
Received July 24, 2019, accepted September 4, 2019, date of publication September 12, 2019,
date of current version September 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2940701

Simulating Time-Series Data for Improved
Deep Neural Network Performance
JORDAN YEOMANS1, SIMON THWAITES2, WILLIAM S. P. ROBERTSON3,
DAVID BOOTH4, BRIAN NG 5, AND DOMINIC THEWLIS 2
1Australian Institute for Machine Learning, The University of Adelaide, SA 5000, Australia
2Adelaide Medical School, The University of Adelaide, SA 5000, Australia
3School of Mechanical Engineering, The University of Adelaide, SA 5000, Australia
4Defence Science and Technology Group, Adelaide 5111, Australia
5School of Electrical and Electronic Engineering, The University of Adelaide, SA 5000, Australia

Corresponding author: Dominic Thewlis (dominic.thewlis@adelaide.edu.au)

This work was supported in part by the University of Adelaide Interdisciplinary Research Fund and Defence Science and Technology
Group. The work of D. Thewlis was supported by a National Health and Medical Research Council Career Development Fellowship
(ID:1126229).

ABSTRACT Deep learning algorithms have shown remarkable performance in classification tasks, however,
they typically perform poorly with small training datasets due to overfitting. Overfitting occurs for all data
types, although for the purposes of this study we are interested in time-based signals. This study introduces
a novel technique to simulate time series signals from a dataset of categorically labeled data which can be
used to train a deep neural network. The objective is to improve the predictive accuracy of a deep neural
network on a separate validation dataset. To demonstrate the simulation methodology and improvements to
the model’s performance, a small dataset of ground reaction forces was used with the goal of identifying a
person based on the raw signal. Our results show that the simulation method presented improves validation
accuracy and reduces model training time for each of the three signal types.

INDEX TERMS Deep learning, deep neural networks, data simulation, data augmentation, time-series
classification, time-series data augmentation, transfer learning, LSTM, 1D CNN, ground reaction force,
personal identification, small dataset, overfitting.

I. INTRODUCTION
Deep learning algorithms typically perform poorly with small
training datasets [1]. One area we are especially interested
in is improving model performance on time-series data par-
ticularly when the datasets are limited. Long Short Term
Memory (LSTM) networks are widely regarded as the gold
standard of deep learning algorithms to analyze time-series
data [2]. However, they are prone to overfitting [3], which sig-
nificantly limits validation performance. Overfitting occurs
when themodel learns extremely specific relationshipswithin
the training data that are not present in the validation data [1].
In situations where the training dataset is small, the likelihood
the model will overfit increases. The number of training
examples needed to build a model that is able to generalize
without overfitting depends on model architecture, model
complexity, the number of categories and the nature of the
data. Many techniques exist to reduce overfitting [4]; how-
ever, research has shown that a solution to model overfitting

The associate editor coordinating the review of this manuscript and
approving it for publication was Ting Li.

is often as simple as increasing the size of the training
dataset [5]. However, the size of the training dataset can
be limited by many factors from budget to availability of
data (e.g. it is not possible to collect more stock prices
than those already available). In the area of biomechanics,
machine learning has become popular in recent years. The
continual limitation in this field of research is the acquisition
of sufficient data. This was highlighted by Haliaj et al. [6]
who noted that most studies using machine learning were
limited by sample size and hence susceptible to overfitting.

Transfer learning is a technique to reduce overfitting and
has been used in studies with limited data for image classi-
fication tasks. Esteva et al. [7] showed expert human level
competency could be achieved using transfer learning to
categories skin cancer from a set of 129,450 images. These
techniques utilize a pre-trained image classification model,
however, these types of pre-trained models do not exist for
time-series data.

An alternate method to reduce overfitting is to simulate
data for training. For example, Kim et al. [8] developed a
simulated room including virtual sound sources and reflective

131248 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-8316-4996
https://orcid.org/0000-0001-6614-8663

J. Yeomans et al.: Simulating Time-Series Data for Improved Deep Neural Network Performance

FIGURE 1. Examples of two GRF signals for two participants from a dataset. (a) Fx is the lateral/medial force. (b) Fy is the
anterior/posterior force. (c) Fz is the vertical force. Note that the data shown in figure 1 are not the same as the data used in
figure 2, i.e. these figures are based on data from different people.

walls to generate utterances to train a neural network. The
simulation method was shown to substantially improve per-
formance. Data augmentation is perhaps the most familiar
and frequently used approach for reducing model over fitting.
The following section provides and overview of current
approaches used and their limitations.

A. DATA AUGMENTATION
Within deep learning frameworks, one approach for deal-
ing with model overfitting is data augmentation. This array
of techniques has shown success in computer vision prob-
lems [9]. Image based data augmentation techniques includes
image-resizing, image-rotation, left-right flipping, and zoom-
ing. The purpose of data augmentation is to increase the
size of the training set with images that are different to the
original set, yet the new images still accurately represent
the class/label. Within the time-series classification domain,
various techniques have been proposed. Each method slightly
changes the input signal data in such a way that it can still
be considered as a new input signal, without causing it to no
longer represent the original label.

Salamon et al. described a variety of approaches such
as time stretching and pitch stretching. These techniques
slightly modify the input by scaling the signal in the time
(without changing the pitch), and pitch domain respectively.
In each case, the classification of audio signals was improved.
Adding background noise was also used, which can reduce
overfitting to noise in the signal [10]. Guennec et al. used
two methods called window-slicing and window-warping.
Window-slicing is based on a concept from computer vision
where portions of the signal are trained on. During test time,
multiple slices re-size random sections of the signal [11].

Um et al. analysed a variety of data augmentation
techniques when monitoring Parkinson’s Disease using a
wearable device. Jittering, scaling, rotation, permutation,
MagWarp, TimeWarp and Cropping were used individually,
and in combination with each other, during the training of a
CNN. It was found that for this task signal rotation lead to the
greatest single improvement, likely due to the variation that
occurs when the sensor is placed on the person’s body [12].

Khandakar et al. recently showed that by combining four
data augmentation techniques they could improve the perfor-

mance of a time-series classification task when using a deep
neural network. An Inertial Measurement Unit recorded sig-
nals from an excavator, and by using a LSTM they classified
the type of task being performed. Four techniques, namely
jittering, scaling, rotation and time-warping were combined,
which substantially improved the model’s accuracy [13].

Collectively this body of work indicates that different
augmentation techniques have varying results for different
datasets. This suggests that not all data-augmentation tech-
niques work equally well for all classification tasks, or for
different datasets. As such, adding new data-augmentation
techniques to the toolbox, which can be tested and used on
a case-by-case basis by the community is a valuable contri-
bution to the field.

II. PURPOSE
This paper presents a novel technique to improve the accuracy
of deep learning models for time-series datasets with limited
data. The work does not aim to demonstrate superiority of
our approach to data augmentation to alternative approaches.
We do not present any comparisons at this stage as the level
of detail required would distract from the novel method pre-
sented. Rather, we aimed to show that this method is suitable
for a particular use-case, and suggest that it should be added to
the set of data-augmented strategies currently available. This
paper has been divided into two sections:

1) a method to simulate time-series training data from a
small initial dataset; and

2) an experimental demonstration that the simulated
dataset can improve a deep learning model.

To demonstrate the simulation method we have chosen to
use a time-series dataset common to the area of biomechan-
ics: the ground reaction force (GRF) signal. Our underlying
hypothesis is that the GRF, which is the force measured as
people walk, could be used as a method of personal identifi-
cation [14] using deep neural networks.

III. SIMULATION METHODS
Examples of the raw signals used for this method are
presented in Fig. 1. To describe the simulation process
we used the Fx signal (Fig. 1(a)) The simulation method
developed has been designed for categorically organized

VOLUME 7, 2019 131249

J. Yeomans et al.: Simulating Time-Series Data for Improved Deep Neural Network Performance

FIGURE 2. (a) Shown in colour are four random signals from a particular category. In this case it shows four different Fx traces
from our dataset. These signals could be any four signals for a particular category in the dataset to be simulated. The calculated
min/max bounding box (black solid lines) and mean curve (black dashed line) are also shown. (b) The deviation from the
mean (DFM) for the four signals used in the simulation. (c) Randomly selected sections from the DFM curves are selected and
scaled (coloured lines). They are then combined to generate a surrogate DFM (blue line). (d) The completed simulated signal is
shown in blue.

1-dimensional (1-D) signals. It is a requirement for the
method that more than one signal per category exist. Signals
were first resized to a standard length of 1000 time steps,
which is modifiable based on the dataset. Once resized the
simulation process for a chosen category, or for a participant
in this case, is as follows:

1) Signals were smoothed with a Savitzky-Golay filter
[15] (in this work, SciPy’s savgol_filter was
used [16]). A record of each signal’s noise was retained
by taking the difference of the original and smoothed
signal. This step was required to remove the noise from
the average waveform, which is essential for Step 4.

2) Where values were <0, all category were offset signals
to ensure all values ≥0. All signals in the category
were offset by the same amount. This was essential
to prevent negative values being multiplied together in
Step 7 and then reversed in Step 8.

3) Calculate the maximum (max) and minimum (min)
value of all of the category’s smoothed signals for all
time steps to generate a bounding curve (Fig. 2(a),
black solid lines). Note 1: Fig. 2(a) shows four example
signals for this category (coloured lines). Note 2: the
Fx1 trace defined the min bounding curve for the first
75ms (Fig. 2(a), red line).

4) Calculate the mean curve as the mean of the bounding
curve for all time steps (Fig. 2(a), black dashed line).

5) Calculate the deviation from the mean (DFM) curve
for all of the category’s smoothed signals (Fig. 2(b),
colored lines).

6) Generate a surrogate DFM curve by joining randomly
selected true DFM sections. Sections were scaled to
meet the next section at the mean of their differ-
ence (Fig. 2(c), blue line). Multiple sections from the
same category were used. The number of sections
was changed between simulations to introduce vari-
ability. To scale, a linear gradient was applied to the
section to ensure start and end points end up where
needed.

7) The simulated curve was computed as the surrogate
DFM multiplied by the mean curve.

8) Where the signals were originally offset for Step 2), the
offset was subtracted from the simulated curve.

9) Finally, randomly chosen noise signal from the cate-
gory was added to the simulated curve.

The final simulated signal is shown in Fig. 2(d), blue line.

IV. EXPERIMENTAL DEMONSTRATION
Ground reaction force data from a cohort of 79 participants
were collected in a controlled laboratory environment for two
sessions at least three days apart. On each occasion, partici-
pants were instructed to walk the length of a laboratory (14m)
walking over two force platforms (AMTI OPT400600HF,

131250 VOLUME 7, 2019

J. Yeomans et al.: Simulating Time-Series Data for Improved Deep Neural Network Performance

FIGURE 3. Deep learning model used in the experimental demonstration.

AMTI, US) recording the GRFs at 2000 Hz (Fig. 1). The data
were then resampled to 1000Hz.

Session 1 traces were used as the basis for simulating
new data, which were used for neural network training. Ses-
sion 2 was used exclusively for model validation. Between
all participants, 2076 (≈26.3 examples per participant) GRF
traces were recorded for Session 1 and 2053 for Session 2
(≈25.9 examples per participant).

The deep learning model used was a 9 layer 1-D convo-
lutional neural network (CNN) − > 3 layer LSTM − >

one-hot categorical prediction (Fig. 3). The model did not
use any final fully connected (FC) layers, which is relatively
uncommon for image classification tasks [17] but has shown
success for LSTM-based models [18] The CNN was built
using three patterns of: 3x CNN layers (kernel = 5) − > 1x
max pooling (stride = 2, pool = 2) − > 1x batch normaliza-
tion. For each pattern (P) the CNN filters (f) were constant.
P1: f= 32; P2: f= 64; P3: f= 128. CNN layers were initial-
ized with truncated normalized values (mean= 0, std. dev.=
0.1) and used L2 regularization. ReLu activation functions
between CNN layers were used. LSTM layers had 128 hidden
units per layer with a tanh activation functions. No regulariza-
tion was used and all units were initialized to zero. The last
vector of values from the LSTM was the input to the final
prediction layer.

A Tensorflow implementation can be seen in the Appendix.
A batch size of 512 and a learning rate of 0.0003 was used
and no dropout was included. All input signals were globally
normalized to be between 0-1. Tensorflow’s Adam optimizer,
and SoftmaxCross Entropywith Logits V2 loss function have
been used.

Training was completed using The University of Ade-
laide’s supercomputer, Phoenix. Each model was trained
using one NVIDIA Tesla K80 GPU (CUDA v9.0 and cuDNN
v7.3). Each model was trained for 11 hours to compare train-
ing time performance.

V. METHODS TO MEASURE PERFORMANCE INCREASE
Results were calculated for two scenarios to allow for direct
comparison:

1) Case 1: the baseline case was trained on 2076 real
Session 1 signals and validated on 2053 real Session 2
signals.

2) Case 2: the augmented method was trained on 500,000
simulated signal (using the approach described in
section III) and validated on 2053 real Session 2
signals.

TABLE 1. Training time performance.

The prediction accuracy, which is the percentage of correct
predictions over all validation signals, was calculated using
the validation set (Session 2). It is important to note the sig-
nals used for validation have not been used in the simulation
or training process.

The prediction accuracy for each signal was calculated
and is shown in Table 1 as Fx (lateral/medial), Fy (ante-
rior/posterior), and Fz (superior/inferior). An ensemble pre-
diction was calculated as the sum of the softmax predictions
for Fx , Fy, and Fz. The participant with the highest sum-
mated prediction was used as the predicted participant. This
is shown as Fx + Fy + Fz in Table 1.

Two metrics were used to evaluate the accuracy perfor-
mance of the method.

1) Relative Improvement: the change in predictive accu-
racy (acc) compared to the baseline case:

improvrel =
accsim
accbase

− 1 (1)

2) Error (e) reduction: the percentage of the original error
that the method has reduced:

ereduce =
1e
ebase

=
(1− accbase)− (1− accsim)

(1− accbase)
(2)

where acc_sim is the validation accuracy achieved on Ses-
sion 2 when trained on simulation data and acc_base
is the accuracy achieved on Session 2 when trained on
unchanged (real) Session 1 data.

To quantify the improvement in training time an additional
two metrics have been calculated:

1) Time for each model to reach 95% of maximum vali-
dation accuracy.

2) Time for each model to reach 95% of the max-
imum accuracy achieved by the baseline method
(Case 1).

For each metric, the percentage reduction was calculated as:

ereduce =
1time
timebase

(3)

where 1time was the difference in the time taken to reach
95% of respective model accuracy used for comparison.

VI. RESULTS
The simulation method improved performance for all signals.
Summary data are presented in Table 1.

The validation accuracy for the Fx signal has improved
from 35.2% (Case 1) to 71.0% (Case 2) representing

VOLUME 7, 2019 131251

J. Yeomans et al.: Simulating Time-Series Data for Improved Deep Neural Network Performance

FIGURE 4. Comparison of validation accuracy improvement over time for
each model. Blue shows models trained on real data (Case 1). Black
shows models trained on simulated data (Case 2). All models have been
trained on the same hardware (NVIDIA Tesla K80 GPU).

TABLE 2. Training time performance.

a relative improvement of 101.7% and an error reduc-
tion of 55.2%. Fy has improved from 52.6% to 77.6%
which is a relative improvement of 47.5% and error reduc-
tion of 52.7%. Fz improved from 60.2% to 79.4% giv-
ing a relative improvement of 31.9% and error reduction
of 48.2%. The ensemble model improved from 69.4% to
86.1%, relative improvement of 24.1% and error reduction
of 54.6%.

The validation accuracy over time is shown in Fig. 4 and
results are tabulated in Table 2. The time for the Fx Case 1 to
reach 95% of its own peak accuracy is 480 min compared
to 208 min (Case 2), a reduction in self compared training
time of 56.7%. Comparing to Case 1, the simulation (Case
2) achieves the 95% peak accuracy achieved in Case 1 in
27 min, a 94.4% reduction.

The training time for Fy Case 1 was 371 min compared
to 208 min (Case 2) a reduction of 56.1%. Case 2 achieves
the same results of Case 1 in 45 min, a reduction of 87.9%.
The training time for Fz Case 1 is 526 min compared
to 63 min (Case 2) a reduction of 62.2%. Case 2 achieves
the same results of Case 1 in 63 min, a reduction
of 88.0%.

VII. DISCUSSION
This study presents a new method for simulating cate-
gorically labeled time-series data from a small dataset to
reduce the effects of overfitting when using deep learn-
ing algorithms. The method was designed to be somewhat
data agnostic (in the context of time-series data). In the
context of a specific example, we have shown that this

approach can improve both classification performance and
training time for three unique GRF signals in an experimental
demonstration.

As an intuition as to why the method improves the
training of a neural network: the features within the data,
some of which are unique to the category, are being aug-
mented into slightly new orientations. Although a category
may have unique features consistent between recorded data
it is unlikely that they will occur in an identical man-
ner (e.g. magnitude/time). Augmenting the data using this
method allows the network to learn the features that rep-
resent the category, across a variety of orientations and
magnitudes.

For each of the three signals, the simulation method
reduced the error in the range of 48.2% to 55.2%. The relative
accuracy improvement ranged from 31.9% to 101.7%. The
most significant relative improvement was Fx , it is thought
this could be for two reasons: 1) the Fx signal is more variable
than either the Fy or Fz signals meaning the model trained
with simulated data benefited from the data augmentation
the most; and 2) the original accuracy was the lowest of the
three signals, and hence had the most room to improve; in
addition to small percentage increases resulting in a large
relative increase.

The improvements in validation accuracy brought about
by this method will be beneficial for models limited by
small datasets that require a higher accuracy. The training
time for each of the signals has also improved. The time
taken for the model to train to 95% of its own peak accu-
racy has reduced in the range of 56.7% to 62.2%. When
calculating the time for the simulation model to reach 95%
of the baseline case the reduced training time is in the
range of 87.9% to 94.4%. Reducing the training time for
deep learning algorithms is always beneficial. Addition-
ally, it is imagined this would be extremely beneficial in
cases where a model is achieving the desired accuracy but
requires intermittent retraining. It is possible the improve-
ments to training time could extend to large datasets as
well.

The model used in this study was a combination of a
1-D CNN and LSTM networks. Within the computer vision
space it has been shown CNN layers act as feature detectors.
LSTM networks, on the other hand, are designed to find
temporal dependencies within a dataset. Using a combina-
tion of these architectures has resulted in the CNN layers
learning features within the signal and the LSTM layers
then finding the temporal relationship between those fea-
tures to provide a prediction. It is expected the simulation
method is helping both portions of the network. To our knowl-
edge this is the first time this method of simulating time
series data has been published. Methods of data augmen-
tation exist but tend to augment an individual signal rather
than combining signals within a single category. Methods
also exist for simulating data, however, they remain domain
specific.

131252 VOLUME 7, 2019

J. Yeomans et al.: Simulating Time-Series Data for Improved Deep Neural Network Performance

A. LIMITATIONS
It is acknowledged this work has some limitations which
require further research. Firstly, this method will not suit
all time-series datasets. A requirement of the method is that
signals must to be able to separated into distinct categories,
so that signals from the same category can be combined into
a simulated signal. The method does assume that all samples
within a category have a similar temporal spacing/pattern,
although different signal lengths can be resized as shown in
this work. In other words, the general shape of each signal
needs to be similar. It is untested if simulating a combination
of differently shaped signals could still be beneficial. The
method has not been tested on data outside of the GRF
domain and we have not researched the sensitivity to the
number of samples per category. Secondly, we have not
compared the method described in this paper to alternative
data augmentation techniques. The goal of this work was
to describe and evaluate the performance of this method,
not to compare data augmentation methods. However, future
work should look to address this limitation, with the differ-
ent time-series signals. Thirdly, this approach required the
signals to be re-sized to a standard length. This could be
removing important information about category. This step
could be reversed after the simulation, though this was not
tested.

VIII. CONCLUSION
In this study, we have demonstrated a new method for simu-
lating data from a small, labeled dataset of time-series data
to improve the performance of deep learning algorithms.
The method developed is general in nature. We have shown
that the method improves validation accuracy and reduced
training time.

APPENDIX-NEURAL NETWORK IMPLEMENTATION
Tensorflow Version >= 1.10

— Input/Output Data —
train_input_data = [#_of_samples, signal_length,
#_of_channels]

train_output_data = [#_of_samples, #_of_
categories_as_1_hot_array]

— Neural Network Parameters —
lstm_hidden_units = 128
batch_size = 512
learning_rate = 0.0003
init = tf.initializers.truncated_normal(stddev=0.1)
regularizer = tf.nn.l2_loss

— Create Model Placeholders —
x = tf.placeholder(tf.float32, shape=(None,
train_input_data.shape[1], train_input_data.shape[2]))

y = tf.placeholder(tf.float32, shape
=(None, train_output_data.shape[1]))

— Create 1D CNN Network —
nn = tf.layers.conv1d(x, filters=32, kernel_size=5,

activation=tf.nn.relu, kernel_initializer=init,
kernel_regularizer=regularizer)

nn = tf.layers.conv1d(nn, filters=32, kernel_size=5,
activation=tf.nn.relu, kernel_initializer=init,
kernel_regularizer=regularizer)

nn = tf.layers.conv1d(nn, filters=32, kernel_size=5,
activation=tf.nn.relu, kernel_initializer=init,
kernel_regularizer=regularizer)

nn = tf.layers.max_pooling1d(nn, strides=2,
pool_size =2)

nn = tf.layers.batch_normalization(nn)

nn = tf.layers.conv1d(nn, filters=64, kernel_size=5,
activation=tf.nn.relu, kernel_initializer=init,
kernel_regularizer=regularizer)

nn = tf.layers.conv1d(nn, filters=64, kernel_size=5,
activation=tf.nn.relu, kernel_initializer=init,
kernel_regularizer=regularizer)

nn = tf.layers.conv1d(nn, filters=64, kernel_size=5,
activation=tf.nn.relu, kernel_initializer=init,
kernel_regularizer=regularizer)

nn = tf.layers.max_pooling1d(nn, strides
=2, pool_size=2)

nn = tf.layers.batch_normalization(nn)

nn = tf.layers.conv1d(nn, filters=128, kernel_size=5,
activation=tf.nn.relu, kernel_initializer=init,
kernel_regularizer=regularizer)

nn = tf.layers.conv1d(nn, filters=128, kernel_size=5,
activation=tf.nn.relu, kernel_initializer=init,
kernel_regularizer=regularizer)

nn = tf.layers.conv1d(nn, filters=128, kernel_size=5,
activation=tf.nn.relu, kernel_initializer=init,
kernel_regularizer=regularizer)

nn = tf.layers.max_pooling1d(nn, strides
=2, pool_size=2)

nn = tf.layers.batch_normalization(nn)

— Create LSTM Network —
cell_1 = tf.nn.rnn_cell.LSTMCell(lstm_hidden_units)
cell_2 = tf.nn.rnn_cell.LSTMCell(lstm_hidden_units)
cell_3 = tf.nn.rnn_cell.LSTMCell(lstm_hidden_units)
multicell = tf.nn.rnn_cell.MultiRNNCell([cell_1,

cell_2, cell_3])

nn, state = tf.nn.dynamic_rnn(multicell, nn, dtype
=tf.float32)

nn = tf.transpose(nn, [1, 0, 2])
nn = tf.gather(nn, int(nn.get_shape()[0]) - 1)

— Create Fully Connected Layer —
nn = tf.layers.dense(nn, train_output_data.shape[1],

activation=None)

VOLUME 7, 2019 131253

J. Yeomans et al.: Simulating Time-Series Data for Improved Deep Neural Network Performance

— Create Loss —
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_

with_logits_v2(logits=nn, labels=train_output_data))

— Create Optimizer —
optimizer = tf.train.AdamOptimizer(learning_rate
=learning_rate).minimize(loss)

ACKNOWLEDGMENT
The authors would like to thank The University of Adelaide
and Defence Science and Technology Group for their contin-
ued support.

REFERENCES
[1] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.
html

[2] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[3] H. Sak, A. Senior, and F. Beaufays, ‘‘Long short-term memory recur-
rent neural network architectures for large scale acoustic model-
ing,’’ in Proc. 15th Annu. Conf. Int. Speech Commun. Assoc., 2014,
pp. 338–342.

[4] E. A. Smirnov, D. M. Timoshenko, and S. N. Andrianov, ‘‘Comparison of
regularization methods for imagenet classification with deep convolutional
neural networks,’’ AASRI Proc., vol. 6, pp. 89–94, May 2014.

[5] T. Shaikhina and N. A. Khovanova, ‘‘Handling limited datasets with neural
networks in medical applications: A small-data approach,’’ Artif. Intell.
Med., vol. 75, pp. 51–63, Jan. 2017.

[6] E. Halilaj, A. Rajagopal,M. Fiterau, J. L. Hicks, T. J. Hastie, and S. L. Delp,
‘‘Machine learning in human movement biomechanics: Best practices,
common pitfalls, and new opportunities,’’ J. Biomech., vol. 81, pp. 1–11,
Nov. 2018.

[7] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and
S. Thrun, ‘‘Dermatologist-level classification of skin cancer with
deep neural networks,’’ Nature, vol. 542, no. 7639, pp. 115–118,
2017.

[8] C. Kim, A. Misra, K. Chin, T. Hughes, A. Narayanan, T. Sainath, and
M. Bacchiani, ‘‘Generation of large-scale simulated utterances in virtual
rooms to train deep-neural networks for far-field speech recognition in
Google home,’’ in Proc. INTERSPEECH, 2017, pp. 379–383. [Online].
Available: http://www.isca-speech.org/archive/Interspeech_2017/pdfs/
1510.PDF

[9] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, ‘‘Return of the
devil in the details: Delving deep into convolutional nets,’’ in Proc. Brit.
Mach. Vis. Conf. (BMVC), 2014, pp. 1–11.

[10] J. Salamon and J. P. Bello, ‘‘Deep convolutional neural networks and
data augmentation for environmental sound classification,’’ IEEE Signal
Process. Lett., vol. 24, no. 3, pp. 279–283, Mar. 2017.

[11] A. Le Guennec, S. Malinowski, and R. Tavenard, ‘‘Data augmentation
for time series classification using convolutional neural networks,’’ in
Proc. ECML/PKDDWorkshop Adv. Anal. Learn. Temporal Data, Riva Del
Garda, Italy, Sep. 2016.

[12] T. T. Um, F. M. J. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche,
U. Fietzek, and D. Kulić, ‘‘Data augmentation of wearable sensor
data for parkinson’s disease monitoring using convolutional neural net-
works,’’ in Proc. 19th ACM Int. Conf. Multimodal Interact. (ICMI).
New York, NY, USA: ACM, 2017, pp. 216–220. doi: 10.1145/3136755.
3136817.

[13] K. M. Rashid and J. Louis, ‘‘Times-series data augmentation and
deep learning for construction equipment activity recognition,’’ Adv.
Eng. Inform., vol. 42, Oct. 2019, Art. no. 100944. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474034619300886

[14] S. P. Moustakidis, J. B. Theocharis, and G. Giakas, ‘‘Subject recognition
based on ground reaction force measurements of gait signals,’’ IEEE
Trans. Syst., Man, Cybern., B (Cybern.), vol. 38, no. 6, pp. 1476–1485,
Dec. 2008.

[15] A. Savitzky and M. J. E. Golay, ‘‘Smoothing and differentiation of data
by simplified least squares procedures,’’ Anal. Chem., vol. 36, no. 8,
pp. 1627–1639, 1964.

[16] E. Jones, T. Oliphant, and P. Peterson. (2001). SciPy: Open Source Scien-
tific Tools for Python. [Online]. Available: http://www.scipy.org/

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[18] T.-H. Pham, S. Caron, and A. Kheddar, ‘‘Multicontact interaction force
sensing from whole-body motion capture,’’ IEEE Trans. Ind. Informat.,
vol. 14, no. 6, pp. 2343–2352, Jun. 2018.

JORDAN YEOMANS was born in Adelaide,
Australia, in 1992. He received the bachelor’s
degree (Hons.) in mechanical and aerospace
engineering from The University of Adelaide,
Australia, in 2014. In 2018, he returned to The
University of Adelaide, to complete his Master
of Engineering with a focus on applying mod-
ern machine learning to the field. He is currently
pursuing the Ph.D. degree in deep learning with
Australian Institute for Machine Learning. His

current research interests include reinforcement learning and decision
abstraction.

SIMON THWAITES was born in Perth, WA, Aus-
tralia, in 1991. He received the B.Eng. degree
(Hons.) in mechanical and sports engineering
and the M.Eng. degree in mechanical engineer-
ing from The University of Adelaide, SA, Aus-
tralia, in 2013 and 2014, respectively, where he is
currently pursuing the Ph.D. degree in medicine,
under the supervision of Assoc. Prof. D. Thewlis.
From 2015 to 2017, he was a Research Assistant
with the School of Mechanical Engineering, and

in 2018, he was a Research Officer with the School of Medicine, both from
The University of Adelaide. His research interests include sports and clinical
biomechanics, with a current focus on orthopaedics and trauma.

WILLIAM S. P. ROBERTSON was born in Ade-
laide, Australia, in 1981. He received the B.Eng.
(Hons.) and Ph.D. degrees in mechanical engi-
neering, in 2002 and 2013, respectively, under the
supervision of B. Cazzolato, from The University
of Adelaide, Australia, where he is currently a Lec-
turer with the School of Mechanical Engineering.
His research interests include magnetic levitation,
vibration control, and biomechanics. He has taught
six courses in dynamics and control and sports

engineering, and is a Lecturer and a Coordinator for the honours project
course.

131254 VOLUME 7, 2019

http://dx.doi.org/10.1145/3136755.3136817
http://dx.doi.org/10.1145/3136755.3136817

J. Yeomans et al.: Simulating Time-Series Data for Improved Deep Neural Network Performance

DAVID BOOTH received the B.Sc. degree in computer science from
Wolverhampton University, in 1984, and the M.Phil. and Ph.D. degrees in
applied mathematics from Oxford Brookes University, in 1986 and 1991,
respectively. From 1986 to 2008, he had various roles at the Defence
Science and Technology Laboratory, Malvern, U.K. and its predecessors.
Since 2008, he has been a Senior Research Scientist with theDefence Science
and Technology Group, Edinburgh, latter as part of the Biometrics Group.
His current research interests include non-mainstream biometrics and video
analytics.

BRIAN NG was born in Hong Kong, in 1974.
He received the B.Sc. degree in mathematics and
computer science, and the B.Eng. (Hons.) and
Ph.D. degrees in electrical and electronic engi-
neering, under the supervision of A. Bouzerdoum,
from The University of Adelaide, Australia,
in 1996, 1997, and 2003, respectively, where
he is currently a Senior Lecturer with the
School of Electrical and Electronic Engineering.
His research interests include radar signal process-

ing and wavelets, and terahertz (T-ray) signal processing. He is currently an
active member of the South Australian Chapter of the IEEE. He received
the University of Adelaide Medal for the Top Graduate in electrical and
electronic engineering.

DOMINIC THEWLIS was born in Leeds, U.K. in
1982. He received the Ph.D. degree in biome-
chanics, in 2009, under the supervision of
J. Richards from the University of Central
Lancashire, U.K., where he was a Research
Fellow from 2005 to 2009. He is currently an
Associate Professor and National Health and
Medical Research Fellow with Adelaide Med-
ical School, The University of Adelaide. His
research interests include biomechanics, compu-

tational modelling of the human musculoskeletal system, motion capture
methods, pose estimation, biological signal processing, and machine learn-
ing. He is a member of the International Society of Biomechanics, and the
Australian and New Zealand Orthopaedic Research Society.

VOLUME 7, 2019 131255

	INTRODUCTION
	DATA AUGMENTATION

	PURPOSE
	SIMULATION METHODS
	EXPERIMENTAL DEMONSTRATION
	METHODS TO MEASURE PERFORMANCE INCREASE
	RESULTS
	DISCUSSION
	LIMITATIONS

	CONCLUSION
	REFERENCES
	Biographies
	JORDAN YEOMANS
	SIMON THWAITES
	WILLIAM S. P. ROBERTSON
	DAVID BOOTH
	BRIAN NG
	DOMINIC THEWLIS

