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Chapter 1

Introduction

1.1 Problem Formulation

The thesis focuses on the following two topics: designing energy-efficient neural

networks and hashing approach to make deep learning more feasible to real appli-

cations; deep convolutional neural networks for visual recognition.

1.1.1 Efficient low-bitwidth convolutional neural networks and binary data

storage

Although deep learning methods have significantly improved the performance of

various applications, there are still many limitations that constrain their practicality.

The first limitation of deep learning is the large number of learnable parameters

and expensive computational cost, which consumes heavy computational resources

and memory. To solve this problem, substantial efforts have been made to the speed-

up and compression on CNNs during training, feedforward test or both of them.

Among existing methods, the category of network quantization methods attracts

great attention from researches and developers. This thesis tackles the problem of

training a deep convolutional neural network with both low-precision weights and

low-bitwidth activations. Optimizing a low-precision network is very challenging

since the training process can easily get trapped in a poor local minima, which re-

sults in substantial accuracy loss. To mitigate this problem, we propose three simple-

yet-effective approaches to improve the network training. First, we propose to use

1



2 Introduction

a two-stage optimization strategy to progressively find good local minima. Specifi-

cally, we propose to first optimize a net with quantized weights and then quantized

activations. This is in contrast to the traditional methods which optimize them si-

multaneously. Second, following a similar spirit of the first method, we propose

another progressive optimization approach which progressively decreases the bit-

width from high-precision to low-precision during the course of training. Third, we

adopt a novel learning scheme to jointly train a full-precision model alongside the

low-precision one. By doing so, the full-precision model provides hints to guide

the low-precision model training. Extensive experiments on various datasets (i.e.,

CIFAR-100 and ImageNet) show the effectiveness of the proposed methods. To high-

light, using our methods to train a 4-bit precision network leads to no performance

decrease in comparison with its full-precision counterpart with standard network

architectures (i.e., AlexNet and ResNet-50).

Another limitation for applying deep neural networks on real applications is the

data storage problem. The reason is that the dimensions of low/mid/high level fea-

ture representations in conventional deep architectures are usually very huge. For

instance, one middle layer of VGG16 has the dimension of 512× 14× 14. And the

commonly used fully-connected layer representation has the dimension of 4096. To

solve this problem, we propose to employ hashing methods which aim to learn a

mapping (or embedding) from images to a compact binary space in which Hamming

distances correspond to a ranking measure for the image retrieval task. We make use

of a triplet loss because this has been shown to be most effective for ranking prob-

lems. However, training in previous works can be prohibitively expensive due to the

fact that optimization is directly performed on the triplet space, where the number of

possible triplets for training is cubic in the number of training examples. To address

this issue, we propose to formulate high-order binary codes learning as a multi-label

classification problem by explicitly separating learning into two interleaved stages.

To solve the first stage, we design a large-scale high-order binary codes inference
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algorithm to reduce the high-order objective to a standard binary quadratic problem

such that graph cuts can be used to efficiently infer the binary codes which serve as

the labels of each training datum. In the second stage we propose to map the origi-

nal image to compact binary codes via carefully designed deep convolutional neural

networks (CNNs) and the hashing function fitting can be solved by training binary

CNN classifiers. An incremental/interleaved optimization strategy is proffered to

ensure that these two steps are interactive with each other during training for better

accuracy. Moreover, our method demonstrates both improved training time (by as

much as two orders of magnitude) as well as producing state-of-the-art hashing for

various retrieval tasks.

1.1.2 Convolutional neural networks for visual recognition

Convolutional neural networks have significantly improved a wide range of visual

recognition tasks (e.g., image classification [Krizhevsky et al., 2012], image detec-

tion [Redmon et al., 2016] and image segmentation [Lin et al., 2016a; He et al., 2017]).

However, there are still limitations constraining the development of visual recogni-

tion. First, data matters. To achieve promising performance on a specific task, this

typically requires either recruiting a team of experts [Van Horn et al., 2015] or exten-

sive crowd-sourcing pipelines [Berg et al., 2014] to annotate large-scale datasets. A

method for recognition is then trained using these expert-annotated labels, possibly

also requiring additional annotations in the form of parts, attributes, or relationships

which will be quite expensive and time consuming. Web images and their labels are,

in comparison, much easier to obtain. But directly training on such automatically

harvested images can lead to unsatisfactory performance, because the noisy labels of

Web images adversely affect the learned recognition models. To address this draw-

back, we propose an end-to-end weakly-supervised deep learning framework which

is robust to the label noise in Web images. The proposed framework relies on two

unified strategies - random grouping and attention - to effectively reduce the neg-
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ative impact of noisy web image annotations. Specifically, random grouping stacks

multiple images into a single training instance and thus increases the labeling accu-

racy at the instance level. Attention, on the other hand, suppresses the noisy signals

from both incorrectly labeled images and less discriminative image regions.

Second, today’s state-of-the-art perceptual models have mostly tackled detecting

and recognizing individual objects in isolation. However, understanding a visual

scene often goes beyond recognizing individual objects. One crucial step towards

a deeper understanding of visual scenes is to recognize how objects interact with

each other. If we define the context of the interaction to be the objects involved,

then most current methods can be categorized as either: (i) training a single classi-

fier on the combination of the interaction and its context; or (ii) aiming to recognize

the interaction independently of its explicit context. Both methods suffer limitations:

the former scales poorly with the number of combinations and fails to generalize

to unseen combinations, while the latter often leads to poor interaction recognition

performance due to the difficulty of designing a context-independent interaction clas-

sifier. To mitigate those drawbacks, this thesis proposes an alternative, context-aware

interaction recognition framework. The key to our method is to explicitly construct

an interaction classifier which combines the context, and the interaction. The context

is encoded via word2vec into a semantic space, and is used to derive a classification

result for the interaction. The proposed method still builds one classifier for one

interaction (as per type (ii) above), but the classifier built is adaptive to context via

weights which are context dependent. The benefit of using the semantic space is that

it naturally leads to zero-shot generalizations in which semantically similar contexts

(subject-object pairs) can be recognized as suitable contexts for an interaction, even

if they were not observed in the training set. Our method also scales with the num-

ber of interaction-context pairs since our model parameters do not increase with the

number of interactions. Thus our method avoids the limitation of both approaches.
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1.2 Main Contribution

The main contribution of this thesis includes a number of new algorithms and anal-

ysis on the two main research focuses as introduced in the previous section. More

specifically, they are:

• To address the issue of prohibitively high computational complexity in triplet-

based binary code learning, we propose a new efficient and flexible framework

for interactively inferring binary codes and learning the deep hash functions,

using a triplet-based loss function. We show how to convert the high-order loss

introduced by the triplets into a binary quadratic problem that can be optimized

efficiently in the manner of [Lin et al., 2014a], using block coordinate descent

with graph-cuts. To learn the mapping from images to hash codes, we design

deep CNNs capable of preserving their semantic ranking information of the

data. Moreover, we propose a novel incremental group-wise training approach,

that interleaves finding groups of bits of the hash codes, with learning the hash

functions. We show experimentally that this approach improves the quality of

hash functions while retaining the advantage of efficient training.

• We propose three simple-yet-effective approaches to improve the low-bitwidth

network training. First, we propose to use a two-stage optimization strategy to

quantize the weights and activations separately. Second, we also progressively

decrease the bit-width from high-precision to low-precision during the course

of training. Third, we jointly train a full-precision model alongside the low-

precision one. By doing so, the full-precision model provides hints to guide the

low-precision model training.

• We propose a weakly-supervised deep learning framework which is robust to

the label noise in Web images. It relies on random grouping and attention

unified strategies to effectively suppress the noisy signals.

• We propose a context-aware interaction recognition framework for visual rela-
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tionship detection. Different to the previous methods, the interaction classifier

in our method is designed to be adaptive to its context. The benefit of using the

semantic space is that it naturally leads to zero-shot generalizations in which

semantically similar contexts can result in similar classifiers even if they were

not observed in the training set.

• We construct a large-scale human-centric visual relationship detection dataset

(HCVRD), which provides many more types of relationship annotations (nearly

10K categories) than the previous released datasets. We also propose a webly-

supervised approach to solve the long-tail distribution problem in this large-

scale dataset.

1.3 Thesis organization

The rest of the thesis is organized as follows: In Chapter 2, a detailed literature

review on energy-efficient neural networks and data storage as well as visual recog-

nition is given. In Chapter 3, a novel low-bitwidth network optimization approach is

introduced to efficiently quantize both weights and activations to low-precision with

high accuracy. In Chapter 4, an efficient hashing framework is proposed to map the

original feature space to Hamming space for efficient data storage and fast search. In

Chapter 5, we propose a novel noise-robust weakly-supervised framework for learn-

ing from large-scale web data. In Chapter 6, we propose a context-aware interaction

recognition framework for understanding how objects interact with each other. It is

a necessary step for machines to understand the real world. In Chapter 7, we further

propose a large-scale human-centric visual relationship detection dataset to push the

frontier of human-interaction recognition. Finally the conclusion and the potential

research directions are discussed in Chapter 8.



Chapter 2

Literature Review

In this part, I go through the related works in the literature. The topics of the thesis

are 1) Designing energy-efficient neural networks and hashing methods for mobile

devices, 2) visual recognition with deep neural networks. I will introduce each part

in details.

2.1 Energy-efficient Neural Networks and Hashing

Deep convolutional neural networks (CNNs) have demonstrated record breaking re-

sults on a variety of computer vision tasks such as image classification [He et al.,

2016a], semantic segmentation [Long et al., 2015] and object detection [Ren et al.,

2015; Girshick et al., 2014]. Regardless of the availability of significantly improved

training resources such as abundant annotated data, powerful computational plat-

forms and diverse training frameworks, the promising results of deep CNNs are

mainly attributed to the large number of learnable parameters, ranging from tens of

millions to even hundreds of millions. However, this in turn lays heavy burdens on

the memory and other computational resources. For instance, ResNet-152, a specific

instance of the latest residual network architecture wining ImageNet classification

challenge in 2015, has a model size of about 230MB and needs to perform about 11.3

billion FLOPs to classify a 224x224 image crop. Therefore, it is very challenging to

deploy deep CNNs on the devices with limited computation and power budgets.

In another aspect, it becomes more necessary to cope with large-scale datasets

with millions of images. Hashing methods construct a set of hash functions that map

7
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the original features into binary codes, which enables fast nearest neighbor search by

using look-up tables or Hamming distance based ranking. Moreover, compact binary

codes are extremely efficient for large-scale data storage.

2.1.1 Energy Efficient Neural Networks

Several methods have been proposed to compress deep models and accelerate in-

ference during testing. We can roughly summarize them into four main categories:

quantizing parameters, low rank approximations, low-power network structure de-

sign and network pruning.

Limited numerical precision When deploying DNNs into hardware chips like

FPGA, network quantization is a must process for efficient computing and storage.

Several works have been proposed to quantize only parameters with high accu-

racy [Courbariaux et al., 2015; Zhu et al., 2017; Zhou et al., 2017]. Courbariaux et

al.[Courbariaux et al., 2015] propose to constrain the weights to binary values (i.e., -1

or 1) to replace multiply-accumulate operations by simple accumulations. To keep a

balance between the efficiency and the accuracy, ternary networks [Zhu et al., 2017]

are proposed to keep the weights to 2bits while maintaining high accuracy. Zhou et

al.[Zhou et al., 2017] presents incremental network quantization (INQ) to efficiently

convert any pre-trained full-precision CNN model into low-precision whose weights

are constrained to be either powers of two or zero.

Low-rank approximation Among existing works, some methods attempt to ap-

proximate low-rank filters in pre-trained networks [Kim et al., 2015; Zhang et al.,

2016b]. Zhang et al.[Zhang et al., 2016b], reconstruction error of the nonlinear re-

sponses are minimized layer-wisely, with subject to the low-rank constraint to reduce

the computational cost. Other seminal works attempt to restrict filters with low-rank

constraints during training phrase [Novikov et al., 2015; Tai et al., 2015]. To better

exploit the structure in kernels, it is also proposed to use low-rank tensor decomposi-

tion approaches [Denton et al., 2014; Novikov et al., 2015] to remove the redundancy
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in convolutional kernels in pretrained networks.

Efficient architecture design The increasing demand for running highly energy

efficient neural networks for hardware devices has motivated the network architec-

ture design. GoogLeNet [Szegedy et al., 2015] and SqueezeNet [Iandola et al., 2016]

propose to replace 3x3 convolutional filters with 1x1 size, which tremendously in-

crease the depth of the network while decreasing the complexity a lot. ResNet [He

et al., 2016a] and its variants [Zagoruyko and Komodakis, 2016; He et al., 2016b]

utilize residual connections to relieve the gradient vanishing problem when training

very deep networks. Recently, depthwise separable convolution employed in Xcep-

tion [Chollet, 2016] and MobileNet [Howard et al., 2017] have been proved to be quite

effective. Based on it, ShuffleNet [Zhang et al., 2017c] generalizes the group convo-

lution and the depthwise separable convolution to get the state-of-the-art results.

Pruning and Sparsity Substantial effort have been made to reduce the storage of

deep neural networks in order to save the bandwidth for dedicated hardware design.

Han et al.[Han et al., 2015, 2016] introduce "deep compression", a three stage pipeline:

pruning, trained quantization and Huffman coding to effectively reduce the memory

requirement of CNNs with no loss of accuracy. Guo et al.[Guo et al., 2016] further

incorporate connection slicing to avoid incorrect pruning. More works [Wen et al.,

2016; Lebedev and Lempitsky, 2016; Liu et al., 2015] propose to employ structural

sparsity for more energy-efficient compression.

2.1.2 Hashing

Hashing methods may be roughly categorized into data-dependent and data-independent

schemes. Data-independent methods [Gionis et al., 1999; Kulis and Grauman, 2009;

Jiang et al., 2015] focus on using random projections to construct random hash

functions. The canonical example is the locality-sensitive hashing (LSH) [Gionis

et al., 1999], which offers guarantees that metric similarity is preserved for suffi-

ciently long codes based on random projections. Recent research focuses have been
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shifted to data-dependent methods, which learn hash functions in a either unsu-

pervised, semi-supervised, or supervised learning fashion. Unsupervised hashing

methods [Carreira-Perpinan and Raziperchikolaei, 2015; Gong et al., 2013; Liu et al.,

2011; Weiss et al., 2009, 2012; Shen et al., 2013] try to map the original features into

hamming space while preserving similarity relations between the original features

using unlabeled data. Supervised methods [Erin Liong et al., 2015; Shen et al., 2015;

Kulis and Darrell, 2009; Liu et al., 2012; Li et al., 2013] use labelled training data

for the similarity relations, aiming to preserve the “ground truth” similarity in the

hash codes. Semi-supervised hashing methods incorporate ground-truth similarity

information for the subset of the training data for which it is available, but also use

unlabeled data.

Our proposed method belongs to the supervised hashing framework. Recently

hashing using deep learning has shown great promise. The authors of [Zhao et al.,

2015; Lai et al., 2015] learn hash bits such that multilevel semantic similarities are

kept, taking raw pixels as input and training a deep CNN. This has the effect of

simultaneously learning an image feature representation (in the early layers of the

network) and the hash bits, which are obtained by thresholding the outputs of the

last network layer, or hash layer at 0.5.

Note that these methods suffer from huge computation complexity introduced by

the triplet ranking loss for hashing. In contrast, our proposed method is much more

efficient in training, as shown in our experiments.

2.2 Deep Neural Networks for Visual Recognition

Convolutional neural networks (CNN) have been successfully applied in many vi-

sual recognition tasks, especially for image classification and object detection. In this

section, we will first overview the backgrounds in general supervised image classifi-

cation task and further in webly-supervised image classification. Moreover, we will

then introduce the literature in classic object detection and further expand to high
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level visual relationship detection task.

2.2.1 Supervised Image Classification

Deep convolutional neural networks have led to tremendous breakthroughs in image

classification task. The improvement can due to advances in three directions: build-

ing more complex models, designing effective strategies against overfitting and solv-

ing the gradient vanishing problem. First, neural networks are becoming more ca-

pable of fitting training data by increasing their representation power. Several works

propose to increase depth [Simonyan and Zisserman, 2015] or width [Zagoruyko and

Komodakis, 2016] by stacking more layers or neurons, respectively. Some works in-

stead propose to design complex network structures by using smaller strides [Zeiler

and Fergus, 2014], new nonlinear activations [Maas et al., 2013; He et al., 2015], and

sophisticated layer designs [He et al., 2014]. What’s more, better generalization is

achieved by effective regularization [Hinton et al., 2012] and various data augmenta-

tion strategies [Szegedy et al., 2015]. Furthermore, He et al. [He et al., 2016a] propose

a residual architecture to solve the gradient vanishing problem in extremely deep

neural networks for better convergence.

2.2.2 Webly-supervised Image Classification

Large-scale datasets have pushed the frontier of supervised image classification.

However, annotating a massive dataset is expensive and time-consuming. So a

webly-supervised learning strategy is extremely necessary in real world applica-

tions. Extensive works have been proposed to learn from web-scale data and noisy

labels [Fergus et al., 2010; Schroff et al., 2011; Xu et al., 2015; Chen and Gupta, 2015;

Divvala et al., 2014; Krause et al., 2016; Chen et al., 2013; Niu et al., 2015; Reed et al.,

2014; Sukhbaatar and Fergus, 2015; Xiao et al., 2015; Mnih and Hinton, 2012]. In

terms of learning from Web data, in [Chen et al., 2013; Chen and Gupta, 2015], Chen

et al.propose to pre-train CNN on simple examples and adapt it to harder images by
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leveraging the structure of data and categories in a two-step manner. In contrast, we

propose a simply-yet-effective end-to-end learning framework without pre-training.

To better dealing with noise, some approaches [Xiao et al., 2015; Sukhbaatar et al.,

2014] propose to add an extra noise layer into the network which adapts the network

outputs to match the noisy label distribution. On the other hand, some approaches

attempt to remove or correct noisy labels [Brodley and Friedl, 2011; Miranda et al.,

2009]. However, because of the difficulty of separating correctly labeled hard sam-

ples from mislabeled ones, such a strategy can result in removing too many (correct)

instances. Moreover, several label noise-robust algorithms [Beigman and Klebanov,

2009; Manwani and Sastry, 2013] are proposed to make classifiers robust to label

noise. However, noise-robust methods seem to be adequate only for simple cases

of label noise that can be safely managed by regularization. In this thesis, we in-

stead propose to suppress label noise by unified two strategies without any strong

assumptions.

2.2.3 Image Detection

Image Detection is a basic block in many real world applications such as autonomous

driving, face detection, pedestrian detection and so on. To detect an object, the

original methods propose to take a classifier for that object and evaluate it at var-

ious locations and scales in a test image. For example, deformable parts models

(DPM) [Felzenszwalb et al., 2010] use a sliding window approach where the classifier

runs at each evenly spaced locations over the entire image. With the rapid develop-

ment of deep learning, R-CNN [Girshick et al., 2014] use region proposal methods to

first generate potential bounding boxes and then extract deep features over each box

for classification. To accelerate the inference pipeline, Fast-RCNN [Girshick, 2015]

propose to add a ROI pooling layer to max pooling the features inside any valid re-

gion of interest into a small feature map with a fixed spatial extent. What’s more, Ren

et al. [Ren et al., 2015] further propose to end-to-end train a Region Proposal Network
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(RPN) to generate high-quality region proposals, which are used by Fast R-CNN for

detection. Recent works like [Redmon et al., 2016] unify the separate components of

object detection into a single neural network for better speed and performance.

2.2.4 Visual Relationship Detection

However, object detection focuses on detecting individual objects such as woman,

toothbrush, and child while they don’t consider the semantic relationships between

the detected objects. Understanding visual scenes is one of the primal goals of com-

puter vision. For high-level understanding of the scene, the fundamental element is

to model visual relationships, the mutual correlations of the detected objects in the

scene. Visual relationships are not a new concept. It has been investigated by numer-

ous studies in the last decade. In the early days, most works target specific types of

phrases [Choi et al., 2013; Desai and Ramanan, 2012] or use visual phrases to improve

other tasks [Sadeghi and Farhadi, 2011; Kumar and Koller, 2010; Russell et al., 2006].

For example, Sadeghi et al.has proved the phrase, as a whole, can facilitate object

recognition because of its special visual appearance [Sadeghi and Farhadi, 2011]. De-

sai et al.use the phrase that describes the interaction between a person and objects to

facilitate actions, pose and object detection [Desai and Ramanan, 2012]. Recently, re-

searchers pay more attention to general visual relationship detection [Li et al., 2017a;

Xu et al., 2017; Plummer et al., 2016; Zhang et al., 2017b; Zhuang et al., 2017b]. Lu,

et al.first formalize the visual relationship detection as a task and propose the state-

of-art method by leveraging the language prior to model the correlation between

subject/object and predicate [Lu et al., 2016]. Li et al.use the message passing struc-

ture among subject, object and predicate branches to model their dependencies [Li

et al., 2017a]. Xu et al.built up a fully-connected graph to iteratively pass messages

along the scene graph [Xu et al., 2017]. Liang et al.applied the reinforcement learning

method to the relationship and attribute detection [Liang et al., 2017b].
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3.1 Overview

This chapter tackles the problem of training a deep convolutional neural network

with both low-precision weights and low-bitwidth activations. Optimizing a low-

precision network is very challenging since the training process can easily get trapped

in a poor local minima, which results in substantial accuracy loss. To mitigate this

problem, we propose three simple-yet-effective approaches to improve the network

training. First, we propose to use a two-stage optimization strategy to progressively

find good local minima. Specifically, we propose to first optimize a net with quan-

tized weights and then quantized activations. This is in contrast to the traditional

methods which optimize them simultaneously. Second, following a similar spirit

of the first method, we propose another progressive optimization approach which

progressively decreases the bit-width from high-precision to low-precision during

the course of training. Third, we adopt a novel learning scheme to jointly train a

full-precision model alongside the low-precision one. By doing so, the full-precision

model provides hints to guide the low-precision model training. Extensive experi-

ments on various datasets (i.e., , CIFAR-100 and ImageNet) show the effectiveness

of the proposed methods. To highlight, using our methods to train a 4-bit preci-

sion network leads to no performance decrease in comparison with its full-precision

counterpart with standard network architectures (i.e., , AlexNet and ResNet-50).

3.2 Introduction

The state-of-the-art deep neural networks [Krizhevsky et al., 2012; Simonyan and

Zisserman, 2015; He et al., 2016a] usually involve millions of parameters and need

billions of FLOPs during computation. Those memory and computational cost can

be unaffordable for mobile hardware device or especially implementing deep neural

networks on chips. To improve the computational and memory efficiency, various

solutions have been proposed, including pruning network weights [Han et al., 2015,
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2016], low rank approximation of weights [Kim et al., 2015; Zhang et al., 2016b],

and training a low-bit-precision network [Zhou et al., 2017; Courbariaux et al., 2015;

Zhu et al., 2017; Zhou et al., 2016]. In this work, we follow the idea of training a low-

precision network and our focus is to improve the training process of such a network.

Note that in the literature, many works adopt this idea but only attempt to quantize

the weights of a network while keeping the activations to 32-bit floating point [Zhou

et al., 2017; Courbariaux et al., 2015; Zhu et al., 2017]. Although this treatment leads

to lower performance decrease comparing to its full-precision counterpart, it still

needs substantial amount of computational resource requirement to handle the full-

precision activations. Thus, our work targets the problem of training network with

both low-bit quantized weights and activations.

The solutions proposed in this chapter contain three components. They can be

applied independently or jointly. The first method is to adopt a two-stage training

process. At the first stage, only the weights of a network is quantized. After obtaining

a sufficiently good solution of the first stage, the activation of the network is further

required to be in low-precision and the network will be trained again. Essentially,

this progressive approach first solves a related sub-problem, i.e., training a network

with only low-bit weights and the solution of the sub-problem provides a good ini-

tial point for training our target problem. Following the similar idea, we propose our

second method by performing progressive training on the bit-width aspect of the net-

work. Specifically, we incrementally train a serial of networks with the quantization

bit-width (precision) gradually decreased from full-precision to the target precision.

The third method is inspired by the recent progress of mutual learning [Zhang et al.,

2017d] and information distillation [Romero et al., 2015; Hinton et al., 2015; Parisotto

et al., 2016; Zagoruyko and Komodakis, 2017; Ba and Caruana, 2014]. The basic idea

of those works is to train a target network alongside another guidance network. For

example, The works in [Romero et al., 2015; Hinton et al., 2015; Parisotto et al., 2016;

Zagoruyko and Komodakis, 2017; Ba and Caruana, 2014] propose to train a small
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student network to mimic the deeper or wider teacher network. They add an addi-

tional regularizer by minimizing the difference between student’s and teacher’s pos-

terior probabilities [Hinton et al., 2015] or intermediate feature representations [Ba

and Caruana, 2014; Romero et al., 2015]. It is observed that by using the guidance

of the teacher model, better performance can be obtained with the student model

than directly training the student model on the target problem. Motivated by these

observations, we propose to train a full-precision network alongside the target low-

precision network. Also, in contrast to standard knowledge distillation methods, we

do not require to pre-train the guidance model. Rather, we allow the two models to

be trained jointly from scratch since we discover that this treatment enables the two

nets adjust better to each other.

Compared to several existing works that achieve good performance when quan-

tizing both weights and activations [Wu et al., 2016a; Zhou et al., 2016; Hubara et al.,

2016; Rastegari et al., 2016], our methods is more considerably scalable to the deeper

neural networks [He et al., 2016a,b]. For example, some methods adopt a layer-wise

training procedure [Wu et al., 2016a], thus their training cost will be significantly

increased if the number of layers becomes larger. In contrast, the proposed method

does not have this issue and we have experimentally demonstrated that our method

is effective with various depth of networks (i.e., , AlexNet, ResNet-50).

3.3 Related work

Several methods have been proposed to compress deep models and accelerate in-

ference during testing. We can roughly summarize them into four main categories:

limited numerial percision, low-rank approximation, efficient architecture design and

network pruning.

Limited numerical precision When deploying DNNs into hardware chips like

FPGA, network quantization is a must process for efficient computing and storage.

Several works have been proposed to quantize only parameters with high accu-
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racy [Courbariaux et al., 2015; Zhu et al., 2017; Zhou et al., 2017]. Courbariaux et

al.[Courbariaux et al., 2015] propose to constrain the weights to binary values (i.e., ,

-1 or 1) to replace multiply-accumulate operations by simple accumulations. To keep

a balance between the efficiency and the accuracy, ternary networks [Zhu et al., 2017]

are proposed to keep the weights to 2-bit while maintaining high accuracy. Zhou et

al.[Zhou et al., 2017] present incremental network quantization (INQ) to efficiently

convert any pre-trained full-precision CNN model into low-precision whose weights

are constrained to be either powers of two or zero. Different from these methods, a

mutual knowledge transfer strategy is proposed to jointly optimize the full-precision

model and its low-precision counterpart for high accuracy. What’s more, we propose

to use a progressive optimization approach to quantize both weights and activations

for better performance.

Low-rank approximation Among existing works, some methods attempt to ap-

proximate low-rank filters in pre-trained networks [Kim et al., 2015; Zhang et al.,

2016b]. In [Zhang et al., 2016b], reconstruction error of the nonlinear responses are

minimized layer-wisely, with subject to the low-rank constraint to reduce the compu-

tational cost. Other seminal works attempt to restrict filters with low-rank constraints

during training phrase [Novikov et al., 2015; Tai et al., 2015]. To better exploit the

structure in kernels, it is also proposed to use low-rank tensor decomposition ap-

proaches [Denton et al., 2014; Novikov et al., 2015] to remove the redundancy in

convolutional kernels in pretrained networks.

Efficient architecture design The increasing demand for running highly energy

efficient neural networks for hardware devices have motivated the network architec-

ture design. GoogLeNet [Szegedy et al., 2015] and SqueezeNet [Iandola et al., 2016]

propose to replace 3x3 convolutional filters with 1x1 size, which tremendously in-

crease the depth of the network while decreasing the complexity a lot. ResNet [He

et al., 2016a] and its variants [Zagoruyko and Komodakis, 2016; He et al., 2016b]

utilize residual connections to relieve the gradient vanishing problem when training
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Figure 3.1: Demonstration of the guided training strategy. We use the residual net-
work structure for illustration.

very deep networks. Recently, depthwise separable convolution employed in Xcep-

tion [Chollet, 2016] and MobileNet [Howard et al., 2017] have been proved to be quite

effective. Based on it, ShuffleNet [Zhang et al., 2017c] generalizes the group convo-

lution and the depthwise separable convolution to get the state-of-the-art results.

Pruning and sparsity Substantial effort have been made to reduce the storage of

deep neural networks in order to save the bandwidth for dedicated hardware de-

sign. Han et al.[Han et al., 2015, 2016] introduce “deep compression”, a three stage

pipeline: pruning, trained quantization and Huffman coding to effectively reduce the

memory requirement of CNNs with no loss of accuracy. Guo et al.[Guo et al., 2016]

further incorporate connection slicing to avoid incorrect pruning. More works [Wen

et al., 2016; Lebedev and Lempitsky, 2016; Liu et al., 2015] propose to employ struc-

tural sparsity for more energy-efficient compression.

3.4 Methods

In this section, we will first revisit the quantization function in the neural network

and the way to train it. Then we will elaborate our three methods in the subsequent

sections.
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3.4.1 Quantization function revisited

A common practise in training a neural network with low-precision weights and

activations is to introduce a quantization function. Considering the general case of

k-bit quantization as in [Zhou et al., 2016], we define the quantization function Q(·)

to be

zq = Q(zr) =
1

2k − 1
round((2k − 1)zr) (3.1)

where zr ∈ [0, 1] denotes the full-precision value and zq ∈ [0, 1] denotes the quantized

value. With this quantization function, we can define the weight quantization process

and the activation quantization process as follows:

Quantization on weights:

wq = Q(
tanh(w)

2 max(|tanh(w)|) +
1
2
). (3.2)

In other words, we first use tanh(w)
2 max(|tanh(w)|) +

1
2 to obtain a normalized version of w

and then perform the quantization, where tanh(·) is adopted to reduce the impact of

large values.

Quantization on activations:

Same as [Zhou et al., 2016], we first use a clip function f (x) = clip(x, 0, 1) to

bound the activations to [0, 1]. After that, we conduct quantize the activation by

applying the quantization function Q(·) on f (x).

xq = Q( f (x)). (3.3)

Back-propagation with quantization function: In general, the quantization function

is non-differentiable and thus it is impossible to directly apply the back-propagation

to train the network. To overcome this issue, we adopt the straight-through estimator

[Zhou et al., 2016; Hubara et al., 2016; Bengio et al., 2013] to approximate the gradi-

ents calculation. Formally, we approximate the partial gradient ∂zq
∂zr

with an identity
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mapping, namely ∂zq
∂zr
≈ 1. Accordingly, ∂l

∂zr
can be approximated by

∂l
∂zr

=
∂l

∂zq

∂zq

∂zr
≈ ∂l

∂zq
. (3.4)

3.4.2 Two-stage optimization

With the straight-through estimator, it is possible to directly optimize the low-precision

network. However, the gradient approximation of the quantization function in-

evitably introduces noisy signal for updating network parameters. Strictly speak-

ing, the approximated gradient may not be the right updating direction. Thus, the

training process will be more likely to get trapped at a poor local minima than train-

ing a full precision model. Applying the quantization function to both weights and

activations further worsens the situation.

To reduce the difficulty of training, we devise a two-stage optimization proce-

dure: at the first stage, we only quanitze the weights of the network while setting

the activations to be full precision. After the converge (or after certain number of

iterations) of this model, we further apply the quantization function on the activa-

tions as well and retrain the network. Essentially, the first stage of this method is a

related subproblem of the target one. Compared to the target problem, it is easier

to optimize since it only introduces quantization function on weights. Thus, we are

more likely to arrive at a good solution for this sub-problem. Then, using it to ini-

tialize the target problem may help the network avoid poor local minima which will

be encountered if we train the network from scratch. Let MK
low be the high-precision

model with K-bit. We propose to learn a low-precision model Mk
low in a two-stage

manner with MK
low serving as the initial point, where k < K. The detailed algorithm

is shown in Algorithm 1.
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Algorithm 1: Two-stage optimization for k-bit quantization

Input: Training data {(xi, yi)}N
i=1; A K-bit precision model MK

low.
Output: A low-precision deep model Mk

low with weights Wlow and activations
being quantized into k-bit.

1 Stage 1: Quantize Wlow:
2 for epoch = 1, ..., L do
3 for t = 1, ...T do
4 Randomly sample a mini-batch data;
5 Quantize the weights Wlow into k-bit by calling some quantization

methods with K-bit activations;

6 Stage 2: Quantize activations:
7 Initialize Wlow using the converged k-bit weights from Stage 1 as the starting

point;
8 for epoch = 1, ..., L do
9 for t = 1, ...T do

10 Randomly sample a mini-batch data;
11 Quantize the activations into k-bit by calling some quantization

methods while keeping the weights to k-bit;

3.4.3 Progressive quantization

The aforementioned two-stage optimization approach suggests the benefits of using

a related easy optimized problem to find a good initialization. However, separating

the quantization of weights and activations is not the only solution to implement the

above idea. In this chapter, we also propose another solution which progressively

lower the bitwidth of the quantization during the course of network training. Specif-

ically, we progressively conduct the quantization from higher precisions to lower

precisions (e.g., , 32-bit → 8-bit → 4-bit → 2-bit).1. The model of higher precision

will be used the the starting point of the relatively lower precision, in analogy with

annealing.

Let {b1, ..., bn} be a sequence precisions, where bn < bn−1, ..., b2 < b1, bn is the

target precision and b1 is set to 32 by default. The whole progressive optimization

procedure is summarized in as Algorithm 2. Let Mk
low be the low-precision model

1We notice in practice that there is virtually no loss of accuracy in skipping directly from 32 to 8 bits
without first passing through intermediate precisions.
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with k-bit and M f ull be the full precision model. In each step, we propose to learn

Mk
low, with the solution in the (i− 1)-th step, denoted by MK

low, serving as the initial

point, where k < K.

Algorithm 2: Progressive quantization for accurate CNNs with low-precision
weights and activations

Input: Training data {(xj, yj)}N
j=1; A pre-trained 32-bit full-precision model

M f ull as baseline; the precision sequence {b1, ..., bn} where
bn < bn−1, ..., b2 < b1 = 32.

Output: A low-precision deep model Mbn
low.

1 Let Mb1
low = M f ull , where b1 = 32;

2 for i = 2, ...n do
3 Let k = bi and K = bi−1;
4 Obtain Mk

low by calling some quantization methods with MK
low being the

input;

3.4.4 Guided training with a full-precision network

The third method proposed in this chapter is inspired by the success of using in-

formation distillation [Romero et al., 2015; Hinton et al., 2015; Parisotto et al., 2016;

Zagoruyko and Komodakis, 2017; Ba and Caruana, 2014] to train a relatively shal-

low network. Specifically, these methods usually use a teacher model (usually a

pretrained deeper network) to provide guided signal for the shallower network. Fol-

lowing this spirit, we propose to train the low-precision network alongside another

guidance network. Unlike the work in [Romero et al., 2015; Hinton et al., 2015;

Parisotto et al., 2016; Zagoruyko and Komodakis, 2017; Ba and Caruana, 2014], the

guidance network shares the same architecture as the target network but is pretrained

with full-precision weights and activations.

However, a pre-trained model may not be necessarily optimal or may not be

suitable for quantization. As a result, directly using a fixed pretrained model to

guide the target network may not produce the best guidance signals. To mitigate this

problem, we do not fix the parameters of a pretrained full precision network as in

the previous work [Zhang et al., 2017d].
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By using the guidance training strategy, we assume that there exist some full-

precision models with good generalization performance, and an accurate low-precision

model can be obtained by directly performing the quantization on those full-precision

models. In this sense, the feature maps of the learned low-precision model should

be close to that obtained by directly doing quantization on the full-precision model.

To achieve this, essentially, in our learning scheme, we can jointly train the full-

precision and low-precision models. This allows these two models adapt to each

other. We even find by doing so the performance of the full-precision model can be

slightly improved in some cases.

Formally, let W f ull and Wlow be the weights of the full-precision model and low-

precision model, respectively. Let µ(x; W f ull) and ν(x; Wlow) be the nested feature

maps (e.g., activations) of the full-precision model and low-precision model, respec-

tively. To create the guidance signal, we may require that the nested feature maps

from the two models should be similar. However, µ(x; W f ull) and ν(x; Wlow) is usu-

ally not directly comparable since one is full precision and the other is low-precision.

To link these two models, we can directly quantize the weights and activations of

the full-precision model by equations (3.2) and (3.3). For simplicity, we denote the

quantized feature maps by Q(µ(x; W f ull)). Thus, Q(µ(x; W f ull)) and ν(x; Wlow) will

become comparable. Then we can define the guidance loss as:

R(W f ull , Wlow) =
1
2
‖ Q(µ(x; W f ull))− ν(x; Wlow)‖2, (3.5)

where ‖ · ‖ denotes some proper norms.

Let Lθ1 and Lθ2 be the cross-entropy classification losses for the full-precision and

low-precision model, respectively. The guidance loss will be added to Lθ1 and Lθ2 ,

respectively, resulting in two new objectives for the two networks, namely

L1(W f ull) = Lθ1 + λR(W f ull , Wlow). (3.6)
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and

L2(Wlow) = Lθ2 + λR(W f ull , Wlow). (3.7)

where λ is a balancing parameter. Here, the guidance loss R can be considered as

some regularization on Lθ1 and Lθ2 .

In the learning procedure, both W f ull and Wlow will be updated by minimizing

L1(W f ull) and L2(Wlow) separately, using a mini-batch stochastic gradient descent

method. The detailed algorithm is shown in Algorithm 3. A high-bit precision model

MK
low is used as an initialization of Mk

low, where K > k. Specifically, for the full-

precision model, we have K = 32. Relying on M f ull , the weights and activations of

Mk
low can be initialized by equations (3.2) and (3.3), respectively.

Note that the training process of the two networks are different. When updat-

ing Wlow by minimizing L2(Wlow), we use full-precision model as the initializa-

tion and apply the forward-backward propagation rule in Section 3.4.1 to fine-tune

the model. When updating W f ull by minimizing L1(W f ull), we use conventional

forward-backward propagation to fine-tune the model.

Algorithm 3: Guided training with a full-precision network for k-bit quantiza-
tion

Input: Training data {(xi, yi)}N
i=1; A pre-trained 32-bit full-precision model

M f ull ; A k-bit precision model Mk
low.

Output: A low-precision deep model Mk
low with weights and activations being

quantized into k bits.
1 Initialize Mk

low based on M f ull ;
2 for epoch = 1, ..., L do
3 for t = 1, ...T do
4 Randomly sample a mini-batch data;
5 Quantize the weights Wlow and activations into k-bit by minimizing

L2(Wlow);
6 Update M f ull by minimizing L1(W f ull);
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3.4.5 Remark on the proposed methods

The proposed three approaches tackle the difficulty in training a low-precision model

with different strategies. They can be applied independently. However, it is also

possible to combine them together. For example, we can apply the progressive quan-

tization to any of the steps in the two-stage approach; we can also apply the guided

training to any sub-step in the progressive training. Detailed analysis on possible

combinations will be experimentally evaluated in the experiment section.

3.4.6 Implementation details

In all the three methods, we quantize the weights and activations of all layers except

that the input data are kept to 8-bit. Furthermore, to promote convergence, we

propose to add a scalar layer after the last fully-connected layer before feeding the

low-bit activations into the softmax function for classification. The scalar layer has

only one trainable small scalar parameter and is initialized to 0.01 in our approach.

During training, we randomly crop 224x224 patches from an image or its hor-

izontal flip, with the per-pixel mean subtracted. We don’t use any further data

augumentation in our implementation. We adopt batch normalization (BN) [Ioffe

and Szegedy, 2015] after each convolution before activation. For pretraining the full-

precision baseline model, we use Nesterov SGD and batch size is set to 256. The

learning rate starts from 0.01 and is divided by 10 every 30 epochs. We use a weight

decay 0.0001 and a momentum 0.9. For weights and activations quantization, the ini-

tial learning rate is set to 0.001 and is divided by 10 every 10 epochs. We use a simple

single-crop testing for standard evaluation. Following [Zagoruyko and Komodakis,

2017], for ResNet-50, we add only two guidance losses in the 2 last groups of residual

blocks. And for AlexNet, we add two guidance losses in the last two fully-connected

layers.
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3.5 Experiment

To investigate the performance of the proposed methods, we conduct experiments on

Cifar100 and ImageNet datasets. Two representative networks, different precisions

AlexNet and ResNet-50 are evaluated with top-1 and top-5 accuracy reported. We

use a variant of AlexNet structure [Krizhevsky et al., 2012] by removing dropout lay-

ers and add batch normalization after each convolutional layer and fully-connected

layer. This structure is widely used in previous works [Zhou et al., 2016; Zhu et al.,

2017]. We analyze the effect of the guided training approach, two-stage optimization

and the progressive quantization in details in the ablation study. Seven methods are

implemented and compared:

1. “Baseline”: We implement the baseline model based on DoReFa-Net as de-

scribed in Section 3.4.1.

2. “TS”: We apply the two-stage optimization strategy described in Sec. 3.4.2 and

Algorithm 1 to quantize the weights and activations. We denote the first stage

as Stage1 and the second stage as Stage2.

3. “PQ”: We apply the progressive quantization strategy described in Sec. 3.4.3

and Algorithm 2 to continuously quantize weights and activations simultane-

ously from high-precision (i.e., , 32-bit) to low-precision.

4. “Guided”: We implement the guided training approach as described in Sec. 3.4.4

and Algorithm 3 to independently investigate its effect on the final perfor-

mance.

5. “PQ+TS”: We further combine PQ and TS together to see whether their com-

bination can improve the performance.

6. “PQ+TS+Guided”: This implements the full model by combining PQ, TS and

Guided modules together.
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7. “PQ+TS+Guided**”: Based on PQ+TS+Guided, we use full-precision weights

for the first convolutional layer and the last fully-connected layer following the

setting of [Zhu et al., 2017; Zhou et al., 2016] to investigate its sensitivity to the

proposed method.

3.5.1 Evaluation on ImageNet

We further train and evaluate our model on ILSVRC2012 [Russakovsky et al., 2015b],

which includes over 1.2 million images and 50 thousand validation images. We re-

port 4-bit and 2-bit precision accuracy for both AlexNet and ResNet-50. The sequence

of bit-width precisions are set as {32, 8, 4, 2}. The results of INQ [Zhou et al., 2017]

are directly cited from the original paper. We did not use the sophisticated image

augmentation and more details can be found in Sec. 6.3.4. We compare our model

to the 32-bit full-precision model, INQ, DoReFa-Net and the baseline approach de-

scribed in Sec. 3.4.1. For INQ, only the weights are quantized. For DoReFa-Net, the

first convolutional layer uses the full-precision weights and the last fully-connected

layer use both full-precision weights and activations.

Results on AlexNet: The results for AlexNet are listed in Table 3.1. Compared to

competing approaches, we achieve steadily improvement for 4-bit and 2-bit settings.

This can be attributed to the effective progressive optimization and the knowledge

from the full-precision model for assisting the optimization process. Furthermore,

our 4-bit full model even outperforms the full-precision reference by 0.7% on top-1

accuracy. This may be due to the fact that on this data, we may not need a model as

complex as the full-precision one. However, when the expected bit-width decrease

to 2-bit, we observe obvious performance drop compared to the 32-bit model while

our low-bit model still brings 2.8% top-1 accuracy increase compared to the Baseline

method.

Results on ResNet-50: The results for ResNet-50 are listed in Table 3.2. For the

full-precision model, we implement it using Pytorch following the re-implementation
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Accuracy Full precision 5-bit (INQ) 4-bit (DoReFa-Net) 4-bit (Baseline) 4-bit (PQ+TS+Guided) 2-bit (DoReFa-Net) 2-bit (Baseline) 2-bit (PQ+TS+Guided)
Top1 57.2% 57.4% 56.2% 56.8% 58.0% 48.3% 48.8% 51.6%
Top5 80.3% 80.6% 79.4% 80.0% 81.1% 71.6% 72.2% 76.2%

Table 3.1: Top1 and Top5 validation accuracy of AlexNet on ImageNet.

Accuracy Full precision 5-bit (INQ) 4-bit (DoReFa-Net) 4-bit (Baseline) 4-bit (PQ+TS+Guided) 2-bit (DoReFa-Net) 2-bit (Baseline) 2-bit (PQ+TS+Guided)
Top1 75.6% 74.8% 74.5% 75.1% 75.7% 67.3% 67.7% 70.0%
Top5 92.2% 91.7% 91.5% 91.9% 92.0% 84.3% 84.7% 87.5%

Table 3.2: Top1 and Top5 validation accuracy of ResNet-50 on ImageNet.

provided by Facebook2. Comparatively, we find that the performance are approxi-

mately consistent with the results of AlexNet. Similarly, we observe that our 4-bit full

model is comparable with the full-precision reference with no loss of accuracy. When

decreasing the precision to 2-bit, we achieve promising improvement over the com-

peting Baseline even though there’s still an accuracy gap between the full-precision

model. Similar to the AlexNet on ImageNet dataset, we find our 2-bit full model

improves more comparing with the 4-bit case. This phenomenon shows that when

the model becomes more difficult to optimize, the proposed approach turns out to

be more effective in dealing with the optimization difficulty. To better understand

our model, we also draw the process of training for 2-bit ResNet-50 in Figure 3.3 and

more analysis can be referred in Sec. 3.5.3.

3.5.2 Evaluation on Cifar100

Cifar100 is an image classification benchmark containing images of size 32x32 in a

training set of 50,000 and a test set of 10,000. We use the AlexNet for our experiment.

The quantitative results are reported in Table 3.3. From the table, we can observe

that the proposed approach steadily outperforms the competing method DoReFa-

Net. Interestingly, the accuracy of our 4-bit full model also surpasses its full precision

model. We speculate that this is due to 4-bit weights and activations providing the

right model capacity and preventing overfitting for the networks.

2https://github.com/facebook/fb.resnet.torch

https://github.com/facebook/fb.resnet.torch
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Accuracy Full precision 4-bit (DoReFa-Net) 4-bit (Baseline) 4-bit (PQ+TS+Guided) 2-bit (DoReFa-Net) 2-bit (Baseline) 2-bit (PQ+TS+Guided)
Top1 65.4% 64.9% 65.0% 65.8% 63.4% 63.9% 64.6%
Top5 88.3% 88.5% 88.5% 88.6% 87.5% 87.6% 87.8%

Table 3.3: Top1 and Top5 validation accuracy of AlexNet on Cifar100.

Method top-1 top-5
4-bit (TS) 57.7% 81.0%
4-bit (PQ) 57.5% 80.8%

4-bit (PQ+TS) 57.8% 80.8%
4-bit (Guided) 57.3% 80.4%

4-bit (PQ+TS+Guided) 58.0% 81.1%
4-bit (PQ+TS+Guided**) 58.1% 81.2%

2-bit (TS) 50.7% 74.9%
2-bit (PQ) 50.3% 74.8%

2-bit (PQ+TS) 50.9% 74.9%
2-bit (Guided) 50.0% 74.1%

2-bit (PQ+TS+Guided) 51.6% 76.2%
2-bit (PQ+TS+Guided**) 52.5% 77.3%

Table 3.4: Evaluation of different components of the proposed method on the valida-
tion accuracy with AlexNet on ImageNet.

3.5.3 Ablation study

In this section, we analyze the effects of different components of the proposed model.

Learning from scratch vs. Fine-tuning: To analyze the effect, we perform comparative

experiments on Cifar100 with AlexNet using learning from scratch and fine-tuning

strategies. The results are shown in Figure 3.2, respectively. For convenience of ex-

position, this comparison study is performed based on method TS. First, we observe

that the overall accuracy of fine-tuning from full-precision model is higher than that

of learning from scratch. This indicates that the initial point for training low-bitwidth

model is crutial for obtaining good accuracy. In addition, the gap between the Base-

line and TS is obvious (i.e., , 2.7 % in our experiment) with learning from scratch.

This justifies that the two-stage optimization strategy can effectively help the model

converge to a better local minimum.

The effect of quantizing all layers: This set of experiments is performed to analyze

the influence for quantizing the first convolutional layer and the last fully-connected

layer. Several previous works [Zhu et al., 2017] argue to keep these two layers pre-

cision as 32-bit floating points to decrease accuracy loss. By comparing the results
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Figure 3.2: Validation accuracy of 4-bit AlexNet on Cifar100 using (a): the fine-tuning
strategy; (b): learning from scratch strategy. Stage2+Guided means we combine the
methods Stage2 and Guided together during optimization to investigate the effect of
the guided training on the final performance.
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Method top-1 top-5
4-bit (TS) 75.3% 91.9%
4-bit (PQ) 75.4% 91.8%

4-bit (PQ+TS) 75.5% 92.0%
4-bit (Guided) 75.3 % 91.7%

4-bit (PQ+TS+Guided) 75.7% 92.0%
4-bit (PQ+TS+Guided**) 75.9% 92.4%

2-bit (TS) 69.2% 87.0%
2-bit (PQ) 68.8% 86.9%

2-bit (PQ+TS) 69.4% 87.0%
2-bit (Guided) 69.0% 86.8%

2-bit (PQ+TS+Guided) 70.0% 87.5%
2-bit (PQ+TS+Guided**) 70.8% 88.3%

Table 3.5: Evaluation of different components of the proposed method on the valida-
tion accuracy with ResNet-50 on ImageNet.

of PQ+TS+Guided** and PQ+TS+Guided in Table 3.4 and Table 3.5, we notice that the

accuracy gap between the two settings is not large, which indicates that our model

is not sensitive to the precision of these two layers. It can be attributed to two facts.

On one hand, fine-tuning from 32-bit precision can drastically decrease the difficulty

for optimization. On the other hand, the progressive optimization approach as well

as the guided training strategy further ease the instability during training.

The effect of the two-stage optimization strategy: We further analyze the effect of

each stage in the TS approach in Figure 3.2 and Figure 3.3. We take the 2-bitwidth

ResNet-50 on ImageNet as an example. In Figure 3.3, Stage1 has the minimal loss of

accuracy. As for the Stage2, although it incurs apparent accuracy decrease in compar-

ison with that of the Stage1, its accuracy is consistently better than the results of Base-

line in every epoch. This illustrates that progressively seeking for the local minimum

point is crutial for final better convergence. We also conduct additional experiments

on Cifar100 with 4-bit AlexNet. Interestingly, taking the model of Stage1 as the initial

point, the results of Stage2 even have relative increase using two different training

strategies as mentioned above. This can be interpreted by that further quantizing the

activations impose more regularization on the model to overcome overfitting. Over-

all, the two-step optimization strategy still performs steadily better than the Baseline

method which proves the effectiveness of this simple mechanism.
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Figure 3.3: Validation accuracy of 2-bit ResNet-50 on ImageNet. Stage2+Guided
means we combine the methods Stage2 and Guided together during training.

The effect of the progressive quantization strategy: What’s more, we also separately

explore the progressive quantization (i.e., , PQ) effect on the final performance. In this

experiment, we apply AlexNet on the ImageNet dataset. We continuously quantize

both weights and activations simultaneously from 32-bit→8-bit→4-bit→2-bit and ex-

plictly illustrate the accuracy change process for each precision in Figure 3.4. The

quantitative results are also reported in Table 3.4 and Table 3.5. From the figure we

can find that for the 8-bit and 4-bit, the low-bit model has no accuracy loss with

respect to the full precision model. However, when quantizing from 4-bit to 2-bit, we

can observe significant accuracy drop. Despite this, we still observe 1.5% relative im-

provement by comparing the top-1 accuracy over the 2-bit baseline, which proves the

effectiveness of the proposed strategy. It is worth noticing that the accuracy curves

become more unstable when quantizing to lower bit. This phenomenon is reason-

able since the precision becomes lower, the value will change more frequently during

training.
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Figure 3.4: Validation accuracy of the progressive quantization approach using
AlexNet on ImageNet.

The effect of the jointly guided training: We also investigate the effect of the guided

joint training approach explained in Sec. 3.4.4. By comparing the results in Table 3.4

and Table 3.5, we can find that Guided method steadily improves the baseline method

by a promising margin. This justifies the low-precision model can always benefit by

learning from the full-precision model. What’s more, we can find PQ+TS+Guided

outperforms PQ+TS in all settings. This shows that the guided training strategy and

the progressive learning mechanism can benefit from each other for further improve-

ment.

Joint vs. without joint: We further illustrate the joint optimization effect on guided

training in Figure 3.5. For explaning convenience, we implement it based on the

method Stage2+Guided and report the 2-bit AlexNet top-1 validation accuracy on Im-

ageNet. From the figure, we can observe that both the full-precision model and its

low-precision counterpart can benefit from learning from each other. In contrast,

if we keep the full-precision model unchanged, apparent performance drop is ob-
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served. This result strongly supports our assumption that the high-precision and

the low-precision models should be jointly optimized in order to obtain the optimal

gradient during training. The improvement on the full-precision model may due to

the ensemble learning with the low-precision model and similar observation is found

in [Zhang et al., 2017d] but with different task.
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Figure 3.5: The effect of the joint training strategy using AlexNet on ImageNet.

3.6 Summary

In this chapter, we have proposed three novel approaches to solve the optimization

problem for quantizing the network with both low-precision weights and activations.

We first propose a two-stage approach to quantize the weights and activations in a

two-step manner. We also observe that continuously quantizing from high-precision

to low-precision is also beneficial to the final performance. We have shown that these

two heuristics lead to better performance of low-precision networks. Furthermore,

to better utilize the knowledge from the full-precision model, we have also proposed
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joint learning of the low-precision model and its full-precision counterpart – this

approach ensures that the full-precision model remains close to the low-precision

approximation and regularizes the training optimization more effectively. We show

that even using only 4-bit weights and activations for all layers, we can outperform

the 32-bit model on ImageNet and Cifar100 with either AlexNet or ResNet-50.
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4.1 Overview

In this chapter, we aim to learn a mapping (or embedding) from images to a compact

binary space in which Hamming distances correspond to a ranking measure for the

image retrieval task.

We make use of a triplet loss because this has been shown to be most effective

for ranking problems. However, training in previous works can be prohibitively

expensive due to the fact that optimization is directly performed on the triplet space,

where the number of possible triplets for training is cubic in the number of training

examples. To address this issue, we propose to formulate high-order binary codes

learning as a multi-label classification problem by explicitly separating learning into

two interleaved stages. To solve the first stage, we design a large-scale high-order

binary codes inference algorithm to reduce the high-order objective to a standard

binary quadratic problem such that graph cuts can be used to efficiently infer the

binary codes which serve as the labels of each training datum. In the second stage

we propose to map the original image to compact binary codes via carefully designed

deep convolutional neural networks (CNNs) and the hashing function fitting can be

solved by training binary CNN classifiers. An incremental/interleaved optimization

strategy is proffered to ensure that these two steps are interactive with each other

during training for better accuracy. We conduct experiments on several benchmark

datasets, which demonstrate both improved training time (by as much as two orders

of magnitude) as well as producing state-of-the-art hashing for various retrieval tasks.

4.2 Introduction

With the rapid development of big data, large-scale nearest neighbor search with bi-

nary hash codes has attracted much more attention. Hashing methods aim to map

the original features to compact binary codes that are able to preserve the semantic

structure of the original features in the Hamming space. Compact binary codes are
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Figure 4.1: The Hamming distances calculated using the proposed hashing frame-
work between pairs of faces. Each row represents a triplet of samples and the face
pairs enclosed by a rectangle are from the same identity. Here each face image is
represented by a 128-dimensional binary codes vector. We can see that a threshold
of about 63 can correctly classify same-identity and different-identity pairs of faces.
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extremely suitable for efficient data storage and fast search. A few hashing meth-

ods in the literature incorporate the triplet ranking loss to learn codes that preserve

relative similarity relations [Norouzi et al., 2012; Lai et al., 2015; Zhao et al., 2015;

Zhang et al., 2015; Li et al., 2013]. In these works usually a triplet ranking loss is

defined, followed by solving an expensive optimization problem. For instance, Lai

et al. [Lai et al., 2015] and Zhao et al. [Zhao et al., 2015] map original features into

binary codes via deep convolutional neural networks (CNNs). Both use a triplet

ranking loss designed to preserve relative similarities, with the key difference being

in the exact form of the loss function used. Similarly, FaceNet [Schroff et al., 2015]

uses the triplet loss to learn a real-valued compact embedding of faces. All these

methods suffer from huge training complexity, because they directly train the CNNs

using the triplets, the number of which scales cubically with the number of images in

the training set. For example, the training of FaceNet [Schroff et al., 2015] took a few

months on Google’s computer clusters. Other work like [Wang et al., 2014] simply

subsamples a small subset to reduce the computation complexity.

To address this issue, we employ a collaborative two-step approach, originally

proposed in [Lin et al., 2013], to avoid directly learning hash functions based on the

triplet ranking loss. This two-step approach enables us to convert triplet-based hash-

ing into an efficient combination of solving binary quadratic programs and learning

conventional CNN classifiers. Hence, we don’t need to directly optimize the loss

function with huge number of triplets to learn deep hash functions. The result is

an algorithm with computational complexity that is orders of magnitude lower than

existing work such as [Zhao et al., 2015; Schroff et al., 2015], but without sacrificing

accuracy.

The two-step approach to hashing advocated by [Lin et al., 2014a, 2013] uses

decision trees as hash functions in combination with the design of efficient binary

code inference methods. The main difference of our work is as follows. The work

in [Lin et al., 2014a, 2013] only preserves the pairwise similarity relations which do
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not directly encode relative semantic similarity relationships that are important for

ranking-based tasks. In contrast, we use a triplet-based ranking loss to preserve rel-

ative semantic relationships. However it is not trivial to extend the first step (binary

code inference) in [Lin et al., 2014a] to triplet-based loss functions. The formulated

binary quadratic problem (BQP) in [Lin et al., 2014a] can be viewed as a pairwise

Markov random field (MRF) inference problem, while in our case we need to solve

large-scale high-order MRF inference. We here propose an efficient high-order binary

code inference algorithm, in which we equivalently convert the binary high-order in-

ference into the second-order binary quadratic problem, and graph cuts based block

search method can be applied. In the second step of hash function learning, the

work of [Lin et al., 2014a, 2013] relies on training classifiers such as linear SVM or

decision trees on handcrafted features. We instead fit deep CNNs with incremental

optimization to simultaneously learn feature representations and hash codes.

Our contributions are summarized as follows.

• To address the issue of prohibitively high computational complexity in triplet-

based binary code learning, we propose a new efficient and flexible framework

for interactively inferring binary codes and learning the deep hash functions,

using a triplet-based loss function. We show how to convert the high-order loss

introduced by the triplets into a binary quadratic problem that can be optimized

efficiently in the manner of [Lin et al., 2014a], using block-coordinate descent

with graph-cuts. To learn the mapping from images to hash codes, we design

deep CNNs capable of preserving their semantic ranking information of the

data.

• We propose a novel incremental group-wise training approach, that interleaves

finding groups of bits of the hash codes, with learning the hash functions. We

show experimentally that this approach improves the quality of hash functions

while retaining the advantage of efficient training.

• We demonstrate that our method outperforms many existing state-of-the-art
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hashing methods on several benchmark datasets by a large margin. We also

demonstrate our hashing method in the context of a face search/retrieval sys-

tem. We achieve the best reported results on face search under the IJB-A proto-

col.

4.3 The proposed approach

Our general problem formulation is as follows. Let D = {(i, j, k) | s(xi, xj) > s(xi, xk)}

be a set of training triplet samples, in which s(·, ·) is some semantic similarity mea-

sures, xi is the i-th training sample and xi is semantically more similar to xj than to xk.

Let h(x) ∈ {−1, 1}q be the q-bit hash codes of image x. We simplify the notation by

rewriting h(xi), h(xj) and h(xk) using zi, zj and zk, respectively. Our goal is to learn

embedding hash functions h(·) to preserve the relative similarity ranking order for

the images after being mapped into the binary Hamming space. For that purpose,

we define a general form of loss functions:

min
Z

∑
(i,j,k)∈D

L(zi, zj, zk), s.t. Z ∈ {−1, 1}q×n. (4.1)

Here Z is the matrix that collects binary codes for all the n data points and q is the

bit length. L is a triplet loss function.

Unlike approaches such as [Zhao et al., 2015], our method shares the advantage

of [Lin et al., 2013] that we are not tied to a specific form of the loss. One typical

example of losses that could be used include the Hinge ranking loss:

L(zi, zj, zk) = max(0, q/2− (dH(zi, zj)− dH(zi, zk)). (4.2)

Here dH(·, ·) is the Hamming distance.

We propose an approach to learning binary hash codes that proceeds in two

stages. The first stage uses the labelled training data to infer a set of binary codes in
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Figure 4.2: Overview of the proposed hashing framework for training one group of
binary codes. The framework includes two steps: binary code inference and hash
function learning with multi-label CNNs. The inferred binary codes are needed by
the multi-label layer of the deep hash functions. The CNN structure of the first a few
layers is same as the VGG-16 network.

which the hamming distance between codes preserves the semantic ranking between

triplets of data. The second stage uses deep CNNs to learn the mapping from images

to the binary code space (i.e. to learn the hash functions). A similar two-stage

approach was advocated in [Lin et al., 2014a], but that work used only pairwise data,

and used boosted decision trees rather than deep CNNs to learn the hash functions.

There are various difficulties associated with direct application of triplet losses,

and of CNNs to the problem. First, the binary code learning stage requires optimiza-

tion of Eq. (4.1) which is in general NP-hard. In Sec. 4.4, we describe how to infer

binary codes with triplet ranking loss by reducing the problem to a binary quadratic

program. The use of triplets considerably complicates this process and so this is one

of our significant contributions in this chapter. Second, while the two-stage approach

gains significantly in training time, it has the disadvantage that the learning of the

codes and the hash functions do not interact and therefore cannot be mutually ben-

eficial. We propose a method to interleave the code and hash function learning into

groups of bits, a process that retains much of the training efficiency, but improves the

quality of the codes and hash functions considerably. We explain our use of CNNs

and this interleaved and incremental learning in Sec. 4.5 below.
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4.4 Inference for binary codes with triplet ranking loss

Since simultaneously infer multiple bits are intractable in inference task, inspired by

the work of [Lin et al., 2014a], we sequentially solve for one bit at a time conditioning

on previous bits. When solving for the r-th bit, the previous r− 1 bits are fixed. The

binary inference problem becomes minimization of the following objective:

∑
(i,j,k)∈D

L(zr,i, zr,j, zr,k; z(r−1)
i , z(r−1)

j , z(r−1)
k ),

= ∑
(i,j,k)∈D

`r(zr,i, zr,j, zr,k), (4.3)

where `r is the loss function output of the r-th bit conditioned on the previous bits.

zr,i is the binary code of the i-th data point and the r-th bit, z(r−1)
i is the binary code

vector of the previous r− 1 bits for the i-th data point.

4.4.1 Solving high-order binary inference problem

Directly optimizing the loss function which involves high-order relations (more than

pairwise relations) in Eq. (4.3) is difficult since the optimization involves an extremely

large number of triplets, and so can be computationally intractable. To address this

problem, we show here how to convert the high-order inference task to a second-

order problem which is much more feasible to be optimized. The key “special prop-

erties” of the binary space that we rely on are: (i) the possibility of enumerating

all possible inputs (there are 23 = 8); (ii) the symmetry of the hamming distance

d(., .). Based on this, the triplet loss can be decomposed into a set of second-order

combinations as:

`r(zr,i, zr,j, zr,k) = αiizr,izr,i + αijzr,izr,j + αikzr,izr,k

+αjizr,jzr,i + αjjzr,jzr,j + αjkzr,jzr,k + αkizr,kzr,i

+αkjzr,kzr,j + αkkzr,kzr,k,

(4.4)
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where α.. are the coefficients of the corresponding second-order combinations. Then

we will show that there exists a solution for α to make it a valid decomposition. Here

we ignore the redundant terms in Eq. (4.4), hence it can be rewritten as

`r(zr,i, zr,j, zr,k) = αiizr,izr,i + αijzr,izr,j

+ αikzr,izr,k + αjkzr,jzr,k = αTv, (4.5)

where, α = [αii, αij, αik, αjk],

v = [zr,izr,i, zr,izr,j, zr,izr,k, zr,jzr,k].

`r has 8 possible input combinations for (zr,i, zr,j, zr,k) (or equivalently v has 8 pos-

sible value combinations), leading to 8 constraints of the form of (4.5). Because the

loss is defined on Hamming distance/affinity, changing the sign of every input leads

to identical value of the loss, thus some of these combinations lead to redundant

constraints. Eliminating all these redundant combinations leaves only four indepen-

dent equations (4.5). Stacking these so that each v forms a row of a matrix yields the

follow set of equations:



1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


α =



`r(1, 1, 1)

`r(1, 1,−1)

`r(1,−1, 1)

`r(1,−1,−1)


. (4.6)

which can be easily inverted to yield the unique solution of α. This shows that for a

given triplet loss function, we can decompose it into a set of pairwise terms for each

triplet.

We now seek a solution for z(r) – the rth bit of the code for every data point –

that optimizes the triplet relations. Because the triplet relations are now encoded as
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Algorithm 4: Greedy method for constructing blocks
Input: Training images: {x1, ...xn}; Relation weights matrix: W.
Output: Sub-modular blocks: {S1,S2,...}.

1 U← {x1, ..., xn}; t = 0;
2 while U 6= ∅ do
3 t = t + 1; St ← ∅; choose an arbitrary xi from U;
4 Let H be U∪ {xj|wij < 0}
5 for each xj in H do
6 if wjk ≤ 0 for k = 1, 2, ..., |St| then
7 Add xj to St; If xj ∈ U, remove it;

pairwise relations, we can solve for z(r) as follows. We define W ∈ Rn×n as a weight

matrix in which (i, j)-th element of W, wij, represents a relation weight between the

i-th and j-th training points. Specifically, each element of W is computed as

wij = ∑
∀(i,j)

αij, (4.7)

where αij are the coefficients corresponding to the pair (i, j). There will be one such

αij for every triplet in which data points xi and xj appear.

The triplet optimization problem in Eq. (4.3) can now be equivalently formulated

as

min
z(r)∈{−1,1}n

zT
(r)Wz(r). (4.8)

Note that the coefficients matrix W is sparse and symmetric, therefore Eq. (4.8) is a

standard binary quadratic problem. Although we have now shown how to convert

the third-order objective in Eq. (4.3) into a second-order formulation amenable to

BQP, a further issue remains: the quadratic objective above contains non-submodular

terms, and is therefore difficult to optimize.

To address this, we follow the proposal in [Lin et al., 2014a]. This proceeds by

creating a set of sub-problems (or “blocks”) each involving a subset of the variables

z(r) in which the pairwise relations are all sub-modular. The sub-problems are then

solved in turn, treating the variables that are not involved in the current block as
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Algorithm 5: Two-step approach for learning deep binary embedding networks
Input: Training images: {x1, ...xn}; Relation map: M; group length: a; number

of groups: b.
Output: The deep hash functions: h(·).

1 for i = 1, ...b do
2 for j = 1, ...a do
3 Solve linear equations to construct the relation weight matrix W;
4 Apply Block Graph-Cut algorithm [Lin et al., 2014a] to solve

((i− 1)× a + j)-th bit hash codes;

5 Learn the deep hash functions h(·) based on i× a bits hash codes;
6 Simultaneously update i× a bits hash codes by the output of h(·).

constants. The inference problem for one block is written as

min
zr∈{−1,1}n ∑

i∈S
uizr,i + ∑

i∈S
∑
j∈S

vijzr,izr,j, (4.9)

where, ui = 2 ∑
j/∈S

wijzr,j, vij = wij,

and S is the block to be optimized. Since the above inference problem for one block

is sub-modular, we can solve it efficiently using graph cuts.

Algorithm (4) details how the blocks are defined. It is subtly different from [Lin

et al., 2014a]; because we are using a triplet loss, the criterion for inclusion in a block

is to ensure wij < 0 for each pair xi, xj in the block, which guarantees sub-modularity

for all pairs.

4.4.2 Loss function

The discussion above provides a general framework for learning the binary codes

using a triplet loss, but is agnostic to the exact form of the loss. In the experiments

reported in this chapter, we use `r as the triplet-based hinge loss function defined in

Eq. (4.2):
`r(...) = max(0, r/2− ∆d(r−1)

H − ∆dr
H), (4.10)
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where,

∆d(r−1)
H = dH(z

(r−1)
i , z(r−1)

j )− dH(z
(r−1)
i , z(r−1)

k ),

∆dr
H = dH(zr,i, zr,j)− dH(zr,i, zr,k).

4.5 Deep hash functions learning

Our general scheme now requires that we learn hash functions h(.) that map from

data points xi to binary codes. We propose to do this using deep CNNs because they

have repeatedly been shown to be very effective for similar tasks. The straightfor-

ward approach is then to use the training samples, and their known codes as the

labelled training set for a standard CNN. As we have noted this two-stage approach

yields significant training time gains.

However a major disadvantage is that because the binary codes are determined

independently of the hash functions, and the hash functions have no possibility to

influence the choice of binary codes. Ideally these stages would interact so that

the choice of binary hash codes is influenced not only by the ground-truth relative

similarity relations but also by how hard the training points are.

To address this, we propose an interleaved process where we infer a group of

bits within a code, followed by learning suitable hash functions for that set of bits

and its predecessors, followed in turn by inference of the next group of bits, and so

on. This provides a compromise between independently learning the codes and hash

functions, and a more end-to-end – but very expensive – approach such as [Lai et al.,

2015].

4.5.1 Incremental optimization

Our key idea here is to optimize the hashing framework in an incremental group-

wise manner. More specifically, we assume there are b groups of bits and each group

has a bits (e.g., for 64-bit codes we may break this into 8 groups of 8 bits each). For
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convenience, we shall refer to inference of the p-th group binary codes followed by

learning the deep hash functions, as the “p-th training stage”. In the p-th training

stage, we first infer the a bits of the p-th group one bit at a time (as described in Sec.

4.4) and then train the network parameters θ so that it minimizes the cross-entropy

loss:

−
r

∑
ρ=1

n

∑
i=1

[δ(zρ,i = 1) log z′ρ,i + δ(zρ,i = −1) log(1− z′ρ,i)], (4.11)

where δ(·) is the indication function. Here at the p-th stage we are targetting the

first r = pa bits of the code; z′ρ,i is the ρ-th output of the last sigmoid layer for the

i-th training sample; zρ,i is the corresponding bit of the binary code obtained from

the inference step which serves as the target label of the multi-label classification

problem above. Note that in the p-th training stage, the bits from all p groups are

used to guide the learning of the deep hash functions.

Having completed training the hash functions, we then update the binary codes

for all p groups by the output of the learned hash functions. The effect of this is to

ensure that the error in the learned hash functions will influence the inference of the

next group of hash bits.

This incremental training approach adaptively regulates the binary codes accord-

ing to both the fitting capability of the deep hash functions and the properties of the

training data, steadily improving the quality of hash codes and the final performance.

Finally, we summarize our hashing framework in Algorithm 5.

4.5.2 Network architecture

The network of learning deep hash functions consists of multiple convolutional, pool-

ing, and fully connected layers (we follow the VGG-16 model), and a multi-label loss

layer for multi-label classification.

We use the pre-trained VGG-16 [Simonyan and Zisserman, 2015] model for initial-

ization, which is trained on the large-scale ImageNet dataset. The multiple convolution-

pooling and fully connected layers are used to capture mid-level image representa-
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tions. The intermediate output of the last fully connected layer are mapped to a

multi-label layer as the feature representation. Then neurons in the multi-label layer

are activated by a sigmoid function so that the activations are approximated to [0, 1],

followed by the cross-entropy loss of Eq. (4.11) for multi-label classification.

4.6 Experiments

Experimental settings We test the proposed hashing method on two multi-class

datasets, one multi-label dataset and one face retrieval dataset. For multi-class

datasets, we use the MIT Indoor dataset [Quattoni and Torralba, 2009] and CIFAR-10

dataset [Krizhevsky, 2009]. The MIT Indoor dataset contains 67 indoor scene cate-

gories, and 6,700 images for evaluation. CIFAR-10 contains 60,000 small images in 10

classes. For multilevel similarity measurement, we test our method on the multi-label

dataset NUS-WIDE [Chua et al., 2009]. The NUS-WIDE dataset is a large database

containing 269,648 images annotated with 81 concepts. We compare the search ac-

curacies with four recent state-of-the-art state-of-the-art hashing methods, including

SFHC [Lai et al., 2015] (the recent deep CNNs method), FSH [Lin et al., 2014a] (two-

step hashing approach using decision trees), KSH [Liu et al., 2012] and ITQ [Gong

et al., 2013].

For fair comparison, we evaluate the compared hashing methods FSH, KSH and

ITQ on the features obtained from the activations of the last hidden layer of the VGG-

16 model pre-trained on the ImageNet ILSVRC-2012 dataset [Russakovsky et al.,

2015a]. We find that using deep CNN features in general improve the performance

for these three hashing methods, compared with what was originally proposed. We

initialize our CNN using the pre-trained model and fine-tune the network on the

corresponding training set.

Again for fair comparison, for the deep CNN approach SFHC, we replace its net-

work structure (convolution-pooling, fully-connected layers) with the VGG-16 model

and end-to-end train the network based on the triplet hinge loss used in the original
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paper. We implement SFHC using Theano [Bastien et al., 2012] and train the model

using two GeForce GTX Titan X. The triplet samples are randomly generated in the

course of training, following [Lai et al., 2015].

For the NUS-WIDE dataset, we construct two comparison settings, setting-1 and

setting-2. For setting-1, following the previous work [Lai et al., 2015; Liu et al.,

2011], we consider the 21 most frequent tags and the similarity is defined based

on whether two images share at least one common tag. For setting-2, we use the

similarity precision evaluation metric to evaluate pairwise and triplet performance.

As in [Wang et al., 2014], similarity precision is defined as the % of triplets being

correctly ranked.

Given a triplet image set (xi, xj, xk), where s(xi, xj) > s(xi, xk). We assume xi as the

query, if the rank of xj is higher than xk, then we say triplet is correctly ranked. We

first randomly sample 1000 probe images from all the data sharing the selected 21

attributes in setting-1. Then we obtain a ranking list for each probe image according

to how many attributes it shares with the data and randomly generate 50 triplets per

probe image according to the ranking list to form the test set. For the triplet-based

methods, the sampled training data is the same as in setting-1. For the compared

pairwise-based methods, we directly use the hash functions learned in setting-1 since

semantic ranking information cannot be incorporated into the pairwise-based infer-

ence pipeline. For CIFAR-10 and NUS-WIDE setting-1, we use the same experimental

setting as described in [Lai et al., 2015].

We use two evaluation metrics: Mean Average Precision (MAP) and the precision

of the top-K retrieved examples (Precision), where K is set to 100 in CIFAR-10 and

NUS-WIDE setting-1 and set to 80 in MIT Indoor dataset. For NUS-WIDE setting-1,

we calculate the MAP values within the top 5000 returned neighbors. The results are

represented in Figure 4.3 and Figure 4.4.
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Figure 4.3: The precision curves on three datasets. We compare several state-of-the-
art algorithms including ITQ [Gong et al., 2013], KSH [Liu et al., 2012], FSH [Lin
et al., 2014a] with features extracted from VGG-16 model which is fine-tuned on the
corresponding training set and SHFC [Lai et al., 2015] which is implemented using
the VGG-16 network structure.
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Figure 4.4: The mean average precision curves on three datasets. Settings are the
same as in Figure 4.3.

4.6.1 Implementation details

We implement the network training based on the CNN toolbox Theano. Training is

done on a standard desktop with a GeForce GTX TITAN X with 12GB memory. In

all experiments, we set the mini-batch size for gradient descent to 50, momentum

0.9, weight decay 0.0005 and dropout rate 0.5 on the fully connected layer to avoid

over-fitting. The number of binary codes per group is set to 8.

4.6.2 Analysis of retrieval results

On all the three datasets, our proposed method shows superior performance in terms

of MAP and precision evaluation metrics against the most related work SFHC (deep

CNN) and FSH (two-step hashing with boosted trees). As expected, the training

speed of our method is much faster than SFHC, and the result is summarized in

Table 4.1. Rather than simply end-to-end learn the hash functions, our method incor-
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Figure 4.5: The similarity precision curves on NUS-WIDE setting-2.
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Figure 4.6: Evaluation of the inference performance on three datasets.
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porates hash functions learning with a collaborative inference step, where the image

representation learning and hash coding can benefit each other through this feedback

scheme.

Compared to FSH, the results demonstrate the effectiveness of incorporating rel-

ative similarity information as supervision. Note that FSH is based on pairwise

information while ours uses triplet based ranking information to learn hash codes.

The triplet loss may be better for retrieval tasks because it is directly linked to re-

trieval measure such as the AUC score. The pairwise loss used by FSH encourages

all images in one category to be projected onto a single point in the Hamming space.

The triplet loss maximizes a margin between each pair of same-category images and

images from different categories. As argued in [Schroff et al., 2015; Weinberger and

Saul, 2009], this may enable images belonging to the same category to reside on a

manifold; and at the same time to maintain a distance from other categories.

Table 4.1: Training time of the proposed method and the method SFHC [Lai et al.,
2015] on three datasets. In terms of training time, our method is significantly faster
than SFHC.

Method
Training Time (hours)

Number of GPUs
MIT Indoor CIFAR-10 NUS-WIDE setting-1

Ours-Triplet 18 15 32 1
SFHC 186 174 365 2

4.6.3 Triplet vs. pairwise

From the results shown in Figure 4.5, we can clearly observe the superiority of triplet-

based methods on the ranking based evaluation metric. Thanks to the high quality bi-

nary codes and the strong fitting capability of our deep model, our proposed method

provides much better performance than pairwise methods by a large margin.

Since the two triplet-based methods (Ours-Triplet and SFHC) simultaneously

learn feature representations and hash codes while considering the semantic ranking

information, they are more likely to learn hash functions that are tailored for the

ranking-based retrieval metric than the pairwise-based methods (Ours-pairwise and
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FSH).

4.6.4 Evaluation of binary codes quality

Table 4.2: Face search accuracies under the IJB-A protocol. Results for GOTS and
OpenBR are quoted from [Klare et al., 2015]. Results are reported as the average
± standard deviation over the 10-fold cross validation sets specified in the IJB-A
protocol.

Algorithm
CMC (closed-set search) FNIR @ FPIR (open-set search)
Rank-1 Rank-5 0.1 0.01

GORS 0.443± 0.021 0.595± 0.020 0.765± 0.033 0.953± 0.024
OpenBR 0.246± 0.011 0.375± 0.008 0.851± 0.028 0.934± 0.017

Deep Face Search[Wang et al., 2015a] 0.820± 0.024 0.929± 0.013 0.387± 0.032 0.617± 0.063
Proposed Method 0.831± 0.020 0.937± 0.015 0.369± 0.028 0.598± 0.048

We evaluate the binary codes quality on CIFAR-10, MIT Indoor and NUS-WIDE

setting-1 datasets (see Figure 4.6). To evaluate the effectiveness of the binary codes

inference pipeline, we infer 64 binary bits without learning the deep hash functions.

Then the training database is used as both the probe set and the gallery set for evalu-

ating the inference performance. For the three datasets, we calculate the MAP values

within the returned neighbors. We can observe that for CIFAR-10, the binary codes

converge very fast at around 10-th bits. MIT Indoor dataset converges slightly slower

due to the fact that it has more classes. The binary codes can still perfectly separate

all the training samples from different classes. This is because the relations between

training points are very simple due to the multi-class similarity relationships. In con-

trast, due to the complicated relationships between the multi-label training samples,

the accuracy of NUS-WIDE setting-1 keeps improving up to 64 bits and is lower than

those multi-class datasets. We can see that the code quality is directly proportional

to the final retrieval performance. This makes sense since the deep hash functions

are learned to fit the binary codes, so the performance of the inference pipeline has

a direct impact on the quality of the learned deep hash functions.
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4.6.5 Face retrieval

We implement the face search application as follows. Data preprocessing. The prepro-

cessing pipeline is: 1) detect the face region using the robust face detector [Mathias

et al., 2014] and find 68 face landmarks using the (state-of-the-art) face alignment

algorithm [Xiong and De la Torre, 2013]; 2) select the middle landmark between two

eyes and the middle landmark of the mouth as alignment-anchor points, and align/s-

cale the face image such that distance between the landmarks is 40 pixels; 3) finally

we crop a 160× 160 region around the mid-point of the two landmarks in (2).

Table 4.3: Face search accuracies of the proposed method under the IJB-A protocol
using different bits per group.

Group length
CMC (closed-set search) FNIR @ FPIR (open-set search)
Rank-1 Rank-5 0.1 0.01

8 bits 0.831± 0.020 0.937± 0.015 0.369± 0.028 0.598± 0.048
32 bits 0.818± 0.023 0.920± 0.016 0.385± 0.030 0.612± 0.052
64 bits 0.793± 0.024 0.908± 0.018 0.398± 0.036 0.627± 0.061

128 bits 0.778± 0.023 0.889± 0.020 0.415± 0.035 0.645± 0.058

Supervised pre-training. We pre-train the VGG-16 [Simonyan and Zisserman, 2015]

network (using Caffe [Jia et al., 2014]) to classify all the 10575 subjects in the CASIA

dataset [Yi et al., 2014]. This dataset has 494414 images of the 10575 subjects, and

we double the number of training examples by horiozontal mirroring, making the

feature representation more robust to pose variation.

We test the pre-trained model’s discriminative power on the LFW verification

data as follows. We use the last 4096-dimensional fully-connected layer as the feature

representation and then use PCA to compress it into a 160-dimensional feature vector.

Then CNN features are centered and normalized for evaluation. Under the standard

LFW [Huang et al., 2007] face verification protocol, for a single network using only

cosine similarity, we achieve an accuracy of 97.03%± 0.98%. Using the joint Bayesian

method [Chen et al., 2012] for face verification, we achieve an accuracy of 98.18%±

0.96%.

Despite using only publicly available training data and one single network, the
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performance of this model is competitive with state-of-the-art [Schroff et al., 2015;

Taigman et al., 2014; Yi et al., 2014; Sun et al., 2015].

Face search. We then use the above pre-trained CNN model to initialize the deep CNN

that models the hash functions of our proposed hashing method. We test the face

search performance on the IARPA Janus Benchmark-A (IJB-A) dataset [Klare et al.,

2015] which contains 500 subjects with a total of 25,813 face images. This dataset

contains many challenging face images and defines both verification and search pro-

tocols. The search task (1:N search) is defined in terms of comparisons between

templates consisting of several face images, rather than single face images. For the

search protocol, which evaluates both closed-set and open-set search performance,

10-fold cross validation sets are defined based on both the probe and gallery sets

consisting of templates. Given an image from the IJB-A dataset, we first detect and

align the face following the data preprocessing pipeline. After processing, the final

training set consists approximately 1 million faces and 1 billion randomly sampled

triplets. Clearly, such a large-scale training dataset may render most existing triplet-

based hashing methods computationally intractable. The deep hash functions are

learned based on the proposed two-step hashing framework. After the deep hash

functions are learned, we generate 128 bits hash codes for each input face image for

fast face retrieval. The definitions of CMC, FNIR and FPIR are explained in [Wang

et al., 2015a; Klare et al., 2015]. The results of the proposed method along with the

compared algorithms are reported in Table 4.2. In [Wang et al., 2015a], a face is

represented by the combined features extracted by 6 deep models. However, in our

thesis, 128 bits binary codes are directed extracted by a single deep model for face

representation which enjoys both faster searching speed and less storage space. Also,

although using the same training database, the searching accuracy on two protocols

both demonstrate the effectiveness of our hashing framework.
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4.6.6 Evaluation of the incremental learning

We evaluate different group lengths used in the incremental learning to prove the

effectiveness of such an optimization strategy. We implement the experiments on

the face retrieval task as described above since there are sufficient training examples

and faces are difficult for the deep architecture to fit because of the relatively weak

discriminative information they share. The results are reported in Table 4.3. From

the results, we clearly see that smaller group length corresponds to better search

accuracies, demonstrating our assertion that incremental optimization helps in terms

of code quality and the final performance.

4.7 Conclusion

In this chapter, we develop a general supervised hashing method with triplet ranking

loss for large-scale image retrieval. Instead of directly training on the extremely

large amount of triplet samples, we formulate learning of the deep hash functions

as a multi-label classification problem, which allows us to learn deep hash functions

orders of magnitude faster than the previous triplet based hashing methods in terms

of training speed. The deep hash functions are learned in an incremental scheme,

where the inferred binary codes are used to learn image representations and the

learned hash functions can give feedback for boosting the quality of binary codes.

Experiments demonstrate that the superiority of the proposed method over other

state-of-the-art hashing methods.
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5.1 Overview

Large-scale datasets have driven the rapid development of deep neural networks for

visual recognition. However, annotating a massive dataset is expensive and time-

consuming. Web images and their labels are, in comparison, much easier to obtain,

but direct training on such automatically harvested images can lead to unsatisfactory

performance, because the noisy labels of Web images adversely affect the learned

recognition models. To address this drawback we propose an end-to-end weakly-

supervised deep learning framework which is robust to the label noise in Web im-

ages. The proposed framework relies on two unified strategies – random grouping

and attention – to effectively reduce the negative impact of noisy web image anno-

tations. Specifically, random grouping stacks multiple images into a single training

instance and thus increases the labeling accuracy at the instance level. Attention, on

the other hand, suppresses the noisy signals from both incorrectly labeled images

and less discriminative image regions. By conducting intensive experiments on two

challenging datasets, including a newly collected fine-grained dataset with Web im-

ages of different car models, the superior performance of the proposed methods over

competitive baselines is clearly demonstrated.

5.2 Introduction

Recent development of deep convolutional neural networks (CNNs) has led to great

success in a variety of tasks including image classification [Krizhevsky et al., 2012;

Simonyan and Zisserman, 2015; He et al., 2016a], object detection [Girshick et al.,

2014; Ren et al., 2015; Liu et al., 2016], semantic segmentation [Long et al., 2015; Lin

et al., 2016b] and others. This success is largely driven by the availability of large-

scale well-annotated image datasets, e.g. ImageNet [Russakovsky et al., 2015a], MS

COCO [Lin et al., 2014b] and PASCAL VOC [Everingham et al., 2010]. However,

annotating a massive number of images is extremely labor-intensive and costly. To
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reduce the annotating labor cost, an alternative approach is to obtain the image an-

notations directly from the image search engine from the Internet, e.g. Google image

search or Bing images.

Web-scale image search engine mostly uses keywords as queries and the connec-

tion between keywords and images is established by the co-occurrence between the

Web image and its surrounding text. Thus, the annotations of Web images returned

by a search engine will be inevitably noisy since the query keywords may not be con-

sistent with the visual content of target images. For example, using “black swan” as

a query keyword, the retrieved images may contain “white swan,” “swan painting”

and some other different categories. These noisy labels can be misleading if we use

them to train a classifier to learn the corresponding visual concept.

To overcome this drawback, we propose a deep learning framework designed to

be more robust to the labeling noise and thus better able to leverage Web images

for training. There are two key strategies in our framework: random grouping and

attention. As will be shown later, these two strategies seamlessly work together to

reduce the negative impact of label noise.

Specifically, the random grouping strategy randomly samples a few images and

merges them into a single training instance. The idea is that although the probability

of sampling an incorrectly labeled Web image is high, the probability of sampling an

incorrectly labeled group is low because as long as one image in the group is cor-

rectly labeled, the label of the group is deemed correct (bag label as in multi-instance

learning). In the proposed approach, each image is represented by the extracted

contextual features depicting the visual patterns of local image regions. After the

random grouping, a training instance is represented as the union of convolutional

feature maps extracted from each image in the group. If there are any incorrectly

labeled images in the group, the unified feature maps of an instance will contain

a substantial amount of local features which are irrelevant to the group-level class

annotation. To avoid the distraction of those local features, we apply the second
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Figure 5.1: Overview of our “webly”-supervised learning pipeline. For the training
phase, inputs are a group of images, including one correctly labeled image and two
noise images from top to bottom. The convolutional layers are shared. The attention
model is added on each training data and followed by a global average pooling layer
to get the aggregated group-level representation, followed by a softmax layer for
classification. For the testing phase, the input is a single image and output is the
predicted class label.

strategy of our framework, the attention mechanism, to encourage the network not

to focus on the irrelevant features.

To experimentally validate the robustness of the proposed method, we collect a

large-scale car dataset using a Web image search engine. This dataset is particularly

challenging due to its fine-grained nature. By conducting an experimental compari-

son on this dataset, we demonstrate that the proposed method achieves significantly

better performance than competitive approaches.

5.3 Method

In our task, we intend to distill useful visual knowledge from the noisy Web data. It

consists of correctly labeled samples and mislabeled samples on the Web. To make

the classifier robust to noisy labels, we propose a deep learning framework by incor-

porating two strategies, random group training, and attention. The overview of our

method is shown in Figure 5.1. At the training stage, we randomly group multiple

training images into a single training instance as the input of our neural network.

The proposed neural network architecture has two parts. The first part is similar to a
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standard convolutional neural network which is comprised of multiple convolutional

layers and pooling layers. The second part is an attentional pooling layer which se-

lects parts of the neuron activations and pools the activations into the instance-level

representation. Once the neural network is trained, we can drop off the random

grouping module and takes a single image as input at the test stage.

In the following sections, we will elaborate the random grouping training and the

attention module and discuss their benefits for reducing the impact of noisy labels.

5.3.1 Random grouping training

Random grouping training (RGT) aims at reducing the probability of sampling an

incorrectly labeled instance and thus mitigate the risk confusing a neural work with

wrong annotations. The idea of RGT is to stack multiple images of one class into a

single grouped training instance of the same class. In practice, we implement this

idea by stacking the last layer convolutional feature maps obtained from each image

into a unified convolutional feature map and perform (attention based) pooling on

this feature map to obtain the instance-level representation. In this sense, we can

view the input of a grouped instance as a “merged image” and as long as one image

is correctly labeled as containing the object-of-interest, the “merged image” indeed

contains it. In other words, the grouped training instance is correctly labeled as long

as one image within is correctly labeled.

Consequently, if the probability of sampling an incorrectly labeled image is ξ,

then the probability of sampling a correctly labeled grouped instance will become

p = 1− ξK (5.1)

where K is the group size and when K becomes larger, the probability of sampling a

correctly labeled instance will become very high. For example, if ξ = 0.2 and K = 3,

p will be greater than 99%. However, when K becomes larger, the independence

between multiple training instances will reduce and this tends to undermine the
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training images heat maps attention maps distribution

Figure 5.2: This figure illustrates the effectiveness of the group-wise attention model
used in the proposed method. The left column shows the original training images.
The middle column is the images plus its corresponding attention heat maps. The
right column shows the distribution of the attention maps. The upper row relates to
the correctly labeled sample and the bottom row corresponds to the mislabeled sam-
ple. We can see that for the correctly labeled sample, the normalized attention model
only focus on the discriminative local parts and the score distribution is sparse. In
contract, for the mislabeled sample, the normalized attention model fails to concen-
trate on any local regions and the score distribution is dense.

network training. Thus in practice, we choose K as a small value (2 to 5). We have

conducted an experimental study on the impact of K with respect to different level

of labeling noise at Section 5.4.4.

5.3.2 Attention

5.3.2.1 Attention formulation

After random grouping, each instance is now represented as an array of activations.

These activations come from both correctly labeled images and mislabeled images.

Although containing activations from the correct region of interest, many of the acti-

vations are noisy signals and will negatively impact the learning process. To mitigate

this issue, we propose to use an attention model to focus processing only on the at-

tended activations. Let xn
ijk ∈ Rc denote the last convolutional layer activations from

the k-th image of the n-th instance at the spatial location (i, j), where i = 1, 2, ..., d
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and j = 1, 2, ..., d are the coordinates of the feature map and d is the height or width

of the feature map.

The unnormalized attention score sn
ijk ∈ R can be formulated as

sn
ijk = f (wTxn

ijk + b), (5.2)

where w ∈ Rc, b ∈ R1 denote the weight and bias of the attention detector respec-

tively, which are parts of the model parameters and will be learned in an end-to-end

manner. f (·) is the softplus function f (x) = ln(1 + exp(x)). Since we are only con-

cerned with the relative importance of the local features within an image, we propose

to normalize the attention scores to [0, 1] for aggregating the local features:

an
ijk =

sn
ijk + ε

∑
i

∑
j
(sn

ijk + ε)
, (5.3)

where an
ijk is the normalized attention score, ε is a small constant and quite important

to make the distribution reasonable.

If the element sn
ijk is low but there is no ε, then the corresponding an

ijk can be large

even though sn
ijk is small. The constant ε can solve this problem effectively. If it is

properly set, a small sn
ijk (approaching zero) will result in an

ijk = 1
d2 . In our work, we

set it to 0.1.

After obtaining the normalized attention scores, we can get the attended feature

representation by applying an
ijk to xn

ijk as follows:

x̂n
ijk = an

ijk � xn
ijk, (5.4)

where � is the element-wise multiplication, x̂n
ijk is the attended feature representa-

tion.

Then the representation of a grouped training instance can be obtained by a global

average pooling over all the feature dimensions except for the channel-wise dimen-
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sion:

hn =
1

d2k ∑
i

∑
j

∑
k

x̂n
ijk, (5.5)

where hn ∈ Rc is the group-level representation of the n-th training instance.

Then we apply a linear classifier layer to predict the class label of each grouped

instance and use the multi-class cross-entropy loss to train the network:

Lclass = −∑
n

yn log(
exp(Fn)

∑
n

exp(Fn)
) (5.6)

where Fn and yn are the last linear classification layer and the class label for the n-th

training instance, respectively.

5.3.2.2 Attention module regularization

Ideally, for the correctly labeled image, the attention scores should have large values

on one or few image regions; for the mislabeled image, none of the image regions

should correspond to large attention values. In the above framework, we expect this

situation can happen after the end-to-end training of the network. In this section,

we devise a regularization term to further encourage this property. To apply this

regularization, we assume that a set of negative class images belonging to none of to-

be-learned image categories is available. Then we can apply the attention detector on

those negative class images and require that the obtained normalized attention val-

ues are as small as possible since those images do not contain the object-of-interest.

Define un
ijk = wTxn

ijk + b to be the linear attention scores for the sample xn
ijk ; then

the above requirement is equivalent to expecting maxijk un
ijk < 0. On the other hand,

for a grouped training instance generated from each class, we expect that the atten-

tion detector identifies at least one relevant region and this leads to the objective

maxijk un
ijk > 0. In this chapter, we propose to use the following objective function to
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impose the aforementioned two requirements:

R(w, b) = ∑
n

max(0, 1− δnmaxijk(un
ijk)) (5.7)

where δn = {1,−1} indicates whether the instance is sampled from the classes of

object-of-interest or from the negative class. We then use the weighted sum of Lclass

and R as the final objective function:

L = Lclass + λR. (5.8)

The effect of the attention module is illustrated in Figure 6.3. The input is an

instance including a correctly labeled car sample and a mislabeled noise sample. We

can observe that for the correctly labeled sample, the normalized attention scores are

pushed high at the region-of-interest, which corresponds to the back of the car in

the example. In contrast, for the mislabeled sample, the normalized attention scores

are all pushed approaching zero, resulting in no parts to be concentrated on for

the attention model. In terms of this observation, we can explore that the attention

model can not only filter out the contextual features of the mislabeled samples in the

training instance, but also help detect the discriminative parts of the correctly labeled

samples.

5.4 Experiments

In this section, we test our weakly-supervised learning framework on two datasets

collected from the Web. One is a fine-grained dataset and the other one is a con-

ventional classification dataset. The training data for both tasks are obtained via

search results freely available from Google image search, using all returned images

as training data. It’s worth noticing that fine-grained classification is quite challeng-

ing because categories can only be discriminated by subtle and local differences.
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Figure 5.3: Examples of the image re-ranking performance on one sampled car cate-
gory (“cadillac”). The red crosses indicate the images that are classified incorrectly.
The images are sorted according to the rank of the classification scores in descend-
ing order. The images in the green rectangle and red rectangle are correctly labeled
samples and mislabeled samples, respectively. The noise level is 0.4.

5.4.1 Datasets

WebCars: We collect a large-scale fine-grained car dataset from the internet, named

WebCars, using the categories of the clean CompCars dataset [Yang et al., 2015]. We

treat the car model names as the query keywords and automatically retrieve images

for all the 431 fine-grained categories. We collect 213,072 noisy Web images in total

and still use the test set of the original clean dataset for testing. We sample a few

categories from WebCars and manually annotate the ground-truth labels, noting in

the process that approximately 30% of images are outliers. We further collect 10,000

images that doesn’t belong to the training categories as the negative class.

Web data + ImageNet: We randomly sample 100 classes used in ImageNet and

use the category names for collecting a noisy Web image dataset. All the images

are automatically downloaded and the ones that appear in the original ImageNet

dataset are manually removed. This dataset contains 61,639 images in total. The

noise gradually increases from the highly ranked images to the latter samples. We

estimate the percentage of mislabeled samples is approximately 20 %. We also collect

5,000 negative class Web images.
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5.4.2 Implementation details

We use Theano [Bastien et al., 2012] for our experiments. We use the pretrained VGG-

16 model trained on the ImageNet dataset [Russakovsky et al., 2015a] to initialize the

convolutional layers of our framework. The learning rate is set to 0.001 initially, and

divided by 10 after 5 epoches. The regularizer λ is set to 0.1. Training samples are

randomly grouped online.

To investigate the impact of the various elements in our end-to-end framework,

we analyse the effects of the attention model, group-wise training approach and the

attention regularization described in Section 5.3.2.2 independently.

1. “Average pooling without attention (AP)”: We employ the average-pooling

method as an important baseline here since it’s commonly used for image clas-

sification on clean images without any noise-robust strategy. The average pool-

ing structure simply replaces the two 4096 dimensions fully-connected layers

in VGG-16 model with an average pooling layer, followed by a softmax layer

for classification.

2. “Random grouping training without attention (RGT)”: In this method, samples

are randomly grouped during training, with the mean-pooling operation in

Eq. 5.5 to get the instance-level representation.

3. “Average pooling with attention (AP+AT)”: Based on AP, the attention model

is embedded in the network to test its ability to localize discriminative feature

regions.

4. “Random grouping training with attention (RGT+AT)”: Attention is added to

RGT.

5. “Average pooling with attention and regularizer (AP+AT+R)”: We add the reg-

ularizer to AP+AT to evaluate its influence to cope with noisy labels.

6. “Random grouping training with attention and regularizer (RGT+AT+R)”: We
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test its performance on filtering out incorrectly labeled samples in each group

as well as noisy local feature parts by adding the regularizer to RGT+AT.

5.4.3 Evaluation on the WebCars

We quantatively compare the methods described in Section 5.4.2 and report the re-

sults in Table 5.1. For RGT based methods, the group size is set to 2.

methods accuracy
AP 66.86%
RGT 69.83%
AP+AT 73.64%
RGT+AT 76.58%
AP+AT+R 70.77 %
RGT+AT+R 78.44%

Table 5.1: Comparison of classification results on the Compcars test set.

Average pooling vs. Random grouping training

By comparing the results of AP and RGT, we can see that the group-wise training

can effectively suppress the influence of noise due to the improved labeling accuracy

at the instance level. For this reason, the model can always learn some useful infor-

mation from the correctly labeled samples in each group. In contrast, for training

at the image level with no attention, the noisy labels will give networks misleading

information that will harm the learning process.

Attention vs. without attention

For AP+AT and RGT+AT, the accuracy all improves by a large margin compared

to AP and RGT respectively, which proves the effectiveness of the attention model

employed. The attention model filters out uninformative parts of the feature maps

for each sample and only let the useful parts flow through the latter network for

classification. In this way, it works like a gate that can prevent the noisy regions of

the feature representation from misleading the classifiers. A similar strategy is found

effective on clean images for multi-label image classification [Zhao et al., 2016].

With vs. without regularizer

An interesting phenomenon we observe is that the accuracy for AP+AT drops
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significantly when using the noise regularizer, AP+AT+R. The reason is that the

noise presents in both classes of object-of-interest and negative class, and conse-

quently the image-level learning strategy confuses the network with how to classify

the noise. But this confusion doesn’t exist in the group-level training approach, since

very few training instances have incorrect labels after random grouping. The reasons

for adding noise regularizer is helpful for group-wise training are two-fold: First,

the hinge loss regularizer forces the attention map not to concentrate on any feature

regions of mislabeled samples, which results in a much cleaner group-level feature

representation; Second, it helps the classifiers to distinguish the correctly labeled

samples from the noise [Girshick et al., 2014]. It’s worth noticing that compared to

utilizing clean images as constraint [Xiao et al., 2015], the negative samples are much

easier to collect.

We consider two types of label noise defined in [Krause et al., 2016], which are

called cross-domain noise and cross-category noise. The cross-domain noise is defined

to be the portion of images that are not of any category in the fine-grained domain,

i.e. for cars, these images don’t contain a car. In contrast, the cross-category noise

is the mislabeled images within a fine-grained domain, i.e. a car example with the

wrong model label.

We also provide qualitative examples in Figure 5.5. We see that the attention

model mostly focuses on the discriminative parts in the front of or at the end of

the cars. For some challenging examples, the correctly labeled car appears simulta-

neously with the cross-domain noise or cross-category noise in the same image. In

this case, the attention model still successfully localizes to the correct parts. For the

mislabeled samples, there’s no object-of-interest to be concentrated on.
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Figure 5.4: The classifcation accuracy under different group sizes of the proposed
method.

5.4.4 Analysis of group size

In this section, we conduct a toy experiment to investigate the impact of the group

size on our method (RGT+AT+R)1. We randomly sample 100 car categories of the

Compcars dataset and deliberately pollute the clean training data by adding cross-

category noise and cross-domain noise in a proportion of 1:1. The total number of

training images doesn’t change. We then gradually increase the noise level from 0.2

to 0.6 and report the classification accuracy on the test set of Compcars using different

group sizes. The results are shown in Figure 5.4. From Figure 5.4, we could make the

following observations: (1) using group size ≥ 2 makes the network training more

robust to noise. As can be seen, when the dataset contains a substantial amount

noise label e.g. noise level = 0.6, the performance gap between group size = 1 and

group size ≥ 2 can be larger than 10%. (2) the optimal group size changes with the

noise level. For example, when the noise level = 0.2, the optimal group size is 2 but

when the noise level = 0.6, the optimal group size becomes 4. This observation could

1When group size equals 1, the method is equivalent to AP + AT + R. We empirically find adding
the regularization term in this case will lead to inferior performance so we do not use the regularization
term when group size equals 1.
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Figure 5.5: Examples of the attention maps using the large-scale noisy fine-grained
dataset described in Section 5.4.1. The brighter the region, the higher the attention
scores. The examples in the red dotted box are mislabeled samples on the Web.
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Figure 5.6: Examples of where attention maps for the collected Web data with re-
spect to ImageNet described in Section 5.4.1. The brighter the region, the higher the
attention scores. The examples in the red dotted box are mislabeled on the Web.

be partially explained by the analysis in section 5.3.1, that is, the larger group size

reduces the chance of having an incorrect label at the group-level. (3) Finally, we

observe that larger k does not always lead to better performance. As also mentioned

in section 5.3.1, we speculate that this is because having a larger group will reduce

the independency of grouped instance. For example, when having a larger k, the

chance of two groups sharing one common image will grow significantly.
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5.4.5 Web Images re-ranking

To inspect whether the proposed method utilize the information from the correctly

labeled data for training while ignoring the mislabeled ones, we now propose to

re-rank the noisy training data used in Section 5.4.4 according to their classification

scores. The ideal case is that the highly ranked images are all correctly labeled ones

while the low-ranking samples are mislabeled ones on the Web. We compare three

methods here, including AP, AP+AT as well as RGT+AT+R using different group

sizes. The ground truth labels for correctly labeled images and mislabeled images

are set to +1 and −1, respectively. Correctly labeled images are ranked high in the

ground truth labels. Based on the learned models in Section 5.4.4, we first obtain

the classification score for each training sample and rank the images in descending

order based on their corresponding classification scores to get the predicted labels in

each category. We then calculate the mean average precision (MAP) under different

noise levels and group sizes. The mean average precision is obtained by averaging

the precisions calculated at the total number of samples in different categories.
`````````````̀methods

noise level
20 % 40 % 60 %

AP 93.72 85.08 74.42
AP+AT 96.71 92.84 90.56
RGT+AT+R, group size=2 98.12 95.81 91.00
RGT+AT+R, group size=3 97.71 95.93 91.04
RGT+AT+R, group size=4 97.95 95.33 91.98

Table 5.2: Comparison of mean average precisions % using several methods under
different noise levels.

From the table, we can see that for direct average pooling, the precision drops

dramatically as the noise level increases. On the contrary, simply adding attention

model only, the precision improves considerably especially when the noise level is

high enough. For example, at the noise level 60 %, the precision gap is more than

15 %. This result proves that selecting discriminative regions for each sample can

effectively prevent noisy parts from impacting the final classification. By incorpo-
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rating the group-wise training strategy, the performance further improves. This can

be attributed to the highly accurate group-level labels used and the attention model

for blocking the local features of mislabeled samples to generate the group-level rep-

resentation. Overall, the proposed method is stable and performs well at different

noise levels.

We also randomly select a car category and qualitatively evaluate the re-ranking

performance at the noise level 0.4 (see Figure 5.3). The images are ranked in descend-

ing order based on their classification scores. We can see that only a pair of images

are ranked incorrectly among the samples. From the results, we can expect that our

method can further be used to assist collecting clean datasets or active learning.

5.4.6 Evaluation on CIFAR-10 with Synthetic Noises

We also conduct synthetic experiments on CIFAR-10 following the setting of [Xiao

et al., 2015; Sukhbaatar and Fergus, 2015] and report the test accuracies under differ-

ent noise levels in Table 5.3. As seen, the proposed method is more robust to label

noise.

`````````````̀methods
noise level

30 % 40 % 50 %

Caffe’s CIFAR10-quick 65.57% 62.38% 57.36%
[Sukhbaatar and Fergus, 2015] 69.73% 66.66% 63.39%

[Xiao et al., 2015] 69.81% 66.76% 63.00%
RGT+AT+R, group size=2 74.88 % 70.33% 65.87%
RGT+AT+R, group size=3 71.76 % 72.25% 67.15%
RGT+AT+R, group size=4 70.23 % 70.74% 66.98%

Table 5.3: Accuracies on CIFAR-10 with synthetic label noises.

5.4.7 Evaluation on Web Images + ImageNet

Apart from the challenging fine-grained classification task, the proposed method can

also be generalized to a conventional classification task. We trained models from
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scratch using the noisy Web data with respect to ImageNet described in Section 5.4.1

and test the performance on the ILSVRC2012 validation set.

methods accuracy
AP 58.81%
AP+AT 67.68%
RGT+AT+R, group size=2 71.24%
RGT+AT+R, group size=3 68.89%
RGT+AT+R, group size=4 66.23%

Table 5.4: Comparison of classification results on ILSVRC2012 test set.

From the results we can see that for the conventional image classification task

with Web data, the proposed method still works much better than the directly aver-

age pooling baseline. By only applying the attention model on each sample to select

discriminative feature regions for classification, the result improves by ∼ 9%. By ran-

domly generating groups online using reasonable group size and incorporating the

regularizer, we get the best performance at the optimal group size 2, which confirms

the conclusions in Section 5.4.3 and Section 5.4.4.

We visualize some examples with their attention maps in Figure 5.6 using the best

performed method RGT+AP+R with group size 2. The attention model attempts to

localize the most discriminative parts for correctly labeled samples to push them far

from the decision boundary. Samples in the red bounding box are mislabeled on the

Web and the attention model finds no parts to concentrate on.

5.5 Summary

In this chapter, we propose a weakly-supervised framework to learn visual repre-

sentations from massive Web data with minor human supervision. The proposed

method can handle label noise effectively by two unified strategies. By randomly

stacking training images into groups, the accuracy of the group-level labels im-

proves. The attention model embedded further localizes the discriminative regions

corresponding to correctly labeled samples across the combined feature maps for
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classification. The efficacy of our methods have been demonstrated by the extensive

experiments.
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6.1 Overview

Recognizing how objects interact with each other is a crucial task in visual recogni-

tion. If we define the context of the interaction to be the objects involved, then most

current methods can be categorized as either: (i) training a single classifier on the

combination of the interaction and its context; or (ii) aiming to recognize the interac-

tion independently of its explicit context. Both methods suffer limitations: the former

scales poorly with the number of combinations and fails to generalize to unseen com-

binations, while the latter often leads to poor interaction recognition performance

due to the difficulty of designing a context-independent interaction classifier.

To mitigate those drawbacks, this chapter proposes an alternative, context-aware

interaction recognition framework. The key to our method is to explicitly construct

an interaction classifier which combines the context, and the interaction. The context

is encoded via word2vec into a semantic space, and is used to derive a classification

result for the interaction. The proposed method still builds one classifier for one

interaction (as per type (ii) above), but the classifier built is adaptive to context via

weights which are context dependent. The benefit of using the semantic space is that

it naturally leads to zero-shot generalizations in which semantically similar contexts

(subject-object pairs) can be recognized as suitable contexts for an interaction, even

if they were not observed in the training set. Our method also scales with the num-

ber of interaction-context pairs since our model parameters do not increase with the

number of interactions. Thus our method avoids the limitation of both approaches.

We demonstrate experimentally that the proposed framework leads to improved per-

formance for all investigated interaction representations and datasets.

6.2 Introduction

Object interaction recognition is a fundamental problem in computer vision and it

can serve as a critical component for solving many visual recognition problems such
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as action recognition [Mallya and Lazebnik, 2016; Ramanathan et al., 2015; Wang

et al., 2015b; Bilen et al., 2016; Zhang et al., 2016a], visual phrase recognition [Hu

et al., 2017; Rohrbach et al., 2016; Li et al., 2017a], sentence to image retrieval [Ma

et al., 2015; Karpathy and Fei-Fei, 2015] and visual question answering [Wu et al.,

2016c; Lu et al., 2017; Wu et al., 2016b]. Unlike object recognition in which the object

appearance and its class label have a clear association, the interaction patterns, e.g.,

“eating”, “playing”, “stand on”, usually have a vague connection to visual appear-

ance. This phenomenon is largely caused by the same interaction being involved

with different objects as its context, i.e. the subject and object of an interaction type.

For example, “cow eating grass” and “people eating bread” can be visually dissimilar

although both of them have the same interaction type “eating”. Thus the subject and

object associated with the interaction – also known as the context of the interaction –

could play an important role in interaction recognition.

In existing literature, there are two ways to model the interaction and its context.

The first one treats the combination of interaction and its context as a single class. For

example, in this approach, two classifiers will be built to classify “cow eating grass"

and “people eating bread." To recognize the interaction “eating”, images that are

classified as either “cow eating grass” or “people eating bread” will be considered as

having interaction “eating". This treatment has been widely used in defining action

(interaction) classes in many action (interaction) recognition benchmarks [Mallya and

Lazebnik, 2016; Ramanathan et al., 2015; Wang et al., 2015b; Bilen et al., 2016; Zhang

et al., 2016a]. This approach, however, suffers from poor scalability and generaliza-

tion ability. The number of possible combinations of the interaction and its context

can be huge, and thus it is very inefficient to collect training images for each combi-

nation. Also, this method fails to generalize to an unseen combination even if both

its interaction type and context are seen in the training set.

To handle these drawbacks, another way is to model the interaction and the con-

text separately [Lu et al., 2016; Desai et al., 2011; Gupta and Davis, 2008; Sadeghi



92 Towards Context-aware Interaction Recognition for Visual Relationship Detection

et al., 2015]. In this case, the interaction is classified independently of its context,

which can lead to poor recognition performance due to the difficulty of associating

the interaction with certain visual appearance in the absence of context information.

To overcome the imperfection of interaction classification, some recent works employ

techniques such as language priors [Lu et al., 2016] or structural learning [Li et al.,

2017a; Liang et al., 2017a; Li et al., 2017b] to avoid generating an unreasonable com-

bination of interaction and context. However, the context-independent interaction

classifier is still used as a building block, and this prevents the system from gaining

more accurate recognition from visual cues.

The solution proposed in this chapter aims to overcome the drawbacks of both

methods. To avoid the explosion of the number of classes, we still separate the clas-

sification of the interaction and the context into two stages. However, different to the

second method, the interaction classifier in our method is designed to be adaptive

to its context. In other words, for the same interaction, different contexts will result

in different classifiers and our method will encourage interactions with similar con-

texts to have similar classifiers. By doing so, we can achieve context-aware interaction

classification while avoiding treating each combination of context and interaction as a

single class. Based on this framework, we investigate various feature representations

to characterize the interaction pattern. We show that our framework can lead to per-

formance improvements for all the investigated feature representations. Moreover,

we augment the proposed framework with an attention mechanism, which leads to

further improvements and yields our best performing recognition model. Through

extensive experiments, we demonstrate that the proposed methods achieve superior

performance over competing methods.
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Figure 6.1: Comparison of two baseline interaction recognition methods and the pro-
posed approach. The two baseline methods take two extremes. For one extreme, (a)
treats the combination of the interaction and its context as a single class. For another
extreme, (c) classifies the interaction separately from its context. Our method (b) lies
somewhere between (a) and (c). We still build one classifier for each interaction but
the classifier parameter is also adaptive to the context of the interaction, as shown in
the example in (b).

6.3 Methods

6.3.1 Context-aware interaction classification framework

In general, an interaction and its context can be expressed as a triplet 〈O1-P-O2〉,

where P denotes the interaction, and O1 and O2 denote its subject and object respec-

tively. In our study, we assume the interaction context (O1,O2) has been detected by

a detector (i.e. we are given bounding boxes and lables for both subject O1 and object

O2) and the task we are addressing is to classify their interaction type P. To recognize

the interaction, existing works take two extremes in designing the classifier. One is

to directly build a classifier for each P and assume that the same classifier applies

to P with different context. Another takes the combination of 〈O1-P-O2〉 as a single

class and build a classifier for each combination. As discussed in the introduction

section, the former does not fully leverage the contextual information for interaction

recognition while the latter suffers from the scalability and generalization issues. Our

proposed method lies between those two extremes. Specifically, we still allocate one

classifier for each interaction type, however we make the classifier parameters adap-
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tive to the context of the interaction. In other words, the classifier is a function of the

context. The schematic illustration of this idea is shown in Figure 6.1.

Formally, we assume that the interaction classifier takes a linear classifier form

yp = w>p φ(I), wp ∈ Rd, where yp is the classification score for the p-th interaction

and φ(I) is the feature representation extracted from the input image. The classifier

parameters for the p-th interaction wp are a function of (O1, O2), that is, the context

of the p-th interaction. It is designed as the summation of the following two terms:

wp(O1, O2) = w̄p + rp(O1, O2), (6.1)

where the first term w̄p is independent of the context; it plays a role which is sim-

ilar to the traditional context-independent interaction classifier. The second term

rp(O1, O2) can be viewed as an auxiliary classifier generated from the information of

context (O1, O2). Note that the summation of two classifiers has been widely used

in transfer learning [Patricia and Caputo, 2014; Arnold et al., 2007; Do and Ng, 2005]

and multi-task learning [Evgeniou and Pontil, 2004; Parameswaran and Weinberger,

2010], e.g., one term corresponds to the classifier learned in the target domain and

another corresponds to the classifier learned in the source domain.

Intuitively, for two interaction-context combinations, if both of them share the

same interaction and their contexts are similar, the interaction in those combinations

tends to be associated with similar visual appearance. For example, 〈boy, playing, football〉

and 〈man, playing, soccer〉 share similar context, so the interaction “playing” should

suggest similar visual appearance for these two combinations. This inspires us to

design wp(O1, O2) to allow semantically similar contexts to generate similar interac-

tion classifiers, as demonstrated in Figure 6.2. To realize this idea, we first represent

the object and subject through their word2vec embedding which maps semantically

similar words into similar vectors and then generate the auxiliary classifier rp by
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concatenating their embeddings. Formally, rp is designed as:

rp(O1, O2) = Vp f (QE(O1, O2)), (6.2)

where E(O1, O2) ∈ R2e is the concatenation of the e-dimensional word2vec embed-

dings of (O1, O2), and Q ∈ Rm×2e is a projection matrix to project E(O1, O2) to a

low-dimensional (e.g. 20) semantic embedding space. f (·) is the RELU function and

Vp transforms the context embedding to the auxiliary classifier. Note that Vp and w̄p

in Eq. (6.1) are distinct per interaction type p while the projection matrix Q is shared

across all interactions. All of these parameters are learnt at training time.

Remark: Many recent works [Liang et al., 2017a; Li et al., 2017a; Zhang et al., 2017a;

Plummer et al., 2016] on visual relationship detection takes a structural learning alike

formulation to simultaneously predict O1, O2 and P. The unary term used in their

framework is still a context-independent classifier and such choice may lead to poor

recognition accuracy in identifying interaction from the visual cues. To improve these

techniques, one could replace their unary terms with our context-aware interaction

recognition module. On the other hand, their simultaneous prediction framework

could also benefit our method in achieving better visual relationship performance.

Since our focus is to study the interaction part, we do not pursue this direction in

this chapter and leave it for future work.

6.3.2 Feature representations for interactions recognition

One remaining issue in implementing the framework in Eq. (6.1) is the design of

φ(I), that is, the feature representation of the interaction. It is clear that the choice of

the feature representation can have significant impact on the interaction prediction

performance. In this section, we investigate two types of feature representations to

characterize the interaction. We evaluate these feature representations in Sec. 6.4.1.1.
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Figure 6.2: An example of the proposed context-aware model. The same interaction
“playing” is associated with various contexts. The contexts of the first two phrases
are semantically similar, resulting in two similar context-aware classifiers. Since the
last two contexts are far away from each other in the semantic space, their corre-
sponding context-aware classifiers may not similar despite sharing the same label.
In this way, we explicitly consider the visual appearance variations introduced by
changing context, thus more accurate and generalizable interaction classifiers can be
learned.

6.3.2.1 Spatial feature representation

Our method assumes that the context has been detected and therefore the interaction

between the subject and the object could be characterized by the spatial features of

the detection bounding boxes. These kind of features have been previously employed

[Hu et al., 2017; Plummer et al., 2016; Zhang et al., 2017a] to recognize the visual

relationship of objects. In our study, we use both the spatial features from each

bounding box and the spatial features from their mutual relationship. Formally, let

(x, y, w, h) and (x′, y′, w′, h′) be the bounding box coordinates of the subject and object,

respectively. Given the bounding boxes, the spatial feature for a single box is a 5-

dimentional vector represented as [ x
WI

, y
HI

, x+w
WI

, y+h
HI

, Sb
SI
], where Sb and SI are the areas

of region b and image I, WI and HI are the width and height of the image I. And the
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pairwise spatial vector is denoted as [ x−x′
w′ , y−y′

h′ , log w
w′ , log h

h′ ]. We concatenate them

together to get a 14-dimentional feature representation (using both subject and object

bounding boxes). Then the spatial feature directly passes through the context-aware

classifier defined in Eq. (6.1) for the interaction classification.

6.3.2.2 Appearance feature representation

Besides spatial features, we can also use appearance features, e.g. the activations of

a deep neural network to depict the interaction. In our study, we first crop the union

region of the subject and object bounding boxes, and rescale the region to 224× 224×

3 as the input of a VGG-16 [Simonyan and Zisserman, 2015] CNN. We then apply

the mean-pooling to the activations of the conv5_3 layer as our feature representation

φ(I). This feature is then fed into our context-aware interaction classifier in Eq. (6.1).

To improve the performance, we treat the context-aware interaction classifier as a

newly added layer and fine-tune this layer with the VGG-16 net in an end-to-end

fashion.

6.3.3 Improving appearance representation with attention and context-aware

attention

The discriminative visual cues for interaction recognition may only appear in a small

region of the input image or the image region. For example, to see if “man riding

bike” occurs, one may need to focus on the region near human feet and bike pedal.

This consideration motivates us to use attention module to encourage the network

“focus on” discriminative regions. Specially, we can replace the mean-pooling layer

in Sec. 6.3.2.2 with an attention-pooling layer.

Formally, let hij ∈ Rc denote the last convolutional layer activations at the spa-

tial location (i, j), where i = 1, 2, ..., M and j = 1, 2, ..., N are the coordinates of the

feature map and M, N are the height and width of the feature map respectively, c

is the number of channels. The attention pooling layer pools the convolutional layer
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activations into a c-dimensional vector through:

ā(hij) =
a(hij)+ε

∑
i

∑
j
(a(hij)+ε)

,

h̃ = 1
MN ∑

ij
ā(hij)hij,

(6.3)

where a(hij) is the attention generation function which produces an attention value

for each location (i, j). The attention value is then normalized (ε is a small constant)

and used as a weighting factor to pool the convolutional activations hij. We consider

two designs of a(hij).

Direct attention: The first attention generation function is simply designed as a(hij) =

f (w>atthij + b), where watt and b are the weight and bias of the attention model.

Context-aware attention In the above attention generation function, the attention

value is solely determined by hij. Intuitively, however, it makes sense that different

attention is required for different classification tasks. For example, to examine “man

riding bike” and examine “man playing football", different regions-of-interest should

be focused on. We therefore propose to use a context-aware attention generator; i.e.

we design watt as a function of (P, O1, O2). We can follow the framework in Eq. (6.1)

to calculate:

watt(P, O1, O2) = w̄a
p + Va

p f (QE(O1, O2)), (6.4)

where w̄a
p is the attention weight for the p-th interaction independent of its context

and Va
p transforms the semantic embedding of the context to the auxiliary attention

weight for the p-th interaction. Note that in this case watt depends on the interaction

class P and therefore different attention-pooling vectors h̃p will be generated for

different P. h̃p will be then sent to the context-aware classifier for interaction P to

obtain the decision value for P and the class that produces the maximal decision

value will be considered as the recognized interaction. This structure is illustrated in

Figure 6.3.
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Figure 6.3: Detailed illustration of the context-aware attention model. For each inter-
action class, there is a corresponding attention model imposed on the feature map
to select the interaction-specific discriminative feature regions. Different attention-
pooling vectors will be generated for different interaction classes. The generated
pooling vector will be then sent to the corresponding context-aware classifier to ob-
tain the decision value.

6.3.4 Implementation details

For all the above methods, we use the standard multi-class cross-entropy loss to train

the models. The Adam algorithm [Kingma and Ba, 2014] is applied as the optimiza-

tion method. The methods that use appearance features involve convolutional layers

from the standard VGG-16 network together with some newly added layers. For the

former we initialize those layers with the parameters pretrained on ImageNet [Rus-

sakovsky et al., 2015b] and for the latter we randomly initialize the parameters. We

set the learning rate to 0.001 and 0.0001 for the new layers and VGG-16 layers respec-

tively.

6.4 Experiments

To investigate the performance of the proposed methods, we analyse the effects of

the context-aware interaction classifier, the attention models and various feature rep-

resentations. Eight methods are implemented and compared:

1. “Baseline1-app”: We directly fine-tune the VGG-16 model to classify the in-
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teraction categories. Inputs are the union of subject and object boxes. This

baseline models the interaction and its context separately, which corresponds

to the approach described in Figure 6.1 (c).

2. “Baseline1-spatial”: We directly train a linear classifier to classify the spatial

features described in Sec. 6.3.2.1 into multiple interaction categories.

3. “Baseline2-app”: We treat the combination of the interaction and its context

as a single class and fine-tune the VGG-16 model for classification. This cor-

responds to using appearance feature to implement the method in Figure 6.1

(a).

4. “Baseline2-spatial”: Similar to “Baseline2-app”. We train a linear classifier to

classify the spatial features into the classes derived from the combination of the

interaction and its context.

5. “AP+C”: We apply the context-aware classifier to the appearance representation

described in Sec. 6.3.2.2.

6. “AP+C+AT”: The basic attention-pooling representation described in Sec. 6.3.3

with the classifier in AP+C.

7. “AP+C+CAT”: The context-aware attention-pooling representation described

in Sec. 6.3.3 with the classifier in AP+C.

8. “Spatial+C”: We apply the context-aware classifier to the spatial features de-

scribed in Sec. 6.3.2.1.

Besides those methods, we also compare the performance of our methods against

those reported in the related literature. However, it should noted that these methods

may use different feature representation, detectors or pre-training strategies.
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6.4.1 Evaluation on the visual relationship dataset

We first conduct experiments on the Visual Relationship Detection (VRD) dataset [Lu

et al., 2016]. This dataset is designed for evaluating the visual relationship (〈subject, predicate, object〉)

detection, where the “predicate” in those datasets is equivalent to the “interaction”

in our chapter and we will use them interchangeably thereafter. It contains 4000

training and 1000 test images including 100 object classes and 70 predicates. In total,

there are 37993 relationship instances with 6672 relationship types, out of which 1877

relationships occur only in the test set but not in the training set.

Following [Lu et al., 2016], we evaluate on three tasks: (1) For predicate detec-

tion, the input is an image and a set of ground-truth object bounding boxes. The task

is to predict the possible interactions between pairs of objects. Since the interaction

recognition is the main focus of this section, the performance of this task provides

the most relevant indication of the quality of the proposed method. (2) In phrase

detection, we aim to predict 〈subject-predicate-object〉 and localize the entire relation-

ship in one bounding boxes. (3) For relationship detection, the task is to recognize

〈subject-predicate-object〉 and localize both subject and object bounding boxes. Both

boxes should have at least 0.5 overlap with the ground truth bounding boxes in or-

der to be regarded as a correct prediction. For the second and third tasks, we use the

object detection results (both bounding boxes and corresponding detection scores)

provided in [Lu et al., 2016]. This allows us to fairly compare the performance of the

proposed interaction recognition framework without the influence of detection.

We use the Recall@100 and Recall@50 as our evaluation metric following [Lu et al.,

2016]. Recall@x computes the fraction of times the correct relationship is calculated in

the top x predictions, which are ranked by the product of the objectness confidence

scores and the classification probabilities of the interactions. As discussed in [Lu

et al., 2016], we do not use the mean average precision (mAP), which is a pessimistic

evaluation metric because it cannot exhaustively annotate all possible relationships

in an image.
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6.4.1.1 Detection results comparison

In this section, we evaluate the performance of three detection tasks on the Visual

Relationship Detection (VRD) benchmark dataset and provide the comprehensive

analysis. We compare all the eight methods and the results in [Sadeghi and Farhadi,

2011; Lu et al., 2016]. The results are shown in Table 7.2. From it we can make the

following observations:

The effect of context-aware modeling: To validate the main point in this chapter, we com-

pare the proposed method against two context-interaction modeling baselines, i.e.

baseline1-app, baseline2-app, baseline1-spatial and baseline2-spatial). By analysing

the results, we can see that the proposed context-aware modeling methods (methods

with “AP”) achieves much better performance than the four baselines. The improve-

ment achieved by use context-aware modeling is consistently observed for both spa-

tial features and appearance features. This justifies that the context information is

crucial for interaction prediction.

Various feature representations: We also quantitatively investigate the performance of

the proposed context-aware framework under various feature types. As can be seen

in Table 7.2, the appearance feature representation performs consistently better than

the spatial feature representation, especially for the baseline2 setting. This may be

because the visual feature representation has richer discriminative power than the

14-dimensional spatial feature. Also, with our context-aware recognition framework,

we can significantly boost the performance of both features and interestly in this

case the gap between two types of features is largely diminished, e.g. AP+C+CAT

vs. Spatial+C.

The effect of attention models: We also investigate the impacts of the attention scheme

employed in our model by comparing AP+C, AP+C+AT and AP+C+CAT. The best

results are obtained by utilizing the context-aware attention model. This justifies our

postulate that it is better to make the network attend on the discriminative regions

of feature maps.
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Method
Predicate Det. Phrase Det. Relationship Det.
R@100 R@50 R@100 R@50 R@100 R@50

Visual Phrase [Sadeghi and Farhadi, 2011] 1.91 0.97 0.07 0.04 - -
Language Priors [Lu et al., 2016] 47.87 47.87 17.03 16.17 14.70 13.86

Baseline1-app 18.13 18.13 6.02 5.42 5.54 5.01
Baseline1-spatial 17.77 17.77 5.24 4.77 4.54 4.19

Baseline2-app 27.23 27.23 9.30 7.91 8.34 7.03
Baseline2-spatial 13.85 13.85 4.15 3.06 3.63 2.63

Spatial+C 51.17 51.17 17.61 15.46 15.43 13.51
AP+C 52.36 52.36 18.69 16.91 16.46 14.88

AP+C+AT 53.12 53.12 19.08 17.30 16.89 15.40
AP+C+CAT 53.59 53.59 19.24 17.60 17.39 15.63

Table 6.1: Evaluation of different methods on the visual relationship benchmark
dataset. The results reported include visual phase detection (Phrase Det.), visual
relationship detection (Relationship Det.) and predicate detection (Predicate Det.)
measured by Top-100 recall (R@100) and Top-50 recall (R@50).

Method
Phrase Det. Relationship Det. Zero-Shot Phrase Det. Zero-Shot Relationship Det.

R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50
CLC (CCA+Size+Position) [Plummer et al., 2016] 20.70 16.89 18.37 15.08 15.23 10.86 13.43 9.67

VTransE [Zhang et al., 2017a] 22.42 19.42 15.20 14.07 3.51 2.65 2.14 1.71
Vip-CNN [Li et al., 2017a] 27.91 22.78 20.01 17.32 - - - -
VRL [Liang et al., 2017a] 22.60 21.37 20.79 18.19 10.31 9.17 8.52 7.94

Faster-RCNN + (AP+C+CAT) 25.26 23.88 23.39 20.14 11.28 10.73 10.17 9.57
Faster-RCNN + (AP+C+CAT) + Language Priors 25.56 24.04 23.52 20.35 11.30 10.78 10.26 9.54

Table 6.2: Results for visual relationship detection on the visual relationship bench-
mark dataset. Notice that we simply replace the detector with Faster-RCNN to ex-
tract a set of candidate object proposals without end-to-end jointly training the de-
tector [Zhang et al., 2017a; Li et al., 2017a; Liang et al., 2017a] with the proposed
method. And in CLC [Plummer et al., 2016], they use features and detection results
from a Faster RCNN trained on external MSCOCO [Lin et al., 2014b] dataset and
additional cues (e.g. size and position) are incorporated.

Comparison with [Sadeghi and Farhadi, 2011] and [Lu et al., 2016]: Finally, we compare

our methods with the methods in [Sadeghi and Farhadi, 2011] and [Lu et al., 2016].

As seen, our methods achieve better performance than these two competing methods.

Since our methods use the same object detection in [Lu et al., 2016], our result is most

comparable to it. Note that our model does not employ explicit language priors

modeling as in [Lu et al., 2016] and our improvement purely comes from the visual

cue. This again demonstrates the power of context-aware interaction recognition.

To better evaluate our approach, we further visualize some test examples of

AP+C+CAT in Figure 6.4. We can see that our predictions are reasonable in most

cases.
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6.4.1.2 Zero-shot learning performance evaluation

An important motivation of our method is to make the interaction classifier gener-

alizable to unseen combinations of the interaction and context. In this section, we

report the performance of our method on a zero-shot learning setting. Specifically,

we train our models on the training set and evaluate their interaction classification

performance on the 1877 unseen visual relationships in the test set. The results are

reported in Table 7.5. From the table, we can see that the proposed methods work

especially well in the zero-shot learning. For example, our best performed method

(AP+C+CAT) almost doubled the performance on predicate detection in compari-

son with the Language Priors [Lu et al., 2016] method. This big improvement can

be largely attributed to the advantage of using the context-aware scheme to model

the interaction. In the Language Priors [Lu et al., 2016] method, the visual term

for recognizing interaction is context-independent. Without context information to

constrain the appearance variations, the learned interaction classifier tends to over-

fit the training set and fails to generalize to images with unseen interaction-context

combinations. In comparison, with context-aware modeling, we explicitly consider

the visual appearance variations introduced by changing context, thus more accurate

and generalizable interaction classifier can be learned.

One interesting observation made in Table 7.5 is that the spatial feature represen-

tation produces better performance than the appearance based representation, as is

evident from the superior performance of Spatial+C over AP methods. We speculate

this is because spatial relationship features are more object independent and are less

prone to overfiting the training set.

To intuitively evaluate zero-shot performance, we add some test examples of

AP+C+CAT in Figure 6.5. We can make reasonable predictions on unseen interaction-

context combinations in most cases.
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Method
Predicate Det. Phrase Det. Relationship Det.
R@100 R@50 R@100 R@50 R@100 R@50

Language Priors [Lu et al., 2016] 8.45 8.45 3.75 3.36 3.52 3.13
Baseline1-app 7.44 7.44 3.08 2.82 2.91 2.74

Baseline1-spatial 7.27 7.27 2.14 2.14 2.14 2.14
Baseline2-app 7.36 7.36 2.22 1.71 2.05 1.54

Baseline2-spatial 0.43 0.43 0.09 0.09 0.09 0.09
Spatial+C 16.42 16.42 6.24 5.82 5.65 5.30

AP+C 15.06 15.06 5.82 5.05 5.22 4.62
AP+C+AT 15.00 15.00 5.62 5.02 5.36 4.76

AP+C+CAT 16.37 16.37 6.59 5.99 5.99 5.47

Table 6.3: Results for zero-shot visual relationship detection on the visual relationship
benchmark dataset.

6.4.1.3 Extensions and comparison with state-of-the-art methods

Since the main focus of above experiments is to validate the advantage of the pro-

posed methods over four competing baselines, we did not explore some techniques

which could potentially further improve the visual relationship detection perfor-

mance on the VRD dataset. To make our method achieve more comparable perfor-

mance on the visual relationship and visual phrase detection tasks, we may consider

two straightfoward extensions for our method: (1) use a better detector and (2) in-

corporate the language term trained in [Lu et al., 2016]. In the following part, we

will examine the performance attained by applying these extensions and compare

the resultant performance against the very latest state-of-the-art approaches [Liang

et al., 2017a; Li et al., 2017a; Zhang et al., 2017a; Plummer et al., 2016] on the VRD

dataset.

Improved detector: We first examine the effect of using a better detector by replacing

the detection results obtained in [Lu et al., 2016] with that obtained by a Faster-

RCNN detector [Girshick, 2015]. Note that the Faster-RCNN detector has also been

used in [Liang et al., 2017a; Li et al., 2017a; Zhang et al., 2017a; Plummer et al., 2016]

and using it will make our method comparable with the current state-of-the-arts. In

our implementation, only the top 50 candidate object proposals, ranked by objectness

confidence scores are extracted for mining relationships in per test image. The result

of this modification is reported in Table 6.2 with our method annotated as Faster-

RCNN + (AP+C+CAT). As seen, our method achieves best performance on phrase
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detection R@50, relationship detection, zero-shot phrase and relationship detection.

Note that our method can be further incorporated into the end-to-end relationship

detection framework such as [Li et al., 2017a] to achieve even better performance.

Language priors: Language priors make significant contribution to [Lu et al., 2016]

and in this section we apply the language priors released by [Lu et al., 2016] to in-

vestigate its impact. Following [Lu et al., 2016], we multiply our best performed

model Faster-RCNN + (AP+C+CAT) with the language priors for interactions to ob-

tain the final detection scores and the result is shown in Table 6.2 with the annotation

Faster-RCNN + (AP+C+CAT) + Language Priors. Interestingly, the introduction of

the language priors only introduces a marginal performance improvement. We sus-

pect that is due to that our method builds a classifier with the information of both

the interaction and context, and the correlation of interaction and context has been

implicitly encoded. Therefore adding the language priors does not bring further

benefit.

person-on-skateboard
shirt-above-jeans
person-over-bench
person-next to-person
person-wear-shirt

person-on/over-skateboard
shirt-over-jeans

person-next to-bench
person-behind-person
person-wear/has-shirt

person-wear-glasses
person-wear-shirt
person-hold-cup
watch-on-person

person-wear-glasses
person-wear-shirt
person-hold-cup
watch-on-person

person-hold-phone
luggage-next to-person
counter-next to-person
person-wear-pants

person-use/talk-phone
luggage-near-person
counter-behind-person
person-wear-pants

person-wear-hat
person-hold-pizza

person-next to-person
person-hold-pizza

person-wear-hat
person-eat-pizza

person-stand next to-person
person-hold/eat-pizza

Figure 6.4: Qualitative examples of interaction recognition. We only predict the
interaction between the ground-truth context bounding boxes. The phrases in the
green bounding boxes are predicted while the phrases shown in the red bounding
boxes are ground-truth.
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Ours:
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pillow-on-sofa
sofa-behind-dog

GT:
dog-on/sleep on-sofa

dog-next to/beside-pillow
dog-on-pillow
pillow-on-sofa
sofa-has-dog

bear-on-skis
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trees-behind-bear
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hat-on-trees
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bear-in the front of-trees
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bear-wear-hat

hat-in the front of-trees

dog-next to-person
dog-wear-shoe
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dog-stand on-grass
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basket-has-skis

skis-in-box
skis-in the front of-car

skis-in-basket
snowboard-near-car
basket-has-skis

Figure 6.5: Qualitative examples of zero-shot interaction recognition. We only predict
the interaction between the ground-truth context bounding boxes. The phrases in the
green bounding boxes are predicted while the phrases shown in the red bounding
boxes are ground-truth.

Method
Phrase Detection Zero-Shot Phrase Detection
R@100 R@50 R@100 R@50

Visual Phrase [Sadeghi and Farhadi, 2011] 52.7 49.3 - -
Language Priors [Lu et al., 2016] 82.7 78.1 23.9 11.4

Baseline1-app 70.1 65.6 12.4 10.5
Baseline1-spatial 68.3 63.6 10.3 8.9

Baseline2-app 77.5 72.3 11.0 9.2
Baseline2-spatial 15.7 10.4 1.1 0.5

Spatial+C 84.9 80.8 27.6 15.7
AP+C 85.9 81.6 28.5 16.4

AP+C+AT 86.2 82.1 28.8 17.9
AP+C+CAT 86.8 82.9 30.2 18.7

Table 6.4: Comparison of performance on the Visual Phrase dataset.

6.4.2 Evaluation on the visual phrase dataset

Following [Lu et al., 2016], we also run additional experiments on the Visual Phrase [Sadeghi

and Farhadi, 2011] dataset. It has 17 phrases, out of which 12 of these phrases can

be represented as triplet relationships as in the VRD dataset. We use the setting

of [Lu et al., 2016] to conduct the experiment and report the R@50 and R@100 results

in Table 6.4. Since the Visual Phrase dataset does not provide detection results, we

apply the RCNN [Girshick et al., 2014] model to produce a set of candidate object re-

gions and corresponding detection scores. As seen from Table 6.4, AP+C+CAT again

achieves the best performance. In comparison with the performance of [Lu et al.,



108 Towards Context-aware Interaction Recognition for Visual Relationship Detection

2016], our method improves most in the zero-shot learning setting. This is consistent

with the observation made in Sec. 6.4.1.2.

6.5 Summary

In this chapter, we study the role of context in recognizing the object interaction

pattern. After identifying the importance of using context information, we pro-

pose a context-aware interaction classification framework which is accurate, scalable

and enjoys good generalization ability to recognize unseen context-interaction com-

binations. Further, we investigate various ways to derive the visual represention

for interaction patterns and extend the context-aware framework to design a new

attention-pooling layer. With extensive experiments, we validate the advantage of

the proposed methods and produce the state-of-the-art performance on two visual

relationship detection datasets.
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7.1 Overview

Visual relationship detection aims to capture interactions between pairs of objects

in images. Relationships between objects and humans represent a particularly im-

portant subset of this problem, with implications for challenges such as understand-

ing human behavior, and identifying affordances, amongst others. In addressing

this problem we first construct a large-scale human-centric visual relationship detec-

tion dataset (HCVRD), which provides many more types of relationship annotations

(nearly 10K categories) than the previous released datasets. This large label space

better reflects the reality of human-object interactions, but gives rise to a long-tail

distribution problem, which in turn demands a zero-shot approach to labels appear-

ing only in the test set. This is the first time this issue has been addressed. We

propose a webly-supervised approach to these problems and demonstrate that the

proposed model provides a strong baseline on our HCVRD dataset.

7.2 Introduction

The challenge in visual relationship detection [Li et al., 2017a; Liang et al., 2017a;

Lu et al., 2016] is to capture interactions between pairs of objects in an image. In

this chapter, rather than detect interactions between arbitrary objects, we focus on

capturing the relationships between a human and an object. Recognising human-

object relationships is a problem of significant practical import, and a subtly different

challenge, than the more general case. Humans have a far wider variety of modes of

interaction than general objects, but they also have agency, meaning that more can

be drawn from human-object interactions than from other interactions. For example,

a human can interact with a bicycle in multiple ways (such as carry, hold, ride, park,

push etc.), but the relationships between bicycles and other objects are far simpler.

The human interactions also imply intent, and possibly provide information about

the past or future that is typically lacking from object-object relationships. Previous
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girl wearing blue visor;
girl wearing jacket;
girl playing with kite;
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man jumping off ground
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Figure 7.1: The long-tail label distribution of our HCVRD dataset. We only show the
top-2000 relationships because the tail is too long. Three example images are also
shown, with our webly-supervised model detected results. The color of human and
objects in the phrases correspond to the color of the bounding boxes. The arrows
indicate the ‘location’ of the relationship in the label distribution. As we can see,
most of the relationships are lie on the tail. Some of them such as ‘girl wearing blue
visor’ is not even in the top-2000.

work [Chao et al., 2017, 2015] has similarly recognised that human-object interactions

of particular interest, and have proposed several datasets.

As in so many problems of practical interest, the label space of realistic human-

centric visual relationship detection (HCVRD) exhibits a long tail distribution, mean-

ing that there are very few, to zero, training examples for the vast majority of labels.

This is a fundamental problem for the standard deep learning approach, which re-

lies on large numbers of examples for each class. If deep learning is to progress

from easy, and often artificially simplified problems for which copious training data

is available, datasets will need to better reflect the practical reality of the majority of

problems. The main contribution of this chapter is a large-scale human-centric vi-

sual relationships detection (HCVRD) dataset , which accurately depicts the long-tail

label distribution of the problem, thus necessitating zero-shot recognition.
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Datasets #relationships (no zero-shot) #predicates #objects #images #zero-shot relationships
Verbs-COCO [Gupta and Malik, 2015] - 26 80 10346 -
Stanford 40 actions [Yao et al., 2011] 40 35 28 9532 -

MPII Human Pose [Andriluka et al., 2014] 410 - 66 40522 -
HICO-DET [Chao et al., 2017] 520 117 80 47774 -

Ours 9852 927 1824 52855 18471

Table 7.1: Comparison of the existing human-object interaction detection datasets.

We formulate the human-centric visual relationships detection problem as that of

detecting relationship triplets 〈human, predicate, object〉 in the image, with bounding

boxes on the human subject and object. The HCVRD dataset is constructed based

on the Visual Genome [Krishna et al., 2017]. Compared to the previous human-object

interaction works [Chao et al., 2017, 2015], there are several differences. First, we have

more fine-grained labels. For the ‘human’ item in the triplet, we are not satisfied

only detecting a ‘human’ subject, instead, we have four sub-categories which are

man(adult), woman(adult), boy and girl. This is valuable because the gender and

age can affect the way that a human interact with objects. For example, we are

unlikely to find ‘a man holding a Barbie’ but this relationship is more commonly

seen for ‘a girl’. Except for the ‘human’ type, our ‘predicate’ covers a much wider

range of ‘relationships’ than the ‘interactions’ in the previous setting. The dataset

contains 9852 different relationships, nearly 20 times more than the HICO dataset

[Chao et al., 2015]. Such a big label space leads to a long-tail label distribution, i.e.,

some labels appear less than 10 times. Additionally, we provide 18,471 zero-shot

relationships, i.e., relationships that never appear in the training split. To the best of

our knowledge, this is the biggest dataset with these two forms of labels provided

and that is labeled with both human-centric visual relationships and corresponding

‘human’ and ‘object’ bounding boxes.

Motivated by above challenges, our second contribution is developing methods

for (i) automatically augmenting the training set using weakly labeled data crawled

from the web; and (ii) performing zero-shot recognition by comparing the query data

to web-retrieved data. While not radically novel in approach, our methods address

the issues raised in long-tail datasets and provide, we believe, a strong baseline for

further works based on our HCVRD dataset and similar data.
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Figure 7.2: Statistics of the HCVRD dataset, the distribution of the (a): number of
different relationships that occur on a person. (b): number of relationships in each
image. (c): human types.

7.3 The HCVRD Dataset

Our dataset comprises two parts, publicly available separately or together from

Hiddenforblindreview. The main part comprises a carefully curated set harvested

from the large Visual Genome dataset [Krishna et al., 2017]. In addition we have cre-

ated a supplementary component of 788,160 images drawn from the top 100 image-

search results for each relationship triple.

7.3.1 Constructing HCVRD dataset

Our proposed human-centric visual relationship detection (HCVRD) dataset is con-

structed based on the Visual Genome dataset [Krishna et al., 2017], which provides

detailed scene annotations, such as objects, attributes and relationships (defined as

{sub, predicate, obj}). Since we are only interested in the relationships involving

human subjects, the first step is to extract all the human-related relationships from

the 2.3 million relationships pool in the Visual Genome [Krishna et al., 2017]. This

is done automatically by searching all the relationships that their ‘subject’ include

a ‘human’ concept (we use the WordNet [Leacock and Chodorow, 1998] to define a

‘human’ concept vocabulary including human, person, people, man, male, woman,

boy, girl etc..)

It is worth noting that there are some relationships that only appear once in the

dataset. We annotate a ‘zero-shot’ tag on those labels so that they can test under

the zero-shot setting. This is one of the significant differences with previous human-

Hidden for blind review
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object interaction dataset, such as the HICO [Chao et al., 2017]. The zero-shot setting

can verify the generalization ability of an algorithm, i.e., the ability to detect unseen

relationships in the training set.

The collected relationships are still noisy and should be carefully processed. We

first manually correct the annotations that contain misspellings and noisy charac-

ters (e.g. comma). We then eliminate the attribute predicates (such as “has”, “is”,

“are”) because these predicates are too abstract and may lead to a weak discrimi-

native model. We further normalize the predicates by eliminating the tense using

a lexical analysis toolkit [Bird et al., 2009] and finally have 927 predicate categories,

which cover a wide range of types, such as action, spatial, preposition, comparative

and verb and so on. We then merge some semantically similar objects by using the

GloVe [Pennington et al., 2014] (i.e., two words are merged if their similarity calcu-

lated based on the Global Vector words representation is bigger than a threshold)

and normalize (singularization and eliminate the article) the remaining object names

while keeping their fine-grained attributes (e.g. black shirt, yellow shirt). Further-

more, we manually divide the ‘human’ subject into four more fine-grained classes

according to the image content, which are man(adult), woman(adult), boy and girl.

This is a valuable setting because the gender and age can affect the way that the

human interacts with objects.

7.3.2 Dataset Statistics

Table 7.1 provides summary statistics about our proposed HCVRD dataset, compared

with some human-object interactions dataset. In the following part, we highlight

several interesting aspects of the data.

We finally have 52,855 images with 1,824 object categories and 927 predicates. In

total, the dataset contains 256,550 relationships instances with 9,852 non zero-shot

relationship types and 18,471 zero-shot relationships types. There are on average

10.63 predicates per object category. We use 31,586 images for training and construct
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Figure 7.3: The framework of the proposed model. The model consists of (a):a feature
extraction module, (b): an object detection module, (c) a webly-supervised metric
learning module. The three modules can be jointly trained in an end-to-end manner.

two test splits. The first test split contains 10,000 images where all the relationships

occur in the training set. Another test split includes all the zero-shot relationships,

i.e., relationships in this split are never occurred in the training split. The distribution

of human-object relationships in our dataset (see Figure 7.1) highlight the long-tail

effect of infrequent relationships. Specifically, there are 370 relationships that appear

more than 100 times and 7,474 relationships appear fewer than 10 times.

Figure 7.2 (a) shows a distribution of the number of different relationship in-

stances that occurred on a person. Unlike past datasets where each person only can

have one relationship, each people in the HCVRD dataset has on average 2.62 re-

lationships with other objects. Figure 7.2 (b) shows the distribution of number of

relationship instances in each image. Our HCVRD dataset has a large number of im-

ages with more than one relationship instance. On average there are 6.13 relationship

instances annotated per image. Figure 7.2 (c) shows the distribution of human types

(such as man, woman, boy and girl) in our dataset.

7.3.3 Supplementary web data

In addition to the curated main dataset described above we have collected a sup-

plementary set of 788,160 images which are also available for download, and which

we use in our model for metric learning, to provide a baseline for recognition in

long-tailed data. To collect these images we automatically crawl using Google Im-
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ages as the source of candidates. We treat all the 9,852 relationships as the query

list and process each category independently, taking the top 100 images returned as

representing that relationship class.

For most basic categories commonly appearing in the visual world, the top re-

sults returned by Google image search are quite clean so that we can directly learn

useful visual representations from them. However some returned images may have

wildly different content from the query triple, and this can adversely affect training

of the model. To mitigate this issue, we employ the weakly-supervised noise robust

approach of [Zhuang et al., 2017a] to filter the noisy images fully automatically.

More specifically, [Zhuang et al., 2017a] relies on a random group training pro-

cess that randomly groups multiple web data (images) into a single training instance

as the input of a classification neural network (we use a separate network for this

purpose, performing 1-of-9,852 classification). As the size of the group increases, the

chances diminish exponentially that a training instance (i.e. a group) does not contain

imagery of the true relationship. [Zhuang et al., 2017a] shows that this simple “trick”

can lead to sizeable gains in accuracy when training with weakly labelled data. To

determine which image or images from a group contain true positive imagery, an

attentional pooling layer is employed on the last convolutional layer to determine

which neuron activations have contributed to the classification. More specifically, we

use the attention weights to decide a confidence score for each individual image in

the random group. We then sort all images of a given relationship category according

to their confidence scores, and retain the top 80% (discarding the remaining 20%).

This process yields a relatively clean (though still weakly labelled) set of supplemen-

tary data that covers the entire set of 9,852 relationship categories with 80 images per

category (hence 788,160).
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7.4 A webly-supervised model

One of the biggest challenges in our proposed dataset is the long-tail distribution of

the labels. Nearly 80% of the relationship labels in our dataset have fewer than 10

training examples. This issue creates a big challenge to the conventional supervised

learning models, especially for those deep convolutional neural network based mod-

els, which normally require a large number of examples to train. Part of our purpose

in creation of the dataset is to stimulate research in this important direction. To this

end, we propose a strong baseline model for recognition in long-tailed data based on

a so-called “webly”-supervised learning approach. Such an approach aims to lever-

age (practically) unlimited weakly labelled web data to overcome the restriction of

limited training examples and the long-tail distribution.

An overview of our proposed webly-supervised relationship detection (WSRD)

model is shown in Figure 7.3. Our model is divided into three sub-modules: the

feature extraction module, the detection module and the distance metric learning

module. The feature extraction module is a stack of convolutional layers and max-

pooling layers which have the same configuration as the VGG-16 [Simonyan and

Zisserman, 2015] or the ResNet [He et al., 2016a]. The detection module is in the

style of Faster-RCNN [Ren et al., 2015], which is used to detect the object and human

subject (in its sub-category). A bounding box that encompasses the detected human-

object pair (i.e, contains both human and object) is sent to a deep metric learning

module, which performs inference by finding the nearest-neighbour match in the

web-crawled data amongst all triples sharing the same human and object labels.

This determines the predicate category. The neighbourhood distances are computed

using the learned distance metric (i.e. in the feature space).

The three sub-modules can be learned in an end-to-end manner. For the efficiency,

the feature map generated by the feature extraction module is shared as input to fol-

lowing two modules. We use the VGG-16 [Simonyan and Zisserman, 2015] network

as a basic building block for our model. We discuss the detection module and the
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Method
Predicate Det. Phrase Det. Relationship Det.

R@50 R@100 R@50 R@100 R@50 R@100
top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3

Multilabel 0.87 2.78 0.87 2.78 0.44 0.92 0.50 0.95 0.03 0.07 0.04 0.09
JointCNN 2.68 7.36 2.68 7.36 2.35 5.63 2.39 6.14 0.21 0.44 0.22 0.53

SeparateCNN 29.00 44.37 29.00 45.87 8.24 10.53 8.92 13.81 0.48 0.60 0.50 0.66
Ours 31.08 47.66 31.08 48.98 10.03 13.05 10.75 16.94 0.53 0.68 0.59 0.72

Table 7.2: Evaluation of different methods on the proposed dataset. The results re-
ported include visual relationship detection (Relationship Det.) and predicate detec-
tion (Predicate Det.) measured by Top-100 recall (R@100) and Top-50 recall (R@50).

Method
Predicate Det. Phrase Det. Relationship Det.

R@50 R@100 R@50 R@100 R@50 R@100
top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3

Multilabel 0.45 1.09 0.45 1.09 0.22 0.58 0.24 0.62 0.01 0.01 0.01 0.01
JointCNN 0.02 0.03 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

SeparateCNN 15.94 26.73 15.94 26.73 0.49 1.55 0.58 1.96 0.04 0.08 0.05 0.10
Ours-without web data 18.01 29.35 18.01 29.35 0.73 2.15 0.80 2.43 0.06 0.10 0.07 0.13

Ours 24.55 36.59 24.55 36.59 1.76 3.62 1.91 4.56 0.12 0.16 0.14 0.21

Table 7.3: Results for human-object relationship detection on the long-tail benchmark
subset.

distance metric learning module in more detail in the following sections.

7.4.1 Detection module

The object (and human subject) detection module structure is identical to that of the

Faster-RCNN [Ren et al., 2015]. Taking the output of the feature extraction module

(Conv5_3 feature map) as the input, the Region Proposal Network (RPN) is used

to generate object proposals. During training, we extract features with RoIPool for

each object proposal, followed by the bounding box regression loss Lreg and a classi-

fication loss Lcls to learn the detector/classifier in a manner identical to [Ren et al.,

2015]. During inference, we use this module to detect all human subjects and objects

in the images. We apply non-maximum suppression (NMS) to reduce the num-

ber of proposals with the IoU (Intersection of Union) threshold 0.3 and objective-

ness scores higher than 0.2. These filtered boxes are further grouped to all possible

〈human, object〉 pairs and a bounding box that fully contains the human and object

boxes is associated to each pair. These “union” bounding boxes are (separately and

individually) the input to the distance metric learning module.
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Method
Predicate Det. Phrase Det. Relationship Det.

R@50 R@100 R@50 R@100 R@50 R@100
top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3

(a) Without metric learning module 22.55 33.12 22.55 33.87 5.87 7.33 6.04 9.44 0.29 0.43 0.34 0.49
(b) Without noise filtering 30.36 46.12 30.37 46.68 9.92 12.96 10.67 16.36 0.49 0.64 0.57 0.70

(c) Ours (full model) 31.08 47.66 31.08 48.98 10.03 13.05 10.75 16.94 0.53 0.68 0.59 0.72

Table 7.4: Ablation studies on the HCVRD benchmark non-zeroshot test set.

Method
Predicate Det. Phrase Det. Relationship Det.

R@50 R@100 R@50 R@100 R@50 R@100
top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3

Multilabel - - - - - - - - - - - -
JointCNN - - - - - - - - - - - -

SeparateCNN 2.75 4.98 2.99 5.93 0.06 0.11 0.07 0.16 0.01 0.05 0.03 0.08
Ours 8.15 12.34 8.57 13.42 0.88 1.43 0.92 1.84 0.03 0.09 0.05 0.12

Table 7.5: Results for human-object relationship detection on the zero-shot bench-
mark test set.

7.4.2 Distance metric learning module

As noted above, this module accepts a union region of the detected human and

object, and computes the feature-space distance between the proposed region and all

of the web-crawled visual relationship data. The nearest class label of the web data

is assigned to the proposed region. The distance metric function is learned via deep

metric learning on the web-crawled (supplementary) data.

More specifically, the deep metric learning process aims to learn a semantic fea-

ture embedding (a feature space) for which similar examples are mapped close to

one another while dissimilar examples are mapped further apart. To this end, we

construct a set of positive pairs and a set of negative pairs by drawing from the main

dataset and the web data. Each positive pair (xi, xj) contains a sample from the main

HCVRD dataset and a sample from the web data with the same label, while each

negative pair is similarly drawn one from each, but with non-matching labels. We

follow [Oh Song et al., 2016] to incrementally add the positive and negative pairs.

Specifically, we first sample a few anchor pairs and then active mining hard negative

images to the batch, more details can be found in [Oh Song et al., 2016].

During the training, the ground truth predicate region xi’s corresponding Conv5_3

feature map is used as part of the input for the metric learning module. In the infer-

ence, we first detect the human and objects and get all the possible union bounding

boxes’ corresponding Conv5_3 feature map as the input, separately and individually.
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Then the convolutional feature map is sent to two fully connected layers and the out-

put f (xi, θ1) serves as part of the input for the metric learning functions (see equation

(7.1)), where f is the feed-forward function and θ1 is the learnable parameters of the

feature extraction module with the fully connected layers. Another input f (xj, θ2) of

the metric learning functions is from the collected web data, which is passed through

a pre-trained VGG-16 model and a learnable feature embedding layer with parame-

ter θ2. Following [Oh Song et al., 2016], the metric is then learned using a structured

loss function based on the sampled positive and negative pairs of training samples:

Lmec =
1

2|P| ∑
(i,j)∈P

max(0, Li,j)
2,

Li,j = log( ∑
(i,k)∈N

exp(α− Di,k) + ∑
(j,l)∈N

exp(α− Dj,l)) + Di,j

(7.1)

where P is the set of positive pairs and N is the set of negative pairs, Di,j =∥∥ f (xi, θ1)− f (xj, θ2)
∥∥

2 is distance between two embedding feature vectors. The α

is the learnable margin parameter.

The two modules can be jointly trained in an end-to-end manner. The model

employs multi-task loss for human-object relationship detection:

L = Lreg + Lcls + Lmec (7.2)

where Lreg and Lcls are the regression loss and cross-entropy loss in the detection

module.

7.5 Experiments

7.5.1 Implementation details

We set the feature embedding size in the metric learning module as 256. For training

efficiency, we initialize the feature extraction module with the pre-trained VGG-16.

We then pretrained the detection module and fix it while training the metric learning

module. The learning rate is initialized to 0.0001 and decreased by a factor of 10 after
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every 5 epochs. During the inference, we first retrieve the top 20 nearest neighbor

relationships and select those including both detected human and object categories.

Then we use the top-ranked selected candidates for evaluation.

7.5.2 Evaluation Setup

We evaluate our human-object interactions task using Recall@100 and Recall@50, fol-

lowing the setting of Visual Relationship Detection (VRD) task [Liang et al., 2017a;

Lu et al., 2016]. Recall@x computes the fraction of times the correct relationship

is calculated in the top x predictions, which are ranked by the final distances. We

evaluate on three tasks: (1) For predicate detection, the goal is to predict the ac-

curacy of predicate recognition, where the groundtruth labels and bounding boxes

for both the object and human are given. (2) In phrase detection, we aim to predict

〈human-predicate-object〉 and localize the entire relationship in one bounding box. (3)

For relationship detection, the task is to recognize 〈human-predicate-object〉 and local-

ize both human and object bounding boxes, where both boxes should have at least 0.5

overlap (IoU) with the ground-truth in order to be regarded as correct prediction. In

the real world applications, different relationships may share very similar semantic

meanings (e.g. “man holding phone”, “man talking on phone”, “man using phone”)

and it’s difficult to differentiate them. Hence, in many cases, one “appropriate” pre-

diction may be judged “incorrect” due to the limitation of the test annotations, which

is a common problem of the current VRD evaluation metric. One possible solution is

to employ the human evaluation, which is cost however. In this chapter, we instead

report both top-1 and top-3 results under different Recalls to evaluate the model.

7.5.3 Baselines

We benchmark the following approaches on our new dataset and results are reported

in Table 7.2.

Multilabel classification A person can concurrently perform different interac-
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man on beach; man near ocean;
man wearing suit; man carrying
paddle; man holding surfboard

man wearing kneepads; man
balancing skateboard; woman
wearing pants; man holding camera

man with
glasses;
man using
forks;
boy wearing
yellow pants;
boy wearing
purple shirt ;
boy on bench

man working on laptop; man
wearing glasses; man sitting
on couch

man sitting at desk; man working
at computer; man on chair; man
dressed in blue jean; man wearing
shirt

man playing on court ; man hit
tennis ball; man wearing shoes;
man wearing wrist band

woman riding motorcycle;
woman wearing sunglasses;
woman with helmet; woman in
shirt

man raising hand; man using
umbrella; woman with glasses;
woman carrying purse

man near bridge; man on beach;
man sitting on concrete; man
wearing jean

Figure 7.4: Qualitative examples of the predicate detection. The color of human and
objects in the phrases correspond to the color of the bounding boxes. We only predict
the interactions between the ground-truth bounding box pairs.

tions with different target objects, e.g. a person can “ride bicycle” and “drink water”

at the same time. Thus we treat the human-object relationship detection task as a

multilabel classification problem where we apply a sigmoid cross entropy loss on
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woman in bed; woman on
mattress; woman with purse;
woman in mall

woman standing on platform; man on
top of elephant; man holding stick

man wearing glasses; man
wearing backpack; man feeding
giraffe

girl wearing visor; girl wearing
jacket; girl playing with kite; girl
standing in sand; girl wearing
shorts

woman playing with frisbee;
woman standing on grass;
woman on pants

man jumping on skateboard;
man near steps;
man jumping off ground

Figure 7.4: Qualitative examples of the predicate detection. The color of human and
objects in the phrases correspond to the color of the bounding boxes. We only predict
the interactions between the ground-truth bounding box pairs.

top of the classification layer. Specifically, we treat the union of a human and its

correlated objects as the input during training. During the testing, we use our object

detection module to return the regions. We use VGG-16 model as the basis building

block.

JointCNN This implements the Visual phrases [Sadeghi and Farhadi, 2011]. We

train a VGG-16 model to jointly predict the three components of a relationship.

Specifically, we treat each relationship category separately and train a 9,852 way

classification model.

SeparateCNN Following the visual model of [Lu et al., 2016], we first train a VGG-
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16 model to classify the 1,824 objects. Similarly, we train a second model to classify

each of the 927 predicates using the union of the bounding boxes of the participating

human and the object in that relationship.

For JointCNN and Multilabel baselines, we empirically find that due to the long-

tail property of the dataset, the learned models are seriously biased. It causes the

predictions only fall into those labels with large numbers of training examples. To

solve the problem of extreme classification with enormous number of categories, we

instead propose to employ the metric learning approach with web data to perform

efficient nearest neighbor inference on the learned metric space. By comparing ours

with the two baselines, we find significant performance increase on all evaluation

metrics.

For the SeperateCNN baseline, since the training data for human, objects and

predicates are relatively adequate respectively, its performance is competitive with

our proposed method. In other words, the human, objects and predicates are pre-

dicted separately, hence, the label prediction space is much smaller than above two

baseline approaches. However, compared to predicate detection results, the perfor-

mance of phrase and relationship detection decreases a lot. It shows that detecting

such wide range of objects is a major challenge for visual relationship detection. We

also show some qualitative examples in Figure 7.4.

7.5.4 Long-tail evaluation

Due to the long-tail distribution of the categories in the dataset, the infrequent rela-

tionships will contribute not much to the final testing performance. But in real world

applications, the relationships in long-tail should not be ignored. So we select those

relationships that appear less than 10 times as a subset (i.e. there are totally 7,474 re-

lationships) and report the performance in Table 7.3. From the table, we can see that

our approach performs steadily better than the baseline methods. For the baseline

methods, the lack of training data is a main challenge for obtaining accurate predic-
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tions. The main motivation of the proposed method is to utilize web data to tackle

this limitation. With the always available web data, we can learn the distance metrics

and efficiently infer nearest neighbor relationships on the learned metric space.

7.5.5 Ablation study

With vs. without metric learning module Metric learning module is the key component

of our system. To evaluate its impact, we implement a variant without the metric

learning module. For the detected union bounding boxes of relationships and web

data, we directly extract the 4096-dimentional feature vector for each sample using

the pretrained VGG-16 model. We then compute the cosine similarity between the

test sample and all mean vectors of the relationship categories that contain both

detected human and object types. We then retrieve the nearest neighbor relationship

categories as our predictions. Table 7.4 (a) vs. (c) shows that learning the semantic

feature embeddings via distance metric contributes a lot to the final performance.

With vs. without web data We also evaluate the influence of the web data by only

using the training data of the dataset. Since one motivation of introducing web data

is to solve the scarceness of training data, we report this variant under the long-tail

setting in Table 7.3 as Ours-without web data. By comparing it with Ours in Table 7.3,

we find that removing web data causes an obvious performance degradation, which

proves the effectiveness of introducing the web data. We find that the web data can

help on some relationships that rarely happened in the dataset, such as ‘man cooking

on street’ and ‘man peddling rickshaw’.

With vs. without noise filtering We further remove the noise filtering step to in-

vestigate the affect of noisy labels. The results are shown in Table 7.4 (b). Table 7.4

(b) vs. (c) shows that removing noise filtering have less affect to the performance

compared to removing metric learning module. This is because for relationships that

commonly used in the visual content, top results returned by Google images search

are pretty clean. Noise filtering provides an auxiliary to further improve the quality
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of web data.

7.5.6 Zero-shot evaluation

It is quite important to make the model generalizable to unseen human-object rela-

tionships. In this section, we report the performance of our method on a zero-shot

learning setting. Specifically, we train our models on the training set and evaluate

their relationship detection performance on the 18, 471 unseen visual relationships in

the zero-shot test split. Given the detected human and objects in a relationship, we

first get all their possible interactions to form a search space. We then collect web

data and extract feature embeddings to get the nearest neighbors relationships for

the test sample. The results are reported in Table 7.5. We can see that the proposed

method works more robust. This can be attributed to the introduction of the exter-

nal web data for efficient nearest neighbor search. For the “separateCNN” baseline,

by predicting the predicates separately from its objects, it is difficult to capture the

appearance variations due to the weak and even ambiguous visual features.

7.6 Summary

We have proposed a large-scale human-centric visual relationship detection (HCVRD)

dataset, which is significantly larger and broader than previous datasets. Human-

centric relationships represent an important subclass of all relationships, not only

because the human has agency, but also due to their practical importance for other

challenges. Increasing the scale of data available better captures the reality of the

task, but rises two important practical problems, the long-tail distribution issue and

the zero-shot problem, which are both reflected in our proposed HCVRD dataset.

Motivated by the practical importance of the task, our webly-supervised method ad-

dresses the issues and provides a strong baseline for further works based on our

HCVRD dataset and similar data.



Chapter 8

Conclusion and future work

8.1 Conclusion

In this thesis, we study how to build energy-efficient deep learning algorithms for

real applications. What’s more, we also focus on dealing with two important issues

existing in visual recognition. Specifically, we addressed the following problems:

• As the network grows deeper, the model complexity will increase exponen-

tially in both the training and testing stages, which leads to very high demand

in computing resources. To solve this problem, in Chapter 3, we have proposed

three effective approaches to solve the optimization problem for low-bitwidth

deep neural networks. The first approach is a two-step optimization strategy,

that is to quantize the weights and activations separately. We also observed that

continuously quantizing from high-precision to low-precision is also beneficial

to the final performance. To better utilize the knowledge from the full-precision

model, we have also proposed joint learning of the low-precision model and its

full-precision counterpart. The three approaches can be used jointly or sep-

arately. We show that even using only 4-bit weights and activations for all

layers, we can outperform the 32-bit model on ImageNet and Cifar100 with

either AlexNet or ResNet-50.

• To realize efficient data storage and fast image search, in Chapter 4, we have

proposed a novel hashing method to learn a mapping from the image space to

compact binary space. Specifically, to solve the extremely high computational

129
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complexity in the triplet space, we have proposed to formulate high-order bi-

nary codes learning as a multi-label classification problem by explicitly separat-

ing learning into two interleaved stages. We have improved the training speed

by two-orders of magnitude and the hashing performance on several retrieval

datasets.

• The success of deep learning in visual recognition applications largely relies on

massive datasets, which are quite hard and expensive to obtain. To solve this

problem, in Chapter 5, we have proposed an end-to-end weakly-supervised

deep learning framework which is robust to the label noise in Web images.

Specifically, we have proposed to apply the attention mechanism in a random

grouping framework which can effectively filter the noise from both in-correctly

labeled images and less discriminative image regions. We have also collected a

fine-grained car dataset from web images and the superior performance of the

proposed method is demonstrated.

• Another issue of visual recognition is the higher-level understanding of the

scene. As an intermediate level task connecting the image caption and ob-

ject detection, we focus on solving the visual relationship/phrase detection

task in Chapter 6 and Chapter 7. Specifically, in Chapter 6, we have explic-

itly constructed a context-aware classifier which combines the context, and the

interaction. As a result, such an interaction classifier can be adapted to its

context which can improve the zero-shot generalization abilities. In addition,

our simple framework is robust to various feature representations and show

improved performance. And in Chapter 7, since recognizing human-object

relationships is an important component of visual relationship detection, we

have further proposed a large-scale human-centric visual relationship detection

dataset (HCVRD), which provides many more types of relationship annotations

(nearly 10K categories) than the previously released datasets. To solve the long-

tail distribution problem in the label space, based on the noise-robust method



§8.2 Future Work 131

in Chapter 5, we have proposed a webly-supervised approach and demonstrate

that the proposed model provides a strong baseline on our HCVRD dataset.

8.2 Future Work

In addition to the problems addressed in this thesis, we also point out the following

open problems that we expect to explore in the future:

• In Chapter 3, to further improve the quantization performance at 2-bit, we

can replace the general quantization function to the ones that more suitable

to the ternary weights and activations (i.e., [Zhu et al., 2017] use two full

precision scaling coefficients in each layer). What’s more, we can combine the

quantization method with low-rank approximation, architecture design and

other network compression methods.

• For the triplet-based hashing method proposed in Chapter 4, we can improve

the triplets sampling strategy for selecting more discriminative hard negative

samples and positive samples. What’s more, inspired by the progressive quan-

tization method proposed in Chapter 3, we can employ the progressive quanti-

zation technique on the binary layer to further improve the performance. Fur-

thermore, we can propose a complete pipeline that consists of quantized neu-

ral network and binary codes generation strategy for faster nearest neighbor

search.

• For the web learning approach proposed in Chapter 5, we can further improve

our approach by adding an extra noise layer into the network which adapts

outputs of the network to match the distribution of noisy label. What’s more,

we can add one more batch normalization layer after the attention pooling layer

to solve the possible scale problem in the proposed framework.

• To further investigate the visual relationship detection task in Chapter 6 and

Chapter 7, we can expand the triplet relationship (i.e., subject-predicate-object)
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to structured scene graphs where nodes denote detected objects and edges de-

pict their relationships. Then we can use message passing or other graph opti-

mization techniques to solve the dense graph problem.
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