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Abstract 11 

BACKGROUND 12 

Eretmocerus warrae (Hymenoptera: Aphelinidae) is a parasitoid of the greenhouse whitefly, 13 

Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Here, we compare its potential as a 14 

biological control agent at high temperatures to that of Encarsia formosa (Hymenoptera: 15 

Aphelinidae), a wasp which is widely sold for control of T. vaporariorum.  16 

RESULTS 17 

E. warrae attained the highest estimated developmental rate at 31.4 °C and the maximum 18 

oviposition rate at 30.5 °C. Developmental times of E. warrae at fluctuating temperatures 19 

that simulate night-day patterns were similar to those predicted based on constant 20 
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temperatures. Above the optimum temperature, E. warrae tolerated higher constant 21 

temperatures than En. formosa during development and as adults. Using a ramping 22 

temperature approach, the critical thermal maxima for adult E. warrae was significantly 23 

higher than that of adult En. formosa. 24 

CONCLUSION 25 

E. warrae is better adapted to high temperatures than En. formosa, and could therefore be a 26 

complementary or superior biological control agent during summer months in hot regions. 27 

 28 

Key Words:  29 

Trialeurodes vaporariorum; critical thermal maximum; ramping temperature; survival; 30 

fluctuating temperature 31 

1. INTRODUCTION 32 

Greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), 33 

attacks an extensive range of ornamental plants and vegetables, and causes severe damage to 34 

greenhouse crops when present at high densities.1 Although insecticides can suppress this 35 

pest, resistance of greenhouse whitefly to insecticides has been demonstrated and biological 36 

control is widely used. Among species of biological control agents, the release of En. 37 

formosa has received much attention in the biological control of greenhouse whitefly.2 It has 38 

been one of the most widely used and effective parasitoids in control of whiteflies in 39 

greenhouses in many parts of the world since the 1920s.3 However, there are some 40 

weaknesses that can reduce the efficacy of En. formosa in biological control. For instance, 41 

greenhouse whitefly colonies still grow in the hot summer when En. formosa’s activity and 42 
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population growth are decreased by extreme temperatures, and thus it cannot control this pest 43 

effectively at high temperatures.4  Species that have a broader tolerance for extreme 44 

temperatures are needed to replace or complement En. formosa.  45 

Eretmocerus warrae (Nauman & Schmidt) (Hymenoptera: Aphelinidae) is a parasitoid of 46 

the greenhouse whitefly that is suspected to be effective as a biological agent.5 The solitary 47 

parasitoid E. warrae was first found in New Zealand in 1997,6 and studied in Australia by De 48 

Barro et al., 7 who presented the morphological and molecular characteristics of this wasp. 49 

Because of its potential in suppressing greenhouse whitefly, E. warrae is being reared for 50 

release in commercial greenhouses in Australia.8 Observations suggest that E. warrae 51 

actively parasitizes greenhouse whitefly at higher temperatures than Encarsia formosa 52 

(Gahan) (Hymenoptera: Aphelinidae) (James Altmann, personal communication). If this 53 

proves to be true, then E. warrae should be a complementary biological control agent to En. 54 

formosa, and might be a better control agent when the temperature is high during summer. 55 

This study was carried out to study the effects of temperature on the biology of E. warrae and 56 

determine whether it is able to tolerate higher temperatures than En. formosa. 57 

Temperature is a key environmental factor that affects all aspects of arthropod life, from 58 

physiology to behavioural patterns.9 Therefore, the effect of temperature on development, 59 

longevity and behaviour of E. warrae is significant for its utilization in greenhouses. The 60 

development of insects shows a non-linear response to temperature, with the highest 61 

developmental rate achieved at an intermediate optimum temperature. Basic parameters, such 62 

as lower developmental threshold temperature, developmental rates under different 63 

temperature conditions and critical lethal maxima are needed to predict the generation time, 64 

which affects the effectiveness of parasitoid populations. The determination of these 65 

parameters should enable an advanced release strategy to be formulated in consideration of 66 

expected temperature conditions in greenhouses. The effects of fluctuating temperatures on 67 
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E. warrae need to be studied because daily fluctuations in temperature are inherent in the 68 

operation of greenhouses.    69 

For biological control, the upper threshold temperatures may be more critical than the 70 

optimum temperature.10 When the temperature exceeds the maximum, this can cause death or 71 

irreversible injury, or severely limit development and behaviour.10,11 Insects may also 72 

terminate diapause when the temperature is extreme.12  Therefore methods to estimate the 73 

upper lethal threshold are valuable in understanding a species’ response to temperature. The 74 

dynamic method for estimating upper lethal temperatures uses ramping temperatures to 75 

assess the critical upper limit.13 It is widely used and thought to be more ecologically-relevant 76 

than the static method, which uses a range of fixed constant temperatures to estimate the 77 

upper lethal temperature. 13  78 

We conducted experiments to assess the influence of constant and fluctuating 79 

temperatures on the development, mortality and oviposition of E. warrae. Furthermore, to 80 

investigate the potential of E. warrae as a complementary biological control agent of  En. 81 

formosa in greenhouses at high temperatures, we compared the developmental rate and 82 

survival of E. warrae and En. formosa at a range of high temperatures. Both constant 83 

temperature and ramping temperatures were used. These results will facilitate rearing and 84 

effective deployment of  E. warrae in greenhouses. 85 

2. MATERIALS AND METHODS 86 

2.1. Rearing parasitoids and host  87 

Greenhouse whiteflies were collected from eggplant, Solanum melongena L. 88 

(Solanaceae), in the greenhouses at the Waite Campus of The University of Adelaide and 89 

used to initiate a culture. Tobacco, Nicotiana tabacum L. (Solanaceae), plants with at least 90 
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five fully expanded leaves and approximately 30 cm high were used to rear the whitefly 91 

culture because they can support high densities of these insects. A greenhouse whitefly 92 

culture was kept at 26 °C, 40 – 80 % RH and a photoperiod 14 L: 10D.  93 

Pupae of E. warrae and En. formosa were provided by Biological Services, Loxton, 94 

South Australia. A breeding culture of the parasitoids was set up on greenhouse whiteflies 95 

feeding on tomato plants, Solanum lycopersicum L. (Solanaceae),  at 26 °C. Pupae of the two 96 

species of parasitoids were harvested from the breeding culture and kept in two separate 97 

incubators at 8 °C, 70 – 80 % RH to arrest development. For each species, when adult 98 

parasitoids were needed, pupae were moved from 8°C at 20:00 h to another incubator which 99 

was set at 26 °C to allow them to emerge. Most adults emerged during the morning when 100 

experiments commenced. Adults were kept in cages and honey drops were provided as food.  101 

Six to seven week old tomato plants were used in experiments as a host plant for 102 

greenhouse whitefly. The tomato plants had six fully expanded leaves and were 103 

approximately 50 cm high. The cultivar ‘Improved Appolo’ was used in moderate 104 

temperature conditions (15 – 36 °C) whereas ‘Summerstar’ was used at higher temperatures 105 

(30 - 37.5 °C)  because it can better withstand temperatures up to 37.5 °C.  106 

Second instar T. vaporariorum were provided as hosts in experiments. Cohorts of 2nd 107 

instar nymphs were obtained by exposing tomato plants to adult whiteflies for six hours, and 108 

then removing the adults first by blowing them off with a cool hair-dryer and then removing 109 

the remaining adults with an aspirator. These cohorts were held in incubators at 26 °C, 70 – 110 

80 % RH until they reached the 2nd instar. If necessary, other stages of nymphs were removed 111 

with a pin before experiments. 112 
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2.2. Experimental materials  113 

Temperature experiments were conducted in five incubators (Adelab Scientific, 114 

Thebarton, South Australia, Model 1390D) that were calibrated to means within 0.1 °C of set 115 

temperatures with a precison thermometer (E-MIL, H. J. Elliott Ltd, Treforest, U.K.)  and had 116 

measured variation of ± 0.3 °C. The rearing temperatures were set according to the 117 

experiments and the photoperiod was 14L : 10D.   118 

Clip cages were used to confine insects on tomato leaves.14 They were made of two rings 119 

of 12 mm thickness of polyethylene foam that had inside and outside dimensions of 40 mm 120 

and 55 mm, respectively, which were held together over a leaf with wire staples pushed into 121 

the edges. There was a transparent cellulose acetate sheet on the bottom of each cage which 122 

allowed wasps to be observed and fine organza on top for aeration. An aspirator made of 123 

plastic tubing was used to handle wasps. Honey drops were placed on the organza of clip 124 

cages as food for E. warrae.  125 

2.3. Effects of temperature on the developmental rate of E. warrae  126 

To investigate the effects of constant temperatures on the development of E. warrae, 127 

three clip cages containing a minimum of 100 2nd instar greenhouse whiteflies were attached 128 

to selected leaves of each of five tomato plants.. The plants were transferred to experimental 129 

incubators that were set at 15, 20, 25, 30 and 33 °C, 70 – 80 % RH. The whitefly nymphs 130 

were exposed to newly-emerged adult E. warrae for six hours, after which the adults were 131 

removed from the clip cages using an aspirator. In the temperature range 15 - 33 °C, the wasp 132 

numbers within each clip cage were 13, 4, 3, 2 and 2, respectively. Greater numbers of wasps 133 

were used at lower temperatures to compensate for their lower activity levels. The parasitised 134 

greenhouse whitefly nymphs were kept in the clip cages, and the emergence of E. warrae was 135 

monitored daily using a hand lens. There were four replicate plants at each temperature.  136 
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The Briere model was used to analyse the developmental rate of E. warrae.10 It is 137 

described as 138 

𝑅(𝑇) = {

0, if 𝑇 ≤ 𝑇0

𝑎𝑇(𝑇 − 𝑇0)(𝑇𝐿 − 𝑇)
1

𝑚

0, if 𝑇 ≥ 𝑇𝐿

 , if 𝑇0 ≤ 𝑇 ≤ 𝑇𝐿                                                                        139 

⑴ 140 

where R is the rate of development, T is the temperature, TL is the upper threshold 141 

temperature, T0 is the lower threshold temperature, and a and m are empirical constants. 142 

This model has advantages compared to other non-linear models.15-17 It has few 143 

parameters, is biologically descriptive and incorporates both high and low threshold 144 

temperatures. Unlike a degree-day model which does not work for the nonlinear relationship 145 

between developmental rate and temperature at extreme low and high temperatures, this 146 

model fits the broad non-linear relationship across all temperatures.10 The lower (T0) and 147 

upper (TL) temperature threshold parameters have biological meaning. The model of Briere et 148 

al. has a form that can potentially fit the relationship between temperature and other 149 

biological rates.10 It was also used to evaluate the relationship between temperature and 150 

oviposition rate.  151 

The effects of temperature on the developmental rate of E. warrae were analysed using 152 

non-linear regression in R version 3.2.0 (2015-04-16) to estimate the parameters of the 153 

model.10 Mean developmental rates from each replicate were used as data to balance the 154 

analysis. 155 

2.4. Effects of temperature on the oviposition activity of E. warrae 156 

The influence of temperature on the oviposition avitivity of E. warrae was assessed at 15, 157 

20, 25, 30 and 33 °C, 70 – 80 % RH. Before an experiment, wasps were kept at 25 °C. Each 158 
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adult E. warrae was exposed to 2nd instar greenhouse whitefly for two hours to become 159 

experienced in host searching. The wasps were then separated from hosts for one day. This 160 

procedure ensured that E. warrae would lay eggs quickly when hosts were available.  Tomato 161 

leaves infested with 2nd instar greenhouse whitefly were placed into the incubators one hour 162 

before the experiment. The greenhouse whitefly infested leaves were covered by clip cages, 163 

making sure there was an excess of whitefly nymphs in each cage. Four experienced adult E. 164 

warrae were released into each clip cage at the experimental temperature. The wasps were 165 

removed from the cages after three hours to ensure that the availability of unparasitised hosts 166 

was not limiting behaviour. Because E. warrae lays eggs under the ventral part of nymphs, all 167 

the nymphs were turned over using a dissecting needle and the number of eggs laid was 168 

recorded. Observations at each temperature were replicated four times. The analysis of the 169 

effect of temperature on oviposition rate of E. warrae was the same as that of experiment 2.3. 170 

There were four replicates at each temperature. 171 

2.5. The effects of fluctuating temperature on the developmental times of E. warrae 172 

To investigate whether the development of E. warrae under fluctuating temperature 173 

conditions differed from that at constant temperatures, the same methods were used as in 174 

experiment 2.3, except developing wasps were exposed to two fluctuating temperature 175 

regimes. The temperatures were 33 °C in light and 26 °C in dark in the high fluctuating 176 

temperature regime, and 25 °C in light and 15 °C in dark in the low fluctuating temperature 177 

regime (70 – 80 % RH). The photoperiod was 14L: 10D.  The numbers of adult E. warrae 178 

that parasitized the nymphs were two and four in the high and low fluctuating temperature 179 

regimes, according to the activity of the wasps. The developmental times of the parasitoids 180 

from egg to adult were recorded and compared to development that was predicted based on 181 

development at constant temperatures from the results of experiment 2.3. This experiment 182 

had four replicates.  183 



9 

 

2.6. The effects of high temperature on emergence and development of greenhouse 184 

whiteflies, E. warrae and En. formosa 185 

The survival of greenhouse whitefly under the high temperature conditions was 186 

investigated at 30, 33, 34.5, 36 and 37.5 °C, respectively (70 – 80 % RH). The effects of the 187 

same temperatures on the development and survival of E. warrae and En. Formosa were also 188 

assessed.  The number of 2nd instar nymphs of greenhouse whiteflies in each clip cage at each 189 

temperature was 100. Excessive numbers of nymphs were removed from the leaf with a pin. 190 

The numbers of parasitoids of each species released into clip cages were 6, 6, 9, 18 and 36 at 191 

temperatures 30, 33, 34.5, 36 and 37.5, respectively. The developmental times of parasitoids 192 

and the numbers of adults of each species that emerged were recorded. This experiment was 193 

replicated four times. Differences in developmental times between parasitoid species at each 194 

temperature were analysed using analysis of variance with replicates treated as blocks, except 195 

at 34.5 °C where a paired t-test was used due to no development by En. formosa.   196 

Differences in numbers of parasitoids that emerged at each temperature were analysed with 197 

paired t-tests by temperature.   Statistical comparisions between temperatures were not 198 

possible due to the differing numbers of adults that were used to initiate the experiment. 199 

2.7. The mortality of adult E. warrae and En. formosa at constant high temperatures 200 

The effects of constant high temperature on the mortality of adult E. warrae and En.  201 

formosa were investigated. Adult E. warrae and En. formosa were placed into glass vials (18 202 

mm diam x 50 mm) that had fine stainless steel mesh melted over a 10 mm hole in the plastic 203 

lid to provide aeration.  The vials rested in close-fitting semi-circular grooves in a dense 204 

wooden block (12.5 × 10 × 2.5 cm3) that had been heated in an incubator to 36 °C or 37.5 °C, 205 

70 – 80 % RH, which, according to the results of experiment 2.7, were stressful temperatures 206 

for both wasp species. The wooden block was painted white and served as a thermal ballast to 207 

maintain a constant temperature inside the vials during brief periods of observation when the 208 
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vials were removed from incubators. Pure honey and water were provided on a cotton dental 209 

wick to ensure that the wasps did not die from starvation or dehydration. There were 10 210 

wasps in each vial and five replicates at each temperature. The number of dead wasps was 211 

recorded every three hours until all wasps died. The time of death was assumed to be the 212 

midpoint between observations.   The proportional hazards survival regression (Statistix 213 

version 10.0, Analytical Software, Tallahassee, Florida, USA)  was used to analyse of the 214 

survival rate of the parasitoids.   215 

2.9. The critical thermal maxima of adult E. warrae and En.  formosa under ramping 216 

temperature conditions 217 

The critical thermal maxima of adult E. warrae and En.  formosa were assessed using the 218 

ramping temperature method.18 A water bath was used for this test and a precision 219 

thermometer (E-MIL, H. J. Elliott Ltd, Treforest, U.K.)  was used to measure the 220 

temperature. Starting at 26 °C, temperatures were increased by 1°C every two minutes in 221 

which the temperature increased gradually in the first minute and kept constant in the second 222 

minute. Temperatures were controlled at ±0.1 °C. E. warrae and En. formosa were put into 223 

two separate small glass vials with closed lids. A shelf was made of iron wire to fix the vial in 224 

the water bath. The vials were fixed in the shelf and they were easy to take out for quick 225 

observation (<10 s). The shelf and vials were totally submerged into the water bath during the 226 

experiment. A cotton wick saturated with 10 % honey solution was placed in each vial as a 227 

water and food source. Ten one-day-old wasps were placed into each vial and this experiment 228 

was replicated eight times. The number of dead wasps was recorded at the end of each 229 

constant temperature exposure. Logistic regression (Statistix 10.0) was used to estimate the 230 

critical thermal maxima of E. warrae and En. formosa, which was the temperature at which 231 

50% of adults died. In all cases, parameter estimates are given as mean ± standard error. 232 
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3. RESULTS 233 

3.1. Effects of temperature on the developmental rate of E. warrae  234 

The developmental rate of E. warrae increased as the temperature rose from 15 °C to 235 

30 °C (Fig. 1). No development was completed at 36 °C, and this temperature was excluded 236 

from the nonlinear regression analysis to fit the Briere model.  The estimated optimum 237 

temperature for the development of E. warrae was 31.4 °C and all parasitoids are predicted to 238 

die when the temperature reaches 35.6 ± 1.1 °C. The lower threshold temperature of E. 239 

warrae was 9.7 ± 0.8 °C; and the parameter “a” in Briere model was 6.41e-5 ± 1.18e-5 and 240 

“m” was 3.13 ± 0.82. At 15 °C, it took more than two months for E. warrae to develop from 241 

egg to adult, which is around four times longer than the developmental time at 30 °C.  242 

3.2. Effects of temperature on oviposition of E. warrae 243 

The oviposition rate of E. warrae increased as the temperature rose from 15 °C to 30 °C 244 

(Fig. 2). No eggs were laid at 35 °C, and this temperature was excluded from the nonlinear 245 

regression analysis to fit the Briere model. The estimated optimum temperature for 246 

oviposition was 30.5 °C.The estimated lower critical temperature threshold for oviposition by 247 

E. warrae was 13.7 ± 0.8 °C and the upper critical threshold was estimated at 34.9 ± 1.4 °C. 248 

The empirical model parameters “a” and “m” in the model were estimated to be 0.00324 ± 249 

0.00083 and 2.43 ± 0.95.  250 

3.3. The effects of fluctuating temperatures on developmental rate of E. warrae  251 

The observed developmental times did not differ significantly from those predicted on 252 

the basis of the calculated means of fluctuating day and night temperatures (high 253 

temperatures: t = 0.633, df = 3, P = 0.57; low temperatures: t = 0.917, df = 3, P = 0.427; 254 

Table 1).  255 
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3.4. The effects of high temperature on on emergence and development of greenhouse 256 

whiteflies, E. warrae and En. formosa 257 

The numbers of greenhouse whiteflies that emerged decreased markedly when the 258 

temperature increased from 30 °C to 34.5 °C (Table 2). No successful development was 259 

observed at 36 °C and 37.5 °C, while less than 5 % of adults on average emerged at 34.5 °C, 260 

which is roughly 10 times fewer than at 30 °C.  261 

Constant high temperatures had a greater negative influence on En. formosa than E. 262 

warrae (Table 2). The numbers of adult E. warrae and En. formosa that emerged did not 263 

differ at 30 °C and  33 °C. Some adult E. warrae emerged at 34.5 °C but no En. formosa did. 264 

The developmental times of both parasitoids increased at the highest recorded temperature in 265 

which they survived.   266 

3.6. The mortality of adult E. warrae and En. formosa at high temperatures 267 

Proportional hazards analysis indicated that survival of adult parasitoids at constant high 268 

temperatures differed between species (Z = 4.94, P < 10-4) and temperatures (Z = 2.20, P = 269 

0.028). Adult E. warrae survived 5.4 h longer than En. formosa at constant 36 °C and 3.7 h 270 

longer at 37.5 °C (Fig. 3).  271 

Logistic regression indicated that ramping temperatures affected the species differently 272 

(Z = 5.787, P < 10-8; Fig. 4).  The estimated critical thermal maximum temperature for E. 273 

warrae is 42.6°C and for En. formosa is at 41.8 °C. One E. warrae  in replicate three died 274 

when the temperature was 35 °C; this single wasp was discarded from the data because it was 275 

a statistical outlier.   276 
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4. DISCUSSION 277 

The developmental rate of E. warrae in the range of 15 to 30 °C is broadly similar to En. 278 

formosa, Eretmocerus mundus (Mercet)  and Eretmocerus eremicus (Rose) (Hymenoptera: 279 

Aphelinidae), which are widely used in biological control (Fig. 1).19 Its development at high 280 

temperatures is constrained by the development of its host, which in our experiments also did 281 

not occur at 36 °C (Table 2).  The maximum rate of development of E. warrae is predicted at 282 

31.4 °C, which is commonly exceeded during the summer months. The high developmental 283 

rate of E. warrae at high temperatures indicates the potential of using E. warrae and En. 284 

formosa in combination, as E. warrae should suppress greenhouse whitefly more effectively 285 

during the hot summer while En. formosa is known to control whiteflies at lower 286 

temperatures3. This is analogous to the complementary relationship between En. formosa and 287 

E. eremicus, which are released for control of T. vaporariorum and Bemisia tabaci 288 

(Gennadius) (Hemiptera: Aleyrodidae) in European greenhouses.19 The predicted relationship 289 

between temperature and development is useful for optimising methods for the mass rearing 290 

and deplolyment of this parasitoid. There is limited research on the effects fluctuating 291 

temperatue on parasitoids, but fluctuating temperatures are normal in production systems. 292 

When E. warrae was reared in fluctuating temperatures, its developmental times were 293 

virtually the same as those predicted based on rearing at constant temperatures with the same 294 

mean (Table 1). This suggests that the model of the developmental rate based on 295 

development at constant temperatures can be applied to predict the approximate timing of 296 

developmental under moderate fluctuating temperatures in greenhouses.  297 

E. warrae has a relatively high oviposition rate even when the temperature is 33 °C (Fig. 298 

2), which should facilitate its controlling influence on greenhouse whitefly under such host 299 

conditions. The effects of temperature on oviposition show a similar response to 300 

developmental rate, but oviposition is predicted to occur over a more limited temperature 301 
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range. En. formosa is reported to mature 8-10 eggs per day, which is equivalent to the 302 

maximum number laid by E. warrae in 3 h at 30.5 °C.20 However, E. warrae exhibits 303 

deterotoky, with rare production of males in culture, so it is likely to have much greater 304 

reproductive potential than En. formosa.  305 

The development of greenhouse whitefly was adversely affected by relatively high 306 

temperatures and this was reflected in the development and survival of the two parasitoids 307 

(Table 2).  The impact of temperatures above 30 °C on survival of the host constrains the 308 

potential development of its parasitoids, which was reflected in their observed developmental 309 

rates and survival. The effects of high temperature were evident at a lower temperature for 310 

En. formosa than for E. warrae.  As E. warrae completed development at the same high 311 

temperatures as its host, it has the potential to persist in greenhouses as long as immature 312 

greenhouse whiteflies are present. 313 

Adult E.warrae survived both constant and ramping high temperatures better than En. 314 

formosa (Figures 3 and 4).  Although the differences between the species are small, they may 315 

still be significant in greenhouses where summer temperatures are extreme.  Extreme high 316 

temperatures typically occur in the afternoon hours.  The evaporative systems that are used to 317 

cool greenhouses have a maximum potential temperature reduction in the order of 12 °C, 318 

which limit maximum temperatures. 21  However, extreme temperatures do not last long 319 

during a day and may not occur on many days of the year.   Hence a species that can better 320 

withstand high temperatures for short periods could be potentially better in applied biological 321 

control programs in regions with high temperatures during summer months. This is consistent 322 

with the observation that E. warrae can be found naturally parasitising greenhouse whiteflies 323 

in greenhouses in the South Australian summer.   324 

5. CONCLUSION 325 
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Our results indicate that E. warrae should be a complementary biological control agent to En. 326 

formosa in greenhouses when the summer temperatures are high. At high temperatures, E. 327 

warrae had a higher survival and emergence of adults than En. formosa, and this highlights 328 

its potential as a biological control agent. E. warrae could be used alone or in combination 329 

with En. formosa, notably in hot regions. This research should enable farmers to use E. 330 

warrae as part of a pest management program to achieve more effective control of 331 

greenhouse whitefly.  332 
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Table 1. The developmental time (mean ± SE) of E. warrae at two fluctuating temperature 397 

regimes compared to model predictions. The predicted developmental time was obtained using 398 

the Briere model fitted to constant temperature data (see Fig. 1).  399 

 400 

Temperature regime ( °C )  Developmental time ( days ) 

14 h Light 10 h Dark  Observed  Predicted 

33.0 26.0  14.98 ± 0.12  14.90 

25.0 15.0  27.93 ± 0.45  28.34 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

  421 
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Table 2. Adult  emergence numbers and developmental times (mean ± SE) of E. warrae 422 

and En. formosa at a range of high temperatures. One hundred T. vaporariorum were present 423 

at the start of each trial. The effect of high temperatures on adult emergence of T. vaporariorum 424 

was tested in the absence of parasitoids.  425 

 426 

Temperature 

(°C) 

No. of T. 

vaporariorum 

emerged 

No. of E. 

warrae 

emerged 

/female 

No. of En. 

formosa 

emerged  

/female 

Developmental 

time of E. 

warrae (day) 

Developmental 

time of En. 

formosa (day) 

30.0 44.3 ± 2.8  4.1 ± 0.4 4.3 ± 0.1 ns 14.52 ± 0.11 14.33 ± 0.11 ns 

33.0 17.3 ± 1.5  2.0 ± 0.1 1.4 ±  0.1 ns 14.36 ± 0.14 15.65 ± 0.21 *** 

34.5 4.5 ± 1.0  0.5 ± 0.1 0 * 15.46 ± 0.55 0 *** 

36.0 0  0 0 0 0 

37.5 0  0 0 0 0 

Comparisions between parasitoid species: * P < 0.05, *** P < 0.001 427 

428 
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FIGURE LEGENDS 429 

Figure 1. Temperature-dependent developmental rate (±SD) of Eretmocerus warrae. In 430 

the Briere model, a = 0.00006, m = 3.07, T0 = 9.62, TL = 35.63. Where no error bar is visible, 431 

the standard deviations were ≤ 0.001 /day. 550 observations in total.  432 

Figure 2. Temperature-dependent fecundity (±SD)  of Eretmocerus warrae. In the Briere 433 

model, a = 0.004, m = 2.43, T0 = 13.70, TL = 34.94. The standard deviation was 0.96 at 15 °C. 434 

459 observations in total. 435 

Figure 3. Survival analysis of Eretmocerus warrae and Encarsia formosa at 36 and 436 

37.5 °C. Dotted line is the survival rate of En. formosa at 36 °C, dash- and dotted line is that 437 

of E. warrae at 36 °C, dashed line is En. formosa at 37.5 °C and solid line is E. warrae at 438 

37.5 °C. (χ2=28.78, df = 2, P < 0.001) 439 

Figure 4. Survival of Eretmocerus warrae and Encarsia formosa using ramping 440 

temperature. Curves fitted by logistic regression: a) Survival rate of E. warrae, the constant is 441 

115.76,  deviance 188.52, P = 0.049, df = 158; b) Survival rate of E. formosa, the constant is 442 

155.98, deviance 143.99, P = 0.71, df = 154.  443 

 444 
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