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Abstract

The methods used for deærmining exfeme floods were critically examined in an attempt

to reduce the large uncertainties associated with their estimation. The Onkaparinga River

Catchment and the Mt Bold Dam in South Ausualia were used in the analysis.

The sensitivity of the probable maximum flood @MF) estimate to the choice of various

parameters was tested. It was found that the PMF estimate was particularly sensitive to

the model non-linearity and the choice of uniform or spatially varying rainfall.

The RORB model was used to deærmine the PMF from an estimate of the probable

maximum precipitation (PMP). The model was calibrated using recorded events by the

method of sensitivity fining. This method considers the errors associaæd with a choice of

model parameters for a particula¡ size flood. The optimal choice of model parameters

was used in the calculation of the PMF.

The inflow frequency curve for Mt Bold Reservoir was determined from an extended

data set derived from modihed downstream records prior to the construction of the dam.

The outflow frequency curve was calculaæd considering the joint probability of inflow

and initial reservoir level. In order to rout the floods through the reservoir, a new

spillway rating curve for Mt Bold was developed.

The best estimate of the outflow PMF for the Mt Bold Reservoir was 9,300 m3/sec from

a 4 hour duration PMP. The inflow PMF was deûermined to be 10,200 m3/sec from a 3

hour duration PMP.

Both high and low bounds of a reasonable estimate of the PMF were calculaæd. The

high and low bounds of the inflow PMF were l2,4AO m3/sec and 5,600 m3/sec

respectively. The high and low bounds of the oufflow PMF were 10,800 m3/sec and

5,200 m3/sec respectively.
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Chapter I

Introduction

1.1. Need for Research

The 1980s witnessed an increasing awarcness of exûeme floods. Greater undersørding

of the physical processes involved in the production of exfteme storms and the recording

of some exteme storm events led to increases in the estimates of probable maximum

precipitation (PMP). New modelling techniques such as non-linear runoff routing were

also developed throughout this period.

The adoption of new modelling æchniques and the increases in the PMP led to increases

in the probable maximum flood (PlvfF). The increases in the estimates of the PMF had an

important effect on the perceived safety of existing dams. In some cases expensive

remedial works were undertaken to increase the spillway capacities of existing dams.

Although there has been large expenditure on spillway upgrades, the methods used to

derive extreme floods are still subjective and are somewhat arbitrary. This has resulæd in

inconsistencies in the estimates of extreme floods. There \ryas a need to examine the

procedures used to derive extreme flood estimates, in order to remove the observed

inconsistencies.

In South Australia, there was an inconsistency between the PMF estimates for Mt Bold

and Kangaroo Creek catchments @oherty, 1992, pers. comm.). These adjoining

catchments have similar areas and are in simila¡ orographic situations. Mt Bold Dam has

a catchment area of 388 krn2 and the PMF was estimated to be approximately 2,800

m3/sec (Kotwicki, 1984). Kangaroo Creek Dam has a catchment area of 342 km2 and the

PMF was estimaæd to be approximately 5,000 m3/sec (Water Resources Branch, 1981).

1



Chapter I - Inroduction

1.2. Study Objectives

'fTl^ ^L:^^d-,^ ^f +L^ 
-^^^-L 
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- -¿L ^ r- --- t .r¡rv rJtJevuYv Ll nrv leùt/4¡vtl w.lò lU lrllr9r¡¡ry E/r4¡lllllç ll¡ç ffffiUl(ruS US9U 1() CSUmAtg

extreme floods and to deærmine the best estimate of extreme floods, including the PMF,
for the Onkaparinga River in South Australia.

The sensitivity of the PMF estimate rvÍls to be deærmined for the location of the

isohyetal pattern, the addition of baseflow, the initial storage level, the model non-

linearity and the choice of losses.

1.3. Methodology

Extreme floods were estimated for the Onkaparinga Catchment in South Australia. Two
different catchments were considered; the carchment to Mt Bold Reservoir and the

catchment to Old Noarlunga. The research concentrated on the caæhment to Mt Boid
Reservoir.

The PMF was calculated from an estimate of the PMP. In order to determine the

magnitudes of floods less than the PMF it was also necessary to determine the fiequency
of floods up to the 1 in 100 annual exceedance probability flood event. The fiequency
distribution was then extended up to the PMF using the procedures contained in
Australian Rainfall and Runoff QEAust, 1987).

The nonJinear runoff routing package RORB was used to rout the design rainfalls

obtained from IEAust (1987). The sensitivity of the model to the choice of model
parameters was analysed.

The recorded peak flows upstream of the Mt Bold Reservoir were used to fit a

theoretical distribution. The data set was extended by using the recorded peak flows
downstream of the reservoir prior to the dam's construction.

In order to determine the ouülows from Mt Bold Reservoir it was necessary to calculate

the spillway rating. The rating curve was extended so that the PMF could be rouæd

through the storage.

The frequency of flows in the Onkaparinga River below Mt Bold Reservoir was

calculated using the joint probability of inflows and the initial storage level. The effect of
fLa ^L^i^o nf afnrnna li.çiL"+i^- '.'^- ^-^t,,^^lu¡v vrrv¡vv vr ùtvrqév sNutuuuuu wô arft¡JùL Jl.

Estimates of PMP up to 4 hours duration were calculated using the procedures çontained
in Bulletin 5l @ureau of Meteorology, 1985). There was no funding or sufficient time
for the Bureau of Meteorology to undertake a full PMP study for the Onkaparinga

Catchment. The longer duration PMPs were therefore estimated by exrapolating the

2



Chaptcr I - Introduction

results from Bulletin 5l and comparing these with other generalised PMP studies

undertaken for similar locations in south-eastern Ausualia.

The sensitivity of the estimated PMF was analysed. The effect of the choice of model

parameters and the PMP on the calculaæd PMF was examined. Reasonable upper and

lower bounds were calculaæd for both the inflow and the ouflow PMF.
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Chapter 2

Extreme Flood Estimation

2.1. Introduction

The probable maximum flood (PMF) is used in the design or evaluation of existing

structures, where failu¡e would result in severe damage and loss of life. The PMF is also

used to determine the probability of floods which have a lesser magnitude than the PMF.

Although there is a very small probability of the PMF occurring during the design life of

a structure, the PMF is used as the design flood where a very high level of safery is

warranted.

The PMF is determined from the probable marcimum precipitation (PMP). A hydrological

model is then used to convert the PMP to a PMF.

2.2. Probable Maximum Precipitation

IEAust (1987) states that all estimates of the probable mærimum flood (PMF) should be

based on the probable maximum precipitation (PMP). The PMP can be defined as,

"the theoretically greatest depth of precipitation for a given duration that is
physically possible over a given size storm nrea at ø partículnr
geogrøphical location at o certain time of year" (World Meteorological

Organisation, 1986).

Different organisations give slightly different dehnitions of the PMP (for example Riedel,

1977; Harlin, 1992). The dehnitions all contain the concepts of 'greatest depth', and

' plry si c aIIy po s sible' rainfall.
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Chapter 2 - Extreme Flood Estimation

Although the concept of the PMP is widely used, there still exists a need for greater
understanding of the principles behind the derivation of the pMp.

"The bulk of the engineers concerned with dam spillway design are still far
from appreciating the detail, or even the main principres, of pMp
estimation " (Laurenson, 1988)

There have been two basic approaches ûo the estimation of the PMF. These a¡e:

1. the statistical approach; and

2. the deærministic or hydromeæorological approach.

The early methods of estimating the PMF were not based upon the pMp but were
statistical. This involved hning a theoretical distribution to a series of recorded flood
peaks and extrapolating ttris to the PMF. This followed the approach used in Europe
where there exists very long periods of records and historical flood marks. This method
is also effective in Europe because the storms are generally of a homogeneous data set

The statistical methods did not prove to be effective in Australian conditions. This was
because (Pearce and Kennedy, 1993):

l. the generally short periods of records in Australia;

2. the lack of homogeneity in the storm population;

3. the lack of historical flood marks; and

4. the uncertainty of the actual distribution of flood peata.

The problems with the statistical methods of estimating the PMF lead to the development
of deterministic methods. These methods depended on the estimation of the pMp and the
use of hydrological models to calculate the pMF.

2.2.1. Estimation of the PMP

The estimation of the PMP initially involved storm maximisation. This involved both the
ín síru maximisation of storms and the transposition of storms. Generalised methods have
now been developed which allow the PMP to'be calculated for catchments in Australia.

2.2.1.1. Maximisation of Storms

Traditionally PMP estimates were based on recorded storïns which occurred in, or very
near to, the catchment of interest. The recorded rainfall depths were then adjusted
upwards based upon the moisture content of the ai¡. This process is ærmed 'moisture
maximisation'.

6
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Moisture mÐdmisation estimates the total moisture content of the air at a given locaúon,

temperarure and humidity. It is an upper estimate of the possible depth of rainfall. This is

because in a storm not all of the moisture from the atmosphere is precipitated (Raudkivi,

r979).

The measured rainfall depth in a storm is adjusæd by the ratio of the highest atnospheric

moisture content possible in the catchment to that observed in the storm. Although

moisture morimisation is widely used, Kennedy et al. (1988) staæd that it is difficult to

prove analytically that storm rainfall can þ maximised using the exûeme moisture index.

The concept of maximising a stonn led to the development of the term maximum

possible precipiøtion' and then'probable maximum precipitation'.

"The term'maximum possible precipitation'was subject to severe criticísm
on account of the limited data øvailable on extremes and the limited
understanding of the processes leading to such an event. As a compromise,

the tnore contoversial and contradictory term 'the probable maximum

p r e c ip i t ati on' w as intr o duc e d " @audkiv i, 197 9)

In 1958, a conference \ilÍrs held by the Bureau of Meteorology on the estimation of

extreme precipitation in Australia. It was suggesæd that the confusing terms 'maximum

possible' and 'marcimum probable' precipitation should be abandoned in favour of the

expression 'extreme precipitation' coupled with an estimation of the probability of

occurrence (Bureau of Meteorology, 1958).

2.2.1.2. Transposition of Storms

kritially only those storms which occurred in the catchment of interest were maximised.

This was based on the philosophy that, "the physical characterísrtcs of the catchm¿nt

played the dominant role in the producrton of rainfall from storms" (Kennedy et al.,

1988).

The concept of storm maximisation relied on exEeme storms being recorded. The PMP

estimates were therefore highly dependent on the occurrence of an outlier in the record.

This resulæd in inconsistencies between PMP estimates for different catchments. The

concept of sûorm transposition was introduced to increase the sample of storms.

The concept of storm transposition (or spatial maximisation) deals with the translation of

storms which have occurred nea¡ to the catchment of interest. It is based on the

assumption that, "within certain climatic boundaries the location of storms ¡s

determined by chance alone" (Raudkivi, 1979). The transition of the isohyetal pattern

from a storm is only justifred in regions with a small difference in topographic influence.

7
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Storm transposition was inroduced in the late 1960s and early 1970s @earce and

Kennedy, 1993). The increased sample of storms resulted in there being Erea¡Êr

consistency benveen rainfall estimaûes. The choice of storms suitable for üansposition

introduced a certain degree of subjectivity into the procedure.

,\s the pr(rcesses which produce extreme rainfall have been more fully understood, even

wider transposition has occurred. For example, in New Ts,aland there are only 3 areas for

transposition (Tomlinson and Thompson, 1991). The greater transposition has resulted in

higher estimates of the PMP.

2.2.2. Generalised Methods

Generalised methods of estimating the PMP were introduced in Australia from about the

mid 1970s. These methods make use of increased transposition. The use of generalised

methods has resulæd in incrcased estimates of the PMP. These PMP estimates have a

lower annual exceedance probability and have the advantage of being regionally

consistenl

These methods increase the useable transposition ¿uea by using a deterministic approach

to adjust for topographic and moisture effects. This is based on the premise that, "an

equívalent oprttnum storm ¡nechanism could occur anwhere in the transposition area,

the frequency of occurrence is not important" (Pearce and Kennedy, 1993).

2.2.2.1. Generalised Tropical Storm Method

The generalised tropical storm method (GTSM) was developed during the late 1970s and

was finalised in 1985 @earce and Kennedy, 1993). The method is applicable to a¡eas in

Australia that are subjected to ûopical storms and is described in Kennedy (1982) and

Kennedy and Hart (1984).

The method is based upon that used by the National Weather Service in the United

Staæs of America to estimate the PMP for the Tennessee River Valley. The depth

duration aÍea curves are adjusæd for the moisture content corresponding to a surface

dew point of 28 oC.

The PMP e.sdm-ate-s denved usrng tle GTSM are large.r tlan tlose. obtained by tùe

transposition of recorded storms. This is because the method effectively allows the

transposition of storms over a very large area (Kennedy et al., 1988).

8
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2.2.2.2. General South-Eastern Australia Method

The general south-eastern Australia method (GSAM) was derived to cover those areas

of Australia not covered by the GTSM. The method has recently been compleæd by the

Bureau of Meteorology. The need for such a method arose from the PMF study

undertaken for the Warragamba Dam Carchment (Pearce and Kennedy, 1993).

The topographical effects on the rainfall in south-easærn Australia Íue more marked than

in the Eopics. The GSAM therefore sep:¡rates the PMP into two components;

1. The convergence component of the rainfall. This is assumed to be due solely to

aünospheric processes and it is therefore possible to transpose this over a compatible

afea.

2. The orographic enhancement of precipitation. This component is assumed to be a

result of the ûopography of the particular catchment and is therefore not transferable.

The development of the GSAM involved the analysis of about 65 storms. The isohyets of

these storms were drawn by hand and then digitised. The isohyets were fitted using

Laplacian smoothing splines following the method described in Canterford et al. (1985a).

The method also made use of the Compuærised Design IFD Rainfall System which was

developed as part of the production of IEAust (1987) (Kennedy et al., 1988).

The GSAM is applicable to catchments which have area.s ranging from 10 to 40,000 km2.

The applicable durations are beween24 and 96 hours in New South Wales and between

24 and 72 hours in Victoria and Tasmania @earce and Kennedy, 1993).

2.2.2.3. Short Duration PMP Using Bulletin 51

Throughout Austalia there is only a sparse network of pluviographs and these have been

supplemenæd by a morc concentrated network of daily read raingauges. The records of

short duration storms is therefore not as complete as the records of longer duration

storms. Accurate records of short duration storms have only been made when they have

occurred over arcas which are well instnrmented.

In order to supplement the Ausüalian database of short duration storms, the data

collecæd in the Unit€d Staæs of America has been used. This has made use of the longer

period of record in the USA.

Extreme short duration storms are generally produced by thunderstorms.

"The most intense precipitatíon on drainage areas up to a few hundred km2

or e from thunderstorms" @audkivi, 197 9).

9
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Walpole (1958) described generalised procedures for the estimation of the maximum
possible rainfall for catchment areas from l0 to 500 square miles and for durations from
I to 24 hours- It was assumed that the mærimum possible rainfall intensity resulted from
a thunderstorm in an air mass with the murimum possible surface dew poinr

The current SuidelifEs for calculating short duration PMPs for Australia are included in
Bulletin 51 of the Bureau of Meæorology (BoM, 1985). This is based on both US and
Australian thunderstorm data. The deærmination of short duration PMp is discussed in
Kennedy (1982) and Pierrehumbert and Kennedy (1982).

The GTSM and GSAM are not applicable for short durations and therefore must be used
in conjunction with the guidelines contained in Bulletin 51.

hitially the thunderstorm model was limited to use for catchments up to 500 lcrn2 in a
narrow strip along the tropical and subtropical co¿tst. The guidelines in Bulletin 5l are
now applicabie for carcirments with a¡eas up to l,(X)O hn2 and durations up to six hours
along the tropical and subtropical coastal areas, and up to three hours in inland and
southern Austalia.

The occurrence of a severe storm over Dapto nea¡ Wollongong in 1984 resulted in the
procedures for the determination of short duration PMPs being changed. The depth-
duration-area curves for rough tenain were modified which resuiæd in increases of the
PMP for rough tenain by about 20 percent @earce and Kennedy, 1993; Kennedy et al.,
1988). The US procedures were also reviewed and increased as a result of storms in the
Tennessee Valley (Kennedy et al., 1988).

2.2.3. fncreases in PMP Estimates

The different methods used to calculate the PMP have resulted in large increases in pMp
estimates' This has had an important effect on the perceived safety of dams and other
hydrological structures. Many existing spillways were found to have insuffrcient capacity
ûo pass the newly calculated PMFs.

The increases in the PMP have resulted from (Laurenson, lggg; and Brown, 19gg):

1. Changes in the methods used to estimate the PMP. Transposition has replaced ín sín
maximisation and now generalised methods allow even greater üansposition.

2. The recording of more large storms.

3- Increased volume of knowledge on the mechanisms governing the occurrence of
exteme rainfalls.

l0
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The large increases in estimates of the PMP have lead to possible cr€dibility problems

(Taylor and McDonald, 1988). This is because the new estimates of the PMP have so far

exceeded previous estimates.

The increases in estimates have been a result of the effectively greater tansposition

employed by the generalised methods. It is therefore not expecæd that the estimates of

the PMP will continue to incrcase infinitum.

"Once this change has been made, no further significant íncreases in PMP
level is possible wíth the present storm data and the present methods of
using the data." (Kennedy et al., 1988)

As more extreme storrns a¡e recorded there may be some small alterations to the

estimation of the PMP. These possible modifications are not however expected to

dramatically affect the PMP estimates.

2.2.4. Greenhouse Effect

2.2.4.1. Introduction

The following dehnition of the PMP was given by Tomlinson and Thompson (1991);

"the greatest depth of precipitarton for a given durarton that is physically
possíble over a given size storm at a particular location under present
climatic conditions."

This defrnition introduced the concept of climaæ change. Present design methods are

generally based upon the assumption that the climate is stable (Brown, 1988). The use of

flood frequency analysis in particular ¿rssumes that the climatic conditions are constant.

The current design philosophy needs to be changed to account for climate change

(Robinson, 1987; Gorden and Tainsh, 1990).

Chow et al. (1988) staæd that no allowance is made in the estimation of the PMP for

climaæ change. In light of the large amounts of evidence which indicate a possible

climate change, it is imporønt that the effects of any climate change a¡e considered.

The greenhouse effect refers to the warming of the earth by the greenhouse gases

absorbing the radiaæd heat from the earth's surface. Greenhouse gases include water

vapour, carbon dioxide and methane. The greenhouse effect maintains the earth at a

temperature suitable for human habitation. The concern is not associaæd with the

existence of the greenhouse effæt but rather with the rate of increase in greenhouse

gases which will increase the effects of greenhouse.
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The greenhouse effect is a well established scientific theory. There is however great

debaæ as to the likely effects of greenhouse. There is great uncertainty regarding the

timing and magnitude of these effects, particularly on a local scale.

It has been possible through the use of global climate models to make predictions as to
the possible changes in global climate. The resolution of these models is generally coarse

and many simplifications are made (National Greenhouse Advisory Commitæe, I9g2).
Although they provide useful indications of possible changes in the global climaûe, these

models do not allow accurato predictions of climate changes on a regional scale.

There is a need to consider the effects of greenhouse in current design procedures

because the time taken ûo plan and construct water resource systems is of the same order

of magnitude as the time over which significant climatic changes caused by greenhouse

are expecæd to occur (Nathan et al., 1987).

it is thereiore imporiani thai ihe issues associate<i with the eifect of greenhouse are

addressed by hydrological design. Daniell (1987) stated that, "It seems strange that
hydrologists in developing desígn procedures should divorce themselves f-rom
pro gnostic ations of other scientists ".

2.2.4.2. Possible Climate Changes

The greenhouse effect will have serious repercussions on three climatic variables:

l. Temperature. It is generally accepted the greenhouse effect will result in an increase

in the average global temperature of between 1.5 and 4.5 oC. The warming in

Australia will be greatest in the southern winter and least in the north (Nathan et al-,

1987).

2. Rainfall. It has been estimated that in Australia the winær rainfall will generally

decrease whereas the summer rainfall will increæe. For Adelaide the decline in winter
rainfall may be about 20 percent and the increase in the summer rainfall could be

between 20 and 30 percent (Mclntosh and Fisher, 1989).

3. Sea Level. It is estimated that by the yeu 2030 the global average sea level would
have increased by be¡veen l0 and 30 cm (National Greenhouse Advisory
Committee,1992). The increase is expected to be due to the expansion of the water

column in the oceans and to the melting of the polar ice caps.

The changes in the rainfall are particular important to hydrological issues. The decrease

in winær rainfall is especially important for the southern winter rainfatl dominant states

of Australia. The increase in summer rainfall will probably not result in large increases in
streamflows because of the higher losses in summer.

12
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2.2.4.3. Effect on the PMP and PMF

It is generally concluded that the greenhouse effect \¡/ill result in extreme storms

becoming more frequent (Robinson, 1987). Gorden and Tainsh (1990) noted that the

greenhouse effect will result in, "increased stormin¿ss". This will probably lead to

increases in PMP and PMF estimates (Deen, 1987; Jakeman, 1990; and Robinson, 1987)-

"Dependent upon the rainfall intensity-duration characterisrtcs assocíated

with any increase in the PMP, the result could direcþ influence the

magninde of extremc flood events and impact upon døm design and the

safety of existing structures." (Mclntosh and Fisher, 1989)

The possible increases in the estimates of the PMP in southern Australia are thought to

due to two main Phenomena:

1. Southerly shift of weather. This would mean that those winter rainfall regions of

southern Australia would be subjecæd to a greater number of tropical storms and

hence more exgeme stofms. It has been suggesæd that this will result in increases in

PMP estimates. Kennedy et al. (1988) noæd however that, "As regards an extensíon

of the cyclone belt southwards, this in itself would not affect our current PMP

estimntes". This is because the database for south-eastern Australia already contains

some storms of troPical origin.

2. Increase in average temperatures. The increase in temperature resulting from the

greenhouse effect will result in an increase in the maximum persisting dew point. This

is likely to result in increased estimaæs of the PMP (Mclntosh and Fisher, 1989). The

morimum precipitable water can be estimated to increase by about 8 percent for

every degree Celsius rise in temperature (Deen, 1987).

2.3. Probabte Maximum Flood

2.3.!. What is a Probabte Maximum Flood?

The concept of the probable ma:cimum flood (PMF) is widely used in exteme flood

estimation. A PMF may be required for direct use in design situations of high risk, or as

an inærim step in determining the magnitude of other extreme flows which a¡e less than

the PMF.

The US Army Corps of Engineers (1979) defined the PMF as,

"the flood that may be expectedfrom the most severe cotnbinarton of critical
meteorologic and hydrologic conditions that are reasonably possible in the

region."
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Chapter 2 - Extreme Fbod Estimøion

The PMF is important in the estimation of exteme flood events, and in determining the
safety of hydraulic structures. The Guidelines on Design Floods for Dams published bv
the Australian National committee on Large Dams (ANCOLD, 19g6) provide
recommendations for calculating dam safety and the adequacy of spillways. The
guidelines require an estimate of the PMF. The methods outlined in Australian Rainfall
and Runoff (IEAust, 1987) in Chapær 13 are suitable for use with the design guidelines
in ANCOLD (1986).

Estimates of extreme floods a¡e also required by the National Association of Ausralian
State Road Authorities (NAASRA) in their standard for the design of major bridges. The
I in 2,000 annual exceedance probability (AEP) flood is rcquired, and this flood is
derived from an estimate of the PMF.

Aa a, .l ffl )z.J.L. Ìrrst0ry

In considering the concept of a PMF it is useful to look at the development of rhe
tenninology used to describe extreme floods. A number of different terms have been
used to describe extreme floods.

2.3-2.1. United Søæs of America

Prior to 1900, the design flood for a hydraulic structure was determined using the
judgement and experience of the engineer. The estimate was based on the historical
information and eye-witness reports as to maximum observed floods.

As stream discharge data became available, statistical methods were developed. An
example of such a statistical formula was calculaæd by Fuller (1914) and shown in
Equation 2. I (Riedel, lg77).

Qr = A1+ 0.8logZ) el)
& = flood of return period I years

O = mean maximum annual flood

Riedel (1977) stated that the ærm þrobable ma¡cimum flood' has been used for many
years as it was mentioned in Fuller (1914).

The next development in the deærmination of design floods was the development of
relationships benveen the peak discharge and the catchment area. Regional regression
equations are still beittg used today and provide a quick and simple method of
determining approximate values of design flows based on catchment characteristics.
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The term 'maximum probable flood'\vas generally used up to the mid 1950s. This was

based upon similar assumptions as those used to derive the PMF. After this time, the

concept of the PMF was slowly adopæd.

"It is unfortunate that the wording has changed since the basic concepts ol
PMF have not, nor has the overall ¡nethod of its determination changed."
Riedel (1977)

2.3.2.2. Unit€d Kingdom

In the United Kingdom altr;r 1933, estimates of exüeme floods were based on envelope

curves on plots of runoff intensities against catchment area (Shaw, 1989). This lead to

the concept of a 'normal mocimum flood'. This was used to determine an estimate of an

exEeme flood for a particular catchment area. This was not however the greatest

possible flood as it was suggested thrt, "due regard be paid to a possible catastrophic

flood which could have extreme rates of runoff at least wíce of those of the nortnal

maximum Jlood" (Shaw, I 989).

The concept of 'normal maximum flood'has now been replaced with the PMF.

2.3.2.3. Sweden

The Swedish guidelines use a deærministic approach which is similar to the concept of

the PMF. The PMF is not calculaæd from an estimate of the PMP but rather the

maximum areal rainfall is combined with exteme snowmelt. A trial and error approach is

used to determine the critical combination of rainfall and snowmelt which produces the

largest flood for a specific catchment (Harlin, 1992).

2.3.2.4. Australia

The first use of the PMP in Australia was by Lovett in 1954 for the Warragamba Dam

siæ in New South Wales (Deen et al., 1989). Two different exreme floods were

identified; the maximum possible flood and the maximum probable flood. The two floods

were distinguished by their likelihood of occurrence. The marimum probable flood was

considered to be a rcasonable estimate of the design flood for the dam. The maximum

possible flood was considered to be too extreme to be used for the spillway design. The

maximum possible flood was based on similar assumptions as those used to derive the

PMF.

Reports on the history of the estimation of the PMF for particular Austalian dams

provide a useful insight into the development of exEeme flood estimation methods in
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Australia. Two examples a¡e for Warragamba Dam in Deen et al. (19g9) and for
Burrinjuck Dam in Green (1983). Both of these papers state that flood extremes are
greater in Australia than those observed overseas, especially in Europe.

2.3.3. Definition of the PMF

There are many different definitions of the PMF and each of these indicate the different
philosophies that are held by different groups.

The guidelines produced by the Australian National Commitæe on Large Dams dehned
the PMF as,

"The flood hydrograph resulting from pMp and, where applicable,
snowmc lt, c ouple d w ith the wors t floo d- pro ducing catchment conditions that
can be realistically expected in the prevailing meteorological conditíons."
(ANCOLD, 1996)

The philosophy expressed in IEAust (1987) and discussed in pilgrim (1986a) is thar,
"the PMF should constitute a limiting value of floods that could reasonably
be expected to occur. Superímposing rislcs of very low probabihrtes is not
considered to be reasonable".

The philosophy of the Bureau of Reclamation is,

"Determínation of maximum probable flood ¡s based on rational
consideration 

-of 
the chances of simultaneous occurrence of the maximam of

the several elem¿nts or condítions which contribute to ih, flood- Such o
flood is the largest that reasonably can be expected." @iedel, 

-1977)

The definitions of the PMF all introduce the concept of a 'reasonable' estimate of the
PMF. Although the Swedish PMF is not based on the PMP, the defrnition given in Ha¡lin
(1992) also introduces the concept of ,reasonableness'.

2.3.4. A 'Reasonable'Estimate of the pMF

The concept of a 'reasonable' estimate of the PMF needs some clarification. Little
guidance is given as to what is deemed 'reasonable', with the choice and consequent
responsibility being left with the designer.

hitially the desire of exteme flood estimation was to obtain a maÍmr:m flood -.,hich
wÍ¡s an 'oppet limit' and this was reflecæd by the terminology of "maximum possible
flood". This term was superseded by the PMF, but the meaning remained the same. The
intention was that the PMF was an upper limit of the flood estimates.

In order to produce such an estimate of the PMF, the pMp was used with severe
catchment conditions. Shaw (1989) recommended that,
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"The PMF can be determined from the PMP by taking the worst catchment

conditions, minimising rainfall losses and usíng high runoffcoefficients."

This is confrrmed by Brown (1988) which suggested that conservatism should not only

be considered but also that it should depend on the potential consequence of

underestimating the PMF.

The concept of a 'reasonable' estimate is now widely accepæd as æstified by the

definitions of the PMF shown above. The intention of estimating the PMF is now to

produce a'reasonable'estimate, which is not the absoluæ maximum.

"The philosophy in A.RR is that, while there is still a need for ø reasonable

degree of conservatism in extrem¿ flood estimatíon, what the designer

should be aiming for is a reasonable probable maximur4 rather than a
maximum possible Jlood " (Wright, 1988).

The desire of the current guidelines is to produce a PMF which has a similar probability

as the PMP. This implies that average values are used for catchment characteristics and

model parameters.

"At each step of the analysis, the trcst lil<cly set of círcumstances which

could occur should be assu¡ned" (Vy'right, 1988)

The intention of hydrologic modelling for small flood design is to select losses, æmporal

patterns and other model parameters to ensure that the probability of the resultant flow is

the same as that of the design rainfalt. The concept of choosing model parameters to

ensure that the probability of the resulting peak flow is consisænt with that of the rainfall

is a relatively new concept however for the estimation of the PMF-

This approach avoids the estimation of a physical upper limit although the PMP is still

considered to be the maximum possible rainfall ( Laurenson, 1988).

Although the inæntion of the current procedures are designed to produce a 'reasonable'

estimate of the PMF, there is still the belief that the PMF represents an upper timir This

is inconsisænt with its present derivation.

"The concept of a physical upper limit has been discardcd even though most

of the díscussions of the PMF persist in using this concepf. " (Laurenson,

1988)

A PMF which has a probability of exceedance (however small) and which is not an upper

limit should perhaps be renamed to indicaæ the change in philosophy. The introduction

of another term would have the advantage of making a distinction between a PMF

calculated as an upper limit and a PMF calculaæd as a reasonable estimate- The

introduction of yet another term however, may only lead to further confusion.

It is evident that the inclusion of an excessive degree of conservatism in the estimation of

the floods is undesirable. This is because the inclusion of safety factors or overly
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conservative design procedures will effect the AEP of the resulting flood. The tendency

for extreme conservatism due to the severity of failure should be resisæd (Cantwell and

Murley, 1986). The design procedures outlined by NAASRA and ANCOLD (1986)

al¡eady include safety factors and therefore require an accurate estimate of the PMF,
'further arbitrary safety factors are unduly cotuervative and undcsirable" (Pilgrim,

1986a).

Although it is important that the AEP of extreme floods are not obscured by over-
conservatism, it is also vitally important that the PMF is not under-estimated, and that
the PMF is indeed a'maximum'.

As already stated, the differentiation benveen conservatism and the need for a reasonable

estimate is left to the designer. Wright (1988) stated that, "conservatism in extremc Jbod
estirnarton ís dfficult to define precisely."

in striving to derive a reasonabie estimate of the PMF it is therefore important that
reasonable estimates of all parameters are made. This is pertinent to the choice of
va¡iables such as catchment antecedent conditions, assumed reservoir storage, treatment
of baseflow, rainfall losses, ûemporal patûerns and model parameters. Daniell (1987)

referred to the desire to achieve the 'aurea m¿díocritas' (the golden mean) in estimating
the PMF.

In cases such as extreme flood estimation, where a risk is ultimately thrust upon the
general public, the hydrologist's primary responsibility is to ensure that any estimaæ is
not unconservative. It is therefore vitally important that the PMF estimates do possess

some'reasonable' degree of conservatism.

2.3.5. Assigning a Probability to the PMF

The PMF is a deûerministic, rather than a probability based, concept. (Faulkner, 1988). In
order to deærmine the magnitude of flows which are less than the PMF and for the
purpose of economic evaluation, a probability needs to be assigned to the PMF. Harlin
(1992) noted that a committee on water Data in the USA concluded that,

"no procedure to date is capable of assignint an exceednnce probability to
the PMF or to near-PMF tloods in a reliable, consistent, and credible
mnnner-"

Chow et al. (1988) also concluded that the frequency of the PMF could not be

deænnined.

Lave et al. (1990) considered the probability of the PMF by analysing the records of the
dams in the United States. It was suggesæd that if the PMF is assumed to have a AEp of
I in 104, there should be a PMF recorded in the United Staæs once every l0 years. No
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PMF has been recorded. The conclusion reached was that the PMF has a probability of

less than I in 1ü.

2.3.5.1. Probability of a PMF Estimate Representing a Limiting Flood

If the PMF is considered to represent an absolute maximum limit of floods, the

probability of exceedance by definition should b zero. A PMF is however assigned a

probability of finite value for the purpose of e.stimating exteme floods less than the PMF

(Daniell, 1987).

Such a philosophy v/Írs suggested by Deen (1987) when it was stated of the PMF;

"This flood is the largest conceivable flood that could affect the dam and is
usually derived from the PMP. This precipitation is calculated to yield an

upper limiting value so that the level of risk need not be considered."

2.3.5.2. Probabilþ of a Reasonable PMF Estimate

Because the philosophy and the methods used to derive the PMF have changed, the

probability assigned to the PMF needs to be modifred. The assigned probability should

reflect the degree of 'reasonableness' incorporaæd in the estimate.

The philosophy of a 'reasonable' PMF means that the PMF has an absolute probability of

exceedance. This means that the possibility of floods greater than the PMF must be

accepæd.

"The increasing references to the AEP of the PMP logically demand that the
definition of PMP be changed; rather than being regarded as a maximum
possible rainfall, it mast be regarded simply as one point on the upper øil
of a probabiliry distibution that extends to ffiniry." (Laurenson, 1988)

Although is may take some time before it is rradily accepted, the concept of probabilities

of floods and rainfalls greaûer that the probable maximum events is correct and the terms

should be embraced by the profession.

2.3.5.3. Guidelines in IEAust (1987) for Assigning an AEP to the PMF

IEAust (1987) introduces the concept of a probable maximum event (PME). The

procedures outlined are applicable to rainfalls, peak flood magnitudes and flood volumes.

Two differcnt criteria are used in selecting the AEP of the PME. Consistent with the

desire for a reasonable degree of conservatism, the highest AEP is selected.

The two different methods of calculating the AEP of the PME are:
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l. Meteorological considerations. This procedure is based on Kennedy and Hart (19g4)
and relates the ratio of the catchment area to the transposition area used to derive the
PMP- An AEP of I in lG is assigned for PMP estimates derived from in sítu
maximisation- PMP estimates derived from adjusted United Staæs data a¡e assigned
a probability of I in ltr for catchments with areas of approximately 100 kr¡2.

2- Shape of frequency curves. This procedure was described by Rowbottom et al.
(1986b). The AEP of the PME is determined from the relative magnitudes of the
PME and the I in 100 and I in 50 AEP events. Australia is divided inm nvo zones
with zone B consisting of southern Western Australia, South Australia and western
Tasmania- For zone B the AEP of the PME based on the shape of the frequency
curve varies from an AEp of I in lü to I in l0z.

A flood frequency curve is then frtted between rhe PMF and the I in 100 AEp flood. The
higher the AEP assi.qned to the PMF. the more cr¡nserr-¡erir-ra 'É!! ho th- ^^*t-^ e^^ ^î
inærmediaæ floods.

The frequency curve between the I in 100 AEP event and the pME is constructed using
curye f,rtting procedures. These procedures depend on the relative magnitudes of the
PME and the I in 100 and I in 50 AEp events.

2.3.5.4. AWRAC Project

Kennedy et al. (1989) described the findings and conclusions of the investigations canied
out under the Australian Water Research Advisory Council partnership project;
Probability of Occurrence of Extreme Rainfall and Floods from April 1987 to June 19g9.

Five basic approaches were considered (Kennedy et al., l9g9):

¡ exEâpolation of the flood frequency curve;

. regional analyses;

. joint probability analyses;

o palaeohydrologic analyses; and

. Bayesian analyses.

These methods were not considered to he n¡fsett¡r exclusive but rar,her many of the
approaches rely on at least one ofthe other approaches.

Two different methods of assigning the AEp to the pMF and pMp were analysed;

1. District ExtremesÆoint-teA¡ea Approach. This method is an extension of the storm
transposition theory. The method determines the AEP of rainfall at a specific point
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and the equivalent probability of the same rainfall occurring anywhere in the rainfall

district considered. An a¡eal reduction factor is required to convert the probabilities

of the point extremes to the probabilities of disrict rainfalls. It is believed that this

method gives improved results over those in Kennedy and Hart (1984).

2. Joint Probability Approach. This method is based on the theory that the probability of
the extreme event is the probability that the extreme values of all the stochastically

varying factors occur simultaneously (Kennedy et al., 1989). The method outlined in

Laurenson (L974) is used.

Faulkner (1988) described a simila¡ procedure of using joint probability to deærmine the

probability of the PMF. The probability of the PMF was dependent upon the probability

of the rainfall depth and location and the probability of the antecedent moisture

condition. In a case study for Caldron Falls Dam in the United States, the PMF was

calculaæd to have a recurrence interval of 30 million years.

The AWRAC study concluded that both methods examined for determining the

probability of the PMF were feasible. Further work needs to be undertaken to develop

design procedures.

2.3.6. Unnatural PMF

The discussion to date has dealt with natural PMFs; PMFs that rcsult from extreme

rainfall. There is however a second class of PMFs which need to be considered.

Unnatural PMFs can result from upstream dam failures. This is particularly important for
catchments with more than one large storage.

There are two different philosophies which can be adopted in this case (Daniell, 1987):

1. All of the upstream dams should be designed for the same probability. This means

that the safety of the downsEeam dam is not compromised by the dams upstream.

2. The downstream dam can be designed for the unnatural PMF.

2.3.7. Runoff Routing Model

A runoff routing model or unit hydrograph is required to convert the rainfatl excess into

a hydrograph of direct runoff. This requires estimates of losses, temporal patterns,

antecedent conditions and other model parameters. Where possible, the model should be

calibraæd with records of floods which have occurred in the particular catchmenl

2l



Chapter 2 - Extrene Fbod Estimation

2.4. Sensitivity of the PMF
T+ ìo imnarennl tlrot +La 

-ooiLlo 
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are understood. Because of the large extrapolations involved with the estimation of the

PMF it is important that sensitivity analyses are undertaken.

Daniell (1987) discussed the sensitivity of the estimation of the PMF to the choice of
various parameters. These results were based on the analysis of the dams within the

ACT. Special attention was paid to the sensitivity of the PMF to the location of the

isohyetal pattern.

Deen et al. (1989) discussed the sensitivity of the PMF estimate for Warragamba Dam

Catchment. The study analysed the effect of the model paraÍieters and the PMP. The

assumption of level pool routing was also checked by analysing the effect of wedge

storage.

The results of the sensitivity of the PMF from these two studies are shown in Table 2.1.

Table 2.1 Sensitivity of the PMF from other Studies

SVo - 50%Initial Storase l.evel
[-owWedee Storase

<2% of PMFAddition of Baseflow
HiehGreenhouse Effect
[¡wAnæcedent Floods

Moderate<2% of PMFLoss Parameúers

Moderate-25Vo to +30% of PMFModel Parameters
Hieh15 -207o of PMFDepth of Precioitation
Hieh-15% to +30% of PMFSpatial Pattern
HiehTemooral Pattern

Deen et al. (1989)Daniell (1987)Assumption

2.5. Dam Safety

2.5.1. Introduction

The field of dam safety is a complex and developing area as public attitudes change. The
fnlln"'i-- ol.^* .li-^"..:^- ^- ã^- ^^f^¡, ññ^^-+^ ^^-^ ^f ¿L^ l-^--^^ ^--^-.?-¿^J ---:¿L ¿L ^
^vuvwurË ù¡lvrl uÀlrvuùòr\rll t t¡ \¡d¡¡l ¡id,rulJ PrçùUrrlll ùutl¡V \Jl lllç lùùl¡çù AòSILÃ,I¿IU'(¡ WlUl Uttt

topic.

The failure of a dam can result in catastrophic loss of life and property. The cause of a
dam failure is diffrcult to define precisely as it is usually a combination of morc than one

of the following (National Waær and Soil Conservation Authority of New Zealand,

1986; and Cantwell and Murley, 1987):
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1. misinformation on local hydrology and geology;

2. foundation failures;

3. design faults (including spillway capacity);

4. faulty construction;

5. overtopping;

6. neglect; and

7. unexpected natural events.

A safe dam depends upon good design and construction, and ensuring that the dam

remains fit for its purpose throughout its design life. About a half of all dam tailures

occur during the first 5 years after completion @aecher et al., 1980). Once a dam has

survived the initial filling stage, the most likely cause of a dam failing is a large flood

(Murley, 1985).

Dam safety has greatly improved over the years. Before 1899 approximately 15 percent

of all dams failed. By 1960 the fraction of dam failures had dropped to 0.26 percent

(National Water and Soil Conservation Authority of New 7¿,aland,1986). The improved

safety record has been a result of betær design methods based upon longer records of

streamfl ow and rainfall.

There is a much greater chance of failu¡e of small dams than of larger dams. This is

because the consequences of the failure of smaller da¡ns are less catastrophic and hence a

lower level of safety is accounted for in the design.

It is difflcult to estimate the probability of dam failurcs. This is because dams can fail

through an essentially infinite number of mechanisms which cannot be fully enumerated;

"n7ost failures occur due to accídent, inadequate construction control, or poorly

understood physical processes" (Baecher et al., 1980). Once the dam has failed, most of

the direct evidence of the mechanism of failure is destroyed.

2.5.2. ANCOLD Guidelines

There is general consensus as to the importance of dam safety. Controversy arises when

attempts are made to establish guidelines and assign responsibility for safety strndards.

The Intemational Commitæe on Large Dams (ICOLD) has found that it cannot produce

a single internationally uniform code for dam safety (National W'ater and Soil

Conservation Authority of New 7naland,1986).

A national survey of design flood practices for AusEalian dams was conducted in 1978.

This highlighbd the wide variations between different authorities in the procedures that

were used to deærmine design floods for dams. Following the workshop on spillway
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design held at Monash University in 1981, an interim document was produced for
comment in 1984. This document was finalised and published in 1986 (ANCOLD. 1986).

The inæntion of the guidelines w¿rs to provide a national philosophy for the
determination of spillway capacity and the review of the adequacy of existing spillway
capacities. The guidelines were also designed to assist in assessing in an orderly and
consistent way the relative priorities for dam rehabilitation (Cantwell and Murley, lgBZ).

It was not the intention of the guidelines to provide a design manual for determining
spillway capacity that could be implemenæd by a person with inadequate hydrological
experience. The guidelines were not written ûo be mandaûory such as the structural codes
but rather to provide a flexible approach. It was however inænded that owners would
have to justify the adoption of standa¡ds outside of the guidelines (Murley, 1992). T\e
philosophy expressed by the guidelines is, "A dam owner wiU always retain the primary
lc-ønI nnd mnrnl. rp.çnnn.cihl¡t fnr thp tnfelr nf hìo ¡lnm" ffaanrrrrall on¡l ll,,-to., lrla<\

The guidelines apply to 'referable' dams. Referable dams are considered to be those
which are at least 5 metres high and have a capacity greater than 50 x 103 m3 or are at
least 10 metres high and have a capacity greater than 20 x 103 m3. Referable dams apply
to, "any artificial barrier, temporary or pernutnent, including appurtenant works, which
does or could impound, divert or control water, other liquids, silt, debris or other
liquid-borne material" (ANCOLD, I 986).

2.5 -2.1. Incremental Flood HamldCategory

ANCOLD (1986) distinguishes between the risk and the haz.ard. The risk is taken ro be a
measure of the chance that the dam will fail as a result of a shorfall in some aspects of
the dam. The haza¡d is a meæure of the consequences of the failure of the dam, with no
regard to the probability of failure. The haza¡d needs ûo be examined periodically because
the haza¡d may increase as more development occurs downst¡eam of the dam. ANCOLD
(1986) uses the concept of the incremental flood haza¡d. The incremental flood hazard is

the,

"increm.ental bss oÍ ltfe, property and services, which ,J directly
attributable to the failure of the dam, that is, the incremenøl loss over and
above the loss which would occur íf the dam did not fail." (cantwell and
ì¡l.r¡lo.' t Oa?\lttu¡¡vJ, L¿tu, )

Following the procedures in the United States, there are three different incremental flood
hazard categories. These are high, significant and low. These are assigned depending on
the threat to both life and property.
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The recommended design flood is deærmined directly from the incremental flood hazard

category. In cases where there is not a threat to life, ANCOLD (1986) allows the

recommended design flood to be determined from an economic risk analysis.

The guidelines apply for both proposed and existing structures. The procedures

recommended for deærmining the adequacy of a spillway are different for existing

structures (NRC, 1985). This is based on the philosophy that, "It is accepted ín nnst
countries that safety standards for existing structures including dams need not
necessarþ be the saÌne as for the proposed structure" (Cannvell and Murley, 1987).

This is because the construction of a dam poses a new risk (Murley,1992).

It was felt that the publishing of the guidelines would face some opposition from owners

of existing dams which were shown to have undersized spillways (Cantwell and Murley,

1987). The guidelines did not however, directly cause the large costs of remedial work
but rather highlighæd the need for a greater level of safety.

2.5.2.2. The Effect of the AI.ICOLD Guidelines

The formation of the ANCOLD guidelines had an important effect on the analysis of the

safety of dams throughout Australia. This was because uniform procedures were adopted

which assisted in the prioritising of remedial works.

Pa¡sons (1987) analysed the effect of the ANCOLD guidelines in South Australia. The

twenty large dams owned and operaûed by the Engineering and Water Supply

Deparünent were examined in light of the recommendations. For each dam the evaluated

design flood, the imminent failure flood, the incremenøl flood hazard category and the

recommended design flood were calculated. Three dams were considered to have a high

priority for funher evaluation; Hope Valley, Tod River and Mt Bold.

Cantwell and Laird (1985) discussed the effect of the guidelines for the NSW Dam

Safety Comminee. Thirfy four high hazand dams with significant catchment areas were

considered. A total of 10 flood reviews had been reported to the NSW Dam Safety

Commitæe and this had resulted in modifications being made to 6 dams. It was noted

that the guidelines had only a moderate effect in NSW because many of the operators

and owners of dams had already undertaken reviews as a rcsult of the increases in the

estimates of the PMP.

Murley (1985) suggesæd that there exists a misconception that the guidelines require

that all dams must be designed to pass the PMF. The choice of the PMF as the design

flood is conservative and therefore should only be adopæd where there is high hazard.
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2.5.3. Imminent Faiture Ffood

The irntninpnf foilrrrc flnrvl /TFE\ io 'la#î-o'l L,, AÀT¡^alt n /lfio¿\ --v¡rù ru¡urv ^rvw \u r /, D svrrrrl,t¡ l/J ¡1¡t\/\J¡JlJ \f 7OU,, ¿l.),

"the flood event which, when routed through the reservoir, with the existing
spíllway, just threatens the failure ol the d.em"

The IFF is used as the basis for deærmining the adequacy of existing spillways. The ratio
of IFF to PMF is used to prioritise remedial works.

For embankment dams the IFF is taken as the flood which just causes the embanl¡rnent to
be topped. For concrete dams the depth of overtopping which causes failure can be
determined from a structural analysis.

Once the IFF is deærmined, the IFF hydrograph is deærmined by scaling the ordinates of
the PMF hydrograph. Murley (1992) suggesæd that the scaling of the pMF is not
rigorous but it is a practical means of making an initial deærmination of the spillway
capacity.

The procedure of scaling the PMF hydrograph is based on several assumptions which do
not have any physical basis. If a linea¡ routing model is used the effect of scaling is

understood, however if a nonlinear routing model is used the scaling will have a

uncertain effect (Green, l99l).

The use of the PMF to deærmine the IFF hydrograph assumes that the same storm
mechanism that causes the IFF also causes the PMF. It is assumed that the same storm
duration and pattern apply but that there is a reduction in the pMp depth.

The proportioning of the PMF ordinates assumes that (Green, l99l):

l. the IFF will be rhe same duration as the pMF;

2. the critical duration of the IFF is the same as that of the pMF; and

3. the IFF hydrograph will have the same time to peak as the PMF, but flatter rising and
falling limbs.

The outflow frequency curve is the envelope of oufflows resulting from different storm
durations and probabilities, Once the IFF has been determined, it is necessary to make a

choice as to the combination of storm duration and AEP which will produce the required
outflow (Milner and Alva¡ez, 1989). Green (1991) suggesæd that the IFF hydrograph
^L^--lll-^ 1L- 

--^-1 
l:l -r t Iù[uuru uç urs ruusr lrKely [yqrograpn wrm tne oeæfmrned rf,f, peal( flow.

A more consisûent method of determining the IFF is to scale the rainfall depth until an
outflow of the required peak is obtained. Temporal and a¡eal patterns can then be used
which arc appropriaæ for a storm of that AEp (Green, l99l).
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2,5.4. Society's Perccption of Risk

Most disasters affect a particular sample of the population. Examples of such disasters

are cyclones and earthquakes. People appear to accept these risls from natural causes.

other disasærs relate to a specihc identifiable population. An obvious example is people

living downstream of a major dam. People are less willing to accept risls of this nature

(Cantwell and Murley, 1987). People are generally more willing to accepts risls of thei¡

own choosing rather than have additional rists thrust upon them by authorities.

The level of risk accepted by the community is largely dependent upon their awareness of

the risk. Many people afe unawate of the risk of dam failures.

The level of acceptable risk is also deærmined by the standard of living of the particular

society. In developed countries where other risls such as disease are reduced' a much

higher level of safety is expected; "societies with developed economies expect a fail-søfe

design for facitities whích could endanger identifiable lives" (Cantwell and Murley,

1987).

In most developed countries the risks of dam failure is shared across society. This is done

in the form of national disasær relief progr¿rms and other forms of insurance.

In order for a design flood magnitude to be deærmined, a decision must be made as to

the risk which is witling to be accepæd by the community. This is a difficult task

"There is no accepted figure, or methodology, for assessing socially

acceptable risk for a dom faílure, although there are many reþrences to

riskfor other causes-" (Murley, 1992)

Doherty (1988) examined the risks that the community accepts in other areas such as

leisure activities, Eansport and unavoidable unnatural fatalities (such as poisoning and

lightning). It was concluded that an annual probability of failu¡e of a dam of 1 in lff,
where a fatality would occur, and an annual probability of I in lff where widespread

fatalities would occur was consistent with the community's acceptance of risk.

Murley (lgg2) suggested that the public accepts a risk of be¡veen 1 in ltr and 1 in 108

in cases where multiple loss of life is at risk

A recent pilot study undertaken by the CSIRO and funded by ANCOLD analysed the

community's perception of the risk of darn failure @ishop and Syme, 1992). This

involved a survey of a limited population. It was concluded that dam safety is not a

noæworttry issue in the community. People who were fearful of dam failure were

generally more fearful of other æchnological hazards. Most of those surveyed did not

feel that dam failure rilas a short ærm risk. A larger proportion considered that dam

failure was a significant long term risk (Syme et al., 1992). The majority of people
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surveyed did not consider that it was necessary to consult the community on matters

concerning dam safety @ishop et al., 1992).

Although the probabilities considered in dam safety appear to be very low, it is important
that the probability of failure of the structure over the design life is considered. For an

AEP of I in 1ü and a design life of 100 years this equates to a chance of I percent
(Murley, 1985).

Lave et al. (1990) argued that the pr€sent safety criæria for dams is too conservative

when compared to other a¡eas of risk.

"The criteria require mach more ø be spent to prevent a prernature death
Írom overtopping a dam than is spent to prevent a death in virtually any
other social decision." (Lave et al., 1990)

The failure of dams result in the loss of I I lives per year on average in the United Staæs

(Lave et al., 1990). Although âny premature death is regrettable this is substantially less

than the number of deaths caused by other incidents such as road faølities. It appears

that people are risk averse in situations in which large loss of life is possible.

There is the perception that dam designers are adopting extemely conservative positions

compared with other designers.

Devoting resources to ensure a dam surt¡ives extrernely rare floods ønlounts
to 'worshipping' the dam rather than seeing it as a utilitarian stntcture.
(Lave et al., 1990)

For the case of high hazard dams, a high level of safety can be jusdrfied by the horrific
consequences of dam failure. The perception of undue conservatism could possibly be

alæred if the consequences of dam failures were further researched and the results
published (Taylor and McDonald, 1988).

If the consequences of the failu¡e of a da¡n are too large for people to tolerate, it may
mean that the only conclusion possible is not to construct the dam. An example of such a
dam is the Auburn Dam in the Uniæd Staæs (Lave et al., 1990). The proposed dam was
not constn¡cted because the consequences of failure were too large for the community to
accept, regardless of how small the probability of failure.

The area of risk analysis is a complex and developing area. A thorough summary of risk
analysis is given in Wellington and McDonald (1991). Wellington (1987a) described the
risk assessment proce<iures in the Uniteti Staæs ancl Europe. Other references on risk
analysis include Dawdy and l-ettenmaier (1987) and V/ellington (1989 and 1987b).
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2.5.5. Economic Risk Analysis

In the past, spilhvay capacities have been designed for the PMF. The increased estimaæs

of the PMF, based on the new PMP estimates, have resulted in the practice of designing

for the PMF being questioned (Chow et al., 1988). There is a growing consensus that a

more rcasonable approach is to adopt a probabilistic approach. This is based on an

analysis of the costs Ílssociaæd with the rists of failure and the costs of remedial works

(Wright, 1988).

The development of water resource projects is usually based on the expected benefis

exceeding costs. The goal for a dam is to ma:cimise social net benefit (Lave et al., 1990).

In the past the cost of the failure of dams has been neglected because it was felt that well

built dams would not fail. This has not proven to be the case and therefore the failure of
a dam is a real cost and should be incorporaæd in any economic analysis @aecher et al.,

1e80).

Economic risk analysis necessitates that a value be placed upon human life. Although this

appears to be ethically unpleasant, it is important to note that a certain value is put on

human life by many common decisions. A decision such as purchasing a smoke detector

or trki¡g a dangerous job indicaúes how much a person is wilfing to pay to reduce the

chance of dying (Lave et al., 1990).

The failure of a dam can have important costs which occur beyond those which occur at

the instant of failure. These include the loss of economic activity, decreased production

in other a¡eas and the loss of future benefits of the dam @aecher et al., 1980).

The ANCOLD guidelines allow economic risk analysis for dams of intermediate or low

incremental flood hazard caægories. For dams of high incremental flood haza¡d category

the design flood should be the PMF. In the Sepæmber 1992 ICOLD conference in

Granda Spain there was no reference to economic risk analysis being used for high

hazard dams (Murþ, 1992).

2.5.5.1. Economic Risk Analysis for Kangaroo Creek Dam

The economic risk analysis undertaken for Kangaroo Creek Dam is one of the few such

studies undertaken for high risk dams. The study was completed in the early 1980s,

before the development of the ANCOLD guidelines.

Kangaroo Creek Dam is situaæd on the Torrens River upstream of Adelaide. Failure of

the structure would result in severe damage to the suburbs of Adelaide and therefore the

ANCOLD hazard classification is high. The outflow PMF for the dam was calculated to

be approximately 5,000 m3/sec (Waær Resources Branch, l98l). Because of the
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diffrculty and expense of providing a spillway to safely pass the pMF, an economic
analysis was undertaken.

The most diffrcult component of the study was the determination of the breach mode
(Laing, 1982).It was estimated that the failure of the dam would result in a peak flow of
11,300 m3/sec.

The damage resulting from the PMF was calculated using the results from floodplain
mapping. It was estimated that 100 !.ives would be lost as a result of the pMF and each
of these were valued at $250,000. The repairs to the dam were estimated to cost $20
million and the design life of the dam was assumed to be 300 years. The greatest cost
was associated with property damage, and the total cost of the dam failure was estimated
to be $6,000 million (Laing, lgg2).

Different spillway capacities were analysed to determine the most economical. The finat
design i¡uÎlow was i,500 m3rsec which has an estimated AEp of 1 in 50,000 (Good,
1985). This design flood resulted in the greatest net beneht ($8 million). The total cost of
modifications v/as $1.7 million.

The decision to adopt a design flood signifrcantly less than the pMF based on economic
analysis was ultimately a decision which was made by the Government on the strength of
the inf,ormation presenæd by the E&WS. It wa-s not consiclered prudent to divert funds
from other areas ro upgrade the dam to pass the pMF (Good, l9g5).

2.5.6. FTood Warning

Another method of increasing the safety of a dam is to instigate flood warning systems.
A¡r effective and credible warning system can prevent loss of life due to the failure of a
dam. A warning time of benveen I and 2 hours can decrease the number of deaths to
almost zero (Lave et al., 1990).

Although the use of flood warning systems to reduce the loss of life is a cheaper
altemative to increasing the spillway capacity, it is not as appealing to the communities
downstream which still risk property damage. From the analysis of three dam upgrade
projects in New South Wales, there was strong community support for full spillway
upgrade to the PMF standard rather than the installation of flood warning schemes
/'t¡f---f--- l^^^\ I .
lrvrurrc), Lt>¿). nooo warrung scnemes were also noted as being unpopular by Bishop
and Syme (1992).

Unforn¡naæly a comprehensive flood warning system would be difficult to operate for
the two major dams posing a risk on the suburbs of Adelaide; Mt Bold Dam and
Kangaroo Creek Dam. This is because the critical duration PMP for both of these
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catchments is less than 6 hours (Daniell and HiU, 1993c; and Water Resources Branch,

1981).

2.6. Occurrence of Extreme Storms

2.6.1. Introduction

Estimates of the PMP and PMF usually fa¡ exceed all observed exteme events. For this

reason the estimates have suffered a lack of credibility. The occurrence of extreme

rainfatls and floods are important in reafflrming the existing design approach. The

records of exEeme events serve as a reminder of, "the vagaríes of nature and a
justifîcation for a high degree of conservatism in the design flood selection process"

@rown, 1988).

It is unlikely that rainfall records at any one location will contain an exteme storm which

approaches the PMP (Brown, 1988). This is because the records are too short and the

network of raingauges is too sparse. In general the failure to record such ext¡eme

rainfalls does not mean that these estimates are unrealistic but rather that the current

network and period of record are insufhcienl

It is also important to note that in many cases the rainfalls are caused by mechanisms

which were not thought to apply in the given area @rown, 1988).

2.6.2. ExtremeEvents Recorded in the USA

It is inæresting to consider the records of floods and storms in the USA because there

exists a fa¡ more comprehensive database. The greater population has resulted in a

greater density of raingauges and their longer period of settlement has resulted in

generally a longer period of record.

Riedel and Schreiner (1980) examined recorded storms in the USA and compared these

with generalised estimaæs of the PMP. It was found that there were 243 storms for

which the recorded depth was greater than or equal to 50 percent of the estimated PMP.

In a later study @ullard, 1988), the magnitudes of recorded rainfall induced floods were

compared with the PMF estimates across the USA. The results from 61 floods a¡e shown

in Table 2.2. T\e distribution of floods in Table 2.2 appears unusual and there is no

indication in the study as to why this might be.

It was concluded that the methods used by the United Staæs Bureau of Reclamation to

determine the PMF were technically reliable and consistent with observed floods.
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Table2.2 Extreme Floods Measured in the USA (source: Bulla¡d, 1988)

10<30
83t-40
l34l-50
I5l-60
96L-70
471-80
781-90
291-100

Number of
Recorded Events

Percent of Estimated
PMF Peak

2.6.3. Extreme Events Recorded in other Countries

There are many exarnples of extreme events occurring overseas. Brown (1988) listed 17

notable storms and 9 major floods which have occurred overseas.

Many of the events lisæd occuned in tropical regions and therefore the figures quoted

¿¡re not entirely applicable to south-eastern Australia, and in particular to South

Australia.

One notable exception in Oman in 1981 is refened to by Brown (1988). A flood of 1,150

m3/sec occurred in a carchment of 370 km2. This flood was produced by a rainfall of
approximately 140 mm in 24 hours. This occurred in a month in which the mean rainfall

was less than half a millimete. In a period of record of 60 years the previous maximum

fall was about 9 mm.

2.6.4. Extreme Events Recorded in Australia

Most of the large point rainfalls recorded in Australia have been in the tropics. The

Crohamhurst stoûn on 2 February 1893 in Queensland produced 908 mm in 24 hours

@runt, 1958). The Australian record 24 hour rainfall of 1,14O mm occurred at Belle¡den

Ker in north Queensland in 8 January 1979 (Shepherd and Colquhoun, 1985). There a¡e

however some notable exceptions of extreme point rainfalls occurring outside of the

üopical regions (Bulletin 5l).

Most of the records of high short duration rainfalls in Australia are near major cities

because of the generally greater density of raingauges. This is particularly important

because large portions of Australia are sparsely populated, and therefore it is probable

that many extreme short duration storms occur without being recorded.
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2.6.4.1. Failure of Briseis Dam in Tasmania

At about 4.30 am on 4 April 1929 Briseis Dam locaæd in north eastern Tasmania faild
due to overtopping. The failure resulted in 14 deaths and considerable property damage.

This is the only example of a large dam failing in Ausralia-

The dam was constructed between 1924 and 1928 and the design flood was based upon

the judgement of an experienced engineer. The flood of April 1929 far exceeded all

observed floods in the region. Livingsûon (1993) estimated that the flood had an annual

exceedance probability of I in 1ü.

The failure seryes as an imporüant warning of the possibly disastrous effects of the

occurrence of extreme floods.

2.6.4.2. Extreme Short Duration Storms Outside of the Tropical Region

Pierrehumbert and Kennedy (1982) described the rationale for using adjusted United

Staæs thunderstorm data for the prediction of short duration PMP in Australia. Five

notable point rainfalls are listed which occurred outside of the tropical and sub-ropical

regions. A summary of short duration storms recorded in inland and southern Australia is

also included in Bulletin 51.

rWith the exception of the Buckleboo Storm, all of these storms occurred over relatively

densely populaæd a¡eas and this reinforces the belief that most of the severe short

duration storms which have occurred in Australia have not been recorded.

Spark (1992) examined the dat¿base of storms which have occurred over the Sydney

Metropolitan Area. Storms of up to 6 hours in duration were examined and no recorded

storms approached the PMP. The ratio of the PMP to recorded rainfalls was in the range

from 2.5 to 3.1.

2.6.4.3. Dapto Storm of 18 February 1984

On 18 February 1984 a severe storm occurred over Dapto near V/ollongong in NSW.

The resulting floods caused considerable damage but no lives were losL

The maximum recorded 24 hours rainfall was 796 mm at Wongawilly and approximaæly

75 percent of the rainfall occurred in the 8 hours to 1200 EDST 18 February. The rainfall

recorded at V/ongawilly is shown in Table 2.3.
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Table 2.3 Rainfall Recorded at Wongawilly l8 February 1984 (source: Bullerin 5l)

717720
515360
294180

220t20
13660
30l0

Rainfall
(mm)

Duration
(min.)

The rainfall set new Australian point rainfall records for durations between 8 and 17

hours (Shepherd and Colquhoun, 1985). The storm fa¡ exceeded the 5 severe short

duration, non tropical storms referred to in Pierrehumbert and Kennedy (1982).

'fl¡a -+^* *^,.1+^l:- ^-:-^-^^^:- ¿L^ ^L-¿ .J---^t',--- mtn --l'- . . truv ùrrJrrrr rçùurrq,¡ ¡t¡.llt rrulç¡ilrç IIr urti ¡tr¡ulL uufauurl rlvrr csumal€s Ior rougn rcfÏarn.
The greatest difference was 160 mm for an area of 25 tÃtrå.It also led to the questioning

of the procedure of distinguishing benveen rough and smooth tenain for the purpose of
short duration PMP estimation (Shepherd and Colquhoun, 1985).

No thunderstorms were associaæd with this event. This is unusual as it is assumed that
extreme short duration rainfall is produced by stationary thunderstorrns.

2.6.4.4. Comparison of Recorded Point Rainfalls in Australia

Appendix II of Bulletin 5l summa¡ises notable point rainfalls recorded in Australia on a
state by state basis. These point rainfalls for Queensland, New South Wales, Victoria and

South Australia are plotted in Figure 2.1. Where more than one point rainfall was

recorded for a duration, the greatest rainfall was chosen. Figure 2.1 therefore is an

approximate envelope of recorded rainfalls in Australia.

The recorded rainfall depths are similar for the shorter durations. As expecæd the rainfall
in Queensland and New South Wales generally plot above those recorded in Victoria and

South Aust¡alia for longer durations. This is because storms of a tropical nature are less

common in the southern states of Australia.

It is important to note two point rainfalls recorded in South Australia for durations
between 100 and 200 minuæs. Both of these rainfall records occurred in the Barossa

storm of 2 March 1983 which was influenced by ropical moisture. It is therefore clea¡
that although tropical storms are mole common in the northem regions of Australia,
storms of tropical origins can cause extreme rainfalls in the southern states such as South
Australia.
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Figure 2.1 Comparison of Notable Point Rainfalls Recorded in Ausralia (source:
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Chapter 3

Hydrometeorology of the
Onkaparinga Catchment

3.1. Catchment Description

3.f.1. Introduction

The Onkaparinga River's source is nea¡ Mount Torrens in the Mt lÆfty Ranges, 30 kn

east of Adelaide. It flows in a south westerly direction and enters the Gulf of Saint

Vincent at Port Noarlunga.

There a¡e two storages on the Onkaparinga River. The largest of these is the Mt Bold

Reservoir which is used to supply water to the Adelaide Metropolitån Area. Water is not

directly extracted from the reservoir but is released downstream to the second storage,

Cla¡endon Weir, where it is diverted to the Happy Valley Reservoir.

The total area of the Onkaparinga Catchment is 557 square kilometres. The catchment

area to Mt Bold Reservoir is 388 square kilometres and to Old Noarlunga 522 square

kilomeûes. The Onkaparinga Catchment to Mt Bold is shown in Figure 3.1.

The main tributaries of the Onkaparinga River to Mt Bold Reservoir are Inverbrackie,

Lobethal, I-enswood, Cox, Aldgate and Echunga cree}s. Downstream of the reservoir

the two main tributaries are Scott Creek and Baker Gully.

The major towns in the catchment to Mt Bold Reservoir are Lobethal, Balhannah,

Hahndorf, Stirting, Aldgate and Bridgewaær. Downstream of the r€servoir, the
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Onkaparinga River passes through Cla¡endon and through the outer suburbs of Adelaide

of Old Noarlunga and Port Noarlunga.

3,1.2. Land Use

The Onkaparinga Carchment is used for many different activities. Part of the catchment

is urbanised, while large portions are used for farming.

The different land uses employed in the Onkaparinga Catchment to Mt Bold Reservoir

are shown in Appendix A. Some general classifications regarding land use are:

. The most common land use type in the catchment is grazing, both dairying and non-

dairyi"g.
. The dominant land use in the northern catchment is rotational potatoes and dairy

pasture, while the north-western section of the catchment is characterised by

perennial horticulture.

. Along the westem side of the carchment there exist large areas of native vegetation,

particularly surrounding Mt Bold Resprvoir-

. The urbanised region generally lies in the Aldgate Creek Catchment which is located

in the western portion of the catchment; stretching from Crafers to Bridgewater.

. The land use in the Baker Gully Catchrnent consists of vineyards and grazing.

. The Onkaparinga Gorge is used for recreational purposes.

3.1.3. Farm Dams

The number of farm dams in the Mt t ofty Ranges has dramatically increased in the last

decade. Although these dams are generally small in volume, collectively they affect the

hydrology of the catchments.

The number of farm dams in the Mt Bold Caæhment has been estimated from GIS data

as approximrtely 2,070. The toøl volume of these farm dams is approximaûely 8,800 ML

which reprcsents 20 percent of the storage capacity of Mt Bold Reservoir (Cresswell,

1993, pers. comm.).

The number of farm dams can affect the observed hydrology of the catchment. l,arge

initial losses may be attributed to the presence of farm dams. A signifrcant volume of
rainfalt may be required to fill farm dams before they spill and the surface runoff reaches

the major streams which are being modelled.

Because farm dam spillways are generally designed for flows less than the I in 100 AEP

event, the failure of these farm dams may have an effect on flows greater than the I in
100 AEP event, including the PMF.

38



Chapter 3 - Hydronuteorology otthe Onlcaparinga Catclnent

.s

.\r_.1
J

N

).J

)I

(

)

t'L

. tob.lhrl

J

s 03508

,

J
Lolty GS 5035

GS 503507

\rloodrld¡ o

-l'r Hrhndorl.¡¡-j

J
/

GS 501517
\^.-r'?r I

I
)26d,

"Qt*t

) q

cf'É

Echunge o

tSl r lng

¿

(
GS 50350

co4.

¿
)

/ GS --'\.50350,1
I Houlgrave I

Mt. 80'd
Flc sc¡ vol ¡

kmO | 2 3 . 5 6km
\
Ir SC^LE

c
\
l

{

/

Figure 3.1 Onkaparinga Catchment to Mt Bold Reservoir (Source: Maguire et al.,
r986)

39



Chapter j - Hydrometeorology of tle Ontcaparinga Cøtchment

3.2. Catchment fnstrumentåtion

3.2.1. Storage of Data

Use was made of the data archiving system HYDSYS to store and manipulate all time
series data. This system is used by both the Engineering and Water Supply Department
(E&WS) and the Bureau of Meûeorology (BoM).

The system allows the storage and retrieval of time series data. It also performs
calculations such as baseflow extraction and flood frequency analysis. A complete
description of the sysrem was given in tryDsys pry Ltd (lgg2).

3.2.2. Pluviometers for the Onkaparinga Catchment

in orcier to calibraæ runoff routing models and to study the behaviour of the catchmenl
it is necessafy to record the variation of rainfall with time. The E&wS and the BoM
operate a network of pluviometers in the Onkaparinga and surrounding catchments.

3-2-2.1. Engineering and'water Supply Department pluviometers

The locations of the E&WS pluviomeærs are shown in Appendix B. The pluviometers
and their respective periods of record are shown in Table 3.1.

Although Table 3.1 indicates the offrcial commencement date of the pluviometers, in
many cases only a portion of the recorded dat¿ has been processed. There are also
periods of instrument failure.

Initially the pluviometer data were recorded on charts. This required that the charts be
digitised in order to obtain the record of rainfall. Large portions of the pluviometer
records have not been digitised, and it seems likely that unless specific funding is made
available, these records will remain unprocessed.

Requests were made to the Scientific Services Branch of the E&wS for a number of
pluviometer records to be digitised. Continuous records were not requested, but rather
only those days which were required to calibrate the runoff model. A good response was
obtained from the E&ws in the processing of the required data.

Unfortunately the early records at Echunga Creek and at Ackland Hill were recorded on
punch tape. At present the E&WS do not possess the necessary equipment to retrieve
data from a punch tape record. This record has remained unprocessed.
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Table 3.1 E&WS Pluviometers for the Onkaparinga Catchment

2U09t8LSixth Ck CherrwilleAW504559
16/10/80Ansas Ck StationAV/504558

LUt9t84First Ck Mt LoftyAW504552
0710u85AcHand HillAW504550
04/r0/88Mt Bold (Island)AW503534
25t0v84Echunsa CkAW503533

29lDl88Happy Valley ReservoirAW503s32
08/1 1/8910/08/87Juers CkAW503531
08/1 1/8930t07t87Kerber CkAW503530
L7 nU88tuOln8Burnt Out CkAW503529

23107182Sutton CkAW503525

ÙUMt87081o6t82Vince CkAW503524
MnLt8230tffit77Gallasch CkAW503521

L3tWl84Inverbrackie CkAW503508

rcltagtHoulsravesAW503504
08t03t91Scott CreekAW503502
l8/03/8óMt Barker EffluentAW42638

CeasedCommencedStation NameNumber

Note: "-" in the hnal column indicates that the pluviometer is still operational.

All of the E&IWS pluviometers are now equipped with data loggers and in the future all

recorded data will become available in a shorter time frame.

Although the pluviometer at Gallasch Creek commenced on 3016177, the chart record

has been lost for a period in late L979. This is most unfortunate because during this time

there were three inænse rainfalls which produced significant flows in the Onkaparinga

River.

3.2.2.2. Bureau of Meteorology Pluviometers

The BoM have operated a pluviometer at the lænswood Research Centre snce 1972

which is administercd by the CSIRO. There wæ also a pluviometer at Stirline (0n843)

which commenced in 1964 and was moved in 1985 to Heathfield.

The facilities for digitising pluviometer records are locaæd in Melbourne. This results in

lengthy delays.

The BoM have recently installed a network of pluviometers throughout the Torrens and

Onkaparinga Catchments. Many of these pluviometers have been installed as part of the

ALERT scheme for flood forecasting. The newly installed pluviometers are equipped

with data loggers.
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The locations of the BoM pluviometers in the Onkaparinga Catchment and surrounding
region are shown in Appendix B. The pluviometers and tl¡eir commencement dates are
indicaæd in Table 3.2.

Table 3.2 Bureau of Meteorology Pluviometers for the Onkaparinga Caûchment

26t02t92Eagle on Hill AlertO23XXX
3u0U9tAshton023867
16107t92Verdun - Sutton023866
tUo6t9tStringybark023865
t6t07t92Lobettìal023862
28n1t90Mcl¿¡en Flat023861
05/09/88Belair Alert023846
26t07t89Longwood023108
0t/08/89Killara Pa¡k023101
CommencedStation NameNumber

The pluviometer at Eagle on the Hill was originally at Crafers, but it was subjecæd to
vandalism and then was stolen. A pluviometer was reinstalled at Crafers in February
1992.

3.2.3. Daily Read Raingauges for the onkaparinga catchment
The distribution of rainfall over the Onkaparinga Carchment is measured by the network
of pluviometers combined with daily read raingauges. The distribution of daily read
raingauges is shown in Appendix B.

M*y of the raingauges are located at Post Offices. This unfortunately in many cases
results in the rainfall only being recorded on weekdays.

There also exist many private unofficial raingauges in the onkaparinga Caæhment. These
can be used to supplement the official raingauges.

3.2-4. streamflow Gauging stations in the onkaparinga catchment
The E&WS have a number of streamflow gauging stations in the onkaparinga
Catehment- The location of the stations is shown ir-r Appentiix ts. The gauging stations
which have digitised data are shown in Table 3.3. The dates refer to the time from which
digitised data is available.
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Tabte 3.3 E&WS Gauging Stations in the Onkaparinga Catchment which have

Digitised Data

08/1 1/8910/08/87t.2near CharlestonIuers CkAW503531

08/t l/89301071870.8nea¡ \il'oodsideKerber CkAW503530

t7nv88rzt0rn80.56U/S MtBold ResBurnt Out CkAV/503529

07to2t89Mto8n7385D/S Mt Bold ResOnkaparinea RAW503528

27t0618923tÙ6t764.3UraidlaCox CkAW503526

0/.to7l88231071820.43Piccadilly ValleySutton CkAW503525

Olto4t8708to6t820.65Piccadilly ValleyVince CkAW503524

t4t0718827tÙ6n3522NoarlungaOnkaparinea RAW503522

0/,ll1l8230106t770.15VerdunGallasch CkAW503521

2U06l89t3to7t727.8Aldeate Rly St¡rAldgate CkAW503509

nlo5n28.4CraisbankInverbrackie CkAW503508

2UMl89ßtosn2r6.5[-enswoodI-enswood CkAW503507

nta9n62U03n334.2U/S Mt Bold ResEchunea CkAVr503506

l9l01/83Mntn23.1Snow HillDashwood GlyArw503505

t7to4l7332tHoulsraves V/eirOnkaparinea RAW5035M
26tMl89tuo4t6945.6m{!V KanearillaBaker GullvAW503503

27t0316926.8Scotts BottomScott CkAW503502

28t07t86384Mt Bold ResOnkaparinga RAW503501

19twt37MIClarendon Wei¡Onkapa¡inea RAW503500

Cea-sedCommencedArea
ûm2)

Station
Name

StreamNumber

Note: The st¿tion at Mt Bold records reservoir level

It is evident from Table 3.3 that most of the gauging stations in the Onkaparinga

Caúchment have been closed. The usefulness of streamflow records for flood analysis

increases with the length of record. It is therefore viølly important that the recent trend

to close gauging stations is reversed.

The carchment areas listed in Table 3.3, were obtained from the schedule of hydrometric

stations of the Scientifrc Services Group Hydrometric Data Unit. These catchment areas

were checked against the caæhment area included in the HYDSYS Database, and many

discrepancies were discovered. Calculation of catchment areas using ARC-INFO resulted

in yet another set of catchment areas. It is important that these inconsistencies a¡e

rectified. In light of the recent digitising of the Onkaparinga sub-catchments, it is

fecommended that the values from ARC-INFO be adopæd as the areas.

The gauging station located just downstream of Mt Bold Reservoir (4W503528) was

installed to measure low flows. The station only accurately records flows of less than 5

m3/sec. For flows of greater than approximately 5 m3/sec the small weir becomes

drowned. This means that it is unsuitable for use in flood studies.

43



Chapter 3 - Hydrometeorobgy of tfu Onknparin¿a Catclunent

The søtion at Mt Bold Reservoir (4W503501) records reservoir level. Continuous

measurement of the reservoir level only commenced in July 1986. Before this time the

reservoir level was only measured daily and a reading taken whenever an adjustnent was

made to the spilhvay gaûes or outlet valves. These records make it difficult to estimate

oudlows from the reservoi¡ prior to this time.

Although digitised data at Clarendon Weir is only available from September 1937, flow

records commenced in 1889. These early records of flow in the Onkaparinga River have

been used in the flood frequency analysis undertaken in Section 7.3.

3.2.4.1. Houlgraves V/ei¡ (4W503504)

Houlgraves Weir has a continuous digitised record from April 1973. The caûchment to

the gauging station covers 83 percent of the catchment to Mt Bold Reservoir. Because

the continuous recorder has been operational at Mt Bold Reservoir since July 1986,

Houlgraves Weir provides the best estimate of inflow to Mt Bold Reservoir between

Ap.il 1973 and July 1986

The rating of Houlgraves Weir is considered to be good, with 89 different gaugings

performed up to the end of September 1992. A summary of the gaugings of over 50

m3/sec is shown in Appendix B. Only one of the gaugings has been recorded on the rising

limb of the hydrograph. This is important because the ratings for the .ising and falling

limbs of the hydrograph may be different

3.2.4.2. Clarendon Weir (4W503500)

The Clarendon Wei¡ was compleæd in 1896. It primarily serves to divert water from the

Onkaparinga River to Happy Valley Reservoir for water supply. The weir has a spillway

61 metes long, a vertical upstream face and a stepped downstream face.

Stage records are available from 1889, but it is not until September 1937 that the record

has been processed and stored in a digital form. From May 1978 the quality of record is

considered to be good.

A theoretical rating has been calculated for the weir, but this has not been verified by a

serie.s of gaugings. Only one gauging ha_-_s been pedonned. Thrs we.s done in -L:lv 1981

and only measured 35.1 m3/sec.

There are problems with underøking gaugings at Cla¡endon Weir:

1. Gaugings cannot be taken near to the weir, for safety reasons, and therefore gaugings

must be performed well upstream; and
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2. The rating is affected by the diversion of water. Although this is not signiflcant

during flood events, this could significantly affect the rating during low flows.

3.2.4.3. Old Noarlunga (Atü503522)

The gauging station at Old Noarlunga is important because it has the largest catchment

of all the gauging starions with digitised data in the Onkaparinga Catchment. It is

therefore the prefened station at which to calibrate hydrologic models. The gauging

station at Old Noarlunga was closed however in 1988'

The control at the station is a log lying across the channel. The log is considered to be

stable with little change in the cease to flow level having occurred. The log only acts as a

control for low flows. For larger flows the log is submerged and the channel cross

section determines the rating.

There were problems in deærmining a stable rating for low flows due to the unstable

bed. In the latter years that the gauging station was operated, the channel downstream of

the log became overgro,wn, particularly in the sunmer months. The vegetation

downstream of the control obstructed flows to such an extent that the control section

was drowned out at very low flows-

There have been a total of 58 gaugings performed at the site. Most of these were for low

flows however, and only 8 gaugings occurred for flows which exceeded 1 m3/sec. A

summary of these 8 gaugings is included in Appendix B. The maximum gauging was at a

flow of 72.5 m1sæ.

The rating curve was extrapolated to a gauge height of 10.30 metes which represents a

flow of 203 m3/sec. The extrapolation of the rating represents a sizeable extrapolation of

the rating, but it was the best available method of deærmining flows at the site.

A single rating curve for all periods was used in this study. This is because the

differences in ratings appeü to only apply for low flows (Good, L993, pers' comm')'

3.2.4.4. Bureau of Meteorology Gauging Stations

As part of its flood warning scheme, the BoM have installed some manually read staff

gauges without instrumentation on the Onkaparinga River'

There are two gauge locations for the Lower Onkaparinga River. The frst of these is

situaæd just downstream of the road bridge at Old Noarlunga. The second is locaæd at

the Commercial Road Bridge at Port Noarlunga. No regular readings are taken at these

stations.
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There are also three stations in the catchment to Mt Bold Reservoir. Staff gauges are

located at the bridge at Balhannah, at Hacls Bridge at Mylor and at Verdun. Data was

not obtained for these stations.

3.3. Previous Reports

There have been a number of reports and papers which have dealt with hydrological

modelling of catchments in the Mt Infty Ranges, and in particular the Onkaparinga

Catchment and Mt Bold Reservoir.

The hydrology of the Orikaparinga Carchment w¿rs described in Kotwicki (1984). The

report described routing of synthetic flood hydrographs through the Mt Bold Reservoir

to obtain information on the operation of the spillway gates. A RORB runoff model was

generated to Mt Bold Reservoir and calibrated using historical events. A flood frequency

analysis was undertaken on the existing record at Houlgraves Weir. The PMF was

estimated using an estimate of the PMP from the BoM.

BC Tonkin and Associates (1986) included the modelling of ten catchments in the

Adelaide Hills using the unit hydrograph method. Two of the catchments (I-€nswood and

Aldgate Creeks) are located within the Onkaparinga Catchment to Mt Bold Reservoi¡.

This study involved the selection of suitable events which had hydrograph and

pluviometer data available, and the analysis of different loss models.

In 1985 the carchment hydrology of 17 of the dams operated and owned by the E&WS
was analysed by BC Tonkin and Associaæs (1985). This did not include the Mt Bold
Reservoi¡. The flood frequency curves for each reservoir were calculated and the inflow
hydrographs deærmined for specifred return periods. The design flood hydrographs were

then routed through the storages. Since this report, the methods of qstimating PMP for
longer durations have been changed by the BoM and this may result in increased

estimates of the PMF.

Pa¡sons (1987) summa¡ised the adequacy of existing spillways in South Australia. Mt
Bold Reservoir was one of the three dams that were assigned a high priorify for further
evaluation.

The feasibility of a flood inundation study of the Onkaparinga River below Mt Bold Dam

was descnbe<t by Lange Dames and Campbell Australia Pty Lrd (1990). The aim of this

study w¿¡s to determine the likely nature and extent of flooding sufficient to dehne the

bounda¡ies of a more detailed study.

The flood hydrology component of the inundation study was discussed in Daniell and

Hill (1993c).
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3.4. History of Flooding in the Onkaparinga River

A study of the floods in the Onkaparinga River was undertaken. This involved

examination of all of the relevant hydrological and meteorological data collected by the

E&ÌWS and the BoM.

A sea¡ch was also made of newspaper articles. Daniell and Hill (1993c) contained a

chronological listing of the relevant nev/spaper articles and a commentary of the major

aspects of the a¡ticles.

A summary of floods in the Onkaparinga River prior to 1933 was made in E&WS (1933)

and this is shown in Appendix C.

It has been regarded that floods only occur at Noa¡lunga when there is a high tide.

Generally this is the case but on at least three occasions (19/8/1851, 511011867 and

29t8tl97l) flooding occurred in the absence of a high tide (Daniell and Hill, 1993c).

3.5. Extreme Storms for the Onkaparinga Catchment

It is important in studying the hydrology of a caæhment that the season or months of

highest rainfall a¡e determined. This is because the time of year will have an effect on the

catchment losses adoPted.

The time of year is even more important when flows are to be deærmined downstream of

a reservoir as the flows downstream are affected by the storage of the reservoir. This is

aspecially relevant for Mt Bold Reservoir because for a large proportion of the year it is

drawn down.

In the winter months there exist more examples of strong mechanisms to produce rainfall

but because the atrnosphere is at a lower temperature, there is less moisture vapour

available. In summer the air is warmer hence more moisture is able to tle stored in the

atmosphere, but there are less examples of mechanisms that produce rainfall. PMF is

therefore most likely to occur during the summer months; November through to March.

Although the most intense rainfalls are likely to occur during the summer months, there

are ex¿rmples of heavy rainfalls occurring outside of this period. The storms of April

1889 and August L992 n the Onkaparinga Carchment are two examples of rainfalls

which occurred outside of this period.

BC Tonkin and Associates (1935) listed the major point rainfalls recorded in South

Australia. This list has been reproduced in Appendix C. From this list of point rainfalls,

Figure 3.2 was generated which shows the months of the year in which the major point

rainfalls have been recorded. The storm of August 1992 was included.
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Figure 3.2 Distribution of Major Point Rainfalls for South Australia (Source: BoM)

Although severe rainfalls are more likely in the summer months, most of the high flows in
the Onkaparinga River are recorded in the late winter and early spring. This is a result of
the joint probability of inænse rainfall and a wet catchment- Figure 3.3 shows all of the
peak flows recorded at Houlgraves Weir betrreen l7l4ll973 and 20t12t1992 that were
greater than 75 m3/sec.

Appendix C conøins a summary of the peak flows at Houlgraves Wei¡, Clarendon Weir
and Otd Noarlunga.

3.6. Three Major Storm Events in the Vicinity of the
Onkaparinga Catchment

Three examples of notable rainfatl events in the vicinity of the Onkaparinga Catchment
are described. The three events occurred in different seasons and were a result of
diäerent meæoroiogicai conditions.
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Figure 3.3 Peak Flows at Houlgraves Weir Greater than 75 m3/sec

3.6.1. April 1889

During 1889, three severe storms were recorded in the Adelaide region. The hrst of

these occurred in lanuary while the other two occuned i" Aptil (2nd and 17th). The

rainfall which fell on 1? April 1889 resulted in the largest recoded flood in the

Onkaparinga River.

A survey party in the vicinity of Cla¡endon pegged the progress of the flood. It was

estimated that the peak flow was approximaæly 680 m3/sec (E&\ryS, 1933).

The rainfall was centred over Stirling West which recorded a 24 hour rainfall to 9am on

April 17th of 208 mm (8.20 inches). The ninfall recorded at five different stations is

shown in Table 3.4. The 24 hour ninfall to 9am 17 April 1889 recorded at Stirling West

is one of the greatest daily rainfalls recorded in South Australia.

From Table 3.4, it is clear that the heavy rainfall to 9am on the lTth was preceded by

pre-frontal rain. The rainfall which resulted in most of the runoff was produced by

embedded convective cells. The storm was accompanied by very strong wesærly v/inds

which increased the uplifr
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Table 3.4 Daily Rainfall Records (mm) - April 1889

l3138264Clarendon
589137Hahndorf
7208281lSti¡line West
3702620Woodside
614428t4I-obeüral

l8 th17 th16 rh15 rlt

From eye-witness accounts, most of the rainfall fell in the 12 hours to the

commencement of the lTth (Purton, 1993, pers. comm.). Unfortunately because of the

sparse meteorological network in place at the time, little is known of the meteorological

conditions which led to the heavy rainfall.

Because of the importance of this event, the storm was modelled using a RORB model

of the Onkaparinga Carchment to Cia¡en<ion -Weir. The resuits of the mocieüing were

shown in Daniell and Hill (1993c). The calculaæd peak flow was very sensitive to the

adopæd temporal pattern.

3.6.2. August 1992

Heavy rainfall on 30 August 1992 produced widespread flooding in the Mt t-ofry Ranges

and sunounding districts. The water inundated many houses and the flooding resulæd in

both loss of life and property. There was extensive damage to infrastructure such as

roads, dams, culverts, bridges and weirs.

The rainfall ìvas centred over the western branch of the Onkaparinga River, with very
large flows being recorded in both the Onkaparinga and Torrens Rivers. Very large flows
were also experienced in the South Para System. The floods, in many cases, exceeded all
previously recorded flows (HilI, 1992).

The peak flow recorded at Houlgraves'Weir was 431 m3/sec, which was the largest on
record. The largest of the gaugingp was at a flow of 330 m3/sec on the falling limb of the
hydrograph. The gauging was within 2% of the extrapolated rating curve ([æaney, lgg2,
pers. comm.).

3.6.2.1. Meæorological Situation

The rainfall of 30 August 1992 was produced by an intense low which formed south of
Adelaide. This mechanism produced a continuous supply of warm, moist air which was

fed into the Adelaide region. The Mt Lofty Ranges caused orographic lifting which
resulted in large falls occurring just over the ranges.
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Figure 3.4 shows the synoptic chart prior to the storm. A low front approached the

Adelaide region from the south-west. This fesulted in strong westerly winds'

Figure 3.4 Synoptic Chart for 0900 CST 29 August 1992

3.6.2.2. Recorded Rainfall

The offrcial BoM daily-read raingauges were supplemenæd with private records. This

resulted in the distribution of rainfall over the catchment being accurately recorded. The

heaviest 3 day rotal to 9am on 31 August 1992 was at l-enswood which recorded 174

mm. The distibution of rainfall over the Onkaparinga Carchment is shown in Figure 3.5.

The va¡iation of rainfall with time over the Onkaparinga Carchment is shown in

Appendix D. From midnight to 0200 hours on 30 August 1992 light to moderate ninfall

fell over the catchment. In the two hours to 0400 hours a burst of rainfall was locaæd

over the centre of the catchment. In the 2 hours to 0600 hours, a heavy burst of 35 mm

was recorded over Ashton.
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Figure 3.6 shows the recorded hyetograph at four BoM pluviometers.
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Figure 3.6 Comparison of Pluviograph Records for the Onkaparinga Caæhment - 2000
hours 291A92 to 1200 hours 3018192

Figure 3.7a shows the display from the weather radar at 0220 hours on 30 August 1992.

A broad area of mainly light to moderate rain fell over the Adelaide region.

Figurc 3.7b shows the radar image at 0450 hours on 30 August 1992. The light rainfall

band was replaced by a narrow band of moderate to intense rainfall orientated in a north

westerly direction. By 0600 hours the rain band had passed east of ttre Mt l^ofty Ranges

and only scattered showers remained over the Mt Lofty Ranges (BoM, 1992).
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Figure 3.7a W'eather Radar Image for 0220 hours 30 August 1992 (source: BoM)
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Figure 3.7b Weather Radar Image for 0450 hours 30 August 1992 (source: BoM)
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3.6.3. December 1992

A severe thunderstorm on l8 December 1992 resulted in the loss of a life and darnage to

property in Callington and Kanmantoo to the east of the Onkaparinga Catchmenl

The storm was a result of a different meteorological situation than that which produced

the storms of August 1992. The storm of December 1992 was produced by a north

easterly low level moist air stream. There !\ra¡¡ atnospheric instability and the topography

acted as the trigger. There was also synoptic scale convergence producing greater uplift.

Although large falls were recorded nea¡ Kanmantoo, vêty little rain was reco¡ded in

Adelaide. This is because the low level stream was descending from the Mt t ofty

Ranges.

The pluviometer record at Kanmantoo for 17 and 18 Decembt 1992 is shovm in

Appendix D. From these records, it is evident that during the 17 December 1992 sæady

rainfall fell at approximaæly 5 mrn/tr. Two heavy bursts were recorded on l8 December

1992, at 6 am and l0 pm. The one hour rainfalls in the two bursts were 24.5 mm and 20

mm re.sp€ctively. The se¡ond of these bursts caused a large amount of runoff.

Figure 3.8a and 3.8b show the radar image at 0620 hours and 2300 hours on 18

December 1992. Figure 3.8b also indicates heavy rainfall occurring over the Lower

Onkaparinga River.

This event resulted in only moderate flows in the Onkaparinga River as the hearry rainfall

was centned to the east and to the noith of the Onkaparinga Carchmenl It is important to

note however that the meteorological conditions which produced this event were srrch

that the rahfall could have occurred over any of the Mt lofty Ranges Catchments; in

particular the Onkaparinga Catchment (Watson, 1993, pers. comm.).
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Mt Bold Reservoir

4.1. Introduction

Mt Bold Dam is located on the Onkaparinga River 23 kilometres SSE of Adelaide. The

dam was constructed between 1932 and 1938. Mt Bold Reservoir is not used to directly

supply Adelaide with water, but water is rcleased to Cla¡endon Weir where it is diverted

to Happy Valley Reservoi¡ and to the southern suburbs of Adelaide.

The spillway tw¿rs raised and associaæd modifrcations made between 1961 and 1963'

During these modifications, the reservoir crest was raised from EL 240.50 to EL 2M.00

and 8 venical lift gates installed. These gates are 2.9 metes high and 7.32 metes long

@esign Services, 1982).

The raising of the reservoi¡ crest increased the estimat€d storage capacity above the

minimum draw off level to 47,300 ML. The storage capacity has since been revised to

45,900 ML.

4.2. Mt Bold Reservoir Gates

4.2.1. Gate Operation

The oufflow from Mt Botd Reservoir is regulaæd by a gated spillway and by two outlet

valves. The gates are operated with the inænt to safely pass flood waters while

maintaining the reservoir level at the full supply level of 4Ln meües FL246.90)'

:.1
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The gates can be operated from the control room or from the walkway above the gates.
Depressing the appropriaæ swirch opens or closes the gates by an increment of l0O mm.
In the control room a digital display for each gate indicates the opening in centimetres.
The ma¡rimum gaûe opening is determined by a limit swiæh.

Schurer (1986) stated that the operators of dams can help prevent the failure of dams by
careful gate operation. It is noted however that most dam operators are under trained
and possibly lack motivation to effectively carry out their safety roles.

Iæwin (1986) also examined the control of spillway gates during floods. The correct
operation of the spillway gates can greatly increase the safety of the structure. This paper
recommended automated control of spillway gates with a number of redundancies
included in the system.

4.2.1.1. Offrciat E&WS Gate Operation policy

A copy of the culrent official operating policy for the Mt Bold Reservoir spillway gares
is shown in Appendix E.

The operating policy is designed to match the outflow with inflow to achieve the
maximum operating level of a gauge height of 41.325 (EL 246.825). This is performed
by monitoring the rate of rise of the reservoir.

The guidelines require that the gates remain in the lowered position until the reservoi¡
level reaches a gauge height of 41.10 (FlL246.60), when rwo gates are opened 100 mm.
If the reservoir level continues to rise, the gates are opened by various increments until
the reservoi¡ level stabilises or begins to fall. A similar procedure is used for the case of a
fallin g reservoi¡ level.

Kotwicki (1984) noted that the advantages of this method were that it was simple and
precise, but that it was unsatisfactory for larger floods and that it also excluded pre-
releasing.

4.2.1.2. Current Operation of Mt Bold Reservoir Gaæs

Several telemetered stations have been installed throughout the catchment. Rainfall is
¡neasureci and reported at Echunga Creek, Inverbrackie Creek and Scott Creek. The
stage height at Houlgraves Weir is also reported.

The stage height in the Onkaparinga River is measured at Balhannah by the BoM using
manually read gauge boards (Section 3.2.4.4). The stage heights are then phoned
through to the BoM which relays the flows to the operators via the phone. It is believed
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that the peak flow takes approximately 6 hours to reach the reservoir from Balhannah

(Bailey, 1993, pers. comm.).

Pre-releasing is cunently being used in an attempt to mitigate the downstream flooding.

The pre-release is based upon the reported flow in the Onkaparinga River at Balhannah

obtained from the BoM. No pre-release is made according to rainfall.

The decision on the magnitude of the pre-release is currently made by the operators,

taking into consideration the recorded peak flow at Balhannah and the downsteam

conditions. It is important that the pre-release is made considering the weather forecasts,

rain reports and knowledge of general carchment conditions (Ballard, 1984).

The policy of pre-releasing can successfully reduce flooding downstream (Munro et a1.,

1967). Figure 4.1 shows the reduction of the peak outflow from Mt Bold Reservoir that

was achieved using pre-releasing for the event of 8 October 1992.

If the practice of pre-releasing is to continue, it is important that a pre-release policy is

determined which is based upon hydrological data. The practice of pre-releasing would

be better implemented if a telemetered station was installed higher in the catchmenÇ

possibly at Balhannah.
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4.2.2. Maximum Gate Openings

In order to rout the PlvfF and o'.lier ex'r¡ei-rre floqis ihrough Mt Boid Reservoir the
storage - discharge relationship was extended. For this to be calculated, the maximum
gate settings were required.

4.2.2.1. Previous Studies

Simpson (1990) examined the gates and their operation. A field trip was undertaken by
Simpson on 27 February 1990. Operating procedures were discussed and measurements
were taken of gates 4 and 5.

The digitally displayed gate opening was checked by measuring the gate opening using a
pole and tåpe. A measurement was taken at both ends of the gaæ.

A fliscrenenev rvâc rlicnnr¡prpd hafrrraon rha -^-i*,rñ -^+^ ^-^-:-- a^- ---- | t .t------r-'-J 'v¡w wrwwrr r¡¡v ¡r¡ruuuu Ëfr!ç ulrcturtË rut 8,aKi + anq mat
obtained from the operator's records. The observed morimum gate opening of 2.74
metres was significantly different to the recorded 3.50 metres. The other 7 gates were
not opened to their maximum settings, but it was recommended that the discrepancy be
investigaæd.

A problem was also identifred with the digital display for gate 4. During the opening of
the gate, the digital display did not indicate the correct opening be¡veen a gate opening
of I and 2 metres. A'l'did not appear æ the first digit. It was recommended that this
problem be rectified as soon as possible.

4.2.2.2. Field Trip August 1992

A field trip was conducted by the author on 7 Augu st 1992, with the intent of observing
the gate operation procedures and to measure the maximum gate openings for each of
the 8 gates.

The gates were operated from within the control room. Each gate was opened by
increments of approximately 100 mm to its ma;rimum opening. The same problem with
the display for gate 4 that was identified by Simpson (1990) was observed.

The gaÛes were opened to their maximum opening which was determined by the limit
swirch- Gaæ 3 openeci significantly more than the others and was not opened to is
maximum for fea¡ of damaging the overhead walkway.

The digital display was then checked by measuring the gaûe openings using a tape. The
gate opening could not be measured directly, but had to be infened from the movement
of the top of the gate relative to the overhead walkway.
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In Table 4.1 the measured maximum gate openings are compared to those in the

operator's records from a test conducted in November 1985" The digital display and the

measured values corresponded within acceptable limits for all of the gates with the

exception of gate 5. The error in the digital display was 0.33 m.

Table 4.1 Maximum Gate Openings for Mt Bold Reservoir Gates (August 1992)

3.403.003.038

3.252.902.937

3.203. l03.136

3.102.552.885

3.502.702.734

3.653.753_t83

2.352.802.832

3.4s2.752.781

ODerator's recordsDieital ReadingMeasuredGate

Modmum Gate Opening (m)

Note: Gaæ 3 was not opened to its maximum for fear of damaging the overhead
walkway.

Figure 4.2 shows the reservoir gaûes open to their maximum settings on 7 August 1992"

f igure 4.2 Mt Bold Reservoir with Gaæs set to Maximum Openings (August 1992)

rIt
I

I
I
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4.3. Calculation of Spillway Rating

4.3.1. Previous Studies

Several tecent reports have estimated the discharge from the gated spillway of Mt Bold
Reservoir.

4.3.L.1. Ebsary (1987)

Ebsary (1987) concluded from a water balance study that the actual oudlow from the

spillway was about 70 percent of the outflow based on the current discharge rating for
the gaæs. This was confirmed by the reservoir operators who had experienced difficulty
in sAbilising the reservoir using the rating curve ûo sot ouúlow to inflow.

The probiem of gaiai spüiway fiow was consicÍered as comprising oi two eiements; ireæ

werflow and flow through a rectangular orifice. For small gate openings, relative to the

hcad, the flow was assumed to act as flow through a rcctangula¡ orifice. For large gate

openings, the flow was as¡¡umed to behave as free overflow. The point at which the

behaviour ctranged was considered difficult to determine anal¡ically a¡rd hence the

discharge for both methods was calculated and the lowest value chosen as the ouflow.

The two expressions used were:

free overflow: Q=C-\.H''t (a.la)

flow through rectangular orifice: O,=u.Olr-(t-*)''] (4.lb)

where: c =2.28- o.lsz[r. tt - i)
Il¿ = desi8n head for crest profile;

I" = effective weir length for each gaæ allowing for end contractions;

u = l.l4 for H/III< 0.5;

u = L.I4 - (H/Hd - 0.5y5 for 0.5 <HHo< 1.0;

u = l.M for H/Ho> 1.0;

Go= gtte opening; and

Ef - ¡l,enth nf r¡¡cte'r qhnr¡e cnif lrrrqrr ¡mcrsrs^,, sJ v¡vue.

The assr¡¡¡od design head was the ñ¡ll supply level of 2.896 metres. In most instances,

or¡ly tlre daily 8.(X) a.m. reseryoir ler¡els were avail,¡bb. The oudlows were thercfore
calculated r¡sing a reservoir þvel which was calculated by interpolating the daily rcad
values. This was not considered to produce significant errors because the flrrctr¡ations in
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head were small when comparcd to the de.sign head, and because the reservoir level was

generally at full supply level during times of spill.

The calculated values of outflow were then multiplied by 0.7. This was done because a

water balance study indicated that the theoretical calculations overestimated the oufflow

by approximately 30 percent

4.3.1.2. Simpson (1990)

A preliminary study was undertaken by Simpson in 1990 to investigate the reliability of
the Mt Bold spillway rating curve.

The original design of the Mt Bold Spillway in 1958 was based on the USBR Boulder

Canyon Final Project Report. This was however only known to give an approximaæ

result as the profile of the upstream face of Mt Bold was not covered in this report.

The 1958 calculations assumed a design head Ho of between 3.29 and 3.31 metres. A
more comprehensive analysis however, showed that the design head was greater than this

value. The report also concluded that it was not possible to determine the exact design

head for the spillway.

The report concluded that the perceived overestimation of the discharge was dr¡e to:

1. the assumption of a design head which was too low, and

2. the US Army Corps of Engineers had changed their method of calculating partial

gate opening discharges.

4.3.1.3. Simpson (1991)

The objective of this phase of the study v/as to determine if the rating curve for partial

gate openings could be corrected anal¡ically or whether a physical hydraulic model

study of the spillway would be necessary.

The design head for Mt Bold spillway w¿¡s estimated to be 3.80 metres. This was based

on a visual comparison of the existing parabolic profile and the US Corps of Engineers

Chart 3I2.Tllre average decrease in discharge compared with the existing rating curve

was between 9 and 13 percent.

An investigation of various model study reports concluded that one or more model

studies of the Mt Bold spillway should be carried out. The recommended model study

never eventuated.
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In addition to the model study, it was also recommended that the actual discharges for
small gate openings be measured. With some modifications the weir downstream coul¡l
be used for this purpose.

Simpson et al. (1991) summarised the investigations undertaken to identify the perceived
elrors in the existing rating for the Mt Bold spillway. The paper included a description of
the gates and their operation.

4.3.2. Ungated Spitlway FIow

The calculation of flow over a gated spillway, first requires that the flow over an ungaæd
spillway be calculated. Two different expressions for the flow over an ungated spillway
were considered.

The fust method con,sidere-d wes råat rccommendC by Uni-,cd Staæs Bureau oi
Reclamation(1977) and is shown in Equation 4.2.

e=0.522 c t(n,)'s Ø.2)

where: 0 is the discharge (m3/sec);

C is a variable coefficient of discharge;

I is the effective length of the crest (m); and

H" is the total head on the crest (m), including the velocity of approach head.

The discharge coefficient is dependenr upon (USBR, 1977):
. the depth of approach;

. the relation of the actual crest shape to the ideal nappe shape;

. the upstream face slope;

. downstream apron interference; and

. downstream submergence.

At the design head, C is designatÃ Co, and is deænnined from the ratio of p, the height
of the upstream face and H¿, the design head. For calculations based on heads other than
the design head, the coefhcient of discharge is determined as a ratio of Co,the coefficient
ofdischarge at the design head.

The velocity of approach head, h¿, warS calculaæd for the design head to be 0.00611
mgtfes This is nnk¡ ¡ rren¡ cmall ñê?^Ãñ+ñ-^ ^f +L^ ¡^-:-- L--r i.¡r¡¡¡s lry¡wvrrEéw vr frrç unsrË,rr rrçiru alt(J rt \ryas ulgrgtore not
included in subsequent calculations (Simpson, l99l).

A second method of calculating the discha¡ge over an ungated spillway proposed by
Hager and Bremen (1988) was considered and is shown in Equations 4.3 and 4.3a.

e = cob(zsn ')" @.3)
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where: å is the effective spillway width (m);

g is the gravitational constant;

IIis the head (m); and

Cu is the coefficient of discharge.

Hager and Bremen (1988) recommended a new formula for evaluating Cd. This formula

was confirmed by Hager (1991). The expression for C, is shown in Equation 4.3a.

c,=+(r*-4x I @3a)" 3./3 \ 9+5X)

where: X is the dimensionless head (=H/II¿)

The two different methods were used to calculate the ungaæd discharge from Mt Bold

Dam for 8 gates fully open and the reservoir level at the design head (3.80 m) and at the

full supply level (2.896 m). The results a¡e shown in Table 4.2.

Table 4.2 Comparison of Ungaæd Discharges

O.ÙVo594 m3/sec594 m3/sec2.896 mFSL
0.57o921mslser916 m3/sec3.80 mH,

DiffercnceQ @qn 4.3,4.3a)O Gon 4.2\Head

The trvo methods give comparable results and therefore the method suggesæd by Hager

(1991) was adopted as ttris did not require any values to be read from øbles or graphs

and hence could easily be incorporated into a spreadsheeL

4.3.3. Gated Spillway Flow

The discharge for a gated spillway was given by Hager and Bremen (1988) as Equation

4.4.

I*',)'''
where: Q, is the discharge over a gateÅ, spillway;

Q, It the discharge at the design head;

X" is the dimensionless head(=I1rll1o)'

{ is the dimensionless gate opening (=z/Ho¡;

Ilo is the head on the gated spillway;

I/o i. thedesign head; and

z¡ is the gate opening.

Q,

Qo
-(x"-4,"1(x:'' (4.4)
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Equation 4.4 for gated spillway discharge is valid until the gate is no longer immersed in
fluid. For Ereatar gaæ openings, ungated spillway flow preveil.s and Equation 4.3 applies.

Equation 4.4 is only valid for x < 2.5 and Equation 4.3a is only valid for x <2.

4.3.3.1. Horizontal Contraction

If the piers and abutments are shaped to cause a side contraction of the flow, the

effective length of the spillway will be less than the total physical length. The effective

length of the spillway is calculated using USBR (1977):

L,t = L-2(NK'+ K")H, (4.5)

where: Lø= effe*tive length of the crest;

L = total length of the crest;

lÍ = number of piers;

Ko = pier contraction coefficient;

Ko = abutnent contraction coefficient; and

Hr=total head on crest-

For the Mt Bold spillway, Ko has been estimated to be 0.02 and Kohas been estimated to
be0.1 (Simpson, 1991).

The gate operation procedures are such that the gaûes are opened in pairs, starting from
the middle two gates (Appendix E).

The effective width for 2 ,4 or 6 gates open is therefore given by the expression:

Lq =7.3t5NG -2(o.o2NG)H, (a.5a)

where: No - number of gaæs; and

H"= total head on crest.

The effective width for 8 gaûes open is:

Lø = 58.520 - 0.480¡1" (4.5b)

4.3.3.2. Calculated Rating

The rating curye was calculaæd using the equations suggested by Hager and Bremen
(1988). The gated flow discharge was calculaæd using Equation 4.4, and the ungaæd

discharge was calculated using Equation 4.3.

The calculaæd rating is shown in Figure 4.3. Gated flow prevails until the gates opening
is 0.77 of the head. At this point ungated spillway conditions occur.
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At the point at which gated spillway flow is replaced by ungaæd spillway flow, there is a

discontinuity which is shown in Figure 4.3. This discontinuity is a rcsult of the increased

coefficient of discharge. This phenomenon is discussed in more detail in Chapter 11,

where its implications on the overtopping of the dam crcst are outlined.
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Figure 4.3 Rating Curve for Mt Bold Spillway for Full Supply Level
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4.4. Recommendations for the Operation of the Spillway
Gates

From the discussions in the previous sections, the following recommendations are made:

1. The new rating calculaæd in Section 4.3 should be adopæd as the rating for the

spillway and supplied to the operators, until such time as a more comprehensive

hydraulic study can be undertaken. Noæ should be made that the rating changes with

head, and therpfore a single rating for all heads is not appropriate.

2. There needs to more care taken in the recording of the operation of the gates. This

will assist any further hydrological or hydraulic studies involving the dam spillway.

3. The cunent operation of the gates which involves pre-releasing to mitigate

downstream floods, should be addressed. If undertaken correctly, pre-releasing can

mitigate the downstream flooding. If pre-releasing is to continue, it is important that

the procedures are documented and a¡e embraced as ofhcial policy.
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4- The limit switches on the gates should be reset to allow all of the gates to open to a
maximum opening of at least 3.8 metres. At pre.sent the maxrmrr_m gate oprenhgs
vary, but a¡e less than this amounl The increase in the maximum gat€ opening will
increæe the maximum capacity of the spillway and hence will reduce the chance of
overtopping of the dam.

5' The observed discrepancy betrveen the measured gate openings and those from the
digitat display should be checked and the problem rectified.

The E&WS is planning to upgrade the gate operation at Mt Bold Reservoir which will
ensure more reliable gate operation and this will address the above recommendations

@arsons, 1993, pers. comm.).

4.5. Mt Botd Outlet Valves

The flow in the Onkaparinga River below Mt Bold Reservoir is maintained via the two
outlet valves.

Since the completion of the dam in 1938 there have been 5 different outlet valves in
operation. Table 4.3 shows the outlet valves and their abbreviations (Ebsary, t98Z).

Table 4.3 Mt Bold Reservoir Outlet Valves

1984 -Southern Jet ValveNEW2:
1984 -Northern Jet ValveNEWI:

1982 - March 1984Temporary ValveTEMP:
1938 - 1984Southern Needle ValveOLDZ:
1938 - March 1981 )Northern Needle ValveOLDI:

Ebsary (1987) determined the following relationships for the ourler valves:

OLDI: Q- = 0.2g8iv¡r'ocl¡o'3t

OLD2: Q* = 0.327 No'Y2ß Ho'tt3

TEMP: Q,n =16.92H0'6r4
NEWI: Q,n =O.96pt'0tr Yo'srz

NEW2: Q^ = l.552po'% go'n

-ri/here: Q* is the estimated valve discharge (MUday);
lV is the valve opening (number of turns);

p is the valve opening (percentage open); and

I/ is the reservoir level (metres).

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.6e)
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4.6. Total Outflow from Mt Bold Reservoir

Gauging station 4W503528 is locaæd under the original timber access bridge (now

abandoned), just downstream of Mt Bold Reservoir. The station only measures low

flows Qess than about 5 m%ec) and it was therefore not suitable for determining flood

ouflows from the dam.

A spreadsheet was construcæd which calculaæd the total instantaneous outflow from Mt
Bold Reservoir. This is shown in Appendix E.

The spreadsheet could be used to calculaæ the discharge for any physically valid gate

opening and head. The head is constained by the limit of Equation 4.3a which calculates

the discharge coefficient This equation is only valid for X < 2. This implies that the

analysis is only valid for heads which are less than 7.60 metres (Section 10.2).

4.7. Storage Elevation Relationship

The raising of the reservoir crest between 196l and 1963 increased the storage capacity

above the minimum draw off level to an estimated 47 3n ML. This storage was based

upon the contour survey conducted before the construction of the dam.

In 1977 a survey of the storage was undertaken, and a l:5000 Bathymetric map

constructed. The storage capacity was revised from 47,300 ML to 45,900 ML. The new

cross sections were compared to the original, and little siltation was discovered (Will,

1993, pers. comm.).

In order to rout the PMF through the reservoir it was necessary to extrapolate the

storage elevation relationship. This was done by frtting Equation 4.6 to the storage

elevation relationship.

s = 1.531(Grr)'''uo (4.6)

where S is the storage in ML; and

GIlis the gauge height in metres (>30m).

The extrapolaæd sûorage elevation relationship is shown in Figure 4.4.
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Design Rainfalls

5.1. Rainfatl in the Onkaparinga Catchment

The Onkaparinga Catchment and the Adelaide region are influenced by two distinctly

differcnt rainfall mechanisms :

l. In the summer, heavy rainfalls are generally a result of tropical weather being

advecæd from north-western Australia. This gives rise to generally intense short

duration storrns.

2- In winter, the heavy rainfalls are usually a result of rainfall produced by low frontal

systems coming across the Great Australian Bight. These storms are generally less

inænse and of longer duration.

The rainfatl pattern is winær dominant. The fust significant falls generally arrive in April

or May. fune, July and August are usually the wettest months. From November to Ma¡ch

rainfall is slight (Burrows, 1989).

5.2. Design Intensity Frequency Duration Rainfall Data

IEAust (1987) includes a method of obtaining intensity-frequency-duration (FD) curves

for use in design for all regions of Australia. These procedures produce, "accurate,

temporaþ and spatially consistent, IFD design rainfalls" (IEAust, 1987).
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The use of single station rainfall records for design rainfall purposes w¿ts considered to
be unreliable and not temporally or spatially consistent. A generalised method was

therefore developed.

The generalised procedure makes use of maps of isopleths of rainfall inænsity, as this

smooths sampling errors and best accounts for poor quality data. The method is based on

a log Normal distribution.

The method in IEAust (1987) allows IFD curves to be constructed for durations from 6
minutes to 72 hours. The data used to develop these procedures included both daily read

raingauges and pluviometers. The pluviometer records tryere sc¿trce in comparison to the

daily read raingauges. For example, at the time of the development of IEAust (1987) in
NSW, there were 989 daily read raingauges which had periods of record which exceeded

30 years. There were however only 45 pluviometers in NSW that had a period of record
greater than 13 years (Canterford et al-, 1985b).

The generalised method in IEAust (1987) was established using 600 pluviomerers with
more than 6 years of data supplemented by 7,500 daily read rainfall gauges with more

than 30 years of data (IEAust, 1987).

In order to supplement the short duration records, statistical methods were used to relate

the 1 and 12 hour duration reeords to daily ainfall records and other rneteorologicai and

physical parameters.

5.2.1. Generalised IFD values Using IEAust (1987)

The procedures included in IEAust (1987) were used to obtain estimates of the design

IFDs. A spreadsheet Ìvas set up to calculaæ the IFD values for any location.

Appendix F shows the values calculated for IFDs for the complete range of durations

and average recu¡rence inærvals (ARIs).

5.2.2. comparison of Design IFDs for the onkaparinga catchment

Table 5.1 shows the comparison of IFD values obtained for Balhannah, Stirling PO, Old
Noarlunga and Inverbrackie Creek with ARh from 2 to 100 years for storm durations of
3, ó and 24 hours. Baihannah is cenuaüy iocateri in the Onkapannga Catchment and was

considered representative of the catchment. Stirling PO, Old Noarlunga and Inverbrackie
Creek a¡e on the extremities of the catchment and should therefore give the greatest

variation from the values at Balhannah.
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It can be seen from Table 5.1 that the maximum variation is in the 24 hou¡ duration

values for the 100 year ARI and this is 12.8 percent for the Stirling PO. Generally there

is no significant differences benveen the IFDs for Old Noarlunga and Balhannah. The

IFDs for Stirling PO a¡e all higher. This is expecæd because it is in this region where the

highest rainfalls in the catchment occurs. The design temporal patterns and inænsities for

the Onkaparinga Catchment are shown in Appendix F.

Table 5.1 Comparison of IFD Rainfalls for the Onkaparinga Catchment with those
calculaæd at B alhannalr

3 hour duration

6 hour duration

24 hour duration

-0.95.272.85.4712.86.m5.32100
-1.14.691.34.8012.25.324.7450
-1.23.974.83.99tt.44.484.U220
-1.13.6-2.63.4110.93.883.5010
-1.63.r4.43.019.8?.ß3.1s5
-1.52.55-7.32.408.92.t22.592

difference
(%)

Inverbrackie Ck
(mm/fr)

differe¡ce
(%l

Old Noar.
(mmAr)

difference
(E"\

Stirling
(mnÀr)

Balhannah
(rm/h¡)

ARI
(vrs)

5.2.3. Site Specific IFDs

Many of the pluviometers in the Onkaparinga catchment and in the surrounding areæ

now have 7 or 8 years more record than at the time of the development of IEAust
(1987). Analysis of the pluviometer records in the catchment was therefore undertaken

to compare the lI.Ds with those generated from the generalised procedurcs of IEAust
(1e87).

0.02r.373.622.144.322.2921.37100
0.018.732.6t9.214.519.5718.t350
0.015.511.3t5.7t4.816.2615.5120
0.0t3.250.313.295.1t3.9313.2510
0.011.63-0.811.545.5t2.2711.635
0.09.2_7)9.006.39.789.202

difference
(%l

Inverbrackie Ck
(mmAr)

differe¡ce
(%l

Old Noar
(mm/b¡)

difference
(4o)

Stirling
(mmÀr)

Balhannah
(mmA¡)

ART
(ws)

0.013.384.213.947.014.3113.38100
0.011.822.9t2.166.912.6311.8250
0.09.911.110.026.710.589.9120
0.08.55-0.28.536.7Lt28.5510
0.07.59-1.67.476.68.097.595
0.06.13-3.85.906.56.536.132

difference
(%\

Inverbrackie Ck
(mm/h¡)

difference
(%\

Old Noar.
(mm/hr)

difference
(7o)

Stirling
(mm/h¡)

Balhannah
(mm/hr)

ARI
(us)

73



Chapter 5 - Desi gn Rainfalls

This was done using the HYDSYS database. Several different bucket sizes were

examined for the analysis, with a 2 minute br¡eket being chosen. The lengths of the

pluviometer records va¡ied from 7 to 15 years. The stations used for review a¡e shown

below in Table 5.2.

Table 5.2 længth of Pluviometer Reco¡ds Analysed

7Sixth Creek at Cherrwille
9Sutton Creek at Piccadilly Vallev
8Inverbrackie Creek at Craisbank
l5Stirling PO.

I-ength of Record
(yea¡s)

Location

The Stirlino rcnnrrl rnqr¡ hcr¡p hapn rrccd in fho nrici-ol ca-o.^li^oã ^-^1,,^:^ L., rL^ tt^lræ¡r sow r¡ r¡¡v vr¡éurs õv¡rurürùut¡ furfuJùrù uy urç.DUI,YI

as this record runs from 1965 to 1980. Further analysis should now be undertaken with
the extra stations for this area. The method of extending the daily rainfall records to the

shorter durations could also now be done with a much larger data base.

In Appendix F the IFDs obtained from IEAust (1937) are compared to the IFDs
calculated from the pluviometer records.

5.2.4. Spatiat Pattern

The design rainfalls procedures in IEAust (1987) assume uniform rainfall over the entire
catchment. Many of the events used for the calibration of the model had a typical spatial

pattern, with the isohyets centred over the higher portion of the catchment close to Mt
Lofty and Mt Bonython.

The problem of spatial patterns for particular storms was not addressed. It is felt that the

inclusion of rainfall spatial patterns in general flood analysis should be further researched.

5.3. Areal R.eduction Factors

The design rainfall IFDs are only applicable to a single poinl The design rainfall IFDs are
fhemfn* rcãrr¡a¿l ,'oi^^ o-.f 

-â"^+i^- 
f^^+^-^ /ADE^\B¡v^v^v^v rwsvw N¡¡¡6 sws rwuvuutl l4vtvlù \.ll'\r.ù/r.

Because of the scarcity of Ausûalian data, little work has been done on the profile of
storms within Australia. The ARFs recommended in IEAust (1987) are based on work
done in the Uniæd Staæs.
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The derived ARFs are strongly dependent upon the rainfall type. The ARFs used in
IEAust (1987) were based upon frontal rain, rain from decaying storms of Eopical

origins and local thunderstorms. The ARFs apply for ARh from 2 to 100 years and for
caûchment areas up to 1,000 km2.

Inadequacies have been noted in the ARFs included in IEAust (1987). Meynink and

Brady (1993) derived ARFs for large Australian catchments and for equatorial regions

where storms ænd to be of limited a¡eal extent. Porær and Ladson (1993) derived ARFs

for use in Northern Victoria.

5.4. Design Temporal Patterns

IEAust (1987) includes methods for determining design temporal patterns to be used in

conjunction with the design IFD curves. The inæntion of the temporal patærns is to
convert a design rainfall of an ARI Y years to a design flood of the same ARI.

Patterns are presented for 20 durations from l0 minuûes to 72 hours. The patterns were

developed from 83 pluviometers with an average period of record of 30 years

(Rowbottom, et al., 1986a). The average variability method (Pilgrim et al., 1969) was

used to smooth the recorded patterns.

The temporal patterns apply to intense bursts of rainfall within longer duration storms

and not to complete storms. For this reason the patterns should not be applied to
historical storms. The patterns should not be considered to be typical patterns because

for most locations great variability occurs in the observed temporal pattems.

A feature of the patterns is that they have multiple peaks. This is because a shorter time

step was used than in the 1977 
^ddio;on 

of Austalian Rainfall and Runoff. Another

reason for the multiple peala in the temporal pattern is that all of the sample patterns

were used, whereas in the past the 'odd' patûerns were rejecæd (Rowbottom et al.,

1986a).

The procedures outlined in IEAust (1987) were used to derive temporal patterns for
various durations and ARIs.

5.5. ConcludingRemarks

The guidelines in IEAust (1987) were used to derive design IFDs and temporal patterns.

The design rainfalls were entered into the RORB model developed in Chapær 6. The

resulting flows were compa¡ed to the flood frequency curye. The design rainfalls were

then modified so that the flows matched the flood frequency curye.
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Chapter 6

Modelling of Streamflow

6.1. Streamflow HydrograPhs

6.1.1. Physical Processes of Streamflow

Th¡ee different physical processes have been identified as contributing to streamflow.

These are IEAust (1987):

l. surface runoff, ofæn referred to as overland flow;

2. interflow, sometimes referred to as subsurface flow; and

3. baseflow which is the component of the hydrograph resulting from groundwater

flow.

In the analysis of the components of a hydrograph, differentiation between flow

components is not made according to physical sources of runoff however, but rather on

the basis of travel times.

The classification of component flows according to tavel times is a very useful analytical

tool with the procedure having an empirical basis (Klaassen and Pilgrim, 1975). For this

analysis, only the sfeamflow components of surface runoff and baseflow were

considered.

Surface runoff occurs when the rainfall inænsity exceeds the infrluation capacity of the

soil. This is referred to as Horton-type runoff (IEAust, 1987). The infrltration rate is

highly dependent on the soil and vegetation type.
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A second runoff producing mechanism, that of saturated source areas, is now recognised
(IEAust, 1987). Rainfatl inænsities less than the infiltation rate may produce surface
runoff if the rainfall falls on a saturated se¡tion of the catchment: a source area. Most of
the runoff therefore comes from the valley floor which is saturated by subsurface flow,
and from soils which have low storage capacities. A large proportion of the surface
runoff may be produced by a small section of the catchmenl

6.1.2. Modelling of Baseflow

The cha¡acæristics of the baseflow will depend on the size of the catchment and other
caúchment characteristics. Nathan and McMahon (1939) identified some general
characteristics of baseflow hydrographs.

I' The baseflow recession continues after the rise of the total hydrograph and peaks

after the total hydrograph peak. This is a reflection of the fact that the groundwater
travel time is greater than the travel time of the surface runoff.

2. The baseflow recession most likely follows an exponential decay function.

3. The baseflow hydrograph will rejoin the total hydrograph at the point at which
surface runoff ceases.

Although the above characteristics of baseflow hydrographs are generally accepted, the
exact baseflow hydrograph is difhcult to define.

Runoff-routing models rout the rainfall excess through a conceptualised model of the
catchment to produce an outflow hydrograph. The model therefore only simulates the
physical processes of surface runoff and inærflow.

The separated flow components are referred to as baseflow and surface runoff, and these
components a¡e assumed to correspond approximately to the physical processes. Some
of the interflow component however is included with the baseflow and removed from the
total hydrograph when calibrating the model.

The process of the separation of hydrographs is quiæ subjective. There is still some
uncenainty regarding the inclusion of interflow in the modelling process. IEAust (1937)
recommends that only the true surface runoff should be modelle.d and that the separated
baseflow should include bottr inærflow and groundwater flow.

Two different graphical methods of baseflow separation were tested by Baæs and Davies
(1988) and the sensitivity of the model to the choice of method was investigated. It was
discove¡ed that the sensitivity of the model to the chosen baseflow separation model was
dependent on the model linearity. Linear models were found to be less susceptible to
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baseflow separation effors than nonlinea¡ models. The effect on the modelling of the

PMF and other extreme floods was small.

The non-linear runoff-routing model RORB was chosen for this study, and it is described

in Section 6.2. Baseflow is allowed for in the model by two different methods

(Laurenson and Mein, 1990):

l. Baseflow Separation: The baseflow hydrograph can be calculaæd by an appropriate

technique, and then the baseflow hydrograph is subtracæd from the total

hydrograph, which includes all flow components. Only the surface runoff

hydrograph is used to calibraæ the model-

Z. Modelling of Baseflow: RORB allows the baseflow to be included in the routing

process. The baseflow hydrograph calculaæd at the gauging station is then entered

as a distribuæd channel inflow over all reaches of the model. The model is

calibraæd using the entire recorded hydrograph.

Baseflow separation was undertaken as the modelling of the baseflow was not

considered to be suitable for this analysis @yer et al', l992b}

6.1.2.1. End Point of Surface Runoff

Most methods used to remove baseflow from the total streamflow hydrograph rely on

the estimation of the end point of surface runoff. This is the point at which the surface

runoff ceases and the baseflow component contributes all of the streamflow. This point

can be deærrnined using a number of different methods:

1. empirical formulae;

2. recession curves;

3. a master recession curve; and

4. estimation by eye'.

A combination of methods 2 and 4 was used to deærmine the end point at which surface

runoff ceases.

6.1.3. Baseflow Separation Methods

There are many different methods which can be used to separate baseflow from a total

hydrograph. Commonly used æchniques that were considered included a graphical

approach and a recursive digital frlær.
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6. 1.3. 1. Graphical method

IEAust (1987) recommends a simple graphical separation of baseflow. A straight line
connects the estimated start and end points of the surface runoff hydrograph. It is argued
that because the baseflow usually only represents a small proportion of the total flow,
this approximation does not result in a significant error.

This method can be refined by drawing tangents at the start and end points of the surface
runoff. The tangent from the start of surface runoff is continued until it reaches a point
below the peak of the total hydrograph and then a smooth curve is used to connect this
to the tangent from the end of surface runoff point.

6.I.3.2. Recursive Digital Filær

Digital filærs are used in signal analysis and processing. They can be used to separate an
unwanted signal from a set of data. The digital filær has two main characûeristics. The
first of these is the gain, which is the factor by which the original signal is multiplied
when passing through the frlter. The second cha¡acteristic of the digital f,ilær is that it can
produce a shift in phase.

Lyne (1979) examined the use of digital filærs to model süearnflow responses. The
steamflow hydrograph was separated inûo quick and slow response components using a

recursive digiøl filær. A recursive digital f¡tær is one which operates by weighting both
the previous input and the output data. It acts as a transfer function. Although the
separation was not made according to any differences in physical processes, it was
assumed that the quickflow would reprcsent the major portion of the surface runoff.

A filter of the form of Equation 6.1 was chosen.

Ít= a.l--,*ry6r-)r-,) (6.1)

where: /. is the frltered quick response at the kh sampling instant;

y* is the total streamflow; and

ø is the filær parameær.

Two restrictions were placed on the digital hlter: the separaæd slow flow was never
negative or greater than the original strcamflow.

Afær the forwa¡d pass filæring, a reverse pass hlter was applied to the slow flow starting
from the end of the data. This was done to nullify any phase distortions. It is also
suggested that the data may be passed through the filær again if the separated slow flow
appeared to be responding too quickly. The choice of frlær parameter (a) was not found
to be a critical factor.
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Lyne and Hollick (1979\ suggested that a good separation of components could be

achieved by using a filter parameter be¡veen 0.75 and 0.9. It was also recommended that

a reverse pass filær be applied to nullify any phase distortions.

Application of this technique has been discussed by O'Loughlin et al. (1982) and Nathan

and McMahon (1989 and 1990). The rccommended value of the filter parameter was

0.925.

6.1.3.3. Treatment of Baseflow in other Studies

Several hydrological studies which deal with the Onkaparinga Caûchment and other

nearby catchments were studied in an attempt to deærmine the most appropriaæ method

of estimating the baseflow.

Schalk (1986) analysed 7 different catchments, 5 of which were in the Mt Lofty Ranges.

The baseflow w¿rs separated using two different methods. The hrst of these was an

average recession curve. Where sufficient recessions had been recorded, a master

recession curve was constructed. For catchments which did not have sufficient data to

construct master recession curves, a depletion ratio was used. This is an empirical

relationship which can be used to differcntiaæ be¡veen baseflow and surface runoff. The

baseflow was then included in the routing procedure as described in Section 6.1.2.3 as a

uniformly distributed inflow. As already stated, Dyer et al. (1992b) strongly advised

against this method as it incorrectly delays the baseflow.

BC Tonkin and Associaæs (1986) prepared unit hydrographs for æn Adelaide Hills'

catchments. Master recession curves were constructed for each catchment. A smooth

curve was drawn between the commencement and cessation of surface runoff. The

baseflow was then subtracæd from the total hydrograph.

6.1.4. Adopted Method of Baseflow Separation

The recursive digital filter was chosen as the method for the separation of baseflow. The

baseflow was separated using the program TIYBASE which is included in the data

archiving system IIÍDSYS. This uses a recursive digiøl filter of the same form as

Equation 6.1. The method is considered ûo be objective and repeatable.

There are three par¿Ìmeters which must be chosen. Each of the parameters were va¡ied to

observe the sensitivity of the calculaæd baseflow. The parameters are:

1. The time interval in minutes. This is the increment at which the calculations are

performed. Increasing the time interval resulæd in an attenuation of the calculated

baseflow peak The default value in IIYBASE is 6O minutes.
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2. The filær factor. The filter factor is designated as the filter param eter (a) in Equation
6.1. Increasing the hlær factor resulted in an attenuation of the peak, but no
significant shift in phase. The default value is 0.925.

3. The number of passes. The number of passes defines the number of successive
forward and then backward passes that the hlær makes over the daø. Increasing the
number of passes resulæd in an attenuation of the calculated baseflow and also
resulted in a slightly increased lag. The default number of passes is ttrree.

The user also defines the start and end times of the calculations. The choice of the start
time was not found to be significant, and therefore it was set equal to the start time in the
RORB data frle.

The end time represents the end of the surface runoff. This point was ¡rst estimated by
plotting a semi-log plot of the hydrograph recession curve. The baseflow was then
.Senafaterl llsino I{YR^SF TTrc cano¡orarf L^-^fi^.-,r------ ---Þ ¡¡¡v ùvpqqw rr4òçrl\rw w¿lù çump¿ueq to mg total
hydrograph and the end point adjusted until the calculated baseflow hydrograph and the
toøl hydrograph converge tangentially.

The default values of the HYBASE parameters were used: a filær factor of O.925,3
passes and a 60 minuæ time inærv4l. This combination resulted from consideration of
Nathan and McMahon (1989), o'Ioughlin er al. (19g2),Lyne and Hollick (1979) and
Lyne (1979).

A typical hydrograph separation is shown in Figure 6.1.
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Figure 6.1 Example of a Typical Hydrograph Separarion (30 August 1992)
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The peak values of the baseflow are shown in Table 6.1 for the different flood events

examined for calibration of the runoff routing model. The average peak baseflow is 15

m3/sec, which represents approximately 10 percent of the total streamflow peak.

Table 6.1 Peak Baseflows Separaæd using HYBASE

71319308n0192

2I209616t09192

83443230t08192

13l08015/08/90

3515624t05188

1116148t5t07t87

8t72M24t06t87

l3139721t08184

81011908/09/83

878625t08t83

t2T4tt4r4t08l8l
1013t3208/08/81

999503/08/81

91111824tUl8l
l5231543U07lïL
102424326t06t81

Proportion of Peak
Flow (%)

Peak Baseflow
(m3/sec)

Peak Flow
(m3/sec)

Date

6.2. RORB Runoff Routing Program

A unit hydrograph or a non-linea¡ runoff routing model is used to convert the design

rainfalls to design hydrographs at the particular point of interest. The advantage of non-

linea¡ runoff routing programs is that the nonlinear response of the catchment can be

modelled.

The two most commonly used nonlinea¡ runoff routing packages in Australia for rural

catchments are RORB and RAFTS. The RORB model was adopted in this study

because:

1. Its widespread use in South Australia allows the chosen model parameters and

modelling procedures to be compared and verified by other simila¡ studies.

2. RORB allows different model non-linearities to be used, whereas RAFTS has a fixed

exponent of0.715.

3. The RORB model can be calibraæd using historical data The RAFTS model is not

calibraæd directly, but rather model parameters are obtained from physical properties

of the catchment.
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6.2.1. Description of Model

The RORB model is a non-linea¡ runoff routing model and is suitable for rural

catchments. A brief description of the model is included below, while a more compleæ

description of the model is included in Laurenson and Mein (1990).

The carchment is divided into sub-areas of approximaûely equal area, based on drainage

divides. Laurenson and Mein (1990) recommended that between 10 and 20 sub-areas are

used. Weeks (1980) showed that the ealculaæd flood peak was delayed as the number of
sub-areas was increased.

Nodes are placed at the centroids of each sub-area, confluences of all major st¡eams and

at any other points of interest on the river network.

The rainfall specific to each sub-area is assumed to fall at the centroid of the sub-arca.

Rainfall losses are then subtracted from the hyeûograph to produce the rainfall excess

hyetograph, and consequent surface runoff. The storage effect of each river reach is

represenæd by a model storage. The runoff is routed through the series of model

storages and the hydrographs added at stream confluences, producing an oufflow
hydrograph.

The reaches are assumed to have a storage-discharge relationship of the form of
Equation 6.2.

S=3600kQ 6.2)
where:

.S is the storage (ml);

Q is the discharge (m3/sec);

m is a dimensionless exponent (a measure of the catchment's non-linearity); an¿

,t is a dimensionless empirical coeffrcienl

The empirical component È is expressed as the product of k, and k;
. k" is a measure of the storage of the catchment and applies to the entire catchment

and stream network; and

. k,is called the relative delay time and is calculated by the progr¿rm for each individual

reach storage.

If the model is to be used to predict flows which greatly excecd those used in calibration,
fhp nhni¡o nf n io rronr imnnrf onf Tfia ^h^i¡o ¡f 

- 
i^ lo-. i..-^*a¡+ if +L^ fi^^A^ ..^^,l +^s¡v v¡¡vrw vL.tú N vv¡J ^¡¡rpvrs¡!. rt¡v v¡rvrw vl ,rt N rvùù uupvrtftrtl lt ulty r¡ul! ¡ù uùçu lu

calibrate the model are of the same magninrde as the design floods. For this reason a

fxed value of m is not recommended (Weeks, 1980).

There are 4 model parameters which must be deærmined by the user: the initial loss (IL),
the continuing loss (CL), the model linearity m and the coefficient t".
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6.2.2. Calibration of the Model

Because large variations are observed in model parameûers, it is important that the model

is calibrated using historical events in cases where sufFrcient data exists.

For ungauged carchments the only method of deærmining model parameters is a

generalised method. This can involve fansfening data from neighbouring caûchments or

using regional relationships (Kemp, 1993; Dyer et al.,l992a).

No optimisation method currently exists in the program to deærmine the choice of

parameters, although Dyer et al. (1993) has made some advances in automating the

frning procedure. This method is still in the research stage and requires large

computational effon

Calibration of the model involves varying the four model parameters until a good fit is

obtained between the calculaæd and observed hydrographs.

The criærion used to determine the quality of ht should depend upon the purpose to

which the results are to be put. Depending on the situation, the hydrograph peak,

volume, lag and overall shape may be important. In most cases the hydrograph peak is

considered to be the most important characteristic of the hydrograph. McMahon and

Muller (1983) recommended that the model is calibraæd upon the consideration of peak

flow.

The model is usually calibrated using the largest recorded floods on record. The

recording of large floods often involves the extrapolation of rating curves. For this

re¿Non the over reliance on the exact matching of peak flows may not prove to be the

best method of model calibration. It is recommended that the peak flows are matched,

but with due consideration given to other cha¡acteristics of the hydrograph.

The principal model parameter for fitting is t". Increasing &" decreases the hydrograph

peak and increases the lag. Decreasing k" has the opposiæ effect. Different Ç values are

obtained for different events on the same catchmenl This is due to (Laurenson and Mein,

1e90):

l. errors in the rainfall and strearnflow data;

2. baseflow separation effors;

3. rainfall variability; and

4. the model not fully representing the hydrological processes.

Varying the initial loss is also a means of obøining a frt The initial loss affects the start

of the hydrograph rise and may also affect the hydrograph shape and peak.
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If the value of n is decreased, and the consequent change is made to d, the start of therise and the tail of the recession are slightly delayed whereas the peak is sliehtlv
¿dvance<i.

The calibration of individual events does not usually yreld a single set of model
parameters but rather each event which is analysed results in a different set of parameters
which pertain only to that individual evenl

Dfferent parameters can also be calculaæd from the sa¡ne event. The two parameters, rtand k"' have compensatory effects and therefore a fit can be obtained be¡veen therecorded and the calculated hydrograph for a number of different values of m and
corresponding values of Ç.
rn order to produce design flows, a set of model parameters need to be selected.

6.2.3. Parameter fnbraedon Curve

A commonly used method to resolve the decision of the optimal choice of the parametersk" and rz makes use of a parameter interaction curve. This is also referred to as aparameter indifference curve. The method is discussed by weeks (19g0), sæwart (19g3),
McMahon and Mulrer (19g3), McMahon and Muler (19g6), IEAusr (r9g7) andI-aurcnson and Mein (1990).

The model is catibraæd using each event for a range of ,l. The relationship between Çand m is then plotæd for each event. Each line plotted on the paramet€r inæraction curye
represents the unique relationship benveen m and È" for a given event. The model, in
Ûerms of peak flow, is indifferent to the choice of model parameters along the curve. Themodel is not however indifferent in ærms of calculated hydrograph shape. The quality offit in ærms of shape may vary significantly for different model non-linea¡ities.

It is assumed that an intersection point on the parameter interaction curve represents theoptimum choice of model parameters.

McMahon and Muller (19s3) showed that for an idealised caûchment with error freedata' the lines on the parameter inæraction curve should intersect at a single point. Forreal catchments the lines very rarely intersect and this is attributed to the effors in thedata' A subjective choice is then made as to the point of intersection on the parameter
interaction curve (Stewart, l9g3).

The discovery of an intersection point does not guarantee that the non-linearity of thecatchment has been identihed (McMahon and Muller, l9g3; Daniell, l9g7). Sensitivity
analysis is recommended ûo determine the optimum model parameters.
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It is important that the data used in the calibration of the model is checked. The use of

erroneous data can produce non-representative parameter inæraction curyes (McMahon

and Muller, 1983).

6.2.4. Sensitivity Fitting

Sensitivity frtting is a simple extension of the pÍuameter interaction curye method of

determining the optimal choice of model par¿Imeters and is described by Hill et al.

(1993). The method æsts the sensitivity of the model to a variation in t" over a range of

m. A range of m should exist for which a change in ft" results in a minimal change in the

calculated flood peak.

McMahon and Muller (1983) referred to the possibility of such a method being

developed:

It is conceivable that, with indffirence curves for a number of calibrarton
events, som¿ sort of statistical approach should be taken to choosing a

single (k, m) value of a closed set of (k, m) values for use in the ÍIood
prediction stage of the analysis.

For a number of different values of m, the average value of d is calculaæd from the

parameter interaction curve. The RORB models are run for the events used to calibrate

the model using values of m and the conesponding average values of d with the average

values of the initiat and continuing losses. The error in the calculaæd peak flow is then

determined for each event as a percentage. The absolute average error for each choice of

m is then calculaæd.

The percentâge error in the calculaæd peak flow is then plotted against the parameter m.

A minimum in the average eror curye represents an optimal choice of n and È". If such a

minimum exists, the values of m and d produce the smallest average error in calculated

peak flow.

The use of sensitivity frtting resolves the problem of the choice of model parameærs. It
also examines the uncertainty of the flood estimates from the model.
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6.3. RORB Model of the Onkaparinga Catchment

6.3.1. Catchment to Mt Bold Reservoir

A RORB model was develo@ for the catchment to Mt Bold Reservoir following the

procedures described in Section 6.2 and l,aurenson and Mein (1990). The adopted

RORB model is shown in Figure 6.2.

The carchment w¿rs divided into 12 sub-areas based upon drainage divides. The sub-a¡eas

were based on those used in Korwicki (1984). The area of each sub-area was deærmined

using a planimeter. The areas of the sub-a¡eas are shown in Table 6.2.

Table 6.2 Areas of RORB Sub-Areas

39.8L
22.9K
37.7J

23.0I
34.8H
22.0G
46.5F
29.1E
30.6D
t9.4c
27.6B

EA E
J T.J^.ft

Area (km2)RORB Sub-A¡ea

The location of the centroid of each sub-area was found by deærmining the centre of
gravity of each sub-a¡ea shape using a plumb line. Nodes were placed at the point at

which the Munay Bridge Onkaparinga Pipeline discharges into the Onkaparinga River

and also at Houlgraves Weir.

The reach lengths were difficult to measure and were therefore determined by digitising

the major rivers in the catchment. This was done using ARC-INFO.

A RORB data frle was generaæd using the procedures in l,aurenson and Mein (1990).
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Figure 6.2 RORB Model for the Onkaparinga River to Mt Bold Reservoir
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6.3.2. Mt Bold Reservoir

Storage leservoirs, lakes and retarding basins are treated by RORB as special storage-s

and are modelled differently from the nonnal channel reach storages. In order to rout
hydrographs through a special storage, the model requires the relationship benveen

discharge and the storage volume. This relationship is usually inferred from the
relationships between storage and elevation, and the relationship benveen elevation and

discharge.

6.3.2.1. Rating Curve for Mt Bold Reservoir

For the case of a reservoir with a gated spillway, the rating depends on gate operation
and therefore the operating policy.

As described in Section 4.2.1, the crrrent operation of the gates differs from that of the
official policy. The official operating policy was adopæd for routing the design floods
through the reservoir. This was because pre-releasing has not been embraced as official
policy. At present the practice of pre-releasing is very subjective and therefore proves

almost impossible to model in a sysæmatic manner.

The rating of a reservoir can be expressed in RORB in several different ways. Because
the rating of Mt Bold Reservoir is quiæ complex, it was decided to input the rating as a

table of storage and discharge values.

This involved assigning gate openings for different reservoir levels. It was assumed that
the gates were operated initially according to the offrcial E&WS policy. As the level of
the reservoir rises it was assumed that the gates are further opened until all gates are

opened to their maximum setting at a gauge height of 41.9 metres; representing a

reservoir level 500 mm above full supply level. The assumed gate operations are shown
in Appendix G, and the consequent rating is shown in Figure 6.3. It was assumed that the
maximum gate openings were reset to 3.8 metres as outlined in Section 4.2.2.

An example of an inflow and the calculaæd ouflow hydrograph using the adopæd rating
curve, and the model parameters described in Section 6.4, is shown in Figure 6.4.
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6.3.2.2. Storage Elevation Relationship

The relationship between storage and elevation can be entered into the model in the form

of Equation 6.3.

s= ø(H - H)b (6.3)

where S is the storage volume (m);
Il is the water surface elevation (m);

¡f, is the elevation corresponding to zero storage (m); and

a andb ueconstants.

The constants ¿ and b can be evaluated by plotting storage against (H-H,) on log-log

paper. A line of best fit is then drawn and ø and b deærmined as the intercept and slope

of the line respectively (Laurenson and Mein, 1990).

A linear regression was performed on the logs of the storage and water surface elevation.

An expression of the form of Equation 6.3 could not be found to represent the measured

storage elevation relationship with sufhcient accuracy. The relationship was therefore

entered into the model as a table of elevations and conesponding storages.

6.3.2.3. Initial Drawdown

A special storage can be assumed to be drawn down below its cease-to-flow point at the

commencement of the event. The drawdown is the volume of water required to bring the

water level up to the cease-to-flow point. When the hydrograph is routed through the

reservoi¡ by the model, this volume is subtracted off the front of the hydrograph.

It was initially assumed that the reservoir wÍrs at full supply level prior to the design

inflow. Chapter 8 includes a thorough analysis of different reservoir storage distributions.

6.3.3. Onkaparinga Catdrment Below Mt Bold Reservoir

A RORB model was developed for the Onkaparinga River below Mt Bold Reservoir to

Old Noarlunga. The model is shown in Figure 6.5.

Carchment boundaries had already been digitised by the Waær Resources Section of the

E&WS using 1:10,000 maps. Digitising of the streams had been commenced and was

completed for this study using 1:50,000 maps. The information was loaded inûo ARC-

INFO where the necessary caûchment information was calculaæd and then down loaded

into an k, y'formal
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Figure 6.5 RORB Model for the Onkaparinga River from Mt Bold Reservoir to Old

Noarlunga

The a¡eas of the sub-areas were calculated using ARC-INFO. The calculated a¡eas were

checked using a planimeær. The descriptions and calculaæd areas of the sub-areas are

shown in Table 6.3.

Table 6.3 RORB Sub-a¡eas for the Lower Onkaparinga River

36.0Onkaparinea NoarlungaP

48.0Baker Gully and Dashwood Gullyo
31.2Onkaparinga Clarendon and d/s Mt BoldN

26.5Scott Creek CatchmentM

Area ftm2)Description_Sub-A¡ea

The model has 9 model storages and the special storage of Cla¡endon Weir. The reach

lengths were calculaæd using ARC-INFO.

o

P

N

M

N

Scale (km)

F-T--rr
012345
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6.3.3. 1. Clarendon V/eir

A spillway rating for the weir was obtained from the E&WS. A mathematical equation

was sought which represented the rating. The weir equation for an ungated spillway is

expressed in Equation 6.4.

Q, = IÇ\(H - H)uz 6.4)

where: Q is the spillway discharge (m3/sec);

K'" i-s the weir eoeffreient for the spillway;

t is the effective length of the spillway (m);

11 is the water surface elevation (m); and

//" is the spillway crest elevation (m).

The effective length of the spillway was not deærmined, but the total length of 6l metres

was used. The weir coefficient was determined by varying it until Equation 6.4 matched
fha lr-n.trn rofinn TLo ^rl^"1^+-'l "^l'.- ^f '.'^:- ^^^f4!^l^-¿ .-.^^ 1 EA ,Tr-Ll- z a -L-.'---utv N¡v w tr rsurr6,. r ¡¡v vsvur4Þu v q'll¡te Ur YYçII VugrrrUlçllL }Y¿lù I.J+. f AUIç O.+ SflUWS

typical values of weir coefficients for different weir geometries (Laurenson and Mein,

1990). The calculaæd value lies between a broad and sharp-crested weir.

Table 6.4 Typical Weir Coefficienrs

l.t4Sharpcresæd with vertical upstream face
1.45Broad-crested with vertical upst¡eam face
2.OBroad-cresæd with sloping approach
2.t5Ogee
KwWeir Type

The rating for Cla¡endon Wei¡ was expressed as Equation 5.5. This expression was

checked over a range of water surface elevations from 10 to 12.5 metres. The maximum

difference between the reporæd and calculated rating was less than 1 percenl

e, =93.94 (H -to)3t2 (6.5)

Infonnation for the storage elevation relationship was only available up to the spillway

crest (10 metres). A relationship for the storage elevation relationship was sought of the
form of Equation 6.3.

A value of 6,800 was calculaæd for a and a value of 1.856 for b. The elevation

corresponding to zero storage is 2 metres. The calculated storage-elevation relationship
for the Cla¡endon Weir is shown in Equation 6.6. The expression is only accurate for
elevations greater than 6 metres.

.s = 6,goo (H -2¡t'tsc (6.ó)

A copy of the RORB data file is included in Appendix G.
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6.4. Calibration of the Mt Bold RORB Model

6.4.1, Selection of Events

The model was calibraæd using the sum of the recorded flow of the Onkaparinga River

at Houlgraves'Weir (4W503504) and Echunga Creek (4W503506). The gauging station

at Houlgraves Weir commenced operation on 17 April 1973, while the gauging station at

Echunga Creek commenced on22 March 1973.

Events which have a small peak flow are difficult to model using runoff routing models.

This is because the estimation of the rainfall and losses dominates the results and the

routing effect of the model is obscured. Only events that had a peak instantaneous flow

of greaær than 75 m3/sec at Houlgraves Weir were therefore considered.

The events chosen to calibrate the model must be independent. An analysis of the

recession curves suggesæd that peak flows separated by more than 3 to 4 days would in

most instances be independent. For successive events which had peaks which were only

separated by a few days the hydrographs were examined in order to confirm

independence. If the events were not considered to be independent, only the event which

had the greatest peak flow was modelled.

Another constraint upon the selection of events was the requirement for adequate rainfall

records. The spatial variation of the rainfa[ was recorded accurately by the many daily

read raingauges in the carchment and surrounding region. The variation of the rainfall

with time was less easy to ascertain, as the first E&WS pluviometers in the catchment

were only installed n 1977 and it was not until the middle of the 1980s that this network

was incrcased substantialty (Section 3.2). The BoM did have a pluviometer at Stirling

before L977 butthis alone is insufficient for calibration of the model.

Further investigations discovered that the record for the Gallasch Creek Pluviometer

(AV/503521) has disappeared and this meant that 4 events prior to 1980 were excluded

from consideration because of insuffrcient pluviometer record. The gauging station on

Echunga Creek failed during September 1991 and therefore no records were available for

the event of l5l9l9l and this event was therefore also excluded.

The event of. ßfl2192, although having a peak flow of 186 m3/sec, could not be

considered in the study because the required pluviometer and streamflow information

was not processed in time.

The 16 remaining events used in the calibration of the RORB model a¡e shown in Table

6.5.
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Table 6.5 Events used for the calibration of the RORB Model

1932t.N 08n0t92
9605.00 16t09t92
43212.0030t08t92
QN06.00 l5l08/90
15605.00 24t05t88
14817.00 t5t07t87
20607.00 24t06t87
9709.00 2U08t84
u908.00 08/09/83
8604.00 2sna83
rl411.00 t4l08/81
t32r4.00 08/08/81
952t.N 03/08/81
ll811.00 24t07t81
t542t.m 03rc7t8t
24318.00 26t06t8t

Peak Flow at Houlgraves
Weir (m3/sec)

Time - Date

6.4.2. Construction of Isohyets

In order to model historical storms using RORB, the spatial distribution of rainfall was
required- Isohyets Qines of uniform rainfall) were constructed using the records from
pluviomeær and daily read raingauges. Because of the large numbers of isohyets which
needed to be drawn, the contouring package Surfer was used to generate the isohyets. A
description of Su¡fer is included in Appendix G.

The rainfatl on each sub-a¡ea was estimated by eye using the isohyets.

6.4.3. Event Calibration

Model parameters were determined for each historical event following the procedures
described in Section 6.2.2.

The event of 2ll8l84 had a hydrograph with many small peals over a period of many
days, resulting from relatively small bursts of rainfall. The model could not accurately
rcplicate the recorded hydrograph with the input rainfall information. This event was
excluded from further analysis.

An analysis of the calculaæd hydrographs indicaæd that the peak flow was calculated
several hours before the recorded hydrographs. A tanslation of 4 hours was inserted in
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the data hles, which resulted in the calculated hydrograph peak being delayed 4 hours to
match the observed hydrograph.

6.4.4. Parameter Interaction Curye

The two loss parameters varied for different events and initially a simple average was

taken of both the initial and continuing losses (first burst losses of 2I.2 mm IL and 1.4

mm/hr CL and second burst losses of 8.5 mm IL and 0.9 mm/tr CL).

A parameær interaction curve was constructed using the 15 available events, and this is

shown in Figure 6.6. No single a¡ea of intersection was discovered. The general tendency

of the curves to converge with increasing mß a property of the governing equations and

does not indicate a optimal choice of k" and m.

In an attempt to deærmine the optimal choice of /c" and m, sensitivity fitting was

attempted as described in Section 6.2.3.2 and by Hill et al. (1993). This involves the

consideration of the possible elrors associaæd with a choice of r¿ and d in order to
determine the choice of m and d which produces the lowest average error in the

calculaæd peak flow.
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For different values of m between 0.6 and 1.2, the average value of É" was calculated.

The models were then re-run using these values with the average values of the loss

parameters.

The event of 3l7l8I was calibraæd using a yery small continuing loss for the second

burst and hence the adoption of thê average continuing loss for the second burst resulted

in the second peak being lower than the fint. This event was excluded from further
analysis.

An analysis of the quality of the fit used in the calibration of events indicated that two
events produced poor fits benveen the calculated and observed hydrographs. The two
events (2616181 and l4l8/81) were not included in any further analysis. The poor fit
between the calculaæd and observed hydrographs wÍrs most likely a result of the poor
record of the temporal pattern of the rainfall.

T'lrp cpncifitrif., nlnf ic chn.'- in Ei-'* Á ? 'f1.:^ ^L^,.,^ ¿L^¿ +L^ --- - r-r¡ ¡¡v w¡¡oru r ¡rJ prvr N ù¡¡v wrr ur r ¡Ëuru t,. , . r ruò ùltuìflù ur4l' lti ¿rvEifaË,g m(xJgl

parameters do not accuraûely model some of the events. The choice of parameters can

result in an error of up to 170 percent in the calculaæd peak flow.
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Figure 6.7 Sensitivity of the Model to the Choice of Mode.! Parameûe¡s for !4 e..€nr.s
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6.4.5. Division of Events According to Losses

For events which had been calibrated using a high initial and continuing loss, the

adoption of the average model parameters resulted in the calculated peak flows being too

high. The calibraæd events were divided into two groups accorrding to the losses.

The total loss was deærmined for each event as the sum of the initial loss and the

product of the continuing loss and the duration of the rainfall burst. The total loss was

then divided by the storm duration which produced the total loss per hour. The total loss

per hour was not meant to represent a physical loss rate but rather provide a useful

method of classification of events.

The modelled loss rates ar€ shown in Table 6.6.

Table 6.6 Modelled Losses

1.11200.9120zt.ffi08n0t92
1.0960.81l5os.m ßl@t92
r.51201.2722t2.æ30t08t92
0.8720.611506.0015/08/90

5.5484.55605.00 24105/88

1.61681.5220n.m ß107187

2.5481.615482.942007.æ2/+106187

2.1t201.961508.m 08/09/83

2.0240.9725M.00 2sl08/83

0.6720.322t14.00 08/08/81

0.6720.361821.00 03/08/81

1.148o.27t248t.3218n.nut07l8l

Toøl t¡ss / h¡
(mm/hr)

Duration
(hrs)

CL
(mm/hr)

L
(mm)

Duration
ftn)

CL
(mm/hr)

IL
(mm)

Time - Daæ

Second BurstFrrst Burst

Two events (2416187 and 2415188) had significantly higher loss rates and were therefore

considered separately. The flows recorded at Houlgraves Wefu during 1987 and 1988 a¡e

shown in Appendix G. It is clear from these figures that the events of 2416187 and

2415188 were the first significant events of the winter, and this explains the greater losses.

Another important reason why these events had considerably higher losses than the other

events is the effect of farm dams. As is described in Section 3.1.3, there a¡e a signifrcant

number of farm dams in the Onkaparinga Catchment and these have an effect on the

runoff in the catchment. Early in the winter most of the farm dams will be drawn down

and this will result in much larger losses being associaæd with eady winter events.

The design rainfalls were assumed to occur later in the winter, and therefore have lower

losses. The decision to exclude those events with high losses may have biased the results
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towards winter events. The frequency of the flows derived from the design rainfalls were
compared to those obtained from flood frequency analysis in section 7.3.

In an attempt to reconcile the differences in the quality of ht between the calculated and
recorded hydrographs, the hydrographs nere analysed and a number æsigned to
represent the quality of frt This fit parameter va¡ied from I for an exgemely poor ht and
l0 for an excellent frt Although the assignment of the fit parameær was both arbirary
and subjective, it provided a useful method of comparing the differences in the quality of
fit for different events. This indicated that the average ht was best for an m of0.7 to 0.g
and the fit deteriorated as m increased past 1.0.

For the 10 events with good fits and low loss rates, the models were re-run with average
model parameters. For a given value of m, the average t" was calculated as a weighted
average dependent on the ht parameter. This was done in an attempt to place EreîÍEr
importance on those events which had the best observed firs.

The errors in the calculaæd peak flows were determined for each event and are shown in
Figure 6.8. Each line in Figure 6.8 represents a different event. The average absoluûe
error was calculaæd" This was wei hted according to the magnitude of the recorded
peak flows and was a minimum for an m of 0.7.

oß ^', ^o 1.1 1.2

Figure 6.E Sensitivity of the Model to the Choice of Model pa¡ameters for Low [,oss
Events
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6.4.6, Consideration of Largest Events

It was felt that the average parameters were adversely affer,ted by the inclusion of the

smaller events. Because the model was only used to calculate flows greater than the 5

year ARI event, the calibration was repeated with only the 3 largest events with low loss

rates. The 3 events, a¡e shown in Table 6.7. The ARI was assigned using the flood

frequency curve calculaæd in Chapter 7.

Table 6.7 Largest Events with Low Loss Rates

61978trot92
10041230t8t92
3.5148L5t7l87

Approximate ARI
(vears)

Peak Flow
(m3/sec)

Date

For the three largest events, the best fit and the smallest average absoluæ error was for a

lower value of n. The average parameters for an m of O.7 are shown in Table 6.8.

Table 6.8 Model Parameters Based on the 3 Largest Events with Low Loss Rates

27.4k^

o.7m
1.2 mm/lrContinuins Loss

21 mmInitial Loss

The average model parameters shown in Table 6.8 were used to model the 3 largest

events. The results a¡e shown in Appendix G. The calculaæd hydrographs closely

matched the recorded hydrographs. The peak was underestimated for 30/8/92 but

overestimated for 8/ 1C/92.

6.4.7. The Effect of fhe Number of Pluviometers

From the calibration of the RORB model for the Onkaparinga River, the importance of
the number of pluviometers on the accuacy of the calculaæd hydrograph became

apparent. The best hts were generally obtained for the more recent events for which

there were more pluviometers operating in the caæhment. It was more difficult to obtain

satisfactory hts for events that occurred in the early 1980s. This was because for many of

the events there was only 3 pluviometers operating in the vicinity of the Onkaparinga

Catchment.

101



Chapter 6 - Modciling of Streanflow

Because of the sparse network of pluviometers in South Australia, it is important to note
the dramatic effect that the number of pluviometers had on the accuracy of the calculated
hycirograph.

6.5. Final Choice of RORB Model parameters

6.5.1. Model Parameters for the catchment to Mt Bold Reservoir

Based on the preceding discussion, it was resolved to use the model parameters shown in
Table 6.9. The need to determine different model parameters for calculating the pMF is
discussed in more detail in Section 10.3. The choice of losses was based upon Table 6.6
and Table 6.8.

îabie ó.9 RORB Parameters fbr the caûchment ûo Mt Bold Reservoir

16.327.4k"
0.80.7m

0 mrn/hrI mrn/trContinuins Loss
0mm20 mmInitial t oss
PMFDesign Flows

6.5.2. Model Parameters for the catcrrment to old Noarlunga

The model par¿rmeters obtained for the caûchment to Mt Bold Reservoir do not apply to
the larger catchment. Although the RORB model could not be calibraæd at Old
Noarlunga, the inclusion of the reaches downstream of Mt Bold Reservoir affects the
choice of model parameters. This becomes apparent when the storage equation is re-
examined.

The storage equation used by the RORB model is discussed in Section 6.2. T\e constant
t is the product of d and È,. The coefficient È" is deærmined by the user whereas the
relative delay ti-e È, is calculated by ttre program using Equati on 6.7.

hn=!: 
d", {6'7)

where: frn is the relative. delay dme.of storage i;
Z, is the length of reach represenûed by storage i (km); and
d- is the average flow distance in the channel network ftm).

The average flow distance for the RORB model to Mt Bold Reservoir is 27.3 tÃL,
whereas the average flow distance for the RORB model to Old Noarlunga is 49.g km.
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This means that the relative delay time for a given reach will be different in the two

models.

The same storage - discharge relationship $,as assumed for the carchment upsúeam and

downstream of Mt Bold Reservoir. It was therefore necessary to adjust the value of t"

for the RORB model to Mt Bold Reservoir by the ratio of the average flow distances

(1.8).

This was verified using the three largest events which a¡e shown in Table 6.7. Using the

RORB model to Old Noarlunga, the model was calibraæd at Houlgraves Weir. The

values of È" obtained were as expected, 1.8 times greater than the values using the model

to Mt Bold Reservoir.

The model par¿rmeters adopted for the RORB model to Old Noarlunga a¡e shown in

Table 6.10.

Table 6.10 RORB Parameters for the RORB Model to Old Noarlunga

3050k^

0.8o.7tn

0 mm/hrI mm/hrContinuing Loss

0mm20 mmInitial Loss

PMFDesign Flows
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Mt Bold Inflow Flood Frequency

7.1. Flood Frequency Analysis

A flood frequency analysis assigns a probability distribution to a series of recorded peak

flows. It is assumed that the recorded series is stationary with respect to time. Long term

climate fluctuations are not usually considered (Craig et al., 1993).

The estimation of large floods often requires the extrapolation of rating curves which can

lead to an error in the recorded peak flows.

7.1.1. Length of Record

A 'moderate' length of record (10 to 15 years) is required for flood frequency analysis

(IEAust 1987). In the absence of a sufhciently long record, flood events may be obtained

from hydrologically simila¡ catchments. The retiability of the results incrcases as the

length of record is increased.

Great cate must be shown in extrapolating the results of the flood frequency analysis.

IEAust (1987) recommends that the maximum flood that should be directly obtained

from a flood frequency analysis with a long period of record is the 100 year ARI flood,

although in some ci¡cumstances it may be necessary to estimate the 500 year ARI flood.

Victorov (1971) analysed the effect of the period of record on the predicæd flow

probability for the log Pearson III distribution. It was concluded that the use of a short

period of record meant that it was unlikely to obtain correct estimates of the flow

probabilities.
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Nathan and V/einmann (1992) recommended that for short periods of record, only t\ryo

parameters should be calculaæd from the data. If a three Darameter distribution is used,

such as the log Pearson III distribution, the third parameter should be deærmined from

average regional values.

7.1.2. Annual and Partial Series

In an annual series the highest instant¿neous flows in each year of record a¡e selected.

The number of events is therefore equal to the number of years of record. The main

advantage of this method is that because only one flow from each year is selected, it is
quite likely that the flows are independent

In a partial flood series all of the independent flows above a certain predetermined value

are selected (Jayasuriya and Mein, 1985; Ashkanasy and Tickle, 1986). The year in

which the flows occur is not considered. Because the base value is arbitrary, the number

of events does not have to equal the number of years of record. The engineer and the

community are generally concerned in all floods that have independent effects and

therefore are basically interested in the partial series (Laurenson, 1987).

The probability of floods is expressed by two different terms (IEAust, 1987; Laurenson,

re87):

1. The annual exceedance probability, or AEP, is the probability of a certain flow being

exceæded within a period of a year. The term AEP is only applicable to an annual

series.

2. The average leculrence interval; or ARI, is the average value of the period between

exceedances of a given event magnitude. The term ARI is only strictly applicable to a
paÍial series.

IEAust (1987) recommends the use of an annual series for an ARI of greater than 10

years and the partial series for an ARI less than this. In most cases, the results obtained

by both annual and partial series analysis for ARls of greater than 10 years are very

similar.

n 1 a ú'vaorylonna llnn}.ohilif.',.^.s. s^Lvwg¡¡w ! IvvqvtuaJ

The use of the AEP may lead to a misleading sense of security by the public (Laurenson,

1987). This is because the AEP appears to be very low. It is important that the

exceedance probability of the design life is also deærmined. The exceedance probabili_ty

can be deærmined using Equation 7.1.
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¡=r-(r-r)'
where: "Iis the exceedance probability;

Z is the design life (years); and

P is the annual exceedance probability.

(7.1)

7.1.4. Plotting Position

In order to plot the data on a frequency diagram, the ploning position must be

calculaæd. A general expression for calculating the plotting position in ærms of the

annual exceedance probability as a fraction is shown in Equation 7.2.

PP^= m-d
N +t-2a Q '2)

where: m is the rank of the flood;

Nis the number of years of record; and

c[, is a constant.

A value of a of 0.4 is recommended for the log Pearson Itr distribution because it results

in an unbiased estimate of the population standard deviation, or the slope of the

frequency curve (Srikanthan and McMahon, 1981; Laurenson, L987: IEAust, 1987).

Equation 7.2 therefore becomes:

pp^ = !.-91 (7.2a)
N +0.2

7.1.5. Confidence Limits

Confidence intervals give the range within which the actual population is expecæd to lie

for a given probability. The confidence limits on a frequency plot enclose the confidence

inærvaI.

IEAust (1987) recommends Equation 7.3 for constructing confidence limits about the

discharge Qr.For a selected AEP:

:rls(c\g))= roeØ -# (7.3)

where: 0y is the peak flow (m3/sec);

Fis the frequency factor for the Normal Distribution;

ô is a parameter for determining the standard error of a Pearson III
Distribution, and the values are tabulated in IEAust (1987);

S is the standa¡d deviation of logarithms of flows (base l0); and

l/ is the number of years of record.
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The confidence limits of interest are usually the 5% and 95Vo confidence limits. For these
Fis equal to 1.645 and Equation 7.3 becomes:

ros(cr,,(o)) =bee,r 1.645# (7.3a)

Confidence limits can be calculated for a log Normal distribution using Equation 7.3a for
the case of a skew of zero.

7 .1.6. Theoretical Distributions

The choice of an appropriate theoretical distribution is often diffrcult because of the large
numbers of distributions and the fact that different fit criæria may indicaûe different
distributions as being the most appropriaûe (Kopittke et al., lg76).

"There is no well proven theoreticar connection between any anaryticar form
of a distribution and the underlying mechanisms gour*ing ftood ¡låwr.,,(Nathan and Weinmann, 1992)

Many different studies have tested the suitability of various distributions to Australian
and overseas data. There still remains uncertainty and debate over the form of the
probability distribution of flood magnitudes (Kirby and Moss, l9g7). The chosen
distribution should consistently provide a good ht to the data.

Kopittke et al. (1976) analysed annual series recorded in Queensland using l0 different
distributions. The method of moments was used to ht the ten differcnt distributions and
the quality of fit was determined using four different goodness of fit tests. It was
concluded that the Weibull distribution provided the best fit in sixty percent of the cases.
The log Pea¡son Itr distribution and the Boughton Empirical distribution produced the
best overall results.

McMahon and Srikanthan (l9Sl) analysed the peak annual series of 172 Ausbalian
streams using moment ratio diagrams. It was concluded that the log pearson III
distribution was the most appropriate distribution.

The log Pearson Itr distribution is recommended by IEAust (1982) for an annual series.
This recommendation is based on studies of both Austalian and US data. IEAust (l9g7)
also noæ.s that the log Pearson Itr distribution has an upper limit when the skews of the
logs of the peak flows are negative- This is tle case with the inflo.-., rcnarã .. ìrft Bold
Reservoir.

The log Pea¡son III distribution is also recommended because the use of a standard
distribution leads to consistency in design practices (IEAust, l9s7). Recent studies have
however, analysed the exænded periods of record and various other distributions have
been recommended-
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Nathan and Weinmann (1991 & 1992) used the regional flood frequency method of

regional [-moments combined with the Wakeby or Generalised Extreme Vah¡e (GEV)

distributions frtæd by probability weighted moments (Greenwood et al., 1979). This

regional flood frequency method was considered to robust, efhcient and superior to

other methods.

A flood frequency analysis undertaken for lVarragamba Dam was described in Craig et

al. (1993). A number of conventional distributions were fitted to the annual and panial

series. It was concluded that the log Pearson Itr distribution significantly over-estimated

low frequency events. The most appropriaæ distribution was a mixture of rwo log

Normal distributions. The mixed distribution model was recommended for annual flood

series which exhibit reverse curvature when plotæd on log Normal probability paper.

Vogel et al. (1993) analysed the suitability of different distributions for Australian flood

peala using data from 61 sites. Z-moment diagrams and Bea¡ds' non-par¿Lmetric test

were used to deærmine the most suitable distribution. The Generalised Pareto and log

Pearson III distributions were found ûo be the most suitable distributions.

A distinction was then made between winter and summer rainfall dominaæd regions. The

southern portion of South Australia (including the Onkaparinga Catchment) was within

the rcgion designated as winter rainfall dominaæd. The Generalised Extreme Value and

V/alaby distributions $/ere recommended for the winær rainfall dominant regions. The

Generalised Pareto and Wakeby distributions were recommended for the remainder of

the continent. The Wakeby distribution is described in Houghton (1978) and l,andwehr

et at. (1979 a,b). The log Pearson III and log Normal distributions performed credibly

across both of the regions.

Because of the uncertainty as to the most suitable distribution, a number of different

distributions were tested for the Onkaparinga Catchment.

7.r.6.t. rvso87

The statistical package WSO87 (Kopittke et al., 1976; Kopittke and Tickle, 1976) was

used to ht theoretical distributions to the data. Although not all of the distributions

mentioned above were htted, it was felt that the distributions tested were representative

and provided a useful comparison.

WSO87 fits the following distributions:

. Pearson Itr distribution;

. log Pea¡son Itr distribution;

. Normal distribution;

. log Normal distribution;
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¡ Gumbel distribution;
. log Gumbel disribution;
. Power Transformed Normal distribution; and
. Fisher-Tippett III distribution.

Four different goodness of fit æsts were then used to determine how well the chosen
mathematical distribution fits the data. For each test the smallest results represented the
best fit. The four tests were the:
. Difference Test
. Modified Difference Test
. Chi-Squa¡ed Test

. Modified Chi-Squared Test

Kopittke et al. (1976) noted that the goodness of fit tests are a neÆessary but not a
suffrcient criærion for 'selecdon of the best distribution. This is because riisíributions
which have a large number of parameters are more flexible and although they adhere to
the sample data better, erratic events in the data might mislead the user in estimating the
fiequency curve.

7 .1.6.2. Multiple Disrriburions

A flood fircquency analysis assumes that the recorded series is representative of a single
distribution. The onkaparinga Carchment however is subject to two distinct minfall
mechanisms; rainfatls result from tropical moisture or low frontal systems passing
through the Great Australian Bight (Section 5.1). It may therefore be possible to
separate the events according to their meteorological origin and fit separate theoretical
distributions.

Ashkanasy and Weeks (1975) considered the problem of two distinct classes of events
within a catchment. The events were separaæd and separate log Normal distributions
were frtted to each data set. It is noæd that a misleading situation can occur when only a
few (or even no) events of the alærnative population have been recorded.

Because of the limited data in the onkaparinga caæhment, the events were not separated
according to their causative rainfall mcchanism. It is suggested that this is an area which
should be further researphed.

7.2. Mt Bold Reservoir

hitially a flood frequency analysis was considered using the oufflows from Mt Bold
Reservoir. This was prevented because:
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. the reservoir level has only been measured continuously since July 1986;

. some uncertainty still remains concerning the accuracy of the spillway rating curve;

. there exists considerable doubt as to the accuracy of the recorded gate openings,

especially for small openings; and

. there is reason to believe that not all gate openings have been accurately recorded.

Because it was not possible to undertake a flood frequency analysis using the oufflows, a

flood frequency analysis was undertaken using inflows to Mt Bold Reservoir. This was

done by modifying the record at Houlgraves Weir (4W503504) which is situaæd just

upstream of the reservoir. The stage record has been continuous at Houlgraves Weir

since 17 April 1973. During the flood of 30 August 1992 the station was rated up to 330

m3/sec, which is more than 75 percent of the mædmum flow recorded at the site (Section

3.6.2).

The hrst referenced flood frequency analysis at Houlgraves Vfei¡ used a partial series

from the available l1 years of record from 1973 to approximately 1984 (Kotwicki,

1984). A log Pea¡son trI distribution was then fitæd to this data. The relatively short

perid of record meant that the analysis might not accurately represent the true

distribution of floods.

Although the flood frequency analysis undertaken in Kotwicki (1984) had only used a

relatively short data set, the results have been used widely.

7.2.1. Flood Frequency Analysis Undertaken Prior to 30 August 1992

V/ith the longer daø set available, a flood fiequency analysis was conducæd in early

August 1992 for Houlgraves Vfeir. Both a partial and annual series were extracted from

the available data set from the 17 April 1973 to the 30 April 1992. This represents 19

years of continuous reliable record. The peak events were extracæd and a log Pearson III
distribution wÍN fitæd to the data using HYDSYS.

During the 19 years of record, the maximum peak flow was 243 m3/se¡ recorded on 26

June 1981. On the 30 August 1992 a peak flow at Houlgraves \Veir of 431 m3/sec was

recorded. This flood event is described in Section 3.6.2.

The peak flow of 431 m3/sec was significantly larger than any other peak flow in the

record. Although the length of record exceeded the minimum of 10 to 15 years that is

recommended by IEAust (1987), this one flow had a very large effect on the flood

frequency curve. Analyses done which include or exclude the 431 m3/sec flow produce

signifrcantly different results. This is shown in Figure 7.1 for an annual series and a log

Pea¡son III distribution.
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The frequency analysis conducted prior to August 1992 resulred in the flow of 431
m3 ec being assigned an AEP of approximaûely I ln _500, whereas the analysis *,hich
included the event of August 1992 assigned an AEP of approximaæly I in 50. This is
indicative of the subjectivity and uncertainty of conducting a flood frequency analysis on
a relatively short length of record (Section 7.1.1).
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Figure 7.1 Flood Frequency curves for Houlgraves weir Excluding and Including
August 1992

7.3. Extended Data set of rnflows to Mt Botd Reservoir
To avoid the problems in using a short data set for flood frequency analysis, considerable
effort was rnade to extend the data available at Houlgraves 'Weir. The record at
Clarendon Weir (situaæd downstream of both Houlgraves Weir and the Mt Bold
Reservoir) was examined ûo see if it could be used.

The stage record at Clarendon Weir commenced in 1889, but it is not continuous with
the stage being recorded approximately every 5 hours. Sid Sæphens from the Water
Resources Section of the E&WS calculated the ma¡rimum instantaneous flows in each
month at Clarendon Weirfrom 1888 to 1976. These calculations are supported by the
summary of peak flows at clarendon weir tabulated in E&v/s (1933).

The construction of the Mt Bold Reservoir beween 1932 and 1938 meant that the flows
measured after about 1936 were affected by the reservoir. The flows before 1936
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however represent natural flow in the Onkaparinga River and the record was useful in
exænding the data set of inflows to Mt Bold Reservoir.

The annual peak flows reco¡ded in the Onkaparinga River are shown in Figure 7.2.

Although the stage readings þgan in 1888, there is a gap in the records from 1893 to
1896 and hence the useful period ofrecord is from 1897 to the end of 1935.
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Figure 7.2 Annual Series of Peak flows in the Onkaparinga River

The flows measured at Clarendon Weir were not directly applicable to the inflows to Mt
Bold Reservoir. The effect of the different catchment a¡eas had to be considered with the
measured peak flows at Clarendon Wei¡ being converted to equivalent peak inflows to
Mt Bold Reservoir.

The flow at one location can be approximaæd from the flow at another location if the
respective catchment areas are known. The relationship is shown in Equation 7.4.

o,=o,(+) (7.4)
\ry)

From Akær (1992), an exponent of 0.64 was chosen for use in Equation 7.4. Equations

7.5 and 7.6 were therefore used to calculaæ corresponding inflows to Mt Bold
Reservoir.

Flow at Houlgraves Weir to Inflow to Mt Bold (7.s)
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Flow at Clarendon Weir to Inflow to Mr Bold Qú4.921e. e.6)
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corresponding peak inflows to Mt Bold Reservoir. The 39 years of modified data and the

19 years of records from Houlgraves Weir were then combined to prduce a record of
58 years.

7.3.1. Choice of Distribution

The data and statistics of the full record, along with the fitæd distributions calculaæd
using \rySO87 for the annual series are shown in Appendix H. Five of the distributions
and the peak inflows are shown in Figure 7.3.

Great care must be taken in extrapolating the fitted theoretical distributions. Although
V/SO87 calculates values for the di.strihution up to an AEP of I in 10,000, rainfall based

methods should be prefened for calculating flows which have a low AEp.
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Figure 7.3 Five Different Theoretical Distributions for an Annual Serie.s of Inflows to
Mt Bold Reservoir (1897 - 1935, lg74 - t992)

Following the procedures in IEAust (1987), a rainfall based method was preferred to a
flood frequency based method for the inflows to Mt Bold Reservoir for floods having an

AEP of less than I in 50 years.

The split record was examined to see whether there was any disparity between the early
record 1897 to 1935 and the later record 1974 to 1992 (including August lgg}). These
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results are shown in Figure 7 .4.1\erc is a small difference benveen the two log Pearson

III distributions, but very little difference between the two log Normal distributions.
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Figure 7.4 Comparison of Flood Frequency Analysis for Inflows to Mt Bold Reservoir
for 1897 to 1935 and 1974to 1992

7.3.1.1. Goodness of Fit Tesrs

The four different goodness of ht tests in WSO87 were used to determine the theoretical
distribution which provided the best ht to the data. Unfortunately the tests indicaæd

different distributions :

. Both the difference and modified difference tests indicated that the best theoretical
distributions wet€ the log Pearson III, the Power Transform Normal and the Fisher-

Tippett distributions.

. The chi-squared and the modified chi-squared æsts indicaæd that the best
distribution was the log-Nonnal distribution.

From Figure 7.3 it is clear ttrat all of the theoretical distributions were simila¡, except for
the log Normal distribution which was above the others.
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7.3.1.2. Inclusion of the April 1889 Flood

T'L^ ^--..^l ^^-.:^^ ^f :-J1 ^--.^ .a^^- --. :-^r--r- ¡r^- Â- -J -. ¡ rr rôô^ ñr¡rç (u¡¡¡ud.l ùçrrçs ur ullluwù uuçs uur. urçluuE urË 11()()(I or f\pru rõõy. lne pe¿rK ilow m
the Onkaparinga River was not accurately gauged, but has been estimated to have been

680 m3/sec at Clarendon. This results of modelling of this event a¡e included in Daniell
and Hill (1993c). This event is quiæ significant as Section 7.2.1 shows the dramatic

effect that a single large event can have on the calculaæd flood frequency.

Unfortunateiy the record at Clarendon Weir only commenced in 1896 and therefore the
flow in April 1889 cannot strictly be included in the annual series. It is however
important to consider the effect of its inclusion in the annual series. The flow of 680
m3/sec at Clarendon was converted to a corresponding inflow to Mt Bold Reservoir of
626 m3lse* using Equation 7.6. The theoretical distributions were then htted to an annual

series which included the April 1889 flow.

The effect of the inclusion of the April 1889 flood is shown in Figure 7.5. The log
Pearson Itr distribution is consisæntly below the recorded values, from an AEP of I in
25 onwards.
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The log Normal disuibution was chosen as the best distribution to represent inflows to
Mt Bold Reservoir. This distribution was chosen because it performed best for the chi
squared and modihed chi squared test. Although the log Normal distribution plots above

the other distributions, it is believed ttrat this accounts for the April 1889 evenL
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The chosen distribution is shown in Figure 7.6. This distribution does not include the

April 1889 evenL

rm

t
)

lJ
w
&-

ìfItrôiderio/o Con
7v./øÀ

ã
4alru--

InlrotaD¿

'rite Li¡¡nfiderx

I t0 ræ lom
AEP (1 in Y)

Figure 7.6 Fitted Log Normal Distribution for an Annual Series of Inflows to Mt Bold
Reservoir (1897 - 1935, 1,974 - 1992)

7.4. Design Inflows Calculated using Design Rainfalls

Design rainfalls were calculated for the Mt Bold Carchment using the guidelines included

in IEAust (1987). The design rainfalls a¡e discussed in more detail in Chapær 5. The

design rainfatl depths and the temporal patterns were used to deærmine design inflows

for Mt Bold Reservoir.

The determination and calibration of the RORB model is discussed in Sections 6.3 and

6.4. The chosen optimal model parÍrmeters were used to rout the rainfall excess to

determine the inflows into Mt Bold Reservoir for a range of ARIs and durations.

In order to determine the design flows using design rainfalls, it was necessa.ry to calculate

the critical storm duration. A range of storm durations and ARIs were tested. The results

for the calculated inflows are shown in Figure 7.7.
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Figure 7.7 Design Inflows for Mt Bold Reservoir using Unmodified Design Rainfalls

It is clear from Figure 7.7 that the critical storm du¡ation for determining design inflows
was approximately 24 hours. The routing effect of the reservoir may however result in a
longer critical duration for design ouúlows. The inflows were therefore routed through

the reservoir assuming that the reservoir was at full supply level prior to the event and

that the gates were operated according to E&WS oftrcial operating policy. The

modelling of the gate operation is discussed in more detail in Section 6.3.2.1. The effect

of the initial level of the reservoir on the calculaæd outflow is discussed in more detail in

Chapter 8. The calculaæd outflow peaks are summa¡ised in Figure 7.8.

From Figure 7.7 and Figure 7.8 it is clear that the critical duration for both inflow and

outflow was 24 hours.
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Figure 7.8 Design Ouúlows from Mt Bold Reservoir (using unmodifred design
rainfalls, reservoir initially at FSL and gates operated according to E&WS policy)

7.5. Comparison of Modelled and Historical Flood
Frequencies

Design flows can be calculated using both rainfall and flood frequency based methods. It
was therefore determined to check the consistency of the two methods by plotting the

design flows obtained using the design rainfatls on a flood frequency curve. This is
shown in Figure 7.9.

It is clear from Figure 7 .9 that the flows obtained using design rainfalls exceeded those

obtained from flood frequency analysis. This discrepancy could have resulted from many

factors including:

1. Errors in the modelling of streamflow.

2. Errors in the flood frequency curve. This could have resulæd from the incorrect

choice of distribution or using an incorrect method of transposing peaks from one

siæ to another.

3. Errors in the design rainfalls. The design rainfalls from IEAust (1987) may not have

been applicable to the catchmenL

4. Errors in the choice of losses used with the design rainfalls.

It is believed that the discrepancy was due to inadequacies in the use of losses with the

design rainfalls. This is because of the great care that was exercised in the calibration and

modelling of steamflow and the deærmination of the flood frequency curves.
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Figure 7.9 Comparison of Design Inflows for Mt Bold Reservoi¡ Obtained from Design
Rainfalls and from Flood Frequency Analysis

7.6. Final Design Rainfalls

The design flows derived from storms of different durations are compared to the log

Normal distribution in Figure 7.10.

Although it was not expected that the design flows determined by the two different

methods would coincide exactly, there should exist some conelation so that no

discontinuity occurs at the point at which the rainfall method becomes preferred over the

flood frequency method.

It was necessary to modi$ the flows obtained from design rainfalls so that they

corresponded to the flows obtained from the flood fiequency analysis. Two different

methods were examined for modi$ing the design flows obtained from design rainfall;

increasing the losses and reducing the rainfatl depths.

r20



ClupterT - Mt Bold Inflow Flood Frequcncy

1600

1400

1 10 lOO 1OOO

Annual Erceedance probability (1 in y)

Figure 7.10 Comparison of Inflows to Mt Bold Reservoir Calculaæd using Different
Duration Design Storrns

7.6.1. Choicc of L,osses

The choice of loss parameters is important in determining the magnitude of design flows.
It is important to note that the losses derived from calibration of the RORB model do not
necessarily apply for use with design rainfalls. This is because the design rainfalls
included in IEAust (1987) are bursts which are generally embedded in longer duration
storms' It is recommended in IEAust (1987) that lower losses should bê used to rout
design rainfalls than those derived from the calibration of the model.

Waugh (1991) recommended however that higher losses should be used with the design
rainfalls than those derived from the calibration of the model. This is because loss values
a¡e often based on the analysis of the largest floods, and such values are likely to be
biased due to wet antecedent conditions. There may be some large storms which yield
little runoff and therefore these a¡e not included in the calibration process. It was
therefore recommended by Waugh (1991) that losses are derived from the analysis of all
major storms; not calculated using the sample of major floods.

The recommendations as to the suiøble losses for use in design of Waugh (1991) and
IEAust (1987) are contradictory. The losses used for design were the same as those
obtained from the model calibration.

In a study of the hydrology of the Torrens Carchment @C Tonkin and Associates, 1975)
a simila¡ problem was observed in the design flows obtained from rainfalls exceeding
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those obtained from a flood frequency analysis. The design flows obtained from design

rainfalls were artificially lowered by increasing the losses. An initial loss of 30 mm and a

continuing loss of 3 mm/hr were adopted. This decision was not based upon observed

losses, but rather the choice was made in order to conveÍ design rainfalls ûo design flows

of the same ARI (Schalk, 1993, pers. comm.).

The models were re-run with the losses proposed by BC Tonkin and Associaæs (1975)

to determine whether those loss parameters were applicable to the Onkaparinga

Catchment. The resulting flows are compared to the log Normal distribution in Figure

7.11. It is clear that these losses a.re too high for the Onkaparinga Carchment and the

adoption of these loss parameters would result in the design flows being under estimated.

Losses applicable to the Onkaparinga Catchment could have been obtained, but rather it
was decided to reduce the design rainfalls, according to the procedures described in

IEAust (1987).
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Figure 7.11 Flood Frequency Curves for Inflow to Mt Bold Reservoir Showing the
Effect of the Adoption of an IL of 30 mm and an CL of 3 mm/hr for Different Duration

Design Storms

7.6.2. Reducing Design Ra¡nfalt

IEAust (1987) describes a method of reducing the design rainfall until the design flows

correspond to those obtained from flood frequency analysis. For a given ARI, the design

flow Q* is determined using the critical duration. The corresponding value obtained from
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flood frequency analysis is designated a.s Q¡r- The ¡ainfall depth is then scaled by the
ratio of Qr/Qr.

T\e 24 hour design rainfalls were modified until the calculated flows corresponded to
those obtained from flood frequerrcy analysis. A rainfal depth of 87 percent of the design
rainfalls resulæd in the design flows approaching those obtained from the flood
frrequency analysis. This is shown in Figure 7.12.

rææ

-Þ 
LN - lnflow

-----{f- 0.87 x24 hr ARR
Bainfall- lnllow

6 hr ARR Rainfalt-
lnflow

t0 læ
Annual Erceedance Probability (1 in y)

Figure 7.12 Comparison of Design Inflows to Mt Bold Reservoi¡ Calculated using a
Modified 24 hour Storm and the Flood Frequency Curve Derived from Recorded peak

Flows

In Figure 7.12 the design flows produced using a six hour storm are simila¡ to the flows
obtained from the modified 24 hour storm and the log Normal distribution.

The reduction of the design rainfatls might not have necessarily meant that the design
rainfalls were in error, but rather it may have been the areal reduction factors which
required adjusting.

7.6.3. Comparison of 6 and 24 hour Storms.

From Figure 7.12, it is clear that either the 6 hour storm or the 24 hour modified storm
would have produced results which were consistent with the flood frequency analysis.
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The outflow hydrographs were calculated for both the 6 and 24 hour modihed duration
storms to see which of the duration produced the largest outflow. T]rre 24 hour modified
storm produced the largest ouúlow. It was therefore decided to use the modified 24 hour
rainfall as the basis for deærmining design flows into Mt Bold Reservoir.

There was some concern that the PMF critical duration was only 4 hours (Section 10.4).

For the sake of consistency, a shorter duration storm may be appropriate across the

whole range of frequencies.

7.7. Treatment of Baseflow

As explainedin Section 6.1, the runoff routing model only applies to the surface runoff
and not to baseflow" Prior to the calibration of the model, the baseflow had to be

extracted.

The hydrographs resulting from design rainfalls only represent the surface runoff
component of the flow. In most cases it is therefore necessary to add an estimate of the
likely baseflow to the calculaæd surface runoff hydrograph to produce a design
streamflow hydrograph.

In this case no adjusünent of the design hydrographs for baseflow had to be rnade. By
modifying the design rainfalls until they produced design flows which corresponded to
the flows obøined from a flood frequency analysis, the baseflow was implicitly included.

The sEeamflow records used to generate the flood frequency analysis included both
surface runoff and baseflow, and therefore by producing design flows which matched

these, the baseflow w¿rs included.

124



Chapter I

Mt Bold Outflow Flood Frequency

8.l.Effect of Dams on Flood Frequency

The presence of a dam reduces the magnitude of floods downstream. The magnitude of

the effect depends on the storage of the reservoi¡. The effect of the reservoir on the

flows will diminish fuither downst¡eam as the a¡ea of uncontrolled catchment increases.

It is important to note the effect of dams on the frequency of floods. There is little effect

for very large floods because the volume of the reservoi¡ becomes less significant The

post dam flood frequency curve is below the pre-dam flood frequency curve in the lower

flow ranges and approaches it more closely in the upper flow ranges.

8.1.1. Frequency of Flows Below Mt Bold Reservoir

The determination of the flood frequency curve for the flows below Mt Bold Reservoir

was hindered by several factors peculiar to the Onkaparinga Catchment

1. The poor data record of the reservoi¡ level. The reservoir level is dependent upon the

pumping policy of the E&IVS from the River Murray. As explained in Section 8.2.1,

this has recently been changed and therefore recorded storage levels were not

applicable for use in deærmining design flows.

2. The flows do\ilnstream of Mt Bold Reservoir are dependent on the operation of the

gates. The operation depends on human judgement and if effors of judgement occur

this can result in larger oufflows than inflows. The operation of the gates is described

in more detail in Chapter 4.
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3. The record of historical gate operations has inaccuracies and until recently inaccurate

ratings for the spillway have been used.

4. The limited period of accurate reco¡ds of flows in the Onkaparinga River below Mt
Bold Reservoi¡. Although Clarendon Weir has a long period of record, it is primarily

a diversion wei¡ for water supply and only one gauging was recorded to veri$ a

theoretical rating that has been used since the construction of the weir (Section

3.2.4.2).

5. The gauging station at Old Noarlunga. This gauging station low in the catchment has

been closed. The record was required in order to undertake a frequency analysis and

to determine the hydrological response of the river for calibration of the hydrological

model.

The determination of the frequency of flows downstream of a reservoir is a complex

iask. The operation oi a gateci spüiway adris to tÌre compiexiry. The ioüowing repoß
describe the analysis of flows downstream of a reservoir:

. International Engineering Services Consortium (1969). This report dealt with the

determination of the frequency of floods in the Namoi River downsúeam of Keepit

Dam in New South Wales. The problem of deærrnining flows downstream of the

reservoir considered the joint probability of the peak inflows and the storage level.

. Laurenson (1973). This paper also studied the frequency of flows downstream of
Keepit Dam. It w¿ts suggested that the flood frequency should be calculaæd at a
number of downst¡eam sites in order to examine the effect of the reservoir further

downstream. A ransformation matix was developed which dealt with the joint
probability of inflows and storage level. In order to do this a single probability

distribution of sorage levels was calculated which applied to the entire year.

. Ahern and Weinmann (1982). This paper described the hydrology of the Goulburn
River and some of the general concepts of single event models. The design flows

upstream and downstream of l¿ke Eildon were determined. The problem of joint
probability was addressed using the tansition matrix described by t aurenson (1973).

The inflow and initial storage levels were considered to be independent

. Waûer Resource Branch, E&WS (1987). In this study of thc opcration of the South

Para Re.servoir spillway gate,s, the fiequene¡r of ouúlows was deærrnin-d. The

method used followed the procedures described in International Engineering Services

Consortium (1969).
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8.1.2. Concept of Joint Probability

A particular downst¡eam peak flow can result from different combinations of inflow and

storage level. In order to determine the probability of a given oufflow, it is necessary to

sum the probabilities of the different combinations of storage and inflow which result in a

particular outflow. This relationship can be described by Equation 8.1.

P(q,)= )r(ø,) r(') (8.1)

where: q, is a peak inflow to the reservoir (m3/sec);

s is a reservoir storage level (a gauge height in metres);

q"is a peak oufflow (m3/sec);

P(q") is the probability of an oufflow having a peak flow of qo or greater;

P(q) ß the probabitity of a peak inflow of q,, which is assumed to be equal to the

probability of the design rainfall; and

Pls) is the probability that the storage will be at or above a storage level s prior

to an inflow of q,.

The relationship described by Equation 8.1 is represented graphically in Figure 8.1. A
line can be drawn which is the locus of storage and probability which results in a
particular peak outflow. The probability of that peak ouflow being exceeded is

represented by the area under the curve.

o Storage Exceedance Probability 1

Figure 8.1 Relationship between Inflow Probability and Storage Exceedance
Probability to Produce a Given Peak Outflow
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8.1.3. Independence of Inflows and Storage Level

Both the Eansformation matrix proposed by l,aurenson (1973) and F4uation 8.1 æsume

that the inflow and the storage level a¡e independent variables. Laurenson (1973) states

that, " this condition is not infrequently satisfied to a reasonnble degree of accuraql'.In
cases in which this is not the case; where the probability of the inflow and the storage

level varies markedly from season to season, the yeÍu can be divided into a number of
seasons and the partial probabilities calculated. The results a¡e then summed to determine

the probability of the downsEeam flows.

Independence cannot be assumed for Mt Bold Reservoir because there is a defined

seasonal distribution of storages and inflows.

It is not possible to determine a season or time of year in which design rainfalls a¡e

assumed to occur. Most of the rainfall in the Onkaparinga Catchment occurs in the
-,,i-+^- 
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-^-- 
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when the atrnosphere is warmer and therefore able to contain more moisture vapour

(Section 3.5).

8.2.Reservoir Levels

The probability distribution of reservoir levels had to be deærmined in order to calculate

the ouúlow flood frequency curve for Mt Bold Reservoir. The reservoir levels depend on

the operating policy of the E&WS and the natural streamflow.

The reservoi¡ level is measured at the dam wall by a continuous recorder which was

instatled in July 1986 by the Scientific Services Branch of the E&'WS. Before 1986 the

water level was recorded daily and every time an adjustment was made to the gates.

8.2.1. Operation of System

The water level in the Mt Bold Reservoir depends on the operation of the Metropolitan
Adelaide Water Resource Supply System which comprises of a system of storages in the

Mt Lofty Ranges and two pipelines from the River Murray. The system is divided into
two components, with Mt Bold, Happy Valley and Myponga Reservoirs comprising thc

southern system.

The prime objective of the operation of the system is to supply water at a minimum cost,

subject to avoiding restrictions to consumers. The other objective is to improve the

quality of the supplied water without significantly increasing the cost
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At the commencement of the financial year the operators deærmine t¿rget end of month

storages for each reservoir. These a¡e levels at which they aim to have the reservoir at or

above at the end of the specified month and a¡e dependent on prcdicæd demand and

inflows to the storages. The inflows are based upon707o exceedance probabilities; that is

70 percent of the time the inflows will exceed this value. Linear programming is then

used with the const¡aints of reservoir capacities and minimum operating levels in order to

determine the most cost effective pumping program (Crawley and Dandy, 1992).

At the end of each month, the recorded inflow and storage levels a¡e used to recalculate

the target storages.

In order to assist the planning and operation of the system, the Headworks Optimisation

Model - Adelaide (HOMA) has been developed (Crawley and Dandy, L992). The

program is designed to simulate the operation of the system and can be used in either

operational or planning modes.

8.2.2. Synthetic Data

In order to test the reliability of the system under different operating policies, synthetic

data sets were generated. The statistics of the observed inflows were used to generate a

longer synthetic data set (Baker, 1991).

The synthetic data was used in conjunction with the HOMA model to generate twenty

100 year data sets, representing 2,000 years of synthetic sûorage level data.

The average end of month storages for each month were calculaæd using the synthetic

data and these are compared to the historical end of month storages in Figure 8.2.

The synthetic and historical end of month storages are simila¡, although the effects of the

changes in the operating policy a¡e evidenl

1. During autumn the synthetic reservoi¡ levels are lower than the historical levels. This

is because the new policy is based on 70% exceedance probability inflows whereas

the system has in the past operated using the 907o excendance probability inflows.

This results in the storages being held at a lower level during the autumn months.

2. The second trend which becomes apparent is that the synthetic storages are greater

than the historical in spring. This is also a result of the new pumping procedures. In

the pas! pumping from the River Munay was delayed as long as possible in the hope

that it could be avoided. The current policy is to pump at a more consistent rate

throughout the year and hence avoid the large costs Írssociated with pumping at large

rates. This results in pumping commencing earlier and hence the storages being at a
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Figure 8.2 Comparison of Historical and Synthetic Average End of Month Storages for
Mt Bold Reservoir

8.2.3. End of Month Storage Exceedance Probability

For each of the twenty sets of 100 years of synthetic data, individual end of month
distributions were developed, that is 240 distributions for end of month storages. For
each of these data sets the end of month storages were ranked and a plotting position
assigned. The plotting position was calculated using Equation 8.2.

pp _ m- 0.4ÍF^ = N+ 0.2 (8.2)

where: m is the rank; and
Nis the number of values (100).

The distributions of end of month storages for July are shown in Figure 8.3. Twenty
different distributions were calculaæd from each data set. In Figure 8-3 only the average
and the maximum and minimum values are shown of the different distributions.

The end of month storage distributions were calculated for every month and these are
shown in Appendix I.
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Figure E.3 End of fuly Storage Exceedance Probability (based upon 2000 years of
synthetic data)

Using the average exceedance probabilities of end of month storages it was possible to

deærmine different storages for given exceedance probabilities and months. The 20, 50

and 80 percent exceedance probability storages are shown for each month in Figure 8.4.
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t.3.Flood Frequency Analysis at clarendon weir and otd
Noarlunga

The historical records at both Clarendon Weir and Old Noarlunga were used to
undertake a flood fiequency analysis to check the calculated design flows based upon the
joint probability of the design rainfalls and the sûorage levels.

The recorded flows are not strictly applicable ûo the calculaæd flows because:

l. The flows in the l-ower Onkaparinga River are dependent upon the level of Mt Bold
Reservoir which is deærmined by the pumping policy of the E&WS. This has

changed many times since the completion of the reservoir and therefore the recorded

levels may be significantly different to those resulting from the current operating
procedures.

2. Prior to 1961, the outflow from Mt Bold Reservoir was not controlled by gates.

During this period there would have been morc frequent and higher oufflows from

Mt Bold Reservoir. Because the inæntion of the current operating procedures is to
match outflow with inflow, this is not expected to result in a large eror.

3. The recorded flows downst¡eam reflect current gate operations which are different to
the current ofhcial E&WS policy.

8.3.1. Flood Frequency Analysis at Clarendon Weir

Although the record at Clarendon Weir commenced in 1897, only the record since the

completion of Mt Bold Reservoir is appropriate. This results in a record of 45 years.

As stated in Section 3.2.4.2, the rating of Cla¡endon Weir is relatively unsubstantiated

with only one recorded gauging.

Because an annual data series was used to determine the flood fiequency of inflow to Mt
Bold Reservoit, peak annual values were extracted from the record at Cla¡endon Wei¡.
Both log Normal and log Pearson III distributions were then fitæd to the recorded peaks

using WSO87. This is shown in Figure 8.5.

It is clear from Figure 8.5 that neither of the tested distributions fitæd the data very well.
This was confirmed by the goodness of fit tests. The poor fit was a result of the unusual

distribution of flows caused by the reservoir. The theoretical distributions ænded to
overestimate the flow for floods which have an AEP of less than about I in 5.
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Figure 8.5 Flood Frequency Curves for an Annual Series at Clarendon \Veir (1937 -
1ee3)

A flood frequency analysis was therefore undertaken using a partial data series at

Clarendon Weir. Figure 8.6 shows both a log Normal and log Pea¡son III distribution

frtæd to the partial series at Clarendon Weir. From this figure it is evident that both

disuibutions are better fits to the partial series than to the annual series. The log Pearson

Itr distribution proved to have the best ht of the two distributions.
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Figure 8'6 Flood Frequency Curves for a Partial Series at Clarendon Weir (1937 -
1993)

8.3.2. Ftood Frequency Analysis at Old Noarlunga

A flood frequency analysis was also undertaken using the record at old Noarlunga. The
gauging station was operational from June 1973 to July l9gg. The 14 years of data was
significantly less than the perid of record at clarendon weir.

Both the annual and partial series were extracæd and the log Normal and log pearson III
distributions fitæd to the data using wso87. The two different series are shown in
Figure 8'7 and Figure 8-s. As was the case with the records as clarendon weir, both
distributions provided betær fits for the partial series. The log pearson Itr distribution
provided the best fit.
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Figure 8.7 Flood Frequency Curves for an Annual Series at Old Noarlunga (1973 -
1988)
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8.3.3. Comparison of trlood Frequency Curves for Clarendon Weir and Old
Noarlunga

The flood frequency curves for Clarendon Weir and Old Noarlunga were calculated

using a log Pearson III distribution fitted to a partial series are compared in Figure 8.9.

The flood frequency curve for Cla¡endon Weir is above th¿t for Old Noarlunga.
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Figure 8.9 Comparison of Flood Frequency Curves for Clarendon Weir and Old
Noarlunga for a log Pearson III distribution htted to a Partial Series

A check was made to find out whether the short record at Old Noarlunga distorted the

true distribution and consequent relationship with the flood frequency at Cla¡endon Weir.
A partial series was extracted at Clarendon Weir for the same period as Old Noarlunga,

and this was compa¡ed to the other calculated flood frequency curves using the full
record in Figure 8.10.

It is clear that the calculated flood frequency curye at Clarendon Weir was not

significantly affected by the shorter record.

The ratings for Clarendon Wei¡ and Old Noarlunga were checked by examining the flow
volumes. This proved to be inconclusive because there exists uncertainties in both

ratings.
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Figure 8.10 Comparison of Flood Frequency Curves for Clarendon 'Weir 
and Old

Noarlunga for a log Pearson Itr distribution fitæd to a Partial Series for a common
period of record

8.4.Choice of Frequency Distribution for Flows Below Mt
Bold Reservoir

8.4.1. Choice of Storage Probability Distribution

In order to rout the floods through the reservoir, a probability distribution of storages

had to be chosen. It was decided to test four different storage probability distributions in

order to see which one produced flows which were consistent with the log Pearson III
distribution of floods at Cla¡endon Wei¡. The four storage probability distributions tested

were:

1. The average storage distribution for the end of month storages for August,

September, October and November. This period was chosen to represent the

generally high storages in late winter and spring. Most of the events which were used

to calibraæ the RORB model occurred during this period.

2. The average storage distribution for the end of month storages for January, February,

March and April. This period was chosen to observe the effect of a storage with a

large drawdown in laæ summer and early auh¡mn. The largest flow on record, in

April 1889, occurred during this period.
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3. The average storage distribution of end of month storages fo¡ the whole yg:u. The
choice of this distribution implie.s that the design inflows are equally likely to occuÍ at
any time throughout the year. This may slightly underestimate the flows downsteam
because large inflows are unlikely to occur during the middle of winter, while the
storage is at its lowest, because the atmosphere is at its coolest and therefore able to
hold less \tater vapour (Watson, 1993, pers. comm.).

4- The average storage distribution of end of month storages for December. This month
was chosen as it was felt that it could possibly represent the best distribution of
storages in order to reproduce the observed distribution of flows at Cla¡endon Weir.

The four different end of month storage probability distributions are shown in Figure
8.1 1.
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Figure 8.11 Four Different End of Month storage Distributions

100

8.4.2. Conshuction of Joint hobability Diagram

The RORB models set up for tùe onkapar'^nga Catchmcnt to oid Noariunga were re-run
for a range of initial drawdowns. The calculaæd peak flows were recorded for the
oufflow from the reservoir and at Clarendon Wei¡.

The results of the RORB models were then plotted in a similar fashion to Figure g.l.
Lines of equal peak flows were then drawn. Figure 8.12 shows the joint probabiliry of
flows at Clarendon Weir for the average storage distribution for August, September,
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October and November. The joint probability relationship for each storage dist¡ibution is

shown in Appendix J.

The area under the curves represent the probability of that peak flow occurring.
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Clupter I - Mt BoA Oglow Flood Frequency

8.4.3. Choice of Frequency Distribution for Clarendon Weir
TL^ ^^l^.,1^ ¿^Ã Í1^ ^) C-^ --- ^- -: - -rue rvr¡'ruurau: r rruu(¡ Lrequslrçrc^s wcrg cOmp¿UPO tO me log feafson Ul CllstnbuüOn tttted
to the partial series at Clarendon Weir.

Figure 8.13 shows the different frequency distributions at Clarendon Weir for each of the
different s ûorage probability distribu tions considered.

The flows calculated using the average end of month storage distribution for January,
February, March and April were dramatically lower than those obtained using other
distributions of storage. This confirmed the belief that floods in the Onkaparinga River
below Mt Bold Reservoir are fa¡ more likely in early summer when the storage is near
full supply level, than in late autumn when the storage is drawn down.

The flows calculaæd using the average end of rnonth storage distribution for Augusl
September, October and November produced flows that were above those obtained from
the log Pearson III distribution at Cla¡endon Weir. The flows calculaæd from both the
end of December storage distribution and the average yearly end of month storage
distribution produced flows that were less than the log Pearson III distribution at
Clarendon Weir for low ARls, but greater than the log Pearson III distribution for larger
ARIs.
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Cløpter 8 - Mt Bold Outflow Fbod Frequency

The chosen distribution was the average composite curve shown in Ftgure 8.13. It was

the average of the flows calculated using the yearly end of month súorage distribution and

the flows calculaæd using the end of month storage distribution for August, September,

October and November.

In Laurenson (1973) the average storage distribution over the entire year was chosen.

From Figure 8.13 it is evident that this would have resulted in the flood frequency curve

at Clarendon Weir being underestimated.

8.4.4. Choice of Frequency Distribution for Outflows from MtBold
Reservoir

Figure 8.14 shows the oufflows calculaæd for different storage distributions. The

average composite curve was consüucted as for Clarendon Weir.
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The oufflow frequency curve shown in Figurc 8.14 calculaæd using the average

composite storage distribution is considered to be the most appropriaæ. Unless

downstream gauging stations a¡e installed which have accuraûe rating curves, it will not

be possible to determine the outflow frequency with certainty.
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Chapter 9

Probable Maximum PreciPitation

9.1. Introduction

For the Onkaparinga Catchment, Bulletin 51 is applicable for PMP durations up to 3

hours. Estimates of PMP for longer durations should be obtained from the Bureau of

Meæorology using the generalised south e¿¡stern Australia method (GSAM).

An approach was made to the Hydrology Branch of the Bureau of Meteorology

Melboume, inquiring about obtaining estimates of longer duration estimates of PMP

using the GSAM. This branch was totalty occupied with work from the Dam Safety

Committees or Groups of NSW, Rural Water Corporation (Vic), Melbourne Water and

the ÉIEC from Tasmania- It would have been at least six months before a request could

be fulfilled (Pea¡ce, l993,pers. comm.).

Because longer duration storïns could not be obtained from the Bureau of Meæorology,

Bulletin 51 was used to calculate PMP of durations from four to six hours. Longer

duration PMPs that have been applied elsewhere in south eastern Australia were

examined and this showed that the extrapolation from the shorær durations of Bulletin

51 seems to dominaæ in the formation of the curye for a range of catchment sizes.

Estimates of longer duration PMP depths were therefore made from the extrapolation of

the results from Bulletin 51.
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Chapter 9 - Probúb Maximwr Precipitation

9.2. Location of Isohyetal Pattern
The rliffìnrrltv nf Ápfinino n¡n¡azl',-o ."h:^L --^¡,,^^ ^ r-^^^^-^r-r^t 

----:---- -- d *ùJ v^ w^u¡g^Þ l/¡vvwsrvù wrsvrr prrrlJue(/ 4, r9d,ùutld,urt' Iua.,jtlllluln llO(x¡ N

illustrated by the guidetines included in IEAust (1987) for the location and orientation of
the isohyetal pattern of the PMP. IEAust (1937) states that the areal pattern should be,

"centred over the catchmcnt and not located in such a way as to give the greatest
possible flood."
TD A ..^+ /f lìO"\ --^^^^)- ^L -^ ,,d t Ã ttril\ust (ivð i ) præeeûs to state tnaî, "T'he largesi jlood may result yom location of the

eye of the øreal pattern clase to the storage, even though this does not result in the
greatest tvera9e depth of rainfall." This indicates that it is indeed legitimate to orientate
the areal pattern in order to maximise the PMF. In order to provide a reasonable degree
of conservatism this would appear to be prudent.

It is the inæntion of the Bureau of Meteorology that the PMP isohyets derived from the
generalised methods are centred over the catchments. Kennedy et al. (1988) staæd

regarding the spatial pattern included in the GSAM method,

"It is intended to be used without shifting the pattern, or the main rainfall
centres, around the catch¡¡t¿nt, (in order to obtain the highest possible ,àfu"
of the PMF). This also applies to the desígn isohyetal pattern used with the
rnethod of adiusted United States data and those for use wíth generalised
estimates of tropical storm PMP."

This staæment is in conflict with the early recommendations of Pilgrim (1986a) for use
with the PMP derived using Bulletin 51, that the isohyetal map can be, "located over the
catchrnent to give the greatest average depth of rainfall',.

9.2.1. US Practice

It is inæresting to compare the recommendations of IEAust (1987) $,ith the
recommendations for the eastern United Staæs (Ely & Peters, 1984; and Chow et al.,
1988). The PMP estimate is converted to a probable maximum storm (PMS). The pMS

has four variables:

1. location of the centre of the storm;

2. storm-area size;

3. storm orientation; and

4. iemporai arrangement oi precipitation amounts.

The four variables are chosen to produce the maximum peak discharge or runoff volume
at the point of interest. A trial and error procedure is rccommended to deærmine the
critical values of the four variables. This procedure for locating and orienting the pMp
differs dramatically with that contained in IEAusr (1997).
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Chapter 9 - Probabl¿ Maximmt Precípitation

An earlier paper @iedel, 1977) stated that the National Weather Service used an

elliptically shaped rainfall pattern centred on the drainage. Great attention was paid to

the possibility and magnitude of an antecedent storm. A storm 30 percent of the PMP

was assumed ûo occur several days prior to the PMP.

9.2.2. Adopted Philosophy of Locat¡ng the Isohyetal Pattern

For this study, a number of different locations of the isohyetal pattern were tested. This

was done to test the sensitivity of the calculaæd peak flow to the isohyetal location

(Daniell, 1987).

The locations which were examined are shown in Figure 9.1. These were all considered

to be locaæd approximately centrally in the catchment. Location 2 was excluded from

the analysis because location 4 proved to be a betær estimate of the isohyetal pattern

locaæd towards the reservoir.

9.3. Choice of Losses

In small flood design, the losses a¡e chosen to ensure that the calculaæd peak flows have

the same probability of occurrence as the design rainfalls which produced them. The

choice of losses for extreme flood estimation a¡e not based on this premise.

The losses to be used in conjunction with the PMP are to be based on observed losses.

IEAust (1987) recommends that the losses for the estimation of the PMF should be equal

to or possibly a little less than the minimum value in large floods observed on the

catchmenL

For short duration PMPs, the losses are generally very small when compared to the

rainfall intensities, and therefore the estimation of losses is not considered to be critical.

IEAust (19S7) suggests that zero losses may be appropriate in this case. For long

duration PMPs, the losses can reduce the estimated PMF by a larger amount (Brown,

1982).

It is inæresting to note that for a 5 hour duration PMP a 2 mmlhr continuing loss only

represents a total of 10 mm over the storm duration. This is seen as being relatively

insignificant because generally PMP depths are rounded to the nea¡est 10 or 20 mm.

145



Chapter 9 - Probabh Maximum Prccipitation

Sr¡b ' Ârtas lor
Àll Iìold Rtscruolr

Mounl Bold Colchmonl locollcn J

f

Sub - Ârr¡s for

Mt Dold Rcstrvoi¡

f

Sub. Art¡r lor
Àlt Dold Rt¡crvol¡

I \
N

( (

),

SuU .Art¡s fur
illl Dold Rescrtolr

)

Mounl Bold Colchm€nl locollon I

lj I

N
N

/
I (

)

J

)

Mounl Bold Colchmenl tocollon t

)

Mounl Bold Colchment locollon s

Figure 9.1 Locations of PMP Isohyetal Patrerns

)

t46



Chapter9 - Probùle Maximum Precipitation

The matter of antecedent rainfall is considered to be very important in the United Staæs.

In Australia the occurrence of anæcedent rainfall is not usually analysed directly but is

inferred by the choice of. znro initial loss. Brown (1982) analysed the effect of anæcedent

rainfall on the estimaæ of the PMF for a number of case studies.

9.3.1. The Effect of Changes in Land Use

Changes in the land use of a carchment can have a dramatic effect on the hydrological

response of the catchmenl Clearing of the natural vegetation from a catchment will

increase the runoff because of the reduced losses. The likelihood of bushfircs and

agricultural clearing is therefore an important consideration in the estimation of model

parameters for the estimation of the PMF (Brown, 1988).

Brown (1982) considered the possibility of a bushf,re followed by a PMP. This paper

gave two examples of PMF estimates which were adjusæd for the possibility of

bushfires. Brown (1982) noted that the joint probability of the catchment denuded by a

frre and the occurrence of a PMP should be estimated.

In keeping with the desire to obtain a reasonable estimate of the PMF it is not considered

necessary to consider the possibility of a bu.shhre followed closely by a PMP.

9.4. Temporal Pattern

It is generally believed that the temporal patterns of extreme storms are more uniform

than those of more frequent stoffns (Pilgrim, 1986a). The choice of temporal pattern is

very important and can have a significant effect on the magnitude of the PMF.

Bulletin 51 contains a rrccommended temporal pattern for short duration PMP estimates.

This is based upon the temporal patterns recorded during the V/oden Valley storm of

1971 and the Melbor¡rne stonn of 1972. Both Wood and Alvarez (1982) and Brown

(1982) recommended that the temporal patterns be rearranged to maximise the surface

runoff. The recommendation to rcÍurange the temporal patterns is in line with the

recommendations in the United States and is based on the large differences in the

calculaæd PMF that can occur.

Brown (1982) recommended that the effect of rearrangement be taken into account,

"It is recoruncnded that the effect of varying patterns be examined and the

feasibility of occunence of the most severe patterns be srudied in
conjunctíon with obserted temporal patterns and then discussed with
meteorolog¡srs. .A subjective decision rrust finally be made but this should
be made with a background lorowledge of the effects of different alternatives
in terms of their reality and effect on costs."
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Wood and Alva¡ez (1982) described the policy of rearrangement of temporal patterns
which was used to determine PMFs by the Waær Resources Commission in New South
Wales. The temporal patterns were completely rearranged to give "the most critícal
condítion of runoff'. This procedure was adopted despite a recommendation by the
Bureau of Meteorology that the design temporal patterns should not be rearranged. The
Bureau of Meteorology made three recommendations (Wood and Alva¡ez, l9B2):

"f. temporal patterns lo, design stornß shourd not be modified
indiscríminately;

2. any modifications should only be caried out afte ø thorough analysis of
mc t e o r o Io g i c al facto r s ;

3. the tnodified pattern must be consistent with that of at least one observed
major stonìL"

These recommendations were noted by V/ood and Alvarez (1982) but the temporal
patterns were still modified because of the practice in the US and the catastrophic effect
of a failure of a dam. This reflects the desire to determine an estimate of the pMF which
is an absolute ma:rimum.

The rea¡rangement of the temporal pattern is not considered to yield a rcasonable
estimate of the PMF.

"Reørrangement of patterns to give ihe maximum possible Jtood peak is at
variance with the design obiective determining a timiting value to floods
that could reasonably occur." (Nathan, l9g2)

Nathan (L992) described the development of the design temporal patterns to be used as

part of the GSAM. The average variability method was used to derive the temporal
patterns from a large database of extreme storms. These temporal patterns were then
smoothed in keeping with the belief that the æmporal patterns of extreme storms are
more uniform than for more frequent storms. The aim of the procedure is to develop
temporal patterns that, "satisfy the combined requiremcnts of engineertng conservatism
andnotions of physical realiry" (Nathan, l9g2)"

9.4.1. Adopúed Temporal Pattcrn

The design temporal pattern appropriaæ for all durations up to 6 hours is shown in
Fimrro O /) lÞ"ll^+i- <l \ A l+L^..-L :¿ :^ L^^^J ^- -¿---- - r^¡êsrv/,¿\uurwtrttJL). tar'urLtuË,¡lrLlòu.lùq¡ullùlUlIllSlf()mtne.¿\Ll anoMelboufnerit
was considered to be suitable for use in this catchment. The second temporal pattern
Figure 9.2 is a typical 24hour æmporal pattern used in the GSAM.
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9.5. Application of Bulletin 5

The procedures used in Bulletin 51 derive standard rainfatl depths from a set of depth-

duration-area curves for the area of the catchment. These depths a¡e then adjusæd by

various factors reflecting the individual cha¡acteristics of the catchment: geographical

location, moisture poæntial, elevation and topography.

The depth-duration-a¡ea curves are adjusæd by the ratio of the highest aunospheric

moisture content possible in the catchment to that at 28oC. The values of the percent

reduction is obtained from Figure 3 of Bulletin 51. From this figure, a value of 0.64 was

adopted for the Onkaparinga Catchment. This comp¿ues with the value of 0.63 that was

used by the Bureau for their earlier estimation of PMP for the Onkaparinga Catchment

(BoM, 1984).

Recorded storms indicate that storms of les than I hour duration ¿ue not influenced by

the underþing topography @ierrehumbert and Kennedy, 1982). For storm durations

greater than one hour, Bulletin 5l distinguishes be¡veen smooth and rough tenain and

two separate sets of rainfall depttr/duration/area curyes are given. This is because rough

terrain can trigger thunderstorms and can hold them in place @ulletin 5l).

The rough terrain is defined as catchments where elevation changes of 50 metres or more

u/ithin 400 metes are common. Appendix K includes a map of the Onkaparinga

Catchment showing the slopes. It can be seen that a significant part of the caæhment has

a slope greater than 12.5 percent. The caûchment was therefore considered to be rough.

Earlier PMP estimation Drocedures included an adiusftnent for elevation. Bulletin 5l
includes no adjustnent for elevations up to 1,500 metres and a reduction in PMP of 5
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percent per 300 metres for elevations above 1,500 metes @ierrehumbert and Kennedy,
1982). No ¡eduction for elevation was necessary as none of tie caûchment is abo,,,e 1,50C
metes.

The PMP estimates derived using Bulletin 5l are assumed to occu¡ in summer or early
autumn. This is because exfieme rainfalls are more likely during the warmer months
when the aünosphere is able to hold more moisture vapour. It is noæd in Bulletin 5l that
this period coincides with the period of greatest minfall losses as the soil is drier than in
winter- PMP estimates for other times of the year are therefore included in Bulletin 51.
The limiting area for winter pMp estimates is 500 km2.

No allowance for seasonal variations was made. This is because the storage level of Mt
Bold Reservoir is at its highest level during late spring and summer and the choice of
losses is insignihcant when compared to the depth of rainfall (section 9.3).

9.6. Preliminary PMp Results

The calculations required to deûermine the PMP depths for the various subareas for any
one location can øke a significant amount of time. The procedures adopted were based
on those outlined in Bulletin 51, Departnent of Territories (1985) and in a subsequent
PMP report, BoM (1991).

The estimation of the PMP involved two steps. In order to obtain a relatively quick
estimate of the PMP, the average rainfall for each subcatchment was initially estimated
by eye from the isohyetal pattern. The PMPs for different locations were then routed
through the carchment using the RORB model to produce ouflow pMFs (Section 10.4).
once the critical locations were determined, a full analysis of the rainfa[ depth on e¿ch
subcatchment was made using a planimeter. The preliminary and final pMp depths were
then compared.

The calculation of PMPs was performed using a spreadsheer. The preliminary pMp
values are summarised in Appendix K for each duration and location.

The PMP depths have been plotted on Figure 9.3 to show the relationship betrveen the
durations, subcarchments and locations. From this hgure it is possible to quickly
determine whether there a¡e any large errors in the estimation of pMp depth.
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Chapter 9 - Probabl¿ Maximwt Precipitation

9.6.1. PMP for Durations Greater than 3 Hours

t^- J,,-^+:^á^ À6^+^- +L^- â L^.,-- Dì'lfl ^-ri-^r^. -L^,.!J L^ ^^l^..1^+^¡ ..^:-- ¿L^ /!(l Ârll' Ltr¡r4u\.rrr¡) Ërvq,l¡.r urfur J ¡!v(¡rù, r ¡v¡t vùL¡¡¡t4t!ù ùt¡\rt¡¡t¡ ut/ l/a[rvul4t{^¡ LutI¡¡Ë, uIç Lt!t/.u,vr

@earce et al., 1993; Kennedy, et al., 1988). Unforn¡naæly the undertaking of a GSAM

by the Bureau of Meteorology was beyond the scope of the research in ærms of both

cost and time constraints (Section 9.1).

It is recommended that a GSAM be undertaken by the Bureau of Meteorology for the

Onkaparinga Catchment. H further research is to continue into other South Australian

catchments it is recommended that a GSAM be undertaken.

In order to estimate longer duration PMP depths, PMP estimates from other catchments

in south eÍNtern Australia were ex¿unined. Figure 9.4 shows a compilation of the PMP

estimates in south eastern Australia for a number of catchments that have estimates

calculated using the GSAM.

The PMP estimates from other catchments suggest that the short duration PMP

estimates obtained from Bulletin 5l can be extrapolated and provide useful estimates of

the longer duration PMP for the Onkaparinga Catchment.

It is recommended that the PMF be recalculated once the GSAM is compleæd. It is not

expecæd that this will result in substantially different results because the critical duration

of the PMP is approximaæly 3 to 4 hours (Section 10.4).
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A number of estimates for the extension of the PMP were tested for analysis of the PMF.

These are sho\iln in Figure 9.4. The adopæd PMP estimates for the longer durations are

slightly below those shown from other catchments. This is reasonable as the other

estimaæs a¡e from catchments which a¡e located in regions that have a greater chance of
tropical storms occurring.

The æmporal pattern from the GSAM was used for the longer duration PMPs. This

temporal pattern has been derived using the average variability method of Pilgrim, et al.

(1969) and smoothed for consistency using the method of Nathan (L992).

In BoM (1991) it is recommended that for the 12 hour duration PMP, a 24 hour

temporal pattern and the Bulletin 51 temporal patærn should both be used with the

resulting PMFs being averaged. The two temporal patterns used are shown in Figure 9.2.

9.7. Full PMP Analysis

From the routing of the preliminary PMP estimaæs (Section 10.4), it was evident that the

critical PMP was location 3 with a duration of approximately 4 hours.

A full PMP analysis, as outlined in Bulletin 51, was performed for this stonn event. The

area and hence the rainfall on each subcatchment was deærmined from the isohyets using

a planimeter. The results of the full PMP analysis are summarised in Table 9.1 for

durations of 3, 4 and 5 hours.

Table 9.1 Full PMP Analysis for 3,4 and 5 hour Duration at Location 3

Total Precipitation in mm

4824939540.13L
46142937723.WK
67663656938.01J

681&257423.r9I
63760153335.09H
81377369222.18G
605567504M.89F
29927423629.yE
t9417414530.8sD
3773503U19.56c
1221068627.83B
6052425r.93A

5 hour4 hour3 hou¡Area (km2)Subcatchment

The difference between the final PMP and the preliminary PlvfP analysis a¡e shown in

Table 9.2. Although there are significant differences in the estimation of rainfall depth for
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simila¡ to the PMF calculaæd using the preliminary esrimare of PMP (Iable 10.2). This
tends to validate the procedure of the preliminary estimation of the PMP depths.

Table 9.2 Differences between Preliminary and Final pMps for Location 3

-6.5u9420-7.339536,10.13L
-2.t429420-2.93773623.09K
-5.5636601-5.156954038.01J
0.8&2&71.657458323.t9I
r3.060167916.353362035.09H
-7.1773718-5.969265122.18G

567550-2.8504490Æ.89F
13.1274310t5.72f627329.yE
11.5t74t9411.014516130.85D
-5.73503304.33U28519.56c
-2.8106103-5.8868127.83B

â(^<t65-11.9423751.93A

Difference
(%l

Full
(mm)

Pr,elim
(mm)

Difference
(%l

Full
(mm)

Prelim
(mm)

Area
ûm2)

Sub
catchment

4 hour3 hour

9.8. PMP for Catchment to Otd Noarlunga
The PMP-s for the eaûehment to Old Noarlunga were established by using the locations
that were deemed to be the critical locations of the isohyetal pattern for the Mt Bold
Catchment. The isohyetal patterns for location 3 and 4 a¡e shown in Figure 9.5 for the
catchment to Old Noarlunga.

The PMPs were then calculaæd for the larger a¡ea. This resulæd in a lower total depth
for each of the various durations examined. The distributed rainfall depths over the
whole catchment were calculaæd using the preliminary method as results obtained from
analysis of the Mt Bold Catchment (Section 10.5) showed that there was little effect in
using the accuraæ analysis when it came to calculating the pMF.

The results of ttre analysis are shown in Appendix K for Locations 3 and 4.

The temporal patûerns that were established for the va¡ious durations for the Mt Bold
catchment were deemed to be suitable for the old Noarlunga Catchment.
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Figure 9.5 PMP Isohyetal Pattem l-ocation for Old Noarlunga Catchment
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9.9. Summary of PMP Results
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Figure 9.4. PMP estimates for longer durations were extrapolated hgures matched to the

shorter durations from Bulletin 51.

These PMPs were distributed according to the spatial distribution recommended in

Bulletin 51 in order to determine preliminary results for the various locations of the PMp
isohyetai pattern. These PMPs were then routed as described in ehapær l0 to deærmine

the critical location of the isohyetal pattern. A full analysis of the PMP was then

undertaken for the critical location.

The preliminary PMPs for the Onkaparinga Carchment to Old Noarlunga were estimated

in a similar fashion but included the accurate analysis results of the Mt Bold analysis.

Because the PMF rcsults from the Mt Bold Caûchment indicaæd that the preliminary

PMP estimates produced similar values of PMF as the full PMP analysis, a full pMp

analysis was not done for the four subcatchments downstream of Mt Bold Reservoir.
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Probable Maximum Flood

10.1. Introduction

The concept of the probable maximum flood @MF) is discussed in Section 2.3.

Guidelines for calculating the PMF are included in ANCOLD (1986) and IEAust (1987).

The inæntion of these two guidelines is that the PMF should reprcsent a 'rtasonable'

estimate of the mærimum flood.

It is therefore important that the modelling is undertaken to ensure a reasonable estimate

of the PMF. The magnitr¡de of the resultant PMF is affecæd by the adopæd spillway

rating curve, the chosen model par¿rneters and the choice of PMP.

The derivation of the PMP is discussed in Chapter 9. The PMP was converted to a

rainfall excess by the subt¡action of losses and routed to produce both inflow and

oudlow hydrographs for Mt Bold Reservoir using the RORB package described in

Chapær 6.

L0.2. Extrapolation of the Spillway Rating Curve

10.2.1. Introduction

From preliminary estimaæs of design flows it became evident that the spillway capacity

\vill be exceeded by floods of low annual exceedance probabilities. In order to estimate
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The gauge height can be converted to Australian Height Datum using Equation l0.l for
the Mt Bold location.

EUm) = GH + 205-5 (10.1)

Figure 10.1 shows a diagrammatical cross section of the top portion of the dam wall
indicating the relevant elevations and corresponding gauge heights for the case where all

gates are open 3.8 metres.

10.2¡.2. Maximum Gate Opening

The capacity of the gated spillway is limited by the morimum gate settings. From a field

trip by the author in August 1992, it was found that the maximum gate openings differed

greatly from those in the operator's notes based on a test conducted in November 1985

(Section 4.2.2.2). The maximum gate openings need to be reset to allow the gates to

open to at least 3.8 met¡es. This has important rspercussions on the calculaæd rating.

For a gauge height of 42.92 met¡es (dam crest), the discharge over the spillway for all

gates open to their current maximum settings, as shown in Table 4.1, is approximately

950 m3/sec. If the gates are reset to allow them to open to 3.8 metres, this would be

increased to 1,170 m3/sec.

Gatc Hoisr DcckGH 46.63

GH 46.33

GH 45.20

c[[42.92

cH 42.30

GH 38.50

EL?52.t3

EL ãI.83

Top of Gatc F,L250.70

Da¡r Crcst 248.42

Bottom of Gatc F;L247.E0

Spillway Crcst EL 244.00

Figure 10.1 Cross Section of Mt Bold Dam showing Elevations
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10.2.3. Components of the Rating Curve for Mt Bold Dam

In order to calculate the rating curye to rout the PMF through the reservoir it was

assumed that all of the gates were opened to 3.8 metres. This meant that the rating curve
did not depend on gate operations but rather only on the reservoir level. It was also

assumed that the bridge hoist deck stn¡cture remained intact for all flood levels.

ANCOLD (1986) ¡ecommends that for routing floods through a gated spillway thar
consideration be given to malfunction of some of the gaæs. This could be a result of
operator error or equipment failure. There is also the possibility that one or more of the
gaæs becoming partially blocked by debris. Because of the large uncertainties associated

with the determination of the rating curye for routing of the PMF, the consideration of
gate failure was not considered to be warranted.

The different component flows of the extended rating curve are listed below:

Spillwoy Flow

Assuming the gates are initially raised, water spills for a gauge height greater than 38.50
metres. The rating curve for the spillway was calculated using the equations proposed in
Hager and Bremen (1988). These equations are discussed in Chapær 4. Initially the flow
was calculated as flow over an ungated spillway. As the head increases the gaûes become

submerged and the flow is controlled by the gaæd spillway.

As discussed in Section 4.3.1.3, the design head for Mt Bold Reservoir's gated spillway
has been estimated to be 3.8 metres. This me¿rns that the maximum head which can be
used in the equations proposed by Hager and Bremen is 7.6 metres, which corresponds

to a gauge height of 46.1 metres. The equations were used up to a gauge height of 5l
metes. Although this exceeds the limit imposed by Hager and Bremen (1988), these sets

of equations represent the best method of calculating the rating.

SpíIl over the Dam Crest

When the reservoir level reaches a gauge height of 42.92 metr€s, water spills over the
dam crest. The length of the dam crest from the abutment to the gate structure on the
north side is 58.52 metres and on the south side is 95.61 metres (E&WS drawing number

E59 388). The flow is assumed to act as a broad crested weir. The discharge was

calculaæd using Equation 10.2.

Q =Lú"y'Pß (10.2)
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bu is the effective width (m); and

/l is the head (m).

Spill over the Gates and Below the Gate Hoist Bridge

When the reservoir level reaches a gauge height of 45-20 metres, the flow passes over
the raised gates. This has been approximated as flow over a broad crested weir. When
the reservoir level is greaær than 46.63 meües, the flow over the gates was considered
as oriltce flow. The rectangular orifice has a width of 58.52 metres and a height of l.l3
metres, when the gates are open 3.8 metres.

Spill over the Gate Hoßt Bridge

Once the reservoir level reaches 46.ó3 metes the water will flow over the gate hoist
bridge. The rating was calculaæd as a broad crested weir, where the effective width was
assumed to be 73 metres.

Spill over the Saddle

Analysis of the topography revealed that at a gauge height of 43.8 metes (BL 249.3m),
water begins to flow through a saddle located approximately 650 metes north-west of
the dam wall. The lowest point of the saddle is only 880 mm above the dam crest and 5.3
metres above the spillway crest. Unfortunately there is no accurate survey of the area.
An approximate cross section of the saddle was determined from E&ÌWS drawing
number E59 399, Mt Bold Dam - Røising Additions to Clay Blanket Area. This drawing
shows ¡[e i¡5tellation of a clay blanket and includes a contour plan of the saddle region.
Additional information was obtained from a l:10,000 map.

In order to deærmine an approximate rating of the saddle, it was assumed that the saddle
was cleared of all vegetation and re-contoured. The adopted cross section is shown in
Figure 10.2.

The approximate rating for the saddle was calculated using Equation 10.2, which applies
for a broad crested weir. The width of the saddle varies from 55 metes to a maximum of
210 metres (Figure 10.2). If the saddle is to be used as an auxiliary spillway it is
important that an accurate survey of the area be undertaken and a revised rating be
established.

The use of the saddle Íìrea as an auxiliary spillway has some ramifications which should
be addressed. The current access road to the reservoir passes across the saddle and this
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may need to be realigned. Water flowing over the saddle may also impinge on some of

the existing buildings.

Existing Sulace
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Figure 10.2 Elevation of Saddle Showing Assumed Cleared Cross Section
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10.2.4. Composite Rating Curve for Mt Bold Dam

The components of the rating curve were combined to produce a composite rating for

the spillway and this is shown in Figure 10.3. It is important to note that for high gauge

heights the discharge over the saddle is a significant portion of the total discharge.
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Figure 10.3 Extended Rating Curve for Mt Bold Dam



Cløpter IO - Probúb Maxi¡¡ton Flood

10.3. Model Parameters

10.3.1. Introduction

A unit hydrograph or runoff routing model can be used to rout the rainfa[ excess. It is

stated in IEAust (1987) that because of non-line¿riy, "the use of an average unit
hydrograph probably would lead ø an underestimate of the pMF,.

Following the discussion in Section 6.2, the RORB model was chosen. The RORB
runoff routing model is described in Chapter 6.

10.3.2. Model Non-LinearÍty

The choice of runoff routing model used to rout the excess rainfall to produce a pMF is
very imporøni. MosÍ Australian runoff routing progr¿rms have a relationship benveen the
temporary storage and the discharge of the form of Equation 10.3.

S * kQ^ (10.3)

where: S is the storage;

Q is the discharge; and
,t and m are constants.

The model is considered to be linear if the exponeît m is one. Non-linear runoff routing
models use a different value of m which is usually less than one. The use of non-linea¡
runoff routing models has contributed to increases in the estimates of pMF.

The choice of the degree of linearity is very important. Daniell (1987) concluded that the
choice of model linearity affecæd the estimated PMF by up to 30 percent. This was
confirmed in Section 10.6.4.

Another factor to be considered when comparing PMF estimaæs derived using unit
hydrographs and runoff routing models is that uniform rainfall is generally used with the
unit hydrograph whereas spatially varied rainfall is used with the runoff routing models
(Daniell, 1987). The use of spatially varied rainfall also increases the estimate of the
PMF.

IEAust (1987) makes the following recommendation regarding the choice of model
li-oo-i¡' '.¡g¡wr}r,

"were most of the valleys in the catchment are v-shaped with only small
flood plains:
. il the value of m is found by calibration and is > 0.g, adopt this value;. if the peak of the cølibration flood is > 0.4pMF, and the calibrøted m ß
less than 0.8, adopt the calibrated value;
. otherltise use m= 0.8".
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From the calibration undertaken in Chapter 6, the preferred value of rn was 0.7. The

largest calibrated event had a peak flow of 432 m3/sec. From initial estimates of the

PMF, it was obvious that ttris flow was significantly less than 40 percent of the PMF.

Following the recommendations of IEAust (1987), a value of rn of 0.8 was adopted for

routing the PMF.

The sensitivity of the PMF to the choice of model non-linearity is discussed in Section

10.6.4.

10.3.3. Adopted Model Parameúers

The calibration of the model is discussed in Section 6.4. From the discussion included in

Section 10.3.3, a value of z of 0.8 was adopted. For this value of m the best estimate of

È" was 16.3 (Section 6.4).

The choice of losses is discussed in Section 9.3. The pa¡ameters chosen for analysis of

the PMF for the Mt Bold Catchment are shown in Table 10.1.

Table 10.1 Model Parameters for Routing the PMF for the Mt Bold Carchment

16.3k^

0.8ln
0 mm/hrCL

0mmIL

10.3.4. Initial Storage Level

The storage elevation curve was extended to incorporate the elevations reached with the

estimated PMF. The extrapolation of the storage elevation curve is discussed in Section

4.7.

ANCOLD (1986) recommends that unless normal operating procedures indicaæ

otherwise, a reservoir should assumed to be initially full for routing the PMF through the

storage.

In Section 8.2 the probability of storage levels for different months was analysed. This

indicaæd that it is likely that the reservoir will be close to full prior to the PMF inflow. It
is therefore not considered to be unduly conservative to assume that the reservoir is

initially full.

The sensitivrty of the calculaæd PMF to the initial storage level was undertaken using a

range of storage levels and the results a¡e shown in Section 10.6.
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10.3.5. Treatment of Baseflow

The PMF nelnrrl¡tcd frnrn fhe Þl\lÞ dæo ¡nr in^I,,'lo ô L^-^f1^,-, --t ^L' ,-' r,. ¡r¡^ swu ¡¡vr u¡wrusv s u4òvlr(rw 9u¡r¡putrçtlt ¿ulu r¡lgftrlurg
the baseflow component should strictly be added. In most circumstances the baseflow is

only a small proportion of large floods and is therefore ignored. If the baseflow is to be
included,IEAust (1987) recommends a value 20 to 50 percent greater than the maximum
value estimated in design floods.

In the calibration of the rainfall runoff muJel for the Mt Bold Carchment, the peak
baseflows were generally l0 percent of the peak discharge. The largest estimated peak
baseflow was 34 m3/sec (fable 6.1). A baseflow of approximately 50 m3/sec could
therefore be added to the surface runoff component of the pMF.

In the calculation of the PMF a continuing loss of zero was adopted and the reservoir
was assumed to be ititially full. The addition of baseflow was considered to be unduly
conservaiive. The effect oi the choice of continuing ioss was tested by calculating the
PMF using a continuing loss of I mm/lu. This tended to reduce the peak flows by
between 50 to 100 m3/sec. This was of a simila¡ magnitude to the baseflow component
of the PMF.

In an attempt to obtain a reasonable estimate of the PMF it was decided not to add the
baseflow. This was because eonservative choices of both initiai reservoir level and
continuing loss had been adopted (Section 10.6.2).

1.0.4. Results of Preliminary PMF Analysis

The preliminary PMP depths using Bulletin 5l and the estimated longer duration pMps
that were developed in Section 9.6 were routed using the calibraæd RORB model. The
parameters shown in Table 10.1 were used in the analysis. The storage at Mt Bold was
assumed to be initially full for these analyses. The extended spillway rating developed in
Section 10.2 wa-s used.

The resulting PMFs are summarised in Table 10.2. It is clear from this table that the
attenuating effect of the storage is lower with the longer duration storms. The 6 hour
peak flow value for isohyetal location 3 is attenuated by only 3.4 percent whereas the 3
hour peak flow value for isohyetal location 3 is attenuaæd by 11.9 percent.
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Table 10.2 Preliminary PMFs using Bulletin 5l PMps

4,7N4,9(X)u
6,6006,800t2
8,10oE,5008,¡+00r,900E,200E,500t,¿1008,700t,3008,6006
8,3008,7008,7009,,1008,ó009,0008,8009,3008,6009,1005

8,300E,9009,1009,9008,9009,7W9,2N10,0008,8009,6004
7,5008,2008,5009,7008,5009,6008,90010,1008,3009,5003

6,(X)O6,7W7,0008,3007,1008,8007,5009,1006,9008,,+00a
3,5004,2N4,1005,5004,2ffi6,1004,5006,m4,0005,700I

(m3/sec)(mt/ecc)(mVscc)(m7scc)(mt/scc)(mVscc)(mVscc)(mVscc)(mVscc)(mVsec)(hrs)
OuflowsInflowOuflowsInflowOuúlowsInflowOuülow¡I¡flowOuflow¡InflowDuration

Uniform Rainf¡ll543I[.æation

The peak oufflows for different duration PMPs are plotted in Figure 10.4 for different
isohyetal locations. The largest peak ouflow PMF occurs for a 4 hour PMp situaæd at
location 3. The four different locations tested resulted in similar oufflow peat¡s.

The highest inflow was prduced by the 3 hour duration storm.

The use of uniform rainfall resulted in lower outflow PMF estimates. The PMF estimaæs

calculated using uniform PMP tended to approach those for non-uniform PMP for longer
durations.
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The sensitivity of the extrapolation of the estimates of the PMP for durations longer than

6 hours was tested by analysing PMP depths that were larger than those predicted by the

extrapolation. It was concluded that none of these were critical to the estimate of both

the inflow and oudlow PMFs. A 5.5 percent change in precipiøtion estimate gave a 5.6
percent change in inflow and a 6.2 percent change in ouülow.

Following the discussion included in Section 9.6.1, the PMF calculated from the 12 hour
duration was the average of the PMFs produeed by two different æmporal patterns. The

peak flow values obtained using the 24 hour duration pattern were higher than those

obtained from the Bulletin 5l patæm.

10.5. Final PMF Analysis

Once the critical storm location and duration had been identified, a final PMP anatysis

was undertaken. This is described in Section 9.7. These estimates were then routed to
produce oudlow PMFs.

In Table 10"3 the PMF values are compared to those based upon the preliminary

estimates of the PMP for isohyetal location 3. Although there was a difference in the

estimates of the rainfall depth on individual subcatchments for the preliminary and

accurate PMP estimaæs (Table 9.2), there was very little effect on the estimate of the
oufflow PMF.

Table 10.3 Differences between Preliminary and Final PMF Analysis for Location 3

-l.l8.9008,8000.09.3009.3005
-1.19,3009.2m-1.010,10010.0004
0.08.9008.9004.910.20010,100?

Differe¡ce
(%l

Final
(mr/sec)

Preliminary
(ml/sec)

Difference
(%\

Final
(m3/sec)

P¡9limi¡¿¡-y
(mt/sec)

Duration
(hours)

Oudlow PlvfFInflow PMF

The final values for the inflow and outflow PMFs a¡e shown in Table 10.4 for a range of
durations for isohyetal location 3. An inæresting featu¡e of Table 10.4 is that there is
only a difference of 400 mm in the peak elevations reached for durations from 3 to 6
hours.

166



The final inflow and oudlow PMF hydrographs for Mt Bold a¡e shown in Figure 10.5
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Table 10.4 Final PMF Analysis for Location 3 for va¡ious Durations

48.908,4008,7006

49.t48,9009.3005

49.309,30010,1004
49.t48,90010,2003

48.457,5009,1002

46.754.5006.¿m0I

Peak Elevation
(m)

Outflow
(m3/sec)

Inflow
(m3/sec)

Duration
(hours)

lnflow

Outflow

t2m

ìm
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Figure 10.5 Final InflodOuülow PMF Hydrographs for Mt Bold Reservoir (4 hr
duration and PMP location 3)

10.6. PMF Sensitivity

In order to test the sensitivity of the estimaæ of the PMF, various parameters were

varied in order to give a high and low bound for the PMF. The sensitivity of the

estimated value of the PMF to changes of various parameters compared favourably with
those listed by Daniell (1987).
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f0.6.f. Isohyetal I-ocation
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the isohyetal pattern for the PMP should þ a central location, however following the
discussion in Section 9.2, the sensitivity of the PMF to the location of the pMp was
analysed.

Five different locations were æsæd and isohyeøl location 3 was found to be critical
(Seetion 9.2 and i0.4).

The PMF calculated using isohyeat location 3 is compared with those produced using
other isohyetal locations in Table 10.5.

Table 10.5 Comparison of Outflow PMFs Calculaæd from Different hohyetal
Locations

4%o%-2%-t%8,4006
-6%-l%-2%-2%8,9005
-lWo-lVo-3Vo4Eo9,2W4
-t6%4Vo4Vo-7%8,9003
-2V%-7%-5Vo-8%7.5002
-22Vo-9Vo-7Vo-lt%4,500I

Uniform
Rainfall

Location 5Location 4I-ocation I(m%ec)(hrs)
DifferenceLocation 3Duration

Note: Location 2 was discarded (Section 9.2.2)

It is clea¡ from Table 10.5 that the differences between the pMF calculated using
isohyetal location 3 and the PMFs calculated using the other isohyetal locations are
greatest for the shorter durations. As the PMP duration increases the difference between
the outflow PMF estimates decreases. At the critical location, the difference is
approximately 5 percent

In the previous PMF study of the Mt Bold Catchment (Kotwicki, 1984) a uniformly
distribuæd sÛorm was used. The PMF analysis has shown that this would have resulted in
a lower estimate of the PMF by approximately 10 percent at the critical durations but
there is little diffelence at the 6 hour duration. Spatially distribuæd storms are
man-na-ã-â L,, rL^ D---^^-- ^f lt^¿----r- -. - r ¡¡wv¡r¡¡rrvt¡tiw LrJ rrrç uuredu ul rvltrl.EurUrUË,y anq fn f.trÂ,Ust (fyð/) pfunanly beCaUSe

that is the mechanism by which these exteme events occur.
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10.6.2. Baseflow

From the calibration of the RORB model, a baseflow of up to 50 m3/sec could be added

to the calculaæd surface runoff PMF. This represents 0.5 percent of the peak inflow

PMF.

It was concluded that the baseflow should not be added if the continuing loss is zero

(Section 10.3.5).

10.6.3. In¡tial Storage Level

Although the Mt Bold Reservoir was assumed to be full for the 4 hour duration PMP

storm event, a thorough analysis was undertaken using the distribution of storage levels

likely for different seasons.

Figure 10.6 shows the PMF outflow hydrographs for different initial reservoir levels for

the period during autumn and late summer when the reseryoir is drawn down. This was

calculated using the average end of month storages for January, February, March and

April.
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The likelihood of the storage being full due to rainfall preceding the pMp was considered
to be sufficiently high to choose the full storage option for analysis. This opticn is also
recommended by ANCOLD (1986).

10.6.4. Model Non-Linearity

The sensitivity of parameters for the runoff model was investigaæd with a range of
values beit g examined. Figure 10.7 shows the different hydrographs resulting from
different choices of non-linearity.
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Figure 10.7 Effect of Model Non-linearity on Calculated Outflow pMF (zero losses)

Table 10.6 compares the peak flows obtained from different values of the parameter rn. It
is clear that as linearity increases the PMF peak diminishes. The choice of exüeme non-
linearity results in overestimating the inflow PMF by 26 prcentand the ouflow pMF by
19 percent. The choice of a linear model would result in underestimating the inflow pMF
hrr 2< ñâ'^^ã+ ^--l ¿L^ ^--l-ft - nt tF rvJ JJ l&rv'gur.ulrJ utç uuutuw rrvrr Dy JJ percent.
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Table 10.6 Effect of Model Non-Linearity on the PMF

-33%6,2m35%6.5005.51.0

-t7%7.7W-lgVo8,2009.50.9

9,300r0.100r6.30.8

+12%10.400+l3Vo11,40027.40.7

+19%I 1,100+26%12,7n46.40.6

Comparison
with m==0.8

Peåk
(m3lsec)

Comparison
withm=0.8

Peåk
(m3/sec)

k.m

Outrlow PMFInflow PMF

10.6.5. Choicc of Losses

The PMF was calculaæd using zero losses. The sensitivity of the PMF to the choice of

initial and continuing loss was tested by calculating the PMF using different losses. The

results are shown in Table 10.7.

Table 10.7 Effect of l¡sses on the PMF

-5%8,8004Vo9,7W020

-2Vo9,100-2%9.900010

-2%9.100-r%10,00020

-lVo9,2W-lVo10.000I0

9,30010,10000

Comparison
with zero losses

Peak
(m3lsec)

Comparison
with zero losses

Peåk
(m3lsec)

CL
(mm/hr)

IL
(mm)

Outrlow PMFInflowPMF

From Table 10.7 it is evident that the choice of losses, within reasonable bounds, does

not have a dramatic effect on the calculaæd PMF. The adoption of a CL of 1 mm/tu

would only decrease the oudlow PMF by 1 percent.

10.6.6. Extrapolated Spiltway Rating Curve

The calculation of the spillway rating curve effects the estimated outflow PMF. The

calculated rating was approximately 15 percent less than the existing spillway rating. The

adopted spillway rating cule calculaæd using the gaæd spillway equations in Chapter 4

has not been verihed for the Mt Bold Dam. The actual rating is expecæd to vary slightly

from the theoretical because of errors in the estimation of the design head, contraction

coefficients, velocity head and coefficient of discharge.

The routing of the PMF through the storage, necessitated the extrapolation of the rating

curve. lhrs involved extrapolatlon

t7l
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recommended limiß. Several assumptions were also made regarding the validity of the

broad crested weir formula to adequately represent the flow over the dam crest and

through the saddle.

For large flows the flow th¡ough the saddle represents a large proportion of the total
flow (Section 10.2.4). An accurate survey and hydraulic analysis of the saddle should

therefore be undertaken to reduce the large uncertainty existing as to the extended

rating.

10.7. Reasonable Bounds of the PMF

The determination of the PMF is but one important element in the design or evaluation of
a spillway. The reasonableness of the design will not only depend on the estimation of
the PMF but also on the probability assigned to the PMF and also to the freeboard and

other parameters adopted. It is important that all parameters represent reasonable

estimates. Not withstanding this, it was thought necessary to estimate the upper and

lower bounds of a reasonable estimate of the PMF.

The calculation of reasonable bounds of the PMF necessiøted judgement as to what was

considered to be 'reasonable'. The bounds calculaæd were not intended to be physically

based bounds which could not be exceeded. The intention was to determine bounds

which provided reasonable limits to the estimaæ of the PMF.

The parameters adopted to represent the upper and lower bounds of a reasonable

estimaæ of the PMF are shown in Table 10.8.

Table 10.8 Bounds of Reasonable Estimates of the PMF for Mt Bold Reservoir

-4%+16%Difference from adopted (9.300 m3/sec)
5,200 m3/sec10,800 m3/secPMF Outflow

-45%+22 7oDifference from adopted (10,200 mr/sec)
5,600 m3/secl2,M m3/secPMF Inflow

2 mm/hr0Continuing loss
20 mm0Initial loss

m=t.O, k^=5.5m4.7. k-=27.4Model parameûers
15 GL drawdownFull Supply LevelInitial reservoir level

0+ 100 m3/secBaseflow
l,ocation ILocation 3Isohyetal location
Low BoundHish Bound

The partial area effect discussed in Section 10.9 was not considered to be a reasonable

estimate of the PMF. The case of spatially uniform PMP was not considered to reprcsent
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a reasonable lower bound of the PMF. This is because although spatially uniform PMPs

have been used in the past, Bulletin 5l recommends the use of spatially non-uniform

PMPs.

The initial storage level was assumed to be at full supply level (Section 10.6.3). This

gives the upper bound. A drawdown of 15 GL was considered a reasonable lower bound

for the initial storage level (Figure 8.11).

The choice of model non-linea¡ity has a large effect on the calculaæd PMF (Section

10.6.4). A value of m of 0.7 was chosen for the lower bound and a value of m of 1.0 was

chosen for the upper bound. The choice of a linear model represents the use of a unit
hydrograph. Although a value of. m of 0.6 was shown in Figure 10.7, it was considered

to be overly conservative.

It is evident from Table 10.8 that the adopted PMF estimates a¡e well within the

reasonable bounds. The estimates are slightly on the high side. The adopæd inflow and

ouflow PMFs are considered to be the best estimate.

Although the upper bound ß 22 percent above the adopæd value, it should be noæd that
this only represents a difference in the peak stage height of 650 mm. The lower bound

represents a decrease in the peak stage height of 2J metres.

10.8. Extension of the Flood Frequency Curve to the PMF
It is not theoretically possible to assign an annual exceedance probability (AEP) to the
PMF (Section 2.3.5). It is however necessary to estimate a probabiliry for the PMF for
economic analysis and in order to determine the probabilities of flows benveen the PMF
and the I in 100 AEP discharge. A methodology of calculating the probabiliry of the

PMF and lesser events is outlined in IEAust (1987), based on Rowbottom et al. (1986b).

10.8.1. Assignment of a Probability to the MtBold PMF

The procedures in IEAust (1987) for assigning a probability to the PMF are based upon

two different criæria. The largest probability is assigned to the PMF. The first method

depends upon the effective transposition a¡ea used to calculate the PMP. For use of
adjusted uS data a probability of approximately I in 10E is recommended.

The second method depends on the shape of the flood frequency curve. The AEP of the
PMF is determined by the value of the ratio in Equation 10.4. Australia is divided into
two regions, with the south west of Australia designated as zone B and the remainder of
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Ratio =

xrn
Xtt
Xtt
xe

(10.4)

where: Xris the discharge for an AEp of I in y; and

Xr*is the PMF discharge

The expression in Equation i0.4 was evaluated for the inflow and the outflow frequency
curves. These were derived in Chapters 7 and 8 respectively. The value of the ratio and
the consequent AEP of the PMF are shown in Table 10.9.

Table 10.9 AEp of Mr Bold pMF

linlffI in 107AEP of PMF
8.6I1.5Yalue of Ratio (Equation 10.9)

9,300 m3/seclO,2æ m¡/secPMF
3ó5 m3/sec700 m¡/secI in 100 EP Event
250 m3lsec555 m¡/sec1 in 50 AEPEvent

OuúlowInflow

Table i0.9 indicates that a probability of either I in ltr or I in 107 would be appropriate
for the PMF (IEAust, 1987). hr keeping with the intention to obtain a reasonable degree
of conservatism, an AEP of I in lff was adopæd as the probability of the pMF.

Selection of the discharge to be used for the PMF plotting position has not been
rigorously defined in the literature.

The largest outflow PMF (9,300 m3/sec) was obtained from a 4 hour duration pMp,
whereas the largest inflow PMF (10,200 mr/sec) was obtained from a 3 hour duration
PMP. The inflow PMF corresponding to the oudlow of 9,300 m3/sec was 10,100 m3/sec.
The largest calculated inflow PMF of 10,200 m3/sec was adopted as the inflow pMF
because the frequency curve was considered to be an envelope of frequency curves for
different durations.

10.E.2. Flood Frequency curve Between the I in lü) aEp event and the
PMF

The curve fitting procedures included in IEAust (1987) were used to deærmine the flood
frequency curve between the I in 100 AEP event and the pMF. The first requirement
w¿ts to identify the lower end of the frequency curve by the estimation of the I in 50 AEp
and I in 100 AEP dischÍuges.
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The flood frequency analysis for this catchment described in Chapær 7 concluded that

for inflows to Mt Bold Reservoir, both a log Normal or log Pea¡son III distribution were

considered acceptable under various fit criæria. In a study to set up a regional flood

estimation technique (Akter, 1992), it was found that both of these distributions were

appropriate for many catchments in the Mt l¡fty Ranges. The log Normal disribution

was adopæd (Section 7.3.1).

The oudlow flood fiequency curve was calculated in Chapær 8. This involved

consideration of the joint probability of inflow and initiat storage level. The oufflow

fiequency curve is very important as it is used to assign an AEP to the imminent failure

flood (Chapær 11). The average composite disuibution was chosen as the most

appropriaæ outflow distribution.

The assigned AEP of the PMF and the intermediate discharges based on the

methodology of IEAust (1987) a¡e shown in Table 10.10.

Table 10.10 Discharges between 1 in 20 AEP and the PMF

9,3009.30010.2m10,2001,000.000
3.8504.5604.7n5.420s0.000
7ffi1,400I,1601,8102.000
275365475700100

23525042055550
1901653û43020

Clarendon Weir
0os Pearson trI)

MtBold outllow
(Averaqe Composite Cr¡rve)0os Pearson III)(loe Normal)

AEP
(1 in Y)

Mt Bold Inflow

The flood frequency curves for Mt Bold Reservoir extended to the PMF a¡e shown in

Figure 10.8. The effect of the choice of either the recommended log Normal distribution

or the log Pearson III distribution for the inflow frequency disnibution is also shown.
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Figure 10.8 Mt Bold PMF Flood Frequency Curves
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10.9. PMF for Clarendon Weir and Old Noarlunga

The PMFs for Cla¡endon Weir and Old Noarlunga were determined using the calibrated

RORB model for the Old Noarlunga Catchment. The PMP was calculaæd for the 522

lan2 catchment using isohyetal locations 3 and 4 for the Mt Bold Carchment (Section

e.8).

The PMF estimates for Mt Bold, Clarendon and Old Noarlunga are shown in Table

10.11.

The PMFs calculaæd at Cla¡endon Wei¡ and Old Noarlunga using isohyetal iocations 3
and 4 were very simila¡.

From Table 10.11 it is inæresting to note that the PMF inflow and outflow for Mt Bold

Catchment calculaæd using the PMP for the Old Noarlunga Carchment are higher than

those calculaæd using the PMP for the Mt Bold Catchment. This is due to a partial area

effect. Although the average depth of rainfall over the Old Noarlunga Catchment is less

than that for the Mt Bold Carchment the isohyetal pattern results in a greater volume of
rainfall being situaæd in the catchment to Mt Bold Reservoir.
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Table 10.11 PMF (m3/sec) from Old Noa¡lunga PMP, Old Noarlunga Model

4,7N6,1006,4(X)6,3006,2ffi5,5004,M2,MOld Noarlunga

Unifornr
Rainfall 4,7ffi6,4007,3W7,m7,m6,7005,4(n2,9nClarendon Weir

4,5006,40)7,5007,7ú7,7m7,0005,6003,(X)0MtBoldoutflow
4,7N6,5007,gffi8,1008,3007,6006,3003,700Mt Boldlnnow

7,8007,9507,9007,2æ5,9503,mOld Noarlunga

Isohyetal

t-ocation 4 t,9(x)9,3009,7509,3007,9504,600Cla¡endon V/ei¡
9,0009,60010,1009,8008,5004,950MtBoldOutflow
9,25010,00010,80010,90010,4007,000Mt Bold Inflow
7,7n7,8007,8007,1505,9503,400Old Noa¡lunga

Isohyetal

Iaation 3 8,8m9,2m9,6009,3008,0004,7mCla¡endon Vy'eir

8,9009,45010,0009,8508,6505,150MrBoldourflow
9,19010,00010,800I 1,10010,3007,050Mt Bold Inflow

UbI12hI6hr5hr4hr3hr2brthrDuration

Noæ: Values for Mt Bold inflow and oufflows were not adopted (Section 10.9)

This panial area flow was not consider€d to be a reasonable estimate for the PMF for Mt
Bold Dam even though it was 800 m3/sec greater than the critical value determined by

applying the PMP over the Mt Bold Catchment. The best estimate for the PMF was

deemed to be 9,200 m3/sec at Clarendon Weir and 7,900 m3/sec at Old Noarlunga. The

PMF hydrographs a¡e shown in Figure 10.9 for a 4 hour PMP situaæd at location 4.

The sensitivity of the PMF estimate to the choice of PMP for the longer durations of 12

and 24 hours was undertaken by varying the PMP depth. The resulting changes in PMF

peak flows were not significant

r2m
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10.9.1. Frequency curve for the r-ower onkaparinga Riyer

The flood frequency curyes ior the Onkaparinga River beiow Mt Bold Reservoir were
extended up to the PMF using the method described in Section 10.8.2. The results are
shown in Table 10.12.

Table 10.12 Peak Flows for the onkaparinga River below Mt Bold Dam

Peak Flows in m3/sec

7,9003,630920325zffi175Ave. Composite Old Noarlunsa

9.2n4.2t01,060375300205{ve. Composite Clarendon rigeir
9,2æ4,5601.400365250165Ave. Composiæ Mt Bold Ouflow

9.2m3,8207û275235190Hist Cla¡endon LPIII

1.000.00050,0002,0001005020AEP( I in Y)

The fiequency distributions up to the PMF for four different locations for the Lower
Onkaparinga River are shown in Figure 10.10. It is clear from Figure 10.10 that the use
of the log Pearson III distribution fitæd to the historical records at Clarendon Wei¡
would result in lower estimates of the peak flows than those calculated using the average
composite curves.

1 0000

1 000

r

---r- Hist Chr€ndon Lplll

----{- Mt Bold outllow

-.- 
Flow at Chrendon Weir

----*- Fbw at OH NoarlungeI
ilr/-.

++Øillt
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100

10 100 1000 looo0 looooo lo0oooo
AEP (t in y)

Figure 10.10 PMF Flood Frequency curves Downstream of Mt Bold Dam
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10.10. Summary

The inflow PMF for Mt Bold Dam has been determined at 10,200 m3/sec for a 3 hour
duration storm. The peak outflow pMF, using the cunent spillway and gate
configuration of Mt Bold Dam is 9,300 m3/sec for a 4 hour duration event. This ouúlow
PMF would overtop the dam crest by approximaæly 6.4metres.

This flood brings into operation a side discharge through a saddle which t¡kes
approximatgly 25 percent of the PMF and hence reduces the level by which the pMF
overtops the dam by more than 2 metres.

The peak outflow of 9,300 m3/sec resulæd from a 4 hour duration storm with an inflow
peak of 10,100 m3/sec. The PMF at Old Noarlunga downstream of Mt Bold Dam was
7,900 m3/sec. The PMF at Clarendon Weir was 9,200 m3/sec.

The sensitivity of the PMF estimate to the choice of various par¿rmeters was tested. It
was found that the PMF estimate was particularly sensitive to the model non-linearity
and the choice of uniform or spatially varying rainfall.

Both high and low bounds of a reasonable estimate of the PMF were calculated. The
high and low bounds of the inflow PMF were lz,m m3/sec and 5,600 m3/sec
respectively. The high and low bounds of the outflow PMF were 10,800 m3lsec and
5,200 m3/sec respectively.
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Chapter L1,

Imminent Failure Flood

11.1. Introduction

The PMF and frequency curves for Mt Bold Reservoir were deærmined in Chapter 10.

The structural capacity of the dam was then considered by examining previous

calculations by members of the E&V/S. The imminent failure flood (IFF), which is the

peak flood that initiaæs failure of the dam, was then determined.

Once the IFF was found the frequency curve was used to assign an AEP to the IFF.

ll.z.IFF for Mt Bold Dam

The modifications to Mt Bold Reservoir which took place benveen 1961 and 1962

iïiJnï:ilïä;::H3*i;n:*fi :i.,T;:ï,HJii;:ffiï:J
was a hollow portal frame. Above the outlet valves a double portal frame was

constructed because of the greater dam width.

Upon the completion of the dam modifications and subsequent filling of the reservoir,

water was noted spurting from a few points on the upper dayplanes (discontinuities

between different concrete pours). In L973 the top four dayplanes were post tensioned

(Design Services, 1982).

The IFF for Mt Bold Dam was diffrcult to deærmine because of the unusual geometry of
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. overturning of the single portal frame;

. overtruning of the double portal frame;

. uplift of one of the post tensioned dayplanes; or

. uplift of the highest non post tensioned day plane.

Two different IFF levels were considered in this study. The f,ust is the dam crest at an

elevation of 248.42 metres (GH of 42.92 met¡es). The second is I metre above the dam

crest at an elevation of 249.42 metres (GH 43.92 meûes), (Parsons, 1993, pers. comm.;
Daniell and Hill, l99k).

11.3. Mt Bold Spillway Rating

The extended rating curve for the Mt Bold Dam was calculated in Section 10.2. It was

assume-d that the gates were in a fully raised position; corresponding to a gate opening of
3.8 metres. The rating is shown in Figure 10.3.

A discontinuity in the rating curve was examined in Section 4.3.3. As the water passes

the foot of the gaûe and head develops on the upstream side a critical level is reached

where the water passing under the gaæ sheds from the upstream edge rather than the

downstream edge of the bottom of the gate, causing a reduction in the discharge. This
effect is shown in Figure 11.1 for three different gate openings.
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Figure 11.1 Rating Curve for Mt Bold Dam Near the IFF
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At the point of discontinuity, the reduction in the coefficient of discharge results in a

sudden reduction in the spillway capacity as shown in Figure 11.1. Depending upon the

mædmum gate opening, this effect occurs at a reservoir level of approximately the dam

crest (GH 42.92).

The current maximum gate openings ¿¡re discussed in Section 4.2.2.It is rccommended

that the maximum gate opening be increased to 3.8 metres. The rating nea¡ the IFF was

calculated for maximum gate openings of 2.9,3.5 and 3.8 meEes.

ll.4.AEP of Imminent Failure Flood

Once the storage water level which initiates failure was determined a corresponding flow

could be determined from Figure 11.1 for a given maximum gate opening. The AEP of

the IFF could then be deærmined. Table 11.1 shows the oufflows and consequent

probabilities for the two critical reservoir levels and three different maximum gate

openings.

Tabte 11.1 AEPs of IFF l¡vels at Dam Crest and lm above Dam Crest.

I in 2,400I in 8.5001.5803.E

249.4243.92 I in 2,000I in 8,0001.5003.5

l in 1.800I in 6.0001,3002.9

I in 1.3001 in 4,6001,1703.8
248.4242.92 I in 1,100I in 3.8001.0553.5

I in 750I in 2,8009152.9

Av Commsite OutflowCla¡endon LPIII
Ouülow
(mr/sec)

Gaæ Opening
(m)

EL
(m)

G.H.
(m)

AEP

It is clear from Table 11.1 ttrat the probability æsigned to the IFF is dependent upon the

choice of outflow flood frequency distribution. In Section 8.4 the average composite

outflow was deemed to be the most suiøble distribution. The log Pea¡son Itr distribution

at Clarendon Weir is included in Table 11.1 for comparison. The log Pearson III
distribution is not considered to be appropriate because of changes in the pumping and

gate operating policies of the E&WS (Section 8.1.1).

The methods of constructing the flood frequency curve between the I in 100 AEP event

and the PMF a¡e discussed in Section 10.8.

I tl.4.l. Risk of Failure
I
i. It is imporønt that the annual probability of failure is recognised as a consequentlt '

pmtt¡h¡ttv of ø;tu
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shows the relationship benveen the probability of an annual evenq the design life and the
probability of failure during rhat design life (Equation 7.1).

Table 11.2 assumes that no modifications are made to the structure during its design life
that affect its probability of failure. It is recognised that throughout the design life of the
dam, modifications and safety reviews will be underüken.

Table 11.2 Design Life and Probability of Event Oceurring

4.88%t.98%t.ffi%050%0.207o0.107or0000
22.t2%9s2%4.88%2.47%t.N%0.504o2000
39.36%18.14%9.52%4.88%l.98Vot.N?o1000
63.25%32.99%18.l47o9.53%3.92%l.98Vo500
9l.u%63.30Eo39.42%22.17%9.547o4.89%2æ
99.34%86.ffi%63.4%3950%t8.21%9.56%100
99.996%9E.24%86.74%63.58%33.U%18.29%50
100.00%99.997%99.4t%92.317o&.r5%4O.l37o20
100.m%100.00%99.9973%99.4t%E7.U%65.t3%10
100.00%100.00%tw.æ%99.999%98.85%89.26%5

5002æ100502010

AEP
(l in Y)

Design Life in Ye¿rs

11.5. IFF Hydrographs for Mt Bold Dam
Following the identification of the IFF, the IFF outflow hydrograph was calculaæd. It
w¿ts Ílssumed that the reservoir was initially full and that the ma¡cimum gate openings had
been reset to 3.8 met¡€s. Hydrographs were required for peak flows of 1,170 m3/sec and
1,580 m3/sec (Table l1.l).

Following the discussion in Section 2.5.3, the IFF hydrograph was not obtained þ
scaling the ordinates of the PMF. Rather the design rainfall wris scaled so that the
required peak outflow w¿ts obrained (Green, 1991).

The critical storm duration for the design ouúlows for AEPs greater than I in 500 was
24 hours (Section 7.4), however the critical stonn duration for the ouúlow pMF was 4
hours (Section 10.4). It was therefore decided to calculate IFF oudlow hydrographs for
different storm du¡ations.

The rainfall depth, which produced the required peak oufflows (1,170 and 1.580 m3/sec).
was determined for each duration.

The ouülow hydrographs for the IFF for Mt Bold Dam were estimated by firstly
esøblishing the oufflow flood frequency curves for the 3, 6 and 24 hour duration storms.
These are shown in Figure 11.2. The curves were obtained by assigning an AEp of I in
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lff to the PMF and then finding the shape of the curve from the procedures outlined in

Section 10.8 and IEAust (1987).
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Figure 11.2 Flow Frequency Curves for Different Duration Storms Extended to the
PMF

From Figure ll.2 a probability was assigned for the two required oudlow peaks for each

duration storm.

Figure 11.3 shows the rainfall fiequency distributions for different durations. The PMP

was assigned a probability of I in ltr. The curves were derived using the procedures

outlined IEAust (1987). A rainfall depth was then deterrnined for a given duration and

probability.
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Figure 11.3 Mt Bold Catchment Extended Rainfall Frequency Curves

Estimates of rainfall were obtained using Figure 11.3 which were then converted ûo flows
using the RORB model. The rainfall depth was varied until the desired peak ouflow was

obtained. The required design rainfalls for different durations that produced peak

ouülows of 1,170 m3/sec and 1,580 m3/sec ¿¡re shown in Table I1.3.

Table 11.3 Inflow Peaks to give IFF Ouúlows and Required Design Rainfalls

1,5901,950194.01,80024
1,5802,070r31.71.2006
1,5802,I70t2t.03,0003
1,1701,420154.065024
I,1701,450105.65006
1,1701,48097.51,5003

Peak Ouülow
(m3/sec)

Peak Inflow
(mr/sec)

Precipitation Depth
(mm)

ARI
(vrs)

Duration
ftrs)

The resultant flood hydrographs are shown in Figure ll.4 and 11.5 for both IFF
conditions-

r0
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It was clea¡ from deriving the IFF hydrographs that different combinations of storm
duration and storm probabilities resulted in the same oufflow peak. Green (1991)
recommends that the most likely hydrograph should be adopæd as the IFF hydrograph.

The shape of the hydrographs in Figures I1.4 and I 1.5 reflect the operations of the gaûes

established in the model. The adoption of different gate operating policies would have a
significant effect on the shape of the IFF hydrographs.

11.5.1. Sûrdy of Mt Bold Spillway Gates

The Mt Bold Reservoir gate operations a¡e critical to the deærmination of the IFF
hydrograph. It is therefore recommended that a study into the gate settings and
operations be undertaken and a set of procedures established for regular checking to
ensur€ that the full gate opening of 3.8 metres can be obtained.

It is suggesæd that a study be undertaken to verify the hydraulic efficiency of the gares at
the point of discontinuity.
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Conclusions and
Recommendations

12.1. Probable Maximum Flood

The PMF is used as a standard of flood design where a very high level of safety is

warranted. The PMF is not the maximum possible flood and therefore the PMF has a

small probability of exceedance. The PMF should constitute a reasonable estimaæ. The

inclusion of an excessive degree of conservatism is undesirable because the design

procedurcs recommended by ANCOLD for the analysis of spillway capacity already

contain safety factors. An unduly conservative estimate will distort the calculated

probabilþ of the PMF.

The best estimate of the outflow PMF for Mt Bold Reservoir was 9,300 m3/sec from a 4

hour duration PMP. The inflow PMF was determined to be 10,200 m3/sec from a 3 hour

duration PMP. The inflow PMF corresponding to the outflow of 9,300 m3/sec was

10,100 m3/sec. The largest calculaæd inflow PMF of 10,200 m3/sec was adopæd as the

inflow PMF because the frequency curve was considered to be an envelope of fiequency

curves for different durations.

The value adopted for the inflow PMF represents an increase of over 3 times the value

deærmined by Kotwicki (1984). The limitations referred to in that report such as linear

modelling, uniform rainfall and longer durations have been addressed in this study.

The he.st estimate of the PMF was 9-2m m3/sec at Cla¡endon Weir and 7.900 m3lsec at

Old Noarlunga. The inflow and outflow PMFs calculaæd using the carchment to Old
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Noarlunga were larger than those calculaæd using the carchment to Mt Bold Reservoir.

This was because of a partial area effect. The estimates of the PMF for Mt Bold
Reservoir calculaæd using the carchment to Old Noa¡lunga were not considered to be

reasonable estimates.

The calculated outflow PMF overtops the dam wall by approximately 6.4 metes and

overtops an adjoining saddle by approximately 5.5 metres.

The sensitivity of the PMF estimate to the choice of various parameters was æsted. It
was found that the PMF estimate was particularly sensitive to the model non-linearity
and the choice of uniform or spatially varying rainfall. The use of uniform rainfall to
determine the PMF was shown to underestimate the outflow PMF by approximaæly l0
percent for the critical duration. The use of a linea¡ model, such as a unit hydrograph,

underestimated the outflow PMF by approximaæly 33 percenl

IJoth high and low bounds of the PMF were calculaæd. These do not represent physical

limits but rather are intended to be bounds in which reasonable PMF estimaæs should lie.
The high and low bounds of the inflow PMF were 12,4ffi m3/sec and 5,600 m3/sec

respectively. The high and low bounds of the outflow PMF were 10,800 m3lsec and

5,200 m3/sec respectively.

Although the upper bound of the outf,low PMF is 22 percent above the adopæd value, it
should be noted that the peak stage height for the upper bound PMF is only 650 mm

above the peak stage height for the adopæd outflow PMF.

Based upon an analysis of the shape of the frequency curye and consideration of the

effective transposition area used to determine the PMP, the PMF was assigned a

probability of 1 in lff (IEAust, 1987).

12.2. Probable Maximum Precipitation

Bulletin 51 published by the Bureau of Meteorology was used to determine pMps for
durations up to 6 hours. Estimates of longer duration PMPs that have been applied
elsewhere in south-eastern Australia, were used to determine estimates of the pMp
depths for longer durations. A requisition should be made to the Bureau of Meûeorology
for PMPs of durations longer than three hours. The estimates of the PMP are considered
to be satisfactory because the critical duration for the Mt Bold outflow pMF is

approximately four hours.

The analysis of the PMP considered only stationary thunderstorms. A storm moving
slowly down the catchment would give extremely large peak flows.
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12.3. Flood Frequency Analysis

The determination of exEeme floods less than the PMF depends on the magninrde and

probability of the PMF and the shape of the flood frequency curve.

The inflow flood frequency analysis was undertaken for the Mt Bold Reservoir using an

exænded data set. A number of different theoretical distributions were tested and the log
Normal distribution was found to be the most appropriate.

Inflows were also calculaæd using design rainfatls and a RORB model of the catchmenl
The model was calibrated using sensitivity frtting. This is a simple extension of the
parameter interaction curye and allows the optimum model parameters to be determined.
It also examines the likely errors associated with a choice of model parameûers.

The calibration of the model reinforced the importance of an adequate record of the
rainfall. The quality of fit benveen the calculaæd and the recorded hydrographs improved
as the number of pluviometers increased.

The inflow flood frequency curve calculaæd using the calibrated RORB model, the
design rainfalls and the losses derived from calibration, was above that determined from
the flood frequency analysis. The design rainfalls were reduced by 13 percent so that the
calculated inflows corresponded to those obtained from the flood frequency analysis.

The outflow flood frequency was calculaæd considering the probability of both the
inflow and the initial storage level. Storage probability distributions were determined for
different periods of the year using synthetic data sets. A number of different storage
distributions were tested and the choice of storage distribution was found to have a
significant effect on the calculaæd outflow flood frequency. A composite distibution
was chosen as the most appropriaæ.

A new spillway rating curve was developed for Mt Bold Reservoir which addressed the
inadequacies in the existing rating. It is recommended that the mocimum gate opening be

reset to 3.8 metres and that the gate operation and offrcial operating policy should be

aligned. The examination of the spillway rating highlighted a discontinuity benveen non-
gated and gated spillway flow. This discontinuity should be examined further as it has an

important effect on the calculaæd IFF.

12.4. Imminent Failure Flood

Two levels were considered for the IFF:

1. An elevation of 248.42 metres. For a gate opening of 2.9 metres, this results in a

flow of 1,170 m3/sec results with an AEP of I in 1,300.
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2. An elevation of 249.42 metres. If the spillway gates ¿ue opened to 2.9 metres, the

flow is 1,300 m3/sec with a calculated AEP of I in 1,800. If the gates are opened to

3.8 metres, a flow of 1,580 m3/sec results with a calculated AEp of I in2,4ffi.

If the design life of the Mt Bold Dam is considered to be 100 years and the mærimum

gaæ openings are set to 3.8 metrcs, there is a 7 .4 percent chance that the dam crest will
be exceeded and a 4.1 percent chance that the dam crest will be exceeded by more than I
metre, during the design life.

12.5. Further Research

This research has higtrlighted several inadequacies in the present design methods used in
the estimation of extreme floods.

Further resea¡ch should be undertaken to analyse the probabitity of the PMF. Greater
guidance needs to be provided in what constitutes a 'reasonable' estimate of the PMF.

Flood frequency analysis is another area in which further rcsearch is required. Although
much work has already been undertaken on the analysis of different distributions,
procedures need to be established to deærmine the best theoretical distribution. This
resea¡ch should also examine the problem of analysing flows resulting from two distinet
rainfall mechanisms.

The probability of oudlows from reservoirs also needs to be studied. Further work is
required on the joint probability of the inflow and the initial reservoir level.

This research has shown it may not be appropriate to use the losses obtained from the
calibration of the hydrological model with the design rainfalls. The choice of design
rainfalls and losses needs ûo be further researched.

Another area in which research is required is the effect of the number of pluviometers on
the calibration of hydrological models. Poor fits were obtained benveen the calculated
and recorded hydrographs for events for which there were only a few pluviometers

operating.

The problem of spatial patterns for particular storms was not addressed in this study.
Many of the events used for calibration of the model had a t)¡pical isohyetal pattern. It is
falt tho+ +Lo inal.'.i^ñ ^f *:-f^ll ^^^+i^l -^41^-^ :- --- -,-l d - , r - i .
^vrr ur4! urv !¡w¡uùrur¡ \Jr t4.Lrll.¡rl ùp.rrrfu p(rtutrtrù llr Ë,tiuçl¿ll lruu¡ anatysrs $ an ¿uea oI
research that should be progressed. The effect of a moving rainstorm should also be

studied.
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Appendix A

Land Use in the Mt Bold
Catchment
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Appendix B
lnstrumentation in the

Onkaparinga Gatchment
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B

Gaugings at Houlgrayes Weir (4W503504)

Table B.1 indicaæs all of the gaugings that have occurred at Houlgraves Weir at flows

greater than 50 m3/sec.

Tabte 8.1 Gaugings at Houlgraves Weir Greater than 50 m3/sec

G3481.288t72.0226.59230.08.9289

F4801.506228.0687.03530.08.9288

F639r.654326.5427.66230.08.9287

G1860.95989.8345.66724.06.8786

G185t.lMr23.4946.10024.06.8785

Gt671.253157.1856.44624.06.8784

F1491.374t84.4396.70124.06.8783

G2400.920769005.49221.08.8481

Fr790.76857.Q05.13108.09.8378

F2480.91677.54O5.49408.09.8377

G540.99677.5915.42414.08.8168

G1241.05492.0265.62414.08.8167

G731.186108.4505.94614.08.8166

G1440.94773.9005.49924.07 _8165

Gr091.0569s.3005.81624.07.8r64

G69r.247118.6006.05724.07.8r63

G1350.80157.5005.r8204.07.8160

Gr330.85064.2005.35304.07.8159

G461.056103.0006.03002.07.8r58

G301.150115.0006.06902.07.8r57

F2920.82765.5005.40926.06.8149

G650.72952.0005.10725.06.8148

G230.75057.7005.21325.06.8147

QualityFall
(mm/h¡)

Rise
(mm/hr)

Mean Vel.
(m/sec)

Discharge
(m3/sec)

Mean Ght
(m)

DateReg
No.

Gauging Quality Codes:

G - Gauging was considered to be good

F - Gauging was considered to be fair
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Appeüix B

Gaugings at Old Noarlunga (4W503522)

Although there has been 58 gaugings recorded at Noarlunga gauging station, the
majority of these have been at low flows. Table 8.2 indicates all of the gaugings that
have been greaûer than I m3/sec.

The nature of the control and other factors pertinent to the site are discussed in Section
3.2.4.3.

Table 8.2 Gaugings at Noarlunga that Have Exceeded I m3/sec

0.691.971.365.36909/09t741l
0.862.322.005.657LU07t8458
0.802.562.M5.51214108t7410
0.2327.16.175.97526t07t732
0.2032.16.425.97008t08t733
0.2434.s8.166.13626t07t731
0.6039.223.66.63003109t734
0.5114372.58.22004n0t74t2

Velocity
(m/sec)

A¡ea
(m2)

Discharge
(m3/sec)

Stage
(m)

DateReg. No.
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Appendix C
History of Flooding in the

Onkaparinga River





C

Floods in the Onkaparinga River from L896 to 1933

The following summa¡y of peak flows in the Onkaparinga River was taken from E&WS

(1933). This report summarised the recorded peak flows (in ft¡lsec) in the Onkaparinga

River prior to the construction of ttre Mt Bold Dam.

Table C.l Floods in the Onkaparinga River from 1896 to 1933

t9t7n9t73t2 - 340
23t6n915,9t811920283 - 312
91911906.2219/1923255 - 283
1 5/8/l 900. t7 /9 I 1903. I I t0l 1909. tA9 I D L7 . t8 /9 I t92t. rO/ 6/ 1923227 -255
28t9n909, t3t6tL9t7t98 -227

t4l 6/ 1898, I 6 t7 I 1898, 30/8/ 1 900, lA 6 I 1905, 24 I 8 I 1906, 19 I 8 / 1909,
6t8n9r5.21l8lr9t7

170 - 198

6t 6n901. t3l7 l l90/., l 61 5 l 19æ, 14 l 5 l 19 17, l7 19 l 1925t42 - 170

DatesPeak Flows
(m3/sec)

c- I



AppeúirC

Major Point Rainfalls for South Australia

The major point rainfalls recorded in South Australia were collated by BC Tonkin and

Associates (1985) using data from the Bureau of Meteorology. The storm at lænswood

on 30 August 1992 was included in the lisr

Table C.2 Major Point Rainfalls in South Australia

214Winabera F.R.t975Oct25

330189Innaminka1974Jan3l
174r70[¿meroot974Jant4
153tr4Brinkworthr973Feb6

130t29St. Kittst97tJulyl6
r31Mt. Barker P.O.r970Aorl0
1 /14,
I tlJ

C+i-li- -l) ur rrlr ¡if (ì4ô
,7V7E^Lr.EU

16599Pt. Lincoln1968Apr30

t72109Ungarra P.O.1966Dec4

190190Arkaroola1956Ma¡30

2t7215Clifton Hills1955Ma¡3

217189Hawker1955Feb13

188188Wooltana1950MarT7

239220Commodore1950Feb2

2302t3Clifton Hills1949Mar5

168151Torrens Vale1948Apr1l
179169Parakvlia1947Mar27

228222Stansbury1946Feb18

2t5r67Marreet94tApr13

350226Encounter Bay194tJan25

145145Houshton1938AprT7

165165Cooper Pedy1938Febl9
164t64Norttr Adelaide1925Feb6

214181Wilminstont92LMa¡i
2172t7Cadelea1920Nov12

186t75Nunong19L3Febl3
r73Winabers F.R.1910Mar7

212Winabers F.R.1893May31

206174Baratta1891Apr5

241208Stirline1889AprT7

r66r46Truro1889Apr3

t25Kanmantoo1884Dect2
t66158Ba¡oota1884May13

r579lMr Gambierr874Jan13

48 hrs24hts
StationDate Month Year Rainfall (mm)

c-2
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139104lænswoodt992Aus30

206193l¡ke Eyre1984Jant4
174Caroline F.R.r983Mar23

330Dutton1983Mar2

191Buckleboo1981Jan26

t43t25Pt. Pirie1979Dec3l
293198Clifton Hillst979Jant7
230222Wimabera F.R.1978June4

l''t3138Gordonr977Nov28

246200Oodnadatta1976Feb9

t66165Oakbankt975Decl3
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Appendix C

Summary of Peak Flows at Houlgraves Weir
AW_5035M

Peak flows at Houlgraves Weir were extracæd using HYEVENT. The minimum value

was 75 m3/sec and the minimum separation benrreen events was 3 days. The period of

record was from 17 April 1973 to 20 December 1992.

Table C.3 Peak Flows at Houlgraves Weir

t85.9M6.7t02L:46 l9ll2lL992
193.1666.7692O:57 0811011992

96.3265.79305:09-16/0911992
431.8138.21011:40-30/0811992
t77.9656.64318:46 L5l09ll99t
82.14t5.59906:26 15/08/1990
160.9966.494O5:27 

-24105/1988

151.8166.40716:43 1510711987

221.3266.98807:23 2410611987

99.7715.83708:52 2110811984

121.8806.r0008:19 08/09/1983
88.5465.689M:09 2510811983

tt7.4666.05110:32 14108/1981

134.7466.23714:02 08/08/1981
98.0775.81620:50 03/0811981

t20.9056.08910:58-2410711981

159.1656.4772l:19 0310711981

276.8027.36718:06-2610611981

r07.938s.93907:28 l2ll0ll979
r15.9946.03423:49 lll09ll979
98.3615.81903:23 0610911979

114.0436.0t222:57 
-05107!1978

122.2366.10400:27 0411011974

202.7846.84623:14 0110911973

Discharge
(m¡/sec)

Søge
(m)

Time Date

Total Missing D^tat 7762 Minutes (5.39 Days)
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c

Peak Flows at Clarendon Weir
AW503500

Peak flows at Clarendon Weir were extracæd using HYEVENT. The minimum value

was 75 m3lsec and the minimum separation betrveen events was 3 days. The period of

record was from 19 Sepæmber 1937 to 5 January 1993.

Table C.4 Peak Flows at Clarendon Weir

u): I I L¿tWt Lv tv
10:34 2411011975

ó4.'¿OU

102.8911.060
U.YJU

82.4220.91618:43 2411011974

126.3781.21523:29 031t011974

228.8504.87800:16 0210911973

r32.9194.32120:39 2610911971

261.8885.05105:05 2910811971

9r.3074.03612,,53 l4l08ll97l
99.8744.100l8:17 l0l08ll97I

3.95409:43 0210611971 81.084
86.1380.94704:38 2611011968

96.755t.02916:19 0711011968

192.181r.62018:35 09/08/1968
125.889t.17920:06 1811111964

rDt.22r1.0t2l0:51 0811011964

78.8570.83809:53 16109119&
84.2540.883l2:Ol lUWll963
144.860r.29422:02 2510811963

109.907r.07315:28 15108/1963

103_098t.o25Ol:27 2610711956

1.52115:49 2810611956 187.080
96.016o.9742l:21 1710611956

22:44 2310611955 tr9.444r.r37
80.7020.85300:19 0310911953

r75.7t91.46306:M 16107ll95l
86.9690.90422:48 3110711946

109.818r.07309:04 0810811943

t24.0Itt.16712:07 1610911942

91.7700.94207:01 0t10911942

191.3591.542l8:03 lU08ll942
tog.977r.06710:45 Ml07ll942

11:06 2910611942 120.286t.143
98.760o.99418:03 30/08/1939

Discharge
(m3/sec)(m)

StageTime Date
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86.3240.94519:24 l8lIUl992
r39.64r.29800:26 Wll0ll992
9r.7870.98405:13 1610911992

96.27r1.015l6:36-18/0911991
83.5350.92423:t9 L8t07ll987
77.9020.88220:13 12109.11986

89.7t50.96912:08 08/09/1983

92.6240.99010:48 14108/1981

r16.267t.149t3:47 OBl08/1981

90.1960.9732l:49 03/08/1981

i i5.318i.i43i4:24 24101¡19E1

123.27t1.r9510:30 lUl0lL979
75.rt90.86110:39 O6lL0ll979

Appeúix C

Total Missing Data: 1062718 Minutes (2.02 Yea¡s)

Peak Flows at Old Noarlunga
4W503522

Peak flows at Old Noarlunga were extracæd using FIYEVENT. The minimum value was

75 m3/sec and the minimum separation between events was 3 days. The period of record

was from 27 June 1973 to 15 February 1988.

Table C.4 Peak Flows at Clarendon'Wei¡

79.4U8.49423:08 1210911986

87.4878.65014:20 08/09/1983
87.8248.65613:46 14108/1981

1 1^ nAArrv.¿ro n/o15:56 C8/08,/1981

84.6658.59600:47 04/08/1981
107.t458.99816:53 24lO7lt98t
t14.9769.12612:34 LArclLg1g
86.3268.62807:06 LUO9|L979

92.2258.73812:26 2411011975

110.0959.M702:07 O4ll0ll974
201.826t0.28702:M OUO9ll973

Discharge
(mr/sec)

Stage
(m)

Time _ Daæ

Total Missing Data: 279142 Minutes (193.85 Days)
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Appendix D
1992 Floods in the Onkapari nga

River
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AppndixD

Figure D.4a Kanmantoo pluvionreter 17 December 1992

Figure D.4b Kanmantoo pluvionæter r g December rggz
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Appendix E

Mt Bold Reservoir Spillway





Appcúìx E

Mt. Bold Dam Spillway Gate Operation

The following operating procedure for the Mt Bold Gates is the culrent recommended

operating policy of the E&WS @arsons, 1993, pers. comm.). It differs from that found

in Kotwicki (1984) and Design Services (1982).

Reservoir Level Rising

1. The gates shall be kept in the lowered position until the rilater level in the reservoir

rises to within 300 mm of ttre top of the gates (GH 41.10 m).

2. Gates 4 and 5 shall then each be raised 1 increment of 100 mm and readings taken of

the water level indicator at frequent intervals until it is known whether the level of

the reservoir is rising or falling.

3. When the reservoir level has risen 100 mm (GH 41.20 m) gates 3 and 6 shall be

raised 100 mm, and further readings taken from the water level indicator.

4. When the reservoir level has risen another 100 mm (GH 41.30 m) gates 2 and 7 shall

be raised 100 mm, and further readings shall be taken from the water level indicator.

5. If the reservoir level continues to rise, gates I and 8 shall be raised 100 mm and the

gates shall continue to be raised in this sequence in steps of 100 mm, if the reservoir

level still continues to rise.

6. With large inflows it may be necessary to use sæps of more than 1 increment of 100

mm but after each successive opening, readings must be taken of the water level

indicator.

Reservoir Level Falling

7. If afær step 3, the water level in the reservoir starts to fall, gates 4 and 5 shall each

be closed.

8. If at any st¿ge the reservoir level begins to fall, the gates shall be closed in steps of

100 mm in the reverse sequence in which they were opened until the reservoir level

begins to rise again.

E- 1



Appcndix E

Figure E.l Spreadsheet which Calculates the Total Outflow from Mt Bold
Reservoir

Calculatlon ol the Total Outflow from Mt Bold Reservoír

Design Head

GH=EL-20s.5o

l{d 3.8 m

Splllway Grest CE
FullSr-pply Level FS
Dam Crest DC
Max Perm's. Flood MPF

Width of a Spillway b

Horizonlal Conlraction Coefficienls:
Pis þ o.o2
Abdmenls lG 0.'l

EL

2U.æ4
246.900
248.421
247.970

GH
38.504
41.4@
42.924
42.470

7.315 m

Valves

Gauge Helght
Head

GH
t-þ
Xo
cd

¡ll.4l m
2.906 m

0.7u74
0.47671Disctnrge Coeff.

72.975.375.375.375.375.37s.372.9Discharqe lor Ho

6.966
1.000

7.199
L000

7.199
l.OOO

7.199
1.000

7.199
1.000

7.199
1.000

7.1 99
l.(m

6.966
1.0@

Al Given Head:
Effeclive Wdlh (m)
z

6.859
1f 1.4

7.163
116.3

7.r63
116.3

7.163
116.3

7.1frt
't 16.3

7.163
116.3

7.163
116.3

6.859
1 1 1.,f

Al Deslgn Head:
Eflective Widlh (m)

Disctnrge for Hd

3800380038æ380038æ38Cf)3800

I765432IC¡ate

4.65Discharqe for GH

valves)two
(TEMP & NEW valves)50

Openlng (no. lums)
t%l

NEW2NEWlTEMPOLD2OLDlValve

Tolal Dlscharge lrom Spillway:
Tola! Discttârgc fiom Oúle! Valves:

Total Outllow f¡om Mt Bold Res:

597.6 cumecs
l7 crrmc¿e

6022 cumecs
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Appendix F
Design Rainfalls for the
Onkaparinga Catchment





Appaúix F

Design Rainfalls for the Onkaparinga Catchment to Mt
Bold Reservoir

Table F.l 30 minute Duration (5 minuæ increment)

Table F.2 I hour Duration (5 minuæ increment)

2.3352.9t.76.94.628.90.648.296.3500

1.92.92.47.25.t3.924.t0.6&.2E0.4200

t.72S2.16.35.03.320.90.6y.969.7100

1.4anl.t5.44.32.918.00.630.060.050

0.91.61.34.E3.62.31450.624.248.420

0.71.31.14.03.01.9t2.t0.620.2Q.4l0
0.61.10.93.42.6L;l10.40.617.3v.65

65432I

Design

Rainfall

(mn)

Arcal

Reduction

Factor

Total

Rainfall

(nn)

Rainfall

Intensig

(mr/hr)

ARI

(yea¡s)

Tcmporal

Pancm (m.rr)

t.01.41.62.42.74.1459.E5.3't.33.31.945.30.8û.4æ.4500

0.9l.l1.32.02.33.43.88.34.46.12.E1.638.10.E50.850.E200

0.t1.0t.2t.l2.03.03.37.23,E5.32.41.433.20.EM.2u.2100

0.70.91.0l5t.72.62.96.23.34.62.1t.228.70.E38.338.350

0.40.60.7l.l1.32.12.45.42.t3.91.60.923.30.E3t.l3l.t20

0.40.50.60.9l.l1.72.04.62.43.31.40.E19.60.E26.226.2l0
0.30.40.50.E1.0l51.73.92.02.81.20.716.90.E22.622.65

t2lll098765432I

Dcsign

Rainfall

(¡nn)

fuial
Reduction

Faclor

Tot¡l
Rainfall

(mn)

R&infal

Intcnsity

(runA¡)

ARI

(ycars)

Tcmporal

Pattcru (mm)
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Table F.3 2 hour Duration (,5 minute increment)

Table F.4 3 hour Duration (15 minute increment) stì:i\
F.ì

4t
I

l\)

500

200

r00

50

20

l0
5

ARI

(ycars)

37.7

32.0

2E.l

24.5

20.1

l7.r
14.9

Rainfatl

Intcnsity

(Ertrr/hr)

75.4

64.0

56.1

48.9

40.3

v.2
29.E

Total

Reinfall

(nn)

0.E

0.t

0.8

0.t

0.t

0.8

0.E

A¡eal

Rcduction

Factor

63.3

53.7

47.1

4l.l
33.t

28.7

25.0

Design

Rainfd¡

(m¡n)

1.1

1.0

0.8

0.7

0.6

0.5

0.4

I

TcmporaJ

Paecrn (m.rr)

7.t
6.6

5.E

5.1

4.2

3.6

3.1

2

t0.2

8.6

7.6

6.6

55

4.7

4.1

3

3.6

3.1

2.7

2.3

2.0

t.7

1.5

4

2.2

l.E

1.6

1.4

t.2

1.0

0.9

5

6.2

5.3

4.6

4.0

3.3

2.8

2.5

6

4.3

3.7

3.2

2.8

2.3

2.0

r.7

7

5.3

4.5

3.9

1.4

2.8

2.4

2.1

8

3.1

2.6

2.3

2.0

I.7

1.5

1.3

9

r.7

t.5

1.3

l.l
0.9

0.8

0.7

l0

2.0

1.7

1.5

1.3

1.1

0.9

0.8

u

2.5

2.1

1.8

1.6

t.4

1.1

1.0

t2

2.E

2.4

2.1

1.8

15

1.3

1.1

13

1.6

1.4

t.2
1.1

0.9

0.7

0.7

t4

1.3

1.1

0.9

0.t

0.6

05

0.5

l5

1.5

t.2

1.1

0.9

0.8

0.7

0.6

l6

0.9

0.8

0.7

0.6

0.4

0.4

0.3

17

1.3

l.l
1.0

0.9

0.7

0.6

0.5

l8

l.l
0.9

0.E

0.7

0.5

0-4

0.4

l9

0.t

0.7

0.6

0.5

0.4

0.3

0.3

20

0.7

0.6

0.5

0.5

0.3

0.3

0.2

2l

0.6

05
05
0.4

0.3

0.2

0.2

22

0.4

0.4

0.3

0.3

(t.2

0.2

0.2

:¿3

0.3

0.3

0.2

0.2

0.1

0.1

0.1

24

500

200

100

50

20

l0
5

ARI

(ye"n)

28.4

24.2

2t.4

18.7

155

13.3

u.6

Rainfall

Intcnsity

(mûr/hr)

85.2

72.7

&.1
56.2

46.5

39.r

v.9

Total

Rdnfall
(uun)

0.9

0.9

0.9

0.9

0.9

0.9

0.9

A¡caI

Rcduction

Factor

74.1

63.3

55.E

4t.9
&.5
v.6
10.4

Dasign

Rdnfdl
(mm)

4.5

3.9

3.4

3.0

2.5

2.t

1.9

I

Tcmporal

Pancrn (mm)

19.9

t7.o

15.0

l3.l
ll.0
9.4

8.3

2

13.3

11.4

10.0

8.E

7-4

6.3

5.5

3

9.3

8.0

7.0

6.2

5.1

4.4

3.r

4

7.0

6.0

5.3

4.6

3.t

3.3

2.9

5

5.6

4.7

4.2

3.7

3.0

2.6

2.3

6

3.7

3.2

2.8

2.4

2.0

t.7

1.5

7

3.2

2.7

2.4

2.1

1.7

1.5;

I .3i

t

2.6

2.2

2.0

t.7

1.4

t.2

1.0

9

2.1

1.8

1.6

t.4

1.1

1.0

0.9

l0

1.6

1.4

1.2

l'l
0.9

0.7

0.6

1l

l.l
0.9

0.8

0.7

0.6

0.5

0.4

t2



500

200

100

50

20

l0
5

ARI

(ycan)

r75
l5.l
t3.4

I1.8

9.9

t.6
7.6

Rai¡fÀll

btcosity

(En/hr)

104.t

90.3

80.3

70.9

59.5

51.3

45.6

Total

Rainfatl

(u¡m)

0.9

0.9

0.9

0.9

0.9

0.9

0.9

Arcal

Rcduction

Factor

94.3

El.3

72.3

63.9

53.5

46.2

41.0

Design

Reinfall

(mn)

4.1

35
3.1

2.7

2.2

1.9

1.7

I

Tcmporal

PaBcrn (mm)

7.4

6.3

5.6

5.0

4.2

3.6

3.2

2

L5.4

21.9

191

t7.2

14.6

t2.6

tt.2
3

r6.2

14.0

t2.4

11.0

9.3

t.0
7.1

4

I1.8

to-2
9.0

8.0

6.7

5.8

5.1

5

9.2

8.0

7.1

6.3

5.2

4.5

4.0

6

6.0

5.2

4.6

4.1

3.4

3.0

2.6

7

4.9

42
3.r

3.3

2.8

2.4

2.1

8

3.4

2.9

2.6

2.3

1.9

1.6

t.4

9

2.6

2.3

2.O

1.8

1.4

t.2

1.1

l0

2.O

1.1

1.5

1.3

l.l
0.9

0.8

1l

1.3

l.l
1.0

0.9

0.7

0.6

0.5

t2

I
I:t
Þ-
R.ì

E'
I(,

Table F.5 6 hour Duration (30 minute increment)

Table F.6 12 hour Duraúon (30 minuæ increment)

50(

20/,

l0(

5C

2C

lc
5

AR

(y"a

10.8

9.4

8.4

7.5

6.4

5.5

5.0

Rainfal¡

Inaosity

(nn/br)

t29.3

tt2.6
100.9

89.9

76-3

6.4
59.7

Total

Rainfall

(nm)

0.9

0.9

0.9

0.9

0.9

0.9

0.9

A¡cal

Rcductioo

Facor

t20.3

t04.7

83.6

61.8

555

Dcsign

Rdnfall
(nm)

93.t

70.9

8.8

7.6

4.1

6.8

6.1

5.2

4.6

I

27.9

24.3

13.0

2

2r.8

19.4

16.6

¡4.5

3

3.1

2.7

2.4

22
1.9

t.7

r5

l3.t
t2.3

10.5

8.2

4

17.7

15.4

9.1

12.0

10.5

9.4

8.4

7.2

6.2

5.6

5

7.0

6.1

5.4

4.8

4.2

3.6

3.3

6

5.3

4.6

4.1

3.7

3.1

2.7

2.4

7

5.5

4.t
4.3

3.t

3.3

2.t
2.6

8

4.6

4.0

3.6

3.2

2.7

2.3

2.1

9

3.4

2.9

2.6

2.3

2.1

l.t
1.6

l0

2.9

2.5

2.3

2.0

l.t
1.5

t.4

1l

2.O

l.E

1.6

1.4

1.2

l.l
0.9

t2

2.5

2.2

2.0

l_8

1.6

t.4

t-2

l3

4.0

3.5

3.1

2.E

2.3

2.0

1.8

t4

2.3

2.0

1.8

1.6

1.3

t.2

l.l
l5

1.9

1.7

1.5

1.3

l.l
0.9

0.8

l6

t.7

15

t.3

t.2

0.9

0.8

0.7

17

1.6

1.4

t.2

l.l
0.9

0.7

0.7

l8

0.6

0.6

05

l9

t.2

1.0

0.9

0.8

1.0

0.9

o-7

0.6

0.6

20

1.3

t.2

1.0

0.E

0.8

o.7

05
0.4

0.4

2l

0.8

o.7

0_7

0.6

0.4

0.4

0.3

22

l.l
0.9

0.8

0.t

05

0.4

0.4

23

0.5

0.4

0.3

0.3

24

Tcmporal

Pancm (mm)

0.7

0.6

0.6



500

200

100

50

20

l0
5

ARI

(ycars)

6.t
5.9

5.3

4.7

4.0

3.1

3.5

(Etm/br)

R¡iDfatl

163.6

t425
t27.7

I13.8

96.5

E4.l

755

Tot¡l
Rainfsll

(mn)

0.9

0.9

0.9

0.9

0.9

0.9

0.9

Arcat

I{cduction

Factor

153.8

t33.9

120.0

90.7

r06.9

79.1

71.0

Dcsign

R¡infatl

(nn)

t7.2

15.0

t3.4

t2.o

10.3

8.9

8.0

I

36.t

32.0

28.7

25-6

2t.9

l9.l
t7.t

2

13.4

u.7
t0.4

9.3

t.0

7.0

6.2

3

23.L

20.t

18.0

16.0

l3.E

t2.0

l0.E

4

8.2

7.L

6.4

5.7

4.9

4.3

3.E

5

10.3

9.0

8.0

7.2

6.2

5.4

4.t

6

6.6

5.8

5.2

4.6

3.9

3.4

3.1

7

5.t

5.1

4.6

4.1

3.4

3.0

2.7

8

55

4.8

4.3

3.E

3.3

2.8

2.6

9

4.6

4.0

3.6

3.2

2.1

2.4

2.t

l0

3.2

2.8

2S

2.2

1.9

1.7

l-5

ll

2.8

2.4

2.2

1.9

1.6

1.4

1.3

t2

3.8

3.3

3.0

2.7

2.3

2.0

1.8

l3

25
2.1

1.9

r.7

1.4

t.2

Ll
l4

1.4

t.2

l.l
1.0

0.7

0.6

0.6

l5

22
1.9

L-7

l5
t2
t.0

0.9

l6

l.t
1.6

1.4

1.3

1.0

0.9

0.8

t7

t2
1.1

1.0

0.9

0.6

0.6

05

l8

0.9

0.t

0.7

0.6

0.5

0.4

0.4

l9

0.t
0.7

0.6

05

0.4

0.3

0.3

20

0.5

0.4

0.3

0.8

0.7

0.6

0.3

2l

0.0

0.0

0.0

0.0

0.1

0.1

0.1

22

0.3¡

0.3i

O.2t

O-7.

0.1"

0t:
0.t

23

Tcmporal

Paûcrn (mm)

0.6

05
05
0.4

0.3

0.2

0.2

21

Table F.7 24 hour Duration (1 hour increment)

Table F.E 48 hour Duration (2 hour increment)
ÈI:l\
R.ì

?,
I

5

500

2æ

100

50

20

l0
5

ARI

(y.¡¡s)

4.2

3.7

3.3

2.9

2.5

2.2

1.9

Rdnfsll
Intcosity

(mn/hr)

20r.7

t75.7

t57.4

140.2

119.0

t03.7

93.1

Tot¡l
Rriúdl
(mn)

1.0

1.0

1.0

1.0

1.0

1.0

1.0

A¡Êd

llcductioo

F¡ctor

19 1.6

166.9

1495

t33.2

113.0

9t5
Et.5

Dcsign

R¡infal¡

(mm)

30.3

26.4

23.6

2t.t
It.t
l5.E

t4.2

I

51.7

45.1

40.4

36.0

30.9

26.9

24.2

2

2r.3

lE5
16.6

14.8

t2.7

I1.0

9.9

3

t4.4

t2.5

tt.2
10.0

E.6

75
6.7

4

ll.¡
9.7

E.7

7.7

6.7

5.8

5.2

5

9.8

8_5

7.6

6.E

5.9

5.1

4.6

6

5.9

5.2

4.6

4.1

3.5

3.1

2.7

1

9.2

8.0

7.2

6.4

5.4

4.7

4.2

t

6.3

7"3

5.7

5.1

4.3

3"7

3.4

9

5.0

4.3

3.9

3.5

2.9

2.6

2.3

l0

4.0

3.5

3.1

2.8

2.4

2.t
1.9

ll

2.3

2.0

1.E

1.6

1.4

t.2
1.1

t2

3.4

3.0

2.7

2.4

2.0

l.E

1.6

l3

2.9

2.5

2.2

2.0

r.7

1.5

1.3

t4

1.7

1.5

1.3

t.2

0.9

0.8

0.7

l5

2.t
1.8

1.6

l5
1.1

1.0

0.9

l6

1.9

1.7

1.5

1.3

1.0

0.9

0.E

t7

1.3

t.?
1.0

0.9

0.7

0.6

05

l8

I.3

1.2

1.0

0.9

0.6

05

0.7

l9

l.l
1.0

0.9

0.8

0.6

05
0.4

20

0.E

0.7

0.6

0.5

0.5

0.4

0.4

2l

0.ó

0.5

0.4

o.4

0.3

0.3

0.3

22

t.0

0.t

0.?

o.7

0.5

0.4

0.4

2J

l.l
1.0

0.9

0.8

0.5

0.4

0.4

24

Tcmporal

Pancrn (mm)



Table F.9 72 hour Duraúon (4 hour increment)

L!ÈñI
È.
E.ì

¡f,
I
(rì

500

200

r00

50

20

l0
5

ARI

(ycus)

3.1

2.7

2.4

2.t

1.8

1.6

1.4

Rainfall

Intcnsity

(Es/hr)

22L.4

t92.8

t72.8

154.0

130.6

l13.9

t02.3

Total

Rainfall

(mm)

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Areal

Rcduction

Factor

2t25
185.1

165.9

147.E

t25.4

109.3

98.2

Dcsign

Rshfall
(mm)

3E.7

33.7

n.2
26.9

23.1

20.1

Ir.l
I

Tcmporal

Pattcrn (mm)

7t.4

62.2

s5.7

49.7

42.5

37.r

33.3

2

25.7

22.4

20.1

r7.9

15.3

13.3

12.0

3

17.0

l4.t
13.3

I 1.8

t0.2

8.9

8.0

4

t2.8

11.1

10.0

8.9

7.7

6.7

6.0

5

8.3

7.2

6.5

5.8

4.9

4.3

3.8

6

10.6

9.3

8.3

7.4

6.4

5.6

5.0

7

6.4

5.6

5.0

4.4

3.8

3.3

2.9

I

3.6

3.1

2.8

2.5

2.t

1.9

t.7

9

4.9

4.3

3.8

3.4

2.9

2.5

2.3

l0

1.9

L.7

1.5

1.3

1.0

0.9

0.8

ll

3.0

2.6

2.3

2.1

1.6

t.4

1.3

t2

2.3

2.O

1.8

1.6

1.3

l.t
1.0

l3

1.5

1.3

t.2
1.0

0.6

0.5

0.5

t4

l5
1.3

t.2

1.0

0.E

0.7

0.6

l5

0.6

0.6

0.5

0.4

0.3

0.2

0.2

16

l5
1.3

t.2
1.0

0.E

o.7

0.6

t7

0.9

o.7

0.7

0.6

0.4

0.3

0.3

l8
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Appendix G
Modelling of Streamflow in the

Onkaparinga Gatchment





G

Assumed Mt Bold Reservoir Gate Operations

In order to calculaæ a rating for Mt Bold Reservoir the gaûo operations shown in Table

G.l were assumed. These operations are based on those in Kotwicki (1984), Design

Services (1982) and discussions with the reservoir operators as described in Section

4.2-l.2.It was assumed that no pre-releasing occurred.

The gate operation procedures in Kotwicki (1984) and Design Services (1982) were

based on increments of gate openings of 75 mm. The current operating procedure has

been modified and is now based upon gate openings of 100 mm (Appendix E). The

current procedure only specifies gate operations up to a gauge height of 4l-3 metres. If
the reservoir continues to rise above this level, the instruction is to continue to raise the

gates in the same sequence.

The rating resulting from the offrcial operating procedure is compared to the adopted

rating in Figure G.l. The adopted rating is very similar to that produced by the offtcial

operating policy and therefore the adopted rating should not have produced any

significant error in the calculated ouflow hydrographs.

It was assumed that the mucimum gate openings have been adjusæd to 3.8 meEes as

recommended in Section 4.4.

Table G.l Assumed Mt Bold Reservoir Gate Operations

ttæ3800380038003800380038003800380042.9m248.4N
10803800380038003800380038003800380042.7W248.200

9983800380038003800380038003800380042.5W248.000

9r93800380038003800380038003800380042.3W247.8N
u23800380038003800380038003800380042.|m247.ffi
768380038003800380038003800380038004r.900247.400

5091500200020002000200020002000150041.800247.3N
3044501000100020002000100010004s041.700v17.200
18200750200020007500041.600u7.toO
990001500150000041.500247.0t0
500007507500004t.mu6.900
200003003000004t.320246.820

1500022522500041.?/15246.745

900015015000041.095246.595

0000000004r.000246.500

Discbarge
(m3/sec)8765432I

G.H.
(m)

Elevation
(m)

Gaæ Openinss (mm)

G- 1
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Figure G.l Comparison of Assumed Rating with the Rating Produced by the Official
Operating Policy
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42.6
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RORB Data File for the Onkaparinga River to Old
Noarlunga

ONKAPARINGA RTVER TO OLD NOARLI.'NGA

O, MIXTI.]RE OFREACHES
1,1,8.02,-99, STOR 1 . SIJB AREA A
3

1,1,6.51,-99, STOR 2 - SUB AREA B
4
5,1,1.30,-99, sroR 3

3

1,1,3.51,-99, STOR 4 - SUB AREA C
4
5,1,1.89,-99, STOR 5

3

I,I,5.73,-99, STOR 6 . SIJB AREA D

3

I,I,7.30,.99, STOR 7 - SUB AREA E

4
5,1,1.50,-99, sroR 8

4
5,1,3.35,-99, STOR 9

2,1,6.30,-99, STOR 10 - SUB AREAF
3

1,1,2.52,-99, STOR ll - SltB AREA G
4
5,1,1.32,-99, sToR 12

5,1,1.08,-99, STOR 13

3

I,7,6,L4,-99, STOR 14 - SI.]B AREA H

ndirG

sToR 15

STOR 16 - SUB AREA I

STOR 17

STOR 18 . SI]B AREA J

STOR 19 - ROUTE TO HOI]LGRAVES
STOR 20
STOR 2I
STOR 22 . SI.JB AREA K

STOR 23 . SI..IB AREA L
STOR 24

4
5,1,3.36,-99,
3

1,1,5.21,-99,
4
5.7,2.36,-99,
3

1,1,2.09,-99,
4
5,1,6.99,-99,
5,1,0.93,-99,
5,4,3.93,-99,
2,4,1.&,-99,
3

1,1,6.31,-99,
5,4,1.90,-99,
4
8,4,-99
7

Design inflow to Mt Bold Res

6
MrBold Res

C Stor-Discha¡ge Table I

1

ü
,tj

¡

r

C Exceedance ProbabilitY 25 %

G-3



C Initial Drawdown 1.098+06 m^3
1,-1.09E+06
30, no of pairs of values in storage - discharge øble
4.498E+07,0
4.4998+07,9
4.5458+07,15
4.568E+07,20
4.5928+07,50
4.6238+07,99
4.6548+07,LtZ
4.6858+07,1M
4.116B+07,509
4.74T8+07,7ß
4.8108+07,842
4.8748+07,919
4.938E+07,998
5.003E{7,1080
5.0ó8E{7,1164
5.074F+47,1L72
5.tm,Eú7,1212
5.2ffi8+O7,1349
5.4368+07,1617
5.608E{7,1956
5.785F+47,2365
5.8568+{7,2550
6.148Fú7,3459
6384Eln7,4312
6.525Eú7,49t5
6.9168{{7,6ó13
7.3238+07,8634
7.744Eú7,10898
8.181E{{7,13373
8.6328{{7,16039,-99
C gaæs operated according to Kotwicki

ApperdixG

c
c
c
C

Elevation Storage Relation Flag
H-S Table I
no of pairs of values in H-S table 49

1,49

0,0.0008+00
4,8.900E+04
5,2.090E+05
6,3.520E+05
7,5.0908+05
8,6.840E+05
9,8.890E+05
10,1.1298+06
11,1.4$E+06
12,1.7348+06
121lfì<ErllÁ¡Jr&.rWLYW

14,2.5?ÅE+06
15,3.003E+06
16,3.534E+06
17,4.1238+06
18,4.7748+06
19,5.489E+06
2O,6.274E+M
21,7.136E+O6

G-4



AppendixG

22,8.0798+M
23,9.1CF,8+M
U,l.V22E+{7
25,1.1428+07
?ß,1.2718+07
27,1.4108+07
28,1.5588+07
29,1;116F+07
30,1.8838d7
3l,2.A6lE+07
32,2.2508+07
33,2.4508+07
34,2.661E+07
35,2.884E+07
36,3.119E+07
37,33658+07
38,3.623F+07
39,3.894E+07
40,4.1768+07
41,4.4698+07
41.4,4.590E+07
42,4-7798+07
43,5.100E+07
44,5.4368+07
45,5.785E+07
46,6.1478+07
47,6.5258+07
48,6.916E+07
49,7.323B+07
50,7.7448+07,-99
7

OuüIow from Mt Bold Re,s

c
C Lower Onkaparinga River
5,1,5.02,-99, stor 25

3

1,1,7.53,-99, stor 26 - Sub A¡ea M
4
5,1,0.74,-99, s¡ot 27
3

1,1,0.91,-99, stor 28 - Sub A¡ea N
4
5,1,2.50,-99, stor 29
5,4,2.27,-99, Clarendon rtVeir

6
Cla¡endon \Vei¡
C Weir formula only 3

C Q=Kw*Ls*(H)^1.5
C Initial Drawdown 0 m^3
C no of Spillways I
C Spillway Elevation 10 m
C Iængth of Spillway 61 m
C Spillway coefficient 1.54

3,0,1
10,61,1.54,-99
C Storage - Elevation Information
^ S-e€II He)"b 3
C a 6,800
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Appendix G

c b 1.8556
CHo-8
2,6800. 1 .855 6,-8,-99
C Pipeflow from Clarendon rilei¡
c 9,0,0,0,0,-gg
7
Flow at Clarendon
5,7,8.02,-99, stor 30
3

1,1,7.51,-99, stor 3l - Sub Area O
4
5,1,1.45,-99, stor 32
2,1,72.32,-99, stor 33 - Sub A¡ea P
7

FIow at Old Noarlunga
0
C SUB AREAS
51.5,27.6,19.4,30.6,29.1,ß.5,22.0,34.9,23.0,37.7,22.9,39.9,26.5,31.2,49.0,36.0,_gg
0,.99, NO IMPERVIOUS AREAS
24 hou¡ 10 ARI
Design
C time incr, no of time incr, no of bursts, no of pluvios, flag(=Q¡
1.00,80,1,1,0,-gg
C no of time incr from beginning to end of burst
0,24
ARR Vol II Temporal Patæm
7 .7,t6.4,6.0,10.3,3.7,4.6,2.9,2.6,2.4,2.0,1.4,1.2,1.7,1.0,0.5,0.9,0.7,0.5,0.3,0.3,0.3,0.1,
0.t,0.2,-99
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G

Using Surfer to Construct Isohyets

The main advantages of using a package such as Surfer to generate isohyets are:

l. Ease of presentation of results as the ouþut can be direcæd to a laser printer.

2. Many catchments have already been digitised.

3. Speed of drawing isohyets. Once the catchment boundaries and rivers have been

digitised and the location of all the raingauges has been deærmined, isohyets can be

generated almost instantaneously.

Surfer requires a input ASCII file of the locations and depths of rainfall. A grid file is

then produced from which the contours aÍe deærmined.

There are three different griding methods available:

1. Inverse Distance. The Inverse Distance method uses a weighted averaging æchnique

to interpolate grid nodes.

2. IGiging. The lftiging method uses geostatistical techniques to calculate the

autocorrelation between data points and produces a minimum variance unbiased

estimate.

3. Minimum Curvature. This method f,rst examines all data and sets the nearest grid

node to that data value. The values at the other grid nodes are then computed so as

to give a grided surface of minimum curvature through the set grid nodes.

The choice of griding method can have a dramatic effect on the isohyets which are

produced. The three methods were examined for a number of different cases and it was

found that the Kriging method consistently produced the most satisfactory results.

Once the grided file was produced using the Ikiging method, the isohyes were drawn

using TOPO. The locations of the centroid for each subarea, the carchment bounda¡ies

and rivers can be shown.
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Appcndìx G

Comparison of Calculated and Recorded Inflows to Mt
Bold Reservoir for the 3 Largest Events
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Appendix H
WSO87 Output for lnflows to Mt

Bold Reservoir





Appctdix H

WSO87 Output for Inflows to Mt Bold Reservoir

Data and Søtistics of Full Record

Inflows to Mt Bold Reservoir (1897-35,74-92)
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PEÀRSON TYPE IIT DISTRIBUTION FITTED TO FULL RECORD

RECURRENCE INTERVAL(YRS. ), EXCEEDANCE PROBÀBILITY(t) MAGNITUDB
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Appendix I

End of Month Storage
Probab¡lity Distributions for Mt

Bold Reservoir
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Appendix J
Probability of Flows

Downstream of Mt Bold
Reservoir
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Appendix K
Probable Maximum

Precipitation
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Appedix K

Table K.l keliminary PMP Depths (mm) Location 1 - Cenre of Carchment

31128826229tt8119L

2982762542171671MK

ffi576539s03394267J

658625587514432306I
65862558752643306H

745710672617529376G

ñ9576539474394?ß7F

416386357308a8158E

3ó0331309257205133D

4û429400v3275178c
298276254217167104B

26t2392r8189IM89A

6543,,I
Sub

câtcbment

Duration (hou¡s)

Tabte K.2 Preliminary PMP Depths (mm) Location 3 - Reverse Centre of Catchment

4894584203ffi289r82L

48345t42036289t82K

655621601540439297J

721687&7583485339T

754719679620520375H

793759718651548396G

621s89550490M26F

357334310z',t3208130E

238216194161r2t73D

383353330285225t4tc
t45tu1038l6336B

997865372916A

65432I
Sub -

catchment

Du¡ation (hours)

K-3



AppeúìxK

Table K.3 Preliminary PMP Depths (mm) I-ocation 4 - Towards Reservoir

Table K.4 Preliminary PMP Depths (mm) Location 5 - High in Catchment

673ffi60554245t310L
49867432383307t9K
80877373867057t42rJ
653620585523433294I
5395074724153372t6H
653620585523433294G
498ß7439383307199F
2832û2392U15694E
u92272M17213283U
391360332293229tuc
2362t3r9316012072B
168147t26tu2724A
65432I

Sub-

Catchment
Duration (houn)

7858453r185L
78584531185K
267u52Ur8414l83J
300277256220t76104I
430399377330270t6H
56152Å4924343&229G
7437@67t606&364F
65261858852647296E
63960656950842928tD
67r&û75454il3gc
5485154794223472t8B
548515479422347218A

65432I
Sub -

Catcbment
Du¡ation (houn)

K-4
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Table K.5 PMP Depth (mm) Catchment to Old Noarlunga, Location 3 - Reverse

Cent¡e of Carchment

Table K.6 PMP Depth (mm) Caæhment to Old Noarlunga, Location 4 - Towards

Reservoir

13310591745229P

25r23020917513680o
307286265229r8l103N

531496ffi4M3302MM

5774894533973232mL
5104824s3397323200K
69163&858ó491326J

761733696633543372I
79676873t673s82412H

838810773707614435G

657628592532453292F

3',17356334296233143E

25t230zw17513680D

405377355310252155c
154t33lll887lNB

105u704032l7A

65432I
Sub -

Catchment

Du¡ation (houm)

8l5942928t2P

1831621401158350o
2&242222186t4687N

557521488430?542UM

7337056736t9521349L
543514481430354224K
88085282t't52660474J

7rl683651587500330I
58755852546389243H

7rl683651587s00330G

v35t44884303v224F

30828626229181106E

27125022919315393D

4253963703302&162c
2572352t41791398lB

183162IN1158350A

6543)I
Sub -

Catchment

Du¡ation (bours)
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