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ABSTRACT 
 

 

Impacts of human CO2 emissions on ecosystems and their services are inherently 

difficult to predict, as ecosystem responses emerge from complex and dynamic 

networks of organisms and their interactions. Yet, our understanding of the 

ecological imprint of future climate remains largely based on tests of single species in 

the laboratory. Here I show how the responses of individual organisms to ocean 

acidification and ocean warming scale-up to species communities and reveal the 

underlying ecological dynamics. This was accomplished through the study of 

behaviour, bottom-up and top-down forcing, food web architecture, and functional 

composition in 1,800 L mesocosms that harboured a temperate near-shore 

community including various species of algae, invertebrates and fishes.  

The negative effects of ocean acidification were buffered effectively through 

stabilizing processes at both simple and complex levels of biological organisation. 

Consequently, acidification primarily acted as a resource (via CO2-enrichment) that 

increased productivity throughout the food web. In contrast, ocean warming shifted 

the balance in key ecological processes leading to a novel community structure that 

would likely undermine ecosystem services. Dynamics with the potential to 

compensate for the uneven sensitivities between functions failed to engage – given 

the fundamental influence of temperature on physiology – which allowed impacts to 

cascade through the community. This stress through warming also negated any 

positive effects of acidification. 

My findings bridge the gap between the simplicity of the laboratory and species 

communities in nature, by revealing how impacts of future climate can be countered 

or accelerated through ecological processes. A predictive understanding of stability or 

change in ecosystems is key to the management of natural resources in a future 

ocean. 
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HUMAN CO2 EMISSIONS AND THE OCEANS 
 

Human population growth and technological advances over the past two centuries have 

been made possible through the burning of fossil fuels 1. Yet, the effects of the resulting CO2 

emissions on the earth system are pervasive 2. Physical consequences of the increased 

greenhouse effect such as warming climate, sea level rise and weather extremes (i.e. storms, 

floods and droughts) are forecast to cause socio-economic issues globally 2; in fact, it may 

prove to be humanity’s greatest challenge 3. In addition to these more direct and predictable 

impacts, goods and services provided by ecosystems including food, natural materials and 

recreational opportunities are at risk 4,5. However, predicting ecosystem responses to 

elevated CO2 concentrations is inherently difficult, as these responses emerge from complex 

and dynamic networks of organisms and their interactions. 

Several decades of intense scientific research have not only provided an understanding of 

the abiotic processes that result from human CO2 emissions 2,6,7 but also identified a range of 

biological responses 8-12. The most prominent impacts on ocean ecosystems are expected 

from the warming and acidification of sea surface waters 4,13,14. The latter process termed 

ocean acidification refers to the absorption of anthropogenic CO2 by the ocean, which reacts 

to lower seawater pH 15. An increase in CO2 partial pressure from todays 400 ppm to 900 

ppm – as projected for the end of this century under a business-as-usual emission scenario – 

would lead to an average sea surface temperatures rise and pH decrease of approximately 

3 °C and 0.3 units, respectively 6. These rapid changes in physical and chemical environment 

will affect the physiology of many marine organisms. As such, warming increases metabolic 

rates in all ectotherms 16, exceeding the thermal limits of some species 17,18. Acidification 

impairs ecologically relevant behaviours 19-21 and raises the costs of calcification 22-24 and 

acid-base balance 25. Yet, primary producers can utilize the additional CO2 as a nutrient 26,27. 

Whilst these direct effects have been studied in great detail in isolated species under 

laboratory conditions, we know surprisingly little about how they scale up to the level of 

species communities and ecosystems 28. 

Abiotic change can be countered or accelerated through the collective response of the 

lower-level processes that characterize ecosystems 29-33. The emerging structure and 

function of ecosystems - not altered physiology or species loss per se – then drive change or 

stability in natural resources and services 34-40. Indeed, these basic ecosystem properties 

were observed to shift or degrade significantly under rapid ocean acidification and warming 

in Earth’s history 41-43 or at natural analogues of ocean acidification 44-46 or warming 47,48 

today. Experimentation has revealed some of the mechanisms that explain how the impacts 

may propagate through communities 49-53 or how they may be buffered by compensatory 

processes 54-57. Whilst such studies that incorporate higher levels of ecological complexity 



9 
 

through species interactions and larger spatio-temporal scales are limited, they are seen as 

missing link towards our ability to foresee change in future ecosystems 19,28,58-61. 

 

RESEARCH AIMS 

 

The aim of my PhD was to understand how the responses of individual organisms to ocean 

acidification and warming scale-up to species communities. The thesis is based on three 

research chapters (II, III and IV), written in the formats of the journal in which they are 

published or intended to be published. The ecological parameters studied in each of these 

chapters are illustrated in Figure 1, as part of the global interaction between humans (via 

CO2 emissions) and ocean ecosystems (via ecosystem services). Each chapter links specific 

individual-level effects of future climate to specific properties of species communities. 

Jointly, the specialised chapters investigate several of the key ecological processes through 

which the effects of future climate may propagate or may be countered from low to high 

levels of biological organization. 

Chapter II focuses on the changes to bottom-up and top-down forcing under future climate. 

The key role of these trophic forces in structuring food webs has been demonstrated 

through decades of ecological research 62-66. In particular, eutrophication via nutrient run-off 
67,68 and top-down degradation via over-exploitation 69,70 have served as prime examples of 

the vulnerability of trophic dynamics to human activities 33,71. Yet, we are only beginning to 

understand how human CO2 emissions may alter existing trophic theory 30,51,72-74 and the 

services provided by future food webs such as fisheries production 9,75. By studying growth 

and population sizes within individual trophic levels, Chapter II aims to unravel the balance 

of production and consumption across trophic levels, which ultimately underpins food web 

structure. The chapter is published in Global Change Biology (doi: 10.1111/gcb.13699). 

Chapter III examines compensatory processes inherent in the complexity of nature that can 

buffer direct effects of future climate. Individuals, populations and species communities 

possess a remarkable flexibility in order to adjust to variable environmental conditions 76-81. 

Understanding the underlying ecological processes is a difficult yet critical quest for modern 

ecology, as they may provide ecosystems with some capacity to withstand the pressure of 

human activities 29,31,58,82,83. Using motile consumer species, Chapter III aims to contrast the 

negative effects of future climate on isolated behavioural traits to the performance during 

more complex tasks and to the longer-term viability of populations. Several lower-level 

processes are identified, particularly under ocean acidification, that shape ecological 

responses from the organismal to community level. The chapter is published in Nature 

Climate Change (doi: 10.1038/s41558-018-0086-0). 
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Figure 1: Study system: Human CO2 emissions cause ocean acidification and warming (1), affecting 

individual organisms (2) whose responses may be buffered or reinforced by species interactions 

leading to stability or change in community structure and function (3) which loop back to humans via 

ecosystem services (4). Principle methodologies are given in italic and PhD chapters (chpt.) in white. 

Artwork by Silvan Goldenberg and Integration and Application Network, University of Maryland 

Center for Environmental Science (ian.umces.edu/symbols/). 

 

Chapter IV centres on the architecture, composition and function of food webs under future 

climate. Consumer species are able to adapt their foraging strategy to match changing 

patterns in their resources 84 or competitors 85, in accordance with optimal foraging 

theory 86. Such adaptive trophic behaviour of consumers gives food web architecture, which 

represents all feeding relationships between species, dynamic characteristics that can 

stabilize against natural abiotic variability 32,81. However, it is less well understood how food 

web architecture may respond to intense abiotic change due to human activities and 

whether it may be able to prevent a radical shift in the basic structure of food webs 33,87. 

Chapter IV aims to understand the adaptive potential of food web architecture in response 

to future climate and the consequences for the fundamental composition and function of 

food webs. This chapter is currently prepared for submission to a journal.  

These research chapters represent a critical link between the responses to future climate 

measured in the simplicity of the laboratory and their consequences for ecosystems. They 

show that organisms and ecological processes can be affected through various pathways 
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which have opposing consequences for species communities. Whilst future climate is in 

some cases compensated effectively and even acts as a resource that increases food web 

productivity, impacts propagate unrestrained in other cases leading to community 

degradation. Understanding stability and change in species communities is key to the 

mitigation of ecological impacts of human CO2 emissions and the management of natural 

resources in a future ocean. 

 

EXPERIMENTAL APPROACH 
 

The research in chapter II, III and IV was based on a large mesocosms with a mosaic of rocky 

reef, seagrass and sandy habitat that harboured a temperate shallow-water community. The 

mesocosms were exposed to present day and future levels of ocean acidification and 

warming according to end-of-century projections in a crossed 2-factor design. Due to their 

high taxonomic and functional diversity, the mesocosms provided an ideal environment to 

not only conduct detailed investigations into the physiology and behaviour of organisms but 

also to study species interactions and emerging community properties. Mesocosms have 

become increasingly popular to test various ecological responses to future 

climate 51,52,74,88-91, as they seem a good compromise between costs and realism 59,92-94. 

Mesocosms also allow to manipulate several environmental variables simultaneously and 

are thus useful to study stressor-interactions 95-97. This is a critical advantage in respect to 

ocean acidification and warming which will co-occur globally and are forecast to act 

synergistically, additively and antagonistically 98,99. Although progress in this field is rapid, 

the system presented in this thesis remains – to the best of my knowledge – the ecologically 

most realistic and complex mesocosm on benthic marine communities to date. 

To answer my research questions, I focus on specific information derived from the 

mesocosm community through direct sampling of ecological parameters and/or through 

additional experimental manipulations. The different methodologies used in each chapter 

are illustrated in Figure 1. Chapter II is based on an isolated compartment of the mesocosm 

community comprising three distinct trophic levels including microalgae, invertebrate prey 

and one species of predatory fish. The simplicity of this model food web allowed for the 

sophisticated manipulations required to parameterize production and consumption across 

trophic level; the key to a mechanistic understanding of bottom-up and top-down forces. 

Chapter III centres on all larger and highly motile consumers of the mesocosm community 

including eight species of fish and shrimp. A behavioural experiment on sensory functioning 

and predator avoidance combined with gut content analysis and long term growth provided 

an estimate of performance of these consumers at different levels of ecological complexity. 

A global meta-analysis was then used to relate our findings to other study systems. Chapter 

IV incorporates the full taxonomic diversity of the mesocosm community with the aim to 
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unravel the trophic architecture, composition and functioning of a complex food web. Here, 

all habitats within the mesocosms were sampled thoroughly to obtain C and N stable isotope 

signatures of 29 taxa and the standing biomass of the 14 major functional groups. 

Throughout chapter II to IV processes are generally studied within whole food webs, while 

special focus is given to fishes and their role as one of the ocean’s key consumers. 
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ABSTRACT 
 

Future climate is forecasted to drive bottom-up (resource-driven) and top-down 

(consumer-driven) change to food web dynamics and community structure. Yet, our 

predictive understanding of these changes is hampered by an over-reliance on 

simplified laboratory systems centred on single trophic levels. Using a large 

mesocosm experiment, we reveal how future ocean acidification and warming 

modify trophic linkages across a 3-level food web: i.e. primary (algae), secondary 

(herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated 

CO2 and elevated temperature boosted primary production. Under elevated CO2, the 

enhanced bottom-up forcing propagated through all trophic levels. Elevated 

temperature, however, negated the benefits of elevated CO2 by stalling secondary 

production. This imbalance caused secondary producer populations to decline as 

elevated temperature drove predators to consume their prey more rapidly in the face 

of higher metabolic demand. Our findings demonstrate how anthropogenic CO2 can 

function as a resource that boosts productivity throughout food webs, and how 

warming can reverse this effect by acting as a stressor to trophic interactions. 

Understanding the shifting balance between the propagation of resource enrichment 

and its consumption across trophic levels provides a predictive understanding of 

future dynamics of stability and collapse in food webs and fisheries production. 

 

 



21 
 

INTRODUCTION 
 

Ecosystems are rapidly degrading from an increasing intensity and range of human activities 

(Halpern et al., 2008; Vitousek et al., 1997). Many organisms are directly affected by human 

driven change to their physical and chemical environment, and their responses propagate 

across communities through altered species interactions (Rosenblatt & Schmitz, 2016; 

Wootton, 1994). To understand the modifications to ecosystem function and services, we 

need to identify common principles through which these organism-level impacts scale-up to 

ecosystem-level effects (Riebesell & Gattuso, 2015). Trophic interactions are ideal proxies for 

the study of this propagation as they incorporate complex networks connecting organisms to 

communities. Bottom-up (i.e. resource-driven) and top-down forces (i.e. consumer-driven) 

act along these pathways to maintain or drive ecosystem structure and function (Estes et al., 

2011; Heath et al., 2014) and thereby often dominate over direct effects (Ockendon et al., 

2014). 

Ocean acidification and warming can affect organisms both negatively (i.e. stressor) and 

positively (i.e. resource) either directly or through altered trophic forcing. As a stressor, 

warming generally increases metabolic rates in ectotherms (Dillon et al., 2010), whilst ocean 

acidification raises the energetic costs involved with calcification and acid-base regulation 

(Kroeker et al., 2013; Portner, 2008). Even neural functioning can be impaired due to 

elevated CO2 causing a reduced performance in behaviours relevant for trophic energy flow 

(Clements & Hunt, 2015; Nagelkerken & Munday, 2016). Such stress can create a mismatch 

between consumption and energy demand reducing fitness and weakening the functionality 

of affected food web components (Lemoine & Burkepile, 2012). Increased food demand in 

consumers can also intensify top-down control of their prey populations (Nagelkerken & 

Connell, 2015), leading to a strengthening of trophic cascades (Kratina et al., 2012; Provost 

et al., 2016). In contrast, as a resource, primary producers can benefit from future climate by 

utilizing the enriched CO2 as a nutrient and elevated temperature to boost physiology 

(Ainsworth & Long, 2005; Connell & Russell, 2010). Such enhancement of primary 

production has the capacity to strengthen the bottom-up control of food webs (Gruner et 

al., 2008). Thus, alterations to top-down and bottom-up forcing can create trophic 

imbalances that propagate through different trophic levels and thereby alter food web 

structure (Heath et al., 2014; O'Connor et al., 2011), with prominent effects for ecosystem 

services (Smith, 2003). 

Our understanding of how ocean acidification and warming alter resource propagation and 

its consumption within food webs is hampered by an over-reliance on simplified laboratory 

systems centred on single trophic levels and stressors (Riebesell & Gattuso, 2015; Wernberg 

et al., 2012). Critical advances regarding the trophic relationship between primary producers 

and herbivores under future climate have already been made using mesocosm food webs 
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(e.g. Alsterberg et al., 2013; O'Connor et al., 2009). Although individual components of 

predator-prey interactions were also addressed (e.g. Ferrari et al., 2015; Pistevos et al., 

2015; Provost et al., 2016), functioning food webs that include all major interdependencies 

between prey and predators have not yet been investigated in the context of ocean 

acidification and warming. Principles from plant-herbivore interactions have limited 

applicability for higher trophic interactions due to the fundamentally different effects of CO2 

and temperature on primary producers versus animals. Therefore, as central element of 

natural food webs, predator-prey interactions remain the key to a comprehensive 

understanding of future ecological change (Estes et al., 2011; Ockendon et al., 2014). 

Here, we reveal how future ocean acidification and warming individually and interactively 

modify trophic linkages across a 3-level food web and uncover the shifting balance between 

bottom-up versus top-down forcing. We studied a temperate benthic food web consisting of 

primary (microalgae), secondary (herbivorous invertebrates) and tertiary (predatory fish) 

producers using 1,800 l mesocosms with various habitats and a diverse species community, 

manipulated according to end-of-century climate projections. Our findings demonstrate a 

shift in balance between the propagation of resource enrichment and its consumption 

across trophic levels and provide a predictive understanding of future dynamics of stability 

and collapse in food webs. 

 

METHODS 

 

Mesocosms 

Our mesocosm simulated a shallow temperate coastal ecosystem with high level of realism. 

Twelve circular mesocosms each with a volume of 1,800 l were maintained indoors at a 

research station (February-July 2015), and habitats and organisms were collected in the 

vicinity between 1-5 m depth. The mesocosms comprised a mosaic of the three principle 

local habitat types (Fig. S1, S2; Gulf St. Vincent, South Australia; Bryars & Rowling, 2009): 1) 

‘artificial seagrass’ with epiphytes planted into fine silica sand 6 cm deep,  2) ‘open sand’ 

composed of the same sand 6-25 cm deep, and 3) ‘rocky reef’ made of natural rocks 

including associated macrophytes and invertebrates. The two soft-bottom habitats were 

additionally seeded with 25 l natural sediment collected amongst seagrass meadows and 

including all infauna and flora. In the flow-through system, unfiltered seawater from 1.5 km 

off-shore (~8 m depth) continuously supplied nutrients and planktonic propagules to each 

mesocosm at 2,300 l day-1. To simulate tidal water movement, a diffuser formed a light 

circular current in the mesocosms alternating direction in 6 h intervals. A lamp was mounted 

above each mesocosm with a spectrum close to sunlight and an irradiance corresponding to 

a local water depth of ~6-7 m (14/10 light-dark cycle, 30 min dawn and dusk dimming).  



23 
 

 

Climate treatments 

Ocean acidification (levels: ambient and elevated CO2) was manipulated in crossed 

combination with ocean warming (levels: ambient and elevated temperature), using three 

replicate mesocosms per treatment combination (see Table S1 for details on water 

parameters). We achieved a mean elevated pCO2 of 900 ppm (pH = 7.89) and temperature 

rise of +2.8 °C, which represented the conditions predicted for the end of this century 

following a business-as-usual emission scenario (RCP8.5; Bopp et al., 2013). We applied an 

ambient temperature of 21 °C, corresponding to average summer temperature based on a 

five year dataset of two local loggers (5 m depth, 2010-2015, SA Water). For the ocean 

acidification treatment, the incoming seawater was pre-conditioned to elevated pCO2 levels 

with pure CO2 in a header tank. Additionally, water was continuously circulated between 

each mesocosm and a separate bin heavily bubbled with enriched air at 1000 ppm pCO2. 

Submersible titanium heaters were used in the elevated temperature treatments. 

Temperature and pH were measured daily and alkalinity fortnightly in each mesocosm. As 

typical for shallow coastal systems, community metabolism produced diurnal variability in 

pH and reduced pCO2 to 900 ppm due to net autotrophy. 

 

Food web assessment 

We studied a sediment-associated 3-level food web including predatory fish, herbivorous 

invertebrates and microalgae. Longfin gobies (Favongobius lateralis) were the principle 

predators on the soft-bottom habitat, where they took bites at the sand to catch small 

invertebrates (see supplementary methods - predators). Seven juveniles caught with seine 

nets were introduced to each mesocosm (mean ± SD total length = 22 ± 4 mm) and first 

habituated to captivity for 1 month. Then, the mesocosm communities were progressively 

acclimatized to their respective climate treatment over one week and kept at treatment 

levels for 3.5 months. This duration was considered as sufficiently long to reach an extended 

level of acclimation in the predators and allowed for potentially ~1-10 (depending on taxa) 

herbivore and ~100 microalgae generations. Predators tripled in body mass confirming that 

the mesocosms provided ample food and habitat. Finally, predator production was 

estimated as the combined gain in mass of all gobies within each mesocosm over the entire 

study period. 

To assess production and standing biomass of herbivores, three different sampling units 

were built using the bottom part of plastic vials (6.5 cm diameter, 2 cm depth): 1) covered by 

mesh (~5 mm mesh size) to exclude predators for measurement of production, 2) entirely 

open and accessible to predators for measurement of standing biomass, and 3) covered by 

an elevated mesh allowing predators to enter as a procedural control for the presence of the 
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mesh. The units were filled with 1.5 cm of mesocosm sand, which had been washed 

superficially to remove any excess organic matter while retaining low levels of herbivores. 

Then, units were placed on the ‘open sand’ habitat and herbivore populations allowed to 

grow out for one month at the end of study period. 

Herbivores were sampled within two units per mesocosm for each production, standing 

biomass and the procedural control. The replicate units for each measure were then pooled 

prior to sample processing. Herbivores were extracted from the sand via floatation with 

Ludox TM colloidal solution with a specific gravity of 1.18 and collected on a 120µm sieve. 

The three dominant invertebrate taxa, which also corresponded to the principle prey found 

in the predators’ stomachs (see supplementary methods – predators), were counted under a 

stereo-microscope (see supplementary methods – herbivores). A subsample of the two 

smaller taxa, copepods (~0.2-1 mm) and annelids (~0.6-5.3 mm), was photographed to 

determine average individual mass based on biovolume estimates, which was then applied 

to the count of each sample. The considerably larger tanaid shrimps (~2-5 mm) were instead 

weighed on a microscale (±0.1 mg). The combined wet mass of these three taxa was finally 

calculated (~830 individuals per sample). There was no main effect of the mesh (ANOVA: 

df(1,8), p = 0.54) or interaction between the effect of the mesh and climate treatments 

(ANOVA: df(1,8), p > 0.11 for all interactions), and thus procedural control and standing 

biomass units were pooled. Finally, the estimates from the units were extrapolated to the 

area of the entire soft-bottom habitat resulting in one replicate of both herbivore 

production and standing biomass per mesocosm. 

Microalgae were assessed using sampling units for production, standing biomass and the 

procedural control which were identical to those used for the herbivores. Prior to placement 

into the mesocosms, herbivores had however been removed in the covered units for 

microalgae production (n = 2 per mesocosm) using boiling water. Herbivores (and predators) 

were instead present in the open units for microalgae standing biomass (n = 4 per 

mesocosm) and the procedural control (n = 4 per mesocosm). Microalgae were allowed to 

recolonize the sand surface inside the units over one month at the end of the study period. 

Chlorophyll a served as a proxy for microalgae biomass. It was extracted from each unit with 

90 % acetone, measured spectrophotometrically (6405 UV/Vis, Jenway) and its 

concentration calculated (Jeffrey & Humphrey, 1975). There was no interaction between the 

effect of the mesh and climate treatments (ANOVA: df(1,8), p > 0.30 for all interactions), and 

thus units for standing biomass and the procedural control were pooled. For the data 

analysis, the average across units was calculated and then extrapolated to the area of the 

entire soft-bottom habitat resulting in one replicate for both microalgae production and 

standing biomass per mesocosm. 
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Predator behaviour and food demand 

To assess the predators’ response to an olfactory food cue, a behavioural experiment was 

conducted within the mesocosm. A food cue disperser containing a food mix of various 

invertebrates was placed on the ‘open sand’ habitat to start the test. Then, the surrounding 

area was video recorded from the top and side for 7 min (Fig. S2). A target was overlayed 

during the subsequent video analysis and the behaviour of each predator manually recorded 

using the software Solomon Coder. We interpreted the number of line crosses into and 

within the target as food search activity. This behavioural test was conducted on two 

different days in the final month of the study, each day at a different area within the 

mesocosm. The behaviour during all individual predator observations during both days was 

summed and the response variable ‘line crosses per minute’ calculated. A procedural control 

preceding each trial showed identical foraging activity for all climate treatments in the 

absence of a food cue (Fig. S4a), suggesting that any difference in behaviour during the trials 

was due to the presence of the olfactory food cue. 

To determine food demand, the predators were captured and starved for 20 h (i.e. gastric 

evacuation). Then, before being sacrificed, they were released back into their original 

mesocosm to forage freely for 4 h. The prey in their stomach was counted under a stereo 

microscope and the average mass of prey organisms estimated applying the taxa-specific 

mass obtained from the herbivore units. The temperature sensitivity of digestion rate, 

however, made a direct comparison of stomach contents between levels of warming less 

reliable. Therefore, the predators’ attack rate at the benthos was determined by video 

recording an area of each mesocosm from the top for 10 min on each of 3 different days. 

The consumption of prey relative to the predator’s mass was calculated for each mesocosm 

as follows: feeding rate = attack rate of predators × average mass of prey organisms / 

predator mass.  

 

Statistical analysis 

Normality and homogeneity of variance were improved by transformation if appropriate and 

assumptions met for all analyses (Shapiro-Wilk test, Levene’s test and visual examination of 

residuals). To assess the effect of future climate on the different response variables 

measured, two-way ANOVAs were conducted with ocean acidification and warming as fixed 

factors. These were followed by Student–Newman–Keuls post-hoc tests in case a significant 

interaction was found between the climate treatments. For a more detailed assessment of 

how future climate may affect the propagation of secondary to tertiary production, a linear 

model with ocean acidification and warming as fixed factors, herbivore production as 

covariate and predator production as response variable was examined. As there was no 

evidence for an altered relationship between secondary and tertiary production under 

future climate (Table S3), a final linear regression was fitted across all climate treatments. 
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Data analyses were performed with the software package R version 3.2.3 (R Core Team, 

2015). 

 

Ethics 

Research was carried out under approval of the University of Adelaide animal ethics 

committee (project: S-2012-193A). Habitat and organism collections were permitted by the 

Minister for Transport and Infrastructure and the Government Department of Primary 

Industry and Regions SA (exemptions: 9902676 and 9902752). 

 

RESULTS 

 

Elevated CO2, elevated temperature and their combined effect boosted primary production 

(Fig. 1a, Table S2a). The successive propagation of the enhanced bottom-up forcing, 

however, depended on warming. Under elevated CO2 alone, secondary production increased 

in the same fashion as primary production (Fig. 1b, Table S2b). In contrast, under elevated 

temperature, secondary production remained unaltered compared to controls (Fig. 1b, Table 

S2b). At the next level of trophic transfer, a strong positive relationship was observed 

between secondary and tertiary production independent of climate treatments (Fig. S3, 

Table S3). Consequently, tertiary production remained unchanged under elevated 

temperature but nearly doubled under elevated CO2 alone (Fig. 1c, Table S2c). 

Tertiary-level predation by fish on secondary producers increased under both climate 

treatments. Under elevated CO2 alone, however, the feeding rates of predators 

corresponded to that of controls once relativized for predator biomass (Fig. 1d, Table S2d). 

Despite the enhanced production of secondary producers under elevated CO2 alone, their 

standing biomass remained unchanged to controls (Fig. 1e, Table S2e) given the stronger 

top-down control due to increased predator biomass (Fig. 1c). In contrast, under elevated 

temperature, predators showed higher feeding rates, while maintaining growth rates equal 

to controls (Fig. 1d, Table S2d, Fig. 1c). Accordingly, the standing biomass of secondary 

producers dropped in the presence of predators (Fig. 1e, Table S2e). Primary producer 

standing biomass, in the presence of secondary producers and predators, increased through 

both elevated CO2 and temperature (Fig. 1f, Table S2f). 

The sensory capability of predators was impaired by elevated CO2 as they failed to show an 

increased foraging activity when exposed to an olfactory food cue compared to no cue (Fig. 

S4, Table S2g). In the absence of elevated CO2, predators instead considerably intensified 

their food search behaviour upon the introduction of a food cue.  
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Figure 1: Effects of ocean acidification (OA) and warming (T) on trophic processes. Mean + SE are 

based on n = 3 mesocosms per treatment, each extrapolated from several subsamples. * marks 

significant effects. For interactions, means with different lower case letters differ significantly based 

on SNK post-hoc tests. 

 

 

DISCUSSION 
 

We demonstrate that elevated CO2 can function as a resource boosting productivity across 

multiple trophic levels (Fig. 2). This result is striking because it contrasts the majority of 

previous studies on single trophic levels, which predict a reduced secondary and tertiary 

production under future acidification (see meta-analysis of Nagelkerken & Connell, 2015). 

The overall performance of both herbivores and predators was likely to have been positively 

affected since we focused on taxa more tolerant to ocean acidification stress (Kroeker et al., 

2013; Wittmann & Portner, 2013). Likewise, at CO2 vents generalist herbivores and meso-

predators that are exposed to elevated CO2 over long-term showed increases in their 

population sizes (Connell et al., 2017; Nagelkerken et al., 2016). Thus, the propagation of 

enhanced bottom-up forcing to higher food web levels as shown in our study provides a 

mechanistic understanding of why generalist consumers can experience increases, rather 

than decreases, in their population sizes in nature.  
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trophic transfer from primary producers to herbivores, while strengthening top-down 

control by predators (Fig. 2). The lack of enhanced secondary production under warming 

might be explained by reduced nutritional quality in algae food (e.g. blooming of toxic 

cyanobacteria, O'Neil et al., 2012) or higher metabolic demands in herbivores that could not 

be met by their consumption. Such a temperature-driven mismatch can lower ingestion 

efficiency and lead to reduced fitness in herbivores, as the raised costs for basic 

maintenance leave less energy for growth and reproduction (Lemoine & Burkepile, 2012). In 

contrary, warming can benefit herbivores when tested within their natural thermal range 

(i.e. in colder seasons) (O'Connor et al., 2009). This emphasizes that some aspects of the 

metabolic theory of ecology might not apply once the optimal thermal ranges of species are 

surpassed (Angilletta et al., 2002; Portner & Farrell, 2008). Understanding food web 

dynamics during summer warming, as tested in our study, is essential since temperature 

extremes have become key drivers of species loss and community structure (e.g. Wernberg 

et al., 2016). 

A possible mismatch between herbivore production and food demands of carnivores may 

occur under future climate (Nagelkerken & Connell, 2015). Indeed, our predators required 

larger amounts of prey to sustain equal growth rates under warming. Consequently, 

herbivore populations declined as warming drove predators to intensify their top-down 

control in the face of elevated metabolic demand (Dillon et al., 2010; Pistevos et al., 2015). 

The trophic compensation we observed under acidification was evidently reversed through 

temperature stress into an imbalanced relationship between prey and predators. These 

dynamics may cascade further down the food web, as enhanced primary producers are 

facing herbivores with lower biomass and fitness, leading to a runaway expansion of primary 

producers (Mertens et al., 2015). Accordingly, in our mesocosms, primary producer biomass 

under warming was more than twice that under present day conditions after only one 

month of re-growth. By hindering compensatory processes that counterbalance the effects 

of human disturbances (Connell & Ghedini, 2015), warming may destabilize ecological 

communities in future oceans. The predicted imbalance between production and 

consumption under warming possibly also applies to linkages at higher trophic levels and 

may lead to a systematic degradation of food webs.  

The changes to future food webs predicted here will be shaped by the complexity of ocean 

processes. The potential for food web enhancement through anthropogenic CO2 is for 

example limited by other resources for primary producers (i.e. nutrients and light) and might 

thus be entirely absent in extremely nutrient deficient systems (Verspagen et al., 2014). 

Although the general decrease of secondary producer biomass with increasing temperature 

has been detected through modelling in accordance with our results (O'Connor et al., 2011), 

positive effects of warming may also be observed if trophic levels are not at equilibrium 

state (e.g. O'Connor et al., 2009). Given this context dependency, it is not surprising that 

opposing results were found by Alsterberg et al. (2013), who tested similar food web 
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components (sediment-associated microalgae and invertebrates) in a different scenario 

(competing with larger primary producers and herbivores for resources). Finally, secondary 

impacts resulting from rising sea surface temperatures, e.g. increased stratification or 

expansion of oxygen minimum zones (Boyce et al., 2010; Schmidtko et al., 2017), will likely 

cause further degradation of the already metabolically stressed food webs.  

Making predictions about the fate of fisheries under future climate is challenging, in 

particular due to the uncertainty over future primary productivity and its propagation 

through food webs to fisheries species (Brander, 2007). Our findings suggest that there is the 

potential of ocean acidification to increase yields of particular species through the transfer 

of resource enrichment across multiple trophic levels, in cases where the species responsible 

for trophic energy flow are less susceptible to the direct effects of acidification. Yet, trophic 

inefficiency under warming may negate any bottom-up forcing through elevated CO2 and 

reduce future fisheries production. By assessing the shifting balance between the 

propagation of resource enrichment and its consumption across trophic levels, we provide a 

predictive understanding of future dynamics of stability and collapse in food webs and 

fisheries. 
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SUPPLEMENTARY METHODS 
 

Table S1 and Figures S1-2 
 

Technical set-up and habitat 

The study was conducted in a flow-through system. All incoming seawater was first 

transferred to two 800 l header tanks and from there gravity fed to each mesocosm (1, 

Fig. S1). The header tank supplying water to the six acidified mesocosms was pre-

conditioned to elevated pCO2 levels with pure CO2 (control system ACQ110 Aquatronica, 

Italy). Each mesocosm continuously exchanged water (~1,800 l per h) with its individual 60 l 

bin to maintain treatment levels. These bins were heavily aerated with enriched air at 1000 

ppm pCO2 (PEGAS 4000 MF Gas Mixer, Columbus Instruments, Columbus, Ohio) or ambient 

air at 400 ppm pCO2 depending on the acidification treatment, and contained submersible 

titanium heaters (800 W) to achieve elevated temperature. Two diffuser pipes (2) used this 

water circulation to form a mild circular current inside the mesocosms alternating direction 

every 6 h. Water flowed back to the 60 l bin through gravity after passing a filter column 

with a ~20 µm screen (3), which ensured that larger organisms were retained within the 

mesocosms. Overall, our complex set-up ensured an environment free of unnatural 

disturbances such as pump noise, air bubbles or electrical currents. 

A 250W metal halide lamp (Osram Powerstar HQI-T 250/D/PRO) was mounted above each 

mesocosm (4, Fig. S1). The lamp had a colour temperature of 5500 K, a colour rendering 

index of 92 and a wave length distribution similar to sunlight as the spectrum provided by 

the manufacturer showed. The mean ± SD irradiance at the mesocosm bottom was 

3833 ± 1304 lux, derived by measures in 5 cm intervals from the centre to the tank wall. 

Applying attenuation coefficients from the literature, this irradiance corresponds to approx. 

6-7 m depth in Gulf St. Vincent (Phillips et al., 1981). For these estimations, the local average 

daily summer irradiance over the past 20 years was used (Bureau of Meteorology, 

www.bom.gov.au, location Adelaide). 

The research was conducted at the South Australian Research and Development Institute 

(SARDI; 34°57'10"S, 138°30'20"E), and all habitats and organisms used were collected within 

60 km of the facility. The benthic habitat in our mesocosms comprised four patches of each 

‘rocky reef’ (5, Fig. S1) and ‘artificial seagrass’ (6) arranged in pairs and ‘open sand’ 

surrounding these patches (7). The artificial seagrass was designed after the most abundant 

local seagrass Posidonia spp. (Bryars &  Rowling, 2009) and was incubated for 2 weeks in the 

subtidal close to seagrass meadows to allow for epiphytic colonization before being 

transplanted into the mesocosms. The silica sand was chosen according to the sediment 

found at local beaches and seagrass meadows with the main grain size fraction between 

0.21 - 0.85 mm (type N30, Sloans Sand, Australia). An assemblage of six species of juvenile 
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Table S1: Overview of water parameters during the 3.5 months treatment period (mean ± SD). 

Standard deviations represent the variability between mesocosms.  

Parameter control elevated CO2 elevated T elevated CO2 + T 

Temperature (°C) 21.1 ± 0.13 20.9 ± 0.05 23.8 ± 0.18 23.8 ± 0.08 

pHNBS 8.14 ± 0.004 7.88 ± 0.004 8.12 ± 0.002 7.89 ±0.009 

Salinity (ppt) 36.3 ± 0 36.3 ± 0 36.3 ± 0 36.3 ± 0 

Total Alkalinity (µmol kg
-1

) 2482 ± 4 2485 ± 5 2486 ± 6 2493 ± 3 

pCO2 (ppm) 465 ± 5 905 ± 6 500 ± 8 915 ± 25 

HCO3 (µmol kg
-1

) 1995 ± 6 2186 ± 3 1985 ± 2 2166 ± 9 

CO3 (µmol kg
-1

) 200 ± 2 123 ± 1 206 ± 2 135 ± 3 

Ω Calcite 4.74 ± 0.05 2.91 ± 0.02 4.90 ± 0.05 3.20 ± 0.07 

Ω Aragonite 3.09 ± 0.04 1.90 ± 0.01 3.22 ± 0.03 2.10 ± 0.05 

 

Food web 

Herbivores  

Four dominant taxa were identified in the herbivore units with the following biomass 

composition (mean ± SD based on n = 12 mesocosms): tanaids 33.8 ± 13.1 %, copepods 

20.0 ± 7.5 %, annelids 35.5 ± 8.9 % and nematodes 10.6 ± 2.8 %. These taxa have high 

abundances in the top layer of coastal sediments and are recognized as major consumers of 

sediment-associated microalgae (Buffan-Dubau & Carman, 2000; Davis & Lee, 1983; 

Montagna, 1984; Montagna et al., 1995). They thus represent a crucial link between benthic 

primary production and higher trophic levels. Nematodes contributed less than 0.01 % to the 

predator’s diet and were excluded from this study. To estimate the herbivore biomass in the 

sampling units, for small herbivores (i.e. copepods, small annelids and nematodes), only a 

subsample of 7.5 % was counted for each sample by randomly selecting 30 out of the 400 

cells on the counting tray. In contrast, the entire sample was assessed for large herbivores 

(i.e. tanaids and larger annelids). We calculated the biovolume of the smaller herbivore taxa 

based on photographs and measurements with ImageJ: n = 159 copepods, n = 65 annelids 

and n = 138 nematodes. The taxa specific average mass across climate treatments was then 

used to obtain the total herbivore mass for each sample. Only for copepods, the treatment 

specific average mass was used since it differed between climate treatments (ANOVA: 

F(1,155) = 4.13, p = 0.044). 

 

Predators 

The predatory fish used in this study, Favonigobius lateralis, inhabits shallow soft-bottom 

habitats (seagrass and non-vegetated) and is amongst the most abundant species locally 

(Bloomfield & Gillanders, 2005; Connolly, 1994; Gomon et al., 2008; Wear & Tanner, 2007). 

The behavioural observations confirmed their strong association with the soft-bottom 

habitat in the mesocosms, as they spent over 80 % of time and performed 90 % of their 

foraging over soft-bottom during 275 min of individual tracking. They were observed 
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foraging within the herbivore units frequently, and stomach content analysis identified the 

herbivore taxa found in these units as principle food source. The mass of each herbivore taxa 

in the predator stomachs was calculated using their count and the taxa-specific average 

mass from the herbivore sampling units, resulting in the following mean ± SD diet 

composition (based on n = 12 mesocosms, each represented by 5-7 fish): tanaids 

44.3 ± 13.4 %, copepods 39.1 ± 15.9 %, annelids 5.0 ± 5.2 % and other taxa 10.5 ± 8.8 % (i.e. 

molluscs, ostracods, nematodes and unidentified invertebrates). This composition should 

not be interpreted in detail due to the large difference in digestibility between prey taxa as a 

consequence of size and the presence or absence of an exoskeleton. For example, the 

contribution of annelids was likely considerably underestimated because they were small 

and lacked an exoskeleton and the contribution of tanaids overestimated as they were large 

and heavily armoured. 

The physical condition of the predators, based on Fulton’s condition factor (Bolger & 

Connolly, 1989), remained unaltered by future climates (ANOVAs: df(1,8), p > 0.7 for OA, T 

and OA×T). The only 5 fish that died, out of the total of 84 individuals, were distributed 

among the mesocosms with elevated temperature. Contrasting this 10 % loss in abundance 

under elevated temperature to the 75 % gain in average individual mass under elevated CO2 

alone suggests that the patterns in predator productivity (≙ abundance x average growth) 

and top-down forcing were mainly a result of differential predator growth rates, rather than 

a change in predator numbers or physical condition. To note, our experiment did not allow 

for predator reproduction. Over long-term in nature, predator populations would also be 

expected to respond to changing food availability and metabolic demands by altered 

abundances. 

 

Predator behaviour 

Each individual predator was tracked from entering until exiting the field of view (Fig. S2) of 

the top camera (GoProTM Hero4 Silver). These predators typically sit motionless on the 

bottom and inspect the sand around them. They either strike at the sand or hop a few cm 

forward to evaluate a new spot. The chances of finding a lucrative prey source hence 

increase with the number of cycles of hopping and evaluating. Therefore, we interpreted the 

number of line crosses into and within the target centred on the cue disperses as food 

search activity. The food cue disperser was built with a transparent 50 ml vial with nine 

windows cut into sides and top and covered by fine mesh. A smaller opaque tube inside the 

vial contained 4.5 g food mix (defrosted bloodworms and various kinds of marine molluscs 

and crustaceans; Fish Fuel and Co., Australia). Tests with food dye indicated a slow and 

continuous dispersion out of the opaque tube and finally vial. A food cue disperser not 

containing food mix was located at the exact same site for the 24 h prior to each behavioural 

trial to allow for habituation. Preceding each trial, a procedural control video recording was 
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SUPPLEMENTARY RESULTS 
 

Tables S2-3 and Figures S3-4 

 

Table S2: ANOVAs testing the effects of ocean acidification (OA), warming (T) and their interaction on 

alternate trophic levels. Significant effects relevant for further interpretation are indicated in bold. 
 

Response variable (transformation) Source of variation df MS F-ratio P-value 

      

a) Microalgae production  OA 1 6.5 1.76 0.221 
 

T 1 39.7 10.82 0.011 

 
OA×T 1 21.7 5.90 0.041 

 
Residuals 8 3.7 

  

      
b) Herbivore production (x

1.5
) OA 1 2.46 3.43 0.101 

 

T 1 4.70 6.55 0.034 

 

OA×T 1 4.64 6.47 0.035 

 
Residuals 8 0.72 

  

      
c) Predator production (x

1.5
) OA 1 5.75 7.94 0.023 

 

T 1 4.20 5.80 0.043 

 
OA×T 1 4.30 5.94 0.041 

 
Residuals 8 0.72 

  
      

d) Predator feeding rate (x
1.5

) OA 1 0.04 0.04 0.854 

 T 1 6.81 6.43 0.035 

 OA×T 1 <0.01 <0.01 0.987 

 Residuals 8 1.06   

      
e) Herbivore standing biomass OA 1 0.03 0.34 0.576 

 

T 1 1.72 23.33 0.001 

 

OA×T 1 0.31 4.17 0.075 

 

Residuals 8 0.07 
  

      

f) Microalgae standing biomass OA 1 12.6 10.78 0.011 

 T 1 35.6 30.52 <0.001 

 OA×T 1 2.8 2.38 0.162 

 Residuals 8 1.2   

      

g) Predator number of line crosses OA 1 23.5 10.28 0.013 

     T 1 1.4 0.61 0.459 

 OA×T 1 0.7 0.29 0.602 

 Residuals 8 2.3   
    

    

 

df = degrees of freedom; MS = mean squares 
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CHAPTER III 
 

ECOLOGICAL COMPLEXITY 
BUFFERS THE IMPACTS OF FUTURE CLIMATE 

ON MARINE CONSUMERS 
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ABSTRACT 
 

Ecological complexity represents a network of interacting components that either 

propagate or counter the effects of environmental change on individuals and 

communities 1-3. Yet, our understanding of the ecological imprint of ocean 

acidification (elevated CO2) and climate change (elevated temperature) is largely 

based on reports of negative effects on single species in simplified laboratory 

systems 4,5. By combining a large mesocosm experiment with a global meta-analysis, 

we reveal the capacity of consumers (fishes and crustaceans) to resist the impacts of 

elevated CO2. Whilst individual behaviours were impaired by elevated CO2, 

consumers could restore their performances in more complex environments that 

allowed for compensatory processes. Consequently, consumers maintained key traits 

such as foraging, habitat selection and predator avoidance despite elevated CO2 and 

sustained their populations. Our observed increase in risk-taking under elevated 

temperature, however, predicts greater vulnerability of consumers to predation. Yet, 

CO2 as a resource boosted the biomass of consumers through species interactions 

and may stabilise communities by countering the negative effects of elevated 

temperature. We conclude that compensatory dynamics inherent in the complexity 

of nature can buffer the impacts of future climate on species and their communities. 
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INTRODUCTION, RESULTS AND DISCUSSION 
 

The web of life is classically considered as a network of organisms interlinked to each other 

and their environment through biotic and abiotic processes 1. These networks not only drive 

population dynamics but also shape the ecological imprint of human activities at multiple 

levels of biological organisation 2,3. Individuals possess remarkable plasticity in using the 

complexity of their environment to persist through abiotic stress 6-9. Yet, their interactions 

with other species can propagate 10,11 or stabilize against change 12, giving rise to strong and 

complex indirect effects 13,14. In turn, species diversity enhances function 15 and stability 

within ecosystems 16,17. Consequently, as it manifests from individuals to ecosystems, 

ecological complexity has the potential to alter or stabilize local communities during global 

change. 

Predictions of ecological responses to future ocean acidification and warming remain largely 

based on simplified laboratory systems and species in isolation 4. The metabolic rates of 

marine ectotherms are directly affected by warming 18, which accelerates growth in some 

species when sufficient food is provided 19. However, in nature, temperature driven regime-

shifts can negate such direct benefits by eroding the resources on which they rely 20. Ocean 

acidification can raise the energetic costs involved with calcification and acid-base 

regulation 21,22 and impair neural functioning causing disturbed responses in ecologically 

relevant behaviours 5. An intensification of these direct effects from ocean acidification 

might be expected when animals are exposed to the pressures and complexities of nature. In 

contrast, fishes, crustaceans and calcifying herbivores can flourish at natural analogues of 

ocean acidification 23,24. These counter-intuitive findings suggest the existence of 

mechanisms that reverse the direction of change within the complexity of ecological 

communities.  

Understanding the response of actively foraging animals to global change is particularly 

challenging because, compared to plants or sedentary animals, they consume a diversity of 

biological resources 25 and are able to react through their mobility and complex 

behaviour 7,26. Interactions between an individual and its environment are mediated by 

behaviour; acting as a first line of defence against rapid human-induced change 27. 

Exceptional plasticity in behaviour draws upon building blocks of ecological complexity such 

as space, time or environmental information to initiate compensatory responses 6,7. For 

example, animals that are impaired in one sense through abiotic change (e.g. olfaction 

impaired by ocean acidification) may retain their capacity for relevant decision making when 

provided with more complete information about their environment through additional 

sensory cues 28,29. Therefore, a deeper understanding of the role of behavioural plasticity 

and the indirect effects that operate within communities is critical to bridge the gap 

between the effects of future climate in the laboratory and their consequences in nature 3-5. 
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The first step of our investigation experimentally tested whether ecological complexity can 

modify the effects of ocean acidification and warming on active consumers. In 1,800 l 

mesocosms harbouring a mosaic of habitats, we assessed the response of an assemblage of 

eight species of omnivorous and carnivorous fish and shrimp (Table S10) at the organism to 

community levels. The consumers were supported by a self-sustaining and highly diverse 

food web including microflora and fauna, macrophytes (20+ species) and 

macroinvertebrates (70+ species). Elevated CO2 (910 μatm, pH=7.89) and temperature 

(+2.8 °C, baseline 21 °C) were maintained for 4.5 months according to end-of-century 

projections (RCP 8.5) 30. Warming was simulated based on summer temperatures because 

climate extremes are key drivers of community structure 20; temperatures remained 

nevertheless within the thermal limits of the consumer species (see Table S12). 

This mesocosm approach showed that the direct negative effects of elevated CO2 can be 

buffered and even reversed by ecological complexity. Consumers under elevated CO2 were 

less attracted to either olfactory or visual food cues in isolation – the simplest level of 

complexity (Fig. 1a, Table S1, S2). However, when both olfactory and visual cues were 

present, consumers fully restored their attraction to food cues under elevated CO2 (Fig. 1a). 

Accordingly, the success of consumers during hunting was not affected by elevated CO2, 

estimated through the number of live prey captured while foraging freely amongst 

structured habitats (Fig. 1b, Table S3a). Consumer-resource interactions operated over long-

term in the mesocosms, as consumers had to search and compete for the self-replenishing 

resources. At this ecologically more complex level, resource availability was boosted by 

elevated CO2 (Fig. 1c, Table S3b), and correspondingly, consumer assemblages showed 

higher biomass (Fig. 1d, Table S3c). This response was not altered by the identity of 

consumer species (Table S4).  

Whilst elevated temperature did not affect cue sensing in consumers (Fig. 1a, Table S1), it 

intensified risk-taking behaviours that could increase their exposure to predators in nature. 

Consumers invested more effort in acquiring food under elevated temperature (Fig. 2a, 

Table S3d), but this was not converted to increased biomass (Fig. 1d, Table S3c). In the 

absence of a predator, consumers of all climate treatments aggressively competed for food 

in unsheltered habitat (Fig. 2b, Table S5, 6). Only consumers under ambient temperature 

reduced these interactions when facing a live predator, while consumers under elevated 

temperature maintained high levels of risk-taking. In contrast, CO2 did not affect the 

response of consumers to a live predator that provided the full range of predator cues (Fig. 

2b, Table S5). 
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Figure 1: Mesocosm study showing how the negative effects of ocean acidification on consumers can 

be buffered and reversed through ecological complexity (mean + SE). a) Sensing of visual, olfactory 

and combined visual-olfactory food cues (n = 6 behavioural trials from 3 mesocosms). b) Invertebrate 

prey captured during foraging (n = 53, 62, 49 and 54 fish). c) Availability of resources and d) overall 

performance of consumers estimated as biomass after long-term exposure (n = 3 mesocosms). 

Different superscripts mark significantly different groups of means following main effects (via 

ANOVA, plot b-d) or interaction (via post-hoc tests, plots in a). 

 

 

 

Figure 2: Mesocosm study showing how warming can increase risk-taking behaviour in consumers. 

a) Hunting effort (mean + SE) required to meet food demand (n = 3 mesocosms). b) Willingness to 

take risks in the absence and presence of a live predator (n = 18 behavioural trials per regression line 

from 6 mesocosms). Different superscripts mark significantly different groups of means following 

main effect (via ANOVA, plot a) or interaction (via post-hoc tests, plots in b). 

 

The second step of our investigation related these experimental responses to ocean 

acidification with responses of other study systems (n = 102 experiments) that similarly 

included fishes or decapod crustaceans. The performance of consumers was considered in 

three key ecological traits – predator avoidance, habitat selection and foraging – under 

different levels of ecological complexity. Meta-analysis suggested a steady reduction of the 

impacts of ocean acidification on consumers from ecologically simple to complex 

experiments (Fig. 3, Table S8a), which is in agreement with our mesocosm study. Elevated 
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CO2 had a strong negative effect on multiple behaviours in simpler experiments (Table S9a). 

However, negative effects on behaviour, growth or survival were less severe (for predator 

avoidance) or absent (for habitat selection and foraging) in experiments with medium 

complexity (Table S9a). While we defined these two levels of complexity through the 

presence of sensory cues – ‘simple’ for an isolated cue and ‘medium’ for multiple cues – they 

were likely representative of ecological complexity in a broader context (see Table S16). At 

natural CO2 vents, the most complex level that integrated ecological traits and allowed for 

biotic interactions, population densities of consumers remained on average unaffected (Fig. 

3, Table S9a), but showed an increase for several individual experiments (Fig. S1). 

 

 
 

After accounting for ecological traits and levels of complexity in the meta-analysis, the 

amount of remaining heterogeneity indicated that responses of consumers to elevated CO2 

differed substantially among experiments (I2 and Q statistics in Table S9a). Whilst the CO2-

effect appears to be variable across species and contexts, the consumer responses from our 

mesocosm are close to the mean effect sizes from the literature and may thus be seen as 

representative (Fig. S1). 

 

We show that ecological complexity buffers the influence of future climate on marine 

consumers and highlight the importance of compensatory processes within complex 

communities. We not only provide an experimental demonstration for this phenomena, but 

also show how widely spread it may occur across multiple systems. Physiological responses 

to ocean acidification were compensated at the organismal level, and indirect effects 

subsequently acted as principle pathways towards negative (via ocean warming) or positive 

change (via ocean acidification) (Fig. 4). Such successive incorporation of increasing 

ecological complexity may explain why global change can be dampened at larger spatio-

temporal scales 2. It may also assist us in understanding the widespread nature of 

Figure 3: Meta-analysis on the effects 

of ocean acidification on the 

performance of fishes and decapods at 

different levels of ecological 

complexity. Effect sizes are 

standardised mean differences 

(Hedges’ g) and should be interpreted 

as multiples of standard deviations. 

Within each of the three ecological 

traits, different superscripts mark 

effect sizes that differ significantly 

between levels of complexity. Asterisks 

mark significant differences from 0 and 

parentheses give the number of 

experiments included. 
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observations in the stability-biodiversity debate: e.g. why plant diversity reinforces the 

resistance of grassland productivity to abiotic stress 17, and why increasing trophic diversity 

provides stability to food webs16 and enhances ecosystem services 15. From homeostasis 

within individuals to interactions among species, these lower-level processes may contribute 

to emergent properties of stability and resistance at the scale of complex food webs and 

ecosystems 12. 

 

 

Figure 4: Conceptual framework of how increasing ecological complexity can buffer the direct 

negative effects of future climate on marine consumers and drive community dynamics through 

biotic interactions. Fitness predictions are based on a multi-species assemblage tested in a foraging 

context in mesocosms (acidification and warming) and on a global meta-analysis considering multiple 

ecological traits (acidification only). 

 

Whilst isolated sensory modalities were often compromised by ocean acidification – a 

results that on its own would predict population decline – consumers could restore their 

performances through compensatory responses at the organism level. For instance, sensory 

compensation may occur via two mechanisms based on the cognitive flexibility of 

animals 6,28,29: an impaired sensory modality is replaced by a functioning one (i.e. sensory 

redundancy) or, as demonstrated in our mesocosms with vision and olfaction, two impaired 

modalities complement each other (i.e. sensory complementation). In the broad ecological 

context of our meta-analysis, neuroplasticity and learning may also form part of the 

repertoire of processes that buffer against the negative effects of ocean acidification 7,31. 

However, the full compensatory potential may only be accomplished if animals are offered 
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choices (e.g. in resources and habitat) under long-term selective pressure (e.g. competition 

and survival). These criteria are met at natural CO2 vents and in our mesocosms and might 

have favoured the development of behavioural strategies to maintain increasingly difficult 

tasks such as hunting. By drawing upon the complexity that characterises ecological niches, 

behavioural plasticity can improve the fitness of animals during unprecedented 

environmental change including ocean acidification and buy genetic adaptation time for 

physiological recalibration 8,27,32. 

At the community level in our mesocosms, an increase in resources supported greater 

consumer biomass reversing the direct negative effect of ocean acidification. Primary 

producers can utilise anthropogenic CO2 as a nutrient 33 that propagates to secondary 24 and 

tertiary producers 23,34. Alterations to consumer-resource interactions are generally regarded 

as powerful drivers of food web structure and function 3,11, and we show that CO2 

enrichment can benefit an entire assemblage of consumers, including eight species of 

omnivores and carnivores. CO2 enrichment may similarly be responsible for the increase in 

fish numbers at CO2 vents in the Mediterranean, the tropical Pacific and the temperate 

Pacific as documented by several studies in our meta-analysis. Whilst our findings provide a 

broader framework in which to consider ocean acidification – a field dominated by reports 

on negative effects – ecosystems as a whole still seem likely to experience losses in species 

and functional diversity 18.  As such, ocean acidification may I) impair other life stages 

including reproduction and early life-history that are not fully considered at CO2 vents due to 

the subsidy of individuals from nearby control areas, II) enable generalist species to displace 

specialist species 14, III) threaten calcifying consumers including molluscs and 

echinoderms 22, and IV) impact foundation species such as corals causing degradation of 

habitats and the species they support 35. 

Ocean warming may counter the positive effects of acidification on consumers by increasing 

their vulnerability to higher order predation. In our mesocosms, the rising metabolic demand 

at elevated temperature 18 may have favoured competition for food over vigilance in the 

trade-off between growth and survival 36,37. Through increased risk-taking in consumers and 

raised food demands in their predators 18,19, warming would intensify predator-prey 

interactions. These findings are unlikely to reflect short-term stress-responses, as the 

thermal niche of our consumer assemblage was not exceeded by the warming treatment. 

This possibly explains the absence of any negative effects of warming on foraging behaviours 

and biomass. In contrast, species loss and a substantial re-organisation is forecast for 

consumer assemblages closer to their upper thermal limits, which is more often the case in 

the subtropics 38. Trophic complexity that incorporates resources (i.e. gain) and predators 

(i.e. loss) 11,25 propagates change via indirect effects 3,10,34 that may dominate over direct 

effects of human stressors 13. Accordingly, our findings suggest that changes in consumer 

assemblages in future oceans can depend on the relative balance between the negative 

effect of predation through warming and the positive effect of resource enhancement 
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through acidification (Fig. 4). This consideration challenges the view of ocean acidification as 

an overwhelming stressor and, instead, indicates its potential to buffer some impacts of 

coinciding ocean warming. Consumers may consequently maintain function under future 

climate to support some ecosystem services, such as the trophic transfer of benthic 

production towards fisheries. 

We here bridge the knowledge gap between direct effects of future climate and the 

dynamics of species assemblages in natural environments. Our findings reveal processes that 

counter the propagation of change, both at simple (via sensory compensation) and elevated 

levels of complexity (via resource enrichment and interacting stressors). Therefore, we 

highlight the potential of ecological complexity to buffer or reverse the responses of species 

to future climate and mediate change or stasis in ecological communities.      
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METHODS 

 

MESOCOSM STUDY 

 

Mesocosms 

We simulated a shallow temperate coastal ecosystem with enhanced level of realism using 

twelve circular mesocosms of 1,800 l each (see Fig. S2 and S5 for photos; width = 169 cm and 

depth = 80 cm), maintained indoors from February to July 2015. Each mesocosm comprised 

a mosaic of the three dominant local habitats (Gulf St. Vincent, South Australia) 39: I) ‘Rocky 

reef’ made of natural rocks collected from the sea and including associated macrophytes and 

invertebrates, II) ‘artificial seagrass’ colonized by epiphytes and planted into fine silica sand, 

and III) ‘open sand’ composed of the same sand. Natural sediment collected among seagrass 

meadows and including all infauna and flora was used to seed the soft-bottom habitats (25 l 

per mesocosm). Primary production was fuelled by a lamp that simulated a local water 

depth of ~6-7 m (14/10 light-dark cycle, 30 min dawn and dusk dimming). A flow-through of 

unfiltered seawater provided each mesocosm with nutrients and planktonic propagules at 

2,300 l day-1. 

 

Climate treatments 

CO2 (levels: ambient and elevated) was crossed with temperature (levels: ambient and 

elevated) using three replicate mesocosms per treatment combination. Climate 

manipulations followed end-of-century projections under a business-as-usual emission 

scenario (RCP8.5) 30 (see Table S13 and Fig. S3 for details on water parameters). An ambient 

temperature of 21 °C was applied corresponding to local summer conditions (average over 

two loggers: 5 m depth, 5 year dataset 2010-2015, SA Water). To achieve elevated CO2, the 

seawater was pre-conditioned with pure CO2 to treatment levels (1000 μatm pCO2) and then 

continuously circulated between each mesocosm and an associated bin heavily aerated with 

CO2-enriched air (at 1000 μatm pCO2). These bins also contained heaters in the elevated 

temperature treatments. As expected from shallow coastal systems, community metabolism 

produced diurnal variability in pH and reduced pCO2 to 910 μatm due to net autotrophy 

(Fig. S4). 

 

Consumer assemblage 

We studied an assemblage of highly mobile omnivorous and carnivorous consumers, 

including juveniles of six species of fish and two species (same genus) of shrimp (Table S10). 

To start, 7-10 individuals of each fish species and 10 shrimps (total of n = 55 per mesocosm, 

10-40 mm in length) were introduced to each mesocosm, which was then exposed to the 
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climate treatments for 4.5 months. This long-term exposure not only ensured an advanced 

level of acclimation in the consumers but also allowed trophic and competitive forces to act 

on the consumer assemblage. Correspondingly, the consumers adjusted to their specific 

environmental conditions through growth and survival, with an average of 25.1 ± 4.4 (± SD) 

individuals remaining per mesocosm at the end of the experiment (Table S11). 

The effects of ocean warming on ecological communities is forecast to vary considerably 

between regions depending on the specific thermal niches of component species 38. As 

indicated by latitudinal distributions, the 8 consumer species used in our mesocosm likely 

differ in their thermal niches (Table S12). While all species also occur in considerably colder 

regions relative to the location of our study, their ranges extend differently towards warmer 

regions. Yet, we found no evidence for a species-specific effects of warming on biomass or 

abundance after long-term exposure in the mesocosms (Table S4). A change in composition 

was possibly not observed as our study location is not at the upper thermal limit of any of 

the consumer species. 

 

Consumer behaviour 

Cue sensing and decision making in the context of foraging and predation were tested inside 

the mesocosms after 2.5 months of exposure to the climate treatments. To study potential 

sensory compensation, the attraction of the consumers to three distinct food cues was 

tested: I) isolated visual cue, II) isolated olfactory cue and III) combined visual and olfactory 

cue. A ‘food cue provider’ provided the visual (highly active brine shrimps, 2-5 mm length), 

olfactory (mix of various invertebrates), and combined cues without a change in appearance 

(Fig. S5). To study consumers under predation risk, a live predator (Gymnapistes 

marmoratus, ~9 cm total length, n = 3 per treatment, for thermal niche see Table S12) was 

presented in a cage emitting the natural range of predator cues (Fig. S5). The predators were 

acclimated to the climate treatments for one month in separate tanks and fed daily ad 

libitum with a mix of local prey fishes and shrimps. 

Behavioural trials with all combinations of ‘food cue’ (levels: visual, olfactory and 

visual + olfactory) and ‘predator’ (levels: absent and present) were conducted in each 

mesocosm in random order on different days, totalling 6 trials per mesocosm. The food cue 

provider was placed in front of the predator cage to start the trials and the surrounding area 

video recorded from the top (field of view 90×50 cm) for 7 min. During the subsequent video 

analysis, a circular overlay centred on the provider divided the field of view into an area 

‘close’ and ‘distant’ to the food cue (Fig. S5). The behaviour and location of individuals was 

manually recorded for every second from entering until exiting the field of view using the 

software Solomon Coder. Hardyheads were not considered because they often stayed in the 

water column out of camera view. For each trial, the sum across all individual observations 

was used as consumer response. 
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Three response variables were derived for further analysis. I) ‘Cue attraction’ was estimated 

as the percentage of time spent ‘close’ to the food cue relative to the time spent in the 

entire field of view. A procedural control preceding each trial showed no effect of the 

climate treatments on the attraction to the provider in the absence of a food cue (see 

supplementary methods – consumer behaviour). II) ‘Risk-taking’ was determined by 

counting all clearly identifiable competitive interactions between individuals in the area 

close to the food cue (i.e. attacks, fights and chases). This area faced the predator cage and 

provided no habitat structure. III) ‘Hunting activity’ was measured as bite rate at the benthic 

habitat by the carnivorous fish (i.e. little weed whiting, blue weedy whiting and longfin 

goby). To represent the general effort invested into hunting in the mesocosm environment, 

only the area distant to the food cue and trials without predator were considered here and 

pooled to obtain one replicate per mesocosm.  

 

Consumer biomass, hunting success and diet 

Over the final month of the study, the actual foraging outcome was assessed through 

stomach content analysis. Consumers were captured, starved for 20 h (i.e. gastric 

evacuation), and then released back into their mesocosm to forage freely for 4 h. Finally, the 

stomachs of fishes were assessed under a stereo microscope to identify their principle 

resources using biovolume estimation and to determine ‘hunting success’ through the 

number of prey invertebrates captured (see Supplementary information – resources). Due to 

temperature sensitivity of digestion rates, hunting success under elevated temperature was 

likely underestimated and should thus only be compared between levels of CO2. As shrimps 

masticate larger prey, we derived their diet from the literature. For each mesocosm, 

consumer biomass and abundance was calculated as the sum over all individuals. Both these 

responses showed no evidence for a species-specific climate treatment effect (Table S4), 

which validates the use of responses across a species assemblage in this study. 

 

Resource availability 

A large species and functional diversity of resources was introduced with the habitats and 

unfiltered flow-through seawater. This increased the likelihood of species more tolerant to 

low pH or high temperature which are essential for community dynamics that buffer against 

the loss of sensitive taxa such as density compensation and functional redundancy. 

Moreover, the long-term exposure allowed for advanced acclimation in larger and multiple 

generations in smaller-bodied resource taxa (see Supplementary information – resources). 

Over the final month of the study, the principle resources of the consumers were sampled 

thoroughly in all habitats: small molluscs, annelids, copepods, macrofaunal crustaceans, 

matt-forming algae, and detritus. The measures for each resource were then standardized to 

the maximum value observed for the respective resource in any mesocosm. The average 
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across the different standardized resources provided a relative measure of resource 

availability for each mesocosm.  

 

Data analysis 

I) Two-way ANOVAs were conducted with CO2 and Temperature as fixed factors for response 

variables with mesocosm as lowest level of replication. II) For ‘hunting success’, which was 

instead based on individuals as replicates, linear mixed models were fit incorporating CO2 

and Temperature as fixed factors and Mesocosm as random factor. III) The behavioural 

responses ‘cue attraction’ and ‘risk-taking’ were tested within each mesocosm under all six 

possible combinations of Food cue and Predator. Thus, linear mixed models were fit based 

on a conventional split-block design employing Mesocosm as random blocking factor 40. The 

fixed effects included CO2 and Temperature as between block factors, Food cue and 

Predator as within block factors and all their interactions. Competition was expected to be 

influenced by the density of individuals in each behavioural trial. Thus, for the response ‘risk-

taking’, the time individuals were present close to the food cue (i.e. density) was added as 

covariate. To identify the key drivers of behaviour, sub-models with all possible 

combinations of the fixed effects were compared using the Akaike Information Criterion 

corrected for small sampling sizes (AICc) 41, while retaining the random model structure. The 

fixed effects of the most parsimonious sub-models were also tested using ANOVA. 

In case of a significant (α = 0.05) interaction, post hoc multiple comparisons adjusted by false 

discovery rate were conducted 42. The testing of multiple responses in the same mesocosms 

did likely not alter our interpretation of the results through an inflation of Type I error (Table 

S7). Deviations from normality of residuals and random effects were assessed with normal 

Q-Q plots and Shapiro-Wilk tests, homogeneity of variance with residual versus fitted plots 

and Levene’s tests, and sphericity with Mauchly’s tests. The heteroscedasticity and/or 

positive skewness in several response variables were corrected by transformation. More 

information on model diagnostics and transformations can be found in the corresponding 

statistic tables in the Supplementary information. All data analyses were performed with R 

version 3.4.1 43. 

 

Ethics 

Research was conducted under approval of the University of Adelaide animal ethics 

committee (projects: S-2012-193A). The collection of organisms and habitat was permitted 

by the Minister for Transport and Infrastructure and the Government Department of Primary 

Industry and Regions SA (exemptions: 9902676 and 9902752). 
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META-ANALYSIS 

 

Literature search 

We searched for studies published between 2008-2017 in the field of ocean acidification 

that included experiments or observations on fishes or decapod crustaceans in the 

laboratory or at CO2 vents in the field (see Supplementary information – search protocol). 

The primary search with Web of Science was complemented by scanning recent 

reviews/meta-analyses and unpublished data. Only experiments simulating realistic future 

scenarios were considered with a pCO2 of on average ~1000 µatm (range 600 - 2100 µatm), 

but extreme values were accepted for environments with naturally high pCO2. Finally, we 

identified 102 experiments from 57 studies (Figure S6) that matched one of seven categories 

following the general framework of the mesocosm study. A detailed list of all experiments is 

provided by Table S19 (this Excel table is unfortunately too large to be printed in the thesis). 

Experiments at CO2 vents that measured population sizes were classified as being 

ecologically ‘complex’ as they integrate over various ecological traits and include biotic 

interactions over long term allowing for potential indirect effects. Experiments at ‘simple’ or 

‘medium’ complexity could instead be assigned to either of the ecological traits ‘predator 

avoidance’, ‘habitat selection’ or ‘foraging’. ‘Simple’ was used for experiments on isolated 

sensory modalities typically tested with short-term behaviours and ‘medium’ for 

experiments in which individuals could use two or more sensory modalities in short-term 

behavioural tests or during longer term growth or survival. More detail on the types of 

experiments that were considered in the meta-analysis are given in Table S14. Although 

increasing complexity was categorized based on sensory modalities and the 

presence/absence of long-term biotic interactions, it represented also an increase in other 

potential measures of complexity (Table S16).  

 

Effect sizes and analysis 

Information was extracted for each experiment from supplementary data or from figures 

through data-mining (web plot digitizer 3.12). We calculated the standardized mean 

difference as effect size for each experiment, which represented the mean difference in 

performance of consumers in control and elevated CO2 conditions standardized by standard 

deviations (Hedges’ g) 44. Standardized mean difference is popular in modern meta-

analysis 45, and better suited for our study than the log-transformed response ratio as it can 

be applied to a wider range of data (but see Table S8b, 9b). 

For each of the 7 categories defined by trait and complexity, we conducted a random-effects 

meta-analysis 45,46 to estimate an overall mean effect size and to test its significance. These 

models were fitted with restricted maximum likelihood and weighed the effect sizes of 
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individual experiments according to their uncertainty. The conservative Knapp-Hartung 

approach was employed for hypothesis tests and to construct confidence limits 47. The 

heterogeneity statistics I2 and Cochran’s Q-test 48 were calculated to quantify and test for 

the variability in the data that is due to differences between individual effect sizes (i.e. 

experiments) beyond what could be expected by chance alone. A substantial amount of 

unexplained heterogeneity was found for all mean effect sizes (Table S9a), which was 

however not related to the specific degree of acclimation or pCO2 increase that 

characterized individual experiments (Table S17). A discussion on other factors that may 

have influenced the effect of elevated CO2 can be found in the Supplementary information 

under ‘potential moderators’. 

In addition, for each of the three ecological traits, we conducted a mixed-effects meta-

analysis 45,46 that employed ecological complexity as moderator with its levels ‘simple’, 

‘medium’ and ‘complex’. Although the ‘complex’ level did not distinguish between ecological 

traits, it was included in all three analyses as the comparison of population responses at CO2 

vents with the performance in specific traits at ‘simple’ and ‘medium’ complexity is 

meaningful. A significant moderator test was followed by post hoc multiple comparisons 

adjusted by false discovery rate 42. The meta-analysis was conducted with the R package 

metafor (version 2.0-0) 46. 

 

Data diagnostics 

Forest plots, normal Q-Q plots, residual versus fitted plots, and Cook’s distance were used to 

assess data properties and extreme outliers were subsequently winsorized (see 

Supplementary information – data analysis and Table S15). A ‘leave-one out’ analyses was 

conducted in which one individual effect size at a time was removed before retesting the 

significance of the model. This sensitivity analysis confirmed that our interpretation of the 

results was not driven by the presence of single, particularly influential experiments 

(Table S9). Publication bias was assessed with funnel plots and ‘trim and fill’ analysis to test 

for funnel plot asymmetry 49. Although this analysis indicated publication bias for some of 

the mean effect sizes, augmenting the data with the hypothetically missing experiments did 

not alter the significances (Table S9). 
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SUPPLEMENTARY RESULTS 
 

Tables S1-9 and Figure S1 

 

MESOCOSM STUDY  
 

Table S1: Model selection to derive the most parsimonious mixed model for cue sensing in the 

consumers. The global model included CO2, Temperature, Predator (P) and Food cue (F) and all their 

interactions as fixed effects and Mesocosm as random effect (maximum likelihood fit 1,2). Sub-models 

with all possible combinations of the fixed effects were compared using AICc 3, of which only the five 

best sub-models are shown here. Each row represents one sub-model, ranked from the most 

parsimonious (lowest AICc) to the least parsimonious, and shaded cells mark the effects included. 

The ‘relative importance’ of each effect across all possible sub-models is provided by the sum of 

Akaike weights over all sub-models that included the particular effect. Model diagnostics: After 

square root transformation, data was approximately normally distributed and the assumptions of 

homogeneity and sphericity met. 

CO2 T P F 
CO2 
×T 

CO2 
×P 

CO2 
×F 

T×P T×F P×F 
CO2× 
T×P 

CO2× 
T×F 

CO2× 
P×F 

T×P 
×F 

CO2×T 
×P×F 

df AICc delta weight 

                              13 -119.3 0.00 0.26 

                              10 -117.5 1.81 0.11 

                              11 -116.9 2.37 0.08 

                              14 -116.8 2.49 0.07 

                              19 -116.5 2.74 0.06 
                              

    

0.99 0.39 0.83 1.00 0.07 0.17 0.87 0.16 0.13 0.66 <0.01 <0.01 0.02 0.12 <0.01     relative importance 
                                      

df = number of model parameters; delta = increase in AICc compared to the most parsimonious sub-model;  

weight = probability that the sub-model is the best among all candidate sub-models 

 

 

Table S2: ANOVA on cue sensing in the consumers based on the most parsimonious sub-model 

identified in Table S1 (sqrt-transformed). The mixed model included CO2 as fixed between block 

factor, Predator and Food cue as fixed within block factor and Mesocosm as random blocking factor 

(restricted maximum likelihood fit 1,2). The more conservative approach was used not assuming 

additivity and using the Kenward-Roger approximation for degrees of freedom.  

Source of variation dfNum dfDen MS F-ratio P-value 
      

CO2 1 10 0.049 7.0 0.024 

Predator 1 11 0.017 2.4 0.147 

Food cue 2 20 0.064 9.1 0.002 

CO2 × Food cue 2 20 0.037 5.3 0.015 

Predator × Food cue 2 22 0.029 4.1 0.030 
            

MS = mean squares; dfNum and dfDen = numerator and denominator df 
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Table S3: ANOVAs testing the effects of CO2, Temperature and their interaction on hunting of 

consumers and on biomass of resources and consumers. (b), (c) and (d) are based on the sum over all 

individuals of each mesocosm (n = 3 per treatment). For (a) instead, replicates were based on 

individuals, and thus mixed models were first fit including Mesocosm as random factor (restricted 

maximum likelihood fit 4). Mesocosm was then removed following highly insignificant likelihood ratio 

tests (L<0.001, p=0.99) 1. (a) is based on fishes only due to the difficulty of stomach content analysis 

in shrimp. (d) is based on zoobenthivorous fishes only since it was not possible to identify bites in the 

zooplanktivores or assign bites to either algae grazing or hunting in the omnivores. Model 

diagnostics: a) One fish was identified as extreme outlier by Cook’s distance with very few prey items 

in its stomach. This suggested that the fish has not been in a foraging mode – the behaviour of 

interest here – and it was thus removed from the analysis. The strongly right-skewed raw data was 

successfully normalized through log10-transformation, which also lead to homogeneous variances. b) 

and c) Raw data met assumptions of normality and homogeneity. d) Data was square root 

transformed to achieve homogeneity of variance, and residuals were approximately normally 

distributed. 

Response variable Source of variation df MS F-ratio P-value 
      

a) Hunting success CO2 1 0.059 0.36 0.551 

 
T 1 0.047 0.29 0.593 

 
CO2 × T 1 0.071 0.43 0.512 

 
Residuals 214 0.165 

  
      
b) Resource biomass CO2 1 0.0781 47.6 <0.001 

 
T 1 0.0013 0.2 0.645 

 
CO2 × T 1 0.0001 <0.1 0.862 

 
Residuals 8 0.0028 

  
      

c) Consumer biomass CO2 1 35.0 9.47 0.015 

 T 1 0.3 0.07 0.793 

 CO2 × T 1 5.3 1.44 0.264 

 Residuals 8 3.7   

      

d) Hunting activity CO2 1 0.032 1.82 0.214 

 
T 1 0.174 9.94 0.014 

 
CO2 × T 1 0.011 0.60 0.460 

 
Residuals 8 0.017 

         

df = degrees of freedom; MS = mean squares 
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Table S4: Model selection to derive the most parsimonious mixed models for consumer biomass and 

abundance based on replicates at the species level. The global model was structured according to a 

conventional split-block design with Mesocosm as random blocking factor, CO2 and Temperature as 

between block factors, and Species (S) as within block factor (maximum likelihood fit 1,2). Here, the 

most parsimonious models did not include the effects of interest, namely an interaction between 

Species and the climate treatments, and hence follow-up ANOVAs were not run. To improve data 

properties due to low and variable abundances, the ecologically and morphologically similar species 

little weed whiting and blue weedy whiting were pooled, which lead to 6 different taxa (here Species) 

for the analysis. Sub-models with all possible combinations of the fixed effects were compared using 

AICc 3, of which only the five best sub-models are shown here. Each row represents one sub-model, 

ranked from the most parsimonious (lowest AICc) to the least parsimonious, and shaded cells mark 

the effects included. Finally, the ‘relative importance’ of each effect across all possible sub-models is 

provided by the sum of Akaike weights over all sub-models that included the particular effect. Model 

diagnostics: a) Data was log10+1-transformed to improve normality and sphericity, which were still 

slightly violated. However, no further steps were taken, as 1) homogeneity was met, 2) all effects of 

interest here showed clear cut results, i.e. the interactions of Species with any of the climate 

treatments (relative importance <0.01), and 3) the main analysis based on the biomass of the entire 

consumer assemblage met the model assumptions well. b) Raw data met the assumptions of 

normality, homogeneity and sphericity. 
 

  a) Biomass per species  

CO2 T S CO2×T CO2×S T×S CO2×T×S df AICc delta weight 

              9 -73.4 0.00 0.60 

              10 -71.4 1.98 0.22 

              8 -69.2 4.15 0.08 

              11 -69.0 4.43 0.07 

              9 -67.1 6.32 0.03 
              

    

0.90 0.32 1.00 0.07 <0.01 <0.01 <0.01     relative importance 
                      

 

  b) Abundance per species 

CO2 T S CO2×T CO2×S T×S CO2×T×S df AICc delta weight 

              9 288.0 0.00 0.34 

              8 288.1 0.12 0.32 

              10 290.4 2.42 0.10 

              9 290.5 2.51 0.10 

              14 291.6 3.64 0.05 
              

    

0.53 0.35 1.00 0.05 <0.01 0.11 <0.01     relative importance 
                      

df = number of model parameters; delta = increase in AICc compared to the most parsimonious sub-model; 
                             weight = probability that the sub-model is the best among all candidate sub-models 

 

 

 

 



65 
 

Table S5: Model selection to derive the most parsimonious mixed model for risk-taking in consumers. 

The global model included CO2, Temperature, Predator (P) and Food cue (F) and all their interactions 

as fixed effects, Density of individuals (D) as covariate and Mesocosm as random effect (maximum 

likelihood fit 1,2). A prior analysis showed no interactions between the covariate and the fixed effects 

confirming its use as main effect only. Sub-models with all possible combinations of the fixed effects 

were compared using AICc 3, of which only the five best sub-models are shown here. Each row 

represents one sub-model, ranked from the most parsimonious (lowest AICc) to the least 

parsimonious, and shaded cells mark the effects included. Finally, the ‘relative importance’ of each 

effect across all possible sub-models is provided by the sum of Akaike weights over all sub-models 

that included the particular effect. Model diagnostics: Normality, homogeneity and sphericity were 

all improved and met through square root transformation. 

CO2 T P F D 
CO2 
×T 

CO2 
×P 

CO2 
×F 

T×P T×F P×F 
CO2× 
T×P 

CO2× 
T×F 

CO2× 
P×F 

T×P 
×F 

CO2×T 
×P×F 

df AICc delta weight 

                                9 257.2 0.00 0.33 

                                10 258.6 1.40 0.16 

                                11 259.7 2.44 0.10 

                                13 259.7 2.50 0.09 

                                8 261.0 3.78 0.05 
                                

    

0.55 0.98 0.97 0.11 1.00 0.26 0.20 <0.01 0.84 0.01 0.01 0.10 <0.01 <0.01 <0.01 <0.01     relative importance 
                                        

df = number of model parameters; delta = increase in AICc compared to the most parsimonious sub-model;  
weight = probability that the sub-model is the best among all candidate sub-models 

 

 

Table S6: ANOVA on risk-taking in consumers based on the most parsimonious sub-model in Table S5 

(sqrt transformed). The mixed model included Temperature as fixed between block factor, 

Mesocosm as random blocking factor, Predator as within block factor and Density of individuals as 

covariate (restricted maximum likelihood fit 1,2). The more conservative approach was used not 

assuming additivity and using the Kenward-Roger approximation for degrees of freedom. 

Source of variation dfNum dfDen MS F-ratio P-value 
      

T 1 9.6 6.8 5.9 0.037 

Predator 1 10.2 10.3 8.9 0.013 

Density 1 64.4 95.0 82.2 <0.001 

T × Predator 1 10.1 8.0 6.9 0.025 
            

MS = mean squares; dfNum and dfDen = numerator and denominator 

 

 

Table S7: P-value adjustment across the different responses of the mesocosm study to control for 

inflation of type I error. The p-values of the effects of interest were extracted for each response 

variable, followed by a p-value adjustment by false discovery rate. Significant effects did not turn 

non-significant. 

Response 
variable 

Effect of 
interest 

ANOVA 
p-value 

P-value 
adjusted by FDR 

    

Cue attraction CO2×Food 0.0146 0.0228 

Hunting success CO2 0.5507 0.5507 

Resource biomass CO2 0.0001 0.0007 

Consumer biomass CO2 0.0152 0.0228 

Hunting activity T 0.0135 0.0228 

Risk-taking T×Predator 0.0252 0.0302 
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META-ANALYSIS  
 

Table S8: Weighted mixed-effects meta-analyses on the response of consumers to elevated CO2 with 

ecological complexity as moderator. Ecological traits were analysed separately but always in 

combination with ‘complex’ ecological complexity. a) Principle effect size measure used in this study 

and b) alternative effect size measure which could only be calculated for foraging. The more 

conservative Knapp-Hartung approach was used for moderator and post-hoc tests. The latter were 

adjusted for multiple comparison by false discovery rate.  

Ecological trait 
# 

Experiments 

 Heterogeneity  Moderator 
(≙ ecological complexity) 

 Post-hoc tests 

  QE P-value   df F-ratio P-value   
simple vs. 
medium 

simple vs. 
complex 

medium vs. 
complex 

             

a) Standardized mean difference:            

Predator avoidance 46 
 

379 <0.001 
 

2, 43 15.55 <0.001 
 

<0.001 <0.001 0.016 

Habitat selection 37 
 

170 <0.001 
 

2, 34 20.16 <0.001 
 

<0.001 <0.001 0.023 

Foraging 35 
 

110 <0.001 
 

2, 32 10.44 <0.001 
 

0.002 <0.001 0.048 

             

b) Ln response ratio:             

Foraging 35 
 

134 <0.001 
 

2, 32 5.92 0.007 
 

0.021 0.006 0.150 
                          

QE = Q-statistic for residual heterogeneity; df = nominator and denominator degrees of freedom 

 

 

 

Figure S1: Overall mean effect sizes and effect sizes of individual experiments illustrating the 

variability and range of consumer responses to elevated CO2. The corresponding effect sizes from the 

mesocosm study are overlayed in red but not considered in the overall mean effect sizes (1 = vision, 

2 = olfaction, 3 = risk-taking, 4 = vision+olfaction, 5 = hunting activity, 6 = hunting success and 

7 = biomass). Extreme outliers that were winsorized are highlighted in green (original values: 

1 = -26.0, 2 = -25.8, 3 = -10.1, 4 = -8.2 and 5 = -2.76). 
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Table S9: Weighted random-effects meta-analyses on the response of consumers to elevated CO2. 

Combinations of trait and complexity were analysed separately. a) Principle effect size measure used 

in this study and b) alternative effect size measure which could only be calculated for foraging and 

for populations at CO2 vents. Estimates based on ln response ratio are given as proportional change 

centred on zero (i.e. back-transformed and minus 1). In all analyses, the more conservative Knapp-

Hartung approach was used to test significances of mean effect sizes. Publication bias: Effect sizes of 

hypothetically missing experiments were added using ‘trim and fill’ analysis until funnel plot 

symmetry was restored. No publication bias was assumed if ‘0’ experiments had to be added. In case 

of publication bias, the mean effects size of the hypothetical model including the missing 

experiments was estimated and tested. The potential influence of publication bias is indicated by the 

difference in estimate and significance between hypothetical and original model. In any case, further 

interpretation should be based on the original model. Sensitivity: A ‘leave-one out’ analysis retested 

the model after removing the effect size of one experiment at a time. The significance compared to 

the full model may or may not (yes/no) change through the exclusion of any of the individual 

experiments. The most extreme change in significance through this procedure is given. The change 

from non-significant to significant for populations at CO2 vents was not further considered as it was 

favoured by the detected publication bias and as the alternative effect size ln response ration 

remained non-significant. 

Complexity Ecological trait 

 # 
Experi- 
ments 

 Mean effect size  Heterogeneity  Publication bias  Sensitivity 

    
Esti-
mate 

T- 
value 

P- 
value 

  
I2 

(%) 
Q df 

P- 
value 

  
Experi-
ments  

Esti-
mate 

P- 
value 

  
sign. 

change 

max. 
P-

value 
                    

a) Standardized mean difference:              
                    

Simple Predator avoidance 
 

20 
 

-2.41 -5.50 <0.001 
 

95.1 262 19 <0.001 
 

5 -1.64 0.003 
 

no <0.001 

 
Habitat selection 

 
17 

 
-1.55 -7.92 <0.001 

 
79.4 78 16 <0.001 

 
0 NA NA 

 
no <0.001 

 
Foraging 

 
7 

 
-1.52 -3.62 0.016 

 
73.1 19 6 0.005 

 
0 NA NA 

 
no 0.030 

                    
Medium Predator avoidance 

 
18 

 
-0.62 -4.35 <0.001 

 
72.0 56 17 <0.001 

 
0 NA NA 

 
no <0.001 

 
Habitat selection 

 
12 

 
-0.22 -1.30 0.220 

 
63.1 31 11 0.001 

 
0 NA NA 

 
no 0.156 

 
Foraging 

 
20 

 
0.01 0.08 0.938 

 
23.8 31 19 0.044 

 
4 0.16 0.378 

 
no 0.442 

                    
Complex CO2 vent 

 
8 

 
0.89 1.92 0.097 

 
94.5 61 7 <0.001 

 
2 0.37 0.532 

 
yes 0.047 

                    

b) Ln response ratio:             

                    

Simple Foraging 
 

7 
 

-0.52 -3.38 0.015 
 

91.2 36 6 <0.001 
 

1 -0.38 0.023 
 

no 0.037 

Medium Foraging 
 

20 
 

-0.04 -0.46 0.648 
 

62.8 50 19 <0.001 
 

4 -0.09 0.371 
 

no 0.409 

Complex CO2 vent 
 

8 
 

0.37 0.95 0.373 
 

94.8 48 7 <0.001 
 

0 NA NA 
 

no 0.103 
                                        

I2 = heterogeneity to total variability; Q-test for heterogeneity with associated Q-statistic (Q), degrees of freedom (df) and p-
value  
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The study was conducted in a flow-through system supplied by water from 1.5 km offshore 

and ~8 m depth. The incoming seawater was first transferred to two 800 l header tanks and 

from there gravity fed to the mesocosms (# 4, Fig. S2). One of these header tanks provided 

water for the mesocosms with elevated CO2 and was pre-conditioned to elevated pCO2 

levels using pure CO2 (control system ACQ110 Aquatronica, Italy). To maintain the climate 

treatments, each mesocosm continuously exchanged water (~1,800 l per h) with an 

associated 60 l bin (a separate bin for each mesocosm). These bins were heavily aerated with 

enriched air at 1000 μatm pCO2 (PEGAS 4000 MF Gas Mixer, Columbus Instruments, 

Columbus, Ohio) or ambient air at 400 μatm pCO2 depending on the CO2 treatment, and 

contained submersible titanium heaters (800 W) to achieve elevated temperature. This 

circulation was diverted by two diffuser pipes (# 5) to create a mild circular current inside 

the mesocosms, which alternated direction every 6 h similar to tidal water movement. The 

water returned to the 60 l bins through gravity while passing a filter column (~20 µm mesh 

size) (# 6) to retain animals within the mesocosms. Overall, this elaborate technical set-up 

provided an environment free of unnatural disturbances such as air bubbles, electrical 

currents or pump noise.  

Primary production was fuelled by a 250 W metal halide lamp (Osram Powerstar HQI-T 

250/D/PRO) mounted above each mesocosm (# 7, Fig. S2). The lamp had a colour 

temperature of 5500 K, a colour rendering index of 92 and a wave length distribution similar 

to sunlight (according to the spectrum provided by the manufacturer). Measures in 5 cm 

intervals from the centre to the tank wall suggested an irradiance of 3833 ± 1304 lux 

(mean ± SD) at the level of the benthic habitat. This irradiance corresponds to ~6-7 m depth 

in Gulf St. Vincent based on previously published attenuation coefficients 2. Estimations 

were made using the local average daily summer irradiance (Bureau of Meteorology, 

www.bom.gov.au, location Adelaide, past 20 years of data).  

 

Consumer Assemblage 

The species were selected based on their high juvenile abundances in local shallow coastal 

waters during summer. They were caught with seine and hand nets and habituated to the 

mesocosms under ambient conditions for 3-4 weeks. Then, the mesocosms were 

progressively acclimatized to their respective climate treatment over a period of one week 

and kept at treatment levels for 4.5 months. The high initial abundances (Table S10) ensured 

resource limitation, which in turn ensured that consumers were under constant pressure 

from consumer-resource interactions and from intra- and interspecific competition. We 

expected lower intra-specific competition for the shrimps and hardyheads due to their more 

isolated ecological niches and thus raised their initial abundances to 10 individuals. 
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Table S10: Consumers introduced to each mesocosm at the beginning of the study. The shrimps 

comprised a random mix of Palaemon intermedius and Palaemon serenus. The classification into 

feeding guilds and principle foraging habitats followed the extensive behavioural observations and 

stomach content analyses. 

Species Common name 
# intro-
duced 

Total length 
± SD (mm) 

 
Feeding guild and principle habitat 

      

Neoodax balteatus little weed whiting 7 30 ± 8  zoobenthivore hard bottom and vegetation 

Haletta semifasciata blue weedy whiting 7 31 ± 4  zoobenthivore hard bottom and vegetation 

Favonigobius lateralis longfin goby 7 22 ± 4  zoobenthivore soft bottom 

Girella zebra zebrafish 7 17 ± 2  omnivore hard bottom and vegetation 

Acanthaluteres vittiger toothbrush leatherjacket 7 30 ± 8  omnivore hard bottom and vegetation 

Atherinosoma microstoma small-mouthed hardyhead 10 24 ± 5  zooplanktivore water column 

Palaemon spp. caridean shrimp 10 10 - 30  omnivore all benthic habitats 
           

 

 

 
Table S11: Abundance of consumers per mesocosm at the end of the study (mean ± SD). The 

replication shown here is exact for the analyses related to biomass and abundance. Instead, we can 

assume slightly higher abundances during the behavioural trials as these were conducted several 

weeks before animal collection. The two closely related and ecologically similar species ‘little weed 

whiting’ and ‘blue weedy whiting’ were pooled as ‘whiting’.  

  
     

  Consumer  
assemblage 

total TREATMENT 
 

Whiting Longfin goby Zebrafish Leather jacket Hardyhead Shrimp 
 

  
 

   
 

   

control 
 

4.0 + 0.0 7.0 ± 0.0 3.0 ± 1.7 1.0 ± 0.0 3.7 ± 0.6 3.0 ± 3.0 
 

21.7 ± 5.0 

elevated CO2 
 

5.3 ± 1.2 7.0 ± 0.0 4.3 ± 2.9 2.3 ± 1.5 2.7 ± 2.5 6 ± 2.0 
 

27.3 ± 5.0 

elevated T 
 

3.0 ± 1.7 6.3 ± 1.2 3.3 ± 2.1 1.3 ± 1.2 3.7 ± 1.5 7.3 ± 2.1 
 

24.7 ± 0.6 

elevated CO2+T 
 

3.7 ± 0.6 6.0 ± 1.0 3.7 ± 1.5 2.0 ± 1.0 4.7 ± 1.2 6.7 ± 2.1 
 

26.7 ± 4.9 
     

   
 

   

 

 



71 
 

Table S12: Realized thermal distributions of the consumers and the predator, which indicate that the 

latitude of the mesocosm system did not represent the upper or lower thermal limit for any of the 

species. Ranges are based on occurrence maps from the Atlas of Living Australia 

(http://bie.ala.org.au, accessed Oct. 2017, extreme outlier occurrences not considered), additionally 

verified through fishbase (http:/aquamaps.org, accessed Oct. 2017). The lower limit was confined by 

the southern end of Tasmania, explaining the same limit across species. Average winter and summer 

sea surface temperatures are based on maps provided by the Australian Bureau of Meteorology 

(http://bom.gov.au, accessed Oct. 2017, across years 1961-1990), except for the current study for 

which the locally employed temperature loggers were used. As seasonal averages of broad coastal 

regions, these temperatures do not consider seasonal maxima or smaller scale geographical features 

(e.g. shallow bays) which can be several degrees above/below the averages. Hence, the provided 

temperatures likely underestimate the species’ realized thermal ranges. In particular, higher thermal 

tolerances can be expected for the two consumer species with the most restricted occurrence ranges 

G. zebra, which also inhabits rock pools as young juvenile, and A. microstoma, which also inhabits 

shallow mangrove creeks. 

 
 

 

Seawater Parameters 

An overview of seawater properties is provided in Table S13, a trajectory of pH and 

temperature throughout the entire study period in Figure S3, and the diurnal variability in 

pH produced by community metabolism by Figure S4. For each mesocosm, temperature and 

pH were measured daily at around midday (Mettler Toledo SevenGo™ SG2, calibrated daily) 

and salinity (SR6 refractometer, Vital Sine) and total alkalinity (total of n = 8 per mesocosm; 

Gran titration; 888 Titrando, Metrohm, Switzerland) fortnightly. Alkalinity measures were 

accurate within 1% of certified standards (reference material from A. Dickson, Scripps 

Institution of Oceanography). Finally, pCO₂, bicarbonate, carbonate and the saturation states 

of calcite and aragonite were calculated using CO2SYS for Excel 3 with constants from 

Mehrbach et al. 4 refit by Dickson and Millero 5.  

 

study

2115 27

current 1500- 1000

Summer T (approx. average, °C)

Distance (km)
equatorpole

Range of occurrence

Neoodax balteatus

Haletta semifasciata

Favonigobius lateralis

Girella zebra

Acanthaluteres vittiger

Atherinosoma microstoma

Palaemon intermedius

Palaemon serenus

Gymnapistes marmoratus

Species

1412 23Winter T (approx. average, °C)

1000500-500

23 2517

14 2119
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Table S13: Average seawater properties during the 4.5 months treatment period. Standard 

deviations indicate the variability between mesocosms. 

Variable control elevated CO2 elevated T elevated CO2+T 

Temperature (°C) 21.0 ± 0.14 20.9 ± 0.04 23.7 ± 0.19 23.7 ± 0.08 

pHNBS 8.14 ± 0.004 7.89 ± 0.009 8.12 ± 0.002 7.89 ±0.009 

Salinity (ppt) 36.3 ± 0 36.3 ± 0 36.3 ± 0 36.3 ± 0 

Total Alkalinity (µmol kg
-1

) 2482 ± 4 2485 ± 5 2486 ± 6 2493 ± 3 

pCO2 (μatm) 465 ± 5 905 ± 6 500 ± 8 915 ± 25 

HCO3 (µmol kg
-1

) 1995 ± 6 2186 ± 3 1985 ± 2 2166 ± 9 

CO3 (µmol kg
-1

) 200 ± 2 123 ± 1 206 ± 2 135 ± 3 

Ω Calcite 4.74 ± 0.05 2.91 ± 0.02 4.90 ± 0.05 3.20 ± 0.07 

Ω Aragonite 3.09 ± 0.04 1.90 ± 0.01 3.22 ± 0.03 2.10 ± 0.05 

 

 

 

Figure S3: Achieved ocean acidification (a) and warming (b) over the study period, including the last 

week of the acclimation period under ambient conditions (# 1), the progressive elevation to 

treatment levels (# 2), and the 4.5 months at treatment levels (# 3). Mean ± SD are based on the 

daily measurements of the n = 6 mesocosms at ambient or elevated treatment levels. 
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One behavioural trial was conducted daily in each mesocosm over 6 consecutive days, 

including all possible combinations of food cue and predator presence. The distinct 

experimental set-up, including open sand, rocky reef and seagrass habitat (Fig. S5a), was 

randomly re-located daily to one of three possible sites to cover the entire mesocosm. A 

circle of 30 cm diameter was chosen for the area ‘close’ to the food cue as it matched 

approximately the open area between predator cage and the habitats (Fig. 5a). Each 

individual was tracked from entering until exiting the field of view of the top camera (Fig. 

S5a), whereas the side camera (Fig. S5b) was only used in situations requiring an alternative 

viewing angle (GoProTM Hero4 Silver). For each trial, an average of 19.8 ± 11.1 (± SD) 

observations of individuals were made across species which totalled to 27.9 ± 9.7 min (± SD) 

of behavioural observation. 

Several measures were taken to minimize or test for potential effects related to the 

methodology used. Firstly, a dummy food cue provider not containing any food was located 

at the exact same site for the 24 h prior to each behavioural trial to allow for habituation. 

The consumers were also acclimatized to the empty predator cage, the camera frame and 

cameras for 15 min before the trials started. Secondly, directly preceding each trial, a 

procedural control video recording was conducted for 3 min. Here, the dummy provider was 

exchanged by another dummy provider and not by a provider containing food like in the 

later trial. This procedural control showed no effect of the climate treatments on the 

attraction to the provider in the absence of a food cue (ANOVA: df(1,8), p>0.46 for CO2, T 

and CO2×T). It also showed that the consumers were generally attracted by the food cue, as 

evident when comparing their proximity to the food cue provider between procedural 

controls and trials (ANOVA: F(1,11)=38.8, p<0.001). 

 

Resources 

To identify potential food resources of the consumers, the biovolume contribution of major 

resource categories was estimated for each individual fish after inspecting the stomach 

content under a stereo microscope. The relative contribution of each resource was then 

standardized according to the mass of the fish, which resulted in the following stomach 

composition across all fish species and climate treatments (mean ± 95 % CI, n = 218 

stomachs analysed): algae and detritus 41.3 ± 2.5 %, copepods 39.3 ± 1.1 %, macrofaunal 

crustaceans 10.9 ± 0.9 %, small molluscs 3.9 ± 0.3 %, and other invertebrates 4.6 ± 0.5 % 

(annelids, ostracods and unidentified). These estimates inform about the general presence 

or absence of certain resources. They should, however, not be used to evaluate the relative 

importance of these resources for the fishes since their characteristics differed considerably: 

prey items size (e.g. tanaid vs. copepod), general appearance and energetic value (e.g. fauna 

vs. flora) and digestibility (e.g. presence or absence of exoskeleton). According to the 
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literature, the shrimp species we studied (Palaemon spp.) feed on detritus, small molluscs, 

annelids and other crustaceans 7. 

Resource availability in each mesocosm was assessed through the relative biomass of six 

resource categories: Small molluscs on rocky reef; Annelids on rocky reef and soft bottom; 

Copepods on rocky reef and soft bottom; Macrofaunal crustaceans on rocky reef and soft 

bottom; Detritus on rocky reef; Matt-forming algae on rocky reef, tank wall and seagrass 

leaves. For the resources that were sampled in multiple habitats, biomasses were combined 

according to the relative area of each habitat in the mesocosms. In more detail: 

1) All small molluscs (chitons, limpets, bivalves, slugs and small gastropods), annelids 

(polychaetes and oligochaetes), and macrofaunal crustaceans (amphipods) were collected 

from each rocky reef via picking and sieving through a 1 mm sieve (wet mass, n = 4 

subsamples per mesocosm). 

2) Copepods on the rocky reef were extracted from artificial habitat units made of aquarium 

filter sponges (length x height x width = 60 x 25 x 40 mm, pore size 2-5 mm) incubated on 

the rocky reefs for 1 month (biovolume wet mass, n = 2 subsamples per mesocosm). 

3) Copepods, annelids (polychaetes and oligochaetes ), and macrofaunal crustaceans 

(tanaids) on the soft bottom habitat were assessed through sediment cores (65 mm 

diameter, 15 mm depth) followed by floatation extraction with Ludox TM colloidal solution 

with a specific gravity of 1.18 and collection on a 45 µm sieve (biovolume wet mass, n = 4 

subsamples per mesocosm). While the larger organisms were weighed directly, the annelids 

from the soft-bottom and all copepods were counted under a stereo microscope on a 

counting tray. Their wet mass was then calculated using biovolume averages based on 

photographs and measurements with ImageJ of a subset of individuals (across climate 

treatments: n = 159 copepods, n = 65 small annelids). For copepods, the treatment-specific 

average biovolume was used since it differed between climate treatments (ANOVA: F(1,155) = 

4.13, p = 0.044).  

4) Detritus was estimated as organic matter remaining on the rocky reefs after removing live 

algae and animals (dry mass, n = 4 subsamples per mesocosm). 

5) Matt-forming algae were scraped from the rocky reef, tank wall and seagrass leaves (dry 

mass, n = 13 subsamples per mesocosm).  

An advanced level of acclimation could be expected for larger resource taxa with longer 

generation times as they had spent the majority of their life in the mesocosms (e.g. 

molluscs). In contrast, transgenerational acclimation and adaptation was possible for 

smaller-bodied resource taxa. Our exposure time to the climate treatments of 140 days 

compares as follows to potential generation times of these taxa: benthic microalgae 0.4-6 

days 8,9, benthic copepods 9-26 days 10, tanaids 42 days 11, amphipods 35-49 day 12,13, and 

annelids 17-55 days 14,15. 
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META-ANALYSIS 

 

Search Protocol 

We followed a protocol that aimed to identify existing evidence to answer the question ‘Do 

ocean acidification impacts on highly mobile consumers depend on the level of ecological 

complexity at which performances are tested?’. Web of Science databases were filtered by 

research field, methodology and taxa (Fig. S6). The search was limited to studies published in 

2008 or later as it represents the beginning of the uprising of ocean acidification research, in 

particular for the taxa that are of interest here 16. The studies returned by the literature 

search subsequently underwent a step-wise screening from title, to abstract and full text 

(Fig. S6). At each step, the following criteria were assessed and studies retained that could 

not be excluded with certainty: 

1) Approach: - Empirical data from either experiments or observations including a 

control and elevated CO2 group 

- Excluded: modelling or theoretical studies  

2) Taxa: - Teleost fishes, elasmobranches and decapod crustacean (shrimps and 

crabs) 

3) Life-stage:   - Settlement stage larvae, juveniles and adults  

       - Excluded: embryos, yolk sack stage larvae 

4) Environment:   - Marine or brackish 

5) Ecological trait: - Responses directly related to the detection of or escape from 

predators, the detection or use of habitat and the detection, 

manipulation, or capture of food resources (Table S14) 

- Excluded: A) purely physiological responses, with the exception of two 

studies due to their direct implication for foraging – one on claw 

strength and one on temporal resolution of vision; B) more basic 

behaviours such as activity, lateralization or boldness in the absence of a 

stimulus (e.g. predator); C) growth or survival when being fed (unnatural 

resources: rotifers, artemia, defrosted fish, pellets, etc.) 

6) Acidification:  - Corresponds to realistic future scenario and reduced pH is reached 

through elevated pCO2 

- Excluded: acidification through other means such as HCl 

 

The remaining studies were complemented by screening recent reviews/meta-analysis in the 

field 16,17,18,19. Only 5 studies were added through this process indicating that our literature 

search was comprehensive. Three studies conducted at CO2 vents which were unpublished 
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at the time but known to the authors were also included (Table S19 studies # 22, 23 and 37). 

Finally, for reasons of independence, 5 studies were removed which tested the same species 

with the same design as studies already considered in the meta-analysis. 

 

 

Figure S6: Overview of the selection process for the experiments included in the meta-analysis. The 

Boolean operator ‘AND’ narrows the search by specifying criteria that have to be met 

simultaneously, while ‘OR’ broadens the search by providing alternative criteria of which only one 

needs to be met. The asterisk * allows search terms to vary in their endings.  

 

From the 57 selected studies, 102 experiments were extracted for inclusion in the meta-

analysis based on the following guidelines (see Table S19 for list of all experiments; this Excel 

table is unfortunately too large to be printed in the thesis): 

1) Multiple experiments were considered from the same study in case they a) were related 

to different ecological traits or levels of ecological complexity, b) were from the same 

combination of trait and complexity but differed considerably in their design c) or if they 

could be seen as sufficiently independent to be published as separate articles. This ensured 

that larger studies supported by multiple species, systems or methodologies had more 

influence on the overall results relative to smaller studies. 

2) If multiple response variables were available for the same experiment, only the most 

meaningful one was selected based on the context of the study or on general ecological 
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theory. If several species were tested together in the same tank or at the same CO2 vent 

(i.e. multiple responses are equally relevant), an aggregate effect size was calculated across 

the responses of individual species (R package Mad 20, method according to Borenstein et 

al. 21 using 100 % correlation between species). 

3) If a system was tested at several elevated levels of pCO2, only the experiment closest to 

936 µatm was considered (emission scenario RCP8.5 22). 

4) If a system was tested at several points in time, only the experiment with the longest 

exposure time was considered. 

5) The results of 4 experiments that used fishes as both prey and predator were considered 

for both traits predator avoidance and foraging, just from opposite perspectives. 

 

Table S14: Examples of typical experiments considered in the meta-analysis for each combination of 

ecological complexity and ecological trait.  

Complexity 
(inclusion 
criteria) 

Trait Typical experiments 

   

Simple 

(1 sensory cue) 

Predator avoidance choice flume chamber with olfactory predator or alarm cue, behavioural 

change in aquaria after introducing visual or olfactory predator cues, 

response to approaching visual threat 

 Habitat selection choice flume chamber with olfactory habitat cues, habitat choice test in 

simple set-up based on isolated olfactory, visual or auditory habitat cues 

 Foraging choice flume chamber with olfactory food cues, ability to find food in simple 

set-up based on olfactory food cues, ability of visual sense to detect fast 

moving objects  

Medium 

(2+ sensory cues) 

Predator avoidance behavioural change in aquaria after introducing both visual and olfactory 

predator cues, response to approaching threat that includes multiple cues 

(visual + auditory + water motion), survival/escape performance when 

exposed to real predator over short-term (in small aquaria, in larger tanks 

with shelter or in the field) 

 Habitat selection choice test in small aquaria or larger tanks including several habitat cues 

(olfactory + visual + auditory), use of natural habitat in the laboratory or in the 

field 

 Foraging ability to find food in simple set-up based on combined visual-olfactory food 

cues, success in catching live prey in small aquaria or larger tanks with shelter, 

hunting success on natural live prey amongst structured habitats in the field, 

long-term growth when having to hunt on natural live prey in the laboratory 

Complex  

(populations 

at CO2 vents) 

All traits integrated abundances of either individual species or species communities that could 

potentially be influenced by indirect effects of elevated CO2 
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Data Analysis 

The majority of experiments were reported with continuous response variables with a 

natural zero point – the requirements for the use of log-transformed response ratio as effect 

size. However, 24 relevant experiments that were unevenly distributed across traits and 

complexities did not fit these criteria. Their exclusion would have led to reduced power, 

potential bias and an incomplete representation of the literature. Therefore, standardized 

mean difference was chosen as effect size for the meta-analysis because it applies to a wider 

range of data types 21 and because estimation methods are available in case it cannot be 

derived directly 23,24. As such, 13 experiments were based on binary responses (e.g. survival 

yes/no) with underlying traits in which individuals could be expected to vary continuously 

(e.g. ability to avoid predators). Here, the probit-transformed risk difference was used as 

estimate of the standardized mean difference 23. It should be noted that our findings were 

unlikely to be driven by the choice of effect size measure as the same general pattern was 

found with log-transformed response ratio for the categories to which it applied (see Table 

S8b, 9b).  

The effect sizes of five experiments were identified as extreme outliers through sudden gaps 

in forest plots, a large influence on the overall mean effect size estimates and heterogeneity 

statistics, and through Cook’s distance. These extremely negative effect sizes were manually 

raised to the value of the next smallest non-outlier effect size (i.e. winzorizing, Table S15, Fig. 

S1). The direction of these effect sizes was therefore considered in the meta-analysis, while 

reducing their influence on the data properties and the overall results. Excluding them 

entirely would cause bias as they were more likely real than due to chance given that effects 

of elevated CO2 differed truly and considerably between experiments (see heterogeneity 

statistics table S9a). Also, this approach to outlier treatment made the overall results only 

more conservative, as four out of the five extreme values represented experiments at simple 

levels of complexity.  

 
Table S15: Identification and winzorizing of extreme outlier effect sizes. Extreme values were raised 

to the next smallest non-outlier effect size. The next largest non-outlier Cook’s distance is given for 

comparison. The numbers of the outlier experiments are associated with Table S19. 

Category 
(complexity / trait) 

  Outlier 
effect size 

Next smallest 
effect size 

Outlier 
Cook’s distance 

Next largest 
Cook’s distance 

 Outlier 
experiment # 

 

  

    

 
 

Simple / Predator avoidance   -26.0 -5.3 0.87 0.033  51 

 
  -25.8 -5.3 0.73 0.033  101 

         

Simple / Habitat selection   -10.1 -3.0 1.03 0.043  57 

 
  -8.2 -3.0 0.30 0.043  53 

 
  

    
  

Medium / Predator avoidance   -2.8 -1.8 0.40 0.15  102 
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Potential Moderators 

Table S16: Association analyses showing that our specific categorization of ecological complexity is 

also reflective of ecological complexity in a broader context. We correlated our two levels ‘simple’ 

and ‘medium’ – defined by the availability of sensory cues – to three other potential measures of 

complexity that could easily be extracted for each experiment: 1) the presence or absence of natural 

habitat, 2) the presence or absence of the opportunities and pressures needed to learn adaptive 

behavioural strategies, and 3) the presence or absence of a social environment. The association 

coefficient Yule Q ranges from -1 (≙ perfect negative association), to 0 (≙ no association) and 1 

(≙ perfect positive association) 25.  

Potential measure 
of complexity 

Association with our measure (sensory cues) 

Yule Q  X
2
 df P-value 

  

 

   

Habitat 0.914  28.5 1 <0.0001 

Learning 0.642  7.90 1 0.0050 

Social Environment 0.933  17.1 1 <0.0001 
  

 

   

Pearson’s X
2
 test with associated X

2
 statistic, degrees of freedom (df) and p-value 

 

Table S17: Weighed random-effects meta-regressions on the response of consumers to elevated CO2 

with pCO2 level (in µatm) or exposure time (in days) as continuous moderators. The two moderators 

and the three ecological traits were analysed separately but always across simple and medium 

complexity. Populations at CO2 vents were excluded here as their pCO2 levels typically vary in space 

and time and as the exposure time could not be specified. The more conservative Knapp-Hartung 

approach was used for moderator tests. Both covariates were log10-transformed to reduce the 

influence of a few very large values. 

Ecological trait 
 

# 
Experiments 

 
df 

 Level pCO2  Acclimation 

      slope F-value P-value  slope F-value P-value 

         
 

   

Predator avoidance 
 

38 
 

1, 34 
 

2.65 3.21 0.082  0.009 0.00 0.982 

Habitat selection 
 

29 
 

1, 25 
 

0.53 0.37 0.549  0.167 0.63 0.435 

Foraging 
 

27 
 

1, 23 
 

0.42 1.19 0.287  0.017 0.01 0.931 
         

 
   

df = nominator and denominator degrees of freedom; slope = regression slope 

 

The substantial amount of unexplained heterogeneity in the meta-analysis (Table S9a) raises 

the question about other factors that may have influenced the effect of elevated CO2 (for 

acclimation and pCO2 level see Table S17). 

We could unfortunately not account for specific characteristics of experiments such as 

ecosystem, taxa or life-stage because of insufficient replication. As such, young coral reef 

fishes were over-represented at simple complexity for the traits ‘predator avoidance’ and 

‘habitat selection’. To investigate for potential bias, the association between performance 

and complexity can be assessed directly for some of these coral reef species. In many but 

not all instances, these comparisons within species and life stage show, just like the overall 

pattern of the meta-analysis, a strong effect at simple but a reduced or absent effect at 

medium or complex levels of complexity: Chivers et al. 26 and Ferrari et al. 27 vs. Allan et al. 28 
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and Ferrari et al. 29; within Devine et al. 30; within Munday et al. 31 but see also Devine and 

Munday 32. 

Predator avoidance at medium complexity appeared to be influenced by the specific 

predation scenario (weighted mixed-effects meta-analysis with predator manipulation as 

moderator: F(2,15) = 5.49, p = 0.016). While the negative effect on survival was evident when 

only the consumers but not the predators had been maintained in captivity and exposed to 

elevated CO2, no effect was detected, on average, in experiments that treated both 

consumers and predators equally (Table S18 and Fig. S7). That is, the negative effect of 

elevated CO2 on predator avoidance was buffered most under the most realist predation 

scenario, which did not advantage the predator. However, this concept requires further 

testing as the same predator species was used, though in different designs, in the 

experiments that exposed both the consumer and predator to elevated CO2 in captivity (e.g. 

see Allan et al. 28, Ferrari et al. 29).  

 
 

 

 

 

Table S18: Weighted random-effects meta-analyses on the predator avoidance of consumers at 

medium complexity.  

Predator 
# 

Experiments 

 
 Mean effect size  

 
 Heterogeneity  

 
Sensitivity 

 
  

Esti-
mate 

T-value P-value   
 

I
2
 (%) Q df P-value   

 sign. 
change 

max. P-
value 

  

 

     

 

     

 

  

ambient CO2 6  
 

-1.18 -4.63 0.006 
 

 62.09 13.35 5 0.020 
 

 no 0.021 

no survival test 7  
 

-0.49 -2.76 0.033 
 

 64.39 17.06 6 0.009 
 

 yes 0.086 

elevated CO2 5  
 

-0.23 -1.70 0.165 
 

 0.00 3.16 4 0.531 
 

 no 0.083 
  

  

 

        

 

          

 

      

I2 = heterogeneity to total variability; Q-test for heterogeneity with associated Q-statistic (Q), degrees of freedom (df) and p-
value 

 

Figure S7: Influence of the specific predation 

scenario on the ability of consumers to avoid 

predation at medium complexity. In all cases, 

consumers had been maintained in captivity and 

exposed to elevated CO2 before testing. Here, 

experiments were assigned to one of three 

categories according to the predator treatment: 

predators were neither exposed to elevated CO2 

nor held captive and predators actively hunted 

the consumers (left), predation risk was simulated 

(centre), and predators were exposed to elevated 

CO2 and handled in the laboratory similarly to the 

consumers and predators actively hunted the 

consumers (right). Lower case letters mark mean 

effect sizes that differ significantly following post-

hoc tests adjusted by false discovery rate. 
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CHAPTER IV 
 

STABLE TROPHIC INTERACTIONS 
REINFORCE THE DEGRADATION OF FOOD WEBS 

UNDER FUTURE CLIMATE 
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ABSTRACT 
 

Ecosystems globally are experiencing an ever accelerating taxonomic re-organisation 

due to pervasive anthropogenic pressures. One of the central questions is whether 

food webs can adapt their architecture – that is, the feeding relationships between 

organisms – to counter such changes and maintain ecosystem structure and function. 

Using a diverse mesocosm community and stable isotope analysis, we reveal that 

food web architecture can be surprisingly stable under future climate and thus 

unable to compensate for the decline of sensitive or proliferation of benefiting taxa. 

Key ecological processes that stabilize communities against environmental change 

such as functional redundancy, trophic compensation or species substitution were 

largely absent under elevated temperature. Consequently, a novel trophic pyramid 

emerged with substantial expansion of biomass at the base (i.e. primary producers) 

and top (i.e. secondary consumers) and contraction in the centre (i.e. primary 

consumers). This imbalance may characterize a transitionary state before the collapse 

into short, bottom-heavy food webs that has been observed in prehistoric and 

modern ecosystems when severe abiotic stress persists long-term. We conclude that 

food webs may be less adaptive than previously thought and limited in their capacity 

to prevent degradation of ecosystems and their services in a warming ocean. 
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INTRODUCTION 

 

Our livelihood and life-style are sustained by complex yet inherently adaptive systems that 

can provide goods and services in a variable world 1,2. For example, self-organising networks 

of specialised cells enable immune systems to maintain health against novel pathogens 3, 

and the dynamic behaviour of individual businesses allows economies to satisfy an ever-

changing demand 4. While similar principles apply to ecosystems 5, the preservation of their 

services into the future depends on how lower-level ecological processes adjust to 

intensifying human activities 6. On the one hand, an unrestrained expansion or loss of 

ecological functions can destabilize food webs 7 and lead to the degradation of entire 

ecosystems 8,9. Such changes in basic composition of food webs are commonly studied using 

trophic pyramids – based on biomass, abundance or energy – as they not only inform about 

food web health but also about underlying ecological processes 10-12.  On the other hand, the 

complex network of feeding interactions between organisms that characterizes food webs 

(i.e. trophic architecture) may be able to effectively counter environmental change and 

maintain functional diversity 13,14. 

The adaptive capacity of trophic architecture is rooted in the flexible trophic behaviour of 

consumers 15 (see Box 1). As consumers tend to focus their foraging on resources that are 

plentiful 16, they play a critical role in the regulation of proliferating and recovery of rare 

resources 14. The adaptive potential is further extended through redundancy amongst 

functionally similar consumer species 17; that is, the loss of sensitive species can be 

compensated through niche expansion and density substitution by less sensitive species now 

liberated from competition 18. Whilst the potential of such adaptive trophic behaviours is 

limited and highly variable 19-21, they are considered key to the resistance and resilience of 

ecosystems by reinforcing prey population control and the continuation of energy flow 8,15,22. 

Species naturally differ in their responses to future climate, as the life-strategies of some are 

disadvantaged and others benefited 24. Ocean acidification threatens calcifiers 25 and impairs 

key behaviours in many consumers 26,27, and yet primary producers may use the excess CO2 

as a nutrient 28,29. Similarly, ocean warming can cause severe metabolic stress in species near 

their upper thermal limits 30, whilst others may gain from the accelerated physiology 31 and 

expand their ranges 32. Undoubtedly, these climate stressors will cause the loss of species 

globally. However, it is not species richness per se but the functional structure of ecosystems 

that provides natural resources and services 17,33,34. One of the key questions is whether the 

fundamental structure of ecosystems can be preserved through mechanisms that stabilize 

against the taxonomic re-organisation under future climate. 
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Box 1: Hypothetical adaptations of trophic architecture to changes in composition, here exemplified 

trough the expansion or loss of species, that are driven by abiotic change. The architecture is based 

on feeding interactions (arrows) between species (nodes) that can intensify, weaken, activate or 

inactivate depending on the foraging strategy that is currently optimal for consumers 14,23. The 

trophic niches of consumers (position in trophic space) reflect the origin of energy, in terms of basal 

resources (horizontal axis) and the number of trophic steps (vertical axis). 

     a) Baseline where each consumer has a horizontally centered position indicating equal 

contribution of its two resource species. b) The over-expansion of a primary producer that benefits 

from abiotic change is countered by higher consumption. Its increased contribution to the energy 

flow within the food web is represented by the horizontal shift in consumers. c) An optional 

omnivore initiates feeding on an expanding primary producer, leading to a decrease in trophic level 

of the omnivore and shortening of the food web. d) A consumer replaces the trophic function of its 

competitor that became extinct (i.e. redundancy), which is indicated by the approach of their trophic 

niches. 

     In contrast to these examples, a constant architecture would lead to severe changes in biomass 

composition and associated functions. In b-d, biomass would accumulate at the bottom of the food 

web and in form of a few dominating primary producer species. Additionally in d, the energy flowing 

through the extinct consumer would be lost entirely leading to lower primary and secondary 

consumer biomass. 

 

Here we test the ability of trophic architecture to compensate for increasing climatic stress 

and investigate shifts in trophic pyramids and the functional composition of species 

communities. In 1,800 L mesocosms, we exposed a model community to simulated ocean 

acidification (elevated CO2: 910 μatm, pH=7.89) and ocean warming (elevated temperature: 

+2.8 °C, baseline 21 °C ≙ summer average) for 4.5 months according to end-of-century 

projections (RCP 8.5 35). We assessed the performance of functional groups at different 

trophic levels through their standing biomass and used stable isotope analysis to unravel 

trophic architecture. Stable isotope ratios provide time-integrated estimates about feeding 

relationships based on energy flow, where the trophic position of a consumer is 

approximated by δ15N and the basal resources that support it by δ13C 36, following the same 

logic as in Box 1. Our study demonstrates how maintenance of a stable trophic architecture 

under climatic stress can lead to the functional and trophic degradation of communities. 
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RESULTS 

 

A transformation in the biomass structure of communities occurred as a result of the strong 

but opposing responses of trophic levels to temperature (Fig. 1). We structured communities 

into 14 major functional groups including five groups of micro- or macroalgae (primary 

producers), five of herbivores, one of detritivores and two of filter feeders (primary 

consumers), and one of each predatory invertebrates and fishes (secondary consumers) 

(Table S8). Both CO2 and temperature enhanced bottom-up forcing through increased 

community primary production (Fig. 2a, Table S1a). Under elevated CO2 alone, taxa across all 

trophic levels benefited from this resource enrichment (Figs. 1b, S1a), and communities 

maintained a functional composition close to that of controls (Fig. 2b-c, Table S1b). In 

contrast, under elevated temperature irrespective of CO2, mainly primary producers and 

secondary consumers increased in biomass while primary consumers systematically declined 

by >40 % on average (Figs. 1c-d, S1b-c). The functional composition of these communities 

was clearly distinct to that of the controls (Fig. 2c). Under the combined effect of elevated 

CO2 and temperature, the expansion of biomass at the bottom of the food web was 

particularly pronounced due to the extreme proliferation of turf algae and cyanobacteria 

(Fig. S1c), and led to a 10-fold increase in dominance of autotrophic compared to 

heterotrophic organisms (Fig. 2b, Table S1b). 

In contrast to biomass, trophic architecture across all taxa and the trophic niches of 

individual taxa remained largely unchanged, even under the combined pressure of elevated 

CO2 and temperature (Fig. 1). Across taxa, the architectural extent (i.e. trophic level range, 

basal resource range and niche area) or the position of taxa relative to one another (i.e. 

trophic diversity, redundancy and evenness) were unaffected by the climate treatments (Fig. 

S2, Table S3). Likewise, individual taxa maintained their specific position in trophic space 

under all climate treatments (Fig. S3). Also, the niche breadth of taxa – representing 

between-individual diet specialisation – showed neither an overall change nor a collapse 

only in taxa that were sensitive to future climate (Fig. S4). 
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Figure 1: Trophic architecture and biomass composition of mesocosm communities under different 

climate treatments. Each symbol represents the stable isotope signature (mean ± SE) and change in 

biomass of one taxon. Coloured polygons show the average change in biomass of the three trophic 

levels. Light-grey polygons indicate the trophic niche of the consumer community. Taxa that were 

either entirely absent or not present in sufficient amount for stable isotope analysis are marked as 

(ecologically) extinct with a position corresponding to the signatures of the controls. Taxa labels and 

sample sizes are provided in Figure S10 and Table S11. 

 

 

Figure 2: Basic community characteristics under different climate treatments across all functional 

groups. a) Primary production (± SE) estimated through gross O2 production and b) biomass ratio 

(± SE) of autotrophic to heterotrophic organisms. Following 2-way ANOVAs with CO2 and 

Temperature (T), letters above bars mark significantly different means according to main effects (a) 

or the interaction (via post-hoc tests, b). c) Functional composition using non-metric 

multidimensional scaling on the biomass of the 14 principle functional groups (see Figure S1). Given 

are mesocosms (data points), treatment centroids (intersection of dashed lines), and the 95% 

confidence ellipses for the centroids. Plots a-c are based on n = 3 mesocosms. 
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The stability of trophic architecture under elevated temperature implied impairment in 

compensatory processes that are mediated by the adaptive trophic behaviour of consumers. 

The absence of functional redundancy is best illustrated using herbivory. Two key herbivore 

groups – the largest in biomass (non-cryptic molluscs) and highest in abundance (copepods) 

– strongly declined under elevated temperature, in particular in combination with elevated 

CO2 (Figs. S5a, S1b-c). However, none of the less sensitive herbivore groups re-occupied this 

opened-up trophic space; that is, functionality was lost (Fig. S5b, Table S4). Further, a lack of 

trophic compensation at the food web scale was apparent. Expected was an active shift of 

omnivorous taxa – tracking the availability of resources (Fig. S1b-c) – towards an increasingly 

herbivorous diet. Such adjustments in feeding choices at lower trophic levels would be 

reflected in an overall shorter food web. Yet, a reduction in trophic level at the top of the 

food web was not observed, neither in the entire assemblage of secondary consumers (Fig. 

S6) nor in any of its 8 taxa individually (Table S6). 

 

DISCUSSION 

 

We show that trophic architecture can remain unexpectedly stable under ocean warming, 

while the relative biomass among functional groups re-organises. The lack of an adaptive 

response in architecture to buffer environmental change mediated the emergence of a novel 

trophic pyramid with substantial expansion at the base and top and contraction in the centre 

(Fig. 3b); a pattern that was exaggerated in the combined stressor scenario (Fig. 3d). 

Warming likely caused an imbalance in multiple community dynamics at once including a 

shift towards ‘weedy’ 28 and less palatable primary producers 37,38, ingestion inefficiency in 

secondary producers 39, and over-consumption of prey by predators in the face of elevated 

metabolic demand 29,31. The strong influence of temperature on physiology 24,40 may explain 

why consumers across the food web failed to adjust their feeding behaviour to the changing 

landscape of resources. In contrast, ocean acidification alone only represented a moderate 

stressor to our community, primarily in the form of CO2 enrichment boosting primary 

production. Here, the enhanced bottom-up forcing propagated rather evenly to higher 

trophic levels (Fig. 3c), consistent with trophic theory 41 and implying some degree of trophic 

compensation 29,42. An adaptation in trophic architecture was not required under ocean 

acidification alone, as the additional energy could be channelled upwards via the same 

feeding interactions. 

 

Whilst our predators maintained their biomass and diversity under warming, natural food 

webs may become depleted at their top when the full complexity of ecosystems is 

considered. Food webs at larger spatial scales incorporate higher-order predators. These 

may either succumb the stress of warming and acidification 43,44 or deplete lower trophic 
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levels, including the predators that were studied here, due to elevated metabolic rates 31,45. 

Independent of possible changes in top-down forcing, the small predators of the mesocosm 

– only tested within one generation – may not be able to resist long-term exposure to 

climatic stress or additional disturbances given the impoverishment in their prey. An 

ecological tipping point may be passed 7,46 beyond which higher trophic levels can no longer 

be supported, inevitable leading to a collapse into a shorter, more bottom-heavy trophic 

pyramid (Fig. 3e). This end state is common in ecosystems that are under intense pressure 

from overfishing 12,47, species invasions 48, nutrient enrichment 49, variation in river discharge 
50, or experimental warming 51. Clearly, many stressor-ecosystem interactions do not exhibit 

effective compensation. Our study may reveal one of the transitionary dynamics – an 

adjustment of biomass around a stable trophic architecture – that can lead to an imbalanced 

trophic pyramid with little capacity to resist further disturbance. 

 

 
Figure 3: Theoretical diagram of how non-adaptive trophic architecture under anthropogenic stress 

can initially lead to altered trophic pyramids (our experiment) and bottom-heavy food webs and the 

degradation of higher-order consumers over the long term (literature). 

 

Whilst the relative change in biomass between functional groups or trophic levels in our 

communities only represent the initial response to warming, it is likely to be followed by 

species extinction if the stressor persist 52. The removal of nodes (i.e. species) in the 

architecture would ultimately force a simplification towards shorter food webs with fewer 

energy channels (Fig. 3d). Similarly, periods in Earth’s history with extreme climate change, 

ocean acidification and hypoxia led to a simple architecture comprising lower trophic levels 
53 and generalist interactions 54. Following mass extinction events that occurred during these 

periods, species evolution over millions of years was required to rebuild – from the bottom 

up – ecosystems with more complex trophic architectures 53. Indeed, evidence suggests that 
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a human-induced mass extinction may be imminent 55. Only a deceleration of change by 

reducing CO2 emissions and a removal of existing pressure through local environmental 

stressors may give food webs a chance to adapt and ecosystems the ability to provide critical 

services to future human generations. 
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METHODS 

 

Mesocosms 

A temperate benthic coastal ecosystem was simulated indoors from February to July 2015 

using twelve circular tanks of 1,800 l (see Fig. S7 for photos). Each of these mesocosms was 

provided with unfiltered seawater including nutrients and planktonic propagules at 

2,300 l day-1. They comprised a mosaic of the three dominant local habitats (Gulf St. Vincent, 

South Australia) 1: i) ‘Rocky reef’ built of rocks from the sea with all associated macrophytes 

and invertebrates, ii) ‘artificial seagrass’ planted into fine silica sand, and iii) ‘open sand’ 

composed of the same sand. The artificial seagrass had been incubated for 2 weeks in the 

sea nearby natural seagrass for epiphytic colonization. The soft-bottom habitats (i.e. sand 

and seagrass) of each mesocosm were seeded with 25 l sediment collected among seagrass 

meadows and including all infauna and flora. A lamp simulated a local light regime of about 

6-7 m water depth and supported primary production (14/10 light-dark cycle, 30 min dawn 

and dusk dimming).  

 

Ecological community 

The overall aim was to assemble a multi-trophic community that features high taxonomic 

and functional diversity while being as natural as possible. A variety of sessile and mobile 

organisms were passively introduced through the habitat at the start and the continuous 

inflow of unfiltered seawater during the experiment. In addition, a range of larger motile 

consumers were introduced to each mesocosm including 6 fish species (total of 45 

individuals), two shrimp species (10 individuals), and 8 gastropod species (total of 56 

individuals) (Table S7). Whilst specific thermal niches determine sensitivities to future 

climate 2, our temperature treatment did not surpass the upper thermal limits of any of the 

fish or shrimp species (see chapter III). This assessment was difficult for many of the other 

taxonomic groups, due to unknown thermal ranges and/or sampling at broader taxonomic 

level. Nevertheless, the high diversity in these groups increased the likelihood of more 

tolerant species that are critical for functional redundancy. 

The longer term exposure not only allowed acclimation in larger and multiple generations in 

smaller species (see supplementary methods) but also enabled biotic interactions to shape 

community properties. Secondary consumers moved between various micro- and macro-

habitats and maintained a varied diet (fish stomach content: crustaceans, molluscs, annelids 

and algae); behaviour that is required for the coupling of energy channels and the adaptive 

response to changing prey availability. Overall, communities adjusted to their specific 

environmental conditions through growth, mortality and – in case of species with short life 

cycles – reproduction. By the end of the experiment, they were likely close to their 
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equilibrium state as suggested by key functional groups at both the bottom and top of the 

food web. First, the cover of cyanobacteria and turf algae remained, after initially increasing 

rapidly in the mesocosms with elevated temperature, stable over the final month. Second, 

the unaltered physical condition of the fishes 3 across mesocosms and treatments (Tables 

S9) indicated certain continuity in trophic processes. That is, fishes responded to changes in 

resource availability through growth and mortality and not through rapid adjustments in 

physical condition that would be expected if trophic processes fluctuated strongly. The final 

taxonomic complexity, biomass and abundance of an average community are illustrated in 

Table S8.  

 

Climate treatments 

We crossed the factors CO2 (levels: ambient and elevated) and temperature (levels: ambient 

and elevated) using three replicate mesocosms per treatment combination (see Table S10 

for water parameters). To achieve elevated CO2, the seawater was pre-conditioned to 

elevated pCO2 levels with pure CO2 and then circulated between each mesocosm and an 

associated bin heavily aerated with CO2-enriched air. Community metabolism produced 

diurnal variability in pH; a characteristic of shallow coastal systems (Fig. S9). Ambient 

temperature was set according to average local summer conditions over the past 5 years (2 

data loggers, 5 m depth, 2010-2015, SA Water), and heaters were used to achieve elevated 

temperature. The mesocosm communities were habituated to captivity for 3-4 weeks, 

progressively raised to their respective climate treatment over 1 week, and finally 

maintained at treatment levels for 4.5 months (Fig. S8). 

 

Biomass and primary production 

The community composition was assessed over the final month of the experiment, and the 

methodology is provided in detail in the supplementary information. In brief, all individuals 

of the larger-bodied taxa were collected by searching the entire mesocosm habitat 

thoroughly. Smaller-bodied taxa were instead subsampled through various techniques 

including sediment cores, artificial habitat units and chlorophyll a measures before being 

extrapolated to the entire mesocosm. Larger-bodied consumer taxa were weighed as wet 

mass on a micro scale after removal of excess water with a paper towel, while the mass of 

copepods and small annelids was estimated using biovolume. Due to the difficulty of 

removing excess water, primary producers were analysed as dry mass either by drying at 

60 °C or extrapolation from chlorophyll a concentrations. For the data analysis, taxa were 

pooled into 14 functional groups and – based on the stable isotope signatures – into 3 

trophic levels (see Table S8). 



100 
 

Community primary production was estimated at the end of the experiment. O2 

concentration was measured in 1 min intervals over at least 30 min (HQ40d Portable Meter, 

sensor LDO101, HachTM), while mesocosms were sealed off the atmosphere with a 

transparent plastic cover. This procedure was conducted once during daylight and once 

during night-time in each mesocosm. Linear regression were fitted (R2 

mean ± SD = 0.94 ± 0.04) to obtain a rate of O2 production during daytime (net production) 

and consumption during night-time (respiration). Finally, gross primary production was 

calculated as the sum of net production and respiration. 

 

Stable isotope samples 

About 175 separate stable isotope samples from 28 distinct taxonomic groups were used to 

analyse trophic architecture under each climate treatment (~700 samples in total). Samples 

were derived from the biomass sampling described before or through the collection of 

additional material (see supplementary methods). In case of sessile or little motile 

taxonomic groups, these samples represented spatially separated areas within the 

mesocosm. To obtain sufficient organic material for isotope analysis, samples represented 

individuals (larger consumers), multiple individuals (smaller consumers and macrophytes) or 

an undefined number of individuals (smaller primary producers). While we aimed to collect 

an even number of samples for each taxon per mesocosm (2 or 3 samples) and climate 

treatment (6 or 9 samples), this was not always possible due to high variability or generally 

low biomass caused by a strong treatment effect. A complete list of the taxa included in the 

analysis and their replication is provided in Table S11. 

Muscle tissue was used for larger, motile consumers (fishes, predatory invertebrates and all 

molluscs) and cleaned stomach sacks for ascidians. The entire body was instead used for 

smaller consumers and primary producers. Samples were dried at 60 °C and briefly 

homogenized in a ball mill except the smallest samples (e.g. copepods) that were used 

entirely. Samples of brittle stars contained considerable amounts of carbonate and were 

thus split in two: one part remained unmodified to estimate δ15N and the other was 

decalcified (1 M HCl) for an unbiased estimate of δ13C. Samples were weighed into a tin 

capsule (0.15-2.5 mg depending on sample type) and combusted in an elemental analyser 

(EuroVector, EuroEA) coupled to an isotope ratio mass spectrometer (Nu Instruments 

Horizon) at the University of Adelaide. After correction to internal standards, ratios of 
13C/12C and 15N/14N were expressed in the conventional δ notation as parts per thousand 

deviation from international standards. The average error of the analysis was 0.079 ‰ for 

δ13C and 0.068 ‰ for δ15N. Isotope signatures are integrated over days to months depending 

on metabolism and growth rate 4,5. The duration of our mesocosm was likely sufficient for a 

near complete isotopic turnover in all taxa given that even the taxa with the largest body 
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size (B. quoyii) or highest trophic level (F. lateralis) showed a substantial mean (± SD, n = 12) 

per capita increase in mass with 2461 ± 414 % and 202 ± 53 %, respectively. 

Stable isotope analysis has become a popular tool in ecology as it provides a unique insight 

into the stability or change of feeding interactions 6. In brief, biological processes can 

discriminate between heavy and light C and N isotopes. A depletion of 13C occurs during 

assimilation and this effect varies substantially between primary producers. Therefore, δ13C 

may reflect the horizontal trophic architecture, given that it changes only slightly with 

increasing trophic level (approx. -1 to +2 ‰ 7). In contrast, 15N experiences a stronger 

enrichment through each trophic step (approx. +1.5 to +4.5 ‰ 7), and thus δ15N may reflect 

the vertical architecture. The variability in enrichment factor between species and systems 7 

causes no issue for our study, as the entire stable isotope analysis is conducted in relative 

terms using the control mesocosms as reference. 

The magnitude of possible shifts in stable isotope signatures of consumers in bivariate δ13C 

and δ15N space in response to environmental change is always bounded by the difference in 

signature of their resources (as illustrated in Box 1). In a hypothetical and simplified 

example, if the δ13C signatures of the two potential resources of a consumer are 5 ‰ apart, 

then the consumer’s signature may shift horizontally within these 5 ‰ depending on the 

relative contribution of the two resources. Similarly, if the consumer is an omnivore with 

potential resources from the first and second trophic level with δ15N signatures 3.4 ‰ apart, 

then the consumer’s signature may shift vertically within 3.4 ‰ reflecting the signature 

between a pure carnivore and herbivore. Accordingly in our study, the detection of a shift in 

consumer diet by stable isotope analysis was possible due to the distinct signature of the 

major resource groups (see distance and precision in Fig. 1).  

 

Data analysis 

Two-way ANOVAs with CO2 and Temperature as fixed factors were conducted for gross 

primary production, auto-heterotroph ratio, and biomass of each of the 14 functional 

groups. These were followed by Student–Newman–Keuls (SNK) post hoc tests in case of a 

significant (α = 0.05) interaction. Additionally, the difference in functional composition 

between communities was illustrated using non-metric multidimensional scaling based on 

the 14 functional groups (Bray-Curtis, Wisconsin standardization 7). 

All stable isotope analyses were conducted across mesocosms in order to employ the more 

sophisticated Bayesian approaches. This was appropriate because mesocosm as random 

factor did neither affect the isotope signatures of the entire assemblage of consumers 

(Fig. S11a, Table S12a) and basal resources (Fig. S11b, Table S12b) nor of individual taxa 

(Table S13).  
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To characterize trophic architecture based on δ15N-δ13C bivariate space, six community-wide 

metrics were assessed for each climate treatment using all 23 consumer taxa: i) ‘δ15N range’ 

and ii) ‘δ13C range’ for the distance between taxa with smallest and largest values, iii) ‘total 

area’ for the convex hull encompassed by all taxa, iv) ‘mean distance to centroid’ for the 

distances of species to the community centroid, v) ‘mean nearest neighbour distance’, and 

vi) ‘standard deviation of nearest neighbour distance’ (see Fig. S2 for the ecological 

interpretation of these metrics) 8. Metrics were estimated using Bayesian inference with 

12,000 posterior draws – based on the replicate samples within each taxa – and compared 

statistically between climate treatments 9. Additionally, to evaluate potential shifts in trophic 

niches of individual taxa, linear regressions were conducted with the average control δ15N or 

δ13C as explanatory and treatment δ15N or δ13C as dependent variable, respectively. 

Trophic niche breadth of individual taxa was estimated through the standard ellipse area 

corrected for small sample sizes in δ15N-δ13C bivariate space (SEAc, includes ~40 % of the 

data) 9. Only taxa sampled at the individual-level were considered, for niche breath to 

represent between-individual diet specialisation. Mean effect sizes were calculated across 

taxa for each climate treatment using log-transformed response ratios (lnRR = 

ln(SEAc Treatment/SEAc Control)) 
10. Finally, changes in niche breath under future climate were 

related to changes in biomass using linear regression. 

Trophic niches were compared between herbivore groups to evaluate the potential for 

functional redundancy within the broader function of herbivory. This analysis was only 

conducted for the herbivores as, unlike the other consumer functions, they comprised 

several distinct subgroups of which some declined under future climate while others did not. 

The average distances of niches between pairs of herbivores – i.e. distances 

between centroids of standard ellipses – was estimated using Bayesian inference with 

12,000 posterior draws 9. Then, it was tested whether less sensitive herbivores shift their 

niches towards those of sensitive herbivores under future climate. Further, a potential 

reduction in trophic level of the 8 taxa of secondary consumers under future climate was 

investigated based on δ15N in a conventional split-block ANOVA. It included CO2 and 

Temperature as between block factors, Taxon as within block factor and mesocosm as 

random blocking factor 11. 

For ANOVAs and regressions, normality and homogeneity were assessed using normal Q-Q 

plots and Shapiro-Wilk tests and residual versus fitted plots and Levene’s tests, respectively. 

Data was transformed if necessary. Analyses were performed with R version 3.4.1 12 and 

Bayesian analysis with the R package SIBER version 2.1.3 9. 
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SUPPLEMENTARY RESULTS 
 

Tables S1-6 and Figures S1-6 
 

 

Table S1: ANOVAs on a) gross primary production of the mesocosm community and b) ratio between 

the biomass of all autotrophic (primary producers) and heterotrophic (all consumers) organisms 

included in this study. Both response variables were log10-transformed to improve normality and 

homogeneity. 

 Source of 
variation 

df MS F-ratio P-value 
 

     

a) Primary production CO2 1 0.0093 7.0 0.029 

 T 1 0.0443 33.5 <0.001 

 CO2×T 1 0.0001 0.1 0.759 

 Residuals 8 0.0013 
  

 

     b) Auto-heterotroph ratio CO2 1 0.315 20.8 0.002 

 T 1 1.292 85.3 <0.001 

 CO2×T 1 0.308 20.4 0.002 

 Residuals 8 0.015 
   

          

df = degrees of freedom; MS = mean square 

 

 

 

Figure S1: Effects of the climate treatments on the biomass of different functional groups and trophic 

levels. Effect sizes and standard errors were calculated as log-transformed response ratios of the 

respective climate treatment and the control (n = 3 mesocosms per treatment) 1, which were then 

back-transformed and centred on zero for graphical illustration. Statistical significances are marked 

by * and are not based on the effect sizes but on 2-way ANOVAs (see Table S2) due their superior 

power in the absence of interactions. Consumers are ranked from the bottom to the top according to 

their δ15N signature (low to high) and primary producers according to their approximate size (small to 

large). Bars are limited to +200 % for the primary producers that showed a disproportionally large 

increase. Their effect sizes are still given with lower and upper limits of the standard error. 
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Table S2: ANOVAs on the biomass of the different functional groups. In case of an interaction, SNK 

post-hoc tests were used to determine differences between individual means. 

 
 

Functional group 
Source of 
variation 

df MS F-ratio P-value Effects 
 

        

a) Secondary Fishes CO2 1 23.43 8.4 0.020 ambient < elevated 
 consumers 

 
T 1 0.05 0.0 0.901 

 
 

  
CO2 × T 1 1.58 0.6 0.473 

 
 

  
Residual 8 2.78 

    

        

 
 

Predatory invertebrates CO2 1 0.81 0.4 0.560 
 

 
  

T 1 25.23 11.5 0.010 ambient < elevated 
 

  
CO2 × T 1 0.52 0.2 0.639 

 
 

  
Residual 8 2.20 

    

        

b) Primary Ascidians CO2 1 5.9 1.1 0.325 
 

 consumers 
 

T 1 124.5 23.2 0.001 ambient > elevated 
 

  
CO2 × T 1 18.1 3.4 0.103 

 
 

  
Residual 8 5.4 

    

        

 
 

Sponges CO2 1 0.56 1.5 0.259 
 

 
 

(sqrt-transformed) T 1 14.16 37.6 <0.001 ambient > elevated 
 

  
CO2 × T 1 0.14 0.4 0.561 

 
 

  
Residual 8 0.38 

    

        

 
 

Detritivores CO2 1 5.07 3.4 0.101 
 

 
  

T 1 12.28 8.3 0.020 ambient > elevated 
 

  
CO2 × T 1 0.55 0.4 0.559 

 
 

  
Residual 8 1.47 

    

        

 
 

Non-cryptic molluscs CO2 1 2340 3.1 0.115 
 

 
  

T 1 36347 48.6 <0.001 
 

 
  

CO2 × T 1 4104 5.5 0.047 C = elevated CO2 > elevated T > elevated CO2+T 
 

  
Residual 8 748 

    

        

 
 

Copepods CO2 1 0.0063 1.1 0.319 
 

 
 

(sqrt-transformed) T 1 0.3300 59.5 <0.001 
 

 
  

CO2 × T 1 0.0400 7.2 0.028 C = elevated CO2 > elevated T > elevated CO2+T 
 

  
Residual 8 0.0056 

    

        

 
 

Cryptic molluscs CO2 1 15.95 5.6 0.045 
 

 
  

T 1 57.75 20.3 0.002 
 

 
  

CO2 × T 1 40.33 14.2 0.005 C = elevated CO2 = elevated CO2+T > elevated T 
 

  
Residual 8 2.84 

    

        

 
 

Macro-crustaceans CO2 1 0.3734 5.7 0.044 ambient < elevated 
 

 
(sqrt-transformed) T 1 0.0122 0.2 0.678 

 
 

  
CO2 × T 1 0.1612 2.5 0.156 

 
 

  
Residual 8 0.0656 

    

        

c) Primary Macrophytes CO2 1 293.9 4.3 0.071 
 

 producers 
 

T 1 3806.3 56.3 <0.001 ambient > elevated 
 

  
CO2 × T 1 264 3.9 0.084 

 
 

  
Residual 8 67.7 

    

        

 
 

Turf algae CO2 1 12635 35.0 <0.001 
 

 
  

T 1 41778 115.6 <0.001 
 

 
  

CO2 × T 1 15165 42.0 <0.001 C = elevated CO2 < elevated T < elevated CO2+T 
 

  
Residual 8 361 

    

        

 
 

Cyanobacteria CO2 1 5.28 3.5 0.100 
 

 
 

(sqrt-transformed) T 1 43.12 28.3 <0.001 ambient < elevated 
 

  
CO2 × T 1 6.15 4.0 0.079 

 
 

  
Residual 8 1.53 

    

        

 
 

Benthic microalgae CO2 1 0.1315 19.0 0.002 
 

 
  

T 1 0.0044 0.6 0.451 
 

 
  

CO2 × T 1 0.0538 7.8 0.024 C < elevated CO2 = elevated T = elevated CO2+T 
 

  
Residual 8 0.0069 

    

        

 
 

Phytoplankton CO2 1 0.003851 6.2 0.037 
 

 
  

T 1 0.000720 1.2 0.313 
 

 
  

CO2 × T 1 0.007437 12.0 0.009 C < elevated CO2 = elevated T = elevated CO2+T 
 

  
Residual 8 0.000620 

    
        

df = degrees of freedom; MS = mean squares; C = Control; T = temperature 
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Figure S2: Metrics that characterize the isotopic space occupied by the community of primary and 

secondary consumers (a, b, c) and the position of individual consumer taxa relative to each another 

(d, e, f). Given are Bayesian estimates (• = mode) with 50%, 75% and 95% credible intervals (shaded 

boxes), and maximum likelihood estimates (x). CO2 = elevated CO2, T = elevated T, CO2+T = elevated 

CO2+T. See Table S11 for sample sizes. 

 

Table S3: Comparison of the community metrics between climate treatments using Bayesian 

inference. Values represent the probability of one treatment to be larger than the other. Substantial 

evidence for a difference between treatments, which would be indicated by probabilities larger than 

0.95 or smaller than 0.05, was not found. a) All consumer taxa are included corresponding to Figure 1 

and S2. b) Only consumer taxa are included which were present in all 4 climate treatments, to 

confirm that the (ecological) extinction of some of the taxa in T and CO2+T did not alter our 

interpretation of the community metrics. 

Metric C > CO2 C > T C > CO2+T CO2 > T CO2 > CO2+T T > CO2+T 
       

a) All taxa 
      

δ
15

N range 0.719 0.652 0.575 0.438 0.346 0.407 

δ
13

C range 0.386 0.707 0.509 0.791 0.623 0.293 

Total area 0.760 0.797 0.390 0.594 0.156 0.136 

Mean distance to centroid 0.371 0.477 0.062 0.597 0.071 0.067 

Mean nearest neighbor distance 0.717 0.390 0.259 0.192 0.108 0.349 

Standard deviation of nearest neighbor distance 0.626 0.501 0.531 0.379 0.410 0.539 
       

b) Excluding extinct taxa 
      

δ
15

N range 0.725 0.638 0.551 0.420 0.320 0.405 

δ
13

C range 0.323 0.678 0.434 0.796 0.609 0.273 

Total area 0.728 0.765 0.281 0.590 0.125 0.127 

Mean distance to centroid 0.268 0.783 0.164 0.904 0.315 0.059 

Mean nearest neighbor distance 0.729 0.543 0.490 0.320 0.279 0.445 

Standard deviation of nearest neighbor distance 0.564 0.573 0.739 0.512 0.682 0.666 
              

C = Control, CO2 = elevated CO2, T = elevated T, CO2+T = elevated CO2+T 
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Figure S3: Comparison between the trophic niches of consumers under control and future climate 
based on their a) trophic position and b) source pools. Each data point represents the average 
isotopic signature of one taxon across the three replicate mesocosms. A slope and R2 of 1 would 
indicate that future trophic niches perfectly match those under present-day conditions. The larger 
deviance from a perfect fit in (b) can at least partly be attributed to the change in isotopic signature 
of some of the source pools (i.e. primary producers) under future climate, rather than to a change in 
diet of the consumers. Statistical components of this figure should not be interpreted in detail as the 
individual data points, being the different taxa, originate from the same set of mesocosms and are 
thus not independent. 

 

 

Figure S4: Trophic niche breadth of consumer taxa under future climate. a) The measure of niche 
breadth – standard ellipse area corrected for small sample size (SEAc) – illustrated for one taxon. 
Data points represent isotopic signatures of individual shrimps. b) Mean effects sizes (black squares) 
of the climate treatments on niche breadth across all taxa. Confidence intervals not crossing 0 would 
indicate a significant effect. Each data point represents the individual effect size of one taxon. c) Test 
of whether changes in niche breath under future climate are related to changes in biomass. Each 
data point represents the individual effect size of one taxon. Here, we would expect a positive 
relationship if trophic niches collapse in taxa sensitive (i.e. reduced biomass) to future climate and no 
relationship if changes in niche breath are unrelated to sensitivities. For b and c, only taxa with 
isotope samples based on individuals and with more than three samples for both control and the 
respective climate treatment could be considered: elevated CO2 n = 15 taxa, elevated T n = 12 taxa, 
elevated CO2+T n = 13 taxa. 
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Table S4: Statistical analyses associated with Figure S5 for the distance of niches between less 

sensitive and sensitive herbivores under control and future climate. Values represent the probability 

for a smaller distance under future climate compared to controls. Substantial evidence for a 

reduction in distance – indicated by probabilities larger than 0.95 – was not found. 

Herbivore pair C > CO2 C > T C > CO2+T 

    

Omnivorous fishes vs. Non-cryptic molluscs 0.387 0.811 0.639 

Omnivorous fishes vs. Copepods 0.117 0.784 0.936 

Macro-crustaceans vs. Non-cryptic molluscs 0.414 0.369 0.102 

Macro-crustaceans vs. Copepods 0.197 0.795 0.849 

Cryptic molluscs vs. Non-cryptic molluscs 0.772 0.568 0.010 

Cryptic molluscs vs. Copepods 0.493 0.824 0.702 
    

C = Control, CO2 = elevated CO2, T = elevated T, CO2+T = elevated CO2+T 

 

 
Figure S6: Trophic niche of the assemblages of motile secondary consumers including all fishes and 

larger predatory invertebrates. Shown are stable isotope signatures of individual organisms (small 

circles), standard ellipse areas, and centroids (larger squares) with standard errors. The reference 

lines represent the average δ15N across all primary producers and all herbivore samples (non-cryptic 

molluscs, copepods, cryptic molluscs and macro-crustaceans), respectively, across the four climate 

treatments. 

 

Table S6: ANOVA on the effects of future climate on δ15N of secondary consumers, as a proxy for 

trophic level. The mixed model includes CO2 and Temperature (T) as fixed between block factor, 

Taxon (fishes and predatory invertebrate, n = 8 taxa) as fixed within block factor and Mesocosm as 

random blocking factor. The model was fit by restricted maximum likelihood 2 and the Kenward-

Roger approximation for degrees of freedom was used. The data was x2-transformed to improve 

normality and homogeneity. 

Source of variation dfNum dfDen MS F-ratio P-value 

   
   

CO2 1 8.2 11.1 0.18 0.682 

T 1 8.2 7.2 0.12 0.740 

Taxon 7 51.6 1823.1 29.70 <0.001 

CO2 × T 1 8.2 8.9 0.15 0.713 

CO2 × Taxon 7 51.6 41.9 0.68 0.687 

T × Taxon 7 51.6 34.2 0.56 0.788 

CO2 × T × Taxon 7 51.6 49.4 0.80 0.587 
  

          

dfNum = numerator degrees of freedom; dfDen = denominator degrees of freedom; MS = mean squares 
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SUPPLEMENTARY METHODS 
 

Tables S7-13 and Figures S7-11 
 

Habitat and Technical set-up 

A flow-through mesocosm system was maintained at the South Australian Research and 

Development Institute (SARDI; 34°57'10"S, 138°30'20"E). All biological material was 

collected at 1-5 m depth within 60 km of the facility. Seawater from 1.5 km offshore and ~8 

m depth was transferred to two 800 l header tanks. One of these tanks supplied the 

mesocosms with ambient pCO2 and the other was pre-conditioned to elevated pCO2 levels 

using pure CO2 (control system ACQ110 Aquatronica, Italy) to supply the mesocosms with 

elevated CO2 (# 1, Fig. S7). The mesocosms themselves exchanged water (~1,800 l per h) 

with an associated 60 l bin; a separate bin for each mesocosm. To maintain the climate 

treatments, these bins were heavily aerated with ambient air at 400 μatm pCO2 or enriched 

air at 1000 μatm pCO2 (PEGAS 4000 MF Gas Mixer, Columbus Instruments, Columbus, Ohio) 

and contained submersible titanium heaters (800 W). Two diffuser pipes (# 2) made use of 

this water circulation to create a mild circular current inside the mesocosms, which 

alternated direction every 6 h to simulate tidal water movement. The water flew back to the 

bins through gravity while passing a filter column (~20 µm mesh size) (# 3) that retained the 

organisms within the mesocosm. This elaborate system assured that the mesocosms 

themselves were free of unnatural disturbances such as air bubbles, electrical currents or 

pump noise.  

A 250 W metal halide lamp (Osram Powerstar HQI-T 250/D/PRO) mounted above each 

mesocosm (# 4, Fig. S7) provided the energy for primary production. The lamp had a colour 

temperature of 5500 K, a colour rendering index of 92 and a wave length distribution similar 

to sunlight, according to the spectrum provided by the manufacturer. Measures in 5 cm 

intervals from the centre to the tank wall suggested an irradiance of 3833 ± 1304 lux 

(mean ± SD) at the level of the benthic habitat. This corresponds to ~6-7 m depth in Gulf St. 

Vincent based on previously published attenuation coefficients 1 and the local average daily 

summer irradiance (Bureau of Meteorology, www.bom.gov.au, location Adelaide, past 20 

years of data).  

The habitat comprised four patches of each ‘rocky reef’ (# 5, Fig. S7) and ‘artificial seagrass’ 

(# 6) arranged in pairs and surrounded by ‘open sand’ (# 7). The rocks harboured associated 

biota as found at the collection site including macrophytes (naturally attached), matt-

forming algae, small macrofauna and meiofauna. The artificial seagrass was designed after 

the dominant local genus (Posidonia spp.) 2. Fine silica sand was used for the soft-bottom 

habitats (depth: seagrass 6 cm and open sand 6-25 cm), with a grain size between 0.21 - 0.85 

mm similar to sediment found at local beaches and seagrass meadows. 
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Ecological Community 

The fish and shrimp species – comprising the majority of secondary consumers – were 

selected because of their high juvenile abundances in shallow coastal waters during summer. 

Their initial densities were set high (Table S7) as these taxa were unable to increase their 

numbers through reproduction in our mesocosms. This favoured resource limitation over 

the experimental period and thus natural trophic behaviour through the pressures of intra- 

and interspecific competition. The densities of the larger gastropods (Table S7) were instead 

based on the habitat that had been collected in the sea and introduced in the mesocosms. 

For this, all gastropods above approximately 0.5 cm were removed from the habitat and 

redistributed among all mesocosms to reach even abundances and species compositions. 

Whilst an advanced level of acclimation could be expected for secondary consumers and 

larger gastropods, transgenerational acclimation and adaptation was possible for smaller-

bodied taxa. Our exposure time of 140 days compares as follows to potential generation 

times of some of these taxa: benthic microalgae 0.4-6 days 3,4, benthic copepods 9-26 days 5, 

tanaids 42 days 6, amphipods 35-49 day 7,8, and annelids 17-55 days 9,10. 

 

 

Table S7: Larger-bodied consumers distributed to each mesocosm at the beginning of the 

experiment. The shrimps comprised a random mix of Palaemon intermedius and Palaemon serenus.  

 Species (common name) # introduced 
Total length / 

Mass ± SD 

 

     

Fishes Neoodax balteatus (little weed whiting) 7 30 ± 8 mm  

 Haletta semifasciata (blue weedy whiting) 7 31 ± 4 mm  

 Favonigobius lateralis (longfin goby) 7 22 ± 4 mm  

 Girella zebra (zebrafish) 7 17 ± 2 mm  

 Acanthaluteres vittiger (toothbrush leatherjacket) 7 30 ± 8 mm  

 Atherinosoma microstoma (small-mouthed hardyhead) 10 24 ± 5 mm  
     

Crustaceans Palaemon spp. (caridean shrimp) 10 10 – 30 mm  
     

Gastropods Bulla quoyii 10 400 ± 42 mg  

 Thalotia conica 12 385 ± 218 mg  

 Phasianella australis 20 252 ± 770 mg  

 Cantharidus spp 10 150 ± 89 mg  

 miscellaneous species 4 275 ± 223 mg  
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Table S8: Community composition at the end of the experimental period. Average biomass and 

abundance were taken across all 12 mesocosms, which explains the larger standard deviations for 

the taxa with a strong climate treatment effect. Consumers were measured as wet mass and primary 

producer as dry mass. Consumer taxa that were not identified to species level but comprised clearly 

distinct morphotypes are given with ‘likely several spp.’. The classification of primary consumers into 

feeding guilds is based on their stable isotope signatures and the literature. 

approx. 
trophic level 

Functional group Taxa 
 
 Biomass ± SD (g) Abundance ± SD 

 
 

 
       

Secondary 
consumers  

Fishes 6 spp. of teleost fishes 
 

8.68 ± 2.07 19.5 ± 2.9 

 Predatory invertebrates 
shrimps, crabs, sea stars and 
predatory gastropods, likely several 
spp. each  

5.38 ± 2.00 10.7 ± 3.1 

          

Primary 
consumers 

Ascidians (filter feeders) likely several spp. 
 

5.06 ± 4.17 5.3 ± 3.4 

 Sponges (filter feeders) likely several spp. 
 

5.04 ± 5.24 4.6 ± 3.0 

 Detritivores 
polychaetes, oligochaetes and 
brittle stars, likely several spp. each  

3.06 ± 1.64 61.5 ± 24.0 

 Non-cryptic molluscs (herbivores) 7 spp. of larger gastropods 
 

122.03 ± 66.59 30.8 ± 18.2 

 Copepods (herbivores) benthic, likely several spp. 
 

0.53 ± 0.27 158993.4 ± 62811.5 

 Cryptic molluscs (herbivores) 
chitons, limpets and small 
gastropods, likely several spp. each  

7.93 ± 3.53 32.8 ± 13.5 

 Macro-crustaceans (herbivores) 
tanaids and amphipods, likely 
several spp. each  

1.15 ± 0.71 6871.5 ± 4172.7 

          

Primary 
producers 

Macrophytes 
20+ spp. of brown, red and green 
algae   

49.63 ± 21.12 
 
- 

 

 Turf algae likely many spp. 
 

105.61 ± 81.17 
 
- 

 

 Cyanobacteria likely several spp. 
 

10.50 ± 16.28 
 
- 

 

 Benthic microalgae likely many spp. 
 

0.44 ± 0.15 
 
- 

 

 Phytoplankton likely many spp. 
 

0.21 ± 0.04 
 
- 
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Table S9: ANOVAs to test the effects of ocean acidification, warming and their interaction on the 

physical condition (Fulton’s K) of the fish individuals. First, mixed models with Mesocosm (n=3) as 

random effect were fitted. The effect of Mesocosm was highly insignificant for all taxa following 

likelihood ratio tests 16. Thus, Mesocosm was removed for the final test statistics. All response 

variables were log10-transformed. To improve data properties due to low and variable abundances, 

the ecologically and morphologically very similar species little weed whiting and blue weedy whiting 

were pooled. 

Taxon Source of variation df MS F-ratio P-value Mesocosm effect 

       

Longfin goby OA 1 <0.0001 0.004 0.951 L=0.263, df=1, p=0.608 

 

T 1 <0.0001 0.004 0.953 
 

 

OA × T 1 0.0002 0.050 0.823 
 

 
Residuals 73 0.0045 

   

       
Whiting OA 1 0.0335 1.447 0.236 L=0.096, df=1, p=0.757 

 
T 1 0.0327 1.412 0.242 

 

 
OA × T 1 0.0462 1.998 0.165 

 

 
Residuals 40 0.0232 

   

       
Zebrafish OA 1 0.0002 0.014 0.905 L=0.246, df=1, p=0.620 

 

T 1 0.0053 0.472 0.496 
 

 

OA × T 1 0.0034 0.306 0.584 
 

 

Residuals 38 0.0112 
   

       
Leather jacket OA 1 <0.0001 0.015 0.905 L<0.001, df=1, p=0.986 

 

T 1 <0.0001 0.008 0.929 
 

 

OA × T 1 <0.0001 <0.001 0.998 
 

 

Residuals 15 0.0027 
   

       

Hardy head OA 1 0.0093 2.407 0.129 L<0.001, df=1, p=0.999 

 T 1 0.0108 2.798 0.102  

 OA × T 1 0.0125 3.238 0.080  

 Residuals 39 0.0039    
       

df = degrees of freedom;  MS = mean squares;  L = log likelihood ratio statistic 

 

Seawater Parameters 

For each mesocosm, temperature and pH were measured daily at around midday (Mettler 

Toledo SevenGo™ SG2, calibrated daily) and salinity (SR6 refractometer, Vital Sine) and total 

alkalinity (total of n = 8 per mesocosm; Gran titration; 888 Titrando, Metrohm, Switzerland) 

fortnightly. Alkalinity measures were accurate within 1% of certified standards (reference 

material from A. Dickson, Scripps Institution of Oceanography). pCO₂, bicarbonate, 

carbonate and the saturation states of calcite and aragonite were calculated using CO2SYS 

for Excel 11 with constants from Mehrbach et al. 12 refit by Dickson and Millero 13. An 

overview of seawater properties is provided in Table S10, a trajectory of pH and 

temperature throughout the entire study period in Figure S8, and the diurnal variability in 

pH produced by community metabolism by Figure S9. 
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Biomass Sampling 

The specific methods used to sample the different types of organisms are listed below. The 

biomass of all organisms was extrapolated to the scale of the mesocosm for the later data 

analysis. In case organisms were sampled in multiple habitats separately, biomass estimates 

were combined according to the relative area of each habitat.  

1) All fishes, shrimps and larger gastropods were caught at the mesocosm scale across 

habitats. 

2) All crabs, chitons, limpets, small gastropods, annelids, brittle stars and amphipods were 

collected via picking and sieving (1 mm mesh) after taking apart each rocky reef patch (n = 4 

rocky reef patches per mesocosm). 

3) Copepods in the rocky reef were sampled through artificial habitat units made of 

aquarium filter sponges (L x H x W = 60 x 25 x 40 mm, pore size 2-5 mm, Fig. S7b) that had 

been incubated for 1 month (n = 2 subsamples per mesocosm). Numbers were counted 

under a stereo microscope and a random subset of individuals photographed and measured 

to estimate biomass using average biovolume. 

4) Tanaids, annelids and copepods in the seagrass and open sand habitats were sampled 

through sediment cores (65 mm diameter, 15 mm depth). Individuals were extracted by 

floatation with Ludox TM colloidal solution with a specific gravity of 1.18 and collected on a 

45 µm sieve (n = 4 subsamples per mesocosm). While the tanaids were weighed directly, the 

mass of the much smaller annelids and copepods was calculated as in (2) by combining 

counts under the stereo microscope and biovolume estimates. 

5) All macrophytes were scraped from the rocky reef (n = 4 rocky reef patches per 

mesocosm). 

6) Turf algae were scraped from the rocky reef, tank wall and seagrass leaves (n = 13 

subsamples per mesocosm).  

7) Benthic microalgae were assessed from the top layer of the open sand habitat. 

Chlorophyll a was extracted from the sand with 90 % acetone, measured 

spectrophotometrically (6405 UV/Vis, Jenway) and its concentration calculated 14 (n = 8 

subsamples per meso). Chlorophyll a mass was extrapolated to organic carbon mass (×40) 

and total dry mass (×1.53, redfield ratio for diatoms). 

8.) Cyanobacteria could form visible ‘carpets’ on the horizontal surfaces in the mesocosms, 

where they intermixed with the turf algae on the rocky reefs and other microalgae on the 

sand. To obtain separate biomass estimates, the percent cover of turf algae versus 

cyanobacteria on the rocky reefs (n = 4 rocky reef patches) and microalgae versus 

cyanobacteria on the sand (n = 2 subsample areas) was assessed before disturbing the 

habitat using the software Coral Point Count with Excel extensions15. This percent cover data 
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Table S11: Taxonomic groups included in the stable isotope analysis. The sample sizes for each 

climate treatment are the total across the 3 replicate mesocosms.  

approx. 
Trophic level 

Functional group Taxon Code 
  # samples   # individuals 

per each 
sample 

 
 

Control 
CO2 

elevated 
T 

elevated 
CO2+T 

elevated 
  

    
 

     
  

 

Secondary Fishes Favonigobius lateralis F1  
 

9 9 9 9   1 
consumer 

 
Acanthaluteres vittiger F2  

 
3 7 4 6   1 

  
Girella zebra F3  

 
8 9 9 9   1 

  
Neoodax balteatus F4  

 
8 7 2 6   1 

  
Haletta semifasciata F5  

 
4 7 7 5   1 

  
Atherinosoma microstoma F6  

 
9 8 9 9   1 

             

 
Predatory invertebrates Palaemon spp. (shrimps) Shr  

 
9 14 14 13   1 

  
Brachyura (crabs) Cra  

 
5 4 5 5   1 

             

   Total   55 65 59 62    
    

 
     

  
 

Primary Filter feeders Ascidiacea Asc  
 

5 6 6 4   1 
consumer 

 
Porifera (Sponges) Spo  

 
6 5 x x   1 

             

 
Detritivores Ophiuroidea (Brittle stars) Bri  

 
3 3 3 3   2-3 

  
Annelida (mainly Polychaeta) Pol  

 
12 12 12 12   ~8 

             

 
Non-cryptic molluscs Bulla quoyii G1  

 
9 9 9 5   1 

 
(≙ larger gastropods) Phasianella australis G2  

 
9 9 8 3   1 

  
Thalotia conica G3  

 
9 9 6 5   1 

  
Turbo spp. G4  

 
2 3 3 x   1 

  
Stomatella impertusa G5  

 
3 3 x x   1 

  
Cantharidus spp. G6  

 
3 3 x x   1 

             

 
Copepods Copepoda Cop  

 
6 6 6 6   ~100 

             

 
Cryptic molluscs Chitons (Polyplacophora) Chi  

 
6 6 4 6   3 

  
Limpets (Patellidae) Lim  

 
5 6 6 5   1 

             

 
Macro-crustaceans Amphipoda Amp  

 
5 6 5 5   4 

  
Tanaidacea Tan  

 
6 6 6 6   ~18 

             

   Total   89 92 74 60    
    

 
     

  
 

Primary Macrophytes Phaeophyceae (Brown algae) Pha  
 

6 6 6 6   4 

producer Turf algae Turf algae Tur  
 

6 6 6 6   bulk 

 
Cyanobacteria Cyanobacteria Cya  

 
6 6 6 6   bulk 

 
Benthic microalgae Sediment organic matter SOM  

 
6 6 6 6   bulk 

 
NA Particulate organic matter POM  

 
6 6 6 6   bulk 

  (30+ µm) Total   30 30 30 30    
    

 
     

  
 

x = taxa either absent or at insufficient biomass/abundance for analysis, i.e. ecologically extinct; 
bulk =  larger amount of material used without counting the ‘individuals’ due to their small size
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Figure S11: Trophic niches of individual mesocosm food webs to check for a potential difference 

between mesocosms of the same climate treatment. a) Includes all consumers and b) all basal 

resources. Each colour represents one of n = 3 mesocosms with individual stable isotope samples 

(small points), standard ellipses, and centroids with standard errors (crosses). 

 

Table S12: Testing for possible differences in stable isotope signatures between mesocosms of the 

same climate treatment for a) all consumers and b) all basal resources. The linear model including 

CO2, Temperature and their interaction as fixed effects, Mesocosm as random effect, and individual 

stable isotope samples as replicates was compared to the same model but excluding Mesocosm 

(restricted maximum likelihood fit 16). Likelihood ratio tests show that Mesocosm as random effect 

does not significantly improve the model fit in all cases. 

 Response variable Model AIC log-Lik L-Ratio P-value 
 

      

a) Consumer δ
15

N with Mesocosm 2384.3 -1186.2 
4.52E-07 0.9995 

 

 
without Mesocosm 2382.3 -1186.2 

 

    
  

 Consumer δ
13

C with Mesocosm 2206.8 -1097.4 
5.18E-07 0.9994 

 

 
without Mesocosm 2204.8 -1097.4 

 

    
  

b) Basal resources δ
15

N with Mesocosm 478.5 -233.3 
6.75E-08 0.9998 

 

 
without Mesocosm 476.5 -233.3 

 

    
  

 Basal resources δ
13

C with Mesocosm 548.9 -268.5 
6.61E-08 0.9998 

 

 
without Mesocosm 546.9 -268.5 

 
            

AIC = Akaike information criterion; log-Lik = log-likelihood 



121 
 

Table S13: Testing for possible differences in stable isotope signatures between mesocosms of the 

same climate treatment at the taxon level. The linear model including CO2, Temperature and their 

interaction as fixed effects, Mesocosm as random effect, and stable isotope samples as replicates 

was compared to the same model but excluding Mesocosm (restricted maximum likelihood fit 16). 

This analysis was only conducted for taxa that were perfectly balanced in terms of replication at all 

levels (treatment, mesocosm and sample) and that had at least 2 isotope samples per mesocosm. 

Mesocosm as random effect is only significant in 1 out of 18 cases, which is a ratio close to what 

would be expected purely due to chance. 

Taxon Isotope ratio Model AIC log-Lik L-Ratio P-value 
       

Longfin goby δ
15

N with Mesocosm 75.0 -31.5 
0.234 0.628 

  
without Mesocosm 73.2 -31.6 

       

 
δ

13
C with Mesocosm 83.8 -35.9 

0.585 0.445 
  

without Mesocosm 82.4 -36.2 
       

Annelida δ
15

N with Mesocosm 121.5 -54.7 
0.519 0.471 

  
without Mesocosm 120.0 -55.0 

       

 
δ

13
C with Mesocosm 147.2 -67.6 

<0.001 1.000 
  

without Mesocosm 145.2 -67.6 
       

Copepoda δ
15

N with Mesocosm 59.7 -23.9 
0.053 0.818 

  
without Mesocosm 57.8 -23.9 

       

 
δ

13
C with Mesocosm 48.7 -18.3 

1.494 0.222 
  

without Mesocosm 48.2 -19.1 
       

Tanaidacea δ
15

N with Mesocosm 41.8 -14.9 
0.254 0.614 

  
without Mesocosm 40.1 -15.0 

       

 
δ

13
C with Mesocosm 63.4 -25.7 

1.907 0.167 
  

without Mesocosm 63.3 -26.7 
       

Macrophytes δ
15

N with Mesocosm 89.6 -38.8 
<0.001 1.000 

  
without Mesocosm 87.6 -38.8 

       

 
δ

13
C with Mesocosm 114.6 -51.3 

<0.001 1.000 
  

without Mesocosm 112.6 -51.3 
       

Turf algae δ
15

N with Mesocosm 79.0 -33.5 
<0.001 1.000 

  
without Mesocosm 77.0 -33.5 

       

 
δ

13
C with Mesocosm 63.8 -25.9 

0.702 0.402 
  

without Mesocosm 62.5 -26.2 
       

Cyanobacteria δ
15

N with Mesocosm 72.2 -30.1 
<0.001 1.000 

  
without Mesocosm 70.2 -30.1 

       

 
δ

13
C with Mesocosm 101.5 -44.8 

<0.001 1.000 
  

without Mesocosm 99.5 -44.8 
       

Sediment organic matter δ
15

N with Mesocosm 53.6 -20.8 
0.264 0.607 

  
without Mesocosm 51.8 -20.9 

       

 
δ

13
C with Mesocosm 64.8 -26.4 

4.602 0.032 
  

without Mesocosm 67.5 -28.7 
       

Particulate organic matter δ
15

N with Mesocosm 50.6 -19.3 
0.037 0.848 

  
without Mesocosm 48.6 -19.3 

       

 
δ

13
C with Mesocosm 77.8 -32.9 

<0.001 1.000 
  

without Mesocosm 75.8 -32.9 
              

AIC = Akaike information criterion; log-Lik = log-likelihood 



122 
 

References 

1. Phillips SM, Scholz ML & Abbot RH (1981) Water turbidity measurements in Gulf St Vincent. 
Technical report ERL-0.186-T, Department of defence 

2. Bryars S & Rowling K (2009) Benthic habitats of eastern Gulf St Vincent: major changes in 
benthic cover and composition following European settlement of Adelaide. Transactions of 
the Royal Society of South Australia 133: 318-338 

3. Admiraal A (1977) Influence of Light and Temperature on the Growth Rate of Estuarine 
Benthic Diatoms in Culture. Marine Biology 39: 1-9 

4. Scholz B & Liebezeit G (2012) Growth responses of 25 benthic marine Wadden Sea diatoms 
isolated from the Solthorn tidal flat (southern North Sea) in relation to varying culture 
conditions. Diatom Research 27: 65-73 

5. Zaleha K, Ibrahim B, Akbar John B & Kamaruzzaman BY (2012) Generation Time of Some 
Marine Harpacticoid Species in Laboratory Condition. Journal of Biological Sciences 12: 433-
437 

6. Kakui K, Hayakawa Y & Katakura H (2017) Difference in Size at Maturity in Annual and 
Overwintering Generations in the Tanaidacean Zeuxo sp in Oshoro Bay, Hokkaido, Japan. 
Zoological Science 34: 129-136 

7. Neuparth T, Costa FO & Costa MH (2002) Effects of temperature and salinity on life history of 
the marine amphipod Gammarus locusta. Implications for ecotoxicological testing. 
Ecotoxicology 11: 61-73 

8. Hyne RV, Gale SA & King CK (2005) Laboratory culture and life-cycle experiments with the 
benthic amphipod Melita plumulosa (Zeidler). Environmental Toxicology and Chemistry 24: 
2065-2073 

9. Ramskov T & Forbes VE (2008) Life history and population dynamics of the opportunistic 
polychaete Capitella sp I in relation to sediment organic matter. Marine Ecology Progress 
Series 369: 181-192 

10. Akesson B (1976) Temperature and life cycle in Ophryotrocha labronica (Polychaeta, 
Dorvilleidae). Ophelia 15: 

11. Pierrot D, Lewis E & Wallace D (2006) MS Excel program developed for CO2 system 
calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge 
National Laboratory, US Department of Energy, Oak Ridge, Tennessee 

12. Mehrbach C, Culberso CH, Hawley JE & Pytkowic RM (1973) Measurement of the apparent 
dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and 
Oceanography 18: 897-907 

13. Dickson AG & Millero FJ (1987) A comparison of the equilibrium constants for the 
dissociation of carbonic acid in seawater media. Deep-Sea Research Part a-Oceanographic 
Research Papers 34: 1733-1743 

14. Jeffrey SW & Humphrey GF (1975) New spectrophotometric equations for determining 
chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie Und 
Physiologie Der Pflanzen 167: 191-194 

15. Kohler KE & Gill SM (2006) Coral Point Count with Excel extensions (CPCe): A Visual Basic 
program for the determination of coral and substrate coverage using random point count 
methodology. Computers & Geosciences 32: 1259-1269 

16. Zuur A, Ieno E, Walker N, Saveliev A & Smith G (2009) Mixed effects models and extensions in 
ecology with R. New York: Springer 

 

 



123 
 

 

 

 

 

 

 

 

 

CHAPTER V 
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KEY FINDINGS 
 

My PhD research advances our understanding of the ecological impacts of future climate by 

connecting the responses of individuals to the dynamics of species communities. An 

overview of the key findings is provided in Table 1. They reveal how direct effects of abiotic 

change can be countered or accelerated by ecological processes that collectively reinforce 

stability or change. 

 

Table 1: Key findings of my PhD research showing how individual-level effects to ocean acidification 

(OA) and warming (T) scale-up to the community level.  

Individual responses  Community dynamics 

Impaired behaviour of motile consumers 

under OA in ecologically simple situations 

 Buffered through ecological complexity so that 

consumers are able to fulfil ecological roles, i.e. prey 

population control and transfer of energy to higher 

order predators 

Increased food demand of consumers under 

T due to accelerated physiology 

 I) Stronger top-down forcing by predators causing over-

consumption of prey populations, II) consumption 

unable to meet energy demand (ingestion inefficiency) 

in 2° producer causing disruption of trophic flows, and 

III) riskier behaviour in prey to meet energy demands 

which increases mortality through predation 

Boosted 1° production under OA via CO2-

enrichment and T via accelerated physiology 

 OA: Enhanced bottom-up forcing propagates to higher 

trophic levels increasing food web productivity 

T: Inefficient or disrupted energy flows lead to bottom-

heavy food webs 

Sensitivity to T is associated with functional 

traits: I) expansion of ‘weedy’ 1° producers, 

II) ability to resist in larger motile omnivores 

and predators, III) poor performance by 

herbivores, detritivores and filter feeders  

 Shift in functional composition and trophic pyramid 

structure (i.e. no density substitution), with expansion 

at top and bottom and contraction in centre of food 

web and likely collapse into bottom-heavy food web in 

the long run 

T limits the potential for adaptive trophic 

behaviour 

 Food web architecture remains stable and thus unable 

to compensate  for loss of sensitive and proliferation of 

benefiting taxa, i.e. no trophic compensation and 

functional redundancy 

 

Communities coped well with ocean acidification due to various compensatory processes at 

simple and complex levels of biological organisation. Consequently, an overall increased 

productivity and standing biomass throughout the food web emerged as the dominant effect 

of ocean acidification, i.e. acidification primarily acted as a resource through CO2-

enrichment. Even some taxa which are considered vulnerable to ocean acidification based 

on two decades of laboratory research showed no signs of decline at the community level. 

As such, fishes – which can show strong impairment in key behaviours 1-3 – were able to fulfil 

ecological roles of prey population control and energy transfer to higher trophic level. 



125 
 

Likewise, calcifying species including gastropods, chitons and calcareous algae sustained 

their populations despite the increased energetic cost of calcification 4-6. While surprising, 

these findings from the mesocosm are not the exception as my meta-analysis identified 

similar population dynamics at natural CO2 vents 7-9. 

In contrast, ocean warming drove community degradation by shifting the balance in key 

ecological processes. Dynamics with the potential to compensate for the uneven sensitivities 

between taxa and functions failed to engage – given the fundamental influence of 

temperature on physiology 10-12 – which allowed impacts to cascade through the community 

unrestrained. A novel community structure emerged that would likely undermine ecosystem 

stability and services. The stress through warming also reversed the significance of 

acidification for the community. Whilst not affecting communities negatively in isolation, 

acidification reinforced community degradation in combination with warming. This indicates 

a limited capacity of communities to resist acidification that depends on co-occurring 

stressors. 

 

CHAPTER INTEGRATION 
 

The chapters complemented each other to provide a predictive understanding of the overall 

outcome of the mesocosm experiment; that is, why acidification acted as a resource and 

warming as a stressor. In chapter II, my PhD thesis started by identifying alterations to 

production and consumption under future climate. Several underlying mechanisms could be 

revealed through clever manipulations since chapter II was restricted to a single 

compartment of the mesocosm community that comprised three clearly structured trophic 

levels. However, responses to future climate vary between species and systems as 

demonstrated through the meta-analysis in chapter III. To represent better the complexity 

found in nature, I expanded my investigations to the entire mesocosm community with 

chapter IV, which include a large variety of habitats, species and functions.  

An understanding of the complex community of chapter IV was aided by the insights on 

trophic processes gained during chapter II. For example, community wide primary 

production increased under acidification in chapter IV, measured as gross O2 production. The 

faster growth of micro-phytobenthos in the absence of herbivores in chapter II suggests that 

this indeed indicated a positive direct effect on primary producers (i.e. CO2-enrichment), and 

not an indirect effect through changes in herbivory that led to higher standing biomass. 

Moreover, various consumers groups with different characteristics (e.g. fish, crustaceans and 

molluscs) increased in standing biomass under acidification alone in chapter IV. According to 

chapter II, this is likely a result of the successful propagation of excess primary production up 

the food web. Instead, warming lead to considerably lower standing biomass in different 

primary consumer groups (i.e. grazers, detritivores, filter-feeders) in chapter IV. Here, 
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chapter II offers two explanations that possible acted in combination. Chapter II suggests, on 

the one hand, an inefficient trophic transfer from primary to secondary producers and, on 

the other hand, the overconsumption of prey by predators facing elevated metabolic 

demand. 

The changes in standing biomass of trophic levels in chapter IV were generally less clear-cut 

compared to chapter II. This was expected given that chapter IV integrated over many more 

species and trophic interactions, each varying in their response to future climate. Notably, 

predatory invertebrates increased in standing biomass under the combined effect of 

acidification and warming but fishes did not. Consequently, under the stressor combination, 

an overall increase in tertiary producers is shown in chapter IV (predatory invertebrates and 

fishes), while tertiary producer biomass remains unchanged in chapter II (one species of 

fish). Why predatory invertebrates but not the fishes benefited from warming is unclear. 

Chapter III studied the performance of consumers more closely and thereby laid the 

foundation for the food web processes investigated in chapter II and IV. The transfer of 

energy up the food web would be reduced wherever consumers are significantly impaired in 

their ability to find prey, as may be the case under ocean acidification 1,3. This direct effect of 

ocean acidification would confound any indirect effects such as changes to bottom-up or 

top-down forcing. However, chapter III suggests that the direct effects of ocean acidification 

were likely compensated at the organism level in our mesocosms. This explains why the 

excess primary production under acidification transferred efficiently to higher trophic levels, 

as observed in the other two chapters. In contrary, under warming, chapter III showed that 

consumers became more constrained in their foraging to meet higher metabolic demands. 

This direct effect of warming may have contributed to the inflexibility of consumers to adjust 

to the changing landscape of resources, as demonstrate with the stable isotope analysis in 

chapter IV. 

 

LIMITATIONS 
 

The mesocosm approach was chosen for my PhD research as it allowed to study both 

individual and community level response to ocean acidification and warming and associated 

ecological processes. However, this trade-off between realism and environmental control 

involved several limitations that are typical for mesocosm studies 13. 

At the individual level, physiological or behavioural effects needed to be tested amongst the 

mosaic of habitats and the species community, both of which developed a specific character 

in each mesocosm over the duration of the project. This not only made it more difficult to 

detect the effects due to background variation but also increased the risk of potential 

confounding factors. Here, a simple aquaria study would certainly have provided more 
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precise measurements and allowed to conduct a considerably larger number of truly 

independent replicates. 

At the community level, while great effort was made to design the mesocosms as closely as 

possible to the natural world, they nevertheless represented an artificial and simplified 

ecosystem. Most notably, the spatial scale of 1,800 L was considerably smaller than the 

home ranges of many species, the biological diversity did not equal the diversity of natural 

communities and excluded higher-order predators, and the time scale of 4.5 months was too 

short to integrate seasonal variation especially in temperature. Due to the limitations of the 

mesocosms in respect to space and time, genetic adaptation 14-16 and the substitution of 

sensitive taxa with functional equivalents from warmer waters 17,18, though of great 

significance, were not tested for. Still, the mesocosms allowed for several generations in 

smaller-bodied taxa and offered a diversity of species with varying thermal niches from 

which to select. Ultimately, changes that are inherent to specific functions – e.g. the increase 

in primary production, cost of calcification or food demand in consumers – will occur even in 

case of rapid and complete genetic and taxonomic adaptation of communities. 

The meta-analysis on the buffering effect of ecological complexity under ocean acidification 

aimed to mitigate some of these limitations by combining studies from both simple and 

complex settings. Yet, whilst the inclusion of studies on different species and systems 

benefited the generalisation of the main finding, it raised further questions about the nature 

of the underlying mechanisms. Unfortunately, the number of experiments is currently 

insufficient, especially at higher levels of complexity, to understand which aspects of 

complexity (i.e. space, time, learning, social environment, etc.) and which organismal traits 

(i.e. sensory functioning, mobility, reproduction, etc.) are responsible for the buffering. A 

larger sample size that would allow answering these questions may be reached in the future 

through an expansion of the meta-analysis to other taxonomic groups (besides fishes and 

decapod crustaceans) and human stressors (besides acidification). 

 

FUTURE DIRECTIONS 
 

Other approaches in the field of ocean acidification and warming have their specific set of 

strengths and limitations, too. Therefore, a complementary thinking, where the insights 

from various approaches are integrated, is critical to gain a predictive understanding of 

future ocean ecosystems. Yet, the research effort over the past two decades has been 

dominated by laboratory studies testing single species in isolation 19. Whilst providing 

invaluable knowledge on direct physiological and behavioural responses of many taxa, such 

studies cannot directly be extrapolated to the ecosystem level 1,20. To guaranty a rapid 

advancement in the field, this existing knowledge base now needs to be complemented by 

studies on the ecological effects of future climate; that is, the field has to move beyond a 
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simple science 21. Larger-scale mesocosms in the laboratory or in situ, like the one presented 

here or elsewhere 5,22-24, are needed from around the world not only to study further 

ecological processes but also to identify which responses are universal and which vary 

among local systems. More focus should also be placed on natural analogues such as 

latitudinal temperature gradients 25,26 and CO2 vents 8,27,28, as their higher level of complexity 

offers a critical stepping stone from mesocosms to real ecosystems 13. My PhD included 

research at a CO2 vent which is however not yet compiled into a manuscript. 

While such studies in the laboratory or field have indeed become increasingly popular in 

recent years, even they may not be realistic enough for a holistic view of the future 

interaction between humans and ocean ecosystems. As such, todays mesocosms are still too 

restricted in space and time, as discussed above, and natural analogues lack adequate 

replication, independency from control areas, and do not allow for stressor combinations. 

The importance of the latter is also demonstrated by my PhD research, where the impact of 

one global stressor (i.e. acidification) is radically altered in the presence of another (i.e. 

warming) in an unpredictable way. 

In my opinion, a next generation of mesocosms that combines the strengths of natural 

analogues and today’s mesocosms has the potential to become the final stepping stone in 

realism towards natural ecosystems. These future mesocosms could enclose a larger section 

of natural habitat in situ, such as a reef or a seagrass meadow, and simulate acidification and 

warming over years to decades. Due to their size, environmental impact and financial costs, 

such projects would require an entirely different approach to science. Based on my 

mesocosm experience, the design, construction and maintenance of such a project would be 

the most costly and challenging part and should thus be organized from the top down by 

collaborating governments. Then, scientists from around the world and from all disciplines 

could test their hypotheses within the established mesocosms through specific sampling and 

smaller scale experiments. Clearly, this would allow individual research groups to ask the big 

questions that had been beyond their budget. More importantly perhaps, it would be an 

unprecedented opportunity to integrate knowledge across disciplines and to gain a holistic 

understanding of future ocean ecosystems. Such projects could also become hubs for 

science-education where young and old can connect with our ocean and experience 

firsthand how ecosystems may change if we do not act. They may even become a symbol for 

reason and international collaboration towards a brighter future of humanity in harmony 

with nature. 
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IMPLICATIONS 

 

The implications of my research for science and society are far-reaching. I advanced our 

knowledge in both the basic and applied sciences, through the study of fundamental 

ecological dynamics including trophic cascades and ecological compensation in the context 

of two pervasive human stressors. By demonstrating that species communities can be 

limited in their capacity to resist the predicted warming, my findings highlight the urgency 

for actions against causes and consequences of human CO2 emissions. 

Slowing the rate of change is evidently the first and most critical step 31-33. Successful 

reductions in CO2 emissions require strict government regulations including carbon tax and 

greater investments into renewable energies and a scientific education of the people that 

puts individual life-style choices into the bigger picture 34. In a second step, ecosystems need 

to be liberated from the pressures of local stressors 32,35,36 as these will almost certainly 

accelerate the impacts of future climate. Most notably, the collapse into short and bottom-

heavy food webs that is predicted by my findings would likely be reinforced through nutrient 

enrichment via enhanced bottom-up forcing 37-40 and overfishing via trophic 

simplification 41-44. 

My research also identifies ecological functions that are vulnerable under ocean warming 

but essential for the maintenance of ecosystem integrity. In this respect, habitat forming 

primary producers 21,22,45 larger invertebrate herbivores and top predators 46,47 should 

receive special attention by management. Inevitably, ecosystems will reorganize to some 

degree and alter their services. I reveal the potential for increased food web productivity 

through CO2-enrichment in ecosystems less impacted by warming, which may also benefit 

fisheries. In contrast, a collapse in food webs through ocean warming, mediated by an 

architecture that is unable to adapt, may endanger the productivity and diversity of 

fisheries. 
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