UW2

<H-H1

MP-H

<GeGn-H

TT. ET

29.10

84.56

39.45

37.79

38.45

69.86

111.32

75.51

10.02

16.98

21.43

30.09

73.23

35.10

75.35

43.74

41.18

41.78

73.99

1 16.35

79.64

10.85

21.61

24.58

34.21

76.64

4.89

9.82

3.79

6.04

5.64

6.85

8.52

6.23

1.56

9.29

6.68

8.51

6.28

7.15

12.89

3.88

5.80

5.79

7.06

8.82

7.54

1.96

8.90

6.00

8.67

7.76

42.2

96

46

50.09

51.18

82.97

127

63.55

6.5

37.39

32.91

47.95

86.3

51.5

94

51

55.41

56.38

86.9

129.s3

65.26

6.7

39.31

36.74

48.09

9s.14

18.9

46

33

26.69

27.71

53.84

93.06

87.2

13.67

-10.96

2.06

8.85

59.93

23.9

49

35.5

27.99

29.89

58.38

95.36

98.11

15.93

5.91

10.96

13.25

60.87

0.000

0.000

0.000

0.006

0.007

0.007

0.008

0.010

0.018

0.029

0.032

0.037

0.037

11.8 Group differences \ryith cut-off RDI 20

The following analyses were performed following the division of the population into two

$oups. These groups were determined by the RDI recorded for an individual subject in their

polysomnographic study. Those subjects with an RDI < 20 will be referred to as Type III

Type III snoring subjects and those with an RDI > 20 as Type m OSA subjects.

The two groups did not contain 50% of the sample each, with Type III snorers comprising 53

subjects and Type III OSA subjects numbering 41. This difference was not enough to

preclude the use of a two tail t - test assuming equal variance. Statistical analysis was

performed on the same variables as for the Pearson correlation (Section 12.2 and Section

12.3) and additionally sex and age distribution was considered for the two groups.

Only those measures that were statistically signihcant at the 0.01 or 0.05 level of significance

will be discussed. The variables that are sigrificantly different between the two groups of

patients are reported in Table I 1.8-1.
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11.8.1 Body Mass lndex (BMl)

The difference in BMI between the two groups was significant at the 0.01 level with a p-value

of 0.000. Fifty subjects were in the Type Itr snoring group and had a mean BMI of 29.59

kgl^',whilst the Type m OSA group had a mean BMI of 35'65 kg/mz.

11.8.2 Minimum Arterial Oxygen Saturation (SaO2)

The average minimum SaOz for the Type III snoring group was 84.33 % whilst the average

minimum SaOz for the Type III OSA group was 72.88 %. This was significantly different

with a p-value of 0.000.

11.8.3 Neck Circumference (NC)

The neck circumference was significantly smaller in the Type III snoring group compared

with the Type III OSA group. The average neck circumference in the Type III snoring group

was40.09 cm whilst in the Type III OSA group it was 43.94 cm. This difference was highly

signifi cant with p:0.000.

11.8.4 Soft Palate Thickness (UW1 - UW2)

The thickness of the soft palate at its widest point was signiñcantly smaller in the Type III

snoring group compared with the subjects with Type IU OSA (p:0.002). The average

thickness of the soft palate's widest point was 9.90 mm in the Type III snoring group, whilst

in the Type III OSA group this measurement was 11.06 mm.

11.8.5 Pharyngeal Length (VAL)

The length of the pharynx, as measured from the posterior nasal spine to the base of the

epiglottis, was significantly shorter in patients who snore compared to those with Type trI

OSA (p:0.003). The average distance for subjects in the Type III snoring group was 69.96

mm compared to 74.30 mm in those subjects in the Type III OSA group.

11.8.6 Tongue Length (TGL)

Tongue length as measured from the tip of the tongue to the base of the epiglottis (vallecula)

was significantly shorter in Type III snoring subjects than in those subjects with Type III
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OSA. The mean tongue length for the Tlpe Itr snoring goup was 75.66 cm whilst the mean

length was 79.92 cm in the Type m OSA subjects. This difference was significant at the

0.01 level of significance with p:0.004.

11.8.7 Tongue Length (TT - Et)

The distance from the tongue tip to the most superior point on the tip of the epiglottis was

significantly greater in subjects with Type m OSA than their Type III snoring counterparts

(p:0.021). The mean tongue length as measured between these landmarks was 73.37 mmin

the Type III snoring group whilst the Type m OSA group had a mean distance of 76.80 mm.

11.8.8 Upper lncisal Angle (U1 - SN)

The angle formed between the cranial base (line joining points sella and nasion) and the upper

incisor (line passing through the upper incisor tip and apex) was significantly greater in Type

III OSA subjects than Type III snoring subjects. This indicates a greater proclination of the

upper incisor in the Type III OSA subjects (p:0.030). The average upper incisal angulation

in the Type III snoring group was 103.810 whilst in the Type m OSA group it was 108.690.

11.8.9 Distance Uvula Tip to Posterior Pharyngeal Wall (UT - PhWl )

The distance from the tip of the uwla to the posterior pharyngeal wall measured parallel to

Frankfort Horizontal plane was increased in the Type III snoring group compared with the

Type trI OSA group (p:0.051). The mean distance between the uvula tip and the postenor

pharyngeal wall was 19.03 mm in the Type III snoring group and2l.71 mm in the Type III

OSA group.
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Table ll.8-l: Significant Variables with Group Separation RDI > 20

Mean
Snorer OSA

Standard Deviation
Snorer OSA

Maximum
Snorer OSA

Minimum
Snorer OSA

p Value

BMI

SaO2

Neck Circ

uw1- uw2

VAL

TGL

TT-ET

<u1 - sN

UT- PhWl

29.59

84.33

40.09

9.90

69.96

75.66

73.37

103.81

19.03

35.65

7',2.88

43.94

11.06

74.30

79.92

76.80

108.69

21.71

5.03

10.02

4.02

1.60

7.11

7.04

7.27

10.22

5.72

7.34

16.05

3.79

1.92

6.75

6.74

6.91

7.04

7.55

42.20

96.00

49.00

13.67

86.75

98.11

95.14

121.O0

33.99

51.50

94.00

51.00

15.93

86.9

92.76

90.88

123.00

41.2

18.90

46.00

33.00

6.s0

53.84

63.55

59.93

64.00

10.57

24.00

49.00

36.00

6.70

58.68

65.65

60.87

91.00

4.72

0.000

0.000

0.000

0.002

0.003

0.004

0.021

0.030

0.051

1f .9 Maxillary and Mandibular Antero-Posterior Position

The position of the rrraxilla and mandible with respect to the cranial base is considered

"normal" if subnasale is located more anterìor to nasion than supramentale. Individuals may

exhibit maxillary or mandibular prognathism or retrognathism relative to the cranial base

measured by the angle S-N-A or S-N-B. Alternatively the maxilla or mandible may be

prognathic or retrognathic with respect to each other. The population studied was analysed

for extreme anteropostenor position of the maxilla or mandible according to recognized

cephalometric norms for a Caucasian population (Steiner, 1959).

The method used to determine the relationship in the anteroposterior direction of the maxilla

and mandible was angle A-N-B. Subjects with a normal, or class I skeletal relationship were

defined as those with an angle 00 < A-N-B > 50. Thirry-nine subjects (41.5%) had such a

relationship. The largest gloup of patients were those where the rnandible was located

further anteriorly with respect to the maxilla, as defined by an angle A-N-B < 00. Forly-two

subjects (44.7%) had this relationship. The smallest group (thirteen subjects, 13.8%) had an

angle A-N-B > 50 indicating a prognathic maxilla relative to the mandible. Clinch (1951)

reported and epidemiologic study on the incidence of malocclusion in the Australian

Caucasian population. ln his sample 87 .0%o were class I, 11 .l%o were class tr and 1.9%o were

class IIL This raw data shows a significantly greater number of subjects with a class III

malocclusion compared with the expected incidence. There is no significant difference in the

220



incidence of a class II relationship with the increase in a class Itr skeletal relationship being at

the expense of a class I pattem. These results a¡e shown in Table I 1.9-1.

A Chi-square analysis was undertaken to compare the distribution of obstructive sleep apnoea

and snoring at the various diagnostic levels (RDI < 10, RDI < 15 and RDI < 20 for snoring

groups) with the distribution of the subjects according to skeletal classification. There was

no significant difference in the incidence of obstructive sleep apnoea or snoring subjects in

each group compared with that which would be expected based upon the incidence of

obstructive sleep apnoea in our sample. The raw data showing the division of subjects

according to skeletal class and severity of snoring/obstn¡ctive sleep apnoea is shown in Table

I l.9-1.

Table I 1.9-1 : Skeletal Classification of Subjects and the Incidence of Snoring/Obstructive Sleep

Apnoea.

ANB<O O<ANB<5 ANB>5

Whole group

Skeletal Class I

SkeletalClass ll

Skeletal Class lll

RDI < 10 snorer

RDt > 10 osA

RDI < 15 snorer

RDI > 15 OSA

RDI < 20 snorer

RDI > 20 OSA

42

0

0

42

16

26

19

23

22

20

39

39

0

0

15

25

20

19

24

15

13

0

13

0

4

I
5

I
6

7

Subjects with obstructive sleep apnoea and an RDI > 20 events per hour \ryere separated into

six groups based upon BMI and skeletal class. These groupings were then statistically

analysed by a t-test to determinc if BMI or skeletal class were the greater influence upon

severity of obstructive sleep apnoea.
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Table 11.9-2: Influence of BMI on OSA Severity by Skeletal Class

Mean RDI per subject p Value

0 ANB 5; BMI > 30

0 ANB 5; BMI 30

ANB < 5; BMI 30

ANB < 5; BMI 30

ANB > 5; BMI > 30

ANB > 5; BMI 30

62.3

36.6

42.75

48.95

48.95

34.13

0.037

o.294

0.049

Twenty-one subjects had a retrognathic maxilla greater than one standard deviation below the

mean for a Caucasian population (S-N-A < 800). Five of these subjects had an angle 00 < A-

N-B < 5o (skeletal class I); two had an angle A-N-B > 50 lskeletal class tr) whilst 14 had an

angle A-N-B < 0o lskeletal class Itr). Ten subjects with a retrognathic maxilla had an RDI >

20 (obstructive sleep apnoeic), a further ten subjects had an RDI < 10 (simple snorers) whilst

only one subject had an 10 < RDI < 20 events/hour.

Forty-nine subjects had a prognathic maxilla greater than one standard deviation above the

mean for a Caucasian population (S-N-A > 84). Twenty-eight of these subjects had an

angle0o < A-N-B < 50 lskeletal class I); eight had an angle A-N-B > 50 (skeletal class tr)

whilst 13 had an angle A-N-B < 00 iskeletal class III). Twenty five subjects with a

retrognathic maxilla had an RDI > 20 (obstructive sleep apnoeic), a further 13 subjects had an

RDI < 10 (simple snorers) whilst l1 subjects had an 10 < RDI < 20 events/hour.

The mandible was retrognathic (S-N-B < 780) in 15 subjects at a level greater than one

standard deviation from the Caucasian population mean. Four of these subjects were skeletal

class I (00 < A-N-B < 50); seven were skeletal class II (A-N-B > 50) and four were skeletal

class III (A-N-B < 0). There were seven simple snorers (RDI < 10) in this group, seven

subjects with obstructive sleep apnoea (RDI > 20) and one subject with a respiratory

disturbance index l0 < RDI < 20.

Mandibular prognathism (S-N-B > 82) greater than one standard deviation from the

Caucasian population mean was a finding ìn 60 subjects. Twenty-seven of these subjects had

a class I skeletal relationship (00 < A-N-B < 50); three had a class tr skeletal relationship (A-

N-B > 50) and 30 had a class II skeletal relationship (A-N-B < 0). The number of simple

snorers in this group was 21 (RDI < l0), 26 subjects had obstructive sleep apnoea (RDI > 20)
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whilst 13 subjects had a respiratory disturbance index 10 < RDI < 20. These findings are all

shown in Table 11.9-3.

Table 11.9-3: Subjects \ilith Maxilla and/or Mandible Greater Than I SD from Population Mean

SNA < 80 SNA > 84 SNB < 78 sNB > 82

Whole group

Skeletal Class I

SkeletalClass ll

SkeletalGlass lll

RDI < 10 snorer

RDI > 10 OSA

RDI < 15 snorer

RDI > 15 OSA

RDI < 20 snorer

RDt > 20 osA

21

5

2

14

10

11

10

11

11

10

49

28

8

13

13

36

18

3'1

24

25

15 60

27

3

30

21

39

29

31

34

26

4

7

4

7

8

7

8

8

7

Ten subjects in the study population had a maxilla and mandible that were at least one

standard deviation below the expected population mean. These ten subjects all exhibited

traits as defined by lateral cephalometry of bimaxillary retrusion. Four of these subjects had

a Skeletal Class I maxilla and mandible relationship, two had a Skeletal Class II relationship

and four were in the Skeletal Class III group. Considering the same ten subjects with respect

to RDI half had an RDI < 10, one had an 15 < RDI < 20 and the remaining four had an RDI

greater than 20. These results are shown in Table 11.94. Three subjects (30%) had a BMI

< 25 kglm2 and eight (80%) had a BMI < 30 kg/m2.

Table 11.9-4: Bimaxillary Retrusion (1 SD), Skeletal Class and RDI.

RDt<10 10<RDl<15 15<RDl<20 RDI>20

Total

Class I

Glass ll

Glass lll

4

0

0

4

1

1

0

0

0

0

0

0

5

3

1

1
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Forfy-one subjects had a maxilla and mandible that were at least one standard deviation above

the expected population mean (bimaxillary prognathism). Thirry of these subjects had a

skeletal class I relationship, three had a skeletal class II relationship and thirteen had a skeletal

class III relationship. Twelve of these subjects exhibiting a trait for bimaxillary prognathism

had an RDI < 10. Eight were skeletal class I and four were skeletal class III. Four had a

respiratory disturbance index 10 < RDI <15, with three having a class I skeletal relationship

and one a class I skeletal relationship. Five had 15 < RDI < 20, two class I and three class

n. Twenty had an RDI > 20. Twelve of these subjects had a class I skeletal relationship,

two had a class II relationship whilst the remaining eight had a class Itr skeletal relationship.

These results are shown in Table 11.9-5. Thirty six subjects (88%) had a BMI > 25 kglmz

whilst twenty six (63%) had a BMI > 30 kg/m2

Table 11.9-5: Bimaxillary Protrusion (1 SD), Skeletal Class and RDI.

Total RDI < 10 10 < RDI < 15 15 < RDI < 20 RDI > 20

Total

Class I

Glass ll

Class lll

41

25

3

13

5

2

0

3

4

3

1

0

12

I
0

4

20

12

2

b

Eleven subjects had a retrognathic maxilla greater than two standard deviations below the

mean for a Caucasian population (S-N-A < 780). Two of these subjects had an angle 00 < A-

N-B < 5o (skeletal class I); one had an angle A-N-B > 50 lskeletal class II) whilst eight had an

angle A-N-B < 0o (skeletal class III). Six subjects with a retrognathic maxilla had an RDI >

20 (obstructive sleep apnoeic), a further four subjects had an RDI < l0 (simple snorers) whilst

only one subject had an l0 < RDI < 20 events/hour.

Thirty-four subjects had a prognathic maxilla greater than two standard deviations above the

mean for a Caucasian population (S-N-A > 86u). Twenty-three of these subjects had an angle

0o < A-N-B < 50 (skeletal class I); five had an angle A-N-B > 50 (skeletal class II) whilst six

had an angle A-N-B < 00 lskeletal class III). Fifteen subjects with a retrognathic maxilla had

an RDI > 20 (obstructive sleep apnoeic), a further nine subjects had an RDI < l0 (simple

snorers) whilst 10 subjects had an l0 < RDI < 20 events/hour.

The mandible was retrognathic (S-N-B < 76o) in eight subjects at a level greater than two

standard deviations from the Caucasian population mean. One of these subjects were skeletal

class I (00 < A-N-B . 5o); four were skeletal class II (A-N-B > 50) and three were skeletal
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class III (A-N-B < 0o). There were three simple snorers (RDI < 10) in this group, four

subjects with obstructive sleep apnoea (RDI > 20) and one subject with a respiratory

disturbance index 10 < RDI < 20.

Mandibular prognathism (S-N-B > 840) greater than two standard deviations from the

Caucasian population mean was a finding in 48 subjects. Twenty-one of these subjects had a

class I skeletal relationship (00 < A-N-B < 50); two had a class tr skeletal relationship (A-N-B

> 50) and 25 had. a class II skeletal relationship (A-N-B < 0). The number of simple snorers

in this group was 16 (RDI < 10), 21 subjects had obstructive sleep apnoea (RDI > 20) whilst

I I subjects had a respiratory disturbance index 10 < RDI < 20. These findings are all shown

in Table I 1.9-6.

Table 11.9-6: Subjects \ilith Maxilla and/or Mandible Greater Than 2 SD from Population Mean

SNA < 78 SNA > 86 SNB < 76 SNB > 84

Whole group

SkeletalClass I

Skeletal Glass ll

Skeletal Class lll

RDI < 10 snorer

RDI > 1O OSA

RDI < 15 snorer

RDI > 15 OSA

RDI < 20 snorer

RDI > 20 OSA

8

1

4

3

3

5

3

5

4

4

11

2

1

8

4

7

4

7

5

b

34

23

5

6

I
25

13

21

19

15

48

21

2

25

16

32

22

26

27

21

Five subjects in the study population had a maxilla and mandible that were at least two

standard deviations below the expected population mean. One of these subjects had a class I

skeletal relationship (00 < A-N-B < 50), one had a skeletal class II relationship (A-N-B > 50)

and three were in the skeletal class III group (A-N-B < 0o). Considering the same five

subjects with respect to RDI the subject with a class I skeletal relationship was a snorer (RDI

< 10); the subject with the class II skeletal relationship had a respiratory disturbance index ìn

the range 15 < RDI < 20 whilst all three subjects with a class III skeletal relationship were

obstructive sleep apnoeic (RDI > 20). These results are shown in Table ll.9-7. One of

these subjects had a BMI < 25 kglrrt, three had a BMI < 30 kgim2 and one had a BMI > 30

2Kg/m.
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Table 11.9-7: Bimaxillary Retrusion (2SD)' Skeletal Class and RI)I.

Total RDI < 10 10 < RDI < 15 15 < RDI < 20 RDt > 20

Total

Glass I

Class ll

Class lll 3

Twenty eight subjects had both maxilla and mandible that were at least two standard

deviations above the expected population mean when measured by angle S-N-A and S-N-B

respectively. Twenty of these subjects had a skeletal class I relationship, two had a skeletal

class II relationship and six had a skeletal class III relationship. Seven of these subjects

exhibiting a trait for bimaxillary prognathism had an RDI < 10, five skeletal class I and two

skeletal class III). Four had 10 < RDI <15, three skeletal class I and one skeletal class II.

Five had 15 < RDI < 20, two skeletal class I and three skeletal class III. Twelve had an RDI

> 20, 10 skeletal class I, and one each with a skeletal class II and class III. These results are

recorded in Table 1 1.9-8. Twenty-four subjects (86%) had a BMI > 25 kglm2 whilst sixteen

(57%) had a BMI > 30 kg/m'?.

Table 11.9-8: Bimaxillary Protrusion (2SD)' Skeletal Class and RDI.

Total RDI < 10 10 < RDI < 15 15 < RDI < 20 RDt > 20

5 3

0

0

3

1

1

0

0

0

0

0

0

0

1

0

Total

Glass I

Glass ll

Class lll

28

20

2

6

5

2

0

3

4

3

1

0

7

5

0

2

12

10

1

1

Six subjects had a retrognathic maxilla greater than three standard deviations below the mean

for a Caucasian population (S-N-A <760). One of these subjects had an angle 00 < A-N-B <

50 (skeletal class I); one had an angle A-N-B > 50 (skeletal class II) whilst four had an angle

A-N-B < 00 (skeletal class III). Three subjects with a retrognathic maxilla had an RDI > 20

(obstructive sleep apnoeic), a further two subjects had an RDI < 10 (simple snorers) whilst

only one subject had an 10 < RDI < 20 eventslhour.

Twenty-two subjects had a prognathic maxilla greater than three standard deviations above

the mean for a Caucasian population (S-N-A > 880). Fifteen of these subjects had 00 < A-N-
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B < 50 (skeletal class I); four had an angle A-N-B > 50 (skeleøl class tr) whilst three had an

angle A-N-B < 00 (skeletal class Itr). Ten subjects with a retrognathic maxilla had an RDI >

20 (obstructive sleep apnoeic), a further seven subjects had an RDI < 10 (simple snorers)

whilst five subjects had an l0 < RDI < 20 eventsÆtour.

The mandible was retrognathic (S-N-B < 74o) in five subjects at a level greater than three

standard deviations from the Caucasian population mean. One of these subjects were skeletal

class I (00 < A-N-B < 50); t'wo were skeletal class tr (A-N-B > 50) and two were skeletal class

trI (A-N-B < 00). There were two simple snorers (RDI < l0) in this Broup, two subjects with

obstructive sleep apnoea (RDI > 20) and one subject with a respiratory disturbance index 10 <

RDI < 20.

Mandibular prognathism (S-N-B > 860) greater than three standard deviations from the

Caucasian population mean was a finding in 28 subjects. Thirteen of these subjects had a

class I skeletal relationship (00 < A-N-B < 50); two had a class tr skeletal relationship (A-N-B

> 50) and 13 had a class II skeletal relationship (A-N-B < 0). The number of simple snorers

in this group was six (RDI < 10), fourteen subjects had obstructive sleep apnoea (RDI > 20)

whilst eight subjects had a respiratory disturbance index l0 < RDI < 20. These findings are

shown in Table 1 1.9-9 and are extremes at least three standard deviations from the control

population mean as used by Steiner (1959).

Table 11.9-9: Subjects With Maxilla and/or Mandible Greater Than 3 SD from Population Mean

SNA < 76 SNA > 88 SNB < 74 SNB > 86

Whole group

Skeletal Glass I

Skeletal Class ll

Skeletal Glass lll

RDI < 10 snorer

RDt > 10 osA

RDI < 15 snorer

RDI > 15 OSA

RDI < 20 snorer

RDI > 20 OSA

6 22

15

4

3

7

15

6

16

12

10

5

1

2

2

2

3

2

3

3

2

28

13

2

13

6

22

11

17

14

14

1

4

2

4

2

4

3

3

Four subjects in the whole study population had a maxilla and mandible that were at least

three standard deviations below the expected population mean. One of these subjects had a

Skeletal Class I maxilla and mandible relationship, one had a Skeletal Class II relationship
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and two were in the Skeletal Class Itr goup. Considering the same four subjects with respect

to RDI, the subject with a class I skeletal relationship had an RDI < 10, the subject with a

class II skeletal relationship had a respiratory disturbance index 15 < RDI < 20 and the

remaining two had a skeletal class III relationship and an RDI > 20. These results are shown

inTable 11.9-10. One of these subjects (25%) had aBMI <25kg/r# andthree (75%)hada

BMI < 30 kg/m2.

Table 11.9-10: Bimaxillary Retrusion (3SD), Skeletal Class and RI)I

Total RDI < 10 10 < RDI < 15 15 < RDI < 20 RDI > 20

Total

Glass I

Glass ll

Glass lll

Fifteen subjects had both maxilla and mandible that were at least three standard deviations

above the expected population mean when measured by angle S-N-A and S-N-B respectively.

Ten of these subjects had a skeletal class I relationship, twe had a skeletal class tr relationship

and three had a skeletal class III relationship. Three of these subjects exhibiting a trait for

bimaxillary prognathism had an RDI < 10, three had 10 < RDI <15, two had 15 < RDI < 20

and seven had an RDI > 20. These results are shown in Table 11.9-ll. Thirteen of these

subjects (87%) had a BMI > 25 andten (670/o) had a BMI > 30 kglm2.

Table 11.9-11: Bimaxillary Protrusion (3SD), Skeletal Class and RDI.

Total RDI < 10 l0 < RDI < 15 15 < RDI < 20 RDI > 20

2

0

0

2

1

1

0

0

0

0

0

0

1

0

1

0

4

1

1

2

Total

Class I

Class ll

Class lll

15

10

2

3

3

2

0

1

3

2

7

6

1

0

2

0

0

20

The anteroposterior position of the maxilla and mandible, as measured by angle S-N-A and S-

N-B respectively, and the severity of UAW obstruction, as measured by RDI was compared to

the relationship of the maxilla and mandible as defined by angle A-N-B. This relationship

quantifies the degree of maxillary or mandibular prognathism or retrognathism and relates this
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to the interelationship of the jaws. The inclusion of RDI in the criteria determined if there

was a trend toward a greater incidence of OSA in subjects who had jaw position greater than

one standard deviation from that expected for the general population.

Table I 1.9-12 shows these relationships for patients who have a maxilla or mandible greater

than one standard deviatìon from the expected mean in the anteroposterior direction. The

maxilla and mandible are located anteroposteriorly by measuring angle S-N-A and angle S-N-

B respectively, the mean and standard deviation is that reported by Steiner (1959) for these

cephalometric measures.

There were 39 subjects with a skeletal class I relationship (00 < A-N-B < 5o), of whom 25

(64.1%) had an RDI > 10. Only one subject (4.2%) had a maxilla that was retrognathic at

one standard deviation from the mean (S-N-A < 800), although 19 (79.2%) had a relatively

prognathic maxilla (S-N-A > 840). Relative mandibular prognathism (S-N-B > 820) occurred

in 10 subjects (40.0%) and was more common than mandibular retrognathism (S-N-B < 780)

which occurred in one subject (4.0%).

There were thirteen subjects who had a skeletal class II relationship (A-N-B > 50) of whom 9

(69.2%) had an RDI > 10. Three of these subjects (23.1%) exhibited mandibular

retrognathism and had an RDI > 20. No subject exhibited a retrognathic maxilla, however

eight (61 .S%)had a prognathic maxilla. Three subjects had a bimaxillary protrusion with the

maxilla being more protrusive than the mandible, resulting in the class II skeletal pattern.

Subjects who had a skeletal class III relationship (A-N-B < 00) numbered42, of whom 26

(61.9%) had an RDI > 10. All subjects who had a retrognathic maxilla (n: 10, 23.8%)had

greater than 20 UAW obstructive events per hour of sleep. Similarly all subjects who had a

retrognathic mandible (n = 4, 9.5%) had greater than 20 obstmctive events per hour of sleep.

In this group of patients the mandible was more likely to be prognathic (n : 79,45.2o/o) than

the maxilla (n: 9, 21/%).

Maxillary retrognathism (S-N-A < 800) with a normally positioned mandible (780 < S-N-B <

820)occurredin 1l subjects. Fiveof thesesubjectshadanRDl< l0andsixhadanRDl>

20. Ten subjects had bimaxillary retrusion defined by the maxilla and mandible being greater

than one standard deviation below the mean. Five of these subjects had an RDI ( 10, one

was in the range 10 < RDI < 20 with four having an RDI > 20. Mandibular retrognathism (S-

N-B < 780) with a normally positioned maxilla (S-N-A > 800) was present in five subjects.

Two of these had an RDI < l0 whilst three had an RDJ > 20.

Mandibular prognathism (S-N-B > 820) with a normally positioned maxilla (800 < S-N-A <

840) occurred in l9 subjects. Nine of these were simple snorers (RDI < 10), six had an RDI >

20 and the remaining four were in the range i0 < RDI < 20. Forty-one subjects had
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bimaxillary protrusion defined by the maxilla and mandible being greater than one standard

deviation above the mean. Twelve of these subjects had an RDI < 10, nine were in the range

10 < RDI < 20 with 20 having an RDI > 20. Maxillary prognathism (S-N-A > 840) with a

normally positioned mandible (S-N-B < 82) was present in eight subjects. One was a simple

snorer (RDI < 10), three were in the range l0 < RDI < 20 whilst five had an RDI > 20.

Table 11.9-12: Comparison of RDI and Anteroposterior Jaw Position Greater Than I SD From
Population Mean

O<ANB<5 ANB>5 ANB<O

0

8

0

6

0

6

3

3

3

2

3

2

r'l
ÌLf

-

RDI

RDI

RDI

RDI

RDI

RDI

RDI

RDI

RDI

RDI

RDI

RDI

10 and

10 and

15 and

15 and

20 and

2O and

10 and

10 and

15 and

15 and

20 and

20 and

sNA < 80

sNA > 84

sNA < 80

sNA > 84

sNA < 80

sNA > 84

SNB < 78

SNB > 82

SNB < 78

SNB > 82

sNB < 78

SNB > 82

1

19

1

15

0

13

1

10

1

7

0

7

10

I

10

I

10

6

4

19

4

15

4

12

Table 11.9-13 shows the anteroposterior relationship of the maxilla and mandible where

either jaw is greater than two standard deviations from the expected mean in the

anteroposterior direction. The maxilla and mandible are located anteroposteriorly by

measuring angle S-N-A and angle S-N-B respectively, the mean and standard deviation is that

reported by Steiner (1959) for these cephalometnc measures.

There were 39 subjects in the group 00 < A-N-B < 50, of whom25 (64.1%) had an RDI > 10.

Only one subject (4%) had a maxilla that was retrognathic at two standard deviations from the

mean, although 16 (64%) had a relatively prognathic maxilla. Relative mandibular

prognathism (S-N-B > 840) was more common than mandibular retrognathism. Fifteen

subjects (60%) had an S-N-B > 840 , with only one exhibiting mandibular retrognathism.

There were thirteen subjects who had a skeletal class II relationship (A-N-B > 50¡ of whom

nine (69.20/o) had an RDI > 10. One of these subjects (11.1%) exhibited mandibular

retrognathism and had an RDI > 20. None of these subjects had a retrognathic maxilla,

I
I

,

þ
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however three (33%) had a prognathic maxilla. One subject had bimaxillary protrusion with

the maxilla being more protrusive than the mandible, resulting in the class II skeletal pattern.

Subjects who had a skeletal class III relationship (A-N-B < 00) numbered42, of whom 26

(61.9%) had an RDI > 10. All subjects who had a retrognathic maxilla (n:6, 23.1%)had

greater than 20 UAW obstructive events per hour of sleep. Similarly all subjects who had a

retrognathic mandible (n : 3, 11 .5%) had greater than 20 obstructive events per hour of sleep.

In this group of patients the mandible was more likely to be prognathic (n : 15, 57 .7%o) than

the maxilla (n:4, 15.4%).

Table 11.9-13: Comparison of RDI and Anteroposterior Jaw Position Greater Than 2 SD From
Population Mean

O<ANB<5 ANB>5 ANB<O

0

5

0

3

0

3

1

2

1

1

1

1

'+

rl,f

':,

RDI

RDI

RD¡

RDI

RDI

RDI

RDI

RD¡

RDI

RDI

RDI

RDI

10

l0

15

15

20

20

10

l0

15

15

20

20

and

and

and

and

and

and

and

and

and

and

and

and

sNA < 78

sNA > 86

sNA < 78

sNA > 86

sNA < 78

SNA > 86

sNB < 76

SNB > 84

SNB < 76

SNB > 84

sNB < 76

SNB > 84

1

16

1

13

0

11

1

15

1

12

0

10

Þ

4

6

4

6

1

3

15

3

13

3

10

Table 1 1.9-14 shows the anteroposterior relationship of the maxilla and mandible where

either jaw ìs greater than three standard deviations from the expected mean in the

anteroposterior direction. The maxilla and mandible are located anteroposteriorly by

measuring angle S-N-A and angle S-N-B respectively, the mean and standard deviation is that

reported by Steiner (1959) for these cephalometnc measures.

There were 39 subjects in the group 00 < A-N-B < 50, of whom25 (64.1%) had an RDI > 10.

Only one subject (4%)had a maxilla that was retrognathic at three standard deviations from

the mean, although l0 (40%) had a relatively prognathic maxilla. Relative mandibular

t
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prognathism (S-N-B > 860) was more common than mandibular retrognathism. Ten subjects

(40%) had an S-N-B > 860, with only one (4o/o) exhibiting mandibular retrognathism.

There were thirteen subjects who had a skeletal class II relationship (A-N-B > 5) of whom 9

(69.2%) had an RDI > 10. None of these subjects exhibited maxillary or mandibular

retrognathism. Four subjects (44.4%) had a prognathic maxilla and two (22.2%) exhibited

mandibular prognathism. Two subjects (22.2%) had bimaxillary protrusion with the maxilla

being more protrusive than the mandible, resulting in the class tr skeletal pattern.

Subjects who had a skeletal class III relationship (A-N-B < 00) numbered 42, of whom 26

(61.9%) had an RDI > 10. All subjects who had a retrognathic maxilla (n : 3, 11.5%) had

greater than 20 UAW obstructive events per hour of sleep. Similarly all subjects who had a

retrognathic mandible (n: 2,7.7%) had greater than 20 obstructive events per hour of sleep.

kr this group of patients the mandible \¡/as more likely to be prognathic (n: 10, 38.5%) than

the maxilla (n : 2, 7.7%).

Table 11.9-14: Comparison of RDI and Anteroposterior Jaw Position Greater Than 3 SD From
Population Mean

O<ANB<5 ANB>5 ANB<O

0

4

0

2

0

2

0

2

0

1

0

+

rl,t

]

RDI >

RDI >

RDI >

RDI >

RDI >

RDI >

RDI >

RDI >

RDI >

RDI >

RDI >

RDI >

10 and

10 and

15 and

15 and

20 and

2O and

10 and

10 and

15 and

15 and

20 and

20 and

SNA < 76

SNA > 88

SNA < 76

SNA > 88

SNA < 76

SNA > 88

SNB < 74

SNB > 86

sNB < 74

SNB > 86

SNB < 74

SNB > 86

1

10

1

8

0

8

1

10

1

7

0

7

3

2

3

2

3

0

2

10

2

I
2

6

Analysis of cranial base length according to skeletal class revealed those subjects with a Class

II skeletal relationship had a significantly shorter distance S - N than subjects with a Class I

skeletal relationship or those with a Class III skeletal relationship. No such difference was

evident for the angle Ba - S - N for these groupings. Similarly there was no significant

*
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difference between subgroups based on RDI for the length or angulation of the cranial base.

The results are shown in Table I 1.9-15.

Table 11.9-15 Skeletal Class and Cranial Base Length (S - 19

O<ANB<5

ANB>5

ANB<O

Standard Deviation

4.28

4.11

4.19

Mean

77.52

77.78

74.67

Minimum

64.5

69.5

67.5

Maximum

83.5

84.5

81.0

Tsuchiya et al (1992) first suggested that a subgroup of OSA patients have a signifìcant

skeletal discrepancy in the absence of an elevated BMI that contributes to UAW obstruction.

Table 1I.9-16 shows the relationship between BMI and RDI in the current study. Three

subjects out of nine (33%) with a BMI < 25 kglrr2 had an RfiI > 10. Only one of these

subjects had an RDI > 20. Those subjects who were in the range 25 < BMI < 30 kg/m2

numbered 29, of whom 14 (483%) had an RDI > 10, falling to ll (37.9%o) with an RDI > 20.

For those 52 obese subjects with a BMI > 30kglrr4,40 (76.9%) had an RDI > 10 and 29

(55.8%) had an RDI > 20. The numbers are too small to allow statistical analysis to be

performed between groups however there is a trend for an increased RDI as BMI increases.

Table 11.9-16: Distribution of Subjects by RDI and BMI.

BMt < 25 25 < BMI< 30 BMI > 30

RDt < 10

10<RDl<15

15<RDt<20

RDt > 20

5

6

1

1

1

15

3

1

10

12

6

29

Considering the nine subjects with a BMI < 25 k{m?, three had an RDI > 10. All three of

these subjects also had a maxilla and/or mandible that measured outside three standard

deviations from the mean for a Caucasian population. One subject exhibited bimaxillary

retrognathism (S-N-A < 74 I S-N-B < 76), one subject exhibited bimaxillary prognathism (S-

N-A >88 / S-N-B > 86) with the third subject having a prognathic mandible (S-N-B > 86).

Using an RDI > 15 as the diagnostic level for OSA resulted in retention of the subject with

bimaxillary retrognathia and the subject with relatively more prognathism of the mandible

than the maxilla. The patient with the most severe OSA (RDI > 20) was the subject who had

I
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bimaxillary protrusion but greater mandibular prognathism than exhibited in the maxilla,

resulting in a class Itr skeletal pattern. These results are shown in Table ll.9-17 .

Table 11.9-17: BMI <251<glm2

RDt<10 l0<RDl<15 15<RDl<20 RDI>20

Total

SNA < 76

SNA > 88

SNB < 74

SNB > 86

SNA<76/SNB<74

sNA>88/SNB>86

Considering the twenty-nine subjects with a 25 < BMI < 30 kglmz,14 had an RDI > l0 and

I I had an RDI > 20. Seven (50%) had a maxilla and/or mandible that measured outside three

standard deviations from the mean for a Caucasian population (Table 11.9-18). One subject

exhibited bimaxillary retrognathism (S-N-A < 74 I S-N-B < 76) and an RDI > 20. Two

subjects exhibited bimaxillary prognathism (S-N-A >88 / S-N-B > 86) and an RDI in the

range 10 < RDI < 15. One subject had a retrognathic maxilla (S-N-A < 76), two had a

prognathic maxilla (S-N-A > 88) with the remaining subject having a prognathic mandible (S-

N-B > 86). Five subjects had an RDI > 20, including the subject with bimaxillary

retrognathia.

Table 11.9-18: 25 < BMI < 30 kg/m2

RDt<10 10<RDt<15 15<RDl<20 RDI>20

Total

SNA < 76

SNA > 88

SNB < 74

SNB > 86

SNA<76/SNB<74

SNA>88/SNB>86

1

0

1

0

1

0

1

6

0

1

0

1

0

1

0

1

0

0

0

1

0

0

0

1

0

2

2

1

1

1

0

0

0

0

0

0

0

3

0

2

0

2

0

2

15

2

1

2

0

1

0

10
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Considering the fifty-t'wo subjects with a > 30 kg/m2, 40 had an RDI > 10 and 29 had an RDI

> 20. Twenty (69.0%) had a maxilla and/or mandible that measured outside three standard

deviations from the mean for a Caucasian population (Table I 1.9-19). One subject exhibited

bimaxillary retrognathism (S-N-A < 74 I S-N-B < 76) and an RnI > 20. Nine subjects

exhibited bimaxillary prognathism (S-N-A >88 / S-N-B > 86), two had an RDI in the range l5

< RDI < 20 with the remainder having an RDI > 20. Two subjects had a prognathic maxilla

(S-N-A > 88) and eight had a prognathic mandible (S-N-B > 86). Fourteen subjects had an

RDI > 20, including the subject with bimaxillary retrognathia.

Table 11.9-19: BMI > 30 kg/m2

RDI<10 10<RDt<15 15<RDl<20 RDI>20

Total

sNA < 76

SNA > 88

sNB < 74

sNB > 86

SNA<76/SNB<74

sNA>88/SNB>86

12 5

0

2

0

3

0

2

6

0

I

0

2

0

0

29

1

I

1

12

1

7

0

1

0

3

0

1
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Chapter 12

Discussion

236



l2.l Patient Selection and Organisational Issues

Prior to commencement of data collection a written protocol and overview of the research

project was circulated to the Chest Clinic, Royal Adelaide Hospital, the Dental Radiography

Unit, Adelaide Dental Hospìtal and to the clinicians of the Oral and Maxillofacial Surgery

Unit, Royal Adelaide Hospital and Adelaide Dental Hospital.

One hundred and four patients were referred from the Thoracic Medicine Department, Royal

Adelaide Hospital to the Oral and Maxillofacial Surgery Unit, Royal Adelaide Hospital for

inclusion in the study. The Thoracic Medicine Physician, prior to referring the patient,

discussed the purpose of the study and the need for a radiograph with the patient.

In order to minimize bias an attempt was made to obtain consecutive patients, however a

number of patients were either unable or unwilling to be enrolled. Reasons given for not

participating included concems over radiation exposure, concems over privacy and a lack of

time to attend another consultative clinic that may have no direct bearing on their

management.

There was no compulsion for patients to enroll and not all Thoracic Medicine Consultants in

the clinic referred patients for the study. Reasons given by Thoracic Medicine Consultants

for non-referral were principally concerned with unnecessary radiation exposure of the

patients and doubt over the usefulness of the lateral cephalometric radiograph in the

management of patients with OSA. Since preliminary results of this thesis have been

discussed with the Director of the Chest Clinic the latter concerns have been somewhat

alleviated, however too late for alteration of the pattem of referrals for this study. A record

was not kept of the number of patients approached for inclusion into the study however

personal communication with the referring physicians indicates the majority of patients

approached agreed to participate in the study.

The Chest Clinic and the Adelaide Dental Hospital are within the Royal Adelaide Hospital

Health Campus and are located approximately two hundred metres apart and several patients

who presented for radiographic examination complained of the inconvenience of attending a

separate building for fuither investigations. Others complained of difficulty locating the

Oral and Maxillofacial Surgery Unit, despite the provision of a marked map and detailed

written directions and instructions to follow upon presentation to the Adelaide Dental

Hospital. A number of patients were tumed away by the receptionìsts at the Adelaide Dental

Hospital as they were deemed ineligible for consultation in the Adelaide Dental Hospital,

despite written notification being given to the staff prior to commencement of the study.
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This latter problem was rectified very early within the study period and these subjects

subsequently had a lateral cephalometric radiograph taken and were included in the study.

The problem of incomplete records is not uncommon, as mentioned in other research

performed within our unit (Ching Thesis 1995). He noted that even in the most tightly

controlled surgical units data collection and record keeping are often inadequate and are

indeed a hindrance to accurate and concise research.

A comparison of our study population with age and weight matched controls from the South

Australian population may have produced results showing greater potential utility of lateral

cephalometric radiographs in the diagnosis of patients with OSA. Preliminary inquiries to

the ethics committee indicated approval to record lateral cephalometric radiographs on a

control population with no history of snoring would be unlikely to succeed.

The options for a control population were therefore limited to three choices:

1. Cephalometric radiographs from a South Australian population that were taken for

orthognathic sugery or orthodontic diagnosis and planning;

2. the use of published cephalometric norms from the national and international

literature (matched or unmatched for gender, age or BMI); or

3. the use of intemal controls within the population sampled.

A possible source of lateral cephalometric radiographs taken on the same machine was

presurgical orthognathic cases. A number ofreasons precluded the use ofthis ready source

of lateral cephalometric radiographs.

1. Age difference between the two groups. The patient undergoing corrective

orthognathic surgery in the Oral and Maxillofacial Surgery Unit at the Adelaide

Dental Hospital has a mean age of 23 years (Ching Thesis, 1995). The average age

for the population referred from the Chest Clinic for inclusion in this study was 50.5

years. Lewis and Roche (1988) reported late growth in the craniofacial skeleton

extending into the fifth decade in some subjects howeve¡ the authors noted that the

magnitude of growth was small.

2. BMI differences between the two goups. The study population was markedly obese,

with the average BMI being 32.28 +l- 0.72k{m2. A far greater percentage of

subjects were obese (BMI > 30 kg/m2) compared with the expected population

average. The 1989-90 National Health Survey revealed 44%o of Australian males

over the age of 18 and 30Yo of females had a BMI > 25 kg/nJ and were considered

'obese. The study population had 85% (60171) males with a BMI > 25 kglmz and

95% (21122) of females being obese. Relaxing the criteria for obesity to a cut-off of
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30 kglmz still sees 58% (4I/71) of males and 50o/o (lI/22) of females in the study

population being classified as obese.

3. The orthognathic surgical candidate does differ from the general population in the

relationship of their maxilla and mandible to each other and to the cranial base.

Indeed orthognathic surgery is undertaken to correct such anomalies. The use of a

population known to have a different incidence of maxillo-mandibular relationship to

the general population would defeat the aim of comparison of our subject population

to the "normal" population.

A decision was therefore taken to use internal controls within the population studied and to

compare the study population with published cephalometric norrns for a Caucasian

population.

Males were over represented in the study population when compared to the general

population. Seventy seven percent of the subjects were male compared with 49.2Yo of the

South Australian population in the 1996 census. This bias with an increased number of men

being referred for assessment of possible obstructive sleep apnoea is not unexpected. The

literature also reports an increased incidence of men with obstructive sleep apnoea compared

to women (Ancoli-Israel, 1989; Guilleminault and Dement, 1978; Kales et al, 1985; and

Young et al, 1993).

This study did not attempt to discriminate between subjects on the basis of racial origin, sex

or the presence or absence of teeth. Measurements from cephalometric radiographs have

been found to vary according to racial origin by a number of authors (Alcade et al, 1998;

Cooke and Wei, 1988; Lee et aL, 1997; Miyajima et al, 1996; Park et al, 1989; Redline et al,

1997; and Shen et aL, 1994). The purpose of this study was to determine if the lateral

cephalometric radiograph may be useful alone or as an adjunct to other diagnostic tests in

determining the likelihood of a person to suffer obstructive sleep apnoea. F'urther studies

could be done with an homogenous population with respect to racial origin and sex to

determine if the lateral cephalometric radiopgaph becomes more or less sensitive as a

screening tool. The use of internal controls i.e. using one part of the study group and

comparing them with the remainder meant these factors should have little influence over the

findings. Additionally the purpose of this study was to look at a representative sample of the

South Australian population referred for assessments of snoring or obstructive sleep apnoea.

The population studied reflects that referred to the largest public sleep disorders clinic in the

state, with no known influences over those practitioners referring to the clinic.

The use of a more homogenous population e.g. the Caucasian male might have produced

different results. However the aim of assessing the usefulness of the lateral cephalometric
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radiograph as a screening tool for the population suspected of obstructive sleep apnoea would

not have been met.

12.2 Materials and methods

Lateral cephalometric radiographs when taken with correct exposure do allow visualization of

both skeletal and soft tissue profiles. The use of these radiographs in the assessment of

subjects regarding possible UAV/ anomalies necessitates production of a radiographic image

that allows accurate location of cephalometric landmarks. Problems of image quality will

inevitably arise and it is imperative that the radiographer is cogniscant of the fact that the

radiograph must extend inferiorly to include the hyoid and be "soft" enough to allow soft

tissue detail without compromising the skeletal image. The use of a radiopaque mouth wash

prior to imaging would allow greater definition of the soft tissue outlines of the UAW

however there is an added cost and risk of adverse reaction by a few patients to the use of

these materials.

CT and MRI have both been utilized to gain a th¡ee dimensional view of the airway. CT was

used as a dynamic imaging modality with exposure of the upper airway occurring during

patient respiration (Schwab, Gefter, Hoffman et al, 1993 and Schwab, Gefter, Pack et al,

1993). Cine-CT was used by Kuna et al (1988) to visualize the upper airway during Muellers

manouvre. MRI can only be used to measure the static airway due to the time taken for

image generation, and this modality has been used in obstructive sleep apnoeic patients by

Schwab et al (1995). Lateral cephalometric radiographs only allow visualisation of the upper

airway in a static position. Thus alterations that may occur as a result of respiration or

swallowing may not be identified. The stage of the respiratory cycle at which the lateral

cephalometric radiograph is exposed has been investigated. Loube et al (1995) found no

variation in any of the parameters measured from cephalometric radiographs taken either

dunng inspiration or expiration. deBerry-Borowiecki et al (1988) exposed the lateral

cephalometnc radiographs during the expiratory phase stating that this was the time of

maximal relaxation of all structures, particularly the tongue. This study utilised the same

technique.

The measurement of the upper airway in a lateral dimension by CT and MRI has been

reported. A decreased diameter was found in obstructive sleep apnoeic subjects on CT by

Kuna et al (1988) and Shephard et al (1990). Schwab et al (1990) used MRI and identified a

similar narrowing of the upper airway in a lateral direction. Obviously a lateral

cephalometric radiograph cannot detect such altered dimensions.
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Lowe et al (1995) used CT to determine the volume of the upper airway in obstructive sleep

apnoeic subjects and detected larger soft tissue volumes and smaller upper airway volumes in

obstructive sleep apnoeic subjects. Lateral cephalometric radiographs can allow

measurement of similar alterations in area, but obviously determining tissue and space

volume is not possible.

CT, MRI and lateral cephalometry cannot be used whilst the patient is sleeping and therefore

rely on identifoing abnormalities in upper airway dimension of awake patients. Lateral

cephalometric radiography has the same limitation. MRI is better at visualizing the soft

tissues surrounding the upper airway and does not expose the patient to radiation, however it

is a more expensive modality and is not as widely available as CT. Both of these modalities

are limited to some extent by the obesity of the patient, with 300 pounds being the upper

weight limit to allow the patient to fit the machine and/or the table.

During this study it was noted radiograph quality varied and this impacted upon the ability to

locate accurately two soft tissue points in particular, the tip of the tongue and the tip of the

uvula. The use of a radiopaque mouthwash could have allowed more precise location of

these two important cephalometric landmarks.

Image quality may have been variable for a number of reasons. Although a radiographer

supervises the production of these images, the Adelaide Dental Hospital is an undergraduate

teaching institution. Final year dental students are rostered to the Dental Radiology Unit in

order to learn the skills necessary to take both intrao¡al and extraoral radiographs pertinent to

the practice of dentistry. In such a situation it is inevitable that there will be variation in

image quality. A single qualified radiographer would ideally undertake the production of

adequate lateral cephalometric radiographs for the purposes of this study.

The position of the patient when the lateral cephalometnc radiograph is taken has also been

investigated. Obviously people are in a supine position during sleep and the standard lateral

cephalometric radiograph is taken in the upright (standing or seated) position. There is

disagreement in the literature as to whether patient position influences the position of the hard

and soft tissues. Hoffstein et al (1991) and Pracharktam et al (1994) found no significant

alteration in parameters measured on lateral cephalometric radiographs in changing from

upright to supine. There are reports of anterosuperior movement of the hyoid when supine

(Ono et at, 1996) with a corresponding increase in oropharyngeal airway space (Yildirim et al,

1991). The nasopharyngeal airway has been reported to decrease (Pae et al, 1994; and

Yildirim et al, 1991) and in contrast to Yildirim et al (1991) the oropharyngeal airway space

was also found to decrease by Pae et al (1994). This latter group also found the cross-

sectional area ofthe tongue increased in obstructive sleep apnoeic subjects but not in controls.
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Neck circumference was recorded with the aim of determining the predictive value of this

measure for elevated BMI. This study did find that an increased neck circumference

correlated with an increased BMI, in agreement with Katz et al (1990); Lowe et al (1995);

Ono et al (1996) and Zucconi et al (1993). There was also a correlation between increasing

neck circumference and an increased incidence of obstn¡ctive sleep apnoea. This correlation

has also been reported by Davies et al (1992); Hoffstein and Mateika (1992); Katz et al

(1990); and Ferguson et al (1995).

Records were incomplete for twenty-two of the ninety-four subjects (18%) with respect to

neck circumference. Neck circumference was to be measured at the time the lateral

cephalometric radiograph was taken by the clinician ordering the radiograph. Subjects did

not always return to the Oral and Maxillofacial Surgery unit following the taking of the

radiograph, being discharged by the radiology unit, who subsequently retumed the casenotes

of the subject to the unit. The absence of a complete set of records for these twenty two

subjects does not impact upon the central aim of this thesis, that being the utilization of lateral

cephalometric radiographs in the assessment of the obstmctive sleep apnoeic patient.

12.3 Criteria For Diagnosis of Obstructive Sleep Apnoea

In this study the respiratory disturbance index (RDI) alone, as measured during an overnight

polysomnographic study, was used as the criteria for diagnosis of obstructive sleep apnoea.

The principle reason for use of this diagnostic criterion alone was the relative simplicity of the

measure and the fact most previous studies in the literature have relied upon this measure.

The difficulfy in the use of this parameter arises when deciding at what level of RDI is a

subject diagnosed with obstructive sleep apnoea. This issue is yet to be satisfactorily

resolved in the literature, hence other diagnostic criterion have been used in addition to or in

place of RDI. Such criteria include the apnoea index and the minimum arterial oxygen

saturation.

A definition of OSA arising from the 1990 meeting of the American Sleep Disorders

Association described OSA as being " . . . characterized by repetitive episodes of UAW

obstruction that occur during sleep, usually associated with a reduction in blood oxygen

saturation..." with associated features of daytime sleepiness and snoring (Thorpy, 1998).

The consensus in the literature is a RDI > l0 events per hour or an AI > 5 events per hour is

abnormal. Several studies that have undertaken cephalometric evaluation of obstructive

sleep apnoeic patients have used an RDI > l0 as the diagnostic level for obstructive sleep

apnoea (Bacon et al, 1989; Johns et al, 1998; Lowe et al,1996¡' Maltais et al,1997; Mochizuki

eT al, 1996; Ono et al, 1996; Ozbek et al, 1998; Tangugsorn et al, 1995a; Tangugsorn et al,
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1995b and Zucconi et al, 1993). The analysis of the data was initially performed by dividing

the pool of subjects into two groups separated at this level of RDI. The problems with this

separation are twofold. Firstly the subjects with a RDI close to l0 are by all definitions at

worst mild obstructive sleep apnoeics, and many would argue a cut off RDI > 20 better

defines an obstructive sleep apnoeic subject, particularly as this level of respiratory

disturbance during sleep has been reported to result in an increased mortality (He et al, 1988).

The possibility of skewing the results by including patients who may indeed not be true

obstructive sleep apnoeics and thus not recognizing significant measurable differences on

cephalometric radiographs of patients with more severe obstructive sleep apnoea is possible.

Secondly the mortality associated with obstructive sleep apnoea is reported to be most

relevant in those subjects less than 50 years of age with an RDI > 20 (He et al, 1988). The

relevance of using this lower cut-off RDI can again be questioned on the grounds of limited

clinical significance. The value of treating patients with 10 < RDI < 20 is of questionable

importance and beyond the scope of this thesis.

The arbitrary point RDI : 15 was used for the second series of analyses because this level

divided the group into even numbers for the purposes of data analysis (n : 45 RDI < 15 and n

:48 RDI > l5). Some authors have considered this level of respiratory disturbance to be a

suitable demarcation point between snorer/mild apnoeic subjects and apnoeic patients

(Ferguson eT,7996; Mayer et aL,7996; and Schwab et al, 1995).

Arguably the most significant clinical level of respiratory disturbance to be analyzed in the

study of patients with obstmctive sleep apnoea is an RDI > 20. This level of respiratory

disturbance has been positively linked with the development of significant morbidity and

increased mortality if untreated (Benaim etal,1992; He et al, 1988; Partinen et al, 1988; and

Pracharktam et al, 1996). The majority of the literature reporting on the treatment of

obstructive sleep apnoea where a lateral cephalometric radiograph has been obtained as a

pretreatment investigation have used an RDI > 20 as the minimum RDI indicating the need

for treatment (Conradt et al, 1997; Hochban et al, 1994; and Powell and Riley, 1993).

lnterestingly these same studies commonly use a criteria for succcss or othcrwisc of thcir

treatment an RDI < 10 (Conradt et al, 1997; Hochban et al, 1994; and Johnson and Chinn,

ree4).

12.4 Differences In Lateral Cephalometric Radiograph Measures Between

Snorers and OSA Subjects

There were differences in which cephalometric measures were significantly altered between

subjects relative to the respiratory disturbance index. ln contrast measures of neck
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circumference and BMI were correlated with increasing severity of obstructive sleep apnoea

as defined by the apnoea-hypopnoea index. The discussion will consider each discrete

anatomic area analysed by linear and angular variables.

12.4.1 Soft Palate

The soft palate has long been of interest to clinicians managing the often complex and

frequently inter-related problems of snoring and obstructive sleep apnoea. The altered

dimensions of the soft palate are one of the most consistent findings in studies of OSA

patients using cephalometry. Many investigators have postulated the dimensions of the soft

palate are greater in patients who snore or suffer OSA thus predisposing them to UAW

occlusion at this level. Fujita et al (1981) used direct visualisation to determine soft palate

dimensions and reported an increased size in snoring patients. This increased length has been

used to justifu ululopalatopharyngoplasty (UPPP) in the treatment of both snoring and

obstructive sleep apnoeic patients (Fujita et al, 1981 and Riley et al, 1987). The justification

is the assumption that excessive length or thickness of the soft palate is instrumental in the

development of obstructive episodes. Removal of this redundant soft tissue should prevent

the development of an obstructive event, thereby alleviating the potential serious

consequences of obstructed breathing during sleep.

The length, thickness, area and volume of the soft palate have been of interest to investigators

involved in the diagnosis and treatment of OSA since this time. The measurements of the

soft palate from subjects in the current study are presented in Table 12.4-l and are compared

with results from the literature review.

Soft palate length (PNS - P) is reported to be significantly increased in patients with

obstructive sleep apnoea syndrome (Bacon et al, 1989; deBerry-Borowiecki et al, 1988;

Hochban and Brandenburg, 1994; Lowe et al,1996; Lyberg et al, 1989b; Maltais et al, 1991;

Mayer et al, 1996; Mochizuki et al, 1996; Ono et al, 7996; Pracharktam et al, 7996;

Sakakibara ef aI, 7999; Strelzow et al, 1988; 'I'angugsorn et al, 1995b and Zucconi et al,

1993). The increased soft palate length in obstructive sleep apnoea is suggested to cause

obstruction by falling across the nasopharynx during sleep, particularly if the patient is

supine. In this study the length of the soft palate from the postenor nasal spine to the tip of

the urula (PNS - P) was not significantly increased in OSA subjects. The p value of 0.062

was approaching significance. This result is in agreement with Andersson and Brattstrom et

al (1991); Battagel and L'Estrange (1996); Johns et al (1998); Mayer and Meier-Ewert (1995)

and Pracharktam et al (1994) who also found no increase in soft palate length in obstructive

sleep apnoeic subjects compared to a control population.
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Although this study did not find a significant difference in soft palate length between snorers

and OSA subjects this dimension may play a role in the aetiology of obstruction in some

patients. Treatment modalities aimed at the reduction in soft palate dimension, such as UPPP

have been demonstrated to achieve a ¡eduction in the RDI. However a comprehensive

review ofthe literature by Schechtman et al (1995) reported an overall success rate of 54Vo

using the criteria for success the reduction of the RDI by 50%. These results are disturbing

as 46Yo of patients continue to register an RDI that maintains an elevated risk of comorbidities

such as CVA, MI or impaired concentration.

One of the problems in determining the length of the soft palate from a lateral cephalometric

radiograph is visualising the tip of the uvula. This study did not use a contrast dye

mouthwash, such as Barium Sulfate Oesophageal Cream, prior to completion of the

radiograph that would have facilitated location of this cephalometric landmark. The

literature on the use of cephalometric radiographs does not usually mention the use of a

radiopaque marker to assist in the definition of soft tissue outlines, however Hans and

Goldberg (1995) do suggest the use of a radiopaque marker.

The greatest thickness of the soft palate was also measured on all lateral cephalometric

radiographs. This study found a significantly increased maximum soft palate width (IJWI -
UW2) as RDI increased for all patient groupings according to RDI. This result is supported

by the findings of deBerry-Borowiecki et al (1988); Hochban and Brandenburg (1994); Lowe

et al (1996); Lyberg et al (1989b); Ono et al (1996); Strelzow et al (1988) and Tangugsom et

al (1995b). This is in contrast to Andersson and Brattstrom (1991); Battagel and L'Estrange

(1996); Bacon et al (1989); Mayer et al (1996) and Sakakibara et al (1999) who found no such

difference in soft palate width.

Thickness of the soft palate is positively correlated with BMI, suggesting that this functional

area is affected by an increase in weight, presumably by fat deposition. Increased soft palate

thickness may result in a narrowed distance befween the soft palate and the posterior

pharyngeal wall. This would be expected to increase the tendency for obstruction at the

nasopharyngeal level of the upper airway. This will be discussed in section 12.4.2.

Alternatively, the thickened soft palate may protrude further into the oral cavity and in this

instance there may be no increased tendency for obstruction of the UAW. A positive

correlation between RDI and soft palate thickness, as found in this study, would support the

hypothesis that soft palate dimensions do play a role in the aetiology of OSA.
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Table 12.4-l: Soft Palate Linear and Angular Dimensions

UD UL UV ANS.PNS.UT CL

Andersson et al (1991)

Battagel et al (1996)

Bacon et al (1989)

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Johns et al (1998)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1989b)

Maltais et al (1991)

Mayer et al (1995)

Mayer et al (1996)

Mochizuki et al (1996)

Ono et al (1996)

Ono et al (1996)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Tangugsorn et al (1995b)

Zucconi et al (1992)

Sherring (2001) RDI> 10

Sherring (2001) RDI> 15

Sherring (2001) RDI> 20

AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsS
AvsS

A1 vsC

A2vsC
A1 vs A2

AvsC
AvsC
AvsS
AvsS
AvsS
AvsS

U

U

U

u 0.000

u 0.005

U

u 0.007

SNS
u 0.023

s 0.034

UNS
SNS
u 0.001

U

U

UNS
U

u 0.05

SNS
U

U

UNS
UNS
UNS
u 0.05

u 0.001

U

u 0.01

u 0.02

u 0.002

0.010

0.0001

NS

0.002

NS

0.009

NS

NS

NS

0.001

0.01

NS

0.01

0.01

0.05

0.05

NS

0.013

0.02

0.001

NS

0.05

0.001

0.05

NS

NS

NS

0.014

0.05

0.000

0.000

NS

0.001

0.031

NS

NS

0.001

0.01

0.05

0.0s

NS

0.001

0.001

NS

0.05

0.001

NS

NS NS

NS

NS

0.01 0.01

0.05 0.001

A = obstructìve sleep apnoea subject; C: non-snoring, non-apnoeic subject; S = snoring, non-apnoeic subject; Al = non-obese
obstructjve sleep apnoea subject; A2 : Obese obstructive sleep apnoea subject.

12.4.2 Nasopharynx

The nasopharyngeal airway lies behind the soft palate and has been measured in its
anteroposterior dimension and area by a number of authors using lateral cephalometric

radiographs. If the distance between the posterior edge of the soft palate was narrowed then

it is conceìvable obstruction may occur, even if the dimension of the soft palate were not

increased. Thus in considering obstruction at this level of the UAW it may be wise to
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consider not only the individual dimension of the soft palate but also the nasopharyngeal

dimensions.

This study did not find a significant difference in the anteroposterior dimension of the

nasopharyngeal airway using measurements taken at five different levels. One of the

problems when comparing the nasopharyngeal airway width between studies is the use of

different reference planes and cephalometric landmarks by different authors. The uvula tip is

a relatively simple landmark to identiff on most radiographs and was chosen as one of the

cephalometric landmarks on the soft palate. The second cephalometric point on the soft

palate was the point of greatest convexity as reported by deBerry-Borowiecki et al (1988).

This point correlates with the posterior superior point on the soft palate as reported by Lowe

et al (1986). The third landmark used was the posterior nasal spine. This landmark is

simple to locate on a cephalometric image, is easily reproducible and has been used by a

number of authors (Andersson and Brattstrom, 1991; deBerry-Borowiecki et al, 1988;

Hochban eTat,1994; Lybergetal,1989b; Sakakibara etal,1999; Solow etal,1996; Strelzow

et al, 1988 and Tangugsorn et al, 1995b). These factors make it a useful landmark to allow

comparison between studies.

The reference planes used in this study to consider the width of the nasopharyngeal airway

were constructed parallel to Frankfort Horizontal and a line joining point B and gonion.

Lines parallel to these two reference planes were constructed to pass between the three

landmarks mentioned in the previous paragraph and extended posteriorly to intersect with the

posterior pharyngeal wall. Two planes were chosen to allow comparison with a larger

number of studies in the literature.

The distance between the posterior phar¡,ngeal wall and the most posterior superior point on

the soft palate parallel to Frankfort Horizontal (UT - PhWl) was significant if an RDI > 20

defined OSA subjects. This dimension was not significantly decreased if the subjects were

divided based on a lower RDI. This suggests that in the group studied nasopharyngeal

airway narrowing is signihcant only as RDI increases, however there was no significant

correlation between RDI and this distance for the whole group. Lowe et al (1996) found this

distance significantly decreased in all subjects with an RDI > 10. deBerry-Borowiecki et al

(1988) used a more complex criteria for determining OSA however they too found this

distance significantly decreased in all subjects with OSA.

The distance from the tip of the uwla to the posterior pharyngeal wall along the line Go - B
(UT - PhW5) was not significantly decreased irrespective of the RDI used to define OSA.

However if an RDI > 20 is used to define OSA subjects then a p value of 0.051 approaches

significance. This finding is supported by Johns et al (1998) and Mayer and Meier-Ewert
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(1995). The inference from this finding is obstruction of the nasopharyngeal airway at the

level of the uvula is likely to be a function of soft palate length rather than nasopharyngeal

airway width.

Narrowing of the UAW at any point has been postulated to cause pressure changes that may

predìspose to obstruction at another site. The distance from the posterior nasal spine is the

most superior point of the pharyngeal ainay, and the distance to the posterior pharyngeal

wall from this point was measured. The distance from the posterior nasal spine to the

posterior pharyngeal wall differs from other measures of nasopharyngeal airway width

because a fixed bony point is being used. The superior constrictor arises from the base of

skull at the medial pterygoid plate and the pterygoid hamulus and is unlikely to have enough

elasticity to occlude totally at this level. This study did not find signifìcant narrowing of the

nasopharyngeal airway at this point (PNS - PhV/3), in agreement with deBerry-Borowiecki et

al (1988).

A number of explanations have been offered to explain the inability to measure a decreased

nasopharyngeal airway width on a lateral cephalometric radiograph yet determine by other

measures that this is indeed the principle site of UAW obstruction. In some cases this has

been attributed to the simple assumption that OSA patients do not have narrowed upper

airways during wakefulness and therefore no abnormality can be visualized on subjects who

are awake during imaging (Hans and Goldberg, 1995). Schwab et al (1995) suggest a

coronal narrowing of the UAV/ with no corresponding reduction in the sagittal dimension.

They utilised MRI to assess the lateral dimension of the UAW. In contrast Riley et al (1987)

found a significant correlation between the posterior airway space measured by

cephalometrics and the volume of the pharyngeal airway. The results of the current study are

shown with the results from the literature review in Table 12.4-2. The reliability of lateral

cephalometric radiographs for predicting the nasopharyngeal airway as the site of obstruction

if only pharymgeal airway space is measured is not clear as the conflicting reports in the

literature indicate.
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T zble 12.4-2: Nasopharyngeal Airway Dimensions

PNS - PhW UP-PhW UT-PhW Area

Andersson et al ('1991)

Battagel et al (1991)

Battagel et al (1991)

Battagel et al (1991)

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Hochban et al (1994)

Johns et al (1998)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al(1996) lll

Lowe et al (1996) lll

Lyberg et al (1989b)

Mayer et al (1995)

Mochizukiet al (1996)

Ono et al (1996)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Solow et al (1996)

Solow et al (1996)

Strelzow et al (1988)

Tangugsorn et al (1995b)

Sherring (2001) RDI>10

Sherring (2001) RDI>10

Sherring (2001) RDI> 15

Sherring (2001) RDI> 15

Sherring (2001) RDI > 20

Sherring (2001) RDI > 20

AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsC
AvsS
AvsS

A1 vsC

A2vsC
A1 vs A2

AvsC
AvsC
AvsC
AvsC
AvsS
AvsS
AvsS
AvsS
AvsS
AvsS

0.001U

U

U

U

U

U

U

U

U

S

U

S

U

S

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

0.0002

0.0002'3

0.0004

0.0025

0.0052

0.005s

0.0016

N55

0.0001r

0.00017

0.001s

NS

0.018

0.000s

0.035e

0.000e

0.001s

N59

N59

N57

0.05e

N59

0.0017

0.0017

N57

0.00110

0.0017

0.0017

N57

0.00110

NS

NS

NS

NS

NS

NS

NS

0.05

N55

0.000e

o.o27e

0.01s

N59

N59

N59

0.001s

N59

0.0510

0.0017

NSs

N59

N55

N59

0.05s

N59

0.0017

0.0017

N57

0.01s

0.0017

NSlO

0.0017

NS5

NS5

N55

0.0510

N55

N59

NSs

N59

NS5

N59

A = obstructive sleep apnoea subject; C : non-snoring, non-apnoeic subject; S : snoring, non-apnoeic subject; A1 = non-obese
obstructive sleep apnoea subject; A2 = Obese obstructive sìeep apnoea subject.

I DistancealongextensionoflineANS-PNS;2Distancealongahorizontal line;3Themostposteriorpointonthedorsumofthe
soft palate;4 Distance along a horizontal line through the lower rncisor tip; 5 Distance along a line parallel to FH; 6 Distance
along extension ofthe occlusal plane; 7 Distance along line PNS-Ba (or parallel) between soft palate and pharyngeal wall; 8

Distance along line parallel to FH at midpoint of soft palate; 9 Distance along line parallel to Go-B; l0 Reference line not defined

t
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12.4.3 Oropharynx

Narrowing of the postenor airway space at the level of the oropharynx has also been

investigated using lateral cephalometric radiographs. The oropharyngeal airway width is

determined by the relationship of the dorsal surface of the tongue base to the posterior

pharyngeal wall. Loss of muscle tone that occurs during sleep (Chandler, 1988) has been

postulated as a cause for increased nanowing or occlusion of the UAW due to a "slumping"

of the tongue whilst supine (Riley et al, 1993).

There is disagreement in the literature regarding the ability of a lateral cephalometnc

radiograph taken on an awake patient in the upright position to accurately show the degree of

UAW narrowing that may be present during sleep. Pracharktam et al (1994) reported a

significant narrowing of the nasopharyngeal airway in both snoring and apnoeic patients when

changed from the upright to supine position. They reported no other parameter to be

significantly altered between upright and supine cephalometric radiographs. Horner et al

(1989) imaged sleeping, supine OSA subjects with conventional CT and found UAW

obstruction occurred by posterior displacement of the soft palate and tongue. These

parameters may be analysed by cephalometry, however lateral pharyngeal airway collapse

was also noted which cannot be seen on a lateral view.

The present study found no significant difference in the oropharyngeal airway dimension

measured from the dorsal tongue to the posterior pharyngeal wall along an extension of the

line Go-B (TP - PhW6). This finding is in agreement with Johns et al (1998); Mayer G and

Meier-Ewert K (1995); Mayer et al (1996); Mochizuki et al (1996); Pracharktam et al (1994),

and Solow et al (1996). Only one study in the literature considered the effect of body

position on this parameter. Lowe et al (1996) found no significànt difference in this

dimension measured from supine radiographs. In contrast a number of authors (Battagel and

L'Estrange, 1996; Lowe et al, 1996; Lyberg et al, 1989b; Maltais et al, 1991; and Sakakibara

et al, 1999) have measured a significant decrease in the distance between the tongue and the

pharyngeal wall at the level of an extension of Go-B. These results are shown in Table

12.4-3

The literature is not clear on the effectiveness of measuring the width of the UAW on lateral

cephalometric radiographs to aid diagnosis of the site of obstruction. The current study

found little difference in the width of the oropharyngeal airway between OSA subjects and

snoring subjects, irrespective of the RDI used to define OSA. The value of a lateral

cephalometric radiograph alone in predicting the likely site of pharyngeal obstruction is

limited because of the possibility of lateral wall narrowing or collapse. Analysis to determine

if there is a relationship between any of the soft palate or tongue dimensions, particularly

t
I
I

þ
250



length, and pharyngeal width may be of greater benefit. Pharyngeal width, soft palate length

or tongue length alone may not be significantly different in obstructive sleep apnoeic subjects.

However in subjects being investigated for obstructive sleep apnoea an increased soft palate

or tongue length and a decreased pharyngeal width in combination may produce a greater

degree of narrowing and risk of obstruction.

T able 12.4-3: Oropharyngeal Airway Dimensions

PAS (OP) PAS(Go-B) PAS (Go-Gn) Area

Battagel et al (1991)

Hochban et al (1994)

Johns et al (1998)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1989b)

Maltais et al (1991)

Mayer et al (1995)

Mayer et al (1996)

Mochizuki et al (1996)

Ono et al (1996)

Pracharktam et al (1994)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Solow et al (1996)

Tangugsorn et al (1995b)

Zucconi et al (1992)

Sherring (2001) RDI> 10

Sherring (2001) RDI> 15

Sherring (2001) RDI> 20

AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsS
AvsC
AvsS

A1 vsC

A2vsC
A1 vs A2

AvsC
AvsC
AvsS
AvsS
AvsS
AvsS

U

u 0.002

U

U

S

U

S

U

S

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

0.036r

NS

0.001

NS

0.015

NS

NS

NS

0.051

0.051

NS

NS

NS

NS

0.0011

0.0011

NS

NS1

0.005

0.000

NS

0.007

NS

NS

NS

NS

rI
q

NS

0.001

NS

0.01

NS

NS

NS

A = obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S = snoring, non-apnoeic subject; A1 : non-obese
obstructive sleep apnoea subject; A2 = Obese obstructive sìeep apnoea subject.

I The narrowest distance between the tongue and the posterior oropharyngeal wall

12.4.4 Tongue

Increased tongue length, similar to soft palate length, may contribute to an increased RDI

during sleep because of loss of muscle tone and a posterior resting position. Locating thet
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tongue tip and measuring the distance to the tip of the epiglottis (TT - Et) or the vallecula

(TT - Eb, or TGL) is the most widely reported measure of tongue length.

The difficulty with determining tongue length from a standard lateral cephalometric

radiograph again lies with difficulty in locating the tongue tip. This is a similar problem

already discussed with respect to the soft palate tip. A modified radiographic technique,

utilizing a radiopaque dye would assist in improving the accurate identification of this point.

Accurate recording of the rest position of the tongue requires a strict protocol when obtaining

a lateral cephalometric radiograph. The tongue is a particularly mobile structure within the

UAW and the protocol followed in this study was to have the patient swallow and exhale

prior to exposure of the radiographic film. This protocol is used for all lateral cephalometric

radiographs taken within Dental Radiology Unit, Adelaide Dental Hospital. Exhalation prior

to exposure is reported to result in maximal relaxation of all structures of the UAW (deBerry-

Borowiecki et al, 1988). The tongue tip (TT) was the least reproducible point on the

horizontal axis in this study and was the third least reliable point on the vertical axis after

points posterior pharyngeal wall 3 (PhW3) and posterior pharyngeal wall 4 (PhW4). There

was not a significant difference between the first and second determinations of point TT.

This problem with reproducibility of this point means longitudinal comparison of changes in

the position of this landmark, for example following surgery aimed at altering tongue

position, is difficult. The use of a radiopaque dye prior to exposure of the lateral

cephalometric film would assist in accurate location of the tongue tip. Given the mobility of

the tongue, the point on the tongue identified as the "tip" may still vary between

cephalometric radio graphs.

This study found a signifìcant increase in the length of the tongue measured from the tip of

the tongue to vallecula (TGL) for OSA subjects as defined by an RDI > 15 and an RDI > 20

(Table 12.4-4). The OSA subjects as defined by an RDI > 10 approached significance with a

p value of 0.057. These findings are in agreement with deBerry-Borowieckr et al (1988);

Hochban and Brandenburg (199Ð; Lowe et al (1996); Pracharktam et al(1994); Pracharktam

et al (1996); Sakakibara et al (1999); and Strelzow et al (1988) who also found an increased

tongue length in all patients diagnosed with OSA irrespective of severity.

Lowe et al (1996) found no significant difference in tongue length, from the tongue tip to

vallecula, between OSA subjects with a Class I or Class II dental malocclusion on supine or

upright radiographs. Interestingly they did find a significant difference for OSA subjects

with a Class III dental malocclusion on supine cephalometric radiographs, but not on upright

radiographs. They concluded that this group ofpatients had an elongated airway secondary

to increased tongue length, but did not proffer an aetiology for the increase in tongue length

seen. One hypothesis is in subjects with a Class III dental malocclusion the mandible may be
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lengthened. This increase in mandibular length would influence the dimensions of the

attached musculature, including the tongue. The tongue may be lengthened due to the

increased mandibular length.

Studies by deBerry-Borowiecki et al (1988) and Hochban and Brandenburg (1994) did not

find a significant increase in tongue length as measured from the tongue tip to the tip of the

epiglottis (TT - EÐ. This was true for the present study if OSA was defined as an RDI > 10.

If however, an RDI > 15 or an RDI > 20 was used as the diagnostic criteria for OSA there was

a significant increase in tongue length as measured by this parameter.

The findings of this study suggest that as OSA severity increases, so to does tongue length.

This would be consistent with the hypothesis that in some OSA patients loss of tongue muscle

tone during sleep allows the tongue to fall across the airway, producing an obstructive

episode.
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T able 12.44: Tongue l)imensions

V - TT Depth Height Length Area Proportion

Battagel et al (1996)

deBerry-Borowiecki et
al (1988)
deBerry-Borowiecki et
al (1988)
Hochban et al (1994)

Hochban et al (1994)

Hochban et al (1994)

Hochban et al (1994)

Johns et al (1998)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1995b)

Mayeretal (1995)

Mochizuki et al (1996)

Pracharktam et al
(1 ee4)
Pracharktam et al
(1 se6)
Sakakibara et al
(1 eee)
Sakakibara et al
(1 see)
Sakakibara et al
(1 ses)
Strelzow et al ('1988)

Tangugsorn et al
(1 sesb)
Sherring (2001)
RDt>10
Sherring (2001)
RDt>10
Sherring (2001)
RDt>15
Sherring (2001)
RDI>15
Sherring (2001)
RDt>20
Sherring (2001)
RDt>20

U

u 0.003

u 0.0083

u 0.0001

u 0.0058

U NS3

U

U

u 0.045

SNS
u 0.045

SNS
UNS
s 0.041

UNS
U

U

u 0.0115

u 0.00615

UNS
u 0.001

u 0.001

u 0.051s

UNS
U NS3

U

u 0.0373

U

u 0.0213

U

AvsC
AvsC

AvsC

AvsC
AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsS

AvsS

A1 vsC

A2vsC

A1 vs A2

AvsC
AvsC

AvsS

AvsS

AvsS

AvsS

Avs S

AvsS

NS

0.002

0.01"

0.0001

N54

0.0026

0.0001s

0.000111

0.0112

0.0113

0.01 16

N56

0.0001

NS

NS

NS

0.015

NS

0.030

NS

NS

0.02

0.001

NS

0.017

NSlO

NS14

0.0510

N52

N55

NS

NS

NS

NS

NS

NS

NS

0.05

NS

0.004

0.001

0.001

0.001

0.05

0.001

0.01

0.001

0.001

NS

0.0512

0.0515

0.0513

NSTs

0.00713

0.01015

0.00313

0.004rs

A = obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S: snoring, non-apnoeic subject; Al = non-obese

obstructive sleep apnoea subject; A2 : Obese obstructive sleep apnoea subject

I PNS-TB; 2B-TB;3 TT- ET; 4Go-TB;5 Cn-TB;6 TB-PNS;7 V-Me;8 TT-TB; 9V-S;10T8-B; l1 V-ANS; l2
TB-ANS; l3 PNS- EB; l4 V -C spineparallel to FH; 15 TT- EB; 16 V-FH.
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12.4.5 Hyoid Bone

The location of the hyoid in relation to the mandible, the cervical spine and to maxillary and

cranial reference points is important because the hyoid is a point of attachment for many of

the muscles involved with the UAW. This hyoid is suspended by the muscles and ligaments,

which are attached to it. The bone is freely mobile, being felt and seen to alter position with

breathing, swallowing and movement of the tongue. Investigators concerned with

oropharyngeal or hypopharyngeal obstmction have thoroughly documented hyoid bone

position on lateral cephalometric radiographs.

The hyoid tended to be inferiorly placed in subjects diagnosed with OSA in this study

compared with the snoring controls. This was reflected in an increased distance from the

mandibular plane to the hyoid (MP - H) in the RDI > 10 and RDI > 15 groups. Interestingly

the group diagnosed with OSA by an RDI > 20 had no significant difference in vertical hyoid

position compared with the snoring group. The increase in distance between the mandible

and the hyoid is supported in this study by the angular measurement between Go-Gn-H and

C3-RGn-H. There was also significant correlation between RDI and the distance MP-H

across all ninety-four subjects with the distance increasing as RDI increased

The increased MP-H distance reported in this study are in agreement with Andersson and

Brattstrom (1991); Hochban and Brandenburg Q99Ð; Lowe et al (1996); Lyberg et al

(1989b); Maltais et al (1991); Mayer et al (1996); Mochizuki et al (1996); Pracharlctam et al

099Ð; Pracharktam et al (1996); Sakakibara et al (1999); Tangugsorn et al (1995a) and

Tsuchiya et al (1992). Nelson M and Hans S (1997) found the distance MP-H to be of

greater predictive value of OSA severity in obese subjects compared to subjects with OSA

who were not obese. These results are shown in Table 12.4-5.

MP-H distance provides only indirect information regarding the relationship of the hyoid

bone to the inferior border of the mandible. This distance would appear increased if the

mandibular plane angle was horizontal, or decreased if the gonial angle was increased.

Measuring the position of the hyoid bone in relation to gnathion, gonion and as the angle Go-

Gn-H documents it position more accurately and is independent of patient differences in

mandibular plane angle. The distance Gn-H and Go-H was considered in the present study.

For groups separated by an RDI > 10 the distance Go-H was significantly increased. deBerry-

Borowiecki et al (1988) and Strelzow et al (1988) also found this distance increased for

subjects defined as OSA. These distances were not significantly increased in the other

subjects groups, although for RDI > 15 the distance Go-H approached signif,rcance (p=0.071).
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Angular measures of hyoid depth that were considered in the present study were the angle

Go-Gn-H and the angle C3-RGn-H. The angular measure of hyoid depth (C3-RGn-H) was

increased if an RDI > 10 or and RDI > 15 was used to define OSA. This is supported by the

study of Pracharktam et al (1994). The angle Go-Gn-H was only significant if the population

studied was divided into OSA subjects and snorers at an RDI > 15 level. deBerry-

Borowiecki et al (1988); Hochban and Brandenburg (1994), and Strelzow et al (1988)

reported an increased angle Go-Gn-H which supports the findings of this study (Table

12.4-6).

Other measures of the vertical position of the hyoid relate it to the cranial base. The distance

from sella to hyoid (S - H) and articulare to hyoid (fu - H) were all increased in OSA

subjects in this study. These increases occured when RDI > 10 was used as the diagnostic

criteria for OSA and became less important as OSA severity increased. Only the distance S-

H was significantly increased in OSA subjects if RDI > 15 was the defining value. When

RDI > 20 was used to differentiate between OSA subjects and snorers there was no significant

increase in hyoid depth between the two groups, however this distance did approach

signifi cance (p:0.057).

The findings of the present study are in agreement with deBerry-Borowiecki et al (1988);

Hochban and Brandenburg, 1994; Johns et al (1998); Strelzow et al (1988) and Tangugsorn et

al (1995a). In contrast Lyberg et al (1989a) found no significant difference in the distance S-

H between OSA subjects and non-snoring controls. These results are shown in Table 12.4-5.

The finding that vertical hyoid position is less important as RDI increases may indicate hyoid

position is more important for mild OSA subjects and decreases in importance as RDI

lncreases

The angular measure of hyoid position in the vertical plane was also considered in this study

using the angle between the cranial base (S-N) and hyoid. No significant difference for this

angle was found for any of the groups. This contrasts with the findings of deBerry-

Borowieckr et al (1988) and Hochban and Brandenburg 099Ð who found a significantly

increased angle in OSA sublects. findings agreed with those of this study. The difficulty of

using this angular measure is it also has a honzontal component and is altered by the cranial

base angle. Those subjects with a steep cranial base (compared to Frankfort Horizontal) will

tend to have a decreased angle S-N-H compared to those with a more shallow cranial base

angle where the hyoid is in the same horizontal position. A similar problem arises with the

angular measure between the mandibular plane and the hyoid (angle Go-Gn-H). The

reliability of these angles for determining the vertical position of the hyoid is questionable if
no consideration is given to the steepness of the cranial base or mandibular plane.
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The anteroposterior position of the hyoid (or horizontal position) has been considered. One

of the problems with the assessment of this parameter is the tangential nature of many of the

distances measured. Some of the landmarks used include point B (Battagel and L'Estrange,

1996 and), retrognathion (Lowe eI al, 1996; Pracharktam et al, 1994 and Tsuchiya et al,

1992), menton (Hochban and Brandenburg, 1994) and gnathion (Strelzow et al, 1988). The

current study found no significant difference between OSA subjects and snoring subjects for

the distance Me-H. This is in contrast to Hochban and Brandenburg (1994) who found this

distance significantly increased in OSA subjects. There was a correlation between BMI and

the distance Me-H, with this distance increasing as BMI increased. This suggests a more

posteriorly positioned hyoid in obese subjects. This hnding is also reported by Tsuchiya et al

(1992) who reported a more postenorly positioned hyoid in subjects with OSA who had a low

RDI and elevated BMI. There is no true horizontal assessment of hyoid position using these

measures because most relate to a landmark on the anterior maxilla or mandible. All these

constructed lines have a significant vertical component and may therefore diminish the

sensitivity of the horizontal position of the hyoid because of the vectors involved.

A better estimate of the anteroposterior position of the hyoid is by its relationship to the

cervical spine. The horizontal distance to a point or reference line on the cervical spine

allows a true horizontal measurement to be taken, with little or no vertical component. The

third cervical vertebra is on the same horizontal plane as the hyoid in most subjects and is

likely to provide the most reliable landmark for evaluation of this dimension.

The present study found the hyoid to be anteriorly placed in OSA subjects compared with

snorers for groups divided by RDI > l0 and RDI > 15 as measured by the distance H-C4 and

H-C3. This finding is in agreement with Lowe et al (1996) who also found an increased

distance for OSA subjects with a Class I or Class III dental malocclusion on upright

cephalometric radiographs. This group reported no significant difference for subjects with a

Class II dental malocclusion. Sakakibara et al (1999) found the hyoid to be significantly

further from the cervical spine in obese OSA subjects compared to normal controls and non-

obese OSA subjects. Lyberg et al (1989a) found no significant difference in these

dimensions between OSA subjects and non-snoring controls. Tsuchiya eT al (1992) found the

hyoid was significantly more anterior in low AHl/trigh BMI subjects compared with controls.

A more anteriorly placed hyoid was reported by Battagel and L'Estrange (1996) however they

used point B as the honzontal reference, and therefore have included a vertical component to

their horizontal measure of distance.

The variability of the relationship of the hyoid to the cervical spine supports the knowledge

that the hyoid is mobile and its position is influenced by the muscles and ligaments that

maintain its position. The literature suggests that obese OSA subjects tend to have an
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increased hyoid to cervical spine distance. This study found a positive correlation between

BMI and the distance from the ceryical spine to the hyoid. Using RDI > 20 as the definition

of OSA there was no significant difference in this distance between snorers and OSA subjects

which suggests the association between RDI and the distance from the cervical spine to the

hyoid is of less importance as OSA severity increases'
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Table 12.4-5: Hyoid Bone Linear Measurements

H - MP Vertical Horizontal C'SPine

Andersson etal (1991)

Andersson et al (1991)

Battagel et al (1996)

Battagel et al (1996)

deBerry-Borowiecki et al (1988)

deBerry-Borowiecki et al (1988)

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Hochban et al (1994)

Hochban et al (1994)

Hochban et al (1994)

Johns et al (1998)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1995a)

Lyberg et al (1995a)

Maltais et al ('1991)

Mayer et al (1995)

Mayer et al (1996)

Mochizuki et al (1996)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Strelzow et al (1988)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Tangugsorn et al (1995a)

Tsuchiya et al (1992)

Tsr.rchiya et al (1992)

Tsuchiya et al (1992)

Zucconi et al (1992)

Sherring (2001) RDI> 10

Sherring (2001) RDl> 10

Sherring (200f ) RDI> 15

Sherring (2001) RDI> 15

Sherring (2001) RDI> 20

Sherring (2001) RDI > 20

AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsS
AvsS
AvsS

A1 vsC
A2vsC
Alvs A2

AvsC
AvsC
AvsC
AvsC
AvsC
A3vsC
A4vsC
A3 vs A4

AvsC
AvsS
AvsS
AvsS
AvsS
Avs S

AvsS

U

U

U

U

U

U

U

U

U

U

U

U

U

S

U

S

U

S

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

u
u

U

0.05

0.01

NS

0.0001

NS1

0.0094

0.0016

0.0438

0.00014

0.05e

0.0422

N53

N55

N57

0.00052

0.0510

N37

0.00511

NS14

NS14

NS14

0.03214

NS14

NS14

0.01

0.003

0.001

0.031

NS

0.047

NS

0.001

0.05

NS

0.01

0.01

0.001

0.000

0.001

0.001

NS

0.0112

0.00513

0.00513

NS13

NS13

NS13

NS13

N54

0.00116

0.03115

NS15

NS15

NS15

0.0011s

NS15

N515

N519

0.0011e

0.0011e

0.001

0.056

0.054

0.058

0.0014

0.00116

N513

0.0113

0.0113

0.0004

0.026

0.0084

N56

N54

N56

NS2O

0.00121

NS22

o.of2
NS22

0.0117

0.0515

0.0518

NS15

NS15

0.0515

N55

NS

0.01

0.05

0.001

0.05

0.032

NSr0

N510

NSIO

0.00022

0.00023

0.00622

0.00723

NS22

NS23

NS

A: obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S = snoring, non-apnoeic subject; Al = non¡bese

obstructive sleep apnoea subject; A2 : Obese obstructive sleep apnoea subject; High apnoea index,/Low BMI; A4 Low apnoea

index/High BMI.
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IFVANS-PNS;2H-B;3ANS-H;4S-H;5Gn-H;6Ar-H;7H-PhW;8Go-H;9H-AA;l0H-Me;llH-Phw(Me-H);12
pNS-H; 13 H-Hl; 14 H-RGn; 15 C3 - H; 16 H (FH; l7 H-Ver; l8 H-PhW (Go-H); 19 H-VL; 20 AH-C3 Hor;21 AH-C3 Ver;22

C3-H;23 C4-H.

Tabte 12.4-6: Hyoid Bone Angular Meâsurements

Go-Gn-H N-S/Ar-H N'S'H G3-RGn.H

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Pracharktam et al (1994)

Strelzow et al (1998)

Sherring (2001) RDI> 10

Sherring (2001) RDI> 15

Sherring (2001) RDl> 20

AvsC
AvsC
AvsS
AvsC
AvsS
AvsS
AvsS

0.000

0.005

0.05

NS

0.037

NS

0.017

0.0001

0.042

0.0001

U

U

U

U

U

U

U

0.05

NS

NS

NS

NS

NS

NS

NS

0.001

0.05

0.029

NS

A = obstructive sleep apnoea subject; C : non-snoring, non-apnoeic subject; S : snoring, non-apnoeic subject

12.4.6 Maxilla

The dimensions and the location of the maxilla may be important in the development of UAW

obstruction at the nasopharyngeal level. The superior soft palate is attached to the postenor

edge of the bony maxilla, and is therefore influenced by the anteroposterior position of the

maxilla. A maxilla that is located in a protrusive position relative to the cranial base would

be expected to have greater distance between its posterior border and the posterior

nasopharyngeal wall. Conversely, a retrognathic maxilla would be expected to lie closer to

the posterior nasopharyngeal wall. The tendency of the soft palate to cause nasopharyngeal

airway obstruction, whilst possibly being influenced by the dimensions of the soft palate,

might also be influenced by the anteroposterior position of the maxilla. The inclination of

the maxillary plane can alter its effective length. A maxilla that is increased in

anteroposterior length may not be measured cephalometrically as prognathic (relative to the

cranial base as measured by angle S-N-A), nor might it cause narrowing of the nasopharynx

simply becausc of rotation of the palatal plane relative to a horizontal reference plane.

The length of the maxilla may effect the tendency of the UAW to obstruct at the level of the

nasopharynx. Posterior extension of the maxilla into the nasopharynx, decreasing the

distance between the posterior nasopharyngeal wall and the maxilla might predispose to

UAW obstnrction at this level. The absolute length of the bony maxilla can be measured

from the postenor nasal spine to the anterior nasal spine or to point A, the point of maximum

concavity on the anterior maxilla below the anterior nasal spine. This study measured the

disrance ANS-PNS and found a significantly increased maxillary length in OSA subjects.

This length was significantly increased in subjects diagnosed with OSA with an RDI > 10.

260



This frnding is not reported elsewhere in the literature considering maxillary length in OSA

subjects. Andersson and Brattstrom (1991); deBerry-Borowiecki et al (1988); Lowe et al

(1996); Sakakibara et al (1999); Strelzow et al (1988); Tangugsorn et al (1995a), and

Tsuchiya et al (1992) all found OSA subjects had a decreased anteroposterior length of the

maxilla. In contrast Johns et al (1998); Lowe et al (1995); Lyberg et al (1989a), and Zucconi

et al (1993) found no difference in maxillary length. These results are shown in Table

12.4-7.

The angulation of the palatal plane (ANS-PNS) to the cranial base (S-N) was not significantly

different between OSA subjects or snorers irrespective of the RDI used to separate subjects in

the study population (Table 12.4-8). This finding is supported by Bacon et al (1989), and

Lowe et al (1996). Hochban and Brandenburg (1994) reported a dorsocaudal rotation ofthe

palatal plane in OSA subjects, effectively decreasing the anteroposterior length of the maxilla.

Despite increased maxillary length in the OSA subjects reported in our group separated by an

RDI > 10 there is no rotation of the palatal plane to diminish the relative anteroposterior

length of the maxilla. Thus in our group increased anteroposterior length of the maxilla may

c ontribute to nasopharynge al airway ob structi on.

The dimensions of the bony skeleton should be stable following the completion of growth.

Growth of the maxillofacial skeleton, as measured on longitudinal cephalometric radiographs,

has been reported to continue into the fifth decade (Lewis and Roche, 1988). Comparison of

maxillary dimensions with known cephalometric norms for a Caucasian population was

performed in addition to comparison based upon RDI.

Anteroposterior position of the maxilla was measured in this study using the angle between

the cranial base (S-N) and point A on the anterior maxilla. This angle will give an indication

of the anteroposterior position of the maxilla but is influenced by the angulation of the cranial

base. The steeper the cranial base the more acute this angle will tend to be. There was no

significant difference in this angle befween subjects diagnosed with OSA or as simple snorers

irrespective of the diagnostic critena. This is in agreement with the majority of the literature

reviewed (Bacon et al, 1989; Johns et al, 1998; Lowe et al,1995; Lyberg et al, 1989a; Maltais

et al, 1991; Mayer and Meier-Ewert, 1995; Mochizuki et al, 1996; Ono et al, 1996;

Pracharktam et al, 7996; Sakakibara eT aL, 1999; Tangugsorn et al, I 995a ; Zucconi et al, 7992;

and Zucconi et al, 1993). These results are shown in Table 12.4-8. There was however a

tendency for this angle to become less acute as BMI increased. This would suggest that those

subjects who snore or have OSA and have a low BMI are more likely to have a retrognathic

maxilla with respect to the cranial base compared to those subjects with an elevated BMI.

This suggestion is supported by Tsuchiya et al (1992) who reported a significantly

retrognathic maxilla in a subgroup of OSA subjects with a high AHVlow BML Maxillary
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retrognathia may be more important in OSA subjects with a low BMI than in those with an

elevated BMI.

Table 72.4-7: Maxilla Linear Measurements

ANS-PNS Dc - A PNS -A
Andersson et al (1991)

Bacon et al (1989)

deBerry-Borowiecki et al (1988)

Johns et al (1998)

Lowe et al (1995)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1995a)

Mochizuki et al (1996)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al(1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Zucconi et al (1992)

Zucconi et al (1992)

Sherring (2001) RDI > 10

Sherring (2001) RDI > 15

Sherring (2001) RDI> 20

AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsS
AvsS

A1 vsC

A2vsC
Alvs A2

AvsC
AvsC
A3vsC
A4vsC
A3 vs A4

AvsC
AvsS
AvsS
AvsS
Avs S

0.001

NS

NS

0.002

NS

0.031

NS

NS

NS

NS

0.001

NS

NS

0.05

0.01

0.05

NS

NS

NS

NS

0.03

NS

NS

NS

0.05

NS

U

U

U

U

U

U

S

U

S

U

S

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

0.01

0.01

NS

0.05

A: ubstructivc sleep aprroea subject; C = non-snoring, non-apnocic subjcct; S = snoring, non-apnoeic subject; Al = non-obese

obst¡uctive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 Low

apnoea index / High BMI.
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Table 12.4-8: Maxilla Angular Measurements

SNA A-P S lnclination

Bacon et al (1989)

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Johns et al (1998)

Lowe et al (1995)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1995a)

Maltais et al (1991 )

Mayer et al (1995)

Mochizuki et al (1996)

Ono et al (1996)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Zucconi et al (1992)

Zucconi et al (1993)

Sherring (2001) RDI> 10

Sherring (2001)RDl> 15

Sherring (2001) RDI > 20

AvsC
AvsC
AvsC
AvsS
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsS
AvsC
AvsS
AvsS

A1 vsC

A2vsC
Alvs A2

AvsC
AvsC
A3vsC
A4vsC
A3 vs A4

AvsC
AvsS
AvsS
AvsS
AvsS

U

U

U

U

U

U

S

U

S

U

S

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

NS

NS

NS

NS

NS

NS

0.018

0.05

NS

NS

NS

NSl

0.053

0.02

NS

NS

NS

NS

NS

NS

N52

0.014

N54NS

NS

NS

NS

0.05

NS

0.05

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

A: obstructive sleep apnoea subject; C : non-snonng, non-apnoeic subject; S: snoring, non-apnoeic subject; Al : non-obese

obstructive sleep apnoea subject; A2 : Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 l-ow

apnoea index / High BMl.

I FHNA;2 ANS-PNS/FH; 3 ANS-PNS/PM; 4 Ar-N/PM

12.4.7 Mandible

The relationship of the mandible and tongue may play a role in oropharyngeal and

hypopharyngeal airway obstruction just as the interplay between the maxilla and soft palate

may contribute to nasopharyngeal airway obstruction. The tongue attaches in the midline

anteriorly to the genial tubercles on the lingual side of the mandibular symphysis. Greco et
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The angulation of the mandibular plane may modiff the impact mandibular length has on the

aetiology of UAW obstruction. Similar to the influence palatal plane angle has on the

relationship of maxillary length to the nasopharyngeal airway width, so too angulation of the

mandibular plane can exaggerate or reduce the impact of mandibular length on posterior

airway space. Measurement of the mandibular plane angle in this study was done in

reference to the cranial base. There \¡/as no significant difference in this angle between OSA

subjects and snoring subjects irrespective of the RDI used to define OSA (Table 12.4-10)'

This finding is supported by deBerry-Bo¡owiecki et al (1988); Hochban and Brandenburg

(1994) and Ono et al (1996).
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Table 12.4-10: Mandibular Angular Measurements

Mandibular S-N-B S-N-Pg Gonial
Plane le

Andersson et al (1991)

Bacon W et al (1989)

Battagel et al (1996)

deBerry-Borowiecki et al (1988)

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Hochban et al (1994)

Johns et al (1998)

Lowe et al (1995)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1995a)

Maltais et al (1991 )

Mayeretal (1995)

Mochizukiet al (1996)

Ono et al (1996)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Zucconi et al (1992)

Zucconi et al (1993)

Sherring (200f ) RDI> 10

Sherring (2001) RDI> 15

Sherring (2001) RDI > 20

AvsC U

AvsC U

AvsC U

AvsC U

AvsC U

AvsC U

AvsC U

AvsS U

AvsC U

AvsC U

AvsC S

AvsC U

AvsC S

AvsC U

AvsC S

AvsC U

AvsC U

AvsC U

AvsS U

AvsC U

AvsC U

A1 vsC U

A2vsC U

A1 vsA2 U

AvsC U

AvsC U

AvsC U

A3vsC U

A4vsC U

A3vsA4 U

AvsC U

AvsS U

AvsS U

Avs S U

AvsS U

0.05

0.051

NS8

N58

NS8

NS

NS

N52

N53N51

N54

N51

N54

0.014

o.o21

0.0331

N51

NSl

N51

NS1

NSl

N56

0.051

N54

0.0011

0.011

NSl

0.051

NS

0.01

0.003

0.006

NS

NS

NS

NS

NS

NS

NS

NS

0.02

NS

N52

N51

NS N55

N53

NS

N53

NS

NS

NS

0.010.01

0.01

0.05

0.05

NS

NS

NS

NS

NS

0.015

N57

N37

N57

A = obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S = snoring, non-apnoeic subject; A'l = non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 Low
apnoea index / High BMI

I SN/Go-Gn;2 Ar-Go-Me; 3 Ar-Go-Gn;4 FH/Go-Gn;5 RUML; 6 SN/Go-B; 7 Not defined; 8 SN/Go-Me

267



12.4.8 Maxilla and Mandible lnter-Relationship

The ¡elationship in the anteroposterior direction between the maxilla and mandible may be

important in the prediction of site of obstruction from lateral cephalometric radiographs.

Most authors have concentrated on measuring this difference using the angle formed between

subspinale (point A), nasion (N) and supramentale (point B). This allows the relationship of

the maxilla and mandible to be considered independent of the cranial base. Using the angles

S-N-A or S-N-B to determine the AP position of the maxilla and mandible will allow the

angle of the cranial base to influence our measurement of their relationship.

The angle A-N-B will allow classification of the skeletal relationship of the maxilla and

mandible into three broad categories. These categories are analogous to the dental

classification as proposed by Angle (1899) which related to the inter-relationship of the

maxillary and mandibular third molar teeth. A "normal" relationship of the maxilla and

mandible sees a positive angle A-N-B with a range of normal 00 to 50, usually corresponding

to a dental class I relationship. A retrognathic maxilla relative to the mandible would see the

angle A-N-B measure less than 00, corresponding to an Angle class III dental relationship. A

retrognathic mandible relative to the mandible would have the angle A-N-B measure greater

than 50, corresponding to a dental class II relationship.

One of the problems with relying on angle A-N-B to determine the intermaxillary relationship

is the influence cranial base length has upon this angle. A long cranial base will reduce angle

A-N-B whilst a short cranial base will increase angle A-N-B (although the relation of the

maxilla to the mandible is unchanged). Thus, there may be some misclassification of

subjects due to the influence of cranial base length. Likewise clockwise rotation of the jaws

produces an increase in angle A-N-B, thus possibly overstating the number of subjects with a

class II skeletal pattern. Dolichofacial (long face) subjects can have a larger anteroposterior

discrepancy of the maxilla and mandible than is suggested by angle A-N-B, again possibly

resulting in the misclassification of subjects.

If obstnrction of the IIAW is to occur due to malposition of the jaws. it follows that

retrognathia of one or both jaws is more likely to contribute to this obstruction than

prognathism. Interestingly this study found a greater proportion of subjects with an RDI > 20

and maxillary and/or mandibular prognathia than retrognathia. Two subjects had bimaxillary

retrusion greater than three standard deviations below the mean and an RDI > 20. One of

these subjects had a BMI > 30 kg/m2, with the other in the range 25 < BMI < 30. Seven

subjects had bimaxillary protrusion greater than threc standard deviations above the mean and

an RDI > 20. All seven of these subjects had a BMI > 30 kg/m2. This finding suggests that
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obesity may have a greater influence on the severity of obstructive sleep apnoea than jaw

posrtlon.

The interrelationship of the maxilla and mandible in sleep apnoeic patients cannot be

considered in isolation because the angle A-N-B may fall within the range 00 < A-N-B < 50,

yet both jaws may be prognathic or retrognathic. Considering only those subjects with a

class I skeletal relationship, and angle SNA and angle SNB greater than three standard

deviations from the mean, one subject had bimaxillary retrusion and ten had bimaxillary

protrusion. ln these subjects, the malposition of the jaws may not be obvious clinically,

however radiographic measurement would allow these anomalies to become clearer.

One subject with a skeletal class II relationship had bimaxillary retrognathia, with both

maxilla and mandible greater than three standard deviations below the population mean.

This subject was had an RDI in the range 15 < RDI < 20. Bimaxillary protrusion occurring

in the presence of a class II skeletal relationship occurred in two subjects. One of these

subjects had an RDI in the range 10 < RDI < 15 (25 < BMI < 30 kg/m2) and the other an RDI

> 20 (BMI > 30 kg/mz). On clinical assessment subjects with a skeletal class II relationship

are generally presumed to have a retrognathic mandible, and may be treated accordingly with

surgical or non-surgical means to advance the tongue and/or mandible. Two subjects with a

skeletal class II relationship had a greatly prognathic maxilla and mandible, yet still suffered

obstructive sleep apnoea. One of these subjects was also obese, which may have played a

greatû role in the severity of obstruction, however the second subject was borderline

overweight (BMI 25.4 ke/^'). This subjects jaw position may play a greater role in the

aetiology of obstructive sleep apnoea than BMI. This study did not look at treatment of these

patients, however future investigation is needed to determine whether further advancement of

an already prognathic mandible is necessary, or effective. Another aspect to be considered in

future studies is whether treatment of patients with skeletal discrepancy should be influenced

by BMI. Are surgical and non-surgical treatments to advance a retrognathic mandible as

effective in subjects with elevated BMI when compared to subjects with the same jaw

discrepancy but no increase in BMI?

Two subjects with a skeletal class III relationship had bimaxillary retrognathia greater than

three standard deviations below the population mean. Both these subjects had an RDI > 20.

Three subjects had bimaxillary protrusion in the presence of a class III skeletal relationship.

One of these subjects was a snorer (RDI < 10) with the other two having an RDI in the range

15<RDI<20.

The numbers of subjects in all groups with significantly prognathic or retrognathic jaws are

too small to allow statistical comparison. Future studies with larger numbers of subjects are
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needed to clarifo whether these findings have any significance as predictors of OSA incidence

or severity.

The literature suggests that if the maxilla or mandible, or both are retrognathic then a person

is more likely to suffer OSA. The numbers in this study are small, however there is a

tendency for subjects with bimaxillary retrusion to have UAW obstruction. Three of the four

subjects with bimaxillary retrognathia greater than three standard deviations from the mean

had an RDI > 20, irrespective of BML This suggests that extreme retrognathia may be a risk

factor for severe OSA inespective of BMI.

Forty-one subjects had bimaxillary protrusion with the maxilla and mandible at least one

standard deviation above the Caucasian norrn. Twelve of these subjects were snorers (RDI <

10), nine had mild OSA (10 < RDI < 20) and 20 were diagnosed with moderate to severe

OSA (RDI > 20). Twenty-eight subjects had bimaxillary protrusion greater than two

standard deviations above the population mean, with seven snorers (RDI < 10), nine mild

OSA (10 < RDI < 20) and twelve moderate or severe OSA (RDI > 20). Subjects with

protrusive maxilla and mandible at least three standard deviations from normal numbered 14.

Two of them were snorers (RDI < 10), 12 had OSA (RDI > 10), with nine of the OSA

subjects having an RDI > 20). At least 86% of these subjects l¡/ere overweight with a BMI >

25 kglm2, and 57%o were obese with a BMI > 30 kg/m2.

These findings may also influence treatment. A finding of bimaxillary retrusion and

obstructive sleep apnoea (RDI > 20) may suggest orthognathic surgery to correct the jaw

malposition should be given a higher priority. Conversely, bimaxillary protrusion may mean

advancement of the jaws, surgically or with a mandibular repositioning appliance, is not as

likely to help the patient. These hypotheses require further studies to determine their clinical

validity.

This study measured the angle A-N-B and found no difference between subjects irrespective

of the RDI used to define OSA. This finding is consistent with Andersson and Brattstrom

(i991); Battagel and L'Estrange (1996); Bacon et al (1989); deBerry-Borowiecki et al (1988);

Hochban and Brandenburg (99Ð Lyberg et al (1989a); Maltais et al (1991); Ono et al

(\996); Sakakibara et al (1999); Tangugsorn et al (1995a) and Tsuchiya et al (1992). These

results are shown in Table 12.4-11. These findings indicate there was no tendency for

obstructive sleep apnoea to occur in patients with a particular maxillo-mandibular relationship

(skeletal class) compared to others with-in the study group.

There was a greater proportion of subjects with a discrepancy in maxillary or mandibular

position as measured by angle A-N-B when compared to the normal population. An

epidemiological study of Australian Aborigines and Caucasian subjects reported 87.0%o of

+
rll

*
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Caucasians with a Class I malocclusion, Ll.lyo with a Class tr malocclusion and 1.9%o with a

class III malocclusion (Clinch, 1951). In this study thirty-nine subjects (41.5%) of subjects

were classified as skeletal class I (00 < A-N-B . 5o); thirteen subjects (13.8%) of subjects

were classified as skeletal class II (A-N-B > 50) and forly-two subjects (44.7%o) were

classified as skeletal class III (A-N-B < 0).

There is a significantly greater number of people with a Class Itr malocclusion compared with

the Australian population. This skeletal relationship may be produced by a combination of a

retrognathic maxilla (S-N-A < 800) and a normally positioned (780 < S-N-B < 820) or

prognathic mandible (S-N-B > 820). Alternatively the maxilla may be normally positioned

(800 < S-N-A < 840) and the mandible prognathic (S-N-B > 820). The increase in incidence

of this skeletal subtype may be due to alteration of the ethnic mix of the Australian population

since 1951, with post war migration to Australia of European and more recently South-east

Asian people. There may be an anatomic reason why people with this pattern of relationship

between the maxilla and the mandible have tendency to snore or suffer OSA. Lowe et al

(1996) reported subjects with a class III skeletal relationship had an increased tongue height

and a more inferiorly and anteriorly placed hyoid than the control subjects. Tongue height

was not measured in this study. We did frnd the hyoid located more anteriorly and inferiorly

in OSA subjects, but did not analyze our data according to skeletal class due to insufficient

numbers in all groups to make valid statistical comparison.

Four subjects with a class III malocclusion (A-N-B < 00¡ had a retrognathic maxilla (S-N-A <

760) which is greater than three standard deviations below the population mean. One of these

subjects had an RDI < i0 and are simple snorers, with the remaining three having an RDI >

20. The numbers are small however this would support the hypothesis that a retrognathic

maxilla may be associated with an increased incidence and severity of obstructive events

during sleep. Thirteen subjects with a class III malocclusion (A-N-B < 00¡ had a prognathic

mandible (S-N-B > 860), which is greater than three standard deviations above the population

mean (Steiner, 1959). Three of these subjects had an RDI < 10 and are simple snorers; four

were in the range l0 < RDI < 20 whilst the remaining six had an RDI > 20' The numbers are

too small to do a statistical analysis, however a markedly prognathic mandible appears to be

related to an increased seventy ofobstructive events during sleep.

The findings from this study suggest that bimaxillary retrusion is likely to be related to OSA

in the nonobese subject whilst the subject exhibiting bimaxillary protrusion and OSA is likely

to be obese. This suggests the non-obese subject is likely to have primarily a skeletal

malposition and no major abnormality of the soft tissue dimensions. The obese subject is

likely to have obstruction of their upper airway due to increased tissue bulk associated with

:,1
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obesity. This proposal was first raised by Tsuchiya et al, (1992) and is supported by the

findings of this study.

The effect of mandibular or maxillary retrognathia on the severity of OSA was striking. In

all patients who exhibited a retrognathic maxilla or mandible (as measured by angle SNA and

SNB respectively), whether one, two or three standard deviations from the mean and who had

OSA, the OSA was moderate (15 < RDI < 20) or severe (RDI > 20). Not all patients with

mandibular or maxillary retrognathia had an RDI > 10 and although subjects with retrognathia

tended to have a higher RDI this cephalometric criteria could not be used as a diagnostic tool.

Clinicians should have a higher index of suspicion if a patient who is being investigated for

possible OSA does have retrognathia. More subjects exhibited prognathism of the maxilla or

the mandible however there was not such a strong correlation with the incidence of UAW

obstruction during sleep. When subjects with a normal or slightly elevated BMI were

considered very few subjects who exhibited signs of OSA by measurement of RDI also had

markedly malpositioned maxilla or mandible. The small number of patients affected

suggests there is either little relationship between the position of the jaws and the incidence of

OSA or this method of determining the anteroposterior position of the jaws lacks sensitivity.

Obesity was a more important contributor to severity of OSA in our population for subjects

with a Class I or a Class III skeletal pattern of malocclusion, as measured by angle ANB.

Subects with a Class II skeletal pattern of malocclusion were found to have a greater

contribution from the skeletal position than from obesity, as measured by BMI.

Mandibular advancement alone for the management of obstructive sleep apnoea has not been

reported often in the surgical literature. Most authors who undertake surgery to correct

skeletal anomalies perform bimaxillary procedures, where both the mandible and the maxilla

are advanced. This is somewhat surprising given approximately l6Yo of the Caucasian

population are estimated to have at least a 6mm overjet (Proffit, 1986). Thus a significant

proportion of the general population has a retrognathic and or short mandible

anteroposteriorly and this has been suggested as a cause of oropharyngeal and

hypopharyngeal airway narrowing (Lowe ef al, 1996; Andersson and Brattstrom, 1991;

Battagel and L'Estrange,1996; Lowe et al, 1996; Sakakibara etal,1999; Strelzow et al, 1988;

Tangugsorn et al, 1995a; Zucconi et al, 1992; and Zucconi et al, 1993).

One of the goals of this thesis is to characterize the cephalometric characteristics of a

population of snoring and obstructive sleep apnoeic patients. If there is a subgroup

demonstrating obstructive sleep apnoea and a retrognathic mandible a question will arise as to

whether mandibular advancement alone may be appropriate treatment. A second issue with

mandibular advancement alone as opposed to bimaxillary advancement is the change in

Þ
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occlusion that will occur from mandibular surgery alone. Orthognathic surgery is

complicated in dentate individuals by the requirement to maintain (or possibly improve)

occlusion. Mandibular advancement alone may be indicated from a diagnostic work-up but

be impractical because of the requirement for complex (and often expensive) orthodontic

intervention in an age group where tooth movement is neither routine nor simple.

Table 12.4-11: Maxilla and Mandible Angular Relationship

ANS-PNS/Go-Gn SN/OP A'N'B

Andersson et al (1991)

Bacon et al (1989)

Battagel et al (1996)

deBerry-Borowiecki et al (1988)

Hochban et al (1994)

Lowe et al (1995)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al(1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Lyberg et al (1995a)

Maltais et al (1991)

Ono et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Tangugsorn et al (1995b)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Tsuchiya et al (1992)

Sherring (2001) RDI > l0
Sherring (2001) RDI> 15

Sherring (2001) RDI > 20

AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC

A1 vsC
A2vsC
A1 vs A2

AvsC
AvsC
A3vsC
A4vsC
A3 vs A4

AvsS
AvsS
Avs S

U

U

U

U

U

U

U

S

U

S

U

S

U

U

U

U

U

U

U

U

U

U

U

U

U

U

NS

NS

0.05

0.05

0.05

NS

NS

NS

NS

NS

0.02

0.027

0.011

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

0440

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

Ë
I

A = obstructive sleep apnoea subject; C = non-snoring, non-apnoeic subject; S = snoring, non-apnoeic subjec t; A I = non-obese

obstructive sleep apnoea subject; A2 = Obese obst¡uctive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 Low
apnoea index / High BMI

12.4.9 Cranial measurements

The length of the cranial base (sella - nasion) was not significantly different between snoring

or OSA subjects irrespective of the RDI used to define OSA. These findings are in

I
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agreement with deBerry-Borowiecki et al (1988) and Strelzow et al (1998). Sakakibara et al

(1999) reported the length of the cranial base to be significantly shorter in non-obese

obstructive sleep apnoeic subjects compared with controls and with obese obstructive sleep

apnoeic subjects. They reported no significant difference between obese obstructive sleep

apnoeic subjects and controls with respect to this measurement. Zucconi et al (1993)

reported no difference in cranial base length between obstructive sleep apnoeic subjects and

controls, but a significantly shorter cranial base when compared with snoring subjects. Other

authors also report a significantly shorter cranial base in subjects with obstn¡ctive sleep

apnoea (Andersson et al, 1991; Bacon et al, 1989 and Battagel et al, 1996) and suggested this

finding may indicate a more retruded facial skeletion.

Subjects with a Class II skeletal malocclusion did have a significantly shorter cranial base

than subjects with a Class I skeletal malocclusion or a Class Itr skeletal malocclusion. These

results are shown in Table 12.4-12. This suggests a more retruded face in subjects with a

Class II skeletal malocclusion, as suggested by Bacon et al (1989). This group was the

smallest of all subgroups and it may be that with a larger group a correlation with RDI is

found.

Table 12.4-12: Cranial Base Linear Measurements

S-N S-Ba N-SC Ar-S N-Ba

Andersson et al (1991)

Bacon et al (1989)

Battagel et al (1996)

deBerry-Borowiecki et al (1988)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Zucconi et al (1993)

Zucconi et al (1993)

Sherring (2001) RDI>10

Sherring (2001) RDI>15

Sherring (2001) RDI>20

Sherring (2001)

Sherring (2001)

Sherring (2001)

AvsC
AvsC
AvsC
AvsC

A1 vsC

A2vsC
A1 vs A2

AvsC
AvsC
AvsC
AvsS
Avs S

AvsS
AvsS

Cl lvs Gl ll

Cl llvs Cl lll

Cl llvs Gl lll

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

0.001

0.001

0.01

NS

0.001

NS

0.001

NS

0.001

NS

0.05

NS

NS

NS

0.04

NS

0.03

0.01

NS NS

NS

NS

NS

NS

NS

NS

0.001

NS

NS

0.001

0.001

0.01

0.01

A = obstructive sleep apnoea subject; C = non-snoring. non-apnoeic subject; S = snoring, non-apnoeic subject; Al = non-obese

obstructive sleep apnoea subject; A2 = Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 Low

apnoea index / High BMI.
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This study found no significant difference in the divergence of the cranial base as measured

by the angle between Frankfort horizontal and the sella - nasion line. This is in agreement

with Mayer and Meier-Ewert (1995) and Strelzow et al (1988) and is shown in Table 12-4-13-

The implication from this finding is that there is not an increase in upper facial height as

measured by this parameter. This was reported by deBerry-Borowiecki et al (1988) and

Lyberg et al (1995a). These groups suggested that the divergence of the cranial base

indicated clockwise rotation of the facial skeleton and therefore may contribute to narrowing

of the UAW. The increase in the angle of the sella - nasion line, as discussed previously

may increase angle ANB, although the true anteroposterior discrepancy of the maxilla and

mandible is less than that suggested by this angle.

Measurement of angle Ba-S-N showed no significant difference between any of the groups

based upon RDI or skeletal classification. This is in agreement with Hochban et al (1994);

Johns et al (1998); Lyberg et al (1995a); Pracharktam et al (199Ð; Pracharktam et al (1996);

Sakakibara et al (1999); Tangugsorn et al (1995a) and Zucconi et al (1993). A few authors

have reported contrary results (Andersson et al, 7991; Battagel et al, 1996 and Steinberg et al,

1995). The pattern of skeletal malocclusions seen in this study would seem not to be a result

of abnormalities of cranial base angulation, and nor would cranial base angulation appear to

have an influence on the incidence of obstructive sleep apnoea syndrome.
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Table 12.4-13: Cranial Base Angular Measurements

Ba-S-N SN/FH N-S-Ar MCF FH/Hor SN/Ver

Andersson et al (1991)

Battagel et al (1996)

deBerry-Borowiecki et al
(1 e88)
Hochban et al (1994)

Johns et al (1998)

Lyberg et al (1995a)

Mayer et al (1995)

Pracharktam et al (1994)

Pracharktam et al (1996)

Sakakibara et al (1999)

Sakakibara et al (1999)

Sakakibara et al (1999)

Steinberg et al(1995)

Strelzow et al (1988)

Tangugsorn et al (1995a)

Zucconi et al (1993)

Zucconi et al (1993)

Sherring (2001) RDI>10

Sherring (2001) RDI>15

Sherring (2001) RDI>20

Sherring (2001)

Sherring (2001)

Sherring (2001)

AvsC U

AvsC U

AvsC U

AvsC U

AvsS U

AvsC U

AvsC U

AvsS U

AvsS U

A1 vsC U

A2vsC U

Alvs A2 U

AvsC U

AvsC U

AvsC U

AvsC U

AvsS U

AvsS U

Avs S U

AvsS U

Cl lvs Gl U
il

GllvsGl U
ill

Cl llvs U
cl ilt

0.01

0.01

0.045 NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

0.01

NS

0.000

0.05

0.01

NS NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

A = obst¡uctive sleep apnoea subject; C : non-snoring, non-apnoeic subject; S = snoring, non-apnoeic subject; Al = non-obese

obstructive sleep apnoea subject; A2: Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 Low
apnoea index / High BMI.

12.4.10 Dental Measurements

There was no significant difference in the angulation of the lower incisors relative to the

mandibular plane. This was also reported by Lowe et al (1995). Upper incisor angulation

relative to the cranial base (U1 - SN) was not significantly different if an AHI > 10 or an AHI

> 15 was used to separate the subjects. However, using an AHI > 20 as the diagnostic

criterion for obstructive sleep apnoea, upper incisor angulation was significantly increased in

this group. Bacon et al (1989); Battagel and L'Estrange (1996); ùo et al (1996) and

Tsuchiya et al (1992) reported no alteration in upper incisor angulation. Lowe et al (1996)

reported the upper incisors were more upright in OSA subjects with a class I dental

malocclusion. They also reported angle SNB to be significantly decreased in OSA subjects

with a class I dental malocclusion compared to the control group. The upright maxillary
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central incisors could.be dental compensation for the discrepancy in anteroposterior lengths

between the maxilla and mandible to maintain a normal ove4'et relationship.

The lower incisors were proclined in OSA subjects with a class I dental malocclusion

according to Lowe et al (1996), although other authors are in agreement with the findings in

this study (Battagel and L'Estrange, 1996). Tsuchiya etal (1992) reported an increase in

lower incisor angulation only in subjects with a high apnoea index and a low BMI. This

group of subjects was identified as having a higher incidence of malposition of the maxilla

and mandible in the anteroposterior direction. The resultant lower incisor angulation may be

compensation by the dental structures to an underlying skeletal discrepancy.

The current study did find a significant correlation between uppû incisor angulation and BMI

such that as BMI increased so too did upper incisor proclination. This could be due to

increased pressure being placed upon the palatal surfaces of the upper incisors from the

tongue, although in this situation lower incisor angulation would also be expected to increase.

A more likely explanation is related to the discrepancy in anteroposterior position of the

maxilla and mandible. The population had a large number of subjects who exhibited a class

III skeletal relationship. The proclination of the upper incisors is likely to be dental

compensation for a relatively short maxilla relative to the mandible. The net result of upper

incisor proclination is to maintain an overjet that allows the teeth to incise food effectively.

This proposal is supported as upper incisor proclination is greatest in subjects with a class III

skeletal relationship (107.6), least in those with a class tr skeletal relationship (102.0) and

those with a class I skeletal relationship have their uppff incisors proclined 106.60.
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T able 12.4-14: Dentition Angular Measurements

u1/L1 UI/ANS- U1/S-N U1/N-A
PNS

Ll to
MP

L1/G
o-Gn

L1l
N-B

Bacon et al (1989)

Battagel et al
(1 ss6)
Lowe et al (1995)

Lowe et al (1996) I

Lowe et al (1996) I

Lowe et al (1996) ll

Lowe et al (1996) ll

Lowe et al (1996) lll

Lowe et al (1996) lll

Ono et al (1996)

Tsuchiya et al
(1 ee2)
Tsuchiya et al
(1 ee2)
Tsuchiya et al
(1 ee2)
Sherring (2001)
RDt > 10
Sherring (2001)
RD¡ > 15
Sherring (200f )
RDt > 20

AvsC
AvsC

AvsC
Avs C
AvsC
AvsC
AvsC
AvsC
AvsC
AvsC
A3vsC

A4vsC

A3 vs A4

AvsS

AvsS

AvsS

UNS
U

U

U

S

U

S

U

S

U

U

U

U

U

U

U

NS NS

o020.

NS

NS

NS

NS

NS

NS

0.037

0.035

NS

NS

NS

NS

NS

NS

NS

0.03

NS

NS

NS

NS NS

0.05

NS

NS

NS

NS

NS

A = obstructive sleep apnoea sub.¡ect; C = non-snoring, non-apnoeic subject; S: snoring, non-apnoeic subject; Al = non-obese

obstructive sleep apnoea subject; A2: Obese obstructive sleep apnoea subject; A3 High apnoea index / Low BMI; A4 Low
apnoea index / High BMI.

12.4.11 Conclusion

The lateral cephalometric linear and angular variables that were measured do show particular

trends with respect to the position of important anatomic structures when related to the RDI.

There is an increased soft palate thickness (UWl'- UW2) irrespective of the RDI used to

separate subjects into snoring or obstructive sleep apnoeìc groups. Similarly, the length of

the upper airway measured from the posterior nasal spine to the vallecula was significantly

increased in all subjects classified as obstructive sleep apnoeic irrespective of the RDI used to

separate subjects. These results suggest that irrespective of the seventy of obstructive sleep

apnoea the thickness of the soft palate and the length of the upper airway may be used as

indicators of the presence of obstructive sleep apnoea when lookingatalalerzl cephalometric

radiograph.

Separation of the subjects at an AHI > 10 or AHI > 15 to diagnose obstmctive sleep apnoeic

subjects yielded similar results. Using these criteria the hyoid position tended to be more

anteriorly and inferiorly placed. The significant measurements indicating an anteriorly

placed hyoid in obstructive sleep apnoeic subjects in these groupings were the distances H -
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C3 and H - Co. In the obstructive sleep apnoeic group separated at an AHI > l0 the distance

Go - H was also increased. Interestingly when an AHI > 15 was used, the distance Go - H

was not increased but the angular measure of the antero-posterior position of the hyoid was

increased (<Go-Gn-H). This is a measurement of the height of the hyoid, and an increased

angle indicates an inferiorly place hyoid bone. The hyoid was also inferiorly positioned as

measuredbythedistancesS-HandMP-HandangleH-H¡inobstructivesleepapnoeic

subjects separated at an AHI > 10 or and AHI > 15. In contrast when AHI > 20 was used as

the criterion for diagnosis of obstructive sleep apnoea there was not a significant difference

measured in hyoid position between the snoring group (AHI < 20) and the obstructive sleep

apnoeic group. This suggests that hyoid position may be more important in mild obstnrctive

sleep apnoeic subjects and become a less important discriminant of obstructive sleep apnoea

as severity increases.

The length of the maxilla was significantly longer in the obstructive sleep apnoeic group only

if the sample population was defined as obstructive sleep apnoeic by an AHI > 10. The

maxilla was not found to be significantly longer in obstructive sleep apnoeic subjects if the

threshold for defining obstructive sleep apnoea was increased to an AHI > 15 or and AHI >

20. Increased maxillary length, with no concomitant increase in mandibular length would be

expected to result in either:

1. an increased incidence ofa skeletal class II relationship in these subjects, or

2. a decreased posterior airway space behind the soft palate at the level of the

nasopharynx, or

3. a rotation of the maxillary plane (ANS - PNS) relative to a fixed horizontal reference

plane such as Frankfort Honzontal or the line Sella - Nasion (cranial base).

None of these measurements was significantly different between the groups. The obstructive

sleep apnoeic group, on average, had an increased mandibular length of 1.71 +/- 0.99 mm,

whilst the average increase in maxillary length was 1.75 +l-0.54 mm compared to the snoring

group. Thus there was an increase in anteroposterior length of the maxilla and mandible in

obstructive sleep apnoeic subjects who had an AHI > 10 events per hour, which would

account for the fact there was no significant increase in the incidence of a skeletal class II

relationship.

The grouping where obstructive sleep apnoea was defined as an AHI > 20 had proclined

upper incisors relative to the cranial base (Ul - SN). The signifrcantly increased proclination

of the upper central incisors in the obstructive sleep apnoeic group may indicate a

compensatory mechanism by the teeth to obtain a positive overjet. Dental compensation

arises when there is a discrepancy in the maxillary and mandibular lengths relative to each
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other. Proclined upper incisors and/or retroclined lower incisors are usually found in subjects

with a skeletal class III jaw relationship, representing a compensatory mechanism for a

relatively short maxilla compared to the mandibular length. The teeth, under the influence of

the tongue and lips will tend to adapt in order to obtain a satisfactory incisal relationship.

Thus, the proclination of the upper incisors in this group of subjects either may be masking a

relative lack of maxillary length compared to the mandibular length, or the maxilla may

indeed be short. Alternatively the maxilla may be of normal length but the mandible is

increased in its anteroposterior dimensions. Nineteen subjects with an RDI > 20 (46.34%)

had a skeletal class III relationship, indicating a relatively short maxilla compared with the

mandible. There were not a significantly increased number of subjects with obstructive sleep

apnoea (RDI > 20) and a skeletal class III relationship. Overall 42194 (44.7%) of subjects

had a skeletal class III relationship and 41194 (43.6%) of subjects had obstructive sleep

apnoea with an RDI > 20. It must be remembered, however, that there was a much greater

incidence of subjects in this study with a skeletal class III relationship than is found in the

normal population.

Tongue length was significantly greater in those subjects classified as obstructive sleep

apnoeic when an AHI > 15 or and AHI > 20 was used as the threshold for diagnosis. Tongue

length measured from the tongue tip to the epiglottic tip and base was significantly increased

when AHI > 15, and the length measured from the tongue tip to the epiglottic base was

significantly increased when AHI > 20. These differences were not seen when subjects were

separated at an AHI > 10 as being diagnostic for obstructive sleep apnoea. These findings

suggest that if the length of the tongue, as measured from a lateral cephalometnc radiograph,

is increased then that person is more likely to have obstructive sleep apnoea'

The characterization of the appearance of an obstructive sleep apnoeic subject on a lateral

cephalometric radiograph might be a person with an elongated upper airway and a thick soft

palate. They are likely to have an increased tongue length and may have a short maxilla or

proclined upper incisors. The position of the hyoid is probably anterior and inferior when

compared to a snoring subject. From our study it is also more likely these subjects will have

a skeletal class III relationship.

12.5 Cephalometry as an Imaging Modality for OSA

The advantages and limitations of lateral cephalometric radiographs have been reviewed in

Chapter 3.7. A standardized protocol was followed for all patients having lateral

cephalometric radiographs in this study, thus minimizing problems with systematic errors as

defined by Brown et al (1970). Although the radiographs were not always exposed by an
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experienced radiographer, the patient positioning and exposure of the radiograph, if
performed by a student, were done so unde¡ the direction and supervision of one of two

experienced dental radiographers to ensure the patients were coûectly positioned.

The Adelaide Dental Hospital is the only teaching hospital for dental undergraduates in South

Australia. During their final year of study all dental students are attached to the Dental

Radiography Unit to gain experience in the technique of intra-oral and extra-oral radiography

pertinent to the practice of dentistry. This is a supervised teaching period however several

lateral cephalometric radiographs taken of study participants were incomplete or of a standard

that made interpretation of some cephalometric landmarks diffrcult. The hyoid bone was not

included at all on one radiograph and on three others was only partially visible. In each case

the patient was unwilling to have a second radiograph taken. These patients were included in

the study however where ambiguity or lack of definition of a cephalometric landmark

occurred the measurements using that landmark were excluded.

The radiographs utilised for statistical purposes in this study were those taken with the dental

prosthesis removed. This is the standard method of obtaining a lateral cephalometric

radiograph of edentulous patients used in the Adelaide Dental Hospital by the Oral and

Maxillofacial Surgery Unit. There is no literature comparing lateral cephalometric

radiographs on OSA subjects with and without dental prostheses in position. Tallgren et al

(1983) dìd find an increase in the distance from the hyoid to cervical spine in edentulous

subjects. This may be an important factor if the patient sleeps without the dental prosthesis

in position as Lowe et al (1996) reported a decreased hyoid to cervical spine distance in

subjects with OSA. Obese patients with OSA have also been reported to have a decreased

distance between the hyoid and cervical spine compared with patients without an increased

BMI (Sakakibara et al, 1999 and Tsuchiya eT aL, 1992). Thus the loss of teeth may result in

alteration of the muscular attachment of the extrinsic tongue muscles to the mandible

resulting in anterior repositioning of the hyoid. There are no reports in the literature of

differences in oropha.ryngeal or hypopharyngeal airway space between edentulous and dentate

subjccts. Furthcr investigation could be made to determine if the loss of teeth does influence

the position of the muscular attachments of the tongue or the posture of the mandible and

what, if any, effect a dental prosthesis has on these dimensions. Subjects were not

questioned as to whether they routinely slept with their dentures in position.

The adherence to correct patient positioning and exposure ensured that errors associated with

projection should not be significant in this study, and is supported by Houston et al (1986);

Midtgard et al (1974); and Solow (1966).
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Errors of landmark identification were minimized by having only one investigator identiff the

landmarks, which standardized the errors with respect to landmark measr¡rement and ensured

no ambiguity about landmark identification. These have been cited as significant sources of

errors in studies using lateral cephalometric radiographs (Baumrind and Frantz,l9Tla:' Broch

et al, 1981; Brown etal, 1970; Chate, 1987; Houston, 1983; Midtgard etal, 1974; van der

Linden, l97I; and Vincent and West, 1987). One investigator tracing, identiffing and

digìtizing the cephalometric landmarks has also been reported to be more accurate than the

use of multiple investigators as inter-observer variability is eliminated (Savage et al, 1987;

Solow, 1966; and Stabrun and Danielsen, 1982). All cephalometric points were digitized and

a double determination of 20%o of the radiographs confirmed the eror of measurement for

each point by the single investigator. Double determination and digitizing points has been

reported as the most accurate method of locating landmarks and minimizing measurement

error (Baumrind and Frantz,l97la and 1971b). Errors are associated with the use of lateral

cephalometric radiographs, and their use requires an awareness by clinicians of the possible

sources of error and methods to minimize these errors when interpreting the radiograph. The

principal source of error associated with the measurement of landmarks is their identification

(Houston et al, 1986 and Sandler, 1988). Oral and Maxillofacial Surgeons and fthodontists

are the most reliant upon lateral cephalometric radiographs of all clinicians. The

interpretation of these radiographs and landmark identification is therefore likely to be most

accurately performed by them.

This study has found a number of significant correlations between the severity of UAW

obstruction and measurements from lateral cephalometric radiographs, as discussed in the

previous section. Additionally significant differences have been found between

cephalometric measures when comparing subjects with UAW obstruction diagnosed as

snorers and those diagnosed with OSA. Whilst universal screening of all people being

investigated for snoring by means of a lateral cephalometric radiograph cannot be justihed on

the basis of the findings of our study, we believe lateral cephalometric radiographic

assessment does have a role to play. This position is also supported by other authors in the

literature (Hochban etal,7994; Powell and Riley, 1995; and Riley et al, 1993). Before any

irreversible treatment is undertaken, either soft tissue surgery or maxillofacial surgery, a

lateral cephalometric radiograph should be obtained. Given soft tissue position is influenced

by the position of the underlying bony structures it would seem wise to correct any underlying

skeletal abnormalities prior to modifying soft tissue position. This would allay some of the

potential problems, particularly velopharyngeal incompetence that may occur it for example,

a UPPP is performed prior to bimaxillary advancement. This recommendation is also

supported by the literature (Conradt etal,1997).
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A question raised by Nelson and Hans (1997) is how soon may people be identified as being

at risk of developing obstructive sleep apnoea? Do the dimensions and orientation of the

middle cranial fossa in children predict future apnoeic activity? A longitudinal study may

answer this question, but to date has not been done.

Difficulties also arise when attempting to compare findings between studies. A myriad of

parameters is measured from lateral cephalometric radiographs, yet no two authors

standardize their studies to consider the identical landmarks, linear, angular and area

measurements. This strrdy has attempted to use cephalometric landmarks that have allowed

comparison between a large number of studies so that meaningful comparison between our

sample population and other reported populations may be possible. At times this has resulted

in landmarks being identified in very close proximity to each other, such as in the upper

airway. Clinically it would not be necessary to utilise all the landmarks in this study when

analysing a radiograph of a patient.

Targeting treatment to the site of obstruction is essential for most surgical and non-surgical

treatments for obstructive sleep apnoea. The obvious exceptions are tracheostomy, which

bypasses the upper airway completely and non-surgical techniques such as nCPAP, weight

loss anJ pharmacological treatment. There has been no single diagnostic procedure or

investigation reported that would determine the site of upper airway obstruction- All

reported evaluations of the upper airway rely on a combination of acquired information from

history, clinical examination and imaging to determine the most likely site of obstruction for

each individual patient. Lateral cephalometric radiographs do not, by themselves, dictate

treatment for individual patients. They are the best method of assessing the anteroposterior

relationship of the maxilla and mandible and can be relied upon to assess and plan surgical or

non-surgical intervention involving alteration of jaw position. They are of limited value in

assessing soft tissue area and the dimensions of the upper airway and further information on

these sites must be obtained through other means. This may involve visual assessment and

grading of the soft palate size, as suggested by Mallampati et al (1982) or nasendoscopy as

reported by Crumley et al (1987); Skawedt (1993) and Wooclson and Wooten (1994). Other

imaging modalities have also been suggested as being useful in assessing the upper airway'

Somnofluoroscopy (Katsantonis and Walsh, 1986), CT (Kuna et al, 1988; Lowe et al, 1995;

Schwab, Gefter, Hoffman et al, 1983; Schwab, Gefter, Pack et al, 1983; Shephard et al, 1990;)

or MRI (Schwab et al, 1995). The advantages and limitations of each of these modalities

have been discussed in Chapter 4. None has been shown conclusively to predict with more

accuracy the site of upper airway obstruction when compared to lateral cephalomctric

radiographs. Nasendoscopy, CT and MRI have shown most promise, however these three

investigations all deliver the information at a higher cost, either economically or in terms of

283



risk to the patient. In terms of planning surgery to the facial skeleton in the treatment of

obstructive sleep apnoea, and reproducibility none would seem an adequate replacement for

the lateral cephalometric radiograph. Thus it seems at this time there is a role for both lateral

cephalometry and another imaging modality for the assessment of patient anatomy in those

suspected of suffering obstructive sleep apnoea.

The value of screening all patients with a lateral cephalometric radiograph who are suspected

ofobstructive sleep apnoea has not been clearly addressed in the literature. In this study we

found 55 subjects (58.51%) had a skeletal class II or class III relationship. From the wo¡k

done by Clinch (1951) we should expect to find only 12 subjects (13%) in our sample with a

skeletal class II or class III relationship. The implication of this finding is there may be a

correlation between "abnormal" jaw position and obstructive sleep apnoea qmdrome in our

population. If so, the lateral cephalometric radiograph may be very useful as a rapid,

inexpensive screening tool for detecting jaw malposition in patients being screened for

obstructive sleep apnoea. The obvious question raised is wilt surgical correction of the

maxilla and/or mandible in these subjects adequately treat their obstructive sleep apnoea?

Further study must be done to answer this question with regards to our population.

12.6 Implications For Treatment of OSA

The non-surgical treatment of obstructive sleep apnoea slmdrome has been reviewed in

Chapter 8 and the surgical treatment in Chapter 9. Treatment may be directed at temporarily

inhibiting obstruction, such as nCPAP or mandibular repositioning appliances, or at

permanently bypassing the obstructed upper airway, such as by tracheostomy or correcting

the cause of the obstruction, such as bimaxillary advancement or UPPP. Since the reported

effectiveness of nCPAP in treating obstructjve sleep apnoea syndrome by Sullivan et al

(1981) all subsequent treatments have been measured against this "gold standard".

Lateral cephalometric radiographs may be useful, not only in the diagnostic work-up of

patients with obstructive sleep apnoea, but also in monitoring the success of failure of

treatment. Non-surgical treatment with a mandibular repositioning appliance, as reported by

many authors including Clark et al (1993); Clark et al (1996); Eveloff et al (1994); Ferguson

et al (1996); Kloss et al (1986); Meurice et:al (1996); O'Sullivan et al (1995); Schmidt

Nowara et al (1991); and Thornton and Roberts (1996); and would profit from information

gained from a lateral cephalometric radiograph. The direct effect on the hard and soft tissues

adjacent to the upper airway and alterations in position and shape of the upper airway can all

be determined in the lateral dimension.
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Compliance is a problem with all forms of non-surgical intervention for the management of

obstructive sleep apnoea (Clark etal,1993; Foreyt and Goodrick, 1993; Kribbs et al, 1993;

Nadazawa et al, 1992; Schmidt-Nowara et al,l99I; and Strollo et al, 1995). Patients who are

successfully managed with a mandibular repositioning applìance (as determined by overnight

polysomnographic sleep study) should be assessed by a lateral cephalometric radiograph with

and without the appliance in-situ. Those patients that respond to a mandibular repositioning

appliance may be offered surgery that mimics the movement obtained by the device. This

allows accurate assessment and presurgical planning such that patient compliance is no longer

an issue in the control of symptoms.

A trial of a mandibular repositioning appliance prior to surgery to correct a retrognathic

mandible should also be considered. A lateral cephalometric radiograph is used to confirm

the presence of mandibular retrognathia and if hypopharyngeal upper airway obstruction is

suspected such an appliance reversibly advances the mandible in a similar manner to that of

surgical advancement. Confirmation that such advancement has successfully managed the

obstructive events then allows utilization of a lateral cephalometnc radiograph in the surgical

planning phase of treatment.

Lateral cephalometric radiographs have little role to play in the assessment of the nose prior

to nasal surgery, although hypoplasia of the midface can certainly be detected. Increased

nasal airway resistance has been reported by a number of authors in subjects with obstructive

sleep apnoea (Blakley and Mahowald, 1987; Dayal and Phillipson, 1985; Hester et al, 1995;

Olsen, i 991; and Miljeteig et aL, 1992} Soft palate size has been implicated in the aetiology

of snoring (Ikematsu, 1964) and obstructive sleep apnoea (Fujita et al, 1981; Katsantonis and

'Walsh, 1986; and Riley et al, 1985).

Information obtained from a lateral cephalometric radiograph may by helpful in determining

those patients unlikely to benefit from corrective surgery of the structures surrounding the

upper airway. The decision not to surgically operate on a patient based upon the lateral

cephalometric radiograph findings alone would be flawed. This is so because, as this thesis

contends, lateral cephalometric radiographs alone seem unable to determine the presence or

absence of obstructive sleep apnoea, and more particularly the site of upper airway

obstruction. This modality provides additional information for clinicians diagnosing and

treating patients with signs and/or symptoms of obstructive sleep apnoea syndrome. A

corollary to this idea is phasing treatment, as proposed by Powell and Riley (1993).

Following diagnostic evaluation patients are offered surgery that seeks to correct the site(s)

most likely to be the cause of upper airway obstruction. Following post-operative

polysomnographic study further surgery, usually a bimaxillary advancement, is performed.

They claim no significant difference in efhcacy between this staged surgical approach and the
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use of nCPAP. Thus orthognathic surgery is the final treatment offered in those patients who

were initially not diagnosed with a skeletal malposition from a lateral cephalometric

radiograph.

12.7 Public Health Issues Related to OSA

Obstructive sleep apnoea is a significant health issue affecting a relatively small percentage of

the population (Lavie, 1983 and Young et al, 1993) but with potentially serious or fatal

consequences if not treated (Benaim et al, 1992 and He et al, 1988). The incidence of

undiagnosed obstructive sleep apnoea is extremely high (Young et al,1997). Males are more

commonly affected than females (Ancoli-Israel, 1987; Guilleminault and Dement, 1978;

Kales et al, 1985 and Young et al, 1993). Obstmctive sleep apnoea is reported to occur more

commonly in older populations (Ancoli-Israel, 1989; Bixler et al, 1998; and Jennum and

Wildschiodtz, 1987), however the significant morbidity and mortality occurs in younger

people with the condition (Bixler et al, 1998). A disturbing number of people with moderate

to severe obstructive sleep apnoea may not be aware they are suffering this condition (Young

et al, 1997).

Daytime h¡,persomnolence associated with obstructive sleep apnoea syndrome is a commonly

reported symptom of patients with obstructive sleep apnoea (Bixler et al, 1979; Klink and

Quan, 1987; Lavie, 1983; and MoldofskA, 1992). Hypersomnolence has been shown to

adversely impact on the ability to control a motor vehicle (Findley et al, 1986 and Findley et

al, 1989). There is also a reported increased incidence of motor vehicle accidents and near

misses in this population (Gonzalez-Rothi et al, 1988 and Jennum et al, 1993). Drivers of

other vehicles and pedestrians are also placed at risk of death or injury due to involvement in

a motor vehicle accident.

One of the unresolved difficulties when considering the cost of obstructive sleep apnoea to the

community is the problem of determining exactly what adverse medical conditions are caused

by this sleep disorder. As discussed in Chapter 2 a number of medical conditions have been

reportedly associated with obstructive sleep apnoea, however there is some disagreement in

the literature as to whether obstnrctive sleep apnoea is to blame. Obesity (Browman et al,

1984; Harman et al, 1982; Smith et al, 1985; and Young et al, 1983) and increased age are

coÍìmon features of most subjects diagnosed with this condition. Medical conditions

associated with obstructive sleep apnoea are often similar to those experienced by elderly

overweight patients (Davies et al, 7992). It is most likely that age, obesity and obstructive

sleep apnoea syndrome contribute to the increased morbidity experienced by these patients

(Bradley, 1992). A second consideration when considering weight loss is the fact some non-
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obese patients present with obstructive sleep apnoea. This was first identified by Tsuchiya et

al (1992). In this smaller group of patients there obviously is a mechanism other than obesity

causing airway obstruction.

Ovemight polysomnographic sleep studies are costly in terms of manpower, both to conduct

the study and also to interpret the results. There are a limited number of beds available for

these studies to be undertaken and a large number of the population with obstructive sleep

apnoea are not effectively screened (Young et al, 7997). Education of general medical and

dental practitioners regarding the symptoms of obstructive sleep apnoea and the potential

increased morbidity and mortality would seem wise. Screening tools may be helpful to these

practitioners in determining which patients should undergo such studies. These screening

tools include questionnaires, history, physical examination and, as this study shows, lateral

cephalometric radiography. Unfortunately, as with most medical conditions, no one

screening tool is 100% specific or 100% sensitive for detecting obstructive sleep apnoea. In

combination with an inquisitive mind the screening tools mentioned may allow early,

judicious referral ofobstructive sleep apnoeic patients to a sleep physician for diagnosis, thus

potentially saving the community and patient much in terms of future health care.
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Chapter 13

Conclusions

The results of this study showed that there are a number of significant differences in the

craniomorphologic structure of obstructive sleep apnoeic subjects when compared to

snoring subj ects using lateral cephalometric radiographs.

2. lncreasing age, obesity, neck circumference and being male were all correlated with an

increasing incidence of obstructive sleep apnoea.

3. Soft palate thickness and pharyngeal length are significantly increased in obstructive

sleep apnoeic subjects and snorers independent of the RDI used to define obstructive

sleep apnoea.

4. Hyoid position on lateral cephalometric radiographs was significantly altered in mild

obstructive sleep apnoeic subjects. In these subjects the hyoid was located infenor and

antenor.

5. The hyoid was located inferiorly and posteriorly in obese obstructive sleep apnoeic

subjects.

6. Tongue length was significantly increased in obstmctive sleep apnoeic subjects with an

RDI >15 but not in those with an RDI < 15.

7. Maxillary length was increased in mild obstructive sleep apnoeic subjects.

8. The relationship of the maxilla to the mandible was significantly different for all subjects

compared to the normal population with the majority having a maxilla placed posteriorly

compared to the mandible.
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g. All sutrjects with a retrognathic maxilla as measured by angle SNA were obstructive sleep

apnoerc.

10. All subjects with a retrognathic mandible as measured by SNB were obstructive sleep

apnoerc.

1 1. Mandibular retrognathia was a more important predictor of obstructive sleep apnoea than

elevated BMI.

12. Maxillary and/or mandibular retrognathia and obesity results in a greater severity of OSA.

13. Bimaxillary retrusion was associated with obstructive sleep apnoea in the non-obese

subject.

14. Bimaxillary protrusion was associated with obstructive sleep apnoea in the obese subject.

15. Obesity was an uncommon finding in obstructive sleep apnoeic subjects with a significant

malposition of the maxilla and/or mandible.
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Chapter 14

Glossary

ADH (Lowe A et al, 1995)

Anterior dental height: Maxillary incisor length.

AH (Lyberg et al, 1989b;Tangugsorn et al' 1995b)

The most anterior and superior point on the body of the hyoid bone, representing the inferior

part ofthe tongue.

AH-S Ver (Tangugsorn et al' 1995a)

The vertical distance measured perpendicular to Frankfort horizontal plane (FH) from the

hyoid bone (AH) to sella (S). (Recorded under S - H)

A¡IS-PNS/PM (Pracharktam et al' 1994)

The angle between the palatal plane and posterior wall of the maxilla.

Ar (deBerry-Borowiecki et al, 1988; Strelzow et al' 1988)

Articulare. The intersection of a line along the posterior border of the mandible and the

inferior border of the basilar occipital bone.

Ara (Pracharktam et al, 1994)

Anterior Ramus plane: a line from the intersection of the functional occlusal plane (FOP) and

the anterior border of the ramus drawn parallel to PRa up to the reference line'

Ar - A/ Ar - B (Pracharktam et al' 1996)

Relative comparison of cumulative maxillary length with cumulative mandibular length

measured along the reference line proposed by Enlow.

Ar - H (deBerry-Borowiecki et at, 1988)

Distance between articulare and the hyoid.

Ar - N/PM (Pracharktam et al' 1994)

The angle between the posterior wall of the maxilla relative to the constructed cranial base

(tu-N).
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Ar-Pgn (Lyberg et al, 1989a)

The length of the mandible.

Area Intermaxillary Space @attagel and L'Estrange)

The space defined by a line drawn through the maxillary and mandibular planes, the posterior

pharyngeal wall and the lingual aspect of the lower incisor.

Area Oropharynx (Lowe et al, 1996)

Area outlined by an extension of the line ANS-PNS to pharyngeal wall, posterior surface of

soft palate, line parallel to palatal plane from point P to dorsal surface of tongue, posterior

inferior surface of tongue, line parallel to palatal plane through point Et, and posterior

pharyngeal wall.

Area Hypopharynx (Lowe et al, 1996)

Area outlined by inferior border of oropharynx, posterior surface of epiglottis, line parallel to

palatal plane through point C4, and posterior pharyngeal wall.

ATA (deBerry-Borowiecki et al, 1988; Strelzow et al' 1988)

Anterior tubercle of atlas.

B (Battagel and L'Estrange)

Point B. The point of maximum concavity of the mandibular alveolus.

Ba (Bacon et al, 1989; Lyberg et al, 1989a; Tangugsorn et al, 1995b)

Basion: The most posterior inferior point on the clivus.

Ba - PNS (Bacon et al, 1989)

The AP dimension of the bony pharynx.

C2 @attagel and L'Estrange, 1996)

Most posterior superior point on the second cervical vertebra.

C3 (Tsuchiya et al,1992)

The inferior anterior position on the third cervical vertebrae.

C3 - H (Tsuchiya et ù,1992)

The linear distance between C3 and H.

i

Þ
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Cataplexy

A sudden loss of muscle tone, such as jaw drop, head drop, wealãess of the lcrees or paralysìs

of all skeletal muscles with collapse.

Cd (Andersson and Brattstrom, 1991;)

Condylion

Cd-Gn (Andersson and Brattstrom, 1991)

Distance between the most posterior superior point on the mandibular condyle and the most

anterior inferior point on the symphysis of the mandible.

CL (Lyberg et al, 1989)

Contact length between the dorsal contour of the tongue and the soft palate'

CVT (Ozbek et al, 1998)

Cervical Vertebrae Tangent: Tangent to the posterior superior point on the body of the second

cervical vertebra and the inferior posterior point on the body of the fourth cervical vertebra.

Dc (Bacon et al, 1989)

Centre of the condylar neck on Ba-N line.

Dc - A (Bacon et al, 1989)

Sagittal dimension of the upper face from Dc to A.

EA (deBerry-Borowiecki et al, 1988)

Apex of the epiglottis.

Eb (Pae et al, 1994;Pracharktam et al,1994; Lowe et al' 1996)

Base of epiglottis: The deepest point of the epiglottis.

Et (Pae etù,1994; Lowe et al,1996)

Tip of epiglottis: The most superior point of the epiglottis.

FOP (Pracharktam et al,l994)

Functional occlusal plane: A line from the most posterior occlusal contact point to the last

fully erupted maxillary and mandibular molars to the most anterior maxillary-mandibular first

premolar occlusal contact.

G (deBerry-Borowiecki et al, 1988)

Genial tubercle: the most posterior point on the symphysis of the mandible.

:'I
u
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G (Sakakibara et a1.,1999)

Most posterior point on the symphysis of the mandible. (Retrognathion)

G - VL (Sakakibara et al, 1999)

Linear distance along the line from G to VL.

GE (Lyberg et al, 1989b; Tangugsorn et al, 1995b)

Genial Tubercle: Representing the most postenor point of the mandibular symphysis and the

antero-inferior part of the tongue.

Go (Andersson and Brattstrom ,1991; Battagel and L'Estrange' 1996)

Gonion. The point where the bisector of the angle between the posterior and lower

mandibular border tangents meets the mandibular angle.

Go-B (Battagel and L'Estrange,. 1996)

The length of the mandible in the horizontal plane.

Go-Gn (Andersson and Brattstrom, 1991)

The length of the mandible.

Go - H (deBerry-Borowiecki et al, 1988)

The distánce between gonion and the most anterior superior point on the body of the hyoid.

Go-Me (Battagel and L'Estrange, 1996)

Mandibular body length.

Go-Pgn (Lyberg et al, 1989a)

The length of the horizontal part of the mandible (corpus).

Gn (Andersson and Brattstrom, 1991)

Gnathion.

H (deBerry-Borowiecki et al, 1988; Andersson and Brattstrom, 1991; Pae et al, 1994;

Lowe et al, 1996)

Hyoid bone. The most anterosuperior point on the body of the hyoid bone.

H (Lyberg et al, 1989b; Tangugsorn et al, f995b)

The most superior point of the tongue in relation to the line from V to T.

HHI (Lowe et al, 1996)

Linear distance between H and perpendicular to C3 to retrognathion.
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H-Ph (Andersson and Brattstrom , 1991)

Perpendicular distance between the point H and line Ph. (Recorded under H-MP)

H-Ver (Pracharktam et al,1996)

Vertical position of the hyoid relative to a line which is perpendicular to pterygomaxillary

vertical line (PM) and passes sphenoethmoidal junction (SE).

H-VL (Sakakibara et al,1999)

The linear distance along the line from H to VL.

Hypnagogic hallucination

False sesory perception occurring while falling asleep.

Hypnopompic hallucination

False perception occurring while awakening from sleep.

IAS (Lowe et al, 1996)

Width of the airway between the posterior surface of the tongue and the pharyngeal wall

along the line Go-B.

Id (Andersson and Brattstrom, 1991)

Infradentale. The point of intersection of the lower central incisor tooth and the mandibular

alveolus.

Id-Gn (Andersson and Brattstrom, 1991)

The anterior height of the bony mandible.

Inclination Spinal (Battagel and L'Estrange, 1996)

The angle between a line drawn between the sixth and second cervical vertebrae and a vertical

through sella.

In Mx Area (Pracharktam ct ù,1994)

Intermaxillary Area: Calculated by the average of anterior and posterior intermaxillary space

height multiplied by intermaxillary length.

Ll to MP (Lowe et al, 1995)

Lower incisor length.

I
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Length Intermaxillary Space (Battagel and L'Estrange, 1996)

The distance between the posterior pharyngeal wall and the lingual aspect lower incisor at the

level ofthe occlusal plane.

Length Intermaxillary Space (Pracharktam et ù,1994)

Length of the intermaxillary space: Linear distance measured along the FOP from the point

where it intersects Tt anteriorly to where it intersects PhW posteriorly.

LFH (Bacon et al, 1989)

The distance between ANS and Me on a line parallel to the occlusal plane.

LFH/IVIFH (Pracharktam et al, 1994)

Ratio of lower anterior facial height (a line from the functional occlusal plane to the

mandibular plane which is parallel to the PM) to middle anterior facial height (a line from the

functional occlusal plane to the palatal plane).

LPW (Tangugsorn et al, 1995b)

Lower pharyngeal wall: Intersection of a perpendicular line from V with the postenor

pharyngeal wall.

MAS (Johns et al, 1998)

Distance between midpoint of soft palate and posterior pharyngeal wall on a line parallel to

Frankfort horizontal.

MAS (Lowe et al, 1996)

Distance from the tip of the soft palate to the pharyngeal wall along a line parallel to Go-B.

(Recorded under UT-PhW)

MCF (Pracharktam et al, 1994)

Middle Cranial Fossa: Represented by a line from Bjork's articulare (Ar) to SE'

MCF Cranial Base (Pracharktam et al, 1994)

Middle cranial fossa and posterior maxillary relative alignment (MCF/PM). A neutral

MCF/PM is an internal angle of 40.3'. When a subject's PM is forward the neutral PM, a

clockwise (+) rotation results. This forward (+¡ alignment of the MCF results in a

mandibular retrusive effect. When a subject's PM is behind the neutral PM, a

counterclockwise (-) rotation results. The bacloward (-) alignment of the MF results in a

mandibular protrusive effect. If the neutral MCF plane coincides with the individual's own

MCF, a neutral effect (0) is present.

295



MdMH (Lowe et al,1995)

Mandibular molar height.

Me (Battagel and L'Estrange, 1996)

Menton. The point of intersection of the lower mandibular body and the symphyseal outline.

ML (Lyberg et al, 1989a)

Mandibular Line: The tangent to the lower border of the mandible through Gn.

MxH (Lowe et al, 1995)

Maxillary molar height.

N (Andersson and Brattstrom, 1991)

Nasion

Nasion Perpendicular (McNamara, 1.984)

The dropping line from nasion (n) perpendicular to Frankfort horizontal plane (FH)

N-Gn (Andersson and Brattstrom, 1991)

Facial height. The distance between nasion and gnathion.

NP (Lyberg et al, 1989a; Tangugsorn et al, 1995)

NREM

Non-rapid eye movement.

OA (Tangugsorn et al, 1995b)

Oral Area: Included tongue area (TA) and extended superiorly to the outline of the soft and

hard palate.

Ocl - Pal 6 (Johns et al, 1998)

Occlusal to palatal plane perpendicular at maxillary first molar (palatal vault height).

OP (Bacon et al, 1989)

The occlusal plane represented by a line passing through the middle of first molars and first

premolars intercuspation.

OPT (Ozbek et al, 1998)

Odontoid Process Tangent: Tangent passing through the superior postenor point of second

cervical vertebra and the inferior posterior point ofsecond cervical vertebra.
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Oral Cavity Area (Sakakibara et al, 1999)

The area of the oral cavity defined between PNS, A, Me, Go and PNS.

Oral Cavity Space (Strelzow et al, 1988)

The area of the oral cavity defined between PNS, ANS, Gn, Go and PNS.

Oropharynx (Lowe et al, 1996)

Area outlined by inferior border of nasopharynx, posterior surface of soft palate, line parallel

to palatal plane from point P to dorsal surface oftongue, posterior inferior surface oftongue,

line parallel to palatal plane through point Et, and posterior pharyngeal wall.

OSA

Obstructive sleep apnoea.

P (Pae et al,1994; Lowe et al, 1996)

Palate point: The most inferior tip of the soft palate.

PAS (ML) (Hochban and Brandenburg, 1994)

Posterior airway space measured between the tongue base and posterior pharyngeal wall

along an extension of the line Me-Go.

PAS (OP) (Hochban and Brandenburg, 1994)

Posterior airway space measured from the tongue base to the pharyngeal wall on the occlusal

plane.

PAS (NL) (Hochban and Brandenburg, 1994)

Posterior airway space measured from PNS to the pharyngeal wall along an extension of the

nasal line (ANS-PNS).

Pg (Lyberg et al, 1989a; Tangugsorn et al, 1995)

Pogonion: The most anterior point on the mandibular symphysis.

Pg - NP (Lyberg et al, 1989a; Tangugsorn et al, 1995)

Horizontal distance between pogonion and nasion perpendicular.

Pgn (Lyberg et al, 1989a)

Prognathion: the point on the mandibular symphysis farthest from Ar.

Ph (Andersson and Brattstrom, 1991)

The perpendicular from h to the mandibular plane (line Go-Gn).
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Ph-AS (deBerry-Borowiecki et al, 1988)

Total area of the oropharynx and hypopharynx measured between the line ATA-PNS and a

line through the hyoid bone (H) parallel to Frankfurt horizontal plane.

PhT (deBerry-Borowiecki et al, 1988)

Apex ofthe pharyngeal tubercle.

Phw

Pharyngeal wall.

Ph\ü1-PNS (Hochban and Brandenburg, 1994)

Posterior airway space measured from PNS to the pharyngeal wall along the line Ba-PNS

bisecting the posterior pharyngeal wall.

Phwl-Psp (Pracharktam et al,1994)

Distance between the most posterior and supenor point on the soft palate and the pharyngeal

wall along a line parallel to line B-Go. (Recorded under UP-PhW).

pm (Lyberg et al, 1989a; Tangugsorn et al, 1995b)

Pterygomaxillare: The intersection between the nasal floor and the posterior contour of the

maxi1la.

PM (Andersson and Brattstrom, l99l)

Posterior maxilla. Corresponds to posterior nasal spine.

PM (Pracharktam et al, 1994)

Vertical PM: A line from SE through the averaged inferior-most points of the left and right

pterygomaxillary fìssure.

PNS (deBerry-Borowiecki et al, 1988; Strelzow et al, 1988)

Posterior nasal spine: Tip of the spine of the palatine bone of the hard palate.

PNS (Riolo etal,l974)

The most posterior point at the sagittal plane on the bony hard palate.

Post.In. Mx. Ht. (Pracharktam et al,1994)

Posterior intermaxillary space height: length of a perpendicular from the maxillary plane to

the mandibular plane that passes through the point where the FOP intersects the Phlù/.
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PRa (Pracharktam et al,1994)

Posterior Ramus: A line from Ar to the intersection of the posterior border of the ramus with

FOP.

Proportion Tongue @attagel and L'Estrange, 1996)

The tongue area as a percentage of the intermaxillary space area.

Prl (Battagel and L'Estrange, 1996)

Width of oropharyngeal airway along the line that connects the most posterior point on the

contour of the tongue and the pharyngeal wall.

Prpl (Battagel and L'Estrange, 1996')

Width of nasopharyngeal airway along line connecting the most poster-superior point on the

soft palate (determined by the eye) and the point on the pharyngeal wall at the same

horizontal level.

Prp2 (Battagel and L'Estrange, 1996)

Width of the nasopharyngeal airway along the line of the lower incisor tip between the

posterior aspect of the soft palate and the posterior pharyngeal wall.

Psp (Lowe et al, 1996)

Tip of uwla.

R (Pae et ù,1994; Lowe et al, 1996)

Roof of the pharynx: The point on the posterior pharyngeal wall constructed by a line PNS to

the cross-sectional point of the cranial base and the lateral pterygoid plate.

Ram/MCF (Pracharktam et al,1994)

Ramus width relative to middle cranial fossa horizontal dimension. The measure of ramus

width is made at the level of REF by companng to the horizontal dimension of the MCF

along this line. The distances from Ar to Ara and Ar to neutral PM are measured along the

reference line. A (+) effect occurs when the ramus width is less than Ar to PM neutral, and (-

) effect when greater. When the measurements are the same, a neutral (0) effect results.

REF (Pracharktam et al,1994)

Reference line: A line parallel to FOP from A¡ antenorly.

REM

Rapid eye movement.
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RGN (Pae et al,1994; Lowe et al, 1996)

Retrognathion: The most posterior point of the mandibular symphysis along a line

perpendicular to the FH (Frankfort Horizontal) plane.

RL (Lyberg et al, 1989a)

Ramus Line: The tangent to the posterior border of the mandible

RL/ML (Lyberg et al, 1989a)

The gonial angle.

SC (deBerry-Borowiecki et al, 1988)

Sphenoidal crest.

SE (Pracharktam et al,l994)

Sphenoethmoidal junction: The point at which the floor of the anterior cranial fossa intersects

the averaged image left and right of the great wings of the sphenoid bone.

S - H (deBerry-Borowiecki et al, 1988)

Distance between sella and the most anterior superior point on the body of the hyoid.

Sn (Andersson and Brattstrom, 1991)

Subnasale. The most anterior point on the maxilla, corresponding with ANS.

SN/Go-Gn (Andersson and Brattstrom, 1991)

Angle between the mandibular plane and the cranial base.

SN/OP (Bacon et al, 1989)

The angulation of the occlusal plane with the SN line.

SN-PM (Andersson and Brattstrom, 1991)

Maxillary length. (Recorded under ANS-PNS)

SPAS (Lowe et al, 1996)

Narrowest distance between the posterior surface of the soft palate and the pharyngeal wall

along a line parallel to Go-B. (Recorded under UP-PhW)

SR (deBerry-Borowiecki et al, 1988; Strelzow et al, 1988)

Sphenoidal rostn¡m: Superior extent to the pterygomaxillary fissure.

T (Lyberg et al, 1989b; Tangugsorn et al, 1995b)

The tip of the tongue.
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TB (deBerry-Borowiecki et al, 1988)

Tongue base.

TB-PhlV (deBerry-Borowiecki et al, 1988)

Linear distance from the tongue base to the posterior pharyngeal wall measured along a line

parallel to Frankfurt horizontal.

TA (Tangugsorn et al, 1995b)

Tongue Area: The upper outline was defined by the dorsal contour of the tongue from V

through H to T. The lower outline was reduced to a geometric polygon, of which the

boundary was defrned by line segments connecting the following points V, AH, GE and T.

Tt (Pracharktam et zl, 1994)

Tongue tip: The most anterior point of the tongue that touches the lingual surface of the

mandibular incisor.

TT (deBerry-Borowiecki et al, 1988)

Apex of the tongue.

TT (Pae et ù,1994; Lowe et al, 1996)

Tongue tip: The centre of the lead disk attached to the border between the ventral and dorsal

surfaces of the tongue tip.

TT-EA (deBerry-Borowiecki et al, 1988)

Distance from the apex of the tongue to the tip of the epiglottis.

TT-TB (deBerry-Borowiecki et al, 1988)

Distance from the apex of the tongue to the tongue base.

TV (deBerry-Borowiecki et al, 1988)

Total area of the tongue measured at its superior limits and the line contained between TT, G,

H and a line parallel to FH up to EA.

U (Lyberg et al, 1989b; Tangugsorn et al, 1995b)

Tip of the ulula: the most posteroinfenor point of the uvula.

UP (deBerry-Borowiecki et al, 1988)

Soft palate protrusion: greatest posterior convexity of soft palate.
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UPIV (Iangugsorn et al, f995b)

Upper pharyngeal wall: Intersection of the pm - ba line and the posterior pharyngeal wall.

UP-PhW (deBerry-Borowiecki et al, 1988)

Linear distance between the greatest convexity of the soft palate and the pharyngeal wall.

UT-Ph\il @attagel and L'Estrange, 1996)

The point on the posterior pharyngeal wall at the same horizontal level as the tip of the soft

palate.

UT-PhW (deBerry-Borowiecki et al, 1988)

Linear distance from the tip of the soft palate to the pharyngeal wall measured along a line

parallel to Frankfuit Horizontal.

UT-PhW (Hochban and Brandenburg, L994)

Linear distance from the tip of the soft palate to the pharyngeal wall measured along a line

parallel to the occlusal plane.

V (Sakakibara et al, 1999)

Vallecula: The most antero-inferior point of the epiglottic fold.

V (Lyberg et al, 1989b; Tangugsorn et al, 1995b)

Vallecula: The intersection of the epiglottis and the base of the tongue.

VL (Sakakibara et al, 1999)

A line across C3 and C4.

302



Appendix

Patient Information Sheet - Cephalometry for Obstructive Sleep Apnoea

Thank you for participating in this study designed to enable a better understanding of the

causes of obstructive sleep apnoea and suitability of proposed treatment for patients suffering

this condition.

Sleep apnoea and the related conditions of snoring can have serious effects on your health.

Part ofthe problem appears to arise from the shape ofyour facial bones or the shape ofyour

tongue, lips and throat.

Both the bones and the soft tissues of your face can be very accurately measured by a

particular type of radiograph, known as a lateral head cephalogram. This type of x-ray is

taken very commonly in young children to determine how their face and jaws are growing.

Once the x-rays have been taken, quite simple but detailed methods of measurement are

applied so that one can precisely determine the site, if any, of the problem that your aré

having with breathing.

The purpose of this particular study is to determine the characteristic face shapes of people

with obstructive sleep apnoea. Overseas studies in the United States of America have shown

that people from different communities have different face shapes associated with their sleep

apnoea.

The shape of your face has impacted on your treatment. Thus, for example, if the x-ray

shows that your lower jaw is small, there are some non-surgical and surgical treatments which

can be done to improve the way that you breathe. Also, if your have a large tongue or a

small throat, or a large palate, these will be shown on the x-ray and will help in planning of

your treatment.

The x-ray exposure used is very small and represents less than I%o of the recommended

annual exposure.

Thus this study may be of direct benefit to you in your treatment, as well as being of benefit

to future patients being treated at the Royal Adelaide Hospital with this problem.

This study is being undertaken by Prof AN Goss DDS FRACDS (OMS) FICD; Dr DJ

Sherring BDS and Dr R Antic MB BS FRACP.
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t. I

If you wish to discuss aspects of the study you may also contact the Chairman, Research

Ethics Committee, Royal Adelaide Hospital.

THE TINTVERSITY OF ADELAIDE

CONSENT FORM

See also Information Sheet on reverse.

(please print) hereby consent to take part

in the research project entitled:

"Cephalometry for Sleep Apnoea".

2. I acknowledge that I have read the information sheet entitled:

"Cephalometry for Sleep Apnoea".

3, I have had the research project, so far as it affects me, fully explained to my

satisfaction by the research worker. My consent is freely given.

4. Although I understand that the purpose of this research project is to improve the

quality of medical care, it has been explained to me that my involvement may not be

of any benefit to me.

5. I have been given the opportunity to have a member of my family or a friend present

while the project was explained to me.

6. I have been informed that, while information gained during the study may be

published, I will not be identified and my personal results will not be divulged.

7. I understand that I am free to withdraw from the project at any time and that this will

bot affect medical advice in the management of my health, now or in the future.

8. I am aware that I should retain a copy of this Consent Form, when completed, and the

relevant Information Sheet.

SIGNED DATE

NAME OF WITNESS DATE

have described toI,

the nature of the procedures to be carned out

explanation.

SIGNED

In my opinion he/she understood the

DATE

STATUS IN PROJECT
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