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A new paradigm for preventing atherosclerotic cardiovas-
cular disease (ASCVD) is needed. The most recent US

data show the long-term decline in cardiovascular deaths has
stopped, and has started to increase in the most at-risk
populations.1 Indeed, rising rates of obesity and diabetes
mellitus in the setting of suboptimal risk factor control have
resulted in a similar number of cardiovascular events
occurring in those aged <65 years as ≥65 years.2 Although
preventive drug therapies reduce the relative risk of cardio-
vascular events in primary and secondary prevention patients,
the absolute risk of subsequent ASCVD events remains high.3

If nothing changes, it is projected that by 2035 nearly half the
US population will have some form of cardiovascular disease
and costs will double to $1.1 trillion annually.4

Systemic approaches to improving lifestyle habits and
better risk factor control are clearly needed. Given the
difficulty of these endeavors to date, and the persistently high
burden of ASCVD when risk factor modification is started later

in adulthood, we propose a new paradigm for ASCVD
prevention. Based on the extensive data reviewed below, we
consider that it is now time to investigate whether intensively
lowering plasma apolipoprotein (apo) B lipoprotein levels in
younger and early midlife adults will regress earlier stages of
atherosclerosis, thereby eliminating the risk of developing
clinical ASCVD events later in life. Just as an understanding of
the causative agents of other diseases has allowed the
eradication of a range of human scourges, this state-of-the-art
review will emphasize that a deep understanding of the
pathogenesis of atherosclerosis can be translated into an
achievable goal of eradicating ASCVD.

As a next step, we describe a proposed clinical trial to
test early intervention to profoundly lower the concentration
of low-density lipoprotein (assessed by its cholesterol
component, LDL-C) and other apo B-containing lipoprotein
in individuals aged 25 to 55 years who have image-
documented preclinical atherosclerosis. Such a trial may
provide the first direct evidence to support marked or even
complete regression of early atherosclerosis in humans, and
lay the ground work for definitive trials to support a new
prevention paradigm of intensive regression therapy followed
by intermittent retreatment for eradication of the clinical
burden of ASCVD.

Evidence for Apo B Lipoproteins
as the Root Cause of Atherosclerosis:
Response-to-Retention
Apo B lipoproteins transport cholesterol and triglycerides in
plasma. Apo B lipoproteins up to 70 nm diameter, including
low-density lipoproteins (LDL), intermediate-density lipopro-
teins (IDL), smaller very-low-density lipoproteins (VLDL),
chylomicron remnant particles, and lipoprotein (a) [Lp(a)],
efficiently cross the protective endothelial layer and penetrate
into the intima of the artery wall.5,6 The probability that these
particles enter and leave the arterial subendothelial space is
dependent on particle size, plasma concentration, blood
pressure, arterial injury, and the affinity and ability of the
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lipoprotein to bind proteoglycans. The equilibrium can be
shifted when either lipoprotein particle concentration or
intimal hyperplasia is increased (Figure 1). Normally, most
LDL particles that cross the endothelium and enter the intima
then return to the circulation. However, in the presence of
certain cardiovascular risk factors or disturbed laminar flow,
LDL particles are more likely to adhere to intimal proteogly-
cans and be retained in situ.7,8 The triglyceride-rich
lipoproteins, including IDLs, chylomicron remnants, and VLDL,
may have difficulty leaving the intima because of their larger
size or because of entrapment by components of the arterial
intima.5

Following retention within the arterial intima, apo B
lipoproteins undergo enzymatic modifications that further
accelerate accumulation and promote particle aggregation.9

Aggregation is influenced by lipoprotein particle quantity and
composition, both of which are influenced by diet and
adiposity.8,10 Aggregation can also be reduced by proprotein
convertase subtilisin-like/kexin type 9 (PCSK9) inhibition.10

Aggregated apo B lipoproteins are avidly taken up by

macrophages, initiating their transformation into foam cells.
Apo B lipoproteins are also taken up by smooth muscle cells.

Both unesterified and esterified cholesterol from the apo B
lipoproteins retained in the arterial intima account for the
characteristic intracellular lipid droplets in foam cells.
Lipoprotein-derived cholesterol contributes to cholesterol-
enrichment of cell membranes, cholesterol-rich membrane
fragments, and cholesterol crystals that provoke additional
maladaptive responses, such as activation of Toll-like recep-
tors, the NLRP3 inflammasome and interleukin-1ß, apoptosis,
and prothrombotic pathways.11–14

The cholesterol and triglyceride-rich remnant apo B lipopro-
teins appear to be more potent than LDL for provoking greater
maladaptive immune activation for several reasons.15,16

Lipoprotein lipase, either at the endothelial surface or within
the arterial intima, degrades triglycerides into constituent fatty
acids and monoacylglycerols, which generate local inflamma-
tion. Apo C-III, an apolipoprotein present on VLDL and remnant
lipoproteins that binds to lipoprotein lipase to inhibit triglyc-
eride clearance, also increases proteoglycan binding and
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Figure 1. Apo B lipoprotein response-to-retention model of atherosclerosis initiation and progression. High plasma concentrations of apo B
lipoproteins (LDL, IDL, VLDL, chylomicron remnants, Lp(a)) increase entry into intima and retention. Apo B lipoproteins bind to proteoglycans
and begin aggregating, a process that accelerates once plaque begins. Retention is influenced by particle composition and diet, among other
factors. Retention leads to a maladaptive cellular response leading to increased inflammation, fibrosis, and necrosis. The lipid/necrotic core
forms when normal phagocytotic processes and efferocytosis are overwhelmed by continued retention and accumulation of “toxic” apo B
lipoproteins. Plaque rupture or erosion can lead to formation of overlying thrombus, which can precipitate an acute clinical event. Apo indicates
Apolipoprotein; IDL, intermediate lipoprotein; LDL, low-density lipoprotein; Lp(a), Lipoprotein (a); VLDL, very-low-density lipoprotein.

DOI: 10.1161/JAHA.118.009778 Journal of the American Heart Association 2

Apo B Lipoprotein Reduction to Eradicate ASCVD Robinson et al
C
O
N
T
E
M
P
O
R
A
R
Y

R
E
V
IE

W

D
ow

nloaded from
 http://ahajournals.org by on February 14, 2019



appears to have proinflammatory characteristics in experimen-
tal studies.17

The maladaptive inflammatory aspect of atherogenesis is
downstream from the initial retention of apo B lipoprotein
particles, but once present promotes cell recruitment, further
plaque development, and ultimately acute ASCVD events.
Aggregates of apo B lipoproteins release biologically active
byproducts that are chemoattractive to macrophages, smooth
muscle cells, and immunoregulatory T cells, promoting their
recruitment into the developing lesion. Retained and modified
apo B lipoproteins trigger the production of anti-emigration
signals by macrophages, preventing them from leaving the
arterial intima, in a process reminiscent of the persistence of
macrophages within tuberculous granulomata so that they do
not disseminate the infection.18,19

Persistent macrophages and other cells in atherosclerotic
plaques release proatherogenic enzymes, tissue factor, and
signaling molecules, inducing synthesis of more proteogly-
cans with increased affinity for apo B lipoproteins, other
factors that enhance retention, increase fibrosis, and prote-
olytic enzymes.18,19 Proteases can weaken the overlying
fibrous cap, which favors plaque rupture and exposure of the
procoagulant subendothelial contents, particularly tissue
factor, into the blood. Moreover, the internalization of apo B
lipoproteins by lesional macrophages promotes inflammatory
responses and impairs resolution responses, both of which
play critical roles in plaque progression. Advanced, complex
atherosclerotic lesions are characterized by compensatory
vascular remodeling and calcification. Neovascularization of
the growing plaque and necrosis of the lipid core further
contribute to plaque instability. Complicated lesions arise as
advanced plaques erode or rupture with overlying thrombosis,
often causing acute clinical cardiovascular events.

Evidence for a Causal Role of Apo B
Lipoproteins in Atherosclerosis: Epidemiology
and Genetics
Atherogenesis often begins in childhood, and some individuals
begin to develop advanced plaque in late adolescence or early
adulthood.20,21 The rate of plaque progression and occurrence
of ASCVD events depends on the level of and duration of
exposure to apo B lipoproteins, presence of other cardiovas-
cular risk factors, and genetic predisposition.22,23 In countries
with long-term exposure to atherogenic diets, most adults
have advanced fibrocalcific plaque by age 50.21,24 Without
risk factor intervention, clinical atherothrombotic events
commonly begin occurring when men are in their 6th and
7th decades, and women are in their 7th and 8th decades.25

Plasma apo B lipoprotein levels, as reflected in total
cholesterol, LDL-C, non-high density lipoprotein (HDL)-C, and

apo B levels, are associated with greater subclinical atheroma
burden and increased risk of ASCVD events in all age, sex,
and race and ethnicity groups and regions.23,26–28 Both the
apo B lipoprotein level and the cholesterol content of
the particles are associated with increased ASCVD.29 The
increase in the relative risk of ASCVD per increment increase
in total cholesterol or LDL-C depends on the level and
duration of exposure and the presence of other risk
factors.21,23,30–32

Chronic overnutrition impairs clearance of cholesterol and
triglyceride rich lipoproteins as well as causing obesity.33

Obesity predisposes to abnormal glucose metabolism and
defective insulin action, which along with diet, further
contributes to increased plasma levels of VLDL and choles-
terol and triglyceride-rich remnant apo B lipoproteins and
maladaptive inflammation.5,33,34 Elevated plasma concentra-
tions of both fasting and non-fasting triglyceride-rich apo B
lipoproteins are associated with higher ASCVD risk.

The fundamental causal role of apo B lipoproteins is
further supported by observations that individuals with
genetically lower LDL-C or apo B lipoprotein levels have
lower lifetime risk of coronary heart disease, despite the
presence of other risk factors.16,21,35 Recent data suggest
atherosclerosis still develops in the absence of risk factors
when LDL-C levels are >60 mg/dL.31 It is noteworthy that
contemporary aboriginal populations living a subsistence
lifestyle have low plasma levels of apo B lipoproteins and high
levels of inflammatory markers, including C-reactive protein,
because of chronic infection, yet have little evidence of
subclinical atherosclerosis.36 Likewise, in animal models,
atherosclerosis develops in the presence of tobacco smoke,
immune derangements, or hypertension only when plasma
levels of apo B lipoproteins are elevated.18

Evidence for Role of Apo B Lipoproteins in
Plaque Regression
Atherosclerotic plaques require a continuous supply of apo B
lipoproteins from plasma to progress.18 Reducing the inflow
of toxic apo B lipoproteins into the arterial intima allows
normal scavenger and phagocytic clearance mechanisms to
clear the apo B lipoprotein overload (Figure 2).37 In advanced
mouse atherosclerotic plaques, large reductions in plasma
apo B lipoprotein levels induce macrophage foam cells to
undergo phenotypic changes into resolution-promoting cells.
These cells have similarities to the M2 activated state, which
finally allows these cells to emigrate into adventitial lymphat-
ics and transmigrate back into the lumen.19,38–40 Some
properties of these resolution-promoting macrophages that
promote regression include effective clearance of dead
lesional cells by the process of efferocytosis and the quelling
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of lesional inflammation. In-migration of healthy, non-lipid-
laden macrophages also contribute to more effective
efferocytosis.41 This leads to plaques that are less necrotic
and more stable against rupture and erosion. Inflammatory
cells leave and smooth muscle cells migrate into the
subendothelium and fibrosis resolves. The role of macro-
phage-specific cholesterol removal in regression of human
plaque is not yet clear, though in preclinical models, if there is
no functional HDL there is little regression despite lowering
apo B lipoproteins.42 Plaque stabilization occurs as the lipid-
rich core shrinks, reducing maladaptive inflammatory cell
infiltration and microvascularization, and the thin fibrous cap
thickens.

In animal models, reducing LDL-C levels to below 25 mg/
dL (0.6 mmol/L) has been shown to completely regress early
atheromata (Figure 3) and normalize vascular function, with
return of nitric oxide sensitivity and improved nitric oxide
synthase cofactor bioavailability.6,43–45 In models of more
advanced atheromata, substantial regression can occur but
residual stabilized plaque remains and vascular function
continues to be abnormal.6,44,46 Aggressive LDL-C reductions
cause almost immediate loss of foam cells through emigra-
tion, and over the longer term, resolution of necrotic regions,
infiltration of smooth muscle cells, and reductions in choles-
terol clefts and fibrosis.40,47,48

Animal experimentation and human epidemiologic studies
have shown that endothelial dysfunction and vascular
stiffness develop before blood pressure levels begin to

rise.49–51 These findings suggest that regression of early
atherosclerosis could also prevent or delay the later devel-
opment of hypertension, and thus hypertension’s clinical
sequelae. Indeed, several statin trials have found reductions in
blood pressure and hypertension incidence in statin-treated
patients.52 In animal models, PCSK9 deficiency has been
shown to reduce apo B lipoprotein levels, atherosclerosis
development, and endothelial dysfunction.53 PCSK9 inhibitors
have also recently been shown to improve endothelial
function in proportion to the magnitude of LDL-C lowering.54

In human clinical trials, intensive LDL-C lowering with statins,
statins combined with ezetimibe, and PCSK9 monoclonal
antibodies have been shown to modestly reduce atheroma
volume in proportion to the magnitude of LDL-C decrease in
individuals with clinical coronary artery disease.55,56 Indeed,
there appears to be no lower LDL-C limit for regression of human
coronary atheroma, with greater reductions in plaque volume to
LDL-C levels as low as 15 mg/dL (0.4 mmol/L) in trials of
statins and PCSK9 monoclonal antibodies added to statin
therapy. A systematic review of 50 regression trials found that
significant plaque regression occurred in trials with an average
treatment period of 20 months.57

As will be discussed below, current imaging methods may
underestimate beneficial changes in plaques after treatments,
particularly those that affect cellular composition (such as
loss of macrophages or a change in their inflammatory state)
or replacement of a necrotic core by a thicker fibrous cap.
Less intensive statin therapy slows atheroma progression in
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Figure 2. Mechanisms of regression following apo B lipoprotein reduction. Dramatic reduction in plasma concentrations of LDL-C and other
apo B lipoproteins leads to decreased subendothelial entry and retention. Decreased levels of “toxic” apo B lipoproteins allows normal
phagocytic and inflammation resolving mechanisms to “heal” the plaque. Decreased foam cell formation in the intima allows macrophages to
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primary prevention in children and adults.58,59 Carotid artery
specimens from statin-treated individuals show favorable
pathophysiologic changes including plaque stabilization sim-
ilar to those observed in animal studies, and these changes
are associated with decreased risk of ASCVD events.60

Greater percent regression, as assessed by intravascular
ultrasound, occurs in women with a lower plaque burden,
suggesting more responsiveness to aggressive LDL-C lower-
ing in earlier stages of plaque development.61 Indeed, recent
data suggest that high-intensity statin therapy has a greater
effect on non-calcified plaque than on more advanced,
calcified lesions.62 Animal studies suggest that complete
plaque resolution in humans may be possible only in early
stages, rather than in later stages when there is a more
extensive burden of fibrocalcific plaque.44,63 The more rapid
and extensive plaque stabilization and regression of earlier
lesions appears to result from reductions in lipid core volume
as well as resolution of maladaptive inflammation and early
fibrotic changes.64–66

Patients with clinically manifested ASCVD in the secondary
prevention regression trials continue to have a large burden of
atherosclerosis despite substantial LDL-C lowering, and
remain at high risk of recurrent cardiovascular events. Up to
35% of patients experiencing a coronary event will die within a
year (Figure 4).56,67,68 Recent studies have found the patho-
physiology of acute coronary events is changing as patients
are increasingly treated with statins, such that plaque erosion,
rather than rupture of unstable plaque, is emerging as a major
cause of recurrent coronary events.69 These findings suggest
secondary prevention efforts will be insufficient for ASCVD
eradication. Indeed, in recent PCSK9 monoclonal antibody
trials, the continuing high rate of cardiovascular events is
more likely to be explained by the persistence of a high

burden of atherosclerosis than from inadequate LDL-C
lowering.67

In animal models, raising functional HDL has been shown to
potentiate the effect of LDL-C reduction on plaque regression.70

In humans, however, Mendelian randomization studies have
found no association between HDL-C level and risk of
cardiovascular events.71 Nor has pharmacologically increasing
HDL-C been shown to reduce cardiovascular events indepen-
dent of effects on LDL-C.72 Animal studies suggest that the
functional properties of HDLs appear to bemore important than
the HDL-C level per se for regressing atheroma, and some data
from humans suggest that greater HDL functionality is asso-
ciated with lower risk of ASCD events.73

Evidence for LDL-C, Non-HDL-C, and Apo B
Lowering Drug Therapy to Reduce
Cardiovascular Events
It is clearly established that the LDL-C, non-HDL-C, and apo B
reductions induced by statins, ezetimibe and PCSK9 inhibitor
therapies translate into a reduction in ASCVD events.21,74,75

Indeed, progressively greater magnitudes of reduction in the
relative risk of cardiovascular disease correlate with progres-
sively larger absolute reductions in LDL-C, non-HDL-C, and apoB
lipoprotein levels.74,76 Non-HDL-C differs from LDL-C in that
non-HDL cholesterol encompasses VLDL and remnant lipopro-
tein cholesterol plus LDL-C and cholesterol in Lp(a). Importantly,
in relative terms, statin therapy appears to be more effective in
lower risk individuals (eg, those who are younger, since age
contributes the largest component of risk in multivariate
equations77), with almost twice the relative reduction in the
risk of cardiovascular events in lower than in higher risk
individuals.78 These data provide evidence for the concept that a
greater magnitude of LDL-C, non-HDL-C, or apo B lowering will
have a greater relative impact on earlier, compared with later,
stages of atherosclerosis, consistent with what has been found
in the animal and human regression studies.79 Moreover, long-
term post-trial follow-up of several primary prevention statin
trials provides evidence that LDL-C lowering has a lasting impact
onplaque stabilizationandatherosclerotic burdenand the risk of
ASCVD events, or a “legacy” effect. Participants treated with
statins for 3 to 5 years remains at lower cardiovascular risk over
follow-up periods of 11 to 20 years.79

Recent trials of PCSK9 inhibiting monoclonal antibodies
have demonstrated that an additional 50% to 60% reduction in
LDL-C resulted in modest 15% to 20% reductions in the
relative risk of cardiovascular events in statin-treated patients
with ASCVD.67 Despite reducing LDL-C to a mean of 30 mg/
dL (0.8 mmol/L) in the evolocumab group in Further
Cardiovascular Outcomes Research with PCSK9 Inhibition in
Subjects with Elevated Risk (FOURIER), the recurrent rate of
major cardiovascular events was 4.5%, or 45% extrapolated to

Figure 3. Complete regression of early plaque lesions
when intensive cholesterol lowering to 11 to 55 mg/dL
starts at 30 weeks, compared with substantial although not
complete regression of later stages of plaque when
intensive cholesterol lowering is initiated at 40 or
50 weeks. Adapted from Bj€orkegren et al44 with permis-
sion. Copyright ©2014 PLOS Genetics. ***P<0.001.
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10 years. This suggests that waiting to profoundly reduce
LDL-C, non-HDL-C, and apo B lipoproteins until a large burden
of advanced atherosclerosis has developed has only moderate
effects on the burden of atherosclerosis and does not prevent
most recurrent ASCVD events. In animal models and in
humans with advanced atherosclerosis, it appears that the
non-resolving inflammation in advanced plaques impairs
beneficial changes that follow aggressive LDL-C lowering,
further highlighting the advantages of earlier intervention.38

Moreover, targeting maladaptive inflammation in patients with
clinical ASCVD and elevated C-reactive protein levels also
appeared to have only a modest impact on recurrent
cardiovascular events in the recent CANTOS (Canakinumab

Anti-inflammatory Thrombosis Outcome Study), with a 15%
reduction in major cardiovascular events over 4 years.80

Taken together, these findings indicate that even potent
therapies that are delayed until a large burden of advanced
atherosclerosis has developed can have only moderate
additional benefits on the clinical burden of ASCVD.

Advances in Non-Invasive Imaging of
Atherosclerotic Plaque

Several invasive and non-invasive methods are available to
image atherosclerotic plaque burden, composition, activity,
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natural history, and response to therapy. Plaque burden is
consistently associated with ASCVD events using a variety of
measures.47,81 However, only some of these imaging methods
are able to detect and quantify response to therapy while
others have practical limitations. Coronary intravascular
ultrasound is a well-validated invasive test that has been
used in numerous trials to assess drug effects on atheroma
volume. In primary prevention, however, a safe, non-invasive
imaging test is required. Carotid intimal medial thickness is a
well-validated test that has been shown to detect plaque
regression in children and statin-na€ıve-adults, but requires
specialized technical expertise and thus not widely general-
izable, and is less predictive of coronary events.82

The latest generations of coronary computed tomography
angiography (CTA) scanners have high resolution for plaque
and calcification and much lower radiation exposures than
early generations of scanners. CTA is non-invasive as opposed
to intravascular ultrasound and optical coherence tomogra-
phy, covers the entire coronary tree, and allows evaluation of
the total extent of calcified and non-calcified plaques. It is
also widely available, relatively low cost, directly interpretable
as to the cause of coronary heart disease events, directly
demonstrates regression of visible plaque, and requires no
specialized expertise to perform. Studies using CTA would be
widely implementable, especially as automated reading pro-
grams under development become available.83

CTA has also emerged as the preferred choice for
evaluating and characterizing composition of coronary
plaques.84 In particular, measurement of low attenuation
(eg, uncalcified) plaque volume by CTA is a good measure of
plaque burden in younger people for several reasons. Several
studies demonstrate an association between total, percent,
and low attenuation coronary plaque volume assessed by CTA
and the risk of future major cardiovascular events, as well as
response to statins or other preventive therapy.85–88 In
contrast, coronary artery calcification reflects more advanced
plaque, and increases (rather than decreases) with statin
therapy.89,90

CTA images have been validated against virtual histology by
intravascular ultrasound and have been found to be accurate
and reliable in the estimation of plaque volume.84 Semi-
automated CTA analysis of coronary plaque composition is
reliable and reproducible and non-invasive imaging of coronary
CTA is a validated tool for assessment of response to drug
therapy.91 The radiation dose from the latest generation of
computed tomography (CT) scanners is less than a mammo-
gram, with an exposure of 3 to 4 mSv per scan. This is less than
the 6.2 mSv that the average person in the United States
receives each year from natural sources like the sun, outer
space, air, food, and soil, as well as from medical procedures. It
is far less than the 50 mSv of radiation allowed each year for
people who are exposed to radiation in their jobs.

Carotid arterial wall magnetic resonance imaging (MRI) is
becoming a more commonplace method to visualize
atherosclerotic plaque burden and composition (lipid-rich
necrotic core, overt calcifications, intraplaque hemorrhage
and fibrous tissue visualization).92 Vessel wall MRI is repro-
ducible, can effectively visualize all the major arterial systems,
requires no ionizing radiation, has been shown to discriminate
cardiovascular events, and has been used in clinical trials as a
measure of drug effectiveness in plaque regression.93,94

Additionally, MRI has proven useful in the evaluation
atherosclerotic plaque microvascularization and permeability,
key players in atherogenesis and rupture.

Positron emission tomography (PET) can be used to
visualize maladaptive inflammation and the metabolic pro-
cesses within atherosclerotic plaques.95 Radiotracers are now
available to visualize distinct aspects of the atherosclerosis
cascade and plaque destabilization, including macrophage-
mediated inflammatory change, hypoxia, and micro-calcifica-
tion. Of these radiotracers, 18-F-florodeoxyglucose (FDG) is
the most common and is used to non-invasively evaluate the
metabolic activity of vascular inflammation.96 18-F-florodeox-
yglucose uptake correlates well with macrophage content in
atherosclerotic lesions and has established relationships with
circulating inflammatory biomarkers. It is highly reproducible
and requires only modest sample sizes to evaluate inflamma-
tory treatment efficacy in clinical trials.81 Combined PET/MRI
scanners now combine the strengths of 2 distinct imaging
modalities to simultaneously offer a platform to extensively
evaluate the entire atherosclerotic cascade in a single imaging
session. Radiation exposure with hybrid PET/MRI scanning is
lower than PET/CT and may be particularly beneficial in young
patients or for serial measurements of disease progression.97

Translating the Evidence into Next Prevention
Paradigm: ASCVD Eradication
The substantial body of evidence reviewed above supports
apo B lipoproteins as the fundamental initiating causal factor
in atherosclerosis. Moreover, early intervention to profoundly
lower LDL-C or non-HDL-C or apo B levels may substantially
reverse, and even eradicate, earlier stages of atherosclerosis.
Thus, we have proposed translating this evidence into a new
paradigm for ASCVD prevention that eradicates the clinical
burden of atherosclerosis by intensively lowering LDL-C at a
younger age (Figure 4).98 This new model is akin to that of
cancer therapy, with an acute induction phase followed by a
maintenance phase. After an intensive period of LDL-C/non-
HDL-C/apo B reduction to largely regress and stabilize
atherosclerotic plaque, subsequent periodic retreatment
every decade or so could occur as needed to suppress
significant plaque re-development and progression as the
individual ages. This approach avoids the need for adherence
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to lifelong lipid-lowering drug therapy for most patients and
minimizes safety considerations. As discussed above, this
approach seeks to approximate the life course of individuals
heterozygous for PCSK9 loss-of-function mutations, in whom
lifelong lower plasma LDL-C levels are associated with
markedly reduced risk of ASCVD events despite significant
risk factor burdens.35 This approach could potentially elimi-
nate the leading cause of death and healthcare expenditures
within a generation, while addressing widening disparities in
cardiovascular morbidity and mortality.

Proposed CURE ATHERO Trial
In the proposed CURE ATHERO (Curing Early Atherosclerosis)
trial, we plan to translate the finding in animal models that
intensive LDL-C lowering results in extensive regression of
earlier stages of plaque into a novel prevention strategy in
humans. The trial will enroll younger and early midlife, obese
adults with cardiovascular risk factors who have a significant
burden of uncalcified atherosclerotic plaque. CURE ATHERO
builds on the hypothesis that the clinical burden of atheroscle-
rosis might be eradicated in humans in its early stages by
aggressively LDL-C lowering to a level of 20 to 40 mg/dL (0.5–
1.0 mmol/L) for a relatively short intervention period of
3 years. Recent data from PCSK9 inhibitor trials suggest that
this LDL-C target is both achievable and safe over this time
period.67 The primary end point of the trial, relative changes in
low attenuation plaque volume measured by CTA after 3 years
will be used to evaluate plaque regression.

An age-adapted Pathologic Determinants of Atherosclero-
sis in Youth (PDAY) atherosclerosis likelihood risk score will
be used to identify screen-eligible women and men aged 25 to
55 years.99,100 PDAY risk factors include age, sex, body mass
index, blood pressure, non-HDL-C, HDL-C, smoking, and
hyperglycemia or diabetes mellitus. PDAY score ≥25 predicts
a >40% chance of having a significant burden of atheroma.
The PDAY risk score predicts coronary artery calcification
accurately up to 25 years later.100

Eligible individuals (n=130) with measurable low attenua-
tion plaque volume will be randomized to either: (1) intensive
LDL-C lowering to a level of 20 to 40 mg/dL (0.5–1.0 mmol/
L) using lifestyle and statins�alirocumab (a PCSK9
inhibitor)�ezetimibe or (2) usual care according to the
American College of Cardiology/American Heart Association’s
most recent cholesterol guidelines. CTAs will be performed at
baseline and at 18 and 36 months.

Robust imaging and biorepositories will leverage investment
in the trial for mechanistic studies and future discovery. Planned
ancillary investigations include imaging studies such as PET
MRI/CT to evaluate responses to intensive LDL-C lowering on
earlier stages of human plaque. Evaluations of genomic,
metabolomic, lipidomic, and proteomic profiles are also planned.

CURE ATHERO will determine whether intensive LDL
lowering can substantially reverse early atherosclerosis over
a period of 3 years. We anticipate some participants with less
advanced plaque may experience complete plaque regression
based on CTA. Data from this trial will provide substantial
mechanistic insights into plaque regression in younger adults
and provide the basis for planning a future definitive
cardiovascular regression and outcomes trials. CURE ATHERO
and its ancillary studies will identify optimal treatment
windows for intervention. Long-term post-trial follow-up of
CURE ATHERO participants will provide data on the redevel-
opment or progression of atherosclerotic plaque following
intensive LDL-C lowering, and insights into the need for
suppressive or maintenance drug therapy or further lifestyle
changes, or the most appropriate time intervals for intermit-
tent repeat regression therapy. Importantly, CURE ATHERO
will provide the foundation for future trials evaluating new
therapeutic approaches to PCSK9 inhibition. CURE ATHERO
should also provide insight into whether drug therapies more
specifically targeting triglyceride-rich apo B lipoproteins are
also needed to reverse atherosclerosis.101

Regulatory Pathways and Guidelines
Guidance on imaging as an approvable end point has been
provided by the US Food and Drug Administration and the
European Medicines Agency.102,103 General principles for
regulatory approval based on imaging end points include
validated atheroma measures associated with cardiovascular
events, drug therapies shown to reduce cardiovascular
events, and atheroma measures shown to respond to
treatment in ≥2 arterial beds.81 For primary prevention,
imaging measures need to be non-invasive with low or no
radiation exposure, and for large trials need to be relatively
inexpensive and widely available. The most appropriate
atheroma measures depend on the population and treatment
studied. Examples include the finding that carotid intimal
medial thickness appears to be significantly modified only in
statin na€ıve individuals, and that coronary artery calcium
increases during statin therapy.90,104,105 However, CT angiog-
raphy, MRI, and PET/MRI or PET/CT have been shown to
measure response to LDL-C lowering therapies such as
statins and PCSK9 monoclonal antibodies.81

However, population-wide implementation of intensive
early treatment to eradicate the clinical burden of ASCVD
will require randomized clinical trials demonstrating marked
reductions in cardiovascular events. Some guideline panels
may only be persuaded by a reduction in hard events
(cardiovascular death, myocardial infarction, and stroke) or
total mortality. Such trials should be manageable to perform
given the expectation of large reductions in relative risk in
properly selected at-risk individuals. We have estimated that a
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5-year cardiovascular outcomes trial powered at 80% for an
80% relative risk reduction could be performed in <10 000
individuals with a 0.2% annual cardiovascular event rate, a
rate commonly seen in average US men aged 45 to 54 years
and women aged 55 to 64 years.2,98 CURE ATHERO can
inform identification of high risk younger individuals for
inclusion in a cardiovascular outcomes trial.

Conclusions
Compelling evidence supports evaluating intensive reduction
of plasma apo B lipoproteins for regressing and perhaps
curing early atherosclerosis. We have proposed the first
human trial that will lay the groundwork for this new area of
investigation into a new cardiovascular prevention paradigm
aimed at eradicating the clinical burden of ASCVD. This new
prevention paradigm combining an intensive induction-phase
with long-term maintenance therapy should provide a maxi-
mum ASCVD prevention benefit with minimal inconvenience,
adverse effects, and cost.
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