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ABSTRACT
Anthropogenic copper pollution of environmental waters from sources such as acid mine drainage, 
antifouling paints and industrial waste discharge is a major threat to our environment and human 
health. This study presents an optical sensing system that combines self-assembled glutaraldehyde-
crosslinked double-layered polyethyleneimine (PEI-GA-PEI)-modified nanoporous anodic 
alumina (NAA) interferometers with reflectometric interference spectroscopy (RIfS) for label-
free, selective monitoring of ionic copper in environmental waters. Calibration of the sensing 
system with analytical solutions of copper shows a linear working range between 1 and 100 mg 
L-1, and a low limit of detection of 0.007 ± 0.001 mg L-1 (i.e. ~0.007 ppm). Changes in the effective 
optical thickness (OTeff) of PEI-GA-PEI-functionalized NAA interferometers are monitored in 
real-time by RIfS, and correlated with the amount of ionic copper present in aqueous solutions. 
The system performance is validated through X-ray photoelectron spectroscopy (XPS) and the 
spatial distribution of copper within the nanoporous films is characterized by time-of-flight 
secondary ion mass spectroscopy (ToF-SIMS). The specificity and chemical selectivity of the PEI-
GA-PEI-NAA sensor to Cu2+ ions is verified by screening six different metal ion solutions 
containing potentially interfering ions such as Al3+, Cd2+, Fe3+, Pb2+, Ni2+ and Zn2+. Finally, the 
performance of the PEI-GA-PEI-NAA sensor for real-life applications is demonstrated using 
legacy acid mine drainage liquid and tap water for qualitative and quantitative detection of copper 
ions. This study provides new opportunities to develop portable, cost-competitive and ultra-
sensitive sensing systems for real-life environmental applications.

Keywords: Copper, Chelation, Nanoporous Anodic Alumina, Polyethyleneimine, Reflectometric 
Interference Spectroscopy
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INTRODUCTION

The use of copper is constantly increasing in materials and products of commercial 

importance such as cosmeceuticals,1 agriculture,2 construction,3 chemical industries,4 and 

electronics3,5. This rapid diversification and expansion in the use of copper is dramatically 

increasing its impact on natural environments. Copper can be released into the environment during 

its mining and also from copper-based products such as metal-based biocides in agriculture, 

antifouling paints in marine systems6,7, and domestic and industrial waste emissions8-10. Once 

released into the environment, copper becomes highly soluble and percolates into soil and water 

in its various toxic forms.11,12 Copper is a broad spectrum biocide, being free ionic (Cu2+) and 

inorganic complexes (Cu(OH)+) its most toxic forms.13 The maximum permissible limit of Cu2+ 

ions in drinking water cannot exceed 2 mg L-1 (i.e. 2 ppm) and 1.3 mg L-1 (i.e. 1.3 ppm), as 

established by the World Health Organization (WHO) and the US Environmental Protection 

Agency (EPA), respectively.14 Therefore, there is an urgent need to develop monitoring systems 

that can perform highly sensitive, selective, cost-competitive, user-friendly and reliable detection 

of copper ions in environmental waters. Current benchmark techniques used to detect copper in 

aqueous solutions include inductively coupled plasma optical emission spectroscopy/mass 

spectroscopy (ICP-OES/MS),15 atomic absorption spectroscopy (AAS),16 anodic stripping 

voltammetry (ASV),17 UV-Visible18 and florescence spectroscopy19. Though these methods offer 

good detection limits and broad linear working ranges, they require significant capital and 

maintenance investments, laborious sample preparation processes and highly trained personnel, 

and cannot be miniaturized into portable sensing systems for in-situ analysis applications. 

Current progress in nanotechnology is enabling development of advanced analytical tools 

for heavy metal ions sensing. An outstanding example of this is the combination of thin 
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nanoporous films with optical techniques such as fluid imbibition-coupled laser interferometry20, 

interferogram average over wavelength21 and reflectometric interference spectroscopy (RIfS)22-28. 

These systems provide novel approaches for developing label-free optical sensors able to monitor 

binding events in real-time. The nanoporous structure of sensing platforms such as porous silicon 

and nanoporous anodic alumina (NAA) enables enhanced sensitivities due to their high surface 

area, which provides more ligand sites for binding interactions. Chemical functionalization of 

these nanoporous substrates enables high chemical selectivity toward a broad range of analyte 

species such as proteins,29 small molecules30 and ions31 nucleotides32,33 and whole cells34,35. 

This study presents an innovative optical sensing system combining chemically modified 

NAA optical interferometers with RIfS for sensitive and highly selective detection of copper ions 

(Figures 1a and b). The novelty stems from our identification that the modification of the surface 

chemistry of NAA interferometers with layers of glutaraldehyde crosslinked polyethyleneimine 

(PEI-GA-PEI) gives this system chemical selectivity to specifically detect copper ions in aqueous 

solutions. The interaction between copper ions and PEI-GA-PEI-modified NAA interferometers 

is translated into quantifiable changes in the effective optical thickness of these nanoporous films 

(i.e. sensing principle) (Figures 1c and d). PEI-GA-PEI chemical functional layers provide 

excellent selectivity toward copper ions in complex real-life environmental solutions containing 

interfering organic and inorganic impurities (Figures 1e and f).36-38 The performance of this 

copper sensing system is systematically assessed in terms of working range, sensitivity, linearity, 

low limit of detection, chemical selectivity and real-life application. Our study provides new 

opportunities to develop ultra-sensitive, highly selective, low-cost, portable sensing systems able 

to monitor trace levels of copper ions in environmental waters. 
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Figure 1. Production of PEI-GA-PEI-functionalized NAA interferometers and assessment of binding affinity for 
detection of copper ions using RIfS. a) Illustration describing the two-step anodization process used to produce 
NAA interferometers (left – aluminum substrate; center – NAA interferometer; right – gold-coated NAA 
interferometer). b) Schematic showing the RIfS set-up used to monitor binding interactions between PEI-GA-
PEI-modified NAA interferometers and copper ions in real-time under dynamic flow conditions. c) 
Representative RIfS spectra of PEI-GA-PEI-functionalized NAA interferometers before and after exposure to 
Cu2+ ions (inset showing the characteristic fast Fourier transform (FFT) spectra used to estimate the effective 
optical thickness (OTeff) of NAA interferometers associated with the different stages of the process: surface 
chemistry engineering (i–iii) and real-time sensing (iv)). d) Real-time effective optical thickness changes (OTeff) 
associated with the surface chemistry engineering and sensing stages: (i) electrostatic functionalization of the 
inner surface of the nanopores of NAA interferometers with PEI molecules; (ii) crosslinking of immobilized PEI 
molecules with glutaraldehyde (GA); (iii) immobilization of second PEI functional layer; and (iv) binding to Cu2+ 
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ions. e) Schematic showing the structure of PEI-GA-PEI-functionalized NAA interferometers. f) Illustration 
showing details of the inner surface chemistry of gold-coated PEI-GA-PEI-functionalized NAA interferometers 
during the different stages of the sensing process (i–iv). 

EXPERIMENTAL SECTION

2.1. Materials. High purity (99.9997 %) aluminum (Al) foils of thickness 0.32 mm were purchased 

from Goodfellow Cambridge Ltd (UK). Oxalic acid (H2C2O4), perchloric acid (HClO4), chromic 

acid (H2CrO4), lead(II) nitrate (Pb(NO3)2), nickel(II) sulfate (NiSO4), zinc chloride (ZnCl2), 

aluminum chloride hexahydrate (AlCl3·6H2O), cadmium nitrate tetrahydrate (Cd(NO3)2·4H2O), 

iron chloride (FeCl3), hydrochloric acid (HCl), nitric acid (HNO3) and glutaraldehyde (GA) were 

acquired from Sigma-Aldrich (Australia). Ethanol (C2H5OH), phosphoric acid (H3PO4), sodium 

chloride (NaCl) and copper (II) sulphate pentahydrate (CuSO4·5H2O) were purchased from 

ChemSupply (Australia). Branched polyethyleneimines (PEI) Lupasol® G20 (50 wt % in H2O, 

MW 1300 g mol-1), Lupasol® HF (56 wt % in H2O, MW 25000 g mol-1), and Lupasol® P (50 wt 

% in H2O, MW 750000 g mol-1) were provided by BASF (Germany) and stored under N2 till use. 

Real legacy acid mine drainage solution was kindly provided by Copper Mines of Tasmania 

(Australia). Ultrapure water 18.2 MΩ cm from a Milli-Q® Advantage A10® water purification 

system was used to prepare all the aqueous solutions used in this study. pH adjustments were 

performed using an ION 700 meter (Eutech instruments, Singapore).

2.2 Fabrication of NAA Interferometers. Al substrates were sonicated in EtOH and ultrapure 

water for 15 min each and dried under air stream. Then Al chips were electropolished in a mixture 

of HClO4 and EtOH 1:4 (v:v) at 20 V and 5 oC for 3 min in an electrochemical reactor with a 

circular window of ~1 cm in diameter. The first anodization step was performed in 0.3 M oxalic 

acid electrolyte at 40 V and 6 oC for 20 h. The resulting NAA layer was chemically removed by 

wet etching in 0.2 M H2CrO4 and 0.4 M H3PO4 at 70 oC for 3 h. The second anodization step was 
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performed using the same conditions than those used during the first step but for 2 h. Finally, the 

NAA films were pore-widened by wet chemical etching in H3PO4 5 wt % at 35 oC for 15 min.39-42

2.3. Optical Characterization. Details of the flow system and RIfS setup used in this study are 

provided in the Supporting Information. RIfS spectra (Figures 1b-d) were acquired in the 

wavelength range 400–1000 nm and processed by applying fast Fourier transform (FFT) to 

estimate the effective optical thickness (OTeff) of NAA interferometers according to Equation 1: 

                                                                                                           (1) where 𝑂𝑇𝑒𝑓𝑓 = 2𝑛𝑒𝑓𝑓𝐿𝑝cos 𝜃

OTeff, neff and Lp are the effective optical thickness, the effective refractive index and the physical 

thickness of the NAA platform, respectively, whereas θ  is the angle of incidence of light (i.e. θ = 

0o in this case).

2.4. Chemical Modification of NAA Interferometers. As-prepared NAA interferometers were 

coated with an ultrathin film of gold ~4-5 nm thick using a sputter coater equipped with film 

thickness monitor (sputter coater 108 Auto, Cressington, USA) to enhance the intensity of spectral 

fringes.43-45 Prior to sensing, the inner surface of NAA interferometers was chemically 

functionalized with GA-crosslinked double PEI layers through a three-step procedure monitored 

in real-time by RIfS. This process was performed in a flow cell system (Supporting Information) 

using effective optical thickness changes (OTeff) as sensing parameter. A stable baseline in water 

was obtained. Then, NAA interferometers were exposed to a PEI functional solution (0.2 wt %, 

0.1 mol L-1 NaCl, pH 9) till complete saturation of the inner surface by PEI functional groups,  

denoted by a plateau in (OTeff) (Figure 1d-i). Milli-Q water was injected into the system to 

remove loosely bound PEI molecules from the inner surface of NAA interferometers. Self-

assembled PEI molecules immobilized onto the inner surface of the NAA interferometers by 

electrostatic interaction were crosslinked by exposing the nanoporous films to 2.5 v % GA solution 
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7

for a given time, followed by a thorough washing with Milli-Q water (Figure 1d-ii). The sensing 

platforms were then exposed to fresh PEI functional solution (0.2 wt %, 0.1 mol L-1 NaCl, pH 9) 

as in the first step to crosslink a secondary layer of PEI molecules (Figure 1d-iii). Finally, Milli-

Q water was flowed through the system to remove unbounded PEI molecules . 

2.5. Calibration and Detection of Cu2+ Ions. After functionalization (sections i–iii, Figure 1d), 

the sensing performance of PEI-GA-PEI-modified NAA interferometers was assessed by 

measuring OTeff upon exposure to six different concentrations of Cu2+, ranging from 1 to 100 mg 

L-1 at pH 5. These copper analytical solutions were prepared by diluting 0.1 M stock solution of 

Cu2SO4·5H2O in Milli-Q water. PEI-GA-PEI-modified NAA interferometers were packed in a 

flow cell system, through which the copper analytical solutions were flowed at an optimized rate 

of 100 μL min-1 using a peristaltic pump (LongerPump®, Thermoline Scientific, Australia). A 

stable baseline was first established in Milli-Q water at pH 5 for ~15 min before injection of ionic 

copper solutions into the flow cell. Binding of copper ions to PEI-GA-PEI-functionalized NAA 

interferometers was monitored in real-time through changes in OTeff by RIfS. This process 

continued until all the available ligand sites in the inner surface of NAA were saturated with Cu2+ 

ions. Control experiments were performed with non-functionalized NAA interferometers using 10 

and 100 mg L-1 analytical solutions of Cu2+. 

2.6. Assessment of Chemical Selectivity. The chemical selectivity of the system toward copper 

ions was assessed by exposing a set of freshly prepared PEI-GA-PEI-modified NAA sensing 

platforms to 25 mg L-1 individual aqueous solutions of Cd2+, Ni2+, Fe3+, Al3+, Pb2+ and Zn2+ ions. 

Effective optical thickness changes upon exposure to these analytical solutions were compared 

against those obtained for copper ions for the same concentration. 
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2.7. Real-Life Environmental Application. The performance of PEI-GA-PEI-modified NAA 

interferometers to detect copper ions in complex matrices was evaluated using AMD and tap water 

solutions with known Cu2+ concentration and benchmaked against ICP-OES. 100 mL of acid mine 

drainage (AMD) liquid was poured into a 250 mL glass beaker and the pH was adjusted to 5 (i.e. 

initial pH ~2.2). A 50 mL aliquot of supernatant containing dissolved metal ions was separated 

from the precipitate and used for detection of copper content through RIfS in PEI-GA-PEI-

modified NAA interferometers. The ion metal content of the AMD solution was established by 

inductively coupled plasma optical emission spectroscopy (ICP-OES). Duplicates of the diluted 

samples were acidified with 3–4 drops of HNO3 to prevent bacterial growth. All the results were 

processed with Multicomponent Spectral Fitting. Calibration standards and QC standards were 

prepared in 1 % HNO3.

2.8. Structural Characterization of NAA. The structural features of the NAA interferometers 

were established by field emission gun scanning electron microscopy (FEG-SEM FEI Quanta 

450). FEG-SEM images were processed using ImageJ.

RESULTS AND DISCUSSION

3.1. Structural Characterization of NAA Interferometers. The geometric features of NAA 

interferometers (i.e. nanopore diameter – dp; nanopore length – Lp; and interpore distance – dint; 

Figure 2a) were established by FEG-SEM image analysis. Figures 2b–d compile a set of 

representative FEG-SEM images showing the cross-sectional (Figures 2b and c) and top (Figure 

2d) views of NAA interferometers fabricated by two-step anodization process.39-42 Figure 2b 

shows a cross-sectional FEG-SEM image of a NAA interferometer featuring straight cylindrical 

nanopores from top to bottom, which grow perpendicularly to the underlying aluminum substrate 

during anodization. These nanopores have a closed oxide barrier layer at the bottom (Figure 2c), 
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9

with an average nanopore length of Lp = 5.5 ± 0.2 μm (i.e. physical thickness of the optical film). 

The top surface of NAA shows an array of nanopores of uniform size and distribution arranged in 

a self-organized hexagonal pattern (Figure 2d). The average nanopore diameter was dp = 65 ± 4 

nm, with an average interpore distance of dint = 105 ± 5 nm. NAA interferometers with these 

geometric features display well-resolved and intense Fabry-Pérot interference fringes in their RIfS 

spectra that are suitable for sensing applications. 

Figure 2. Structural features of NAA interferometers produced by two-step anodization. a) Schematic of a NAA 
interferometer with details of geometric features (i.e. nanopore diameter – dp; nanopore length – Lp; and interpore 
distance – dint). b) General cross-sectional FEG-SEM image view of a NAA interferometer featuring straight 
cylindrical nanopores from top to bottom (scale bar = 5 µm). c) Magnified cross-sectional FEG-SEM image view 
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10

showing details of the oxide barrier layer (scale bar = 500 nm). d) Top FEG-SEM view of hexagonally arranged 
cylindrical nanopores in NAA interferometers (scale bar = 500 nm).

3.2. Preliminary Optimization of Sensing Features of NAA Interferometers. Preliminary 

experiments were carried out to optimize the sensing performance of PEI-GA-PEI-functionalized 

NAA interferometers toward copper ions. Three sensing features were optimized: i) molecular 

weight of PEI functional molecules, ii) flow rate of the analytical solutions, and iii) the surface 

chemistry architecture of PEI-GA-PEI functional layers. These three parameters were selected for 

their effect on the sensing performance of this system, as demonstrated in previous studies.46,47 

Freshly prepared PEI-GA-PEI-modified NAA interferometers were exposed to a 100 mg L-1 Cu2+ 

analytical solution at pH 5. Effective optical thickness changes (OTeff) in these NAA sensing 

platforms upon modification of these three working parameters were measured by RIfS to establish 

the most optimal conditions for Cu2+ sensing. The obtained resuts, described in detail in the 

Supporting Information and summarized in Figure 3, established that the best performing 

combination of these working parameters was PEI molecules of 750000 g mol-1 molecular weight 

(Figure 3a), a flow rate of 100 μL min-1 (Figure 3b), and a sandwiched PEI-GA-PEI surface 

chemistry architecture (Figure 3c).

3.3. Real-Time Monitoring of Copper Ions. The surface chemistry engineering and real-time 

sensing (sections i–iii and iv in Figure 1d, respectively) were monitored in real-time by RIfS. 

First, a OTeff baseline is established in Milli-Q water and 0.1 M NaCl in Milli-Q water at pH 9 

for ~15 min each. No significant change in OTeff is observed during the transition from Milli-Q 

water to NaCl solution. After this step, 0.2 wt % PEI solution in 0.1 M NaCl at pH 9 is injected 

into the flow system. The exposure of the NAA interferometers to the PEI solution leads to a sharp 

and rapid increase in OTeff, which stabilizes at a value of ~35 nm. The surface alumina (i.e. Al2O3) 
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11

is negatively charged at slightly basic pH (i.e. pH = 9). As a result, positively charged PEI 

molecules are immobilized onto the inner surface of alumina by strong electrostatic 

interactions.48,49 The adsorption of the PEI functional layer onto the inner surface of the nanopores 

increases the effective refractive index of the NAA interferometers, red-shifting the OTeff of the 

optical film (Figure 1d-i). 

Figure 3. Optimization of working parameters to maximize sensing of Cu2+ ions in NAA interferometers (note: 
error bars denote standard deviation from average measurements obtained from n = 3 independent experiments). a) 
Bar chart showing the OTeff associated with each molecular weight of PEI assessed in this study (i.e. MWPEI = 
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12

1300, 25000 and 750000 g mol-1) (left) and illustration showing the effect of this working parameter on the sensing 
performance of PEI-GA-PEI-modified NAA interferometers (right). b) Bar chart showing the OTeff associated 
with each flow rate of analytical solution assessed in this study (i.e. RFlow = 50, 100, 200 and 300 L min-1) (left) 
and schematic showing the effect of this working parameter on the sensing performance of PEI-GA-PEI-modified 
NAA interferometers (right). c) Bar chart showing the OTeff associated with each surface chemistry architecture 
assessed in this study (i.e. PEI-GA and PEI-GA-PEI) (left) and illustration depicting the effect of this working 
parameter on the sensing performance of PEI-GA-PEI-modified NAA interferometers (right).

After achieving a plateau (i.e. saturation of the inner surface of NAA with PEI molecules), fresh 

0.1 M NaCl solution at pH 9 and Milli-Q water are sequentially flowed through the system. OTeff  

slightly decreases to a new equilibrium value of ~23 nm during this stage, confirming a stable 

adsorption of PEI functional layers. This slight blue shift in OTeff is collectively attributable to 

lower refractive index of water and removal of loosely bound PEI molecules from the inner surface 

of NAA. Next, PEI-modified NAA interferometers are exposed to a 2.5 v % GA solution in Milli-Q 

water, resulting in a red shift in OTeff of ~79 nm (Figure 1d-ii). The chemical crosslinking of PEI 

with GA enhances the stability of the PEI functional layer by creating intra-molecular bonds 

between PEI molecules immobilized onto the inner surface of NAA. Once stabilized, Milli-Q 

water and 0.1 M NaCl at pH 9 solutions are flowed through the system in a sequential fashion to 

remove physisorbed GA molecules and to establish a new OTeff baseline prior to creating the 

second PEI functional layer. During this process, OTeff blue-shifts and achieves a new stable 

baseline at ~58 nm. Fresh PEI solution (0.2 wt %, 0.1 mol L-1 NaCl, pH 9) is flowed again through 

the system to create a double PEI functional layer crosslinked to the primary PEI layer through 

GA (i.e. PEI-GA-PEI surface chemistry architecture) (Figure 1d-iii). Finally, 0.1 M NaCl at pH 9 

and Milli-Q water solutions are sequentially flowed through the system. A total increment of ~4 

nm in OTeff is observed after deposition of the second PEI functional layer, with the final 

equilibrium baseline of OTeff achieved at ~62 nm. Then, PEI-GA-PEI-modified NAA 

interferometers were exposed to different analytical solutions of Cu2+ ions with controlled 
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concentrations (i.e. real-time sensing stage – Figure 1d-iv). Figure 4a shows a representative 

example of real-time monitoring of OTeff upon exposure to [Cu2+] = 75 ppm solution (Figure S1 

in the Supporting Information summarizes the obtained result for all the Cu2+ ions concentrations). 

As this graph reveals, OTeff increases sharply upon exposure to the analytical solution containing 

Cu2+ until the binding groups present in the PEI functional layers are completely saturated with 

Cu2+ ions (i.e. plateau in OTeff). The chemical binding between Cu2+ ions and the functional 

groups of GA-crosslinked PEI layers red-shifts the RIfS interference pattern. For instance, as 

Figure 4a shows, when PEI-GA-PEI-modified NAA platforms are exposed to a 75 mg L-1 solution 

of Cu2+ ions, OTeff increases progressively up to ~130 nm, from the previously established 

baseline in Milli-Q water, until it achieves a stable value. This indicates that the PEI functional 

layers inside the nanopores of NAA are saturated with Cu2+ ions (i.e equilibrium state). Once the 

binding equilibrium state is achieved, Milli-Q water at pH 5 is flowed through the system to 

remove unbound Cu2+ ions and to establish the total OTeff associated with 75 mg L-1 of Cu2+ ions, 

which was measured to be ~124 nm with respect to the previous baseline obtained in Milli-Q 

water. The kinetics of this binding reaction for each [Cu2+] is also characterized by the saturation 

time (tsat), defined as the time at which the equilibrium state is reached, as indicated in Figure 4a. 

Figure 4b summarizes the average OTeff values for each surface chemistry engineering stage (i.e. 

first PEI functional layer, GA crosslinking, and second PEI functional layer) and real-time sensing 

(i.e. for [Cu2+] = 1 to 100 ppm).

3.4. Calibration of PEI-GA-PEI-Modified NAA Interferometers for Cu2+ Sensing. The 

sensing performance of our RIfS system was assessed by flowing analytical solutions of Cu2+ ions 

with controlled concentrations, from 1 to 100 mg L-1. The sensing parameters characterizing the 

performance of this system (i.e. linear working range, sensitivity, saturation time and low limit of 
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detection) were estimated by correlating OTeff and tsat values for each Cu2+ ions concentration, as 

summarized in Figure 4c. This graph shows a strong linear correlation between OTeff and [Cu2+] 

for the entire range of concentrations (1–100 mg L-1). A linear fitting between these parameters 

establishes the sensitivity (i.e. slope (S) = 1.55 ± 0.11 nm (mg L-1)-1) and the low limit of detection 

(i.e. LoD = 0.007 ± 0.001 mg L-1), calculated as the slope of the fitting line and 3  3 times the 

standard deviation of the lowest concentration of copper ions divided by the slope of the fitting 

line, respectively, with a linear working range from 1 to 100 mg L-1 and a linearity of R2 = 0.9926. 

As Figure 4c shows, tsat is relatively constant for [Cu2+] < 75 ppm. However, the saturation time 

increases above [Cu2+] = 75 ppm and decreases moderately for [Cu2+] = 100 ppm, with an average 

tsat = 4.7 ± 1.5 h, and tsat-max = 7.3 h and tsat-min = 3.1 h. The response time achieved by PEI-GA-

PEI-functionalized NAA interferometers under the conditions of study is comparable to that 

reported in previous studies using NAA interferometers of similar nanoporous geometry and 

dynamic flow conditions.27,32,46,48,50 The main factor establishing the kinetics of copper ions is the 

binding mechanism to PEI-GA-PEI functional layers. PEI is a polymer with a branched structure 

and high content of amine-nitrogen functional groups with repeating C2H5N units that donate 

electrons and chelate metal ions.51 Nitrogen atoms in PEI chelate Cu2+ ions by coordination 

interaction, in which four nitrogen atoms bind one Cu2+ ion. The branched structure of the PEI-

GA-PEI functional layer prevents the direct exposure of all the functional groups in the PEI 

molecules immobilized onto the inner surface of NAA interferometers. The progressive binding 

of copper ions leads to conformational changes in PEI molecules so four nitrogen atoms can 

chelate one Cu2+ ion. These conformational changes expose more functional binding sites in the 

PEI molecules, creating new binding interactions with Cu2+ ions and a progressive increment of 

OTeff. 
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Figure 4. Assessment of the binding interaction between Cu2+ ions and PEI-GA-PEI-functionalized NAA 
interferometers for different concentrations of Cu2+ ions (note: error bars denote standard deviation from average 
measurements obtained from n = 3 independent experiments). a) Real-time Cu2+ binding stage for [Cu2+] = 75 ppm, 
where the arrows indicate OTeff and tsat for the binding reaction performed under dynamic flow conditions 
(note: the dotted line shown at the left of the graph indicates the timepoint at which the Cu2+ analytical solution 
was injected into the flow cell system – OTeff and time baselines). b) Average values of OTeff for each surface 
chemistry engineering stage and real-time sensing. c) Correlation between OTeff (left scale) and tsat (right scale) 
with [Cu2+] for PEI-GA-PEI-functionalized NAA interferometers. d) Kinetic rate (RPEI-GA-PEI-Cu) for the binding 
reaction between Cu2+ ions and PEI-GA-PEI functional layers for the range of [Cu2+] (i.e. 1–100 ppm). 

To gain a better insight into the kinetics mechanism of the binding interaction between Cu2+ ions 

and PEI-GA-PEI functional layers, we estimated the binding rate RPEI-GA-PEI-Cu, calculated as the 

ratio between OTeff and tsat for each [Cu2+] (Figure 4d). RPEI-GA-PEI-Cu follows an exponential 

decay trend with the concentration of copper ions, revealing that, at low concentrations of copper 

ions (i.e. [Cu2+] < 50 ppm), the increasing concentration of analyte molecules accelerates the 
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binding reaction due to enhancement of the frequency of interactions between Cu2+ ions and the 

functional groups in the PEI-GA-PEI layer since more ions are available for binding events inside 

the nanopores. However, for [Cu2+] ≥ 50 ppm, the reaction rate becomes almost constant and 

practically independent on [Cu2+], indicating that the reaction is rate-limited by the binding affinity 

between PEI-GA-PEI and Cu2+ ions and the conformational changes of PEI molecules upon initial 

exposure to Cu2+ ions.52 Note that control experiments with NAA interferometers without PEI-

GA-PEI functional layers were performed to verify that red-shifts in the OTeff of PEI-GA-PEI-

functionalized NAA interferometers upon exposure to copper ions are exclusively due to selective 

surface chemistry interactions. Bare NAA interferometers were exposed to 10 and 100 mg L-1 

analytical solutions of Cu2+ ions at pH 5. The measured OTeff for non-modified NAA 

interferometers upon exposure were ~8 and ~11 nm, respectively (Figure S2 – Supporting 

Information). This result demonstrates that non-specific adsorption of positively charged Cu2+ 

ions to the negatively charged surface of NAA due to electrostatic interactions is almost negligible 

as compared to OTeff values achieved in PEI-GA-PEI-functionalized NAA interferometers. 

3.5. Benchmark Validation of PEI-GA-PEI-Modified NAA Interferometers for Cu2+ Sensing. 

PEI-GA-PEI-functionalized NAA interferometers were analyzed by XPS after exposure to 1, 25, 

50 and 100 mg L-1 analytical solutions of Cu2+ ions. Figure S3a (Supporting Information) shows 

the ratio of copper to nitrogen (Cu/N) established by XPS, demonstrating that, at equilibrium, the 

amount of copper binding to the chelator (nitrogen) in PEI molecules is linearly dependent on the 

amount of copper ions present in the analytical solution. Copper binding increases linearly with 

increasing concentration of Cu2+ ions, as indicated by the linear fitting shown in Figure S3a. To 

further validate the selective binding of copper ions, the spatial distribution of Cu in PEI-GA-PEI-
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modified NAA interferometers was assessed by time-of-flight secondary ion mass spectrometry 

(ToF-SIMS) and 13C NMR analysis (Figures S3b and S4 – Supporting Information).

3.6. Chemical Selectivity of PEI-GA-PEI-Modified NAA Interferometers toward Cu2+ Ions. 

Label-free optical detection systems suffer from non-specific binding interactions, which can lead 

to false positives or inaccurate quantification of analytes. PEI-GA-PEI-functionalized NAA 

interferometers were exposed to ion solutions spiked with 25 mg L-1 of potentially interfering ions 

such as Al3+, Fe3+, Cd2+, Ni2+, Pb2+ and Zn2+ to demonstrate the chemical selectivity toward Cu2+ 

ions. Changes in the effective optical thickness of these films upon exposure to each metal ion 

solution were compared with those obtained for a 25 mg L-1 Cu2+ ions solution. All of these 

analytical solutions were prepared in Milli-Q water with pH adjusted to 5. As Figure 5a shows, 

the OTeff of PEI-GA-PEI-modified NAA interferometers underwent negligible changes upon 

exposure to Al3+, Fe3+, Ni2+, Pb2+ and Zn2+ ions. The most significant non-specific change in OTeff 

was observed for Cd2+ (i.e. 0.24 ± 0.4 nm), which is practically negligible as compared to that 

measured for the same concentration of Cu2+ ions  (i.e. 63 ± 1 nm, ~262 times higher). Fourier 

transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) analyses in our 

previous study indicate that GA crosslinking of PEI molecules generates structural changes that 

lead to the formation of a PEI network containing a high content of Schiff bases (i.e. imine 

nitrogens), with strong affinity and selectivity toward copper ions.38 These results demonstrate that 

PEI-GA-PEI-functionalized NAA interferometers feature high sensitivity and selectivity toward 

Cu2+ ions due to their functional surface chemistry architecture.

3.7. Real-Life Application of PEI-GA-PEI-Modified NAA Interferometers for Cu2+ Ions 

Sensing. PEI-GA-PEI-functionalized NAA interferometers were exposed to complex, real acid 

mine drainage liquid (AMD) and tap water spiked with Cu2+ ions for detection and quantification 
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of copper ions in complex matrices (Figure 5). Table S1 (Supporting Information) shows the 

concentration of dissolved metals present in the AMD solution analyzed in our study. Analysis of 

the AMD solution by ICP-OES revealed that Al (~130 mg L-1) and Fe (> 500 mg L-1) were the 

most abundant metal ions in these samples, with more than four-fold and sixteen-fold higher 

concentrations, respectively, than other metal ions such as copper (~31 mg L-1) and zinc (~20 mg 

L-1). Freshly prepared PEI-GA-PEI-functionalized NAA interferometers were exposed to the 

AMD solution and changes in the effective optical thickness were assessed in real-time by RIfS 

(Figure 5b). The PEI-GA-PEI surface chemistry on the inner surface of NAA interferometers was 

engineered following the protocol outlined in Section 3.3. After the final functionalization step, 

Milli Q-water at pH 5 was flowed through the system for 15 min to obtain a stable baseline. Then, 

the AMD analyte solution was flowed through the flow cell system. The OTeff of PEI-GA-PEI-

functionalized NAA interferometers increased sharply as a result of Cu2+ ions binding. Once the 

equilibrium was achieved (i.e. plateau in OTeff), Milli-Q water (pH 5) was flowed again through 

the system to establish the total OTeff resulting from the selective binding of Cu2+ ions present in 

the AMD solution. This protocol was repeated to analyze the system’s performance using tap water 

spiked with 25 mg L-1 of Cu2+ ions. Real-time monitoring of these binding processes through 

OTeff is shown in Figure 5b. The RIfS response in terms of OTeff for these processes established 

values of 69 ± 1 nm and 70 ± 2 nm for AMD and tap water solutions, respectively (Figure 5c). 

Using the calibration line obtained in Figure 4c, such a change in effective optical thickness 

corresponds to a concentration of copper ions of 32 ± 1 mg L-1.  Interestingly, the amount of copper 

quantified using ICP-OES from the same AMD analyte solution was ~30.8 mg L-1, which would 

correspond to a total OTeff of ~66.7 nm. 
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Figure 5. Assessment of chemical selectivity of PEI-GA-PEI-functionalized NAA interferometers for Cu2+ ions 
and performance assessment in complex matrices (note: error bars denote standard deviation from average 
measurements obtained from n = 3 independent experiments). a) Bar chart showing the OTeff measured upon 
exposure to analytical solutions of Al3+, Fe3+, Cd2+, Ni2+, Pb2+, Zn2+ and Cu2+ (i.e. [metal ion] = 25 ppm). ). b) Real-
time Cu2+ binding stage for each media (i.e. Milli-Q water, AMD and tap water for [Cu2+] = 25 ppm), where the 
arrows indicate OTeff and tsat for each of these binding reactions performed under dynamic flow conditions 
(note: the dotted line shown at the left of the graphs indicates the timepoint at which the analytical solutions 
were injected into the flow cell system – OTeff and time baselines). c) Bar chart showing the OTeff (top) and tsat 
(bottom) measured in PEI-GA-PEI-functionalized NAA interferometers upon exposure to analytical and real-life 
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solutions of Cu2+ (i.e. [Cu2+] = 25 ppm). d) Schematic representation illustrating the effect of the media complexity 
(i.e. interfering molecules) on the sensing performance of PEI-GA-PEI-modified NAA interferometers.

Therefore, the sensing performance of our RIfS system only deviates ~4.5% from the 

concentration value provided by a benchmark technique such as ICP-OES. This system could 

provide a cost-competitive solution for in-situ copper ions sensing at a significantly reduced price 

per analysis, with miniaturized features for portability. The saturation time (tsat) for the binding 

reaction between Cu2+ and PEI-GA-PEI functional layers decreases in the following order Milli-

Q water (11152 ± 450 s) > AMD (4797 ± 350 s) > tap water (2716 ± 200 s). The higher response 

of our RIfS system in terms of OTeff for the AMD and tap water solutions can be attributed to the 

ionic strength of the solution. We speculate that the presence of other interfering organic and 

inorganic ions and complexes in these matrices modifies the ionic strength of the medium. This 

could influence the conformation of PEI functional molecules so more binding groups are exposed 

to copper ions in the nanopores, increasing the binding reaction rate and reducing the saturation 

time of the reaction (Figure 5d). The excellent agreement between the results obtained by RIfS 

and ICP-OES for the quantification of copper ions clearly demonstrates the suitability of our 

sensing system to detect copper ions in real-life environmental samples. 

CONCLUSIONS 

In summary, this study has demonstrated the development of a label-free, real-time sensing 

system for the detection and quantification of copper ions combining nanoporous anodic alumina 

interferometers functionalized with double-layered glutaraldehyde-crosslinked polyethyleneimine 

and reflectometric interference spectroscopy. The sensing performance parameters were 

established using analytical solutions of Cu2+ ions, where changes in the effective optical thickness 

of PEI-GA-PEI-functionalized NAA interferometers upon exposure to Cu2+ ions were used as 

sensing principle. The linear detection range of this system spans from 1 to 100 mg L-1, with a 
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sensitivity of 1.5 ± 0.1 nm (mg L-1)-1, a low limit of detection of 0.007 ± 0.001 mg L-1 and a 

linearity of 0.9926. The chemical selectivity of the sensing system was assessed by exposing PEI-

GA-PEI-modified NAA platforms to analytical solutions containing controlled amounts of 

potentially interfering ions such as Fe3+, Cd2+, Al3+ Ni2+, Pb2+and Zn2+. The surface chemistry of 

the system showed excellent selectivity toward Cu2+ ions and the effective optical thickness 

changes associated with other interfering ions were negligible as compared to those obtained for 

Cu2+ ions. Finally, we evaluated the performance of the system for real-life applications, 

establishing concentration of copper ions present in real acid mine drainage liquid and spiked tap 

water. The obtained results only deviated ~4.5% from the value obtained using ICP-OES.
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