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Abstract: Technology-supported methods for sleep recording are becoming 

increasingly affordable.  Sleep history feedback may help with fatigue-

related decision making - Should I drive? Am I fit for work? This study 

examines a "sleep tank" model (SleepTank™), which is analogous to the 

fuel tank in a car, refilled by sleep, and depleted during wake. Required 

inputs are sleep period time and sleep efficiency (provided by many 

consumer-grade actigraphs). Outputs include suggested hours remaining to 

"get sleep" and percentage remaining in tank (Tank%).  Initial validation 

was conducted using data from a laboratory-based simulated nightshift 

study. Ten, healthy males (18-35y) undertook an 8h baseline sleep 

opportunity and daytime performance testing (BL), followed by four 

simulated nightshifts (2000h-0600h), with daytime sleep opportunities 

(1000h-1600h), then an 8h night-time sleep opportunity to return to 

daytime schedule (RTDS), followed by daytime performance testing. 

Psychomotor Vigilance Task (PVT) and Karolinska Sleepiness Scale were 

performed at 1200h on BL and RTDS, and at 1830h, 2130h 0000h and 0400h 

each nightshift. A 40-minute York Driving Simulation was performed at 

1730h, 2030h and 0300h on each nightshift. Model outputs were calculated 

using sleep period timing and sleep efficiency (from polysomnography) for 

each participant.  Tank% was a significant predictor of PVT lapses 

(p<0.001), and KSS (p<0.001), such that every 5% reduction resulted in an 

increase of one lapse, or one point on the KSS. Tank% was also a 

significant predictor of %time in the Safe Zone from the driving 

simulator (p=0.001), such that every 1% increase in the tank resulted in 

a 0.75% increase in time spent in the Safe Zone.  Initial examination of 

the correspondence between model predictions and performance and 

sleepiness measures indicated relatively good predictive value. Results 

provide tentative evidence that this "sleep tank" model may be an 

informative tool to aid in individual decision-making based on sleep 

history.   
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Abstract 37 

Technology-supported methods for sleep recording are becoming increasingly affordable.  Sleep 38 

history feedback may help with fatigue-related decision making – Should I drive? Am I fit for work? 39 

This study examines a “sleep tank” model (SleepTank™), which is analogous to the fuel tank in a car, 40 

refilled by sleep, and depleted during wake. Required inputs are sleep period time and sleep 41 

efficiency (provided by many consumer-grade actigraphs). Outputs include suggested hours 42 

remaining to “get sleep” and percentage remaining in tank (Tank%).  Initial validation was conducted 43 

using data from a laboratory-based simulated nightshift study. Ten, healthy males (18-35y) 44 

undertook an 8h baseline sleep opportunity and daytime performance testing (BL), followed by four 45 

simulated nightshifts (2000h-0600h), with daytime sleep opportunities (1000h-1600h), then an 8h 46 

night-time sleep opportunity to return to daytime schedule (RTDS), followed by daytime 47 

performance testing. Psychomotor Vigilance Task (PVT) and Karolinska Sleepiness Scale were 48 

performed at 1200h on BL and RTDS, and at 1830h, 2130h 0000h and 0400h each nightshift. A 40-49 

minute York Driving Simulation was performed at 1730h, 2030h and 0300h on each nightshift. 50 

Model outputs were calculated using sleep period timing and sleep efficiency (from 51 

polysomnography) for each participant.  Tank% was a significant predictor of PVT lapses (p<0.001), 52 

and KSS (p<0.001), such that every 5% reduction resulted in an increase of one lapse, or one point 53 

on the KSS. Tank% was also a significant predictor of %time in the Safe Zone from the driving 54 

simulator (p=0.001), such that every 1% increase in the tank resulted in a 0.75% increase in time 55 

spent in the Safe Zone.  Initial examination of the correspondence between model predictions and 56 

performance and sleepiness measures indicated relatively good predictive value. Results provide 57 

tentative evidence that this “sleep tank” model may be an informative tool to aid in individual 58 

decision-making based on sleep history.   59 

key words:  sleep, shiftwork, actigraphy, modelling, fitness for work 60 

  61 
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1. Introduction 62 

 63 

Sleep loss results in increased likelihood of error and accident, in the workplace and on the roads 64 

(Rajaratnam and Arendt 2001, Rogers, Hwang et al. 2004, Dorrian, Tolley et al. 2008). In Australia, in 65 

any workplace covered by the Work Health and Safety Act (SafeWorkAustralia 2011), fatigue 66 

management is a reciprocal responsibility for employers and employees, whereby the employers 67 

have a duty of care to provide a safe workplace, and the employees have a responsibility to be fit for 68 

work.  Decisions about whether an employee is safe to start or to continue work are frequently self-69 

reported, and in some circumstances (e.g. truck cab, driver-only train cab) solo operators may only 70 

have their own insight to rely on (Dorrian, Lamond et al. 2003). This leads us to consider the 71 

information that people use to make decisions about whether they are sufficiently fit to start, or to 72 

continue work.   73 

 74 

Sleepiness is often used as an indicator of fatigue-related impairment, and in many circumstances, it 75 

tracks performance measures (Kaida, Takahashi et al. 2006).  However, this is not always the case 76 

(Van Dongen, Maislin et al. 2003).  Further, measuring sleepiness is not necessarily measuring 77 

awareness of risk.  Performance ratings often track sleepiness more closely than they track 78 

performance (Dorrian, Lamond et al. 2000, Dorrian, Lamond et al. 2003, Dorrian, Roach et al. 2007; 79 

Paech, Banks et al. 2016). Given these inconsistencies, an alternative to solely relying on self-80 

assessment could involve integration of technology-supported methods for sleep recording. Indeed, 81 

consumer-grade sleep technologies (CST) are becoming increasingly affordable (Ko, Kientz et al. 82 

2015) and may provide data that can scaffold personal monitoring systems to inform decisions 83 

relating to fitness for work.  While the proliferation of such devices supports their potential, current 84 

barriers to effective use of CST include a lack of validation against research-grade actigraphy and 85 

polysomnography, which is the gold-standard for sleep measurement.  86 

 87 
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Current international best practice in workplace fatigue management involves a Fatigue Risk 88 

Management System (FRMS) (Dawson and McCulloch 2005, Gander, Hartley et al. 2011, Cabon, 89 

Deharvengt et al. 2012, Gander, Mangie et al. 2014), which includes specific policy, education and 90 

awareness training, fatigue monitoring systems with feedback, procedures for reporting, 91 

investigating and recording fatigue-related incidents and accidents, and evaluation processes and 92 

mechanisms for testing the impact of any fatigue-interventions (Gander, Hartley et al. 2011).  In this 93 

context, validated CSTs may assist with fatigue monitoring, however, it is critical to consider the 94 

form of the feedback.  At present, CSTs provide information such as prior sleep duration, timing, and 95 

sometimes an indicator of sleep quality or efficiency. In operational settings, a worker needs to be 96 

able to use sleep history information to assess what this may mean for their fatigue level when 97 

starting work.  Further, it is often necessary to project fatigue assessments into the future – towards 98 

the end of my shift, will I still be fit for work, or for my commute?   99 

 100 

Techniques to transform sleep history to indicate fatigue likelihood are already in use as part of 101 

FRMS in a number of industries including, for example, rail (TransportCanada 2011) and healthcare 102 

(SA_Ambulance 2008).  These incorporate a simple calculation based on the allocation of “fatigue 103 

likelihood points” according to the amount of sleep in the prior 24 and 48h, and the number of 104 

hours that the employee has been awake (Dawson and McCulloch 2005).  The calculation may be 105 

performed by the worker  (TransportCanada 2011), or may be automated based on simple inputs 106 

(SA_Ambulance 2008), and is followed by a series of actions to take should the employee reach 107 

critical thresholds indicating that fatigue, at levels of operational concern, is likely.   108 

 109 

Another approach that has received much attention in the literature for transforming sleep history 110 

into estimation of fatigue likelihood (or performance impairment, alertness, or effectiveness) 111 

involves biomathematical modelling (Dinges 2004, Hursh, Redmond et al. 2004, Mallis, Mejdal et al. 112 

2004, Van Dongen, Mott et al. 2007, Dawson, Noy et al. 2011).  Frequently, the input is simply work 113 
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hours, from which sleep (and then the outcomes) are estimated (Kandelaars, Fletcher et al. 2006).  114 

Sleep estimation is primarily based on the two-process model (Borbély 1982), which includes a 115 

circadian oscillator, representing the sinusoidal 24h rhythm, and a homeostatic function, which 116 

increases with wake, and decreases during sleep.  These models are used as part of FRMS in industry 117 

at an aggregate level to predict fatigue hotspots across rosters, target roster areas for 118 

countermeasure application, and to compare potential rosters (Mallis, Banks et al. 2017).   119 

 120 

A current area of development for biomathematical models is their application in the context of 121 

predicting individual fatigue likelihood (Van Dongen, Mott et al. 2007, Dorrian, Darwent et al. 2012).  122 

One challenge for individual modelling is the estimation of the circadian component, especially in 123 

the context of irregular work hours and/or time zone changes, as are frequent in 24h industries 124 

including aviation.  The circadian system adapts slowly to sleep in new time zones, and is influenced 125 

strongly by differences in light exposure (Mallis, Banks et al. 2017).  In contrast, the homeostatic 126 

function is relatively simple to model if sleep history is known. Further, since there is a circadian 127 

rhythm to sleep length and quality (Van Dongen and Dinges 2005), measures of sleep timing, length, 128 

and efficiency (as can be estimated from CSTs), these measures, to some extent, have an implicit 129 

circadian signal.  This study examines a model that mathematically transforms sleep history (timing, 130 

length, efficiency), using our understanding of homeostatic component only of the two-process 131 

model, that could be built-in to CSTs to provide useful feedback to aid in fatigue-related decision-132 

making and forward planning. This “sleep tank” model (SleepTank™1) was invented by the second 133 

author and enhances the homeostatic component of the two-process model with factors to account 134 

for the effects of prolonged sleep restriction (Belenky, Wesensten et al. 2003, Van Dongen, Maislin 135 

et al. 2003, Hursh, Redmond et al. 2004) and individual differences in sleep requirement.  For this 136 

study, the sleep tank was calibrated to an average sleep requirement of 8 hrs of sleep per day. 137 

 138 

                                                           
1
 SleepTank™ is a trademark of the Institutes for Behavior Resources, Inc. 
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 139 

2.0 Method  140 

 141 

Initial validation of the “sleep tank” model (SleepTank™) was conducted using data from a simulated 142 

nightshift study. This study was approved by the University of South Australia Human Research 143 

Ethics Committee (0000033621) and was conducted in accordance with the Declaration of Helsinki. 144 

 145 

2.1 Participants 146 

Ten, healthy males (18-35y) were recruited using flyers and social media.  Interested participants 147 

underwent screening.  Inclusion criteria included good physical (confirmed by a general health 148 

questionnaire and fasting blood screen) and mental health (assessed by clinical history and Beck 149 

Depression Inventory) (Beck, Steer et al. 1996), a score between 22-43 on the Composite 150 

Morningness Questionnaire (Horne and Ostberg 1976), and habitual nightly sleep time between 7 151 

and 9 h (confirmed by sleep diaries and wrist actigraphs, Actiwatch 2, Philips Respironics, Bend, OR). 152 

Exclusion criteria included reported: (a) sleep disorder (general health questionnaire) or sleep 153 

disturbance (>6 on the Pittsburgh Sleep Quality Index) (Buysse, Barzansky et al. 2003); (b) food 154 

allergy/ intolerance; (c) restrained eaters; (d) BMI >30 kg/m2; (e) use of prescription or over-the-155 

counter medications known to affect glucose metabolism (Grant, Coates et al. 2017) or sleep; or (f) 156 

engagement in night shift work, trans-meridian travel, smoking,  illicit drug use, excessive alcohol 157 

consumption (>2 standard drinks/day) or caffeine consumption (>2 cups/day) in the three months 158 

prior to the study.  Participants were instructed to abstain from alcohol and caffeine in the week 159 

prior to the study (with compliance checked using a 3-day food diary completed on non-consecutive 160 

days).  161 

 162 

  163 
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2.2 Procedure 164 

Participants (in groups of three or four) stayed in the Centre for Sleep Research laboratory at the 165 

University of South Australia for 7 days. This period included an 8 h baseline sleep opportunity 166 

(2200h-0600h) and daytime performance testing (BL), followed by four simulated nightshifts (2000h-167 

0600h), with daytime sleep opportunities (1000h-1600h), then an 8h night-time sleep opportunity 168 

(2200h-0600h) to return to daytime schedule (RTDS), before a final period of daytime performance 169 

testing.  Psychomotor Vigilance Task (PVT) and Karolinska Sleepiness Scale (KSS) were performed at 170 

1200h on BL and RTDS, and at 1830h, 2130h 0000h and 0400h each simulated nightshift. A 40-171 

minute York Driving Simulation was performed at 1730h, 2030h and 0300h on each simulated 172 

nightshift (Figure 1).  On BL, Day4 and RTDS, sleep was monitored using polysomnography.  173 

 174 

Figure 1.  Protocol Diagram – Time-of-day (24h clock) is on the x-axis, with day of study on the y-axis. Black 175 
bars indicate sleep opportunities and grey bars indicate simulated night shifts. BL=Baseline, Shift1-4=simulated 176 
night shifts, RTDS=return to daytime schedule. PVT=Psychomotor Vigilance Task, KSS=Karolinska Sleepiness 177 
Scale. 178 
 179 

The laboratory was sound-attenuated.  Light levels were maintained at <50 lux during wake periods 180 

and <0.03 lux during sleep opportunities.  Temperature was kept constant at 23 ± 1C.  No access to 181 

time cues was permitted throughout the protocol (i.e. clocks, mobile phones, television, internet).  182 

When not completing study tasks, participants were allowed to watch DVDs, play board games, or 183 

listen to music.   Meals were controlled according to estimated energy requirement, calculated for 184 

DAY1

DAY2 D P,K D P,K D P,K

DAY3 D P,K D P,K D P,K

DAY4 D P,K D P,K D P,K

DAY5 D P,K D P,K D P,K

DAY6 P,K

DAY7

Time-of-day (24h clock)

P =10-min PVT K = KSS D = 30-min driving sim

P,K

P,K

SLEEP OPPORTUNITY

SLEEP OPPORTUNITY

SLEEP OPPORTUNITY

SLEEP OPPORTUNITY SLEEP OPPORTUNITY

TRAINING

P,K

P,K

P,K

P,K

1400 1600 1800 2000

SLEEP OPPORTUNITY

0600 0800 1000 1200 06002200 0000 0200 0400
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each participant given the sedentary laboratory protocol (Harris and Benedict 1918). Participants 185 

were on one of two eating schedules (Grant, Coates et al. 2017).  In one, participants had a meal 186 

during their simulated night shifts, and in the other, energy was redistributed to times outside of 187 

1900 to 0700h.  Importantly, for all participants, 24h energy consumption was kept constant. Since 188 

this was a proof-of-concept analysis to investigate whether the model would track average 189 

performance and sleepiness across this schedule, eating groups were not looked at separately.  190 

Moreover, differences in eating patterns are consistent with the workplace, where employees 191 

differentially distribute their food consumption around the clock (Banks, Dorrian et al. 2014).  192 

 193 

2.3 Psychomotor Vigilance Task (PVT) 194 

The PVT was delivered via a hand-held response box. Participants were required to respond as 195 

quickly as possible to a stimulus in the form of a red millisecond counter by pressing a response 196 

button with the thumb of their dominant hand.  When the button is pressed the millisecond counter 197 

stops, the number representing the response time in milliseconds.  The stimulus was displayed at 198 

random intervals between 2 and 10 milliseconds, across the 10-minute task duration.  This task is 199 

sensitive to the effects of sleep loss and has a 1-3 trial learning curve (Dorrian, Rogers et al. 2005).  200 

The variable for analysis in this manuscript was the average number of PVT lapses, defined as 201 

response times greater than 500 msec. 202 

 203 

2.4 Karolinska Sleepiness Scale (KSS) 204 

Sleepiness was measured using the KSS, which is a 9-point scale ranging from 1=extremely alert to 205 

9=extremely sleepy-fighting sleep. This scale has been used extensively and has been validated 206 

against polysomnography and performance measures (Kaida, Takahashi et al. 2006). 207 

 208 

2.5 Driving Simulator 209 
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Driving performance was measured using the York highway driving simulator (York Computer 210 

Technologies, Kingston, ON). The simulator was run on a computer with a steering wheel and 211 

accelerator and brake pedals.  The simulated drive was a two-lane country road with road markings, 212 

signs, and oncoming cars.  Speed was displayed at the bottom of the screen and participants were 213 

instructed to follow the road rules including a maximum speed limit of 100 km/h.  This simulator has 214 

demonstrated sensitivity in studies of sleep restriction (Arnedt, Wilde et al. 2000), with minimal 215 

practice effects (De Valck, De Groot et al. 2003).  The variable for analysis was the percentage of 216 

time spent in safe zone, which was defined as within 10km/h of the speed limit and within 0.8m of 217 

the centre of the lane. 218 

 219 

2.6 Polysomnography (PSG) 220 

Sleep period time and efficiency were measured using PSG with standard electrode placements 221 

(C3/A2, C4/A1) during the baseline sleep, one of the 6 h daytime sleep opportunities, and during the 222 

RTDS sleep.  223 

 224 

2.7 The “Sleep Tank” 225 

The “sleep tank” (SleepTank™), analogous to the fuel tank in a car, is refilled by sleep, and depletes 226 

during wake. Required inputs are sleep period time and efficiency.  Maximum tank size represents 227 

the sleep-fuel required to remain awake for four days. The model focuses on the homeostatic 228 

process of the two-process model. It does not include a circadian factor (i.e. it will have a known 229 

residual error due to this rhythmic component). This “simplification” is deliberate to enable 230 

immediate and continuous feedback from basic sleep inputs.   231 

 232 

2.8 Statistical Analyses 233 

In order to investigate changes in performance and sleepiness metrics across the simulated 234 

nightshift protocol. Mixed effects ANOVA specified dependent variables of PVT Lapses, KSS, and 235 
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driving simulator %time in safe zone with fixed effects of shift (1-4), trial (PVT, KSS = 1830h/ 2130h 236 

/0000h /0400h; %safe zone = 1730h/ 2030h/ 0300h) and shift* trial with a random effect of 237 

subjectID on the intercept.  In order to investigate the relationship between model predictions and 238 

performance and sleepiness metrics, mixed effects regression specified dependent variables of PVT 239 

Lapses, KSS, and driving simulator %time in safe zone with a fixed effect of the percentage left in the 240 

“sleep tank” (Tank%) with a random effect of subjectID on the intercept.  In order to estimate an 241 

effect size for correlations between Tank% and performance and sleepiness metrics, time series 242 

correlations were conducted for each individual.  Since distributions of r-values are skewed, they 243 

were transformed using Fisher’s r-z transformation, the average and standard error (sterr) across 244 

participants was calculated, and then values were converted back to r-values using the inverse 245 

Fisher function. 246 

  247 
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3.0 Results 248 

 249 

Performance and sleepiness were significantly worse during the last test session of the shift 250 

compared to earlier trials, and sleepiness was significantly worse during the first shift compared to 251 

shifts 2-4 (p<0.01, Table 1).  252 

 253 
Table 1.  Performance Changes During Simulated Night Work – Mixed effects ANOVA for PVT Lapses, KSS and 254 
driving simulator %time in safe zone with fixed effects of shift (1-4), trial (PVT, KSS = 1830h/ 2130h /0000h 255 
/0400h; %safe zone = 1730h/ 2030h/ 0300h) and shift* trial with a random effect of subjectID.  256 
 257 

 Shift Trial Shift*Trial Post-hoc 

 F df p F df p F df p p<0.01 

PVT  0.09 3,134.0 0.966 23.96 3,134.0 <0.001 0.25 9,134.0 0.985 
1830h, 2130h, 
0000h < 0300h 

KSS 6.63 3,134.0 <0.001 62.02 3,134.0 <0.001 1.42 9,134.0 0.183 

1830h < 0000h, 
0300h 

Shift1 > Shifts2-4 

%Safe 
Zone 

2.04 3,99.0 0.113 10.24 2,99 <0.001 0.87 6,99.0 0.518 
1730h, 2030h > 

0300h 

 258 

 259 

Average total sleep time during the baseline night was 7.11 h (SEM=0.05 h), during daytime sleep 260 

opportunities was 5.51 h (SEM=0.06), and during the return to daytime schedule night was 6.79 h 261 

(SEM=0.05 h).  Average sleep efficiency was 89.5 % (SEM=0.6), 92.4% (SEM=1.1), and 84.9% 262 

(SEM=0.7) for each of these sleep opportunities respectively.  Figure 2 illustrates the suggested 263 

hours left to “get sleep” for the laboratory study protocol. Model outputs were calculated using 264 

sleep period timing and sleep efficiency (for BL, day sleeps and RTDS using polysomnographic 265 

recordings) for each participant. These were then compared to study metrics of performance and 266 

sleepiness. On waking at BL, there is >20h “in the tank,” with a latest advisable bedtime of 5:45am.  267 

After waking from subsequent daytime sleep periods, the starting value “in the tank” is lower, with 268 

latest advisable bedtimes moving earlier in the shift across multiple nights. 269 
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Figure 2.  Model Hours Left to “Get Sleep” Metric – Time-of-day (24h clock) is on the x-axis, hours left to “get 270 
sleep” (an estimate of the latest advisable bedtime given what remains in the “Sleep Tank”) on the y-axis.  271 
Sleep opportunities are shown along the x-axis. BL=Baseline, N1-4=nightshifts, S1-4=Sleep opportunities, 272 
RTDS=return to daytime schedule.  Times for y=0 (latest advisable bedtimes) are indicated.  273 
 274 

Figure 3 displays the percentage remaining in the tank (Tank%), which is highest on waking, with 275 

longer, more efficient sleep periods filling the tank to a greater level. Tank% was a significant 276 

predictor of PVT lapses (β=-0.44, sterr=0.06, t=-6.87, p<0.001), and KSS (β=-0.20, sterr=0.03, t=-7.68, 277 

p<0.001), such that every 5% reduction resulted in an increase of one lapse, or one point on the KSS. 278 

Tank% was also a significant predictor of %time in the Safe Zone (β=0.75, sterr=0.22, t=3.40, 279 

p=0.001), such that every 1% increase in the tank resulted in a 0.75% increase in time spent in the 280 

Safe Zone. 281 

 282 

On average, time series correlations between Tank% and performance and sleepiness were 283 

moderate (PVT lapses rLag0=-0.50, sterr=0.08, R2=0.25; KSS rLag0=-0.54, sterr=0.08, R2=0.30; %Time in 284 

Safe Zone rLag0=0.45, sterr=0.17, R2=0.20). 285 

 286 

  287 
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 288 

 289 

Figure 3.  “Sleep Tank”, Performance and Sleepiness – Time-of-day (24h clock) is on the x-axis, with % left in 290 
the sleep tank on the y-axis.  Sleep opportunities are shown along the x-axis. BL=Baseline, N1-4=nightshifts, S1-291 
4=Sleep opportunities, RTDS=return to daytime schedule.  PVT Lapses (upper), KSS (middle) and %Time in the 292 
Safe Zone from the driving simulator (lower) are superimposed over model output.  293 
 294 

 295 

   296 
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4.0 Discussion  297 

 298 

Initial examination of the correspondence between model predictions and performance and 299 

sleepiness measures from a four-night simulated nightshift protocol indicated relatively good 300 

predictive value, with percentage left in the “Sleep Tank” significantly predicting performance 301 

lapses, subjective sleepiness and safe driving during a 40-minute driving simulation.  The model 302 

explained an average of 20-30% of the variance across participants.  Performance and sleepiness 303 

were worst at the trials closest to model-indicated latest advisable bedtimes. Not only did this 304 

simple model map onto the performance and sleepiness low points during the night shifts, but also 305 

onto the recovery points after the final daytime sleep and return to daytime schedule. 306 

 307 

As expected, during the study, performance and sleepiness were significantly impaired towards the 308 

circadian low on each night shift (Dorrian, Lamond et al. 2000, Lamond, Dorrian et al. 2001).  309 

Interestingly, there was no significant cumulative impairment across nights, which may be expected 310 

across multiple nightshifts (Folkard and Tucker 2003).  Sleepiness was worse on the first night in the 311 

series, which likely reflects the extended wakefulness that often accompanies transition to night 312 

shift (Tepas, Walsh et al. 1981).  The relative stability in performance, and improvement in 313 

sleepiness across consecutive nights is consistent with previous laboratory studies (Dorrian, Lamond 314 

et al. 2003) and may reflect the ideal sleeping conditions in the laboratory, since sleep length and 315 

quality are likely to be lower in sleeping environments where light, temperature, and noise 316 

frequently cause sleep disturbance (Åkerstedt and Gillberg 1981b, Åkerstedt 1991).   317 

 318 

Indeed, this study was a first-step proof-of-concept in a controlled laboratory environment, with 319 

young, healthy males on basic performance tests.  This clearly limits generalisability to the 320 

workplace where employees include females, as well as people who are older, people who are 321 

experiencing health complaints, such as gastrointestinal and cardiovascular disease, which are 322 
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higher amongst shiftworkers (Knutsson 1989, Costa 1997, Lowden, Moreno et al. 2010), and where 323 

countermeasure use (e.g. caffeine) is common.  The controlled light exposure during the study is 324 

also different to the variable light exposure often experienced by nightshift workers, which often 325 

includes a bright pulse of morning light during the commute home (Eastman, Stewart et al. 1994).  326 

This is a particularly important reason for trialling this work in the field, since the “sleep tank” model 327 

only picks up circadian changes implicitly via changes in sleep, and it is necessary to investigate how 328 

model predictions map onto performance in the more chaotic workplace environment. 329 

 330 

Therefore, critical next steps include examining the model with different shift schedules in the 331 

laboratory and the field, and using polysomnographic sleep recording to estimate sleep period time 332 

and sleep efficiency (as in the current study) as well as actigraphic estimates of these measures. 333 

Results provide tentative evidence that this “sleep tank” model may be an informative tool to aid in 334 

individual decision-making based on sleep history.  Field validation will allow us to be ready to pair 335 

the model with CSTs as they are validated against research-grade sleep measurement tools. 336 

 337 

4.1 Summary  338 

Increasingly, people are gaining access to information about their sleep.  Using this information to 339 

make evidence-based decisions relating to fatigue safety is not always straightforward.  Arithmetic 340 

transformation of sleep duration and quality into an intuitive “sleep tank” (SleepTank™), which 341 

includes suggestions such as the number of hours until more sleep is critical, may assist individual 342 

deliberation about fitness for work at that moment, and across a coming shift.  Further validation is 343 

necessary, however initial findings are promising.  Following validation of the model (and the 344 

devices) “sleep tank” calculations could be added to consumer-grade actigraphs and/or sleep 345 

monitoring apps to help people to map the performance and safety implications of their recent 346 

sleep history. Such a device could display time left in the tank (hours), the latest advisable sleep time 347 

and a sleep tank gauge, along with advice on how naps might refill the “tank”.  348 
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