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ABSTRACT  

Preterm delivery is the leading contributor to neonatal death globally, with half of these 

deaths being associated with inflammatory conditions. An immature ability to regulate 

the innate immune response may contribute to the higher rate of morbidity and 

mortality among preterm neonates. Neonates rely on their innate immune response to 

protect them from infection. Toll-like receptors (TLRs) are ubiquitously expressed 

innate immune receptors that signal for pro-inflammatory cytokine transcription. This 

process requires strict regulation at different levels of its intracellular signalling cascade 

to avoid pathological inflammation. MicroRNAs (miRs) are post-transcriptional 

regulators that have been identified as critical regulators of inflammatory gene 

expression. Currently, miR expression is sparsely characterised in the context of 

neonatal TLR signalling. This thesis therefore aimed to examine immune regulation by 

term and preterm neonates through characterising the expression of miRs that regulate 

TLR signalling in placenta and cord blood. 

Cord blood and placenta were collected following term (≥ 37 weeks gestation), late 

preterm (32-36 weeks) and early preterm delivery (≤ 32 weeks), and assessed for 

baseline gene expression (Chapters 3 and 4). Cord blood was cultured and stimulated 

with TLR2, TLR3 and TLR4 agonists, and collected over a 24 hour period (Chapters 5 

and 6). RNA was extracted and the relative expression of genes associated with TLR 

signalling (including select miRs) was quantified using qPCR. Bioinformatics analyses 

were used to determine network-level alterations in inflammatory signalling using 

publicly available microarray data on peripheral blood from neonates with infection 

(Chapter 7).  

There was no difference in the expression of miRs or genes associated with TLR 

signalling in the placenta or cord blood between term and late preterm deliveries. Early 

preterm cord blood showed decreased miR-155 and let-7e expression at birth, and 

demonstrated no change in miR expression following TLR stimulation despite 

increasing the expression of IL6, IL10 and NF-κB1. Term and late preterm cord blood 

also increased IL6 expression, but this occurred alongside increased anti-inflammatory 

let-7e expression. Further, term cord blood increased TNFα and IL6 protein production 

until 6 hours in vitro, while preterm cord blood continued to increase IL6 between 6 and 
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24 hours post-stimulation. Bioinformatics analysis confirmed an upregulation of innate 

immune pathways (including JAK-STAT and Nod-like Receptor signalling) in 

peripheral blood from preterm neonates with infection compared to term neonates with 

infection.  

In summary, our findings demonstrate preterm cord blood is able to mount a robust 

response to TLR stimulation through increasing pro-inflammatory gene expression. As 

this response occurs in the absence of any change in the miRs we measured, we 

postulate that the inflammatory response is dysregulated in preterm neonates. These 

results are the first to suggest differential miR expression alters the neonatal innate 

immune response. As such, in addition to an increased risk of contracting infection, 

preterm neonates may be unable to regulate inflammation effectively. Inappropriate 

inflammatory signalling may therefore underlie preterm neonates’ susceptibility to 

developing chronic and acute inflammatory morbidities. 
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Preterm delivery is the leading precursor to adverse neonatal health outcomes and 

neonatal deaths2. As the rate of preterm delivery is increasing, prematurity has become 

a focus of WHO millennium development goals to reduce childhood mortality2. 

Approximately 75% of conditions leading to severe morbidity and mortality among 

preterm neonates are associated with inflammation. A better understanding of 

inflammatory processes by preterm neonates is therefore critical. Currently, innate 

immune responses and inflammatory regulation are poorly characterised in preterm 

neonates. This thesis includes a review that explores neonatal innate immune function, 

the potential impact of in utero perturbations on preterm immunity, Toll-like Receptor 

(TLR)-induced inflammation in cord blood and the regulation of these pathways by 

microRNAs (miRs). The reviewed literature explores different factors that may 

influence preterm neonates’ increased susceptibility to inflammatory conditions. 

Following a review of the literature, this thesis presents four experimental chapters that 

characterise the expression of genes associated with TLR signalling following preterm 

delivery. Specifically, the expression of these genes in the placenta (Chapter 3) and cord 

blood (Chapter 4) are characterised at birth, in addition to cord blood serum cytokines. 

Gene expression is also characterised in term and preterm cord blood following TLR 

stimulation in vitro (Chapter 5), including a sub-analysis of gene expression over 24 hours 

following stimulation (Chapter 6). Given the ubiquitous expression and influence of miRs, 

Chapter 7 explores theoretical networks involving TLR signalling in neonates using 

bioinformatics. This thesis concludes with a discussion of main findings in context of their 

broader clinical implications and future avenues for investigation: specifically, the idea that 

preterm neonates are unable to appropriately regulate TLR signalling through miR 

induction, which may place them at greater risk of inflammatory conditions.  
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1.1. PRETERM DELIVERY 

15 million neonates are delivered prematurely (before 37 weeks of gestational age)3 

every year and this rate is increasing3, 4. Premature birth is classified into sub-groups 

according to gestational age at delivery, including: late (32-36 weeks), early (28-32 

weeks) or extremely preterm (<28 weeks)3. Preterm delivery is the leading contributor 

to neonatal deaths, half of which are related to pathological inflammation3. Surviving 

preterm neonates have a significantly increased risk of morbidity, permanent disability 

or death during the neonatal period compared to their term-born counterparts4, 5. This 

places long-term social and financial strain on their families, communities and health 

resources4, 6. The prevention and management of preterm delivery is therefore 

prominently featured in the WHO’s millennium development goal to reduce childhood 

mortality3. 

Preterm delivery is an obstetric syndrome encompassing conditions with varied 

aetiologies7-9. These can include maternal inflammation10-13 and smoking during 

pregnancy14, though, a majority of preterm births are idiopathic7, 8. In developed 

countries such as Australia, preterm delivery affects over 8% of live births15, 16, with a 

greater prevalence amongst the Indigenous population (13.5% of live births)16. The 

increasing incidence of preterm delivery places more neonates at greater risk of 

developing severe inflammatory morbidities. A better understanding of these outcomes 

will facilitate improved clinical management and prevention strategies to reduce the 

burden of preterm delivery on society. 

1.1.1. NEONATAL OUTCOMES FOLLOWING PRETERM DELIVERY 

Despite representing only 1.7% of all deliveries, the management of preterm neonates 

accounts for 30% of all newborn healthcare costs15. Lower gestational age, birthweight, 

male sex, lack of antenatal steroid administration and multiple pregnancy are all 

associated with an increased risk of neonatal death17, 18. While preterm males have a 

higher average birth weight than preterm females19, they have increased rates of 

infection and more severe complications5, 19-21. Males therefore represent 57% of 

admissions into the Neonatal Intensive Care Unit (NICU)5, 15, 16 and are more prone to 

oxygen dependence and Respiratory Distress Syndrome (RDS) throughout the neonatal 
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period10, 19, 20. The adverse impact of preterm birth on long-term health outcomes is also 

well-established and includes higher rates of heart disease, stroke, type 2 diabetes, 

obesity, osteoporosis and neurodevelopmental disorders compared to adults born at 

term gestation22-25. Overall, it is well established that premature delivery predisposes 

the individual to life-long adverse health outcomes.   

Infection is the leading cause of neonatal morbidity and mortality26, with an increased 

risk of severe infection among preterm neonates compared to term27. The most common 

pathogens affecting neonates include Group B Streptococci (GBS), Escherichia coli 

and Staphylococcus aureus28, which all underlie 70% of cases of neonatal sepsis 29. 

Further, neonatal sepsis is associated with 42% of neonatal deaths within the first week 

of life30. Early-onset neonatal sepsis occurs within 72 hours of delivery and is 

associated with in utero insults such as chorioamnionitis31 and funisitis32, while late-

onset neonatal sepsis is associated with nosocomial infection33.  

Preterm neonates are at higher risk of inflammatory morbidities than their term-born 

counterparts, including bronchopulmonary dysplasia (BPD), retinopathy of prematurity 

(ROP), sepsis, cerebral palsy and necrotising enterocolitis (NEC)34. Nosocomial 

infections commonly lead to morbidity due to the frequent exposure of preterm 

neonates to invasive clinical interventions35-37. Lung ventilation, respiratory surfactant 

administration and nasogastric feeding are all common within NICU38 and these 

interventions have been associated with iatrogenic disease including infection and 

hypothermia39. In spite of system immaturity and clinical interventions, not all preterm 

neonates will develop inflammatory morbidities. Underlying mechanisms for this are 

yet to be identified. 

90% of neonates who develop NEC are preterm, with the risk of disease being inversely 

associated with gestational age and birthweight40. The increased prevalence of NEC 

among preterm neonates demonstrates attenuated innate immune barriers and an 

immaturely regulated inflammatory response. NEC involves aberrant inflammation that 

affects the gastrointestinal tract, causing severe haemorrhaging, necrosis41 and in 20% 

of cases, death42, 43. While the cause of NEC is unclear, dysbiosis and gastrointestinal 

immaturity appear to predispose preterm neonates to excessive inflammation in the gut 

(driven by both pathogenic and commensal bacteria)44. At birth, the gut is colonised by 

commensal bacteria, which are not harmful and do not normally elicit an immune 
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response. Typically, gut immune homeostasis develops through tolerance towards these 

commensal bacteria to prevent aberrant and unnecessary inflammation that can cause 

damage to the mucosa (which can lead to NEC). The transition from the in utero 

environment with low bacterial diversity to the high-diversity ex utero environment 

therefore needs to involve appropriate regulation of inflammatory pathways. The 

increased incidence of inflammatory morbidities in preterm neonates suggests that 

rather than having attenuated innate immunity, they exhibit an inappropriate and 

dysregulated inflammatory response. The specific immune events contributing to 

dysregulated neonatal inflammation and their impact on developing immunity remain 

poorly described45-47. 
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1.2. THE IMMUNE SYSTEM 

The immune system consists of a network of tissues, cells and mechanisms that protect 

the body from disease. An immune response involves recognising a foreign presence in 

the body, activating defence mechanisms and repairing collateral tissue damage. Each 

of these stages must be tightly regulated so that the response is sufficient to clear a 

pathogen without excessively damaging the host organism. Without regulation, 

immunity can become excessive, self-perpetuating or responsive to non-harmful cues.  

Innate and adaptive immunity drive ‘early’ and ‘late’ response mechanisms, 

respectively. Innate immunity uses evolutionarily-conserved effector mechanisms to 

provide an immediate and generalised response to an antigen. Adaptive immunity 

develops subsequently and is more specific because it forms immunological ‘memory’ 

to an antigen, allowing for a faster response during later encounters with the same 

antigen. During the first two years of life, infants are reliant on their innate immune 

system for protection from pathogens48 as they have yet to develop the immunological 

memory associated with adaptive immune responses.  

1.2.1. INNATE IMMUNITY 

Innate immunity is the first line of defence to a pathogenic presence in the body and 

comprises both passive and active components. Although it does not target specific 

pathogens, innate immunity provides a large-scale and fast-acting response. Its passive 

components can be anatomical or chemical, filtering a majority of immune threats by 

acting as a physical barrier, shedding pathogens or inhibiting pathogen growth. The first 

stage of an innate immune response occurs when an antigen evades these barriers and is 

distinguished from the ‘self’. Antigens are recognised by generalised receptors on 

sentinel innate immune cells such as pattern recognition receptors (PRRs). PRRs are 

structured to recognise evolutionarily-conserved Pathogen Associated Molecular 

Patterns (PAMPs) on microbes or Damage Associated Molecular Patterns (DAMPs) 

expressed by host cells. PAMPs are essential for microbial survival and therefore, have 

minimal variability between different species of microbes. Toll-like Receptors (TLRs) 

are the best studied PRRs, with 11 classes characterised in humans49. When TLRs 
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recognise PAMPs, they initiate a cascade of intracellular signalling that leads to the 

expression of inflammatory mediators.  

Inflammation is an innate immune response to sterile or infectious injury and can be 

localised or systemic. It begins when sentinel immunocytes recognise PAMPS and 

produce cytokines and chemokines to recruit other cells to the site of PRR ligation. The 

chemotaxis of cells to the affected area creates an influx of cytokines, complement 

proteins (that opsonise pathogenic organisms), antimicrobial proteins and chemotactic 

factors. While inflammation can be triggered by different molecular patterns, its 

ultimate goal is to clear antigens.  

TLRs are ubiquitously expressed by innate immune cells including dendritic cells 

(DCs), macrophages and neutrophils. These immunocytes communicate with each other 

through cytokine signalling that occurs following TLR activation. Cytokines can act 

synergistically or antagonistically, and therefore link different stages of the 

inflammatory response. They regulate cellular growth and differentiation, pathogen-

killing and the production of other immune mediators which influence inflammation. 

Different classes of cytokines can be grouped according to their pro- and anti-

inflammatory roles. Interferons (IFNs) are typically expressed during responses to viral 

infection and lead to a cell-mediated or cytotoxic immune response, producing other 

pro-inflammatory cytokines such as Tumor Necrosis Factor-α (TNFα) and Interleukin-

12 (IL12)50. Alternately, anti-inflammatory or tolerogenic cytokines including IL10 and 

Transforming Growth Factor-β (TGFβ) down-regulate inflammatory signalling. The 

overall balance of these different immune mediators leads to either perpetuation or 

resolution of inflammation. 

Neonatal immunity continues to develop gradually following pathogenic exposures at 

birth, beginning with the introduction to maternal vaginal microflora during labour51. 

Exposure to an antigen-rich ex utero environment increases the importance of 

tolerogenic immune mechanisms for the neonate. As such, anti-inflammatory 

cytokines52, 53 and an increased presence of regulatory T cells (Tregs) are observed in 

cord blood and peripheral neonatal blood compared to adult blood54.  
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1.2.1.1. Toll-like Receptors 

TLR activation is a central innate immune response mechanism that also establishes 

antigen presenting cell (APC) and lymphocyte maturation55, 56. Different classes of 

TLRs provide unique patterns of inflammatory protein expression specific to different 

ligands57. Specificity is conferred by TLR dimerisation and networks of signalling 

involving unique combinations of Mitogen Activated Protein kinases (MAPKs), adaptor 

molecules and transcription factors58. TLRs also have some upstream specificity, given 

their capacity to heterodimerise with other classes of receptors. Following TLR ligation, 

an intracellular cascade of protein activation occurs, which allows the development of a 

specific response based on the downstream signalling molecules recruited (Figure 1.1).  

TLR signalling begins with the Toll/IL1-Receptor domain (TIR; common to all TLRs) 

binding one of five cytosolic adaptor proteins; MyD88, TRIF, TRAM, Mal or SARM50, 

59 (Fig. 1.1). All TLR signalling, except for TLR3, can occur via the MyD88-dependent 

pathway55, 60; where MyD88 forms a complex with the Mal adaptor that interacts with 

the TLR’s TIR domain to recruit IRAK4 and IRAK1. TRIF is an adaptor for TLRs 3 

and 4, and results in Interferon (IFN) expression independently of MyD8859. Both TRIF 

and TRAM are able to stimulate NF-κB through an alternate cascade of signalling, 

while also activating Interferon pathways through Interferon Regulatory Factors (IRFs) 

3 and 759. Alternately, the phosphorylation of IRAK1 following MyD88 induction leads 

to independent binding with TNF-Receptor Associated Factor-6 (TRAF6). 

IRAK1/TRAF6 binds the TAK1/TAB1/TAB2 complex and activate three pathways 

through TAK1, which phosphorylate transcription factors p38 and JNK, and the NF-κB 

inhibitor, IKK. In unstimulated immune cells, NF-κB exists in a quiescent state, bound 

to an Inhibitor of κB (IκB) unit61. The degradation of IKK results in the translocation of 

NF-κB into the nucleus, alongside p38 and JNK. Notably, p38 and ERK1/2 activation is 

decreased in term and preterm cord blood compared to adult monocytes following 

TLR2 and TLR4 stimulation35, 62. Overall, TLR signalling leads to the activation of 

MAPKs that translocate transcription factors NF-κB or IRFs into the nucleus that 

induce pro-inflammatory cytokine transcription including IFNs, IL1β, IL6, IL8, IL12 

and TNFα.  
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Figure 1.1. A diagrammatic representation of the TLR signalling pathway. (A) TLR4 forms a 

homodimer and proceeds to signal through both MyD88- and TRIF- dependent pathways when 

ligated by lipopolysaccharide (LPS). (B) TLR2 can heterodimerise with TLR1 or TLR6 and 

signals through the MyD88-dependent pathway following peptidoglycan (PGN) ligation. The 

MyD88-dependent pathway signals through a cascade involving IRAK and TRAF6, followed 

by the translocation of NF-κB or AP-1 into the nucleus to induce pro-inflammatory cytokine 

transcription. (C) An endosome containing the TLR4 homodimer or TLR3 dimer (bound to 

double stranded viral DNA), which can both signal via MyD88-independent or TRIF-dependent 

pathways. TRIF-dependent signalling occurs through the TRIF/TRAF6 cascade and ultimately 

results in the transcription of Interferon inducible genes.   
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1.1.1.1.1. TLR2 

TLR2 can heterodimerise with either TLR1, TLR6 or TLR10 to allow for greater 

specificity in recognising peptidoglycan or lipoprotein components of gram-positive 

bacteria56, 63. In this manner, TLR2 recognises the largest range of ligands in the TLR 

family63. The ligation of either of its heterodimers will result in signalling through 

MyD8860. TLR1/2 is specific to the recognition of tri-acetylated lipopeptides56, 60, while 

TLR2/6 recognises peptidoglycan and zymosan. Gram-positive bacteria maintain a cell 

wall containing peptidoglycan (PGN) and most species are commensal. However, 

Coagulase-negative Staphylococcus (CoNS) is a gram-positive bacterium, and is the 

most common cause of infection in preterm neonates64. Further, 32% of sepsis-related 

mortalities are associated with gram-negative infections, while 90% of neonatal 

septicaemia is caused by CoNS39, 65. 

Alterations in the human tlr2 gene have been linked with susceptibility to 

Staphylococcal infection during sepsis66. This is also demonstrated by TLR2-/- mice, 

which express decreased pro-inflammatory cytokines compared to WT mice following 

exposure to Staphylococci67. Studies on murine neonates have also shown TLR2 

expression by neutrophils is essential for clearing Chlamydia pneumonia infection, 

where TLR2-/- but not TLR4-/- murine neonates demonstrate more severe disease and 

prolonged infection compared to WT neonates68. Together, these studies demonstrate 

the importance of TLR2 in recognising and clearing gram-positive bacteria. 

In humans, cord blood monocytes produce decreased TLR2 and TNFα and show 

decreased phosphorylation of MAPKp38 compared to adult monocytes. This may 

decrease the capacity for monocytic apoptosis during the resolution of inflammation in 

neonates69. Neonatal peripheral blood increases MyD88, TLR2 and TLR4 expression 

following gram-positive and gram-negative infections, but TLR4 and the co-signalling 

molecule MD2 only increase with gram-negative infections70. TLR2 is typically 

upregulated during diseases such as sepsis, which is often polymicrobial, confirming 

that the ability to heterodimerise increases its capacity to recognise a wider range of 

pathogens than any other TLR class60, 71. While the rate of phagocytosis and pathogen 

killing of gram-negative bacteria by cord blood granulocytes is equivalent to that 

observed in adult granulocytes, the same response to whole GBS is impaired in cord 

blood in vitro72. These findings are likely related to an increased incidence of 

contracting these infections and developing neonatal sepsis.  
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1.1.1.1.2. TLR3 

TLR3 exists as a dimer in intracellular endosomal membranes and primarily recognises 

double-stranded viral RNA components. TLR3 heterodimer formation and the 

pleiotropic nature of TLR signalling allows for greater specificity in its downstream 

response. Notably, only TLR3 signals via the TRIF pathway, independently of MyD88. 

Interferon cytokines are characteristic of a Type 1 T-helper (Th1) cytokine response and 

are primarily induced via this signalling pathway. Notably, the TRIF pathway can also 

activate NF-κB through TRAF73, 74. The role of TLR3 is highlighted by TLR3-/- mice 

that cannot respond to viral stimulation with dsRNA or Polyinosinic-polycytidylic acid 

(Poly I:C)75, 76 and therefore, cannot activate Th cells during viral infection77. Cord 

blood mononuclear cells (CBMCs) show neither constitutive TLR3 expression, nor an 

inflammatory response to Poly I:C stimulation in vitro78. This inability to recognise 

viral stimuli may underlie the increased prevalence of viral infection among neonates 

compared to adults. 

1.1.1.1.3. TLR4 

TLR4 is best known for its LPS (or endotoxin) binding-specificity. LPS is a major 

component of gram-negative bacterial outer membranes. TLR4-deficient mice cannot 

respond appropriately to LPS, showing an increased bacterial load during infection and 

a higher rate of mortality compared to WT mice55, 79, 80. Similarly, humans with 

mutations in the TLR4 gene are hypo-responsive to inhaled LPS under experimental 

conditions, demonstrating decreased lung volumes that are characteristic of respiratory 

restriction81. LPS recognition occurs on binding to LPS binding protein (LBP) in the 

serum, followed by CD1455. The co-receptors CD14 and LBP then form a complex with 

LPS at the cell membrane, prior to interacting with a TLR4 molecule homodimer 82. 

The TLR4 homodimer exists as a complex with MD283 and following LPS/co-receptor 

ligation, it proceeds down the MyD88-dependent pathway or is translocated within an 

endosome and signals via the MyD88-independent, TRIF-dependent pathway84. TLR4 

needs to be accompanied by appropriate co-receptors to be activated, as demonstrated 

by studies of TLR4 over-expression in a human kidney nephrocyte cell line, which are 

not responsive to LPS unless MD2 is present63. Blocking CD14 using antibodies 

decreases IL8 expression to a greater extent in term and preterm cord blood compared 

to adults and inhibits IL10 and TNFα expression following LPS stimulation85. This 

suggests IL10 and TNFα expression by neonates requires CD14/TLR4 signalling plus 
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CD14 and another TLR. Neonates may therefore require co-stimulation through 

multiple TLRs or co-receptors to achieve the same cytokine response as adults. 

Constitutive expression of CD14 is similar between preterm and term cord blood, but 

following LPS stimulation it is decreased in both preterm and term monocytes 

compared to adults82, 86, 87. In preterm cord blood, decreased CD14, TLR2, TLR4 and 

MD2 expression have all been reversed by incubation with IFNγ in vitro82. Overall, 

impaired viral cytokine pathways may contribute to attenuated TLR responses in 

neonates compared to adults.  

Endotoxin tolerance 

Endotoxin tolerance develops with the repeated ligation of TLR4 by LPS. Aberrant 

activation of the innate immune response or uncontrolled inflammation can lead to 

severe disease states, including septic shock. During sepsis, severe widespread tissue 

damage occurs due to inadequate immune regulation and the potent nature of the 

inflammatory response in the blood stream. Endotoxin tolerance or immune paralysis 

commonly develops during sepsis or severe infection, as the body reaches an immune 

threshold and cannot respond to further inflammatory stimulation79. This state of 

tolerance is characterised by decreased pro-inflammatory cytokine expression, and is 

observed in septic patients88, 89. This process is protective as it limits damage during 

chronic inflammation 79, 90.  

Animals injected with TLR agonists during sepsis demonstrate increased rates of 

survival (compared to those not administered TLR agonists) 91, 92. This phenomenon 

occurs as the body reaches a threshold in inflammatory signalling, which promotes 

tolerance rather than increased inflammation. Similarly, IRAK1-/- mice are unable to 

completely activate TLR signalling and therefore, cannot mount sufficient cytokine 

responses, making them resistant to endotoxic shock90. Studies in animals and human 

cell lines have linked endotoxin tolerance to NF-κB suppression79, 93, 94. This 

suppression occurs independently of TLR4, MyD88, Mal or TRAF6 expression, instead 

increasing IκB as a repressor of NF-κB induction79. The development of tolerance is 

dependent on the timing and dosage of endotoxin exposure, where chronic doses (e.g. 

sub-lethal doses of LPS administered over a longer period of time) result in more 

damage than acute exposures (e.g. one near-lethal dose of LPS)95. Though tolerance 

seems like a protective mechanism that limits excess inflammation, the nature of 
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immune suppression in the neonate can lead to secondary infections and death96. 

Therefore, appropriate pro-inflammatory stimulation is still required to clear the initial 

infection in order to decrease systemic inflammatory signalling. 

In context of the neonate, general immune tolerance is critical in the transition to an 

antigen rich ex utero environment. At birth, the neonatal gut must develop enteric 

tolerance towards newly-established commensal bacteria. Intestinal explants show 

increased macrophage infiltration and decreased expression of the anti-inflammatory 

cytokine, TGFβ in human and murine preterm neonates compared to adults97,98. 

Additionally, fetal intestinal epithelial cells (IECs) exposed to LPS show increased NF-

κB and chemokine expression compared to neonatal and adult cells, although fetal 

macrophages are non-responsive to LPS challenge99. This study suggests that IECs 

remain in a state of LPS tolerance after birth for commensal bacterial colonisation. 

Seminal work by Nanthakumar et al. demonstrates increased NF-κB and MyD88 

pathway gene expression in intestinal samples from aborted fetuses and sectioned 

intestine from preterm neonates with NEC100. This suggests the fetal and preterm 

neonatal intestine show less-mature tolerogenic mechanisms that may predispose them 

to developing conditions such as NEC. 

1.2.2. PHYSIOLOGICAL EXPOSURES DURING PREGNANCY AND THEIR 

IMPACT ON NEONATAL IMMUNITY 

Fetal immune development is influenced by maternal physiology and environmental 

exposures. Studies in primates and rodents have demonstrated that prenatal exposure to 

pathogens attenuates neonatal immune responses during the postnatal period101-104. 

When pregnant rhesus monkeys were exposed to perinatal stress (behavioural startling), 

their cord blood expressed decreased TNFα and IL6 compared to ‘unstressed’ 

controls105. LPS stimulation of these offspring’s blood ex vivo showed decreased TNFα 

and IL6 expression and lower numbers of lymphocytes compared to offspring from 

unstressed mothers. This study suggests physiological insults to the primate mother 

perturb the immune development of her progeny. Rodents have also demonstrated 

alterations in neonatal immune function following maternal perturbations. Plasma from 

the offspring of dams exposed to LPS during gestation shows decreased expression of 

pro- and anti-inflammatory cytokines compared to unexposed pups103. These offspring 

also show decreased recruitment of monocytes, neutrophils and lymphocytes when re-



_____________________________________________________________________________ 

Chapter One: 

Introduction & Literature Review  Page 45 

exposed to LPS during the neonatal period compared to unexposed pups101, 106. Overall, 

exposures to infection in utero appear to program the immune phenotype of offspring 

across their lifespan. While the concept of immune programming by in utero 

perturbations is important, it may have different short-term or long-term outcomes.  

1.2.2.1. Intrauterine Inflammation 

Inflammation is central to both term and preterm labour, where there is a shift from 

immune acquiescence to inflammatory activation of gestational tissues9, 107, 108. This 

influx of inflammatory mediators (i.e. the ‘magnitude’ of inflammation) is lower in 

term compared to preterm labour107, 109. The difference in inflammation between term 

and preterm labour is driven by distinct aetiologies, with preterm labour being more 

commonly associated with intrauterine infection10-13. As such, the increased expression 

of pro-inflammatory IL1β, IL6, IL8 and TNFα has been observed with preterm labour 

in cord blood and the maternal compartment52, 110, 111. Murine studies have also shown 

that blocking IL6 expression in amniotic epithelial cells in vivo prevents preterm 

delivery following IL1β and TNFα administration112. Additionally, anti-inflammatory 

placental IL10 expression is decreased in association with preterm parturition and 

chorioamnionitis (inflammation of the fetal membranes)113.  

Aberrant inflammation during pregnancy is frequently associated with adverse 

pregnancy outcomes including intrauterine growth restriction (IUGR) and neonatal 

sepsis114. A study of 701 Kenyan births found an increased incidence of low birth 

weight, still-birth and perinatal mortality in deliveries associated with acute placental 

inflammation relative to normal placentae114. Other prospective studies have supported 

these findings, observing an increased incidence of NEC and sepsis in neonates from 

pregnancies with chorioamnionitis115. While inflammation may be important for 

parturition, where excessive or poorly-timed, it can lead to adverse pregnancy 

outcomes.  

Chorioamnionitis occurs in up to 65% of spontaneous preterm deliveries, with its 

prevalence inversely related to gestational age116. Clinical studies have associated 

chorioamnionitis with an increased incidence of the inflammatory morbidities including 

RDS117, early-onset neonatal sepsis46, 117, 118 and BPD116, 119. Increased amniotic TNFα 

expression and amniotic infection are also associated with increased neonatal mortality 



_____________________________________________________________________________ 

Chapter One: 

Introduction & Literature Review  Page 46 

and the development of RDS, intraventricular haemorrhage (IVH) and NEC120, 121. 

However, some have argued that intrauterine infection is protective against 

inflammatory disease, as chorioamnionitis is associated with the decreased prevalence 

and severity of RDS122, 123. This may be because RDS accelerates lung maturation via 

increasing surfactant production124 through inflammatory signalling to lung tissues125. 

Further, when LPS or IL1β are infused directly into the fetal ovine trachea to cause 

local inflammation increased lung maturation is also observed122, 126-128. Alternately, 

antagonising IL1 expression in fetal sheep in utero and exposing them to LPS arrests 

systemic inflammation and decreases lung maturation (supporting a direct association 

with inflammation)128 while inflammatory stimuli increase lung development, 

intrauterine infection impairs alveolarisation, increases severity of pulmonary 

hypertension in the newborn and decreases pulmonary blood flow in fetal sheep129. 

Together, these studies highlight that while inflammation can induce respiratory 

maturation, it is not necessarily beneficial for neonatal lungs.  

60% of fetal deaths occur in the presence of chorioamnionitis130, 131. Ovine models of 

chorioamnionitis have demonstrated increased inflammation in the fetal ileum132 and 

decreased anti-inflammatory FOXP3+ expression133, both of which are thought to 

precede inflammatory neonatal diseases such as NEC. Murine models of 

chorioamnionitis using intraperitoneal LPS administration show increased IL1 and IL6 

expression by developing neurons and therefore, an increased incidence of fetal brain 

injury134. Chorioamnionitis and fetal inflammatory response syndrome (FIRS) are both 

associated with increased IL1β, TNFα, IL6 and IL8 in the human amnion and cord 

blood135-138, and increased numbers of neutrophils in cord and peripheral blood 

collected from neonates139. Chorioamnionitis increases the risk of the FIRS, defined as 

fetal plasma (sampled by cordocentesis) containing concentrations of IL6 exceeding 

11pg/mL140, 141. The diagnosis of FIRS is confirmed by placental histopathology which 

also shows inflammatory infiltration in the fetal compartment138. FIRS can be caused by 

microbes entering the amniotic cavity, resulting in excessive chemokine expression and 

neutrophil invasion142. The fetus responds to infection by increasing IL6 expression 

which can also result in funisitis and vasculitis143. IL6 is a systemic acting cytokine 

associated with chronic and acute inflammation, and its increased expression is 

consistent with a systemic fetal response that occurs during severe intrauterine 

infection144. FIRS affects 39-49% of preterm deliveries140, 141 and may lead directly to 



_____________________________________________________________________________ 

Chapter One: 

Introduction & Literature Review  Page 47 

early activation of labour through inflammatory signalling144, 145. FIRS is also a risk 

factor for neonatal morbidity including early-onset sepsis118, RDS, BPD, IVH, PVL and 

cerebral palsy146. Activation of the inflammatory response in utero is therefore a 

significant contributor to adverse pregnancy outcomes. 

1.2.2.2. Mode of Delivery  

Microbial exposure associated with vaginal delivery may influence fetal immune 

development by altering cord blood cytokine synthesis147-149. Cord blood from non-

labouring Caesarean section deliveries has been associated with lower pro-

inflammatory IL6, IL8, Granulocyte Macrophage Colony Stimulating Factor (GMCSF) 

and Granulocyte Colony Stimulating Factor (GCSF), but increased IL10 compared to 

vaginal deliveries135, 148, 150. Notably, studies demonstrating this have lacked appropriate 

control groups, i.e. cohorts comparing labouring to non-labouring Caesarean section, 

which are important for separating the effect of labour from exposure to vaginal 

microflora. Other authors have observed no difference in a number of cord blood 

cytokines (IL1α, IL1β, IL2, IL4, IL5, IL6, IL8, IL10, IL12p40, IL12p70, IL17, IL1RA, 

sIL2Rα, GMCSF, IFNα2, IFNγ, TNFα or TNF-β) between vaginal and Caesarean 

section deliveries151.   

Studies on cord blood immune stimulation present conflicting evidence concerning the 

impact of mode of delivery on neonatal immune function. In vitro stimulation of whole 

cord blood with TLR ligands has shown no difference in TNFα, IL6 and IL10 

production between term infants born vaginally or via non-labouring Caesarean 

section62. Conversely, increased IFNγ and IL12 expression is observed in CBMCs from 

vaginal deliveries stimulated with the mitogens Conconavalin A (ConA) and 

Phytohaemagglutinin-A (PHA), or LPS, compared to non-labouring Caesarean 

sections152. A recent study in our laboratory has found no difference in cord blood 

cytokine expression according to mode of delivery for a range of cytokines (including 

GMCSF, IL1β, IL1RA, IL6, IL8, IL10, IL12p70, MCP1, sCD40L and TNFα protein 

expression), both at birth and in response to TLR2, 3 and 4 stimulation153. Therefore, 

differences in cytokine expression according to vaginal delivery may only be observed 

at birth and appear to have less of an impact on subsequent neonatal innate immune 

function (i.e. no difference following TLR stimulation).  
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1.2.2.3. Maternal Cigarette Smoking During Pregnancy 

Maternal cigarette smoking during pregnancy creates a pro-inflammatory in utero 

environment154 and is associated with decreased birthweight155, restricted brain 

growth156 and long-term impairments to child neurodevelopment157. 10-20% of women 

smoke throughout pregnancy, with higher rates observed in low socioeconomic and/ or 

poorly-educated populations158. Cigarette smoke is associated with increased reactive 

oxidative species (ROS) and oxidative stress marker production by cord159 and neonatal 

peripheral blood160. CBMCs from neonates whose mothers who smoked during 

pregnancy express decreased constitutive IL6, TNFα and IL10161 and following TLR2, 

TLR3 and TLR4 stimulation in vitro compared to non-smoking mothers162, 163. A study 

of a murine macrophage cell line showed that IL12 and NF-κB expression is decreased 

with LPS exposure when cells are co-cultured with benzene metabolites from cigarette 

smoke, compared to cells cultured with LPS alone164. Overall, it appears that TLRs, the 

TLR signalling cascade and cytokines are all decreased in cord blood associated with 

maternal smoking during pregnancy, which could contribute to altered neonatal innate 

immune function. 

1.2.2.4. Antenatal Glucocorticoid Exposure 

Natural increases in cortisol expression are observed across gestation and drive the final 

stages of fetal organ maturation165, 166. Perinatal practice guidelines therefore support 

the administration of synthetic glucocorticoids (betamethasone or dexamethasone) 

during the management of threatened preterm labour. Glucocorticoids aid fetal lung 

maturation through surfactant production and therefore, reduce the incidence of RDS167, 

168. Antenatal steroid administration originates from Liggins’ landmark work during 

1969, where pregnant sheep were used to investigate the permeability of the placenta to 

glucocorticoids and preterm delivery169. The study demonstrated preterm parturition 

occurred when dexamethasone was infused directly into the fetal lamb, but not the 

pregnant ewe. Incidentally, Liggins discovered that preterm lambs exposed to 

dexamethasone showed increased lung aeration, which he postulated was a product of 

enzymatic activity induced by the glucocorticoid that lead to surfactant production. This 

was later confirmed by studies where prenatal cortisol exposure increased the synthesis 

of proteins and phospholipids that promote alveolar development, and induced 

surfactant production in preterm lamb and human lungs170, 171. 
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In Liggins and Howie’s follow-up, randomised controlled trial of antenatal 

betamethasone administration to mothers presenting in spontaneous preterm labour, a 

significant reduction in RDS and neonatal mortality was observed compared to mothers 

that were not administered betamethasone172. As a result, antenatal glucocorticoid 

administration has become routine practice for women presenting in threatened preterm 

labour173. Recent Cochrane reviews continue to support the use of antenatal 

glucocorticoid administration, indicating significant reductions in neonatal 

inflammatory diseases such as RDS, cerebral haemorrhage, IVH, NEC and systemic 

infection, as well as an overall reduction in neonatal death168, 174-179. Other than these 

associations, the mechanisms and potential effects of antenatal glucocorticoid exposure 

on subsequent neonatal immune function remain unclear. Notably, recent reviews and 

animal studies have argued that antenatal exposure to glucocorticoids may have 

unwanted side-effects including decreased growth173, 180 and poor neurodevelopmental 

outcomes during infancy and childhood181-184. 

Glucocorticoids typically suppress inflammation through several mechanisms including 

reducing T-cell proliferation via IL2 suppression165, 185, repressing endothelial adhesion 

molecule expression186, inhibiting neutrophil chemotaxis186, repressing transcription of 

pro-inflammatory cytokines165, 187, 188 and chemokines186, 187, 189, and decreasing the 

circulation of lymphocytes, monocytes and eosinophils190. These effects occur when 

cortisol binds to the glucocorticoid receptor in leukocytes, which then binds to 

glucocorticoid responsive elements on DNA or to transcription factors specific to TLR 

signalling genes191-195. The impact of glucocorticoids on neonatal immune regulation is 

highlighted by murine models of LPS exposure. Antenatal betamethasone exposure is 

associated with lower lymphocyte counts, reduced ROS production and decreased 

early-response cytokine production (TNFα and IL1β) in rodent offspring, indicating a 

state of immunosuppression106, 196. Rodent models of maternal stress during pregnancy 

(where endogenous glucocorticoids become elevated) also demonstrate suppressed 

lymphocyte proliferation, indicating glucocorticoids may exert long-term effects on 

adaptive immunity in offspring197. 

The impact of glucocorticoids on human neonatal immunity is unclear. Studies on cord 

blood have demonstrated altered immune responses following prenatal glucocorticoid 

exposure. Cord blood treated with dexamethasone in vitro increases CD14 expression 

and endocytosis, suggesting that it enhances monocyte differentiation compared to 
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untreated cord blood198. Evidence from this study was, however, obtained 

independently of antigenic stimulation and while dexamethasone-treated cord blood 

increased IL10 and decreased IL12 compared to untreated cord blood, its effect on 

inflammatory function may be different. Other studies have shown that glucocorticoids 

decrease pro-inflammatory cytokine expression in cord blood in vitro following viral 

stimulation165 and inhibit neutrophil chemotaxis during LPS exposure189. Alternately, 

high doses of dexamethasone have been found to increase NF-κB-luciferase activity in 

mice with endotoxaemia199, supporting increased inflammatory signalling. Overall, the 

impact of these typically immunosuppressive compounds on preterm neonatal 

immunity in vivo remains contentious165, 200.  
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1.3. NEONATAL INNATE IMMUNITY 

Neonates demonstrate an increased reliance on tolerogenic immune mechanisms 

compared to adults during their transition to the ex utero environment. A common 

misconception arising from a tolerogenic immune state at birth is that neonates are 

immunosuppressed. Current literature shows varied functional capacity in different 

aspects of immunity. For example, IL6 mRNA and protein expression appears to be 

increased in whole cord blood stimulated with LPS compared to adults51, 201, 202. 

Conversely, some have observed no difference between CBMCs and adult mononuclear 

cell IL6 production following stimulation with GBS, lipoteichoic acid (LTA) or LPS203. 

The same study also showed that the cord blood IL6 response to GBS was greater than 

single TLR stimulation (LTA or LPS). This may occur because whole bacteria are 

complex stimulants, expressing many unique ligands. However, others have used FACS 

to show cord blood monocytes express decreased IL6 following stimulation with whole, 

heat-killed GBS compared to adults204. This could highlight a decreased capacity by 

CBMCs to respond to multiple stimuli simultaneously compared to adult leukocytes. 

Overall, simultaneous activation of different TLRs is common during infection because 

microbes can express multiple ligands and therefore it is likely that neonatal immunity 

functions on a conditional basis according to the pathogenic species encountered. 

Preterm delivery attenuates specific aspects of neonatal immunity. For example, 

preterm cord blood shows leukopenia and lymphopenia that persists into the postnatal 

period for up to seven months205-208. Additionally, neonates have a decreased proportion 

of circulating neutrophils209, 210 and their storage pools are also depleted due to limited 

numbers of progenitor cells211. Neutropenia is therefore common during neonatal 

sepsis, where progenitor cell pools in bone marrow are diminished by persistent 

inflammatory stimulation that results in immune suppression212. The absolute blood cell 

counts of monocytes, DCs, PMNs, NK cells and lymphocytes are decreased in preterm 

compared to term cord blood due to lower volumes of blood in preterm neonates207, 213. 

Overall, preterm cord blood cell populations are decreased as cellular development 

occurs from smaller pools of progenitor cells39 and preterm CBMCs produce decreased 

GCSF and GMCSF(which typically foster cell development)214, 215. As such, GCSF 

administration is shown to restore neutrophil numbers and their function in murine 
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models of sepsis216, 217. Clinical trials have administered GCSF and GMCSF to septic 

neonates with neutropenia and as a prophylactic measure. However, failed to reduce the 

incidence218 or severity of sepsis219 despite increasing neutrophil numbers218, that 

potentially highlights functional deficits by neutrophils themselves.   

While neonatal neutrophils show the same affinity for chemokines as adults, their 

ability to migrate along a chemotactic gradient is significantly impaired220. Chemotaxis 

is the recruitment of cells to a particular tissue site and has a crucial role in 

inflammation. It is driven by chemokines such as IL8 and Monocyte Chemotactic 

Protein-1 (MCP1), whose aberrant expression can lead to the accumulation of 

immunocytes. Increased IL8 is therefore associated with inflammatory diseases in 

neonates such as sepsis221 and inflammatory lung disease222. Further, bronchoalveolar 

lavage samples from neonates that develop CLD show an accumulation of neutrophils 

compared to neonates with RDS223, which is also associated with respiratory failure224. 

Conversely, deficient chemotaxis can contribute to neutropenia and exacerbate 

conditions such as sepsis in neonates225. Therefore, regulation of chemokine expression 

and neutrophil accumulation (through apoptosis) may be critical to a normal immune 

response by neonates. Typically, chemokine expression is positively correlated with 

gestational age and is tissue-dependent226. Overall, the chemotaxis of leukocytes to the 

site of inflammation appears attenuated by preterm neonates and may underlie an 

inability to localise inflammation. 

Neutrophils are polymorphonuclear cells (PMNs) that make up 70% of circulating 

leukocytes and drive pro-inflammatory responses. Prematurity also decreases 

neutrophilic function throughout the neonatal period, where oxidative burst (which is 

required for phagocytosed pathogen killing) is consistently decreased in cord and 

peripheral blood227, 228. Reductions in neutrophil ‘peak activity’ are therefore associated 

with severe infection229. Preterm PMNs stimulated with Staphylococci show intact 

phagocytic activity, but impaired killing capacity, regardless of showing comparable 

superoxide production compared to term neonates86, 230, 231. In fact, neonatal neutrophils 

produced higher levels of reactive oxygen intermediates than adult neutrophils, which is 

normally indicative of persistent tissue damage in chronic inflammatory disorders231, 232. 

Reactive oxygen intermediates are important for neutrophil intracellular killing 

following phagocytosis, however, they are harmful to native cells because they oxidize 
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membranes, proteins and nucleic acids233. During the development of sepsis, endotoxins 

initially cause local inflammation, but subsequently aberrant production of cytokines 

and ROS becomes sustained and can lead to systemic inflammation234. In the second 

phase of sepsis, a ‘compensatory anti-inflammatory response’ occurs, characterised by 

increased regulatory cytokine expression, but it does not completely resolve 

inflammation and instead prolongs a systemic response235. Peripheral blood from 

preterm neonates with sepsis therefore shows increased pro-inflammatory IL6, IFNγ 

and TNFα with increased anti-inflammatory IL4 and IL10 compared to preterm 

neonates with culture-negative sepsis screens236. Although it classically has anti-

inflammatory roles, IL10 is associated with septic shock236 and poor outcomes during 

sepsis237. Together, these findings support a global upregulation of inflammatory 

pathways during sepsis and highlight the importance of effective immunoregulatory 

mechanisms in clearing infection. 
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1.4. THE INNATE IMMUNE RESPONSE IN NEONATAL BLOOD 

The constitutive expression of innate immune receptors, signalling molecules and 

therefore cytokines, is comparable between cord blood and adult peripheral blood. 

Specifically, cord blood and adult monocytes transcribe comparable levels of mRNA 

for TLRs1-10, and their signalling molecules CD14, MyD88, TIRAP and IRAK462, 211, 

238-243. While these genes are similarly expressed in neonates and adults, differences in 

immune function become apparent clinically (increased susceptibility to infection) and 

experimentally (following in vitro immune stimulation). 

Cord blood is commonly used to assess the neonatal innate immune function as it is 

readily available and reflects the status of the neonate at birth. The administration of 

TLR agonists to cord blood in vitro is also common as it enables the study of specific 

functional aspects of innate immune function. Many authors have used both TLR 

agonists and whole, heat-killed bacteria to characterise cytokine expression by neonates 

compared to adults in isolated cell populations and whole blood. These studies 

demonstrate varied findings and are summarised in Table 1.1.  

Most studies show a concurrent increase in tolerogenic cytokines (IL10 and TGFβ48, 52, 

53, 202, 244, 245) and early-responding cytokines (TNFα62, 202, 246), but attenuated expression 

of anti-viral cytokines (IFNs and IL1248, 52, 202, 244-251) in cord blood compared to adult 

blood stimulated with immune ligands in vitro. Notably, disparities observed by other 

studies can be explained by differences in experimental methods. For example, 

compared to adults, expression of the chemokine, IL8, is increased by CBMCs 

stimulated with whole GBS203, but decreased in cord blood DCs stimulated with 

endotoxin202. Alternately, CBMCs stimulated with GBS express decreased IL12 

compared to singular TLR7,8 or 9 stimulation250. This may be due to differences in cell 

populations, cell interactions or antigen complexity. Hartel et al. have shown that 

singular TLR stimulation in whole preterm cord blood or CBMCs decreases IL10, but 

stimulation with S. epidermis demonstrates comparable IL10 expression compared to 

term cord blood252. Tatad et al. are the only authors that present increased IL10 

expression following GBS exposure and comparable expression between preterm and 

term cord blood following stimulation with E. coli or S. epidermis204. These conflicting 

results may arise from increased levels of IL10 in preterm cord blood at baseline, the 



_____________________________________________________________________________ 

Chapter One: 

Introduction & Literature Review  Page 55 

use of complex ligands or an inconsistent resting period of these cells following birth, 

prior to in vitro stimulation. This highlights a need to consider methodological 

differences in experiments when examining neonatal immune function.  

The innate immune system of the neonates appears more sensitive to specific classes of 

bacteria. A study compared the response of CBMCs to 11 species of whole, heat-killed 

bacteria and observed increased IL6, IL12 and TNFα, and comparable IL10 expression 

compared to adult mononuclear cells253. Specifically, they showed gram-negative 

bacteria increased IL12, IL6 and TNFα, and expressed similar IL10 in CBMCs 

compared to adult peripheral mononuclear cells. This response was not observed in 

response to gram-positive bacteria. The authors suggest this is a pathological pro-

inflammatory bias towards commensal bacteria. Such a bias could predispose neonates 

to aberrant inflammatory responses during commensal colonisation ex utero and 

highlights the importance of immuno-regulatory mechanisms. Overall, the complexity 

of ligands and cell populations (i.e. isolated cells versus whole blood) should be 

considered in every analysis, given that neonatal immunity does not show generalised 

attenuation and only specific aspects may be immature. 
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Table 1.1. A summary of studies on cord blood cytokine expression following immune stimulation compared to adult peripheral blood. 

The expression of select cytokines and chemokines in cord blood relative to adult blood following in vitro stimulation with different 

immune agonists (‘↑’ expression is increased in neonates compared to adults, ‘↓’ expression is decreased in neonates compared to adults 

and ‘↔’ expression is comparable between neonates and adults).  

Cytokine/ 

chemokine 

Cord blood 

expression 

compared 

to adult 

blood 

 

Role in immunity Cell type Agonist used for in vitro 

stimulation (citation) 

IFNα ↓ 

↓  

↓ 

↓ 

↔ 

↓ 

Anti-viral, precedes IFNγ expression CBMCs 

Monocytes 

pDCs 

Whole blood 

Whole blood 

Whole blood 

TLR 9 agonist52 

TLR 7/8, 9 agonist48 

TLR9 agonist247 

TLR7 agonist254 

TLR9 agonist254 

TLR3 agonist244 

 

 

IFNγ ↓ 

↓ 

↓ 

↓ 

↓ 

↓  

↓  

↓  

↓  

Anti-viral, macrophage activation, adaptive immune 

responses 

CBMCs  

CBMCs 

CBMCs 

CBMCs 

CBMCs 

DCs 

Monocytes 

Whole blood & DCs 

Whole blood 

TLR2-4, 7, 9 agonist52 

TLR4 agonist249 

TLR4 agonist +PHA246 

GBS250, 251 

ConA255 

TLR9 agonist202 

TLR1-4, 7-9 agonist48 

TLR4 agonist248 

TLR4 agonist202 
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Cytokine/ 

chemokine 

Cord blood 

expression 

compared 

to adult 

blood 

 

Role in immunity Cell type Agonist used for in vitro 

stimulation (citation) 

IL1β ↔ 

↔  

↔  

↓ 

↔  

Fever response, inflammation CBMCs 

CBMCs 

Whole blood 

Whole blood 

Whole blood 

GBS, TLR2,4 agonist203 

LPS agonist +PHA246 

TLR4 agonist202 

TLR4 agonist256 

TLR2 agonist256 

IL6 ↑  

 

↑  

↔ 

↑  

↑  

Acute phase response, systemic inflammation, fever 

response 

 

 

 

 

CBMCs 

CBMCs 

CBMCs 

Monocytes 

Whole blood 

Whole blood 

IFN + TLR4 agonist201 

HSV257 

GBS, TLR2,4 agonist203 

TLR3,4,5,9 agonist 258 

TLR4 agonist202 

Heat-killed bacteria204 

IL8 ↑  

↓ 

↔ 

Neutrophil chemotaxis and activation CBMCs 

DCs 

Whole blood 

GBS, TLR2,4 agonist203 

TLR4 agonist202 

S. epidermis204 

IL10 ↑  

↑  

↑  

↓ 

↑ 

 

↑  

↓ 

↑  

Inhibits inflammatory cytokine production Whole blood   

CBMCs 

Whole blood 

Whole blood  

CBMCs 

 

CBMCs 

Whole blood 

Whole blood 

 

TLR1-4, 7-9 agonist52 

TLR2,3,7-9 agonist52 

TLR3-4 agonist244 

TLR3-4 agonist259 

TLR4 agonist +IFN, 

TLR3,7,9 agonist260 

TLR4, 7/8, 9 agonist48 

GBS204 

TLR4 agonist202 
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Cytokine/ 

chemokine 

Cord blood 

expression 

compared 

to adult 

blood 

 

Role in immunity Cell type Agonist used for in vitro 

stimulation (citation) 

IL12 ↓ 

↑ 

↑ 

↑ 

↓ 

↓ 

↓ 

Th1 differentiation, expression of IFNγ CBMCs 

whole blood  

CBMCs 

whole blood 

CBMCs 

Whole blood 

Whole blood 

GBS250 

TLR3,4,7/8,9 agonist52 

TLR 7/8, 9 agonist52 

TLR3, 4 agonist244 

TLR4 agonist201 

TLR3 agonist260 

TLR4 agonist202 

 

IL23 ↑ 

↔ 

 

↑ 

Autoimmune inflammation CBMC 

DCs 

 

Whole blood 

TLR2,7/8,8 agonist52 

TLR2-4, 7/8 agonist261 

TLR2,7/8,8 agonist52 

TNFα ↑ 

↓ 

↑ 

↔ 

↑  

↔ 

↓ 

↑ 

↔ 

↓ 

Fever and early phase inflammatory response CBMCs 

CBMCs 

CBMCs 

CBMCs 

CBMCs 

monocytes 

monocytes  

Whole blood 

Whole blood 

Whole blood 

TLR1-3, 7/8,9 agonist52 

TLR4 agonist +PHA246 

GBS262 

TLR4 agonist +IFN201 

GBS, TLR2,4 agonist203 

TLR7/8 agonist62 

BLP, TLR4,7 agonist62 

TLR1-4, 9 agonist52 

TLR2 agonist256 

TLR4 agonist202, 256 

GCSF ↓  

 

Increased granulocyte proliferation and monocyte 

production 

CBMCs PHA263 



 

 

P
a

g
e 5

9
 

Cytokine/ 

chemokine 

Cord blood 

expression 

compared 

to adult 

blood 

 

Role in immunity Cell type Agonist used for in vitro 

stimulation (citation) 

GMCSF ↔ Stimulates granulocyte and monocyte differentiation CBMCs TLR4 agonist +PHA246 

 

TGFβ ↑  

 

Decreases macrophage activation, inhibits Th1 

response, Treg maturation 

DCs RSV53 



_____________________________________________________________________________ 

Chapter One: 

Introduction & Literature Review  Page 60 

 

 

1.4.1. The Poly-functionality of Cord Blood Immune Cells 

Differences in poly-functionality (i.e. the ability to express different cytokines 

simultaneously) between adult and neonatal cells may explain disparate results 

presented between studies on in vitro cord blood stimulation. Flow cytometry has 

shown that isolated CBMCs stimulated with TLR agonists in vitro are less capable of 

producing multiple cytokines simultaneously than cells from stimulated whole blood52. 

Cord blood monocytes show a similar degree of poly-functionality compared to adults, 

but flow cytometry of whole cord blood shows a decreased ability to express certain 

cytokines simultaneously (e.g. IL12p40 and TNFα) following TLR2, 4 or 7/8 

stimulation compared to adults. It has therefore been suggested neonatal Th1 immune 

attenuation (see 1.4) can be restored through TLR co-stimulation. Cord blood antigen 

presenting cells (APCs) show robust TNFα and IL12 expression (comparable to adults) 

when stimulated with TLR7/8 at the same time as TLRs 2 or 4264. This has also been 

demonstrated in animal models of neonatal sepsis, where TLR priming results in 

decreased duration of inflammation and therefore, decreased disease severity and 

mortality92. Murine RAG1-/- neonates with polymicrobial sepsis that have been pre-

treated with TLR4 and TLR7/8 agonists show enhanced neutrophil recruitment, 

phagocytic ability and oxidative burst, and therefore less severe disease than unprimed 

mice56, 92. In humans, patients with sepsis are administered IFNγ to increase TNFα 

production and improve phagocytosis107, 306. This treatment aims at resolving 

inflammation through pathogen clearance94, 265. This suggests cord blood immune cells 

may be less poly-functional due to deficiencies in their ability to concurrently express 

different cytokines compared to adults. 

1.4.2. Neonatal Plasma 

Cord blood plasma supports a tolerogenic bias through decreased constitutive 

expression of TNFα, IL12p70 and IFNγ238, 266, and increased anti-inflammatory IL4, 

IL10, IL13 and TGFβ compared to adult plasma267. Adult mononuclear cells cultured in 

cord blood plasma and stimulated with TLR3, 4 and 8 ligands, show decreased IL12p70 

and TNFα, and increased IL10 expression compared to adult mononuclear cells 

cultured in autologous plasma62, 245, 268. The use of different TLR agonists in this study 
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also indicates both MyD88-dependent and independent pathways of TLR signalling are 

supported by plasma-associated factors245.  

Studies on isolated immune cells allow for closer mechanistic analysis, but ignore 

cellular cross talk and could discard the influence of other soluble autologous factors 

found in blood267. Blood plasma consists of organic molecules such as proteins and 

hormones269 and is central to shaping the immune response. Plasma is necessary for 

rapid immune signalling throughout the body, but its mechanisms remain largely 

uncharacterised, particularly in the neonate270. Blood plasma contains many immune 

modulating proteins including IgG (11% of its protein content271), anti-inflammatory 

albumin (50% of its protein content) and adenosine, which regulates immunity270. Cord 

blood plasma contains increased concentrations of adenosine compared to adult 

plasma272 and metabolises less of the nucleoside than adult plasma273. Adenosine 

represses ROS expression by neutrophils and increases IL10 expression in 

macrophages, which then represses IL12 and TNFα expression (reviewed in274). 

Increased cord blood adenosine could contribute to the tolerogenic bias compared to 

adults observed in some stimulation studies.  

When neonatal haemocytes are cultured in adult plasma, their TNFα expression is 

comparable to adults (except following TLR7/8 stimulation)62. This response is dose-

dependent, where higher concentrations of LPS induce similar expression of TNFα 

between cord blood and adult mononuclear cells241. This ‘repaired’ response is thought 

to be due to the higher levels of immune-active plasma proteins (such as platelet 

activating factors) in adult plasma241. These findings highlight the importance of whole 

blood cell culture in characterising neonatal immunity due to differences between the 

way that cells are exposed to or interact with exogenous factors in plasma. In fact, it 

may be a combination of cellular robustness and serum-based factors that contribute to 

differences in neonatal immunity, although the precise mechanisms remain unclear. 

1.4.3. The Neonatal Innate Immune Response to Viral Stimulation  

Anti-viral cytokine expression (IFNs and IL12) by cord blood in vitro is impaired, 

independently of gestational age, cell type or immune agonist (see Table 1.1). Even 

when CBMCs are primed with IFNγ prior to TLR4 stimulation in vitro, they express 
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decreased IL12, IL8, IL23 and IFNs compared to adult blood201. This is significant as 

IFNγ typically activates STAT1 which this leads to microbial killing, antigen 

presentation and increased pro-inflammatory cytokine expression275. IFN production 

also induces an anti-viral state in adjacent cells which downregulates protein 

expression, and enhances NK cell, cytotoxic T cell and dendritic cell activation73, 276. 

Notably, the addition of exogenous IFNγ does not rescue ROS release and pathogen 

killing capacity in neonatal macrophages because STAT1 expression is decreased and 

unresponsive to the IFNγ relative to adults257. The lack of anti-viral mediators and 

responsiveness by cord blood supports clinical evidence that neonates are susceptible to 

viral infections including influenza and RSV that lead to increased mortality compared 

to adults277. 

An absence of IFNγ expression by neonates may be evidence of immune tolerance. 

When cord blood leukocytes exposed to LPS are co-stimulated with IFNγ, they 

demonstrate increased expression of TNFα, IL6 and IL1082 that exceeds 2 month old 

and 1 year old peripheral blood201. Additionally, CBMCs and whole cord blood express 

increased TNFα compared to adult blood following bacterial and viral TLR 

stimulation52, and GBS stimulation203, 262. Conversely, co-stimulation of CBMCs with 

LPS and IFNγ show comparable TNFα expression compared to adults201. Studies from 

rodents support these findings  as IFNγ-/- rodents are resistant to endotoxic shock278. 

These rodents are also protected against NEC compared to WT strains because they 

exhibit reduced inflammatory signalling279. Altogether, the impaired neonatal IFN 

response impacts innate immunity towards both viruses and bacteria.  

Decreased IFN expression by neonates may be explained by downstream adaptor 

molecules in TLR signalling. p38MAPK is involved in PMN degranulation, adhesion 

and respiratory burst and its constitutive expression between neonates and adults is 

similar211, 280. Following LPS stimulation, however, cord blood shows decreased p38, 

ERK and IκBα phosphorylation, which results in decreased cytokine expression 

compared to adult blood35, 62, 201, 211, 241, 256. The attenuated translocation of IRF7 into the 

nucleus of cord blood pDCs following TLR7 and TLR9 stimulation281, and decreased 

constitutive IRF3 expression248 also suggest that MyD88-independent signalling may be 

defective in neonates. Notably, when CBMCs are stimulated with multiple ligands, they 
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increase phosphorylation of NF-κBp65, ERK1/2 and Akt above adult levels, compared 

to stimulation with single ligands282. This could indicate neonates are less sensitive to 

viral antigens and need more stimulatory signals to achieve a robust response to viral 

stimulation.  

1.4.4. The Innate Immune Response in Preterm Compared to Term 

Neonates 

Emerging studies are challenging the traditional paradigm of immune attenuation in 

preterm neonates. Strunk et al.’s aptly titled review ‘innate immunity human newborn 

infants: prematurity means more than immaturity’ contrasts a robust ability by preterm 

neonates to phagocytose and kill pathogens in spite of attenuated cytokine responses283. 

This suggests preterm neonates do not show consistent attenuation in all aspects of their 

innate immune function. In fact, studies have shown that despite decreased populations 

of monocytes and neutrophils in preterm cord and peripheral blood284 and reduced 

opsonophagocytic activity in plasma82, phagocytic capacity is increased in early 

preterm cord blood compared to term284, 285. Additionally, previous work from our 

laboratory has demonstrated preterm cord blood expresses increased IL6 without any 

compensatory anti-inflammatory response (IL10 or TGFβ) following TLR2 and 4 

stimulation in vitro153. A meta-analysis of very preterm deliveries has also demonstrated 

a genetic profile in umbilical cord tissue that is similar to deliveries characterised by 

FIRs, suggesting that lower gestational age predisposes neonates to a pro-inflammatory 

phenotype286.  

Term and preterm cord blood show comparable constitutive cytokine production, with 

the exception of the chemokines IL8 and MCP1, which are higher in preterm neonates 

at birth148, 287. Alternatively, in vitro studies on TLR stimulation have consistently 

demonstrated decreased pro-inflammatory cytokine production in preterm compared to 

term cord blood (see Table 1.2). Further, the expression of IL6 and TNFα are 

consistently decreased in preterm cord blood compared to term, following stimulation 

with TLR1-9 agonists213, 288 or whole bacteria252, 289. Studies using flow cytometry have, 

however, shown conflicting results. Some authors have demonstrated that stimulation 

with LPS increases the frequency of IL6 and IL8 positive cells in preterm compared to 
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term cord blood194, while stimulation with S. epidermis decreases TNFα+ and IL6+ cell 

counts252. Despite these decreased cell counts, stimulation with TLR7-9 agonists or S. 

epidermis shows an increased IL8 response by preterm cord blood PMNs and whole 

blood compared to term204, 290. Alternately, stimulation of whole cord blood or PMNs 

with TLR1-5 agonists demonstrates comparable or decreased expression of IL8 

compared to term82, 290. In comparison to stimulation with whole heat killed bacteria, 

single TLR stimulation produces decreased cytokine responses in preterm cord blood 

compared to term204. These findings support preterm neonates are less sensitive to 

simultaneous stimulation by the multiple ligands that are present on whole bacteria. 

Such reduced sensitivity to pathogens may underlie preterm neonates’ susceptibility to 

contracting infection. 

In addition to an increased susceptibility to infection, preterm neonates demonstrate 

differences in regulatory immunity compared to term. The constitutive expression of 

anti-inflammatory IL10 and TGFβ is increased in preterm cord blood compared to term. 

Following LPS stimulation, however, preterm and term cord blood both express 

decreased IL10 and TGFβ compared to adult blood291. Further, when cord blood 

monocytes are supplemented with recombinant IL10 or TGFβ and are stimulated with 

TLR4, their inhibition of pro-inflammatory cytokine expression is impaired compared 

to adult monocytes. Anti-inflammatory cytokines limit inflammation through 

antagonising pro-inflammatory pathways and enhancing immunosuppressive 

mechanisms and tissue repair. The suppressive effects of anti-inflammatory cytokines 

are dependent on their ratios relative to pro-inflammatory mediators and the respective 

bioactivity of the molecules. Therefore, increased constitute cord blood IL10 levels may 

not be entirely protective against dysregulated inflammation in preterm neonates. 
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Table 1.2. A summary of studies on preterm cord blood cytokine expression 

compared to term following immune stimulation in vitro. Cytokine expression may be 

increased (↑),decreased (↓) or comparable (↔) in preterm compared to term cord blood 

following immune stimulation of the indicated cell types with specified agonists in 

vitro.  

Cytokine/ 

chemokine 

Expression 

in preterm 

compared 

to term 

cord blood 

 

Agonist Cell type (citation) 

IFNα ↓  

↓ 

RSV 

TLR7,9 

 

Monocytes292 

pDCs213 

IL1β ↓  

↓ 

↔ 

TLR4 

TLR2 

S. epidermis 

CBMCs288 

Monocytes35 

CBMCs46 

IL6 ↔ 

↓  

↓ 

↓  

↓ 

↓  

↓ 

↓  

↓ 

↓  

↔ 

↓ 

 

S. epidermis 

IL1 

TLR2, 4 

TLR4 

GBS 

RSV 

TLR2 

S. epidermis 

TLR4 

E. coli, S. aureus 

S. epidermis 

E. coli, Listeria 

monocytogenes, S. pneumonia 

 

CBMCs46 

CBMCs293 

CBMCs213 

CBMCs288 

CBMCs, whole blood289 

Monocytes292 

Monocytes35 

Whole blood252 

Whole blood252 

Whole blood82 

Whole blood82 

Whole blood294 

IL8 ↔ 

↓ 

↔ 

↑  

↓ 

  

S. epidermis 

TLR2 

TLR2-5 

TLR7/8, 9 

TLR2, 4 

 

CBMCs46 

Monocytes35 

PMNs290 

PMNs290 

Whole blood82 

 

IL10 ↔ 

↓ 

↔ 

↔ 

↑ 

↔  

S. epidermis 

TLR4 

TLR2-9 

TLR4 

GBS 

TLR4 

 

CBMCs, whole blood252 

CBMCs, whole blood252 

CBMCs213 

Whole blood291 

Monocytes204 

Whole blood177 

IL12 ↓ TLR2-9 

 

CBMCs213 
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Cytokine/ 

chemokine 

Expression 

in preterm 

compared 

to term 

cord blood 

 

Agonist Cell type (citation) 

TNFα ↔ 

↓ 

↓ 

↓ 

↓ 

S. epidermis 

TLR2-9 

TLR4 

GBS 

S. epidermis 

 

CBMCs46 

CBMCs213 

CBMCs288 

CBMCs, whole blood289 

CBMCs, whole blood252 
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1.4.5. Neonatal TLR Signalling 

Neonatal TLR signalling is immature compared to adults. In mice, TLR4 deficiency in 

mice leads to LPS hypo-responsiveness, resulting in increased microbial loads and 

higher rates of mortality295, 296. TLR2/TLR4-/- mice exposed to S. typhimurium are more 

susceptible to infection and show an increased bacterial load and rate of mortality. 

Similarly, IRAK1-/- animals are resistant to endotoxic shock because inflammatory 

signalling is downregulated297. In humans, IRAK4 deficiency is negatively correlated 

with age298, making children more vulnerable to higher incidences of infection and 

severe complications compared to adults299. The attenuated expression of these early 

signalling molecules could therefore place neonates at an increased risk of infection. 

Although there is a wealth of data which suggests that TLR expression is altered by 

preterm delivery48, 82, 288, 300, the largest body of literature has focused on TLR4. 

Seminal work by Forster-Waldl and colleagues found decreased expression of TLR4 in 

preterm cord blood of very low birth weight infants compared to term controls, with an 

associated decrease in pro-inflammatory cytokines following TLR4 stimulation288.  

Similarly, other studies have shown a positive correlation between gestational age and 

TNFα cytokine production following TLR4 stimulation, indicating increased immune 

responsiveness by preterm neonates with advancing gestational age at delivery35, 62, 82, 

288, 301. Conversely, constitutive expression of TLR2 does not appear to differ 

significantly across gestational age in isolated cord blood monocytes35. Preterm 

monocytes also show comparable expression of constitutive TLR2, TLR4 and TLR6 

compared to term and adult monocytes86. Alternately, other studies have shown that 

protein expression of TLR2 and TLR4 on monocytes and neutrophils is positively 

correlated with gestational age302. Deficient TLR4 expression could be analogous to 

mutations seen within the TLR4 gene itself, which lead to susceptibility to bacterial 

infection and decreased responsiveness to LPS288, 303, 304.  

Regulating TLR signalling is central to immune tolerance. For example, murine models 

show blocking NF-κB signalling in IECs decreases systemic inflammation while 

increasing local inflammation61. Other studies have also demonstrated NF-κB activation 

in IECS is protective against mucosal injury for this reason305, 306. Ultimately,  increased 

NF-κB and decreased IκBα contribute to severity of inflammation and increase the risk 
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of neonatal diseases such as NEC307. It is therefore unsurprising that breast milk 

stimulates intestinal epithelial cells’ expression of IκBα, resulting in reduced NF-κB 

translocation308. The very presence of this inhibitor in breastmilk highlights the 

potential for immune compound supplementation to protect the neonate from 

inflammation.  
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1.5. THE REGULATION OF INFLAMMATION 

Inflammation requires gradual down-regulation to avoid constant defensive signalling 

that leads to wide-spread tissue damage. Immune regulation can involve the expression 

of anti-inflammatory mediators, networks of genetic response signalling, and 

physiological feedback systems (e.g. via the HPA axis or secondary lymphoid 

organs)309. These mechanisms recruit Tregs, repress inflammatory genes and induce 

sickness-like behaviours that assist in the process of tissue healing. Notably, the down-

regulation of a pro-inflammatory response causes less tissue damage than increased 

anti-inflammatory mediator expression310, while uncontrolled inflammation causes 

more tissue damage than infection itself and can establish a fertile ground for pathogen 

growth or autoimmunity.  

As TLR signalling can be activated by both exogenous and endogenous ligands, it 

needs to be tightly regulated to avoid such pathological inflammation. Regulatory 

mechanisms active at different stages of the signalling pathway have distinct effects on 

inflammatory outcomes depending on the complexes they target. TLR signalling can be 

decreased in a temporal manner according to the gradual activation of inhibitors 

stimulated at various stages of the cascade. Examples of TLR regulation include the 

upregulation of direct inhibitors such as IκBα or post-transcriptional repressors of 

mRNA transcripts which control the signalling cascade. A key class of intracellular 

mediators induced by cytokines are inhibitory Suppressor of Cytokine Signalling 

(SOCS) proteins. These are proteins that regulate transcription of Janus Kinases (JAKs) 

that activate Signal Transducer and Activators of Transcription (STATs). SOCS 

proteins therefore inhibit the transcription of cytokines311. SOCS1-/- mice are therefore 

hyper-responsive to LPS exposure and produce higher levels of TNFα, IL12 and IFNγ 

than WT mice, resulting in decreased survival caused by excessive inflammation312-314. 

SOCS1 is also an important regulator of the p65 subunit, as it degrades this 

transcription factor and preventing cytokine expression315. SOCS proteins are 

responsive to cytokine production and are therefore important regulators of 

inflammation, impacting different components of the TLR signalling pathway. 
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Other regulators of inflammation target gene expression and can include microRNAs 

(miRs), gene promoters, inhibitory proteins and competitive binders. MiRs have 

emerged as master regulators of inflammation316 as they are responsive to different cues 

during inflammation and regulate gene expression post-transcriptionally. Dysregulated 

patterns of miR expression have also been associated with the development of chronic 

inflammatory conditions317. The role of miRs in regulating inflammation may therefore 

be critical to a better understanding of neonatal innate immunity. 

1.5.1. MicroRNAs 

MiRs are 18-22 nucleotide, single-stranded, non-coding RNAs which repress gene 

expression post-transcriptionally318. They are responsive to temporal and tissue-specific 

cues and therefore, regulate many cellular processes319, 320. The post-transcriptional 

action of miRs may explain the mechanisms behind differences in inflammatory gene 

and protein expression in studies of cord blood, and could be key to understanding 

dysregulated innate immune responses in preterm neonates.  

MiRs are ‘promiscuous’ as each can have hundreds of mRNA targets that impact 

networks of genes. In silico analyses of microarray expression data estimate that miRs 

regulate approximately 30% of the human genome321. As such, they are shown to 

influence fundamental cellular processes including cell differentiation, proliferation, 

migration and apoptosis. Regulation by miRs is complex because different miRs can 

have multiple mRNA targets, act on many pathways simultaneously or act on different 

components of a common pathway. Similarly, mRNAs or entire genetic pathways can 

be targeted by many miRs at once to achieve a single effect, such as the downregulation 

of inflammation. These effects are commonly explored using microarray analyses, and 

in vitro miR transfection or knockdown studies.  

MiRs are evolutionarily-conserved and encoded by the genome such that they are 

regulated by their own transcription factors and promoters319. They are encoded as 

primary transcripts or as introns alongside protein sequence exons322. MiRs are 

transcribed by RNA Polymerase II from long primary transcripts (pri-miRNAs), which 

are subsequently cut by the RNaseIII, Drosha, into 60 base-pair precursors also known 

as ‘pre-miRNAs’323, 324 (Fig 1.2). Another RNase III, Dicer, then cuts the pre-miR into 
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an asymmetrical 22bp miR duplex containing the mature miR and its star-form 

complement325. Mature single-stranded miRs are exported to the cytoplasm and loaded 

onto an RNA-inducing silencing complex (RISC), which guides their targeted 

recognition of mRNA transcripts. MiRs bind complementarily to the 3’ untranslated 

region (UTR) of their target mRNA transcript and therefore, silence translation or 

signal transcript degradation324. MiR binding results in the adenylation or reduction of 

mRNA stability to the point of degradation326, 327, indirectly repressing protein 

synthesis. MiRs can down-regulate protein synthesis by directly targeting mRNA or 

indirectly up-regulating protein expression through suppression of negative regulators. 

For example, miR-155 upregulates cytokine expression through repressing the 

suppressor of cytokine signalling SOCS1328, 329. 

Approximately 1800 human miRs have been identified330 and at least 150 of these have 

known immune implications331, though their functional roles are not fully 

characterised332. In the context of immunity, tissue-specific or temporal aspects of miR 

regulation allow for the strict control of inflammation. Inflammation itself upregulates 

factors that control the expression of miRs, including TGFβ and bone morphogenic 

protein (BMP), which induce pri-miR processing333. A more comprehensive 

understanding of the regulatory interactions between miRs and inflammation could 

therefore lead to new avenues of therapy for inflammatory morbidities334.  
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Fig 1.2. A diagrammatic representation of miR synthesis and function. miRs are encoded in 

genomic DNA and transcribed as long primary transcripts (pri-miRNAs), which are then cut by 

Drosha (to form pre-miRNAs) and Dicer (to form a miR duplex consisting of the miR and its 

asymmetrical star-form partner). The mature miR transcript is then exported into the cytoplasm 

and loaded onto RISC, which guides its recognition of mRNA transcripts. This complex binds 

to the mRNA target and either represses the transcript’s translation or signals for its 

degradation. 
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1.5.1.1. MiRs that regulate TLR signalling 

TLR signalling and the induction of pro-inflammatory cytokines can be up- or down-

regulated through the actions of miRs (for review see335). Approximately 29% of 

genetic transcripts for cytokines and chemokines contain miR targets336. MiRs are also 

responsive to cytokines: for example, IL10 downregulates miR-155 release by bone 

marrow macrophages following LPS stimulation337. Human decidual cells stimulated 

with IL1β demonstrate differential expression of 428 transcripts (containing six miRs) 

which repress genes in TLR and MAPK signalling pathways338. In fact, a majority of 

miR regulation occurs downstream of TLR receptors to ‘dampen’ rather than eliminate 

TLR signalling. This allows for the elicitation of a balanced and appropriate immune 

response to a pathogen without prolonging inflammatory signalling.  

The temporal nature of miR induction means that miRs are expressed as part of early 

and late response mechanisms. As such, miR-155 induction occurs within two hours of 

LPS exposure, while miR-21 is induced after 8 hours335, 339. These temporal cues form a 

regulatory loop where miR-21 represses PDCD4, a repressor of IL10, and therefore 

delays an increase in IL10 expression needed to represses miR-155 later during 

inflammatory signalling337. When miR-155 is downregulated, it no longer represses 

SHIP1 or SOCS1 genes, allowing these proteins to downregulate the pro-inflammatory 

TLR4 response340. This network of signalling presents an antagonistic relationship 

between two miRs that rely on temporal cues during inflammatory signalling. As such, 

it highlights the role of miRs in ‘buffering’ rather than eliminating inflammation.  

TLR-induced inflammation consists of many adaptor molecules and transcription 

factors that can be regulated throughout the signalling cascade. TLRs themselves have 

few 3’UTRs, indicating the presence of conserved target sites for regulation by miRs335. 

At the receptor level, let-7e represses the expression of TLR4 mRNA, restricting 

signalling downstream of the receptor335, 341. let-7e is increased with LPS stimulation as 

demonstrated in macrophages in vitro, where silencing the gene upregulates cytokine 

expression following LPS stimulation. miR-9 is also upregulated by the activation of 

TLR2,4 and 7/8 in a MyD88- and NF-κB-dependent manner332. This is demonstrated by 

in vitro stimulation of human monocytes and neutrophils, where activation of NF-κB 

through TLR4 increases miR-9 expression and subsequently, miR-9 induces a negative-
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feedback response by downregulating NF-κB. It is therefore postulated that most TLR 

regulation occurs during or after transcription.  

1.1.1.1.4. miR-106a  

MiR-106a is an indirect pro-inflammatory regulator as it has a binding site on the anti-

inflammatory IL10 gene339. In human cell lines, transfection with an IL10 luciferase 

transporter gene results in decreased IL10 expression when miR-106a is increased342. 

Further, transfection of miR-106a into a bladder cancer cell-line increased p38 and JNK 

phosphorylation during TLR signalling343. Murine models of allergic airway 

inflammation have also demonstrated that the knockdown of miR-106a is associated 

with an upregulation of IL10 expression in the lung344. These mice also show increased 

airway inflammation in a dose-dependent manner to miR-106a expression. Together, 

these studies highlight miR-106a as an upregulator of TLR signalling through the 

repression of IL10. 

1.1.1.1.5. The miR-146 family 

The MiR-146 family are negative regulators of inflammation90, 323, 345, 346 consisting of 

miR-146a and miR-146b. Their expression is highest 24 hours following LPS exposure 

in human monocytes in vitro323, 346 and mice in vivo347. The miR146 family represses 

NF-κB, MAPK and downstream EGR transcription factors in the TLR signalling 

cascade348, 349. While miR-146a and miR-146b differ by two base-pairs, they are both 

associated with repression of IRAK1 and TRAF6323, 350, 351and are regulated by NF-

κB323, 352. 

miR-146a expression can be induced by LPS, TNFα and IL1β in a NF-κB-dependent 

manner323. It also shows cell-specific function, decreasing TRAF6 and IRAK1 in 

monocytes323 and STAT1 in Tregs353. In mice, miR-146a deficient Tregs are associated 

with the formation of autoimmune inflammatory lesions, indicating that the miR is 

crucial for these cells’ tolerogenic roles353. Human Langerhans cells also show 

increased constitutive expression of miR-146a compared to dendritic cells, which may 

be related to the induction of tolerance on the skin and mucosa towards the external, 

pathogen-rich environment354. In pDCs, TLR7 or TLR9 stimulation leads to increased 

miR-146a expression, which decreases NF-κB activation and therefore impairs TLR 



_____________________________________________________________________________ 

Chapter One: 

Introduction & Literature Review  Page 75 

 

 

signalling355. Overall, miR-146a clearly has context-dependent roles in inflammatory 

suppression.  

miR-146a may also have a role in conferring endotoxin tolerance, although the precise 

mechanisms remain unclear. miR-146a-/- mice are hyper-sensitive to LPS, developing 

acute vascular responses following exposure to the endotoxin353, 356. Further, neonatal 

mice upregulate miR-146a expression to establish enteric homeostasis in intestinal 

epithelia347. Extensive mucosal damage is observed in mice where miR-146a expression 

is ablated by anti-miR-146a antibodies347, particularly as miR-146a is also involved in 

the induction of gene sets central to cell survival, differentiation and homeostasis347, 351. 

Tolerance towards LPS through the down-regulation of IRAK1 remains evident in the 

murine gut until 3 weeks of age, when IRAK1 expression is restored347, 357. These 

findings highlight that miR-146a expression in the gut is age-specific and that miRs 

have many roles in supporting a tolerogenic neonatal immune system.  

1.1.1.1.6.  miR-155 

miR-155 is an important pro-inflammatory mediator that regulates many inflammatory 

targets and influences entire networks of inflammatory genes. The anti-inflammatory 

action of IL10 has been shown to repress miR-155 during LPS stimulation in human 

and murine cell lines337, 358, highlighting the significance of its role during 

inflammation. The best characterised target of miR-155 is SOCS1, where the over-

expression of miR-155 in mice directly down-regulates the expression of SOCS1 and 

therefore, upregulates cytokine synthesis328, 341, 359, 360. miR-155 expression is increased 

in mononuclear leukocytes following stimulation with Poly I:C and IFNβ, as it can be 

induced by both MyD88- and TRIF-dependent signalling pathways 323, 361. miR-155 

induction is also associated with increased TNFα expression and therefore, its over-

expression in mice makes them more vulnerable to septic shock than wild types362. 

Further, the knockdown of miR-155 is associated with decreased numbers of Th1 and 

Th17 cells and mild experimental autoimmune encephalitis in mice363.  

miR-155 expression is upregulated by TLR2, 3, 4 and 9 signalling (reviewed in335).  

Cancer and embryonic kidney cell lines have also shown that miR-155 targets MyD88 

during Helicobacter pylori exposure364. The knockdown of miR-155 therefore leads to 
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increased MyD88 expression in human macrophage cells in response to oxidised low 

density lipoprotein (representing oxidative stress). Downstream of MyD88, miR-155 

has also been shown to repress IKKε (an inhibitor of NF-κB binding) and is associated 

with upregulated cytokine expression. H. pylori infection of gastric epithelial cells and 

human embryonic kidney cells shows that the over-expression of miR-155 leads to 

decreased IKKε365. Overall, miR-155 is ubiquitously expressed and has multiple roles 

during TLR signalling that increase inflammation.  

  



_____________________________________________________________________________ 

Chapter One: 

Introduction & Literature Review  Page 77 

 

 

1.6. MIR EXPRESSION IN THE PLACENTA 

Placentation is a complex process influenced by epigenetic regulation that is responsive 

to environmental cues throughout gestation. The placenta is a dynamic organ that 

requires temporal regulation as it develops and therefore, the differential expression of 

epigenetic regulators play a critical role during pregnancy. As miRs influence vast 

networks of cellular processes, it is unsurprising that they are emerging as key 

regulators of placental gene expression.  

Microarray analyses have revealed that the human placenta expresses approximately 

600 different miRs, including those exclusive to gestational tissues366-369. MiRs that are 

involved in proliferation, differentiation, cell death and metabolism are abundant in the 

placenta366, 370. Placental miR biogenesis was first confirmed in trophoblasts which 

demonstrated the expression of proteins specific to facilitating miR synthesis and 

function, including Argonaute2 and Dicer371, 372. In fact, the knockdown of Dicer in 

human placental explants is associated with the over-proliferation of cytotrophoblast 

cells due to the absence of regulation by miRs372. Murine models have also shown that 

the knockout of miR biogenesis machinery in the placenta causes impaired 

angiogenesis and compromised embryonic survival373. Together, these studies highlight 

the role of miRs in regulating placental development and function. 

Interestingly, the preterm placenta has a unique miR profile, showing differential 

expression of 20 placenta-specific miRs compared to term374. Further, placental and 

decidual miRs are differentially expressed in preterm compared to term deliveries with 

chorioamnionitis375, 376, suggesting that inflammatory regulation occurs differently at 

different gestational ages. Deep-sequencing has shown that preterm villous trophoblasts 

differentially express 7 inflammatory miRs with intra-amniotic infection compared with 

iatrogentic preterm birth377. Notably, there is no difference observed in the decidua of 

these placentae, highlighting the tissue-specific nature of miR-based regulation.  

Unique clusters of miRs are differentially expressed throughout gestation in the 

placenta378. MiRs associated with angiogenesis and cell survival are dominant in first 

trimester placentae, while those associated with cell differentiation are upregulated in 



_____________________________________________________________________________ 

Chapter One: 

Introduction & Literature Review  Page 78 

 

 

third trimester placentae378. A majority of placental miRs are encoded on the C19MC 

chromosomal cluster, comprising the largest known cluster of human miRs321, 378. These 

miRs become differentially expressed during pathological pregnancies including 

hypoxia-induced fetal growth restriction379, 380, pre-eclampsia374, 381 and preterm 

delivery374. A microarray targeting 762 miRs expressed in term and first trimester 

trophoblasts and cell lines has identified several miR clusters exclusive to the placenta 

and 27 miRs that are differentially expressed according to gestational age382. This 

suggests there are diverse miR ‘fingerprints’ which are unique to gestational age and 

can influence the phenotype of placental cells. 

The differential expression of placental miRs may contribute to altered placental 

function, however a majority of such evidence remains correlational. For example, 

decreased placental expression of miR-16 and miR-21 is positively correlated with 

IUGR and adverse pregnancy outcome383. These findings are extrapolated from 

previous studies which suggest that miR-21 regulates cell proliferation and migration384, 

and miR-16 is involved in apoptosis and the regulation of the cell cycle385. Such 

analysis is open to interpretation as miRs can have tissue-specific patterns of expression 

and function386 and the pathogenesis of IUGR is multifactorial. Studies which transfect 

or interfere with miRs are therefore required to elucidate precise bioactive pathways or 

pathological mechanisms. As such, though different placental miRs have been 

identified by array analyses, their specific function is yet to be elucidated and are 

currently limited to in silico analyses. Further, there are few studies on the involvement 

of miRs in regulating TLR signalling. As miRs have been demonstrated to play critical 

roles in regulating networks of inflammation, it is important to characterise their roles 

in the regulation of placental inflammation and how their expression many be 

associated with the regulation of neonatal immunity. 
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1.7. THE REGULATION OF NEONATAL INNATE IMMUNITY 

BY MIRS 

Our understanding of miR expression in neonatal tissue is limited, although it may be 

key to understanding differences in immune regulation compared to adults. The 

differential expression of miRs that regulate TLR signalling may also explain 

differences between term and preterm cord blood cytokine responses to immune 

stimulation (see section 1.5). In adults, miRs play an important role in the development 

and differentiation of different immune cells (for review see359) and given their 

influence on developmental processes (e.g. angiogenesis and cell differentiation), they 

are also likely contributors to immune ontogeny.  

Literature regarding neonatal expression of immune-regulatory miRs is particularly 

scarce. The decrease in TNFα expression demonstrated by cord blood monocytes 

following LPS stimulation compared to adult monocytes (with no difference in NF-

κBp65 expression) may result from post-transcriptional regulation by miRs387. In fact, 

decreased miR-125b is associated with increased TNFα in cord blood monocytes 

following in vitro LPS exposure, while overexpression of miR-125b represses TNFα387. 

Most other studies on cord blood miR expression lack such mechanistic insight. For 

example, Charrier et al. associated increased miR-146a and decreased miR-155 

expression in cord blood pDCs with dysfunctional responses to viral stimulation 

relative to adult pDCs388, but did not confirm any changes in target mRNA expression. 

Similarly, 20 differentially expressed miRs were reported by a study comparing cord 

blood and adult mononuclear cells389, but their functional effects were not defined.  

In a seminal study on cord blood miR responses to endotoxin, Lederhuber et al. found 

the constitutive expression of miR-146a and miR-146b was comparable between cord 

blood and adult blood242. Following LPS stimulation, they observed a time-dependent 

upregulation of miR-146a and miR-146b in cord and adult blood, however, at 24 hours 

post-LPS exposure, there was a significant, two-fold upregulation of miR-146a in cord 

blood compared to adult blood. miR-146a therefore appears to be essential for the 

negative regulation of TLR4 signalling in both adults and neonates. This extended 



_____________________________________________________________________________ 

Chapter One: 

Introduction & Literature Review  Page 80 

 

 

period of increasing miR-146a expression observed in neonates may suggest an 

increased reliance on tolerogenic mechanisms. Notably, this study only characterised 

TLR4 expression alongside miR-146a/b and saw no difference between adult and cord 

blood responses, which is contrary to previous literature on stimulated TLR4 responses 

(Table 1.1). Further, known targets of miR-146a/b, IRAK1 or TRAF6 were not 

characterised.  

Microarrays of peripheral neonatal blood has shown that inflammation such as 

chorioamnionitis alters the preterm transcriptome, including miR expression390. Preterm 

neonates exposed to chorioamnionitis differentially express 488 genes compared to 

unexposed preterm neonates, with one of the top pathway regulators being miR-155 

(which was upregulated). Similarly, exposure to maternal smoking during pregnancy 

has been associated with increased cord blood miR-223 expression and decreased Treg 

numbers compared to cord blood from non-smoking mothers391. As miR-223 is mainly 

expressed on leukocytes and has roles in granulocyte development and function, it may 

directly repress Treg development. Further, the concentration of cigarette smoke toxins 

in maternal urine is associated with a dose-dependent decrease in cord blood miR-155 

expression. This suggests pro-inflammatory insults during pregnancy may alter post-

natal immune regulation, at least as mediated by miRs. Together, these findings begin 

to clarify a role for miRs in top-down regulatory networks of inflammatory gene 

regulation in neonates, though they require validation studies to confirm their 

mechanistic influence. 

1.7.1. REGULATION OF PRETERM NEONATAL INNATE IMMUNITY 

BY MIRS 

Currently, there is no literature assessing the impact of preterm delivery on immune 

miR expression in neonates. Differential expression of miRs according to gestational 

age could be a key factor contributing to differences between the preterm and term 

neonates’ immune function. Given that LPS-stimulated TLR4 expression is correlated 

with gestational age35, 288, it is likely that the expression of let-7e is also age-dependent. 

Existing studies on miRs expressed by preterm peripheral blood or placenta use 

microarray techniques that are more exploratory for the sake of establishing biomarkers 
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(for review see392). For example, peripheral blood from neonates with BPD shows 

increased miR-152, miR-30a, miR-133b and miR-7 expression compared to healthy 

neonates393. These findings could, however, be part of a more generalised inflammatory 

response.  

Though studies have provided observational insights into differential miR cluster 

expression in preterm tissues, none have offered mechanistic evidence as to how these 

miRs are altered in preterm neonates and what impact this has on innate immune 

function. For example, Rogers et al. identified differential expression of the miR14~92 

gene cluster in autopsies of preterm infants who died from severe BPD394. The cluster is 

typically associated with normal lung development395 but in the lung tissue of deceased 

infants with BPD, it was downregulated394. The controls for this study were deceased 

term infants that did not suffer from non-respiratory mortalities, which questions the 

validity of their use as a control group. To consolidate their findings, the authors 

showed decreased miR-17 and miR-19b in serum from preterm infants who later 

developed BPD. They postulated that because these miRs typically downregulate TGFβ 

expression, their downregulation would predispose preterm neonates to the aberrant 

inflammation observed in BPD sufferers. While it authors suggest these miRs could be 

used as biomarkers for screening BPD in vulnerable preterm infants, these findings do 

not confirm a precise mechanism for their role in aberrant respiratory inflammation. 

Identifying such mechanisms is critical, because it is likely that whole networks of 

inflammatory genes are impacted by the pathogenesis of BPD. Although miRs can be 

correlated with particular disease states or increased under experimental conditions, 

there often remains the need to demonstrate causality396.  

The difficulty in identifying miRs that regulate neonatal innate immunity is that miR 

expression can influence entire networks of genes. Preterm birth encompasses multiple 

phenotypes and in the context of inflammation, genetic alterations affect entire 

networks of physiology with both scientific and clinical implications. MiRs that are 

differentially expressed between term and preterm neonates may contribute to perturbed 

maturity of this system. Currently, knowledge of miR expression and the regulation of 

inflammatory responses by neonates remains in its infancy. Characterising differential 
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miR expression could therefore improve diagnostic and prognostic phenotyping or 

identify potential therapeutic targets for managing inflammation in preterm neonates.  
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1.8. SYNOPSIS 

Preterm neonates are at higher risk of developing inflammatory morbidities compared 

to their term-born counterparts. TLR signalling is a critical component of inflammation 

and in vitro cord blood studies have shown that it is impaired in preterm neonates. As 

such, decreased expression of TLRs and cytokines following innate immune stimulation 

is observed in preterm compared to term cord blood. Preterm neonates are also more 

susceptible to developing neutropenia and demonstrate decreased phagocytic and cell-

mediated killing capacities compared to term neonates. Such attenuation of innate 

immune function typically increases the likelihood of contracting infection. Preterm 

neonates are, however, also susceptible to developing conditions characterised by 

aberrant inflammation including neonatal sepsis, RDS and NEC. The mechanisms 

underlying these paradoxes in innate immune dysfunction remain unclear, but may 

relate to immature regulatory signalling. 

MiRs have recently emerged as critical regulators of inflammation, but their expression 

remains poorly characterised in the context of neonatal immunity. Differences in miR 

expression between preterm and term neonates could contribute to immune 

dysregulation. To address this gap in immunological research, this thesis will assess the 

impact of preterm delivery on the expression of miRs and other genes associated with 

TLR signalling in placenta and cord blood. The identification of mechanisms that 

predispose preterm neonates to inflammatory conditions could lead to more targeted 

diagnostic and therapeutic interventions to ameliorate adverse health outcomes.  
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1.9. AIMS & HYPOTHESES 

The aim of this thesis is to investigate TLR signalling pathways in cord blood and 

placenta to understand factors that may contribute to inflammatory dysregulation in 

preterm neonates. Specifically, the studies contained in this thesis aim to: 

 Characterise the expression of genes associated with TLR signalling, including 

miRs and their targets (mRNAs) in preterm and term placenta at birth; 

 Characterise the expression of miRs and their mRNA targets, and cytokines in 

preterm and term cord blood at birth; 

 Characterise the expression of miRs and mRNAs in preterm and term cord 

blood following TLR stimulation to mimic exposure to common neonatal 

pathogens; 

o Identify how this response changes over time in vitro; and 

 Conduct a bioinformatics-based analysis of TLR signalling molecules to identify 

network-level alterations in preterm neonates’ peripheral blood and identify 

novel mechanisms and/or targets for further research.  

In the context of genes associated with TLR signalling, it is hypothesised that: 

 Preterm placenta will show a pro-inflammatory gene expression profile, 

including decreased anti-inflammatory miRs and increased inflammatory genes; 

 Preterm cord blood will show decreased anti-inflammatory miR expression and 

increased inflammatory gene expression compared to term at birth; 

 Following in vitro stimulation with TLR2, 3 and 4 agonists, preterm cord blood 

will show: 

o decreased expression of anti-inflammatory regulators including let-7e, 

miR-146a and SOCS1 compared to term; 

o increased expression of pro-inflammatory mediators including miR-155, 

miR-106a and IL6 compared to term; 

o increased pro-inflammatory gene expression over time compared to 

term cord blood; and 

 Preterm neonates with infection will demonstrate an inflammatory gene 

network biased towards pro-inflammatory pathways compared to term neonates 

with infection.
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2.1. SUBJECT RECRUITMENT 

Pregnant women (n= 152) presenting and delivering at term (control group; ≥ 37 weeks 

gestation), late preterm (32-37 weeks) or early preterm (≤ 32 weeks) gestation were 

recruited to this study by the researcher, research midwife or consulting neonatologist. 

All participants delivered at either the Lyell McEwin Hospital (LMH) or the Women’s 

and Children’s Hospital (WCH) between 2012 and 2016 in Adelaide, South Australia.  

All participants provided informed written consent for participation in this study. 

Neonates with known congenital malformations were excluded from this study. Clinical 

data were collected from health records including obstetric history, delivery details and 

neonatal health outcomes. Birth weight centiles were calculated using the GROW v6.7 

Customised Centile Calculator397. Intra-uterine growth restriction (IUGR) was defined 

as birth weight below the 3rd centile, while small for gestational age (SGA) was defined 

as birth weight below the 10th centile. Chorioamnionitis was confirmed using 

histopathological reports. Ethical approval for this study was provided by the human 

research ethics committees of the Lyell McEwin Hospital (Approval: 

HREC/14/TQEHLMH/158), Women’s and Children’s Hospital (Approval: 

REC2198/7/12) and the University of Adelaide, Adelaide, SA, Australia. 
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2.2. SAMPLE PROCESSING 

All reagents and materials are listed in Appendix I. 

All cord blood samples (n=152) were analysed for baseline gene expression (Chapter 4) 

and a subset of matched placentae (n=60) were analysed for baseline gene expression 

(Chapter 3). A subset of cord blood samples were also stimulated with TLR agonists in 

vitro for analysis in Chapter 5 (n=61). A smaller subset of samples from this group was 

used for a time course study of in vitro TLR stimulation in Chapter 6 (n=49). 

Limitations in cord blood volume were the determinants for sample size in each 

experimental chapter.  

2.2.1. CORD BLOOD 

Umbilical cord blood was collected in lithium heparin vials at delivery and processed 

within one hour of collection. Samples consisted of a mixture of arterial and venous 

cord blood. One aliquot of whole blood (300µL) was stored at -80°C for baseline 

analysis of RNA expression. Approximately 6mL of cord blood was used for in vitro 

culture. Remaining cord blood was centrifuged (10 minutes at 3,500 rpm, 4°C) and 

separated serum was removed and frozen at -20°C for cytokine analysis (section 2.4). 

2.2.2. PLACENTAL TISSUE 

Placentas were collected within one hour of delivery. Approximately 5mm of surface 

tissue from the maternal surface was removed prior to sampling to maximise genetic 

sampling of placental rather than maternal tissue. Samples were dissected from five 

cotyledons and pooled together. Dissection avoided obvious major vessels, blood clots 

and calcified or fibrous tissue. Aliquots of the pooled placental tissue (50mg) were 

snap-frozen in liquid nitrogen and stored at -80°C.   
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2.3. CORD BLOOD CULTURE AND STIMULATION 

2.3.1. WHOLE CORD BLOOD IN VITRO TLR STIMULATION  

Previous studies have highlighted the importance of cellular cross-talk and plasma-

based factors during an immune response (see 1.5.2). Further, previous findings from 

our laboratory have indicated that CBMCs do not respond as robustly to TLR 

stimulation as whole cord blood153. Whole cord blood was therefore used to investigate 

gene and protein expression in this thesis.  

Replicates of cord blood (100µL) were cultured in flat-bottomed 96-well cell culture 

plates at 37°C and 5% CO2. Cultures were rested overnight prior to TLR stimulation to 

minimise any potential effect of labouring delivery.  

TLR agonists were provided as lyophilised powders. PGN from the cell wall 

component of S. aureus and synthetic Poly I:C were reconstituted in sterile water, and 

LPS derived from E. coli was reconstituted in sterile DPBS, as per manufacturer’s 

instructions. 

Following an overnight resting period, cord blood was stimulated with PGN (10ng/mL; 

10μL), Poly I:C (50ng/mL; 10μL) or LPS (100ng/mL; 10μL). TLR agonist 

concentrations were determined from existing studies52, 256 and optimised in our 

laboratory. Both time and agonist concentration optimisation studies were performed, 

determining the peak synthesis phase of IL6 and TNFα production according to agonist 

dose and over time following TLR stimulation153.  TNFα and IL6 production both 

peaked and plateaued 6 hours following TLR stimulation. The 6 hour time point was 

therefore chosen for the analysis of TLR signalling pathways. Cord blood was removed 

from culture following 2, 6 or 24 hours stimulation, and triplicates were pooled (to 

achieve a volume of 300μL that would ensure maximal RNA yield) and stored at -80°C.  

  



 

_____________________________________________________________________________ 
Chapter Two: 

General Methods  Page 89 

 

2.3.1.1. Stimulation of Diluted Cord Blood for Cytokine Analysis 

Whole cord blood was diluted in sterile saline (1:4) and plated (100μL) for cytokine 

analyses. Diluted blood was used in these experiments due to limitations in cord blood 

volumes available for analysis from preterm deliveries. Cord blood was cultured in 96 

well, flat bottom cell culture plates at 37°C and 5% CO2 and rested overnight prior to 

agonist exposure. Following resting, cord blood was stimulated with either PGN 

(100ng), Poly I:C (5μg) or LPS (1μg). Following stimulation, duplicate wells were 

pooled and collected at 2, 6 or 24 hours. Pooled samples were centrifuged at 10,000rpm 

for 5 minutes at 4°C for the separation of supernatant from haemocytes. Supernatant 

was collected and stored at -20°C until further analysis. 
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2.4. ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) 

A select panel of pro- and anti-inflammatory cytokines and chemokines were 

investigated using ELISA. These targets have well-defined roles in TLR signalling (see 

1.3-5).  

2.4.1. Single-target ELISA 

Single target ELISAs (Human Duo Sets) were used to measure TNFα, IL6 and IL8 in 

cord blood serum to account for their typically increased serum concentration. The 

lower detection limit for TNFα was 15.625pg/mL, and the lower detection limit for both 

IL6 and IL8 was 31.25pg/mL. Samples being assayed for IL6 and IL8 were diluted 1:20 

in the appropriate reagent diluent prior to analysis. All inter-assay and intra-assay 

coefficients were below 10%. 

2.4.2. Multi-panel ELISA  

Multi-panel ELISA was used to determine the concentration of 7 cytokines and 

chemokines in cord blood serum (Milliplex MAP Kit). These consisted of GM-CSF, 

IL1α, IL1β, IL1RA, IL10, IL12p70 and MCP1. These cytokines are well-established as 

key inflammatory mediators50. The limitations and coefficients of variation are listed in 

Table 2.1. 
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Table 2.1. Detection Specifications for the Milliplex MAP Kit used for this thesis. 

Minimum limit of detection (pg/mL), intra-assay %CV and inter-assay %CV for 

cytokines measured using the Milliplex MAP Kit. 

Target Minimum Limit 

of Detection 

(pg/mL) 

Intra-assay %CV Inter-assay %CV 

GM-CSF 7.5 3.1 10.1 

IL1α 9.4 3.3 12.8 

IL1β 0.8 2.3 6.7 

IL1RA 8.3 2.1 10.7 

IL10 1.1 1.6 16.8 

IL12p70 0.6 2.2 16.7 

MCP1 1.9 1.5 7.9 
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2.5. RNA EXTRACTION AND PURIFICATION  

2.5.1. RNA Extraction from Pooled Placental Tissue 

RNA extraction from placenta was performed as previously described using 

TRIzol®398. Frozen pooled placental tissue (50mg) was homogenised in TRIzol using 

2.8mm Precellys Zirconium Oxide Beads and a Precellys Tissue Homogeniser (2x 20 

second cycles at 5,500rpm). Chloroform (300µL) was added to homogenised samples 

and tubes were manually agitated for 15 seconds. Samples were incubated at room 

temperature for 10 minutes and then centrifuged (10 minutes at 10,000rpm, 4°C). The 

upper, clear aqueous phase was transferred into a new RNase-free tube and cold 

isopropanol (4°C, 1mL) was added. Samples were incubated for 10 minutes at room 

temperature. RNA was pelleted by centrifugation (10 minutes at 10,000rpm, 4°C) and 

supernatant was discarded. The pellet was resuspended in cold RNase-free ethanol 

(1.5mL) and centrifuged (5 minutes at 7,500rpm, 4°C). Supernatant was discarded and 

the pellet was eluted in RNase-free water (100μL). 

RNA was purified using the miRNeasy Mini Kit and RNase-Free DNase Set, according 

to manufacturer’s protocol. Purified RNA was eluted in RNase-free water (50µL) and 

its concentration was determined using a Nanophotometer. RNA integrity was 

determined using a RNA 6000 Nano kit and Bioanalyser.  

Placental RNA with RNA integrity numbers (RINs) ≥ 5 were used for analysis. Low 

RINs are typically obtained from placental tissue due to the increased density of RNA 

in these samples which produces a high level of background fluorescence during 

electropherogram analysis on microfluidic chips. However, placental RNA integrity ≥ 5 

has been shown to be sufficient for reliable qPCR analysis399, 400. 

2.5.2. RNA Extraction from Cord Blood 

RNA was extracted from whole cord blood using TRIzol LS® Reagent and purified 

using a miRNeasy Mini Kit, which extracts all RNA transcripts longer than 18 

nucleotides. Three volumes of TRIzol LS were added to one volume of cord blood and 

vortexed for 1 minute to lyse the cells. The homogenised mixture was incubated at 
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room temperature for 5 minutes to allow for dissociation of nuclear contents. 

Chloroform (200μL) was added to each sample and agitated for 15 seconds. The RNA 

extraction and purification procedure from this stage onwards was identical to that 

previously described for placental tissue (see section 2.5.1.). Cord blood RNA with 

RINs ≥ 9 were used for qPCR analysis. 
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2.6. QUANTITATIVE REAL TIME REVERSE TRANSCRIPTION 

POLYMERASE CHAIN REACTION (qRT-RT-PCR) 

2.6.1. qRT-RT-PCR for miRNA  

Purified miRNA (10ng) was reverse transcribed using a Taqman MicroRNA Reverse 

Transcription Kit. The manufacturer’s protocol was modified slightly to accommodate 

for five RT primer targets per reverse transcription reaction. This was performed to 

enable consistency and the efficient use of reagents. Samples were amplified in 

reactions containing RNA in Nuclease-free water (10ng in a 5μL volume). Pooled 

reverse transcription contained a mixture of dNTP mix (0.19µL), Multiscribe enzyme 

(1.25μL), 10xRT buffer (1.25μL), RNase inhibitor (0.24μL), five RT primers (1.12μL 

each) and RNA in nuclease-free water (5μL). Seven miR primers were used for cDNA 

synthesis (let-7e, miR-155, miR-146a, miR-146b, miR-106a, RNU6B and RNU48 (see 

Table 2.2)).  The reaction mixture was adjusted to a total volume of 13.77μL using 

nuclease-free water. The reaction was incubated on a Thermal Cycler at 16°C for 

30min, 42°C for 30min and 85°C for 5min, and terminated at 4°C.  

Relative miRNA expression was quantified using Taqman MicroRNA Assays. Each 

20µL reaction contained the cDNA template (10ng in 1.33 µL), RNase-free water 

(7.67μL), the relevant Taqman gene microRNA expression assay (1µL) and Taqman 

Universal PCR Master Mix II without UNG (10µL). Relative miR expression was 

determined using the comparative cycle threshold (2-ΔCT) method using the QuantStudio 

12K Flex PCR machine. As miRs are short, non-coding RNA transcripts, endogenous 

snoRNAs are often used as comparative controls during PCR. The snoRNAs RNU48 

and RNU6B were therefore identified as candidate housekeeping genes from previous 

literature investigating cord blood242 and placental miR expression386. The PCR 

consisted of two holding stages (2 min at 50°C and 10min at 95°C) and two 

amplification stages (15sec at 95°C and 60sec at 60°C). 
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Table 2.2. A summary of miR primers used for this thesis. The miR assay name and 

assay ID for primers used in this thesis.  

miR Assay name Manufacturer’s Assay ID 

let-7e hsa-let-7e-5p 002406 

miR-155 hsa-miR-155 002623 

miR-146a hsa-miR-146a 000468 

miR-146b hsa-miR-146b 001097 

miR-106a hsa-miR-106a-5p 002169 

RNU6B NR_002752 001093 

RNU48 NR_002745 001006 

2.6.2. qRT-RT-PCR for mRNA Targets 

Purified RNA was reverse transcribed using a SuperScript™ III First-Strand Synthesis 

SuperMix for qRT-PCR according to manufacturer’s protocol. Briefly, samples were 

amplified in 20µL reactions containing RNA (50ng) in RNase-free water, 2xRT 

enzyme mix (10µL) and RT Enzyme mix (2µL), constituted in RNAse-free water. The 

cDNA synthesis reaction was performed on a Thermal Cycler at 25°C for 10 minutes, 

50°C for 30 minutes and 85°C for 5 minutes. Samples were cooled to 4°C and E.coli 

RNase H (1µL) was added to degrade any remaining RNA. Samples were reheated and 

held at 37°C for 20min. Converted cDNA was stored at -20°C until qPCR.  

The PCR reaction was performed using TaqMan® Gene Expression Assays. Each 20µL 

reaction contained the cDNA template in RNasefree water (100ng in 2µL), the relevant 

Taqman gene expression assay (1μL each) and 2X Taqman® Gene Expression Fast 

Master Mix (10µL). Taqman gene expression assays included β-actin (Human ACTB, 

Hs99999903_m1), IL6 (Hs00985639_m1), IL10 (Hs00961622_m1), IRAK1 

(Hs01018347_m1), MyD88 (Hs00182082_m1), NF-κB1 (Hs00765730_m1), SOCS1 

(Hs00705164_s1), TLR2 (Hs00610101_m1), TLR3 (Hs01551078_m1), TLR4 

(Hs01061963_m1) and TRAF6 (Hs00377558_m1). Relative mRNA expression was 

determined using the QuantStudio 12K Flex PCR machine. The PCR consisted of two 

holding stages (2 minutes at 50°C and 20 seconds at 95°C) and an amplification stage 

(40 cycles of 95°C for 3 seconds and 60°C for 30 seconds). The 2-ΔCT method was used 
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to determine mRNA abundance relative to the appropriately determined housekeeping 

gene, β-actin401.  
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2.7. BIOINFORMATICS  

2.7.1. TLR SIGNALLING PATHWAY ANALYSIS 

In silico bioinformatics and statistical analyses were used to examine networks of gene 

expression in preterm neonatal TLR signalling pathways. We analysed two publicly 

available custom RNA-sequencing (RNA-seq) datasets profiling whole blood from 

early and late preterm neonates published by other authors390, 402, 403. One of these 

datasets utilised an Illumina HT12 platform validated using the CodeLink gene 

platform to perform an array on whole peripheral blood collected from neonates 

admitted to the neonatal unit who were having their blood sampled for clinical reasons 

including maternal thyroid disease, jaundice or suspected infection403. The second 

dataset was from a study that sought to characterise neonatal sepsis using blood from 

neonates with suspected sepsis. Gene expression was analysed using an Affymetrix 

GeneChip GGh3 Transcriptome Array390, 402. 

The NCBI Gene Expression Omnibus (GEO) is a public repository of high-throughput 

experimental data404. The software package GEOquery was used to download the 

relevant datasets from the GEO repository (GSE69686 and GSE25504). The GEO2R 

web application was then used to analyse differentially expressed genes within these 

microarray datasets. Data were normalised using log transformation before analysis. 

Bioinformatics analyses were performed in collaboration with Dr Jimmy Breen 

(Bioinformatics core-facility manager, Robinson Research Institute, University of 

Adelaide) using the R software package, limma. Limma is a library used to analyse gene 

expression microarray data by making simultaneous, multiple comparisons between 

RNA targets405. This software package was utilised as it employs empirical Bayesian 

methods that provide robust analyses where array numbers are low406. The R software 

package was then used to generate heat maps to represent gene expression in counts per 

million (cpm). 

The Kyoto Encyclopaedia of Genes and Genomes (KEGG) is a standardised reference 

for the definition of biological pathways that uses information from large-scale 

molecular datasets to define common networks of molecular signalling407. Differentially 
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expressed genes within the TLR signalling pathway (KEGG ID: hsa04620) were 

identified from the datasets extracted from GEO and these were generated as a heat-

map. The top 20 KEGG pathways differentially expressed according to neonatal 

bacterial infection and neonatal sepsis.  

2.7.2. CELL TYPE ENRICHMENT ANALYSIS 

The Immuno-Navigator database408 as used to query target genes in the TLR signalling 

pathway (defined by KEGG) to identify correlation scores of gene co-expression in 

specific adult tissues (sorted by significance of enrichment). The correlation network 

hub prediction tool was used to determine how many networks the listed genes were 

involved in, for specific immune cell types. The sub-functionalisation of these genes 

was isolated in healthy, unstimulated adult peripheral blood immune cells. Publicly 

available data from adult whole blood was used to explore the expression of these genes 

in specific immune cell types, as there is currently no data derived from neonates. Heat-

maps were generated according to the expression of inflammatory genes within the data 

set and their association with particular cell types.  
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2.8. STATISTICAL ANALYSES 

Data were analysed using the Statistical Package for Social Sciences (SPSS v24). 

Graphs were generated using GraphPad Prism software v6.00 (GraphPad Software, 

Inc.). Where normally distributed, data regarding clinical characteristics were analysed 

using t-tests or ANOVAs and presented as mean ± SD, unless otherwise indicated. 

Where data were not normally distributed, clinical data were analysed using Mann-

Whitney U or Kruskal-Wallis tests. qPCR data were logarithmically transformed (log10) 

to normalise data for analysis. Raw data were presented as median (25th-75th centile), 

unless otherwise indicated. All data reporting frequencies were analysed using 

Pearson’s Chi-squared tests. ANCOVAs or MANCOVAs were used to analyse log-

transformed qPCR data, with pre-eclampsia, labouring delivery, maternal smoking 

during pregnancy, birthweight centile, neonatal sex, chorioamnionitis and antenatal 

betamethasone exposure used as covariates where relevant. Post-hoc comparisons were 

conducted using t-tests or ANOVAs where appropriate. An a priori Bonferroni 

correction was made to the critical alpha level for post-hoc comparisons. Spearman’s 

correlations were used to assess the relationship between the matched sample 

expression of untransformed miR and mRNA data. An alpha level of 0.05 was 

considered statistically significant.  
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3.1. ABSTRACT 

Background 

Preterm birth is commonly associated with an inflammatory aetiology. Markers of placental 

inflammation, such as genes associated with TLR signalling, may therefore be associated 

with innate immune immaturity in the preterm neonate. TLR signalling is regulated post-

transcriptionally by miRs and the expression of these genes may be critical in regulating the 

in utero environment. Intrauterine perturbations caused by maternal physiology such as pre-

eclampsia, smoking and growth restriction also affect placental inflammation. This study 

aimed to characterise the expression of miRs and mRNAs in the TLR signalling cascade in 

term and preterm placenta. 

Methods and Results 

Term and preterm placenta were collected and homogenised at delivery. The expression of 

miRs and mRNAs was quantified using qPCR. There was no difference in the expression of 

the miRs or mRNAs assessed between term and preterm placenta. Term, but not preterm, 

placental miR-155 and miR-146a expression were correlated with their respective targets 

SOCS1 (p=0.015) and IRAK1 (p=0.005). Maternal smoking during pregnancy was 

associated with decreased let-7e (p=0.039) and increased TLR2, MyD88, IRAK1, NF-κB1, 

SOCS1, IL6 and IL10 expression (all p<0.05).  

Conclusion 

An association between miRs and their mRNA targets was evident in term but not preterm 

placenta, suggesting TLR signalling may not be regulated in the same manner throughout 

gestation. Further, maternal smoking during pregnancy was associated with decreased 

regulatory let-7e expression and increased expression of genes in the TLR signalling 

cascade. Together, these data suggest that the regulation of the TLR signalling pathway may 

be altered by prematurity and/or inflammation, though this requires further investigation.  
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3.2.  INTRODUCTION 

Intrauterine inflammation (IUI) is the most common known cause of preterm birth10, 110, 145. 

Acute or prolonged IUI (pathogen driven or sterile) is associated with poor fetal outcomes 

such as IUGR409 and fetal death130, 131. Despite the increased prevalence of these adverse 

outcomes, the impact of IUI on the neonatal innate immune system remains poorly 

characterised.  

In animal models of infection, IUI ‘programs’ the postnatal immune response. Rodents 

exposed to endotoxin in utero show attenuated pro-inflammatory cytokine responses when 

re-exposed as neonates101, 103. These mice also demonstrate decreased leukocyte recruitment 

and TNFα and IL1β production. In humans, intrauterine infection increases inflammation in 

the placenta, cord blood and neonatal peripheral blood139, 409. It is therefore commonly 

associated with inflammatory morbidities including sepsis410, NEC411 and CLD412. Other 

inflammatory insults such as maternal smoking during pregnancy have also been associated 

with increased numbers of pro-inflammatory M1 macrophages in the placenta413 and 

subsequently, an increased incidence of childhood atopy amongst offspring414. Overall, 

increased inflammatory signalling in utero may contribute to adverse pregnancy and 

neonatal health outcomes. 

TLRs are key drivers of an inflammatory response. Their activation by class-specific ligands 

elicits a cascade of intracellular signalling through adaptor molecules, resulting in increased 

cytokine production. Increased TLR activation has been associated with parturition in 

humans415 and murine models where administering TLR agonists to the uterine horn induces 

delivery416. As such, studies in mice have also demonstrated that inhibiting TLR4 signalling 

arrests preterm birth normally induced by endotoxin417, 418.  TLR signalling can be regulated 

by negative or positive feedback loops involving cytokines, transcription factors and 

epigenetic regulators, including miRs. MiRs are non-coding mRNAs that repress gene 

translation post-transcriptionally, and can therefore regulate different stages of TLR 

signalling. For example, let-7e targets and represses the TLR4 transcript to dampen TLR 

signal activation, while indirect regulators such as miR-155 repress SOCS1 and therefore 

increase cytokine signalling. Overall, the regulation of TLR signalling in the placenta 

remains poorly characterised. 
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Previous studies highlight the key role of miRs during placentation366, 370. Altered signatures 

of miR expression in the placenta and fetal membranes have been associated with poor 

pregnancy outcomes including preterm birth374, 377. Preterm placenta demonstrate increased 

pro-inflammatory419, 420 miR-210 and miR-223 expression in the amnion compared to 

term421. Additionally, pregnancies conceived by assisted reproductive technology that 

deliver preterm show increased placental TLR4 signalling and NF-κB activation, and 

decreased miR-146a expression compared to term placenta422. Notably, a majority of these 

studies on placental miR expression have only found associations between miRs and poor 

pregnancy outcomes, without characterising target genes directly. As such, the impact of 

differential miR expression on placental TLR signalling pathways remains poorly 

understood, particularly in association with preterm delivery. 

This study aimed to profile components of the TLR signalling cascade (both miRs and their 

mRNA targets) in term and preterm placenta. Due to previously reported impacts on 

inflammatory signalling, betamethasone exposure423, maternal smoking424, pre-eclampsia425 

and IUGR426 were also considered in this analysis. It was hypothesised that preterm placenta 

would show increased expression of pro-inflammatory genes associated with TLR signalling 

and decreased anti-inflammatory regulators compared to term placenta.  
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3.3. METHODS 

3.3.1. PARTICIPANTS & SAMPLE COLLECTION 

60 pregnant women presenting at the LMH and WCH, who delivered at term (≥ 37 weeks) 

or preterm (<37 weeks) gestation were recruited to this study. Clinical data were obtained 

from maternal and neonatal health records, including obstetric history and neonatal 

outcomes (see section 2.1). Following delivery, placenta were immediately collected and 

tissue was pooled from five cotyledons. 

3.3.2. WHOLE RNA EXTRACTION 

TRIzol® reagent was used to extract RNA from pooled placental tissue (see section 2.5.1). 

Briefly, three volumes of TRIzol were added to one volume of placenta and samples were 

mechanically homogenised. Lysates were separated by centrifugation with chloroform to 

retrieve the interphase for subsequent washing with isopropanol and ethanol. RNA was 

eluted in RNase free water and purified using a miRNeasy Mini Kit and DNAse I treatment 

as per manufacturers’ protocol. RINs were assessed using a bioanalyser, where a RIN≥ 5 

was considered sufficient for PCR analysis. 

3.3.3. qRT-PCR ANALYSIS OF miRNA EXPRESSION  

RNA (10ng) was reverse transcribed using a Taqman® MicroRNA Reverse Transcription 

Kit according to manufacturer’s protocol that was slightly modified for optimal cDNA 

output (see section 2.6.1). This involved pooling a maximum of five RT primers per batch in 

a single RT mixture. Reverse transcription targeted seven primer sequences: let-7e, miR-

155, miR-146a, miR-146b, miR-106a, RNU6B and RNU48. Relative miRNA expression was 

quantified using Taqman® MicroRNA Assays in 20µL reactions containing 1.33µL of 

cDNA. qRT-PCR utilised the comparative cycle threshold (2-ΔCT) method to determine miR 

abundance relative to the reference genes RNU48 and RNU6B. 

3.3.4. qRT-PCR ANALYSIS OF mRNA EXPRESSION 

Purified RNA (100ng) was reverse transcribed using a SuperScript™ III First-Strand 

Synthesis Kit for qRT-PCR according to manufacturer’s protocol (see section 2.6.2). qRT-
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PCR was used to quantify the relative expression of miR targets including TLR2, TLR3, 

TLR4, MyD88, IRAK1, TRAF6, NF-κB1, IL6, IL10 and SOCS1 relative to the housekeeping 

gene, β-actin. qRT-PCR was performed using TaqMan® Gene Expression Assays and each 

20µL reaction contained 2μL of the cDNA template.  

3.3.5. STATISTICAL ANALYSES 

Data were analysed using SPSS v24. Demographic and clinical data are presented as mean ± 

SD, unless otherwise indicated. Frequency data were analysed using Chi-squared tests. T-

tests and Mann-Whitney U tests were used to compare continuous data according to 

gestational age groups. Gene expression data are presented as median (25th-75th centile), 

unless otherwise indicated. Data were logarithmically transformed (log10) for subsequent 

parametric analysis. ANCOVAs or MANCOVAs were used to analyse qPCR data, with pre-

eclampsia, labouring delivery, neonatal sex, maternal smoking during pregnancy, 

birthweight centile, chorioamnionitis and antenatal betamethasone exposure used as 

covariates. Post-hoc comparisons were made using t-tests where appropriate, with an a 

priori Bonferroni correction made to the critical alpha level. Spearman’s correlations were 

used to assess the relationship between matched sample expression of miR and mRNA data. 

An alpha level of 0.05 was considered statistically significant. 
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3.4. RESULTS 

3.4.1. PARTICIPANT CHARACTERISTICS 

Clinical and demographic characteristics of the term (n=38) and preterm (n=22) deliveries 

included in this analysis are shown in Table 3.1. Maternal age, BMI, ethnicity, gravidity, 

parity, cigarette smoking during pregnancy, mode of delivery and the incidence of multiple 

pregnancy were not significantly different between preterm and term deliveries. The 

incidence of pre-eclampsia was more frequently associated with preterm (36%) than term 

delivery (5%; χ2(1)=9.703, p=0.002). Preterm deliveries had a lower gestational age than 

term neonates (t(58)=12.636, p<0.001) and were more frequently exposed to antenatal 

betamethasone compared to term neonates (58% vs 8%, respectively; χ2(1)=18.675, 

p<0.001). Birthweight was lower in preterm compared to term neonates (t(58)=7.060, 

p<0.001), but birthweight centile, and incidence of SGA and IUGR was comparable 

between the groups. Birth length and head circumference were lower in preterm compared to 

term neonates (t(29.631)=6.901, p<0.001; and t(31.519)=6.578, p<0.001, respectively). 

Preterm neonates had lower APGAR scores at 1 (U=273, p=0.009) and 5 minutes compared 

to term neonates (U=245, p<0.001). Placental weight was lower in preterm compared to 

term deliveries (t(55)=2.637, p=0.013).  
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Table 3.1. Maternal demographic and neonatal characteristics for preterm and term 

deliveries of placenta analysed in Chapter 3. Values are given as mean± SD or n (%), 

unless otherwise indicated. P-values were calculated using Chi-square tests, t-tests or Mann-

Whitney U tests, p≤ 0.05. 

 Term Preterm p value 

n=38 n=22 

Gestational age (completed weeks), median 

(min-max) 
39 (37-41) 35 (30-36) <0.001 

Maternal demographics: 

           Age, years 

           BMI, kg/m2 

           Gravidity, median (min-max) 

           Parity, median (min-max) 

           Smoking during pregnancy 

           Ethnicity: 

                          Caucasian 

                          Indigenous 

                          Other 

 

31±4 

31±8 

3 (1-9) 

1 (0-5) 

9 (24) 

 

30 (79) 

2 (5) 

6 (16) 

 

 

29±5 

29±8 

2 (1-9) 

1 (0-5) 

4 (18) 

 

11 (50) 

2 (9) 

9 (41) 

 

 

0.356 

0.287 

0.183 

0.157 

0.618 

 

 

0.291 

 

Maternal complications: 

 Pre-eclampsia 

 

2 (5) 

 

8 (36) 

 

0.002 

Multiple pregnancy 1 (3) 2 (9) 0.269 

Labouring delivery 

Mode of delivery: 

 Emergency Caesarean section  

 Elective Caesarean section  

 Vaginal delivery 

11 (29) 

 

3 (8) 

26 (68) 

9 (24) 

10 (46) 

 

4 (18) 

9 (41) 

9 (41) 

0.196 

 

 

0.108 

Placenta: 

 Weight, g 

 Histological chorioamnionitis 

 

689 ±184 

0 (0) 

 

547 ±209 

1 (5) 

 

0.007 

0.185 

Neonatal characteristics: 

Male 

Birthweight, g 

Birth centile, % 

SGA 

IUGR 

Birth length, cm 

Head circumference, cm 

 

 

20 (53) 

3563 ±592 

52 ±32 

7 (18) 

3 (8) 

50 ±2 

35 ±1 

 

9 (41) 

2374 ±689 

41 ±38 

8 (36) 

5 (23) 

44 ±3 

32 ±2 

 

0.381 

<0.001 

0.195 

0.122 

0.103 

<0.001 

<0.001 

Antenatal Betamethasone 3 (8) 13 (58) <0.001 

APGARS, median (min-max): 

           1 min 

           5 min 

 

 

9 (5-9) 

9 (9-10) 

 

8 (2-9) 

9 (6-9) 

 

0.009 

<0.001 



 

_____________________________________________________________________________ 
Chapter Three: 

The Expression of Genes Associated with TLR signalling in the Placenta 

  Page 108 

3.4.2. THE EXPRESSION OF HOUSEKEEPING GENES 

Two snoRNAs (RNU48 and RNU6B) were identified from the literature as candidate 

housekeeping genes242, 386. Both snoRNAs were expressed in placenta. RNU48 was more 

consistently expressed in placenta (median CT 28.6 (IQR=27-30)) compared to RNU6B (CT 

32.5 (IQR=31-34)). As RNU48 was less variable than RNU6B and did not differ between 

gestational age groups, it was deemed the most appropriate housekeeping gene for this 

study.  

3.4.3. THE EXPRESSION OF GENES INVOLVED IN TLR SIGNALLING 

IN THE PLACENTA  

There was no difference in the expression of miRs (let-7e, miR-155, miR-146a, miR-146b or 

miR-106a) or mRNAs associated with TLR signalling (TLR2, TLR4, MyD88, IRAK1, NF-

κB1, SOCS1, IL6 or IL10) between term and preterm placenta, when adjusting for the 

covariates pre-eclampsia, birthweight centile, neonatal sex, labouring delivery, maternal 

smoking, chorioamnionitis and antenatal betamethasone (Fig. 3.1-5).  

Only 57% of term placentas and 73% of preterm placentas expressed detectable levels of 

TLR3 mRNA. The expression of TRAF6 was not detected in the placenta (Table 3.2). 

 

Fig. 3.1. Placental let-7e and TLR4 expression following term and preterm delivery. 

Placental expression of let-7e relative to RNU48 (A), and TLR4 expression relative to β-

actin (B), following term and preterm delivery. Note: y-axes are presented on a logarithmic 

scale.  



 

_____________________________________________________________________________ 
Chapter Three: 

The Expression of Genes Associated with TLR signalling in the Placenta 

  Page 109 

 

Fig. 3.2. Placental miR-155, MyD88 and SOCS1 expression following term and preterm 

delivery. Placental expression of miR-155 relative to RNU48 (A), and MyD88 (B) and 

SOCS1 expression relative to β-actin (C), following term and preterm delivery. Note: y-axes 

are presented on a logarithmic scale.  

 

Fig. 3.3. Placental miR-146a, miR-146b and IRAK1 expression following term and 

preterm delivery. Placental expression of miR-146a (A) and mir-146b (B) relative to 

RNU48, and IRAK1 expression relative to β-actin (C), following term and preterm delivery. 

Note: y-axes are presented on a logarithmic scale.  

 

Fig. 3.4. Placental miR-106a and IL10 expression following term and preterm delivery. 

Placental expression of miR-106a relative to RNU48 (A), and IL10 expression relative to β-

actin (B), following term and preterm delivery. Note: y-axes are presented on a logarithmic 

scale.  
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Fig. 3.5. Placental TLR2, NF-κB1 and IL6 expression following term and preterm 

delivery. Placental expression of TLR2 (A), NF-κB1 (B) and IL6 (C) relative to β-actin, 

following term and preterm delivery. Note: y-axes are presented on a logarithmic scale.  

Table 3.2. The frequency of expression for genes associated with TLR signalling in term 

and preterm placenta. The frequency of expression of genes (mRNA) in term and preterm 

placenta. Data are expressed as the frequency (n, %), p≤ 0.05. 

mRNA Term placenta with 

positive expression 

n=21 

Preterm placenta 

with positive 

expression 

n=15 

p  

TLR2 21 (100%) 14 (93%) 0.456 

TLR3 12 (57%) 11 (73%) 0.402 

TLR4 21 (100%) 15 (100%) 0.422 

MyD88 21 (100%) 14 (93%) 0.420 

IRAK1 21 (100%) 14 (93%) 0.420 

TRAF6 0 (0%) 0 (0%) - 

NF-κB1 21 (100%) 15 (100%) 0.422 

IL10 18 (86%) 13 (87%) 0.450 

IL6 21 (100%) 14 (93%) 0.420 

SOCS1 21 (100%) 15 (100%) 0.422 
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Within our statistical model, the contribution of maternal smoking was identified as having a 

significant, independent effect on let-7e expression. Post-hoc analyses showed that maternal 

smoking was associated with decreased placental let-7e expression (p=0.017), but there was 

no associated change in the expression of its target, TLR4 (Fig.3.6). Maternal smoking was 

also associated with increased placental TLR2 (p=0.033), MyD88 (p<0.001), IRAK1 

(p<0.001), NF-κB1 (p=0.001), SOCS1 (p<0.001), IL6 (p=0.014) and IL10 expression 

(p=0.043; Fig.3.7). There was no effect of maternal smoking on the expression of any other 

miRs examined. 

 

Fig. 3.6. Placental let-7e and TLR4 expression according to maternal smoking during 

pregnancy. Placental expression of let-7e relative to RNU48 (A), and TLR4 expression 

relative to β-actin (B) in mothers who smoked and mothers who did not smoke cigarettes 

during pregnancy. Note: y-axis presented on a logarithmic scale, *p<0.05.  
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Fig. 3.7. The expression of genes associated with TLR signalling in the placenta according to maternal smoking during pregnancy. The 

expression of TLR2 (A), MyD88 (B), IRAK1 (C), NF-κB1 (D), SOCS1 (E), IL6 (F) and IL10 (G) relative to β-actin in placenta from mothers who 

smoked and mothers who did not smoke during pregnancy, independently of gestational age. Note: the y-axes are presented on a logarithmic 

scale, *p<0.05.  
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3.4.4. THE CORRELATION BETWEEN PLACENTAL miR AND TARGET 

mRNA EXPRESSION  

Placental miR-155 and SOCS1 expression were positively correlated (ρ=0.377, p=0.028). 

When data were split by gestational age, the correlation was significant in term (ρ=0.535, 

p=0.015), but not preterm placenta (Fig. 3.8).  

 

Fig. 3.8. A scatterplot of SOCS1 and miR-155 expression in term and preterm placenta. 

The relative expression of miR-155 correlated with its target, SOCS1 in preterm and term 

placenta. Note: y-axis presented on a logarithmic scale, *p<0.05. 

Placental miR-146a and IRAK1 expression were positively correlated (ρ=0.37, p=0.031). 

When data were split by gestational age, the correlation was significant in term (ρ=0.584, 

p=0.005) but not preterm placenta (Fig 3.9).  

Placental let-7e, miR-146b and miR-106a were not correlated with the expression of their 

targets TLR4, IRAK1 or TRAF6, or IL10, irrespective of the gestational age groups.   
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Fig 3.9. A scatterplot of IRAK1 and miR-146a expression in term and preterm placenta. 

The relative expression of miR-146a correlated with its target IRAK1, in preterm and term 

placenta. Note: y-axes are presented on a logarithmic scale, *p<0.05.  
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3.5. DISCUSSION 

This study sought to characterise the expression of miRs that regulate the TLR signalling 

cascade and their targets in term and preterm placenta. No difference in miR or mRNA 

expression was observed between term and preterm placenta. Correlational relationships 

between miR and target mRNA expression were identified more frequently in term 

compared to preterm placenta. The presence of these relationships begins to suggest the 

post-translational regulation of mRNAs by miRs may be more mature in term compared to 

preterm placenta. Additionally, maternal smoking was associated with decreased regulatory 

let-7e and increased TLR2, MyD88, IRAK1, NF-κB1, SOCS1, IL6 and IL10 expression 

independently of gestational age, suggesting a pro-inflammatory placental phenotype. 

The current study assessed gene expression using homogenised term and preterm placenta. 

A homogenous cell population was used to provide a more accurate reflection of in utero 

conditions, as others have shown cytotrophoblasts from first trimester placenta express 

TLR2 and TLR4, while syncytiotrophoblasts do not427. Similarly, our analysis of 

homogenised tissue found no difference between term and preterm placental expression of 

TLR2, TLR4 or TLR4’s regulator, let-7e at birth. These findings are in line with previous 

studies that have shown second428 and third trimester placental trophoblasts express 

comparable TLR1-10 mRNA429. These authors have also shown that following TLR 

stimulation, third trimester trophoblasts from preterm placenta expressed decreased IL6 and 

TNFα expression compared to term429. They therefore postulated that differences in term 

and preterm placental immunity may be due to post-transcriptional regulation, which is 

supported by our correlational analyses. 

Relationships between miRs and their targets provide preliminary insights into active 

inflammatory regulation. As such, we found a positive correlation between miR-146a and 

IRAK1 in term, but not preterm placenta. miR-146a typically downregulates MyD88-

dependent signalling through targeting IRAK1 and TRAF6 in trophoblast cell lines, 

ultimately decreasing IL6 and IL10 production422. This also supports other authors’ 

observations that preterm trophoblast cytokine expression is decreased compared to term 

trophoblasts429. Overall, these findings suggest that during inflammation, the preterm 

placenta has diminished regulatory capacity on inflammatory gene expression. Inflammatory 
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regulation is, however, a complex process that involves networks of gene signalling and 

therefore these findings should be interpreted with caution. Ultimately, the relationship 

between these placental miRs and their targets needs to be confirmed using tissue explant 

stimulation, knockdown cell-lines or luciferase assays.  

Term placenta also showed a positive correlation between miR-155 and its target SOCS1, 

while preterm placenta did not. This again suggests immune-regulatory relationships may be 

immature in the preterm placenta or that other genes play a more important role in regulating 

SOCS1 expression. miR-155 is associated with increased cytokine signalling through the 

repression of its target, SOCS1341. Early TLR signalling is typically associated with 

decreased let-7e to allow for the upregulation of TLR4. As inflammation proceeds, miR-155 

is then upregulated to repress SOCS1, indirectly increasing cytokine signalling341. Later 

during inflammation, IL10 increases to form a negative feedback loop and dampen the 

immune response, which includes the targeted suppression of miR-155337 to restore SOCS1 

expression and decrease cytokine signalling. While TLR signalling is poorly characterised in 

studies on placental tissue, it has been demonstrated that placental SOCS1 expression 

exceeds that of the spleen430. It is therefore postulated that placental expression of SOCS1 is 

integral to maintaining a tolerogenic state in utero. As our analysis preliminarily shows no 

association between miRs and their targets in the preterm placenta, this could indicate a 

predisposition towards IUI.  

Maternal smoking during pregnancy impairs cytotrophoblast development431 and is also 

associated with increased oxidative stress432 and inflammation413. Smoking therefore has the 

potential to affect immunomodulation at the feto-maternal interface. The present study 

shows that maternal smoking was associated with decreased let-7e expression and increased 

expression of TLR2, MyD88, IRAK1, NF-κB1, SOCS1, IL6 and IL10. This increase in 

inflammatory signalling molecules alongside decreased (let-7e) or unchanged regulatory 

miR expression (miR-155, miR-146a and miR-106a) suggests smoking alters the 

inflammatory profile of the placenta. These findings could indicate perturbed immune 

regulation in association with maternal smoking, which supports other studies’ evidence of a 

pro-inflammatory in utero environment driven by increased ROS production and cellular 

apoptosis154, 433. In a sample of term placentae, Maccani et al. found an association between 

maternal smoking and decreased miR-146a expression, but did not confirm the expression of 

its target, IRAK1434. Conversely, our data did not observe any association between smoking 
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and placental miR-146a expression, but confirmed an increase in IRAK1 expression. 

Maternal smoking during pregnancy is also a risk factor for preterm birth435, which is 

commonly associated with premature inflammatory activation in utero436. While we could 

not determine a direct interaction between gestational age and maternal smoking, increased 

inflammatory gene expression in conjunction with increased anti-inflammatory IL10 and 

SOCS1 expression in our sample could be evidence of the placenta attempting to restore the 

tolerogenic cytokine balance in utero. Ultimately this requires further investigation using a 

larger sample size recruited with maternal smoking as a primary outcome, though it remains 

evident maternal smoking is associated with altered inflammatory gene expression.  

Glucocorticoids are immunosuppressive and have been shown to decrease placental 

cytokine expression in vitro437. However, the same authors found no difference in placental 

explants’ baseline cytokine production between asthmatic mothers who did and did not use 

inhaled glucocorticoids438. Similarly, our sample did not find any difference in placental 

inflammatory gene expression according to antenatal glucocorticoid exposure. We also 

observed no change in the expression of these genes in association with pre-eclampsia or 

chorioamnionitis, which have previously been associated with the differential miR 

expression in the context of microarrays374, 376. Although these conditions are typically 

associated with inflammation, it is likely we did not observe any effect because these 

exposures co-occur within our sample. Further studies are therefore required to separate 

their independent effects.  

Interestingly, we found no difference in the expression of the genes measured according to 

neonatal sex. Previous studies have identified sex-specific expression of both the placental 

glucocorticoid receptor439 and cytokines437. Notably, these studies were conducted using 

asthmatic mothers, which indicates that the fetus responds differently to an inflammatory in 

utero environment depending on its sex. Others have confirmed that trophoblasts from 

pregnancies carrying a male fetus increased pro-inflammatory and decreased anti-

inflammatory cytokine production in response to LPS in vitro440. The authors postulated this 

response could be a mechanism for the increased incidence of males being born preterm441. 

Our results, however, do not indicate any significant interaction between fetal sex and 

unstimulated gene expression in homogenised placental tissue samples, irrespective of 

gestational age. A different cohort may therefore be necessary to investigate sex-differences 

in placental TLR signalling.  
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A major strength of the current study is that it is the first to use qPCR to assess miR 

expression and the expression of previously validated targets in the preterm and term 

placenta. Although our findings are limited by a lack of functional studies, they have 

indicated associations between miRs and their targets in term but not preterm placental 

tissue. These data are important as they suggest different modes of TLR regulation across 

gestational age. While previous studies have looked at differential miR expression during 

pathological pregnancies, they present variable results that may be due to differences in 

experimental protocol. For example, miR-20a and miR-17 were be upregulated in pre-

eclamptic placentas when analysed using qPCR, but the same study observed no change in 

their expression when they used microarray methods442. This supports the idea that 

microarray analyses should be used as explorative tools and reinforced by subsequent qPCR, 

experimental animal or cell line models once targets are identified.   

Although preterm delivery is frequently associated with pathological inflammation, our data 

have shown that preterm placenta shows similar constitutive expression of genes associated 

with TLR signalling compared to the term placenta. Notably, we found term placenta 

showed significant correlations between miRs and their mRNA targets, while preterm did 

not. In addition to this, maternal smoking, as a risk factor for preterm birth itself, was 

associated with increased inflammatory gene expression. Overall, the potential lack of a 

relationship between miR regulators and their targets found in the preterm placenta could 

suggest an inability to regulate inflammation on immune challenge, though this requires 

further investigation.  



 

 

 

 

 

 

Chapter 4:  

The Expression of Genes Associated with TLR-signalling in Preterm Cord 

Blood  

  



Chapter 4:  

The Expression of Genes Associated with TLR-signalling in Preterm Cord Blood Page 120 

4.1. ABSTRACT 

Background 

Preterm delivery accounts for 75% of neonatal deaths, half of which are related to 

inflammatory conditions. Studies on preterm neonates demonstrate decreased expression of 

Toll-like Receptors (TLRs) and pro-inflammatory cytokines, which does not explain their 

susceptibility to developing these morbidities. This study aimed to characterise the 

expression of genes associated with TLR signalling, including microRNAs (miRs), 

according to gestational age at delivery.  

Methods and Results 

Term and preterm cord blood was collected at delivery. miR and mRNA expression was 

quantified using qPCR. Cord blood serum cytokine expression was analysed using ELISA. 

let-7e and miR-155 expression was decreased in early preterm compared to late preterm and 

term cord blood (p=0.046 and p=0.018, respectively). There was no difference in the 

expression of genes associated with TLR signalling (mRNAs) or cytokines between early 

and late preterm, and term cord blood. However, maternal smoking was associated with 

decreased miR-146b and increased TLR2, TLR4, MyD88, IRAK1, NF-κB1, SOCS1, IL6 and 

IL10 expression (all p<0.05). 

Conclusion 

These findings suggest early preterm neonates have reduced immuno-regulatory capacity, as 

influenced by attenuated miR expression. Further, maternal smoking was associated with 

decreased expression of regulatory miR-146b and increased expression of inflammatory 

TLR-signalling genes. This may predispose neonates to upregulated inflammatory pathways 

at birth. Overall, the decreased constitutive expression of regulatory miRs by preterm cord 

blood may contribute to altered innate immune function in early preterm neonates. 
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4.2. INTRODUCTION 

Preterm birth is associated with an increased risk of neonatal morbidity. A majority of these 

conditions are characterised by aberrant inflammation, including NEC100, CLD222 and 

neonatal sepsis443. This suggests preterm neonates are unable to localise or appropriately 

regulate inflammatory signalling. Previous studies have found decreased numbers of 

leukocytes284 and shown decreased opsonophagocytic capacity in preterm compared to term 

blood82. Though these findings suggest preterm neonates are immunosuppressed, others 

have also demonstrated increased phagocytic capacity in preterm compared to term blood 

following exposure to whole bacteria in vitro284, 285. Nonetheless, previous literature 

supports there are definite differences in preterm immune system function compared to term 

infants.  

TLRs are ubiquitously expressed innate immune receptors that activate pro-inflammatory 

signalling. When TLRs are ligated by different classes of pathogen-associated molecular 

patterns, they signal through adaptor molecules including MyD88, TRAF6 and IRAK1. This 

leads to the translocation of transcription factors, such as NF-κB, into the nucleus to induce 

pro-inflammatory cytokine transcription. MiRs are post-transcriptional regulators of the 

TLR signalling that can repress the translation of TLRs, signalling molecules, cytokines and 

transcription factors. For example, let-7e interacts with the TLR4 mRNA 3’UTR during LPS 

stimulation, resulting in the down-regulation of TLR activity341. Neonatal mice increase 

miR-146a/b expression in the gut to down-regulate excessive and damaging inflammatory 

responses to harmless commensal bacteria347. This occurs because the miR146 family 

downregulates TLR signalling through repressing IRAK1 and TRAF6323, 444. Additionally, 

human cord blood constitutively expresses increased miR-146a and miR-146b compared to 

adult blood242, 445, suggesting the neonatal immune system maintains a tolerogenic state ex 

utero. Other miRs regulate inflammation by repressing inhibitory molecules. An example is 

miR-155, which is increased with NF-κB induction, and binds to the 3’ UTR of Suppressor 

of Cytokine Signalling-1 (SOCS1) gene transcript to indirectly upregulate inflammation341. 

Despite evidence of altered inflammatory regulation relative to adults, miR expression 

remains sparsely characterised in neonatal immunity.  

Cord blood provides a snapshot of the state of immune system at birth. Investigating the 

TLR signalling pathway in cord blood therefore offers valuable insight into neonatal 
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immunity. Existing studies on preterm cord blood have yielded inconsistent results on the 

constitutive expression of TLRs, signalling co-factors and inflammatory cytokines48, 82, 288. 

Some have shown that TLR4 mRNA is comparable between term and preterm cord blood82, 

86, while others show that both protein and mRNA are decreased in preterm cord blood288, 

302. The discrepancy between data examining mRNA and protein expression could therefore 

be related to post-transcriptional regulation.  

This study aims to examine the expression of miRs that regulate TLR signalling and their 

mRNA targets in term and preterm cord blood. Cytokine production was also characterised 

in cord blood serum from these deliveries to determine post-translational differences in 

inflammatory gene expression. It was hypothesised that preterm cord blood would show 

decreased anti-inflammatory miRs and increased inflammatory gene expression compared to 

term neonates at birth.  
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4.3.  METHODS 

4.3.1. PARTICIPANTS & SAMPLE COLLECTION 

Pregnant women presenting at the LMH and WCH (n=152), who delivered at early preterm 

(<32 weeks), late preterm (32-36 weeks) or term gestation (≥ 37 weeks) were recruited to 

this study. Clinical data were obtained from maternal and neonatal health records, including 

obstetric history and neonatal outcomes (see section 2.1). Cord blood was collected into 

lithium heparin vials at delivery and stored at -80°C for subsequent analysis.  

4.3.2. WHOLE RNA EXTRACTION 

TRIzol LS® reagent was used to extract RNA from cord blood (see section 2.5.2). Briefly, 

three volumes of TRIzol LS were added to one volume of cord blood and samples were 

mechanically agitated. Lysates were separated by centrifugation with chloroform to retrieve 

the interphase for subsequent washing with isopropanol and ethanol. RNA was eluted in 

RNase free water and purified using a miRNeasy Mini Kit and DNAse I treatment as per 

manufacturers’ protocol. RINs were assessed using a bioanalyser, where a RIN≥ 9 was 

considered sufficient for PCR analysis. 

4.3.3. qRT-PCR ANALYSIS OF miRNA EXPRESSION  

RNA (10ng) was reverse transcribed using a Taqman® MicroRNA Reverse Transcription 

Kit according to manufacturer’s protocol that was slightly modified for optimal cDNA 

output (see section 2.6.1). This involved pooling a maximum of five RT primers per batch in 

a single RT mixture. Reverse transcription targeted seven primer sequences: let-7e, miR-

155, miR-146a, miR-146b, miR-106a, RNU6B and RNU48. Relative miRNA expression was 

quantified using Taqman® MicroRNA Assays in 20µL reactions containing 1.33µL of 

cDNA. qRT-PCR utilised the comparative cycle threshold (2-ΔCT) method to determine miR 

abundance relative to the reference genes, RNU6B and RNU48. 

4.3.4. qRT-PCR ANALYSIS OF mRNA EXPRESSION 

Purified RNA (50ng) was reverse transcribed using a SuperScript™ III First-Strand 

Synthesis Kit for qRT-PCR according to manufacturer’s protocol (see section 2.6.2). qRT-

PCR was used to quantify the relative expression of miR targets including TLR2, TLR3, 
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TLR4, MyD88, IRAK1, TRAF6, NF-κB1, IL6, IL10 and SOCS1 relative to the endogenous 

house-keeping gene, β-actin. qRT-PCR was performed using TaqMan® Gene Expression 

Assays and each 20µL reaction contained 2μL of the cDNA template.  

4.3.5. CORD BLOOD SERUM PROTEIN ANALYSES 

Single-target ELISAs were used to measure TNFα, IL6 and IL8 (Human Duo Sets, R&D 

Systems) in cord blood serum, as per manufacturer’s instructions (see section 2.4.1). The 

lower detection limit for TNFα was 15.625pg/mL, and the lower detection limit for both IL6 

and IL8 was 31.25pg/mL. All inter-assay and intra-assay coefficients were below 10%. 

Multi-panel ELISA was used to determine the concentration of 7 cytokines and chemokines 

in cord blood serum according to manufacturer’s instructions (see section 2.4.2). These 

included GM-CSF, IL1α, IL1β, IL1RA, IL10, IL12p70 and MCP1. The limitations and 

sensitivities of these analytes are listed in Table 2.1.  

4.3.6. STATISTICAL ANALYSES 

Data were analysed using SPSS v24. Demographic and clinical data are presented as mean ± 

SD, unless otherwise indicated. Frequency data were analysed using Chi-squared tests. 

Kruskal-Wallis tests or ANOVAs were used to compare continuous data according to 

gestational age groups. Post-hoc analyses of this data were conducted using Mann-Whitney 

U tests or t-tests as required. Gene expression and cytokine data are presented as median 

(25th-75th centile), unless otherwise indicated, and were logarithmically transformed (log10) 

to normalise data for parametric analysis. ANCOVAs or MANCOVAs were used to analyse 

qPCR and ELISA data, with pre-eclampsia, labouring delivery, maternal smoking during 

pregnancy and birthweight centile used as covariates for term and preterm cord blood 

analyses; and chorioamnionitis and antenatal betamethasone were used as additional 

covariates where separate preterm cord blood analyses were conducted. Post-hoc 

comparisons were made using t-tests where appropriate. An a priori Bonferroni correction 

was made to the critical alpha level for post-hoc comparisons. Spearman’s correlations were 

used to assess the relationship between matched sample expression of miR and mRNA data. 

An alpha level of 0.05 was considered statistically significant.   
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4.4. RESULTS 

4.4.1. PARTICIPANT CHARACTERISTICS 

Clinical characteristics from term (n=78), late preterm (n=54) and early preterm (n=20) 

deliveries are shown in Table 4.1. Gestational age was significantly different between the 

groups (F(2,151)=574.028, p<0.001). Maternal age, BMI, cigarette smoking during 

pregnancy, gravidity and ethnicity were not significantly different according to these 

gestational age groups. Parity was significantly different between the gestational age groups 

(χ2(2)=10.104, p=0.006), with post-hoc tests indicating that it was lower in mothers who 

delivered late preterm compared to term (p=0.006). Pre-eclampsia was more frequently 

observed in late (17%) and early preterm deliveries (35%) compared to term (8%; 

χ2(2)=11.845, p=0.003). Multiple pregnancies delivered more frequently at early (15%) or 

late preterm (11%) than term gestation (3%; χ2(2)=7.133, p=0.028). Mode of delivery was 

significantly different between the groups (χ2(3)=23.624, p<0.001): emergency Caesarean 

sections were more frequent in early preterm (40%) and late preterm (31%) compared to 

term deliveries (9%); while term deliveries (64%) were more frequently delivered via 

elective Caesarean section compared to early (50%) and late preterm deliveries (30%; 

χ2(4)=23.624, p<0.001). Labour was more frequently associated with late preterm delivery 

(56%) compared to early preterm (25%) or term delivery (31%; χ2(2)=9.360, p=0.009). 

Early preterm neonates (85%) were exposed to antenatal betamethasone more frequently 

than late preterm (57%) and term neonates (10%; χ2(2)=54.994, p<0.001). Birthweight was 

significantly different between the gestational age groups (F(2,150)=136.03, p<0.001). Post-

hoc tests showed that it was lower in early compared to late preterm (p<0.001), early 

preterm compared to term (p<0.001), and late preterm compared to term neonates (p<0.001). 

Birthweight centile was significantly different between the groups (F(2,150)=9.335, 

p<0.001). Post-hoc analyses showed it was lower in early preterm compared to term 

(p<0.001) and in late preterm compared to term neonates (p=0.007). The incidence of SGA 

and IUGR were more frequent in early preterm compared to late preterm and term neonates 

(χ2(2)=14.962, p=0.001; and χ2(2)=22.872, p<0.001, respectively). Birth length was 

significantly different between the groups (F(2,143)=139.922, p<0.001) and post-hoc 

analyses revealed that it was lower in early compared to late preterm, early preterm 

compared to term and late preterm compared to term neonates (all p<0.001). Head 
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circumference was significantly different between the groups (F(2,143)=36.912, p<0.001) 

and post-hoc analyses showed it was lower in early compared to late preterm (p=0.001), 

early preterm compared to term (p<0.001) and late preterm compared to term neonates 

(p=0.001). APGARS at one minute were significantly different between the groups 

(χ2(2)=20.160, p<0.001) and post-hoc analyses showed they were lower in early compared 

to late preterm (p=0.01), early preterm compared to term (p<0.001) and late preterm 

compared to term neonates (p=0.016). APGARS at five minutes were significantly different 

between the groups (χ2(2)=27.808, p<0.001) and post-hoc analyses showed they were lower 

in early compared to late preterm (p=0.005), early preterm compared to term (p<0.001) and 

late preterm compared to term neonates (p=0.002).  

Placental weight was significantly different between the gestational age groups 

(F(2,137)=58.135, p<0.001) and post-hoc analyses showed it was lower in early compared 

to late preterm, early preterm compared to term and late preterm compared to term neonates 

(all p<0.001). The incidence of chorioamnionitis was more frequent in early and late 

preterm deliveries compared to term (10% vs 6% and 0%, respectively; χ2(2)=22.872, 

p<0.001).  
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Table 4.1. Maternal demographics and neonatal characteristics of term, late and early 

preterm deliveries for cord blood analysed in Chapter 4. Values are given as mean± SD or 

n (%), unless otherwise indicated. p-values presented in the table were calculated using 

ANOVAs or Kruskal-Wallis tests. Post-hoc tests were conducted using t-tests or Mann-

Whitney U tests and are represented within each gestational age group column using the 

following symbols: *p≤ 0.05 compared to both other groups; #p≤ 0.05 compared to term. 

 Term Late 

Preterm 

Early 

Preterm 

p 

value 

n=78 n=54 n= 20 

Gestational age (completed weeks), 

median (min-max) 
39 (37-41)* 35 (33-36)* 29 (25-32) <0.001 

Maternal demographics: 

Age, years 

BMI, kg/m2 

Gravidity, median (min-max) 

Parity, median (min-max) 

Smoking during pregnancy 

Ethnicity: 

Caucasian 

Indigenous 

Other 

 

30 ±5 

31 ±8 

3 (1-10) 

1 (0-5) 

17 (22) 

 

57 (73) 

3 (4) 

18 (23) 

 

28 ±6 

28 ±7 

2 (1-9) 

0 (0-6)# 

10 (19) 

 

30 (56) 

4 (7) 

20 (37) 

 

30 ±5 

27 ±7 

3 (1-7) 

1(0-4) 

3 (15) 

 

11 (55) 

2 (10) 

7 (35) 

 

0.717 

0.174 

0.089 

0.006 

0.818 

 

 

0.189 

Maternal complications: 

 Pre-eclampsia 

 

6 (8) 

 

9 (17) 

 

7 (35) 

 

0.003 

Multiple pregnancy 

 
2 (3) 6 (11) 3 (15) 0.033 

Labouring delivery 

Mode of delivery: 

 Emergency Caesarean section  

 Elective Caesarean section  

 Vaginal delivery 

24 (31) 

 

7 (9) 

50 (64) 

21 (27) 

30 (56) 

 

17 (31) 

16 (30) 

21 (39) 

5 (25) 

 

8 (40) 

10 (50) 

2 (10) 

0.009 

 

 

<0.001 

Placental 

 Weight, g 

 Histological chorioamnionitis 

 

 

681 ±162* 

0 (0) 

 

531 ±176* 

3 (6) 

 

245±89 

2 (10) 

 

<0.001 

<0.001 

Neonatal characteristics: 

Male 

Birthweight, g 

Birth centile, % 

SGA 

IUGR 

Birth length, cm 

Head circumference, cm 

 

 

40 (51) 

3497 ±609* 

54 ±33 

11 (14) 

3 (4) 

49.5 ±2.3* 

35.3 ±2.6* 

 

21 (39) 

2470 ±653* 

43 ±34 

14 (26) 

10 (19) 

44.9 ±3.7* 

32.5 ±2.1* 

 

11 (55) 

1119±440 

20±25* 

11 (55) 

9 (45) 

33.7±6.9 

29.1±5.7 

 

0.380 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

Antenatal Betamethasone 

 
8 (10) 31 (57) 17 (85) <0.001 

APGARS, median (min-max): 

           1 min 

           5 min 

 

9 (2-10)* 

9 (7-10)* 

 

8 (3-9)* 

9 (6-10)* 

 

6 (2-9) 

7 (5-9) 

 

<0.001 

<0.001 
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4.4.2. CORD BLOOD GENE EXPRESSION 

Due to limitations in available volumes of cord blood, gene expression analyses were 

conducted in a subset of samples (n=53 term, n=32 late preterm and n=7 early preterm). 

The low frequency of chorioamnionitis meant that its independent contribution to gene 

expression could not be analysed, however expression data for neonates exposed to 

chorioamnionitis were within the IQRs for their respective gestational age groups. 

Chorioamnionitis remained in the final analysis as a covariate when analysing preterm gene 

expression.  

4.4.3. THE EXPRESSION OF HOUSEKEEPING GENES 

Two snoRNAs (RNU48 and RNU6B) were identified from the literature as candidate 

reference genes242, 386. Both snoRNAs were expressed in cord blood. RNU48 was expressed 

more consistently (median CT 27.5 (IQR=27-28)) compared to RNU6B (median CT 31.6 

(IQR=30-34)). As RNU48 was less variable than RNU6B and did not differ between 

gestational age groups, it was deemed the most appropriate reference gene for miR 

characterisation in this study.  

4.4.4. THE EXPRESSION OF miRs THAT REGULATE TLR SIGNALLING 

IN CORD BLOOD  

Cord blood let-7e expression was significantly different between term, late preterm and 

early preterm deliveries after adjusting for labouring delivery, maternal smoking, pre-

eclampsia and birthweight centile (F(2,78)=3.200, p=0.046; Fig. 4.1A). Post-hoc analyses 

showed let-7e expression was increased in term compared to early preterm cord blood 

(p=0.021) and late preterm compared to early preterm cord blood (p=0.015), with no 

difference between late preterm and term cord blood expression.  

Cord blood miR-155 expression was significantly different between term, late preterm and 

early preterm deliveries (F(2,78)=4.225 p=0.018; Fig. 4.2A). Post-hoc analyses revealed 

miR-155 expression was increased in term compared to early preterm cord blood (p=0.005) 

and in late preterm compared to early preterm cord blood (p=0.022), with no difference 

between late preterm and term cord blood expression. 
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There was no significant difference between early preterm, late preterm and term cord blood 

expression of miR-146a (Fig.4.3A), miR-146b (Fig.4.3.B) or miR-106a (Fig. 4.4A). No 

significant independent contribution of antenatal betamethasone exposure or 

chorioamnionitis was observed in early or late preterm cord blood miR expression. 

Within the MANCOVA model, maternal smoking was identified as having a significant, 

independent effect on gene expression. This was assessed further using post-hoc ANOVAs, 

with gestational age groups and smoking status included as independent factors. We found 

no main effect between gestational age group and smoking, however, a significant main 

effect of smoking was found in association with increased miR-146b expression in cord 

blood from mothers who smoked during pregnancy (p=0.022; Fig.4.6A).  

4.4.5. THE EXPRESSION OF mRNAs INVOLVED IN TLR SIGNALLING IN 

CORD BLOOD  

The expression of mRNA associated with TLR signalling was assessed in a smaller subset 

of samples due to the low volumes of early preterm cord blood available. The analysis was 

split according to term (n=18) and preterm cord blood (a pooled group consisting of n=14 

late preterm and n=2 early preterm deliveries). Only 13% of preterm cord blood expressed 

detectable levels of TRAF6 and the expression of TLR3 was not detected in any cord blood 

(Table 4.2). 

There was no difference between term and preterm TLR2 (Fig.4.5A), TLR4 (Fig.4.1B), 

MyD88 (Fig.4.2B), IRAK1 (Fig.4.3C), NF-κB1 (Fig.4.5B), IL6 (Fig.4.5C), IL10 (Fig.4.4B) 

or SOCS1 (Fig.4.2C) expression in cord blood after adjusting for the effect of pre-eclampsia, 

antenatal betamethasone, birthweight centile, chorioamnionitis and labour.  
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Fig. 4.1. Cord blood let-7e and TLR4 expression following term and preterm delivery. 

Cord blood expression of let-7e relative to RNU48 (A), and TLR4 expression relative to β-

actin (B), following term and preterm delivery. Note: y-axes are presented on a logarithmic 

scale, *p<0.05. 

 

Fig. 4.2. Cord blood miR-155, MyD88 and SOCS1 expression following term and preterm 

delivery. Cord blood expression of miR-155 relative to RNU48 (A), and MyD88 (B) and 

SOCS1 (C) expression relative to β-actin, following term and preterm delivery. Note: y-axes 

are presented on a logarithmic scale, *p<0.05.  

 

Fig. 4.3. Cord blood miR-146a, miR-146b and IRAK1 expression following term and 

preterm delivery. Cord blood expression of miR-146a (A) and miR-146b (B) relative to 

RNU48, and IRAK 1 expression relative to β-actin (C), following term and preterm delivery. 

Note: y-axes are presented on a logarithmic scale.  
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Fig. 4.4. Cord blood miR-106a and IL10 expression following term and preterm delivery. 

Cord blood expression of miR-106a relative to RNU48 (A), and IL10 expression relative to 

β-actin (B), following term and preterm delivery. Note: y-axes are presented on a 

logarithmic scale.  

 

Fig.4.5. Cord blood TLR2, NF-κB1 and IL6 expression following term and preterm 

delivery. Cord blood expression of TLR2 (A), NF-κB1 (B) and IL6 (C) relative to β-actin, 

following term and preterm delivery. Note: y-axes are presented on a logarithmic scale.  
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Table 4.2. The frequency of expression of genes associated with TLR signalling in term 

and preterm cord blood. The frequency of detectable mRNA expression (n, %) in term and 

preterm cord blood. 

mRNA Term 

 n=18 

Preterm 

 n=16 

p  

TLR2 15 (83%) 14 (88%) 0.413 

TLR3 0 (0%) 0 (0%) - 

TLR4 17 (94%) 16 (100%) 0.375 

MyD88 16 (89%) 15 (94%) 0.419 

IRAK1 14 (78%) 15 (94%) 0.281 

TRAF6 0 (0%) 2 (13%) - 

NF-κB1 17 (94%) 15 (94%) 0.419 

IL10 8 (44%) 6 (38%) 0.343 

IL6 6 (33%) 8 (50%) 0.387 

SOCS1 17 (94%) 15 (94%) 0.420 

A post-hoc ANOVA was used to analyse the effect of gestational age group and maternal 

smoking on cord blood mRNA expression. This analysis showed no interaction between 

gestational age group and smoking. Maternal smoking was associated with increased cord 

blood TLR2 (p=0.010), TLR4 (p=0.007), MyD88 (p=0.010), IRAK1 (p=0.012), NF-κB1 

(p=0.038) and SOCS1 expression (p=0.006; Figs.4.6B and 4.7).  

 

Fig. 4.6. Cord blood miR-146b and IRAK1 expression according to maternal smoking 

during pregnancy. Placental expression of miR-146b relative to RNU48 (A) and IRAK1 

relative to β-actin (B), from mothers who smoked and mothers who did not smoke cigarettes 

during pregnancy. Note: the y-axes are presented on a logarithmic scale, *p<0.05.  



 

 

 
Fig 4.7. The expression of genes associated with TLR signalling in cord blood according to maternal smoking during pregnancy. The 

expression of TLR2 (A), TLR4 (B), MyD88 (C), NF-κB1 (D) and SOCS1 (E) relative to β-actin in cord blood from mothers who smoked and 

mothers who did not smoke during pregnancy. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 
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4.4.6. CORRELATIONS BETWEEN miRs AND THEIR TARGET mRNAs IN 

CORD BLOOD 

The expression of let-7e, miR-155, miR-146a, miR-106a and their respective targets: TLR4, 

SOCS1, IRAK1 and TRAF6 or IL10 were not correlated in term or preterm cord blood. NF-

κB1 was not correlated with the expression of any miRs.  

4.4.7. CORRELATIONS BETWEEN CORD BLOOD AND PLACENTAL 

miRs AND mRNAs  

A subset of matched placenta and cord blood samples were analysed for correlating miR 

expression within gestational groups (n=31 term and n=18 preterm deliveries).  

4.4.7.1. Correlations between Matched Genes in Cord Blood and Placenta 

The expression of let-7e, miR-155, miR-146a, miR-146b and miR-106a was not correlated 

between matched cord blood and placental tissue (Table 4.3). 

Table 4.3. The correlation between cord blood and placental miR expression following 

term and preterm delivery. The correlation (ρ) between miR expression in cord blood and 

placenta according to term and preterm delivery calculated using untransformed (raw) data 

for relative gene expression.  

 

miR Term 

n=31 

 

Preterm 

n=18 

ρ p-value ρ p-value 

let-7e 0.246 0.183 0.117 0.645 

miR-155 -0.100 0.614 -0.003 0.990 

miR-146a 0.151 0.417 -0.102 0.687 

miR-146b 0.204 0.629 0.000 1.000 

miR-106a -0.127 0.626 0.151 0.715 
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A subset of matched samples were analysed using Spearman’s correlations to determine the 

relationship between mRNA expression in cord blood and placenta within gestational groups 

(n=11 term and n=7 preterm deliveries). Placental and cord blood MyD88 expression 

showed a positive correlation following preterm but not term delivery (ρ=0.886, p=0.019; 

Fig. 4.8). The expression of TLR2, TLR4, IRAK1 or NF-κB1were not correlated in matched 

cord blood and placental tissue, following term or preterm delivery (Table 4.4). There were 

insufficient data points to match correlations for the expression of IL6, IL10, TRAF6 or 

TLR3 split according to gestational age. 

 

Fig. 4.8. A scatterplot of cord blood and placental MyD88 expression following term and 

preterm delivery. The correlated expression of MyD88 between matched placenta and cord 

blood following term and preterm delivery. Note: y-axis presented on a logarithmic scale, 

*p≤ 0.05. 
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Table 4.4 The correlation between cord blood and placental mRNA expression following 

term and preterm delivery. The correlation (ρ) between mRNA expression in cord blood 

and placenta according to term and preterm delivery calculated using untransformed (raw) 

data for relative gene expression, p≤ 0.05.  

 

miR Term 

n=11 

 

Preterm 

n=7 

ρ p-value ρ p-value 

TLR2 -0.481 0.190 0.029 0.957 

TLR4 -0.318 0.340 0.055 0.908 

MyD88 0.213 0.555 0.886 0.019 

IRAK1 -0.370 0.327 -0.657 0.156 

NF-κB1 0.321 0.365 0.600 0.208 

SOCS1 0.218 0.519 0.250 0.589 

4.4.7.2. Correlations between miRs and their target mRNAs in Cord Blood 

and Placenta 

Matched samples were used to analyse whether the expression of placental miRs was 

correlated with the expression of their respective targets in cord blood. This analysis was 

repeated according to the expression of cord blood miRs and their mRNA targets’ 

expression in matched placenta. Within term and preterm groups, the expression of let-7e 

and its target, TLR4 were not correlated between cord blood and placental tissue (Table 4.5). 

The expression of miR-155 and its targets, SOCS1 or MyD88 was not correlated between 

cord blood and placental tissues (Tables 4.6-7). The expression of miR-146a and its target, 

IRAK1 was not correlated between cord blood and placental tissues (Table 4.8). The 

expression of miR-106a and its target, IL10 was not correlated between cord blood and 

placental tissues (Table 4.9). 
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Table 4.5. The correlation between cord blood and placental let-7e and TLR4 expression 

in matched samples following term and preterm delivery. The correlation (ρ) between cord 

blood let-7e and placental TLR4 expression, and between placental let-7e and cord blood 

TLR4 expression according to term and preterm delivery calculated using untransformed 

(raw) data for relative gene expression.  

ρ 
Placenta 

let-7e TLR4 

Term 

Cord blood let-7e 0.246 0.173 

TLR4 0.573 -0.318 

Preterm 

Cord blood let-7e 0.117 0.173 

TLR4 -0.595 0.055 

Table 4.6. The correlation between cord blood and placental miR-155 and SOCS1 

expression in matched samples following term and preterm delivery. The correlation (ρ) 

between cord blood miR-155 and placental SOCS1 expression, and between placental miR-

155 and cord blood SOCS1 expression according to term and preterm delivery calculated 

using untransformed (raw) data for relative gene expression.  

ρ 
Placenta 

miR-155 SOCS1 

Term 

Cord blood miR-155 -0.100 -0.433 

SOCS1 -0.067 0.218 

Preterm 

Cord blood miR-155 -0.003 0.464 

SOCS1 0.107 0.250 
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Table 4.7. The correlation between cord blood and placental miR-155 and MyD88 

expression in matched samples following term and preterm delivery. The correlation (ρ) 

between cord blood miR-155 and placental MyD88 expression, and between placental miR-

155 and cord blood MyD88 expression according to term and preterm delivery calculated 

using untransformed (raw) data for relative gene expression.  

ρ 
Placenta 

miR-155 MyD88 

Term 

Cord blood miR-155 -0.100 0.310 

MyD88 0.417 0.218 

Preterm 

Cord blood miR-155 -0.003 0.357 

MyD88 0.600 0.250 

Table 4.8. The correlation between cord blood and placental miR-146a and IRAK1 

expression in matched samples following term and preterm delivery. The correlation (ρ) 

between cord blood miR-146a and placental IRAK1 expression, and between placental miR-

146a and cord blood IRAK1 expression according to term and preterm delivery calculated 

using untransformed (raw) data for relative gene expression.  

ρ 
Placenta 

miR-146a IRAK1 

Term 

Cord blood miR-146a 0.151 -0.373 

IRAK1 0.084 -0.370 

Preterm 

Cord blood miR-146a -0.102 -0.600 

IRAK1 0.107 -0.657 
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Table 4.9. The correlation between cord blood and placental miR-106a and IL10 

expression in matched samples following term and preterm delivery. The correlation (ρ) 

between cord blood miR-106a and placental IL10 expression, and between placental miR-

106a and cord blood IL10 expression according to term and preterm delivery calculated 

using untransformed (raw) data for relative gene expression. Note: there were no significant 

correlations determined by this analysis.  

ρ 
Placenta 

miR-106a IL10 

Term 

Cord blood miR-106a -0.127 0.075 

IL10 -0.086 0.000 

Preterm 

Cord blood miR-106a 0.151 0.000 

IL10 0.000 1.000 

4.4.8. CYTOKINE EXPRESSION IN CORD BLOOD SERUM 

Cytokine protein expression was measured in a subset of samples (n=49 term, n=37 late 

preterm and n=14 early preterm), as determined by the volume of cord blood available. The 

number of cord blood samples that showed detectable cytokine production was varied 

(Table 4.10). There was no difference in cord blood cytokine expression between the 

gestational age groups (Fig. 4.9-10).  

The effects of gestational age group and maternal smoking on cord blood cytokine 

expression were also analysed. There was no main effect of gestational age group or 

maternal smoking on cord blood GMCSF, IL10, IL12p70, IL1α, IL1β, IL6, IL8, MCP1 or 

TNFα production.  
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Table 4.10. The frequency of detection of cytokines in cord blood serum. The frequency of 

detection of cytokines in term, late preterm and early preterm cord blood serum (n, %).  

 Term 

n= 55 

Late preterm  

n= 37 

Early preterm 

n= 14 

p 

GMCSF 55 

(100%) 

55 

(100%) 

55 

(100%) 

0.454 

IL10 55 

(100%) 

55 

(100%) 

55 

(100%) 

0.212 

IL12p70 55 

(100%) 

55 

(100%) 

55 

(100%) 

0.484 

IL1α 55 

(100%) 

55 

(100%) 

55 

(100%) 

0.702 

IL1β 55 

(100%) 

55 

(100%) 

55 

(100%) 

0.479 

IL6 0  

(0%) 

0  

(0%) 

0  

(0%) 

0.793 

IL8 41 

 (75%) 

30 

 (81%) 

7  

(50%) 

0.408 

MCP1 55 

(100%) 

55 

(100%) 

55 

(100%) 

0.406 

TNFα 0 (0%) 0 

 (0%) 

0 (0%) 0.464 
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Fig. 4.9. Cytokine production in cord blood serum from term, and late and early preterm deliveries. The production of GMCSF (A), 

IL10 (B), IL12p70 (C), IL1α (D), IL1β (E) and MCP1 (F) in cord blood serum from term, and late and early preterm deliveries. Note: the 

y-axes are presented on a logarithmic scale. 
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Fig. 4.10. TNFα, IL6 and IL8 production in cord blood serum from term, and late and 

early preterm deliveries. The production of TNFα(A), IL6 (B) and IL8 (C) in cord blood 

serum from term, and late and early preterm deliveries. Note: the y-axes are presented on a 

logarithmic scale. 

  



Chapter 4:  

The Expression of Genes Associated with TLR-signalling in Preterm Cord Blood Page 143 

4.5. DISCUSSION 

This study investigated miRs that regulate TLR signalling in preterm cord blood. Early 

preterm cord blood showed increased let-7e and miR-155 expression compared to late 

preterm and term. Interestingly, there was no difference in the expression of miR-146a, miR-

146b, miR-106a, mRNAs associated with TLR signalling or cytokine production between 

early preterm, late preterm and term cord blood. These findings begin to suggest the absence 

of a regulatory relationship between miRs and mRNA in early preterm cord blood.   

Early preterm cord blood expressed decreased let-7e with no difference in its target, TLR4 

compared to late preterm and term. The otherwise comparable expression of TLR2 and TLR4 

mRNA across the gestational age groups agrees with other studies that have measured both 

mRNA and surface protein expression of these receptors on neonatal monocytes and 

neutrophils82, 85, 86. The decrease in let-7e we observed could be associated with the 

continued upregulation of TLR4 during inflammation and requires confirmation using in 

vitro stimulation studies. Murine embryos have shown increased let-7 transcription at 10.5 

days gestation, however, these transcripts are not processed by the enzyme Drosha and 

therefore, remain in their precursory, stem-loop form446. Other pre-miRs, including those 

encoded by the Chromosome 19 cluster, are also highly expressed in human embryonic stem 

cells without being transcribed447. Additionally, activity of the secondary miR processing 

molecule, Dicer is decreased in undifferentiated murine embryonic cell lines compared to 

differentiated cells448. Alternately, mechanisms that inhibit pre-miR transcription may be an 

attempt at maintaining an undifferentiated state in fetal cells449. As such, Lin28b is another 

negative regulator of let-7e and is highly expressed in fetal T cells449. As we did not measure 

pre-miRs (as they are biologically inactive), either of these mechanisms could be an 

underlying cause for decreased let-7e and miR-155 expression in early preterm cord blood.   

MiRs often exert their effects in the context of gene networks or signalling pairs. Although 

let-7e and miR-155 do not interact directly, they regulate the TLR signalling pathway in 

opposite directions and are shown to be involved in similar feedback loops. For example, the 

protein kinase, Akt, is activated by LPS exposure to upregulate let-7e and downregulate 

miR-155 simultaneously341. The overexpression of let-7e accompanied by miR-155 

repression in Akt-/- murine macrophages therefore leads to LPS tolerance during repeated 

LPS stimulation341. As we found decreased let-7e and miR-155 expression in early preterm 
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cord blood, this suggests regulatory feedback loops could be disturbed and that miR-

mediated regulation may be attenuated in early preterm neonates. The state of these TLR 

signalling feedback loops could be investigated using time course studies on inflammatory 

stimulation in cord blood.  

Placental and cord blood MyD88 expression were correlated in association with preterm but 

not term delivery. This could indicate underlying inflammatory activation leading to preterm 

parturition, though it would typically be associated with the co-expression of other 

inflammatory genes450 and therefore, requires more direct investigation. Our analysis did not 

observe any other correlations in gene expression between matched miRs or their targets in 

and between cord blood and placental tissue. Although ovine studies have found placental 

exosomes contain miRs which can regulate gene targets in cord blood451, this cannot be 

confirmed using the current experimental paradigm. Future studies using murine models and 

radiolabelled miRs during pregnancy may therefore be useful in determining whether 

placental miRs regulate neonatal immunity at delivery.  

Irrespective of gestational age, cord blood serum cytokine production was inconsistent. 

Previous studies have also reported between 30-70% of cord blood samples (n=370) do not 

express detectable IL6, IL8 or IL10452, 453. Similarly, those that have detected cytokine 

expression, reported no difference in the constitutive expression of IL6, IL8 and IL10 in 

monocytes, lymphocytes and granulocytes between preterm and term cord blood204. Overall, 

as we found no difference in IL6 or IL10 mRNA expression, it is not surprising that a 

difference in cytokine expression was not seen.  

Maternal smoking during pregnancy is a recognised risk factor for preterm delivery14 and 

growth restriction155. Our analysis showed maternal smoking was associated with decreased 

miR-146b expression in cord blood and increased TLR2, TLR4, MyD88, IRAK1, NF-κB1, 

IL6, IL10 and SOCS1, indicating increased inflammatory activation. This agrees with 

previous studies432, 433 and findings from Chapter 3 that show smoking during pregnancy 

contributes to a pro-inflammatory in utero environment. In contrast to this, others have 

observed that term CBMCs from mothers who smoke express decreased constitutive IL6, 

TNFα and IL10 compared to non-smokers161. These findings may differ with ours because 

of post-transcriptional regulation or the use of isolated cell populations. Alternately, it is 

possible that in utero inflammation programs neonatal tolerance in an attempt to adapt to a 

pro-inflammatory environment as perceived by the fetus. A limitation of the current cohort 
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is our inability to separate the effects of gestational age and smoking, while we observed no 

apparent interaction between these factors, it is likely this occurred due to a smaller sample 

size. Overall, it is apparent that maternal smoking during pregnancy alters neonatal 

immunity and our support that dysregulated expression of genes the TLR signalling pathway 

may contribute to this.  

In summary, the current data show early preterm cord blood expresses decreased 

constitutive let-7e and miR-155, while the expression of the miRs’ mRNA targets remains 

comparable to late preterm and term cord blood. Decreased regulatory miR expression 

suggests that late preterm and term neonates may have a more mature innate immune system 

that better regulates inflammation during infection. Notably, our findings provide a snapshot 

of neonatal innate immunity at delivery and it remains unclear whether these differences 

affect their ability to respond to inflammatory challenge. Further research is therefore 

required to assess the impact of these differences on functional responses in cord blood.  
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5.1. ABSTRACT 

Background 

A majority of health conditions affecting preterm neonates have an inflammatory 

aetiology. However, in vitro studies on preterm cord blood show decreased expression 

of inflammatory mediators following immune stimulation compared to term. Toll-like 

Receptor (TLR) signalling results in inflammation and can be regulated by microRNAs 

(miRs). This study therefore aimed to determine the expression of miRs and mRNAs in 

cord blood following TLR stimulation.  

Methods and Results 

Cord blood was collected from term (n=29), late preterm (n=17) and early preterm 

deliveries (n=15) and stimulated in vitro with ligands for TLR2 (PGN), TLR3 (Poly 

I:C) and TLR4 (LPS). The expression of miRs and mRNA in the TLR signalling 

pathway was quantified using qPCR. Term cord blood increased mir-155 in response to 

PGN (p=0.031), and increased let-7e (p=0.008), miR-155 (p<0.001), miR-106a 

(p=0.05), NF-κB1 (p=0.023) and IL6 (p=0.007) in response to LPS. Late preterm cord 

blood increased let-7e (p=0.008), TLR2 (p=0.008) and SOCS1 (p=0.024) in response to 

LPS. Early preterm cord blood only increased NF-κB1 (p=0.029) and IL6 (p=0.01) in 

response to LPS. There was no difference observed in the expression genes associated 

with TLR signalling by cord blood in response to Poly I:C stimulation. 

Conclusion 

This study suggests an absence of miR expression may contribute to diminished 

regulation of TLR signalling during inflammation in early preterm cord blood in vitro. 

Dysregulated innate immune signalling could underlie a susceptibility towards 

uncontrolled inflammation in early preterm neonates.  
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5.2. INTRODUCTION 

Preterm neonates are more susceptible to developing severe inflammatory conditions 

than their term counterparts4, 25. These conditions are characterised by a bias towards 

unresolved inflammation and increased expression of pro-inflammatory mediators. 

Inflammation can be driven by innate immune TLR signalling. TLRs are activated by 

the ligation to specific classes of PAMPs. TLR2 recognises PGN that forms the cell 

wall of gram-positive bacteria; TLR3 recognises viral PAMPs including synthetic Poly 

I:C; and TLR4 recognises LPS, which is a component of the gram-negative bacterial 

membrane. TLRs activate a series of intracellular adaptor molecules (e.g. MyD88 and 

IRAK1) to initiate the translocation of nuclear factors that induce inflammatory 

cytokine transcription (e.g. NF-κB). The expression of these genes can be regulated at 

different levels of signalling by miRs. Inflammation must be tightly regulated to avoid 

prolonged or aberrant tissue damage.   

MiRs have important roles in regulating TLR signalling during inflammation. They 

respond to physiological cues and act post-transcriptionally, resulting in a ‘dampening’ 

of the inflammatory response. In response to inflammatory cues, the miR, let-7e, 

inhibits TLR4 expression, while miR-146a inhibits expression of the signalling 

molecule IRAK1, and both miRs therefore down-regulate TLR signalling. Other miRs 

increase inflammatory activation, including miR-155, which represses the suppressor of 

cytokine signalling (SOCS1) gene, and miR-106a that represses IL10.  

Preterm neonates show decreased leukocyte counts207 and attenuated expression of pro-

inflammatory cytokines following LPS stimulation compared to their term-born 

counterparts288. Specifically, preterm cord blood expresses decreased IL6 and TNFα 

following stimulation with TLR agonists82, 213, 288 or whole bacteria compared to term252, 

289. Other aspects of TLR signalling have, however, demonstrated comparable 

responses to immune stimulation in vitro. For example, preterm CBMCs exhibit 

comparable86, 302 or increased454 phosphorylation of NF-κB following stimulation with 

whole bacteria compared to term. As NF-κB phosphorylation results in pro-

inflammatory cytokine transcription76, this suggests inflammatory cytokine expression 

is either be comparable or increased between term and preterm cord blood. 

Discrepancies between NF-κB phosphorylation and cytokine expression in cord blood 
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studies may be explained by differences in post-transcriptional regulation of TLR 

signalling.  

Alterations in the regulation of TLR signalling may also explain preterm neonates’ 

susceptibility to developing inflammatory morbidities. Currently, little is known about 

miR-related regulation of neonatal immunity. Studies to date have focused on miR 

arrays that explore patterns of miR expression in association with preterm delivery374. 

Even fewer studies have validated miR expression in cord blood. Charrier et al., 

demonstrated increased miR-146a and decreased miR-155 expression in cord blood 

pDCs that expressed decreased IRAK1 and MyD88 compared to adult pDCs following 

TLR9 stimulation388. Similarly, cord blood monocytes are shown to increase miR-146a 

expression after 24 hours LPS stimulation in vitro compared to adult monocytes242. 

These data support that term neonates exhibit a tolerogenic immune bias during LPS 

stimulation compared to adults.  

It is unclear whether miRs are differentially expressed in preterm compared to term 

neonates, which could contribute to the differential responses to TLR stimulation 

observed between them (see Table 1.2). This study therefore aimed to characterise 

expression of miRs and their gene targets following TLR stimulation in term and 

preterm cord blood. Previous findings from our laboratory have shown increased IL6 

expression with TLR stimulation, without any change in anti-inflammatory 

cytokines153. It was therefore hypothesised that preterm cord blood would exhibit 

decreased expression of anti-inflammatory let-7e, miR146a and SOCS1 and increased 

expression of pro-inflammatory miR-155, miR-106a and IL6 compared to term cord 

blood following TLR stimulation.  
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5.3. METHODS 

5.3.1. PARTICIPANTS AND SAMPLE COLLECTION  

Pregnant women presenting at the LMH and WCH (n=61), who delivered at early 

preterm (<32 weeks), late preterm (32-36 weeks) or term gestation (≥ 37 weeks) were 

recruited to this study. Clinical data were obtained from maternal and neonatal health 

records, including obstetric history and neonatal outcomes (see section 2.1). Cord blood 

was collected into lithium heparin vials at delivery for in vitro culture. 

5.3.2. CORD BLOOD CULTURE AND TLR STIMULATION 

Whole cord blood was plated in volumes of 100µL in flat-bottomed 96-well cell culture 

plates and cultured at 37°C and 5% CO2 overnight. Following this ‘resting’ period, one 

set of wells were left unstimulated (untreated ‘controls’) and remaining wells were 

stimulated with either PGN (TLR2 agonist; 100pg), Poly I:C (TLR3 agonist; 500pg), or 

LPS (TLR4 agonist; 1ng). Wells were collected and pooled in triplicate after 6 hours in 

vitro. 

5.3.3. WHOLE RNA EXTRACTION 

TRIzol LS® reagent was used to extract RNA from cord blood (see section 2.5.2). 

Briefly, three volumes of TRIzol LS were added to one volume of cord blood and 

samples were mechanically agitated. Lysates were separated by centrifugation with 

chloroform to retrieve the interphase for subsequent washing with isopropanol and 

ethanol. RNA was eluted in RNase free water and purified using a miRNeasy Mini Kit 

and DNAse I treatment as per manufacturers’ protocol. RINs were assessed using a 

bioanalyser, where a RIN≥ 9 was considered sufficient for PCR analysis. 

5.3.4. qRT-PCR ANALYSIS OF miRNA EXPRESSION  

RNA (10ng) was reverse transcribed using a Taqman® MicroRNA Reverse 

Transcription Kit according to manufacturer’s protocol, that was slightly modified for 

optimal cDNA output (see section 2.6.1). This involved pooling a maximum of five RT 

primers per batch in a single RT mixture. Reverse transcription targeted five primer 

sequences: let-7e, miR-155, miR-146a, miR-106a and RNU48. Relative miRNA 
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expression was quantified using Taqman® MicroRNA Assays in 20µL reactions 

containing 1.33µL of cDNA. qRT-PCR utilised the comparative cycle threshold (2-ΔCT) 

method to determine miR abundance relative to the housekeeping gene RNU48. 

5.3.5. qRT-PCR ANALYSIS OF mRNA EXPRESSION 

Purified RNA (50ng) was reverse transcribed using a SuperScript™ III First-Strand 

Synthesis Kit for qRT-PCR according to manufacturer’s protocol. qRT-PCR was used 

to quantify the relative expression of miR targets including TLR2, TLR4, MyD88, 

IRAK1, NF-κB1, IL6, IL10 and SOCS1 relative to the reference gene, β-actin. qRT-PCR 

was performed using TaqMan® Gene Expression Assays and each 20µL reaction 

contained 2μL of the cDNA template.  

5.3.6. STATISTICAL ANALYSES 

Data were analysed using SPSS v24. Demographic and clinical data are presented as 

mean ± SD, unless otherwise indicated. Frequency data were analysed using Chi-

squared tests. Kruskal-Wallis tests or ANOVAs were used to compare continuous data 

according to the gestational age groups. Post-hoc analysis was conducted using Mann-

Whitney U tests or t-tests where necessary. Gene expression data are presented as 

median (25th-75th centile), unless otherwise indicated, and were logarithmically 

transformed (log10) to normalise data for parametric analysis. ANCOVAs or 

MANCOVAs were used to analyse qPCR data, with pre-eclampsia, labouring delivery, 

maternal smoking during pregnancy and birthweight centile used as covariates for term 

and preterm cord blood analyses; and chorioamnionitis and antenatal betamethasone 

were used as additional covariates for analyses concerning preterm cord blood. Post-hoc 

comparisons were made using t-tests where appropriate. An a priori Bonferroni 

correction was made to the critical alpha level for post-hoc comparisons. Spearman’s 

correlations were used to assess the relationship between matched sample expression of 

miR and mRNA data. An alpha level of 0.05 was considered statistically significant. 
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5.4. RESULTS 

5.4.1. PARTICIPANT CHARACTERISTICS 

Clinical characteristics from term (n=29), late preterm (n=17) and early preterm (n=15) 

deliveries are shown in Table 5.1. Maternal age, BMI, smoking during pregnancy, 

ethnicity and gravidity were not significantly different between the gestational age 

groups. Gestational age at delivery (completed weeks) was significantly different 

between the groups (F(2,60)=297.701, p<0.001). Parity showed a trend towards being 

different between the gestational age groups, but this did not reach statistical 

significance (p=0.056). Pre-eclampsia was more frequently associated with early 

preterm deliveries (33%) compared to late preterm (12%) and term (7%; χ2(2)=7.861, 

p=0.020). Mode of delivery was significantly different between the groups 

(χ2(3)=9.687, p=0.046), where emergency Caesarean sections were more frequent in 

early preterm (47%) and late preterm (33%) compared to term deliveries (10%); and 

both early preterm (60%) and term deliveries (62%) were more frequently delivered via 

elective Caesarean section compared to late preterm deliveries (35%). The frequency of 

labouring deliveries did not differ between the groups.  

Early (87%) and late preterm neonates (82%) were more frequently exposed to 

antenatal betamethasone compared to term neonates (3%; χ2(2)=40.182, p<0.001). 

Birthweight was significantly different between the gestational age groups 

(F(2,60)=116.08, p<0.001) and post-hoc analyses showed that it was lower in early 

preterm compared to term, early preterm compared to late preterm and late preterm 

compared to term neonates (p<0.001 for all). Birthweight centile was significantly 

different between the groups (F(2,60)=11.057, p<0.001) and post-hoc analyses showed 

that it was lower in early preterm compared to term (p<0.001) and early preterm 

compared to late preterm neonates (p=0.04). The incidence of SGA and IUGR occurred 

more frequently in early preterm compared to late preterm and term neonates 

(χ2(2)=15.822, p<0.001; and χ2(2)=19.028, p<0.001, respectively). Birth length was 

significantly different between the groups (F(2,54)=94.461, p<0.001) and post-hoc 

analyses showed it was lower in early preterm compared to term, early preterm 

compared to late preterm and late preterm compared to term neonates (p<0.001 for all). 

Head circumference was significantly different between the groups (F(2,54)=14.875, 
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p<0.001) and post-hoc analyses showed that it was lower in early preterm compared to 

term (p<0.001) and late preterm compared to term neonates (p=0.014). APGARS at 1 

minute were significantly different between the groups (U=76, p=0.001) and post-hoc 

tests showed they were lower in early preterm compared to term (p=0.001) and early 

preterm compared to late preterm neonates (p=0.04). APGARS at 5 minutes were 

significantly different between the groups (U=81.5, p=0.002) and post-hoc tests showed 

that they were lower in early preterm compared to term (p=0.002) and early preterm 

compared to late preterm (p=0.024). 

Placental weight was significantly different between the gestational age groups 

(F(2,47)=32.112, p<0.001) and post-hoc analyses showed that it was lower following 

early preterm compared to late preterm (p=0.003), early preterm compared to term 

(p<0.001) and late preterm compared to term delivery (p=0.003). The incidence of 

chorioamnionitis was higher in early preterm deliveries (20%) compared to late preterm 

(12%) and term (0%; χ2(2)=13.866, p=0.001).  
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Table 5.1. Maternal demographics and neonatal characteristics of term, late and 

early preterm deliveries for cord blood analysed in Chapter 5. Values are given as 

mean± SD or n (%), unless otherwise indicated. p-values presented in the table were 

calculated using ANOVAs or Kruskal-Wallis tests. Post-hoc tests were conducted using 

t-tests or Mann-Whitney U tests and are represented within each gestational age group 

column by the following symbols: *p≤ 0.05 compared to both other groups; #p≤ 0.05 

compared to term.  

 Term Late 

Preterm 

Early 

Preterm 

p-value 

n=29 n=17 n=15 

Gestational age (completed weeks), 

median (min-max) 
39 (37-41)* 32 (32-36)* 30 (25-31) <0.001 

Maternal demographics: 

Age, years 

BMI, kg/m2 

Gravidity, median (min-max) 

Parity, median (min-max)            

Smoking during pregnancy 

Ethnicity: 

Caucasian 

Indigenous 

Other  

 

30 ±4 

30 ±8 

3 (1-6) 

1 (0-4) 

4 (14) 

 

20 (69) 

0 (0) 

9 (31) 

 

29 ±6 

24 ±4 

2 (1-7) 

0 (0-5) 

1 (6) 

 

9 (53) 

1 (6) 

7 (41) 

 

31 ±6 

29 ±8 

3 (1-7) 

1 (0-4) 

3 (20) 

 

9 (60) 

2 (13) 

4 (27) 

 

0.672 

0.104 

0.521 

0.056 

0.515 

 

 

0.561 

 

Maternal complications: 

 Pre-eclampsia 

 

2 (7) 

 

2 (12) 

 

5 (33) 

 

0.020 

Multiple pregnancy 

 

2 (7) 4 (24) 3 (20) 0.130 

Labouring delivery 

Mode of delivery: 

          Emergency Caesarean section  

          Elective Caesarean section  

          Vaginal delivery 

11 (38) 

 

3 (10) 

18 (62) 

8 (28) 

9 (53) 

 

8 (47) 

6 (35) 

3 (18) 

3 (20) 

 

5 (33) 

9 (60) 

1 (7) 

0.159 

 

 

0.046 

Placenta: 

           Weight, g 

           Histological chorioamnionitis 

 

693 (±171)* 

0 (0) 

 

477 (±224)* 

2 (12) 

 

241 (±94) 

3 (20) 

 

<0.001 

<0.001 

Neonatal characteristics: 

Male  

Birthweight, g 

Birth centile, % 

SGA 

IUGR 

Birth length, cm 

Head circumference, cm 

 

11 (38) 

3582 (±516)* 

62 (±31) 

3 (10) 

0 (0) 

50 (±2)* 

35 (±1) 

 

7 (41) 

2291 (±581)* 

39 (±33)# 

4 (24) 

3 (18) 

44 (±3)* 

32 (±2)# 

 

8 (53) 

1142 (±421) 

18 (±26)# 

10 (67) 

8 (53) 

33 (±6) 

29 (±6)# 

 

0.613 

<0.001 

<0.001 

<0.001 

<0.001  

<0.001 

<0.001 

 

Antenatal Betamethasone 

 
1 (3) 14 (89) 13 (87) <0.001 

APGARS, median (min-max): 

           1 min 

           5 min 

 

9 (7-9) 

9 (7-10) 

 

9 (3-9) 

9 (6-10) 

 

6 (2-9)* 

7 (5-9)* 

 

0.004 

0.001 
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5.4.2. CORD BLOOD miR EXPRESSION FOLLOWING PGN (TLR2) 

STIMULATION 

PGN stimulation significantly increased miR-155 expression compared to controls 

(unstimulated samples) in term cord blood after adjusting for the covariates pre-

eclampsia, labouring delivery, maternal smoking during pregnancy and birthweight 

centile (Fig. 5.1, F(1,48)=4.910, p=0.031). There was a trend towards increased miR-

106a expression with PGN stimulation compared to controls in term cord blood, 

however, this did not reach statistical significance (p=0.094; Fig. 5.4). Term cord blood 

showed no difference in let-7e or miR-146a expression between unstimulated and PGN 

stimulated samples (Figs. 5.2-3).    

Late and early preterm cord blood showed no difference in the expression of any miR 

between PGN stimulated and unstimulated samples after adjusting for the covariates 

pre-eclampsia, labouring delivery, maternal smoking during pregnancy, birthweight 

centile, chorioamnionitis and antenatal betamethasone exposure (Figs. 5.1-4). 

There was no difference in the magnitude of let-7e, miR-155, miR-146a or miR-106a 

expression with PGN treatment between early preterm, late preterm and term cord 

blood.  

 

Fig. 5.1. Cord blood miR-155 expression with and without PGN stimulation. The 

expression miR-155 relative to RNU48 in (A) term, (B) late preterm and (C) early 

preterm cord blood at 6 hours in vitro following PGN stimulation or under control 

conditions. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 
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Fig. 5.2. Cord blood let-7e expression with and without PGN stimulation. The 

expression let-7e relative to RNU48 in (A) term, (B) late preterm and (C) early preterm 

cord blood at 6 hours in vitro following PGN stimulation or under control conditions. 

Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

 

Fig. 5.3. Cord blood miR-146a expression with and without PGN stimulation. The 

expression miR-146a relative to RNU48 in (A) term, (B) late preterm and (C) early 

preterm cord blood at 6 hours in vitro following PGN stimulation or under control 

conditions. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

 

Fig. 5.4. Cord blood miR-106a expression with and without PGN stimulation. The 

expression miR-106a relative to RNU48 in (A) term, (B) late preterm and (C) early 

preterm cord blood at 6 hours in vitro following PGN stimulation or under control 

conditions. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 
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5.4.3. CORD BLOOD miR EXPRESSION FOLLOWING Poly I:C (TLR3) 

STIMULATION 

There was a trend towards increased let-7e expression with Poly I:C stimulation 

compared to unstimulated conditions in late preterm cord blood after adjusting for pre-

eclampsia, labouring delivery, maternal smoking, birthweight centile, chorioamnionitis 

and antenatal betamethasone, however this trend did not reach statistical significance 

(p=0.072; Fig. 5.5). There was no difference in let-7e expression in term or early 

preterm cord blood between control and Poly I:C stimulated samples. No difference 

was observed in miR-155, miR-146a or miR-106a expression with Poly I:C stimulation 

in term, late preterm or early preterm cord blood (Fig. 5.6-8).  

There was no difference in the magnitude of let-7e, miR-155, miR-146a or miR-106a 

expression induced by Poly I:C stimulation between early preterm, late preterm and 

term cord blood.   

 

Fig. 5.5. Cord blood let-7e expression with and without Poly I:C stimulation. The 

expression let-7e relative to RNU48 in (A) term, (B) late preterm and (C) early preterm 

cord blood at 6 hours in vitro following Poly I:C stimulation or under control 

conditions. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

 

Fig. 5.6. Cord blood miR-155 expression with and without Poly I:C stimulation. The 

expression miR-155 relative to RNU48 in (A) term, (B) late preterm and (C) early 

preterm cord blood at 6 hours in vitro following Poly I:C stimulation or under control 

conditions. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 
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Fig. 5.7. Cord blood miR-146a expression with and without Poly I:C stimulation. The 

expression miR-146a relative to RNU48 in (A) term, (B) late preterm and (C) early 

preterm cord blood at 6 hours in vitro following Poly I:C stimulation or under control 

conditions. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

 

Fig. 5.8. Cord blood miR-106a expression with and without Poly I:C stimulation. The 

expression miR-106a relative to RNU48 in (A) term, (B) late preterm and (C) early 

preterm cord blood at 6 hours in vitro following Poly I:C stimulation or under control 

conditions. Note: the y-axes are presented on a logarithmic scale, *p<0.05.
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5.4.4. CORD BLOOD miR EXPRESSION FOLLOWING LPS (TLR4) 

STIMULATION 

LPS stimulation significantly increased term cord blood let-7e (F(1,47)=7.653, 

p=0.008; Fig. 5.9A), miR-155 (F(1,47)=25.143, p<0.001; Fig. 5.9D) and miR-106a 

expression (F(1,47)=4.040, p=0.050; Fig. 5.9J) compared to control term cord blood 

samples, after adjusting for the covariates pre-eclampsia, labouring delivery, maternal 

smoking during pregnancy and birthweight centile. No change in miR-146a expression 

was observed between LPS-stimulated and control samples in term cord blood. 

Late preterm cord blood increased let-7e expression with LPS stimulation compared to 

unstimulated samples (F(1,24)=5.816, p=0.024; Fig. 5.9B). There was no difference 

observed in miR-155, miR-146a or miR-106a expression by late preterm cord blood 

between control and LPS-stimulated samples (Fig. 5.9 E, H, K).  

There was no difference in expression of any of the miRs in early preterm cord blood 

between control and LPS-stimulated samples (Fig. 5.9 C, F, I, L).  

There was no significant difference observed in the magnitude of LPS-stimulated miR-

155 and miR-146a responses between gestational age groups, however a trend towards 

increased mir-155 expression (p=0.067) and mir-146a expression (p=0.085) was 

observed in term cord blood compared to both preterm groups. There was no difference 

observed in the magnitude of let-7e or miR-106a expression with LPS stimulation 

between the groups.   
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Fig. 5.9. Cord blood miR expression with and without LPS stimulation. The 

expression of let-7e (A-C), miR-155 (D-F), miR-146a (G-I) and miR-106a (J-L) relative 

to RNU48 in term (A, D, G, J), late preterm (B, E, H, K) and early preterm (C, F, I, L) 

cord blood at 6 hours in vitro following LPS stimulation or under control conditions. 

Note: the y-axes are presented on a logarithmic scale, *p<0.05.  
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5.4.5. CORD BLOOD mRNA EXPRESSION FOLLOWING LPS 

(TLR4) STIMULATION  

The expression of genes associated with TLR signalling (mRNA) was collected for a 

smaller subset of samples and the analysis was split according to term (n= 15), late 

preterm (n= 10) and early preterm (n= 10) cord blood. Based on the miR results 

following LPS stimulation compared to PGN or Poly I:C, our analysis of mRNA 

expression focused only on responses to LPS stimulation. This strategy prioritised 

experiments based on limited blood and therefore RNA volumes available following 

preterm delivery.  

The frequency of mRNA expression by LPS-stimulated cord blood was not 

significantly different according to the gestational age groups (Table 5.2).  

Table 5.2. The frequency of gene expression (mRNA) in LPS-stimulated cord blood. 

The frequency (n, %) of TLR-associated gene expression (mRNA) in LPS-stimulated 

cord blood from term, late and early preterm deliveries.  

 Term 

n= 15 

Late preterm 

n= 10 

Early 

preterm 

n= 10 

p 

TLR2 14 

(93%) 

10 

(100%) 

10 

(100%) 

0.227 

TLR4 15 

(100%) 

9 

(90%) 

8 

(80%) 

0.406 

MyD88 14 

(93%) 

7 

(70%) 

7 

(70%) 

0.171 

IRAK1 14 

(93%) 

7 

(70%) 

10 

(100%) 

0.785 

NF-κB1 15 

(100%) 

6 

(60%) 

10 

(100%) 

0.226 

IL10 14 

(93%) 

9 

(90%) 

7 

(70%) 

0.403 

IL6 12 

(18%) 

9 

(90%) 

8 

(80%) 

0.668 

SOCS1 15 

(100%) 

10 

(100%) 

10 

(100%) 

0.410 
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Late preterm cord blood showed increased TLR2 expression following LPS stimulation 

after adjusting for covariates pre-eclampsia, labouring delivery, maternal smoking 

during pregnancy and birthweight centile (F(1,10)= 10.582, p=0.008; Fig. 5.10). There 

was a trend towards increased TLR2 expression in term cord blood following LPS 

stimulation compared to unstimulated samples, however, this did not reach statistical 

significance (p=0.077). Early preterm cord blood showed no change in TLR2 

expression following LPS stimulation. 

 

Figure 5.10. The expression of TLR2 in cord blood with and without LPS 

stimulation. The expression of TLR2 relative to β-actin in in (A) term, (B) late preterm 

and (C) early preterm cord blood in control samples and following LPS stimulation at 6 

hours. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

NF-κB1 expression was increased in term cord blood (F(1,21)= 5.968, p=0.023; Fig. 

5.11) and early preterm cord blood following LPS stimulation (F(1,12)= 6.145, 

p=0.029). Late preterm cord blood showed no difference in NF-κB1 expression 

following LPS stimulation.  

 

Figure 5.11. The expression of NF-κB1 in cord blood with and without LPS 

stimulation. The expression of NF-κB1 relative to β-actin in in (A) term, (B) late 

preterm and (C) early preterm cord blood in control samples and following LPS 

stimulation at 6 hours. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 
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IL6 expression was increased following LPS stimulation in term cord blood (F(1,22)= 

13.120, p=0.002), late preterm (F(1,10)=99.283, p<0.001) and early preterm cord blood 

(F(1,11)= 14.693, p=0.003; Fig.5.12).  

 

Fig. 5.12. The expression of IL6 in cord blood with and without LPS stimulation. The 

expression of IL6 relative to β-actin in in (A) term, (B) late preterm and (C) early 

preterm cord blood following 6 hours in control samples and following LPS stimulation 

at 6 hours. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

Late preterm cord blood increased SOCS1 expression following LPS stimulation 

(F(1,11)=6.861, p=0.024; Fig.5.13). Term and early preterm cord blood showed no 

difference in SOCS1 expression following LPS stimulation. 

 

Fig. 5.13. The expression of SOCS1 in cord blood with and without LPS stimulation. 

The expression of SOCS1 relative to β-actin in in (A) term, (B) late preterm and (C) 

early preterm cord blood following 6 hours in control samples and following LPS 

stimulation at 6 hours. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

There was no difference observed in TLR4, MyD88, IL10 or IRAK1 expression 

following LPS stimulation within the gestational age groups (Fig. 5.14-17). 
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Fig. 5.14. The expression of TLR4 in cord blood with and without LPS stimulation. 

The expression of TLR4 relative to β-actin in in (A) term, (B) late preterm and (C) early 

preterm cord blood following 6 hours under control conditions and following LPS 

stimulation. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

 

Fig. 5.15. The expression of MyD88 in cord blood with and without LPS stimulation. 

The expression of MyD88 relative to β-actin in in (A) term, (B) late preterm and (C) 

early preterm cord blood following 6 hours under control conditions and following LPS 

stimulation. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

 

Fig. 5.16. The expression of IRAK1 in cord blood with and without LPS stimulation. 

The expression of IRAK1 relative to β-actin in in (A) term, (B) late preterm and (C) 

early preterm cord blood following 6 hours under control conditions and following LPS 

stimulation. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 
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Fig. 5.17. The expression of IL10 in cord blood with and without LPS stimulation. 

The expression of IL10 relative to β-actin in in (A) term, (B) late preterm and (C) early 

preterm cord blood following 6 hours under control conditions and following LPS 

stimulation. Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

There were no correlations between the expression of let-7e, miR-155, miR-146a, miR-

106a and their respective targets: TLR4, SOCS1, IRAK1 and TRAF6 or IL10 in term, 

late preterm or early preterm cord blood. As a common regulator of miRs, NF-κB1 was 

not associated with miR expression in these samples. 
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5.5. DISCUSSION 

This study is the first to show there is a disparity in TLR-stimulated miR expression 

between term, late preterm and early preterm cord blood. Further, IL6 was the only 

gene investigated that was consistently increased in cord blood following LPS 

stimulation by all gestational age groups. In term cord blood, LPS or PGN exposure 

increased miR-155. LPS stimulation also increased let-7e, miR-106a and NF-κB1 

expression in term cord blood. Similarly, late preterm cord blood increased let-7e, TLR2 

and SOCS1 with LPS stimulation. In contrast to this, early preterm cord blood 

stimulated with LPS increased NF-κB1 without any change in miR expression. No 

changes in cord blood gene expression were observed in any gestational age group 

following Poly I:C stimulation. These data demonstrate an absence of miR expression 

following TLR stimulation in early preterm cord blood despite increased expression of 

pro-inflammatory NF-κB1 and IL6. 

The lack of a miR response to TLR stimulation in early preterm cord blood may be 

associated with immature miR transcript processing. A previous study analysed 2,108 

term cord blood samples for the expression of the miR processing complex, Dicer455. 

Interestingly, Dicer mRNA expression was decreased in cord blood from neonates who 

later developed severe RSV infections during the neonatal period compared to healthy 

neonates. The authors of this study postulated that in this scenario, decreased Dicer 

expression led to an increased viral load, as it has previously been associated with the 

inhibition of viral expression in the context of Influenza A456. While our findings are 

not specific to viral immunity, decreased Dicer expression could contribute to the 

absence of a miR response to TLR stimulation in early preterm cord blood. This would 

not only predispose early preterm neonates to contracting viral infections, but also 

underlie an inability to control the inflammatory response to other pathogens. 

Both term and late preterm cord blood increased let-7e expression in response to TLR 

stimulation. let-7e is best known for targeting TLR4 and therefore, downregulating TLR 

signalling341. Term and late preterm cord blood therefore show evidence of a capacity to 

regulate inflammatory gene expression, while early preterm cord blood does not. Our  

study showed simultaneous increases in inflammatory and regulatory genes as we 
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investigated the peak synthesis phase of cytokine expression (6 hours201). Increased 

expression of the pre-miR, let7 has been associated with decreased IL10 and IL6 

expression in human and murine macrophages stimulated in vitro with Salmonella and 

E. coli457. We therefore postulate that as TLR signalling progresses, term and late 

preterm neonates eventually express enough regulatory let-7e to downregulate cytokine 

expression. In contrast, early preterm neonates do not show this regulatory miR 

response, at least with respect to the TLR ligands we used for this study. 

Interestingly, we observed no difference in miR expression following TLR3 stimulation 

with Poly I:C in any gestational age group. These results are unsurprising as TLR3 

mRNA was undetectable in cord blood at birth (Chapter 4). Others have also found 

CBMCs do not express cytokines in response to Poly I:C78 or TLR7/8 viral agonist 

stimulation48. The only studies that have been able to demonstrate a cytokine response 

to viral stimulation have used high concentrations of Poly I:C in conjunction with 

IFNγ254, which is normally decreased in cord blood compared to adult blood201. It is 

likely the absence of cytokine expression following viral stimulation in vitro also 

reflects an increased susceptibility by neonates towards viral infections such as RSV277.  

The expression of IRAK1 and MyD88 did not change following LPS stimulation in term 

or preterm cord blood, and neither did IRAK1’s negative regulator, miR-146a323. Others 

have observed increased miR-146a expression after 24 hours LPS stimulation in vitro in 

term cord blood monocytes242. While their findings support previous evidence that miR-

146a is regulated by NF-κB expression during terminal TLR signalling458, we 

characterised an earlier time-point which may exclude these effects. In fact, miR-146a 

expression is typically shown to increase up to 100 fold between 24-48 hours in vitro in 

association with decreased IRAK1 and cytokine expression89, 90. The effect of increased 

NF-κB1 expression on miR-146a expression in term and early preterm cord blood are 

not evident in the current analysis.  

Increased NF-κB1 expression in term and early preterm cord blood stimulated with LPS 

suggests active inflammatory cytokine transcription. Interestingly, preterm cord blood 

monocytes have shown increased NF-κB phosphorylation following bacterial 

stimulation compared to term454. Additionally, intestinal epithelial cells from preterm 

neonates also show increased NF-κB activation and cytokine expression in response to 

flagellin (a TLR5 agonist), and decreased expression of anti-inflammatory IκB, 
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compared to adults459. Similarly, rodent models of NEC show increased NF-κB 

activation and decreased IκB expression307, leading to inflammatory injury that 

precedes NEC61. Together, these studies indicate that over-expression of NF-κB by 

TLR-stimulated early preterm cord blood, in the absence of miR expression, could be a 

contributing mechanism to uncontrolled inflammation in these neonates.  

Although miR-106a is known to target IL10339, term cord blood showed increased miR-

106a expression and no difference in IL10 with LPS stimulation. Conversely, early 

preterm cord blood showed no change in the expression of miR-106a, but increased 

IL10 with LPS stimulation. The concurrent increase in IL10 and IL6 in early preterm 

cord blood suggests a ‘genomic storm’ scenario, where inflammatory transcription is 

increased without resolving inflammation. While IL10 is an anti-inflammatory 

cytokine, its increased expression has been associated with septic shock where patients 

increase the expression of both pro- and anti- inflammatory genes460. Furthermore, 

peripheral blood from term neonates with sepsis expresses increased IL10 and pro-

inflammatory IL8, IL6 and IL1β461. Therefore, the increase in IL10 and IL6 without any 

change in regulatory miRs could be evidence of a system that is hyper-responsive to 

inflammatory stimulation.  

Neonatal immune development is shaped by the in utero environment (see section 

1.3.2). For example, transcriptome-wide analyses of neonatal peripheral blood have also 

shown that exposure to chorioamnionitis is associated with a unique pattern of 

inflammatory gene expression compared to unexposed neonates390. Maternal smoking 

during pregnancy has also been associated with altered inflammatory signalling in cord 

blood, where CBMCs show decreased IL6, TNFα and IL10 expression following TLR 

stimulation in vitro compared to non-smoking mothers162, 163. We therefore used these 

factors as covariates in our analysis to adjust for the potential influence they may have 

on stimulated immune responses. In the current study, we observed no significant 

interaction effects between smoking and gestational age. The ability to discriminate the 

independent effects of these exposures would be interesting, however, would require a 

larger sample size. Further, many in utero insults can increase the risk of preterm birth 

and co-occur with different clinical management strategies. This would make it difficult 

to isolate the impact of these exposures, even in a larger sample size. Animal studies 

and in vitro modelling may be the best way to understand these independent effects.  
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A major strength of our study is that we stimulated whole cord blood. This method 

allowed for a holistic insight into neonatal immune function. Further, previous findings 

from our laboratory have shown that isolated CBMCs do not respond as robustly to 

TLR stimulation over time or increasing doses of TLR agonists153. Cord blood 

leukocytes are immature compared to adults and likely require support from other 

factors in whole blood to mount effective immune responses. Whole blood also 

contains platelets, which express TLRs and can contribute to inflammatory 

signalling462. Notably, miRs show cell-specific function which is a limitation of the 

current study. As such, we cannot determine whether specific cells are responsible for 

the upregulation of certain genes that could explain the observed gestational age-

specific responses to TLR stimulation. For example, Tregs numbers are increased in 

preterm cord blood compared to term463, 464. The FOXP3 protein is specific to Tregs and 

ensures their survival and proliferation465 and has been shown to suppress miR-155 

expression in Tregs466. Therefore, if preterm cord blood has increased numbers of 

Tregs, they may be suppressing any increases in TLR-induced miR-155 expression in 

early preterm cord blood. Future studies could confirm this using flow cytometry 

targeting cell-specific miR expression. 

In summary, the coordinated increase in pro-inflammatory and anti-inflammatory genes 

observed in term but not preterm cord blood suggests the key miRs we measured may 

not regulate inflammation as effectively in preterm neonates. This deficiency in miR-

based immune regulation could contribute to chronic inflammatory signalling that 

precedes inflammatory disease. Overall, our novel findings support that preterm 

neonatal inflammatory responses are not intrinsically immature, rather, their 

coordination and regulation of TLR signalling may be dysfunctional.  
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6.1.  ABSTRACT 

Background 

The process of inflammation changes over time under the influence of genetic regulators 

such as microRNAs (miRs). MiRs exhibit time-sensitive expression, forming feedback loops 

with other genes involved in inflammatory Toll-like Receptor (TLR) signalling. In Chapter 

5, term and late preterm cord blood increased miR expression following TLR stimulation in 

vitro while early preterm cord blood did not; however, this finding was limited by the 

analysis of a single time-point. This study therefore aimed to identify temporal differences 

in TLR signalling between term and preterm cord blood to characterise potential disruptions 

in inflammatory feedback mechanisms.  

Methods and Results 

Term, late and early preterm whole cord blood were collected and rested in vitro overnight. 

A rested sample was collected as a control measure and then cord blood was stimulated with 

TLR2, 3 or 4 agonists for 2, 6 or 24 hours before collection. Expression of miRs and mRNA 

associated with TLR signalling was quantified using qPCR. Cord blood cytokine production 

was quantified using ELISA. There was no change in the expression of any miRs or mRNAs 

over time in control cultures. In response to PGN, preterm cord blood increased IL6 

(p=0.004) and TNFα production over time (p=0.002). In response to LPS, preterm cord 

blood increased IL6 (p=0.002) and TNFα over time (p<0.001). Term cord blood increased 

TNFα in response to PGN (p<0.001) and LPS (p=0.004) over time. 

Conclusion 

Preterm cord blood upregulates pro-inflammatory cytokine expression over time following 

TLR stimulation without changing the expression of anti-inflammatory genes associated 

with TLR signalling. The lack of a temporal response to inflammatory stimulation by 

preterm cord blood may contribute to uncontrolled inflammation in preterm neonates.  
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6.2. INTRODUCTION 

Inflammation involves a dynamic series of processes which change in response to gene 

expression over time. It begins with the recruitment of leukocytes to the site of antigen 

recognition followed by pathogen killing, inflammatory resolution and repair of host tissues. 

These processes require regulation so they occur sequentially to avoid prolonged, 

pathological inflammation. Inflammatory signalling is therefore increased or decreased 

through positive and negative feedback loops created by genetic regulators such as miRs.  

TLR signalling is a key inflammatory mechanism that involves the sequential recruitment of 

adaptor molecules over time. This process can be coordinated by miRs, which repress 

inflammatory gene expression over time. For example, approximately two hours after LPS 

stimulation in vitro, murine macrophages decrease TLR4 mRNA expression, which leads to 

decreased expression of the pro-inflammatory cytokine, TNFα296, 490.  At a similar time 

point, an increase in SOCS1 expression is observed467, which contributes to the 

downregulation of cytokine signalling through NF-κB inhibition313.  These sequential 

processes highlight time-dependent changes in gene expression that regulate inflammation. 

In the context of TLR signalling, miR-146a and miR-155 play important roles. miR-146a 

forms part of a negative feedback loop as it targets IRAK1 and TRAF6, therefore 

contributing to decreased signalling along the TLR cascade. The expression of miR-146a is 

NF-κB-dependent, as its promoter region is located downstream of NF-κB binding sites. 

miR-146a expression is therefore upregulated with NF-κB signalling and peaks later during 

the inflammatory response (approximately 8 hours following pathogen exposure)323. This 

delayed timing is critical to allow the initial inflammatory response to occur. miR-155 also 

exhibits time-specific expression, which has implications for expression of its target, 

SOCS1341. Murine macrophages show increased miR-155 expression as early as 30 minutes 

following TNFα exposure, followed by a decrease in miR-155 at 1 hour in vitro362.  The 

expression of miR-155 is repressed by both NF-κB468 and IL10337. Further, IL10 mRNA is 

regulated by miR-106a, highlighting the intricate network of temporal regulation of the TLR 

signalling cascade at miR, mRNA and protein levels.  

Chapter 5 demonstrated concurrent increases in pro- and anti-inflammatory genes by term 

cord blood at 6 hours following LPS stimulation and we suggested term neonates exhibit 

inflammatory regulation through miRs. Alternately, the lack of a response by early preterm 
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cord blood suggests its miR expression is unresponsive to inflammatory stimuli. Previous 

studies have characterised temporal responses to LPS stimulation in cord blood, showing 

that neonates exhibit a delayed, but increased response in miR-146a expression over 24 

hours compared to adults242. This chapter therefore aimed to assess a time-course of miR 

and mRNA expression following TLR stimulation to examine if and when these genes were 

inducted by term and preterm cord blood. It was hypothesised that preterm cord blood would 

show increased pro-inflammatory and decreased anti-inflammatory gene expression over 

time.  
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6.3.  METHODS 

6.3.1. PARTICIPANTS & SAMPLE COLLECTION 

Pregnant women (n=49) presenting at the LMH and WCH, who delivered at early preterm 

(<32 weeks), late preterm (32-36 weeks) or term gestation (≥ 37 weeks) were recruited to 

this study. Clinical data were obtained from maternal and neonatal health records, including 

obstetric history and neonatal outcomes (see section 2.1). Cord blood was collected into 

lithium heparin vials at delivery for in vitro culture. 

6.3.2. CORD BLOOD CULTURE AND TLR STIMULATION 

Whole cord blood was plated in volumes of 100µL in flat-bottomed 96-well cell culture 

plates and cultured at 37°C and 5% CO2 overnight. Following this ‘resting’ period, one set 

of wells were left unstimulated (the untreated ‘control’) and remaining wells were 

stimulated with either PGN (TLR2 agonist; 100pg), Poly I:C (TLR3 agonist; 500pg), or LPS 

(TLR4 agonist; 1ng). Wells were collected and pooled in triplicate after 2, 6 or 24 hours in 

vitro.  

Additional replicates of whole cord blood were diluted in sterile saline (1:4) and plated 

(100µL) for subsequent cytokine analyses. Following resting, wells were stimulated with 

either PGN (100ng), Poly I:C (5μg) or LPS (1μg). Wells were collected and pooled in 

duplicate following 2, 6 or 24 hours in vitro. Replicates were centrifuged to extract culture 

supernatant. 

6.3.3. WHOLE RNA EXTRACTION 

TRIzol LS® reagent was used to extract RNA from cord blood (see section 2.5.2). Briefly, 

three volumes of TRIzol LS were added to one volume of cord blood and samples were 

mechanically agitated. Lysates were separated by centrifugation with chloroform to retrieve 

the interphase for subsequent washing with isopropanol and ethanol. RNA was eluted in 

RNase free water and purified using a miRNeasy Mini Kit and DNAse I treatment as per 

manufacturers’ protocol. RINs were assessed using a bioanalyser, where a RIN ≥ 9 was 

considered sufficient for PCR analysis. 
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6.3.4. qRT-PCR ANALYSIS OF miRNA EXPRESSION  

RNA (10ng) was reverse transcribed using a Taqman® MicroRNA Reverse Transcription 

Kit according to manufacturer’s protocol, that was slightly modified for optimal cDNA 

output (see section 2.6.1). This involved pooling a maximum of five RT primers per batch in 

a single RT mixture. Reverse transcription targeted five primer sequences: let-7e, miR-155, 

miR-146a, miR-106a and RNU48. Relative miRNA expression was quantified using 

Taqman® MicroRNA Assays in 20µL reactions containing 1.33µL of cDNA. qRT-PCR 

utilised the comparative cycle threshold (2-ΔCT) method to determine miR abundance relative 

to the reference gene RNU48. 

6.3.5. qRT-PCR ANALYSIS OF mRNA EXPRESSION 

Purified RNA (50ng) was reverse transcribed using a SuperScript™ III First-Strand 

Synthesis Kit for qRT-PCR according to manufacturer’s protocol. qRT-PCR was used to 

quantify the relative expression of miR targets including TLR2, TLR4, MyD88, IRAK1, NF-

κB1, IL6, IL10 and SOCS1 relative to the house-keeping gene, β-actin. qRT-PCR was 

performed using TaqMan® Gene Expression Assays and each 20µL reaction contained 2μL 

of the cDNA template.  

6.3.6. CORD BLOOD SERUM PROTEIN ANALYSES 

Single-target ELISAs were used to measure TNFα and IL6 in cord blood supernatant, as per 

manufacturer’s instructions (see section 2.4.1). The lower detection limit for TNFα was 

15.625pg/mL and the lower detection limit for IL6 was 31.25pg/mL. All inter-assay and 

intra-assay coefficients were below 10%. 

6.3.7. STATISTICAL ANALYSES 

Data were analysed using SPSS v24. Demographic and clinical data are presented as mean ± 

SD, unless otherwise indicated. Frequency data were analysed using Chi-squared tests. 

Kruskal-Wallis tests or ANOVAs were used to analyse continuous data. Post-hoc analyses 

were conducted using Mann-Whitney U tests or t-tests as required, using the Bonferroni 

adjustment to the critical alpha level. Gene and cytokine expression are presented as median 

(25th-75th centile), unless otherwise indicated, and were logarithmically transformed (log10) 

to normalise data for parametric analysis. 
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Repeated measures ANCOVAs were used to interpret transformed data, using pre-

eclampsia, labouring delivery, maternal smoking during pregnancy, chorioamnionitis and 

antenatal betamethasone as covariates where required. Where assumptions of sphericity 

were violated, degrees of freedom were corrected using the Greenhouse Geisser estimates. 

Post-hoc comparisons were made using t-tests where appropriate. An a priori Bonferroni 

correction was made to the critical alpha level for post-hoc comparisons. An alpha level of 

<0.05 was considered statistically significant.  
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6.4. RESULTS 

6.4.1. PARTICIPANT CHARACTERISTICS 

Clinical characteristics from term (n=26), late preterm (n=13) and early preterm (n=10) 

deliveries are shown in Table 6.1. Maternal age, BMI, cigarette smoking during pregnancy, 

pre-eclampsia, gravidity and ethnicity were not significantly different between gestational 

age groups. Gestational age at delivery (completed weeks) was significantly different 

between the gestational age groups (F(2,48)=319.239, p<0.001). Parity was significantly 

different between the groups (χ2(2)= 21.127, p=0.009). Post-hoc tests showed that parity was 

higher in mothers who delivered late preterm compared to term (p=0.009) and between 

mothers who delivered late preterm compared to early preterm (p=0.011). Mode of delivery 

and labour were equally distributed between the groups.  

Early (90%) and late preterm neonates (77%) were more frequently exposed to antenatal 

betamethasone compared to term neonates (12%; χ2(2)=24.446, p<0.001). Birthweight was 

significantly different between the gestational age groups (F(2,48)=97.995, p<0.001) and 

post-hoc tests showed it was lower in early preterm compared to late preterm and term, and 

between late preterm compared to term (p<0.001 for all). Birthweight centile was also 

significantly different between the groups (F(2,48)=9.021, p<0.001), with post-hoc tests 

showing it was lower in early preterm compared to term (p=0.001). The incidence of SGA 

and IUGR was more frequent among early preterm neonates compared to late preterm and 

term (χ2(2)=12.772, p=0.002; and χ2(2)=14.763, p=0.001, respectively). Birth length was 

significantly different between the groups (F(2,44)=93.539, p<0.001) and post-hoc tests 

revealed it was significantly lower between early preterm and term, early preterm and late 

preterm, and late preterm and term neonates (p<0.001 for all). Neonatal head circumference 

was significantly different between the groups (F(2,44)=13.142, p<0.001). Post-hoc tests 

showed it was significantly lower in early preterm compared to term (p<0.001) and late 

preterm compared to term (p=0.035). APGARS at 1 and 5 minutes were significantly 

different between the gestational age groups (χ2(2)=11.007, p=0.004; and χ2(2)=13.783, 

p=0.001, respectively). Post-hoc tests showed APGARS at one minute (p=0.002) and at five 

minutes (p=0.006) were lower in early preterm compared to term neonates.  

Placental weight was significantly different between the gestational age groups 

(F(2,38)=34.384, p<0.001). Post-hoc tests showed it was lower in early preterm compared to 
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term (p<0.001), early preterm compared to late preterm (p=0.016) and late preterm 

compared to term deliveries (p=0.001). The incidence of chorioamnionitis was more 

frequent in early preterm deliveries (30%) compared to late preterm (8%) and term (0%; 

χ2(2)=8.676, p=0.013).   
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Table 6.1. Maternal demographics and neonatal characteristics of term, late and early 

preterm deliveries for cord blood analysed in Chapter 6.  Values are given as mean± SD or 

n (%), unless otherwise indicated. p-values presented in the table were calculated using 

ANOVAs or Kruskal-Wallis tests. Post-hoc tests were conducted using t-tests or Mann-

Whitney U tests and are represented within each gestational age group column by the 

following symbols: *p≤ 0.05 compared to both other groups; #p≤ 0.05 compared to term.  

 Term Late 

Preterm 

Early 

Preterm 

p value 

n=26 n=13 n=10 

Gestational age (completed weeks), 

median (min-max) 
38 (37-41)* 34 (32-36)* 30 (27-31) <0.001 

Maternal demographics: 

Age, years 

BMI, kg/m2 

Gravidity, median (min-max) 

Parity, median (min-max)            

Smoking during pregnancy 

Ethnicity: 

Caucasian 

Indigenous 

Other 

 

30 ±4 

30 ±8 

2 (1-6) 

1 (0-4) 

4 (15) 

 

17 (65) 

0 (0) 

9 (35) 

 

28 ±7 

24 ±4 

2 (1-4) 

0 (0-1)* 

1 (8) 

 

8 (62) 

0 (0) 

5 (38) 

 

30 ±7 

30 ±8 

3 (1-7) 

2 (0-4) 

2 (20) 

 

7 (70) 

1 (10) 

2 (20) 

 

0.301 

0.113 

0.250 

0.009 

0.628 

 

 

0.391 

 

Maternal complications: 

 Pre-eclampsia 

 

 

2 (8) 
 

5 (39) 

 

2 (20) 

 

0.093 

Multiple pregnancy  

 

1 (4) 3 (23) 2 (20) 0.158 

Labouring delivery 

Mode of delivery: 

 Emergency Caesarean section 

 Elective Caesarean section 

 Vaginal delivery 

9 (35) 

 

5 (19) 

15 (58) 

6 (23) 

6 (46) 

 

6 (46) 

4 (31) 

3 (23) 

2 (20) 

 

3 (30) 

6 (60) 

1 (10) 

0.426 

 

 

0.366 

Placenta: 

 Weight, g 

 Histological chorioamnionitis 

 

787 (±172)* 

0 (0) 

 

446 (±160)* 

1 (8) 

 

229 (±94) 

3 (30) 

 

<0.001 

0.013 

Neonatal characteristics: 

Male  

Birthweight, g 

Birth centile, % 

SGA 

IUGR 

Birth length, cm 

Head circumference, cm 

 

12 (46) 

3618 

(±521)* 

63 (±31)* 

3 (14) 

0 (0) 

50 (±2)* 

35 (±1)* 

 

4 (31) 

2273 

(±534)* 

38 (±35)* 

2 (15) 

1 (8) 

44 (±3)* 

32 (±1) 

 

7 (70) 

1110 (±394) 

16 (±23)* 

7 (70) 

5 (50) 

34 (±6) 

29 (±7) 

 

0.173 

<0.001 

<0.001 

0.002 

0.001 

<0.001 

<0.001 

Antenatal betamethasone, n (%) 

 
3 (12) 10 (77) 9 (90) <0.001 

APGARS, median, (min-max): 

           1 min 

           5 min 

 

9 (6-9) 

9 (7-10) 

 

9 (3-9) 

9 (6-9) 

 

6 (2-9)# 

7 (5-9)# 

 

0.004 

0.001 



Chapter 6:  

Temporal Changes in Cord Blood Gene Expression Following TLR 

Stimulation    Page 180 

 

6.4.2. THE EXPRESSION OF GENES ASSOCIATED WITH TLR 

SIGNALLING IN CORD BLOOD OVER TIME 

To ensure that time alone did not alter gene expression, miR expression was compared in 

matched unstimulated samples of term and late preterm cord blood. Early preterm samples 

were not used for this analysis due to limitations in available cord blood. Although whole 

blood was cultured over 24 hours, RNA integrity was lost by the 24 hour time point. RNA 

integrity was, however, maintained at 2 and 6 hours (RIN ≥ 9). This meant that only qPCR 

data from 0, 2 and 6 hour time-points were available for analysis. No change was observed 

in miR or mRNA expression in unstimulated cultures over time (Figs. 6.1-10). There were 

insufficient data points on IL6 and IL10 expression in rested cultures, which may relate to 

the previously discussed issue of inconsistent constitutive cytokine gene expression (see 

section 4.5) 

 

Figure 6.1. The expression of let-7e in term and late preterm cord blood over time in 

vitro. The expression of let-7e relative to RNU48 in term (A) and late preterm cord blood 

(B) over time in vitro (hours). Note: the y-axes are presented on a logarithmic scale, 

*p<0.05. 
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Figure 6.2. The expression of miR-155 in term and late preterm cord blood over time in 

vitro. The expression of miR-155 relative to RNU48 in term (A) and late preterm cord blood 

(B) over time in vitro (hours). Note: the y-axes are presented on a logarithmic scale, 

*p<0.05. 

 

Figure 6.3. The expression of miR-146a in term and late preterm cord blood over time in 

vitro. The expression of miR-146a relative to RNU48 in term (A) and late preterm cord 

blood (B) over time in vitro (hours). Note: the y-axes are presented on a logarithmic scale, 

*p<0.05. 
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Figure 6.4. The expression of miR-106a in term and late preterm cord blood over time in 

vitro. The expression of miR-106a relative to RNU48 in term (A) and late preterm cord 

blood (B) over time in vitro (hours). Note: the y-axes are presented on a logarithmic scale, 

*p<0.05. 

 

Figure 6.5. The expression of TLR2 in term and late preterm cord blood over time in 

vitro. The expression of TLR2 relative to β-actin in term (A) and late preterm cord blood (B) 

over time in vitro (hours). Note: the y-axes are presented on a logarithmic scale, *p<0.05. 
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Figure 6.6. The expression of TLR4 in term and late preterm cord blood over time in 

vitro. The expression of TLR4 relative to β-actin in term (A) and late preterm cord blood (B) 

over time in vitro (hours). Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

 

Figure 6.7. The expression of IRAK1 in term and late preterm cord blood over time in 

vitro. The expression of IRAK1 relative to β-actin in term (A) and late preterm cord blood 

(B) over time in vitro (hours). Note: the y-axes are presented on a logarithmic scale, 

*p<0.05. 
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Figure 6.8. The expression of MyD88 in term and late preterm cord blood over time in 

vitro. The expression of MyD88 relative to β-actin in term (A) and late preterm cord blood 

(B) over time in vitro (hours). Note: the y-axes are presented on a logarithmic scale, 

*p<0.05. 

 

Figure 6.9. The expression of NF-κB1 in term and late preterm cord blood over time in 

vitro. The expression of NF-κB1 relative to β-actin in term (A) and late preterm cord blood 

(B) over time in vitro (hours). Note: the y-axes are presented on a logarithmic scale, 

*p<0.05. 
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Figure 6.10. The expression of SOCS1 in term and late preterm cord blood over time in 

vitro. The expression of SOCS1 relative to β-actin in term (A) and late preterm cord blood 

(B) over time in vitro (hours). Note: the y-axes are presented on a logarithmic scale, 

*p<0.05. 

6.4.2.1. TLR2 (PGN) Stimulation Over Time 

MiR expression was analysed in term, late preterm and early preterm cord blood over time 

(between rested cultures, and 2 and 6 hours following PGN stimulation). There was no 

interaction between time and gestational age group in our analysis of cord blood let-7e, miR-

155 or miR-146a expression after adjusting for pre-eclampsia, maternal smoking, labour, 

chorioamnionitis and betamethasone exposure (Figs. 6.11-13). Similarly, no significant 

interaction effect of gestational age and time was observed for expression of miR-106a 

following stimulation, however a non-significant trend towards increased miR-106a 

expression in term cord blood was observed at 6 hours (p=0.058; Fig. 6.14). 

 

Figure 6.11. The expression of let-7e in term and late preterm cord blood over time 

following PGN stimulation. The expression of let-7e relative to RNU48 in term (A) and late 

preterm cord blood (B) over time following PGN stimulation in vitro (hours). Note: the y-

axes are presented on a logarithmic scale, *p<0.05. 
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Figure 6.12. The expression of miR-155 in term and late preterm cord blood over time 

following PGN stimulation. The expression of miR-155 relative to RNU48 in term (A) and 

late preterm cord blood (B) over time following PGN stimulation in vitro (hours). Note: the 

y-axes are presented on a logarithmic scale, *p<0.05. 

 

Figure 6.13. The expression of miR-146a in term and late preterm cord blood over time 

following PGN stimulation. The expression of miR-146a relative to RNU48 in term (A) and 

late preterm cord blood (B) over time following PGN stimulation in vitro (hours). Note: the 

y-axes are presented on a logarithmic scale, *p<0.05. 

 

Figure 6.14. The expression of miR-106a in term and late preterm cord blood over time 

following PGN stimulation. The expression of miR-106a relative to RNU48 in term (A) and 

late preterm cord blood (B) over time following PGN stimulation in vitro (hours). Note: the 

y-axes are presented on a logarithmic scale, *p<0.05. 
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6.4.2.2. TLR3 (Poly I:C) Stimulation over time  

There was no interaction between time and gestational age in cord blood miR 

expression following Poly I:C stimulation over time after adjusting for pre-

eclampsia, labour, maternal smoking, chorioamnionitis and antenatal 

betamethasone (Figs. 6.15-18). 

 

Figure 6.15. The expression of let-7e in term and late preterm cord blood over 

time following Poly I:C stimulation. The expression of let-7e relative to RNU48 

in term (A) and late preterm cord blood (B) over time following Poly I:C 

stimulation in vitro (hours). Note: the y-axes are presented on a logarithmic 

scale, *p<0.05. 

 

Figure 6.16. The expression of miR-155 in term and late preterm cord blood 

over time following Poly I:C stimulation. The expression of miR-155 relative to 

RNU48 in term (A) and late preterm cord blood (B) over time following Poly I:C 

stimulation in vitro (hours). Note: the y-axes are presented on a logarithmic 

scale, *p<0.05. 
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Figure 6.17. The expression of miR-146a in term and late preterm cord blood 

over time following Poly I:C stimulation. The expression of miR-146a relative 

to RNU48 in term (A) and late preterm cord blood (B) over time following Poly 

I:C stimulation in vitro (hours). Note: the y-axes are presented on a logarithmic 

scale, *p<0.05. 

 

 

Figure 6.18. The expression of miR-106a in term and late preterm cord blood 

over time following Poly I:C stimulation. The expression of miR-106a relative 

to RNU48 in term (A) and late preterm cord blood (B) over time following Poly 

I:C stimulation in vitro (hours). Note: the y-axes are presented on a logarithmic 

scale, *p<0.05. 

6.4.2.3. TLR4 (LPS) Stimulation Over Time 

There was no interaction between time and gestational age in cord blood miR 

expression following LPS stimulation over time after adjusting for pre-

eclampsia, labour, maternal smoking, chorioamnionitis and antenatal 

betamethasone (Figs. 6.19-22). 
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Figure 6.19. The expression of let-7e in term and late preterm cord blood over 

time following LPS stimulation. The expression of let-7e relative to RNU48 in 

term (A) and late preterm cord blood (B) over time following LPS stimulation in 

vitro (hours). Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

 

Figure 6.20. The expression of miR-155 in term and late preterm cord blood 

over time following LPS stimulation. The expression of miR-155 relative to 

RNU48 in term (A) and late preterm cord blood (B) over time following LPS 

stimulation in vitro (hours). Note: the y-axes are presented on a logarithmic 

scale, *p<0.05. 
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Figure 6.21. The expression of miR-146a in term and late preterm cord blood 

over time following LPS stimulation. The expression of miR-146a relative to 

RNU48 in term (A) and late preterm cord blood (B) over time following LPS 

stimulation in vitro (hours). Note: the y-axes are presented on a logarithmic 

scale, *p<0.05. 

 

 

Figure 6.22. The expression of miR-106a in term and late preterm cord blood 

over time following LPS stimulation. The expression of miR-106a relative to 

RNU48 in term (A) and late preterm cord blood (B) over time following LPS 

stimulation in vitro (hours). Note: the y-axes are presented on a logarithmic 

scale, *p<0.05. 
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6.4.2.3.1. The expression of genes associated with TLR signalling (mRNA) 

following LPS stimulation over time 

A subset of samples were analysed for mRNA expression associated with TLR4 

signalling in term (n=6) and late preterm (n=8) cord blood.  

Late preterm cord blood increased IL6 expression over time (F(2,2)=121.312, 

p=0.008; Fig. 6.23). Post-hoc analyses revealed that IL6 expression was increased 

between baseline and 6 hours (p=0.038), but not between baseline and 2 hours or 

2 and 6 hours in preterm cord blood following LPS stimulation. Term cord blood 

did not show any change in IL6 expression over time following LPS stimulation.  

 

Figure 6.23. The expression of IL6 in term and late preterm cord blood over 

time following LPS stimulation. The expression of IL6 relative to β-actin in term 

(A) and late preterm cord blood (B) following LPS stimulation over time in vitro 

(hours). Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

There was no interaction between time and gestational age group in cord blood 

TLR2 (Fig.6.24), TLR4 (Fig.6.25), MyD88 (Fig.6.26), IRAK1 (Fig.6.27), NF-κB1 

(Fig.6.28), IL10 (Fig.6.29) or SOCS1 expression (Fig.6.30) following LPS 

stimulation after adjusting for the covariates.  
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Figure 6.24. The expression of TLR2 in term and late preterm cord blood 

following LPS stimulation over time. The expression of TLR2 relative to β-actin 

in term (A) and preterm cord blood (B) following LPS stimulation over time in 

vitro (hours). Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

 

Figure 6.25. The expression of TLR4 in term and late preterm cord blood 

following LPS stimulation over time. The expression of TLR4 relative to β-actin 

in term (A) preterm cord blood (B) following LPS stimulation over time in vitro 

(hours). Note: the y-axes are presented on a logarithmic scale, *p<0.05. 
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Figure 6.26. The expression of MyD88 in term and late preterm cord blood 

following LPS stimulation over time. The expression of MyD88 relative to β-

actin in term (A) and preterm cord blood (B) following LPS stimulation over time 

in vitro (hours). Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

 

Figure 6.27. The expression of IRAK1 in term and late preterm cord blood 

following LPS stimulation over time. The expression of IRAK1 relative to β-actin 

in term (A) and preterm cord blood (B) following LPS stimulation over time in 

vitro (hours). Note: the y-axes are presented on a logarithmic scale, *p<0.05. 
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Figure 6.28. The expression of NF-κB1 in term and late preterm cord blood 

following LPS stimulation over time. The expression of NF-κB1 relative to β-

actin in term (A) and preterm cord blood (B) following LPS stimulation over time 

in vitro (hours). Note: the y-axes are presented on a logarithmic scale, *p<0.05. 

 

Figure 6.29. The expression of IL10 in term and late preterm cord blood 

following LPS stimulation over time. The expression of IL10 relative to β-actin 

in term (A) and preterm cord blood (B) following LPS stimulation over time in 

vitro (hours). Note: the y-axes are presented on a logarithmic scale, *p<0.05. 
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Figure 6.30. The expression of SOCS1 in term and late preterm cord blood 

following LPS stimulation over time. The expression of SOCS1 relative to β-actin 

in term (A) and preterm cord blood (B) following LPS stimulation over time in 

vitro (hours). Note: the y-axes are presented on a logarithmic scale, *p<0.05. 
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6.4.3. CORD BLOOD CYTOKINE PRODUCTION FOLLOWING TLR 

STIMULATION OVER TIME  

TNFα and IL6 production following TLR stimulation was assessed in a subset of term 

(n=17) and late preterm (n=17) cord blood samples due to limitations in volumes available.  

6.4.3.1. Cord Blood Cytokine Expression Following PGN Stimulation 

Preterm cord blood IL6 production showed a significant interaction with time following 

PGN stimulation (F(2,24)=6.922, p=0.004; Fig. 6.31B). Post-hoc analyses revealed IL6 

expression was increased between 2 and 24 hours (p=0.001), but not between 2 and 6 or 6 

and 24 hours in preterm cord blood. Term cord blood IL6 production did not show an 

interaction with time following PGN stimulation (Fig. 6.31A.  

 

Fig. 6.31. Cord blood IL6 production in term and preterm cord blood following PGN 

stimulation over time. IL6 production by term (A) and late preterm (B) cord blood 

stimulated with PGN over time in vitro (hours), *p<0.05. 

Term cord blood TNFα production increased significantly over time following PGN 

stimulation (F(2,53)=8.811, p<0.001; Fig. 6.32A). Post-hoc analyses revealed TNFα 

expression was increased between 2 and 6 hours (p=0.001), and 2 and 24 hours (p<0.001) 

but not between 6 and 24 hours in term cord blood. Late preterm cord blood TNFα showed a 

significant increase over time following PGN stimulation (F(2,34)=7.219, p=0.002; Fig. 

6.32B). Post-hoc analyses revealed TNFα expression was increased between 2 and 6 hours 

(p=0.023) and 2 and 24 hours (p=0.001), but not between 6 and 24 hours in preterm cord 

blood. 
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Fig. 6.32. Cord blood TNFα production in term and preterm cord blood following PGN 

stimulation over time. TNFα production by term (A) and preterm (B) cord blood stimulated 

with PGN over time in vitro (hours), *p<0.05.  
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6.4.3.2. Cord Blood Cytokine Expression Following Poly I:C Stimulation 

There was no change in IL6 or TNFα production over time in vitro following Poly I:C 

stimulation in term or preterm cord blood (Figs. 6.33-4).  

 

Fig. 6.33. Cord blood IL6 production in term and preterm cord blood following Poly I:C 

stimulation over time. IL6 production by term (A) and late preterm (B) cord blood 

stimulated with Poly I:C over time in vitro (hours), *p<0.05. 

 

Fig. 6.34. Cord blood TNFα production in term and preterm cord blood following Poly 

I:C stimulation over time. TNFα production by term (A) and preterm (B) cord blood 

stimulated with Poly I:C over time in vitro (hours), *p<0.05. 
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6.4.3.3. Cord Blood Cytokine Expression Following LPS Stimulation 

Term cord blood IL6 did not increase over time following LPS stimulation (Fig.6.35A). 

Preterm cord blood IL6 showed a significant increase over time following LPS stimulation 

(F(2,21)=8.095, p=0.002; Fig. 6.35B). Post-hoc analyses revealed IL6 expression was 

increased between 2 and 24 hours (p=0.001), and 6 and 24 hours (p=0.046), but not between 

2 and 6 hours in preterm cord blood.  

 

Fig. 6.35. Cord blood IL6 in term and preterm cord blood following LPS stimulation over 

time. IL6 production by term (A) and preterm (B) cord blood stimulated with LPS over time 

in vitro (hours), *p<0.05. 

Term cord blood TNFα production increased over time following LPS stimulation 

(F(2,43)=6.383, p=0.004; Fig. 6.36A). Post-hoc analyses revealed TNFα expression was 

increased between 2 and 6 hours (p=0.011) and 2 and 24 hours (p=0.002), but not between 6 

and 24 hours in term cord blood. Preterm cord blood TNFα production increased over time 

following PGN stimulation (F(2,34)=11.162, p<0.001; Fig. 6.36B). Post-hoc analyses 

revealed TNFα expression was increased between 2 and 6 hours (p=0.001) and 2 and 24 

hours (p<0.001), but not between 6 and 24 hours in preterm cord blood. 
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Fig. 6.36. Cord blood TNFα production in term and preterm cord blood following LPS 

stimulation over time. TNFα production by term (A) and preterm (B) cord blood stimulated 

with LPS over time in vitro (hours), *p<0.05  
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6.5. DISCUSSION 

We observed no change in cord blood miR expression between rested cultures, 2 and 6 

hours following TLR2, 3 or 4 stimulation. However, preterm cord blood showed time-

dependent increases in IL6 mRNA and cytokine expression following LPS stimulation. We 

also observed increases in IL6 and TNFα protein following PGN and LPS stimulation in 

preterm cord blood over 24 hours. Conversely, term cord blood did not change gene 

expression over time following TLR stimulation, but increased TNFα production following 

LPS and PGN stimulation. These findings do not support the presence of time-dependent 

gene regulation in cord blood over the first 6 hours following TLR stimulation. However, 

the difference between preterm and term cytokine responses suggests differential regulation 

of the innate immune response may occur between 6 and 24 hours post stimulation. Whether 

this can be explained by differential miR regulation is beyond the scope of the current data, 

given that we were unable to assess miR expression at 24 hours due to low RNA integrity.  

Previous studies have assessed miR expression in immortalised human monocyte cell lines 

(THP-1 cells) and shown TNFα expression increases 4-6 hours following LPS stimulation 

and then decreases when miR-146a starts to increase 8 hours following stimulation323. miR-

146a expression then peaks at 18 hours following LPS stimulation, when TNFα is not 

detected, which the authors suggest is a mechanism for endotoxin tolerance. Our data may 

also support this, demonstrating a plateau in TNFα expression 6 hours following PGN and 

LPS stimulation, although we were unable to confirm any change in miR-146a expression 

between 6 and 24 hours. In a similar study to ours, Lederhuber et al. observed a two-fold 

increase in miR-146a expression by LPS-stimulated term cord blood monocytes after 24 

hours in vitro (exceeding adult levels), but not any earlier during the first 12 hours in 

vitro242. These findings suggest miR transcripts accumulate gradually to dampen 

inflammation, which may be the reason our data did not demonstrate changes in gene 

expression between rested cultures and 2 and 6 hours following TLR stimulation in vitro.  

The current data shows TNFα production was increased until 6 hours, without any change in 

TLR4 expression, but an increase in NF-κB1 (see Chapter 5). This could suggest the lack of 

an effective feedback loop during TLR signalling. Typically, TNFα is classed as an early-

response cytokine. In murine macrophages, its expression decreases 2 hours after LPS 

stimulation due to an associated decrease in TLR4 expression and NF-κB inhibition469, 470. 
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miR-155 expression is also responsive to TNFα expression362 and therefore, altered by  

changes associated with NF-κB induction at 30 minute intervals following LPS 

stimulation346. Studies have shown that peak miR-155 expression in murine macrophages 

also occurs between 4 and 6 hours following LPS stimulation341. As we observed no 

significant increase in miR expression between 2 and 6 hours following TLR stimulation, 

we postulate that cord blood demonstrates delayed miR expression or alternative means of 

gene regulation.  

A limitation of the current study was our inability to characterise cord blood miR expression 

following TLR stimulation at 24 hours in vitro. Future characterisation of this time-point is 

critical as previous studies using term cord blood monocytes have shown miR-146a 

significantly increases after 24 hours LPS stimulation in vitro242. Others have used 

immortalised cell lines to investigate temporal feedback loops in the context of LPS-

stimulated miR expression323, which is also a plausible alternative for cord blood 

characterisation. Notably, however, both of these studies used isolated cell populations that 

were supplemented with cell culture media. In contrast to this, our model aimed to 

investigate cord blood as a more realistic analogue for the neonatal TLR response. Future 

studies could therefore characterise temporal miR responses using whole cord blood 

supplemented with appropriate cell culture media. This strategy would increase the 

likelihood of cell survival across the 6-36 hour period following TLR stimulation in vitro.  

Despite limitations in characterising gene expression, we observed a significant upregulation 

in IL6 protein expression over 24 hours following PGN and LPS stimulation in preterm but 

not term cord blood. Therefore, in addition to the lack of miR induction shown by preterm 

cord blood, our findings support a predisposition towards pro-inflammatory mediator 

expression over time. IL6 is associated with chronic and acute inflammatory diseases, as it 

has systemic roles in inflammation, including the secretion of acute phase proteins (e.g. C-

reactive protein)471. The regulation of IL6 is therefore key in influencing the magnitude, 

duration and outcome of inflammation472. While the robust IL6 response to TLR stimulation 

may be protective initially, its continued upregulation past 6 hours in preterm cord blood and 

a lack of regulatory gene expression appears pathological. The consistent upregulation of 

IL6 could lead to systemic inflammatory signalling that could underlie the increased burden 

of systemic inflammatory conditions in preterm neonates473, 474, though this requires more 

specific investigation.   
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Aberrant TLR signalling characterised by disrupted feedback loops has been associated with 

severe inflammatory conditions. As such, the pathogenesis of sepsis results from poorly 

timed and inappropriate anti-inflammatory mechanisms. Traditionally, sepsis is viewed as a 

biphasic response consisting of a systemic inflammatory response (SIRS) followed by a 

compensatory anti-inflammatory response (CARS) that ultimately prolong low-grade 

inflammatory signalling475. Preterm neonates with sepsis show increased numbers of Tregs 

in their peripheral blood, suggesting that they are downregulating inflammation that could 

lead to a chronic instead of acute inflammatory response (which would normally clear 

infection)476. More recent reviews, however, suggest no evidence for sequential SIRS and 

CARS, instead proposing a model for a ‘genomic storm’ where both pro- and anti-

inflammatory genes are upregulated475, 477. This occurs to the extent that elevated expression 

of anti-inflammatory IL10 is associated with higher rates of patient mortality478. The current 

study indicates an absence of temporal-gate switching to allow for changes from pro-

inflammatory to anti-inflammatory signalling in preterm cord blood. Further, data from 

Chapter 5 also support the model of a ‘genomic storm’, where we observed simultaneous 

increases in IL6 and IL10 mRNA in early preterm cord blood. Therefore, while further 

studies need to better characterise this feedback loop over longer periods of time, our data 

begins to suggest that preterm cord blood lacks effective regulatory relationships between 

inflammatory genes.  

In summary, while there was no change in miR or mRNA expression in term or preterm 

cord blood, preterm cord blood increased IL6 protein production over time following TLR 

stimulation. This may suggest temporal signalling switches are impaired, predisposing 

preterm neonates to harmful loops of inflammatory signalling. Future studies are required to 

confirm this lack of gene regulation extends to the 24 hour time point in vitro. 
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7.1.  ABSTRACT 

Background 

Toll-like Receptor (TLR) signalling is regulated by complex networks of inflammatory 

genes, including microRNAs (miRs). The experiments described in previous chapters 

demonstrated increased TLR signalling in early preterm cord blood in the absence of 

regulatory gene expression following immune stimulation. Since miRs are ubiquitously 

expressed and affect different networks of genes, this chapter aimed to use bioinformatics 

approaches to identify alternative genes and network-level perturbations that may alter 

inflammatory signalling in preterm neonates.  

Methods and Results 

Publicly available microarray data published on the NCBI GEO database was used to assess 

the expression of genes in the TLR signalling pathway in peripheral blood from neonates 

with and without infection. Data on healthy adult blood cells from the ImmunoNavigator 

database was extracted and co-expression profiles of genes associated with TLR signalling 

were identified and assessed.  

Neonatal infection was associated with upregulated innate immune pathways and 

downregulated of adaptive immune pathways. Preterm neonates with infection upregulated 

STAT1 and CXCL8 compared to term neonates with infection. Co-expression profiles of 

adult cells found that neutrophils were associated with increased expression of MyD88 and 

NF-κB inhibitors compared to other leukocytes and lymphocytes. 

Conclusions 

Our bioinformatics analysis identified novel gene targets from innate immune signalling 

pathways. A unique pattern of gene expression was observed in preterm neonates, 

particularly those with infection, which supports they are biased towards increased 

inflammatory signalling.  
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7.2. INTRODUCTION 

Preterm neonates are more susceptible to developing systemic inflammatory conditions 

compared to term neonates. These conditions are associated with high morbidity and 

mortality, which occur secondary to acute inflammation. Inflammatory regulation is 

complex and involves networks of genes that can be regulated by miRs, which exhibit time 

and tissue-specific patterns of expression. These pathways are sparsely characterised in 

neonatal immunity.  

Preceding chapters in this thesis have demonstrated that early preterm cord blood increases 

pro-inflammatory gene expression following TLR stimulation in vitro, which is comparable 

in magnitude to stimulated term cord blood. In association with this, TLR-stimulated term 

cord blood upregulates the expression of miRs known to regulate TLR signalling, whereas 

preterm cord blood does not. This apparent lack of miR expression may have wide-spread 

effects on neonatal physiology, given that a single miR can target over 200 mRNA 

transcripts479 and mRNA targets themselves can be regulated by multiple miRs480. To 

examine such patterns of regulation more broadly, bioinformatics pathway analyses have 

emerged as important tools for understanding large-scale cellular processes such as 

inflammation. Pathway analyses provide a wider perspective for the potential effects of gene 

changes and are useful for recognising the complexity of miR-based regulation and 

inflammation. Bioinformatics can be used to investigate patterns of gene expression in 

silico, where statistical analyses are driven by specific biological questions.  

Bioinformatics has previously been used to assess differential gene expression in neonates 

who develop infection390, 402. The results of genome-wide association studies (GWAS) have 

demonstrated that term and preterm neonates who develop sepsis less than 72 hours 

following birth (early-onset neonatal sepsis) show a unique profile of gene expression 

compared to neonates who develop sepsis at least 72 hours after birth (late-onset neonatal 

sepsis)402. Specifically, early-onset neonatal sepsis was associated with greater upregulation 

of pro-inflammatory interferons and IL1α, genes associated with neutrophil extracellular trap 

(NET) formation, and decreased expression of apoptotic genes, including sFAS (which 

contributes to inflammatory resolution). This genetic profile suggests early-onset neonatal 

sepsis is associated with a greater magnitude of inflammation compared to late-onset 

neonatal sepsis. This is an example of the same condition exhibiting unique transcriptomic 
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profiles that are dependent on timing (postnatal age) or mode of acquisition. Overall, these 

studies demonstrate the potential for GWAS in informing prognostic testing or novel 

methods of intervention.  

This chapter aimed to review publicly available microarray expression data examining gene 

expression in peripheral neonatal blood exposed to pathogens402, 403. Specifically, we aimed 

to assess TLR signalling pathways to identify any differentially expressed genes in neonates 

with and without infection. We used bioinformatics approaches to characterise pathways of 

genetic regulation in preterm cord blood to identify potential mechanisms that contribute to 

differences in inflammatory signalling between preterm and term neonates. Additionally, 

publicly-available array data generated from adult immunocytes was investigated to identify 

patterns of cell-specific gene expression in the context of TLR signalling. Overall, it was 

hypothesised that preterm neonates with infection or sepsis would upregulate inflammatory 

pathways.  
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7.3.  METHODS 

7.3.1. TLR SIGNALLING PATHWAY ANALYSIS 

In silico bioinformatics analyses were used to examine networks of gene expression in 

neonatal peripheral blood (see section 2.7.1). Publicly available custom Affymetrix gene 

array data profiling whole peripheral blood from neonates was analysed390, 402, 403. 

GEOquery and GEO2R packages were used to download the datasets (GSE69686 and 

GSE25504). The analysis involving GSE69686 selected individuals that were defined as 

preterm neonates with or without clinical sepsis. We selected individuals from the 

GSE25504 dataset that were defined as preterm or term neonates, with or without bacterial 

infection. Demographic and clinical data are presented as frequencies or mean ± SD for each 

of these study groups, unless otherwise indicated.  

Bioinformatics analyses were performed in collaboration with Dr Jimmy Breen 

(Bioinformatics core-facility manager, Robinson Research Institute, University of Adelaide) 

using the R software package, limma. Data were normalised using log transformation prior 

to analysis. Differentially expressed genes within the TLR signalling pathway (KEGG ID: 

hsa04620) were identified from each dataset and generated as heat-maps (counts per million, 

cpm). The top 20 KEGG pathways that were differentially expressed according to infection 

were presented for the data set GSE25504.  

7.3.2. CELL TYPE ENRICHMENT ANALYSIS 

The Immuno-Navigator database (http://sysimm.ifrec.osaka-u.ac.jp/immuno-navigator/) was 

used to query target genes in the TLR signalling pathway to identify correlation scores of 

gene co-expression in specific tissues (sorted by significance of expression enrichment; see 

section 2.7.2). The correlation network hub prediction tool was used to determine how many 

networks the listed genes were associated with in healthy, unstimulated adult immunocytes 

from peripheral blood.   

  

http://sysimm.ifrec.osaka-u.ac.jp/immuno-navigator/
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7.4. RESULTS 

7.4.1. PATHWAY ANALYSIS OF DATA COLLECTED FROM NEONATES 

WITH BACTERIAL INFECTIONS 

Complete demographics for the dataset are reported in the original publication403, with 

samples extracted for our analysis summarised in Table 7.1. The data extracted for this 

analysis originated from peripheral blood collected from neonates admitted to the NICU, 

including preterm neonates with confirmed bacterial infection (n=22), preterm neonates 

without infection (n =8), term neonates with bacterial infection (n=3) and term neonates 

without infection (n=21). Infection was confirmed by positive blood culture results, with the 

most common culture-positive pathogen being Coagulase Negative Staphylococcus (CoNS). 

White blood cell (WBC) counts were decreased in term neonates with infection compared 

term neonates without infection, but increased in preterm neonates with infection compared 

to those without infection. Decreased platelet counts and increased numbers of neutrophils 

were associated with infection in both groups of neonates. 
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Table 7.1. Clinical characteristics of neonates extracted from the GSE25504 dataset and 

analysed in Chapter 7. Maternal demographics and neonatal characteristics of term and 

preterm deliveries with and without infection from the dataset GSE25504 (further 

summarised in the original publication403) used for the analysis of peripheral blood gene 

expression. Values are presented as mean± SD or n (%), unless otherwise indicated.  

 Term Preterm 

 

No infection Infection No infection Infection 

n=21 n=3 n=8 n=22 

Gestational age (completed 

weeks), median (min-max) 

40 (37-42) 37 (37-38) 34 (30-36) 29 (25-34) 

Neonatal demographics: 

Male sex 

Antibiotics at time of 

sampling 

Birthweight, g 

 

11 (52%) 

0 (0%) 

 

3483±689 

 

2 (67%) 

0 (0%) 

 

2647±1442 

 

4 (50%) 

0 (0%) 

 

1478±602 

 

12 (55%) 

15 (68%) 

 

962±234 

Neonatal blood culture results: 

Negative 

GBS positive 

CoNS positive 

Enterococcus positive 

Other pathogen 

 

21 (100%) 

- 

- 

- 

- 

 

- 

1 (33%) 

1 (33%) 

0 (0%) 

1 (33%) 

 

8 (100%) 

- 

- 

- 

- 

 

- 

1 (5%) 

13 (59%) 

5 (23%) 

3 (14%) 

Reason for sampling: 

 Neonatal screen   

 Jaundice 

            Maternal thyroid         

            disease 

            Suspected infection 

            Other 

 

1 (5%) 

3 (14%) 

14 (67%) 

 

0 (0%) 

3 (14%) 

 

- 

- 

- 

 

3 (100%) 

- 

 

5 (63%) 

1 (13%) 

1 (13%) 

 

0 (0%) 

1 (13%) 

 

- 

- 

- 

 

22 (100%) 

- 

Blood counts: 

 WBCs (x109/L) 

 Neutrophils (K/µL) 

            Platelets (x109/L) 

 

16.8±12.0 

4.2±1.9 

288±156 

 

11.1±4.4 

8.6±5.1 

163±84 

 

11.3±2.2 

3.2±1.4 

391±56 

 

14.9±9.6 

10.1±9.5 

159±124 
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KEGG pathways were compared in peripheral blood from term and preterm neonates with 

or without infection. Pathways were listed according to the number of differentially 

expressed (DE) genes between these groups, ranked in order of statistical significance. The 

top five KEGG pathways that were significantly upregulated according to the presence or 

absence of infection in this dataset involved the immune system (Table 7.2). Innate immune 

pathways, including NOD-like receptor (NLR) and TLR signalling pathways showed the 

greatest number of upregulated genes between infected and uninfected neonates (not 

differentiated by gestational age).  

The top five KEGG pathways that were significantly downregulated with infection in this 

dataset involved transcription (Table 7.3). These included Ribosomal pathways and RNA 

degradation pathways. T cell immunity pathways were also downregulated according to 

infection, including T cell receptor signalling pathways, and Th1, Th2 and Th17 cell 

differentiation pathways.   



Chapter 7: 

A Bioinformatics Analysis of TLR Signalling Pathways in Neonates Page 212 

Table 7.2. The top 20 KEGG pathways upregulated in peripheral blood from term and 

preterm neonates with or without bacterial infection. KEGG pathways upregulated in 

peripheral blood from term and preterm neonates with infection compared to uninfected 

neonates from the dataset GSE25504. Pathways are listed according to the number of DE 

genes ranked in order of statistical significance.  

KEGG 

Pathway ID 

Pathway Name Total n 

genes in 

pathway 

Number 

of DE 

genes 

p-value 

hsa04621 NLR signalling pathway 168  54 1.01e-13 

hsa05164 Influenza A 173 45 2.43e-08 

hsa04380 Osteoclast differentiation 128 35 2.41e-07 

hsa04620 Toll-like Receptor Signalling 

Pathway 

104 30 5.01e-07 

hsa04137 Mitophagy-animal 65 22 8.63e-07 

hsa05162 Measles 134 34 2.35e-06 

hsa04216 Ferroptosis 40 15 1.17e-05 

hsa05134 Legionellosis 55 18 1.46e-05 

hsa04920 Adipocytokine signaling pathway   69 20 3.71e-05 

hsa05169 Epstein-Barr virus infection 203 42 4.10e-05 

hsa05168 Herpes simplex infection 185 39 4.98e-05 

hsa04066 HIF-1 signalling pathway   99 25 5.51e-05 

hsa05160 Hepatitis C 131 30 7.57e-05 

hsa04062 Chemokine signalling pathway 182 38 7.72e-05 

hsa045144 Malaria 49 15 1.76e-04 

hsa04920 NF-kappa B signaling pathway   95 23 2.14e-04 

hsa04920 Complement and coagulation 

cascades   

79 20 2.89e-04 

hsa04920 Leishmaniasis   74 19 3.36e-04 

hsa04920 Kaposi's sarcoma-associated 

herpesvirus infection 

173 34 5.93e-04 

hsa04920 TNF signalling pathway 108 24 6.17e-04 
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Table 7.3. The top 20 KEGG pathways downregulated in peripheral blood from term and 

preterm neonates with or without bacterial infection. KEGG pathways downregulated in 

peripheral blood from term and preterm neonates with infection compared to uninfected 

neonates from the dataset GSE25504. Pathways are listed according to the number of DE 

genes ranked in order of statistical significance.  

KEGG 

Pathway ID 

Pathway Name Total n 

genes in 

pathway 

Number of 

DE genes 

p-value 

hsa03010 Ribosome 154   76 2.92e-28 

hsa03040 Spliceosome 134  50 6.81e-13 

hsa03018 RNA degradation 77  30 9.06e-09 

hsa03008 
Ribosome biogenesis in 

eukaryotes 106  

 

36 2.22e-08 

hsa03013 RNA transport 171  49 3.88e-08 

hsa04120 
Ubiquitin mediated proteolysis 137  

 

38 3.15e-06 

hsa00230 Purine metabolism 175  43 2.14e-05 

hsa04660 
T cell receptor signaling pathway 103   

 

29 3.37e-05 

hsa04658 
Th1 and Th2 cell differentiation 92   

 

26 7.94e-05 

hsa00640 Propanoate metabolism 32   13 9.36e-05 

hsa04659 Th17 cell differentiation 107   28 1.85e-04 

hsa00280 
Valine, leucine and isoleucine 

degradation 48   

 

16 2.40e-04 

hsa01100 Metabolic pathways 1272  205 2.94e-04 

hsa03430 Mismatch repair 23   10 3.16e-04 

hsa05340 Primary immunodeficiency 37   13 5.12e-04 

hsa00062 Fatty acid elongation 25   10 7.05e-04 

hsa04110 Cell cycle 124   29 1.08e-03 

hsa03015 mRNA surveillance pathway 91   23 1.14e-03 

hsa00240 Pyrimidine metabolism 102   25 1.14e-03 

hsa03030 DNA replication 36   12 1.42e-03 
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Analysis using limma found CD14 and NF-κB1 showed the highest level of upregulation in 

term and preterm neonates with infection (≥ 11cpm; Fig.7.1). These genes were also 

upregulated in neonates without infection, but at a lower magnitude (9cpm). Other genes 

upregulated in most neonates with infection included TLR1, TLR5, TLR6, TLR8, CCL4, 

IL1B, MyD88 and LY96 (≥ 7cpm).  

Preterm neonates with infection upregulated STAT1 (12cpm), CXCL10 (in 6 samples, 

approximately 8cpm), CXCL8 (in 6 samples, 7cpm), PIK3R2 (≥ 9cpm), FOS (≥ 9cpm), IL1β 

(11cpm) and MAP2K3 (≥ 9cpm) compared to term neonates with infection. Other than these 

genes, term neonates with infection showed a similar phenotype to preterm neonates with 

infection. 

Neonates without infection upregulated the MAPK3, IKBKG and CCL5 gene clusters in both 

term and preterm samples (9cpm) more frequently than neonates with infection. TLR2 (≥ 

6cpm), TNF (≥ 6cpm), IRAK1 (≥ 6cpm) and IL6 (7cpm) were comparable, independently of 

gestational age or infection. TLR4 was increased in three preterm samples with infection, 

while TLR3 was not detected. Viral pathways or interferon gene clusters were not detected 

in any of the samples analysed. 

(Over page) Fig. 7.1. A heat-map of genes in the TLR signalling pathway differentially 

expressed in term and preterm neonates with and without bacterial infection. The gene 

expression profile of TLR signalling pathways in whole blood collected from term and 

preterm neonates with (“infected”) or without bacterial infection (“uninfected”). Individuals 

are represented along the x-axis: uninfected preterm (purple), uninfected term (green), 

infected preterm (blue) and infected term neonates (pink). Normalised expression levels are 

colour-graded for each gene, from red (high expression) to blue (low expression), 

represented as counts per million (cpm). Bars on the y-axis represent gene clustering 

according to similar profiles of expression.  
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Fig.7.1. A heat-map of genes in the TLR signalling pathway differentially expressed in 

term and preterm neonates with and without bacterial infection.  
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7.4.2. PATHWAY ANALYSIS OF GENES EXPRESSED IN PERIPHERAL 

BLOOD FROM PRETERM NEONATES WITH SEPSIS 

Complete demographics for the dataset (n=58) are reported by two previous publications390, 

402, with samples extracted for our analysis being summarised in Table 7.4 using all publicly 

available data. The subset of samples we analysed consisted of peripheral blood from 

preterm inpatients of the neonatal intensive care unit who suffered from sepsis (n=37; 

“infected”) and preterm neonates without sepsis (n=21; “uninfected”).  

Clinical characteristics are reported according to preterm neonates without infection, with 

clinical sepsis (n=22) or with culture-proven sepsis (n=15). Mean gestational age was 

comparable between the groups and a majority of patients were male. A majority of cases of  

culture-proven neonatal sepsis were associated with Staphylococci. Neutropenia was defined 

as having an absolute neutrophil count of <1500 cells/ mm3 and occurred most frequently in 

preterm neonates with culture-proven sepsis. White blood cell counts were decreased at 

magnitudes greater than 30% over 24 hours (indicating increasing leukopenia) in 40% of 

preterm neonates with culture-proven sepsis. C-Reactive Protein (CRP) was greater than 

45mg/L (indicating active inflammation) in all preterm neonates with clinical or culture-

proven sepsis.  
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Table 7.4. Clinical characteristics of neonates extracted from the GSE69686 dataset and 

analysed in Chapter 7. Clinical characteristics (as summarised from the original 

publication402) of preterm neonates that were diagnosed with clinical sepsis, culture-proven 

sepsis or that had no evidence infection (“uninfected”) from the dataset GSE69686 that was 

used for our analysis of neonatal peripheral blood gene expression. Values are presented as 

the mean or n (%), unless otherwise indicated. 

 Uninfected Clinical  

Sepsis 

Culture-

proven 

Sepsis 

n=21 n=22 n=15 

Gestational age, completed weeks  29 30 31 

Neonatal demographics: 

Male 

 

15 (71%) 

 

15 (68%) 

 

13 (87%) 

Neonatal blood culture results: 

Negative 

GBS positive 

MRSA positive 

E. coli positive 

 

 

21 (100%) 

- 

- 

- 

 

22 (100%) 

- 

- 

- 

 

 

- 

5 (33%) 

5 (33%) 

5 (33%) 

Neonatal blood: 

 Neutropenia 

 >30% drop in WBC over       

            24 hours  

            CRP≥ 45mg/L 

 

1 (5%) 

0 (0%) 

 

0 (0%) 

 

3 (14%) 

0 (0%) 

 

22 (100%) 

 

5 (33%) 

6 (40%) 

 

15 (100%) 
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Our analysis of the GSE69686 dataset focused on genes in the TLR signalling pathway, 

identifying differences between preterm neonates with or without sepsis (defined as CRP ≥ 

45mg/L, because culture-proven sepsis was not delineated by the NCBI GEO repository). A 

gene expression profile was generated as a heat-map of probe sets specific to genes in the 

TLR signalling pathway using normalised expression values (Fig. 7.2).  Genes were 

clustered hierarchically based on similar profiles of expression levels in grouped (infected or 

uninfected) samples.  

Gene clusters that were upregulated by neonates with sepsis compared to neonates without 

sepsis included MAPK14, TLR8, STAT1, RAC1 (approximately 8.5cpm); NF-κBIA, MyD88 

and FOS (7cpm); TLR2, IFNAR1, LY96, TLR5, IRAK4 (8cpm); and MAP2K6, PIK3CB, 

TLR1 (7cpm). TLR4 was also upregulated with sepsis compared to neonates with no sepsis 

(10cpm). Neonates with no infection showed upregulation of CCL5 (10cpm) and AKT2 

(8cpm) compared to neonates with sepsis. NF-κB, IRAK1 and TNF were comparable 

between the groups (6cpm), while IL6 and IL10 were not upregulated in either group 

(<4cpm).  

(Over page): Fig. 7.2. A heat-map of genes in the TLR signalling pathway differentially 

expressed in neonates with and without sepsis. Gene expression profile of TLR signalling 

pathway genes in whole blood collected from preterm neonates with (“infected”) and 

without sepsis (“uninfected”). The normalised expression of each gene (cpm) is colour 

graded from red (high expression) to blue (low expression). Bars on the left axis represent 

gene clustering according to similar profiles of gene expression. 
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Fig. 7.2. A heat-map of genes in the TLR signalling pathway differentially expressed in 

preterm neonates with and without sepsis.  



 

 

7.4.3. CELL TYPE ENRICHMENT ANALYSIS 

Select genes from the TLR signalling pathway were analysed using an immune 

transcriptome-wide repository of data on adult peripheral blood and analysed for differential 

expression in leukocyte subsets (Fig.7.3). This database collates evidence of the constitutive 

co-expression of genes from 4,639 healthy human samples and 19 cell types generated by 

191 studies to date408. We extracted data relating to a subset of leukocytes and assessed the 

co-expression of genes from the TLR signalling pathway, specifically including those that 

have been investigated previously in this thesis. We aimed to determine cell-specific 

expression of these genes, which could inform more targeted analyses of cell types in future 

studies.   

The results of this analysis are presented in Fig 7.3. Mean signals represent the average 

expression level of a gene per cell type. TLR2 and TLR4 were upregulated in neutrophils, 

monocytes and macrophages. MyD88 was upregulated in neutrophils. IRAK1 and NF-κB1 

were consistently upregulated in all immune cell types analysed. IL6 was expressed at low 

levels in all cell types, with the highest level of expression observed in conventional 

dendritic cells (cDCs). IL10 was most predominantly expressed in macrophages compared 

to the other cell types analysed. SOCS1 expression was upregulated in CD4+ T cells, Tregs, 

cDCs and granulocytes. Genes with mean signals ≤ 5 were not expressed by the represented 

cell types.  
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Fig. 7.3. A heat-map of genes in adult peripheral blood differentially expressed according 

to cell type. Gene expression profile of select genes from the TLR pathway genes (right 

axis) in healthy adult peripheral blood according to specified immune cell types (bottom 

axis). Genes are clustered according to their co-expression (left axis) and cell-specific gene 

expression is clustered on the top axis (mean signal of expression). Data were extracted from 

ImmunoNavigator website for analysis. 
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7.5. DISCUSSION 

This study used a bioinformatics approach to explore wider innate immune pathways that 

were differentially expressed with neonatal infection. We found that neonates with bacterial 

infection upregulated innate immune KEGG pathways and downregulated pathways 

associated with transcriptional regulation and T cell immunity, highlighting immature 

adaptive immunity. Within the TLR signalling pathway, both term and preterm neonates 

with infection increased CD14 and NF-κB expression. In the same gene cluster, however, 

preterm neonates with infection upregulated STAT1 compared to term neonates with 

infection. In our second analysis, preterm neonates with sepsis increased MAPK pathways 

and TLR signalling compared to preterm neonates without sepsis, however, other 

inflammatory pathways were similarly expressed between the groups. Cell-specific analyses 

using expression data on healthy adult blood showed neutrophils and monocytes were the 

main source of TLR-associated genes, including MyD88, NF-κB inhibitors and the IL6 

receptor. This could support a central role for neutrophils in contributing to TLR signalling 

in whole blood and argues for better characterisation of neonatal neutrophil function. 

Overall, our analysis supports an exaggerated pro-inflammatory phenotype and highlights 

specific pathways of activation in preterm neonates with infection.  

The current pathway analysis reinforces the significance of innate rather than adaptive 

immunity in neonates. As such, TLR and NLR pathways were among the top four 

upregulated pathways associated with neonatal infection, while pathways associated with T 

cell signalling and Th cell differentiation were downregulated. These findings agree with the 

original paper by Smith et al., who identified an ‘unbalanced homeostatic immune response’ 

characterised by increased myeloid regulatory signalling and inhibited lymphoid signalling 

in neonates with infections, independently of gestational age at delivery403. They found 

neonates with infection demonstrated an increased presence of monocyte- and neutrophil-

specific markers, alongside markers of suppressed T cell mediated immunity. This supports 

exaggerated innate immune responses and deficient adaptive immunity may both contribute 

to poor immune homeostasis by preterm neonates. The authors infer that dysregulation may 

result from an inability of the neonatal immune system to recognise a homeostatic 

inflammatory threshold has been reached and that regulatory mechanisms must be activated. 

This phenomenon could underlie the findings of this thesis from Chapter 6, where there was 

an absence of regulatory gene expression over at least the first 6 hours following TLR 
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stimulation and inflammatory cytokines continued to be upregulated between 6 and 24 

hours. Altogether, this could highlight a more global deficit in immune regulation by 

preterm neonates, which extends past the targets we have investigated.  

Bioinformatics approaches are useful for identifying changes in entire pathways. Our 

analysis showed infection in preterm neonates was associated with an upregulation of the 

master regulators MAPK and STAT1 compared to term neonates. MAPKs phosphorylate p38 

and JNK, which are essential for pro-inflammatory cytokine transcription. Similarly, STAT1 

is a transcription factor that translocates into the nucleus on binding with IFNα, IFNγ or 

IL6481. Although the network analysis indicated IL6 expression was comparable according 

to gestational age and infection, results from Chapter 6 showed increased IL6 production by 

preterm cord blood following 24 hours of TLR stimulation in vitro. This would suggest 

differences in JAK-STAT signalling by preterm neonates. Evidence regarding this is 

currently limited, however a previous study has shown the phosphorylation of STAT1 and 

STAT3 by IL6 is comparable between term and preterm cord blood monocytes454. It would 

therefore be useful to characterise JAK-STAT signalling in whole blood to determine if it 

contributes to IL6 dysregulation in preterm neonates.  

Smith et al. established a 52-gene invariant signature of gene expression that predicted 

bacterial infection in neonates. Within this, they found a specific patient phenotype that was 

associated with increased TLR and IL6 signalling pathways. This specific phenotype could 

explain why certain preterm neonates are predisposed to developing inflammatory 

morbidities compared to others. While we could not confirm this in our analysis, the use of 

microarray analyses could be used by future studies to validate the dysregulation of these 

pathways. A novel study on preterm cord blood would be advantageous in comparison to the 

datasets currently available on the GEO repository, as it would avoid sampling unwell 

neonates as controls. As such, the individuals we analysed as ‘controls’ from the Smith et al. 

dataset were sampled due to maternal thyroid dysfunction which could affect gene networks 

associated with metabolism and adaptive immunity.  

Our bioinformatics analysis of peripheral blood from preterm neonates with sepsis 

reinforced a dysregulated innate immune phenotype. We observed that a majority of genes 

expressed in the TLR signalling pathway were comparable between preterm neonates with 

and without sepsis, including key regulators such as NF-κB, IRAK and TNF (that are not 

typically upregulated in the absence of infection). Although the obvious limitation of our 
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analysis was that the dataset grouped neonates with and without culture-proven sepsis, all 

neonates demonstrated CRP levels equal to or greater than 45mg/L. CRP is an acute phase 

protein expressed by the liver during severe inflammation, indicating that irrespective of 

pathogenic growth, these neonates reflected a pro-inflammatory state. This was confirmed 

by our analysis that showed septic preterm neonates increased TLR2, TLR4, FOS (a 

component of AP-1 that induces cytokine transcription) and MAPK pathways, with only 

slight increases in anti-inflammatory regulators such as NF-κBIA and IL10. Wynn, et al.’s 

paper on neonatal sepsis also analysed plasma cytokine production and found increased 

GCSF, IL8, TNFR1, sFAS and IL1β expression associated with both culture-positive and 

clinical sepsis. Further, they found that the timing of sepsis affected unique nodes of genes, 

specifically, leukocyte extravasation, despite activating similar immune pathways. In 

conjunction with our analysis, this may indicate early stages of TLR signalling are 

upregulated by preterm neonates with sepsis compared to those without sepsis. Specifically, 

we found increased expression of TLRs and other early signalling molecules, but 

comparable terminal molecule upregulation between infected and uninfected groups (i.e. 

NF-κB and cytokines TNFα, IL6 and IL10). The comparable expression of a majority of 

genes associated with pro-inflammatory TLR signalling between preterm neonates with and 

without sepsis reinforces the idea that their system may be naturally biased towards a pro-

inflammatory state.  

As our bioinformatics analyses examined whole blood samples, we also conducted a cell-

type enrichment analysis. Investigation of data from healthy adult haemocytes showed that 

genes associated with TLR signalling are upregulated in innate cell types compared to 

adaptive immune cells. We used adult cell gene expression as there were no data provided 

regarding neonatal cell-specific arrays that were publicly accessible, likely due to the 

constraints in neonatal blood volume available for analysis. Nonetheless, our analysis is 

applicable to neonates as they demonstrate some aspects of innate immune function that are 

comparable to adults202, 203, 258. Adult neutrophils appeared to be the primary source of TLR2, 

IL6ST, IL10RA, IL6R, MyD88 and NF-κBIA, which are central to activating TLR signalling 

and regulating NF-κB. The increased expression of NF-κB1 in early preterm cord blood 

following LPS stimulation in vitro (Chapter 5) may therefore be attributed to neutrophil 

activation or accumulation, but this requires further confirmation. Neutropenia is common in 

preterm neonates and is observed in our cohort of neonates with sepsis who showed less 

numbers of neutrophils and increased numbers of platelets (Table 7.1). Interestingly, 
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preterm cord blood neutrophils demonstrate increased phagocytic function compared to 

term284. Our data also observed that preterm neonates with infection increased IL8 

expression, which could suggest increased neutrophil chemotaxis. Notably, aberrant IL8 

expression has been associated with chronic inflammation, including that observed with 

neonatal sepsis221 and inflammatory lung disease222. If the neutrophil response is not 

appropriately regulated by preterm neonates, as our results suggest, neutrophils may accrue 

at the sites of inflammation and their potent ROS and cytokine expression may become 

pathological482, 483. 

The two datasets we analysed showed notable discrepancies in neonatal blood cell counts. 

Term neonates with bacterial infection showed lower WBC counts compared to term 

neonates without infection, while preterm neonates showed higher white blood cell counts 

compared to uninfected preterm neonates, and all infected groups showed higher neutrophil 

counts compared to uninfected neonates. Conversely, in association with sepsis, white blood 

cell and neutrophil counts were lower. In context of the adult cell analysis, we observed that 

macrophages and monocytes were associated with increased TLR2, TLR4 and IL10 

expression. Further, studies on cord blood that have used flow cytometry show monocytes 

are primary producers of IL6 and IL10 in response to stimulation with whole bacteria204. 

This could mean the decreased number of WBCs associated with term infection underlies 

the observed absence of IL10 expression. Conversely, preterm WBCs increase with 

infection alongside IL10 and IL6 production that could lead to increased inflammatory 

activation. 

DCs are another important subset of antigen presenting cells that are critical to both innate 

and adaptive immunity. In the adult cell analysis, cDCs were associated with the highest IL6 

and SOCS1 expression. Interestingly, neonates have higher numbers of DCs compared to 

adults, however these cells show decreased function and TLR4 expression484. Further, while 

pDCs are known to upregulate IL6 in adults, they have a unique phenotype compared to 

neonate. Unfortunately, there are few studies that have investigated cell-specific cytokine 

production in neonates to support these findings48, 201, 485. Future studies would therefore 

need to validate the primary source of inflammatory gene expression in order to better 

characterise the direction of inflammation.  

A limitation of analysing large microarray datasets is the restricted ability to determine the 

contribution of different physiological exposures, particularly given the complexity of 
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preterm delivery. Notably, it would be difficult to obtain a ‘clean’ sample of preterm cord 

blood that has not been exposed to inflammatory perturbations in utero. The comparisons 

made using term peripheral blood in these datasets is therefore not ideal, even though they 

have been screened for the outcome of interest (in our case, infection). These ‘control’ 

samples were collected on the basis of other clinical indications, including jaundice or 

maternal thyroid disease. Despite not having obvious direct effects on inflammation, such 

factors may still perturb transcriptomic networks. Nonetheless, arrays are still useful 

exploratory exercises that can be used to direct future research by characterising larger 

patterns of gene co-expression and feedback loops. These analyses could identify sets of 

predictive genes for the development of diagnostic (using peripheral blood) or prognostic 

tools (using cord blood).  

Overall, our analysis presents several pathways for future elucidation in the context of 

preterm neonates. Future studies could characterise preterm neonatal neutrophil responses, 

perform microarrays on preterm blood and further investigate STAT and NLR pathways of 

signalling in order to fully characterise innate immunity. These studies would need to 

account for inflammatory activation and how different conditions affect gene and cell-

specific relationships in different preterm phenotypes. Ideally, cell-separation experiments 

and miR microarrays should be incorporated to fully analyse the process of innate immune 

stimulation on preterm blood, as preliminarily investigated by this thesis. 

 

 

 

 

 

  



 

 

 

 

Chapter 8: 

General Discussion 

 

 



Chapter 8: 

General Discussion  Page 228 

The innate immune response provides defence during neonates’ vulnerable period of 

transition to ex utero environment. Previous studies have demonstrated that preterm 

blood exhibits either decreased or comparable expression of pro-inflammatory 

cytokines compared to term following TLR stimulation (Table 1.2). Nonetheless, 

preterm neonates remain more susceptible to contracting infections and are unable to 

clear pathogens adequately, suggesting other mechanisms contribute to a defective 

innate immune response. As such, deficiencies in immune regulation could influence 

the increased prevalence of inflammatory conditions among preterm neonates34.  

The overarching aim of this thesis was to understand how preterm birth alters miRs that 

regulate TLR signalling in neonates. We characterised genes associated with TLR 

signalling in term and preterm placenta and cord blood, and reported how their 

expression changed in cord blood following TLR2, 3 and 4 stimulation. We found no 

difference in gene expression preterm placenta compared to term. Conversely, early 

preterm cord blood showed decreased constitutive expression of miR-155 and let-7e 

compared to late preterm and term cord blood, with no difference in other genes 

involved in TLR signalling. Following TLR2 and TLR4 stimulation, term cord blood 

increased expression of miRs (let-7e, miR-155 and miR-106a), inflammatory signalling 

genes (NF-κB1 and IL6) and cytokines (TNFα and IL6); while early preterm cord blood 

upregulated inflammatory pathways (IL6, IL10, NF-κB1) and cytokines (TNFα and IL6) 

without changing miR expression. Further, our time-course experiment showed preterm 

cord blood continued to increase IL6 production past 6 hours in vitro, while term cord 

blood IL6 plateaued at 6 hours. Together, our findings suggest the absence of regulatory 

miR expression by cord blood could be an underlying mechanism for uncontrolled 

inflammatory signalling in preterm neonates. 

8.1. THE SAMPLE POPULATION 

Preterm delivery is a complex condition with multiple phenotypes (see section 1.2). Our 

sample consisted of a single cohort of women that delivered at term and preterm 

gestation. A majority of samples were analysed in Chapter 4 (baseline cord blood gene 

expression). These consisted of a homogenous population of smokers, indigenous 

women and pre-eclamptic women, which are all characteristics associated with an 

increased risk of preterm delivery. Notably, the incidence of chorioamnionitis or 

maternal infection (e.g. GBS-positive women) was low in our cohort. While infection is 
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the most common risk factor for preterm delivery, it would have complicated the 

functional analysis of cord blood in our sample because antenatal infection such as the 

exposure to chorioamnionitis is known to affect the neonatal transcriptome390. A 

strength of the current cohort is its relative homogeneity and was random sampling that 

encompassed conditions such as pre-eclampsia and maternal smoking, with our analysis 

taking these factors into account as covariates.  

8.2. THE EXPERIMENTAL PARADIGM 

The TLR signalling cascade provides a useful experimental paradigm for investigating 

innate immune function. TLRs are evolutionarily-conserved PRRs and alterations in 

their function can reflect system-level perturbations in immunity. While TLRs 

demonstrate ubiquitous expression, they are involved in complex pathways of 

intracellular signalling that provide many checkpoints for regulation. miRs are post-

transcriptional regulators with temporal and tissue-specific sensitivity. The discovery of 

miRs has revolutionised thinking on post-transcriptional regulation of genes and in the 

context of large signalling networks such as inflammation. Notably, both miRs and 

TLRs are evolutionarily conserved, which highlights not only their important roles in 

immunity, but organism survival. 

Our experimental model investigated miRs known to regulate TLR signalling and the 

expression of their known targets, alongside other key genes in the TLR signalling 

cascade. We aimed to identify mechanisms by which preterm neonates are susceptible 

to uncontrolled inflammation, which is characteristic of common neonatal morbidities 

include NEC and neonatal sepsis. We hypothesised that preterm placenta and cord 

blood would show increased expression of pro-inflammatory genes compared to term 

placenta and cord blood at birth. It was further hypothesised that following TLR 

stimulation, preterm cord blood would exhibit increased expression of genes with pro-

inflammatory regulatory roles (miR-155, miR-106a and IL6) and decreased expression 

of miRs with anti-inflammatory roles (including let-7e, miR-146a and SOCS1). Overall, 

it was expected that preterm delivery would be associated with a pro-inflammatory 

phenotype driven by perturbed networks of innate immune gene regulation. 

The data presented in this thesis suggest the TLR signalling system is immature in early 

preterm neonates compared to late preterm and term neonates, where: 
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1. the association between regulatory miRs and their target mRNAs is not mature 

in the preterm placenta, which may create a predisposition towards uncontrolled 

inflammation in utero;  

2. early preterm cord blood shows decreased expression of regulatory miRs (let-7e 

and miR-155) compared to late preterm and term cord blood, which suggests a 

predisposition towards unregulated expression of their targets (TLR4 and 

SOCS1) during inflammation; 

3. TLR2 and 4 stimulation increases the expression of pro-inflammatory genes, 

including IL6 and NF-κB1 in early preterm cord blood without any change in 

regulatory miR expression, demonstrating a bias towards pro-inflammatory 

mediators during a response; 

4. following TLR4 stimulation, preterm cord blood increases IL6 production 

between 6 and 24 hours in vitro following TLR stimulation without any change 

in regulatory miR expression, while term cord blood IL6 expression peaks and 

plateaus at 6 hours; and 

5. preterm neonates with infection show an upregulation in inflammatory 

signalling pathways compared to term neonates with infection, providing in vivo 

evidence of a pro-inflammatory bias potentially associated with neutrophil 

dysfunction.  

8.2.1. Investigating the placenta as a window into the in utero environment 

Placental gene expression of TLR pathways was characterised to assess the phenotype 

of the intrauterine environment. Preterm delivery is most commonly associated with 

intrauterine inflammation10-13. Evidence of this is observed where chorioamnionitis is 

associated with increased TLR4428 and NF-κB1486 expression in the preterm placenta. 

The increased activation of inflammatory pathways in utero has been demonstrated to 

have profound effects on postnatal immune function in neonates. Animal models have 

shown that antenatal exposure to endotoxin attenuates the progeny’s subsequent 

responses to endotoxin ex utero101-104.  Our analysis was therefore aimed at determining 

whether the neonate was exposed to an active inflammatory milieu in utero.  
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8.2.2. Investigating cord blood as an analogue for neonatal immune 

function 

In addition to placenta, cord blood provides a snapshot of the in utero environment at 

delivery and neonatal immune status at birth. A majority of existing in vitro studies on 

cord blood have used isolated cells and have shown preterm CBMCs are less capable of 

mounting a cytokine response than term (Table 1.2). A strength of studying whole cord 

blood is that it accounts for interactions that more accurately reflect the in vivo immune 

response. Whole blood immune responses consist of a variety of cell-to-cell 

interactions, platelet activating factors and even unique cellular metabolism. 

Additionally, cells cultured in whole blood do not alter their phenotype as significantly 

as isolated cells over time in vitro62. Previous work within our laboratory has 

demonstrated an absence of time and dose-dependent changes in response to TLR4 

stimulation in CBMCs in vitro153. These findings contrast the time-dependent 

upregulation of IL6 and TNFα production by whole cord blood exposed to the same 

treatments in vitro (Chapter 6). The interaction between cells and/or plasma-based 

factors likely contributes to this robust response and is therefore a better reflection of 

the in vivo immune context. 

8.3. THE EFFECT OF GESTATIONAL AGE ON GENES 

ASSOCIATED WITH TLR SIGNALLING IN THE PLACENTA 

Chapter 3 profiled the expression of TLR associated genes in placental tissue from term 

and preterm deliveries. It was hypothesised the preterm placenta would demonstrate 

increased expression of pro-inflammatory genes due to sequelae commonly associated 

with preterm delivery10-13,14. Using murine models, others have demonstrated that 

preterm delivery is associated with increased TLR4 signalling in utero418. This suggests 

the placenta responds differently to inflammatory activation according to gestational 

age. Notably, our findings did not observe any differences in constitutive miR 

expression or inflammatory TLR expression between gestational age groups. We did, 

however, find the lack of a correlation between the miRs and their mRNA targets, 

which could suggest the way these genes interact with each other (i.e. their regulatory 

relationship) is immature in the preterm placenta, as these correlations were evident in 

term placenta. Ultimately, our assessment of total placental cell populations is better 
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reflective of the in utero environment and supports comparable expression of genes 

associated with TLR signalling according to gestational age at birth.  

While the current study focused on the status of the TLR signalling pathway at birth, 

responses to TLR stimulation may provide closer insight into immune regulation. 

Increased TLR signalling418 and IUI10, 11 are common sequelae to preterm parturition. 

Increased TLR expression by trophoblasts has also been observed in vitro following 

stimulation with TLR agonists427, 487, 488 and ex vivo, in association with 

chorioamnionitis428, 486. These studies demonstrate the role of the placenta as an 

immunomodulatory organ that can respond to different pathogens. The lack of 

differentially expressed miRs observed by our findings may therefore be due to the 

absence of inflammatory activation at birth in our sample. In vitro stimulation of 

placental explants is likely required to confirm any regulatory dysfunction in 

relationships between miRs and their targets as postulated by our correlational analyses. 

8.3. THE EFFECT OF GESTATIONAL AGE ON BASELINE 

EXPRESSION OF GENES ASSOCIATED WITH TLR SIGNALLING IN 

CORD BLOOD 

The aim of Chapter 4 was to compare the expression of inflammatory genes involved in 

TLR signalling in term, late preterm and early preterm unstimulated whole cord blood 

to understand the immune status of neonates at delivery. Previous studies have found 

comparable TLR mRNA and protein expression in cord blood according to gestational 

age82, 86. While our data confirmed that term and late preterm cord blood showed 

comparable expression of genes associated with TLR signalling, early preterm cord 

blood expressed decreased let-7e and miR-155. These miRs have opposing roles in 

regulating inflammation, so their simultaneous decrease may suggest more global 

immaturity of coordinated regulatory function. This could underlie the lack of any 

observed difference in the expression of their respective target genes, TLR4 and SOCS1. 

Further, the fact that miRs with opposing roles are both downregulated could suggest 

network level perturbations in inflammation, particularly because miR expression did 

not change with TLR stimulation in early preterm cord blood (Chapter 5). Previous 

studies have associated decreased miR expression with decreased expression of the 

processing molecule, Dicer in neonates who develop severe RSV455. Our data could 
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therefore reflect an absence of regulatory miR expression in preterm cord blood due to 

immature transcript processing. 

8.4. THE EFFECT OF GESTATIONAL AGE ON INNATE IMMUNE 

FUNCTION AND REGULATION 

In Chapter 5, we aimed to compare the expression of genes following TLR stimulation 

in term, late preterm and early preterm cord blood. We hypothesised that preterm cord 

blood would show increased pro-inflammatory and decreased anti-inflammatory gene 

expression compared to term cord blood stimulated with TLR agonists.  

We demonstrated that TLR2 and TLR4 stimulation increased regulatory miRs (let-7e, 

miR-155 and miR-106a) and pro-inflammatory IL6 expression in term cord blood. This 

supports miRs contribute to inflammatory regulation, which is critical for neonates in 

their adaptation to the ex utero environment. Term cord blood has previously been 

shown to increase miR-146a expression 24 hours following LPS stimulation, exceeding 

that of adult peripheral blood242. In a murine model of intestinal inflammation 

(exposure to E. coli), miR-146a upregulation was established as a critical factor for 

developing enteric tolerance in the neonatal intestine. The inhibition of miR-146a in this 

model was associated with increased intestinal epithelial cell apoptosis induced by E. 

coli, which is a characteristic feature of NEC in human infants. The lack of miR-146a or 

any change in expression of other miRs measured following TLR stimulation by early 

preterm cord blood may contribute to an inability to regulate inflammation and 

therefore, a decreased ability to develop immune tolerance to the ex utero environment.  

A majority of existing studies suggest preterm cord blood demonstrates attenuated 

responses to immune stimulation in vitro. These studies have observed decreased 

immune cell counts284 and impaired pathogen killing capacity in preterm blood283. In 

vitro studies have also shown decreased IL6 and TNFα expression without any change 

in IL10 in preterm compared to term cord blood in response to stimulation with TLR 

agonists35, 213, 288 and whole bacteria82, 252, 294. Recent data from our laboratory 

somewhat disagrees with these findings, demonstrating increased IL6 and no change in 

IL10 following TLR2 and 4 stimulation153. The disparity between these findings may be 

related to methodology, where previous authors compared gene expression between 

gestational age groups, but did not investigate the kinetics or change in the response 
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within gestational age groups. In further support of our postulated pro-inflammatory 

preterm phenotype, meta-analyses have shown that umbilical cord blood tissue from 

early preterm deliveries demonstrates a transcriptome reminiscent of FIRS286. This 

predisposition towards a pro-inflammatory bias may therefore explain increased 

expression of IL6 (that can be used to confirm FIRS489) and could also contribute to 

systemic inflammation by preterm neonates.  

Responses to TLR stimulation in late preterm cord blood showed a similar pattern of 

gene expression to that observed in term cord blood. TLR expression itself was also 

comparable between the gestational age groups, however, let-7e and SOCS1 were 

increased in late preterm following TLR stimulation, but not early preterm cord blood. 

This suggests a switch in maturation of these pathways could occur at around 32 weeks 

gestation.  

IL10 expression is thought to be inversely correlated with gestational age in cord blood 

responding to whole bacteria204, however we found IL10 expression was comparable 

between term and preterm placenta and cord blood, and did not change with cord blood 

TLR stimulation. Notably, however, we observed an increase in its regulator miR-106a 

following LPS stimulation of term cord blood. This suggests changes in IL10 

expression occur later during the neonatal response to TLR agonists. Further 

characterisation of IL10 is critical, as it has been shown to decrease up to 20% of genes 

associated with the body’s response to LPS490. This may be apparent in the case of other 

instances of in utero inflammation, as our analysis observed an interaction between 

increased IL10 expression and maternal smoking during pregnancy in cord blood and 

placenta. Notably, our bioinformatics has preliminarily suggested that IL10 is 

predominantly expressed by macrophages, at least in adults. This may again highlight 

the possibility of cell-specific functional deficits in cord blood. 

Despite a lack of change in miR expression following TLR2 and 4 stimulation, early 

preterm cord blood upregulated expression of the inflammatory genes NF-κB1 and IL6. 

Although NF-κB is a super-enhancer of pro-inflammatory gene expression, its p50 

subunit expression was only associated with miR-155 expression in term and not early 

preterm cord blood. The underlying mechanism for decreased miR expression in early 

preterm cord blood remains unclear and could be related to a dysfunction or absence of 

the miR-processing complex, Dicer. Overall, this thesis has demonstrated that early 
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preterm neonates are able to respond robustly to TLR stimulation through cytokine 

expression, but the absence of miR expression may mean that this is not regulated 

sufficiently, resulting in inadequate clearance of pathogens and/ or continuous 

inflammatory signalling.  

8.5. TEMPORAL RESPONSES TO IMMUNE REGULATION 

ACCORDING TO GESTATIONAL AGE 

In Chapter 5, we observed the lack of an association between regulatory miR expression 

and inflammatory genes in early preterm cord blood. Chapter 6 therefore aimed to 

identify whether these differences resulted in different temporal responses between 

gestational age groups. Specifically, we characterised gene expression following a 

resting period and at 2 and 6 hours after TLR stimulation in vitro. As no other studies 

have assessed this, we chose to examine a time point prior to the 6 hours (i.e. 2 hours), 

and one after the 6 hours (i.e. 24 hours). These time points correlate with NF-κB 

inhibition469 and a respective decrease in TNFα in vitro323. Again, we expected that 

preterm cord blood would increase pro-inflammatory and decrease anti-inflammatory 

gene expression over time following TLR stimulation.  

Our study found that gene expression did not appear to change over time, irrespectively 

of gestational age. However, term cord blood showed increased TNFα and IL6 protein 

production until 6 hours following TLR2 and 4 stimulation, when it plateaued. In 

contrast, preterm cord blood increased TNFα production until 6 hours following TLR 

stimulation and continued to increase IL6 production between 6 and 24 hours in vitro. 

The lack of time-sensitive mRNA or miR expression in response to TLR stimulation in 

preterm cord blood despite continued IL6 production, could indicate poor regulatory 

responsiveness by preterm neonates. 

These findings suggest IL6 may be uncontrollably upregulated, particularly because the 

miRs we assessed were not expressed in early preterm cord blood despite being 

upregulated in term cord blood following TLR stimulation by 6 hours. The regulation of 

IL6 is important because it is a systemic acting cytokine commonly associated with 

acute and chronic inflammatory disease. It also recruits mononuclear cells, stimulates 

endothelial cells and inhibits T cell apoptosis491. More notably, IL6 can breach the 

blood brain barrier during systemic inflammation to cause white matter injury during 
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NEC492, 493. The consequences of dysregulated IL6 signalling are therefore critical in the 

context of preterm neonatal immunology. 

TLR signalling is a time-dependent process that involves the gradual recruitment of 

adaptor molecules to result in the transcription of pro-inflammatory genes through NF-

κB or AP-1. Each stage of molecular recruitment provides a unique checkpoint for 

regulation. The progression of molecule recruitment, cytokine gene transcription and 

translation all occur at different times during an inflammatory response. The expression 

of miRs in the TLR signalling cascade therefore changes across time. For example, LPS 

increases miR-146a in cord blood between 12 and 24 hours following LPS exposure in 

vitro, but not before 12 hours242. Unfortunately, we were unable to validate miR 

expression following 6 hours TLR stimulation due to decreased RNA integrity after this 

time point. However, given that IL6 was significantly increased following stimulation 

in preterm cord blood compared to term between 6 and 24 hours, it may be possible that 

differences in miR expression become evident at later than 6 hours. Future studies 

should address optimal culture conditions that can enable this to be investigated further, 

potentially using isolated cell populations as we were unable to pursue this with our 

limited blood volumes.  

MiRs are ‘globally stable’, with a half-life ranging between 28-220 hours in vitro in 

immortalised murine embryonic fibroblasts or 8 hours in human Tcell lines, with 

corresponding mRNA transcripts showing a half-life of 20 hours in the same context494. 

Notably, the stability of miRs is context-specific where miR-21 and miR-223 are 

degraded after 3 hours in whole blood at room temperature, but remain stable for up to 

24 hours in serum at room temperature495. Additionally, LPS challenge decreases the 

stability of miR-21 in murine embryonic fibroblasts between 10 and 20 hours following 

challenge in vitro494. Unfortunately, there is a paucity of data available regarding the 

stability of transcripts of the miRs we measured in cord blood in vitro. The only study 

to date that has investigated miRs used CBMCs in vitro242, which likely enhanced cell 

and therefore, miR transcript survival. 
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8.6. NETWORKS OF GENES AFFECTED BY IMMUNE 

REGULATION ACCORDING TO GESTATIONAL AGE 

This thesis primarily investigated miR expression in whole blood following TLR 

stimulation. A limitation of Chapters 4-6 was the inability to assess the context of the 

select genes investigated or the contributions of individual cell types generating an 

immune response. The nature of assessing cord blood from very preterm neonates 

means that cell separation was not a viable option to generate sufficient RNA for 

analysis. Bioinformatics, however, can be informative in directing research and 

identifying likely pathways and cell types responsible for the effects we observed. This 

was the focus of Chapter 7, where we analysed the TLR signalling pathway in context 

of transcriptomic data generated by microarrays from peripheral neonatal blood during 

infection.  

Bioinformatics is utilised to identify critical pathways that are implicated in biological 

processes such as inflammation. This is critical to consider when examining miRs, as 

they can regulate entire networks of genes such that alterations in one miR can alter a 

whole system. Peripheral blood from preterm neonates with infection upregulated 

innate immune pathways including TLR, NLR and STAT-based signalling compared to 

term neonates with infection. Again, these findings highlight the potential bias towards 

pro-inflammatory signalling by preterm neonates, particularly because IL6 activates 

STAT1 and therefore, the increased expression of IL6 by preterm cord blood could 

perpetuate inflammation in more ways than originally thought.  

The model of innate immune activation that has been used in the preceding chapters of 

this thesis used whole cord blood, however identifying the source of cytokine 

expression may be critical to understanding the direction of inflammation. For example, 

if antigen-presenting cells show attenuated gene expression, it is likely to have flow-on 

effects with regards to attenuated adaptive immune development. Previous findings 

from our laboratory have shown CBMCs are unable to produce a dose or time-

dependent response to TLR stimulation in vitro, therefore we postulate that cell to cell 

interactions are critical in analysing the neonatal immune system. To understand the 

individual contribution of cells to gene expression and cytokine production in TLR 

signalling, we investigated cell-specific expression using publicly available data 

collected from healthy adults. We identified that neutrophils upregulated NF-κB-related 
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signalling genes more than mononuclear cell types (including adaptive immune cells, 

monocytes and macrophages). Further, preterm neonates with infection increased IL8 in 

comparison to term despite exhibiting neutropenia. IL8 is key for neutrophil chemotaxis 

and its aberrant expression can lead to immune cell accumulation. We therefore 

postulate that a reliance on neutrophil-driven inflammation may predispose neonates to 

inflammatory diseases such as CLD that are characterised by neutrophil 

accumulation222.  

Online databases of gene expression have demonstrated the promiscuous nature of 

miRs, where miR-155, for example, has 918 putative gene targets496. Others have 

reported 85 miRs and 41 genes associated with TLR signalling that are differentially 

expressed in cord blood leukocytes stimulated with LPS compared to and unstimulated 

leukocytes497, although this data was not publicly available for our consideration. The 

contribution of miRs to TLR signalling is therefore quite complex. As such, miR-155, is 

not only associated with increased NF-κB activation, but is also increased with STAT1 

activation, as the miR-155 promoter region shows putative STAT1 binding elements498. 

Further, SOCS1, which is also downregulated by miR-155, inhibits STAT activation. 

This supports the role of miR-155 as a master regulator of the innate immune response. 

Interestingly, miR-155 has been identified as a top upstream miR in peripheral blood 

from preterm neonates who are exposed to chorioamnionitis but did not develop 

postnatal infections, compared to those who did (where miR-155 was not identified)390. 

This could suggest the existence of a unique preterm phenotype that is unable to mount 

miR-based responses to inflammation and is therefore more susceptible to infection and 

increased pro-inflammatory gene expression. Future microarray analyses of neonatal 

blood with and without TLR stimulation will be important in separating the effects of 

decreased miR expression we observed in Chapters 4-6.  

8.7. HOW MATERNAL PHYSIOLOGY CONTRIBUTES TO 

NEONATAL INNATE IMMUNITY 

Maternal physiology impacts on the neonatal immune response as a product of immune 

priming in utero. Physiological insults that occur during pregnancy contribute 

differently to fetal physiology. Others have shown that pre-eclampsia is associated with 

increased Th1 cytokine expression in utero499 and increased cord blood IL8 and IL10 

expression500. Additionally, maternal smoking during pregnancy has been associated 
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with decreased TNFα and IL6 production following TLR2 stimulation of term cord 

blood in vitro162. The impact of pre-eclampsia or maternal smoking are not clearly 

characterised in preterm cord blood, though their effects could compound immature 

inflammatory regulation. Our analyses therefore incorporated the effects antenatal 

exposure to betamethasone, labour, pre-eclampsia, maternal smoking during pregnancy 

and chorioamnionitis into a statistical model. It was hypothesised that typically pro-

inflammatory perturbations such as pre-eclampsia, labour, chorioamnionitis and 

maternal smoking would contribute to a pro-inflammatory cord blood profile, while 

antenatal betamethasone would have anti-inflammatory effects due to its 

immunosuppressive properties452.   

Notably, the factors we investigated as covariates within our analysis may have unique 

‘magnitudes’ of inflammatory influence. For example, pre-eclampsia typically develops 

later in gestation, meaning the fetus is not exposed to its associated inflammatory 

signalling for the entire duration of pregnancy. Maternal infection or chorioamnionitis 

are likely to be acute and present towards the end of pregnancy, as they induce labour 

or are indications for premature delivery10-13. Alternately, maternal smoking during 

pregnancy is a chronic exposure as it occurs prior to and for the entire duration of 

gestation. Maternal cigarette smoking during pregnancy is also associated with poor 

perinatal outcomes including preterm delivery14, growth restriction155 and an increased 

risk of childhood atopy501 and asthma502. Smoking creates this pro-inflammatory in 

utero environment through ROS production and cellular apoptosis in the placenta163, 433. 

Therefore, it may shape neonatal immunity in a similar way to chronic infection. 

In the placenta, maternal smoking was associated with decreased regulatory let-7e 

expression alongside increased inflammatory TLR2, SOCS1, MyD88, IRAK1, NF-κB1, 

IL6 and IL10 (Chapter 3). This corroborates with a study that found a dose-dependent 

decrease in miR-146a expression in immortalised villous and extra-villous trophoblast 

cell lines cultured with nicotine and benzo(a)pyrene, which are the main constituents of 

cigarette smoke434. Similarly, our analysis of cord blood at birth showed decreased miR-

146b and increased all genes associated with TLR signalling (Chapter 4). Following 

TLR-stimulation, however, cord blood gene expression showed no interaction with 

maternal smoking in the context of our analysis. Notably, others have previously 

demonstrated decreased TNFα expression in response to TLR2, 3,4 stimulation in vitro 

and decreased IL6 in response to TLR2 stimulation in term cord blood from mothers 
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who smoked during pregnancy162. This suggests cord blood becomes hypo-responsive 

after being exposed to a pro-inflammatory in utero environment, however, postnatal 

immunity of these offspring is associated with a hypersensitive Th2 response503 and 

atopic or respiratory disease163, 504. Overall, while our analyses were independent of 

gestational age, all of these findings demonstrate some form of maladaptive immune 

regulation. Future studies should investigate maternal smoking as a sub-phenotype of 

preterm delivery in the context of neonatal TLR function in order to separate these 

effects.  

This thesis was unable to separate any effects of antenatal betamethasone in association 

with TLR signalling in preterm placenta or cord blood. Animal models have 

demonstrated that betamethasone exposure is associated with a state of 

immunosuppression by the neonate that is marked by decreased lymphocyte 

expression196 and decreased TNFα and IL1β expression following LPS challenge106. In 

vitro studies also show cord blood decreases pro-inflammatory cytokine expression in 

response to viral stimulation165 and inhibits neutrophil chemotaxis during LPS 

stimulation189. miR-155, which is normally decreased by glucocorticoid exposure in cell 

lines stimulated by LPS in vitro191, was therefore expected to decrease inflammatory 

pathways in cord blood consistent with immune suppression. Nonetheless, we were 

unable to discern such an effect. A follow-up study with larger numbers of preterm 

neonates without betamethasone exposure stratified according to gestational age at 

delivery may be ideal to separate this. Notably, such a cohort would be difficult to 

obtain given preterm deliveries without betamethasone exposure are more likely to 

occur spontaneously505. Overall, the impact of glucocorticoid exposure should be 

explored further as it could be an underlying contributor to our current findings. 

8.8. LIMITATIONS OF OUR FINDINGS 

As the field of neonatal miR regulation is in its infancy, the current findings are highly 

valuable, but represent only the early stages of such research. While other methods such 

as microarrays are able to characterise larger volumes of transcriptomic data, we 

specifically chose to investigate genes within the TLR signalling pathway as we could 

easily validate them using qPCR to determine how they change with TLR stimulation in 

vitro. Our findings could be expanded upon by focusing on more targets within the TLR 
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signalling pathway or using specific vectors or murine models to knockdown miR 

expression in vitro to confirm the expression of targets we investigated. 

Factors such as smoking, pre-eclampsia and antenatal betamethasone exposure can 

affect gene expression and although we adjusted for these in the analyses, we could not 

separate their effects within our sample. Future work is therefore required to stratify 

each of these factors and their influence on the preterm neonatal immune phenotype. 

Notably, a strength of the samples analysed by this thesis was that the recruited cohort 

was largely unexposed to maternal infection, which enabled us to identify TLR function 

more as a product of prematurity rather than exposure to inflammation in utero.  

The experimental chapters of this thesis have focused on whole cord blood as an 

analogue for neonatal immune function. While this strategy has many strengths, it 

provided limited insight into individual cell-types’ function or how their frequency may 

contribute to an inflammatory response. This may be particularly important, as our 

bioinformatics analysis suggested neutrophils may play a central role in dysregulated 

innate immunity. In this case it would have been useful to deem differential cell counts 

either from clinical testing or within the laboratory using flow cytometry analyses.  

8.9. THE ROLE OF INNATE IMMUNITY IN THE PRETERM 

NEONATE 

Preterm delivery occurs most commonly as a product of inflammation. Under these 

conditions, preterm birth may be an attempt by the fetus to escape adverse in utero 

conditions (such as intrauterine inflammation) to enhance chances of survival 

(Fig.8.1A, B). Preterm delivery exposes the neonate to an antigen-rich ex utero 

environment at a time when mechanisms of immune regulation may not be fully 

developed. A consequence of early parturition is therefore the increased risk of 

infection and inflammation. This thesis has highlighted early preterm neonates show a 

diminished capacity to regulate inflammation through the actions of miRs, which 

appears to be mature in term neonates. This included decreased let-7e and miR-155 

expression by early preterm neonates, which could indicate a primed state for 

inflammatory dysregulation (Fig.8.1C, D). As such, following TLR stimulation we 

postulate this culminates in increased expression of inflammatory genes (i.e. NF-κB1 

and IL6) without any change in regulatory miRs (Fig.8.1E). Conversely, late preterm 
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neonates increased regulatory genes such as let-7e and SOCS1 alongside pro-

inflammatory genes and showed a phenotype that was more similar to term neonates 

who increased let-7e, miR-155 and miR-106a on TLR stimulation. These experimental 

scenarios suggest that term neonates are able to return to immune homeostasis 

following inflammatory activation, while preterm neonates continue to upregulate 

inflammatory pathways, as reinforced by our time course analysis (Fig.8.1F).  

 

Fig 8.1. A theoretical representation of TLR signalling by the fetus/ neonate during 

gestation and following term, late preterm and early preterm delivery. Early preterm 

neonates are a most commonly a product of an inflammatory in utero environment from 

earlier during gestation (A) than late preterm neonates (B), which results in premature 

delivery. At birth, early preterm neonates show evidence of poor regulatory capacity 

(C) that becomes apparent during their adaptation to the ex utero environment (D). On 

immune challenge, early preterm neonates are unable to regulate inflammatory 

signalling, such that it becomes aberrant (E). Late preterm neonates show an ex utero 

response to immune challenge similar to term cord blood, suggesting a more mature 

system that shows some evidence of regulatory gene expression in vitro. Term fetuses 

typically encounter inflammation during labouring delivery and are born in an immune-

tolerant state, showing increased regulatory miR expression compared to early preterm 

neonates (C). Following immune challenge ex utero, they are able to downregulate 

inflammatory signalling appropriately, unlike early preterm neonates that perpetuate 

inflammatory signalling that may predispose them to inflammatory conditions (F).  
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Preterm neonates are born in a state where immune cell numbers, cell function and miR 

expression is mitigated, contributing to increased vulnerability to pathogen 

colonisation. Following immune challenge, they become hyper-responsive and 

inflammatory signalling exceeds that seen in late preterm and term neonates. Late 

preterm neonates are more likely a product of indicated delivery (such as pre-eclampsia 

or growth restriction) or intrauterine inflammation occurring later during gestation7. 

Late preterm neonates demonstrate a miR and mRNA profile of TLR-associated gene 

expression that was similar to term neonates. This indicates the timing of a maturational 

switch in TLR signalling pathways occurs later in gestation allowing for more effective 

inflammatory regulation. 

8.9.1. A PROPOSED MODEL FOR OUR FINDINGS 

The in utero environment preceding preterm delivery may include adverse exposures to 

inflammation, labour, maternal health (e.g. pre-eclampsia) or maternal health 

behaviours during pregnancy (e.g. maternal smoking) (Fig. 8.2.A). This thesis has 

demonstrated that at delivery, the early preterm neonate shows decreased expression of 

regulatory miRs, with no difference in cytokine expression compared to the term 

neonate (Fig. 8.2.B). Following exposure to an inflammatory stimulus, this appears to 

culminate in the dysregulation of inflammatory gene networks, such that inflammatory 

genes TLR4, IL6, IL10 and NF-κB1 are increased and IL6 production therefore exceeds 

that of the term neonate (Fig. 8.2.C). This is evidence of a hyper-responsive state 

following birth that predisposes preterm neonates to uncontrolled inflammation. An 

inability to regulate inflammation may predispose preterm neonates to acute and/ or 

systemic responses characteristic of morbidities such as NEC, PVL, neonatal sepsis, 

CLD and ROP (Fig. 8.2.D).  

Over page: Fig. 8.2. A proposed model for the development of inflammatory 

morbidities in preterm neonates. Early preterm neonates are exposed to a pro-

inflammatory in utero environment (A) and show decreased regulatory miR expression 

at birth (B). On exposure to inflammatory stimuli ex utero (when they are prone to 

contracting infections), their pre-existing dysregulated inflammatory gene networks 

upregulate pro-inflammatory genes without increasing regulatory genes (C). Preterm 

neonates that develop infections are prone to developing acute and/ or systemic 

inflammation that commonly results in the development of morbidities such as PVL, 

ROP, neonatal sepsis, CLD and NEC (D). Images presented in this figure are self-

illustrated or courtesy of open source designs (http://www.servier.com/Powerpoint-

image-bank).  

http://www.servier.com/Powerpoint-image-bank
http://www.servier.com/Powerpoint-image-bank
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Fig. 8.2. A proposed model for the development of inflammatory morbidities in 

preterm neonates. 
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8.10. FUTURE RESEARCH 

The current understanding of cord blood miR expression and its role in innate immunity 

in preterm and term infants remains in its infancy. This field of research still has great 

potential in informing the clinical management of preterm neonates. TLR signalling is 

critical to innate immune function and neonatal immunity overall. While miRs have 

considerable influence on the neonatal immune phenotype, there is still scope for 

investigation into other inflammatory pathways from signalling networks to cell-

specific signalling.  

Based on the limitations of this thesis, future studies could involve GWAS to identify 

perturbations involving other miRs or networks of expression associated with 

inflammation in preterm neonates. This could lead to the identification of phenotypes 

that are more susceptible to disease and therefore, direct prophylactic interventions or 

changes in clinical management. Further, microarrays could be conducted on samples 

of neonatal peripheral blood similar to our cohort (i.e. in isolation of infection) that are 

stimulated with LPS in vitro to determine the upregulation or perturbation of specific 

pathways or gene clusters that may contribute to uncontrolled inflammatory signalling 

in early preterm cord blood compared to late preterm and term. Although neonatal 

outcomes cannot necessarily be predicted using in vitro stimulation studies, larger scale 

investigations looking for key miRs that were characterised by this thesis (specifically, 

miR-155 and let-7e) could be used in conjunction with microarray data as proposed in 

Chapter 7, to assess their value (sensitivity and specificity) as diagnostic or prognostic 

tools. This research could lead to diagnostic advances such as establishing 

transcriptomic fingerprints and even sub-analyses for separating risk factors such as 

maternal smoking during pregnancy. Overall, such tools may be used clinically for 

prophylactic management (e.g. the use of probiotics) or to develop novel management 

strategies (e.g. to boost regulatory miR expression). 

On a more specific scale, identifying underlying factors that contribute to aberrant 

inflammatory signalling by immune cells is also necessary. This could include the use 

of murine or cell-line knockdown models that are valuable for isolating the function of 

specific molecules or pathways. Small interfering RNAs (siRNAs) can be used in vitro 

to silence mRNA translation. Therefore, introducing them to isolated cord blood cell 

populations during TLR stimulation would help isolate the precise mechanism for the 
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lack of miR expression in preterm cord blood observed by this thesis. For example, 

silencing TLR2 or TLR4 would support our investigation of the TLR signalling cascade 

as a primary contributor to uncontrolled IL6 production in preterm cord blood. Further, 

investigation into Dicer expression in cord blood and how it might affect early preterm 

miR expression could be the underlying mechanism that requires confirmation in this 

experimental model.  

We were also unable to confirm the contribution of different cell types to the preterm 

inflammatory response in vitro, which may reveal particular dysfunctional aspects of 

innate immunity. The use of flow cytometry to characterise cell-specific gene 

expression could therefore confirm our theory from Chapter 7, where we found that 

adult neutrophils were key producers of NF-κB-related genes. To date, the analysis of 

neonatal neutrophils is sparsely characterised, though they show comparable phagocytic 

function across gestational age454. Overall, neonatal neutrophil characterisation is 

therefore a key area for further research, particularly because neutropenia is associated 

with neonatal sepsis.  

Although we chose to focus on neonatal outcomes rather than the aetiology of preterm 

birth, maternal physiology is clearly an important influence on the neonatal immune 

system. Increased maternal CRP, IL6506 and IL1β507 have been proposed as predictors 

for preterm delivery in amniotic fluid and maternal blood. As a majority of deliveries in 

our cohort were not exposed to infection or PPROM, data on maternal CRP levels were 

not consistently available from clinical records. Future studies could incorporate these 

parameters and also, the expression of miRs in maternal serum to trace the effect of 

immune regulation and relate it to the neonatal system. In fact, others have associated 

specific patterns of miR expression in maternal serum with poor pregnancy outcomes, 

and recommended the use of these targets as diagnostic tools (for review see508).  

Clinical research is also important for investigating evidence of uncontrolled 

inflammation and managing it. Currently, the management of chronic or acute 

inflammation in preterm neonates (including sepsis), involves the use of antibiotics and 

immunomodulation therapy509. However, there remain complex obstacles between the 

translation of scientific findings and clinical outcomes. Altering cytokine 

concentrations, such as GMCSF supplementation to improve neutropenia in septic 

preterm neonates, has not been effective to date218. This may be because while early 
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preterm neonates can produce cytokines (as reinforced by this thesis), they show an 

inability to regulate their production temporally. Our data hereby highlights the need to 

manage preterm neonates’ immune dysregulation. Therefore, therapies that promote 

immune regulation and as such, the tolerance of commensal bacteria may be ideal. This 

could include breastmilk supplementation or the administration of antibodies that 

neutralise IL6 overexpression. 

The clinical management of preterm neonates is challenging. It is not feasible to 

completely inhibit pro-inflammatory cytokines or increase regulatory miRs, because 

they have ubiquitous roles in physiology and are simultaneously involved in unique 

networks of genes. Immunomodulating therapies such as Tocilizumab, which is a 

monoclonal antibody for IL6 receptor, have been trialled in the context of juvenile 

arthritis to reduce disease severity510. While it has been shown to decrease non-specific 

markers of inflammation such as CRP, Tocilizumab is associated with neutropenia and 

infection. Immune mediators such as Pentoxifylline are already used in the NICU to 

inhibit inflammatory signalling by TNFα and IL1 and decrease oxidative stress during 

neonatal sepsis and NEC509. Therapies involving miRs are yet to be trialled clinically, 

however, supplements such as curcumin are shown to decrease miR-155 in mice and 

protect against sepsis and tissue damage during acute LPS-driven inflammation in this 

model511. Overall, the systemic nature of miR signalling means they may be better used 

as a diagnostic tool rather than a therapeutic target, at least with our current level of 

understanding. 

8.11. SUMMARY 

Preterm neonates are susceptible to adverse health outcomes, a majority of which are 

associated with inflammatory conditions. Notably, preterm blood shows lower 

leukocyte counts, attenuated intracellular killing capacity and decreased pro-

inflammatory cytokine expression following immune stimulation in vitro compared to 

term blood. To date, studies have been unable to explain how such immune attenuation 

is associated with aberrant inflammation in preterm neonates. This thesis therefore 

aimed to characterise inflammatory gene expression and its regulation by miRs in the 

context of TLR stimulation. We demonstrated that inflammation in early preterm cord 

blood was not associated with any change in miR expression, but continued to increase 

pro-inflammatory gene expression. These findings reflect a poorly regulated, hyper-
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responsive immune phenotype that could underlie preterm neonates’ susceptibility 

towards developing inflammatory conditions. Further characterisation of miRs and 

other pathways associated with preterm innate immune regulation is therefore critical. 

This field of research could ultimately lead to the development of diagnostic tools and 

targeted therapies to reduce the burden of inflammatory disease among preterm 

neonates.
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REAGENTS AND CONSUMABLE MATERIALS 

 

Reagent Supplier Catalogue Number 

 

2.8mm Zirconium Oxide 

Precellys Beads 

Bertin Technologies, 

Montigny, FR 

03961-1-102  

 

200 Proof Ethanol (C2H6O) 

(RNA grade) 

Sigma-Aldrich, St Louis, 

USA 

E7023 

2-Propanol (C3H8O) Sigma-Aldrich I9516-500ML 

Agilent RNA 6000 Nano Kit Agilent Technologies, 

Santa Clara, USA 

5067-1511 

 

Albumin from Bovine Serum 

(BSA)  

Sigma-Aldrich A7906-100G 

Cellstar® Flat Bottom 96 Well 

Culture Plate (with lid) 

Greiner Bio-one, 

Kremsmunster, AT 

655180 

Chloroform (CHCl3) Ajax Finechem, Taren 

Point, AU 

1888 

di-Sodium Hydrogen Phosphate 

(Na2HPO4) 

Merck KGaA 7558-79-4 

Dulbecco’s Phosphate Buffered 

Solution, no calcium, no 

magnesium  

Gibco®, Thermofisher 

Scientific, Waltham, USA 

14190235 

Human ACTB Endogenous 

Control FAM/MGB Probe 

Life Technologies, 

Carlsbad, USA 

4352667 

Human Cytokine/ Chemokine 

Magnetic Bead Panel Milliplex 

MAP Kit 

Merck Millipore, 

Billerica, USA 

HCYTMAG-60K-

PX29 

Control Catalogue 

#MXH6060-2 

Human Duo Set ELISA 

Development Systems (TNFα, 

IL6, CXCL8/ IL8) 

R&D Systems, 

Minneapolis, USA 

DY210 (TNFα) 

DY206 (IL6) 

DY208 (CXCL8/ 

IL8) 
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Reagent Supplier Catalogue Number 

 

Hydrochloric Acid (HCl)  Merck, Kilsyth, AU 1789 

LH Lithium Heparin Vial, 9mL 

Vacuette® 

Greiner Bio-one, 

Kremsmunster, AT 

445084 

 

Lipopolysaccharides from 

Escherichia coli (LPS) 

Sigma-Aldrich L4391 

 

miRNeasy Mini Kit Qiagen, Limberg, NL 217004 

 

Nuclease-Free Water Ambion® by Life 

Technologies Carlsbad, 

USA 

AM9932 

Peptidoglycan from 

Staphylococcus aeureus 

Sigma-Aldrich  77140-10MG 

 

Polyinosinic:polycytidylic acid 

sodium salt (γ-irradiated) 

Sigma-Aldrich P0913-10MG 

Potassium Chloride (KCl) Ajax Finechem A383-500G 

Potassium Dihydrogen 

Orthophosphate (KH2PO4) 

VWR International, 

Poole, UKA 

102034B 

RNA 6000 Nano Kit Agilent Technologies, 

Santa Clara, USA 

5067-1511 

RNase-Free DNase Set Qiagen, Limberg, NL 79254 

 

Reinforced 2mL tubes and screw 

caps 

Sapphire Bioscience 13119-500 

Sodium Chloride (NaCl) Merck KGaA, Darmstaat, 

DE 

S3014-5KG 

SuperScript III First-Strand 

Synthesis SuperMix for qRT-

PCR 

Invitrogen™ 11752-050 

 

Taqman ® Fast Advanced Master 

Mix 

Applied Biosystems®, 

Life Technologies, 

Carlsbad, USA 

4444557 
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Reagent Supplier Catalogue Number 

 

Taqman ® MicroRNA Reverse 

Transcription Kit 

Applied Biosystems 4366596 

 

Taqman ® Universal PCR 

Master Mix II, No UNG 

Applied Biosystems 4440040 

Taqman ® MicroRNA Assays Applied Biosystems 4427975 

 

Taqman® Gene Expression 

Assays 

Applied Biosystems 4331182 

 

TMB/E solution (Horseradish 

Peroxidase) 

Millipore, Temecula, 

USA 

E50001-500ML 

Tris-base Amresco, Solon, USA 0497-1KG 

TRIzol LS® Reagent Ambion® by Life 

Technologies  

10296028 

 

TRIzol®  Reagent Ambion by Life 

Technologies 

15596018 

Tween®20 viscous liquid 

(Polyethylene glycol sorbitan 

monolaurate) 

Sigma-Aldrich P1379-IL 
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EQUIPMENT 

 

Equipment Supplier 

2720 Thermal Cycler Applied Biosystems Life Technologies, 

Carlsbad, USA 

Agilent 2100 Bioanalyser Agilent Technologies, Santa Clara, USA 

HERAcell 150i CO2 Incubator Thermo Fisher Scientific, Waltham, USA 

Heraeus Fresco17 Microfuge Thermo Fisher Scientific, Waltham, USA 

Heraeus Multifuge X3R Centrifuge Thermo Fisher Scientific, Waltham, USA 

Implen Nanophotometer Thermo Fisher Scientific, Waltham, USA 

Luminex®  100/200 System Luminex Corporation, Austin, USA 

Multiskan EX Plate Reader Thermo Fisher Scientific, Waltham, USA 

pH510 pH/mV/°C meter Eutech Instruments, Thermo Fisher 

Scientific, Waltham, USA 

Precellys 24 Tissue Homogeniser Bertin Technologies, Montigny, FR 

QuantStudio 12K Flex Applied Biosystems by Life 

Technologies, Carlsbad, USA 

 

 

 




