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Abstract  

Depression is the leading cause of disability worldwide and is one of the major 

contributors to the overall global burden of disease. Despite significant advances in 

elucidating the neurobiology of depression in recent years, the molecular factors involved 

in the pathophysiology of depression remain poorly understood.  

Chapter 1: An overview of Major Depressive Disorder (MDD) from epidemiological and 

clinical perspectives with a summary of the current knowledge of the underlying biology 

is provided. A review of the major pathophysiological hypotheses of MDD highlights a 

need for a more comprehensive approach that allows studying complex molecular 

interactions involved in depression.  

Chapter 2: Transcriptome signature of depression was examined using the measure of 

replication at individual gene level across different tissues and cell types in both brain and 

periphery. Fifty-seven replicated genes were reported as differentially expressed in the 

brain and 21 in peripheral tissues. In-silico functional characterisation of these genes was 

provided, implicating shared pathways in a comorbid phenotype of depression and 

cardiovascular disease. 

Chapter 3: The molecular basis of MDD using co-expression network analysis was 

investigated. The Weighed Gene Co-expression Network Analysis (WGCNA) allowed for 

studying complex interactions between individual genes influencing biological pathways 

in MDD. Utilising the Sydney Memory and Aging Study (sMAS) and the Older Australian 

Twin Study (OATS) as discovery and replication cohorts respectively, it was found that 

the eigengenes of four clusters containing over 3,000 highly co-regulated genes are 

involved in 13 immune- and pathogen-related pathways and associated with recurrent 

MDD. However, the findings were not replicated on an independent cohort at the network 



Transcriptome signature of depression 

5 
 

level. 

Chapter 4: Using a machine learning (ML) approach, a predictive model was built to 

identify the genome-wide gene expression markers of recurrent MDD. Fuzzy Forests (FF) 

is a novel ML algorithm, which works in conjunction with WGCNA and was designed to 

reduce the bias seen in feature selection caused by the presence of correlated transcripts 

in transcriptome data. FF correctly classified 63% of recurrently depressed individuals in 

test data using the single top predictive feature (TFRC, encodes for transferrin receptor). 

This suggests that TFRC can represent a putative marker for recurrent MDD.  

Chapter 5: Following the findings on immune-related pathways being associated with 

recurrent MDD in the elderly (Chapter 3), the role of these pathways in recurrent MDD 

was examined at individual gene levels in an independent cohort (OATS). To target the 

immune pathways, all known genes (KEGG) involved in these 13 pathways were selected 

and a differential expression analysis was conducted on 1,302 candidates between 

individuals with recurrent MDD and those without. We found that CD14 was significantly 

downregulated in recurrent MDD (FDR < 5%). Considering the key role of CD14 for 

facilitating the innate immune response, we suggest that CD14 can potentially serve as 

a peripheral marker of immune dysregulation in recurrent MDD.  

Chapter 6: A discussion on obtained findings is provided and future directions are outlined 

with a particular focus on how co-expression network and machine learning approaches 

that can enhance translation of molecular findings into clinical translation.  
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CHAPTER 1 

General introduction 

EPIDEMIOLOGY OF MAJOR DEPRESSIVE DISORDER (MDD) 

Major Depressive Disorder is a leading cause of disability worldwide, and is one of the 

major contributors to the overall global burden of disease (Whiteford et al., 2015), 

including Australia (Ciobanu et al., 2018a) (Appendix A). Globally, more than 300 million 

people of all ages suffer from depression (WHO, 2017). It has been estimated that 

depressive disorders (including MDD and dysthymia) are the top contributors to the 

disease burden attributable to mental and substance use disorders globally (Figure 1.1) 

as well as in Australia (Figure 1.2) explaining 40.5% and 30% of Disability-Adjusted Life 

Years, DALYs, respectively (Hay et al., 2017). 
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Figure 1.1. Proportions of DALYs explained by mental and substance use disorders 

globally in 2010. Disability-adjusted life years (DALYs) is a sum of years lived with 

disability (YLDs) and years of life lost (YLLs). 

 

Source: 2010 Global Burden of Disease Study. Seattle, Washington University Institute for Health Metrics 

and Evaluation (Whiteford et al., 2013) 
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Figure 1.2. Proportions of DALYs for mental and substance use disorders in Australia in 

2015. Disability-adjusted life years (DALYs) is a sum of years lived with disability (YLDs) 

and years of life lost (YLLs) 

 

Source: 2015 Global Burden of Disease Study. Seattle, Washington University Institute for Health Metrics 

and Evaluation, 2015 (Ciobanu et al., 2018a)  

 

MDD is also a recognised risk factor for other health outcomes. MDD is an important 

contributor of burden allocated to ischemic heart disease (Ferrari et al., 2013). 

Furthermore, individuals suffering from MDD have a shorter life expectancy than those 

without MDD, in part due to suicidal ideation  (Cassano and Fava, 2002).  

Considering the burden of this devastating disorder on society, there have been 

substantial financial investments into improved medical services for affected individuals 

(Greenberg et al., 2015), which has led to fourfold return in better health and ability to 

work, according to a WHO-led study  (Chisholm et al., 2016). Despite these efforts the 

global burden of depressive disorders remains largely unchanged between 1990 and 

2016 (GBD, 2017).  
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CLINICAL MANIFESTATION OF MAJOR DEPRESSIVE DISORDER (MDD) 

Major depression is a psychiatric mood disorder that goes beyond the normal human 

experiences of sadness. It encompasses a broad range of symptoms such as feeling 

worthless, having thoughts of suicide, losing interest in most or all activities, experiencing 

a significant change (decrease or increase) in appetite or sleep patterns, and having 

difficulty concentrating. Long-term symptoms can cause clinically significant distress to 

the individual or lead to impairment in social, occupational, or other important areas of 

functioning. Clinical diagnosis of MDD uses a symptom-based approach as defined in the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-V). According to DSM-V, a 

diagnosis of major depressive disorder is made when the following symptoms are present 

almost every day for at least two weeks (Box 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problematic reliability of symptom-based MDD diagnosis in clinical practice 

 

Box 1 

DSM-5 diagnostic criteria for major depression 

 A. 
Five (or more) of the following symptoms present during the same 2-week 
period and which represent a change from previous functioning; at least one 
of the symptoms is either (1) depressed mood or (2) anhedonia 

 B. 
Symptoms cause clinically significant distress or impairment in social, 
occupational, or other important areas of functioning 

 C. 
Episode is not attributable to the physiological effects of substance abuse or 
another medical condition 

1. Depressed mood most of the day (e.g., feels sad, empty, hopeless) 
2. Markedly diminished interest or pleasure in almost all activities nearly 
every day 
3. Significant appetite changes or significant weight loss or gain 
4. Insomnia or hypersomnia nearly every day 
5. Psychomotor agitation or retardation 
6. Fatigue or loss of energy 
7. Feelings of worthlessness or excessive guilt 
8. Diminished ability to think or concentrate or indecisiveness 
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The value of disease diagnosis is limited by its reliability, i.e. the agreement between 

clinicians on making the same diagnosis in the same patient. Reliability is typically 

evaluated with the kappa coefficient, which ranges from 0 to 1 (from chance to perfect 

agreement). Benchmarks have been proposed with values above 0.6 considered to be 

good or very good, between 0.4 and 0.6 moderate, 0.2 to 0.4 fair, and below 0.2 poor 

(Altman, 2006, Landis and Koch, 1977). The DSM-V field trials, which are designed to 

ensure that diagnoses were carried out in a way that is representative of psychiatric 

practice and with an appropriate level of training in the use of DSM-V, have yielded a 

kappa of 0.28 (95% CI 0.20- 0.35) based on separate interviews by physicians (Darrel A. 

Regier et al., 2013). Given a low validity of DSM-V diagnosis, i.e. poor agreement 

between clinicians on symptom-based diagnosis (Uher et al., 2014), greater promise can 

be expected with biologically based diagnostic markers of MDD that are objective in both 

methodology and interpretation (Smith et al., 2013).  

Limited efficacy of antidepressant treatment  

There has been a long debate in the medical community about the effectiveness of 

currently available antidepressants, centering around whether the observed results in 

patients can be attributed to the placebo effect (Kirsch, 2014). The largest meta-analysis 

of 522 trials of 21 antidepressants in 116,477 participants compared efficacy and 

acceptability of ADs for treatment of adults with moderate to severe MDD has shown that 

all ADs were more efficacious than placebo (Cipriani et al., 2018). However, rates of total 

remission following antidepressant treatment are estimated to be only 50.4% 

(Papakostas, 2010). Because existing first-line antidepressants -  classically thought to 

modulate monoamine neurotransmission - are often insufficient for many patients, there 

is a greater requirement for improvement in pharmacological antidepressant treatments. 

The next generation of mechanistically novel therapeutic strategies needs to be more 
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effective, rapid acting and better tolerated than currently available medications.  

Given the increased health and economic burden of depression on society, there is a 

pressing need for alternative lines of intervention. These can be achieved via developing 

and implementing improved clinical diagnostic tools and novel therapeutic strategies and 

treatments. Development of novel clinical diagnostic tools and therapies is paramount in 

moving towards improved clinical response. A better understanding of the underlying 

biological pathophysiological mechanisms of depression are required to improve 

treatment response and predict response outcome. To develop unbiased biology-based 

diagnostic tools and improved pharmacological treatments, there is a need to better 

understand that molecular basis of depression.  Although decades of experimental 

research have provided several major biological hypotheses of depression, a 

comprehensive understanding of the biological correlates of depression remain to be 

determined. The major hypotheses of pathophysiology of MDD will be covered in the next 

section. 

 

MAJOR HYPOTHESES OF PATHOPHYSIOLOGY OF MDD 

Monoamine deficiency 

One of the early biological hypotheses ensued after observations in patients being treated 

for hypertension with reserpine. Acting as an antagonist reserpine blocks the vesicular 

monoamine transporter (VMAT) and thereby reduces monoamine levels within the brain. 

As a result patients were experiencing comorbid depression (Freis, 1954). Following this 

observation, the hypothesis that a deficiency or imbalance in the monoamine system of 

the brain is an underlying biological basis for depression was proposed. Monoamines 

refer to the particular neurotransmitters dopamine, norepinephrine and/or serotonin. On 

the basis of this hypothesis, various antidepressants have been designed to increase the 
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levels of monoamines within the synaptic cleft either via inhibition of monoamine 

degradation or by the blockade of their reuptake (Slattery et al., 2004). Currently marketed 

antidepressants have the monoamine hypothesis as their theoretical basis. The two 

original antidepressants were the monoamine oxidase inhibitor (MAOI) Iproniazid, and 

the tricyclic antidepressant (TCA) Imipramine. The determination of their mode of action 

led to the catecholamine hypothesis of depression being developed in the mid‐1960s 

(Schildkraud, 1965). Monoamine elevation therapies have for the large part proved 

successful and remain the most widely prescribed pharmaceuticals (e.g. TCAs, MAOIs 

and uptake inhibitors); however, two caveats remain as all monoaminergic 

antidepressants have a delayed onset of action of several weeks and therapeutic 

unresponsiveness is indicated in roughly 30% of depressed patients (Doris et al., 1999, 

Machado-Vieira et al., 2008).  Given the limited success of monoamine interventions and 

the increasing burden of the disorder on society, novel non-monoamine interventions 

have emerged. 

HPA axis hyperactivity  

The hypothalamic-pituitary-adrenal (HPA) axis is the fundamental neuroendocrine 

system that controls reactions to stress. This axis consists of stimulating forward and 

feedback inhibition loops involving the brain, pituitary, and adrenal glands, which regulate 

glucocorticoid production.  Cortisol released from the adrenal glands, binds within the 

brain with high affinity to mineralocorticoid receptors (MRs) and with lower affinity to 

glucocorticoid receptors (GRs). The hyperactivation of the HPA axis reflecting a 

dysregulation of MR and/or GR is one of the most consistent findings in neurobiology of 

depression, but the mechanisms underlying this abnormality are still unclear. This 

increased activity of the HPA axis is thought to be related, at least in part, to reduced 

feedback inhibition by endogenous glucocorticoids (Pariante and Lightman, 2008). 
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Altered neural plasticity and neurogenesis 

Neural plasticity is a fundamental mechanism of neuronal adaptation. It is becoming 

increasingly clear that altered neurogenesis and neural plasticity induced by stress and 

other negative stimuli play a significant role in the onset and development of depression 

(Duman et al., 1999). According to this theory, neural circuits and connections undergo 

lifelong modifications and reorganizations in response to external or internal 

environmental stimuli. Adult neurogenesis involves precursors of cell proliferation, 

migration and differentiation mainly occurring in the dentate gyrus of the hippocampus 

(Eriksson et al., 1998). Neurotoxic agents such as chronic stress, excessive 

concentrations of glutamate, biogenic amines and glucocorticoids may affect the 

morphology of some neural cells such as hippocampal CA3 pyramidal neurons and 

pyramidal cells of prefrontal cortex (Serafini, 2012). Reduced hippocampal volume is one 

of the most common findings in depressed individuals and longer duration of depressive 

episodes is known to be closely related to modifications in hippocampal volume 

(Lorenzetti et al., 2009). However, there is no scientific consensus to confirm the direction 

of causality. Most of the studies suggest that depression and dysfunction of neural 

plasticity act on and influence each other (Liu et al., 2017).  

Dysregulation of glutamatergic system 

Glutamate is the most abundant excitatory neurotransmitter in the central nervous 

system. It is found in substantially higher concentrations than monoamines and in more 

than 80% of neurons, highlighting its role as a major excitatory synaptic neurotransmitter 

(Mathew et al., 2005). Given that glutamate is so widely distributed in the brain, strict 

regulation is necessary to prevent undue excitotoxicity. The delicate balance of glutamate 

with the major inhibitory neurotransmitter γ-aminobutyric acid (GABA) is essential for all 

physiological homeostasis in the CNS (Schoepp, 2001). Early findings within the 1990s 
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showed that N-methyl-D-aspartate receptor (NMDA-R) antagonists possess 

antidepressant-like action (Trullas and Skolnick, 1990) leading to the ‘glutamate 

hypothesis of depression’. Later studies have found that MDD pathophysiology is 

associated with dysfunction of the predominant glutamatergic system, malfunction in the 

mechanisms regulating clearance and metabolism of glutamate, and morphological 

maladaptive changes in a number of limbic/cortical areas in the brain mediating cognitive-

emotional behaviours (Sanacora et al., 2012). Glutamate itself serves as a metabolic 

precursor for the neurotransmitter GABA, via the action of the enzyme glutamate 

decarboxylase. The role of GABA specifically in MDD is briefly discussed below. 

Reduced GABAergic activity 

GABA (γ-aminobutyric acid) is the chief inhibitory neurotransmitter in the mammalian 

central nervous system. Its principal role is reducing neuronal excitability throughout 

the nervous system. The GABAergic deficit hypothesis of depression posits that reduced 

GABA concentrations in the brain, impaired function of GABAergic interneurons, altered 

expression and function of GABAA receptors, and changes in GABAergic transmission 

dictated by altered chloride homeostasis can contribute to the aetiology of MDD (Luscher 

and Fuchs, 2015).  

Dysregulation of melatonergic system 

Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that is prominently, albeit 

not exclusively, synthesised in the pineal gland and secreted in a phasic manner (its 

circulating level varies in a daily cycle). Melatonin exerts its actions through membrane 

MT1/MT2 melatonin receptors, which belong to the super family of G-protein-coupled 

receptors and are primarily expressed in the CNS (De Berardis et al., 2013). Circadian 

rhythms, regulated by the melatonergic system, have long been considered to be 
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disrupted in MDD, bringing on depressive behaviours and symptoms, disrupted sleep 

and poor regulation of neuroendocrine mediators such as cortisol, norepinephrine (NE) 

and serotonin (McClung, 2007). However, the complex relationships between the 

circadian system and the development of depressive symptoms are far from being 

elucidated (Courtet and Olie, 2012). Stimulation of melatonergic (MT1 / MT2) receptors by 

melatonergic antidepressants, such as agomelatine, purported to resynchronize circadian 

rhythms, was found moderately more effective than placebo with similar efficacy and 

fewer side effects to standard antidepressants in the treatment of depressed patients 

(Cardinali et al., 2013, Taylor et al., 2014).  

Inflammation in depression  

Finally, pathophysiology of depression was associated with the immune system and 

inflammation (Maes, 1999). Extensive findings support the role of chronic low grade 

inflammation in depression. MDD patients exhibit all of the cardinal features of an 

inflammatory response, including increased expression of pro-inflammatory cytokines 

and their receptors (McAfoose and Baune, 2009, Mills et al., 2013) and increased levels 

of acute-phase reactants (Wium-Andersen et al., 2013, Kohler-Forsberg et al., 2017), 

chemokines (Eyre et al., 2016, Singhal and Baune, 2018) and soluble adhesion 

molecules in peripheral blood and cerebrospinal fluid (CSF) (Lespérance et al., 2004, 

Dimopoulos et al., 2006). Inflammation in depressed patients has been linked to altered 

gut microbiota dysbiosis (dysregulation of gut-brain-axis) (Clapp et al., 2017, Schachter 

et al., 2018), childhood trauma (Cattaneo et al., 2015), and stress-related epigenetic 

regulations (Wang et al., 2018). Inflammation has also been observed in depressed 

patients suffering from obesity (Ambrosio et al., 2018), cardiovascular disease (Halaris, 

2017), cancer (Li et al., 2017, Weber and O’Brien, 2017), and asthma (Jiang et al., 2014), 

suggesting inflammation to play an important role in comorbid depression. Accumulating 
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evidence suggests that anti-inflammatory treatments are associated with anti-depressant 

properties. Although the therapeutic effect of anti-inflammatory drugs has been observed 

in several clinical trials (Köhler et al., 2014, Köhler et al., 2016), it has been mainly 

explored in acute disease stages, which indicates its potentially limited application in 

clinical settings (Baune, 2018).  

Although the empirical evidence for the role of the immune system in depression is 

increasing, our understanding of the immunology underlying inflammation in depression 

is limited. For instance, not all patients with increased inflammation develop MDD nor do 

all people with MDD show prominent immune activation (Steptoe et al., 2003). Therefore, 

it is becoming increasingly clear that dysregulated inflammatory responses are not 

necessary or sufficient for the development of depression, as inflammatory markers 

appear to be increased only in a subset of patients (Rosenblat et al., 2014). Furthermore, 

while both innate and adaptive immune systems seem to be involved in depression, the 

interplay between the two remains unclear. 
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WHY STUDY THE TRANSCRIPTOME IN DEPRESSION? 

Surmounting evidence suggests that depression is a multifaceted disorder with both 

genetic and environmental factors contributing to the onset and progression of the 

disorder. Despite substantial heritability of depression estimated at 31% to 42%  (Sullivan 

et al., 2000), identification of the genetic underpinnings of depression has been 

challenging. An intensive search for genetic factors of depression using a candidate gene 

approach pointed towards more than 200 genetic loci, mainly genes involved in 

neurotransmission and the hypothalamic–pituitary–adrenal axis (HPA), however, only a 

few of these findings have been successfully replicated (Rivera and McGuffin, 2015). 

Genome-wide association studies (GWAS), after several unsuccessful attempts (Flint 

and Kendler, 2014) recently revealed 18 novel loci associated with depression at 

genome-wide level. Two loci were found associated with severe depression in Han 

Chinese women (CONVERGE, 2015), and 15 loci were identified through 23andMe using 

self-report data of severely depressed individuals (Hyde et al., 2016), and one recently 

identified locus was found to be associated with late-onset depression (Power et al., 

2017). Although each of the three GWAS studies validated their findings within replication 

studies, there was no overlap in genetic variants across these studies. The discrepancies 

between the findings reflects the highly heterogeneous nature of depression (Levinson et 

al., 2014).   

Studying global gene expression is a relatively novel and promising approach to uncover 

the pathophysiology of depression as well as to possibly provide useful clinical 

information for predicting treatment response and identification of appropriate treatment 

options. Quantifying the abundance of mRNA molecules in a single cell or from within a 

population of cells provides essential information on the biological activity and functions 

of genes. Studying gene expression in depression can be viewed as being 

complementary to a gene discovery approach aimed at understanding the dynamic 
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molecular changes in depression. Given that the level and patterns of gene expression 

are influenced by both genetic and environmental factors (Wright and Sullivan, 2014), - 

such as age (van den Akker et al., 2014), sex (Jansen et al., 2014), smoking status 

(Charlesworth et al., 2010) and well-being (Fredrickson et al., 2013), - association 

between gene expression and depression may reflect an interactive effect of both.  Within 

a clinical research context, the identification of altered gene expression patterns in 

depression is of critical importance for (1) a better understanding of molecular 

underpinnings of depression, (2) establishing biological  clinical markers of depression, 

(3) increasing the  evidence-base  for the development of novel antidepressants, and (4) 

identifying  biomarkers for predicting treatment outcome, all of which are urgently needed 

for a better diagnosis and for more personalised treatments of affected individuals (Ferrari 

et al., 2013).  

Rapidly advancing technologies, such as microarrays and RNA-sequencing that allow for 

transcriptome coverage have become powerful tools to quantify levels of gene expression 

in various tissues relevant for the pathophysiology of depression. In the next chapter, the 

gene expression signature of depression is explored using the measure of replication at 

the individual gene level.  Investigation includes extraction of a comprehensive list of 

those genes which were found to be dysregulated in depression in both brain and 

periphery across the lifespan and then determination of the molecular pathways these 

genes are involved in, and to what extent brain and peripheral tissues/cells findings 

overlap. 
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CHAPTER 2 

Genome-wide differential gene expression in brain and peripheral 

tissues in MDD across the life span 

 

 

INTRODUCTION 

There is a growing body of research investigating the gene expression signature of 

depression at the genome-wide level, with potential for the discovery of novel 

pathophysiological mechanisms of depression. However, heterogeneity of depression, 

the dynamic nature of gene expression patterns and various sources of noise have 
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resulted in inconsistent findings. We systematically review the current state of 

transcriptome profiling of depression in the brain and peripheral tissues with a particular 

focus on replicated findings at the single gene level. By examining 16 brain regions and 

5 cell types from the periphery, we identified 57 replicated differentially expressed genes 

in the brain and 21 in peripheral tissues. Functional overlap between brain and periphery 

strongly implicates shared pathways in a comorbid phenotype of depression and 

cardiovascular disease. The findings highlight dermal fibroblasts as a promising 

experimental model for depression biomarker research, provide partial support for all 

major theories of depression and suggest a novel candidate gene, PXMP2, which plays 

a critical role in lipid and reactive oxygen species metabolism. 

Genome-wide gene expression in depression 

The application of high-throughput gene expression analyses has gained momentum in 

the study of molecular signatures of diseases. Microarray and next generation 

sequencing (NGS) technologies, which permit profiling the expression of many thousands 

of genes simultaneously, have been applied with success in many areas, including cancer 

research. Genomic and transcriptome alterations have enabled molecular classifications 

of cancer and revealed novel biomarkers for diagnosis, prognosis, and predicting 

response to therapies (Roychowdhury and Chinnaiyan, 2016) and inspired many other 

fields of medical research to utilize newly developed techniques. In recent decades, the 

field of psychiatry has adopted these techniques, aiming to elucidate molecular 

mechanisms, identify biomarkers and provide better treatment for depression, the leading 

cause of disability affecting more than 350 million people worldwide (WHO, 2015).  

The problem of non-replication of gene expression findings  

A growing amount of genome-wide gene expression data has been analysed using 

differential expression analysis, the most widely applied statistical method. However, 
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numerous limitations of biological and technical nature, including large biological 

variations, small sample sizes, data collection details, clinical heterogeneity, 

comorbidities, differences in microarray platforms, data quality assessment, statistical 

algorithms used and covariates accounted for, and many others, have resulted in 

inconsistent results,  questioning their validity. Biological findings need to be confirmed 

by several studies using the same method in order to be accepted. While the lack of 

replication is a major concern for transcriptome studies in depression, the systematic 

collection of replicated findings have never been performed. We address this gap by 

exploring the gene expression signatures of depression derived from both brain and 

peripheral tissues using replication as the yardstick of reliability.  

The choice of tissue for depression in gene expression research 

Depression includes dysfunction at multiple biological levels, from genes (Ripke et al., 

2013) to brain regions (Gong and He, 2015) and blood circulating throughout the body 

(Lopresti et al., 2014). The choice of tissue, therefore, is of particular importance in gene 

expression research.  Studies performed on post-mortem brains have substantially 

advanced our understanding of the pathophysiological mechanisms of depression. Gene 

expression signatures derived from various brain regions collectively point towards 

various molecular processes involving inflammatory, cell survival, apoptotic, oxidative 

stress and other pathways (Mehta et al., 2010). However, brain expression findings 

cannot be used for diagnostic purposes due to limited access to tissue from affected 

individuals. Extensive research on peripheral biomarkers of depression has revealed that 

peripheral immune response and growth factors, endocrine factors and metabolic 

markers also contribute to the pathophysiology of depression (Lin and Tsai, 2016). This 

is consistent with the close interaction between the brain and peripheral tissues. However, 

whether gene expression pattern in a peripheral tissue, such as blood, is a reflection of 

brain activity or a separate peripheral tissue process independent of the brain, remains 
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to be understood.  It is therefore necessary not only to examine peripheral gene 

expression but also to compare the brain and periphery gene expression findings to 

address some of these questions in depression research.  

The main challenge is to compile the numerous transcriptome profiles derived from 

different brain areas or/and peripheral cell types into one coherent analysis in an attempt 

to explain the mechanisms of depression. In this review, we compare transcriptomes 

obtained from multiple cell types in order to identify replicated findings. It can be argued 

that if any particular gene, in the face of various biological and technical limitations, was 

differentially expressed in depression compared to healthy controls across several 

cell/tissue types or brain areas, this gene has an increased likelihood of being truly 

involved in the pathophysiology of depression. We explore the gene expression signature 

of depression using replicability at the single gene level as a method of maximising true 

associations.  

METHODS 

Article selection process 

Using PubMed and EMBASE databases, we screened for all gene expression studies in 

depression in humans published in peer-reviewed journals using various permutations of 

the following search terms: “transcriptome”, “gene expression”, “depression”, “MDD”, 

“Major Depressive Disorder”. This preliminary literature search resulted in over 72,700 

articles. In the second step, based on the titles and information provided in abstracts, we 

selected 42 articles with genome-wide expression data. The inclusion criteria for the 

review were: (1) phenotype of depression, (2) original genome-wide gene expression 

data, and (3) differential expression analysis between depression and controls. We did 

not restrict our selection by sample characteristics, like age, gender, and ethnicity. Using 
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the reference lists checks, we obtained additional 4 articles. Finally, we identified studies 

that utilized differential expression analysis between depression and controls. This 

systematic search strategy allowed us to select 15 articles on the brain (not limited to 

specific brain areas) and 10 on peripheral tissues (Figure 2.1).  

Figure 2.1. Selection process flowchart 

 

Measure of replication as a review method 

Given that calculating the percentage of overlapping genes (POGs) to evaluate the 

replicability of the results across different studies is not a valid approach in a situation 

with unequal lengths of differentially expressed gene (DEG) lists (Zhang et al., 2009), we 

used replication of single differentially expressed gene across the studies both separately 

and together for brain and peripheral tissues studies. First, we manually extracted all 

DEGs between depression and healthy controls reported by each individual study and, 
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using the multi-symbol checker (HUGO Gene Nomenclature Committee, HGNC), 

checked if these genes were known by another name (synonyms, previous names). 

Second, we identified all replicated DEGs for brain regions and peripheral tissues.  Third, 

we performed functional annotation of replicated DEGs using Top Diseases and 

Functions Network Analysis (Ingenuity Pathway Analysis, IPA) (Figure 2). 

Figure 2.2. Workflow chart 

 

RESULTS 

Mapping the transcriptome signature of depression in the brain 

The complexity of brain function, the heterogeneous phenotype of depression and the 

inevitable limitations of post-mortem studies together create a serious problem of 

integration of multiple single gene findings into a systematic network level translatable 

into observable behaviours of depression. In this review, we attempt to compile multiple 

differential gene expression findings in depression and controls across different brain 
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regions. Transcriptomes from 12 cortical and 4 subcortical areas were derived using 

microarray and RNA-seq technologies. Over 500 genes were reported to be dysregulated 

in depression across the brain in 15 studies selected for this review. However, small 

sample sizes (ranging from 9 to 21 for MDD cases across 15 studies) in combination with 

whole-genome statistics make these findings sensitive to false positive results. Tracking 

genes replicated across multiple studies is one of the ways to increase the validity of the 

results without losing brain areas specificity.  

Replication of gene expression findings in the brain 

A thorough examination of 15 brain studies showed that 582 genes were differentially 

expressed between depression and controls. Without discriminating between the different 

brain regions there were 57 replicated DEGs (9.8%) (Table 2.1). That is each gene was 

differentially expressed in any brain area more than once irrespective of the directionality 

of expression. Only 28 genes out of the combined pool of 582 DEGs (4.8%) were 

replicated in the same brain area. Among them, 5 genes were dysregulated in opposite 

directions, which may be partially explained by methodological differences between the 

studies. Top Diseases and Functions analysis (IPA) of the 57 replicated DEGs suggests 

that these genes collectively are involved in neurological disease, connective tissue 

disorders, developmental disorder, psychological disorder, cell-to-cell signalling and 

interaction, cardiovascular system development and function, cellular assembly and 

organization, nervous system development and function, cellular development, 

carbohydrate metabolism, molecular transport, small molecule biochemistry (Table 2.1). 
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Table 2.1. The 57 replicated differentially genes expressed mapped to the 6 cortical areas 

in depression (BA 8/9, BA21, BA24, BA44, BA45, BA46). Genes are listed according to 

the Top Diseases and Functions networks identified by IPA. Blue represents 

downregulation, pink upregulation, yellow information is not available.  Numbers refer to 

the studies cited (see below) 
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PMC PMC RSC PT

BA4 BA6 BA29 BA45

FGFR3

GABRA1 10 11

GABRA5 11 15

GABRB1

GABRD 11 11 15 11 3 11 15

GABRG1 11

GABRG2 15

GABRR1 11

GRIA1

GRIA2 4 11 11

GRIA3 3 11 15

GRIA4

GRIK1 11

NPPC 1 11 13 11 13 11

NTRK2

PRKCI 8 14

SLC1A2 3 11 3 11 3 11 15

SNAP23

SNAP25 11 4

SYN2 9 11 15

VAMP3

ADRA2A 15

ENPP2

GABBR2 15 11

GPR37

GRM3 15 11

HTR1A

HTR1B

HTR2A

HTR2C

LEPR

PTK2B 15

PTP4A2

S100B 11

SLC1A3 2 11

AQP4 5 14

CREB1

GLUL 6 3 11 15 11 11 3 15

JUN

MAPT

MOG 1 11

NR3C1 9

SAT1 10

SLC6A1 11

UGT8

BUD31

DLGAP1 1 11

LRP4 5 8

MOBP

PCDHA6

PPM1K

PRG2 13 11

PRPF4B 5 14

PTPRT

PXMP2 1 11

PLLP

SYT13

BA47

Neurological disease, Connective Tissue Disorders, Developmental Disorder 

6 2

CORTEX SUBCORTEX

Por
Hippo Amy LC Nacc

BA8/9 BA10 BA11 BA20 BA21

DLPFC

3

11 15

AnPC OC TC ACC Pop DLPFC

11

BA24 BA44 BA46

15

2

11 15

11 3 4

11

10

3 3

12 8 1 12 10

3 4

11 11

2

10 15

15

1 15

11 4 11

1 13 13

11

12 12 4

Neurological Disease, Psychological Disorder, Cell-To-Cell Signaling and Interaction 

12 12

1 13 13

12 12 4

15 10

1

12 12 4

12 11 15 12 4

12 14 12

11 3 11

1 10

15 15

Cardiovascular System Development and Function, Cell-To-Cell Signaling and Interaction, Neurological disease 

2

12 12

9

15

8 1

2

1 13 13

5 4

6 10

9 10

13

9 1

Cellular Assembly and Organization, Nervous System Development and Function, Cellular Development 

1 13 13

1 13 13

9 15

3 3 3

Carbohydrate Metabolism, Molecular Transport, Small Molecule Biochemistry 

1 13 13
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Abbreviations: 

PMC - Primary Motor Cortex, PC – Premotor Cortex, DLPFC – Dorsolateral Prefrontal Cortex, AnPC – 
Anterior Prefrontal Cortex, OC – Orbital Cortex, TC – Temporal Cortex, ACC – Anterior Cingulate Cortex, 
RSC – Retrosplenial Cortex, Pop – Pars Opecularis (part of the inferior frontal gyrus and part of Broca's), 
PT - Pars triangularis (part of the inferior frontal gyrus and part of Broca's area), POr - Pars orbitalis (part 
of the inferior frontal gyrus), Amy – Amygdala, LC – Locus Coeruleus, Nacc – Nucleus Accumbens, Hippo 
– Hippocampus 

Studies: 
1Aston et al. (2005), 2Bernard et al. (2011), 3Choudary et al. (2005), 4Duric et al. (2013), 5Iwamoto et al. 
(2004), 6Kang et al. (2007), 7Kohen et al. (2014a) 8Malki et al. (2015), 9Sequeira et al. (2006), 10Sequeira 
et al. (2007), 11Sequeira et al. (2009), 12Sibille et al. (2004), 13Sibille et al. (2009), 14Tochigi et al. (2008), 
15Klempan et al. (2009). 

 

The most replicated differentially expressed genes in the brain 

GABAergic and glutamatergic-related genes, which code for two major neurotransmitters 

in the brain (GABA, glutamate), show the most abundance in the replicated genes map 

with the highest dysregulation in prefrontal cortical areas, which are well known to be 

involved in mood regulation and depression (Table 2.1). However, the directionality of 

expression of GABAergic and glutamatergic-related genes across brain areas was 

inconsistent.  

The most widespread dysregulated gene across the brain is GLUL, a glutamatergic-

related gene coding for glutamate-ammonia ligase, which has been previously implicated 

in the pathophysiology of depression.  GLUL expression was dysregulated across 6 

cortical areas Brodmann Areas 8/9, 21, 24, 44, 45, and 46 (BA8/9, BA21, BA24, BA44, 

BA45, and BA46) and 2 subcortical areas (amygdala and locus coeruleus). However, the 

direction of dysregulation across different brain areas was not uniform, suggesting that 

GLUL, known to be involved in many biological functions, may be downregulated in one 

brain area/cell type and upregulated in another. Also noteworthy, the findings are 

conflicting for the two dorsolateral prefrontal cortical regions, BA46 and BA8/9.  Choudary 

et al. (2005) found GLUL to be upregulated in BA8/9, whereas Kang et al. (2007) showed 

that GLUL is downregulated in BA8/9; similarly, Sequeira et al. (2009) and Klempan et al. 

(2009) have found GLUL to be downregulated in BA46, while Choudary et al. (2005) 
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found it upregulated. This could possibly be explained by the differences in phenotype: 

MDD with unspecified cause of death (Choudary et al., 2005) vs. SMD – suicides with 

major depression (Sequeira et al., 2009, Klempan et al., 2009).  

The glutamate transporter gene SLC1A2, which has been previously shown to be 

dysregulated in depression, shows consistent dysregulation of gene expression across 

three brain areas: the dorsolateral prefrontal cortices (BA8/9, BA46) and anterior 

cingulate cortex (BA24).  Although dysregulation in BA8/9 and BA24 has been replicated 

twice and in BA46 three times, the direction of dysregulation is inconsistent. Choudary et 

al. (2005) found SLC1A2 to be upregulated in BA8/9, BA24 and BA46, whereas Klempan 

et al. (2009) found it to be downregulated in BA46. The directionality of dysregulation of 

SLC1A2 in BA8/9, BA24 and BA46 identified by Sequeira et al. (2009) was not reported. 

Another gene showing dysregulation across multiple brain areas is the GABRD - 

GABAergic gene, coding for gamma-aminobutyric acid type A receptor delta subunit, 

which was previously shown to play a role in depression (Feng et al., 2010). GABRD 

expression was consistently upregulated across 5 brain areas (BA6, BA8/9, BA44, BA45, 

and BA46) irrespective of phenotype (MDD vs. SMD) or sex (males only in Sequeira et 

al. (2009), Klempan et al. (2009), and both sexes in Choudary et al. (2005). This strongly 

suggests that upregulation of GABRD in aforementioned brain areas is related to 

depression for both males and females.  

Another group of consistently replicated genes are those from the serotonergic family, 

HTR1A, HTR1B, HTR2A, HTR2C, which were predominantly observed in the dorsolateral 

prefrontal cortex (BA8/9), pars orbitalis, part of the inferior frontal gyrus (BA47) (Sibille et 

al., 2004) and hippocampus (Duric et al., 2013). The HTR2A gene, in addition to BA8/9, 

BA47 and hippocampus, was also upregulated in the temporal cortex (BA21) (Sequeira 

et al., 2009) but downregulated in BA46 (Klempan et al., 2009). While these genes show 
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replication across different brain regions, none was replicated within the same brain area. 

Since serotonergic genes are known for their role in suicidal behaviour (Antypa et al., 

2013), interpretation of these replications in regards to depression only should be treated 

with caution as all four studies used the combined phenotype of depression and suicide.  

The PXMP2 gene, known to be involved in reactive oxygen species (ROS) metabolism, 

was replicated by three studies. The level of PXMP2 was found upregulated in the BA8/9, 

BA24, and BA46 (Choudary et al., 2005), downregulated in BA21 (Aston et al., 2005), 

and dysregulated in BA21 (Sequeira et al., 2009). 

The first RNA-seq study did not replicate microarray findings  

An important factor in brain research that is often not taken into account is the cellular 

heterogeneity of investigated brain areas. From which cells mRNAs are extracted may 

greatly affect the overall pattern of expression as functional distinct cells may express 

mRNAs in different amounts. To overcome this limitation, Kohen et al. (2014a) performed 

the first whole transcriptome sequencing (RNA-seq) of dentate gyrus (DG) granule cells 

captured by the challenging but powerful laser capture microdissection (LCM). None of 

27 genes (P<0.001) identified as significantly involved in shaping gene expression 

differences between depression and controls was replicated by any of the 14 reviewed 

brain whole-genome microarray studies. This suggests that the gene expression 

signature of depression is complex and further research on identifying the cell-specific 

patterns of expression across relevant brain areas is needed. 

Transcriptomic signature of depression at the periphery 

Given that blood and brain cells share 81.9% of the transcriptome (Liew et al., 2006), 

peripheral blood profiling gives us an opportunity to study some of the aspects of brain 

functioning in the absence of human neural tissue. Various types of peripheral blood cells 
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have been investigated in depression and gene expression studies, such as mononuclear 

cells (PBMCs) (Belzeaux et al., 2012, Liu et al., 2014, Segman et al., 2010), lymphocytes 

(Yi et al., 2012), CD4+ T cells (Wang et al., 2015), as well as dexamethasone (Menke et 

al., 2012) and lipopolysaccharides (LPS) (Spijker et al., 2010) stimulated, and 

unstimulated whole blood.   

Out of the combined pool of reported 752 DEGs, only 21 DEGs were replicated in an 

independent cohort. None of them have been replicated more than once across all 

reported studies. Moreover, only 8 out of 21 (38.1%) replicated DEGs showed a 

consistent direction of expression, whereas 11 were expressed in the opposite direction 

(52.3%), and for 2 genes the information about directionality was not available (9.5%) 

(Figure 2.3). This inconsistency creates a major obstacle for developing a peripheral 

blood biomarker panel for depression. 

The Top Diseases and Functions analysis (IPA) of the 21 overlapping DEGs identified in 

depression vs. healthy controls in the periphery highlighted the functional role of these 

genes in processes related to the cell cycle, cancer, cardiovascular disease, cellular 

assembly and organisation, cellular function and maintenance, amino acid metabolism, 

cell and organ morphology, cell death and survival and embryonic development (Figure 

2.3). 
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Figure 2.3. Replicated differentially expressed genes identified in periphery cells in 

depression. Red dotted lines represent upregulation; blue downregulation; and, grey for 

directionally of expression not reported.  

 

 

Abbreviations: MDD – Major Depressive Disorder, PBMCs – peripheral blood mononuclear cells, PBLs – 
peripheral blood leukocytes 

Studies: 1Belzeaux et al. (2012), 2Garbett et al. (2015a), 3Jansen et al. (2016), 4Liu et al. (2014), 5Menke 
et al. (2012), 6Mostafavi et al. (2014), 7Segman et al. (2010), 8Spijker et al. (2010), 9Wang et al. (2015), 
10Yi et al. (2012). 

 

Cellular Assembly and Organization, 

Cellular Function and Maintenance, Organ Morphology 

Amino Acid Metabolism, Cell Morphology,  

Cellular Function and Maintenance

Cell Death and Survival, Embryonic Development,

 Organ Morphology
ZNF31

Cell cycle, Cancer, Cardiovascular Disease ABL1, CAPRIN1, CYP1B1, HIST1H4A, IFIT, LMNA, MYH9, PIK3R1, SERPING1, STAT3

ASPM, DDZ17, GNPTAB, GSTT1, HIST1H4L, KCNJ2, SEMA3, SSH2

Top Disease and Functions Genes

ZCCH2
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Isolated cells vs. whole blood in biomarker research 

Using the measure of replication at the single gene level, we found that overall the results 

from isolated cell types had a better replication rate than results obtained using whole 

blood. This may partly be related to differential power, i.e. isolated cells with more specific 

signals yield high power for the same sample size, in comparison with whole blood, with 

multiple signals from different cell types.  The heterogeneity of depression also reduces 

statistical power. For instance, depression transcriptomes obtained from PBMCs showed 

overlap for 6 (Segman et al., 2010) and 7 (Belzeaux et al., 2012) DEGs across all studies 

with only 9 depression cases. On the other hand, the first deep RNA-seq of whole blood 

of 463 MDD cases and 459 healthy controls (Mostafavi et al., 2014) showed only 2 

overlapping genes from the list of the top DEGs, but failed to reach threshold for 

significance, DEGs (SEMA3, replicated by Garbett et al. (2015a) and IFIT3, replicated 

after Segman et al. (2010)). Although we show that transcriptomes obtained from isolated 

cells provide results with higher replicability, increased risk of spontaneous modifications 

in gene expression during cell isolation process should be considered when interpreting 

the results. 

Rather unexpectedly, the largest collection of replicated DEGs (9 out of 21) belongs to 

gene expression profiling study of dermal fibroblasts (Garbett, Vereczkei et al. 2015). 

Human dermal fibroblasts, due to their genetic and chemical stability during division in 

cell culture, are believed to be an experimental model for psychiatric research free of 

medication and lifestyle effects (Kalman et al., 2016) and have previously been used 

successfully for identifying cell cycle abnormalities in schizophrenia (Wang et al., 2010). 

This suggests that dermal fibroblasts may be fruitfully utilized as an accessible 

experimental model in depression gene expression research. 
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Comorbidities of depression 

Depression is known for its high comorbidity with chronic somatic diseases, such as 

asthma, diabetes and cardiovascular disease.  It may also occur in pregnancy and post 

pregnancy periods. Emerging research suggests that the comorbidity may arise due to 

overlapping mechanisms between different medical conditions. For this reason, we 

included and compared the overlap between the only two transcriptome studies 

investigating comorbid phenotypes with our list of replicated depression-related DEGs, (i) 

depressive asthma (Wang et al., 2015) and (ii) postpartum depression (Segman et al., 

2010). Wang et al. (2015) hypothesized that asthma and depression were linked via 

overlapping molecules/pathways mediated by CD4+ T-cells, and therefore isolated them 

and performed transcriptome profiling. Among 156 genes identified as differentially 

expressed between depressive asthma and healthy controls, we found that 6 genes 

(ZNF333, PIK3R1, ZCCHC2, GNTAB, LMNA, and ABL1) overlapped with the findings 

from other studies on pure MDD phenotype; among 73 DEGs between postpartum 

depression and healthy controls, 5 DEGs (HIST1H4A, HIST1H4L, GSTT1, ASPM, and 

IFIT3) overlapped with pure depression phenotype findings; moreover, one gene, 

SERPING1, showed overlap between depressive asthma and postpartum depression. 

These support the hypothesis of overlapping mechanisms involved in pathophysiology of 

depression and non-psychiatric diseases.  

Stimulated blood cells challenge 

Challenged blood cells potentially have a better ability to overcome the noise of variation 

in expression in basal blood, which is of critical importance in the case of such a 

heterogeneous phenotype as depression (Elowitz 2002). However, studies on stimulated 

cells, which are expected to show better signal-noise discrimination, showed the smallest 

number of replicated DEGs. Using in vivo dexamethasone stimulation of glucocorticoid 
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receptors (GR) in males aged 18-65 (18 MDD cases), Menke et al. (2012) were able to 

demonstrate the GR-mediated changes in gene expression between depressed patients 

and healthy controls. They suggested that altered GR functioning could potentially be 

used as a molecular biomarker of depression. However, only one gene (SSH2) out of 19 

identified as a biomarker panel by Menke et al. (2012)  was recently replicated in a larger 

cohort of depressed patients (Jansen et al., 2016).  

Interestingly, one of the key GR binding proteins coded by the STAT3 gene was 

significantly differentially expressed (upregulated) in both PBMCs (Belzeaux et al., 2012) 

and unstimulated whole blood (Jansen et al., 2016), but did not reach significance in the 

dexamethasone stimulated study. 

The ex-vivo lipopolysaccharide (LPS) stimulation of whole blood suggested 12 top DEGs 

as a signature of depression (Spijker et al., 2010). However, only two genes, LMNA and 

CAPRIN1, were replicated by Wang et al. (2015) and Yi et al. (2012), respectively. 

Interestingly, LMNA was replicated in the depressive asthma phenotype study by Wang 

et al. (2015). Given that LMNA is associated with the most common type of 

cardiomyopathy, i.e. dilated cardiomyopathy (Lu et al., 2011), a disease of the heart 

muscle which primarily affects the left ventricle, a link between depression, asthma, and 

cardiovascular diseases is suggested. 

Interplay between brain and periphery in depression 

In an attempt to answer the question whether there is any interplay between the brain 

and periphery in depression at the replicated DEG level, we compared the lists of 

replicated DEGs for both brain and peripheral tissues. None of the replicated genes 

overlapped across both lists. This might suggest that there is no interaction between the 

CNS and periphery in depression at the replicated gene level. However, when we 
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compared the results from top disease and functional annotation, we observed that both 

lists were overrepresented with cardiovascular system abnormality terms. We further 

investigated this using Top Functions and Disease Network tool (IPA), and found that 25 

out of 57 genes (43.9%) were replicated in the different brain areas in relation to 

depression (GRIA1, GRIA2, GRIA4, GABRA1, GABRA5, GABRB1, GABRG2, GABRG1, 

GABRD, HTR2C, HTR2A, HTR1A, SLC1A2, SNAP25, SAT1, MAPT, JUN, NR3C1, 

CREB1, MOG, NTRK2, PTK2B, AQP4, ADRA2A, S100B) also appeared to play a role in 

cardiovascular diseases, like coronary artery disease, peripheral vascular disease, 

hypertrophic response of cardiomyocytes, as well as permeability of vascular system and 

function of blood brain barrier (Figure 2.4). Furthermore, 6 out of 21 (28.6%) replicated 

depression-related DEGs in peripheral tissues (STAT3, LMNA, MYH9, SERPING1, 

PIK3R1, ABL1) were also involved in cardiovascular conditions, like dilated 

cardiomyopathy 1A, myopathy of heart, quality of cardiomyocytes, injury of heart, 

Slovenian type heart-hand syndrome, delay in initiation of leakage of capillary vessels, 

dilated cardiomyopathy with hypergonadotropic hypogonadism as well as permeability of 

blood vessels (Figure 2.5).  
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Figure 2.4. The 25 replicated genes identified as differentially expressed in depression 

at the genome-wide level in the brain and involved in the pathophisiology of 

cardiovascular diseases (Top Diseases and Functions Network analysis, IPA). 
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Figure 2.5. The 6 replicated genes identified as differentially expressed in depression at 

the genome-wide level in peripheral tissues and involved in the pathophisiology of 

cardiovascular diseases (Top Diseases and Functions Network analysis, IPA). 

 

These findings support the hypothesis that depression and cardiovascular diseases may 

share molecular pathways (Bondy, 2007), and suggests that there are complex molecular 

interactions between brain cortical and subcortical areas and peripheral tissues in a 

depression/cardiovascular comorbid phenotype. These findings may have clinical value, 

as the link between the two conditions at the molecular level may potentially lead to the 

development of drugs that provide treatment for both cardiovascular conditions and 

depression. 

DISCUSSION 

We reviewed the peripheral and brain genome-wide gene expression studies on 

depression.  To the best of our knowledge this is the first attempt to systematically 
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catalogue all reported differentially expressed genes in depression.  We observed 57 

replicated differentially expressed genes (DEGs) across different brain regions (based on 

15 studies) and 21 replicated DEGs in peripheral tissue (based on 10 studies).  Twenty-

eight of the brain DEGs were replicated in the same region.  There was no overlap 

between the replicated genes in the brain and the periphery.  Despite the replication, the 

directionality of dysregulation was highly inconsistent. 

Our results suggest that brain transcriptomes are in better agreement across studies than 

transcriptomes derived from peripheral tissues. However, this might simply reflect the fact 

that brain tissues (both genome-wide and candidate genes) in relation to depression are 

better investigated than peripheral tissues.   

The heterogeneity of the disease, dynamic nature of gene expression and the 

methodological differences between the studies all contribute to the observed low 

replication rate, which is the major obstacle for further progress in elucidating the 

mechanisms of depression. There are numerous technical factors that can potentially 

contribute to the observed inconsistencies across studies; however, this can be 

explained, at least partially, by biological factors. Given that mRNA abundance was 

measured in various cell types across multiple biological systems, the level and direction 

of gene expression may naturally differ by their functionality as different cell types perform 

different functions, and, therefore, the level of mRNAs can vary accordingly. Moreover, 

the state of disease changes over time, which is not necessarily reflected in a cross-

sectional analysis at a single time point. A major question yet to be resolved is how a 

particular gene in a specific cell type contributes to the global picture of the disease and 

whether there is an interaction between the brain and periphery in depression. 

There are several biological theories of the pathophysiology of depression, including 

altered hypothalamic–pituitary–adrenal axis (HPA) activity, monoamine deficiency, 



Transcriptome signature of depression 

44 
 

neurotoxic and neurotrophic processes, reduced GABAergic activity, dysregulation of 

glutamate system, alteration of neuroimmune and cytokine activity, and impaired 

circadian rhythm (for review, see (Hasler, 2010)). Below we discuss how these findings 

relate to the major hypotheses of depression and suggest a new candidate to explain 

pathophysiological mechanisms of depression. 

EVIDENCE SUPPORTING THE MAJOR HYPOTHESES OF DEPRESSION 

Altered HPA axis activity 

Glucocorticoids are involved in regulation of many organs and systems in the body, 

including various brain regions and molecular mechanisms, including monoaminergic 

neurotransmission and the immune and metabolic systems. Despite numerous findings 

suggesting that altered HPA activity plays a role in the pathogenesis of depression 

(Schatzberg et al., 2014, Vreeburg et al., 2009, Hardeveld et al., 2014), examination of 

the effect of pharmacological modulations of the neuroendocrine system as 

antidepressant therapy has been limited (Maric and Adzic, 2013). Our findings highlight 

the glucocorticoid receptor, NR3C1 (see Table 2.1), which operates as a transcription 

factor in the regulation of gene expression (Lu and Cidlowski, 2005), as being 

dysregulated across the brain, i.e. downregulated in primary motor cortex (Sequeira et 

al., 2006) and upregulated in dorsolateral prefrontal cortex (BA8/9, BA46) (Sibille et al., 

2004). However, inconsistency in directionally of dysregulation together with lack of brain 

region-specific replications suggests only partial support for altered HPA-axis activity and 

this hypothesis of depression. 

Deficiency of monoamines 

The monoamine-deficiency hypothesis states that the pathophysiological basis of 
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depression is a depletion of the neurotransmitters serotonin, norepinephrine or dopamine 

in the CNS. In this review, we show replicated evidence that dysregulation of serotonin 

receptors A1, 1B, 2A, 2C (HTR1A, HTR1B, HTR2A, HTR2C) predominantly in the 

dorsolateral prefrontal cortices (BA8/9, BA46) and hippocampus is involved in the 

pathophysiology of depression (Duric et al., 2013, Sibille et al., 2004). The ADRA2A gene, 

coding for alpha-2A adrenergic receptor, which localizes post-synaptically to 

noradrenergic terminals and promotes the function of norepinephrine, was consistently 

downregulated in the dorsolateral prefrontal cortex (BA8/9), pars orbitalis (BA47) (Sibille 

et al., 2004) and pars triangularis, part of the inferior frontal gyrus and part of Broca's area 

(BA45) (Klempan et al., 2009). While two studies were in agreement on directionality of 

dysregulation of ADRA2A across the brain, there is no brain area-specific replication so 

far. Although there are recent findings that a dopamine genetic risk score can predict 

depressive symptoms (Pearson-Fuhrhop et al., 2014), we cannot provide support that 

dopaminergic-related gene expression is dysregulated in depression. While almost all 

established antidepressant drugs target the monoamine system, pointing towards the 

monoamine-deficiency hypothesis as the most clinically relevant theory of depression, 

the resistance to these drugs, the delayed treatment effects and only partial support of 

this hypothesis at the level of replicated findings suggest that the dysregulation in 

monoamine system alone cannot explain the full spectrum of pathophysiological events 

in depression. 

Altered neural plasticity and neurogenesis 

There is consistent evidence that untreated depression leads to brain volume shrinkage 

in advanced age (Dotson et al., 2009) as well as in middle-aged depression patients 

(Grieve et al., 2013). Numerous findings have collectively proposed increased 

glucocorticoid and glutamatergic neurotoxicity and decreased neurotrophic factors and 
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neurogenesis as possible mechanisms explaining brain volume loss in depression. 

However, the understanding of molecular events leading to structural changes and 

neurodegeneration remains elusive. Brain-derived neurotrophic factor (BDNF) has 

attracted considerable interest as the major known regulator of synaptic plasticity in the 

brain. Although we did not find evidence for dysregulated transcription of BDNF mRNA in 

depressed patients, the BDNF receptor – the Tyrosine receptor kinase B protein coded 

by NTRK2 – has been consistently found to be dysregulated across the cortex in 4 

independent studies (see Table 1); upregulated in the anterior prefrontal cortex (BA10) 

(Malki et al., 2015) and hippocampus (Sequeira et al., 2007), and downregulated in the 

dorsolateral prefrontal cortex, pars orbitalis (BA47) (Sibille et al., 2004) and temporal 

cortex (BA21) (Aston et al., 2005). Another candidate for supporting the neurotrophic 

hypothesis of depression is fibroblast growth factor receptor 3, coded by FGFR3, which 

plays an important role in controlling cell growth and development. The FGFR3 has been 

replicated in three studies, downregulated in the cortex (Kang et al., 2007, Evans et al., 

2004) and the subcortical locus coeruleus (Bernard et al., 2011). Therefore, there is 

partial support for the neurodegenerative hypothesis of depression. 

Reduced GABAergic activity 

GABA is the major inhibitory neurotransmitter in the brain that modulates ongoing activity 

of neuronal networks. GABA re-uptake from the synaptic cleft is one the mechanisms to 

regulate GABA activity. Eight subunits for GABA receptors (GABRA1, GABRA5, GARB1, 

GABRD, GABRG1, GABRG2, GABRR1, and GABBR2) have been found to be 

consistently dysregulated, predominantly upregulated, across multiple brain areas 

including BA6, BA8/9, BA44, BA45, and BA46 (Table 1). SLC6A1 - GABA transporter 

type 1, which functions to remove GABA from the synaptic cleft (Hirunsatit et al., 2009), 

has also been replicated as being downregulated in BA47 (Table 1). These findings 

mostly support the GABAergic hypothesis of depression. However, since the functionality 
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of GABA receptors is determined by specific subunit configurations (Anisman et al., 

2012), the highly complex mosaic of possible interactions creates a myriad of possible 

effects on brain activity. What the relationships between GABA receptor subunits altered 

in depression are, and how the brain area-specific patterns of GABA receptor/transporter 

dysregulations are related to depression remain questions to be investigated in further 

research. 

Dysregulation of glutamatergic system 

Glutamate is the major excitatory neurotransmitter in the brain that regulates synaptic 

transmission and plasticity by activating ionotropic glutamate receptors, AMPA and 

NMDA. We found evidence that all four genes coding for AMPA receptor subunits 

(GRIA1, GRIA2, GRIA3, GRIA4) were replicably upregulated across multiple brain areas 

(see Table 1) with one exception – GRIA3, coding for AMPA receptor subunit 3, which 

was found to be upregulated in dorsolateral prefrontal cortex (BA46) by Choudary et al. 

(2005) and downregulated by Sequeira et al. (2009) and Klempan et al. (2009). The 

glutamate metabotropic 3 receptor (GRM3) has been replicated as being downregulated 

in temporal cortex (BA20) and BA47 in suicides with major depression (Sequeira et al., 

2009, Klempan et al., 2009)  The function of SLC1A3 – glutamate aspartate transporter - 

is the termination of excitatory neurotransmission in CNS. The SLC1A3 was 

downregulated in the locus coeruleus, known to be involved in the physiological response 

to stress (Bernard et al., 2011). Another glutamate transporter that clears the 

neurotransmitter from the extracellular space at synapses, which is necessary for proper 

synaptic activation and the prevention of neuronal damage from excessive activation of 

glutamate receptors - SLC1A2, has been replicated in the dorsolateral prefrontal cortices 

(BA8/9, BA47), anterior cingulate cortex (BA24) and locus coeruleus (Table 2.1). 

However, the directionality of SLC1A3 dysregulation is inconsistent across different brain 
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regions as well as within the same brain area. Although these findings provide support 

for the glutamate system hypothesis of depression, the brain area-specific mechanisms 

of action and their effects on depressive behaviours require further investigation. 

Disturbed neuroimmune and cytokine activity 

There is growing evidence suggesting that cytokine-mediated neuroimmune disruptions 

contribute to the behavioural symptoms of depression (Loftis et al., 2010, McAfoose and 

Baune, 2009, Mills et al., 2013). Although we did not find support for the most promising 

candidates of the cytokine hypothesis of depression, like IL1B, IL6, and TNFα at the level 

of replicated genome-wide gene expression findings, it is worth noting that many genes 

from our replicated genes list are known to be involved in various aspects of immune 

responses. Using GO search (ImmPort database) we identified that (1) four replicated 

genes - FGFR3, ENPP2, PTP4A2, and CREB1 – are involved in the innate immune 

response; (2) three genes – CREB1, MOG, and JUN are heavily involved in various toll-

like receptor signalling pathways; (3) LEPR, which belongs to the gp130 family of cytokine 

receptors, is involved in cytokine-mediated signalling. These collectively suggest that 

altered immunological activation may play a role in depression via various pathways, 

possibly interacting with other pathological mechanisms of depression. 

Dysregulation of melatonergic system 

The melatonergic hypothesis of depression states that dysregulation of melatonin plays 

a principal role in sleep disturbances in depressed patients. Since serotonin is the 

precursor of melatonin, two systems – melatonergic and monoaminergic - become tightly 

tied together, providing new avenues for future research. Although this review cannot 

directly support the melatonergic hypothesis of depression, as we did not observe 

differential expression of membrane MT1/MT2 melatonin receptors, through which 
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melatonin exerts its action, nor for specific clock genes Per1 and Per2, we can provide 

indirect evidence for this hypothesis.  Transcription factor CREB1 - CAMP responsive 

element binding protein 1, which mediates norepinephrine-related mechanisms of 

melatonin secretion (Maronde et al., 2011), was dysregulated in depression compared to 

controls across the brain, being downregulated in the dorsolateral prefrontal cortex 

(BA8/9, BA47) (Sibille et al., 2004) and upregulated in the anterior prefrontal cortex 

(BA10) (Tochigi et al., 2008). However, it is not known why CREB1 is dysregulated in 

opposite directions in different brain areas and how it is related to depression. 

Novel candidate of pathophysiology of depression 

Replicated findings at the genome-wide gene expression level provide partial support for 

all major theories of depression. This clearly argues against a single theory and suggests 

that depression is etiologically a highly heterogeneous disorder. Moreover, replication of 

the genes that are not yet known to have a direct relationship with any of the existing 

theories of depression may navigate towards new molecular players in understanding the 

biology of depression. One of the most exciting findings is dysregulation of PXMP2 in 

dorsolateral prefrontal, anterior cingulate and temporal cortices. Peroxisomal membrane 

protein 2, coded by PXMP2 gene, is a channel-forming protein in a mammalian 

peroxisomal membrane (Figure 2.6). Peroxisomes are cell organelles primarily involved 

in lipid metabolism and reduction of reactive oxygen species (ROS), specifically hydrogen 

peroxide, which are critical for the normal functioning of the brain (Antonenkov and 

Hiltunen, 2012, Wanders and Waterham, 2006). Although oxidative stress been 

previously found to be implicated in depression, which is partially reflected by our finding 

highlighting replicated downregulation of LEPR and S100B in the brain and periphery, to 

the best of our knowledge, neither peroxisome functioning in general nor dysregulation of 

PXMP2 in particular, have ever been investigated in relation to mood disorders, including 
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depression. Taking into account findings pointing towards shared pathways between 

metabolic disorders and depression (Foley et al., 2010) and robust replication of this gene 

at the genome-wide gene expression level in depression, we suggest that dysregulation 

of PXMP2 may play a role in depressive disorder via the peroxisome lipid and ROS 

metabolism pathway. 

Figure 2.6. Peroxisome and the role of PXMP2 in lipid and reactive oxygen species 

(ROS) metabolism (KEGG pathway). 

 

Limitations 

Although replication of findings is a way to systematise the most robust findings at the 

single gene level, the approach itself can be viewed as a limiting factor for the findings 

that have not yet been replicated. Non-replicated results, especially those of high 

significance, are likely to have a biological value but cannot be included in this review of 

replicated findings. To overcome this limitation, more studies are needed. 

In the current review, we examined replication of gene expression results in the periphery 
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and the brain.  This approach has an obvious limitation as there are more parameters to 

consider, like phenotype definition (e.g. age of onset, diagnosis, method of recruitment, 

use of medication), sample characteristics including race, age and sex, microarray 

platform and statistical algorithms used. To include all those variables, a more hierarchical 

approach is needed.  

Another important limitation of this study is missing or incomplete information reported in 

the article. Given that we examined the genes derived from differential expression 

analysis only, we were expecting to find the full lists of DEGs either in the main body text 

or in the supplement materials. However, reporting only the top DEGs (with the lowest p-

value) is a common practice for transcriptome studies. A related limitation is that the 

choice DEGs was based on an arbitrary p-value threshold selected by the authors, which 

may differ between studies. To overcome these limitations authors are encouraged to 

provide the complete list of differentially expressed genes along with corresponding fold-

change and p-values.  

The small sample sizes are the common limiting issue for the microarray and RNA-seq 

studies due to the cost and difficulties in obtaining samples, particularly for brain studies. 

Global collaborative efforts at the consortia level in data collection, advancements in data 

analysis and good communication practices may help us to better understand the 

pathophysiological mechanisms of depression. 

Future directions 

Given that depression is a complex disease with overlapping activity across many 

systems, the key pathophysiological mechanisms can be obscured when investigated by 

measuring the relative difference in mRNA abundance between cases and controls. 

Growing interest in investigation using coexpression (Zhang and Horvath, 2005) and 
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differential coexpression (Zheng et al., 2014) network analyses, which measure the 

coordinated coexpression patterns between the genes, can provide a far more detailed 

and complete picture of the pathophysiology of depression. The observation that 

differentially expressed genes reside at the periphery of the co-expression networks in 

depression (Gaiteri et al., 2010a, Gaiteri et al., 2014) suggests that differential expression 

technique is not an optimal method to detect the key regulatory genes. This observation 

is consistent with the heterogeneous nature of disease and may partially explain the 

limited therapeutic effect of currently available antidepressant drugs, as pharmacological 

modulation of one or even a set of genes with low connectivity are likely to have minimal 

effect on key regulators. Network-based methodologies as part of systems biology 

approach are promising innovations that can provide new insights into molecular 

processes underlying the pathophysiology of depression, which potentially can lead to 

development of clinical biomarkers required for diagnosis, drug development and 

improved treatment of depression.  

 

Supplementary data associated with this article, can be found in the online version, at 

http://dx.doi.org/10.1016/j.neubiorev.2016.08.018  
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FROM A SINGLE GENE TO A NETWORK OF COMPLEX INTERACTIONS 

In the first chapter, the gene expression signature of depression based on a large body 

of previously obtained findings in both brain and peripheral tissues covering 16 brain 

regions and five cell types from the peripheral nervous system was examined.  We found, 

that out of 1,334 genes reported as differentially expressed across 25 transcriptome 

studies of depression, only 57 genes in the brain and 21 in the peripheral tissues were 

replicated, highlighting large inconsistencies across the studies. An overlap in genetic 

expression between the brain and peripheral tissues was also observed which strongly 

implicated a link between depression and cardiovascular disease.  

This study suggests that depression is associated with dysregulated expression of 

multiple genes (at least several hundreds), supporting multiple theories of the underlying 

biological mechanisms of depression. In-silico functional characterisation of ‘replicated’ 

genes using Ingenuity Pathway Analysis (IPA) indicated that these genes are involved in 

many biological functions, such as cell cycle, cellular function and maintenance, cellular 

death and survival. Given the nature of biological systems, these individual genes are 

unlikely to act in isolation: instead, they interact with each other forming complex 

molecular networks. These interacting genes can be involved in various biological 

processes, therefore affecting multiple molecular pathways, the dysregulation of which 

may lead to depression. Examining the global network of co-expressed genes at the 

genome-wide level will help in understanding which known molecular pathways are 

dysregulated within depression therefore providing the insights into the molecular 

underpinnings of the disorder. 

In the next chapter, we explore which patterns of co-expressed genes are associated with 

depression and whether these patterns are functionally meaningful. This work consists of 

four major steps: (1) investigation into the network structure of peripheral blood 
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transcriptome using an unsupervised data mining technique, Weighed Gene Co-

expression Network Analysis (WGCNA), (2) identification of which clusters/modules of 

tightly co-regulated genes are associated with MDD disease status, (3) examination of 

which molecular pathways appear to be altered in depression using in-silico functional 

characterisation of MDD-related clusters, and  (4) replication of the findings on an 

independent cohort.  

This study has the potential to improve our understanding of biological underpinnings of 

depression, pinpoint specific biological markers and suggest which molecular pathways 

are dysfunctional in depression. 
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CHAPTER 3 

Co-expression network analysis of peripheral blood transcriptome 

identifies dysregulated protein processing in endoplasmic reticulum 

and immune response in recurrent MDD in older adults 

 

 

ABSTRACT 

The molecular factors involved in the pathophysiology of major depressive disorder 

(MDD) remain poorly understood. One approach to examine the molecular basis of MDD 

is co-expression network analysis, which facilitates the examination of complex 

interactions between expression levels of individual genes and how they influence 

biological pathways affected in MDD. Here, we applied an unsupervised gene-network 

based approach to a prospective experimental design using microarray genome-wide 
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gene expression data derived from the peripheral whole blood of older adults. We utilised 

the Sydney Memory and Ageing Study (sMAS, N=521) and the Older Australian Twins 

Study (OATS, N=186) as discovery and replication cohorts, respectively. We constructed 

networks using Weighted Gene Co-expression Network Analysis (WGCNA), and 

correlated identified modules with four subtypes of depression: single episode, current, 

recurrent, and lifetime MDD.  Four modules of highly co-expressed genes were 

associated with recurrent MDD (N=27) in our discovery cohort, with no significant findings 

for a single episode, current or lifetime MDD. Functional characterisation of these 

modules revealed a complex interplay between dysregulated protein processing in the 

endoplasmic reticulum (ER), and innate and adaptive immune response signalling, with 

possible involvement of pathogen-related pathways.  We were underpowered to replicate 

findings at the network level in an independent cohort (OATS), however; we found a 

significant overlap for 9 individual genes with similar co-expression and dysregulation 

patterns associated with recurrent MDD in both cohorts. Overall, our findings support 

other reports on dysregulated immune response and protein processing in the ER in MDD 

and provide novel insights into the pathophysiology of depression. 

INTRODUCTION 

Major depressive disorder (MDD) is a leading cause of disability worldwide and is one of 

the major contributors to the overall global burden of disease spanning all age groups 

(Ferrari et al., 2013, Whiteford et al., 2015, Vos et al., 2016). While MDD is relatively 

uncommon among older adults, epidemiological studies suggest that clinically significant 

depressive symptoms affect between 7% and 49% of community-dwelling older adults, 

substantially affecting the quality of life in later years (Riedel-Heller et al., 2006). MDD is 

highly heterogeneous with regards to its clinical phenotypes (Fried, 2017), course of 

symptoms (Posternak et al., 2006), responses to treatment (Uher and Pavlova, 2016), 
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and longer-term functional outcomes (Prisciandaro and Roberts, 2008).  Major biological 

hypotheses of MDD have included altered hypothalamic–pituitary–adrenal (HPA) axis 

activity (Pariante and Lightman, 2008), deficiency of monoamines (Hirschfeld, 2000), 

altered neural plasticity and neurogenesis (Jacobs et al., 2000), oxidative stress (Maes 

et al., 2011), dysregulation of GABAergic, glutamatergic (Luscher et al., 2010, Pan et al., 

2018) and melatonergic (Srinivasan et al., 2009) systems, and dysregulated 

neuroimmune pathways (Wohleb et al., 2016, Leday et al., 2018).  

High-throughput methodologies which allow screening for a large number of biological 

substrates for molecular differences between MDD patients and healthy controls in 

hypotheses-free paradigms are a promising avenue towards improving our understanding 

of the disorder. Several genome-wide association studies (GWAS) in MDD have indicated 

that the genetic architecture of MDD is complex, with many polymorphisms of small effect 

contributing to the clinical phenotype in middle-aged adults (Cai et al., 2015, Okbay et al., 

2016, Hek et al., 2013, Wray et al., 2017, Hyde et al., 2016) as well as in late-life 

depression (Tsang et al., 2017). Studying global gene expression is an emerging and 

continually growing field that can shed light on the molecular underpinnings of depression 

that can lead to the development of biology-based diagnostic tools and novel 

pharmacological therapies. A recent systematic review of 25 transcriptome studies found 

that over 1200 genes have been reported as differentially expressed in MDD compared 

to controls in the brain, and peripheral, tissues (Ciobanu et al., 2016). Replicability of 

these findings, however, has been minimal, which may be attributed to differences in 

methodological and statistical applications, small sample sizes, false positives, and the 

inherent dynamic and cell-specific nature of gene expression. In addition, clinical 

heterogeneity has been recognized as a major limiting factor for robust characterisation 

of gene expression alterations in MDD. For example, the first RNA sequencing study of 

463 lifetime MDD cases, consisting of a mixture of individuals with current and remitted 
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MDD, found no differentially expressed genes between cases and controls (Mostafavi et 

al., 2014). In contrast, stratification of the phenotype into “current” and “remitted” MDD 

yielded 18 genes differentially expressed between control and current MDD groups 

(FDR<0.05) (Jansen et al., 2016). These findings have yet to be replicated. Thus, 

studying transcriptomic patterns among more homogeneous subgroups of MDD patients 

has the potential to improve the identification of a biomolecular signature of depression.  

A challenge in interpreting gene expression data is that ‘candidate’ genes do not function 

in isolation but rather interact in complex networks which can affect clinical phenotypes. 

Weighted gene co-expression network analysis (WGCNA) is a hypothesis-free systems 

biology approach that identifies ‘modules’ of co-regulated, and therefore functionally 

related, genes in a given phenotype (Langfelder and Horvath, 2008), extending classic 

bivariate approaches.  

In this study, we aimed to investigate the relationship between global gene co-expression 

profiles and MDD subgroups. Utilising a 6-year prospective community-dwelling sample 

of relatively healthy elderly people from the sMAS, we applied WGCNA, and explored the 

correlation of co-expressed modules with four phenotypes: (a) a lifetime diagnosis of 

MDD, (b) a single episode of MDD diagnosed during the study, (c) current episode of 

MDD, and (d) recurrent MDD diagnosed during the study. We then sought to replicate our 

findings in a second, independent cohort drawn from the Older Australian Twins Study 

(OATS), Australia.  

METHODS 

Discovery cohort 

The Sydney Memory and Aging Study (sMAS) was initiated in 2005 to examine the clinical 
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characteristics and prevalence of mild cognitive impairment and related syndromes, 

including depression, in a relatively healthy aged population aged 70-90 years at 

recruitment (N=1,037) (Sachdev et al., 2010). The phenotype data were collected at four 

time points with 2-year intervals between assessments. Blood samples for gene 

expression analyses were collected at Wave 4 (N=521), six years after baseline data 

collection. 

Replication cohort 

To conduct the replication analyses we utilised the Older Australian Twins Study (OATS) 

(N=623).The primary aim of OATS is to investigate healthy brain ageing in older twins 

(65+ years) (Sachdev et al., 2009). Depression data were collected at three time points 

with 2-year intervals between assessments. Blood samples for gene expression analyses 

were collected at Wave 3, four years after baseline (N=186).  

Informed consent was obtained for all participants and study procedures were explained 

prior to study commencement. 

MDD definition 

MDD was assessed by two well-validated self-report, and two clinical interview-based, 

measures of depression including the Geriatric Depression Scale (GDS-15) (cut-off ≥ 6) 

(Yesavage et al., 1982), the Patient Health Questionnaire (PHQ-9) (cut-off ≥ 10) (Kroenke 

K and R., 2002), the Neuropsychiatric Inventory (NPI) (depression sub-scale) (Cummings 

et al., 1994), and the Mini International Neuropsychiatric Interview (M.I.N.I.) (Sheehan et 

al., 1998). To make use of all measures available, a “minimum by two” approach for 

defining MDD was employed. Accordingly, MDD cases were defined as participants who 

were identified as clinically depressed by at least two of the above depression measures 

at any one study Wave, according to DSM-IV criteria. Using this approach, four subgroups 
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of depression were formed: a) lifetime diagnosis of MDD, b) a single episode of MDD, c) 

current diagnosis of MDD and d) recurrent MDD (details in Appendix A). 

Gene expression data acquisition and pre-processing 

Total RNA from whole blood collected in PAXgene tubes after overnight fasting was 

extracted using the PAXgene Blood RNA System (PreAnalytiX, QIAGEN). The RNA 

samples with RIN ≥ 6 were used in subsequent analyses (Gallego Romero et al., 2014). 

Purification, amplification, labelling, and microarray hybridization were carried out using 

the Illumina Whole-Genome Gene Expression Direct Hybridization Assay System 

HumanHT-12 v4 (Illumina Inc., San Diego, CA, USA) according to standard manufacturer 

protocols. Quality control (QC) and pre-processing of raw gene expression intensity 

values extracted from GenomeStudio (Illumina) were performed within the R statistical 

environment. The pre-processing steps included: (1) background correction by Maximum 

Likelihood Estimation (MLE) algorithm using Model-based Background Correction for 

Beadarray (MBCB) R package, (2) the Variance-Stabilising Transformation (VST), (3) 

quantile normalisation, and (4) two-stage filtering by detection p-value (p<0.01 in ≥50% 

of samples) and by coefficient of variation under threshold of 0.01. Data were adjusted 

for batch and RINs effects using Empirical Bayes-moderated linear regression 

implemented in empiricalBayesLM function (WGCNA package); control for non-biological 

latent noise was performed using sva function (Leek et al., 2012) (details in Appendix A). 

Co-expression network analysis 

WGCNA was performed with the WGCNA R package, as previously described 

(Langfelder and Horvath, 2008). In short, this method selects the threshold for 

constructing the network based on the scale-free topology of gene co-expression 

networks. Using biweight mid-correlation, which is a robust alternative of Pearson’s 
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correlation (Langfelder and Horvath, 2012), we computed the networks for several 

thresholds and selected the threshold β=6, which led to a network with scale-

free topology. The network consisted of multiple modules of functionally related genes on 

the basis of their expression patterns. Module eigengenes (MEs), i.e., the first principal 

components of the standardized gene expression profile of a given module, were tested 

for correlation with binary measures of depression subtypes versus the rest of the cohort. 

The MEs were used to define measures of module membership (MM) by correlating the 

gene expression profile of each gene in a module with the ME of a given module. The 

gene with the highest MM was defined here as the top hub gene of a given module. Gene 

significance (GS) was computed as hybrid robust-Pearson’s correlation (Langfelder and 

Horvath, 2012) between gene expression and MDD status. Module Membership (MM) vs. 

Gene Significance (GS) measure was used to assess how representative each gene is 

of the module and its importance for MDD. 

Cell-type specific gene expression  

We examined whether known cell type-specific markers of expression (Aran et al., 

2017) were driving depression-related gene expression signatures by calculating 

relative proportions of cell type-specific markers in defined MDD-related modules 

(details in Appendix A). 

Functional analyses 

To functionally characterise modules of interest we used two strategies: (1) examined 

the significance of pathway enrichment in a gene list of each module with a modified 

Fisher’s exact test (FDR < 0.5) using the Database for Annotation, Visualisation and 

Integrated Discovery (DAVID) (Huang da et al., 2009b, Huang da et al., 2009a) with the 

genes which were included in the WCGNA as background, and (2) performed Signalling 

Pathway Impact Analysis (SPIA) (Tarca et al., 2009) implemented in the SPIA R 

package. SPIA uses the information from differentially expressed genes and their fold 
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changes (derived using limma R package (Ritchie et al., 2015) for each module 

separately), as well as pathways topology in order to assess the significance of the 

pathways. We used the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa 

and Goto, 2000) database to run the SPIA algorithm. These functional analyses were 

performed for the modules correlated with recurrent MDD phenotype only (details in 

Appendix A) 

Replication study 

Data from 186 unrelated OATS participants (one twin from each pair, randomly selected) 

were used for replication analyses. To assess comparability between sMAS and OATS 

gene expression datasets, we computed Pearson’s correlations between ranked 

expressions and ranked connectivity for probes that were expressed in both data sets 

(Miller et al., 2010). To conduct replication analyses we (1) extracted the OATS data for 

the transcripts that represented the sMAS depression-related modules, (2) computed 

MEs for these pre-constructed modules in the replication cohort, (3) correlated these MEs 

with a binary phenotype of recurrent MDD, and (4) tested for statistical significance of the 

overlap between two groups of recurrent MDD-correlated genes in two datasets (details 

in Appendix A). 

RESULTS 

Cohort characteristics 

The sMAS sample consisted of 521 individuals aged over 76 (age range 76.4-95.9, mean 

age 83.7±4.5), 255 males and 266 females. Utilising the prospective nature of this study, 

four subgroups of MDD were defined. Statistical tests of independence showed that there 

were no differences between cases and controls for age, sex or BMI in neither of MDD 

patient subgroups (Table 3.1).  
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Table 3.1. Summary of MDD patient subgroups and statistical test of independence for 

Age, Sex and BMI between cases and controls for MDD patient subgroups in sMAS 

cohort. 

 

 

Weighted gene co-expression network analysis 

After pre-processing, 11 018 probes corresponding to 9 041 genes were used for 

downstream analyses. Using WGCNA we constructed a co-expression network for 521 

samples and identified 24 distinct modules of various sizes (details in Appendix A).  

Four gene co-expression modules are associated with recurrent MDD, but no module 

association was found for lifetime, single episode or current MDD 

No association between any of the identified module eigengenes and lifetime, single 

episode or current MDD was observed. However, the eigengenes of four modules 

(denoted by colour) were significantly associated with recurrent MDD: 1) turquoise (r = -

0.12, p = 0.007), 2) tan (r = 0.1, p = 0.02), 3) black (r = 0.09, p = 0.04), and 4) lightcyan 

(r = 0.09, p=0.04) (Figure 3.1).  However, only turquoise module remained significant after 
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using Benjamini-Hochberg procedure at 0.2 FDR for 24 tests. The lightcyan module was 

also associated with sex (r = -0.13, p = 0.03). The MEs of turquoise, tan, and black 

modules were not associated with age, sex, or BMI (Figure 1).  
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Figure 3.1. Heatmap plot of correlations between the module eigengenes (ME) of 

Turquoise, Tan, Black, Lightcyan modules and single episode of depression (SD), current 

(CD), recurrent (RD), and lifetime depression (LD), age, sex and BMI. Associated p-

values are indicated in parenthesis with significant values bolded. 

 

 

Relationship between MM and GS for recurrent MDD 

We found a highly significant positive correlation between MM and GS measures for all 

four modules, indicating that those individual genes that were statistically representative 

of their modules were also important for recurrent MDD (Figure 3.2). 
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Figure 3.2. Scatterplots depicting correlations between Module Membership (MM) and 

Gene Significance (GS) for Turquoise, Tan, Black, and Lightcyan modules, eigengenes 

of which were associated with recurrent MDD in older adults. 

 

 

 

In total, 1 241 probes were nominally associated with recurrent MDD across four modules 

(GS, p < 0.05); 761 probes remained significant after transcriptome-wide correction for 

multiple testing (FDR at 0.2) (Online Supplementary Tables S1, S2, S3, S4). 

Immune cells-specific markers of expression for recurrent MDD-related modules 

We defined gene expression signatures for six immune cell types – B cells, CD4+ T cells, 

CD8+ T calls, monocytes, neutrophils and NK cells – using in-silico estimation method 

(Aran et al., 2017). We found that turquoise module is likely to be influenced by these 

immune cell types; only negligible number of cell-specific markers was found in tan, black 
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and lightcyan modules. 

The effect of smoking on the findings 

To examine the potential effect of smoking on our results, we checked whether our 

modules of interest contain any genes the expression of which can be effected by 

smoking (Vink et al., 2017, Huan et al., 2016). We found that the Turquoise module 

contained several smoking-related genes (CLDND1, MM=0.78; MTSS1, MM=0.5; PASK, 

MM=0.3). However, we observed that these genes were not associated with recurrent 

MDD status and had moderate to low MM value;  none of the hub genes (with MM>0.9) 

checked across four modules have been previously found associated with smoking, 

suggest that smoking is unlikely to have a large effect of these findings. 

Enrichment and signalling impact pathway analyses  

Enrichment analyses highlight downregulation of genes involved in protein processing in 

Endoplasmic Reticulum (ER) in recurrent MDD 

Using DAVID we identified the biological pathways that were significantly over-

represented in each of the four modules. The two most relevant pathways associated with 

turquoise module were: protein processing in ER (FDR = 2.8e-06) and COPII (Coat 

Protein 2) Mediated Vesicle Transport (FDR = 2.7e-06). We also found significant 

enrichment for mRNA Splicing, antigen processing: ubiquitination & proteasome 

degradation, ubiquitin mediated proteolysis, and macroautophagy pathways in turquoise 

module (Table 3.2). Given that over 79% of transcripts in turquoise module were 

downregulated (2250 downregulated, 595 upregulated), and the correlation between ME 

and recurrent MDD was negative (r = -0.12, p = 0.007) we concluded that downregulation 

of turquoise module may play an important biological role in recurrent MDD. The black 

module was enriched with the hemoglobin's chaperone pathway (FDR = 0.008). There 
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was no pathway enrichment for tan and lightcyan modules at the FDR ≤ 5% level. 

Table 3.2. Pathway enrichment analysis on the modules associated with recurrent MDD 

in older adults 

 

 

Pathway enrichment analyses were performed using DAVID. As a background gene set, we utilised 9 041 

genes used for network construction. 

NP – the number of genes in the pathway, NM – the number of module genes featured in the pathway, FE 

– fold enrichment 

 

SPIA identifies dysregulation of biological pathways involved in innate and adaptive 

immune response, protein processing in ER and host-defence response to infectious 

pathogens in recurrent MDD 

To further detail how dysregulation of individual genes within each module affects specific 

pathways we selected module probes with GS p<0.05 (963 in turquoise, 117 in tan, 99 in 

black, 62 in lightcyan) and conducted SPIA. This analysis showed what biological 

pathways were affected by module genes that were differentially expressed in recurrent 

MDD. We found that 13 biological pathways were dysregulated in recurrent MDD at FDR 

≤ 5%: 12 in turquoise module and 1 in tan module; there were no pathways identified for 

black and lightcyan modules (Table 3.3). In turquoise module, the following pathways 

were activated: Fc gamma R-mediated phagocytosis, Shigellosis, mTOR signaling 

pathway, Antigen processing and presentation, Herpes simplex infection, Insulin 
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signaling pathway, Pathogenic Escherichia coli infection, RNA degradation, Epstein-Barr 

virus infection, Protein processing in ER, and Apoptosis pathways; while T cell receptor 

signaling pathway was inhibited. SPIA was also consistent with the over-representation 

analysis (Table 3.2) and further detailed that protein processing in ER pathway was 

activated in recurrent MDD (FDR adjusted global p-value = 0.04). Natural killer cell 

mediated cytotoxicity was the only affected (inhibited) pathway in tan module.  

 

Table 3.3. Signaling Pathway Impact Analysis (SPIA) on the modules associated with 

recurrent MDD in older adults. 

          

 

NP - the number of genes on the pathway; NDE - the number of DE genes per pathway; tA - the observed 

total perturbation accumulation in the pathway; pNDE - the probability to observe at least NDE genes on 

the pathway using a hypergeometric model; pPERT - the probability to observe a total accumulation more 

extreme than tA only by chance; pG - the p-value obtained by combining pNDE and pPERT; pGFdr - the 

False Discovery Rate adjusted global p-values; Status - the direction in which the pathway is perturbed 

(activated or inhibited). A web link to the KEGG website that displays the pathway image with the 

differentially expressed genes highlighted in red (see Supplementary Materials) 
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Replication  

After QC and pre-processing following the same criteria as in the discovery analyses in 

sMAS, 11 685 probes for 186 individuals aged 69 and over from the OATS cohort (age 

range 69.4 – 93.5, mean age 75.9±5.3, 72 males and 114 females) were utilised for 

replication. High correlations for ranked expression (cor=0.99, p<e-200) and connectivity 

(cor=0.87, p<1e-200) and high module preservation calculated for 10 654 probes 

expressed in both datasets indicated these cohorts were comparable (details in Appendix 

A). 

Significant overlap between MDD-related genes in discovery and replication cohorts 

We computed MEs for turquoise, tan, black, and lightcyan modules in OATS and 

examined their correlations with a binary phenotype of recurrent MDD (N = 7 cases), age, 

sex, and BMI. Although, there was no association between the MEs and recurrent MDD 

in the replication dataset (Table S1.6), the directions of associations were consistent with 

the discovery results (Figure 3.1). Despite the lack of replication at the eigengene level, 

we observed a significant overlap of 9 individuals genes across four modules (p<0.03) 

that showed association with recurrent MDD in both cohorts (p<0.05): 7 genes in 

turquoise module (CTSC, ORMDL1, NARG1L, B4GALT4, GTF2H1, AGAP6, and 

THEMIS), 1 gene in tan module (IL5RA), and 1 gene in lightcyan module (SNX22), 

whereas no genes replicated in black module. These 9 genes showed moderate to high 

correlation with the ME of the relevant module respectively (0.3>MM<0.9) of similar 

strength of correlations across both cohorts. The directionality of dysregulation (GS) was 

also consistent for 8 out 9 genes across both cohorts (Appendix A, Table S1.7). There 

was no correlation between ME and age, sex, or BMI, suggesting that our replicated 

findings are independent of the effect of these potential confounders (Appendix A, Table 

S1.6). 
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DISCUSSION 

We explored the gene co-expression patterns in peripheral whole blood related to lifetime 

history of MDD, single episode, current, and recurrent MDD subtypes in older adults. 

While no significant association between gene expression and lifetime depression, single 

episode, or current depression was found, interesting results were obtained for recurrent 

MDD that forms a subgroup of depression with higher severity. Consistent with previous 

genetic findings that depression is a disorder of multiple genes of small effects, we 

identified four modules of highly co-expressed genes (a total of > 3000 genes) of which 

the eigengenes were significantly associated with recurrent MDD. We found that eleven 

biological pathways, namely Fc gamma R-mediated phagocytosis, Shigellosis, mTOR 

signaling pathway, Antigen processing and presentation, Herpes simplex infection, 

Insulin signaling pathway, Pathogenic Escherichia coli infection, RNA degradation, 

Epstein-Barr virus infection, Protein processing in ER, and Apoptosis pathways, were 

activated; and two pathways, T cell receptor signaling and Natural killer cell mediated 

cytotoxicity, were inhibited in recurrent MDD.  While we could not replicate association 

between the eigengenes and recurrent MDD in the independent cohort, which is likely 

due to insufficient statistical power, there was a significant overlap of recurrent MDD-

related individual genes: 9 genes (CTSC, ORMDL1, NARG1L, B4GALT4, GTF2H1, 

AGAP6, THEMIS, SNX22, and IL5RA) were associated with recurrent MDD with highly 

preserved co-expression and dysregulation patterns between the two cohorts.  

There are several notable results that we could not replicate.  

Downregulated ribosomal protein (RPS6KB1) in Fc gamma R-mediated phagocytosis 

and mTOR signalling  

The top biological pathway associated with recurrent MDD was Fc gamma R-mediated 

phagocytosis, which plays an essential role in host-defence mechanisms through the 
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uptake and destruction of infectious pathogens. Activation of this pathway was 

represented by downregulated RPS6KB1 and ARPC5 and upregulated WASF2 and 

ASAP1. It is worth noting that dysregulation of these genes was consistent in both 

discovery and replication cohorts, however, we failed to replicate the association of these 

genes with recurrent MDD at the accepted level of significance. The top gene involved in 

activation of Fc gamma R-mediated phagocytosis was ribosomal protein S6 kinase B1 

(RPS6KB1), which encodes a protein that responds to mTOR signalling to promote 

protein synthesis, cell growth, and cell proliferation.  RPS6KB1 was one of the hub genes 

in turquoise module in both sMAS (MM = 0.83) and OATS (MM = 0.89), indicating its 

important coordinating role in downstream processing. Consistent with our blood findings, 

RPS6KB1 was previously found downregulated in the PFC (Brodmann’s area 10) in 

patients who experienced depression for an average of 9.6 (± 3.6) years and died from 

suicide (Jernigan et al., 2011). Findings that dysregulation of RPS6KB1 is detectable in 

the brain and observable in peripheral blood, provide evidence that RPS6KB1 may be a 

potential biomarker for depression. Interestingly, RPS6KB1 was also recently proposed 

as a novel antidepressant target; it has been shown that enhanced RPS6KB1 activity in 

the medial prefrontal cortex produced antidepressant-like effects and resilience to chronic 

stress, whereas decreased RPS6KB1 activity produced pro-depressive behaviour in rats 

(Dwyer et al., 2015).   

Activated pathogen-related pathways  

Activation of Fc gamma R-mediated phagocytosis pathway along with activation of 

infectious pathogen-related pathways, such as Shigellosis, Herpes simplex infection, 

Pathogenic Escherichia coli infection, and Epstein-Barr virus infection in infectious 

disease-free recurrently depressed individuals may indirectly indicate a possible link 

between past pathogenic infection and recurrent MDD. Such a link has been previously 
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observed in epidemiological research. A large nationwide, prospective cohort study found 

that any history of hospitalisation for infection increased the risk of mood disorders, 

including depression, in later life by 62% (Benros et al., 2013). Pathogens are known to 

be able to influence host response processes, long after a viral load was undetectable 

(Traylen et al., 2011). Importantly, it has been shown that latent viruses can reactivate 

their replication in response to stress (Coskun et al., 2010) and ageing (Padgett et al., 

1998, Thomasini et al., 2017). Furthermore, SIRT1, a longevity-promoting gene, which is 

known to have an antiviral role (Kim et al., 2016), and was previously associated with 

depression in a GWAS (rs12415800, p=1.92e-08) (Cai et al., 2015), was also 

downregulated in recurrent MDD in our study (r = -0.11, p = 0.01). Moreover, SIRT1 was 

one of the hub genes in turquoise module (MM = 0.86), suggesting an important 

regulatory role in depression in older adults. Although speculative, our study suggests 

that there is a link between activation of pathogen-related pathways and depression in 

later life. 

Dysregulated protein processing pathways in the ER and innate and adaptive immune 

responses  

Emerging evidence suggests that dysregulated protein processing in the ER, leading to 

accumulation of misfolded proteins and causing ER stress, plays an important role in the 

pathophysiology of depression (Gold et al., 2013, Gold, 2015). In our study, we found that 

11 ER genes were dysregulated in recurrent MDD (STT3B, DNAJB11, DNAJC10, 

TRAM1, DERL1, SSR1, NPLOC4, UBQLN2, MAPK9, UBE2D2, UBE2D3) suggests 

impaired protein processing in the ER.  

We also found that several immune response-related pathways, such as antigen 

processing and presentation, T cell receptor signalling, apoptosis, and NK cell-mediated 

cytotoxicity are dysregulated in recurrent MDD. It is well known that impaired protein 

processing in the ER leads to ER stress. To prevent ER stress-related cell damage, the 
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ER uses unfolded protein response signalling to influence immune responses such as 

antigen presentation and immunoglobulin synthesis (Janssens et al., 2014). 

Substantiating this, antigen processing and presentation pathway was found to be 

activated by upregulated KIR2DL1, KIR2DS5 (killer cell immunoglobulin-like receptors), 

CTSB (amyloid precursor protein secretase), and downregulated CTSS (involved in the 

degradation of antigenic proteins to peptides for presentation on MHC class II molecules) 

in recurrent MDD. 

Our findings are in line with the largest transcriptomic study of MDD (Jansen et al., 2016), 

which identified that NK cell-mediated cytotoxicity pathway is implicated in MDD. 

Specifically, the authors found that TNFRSF10C was associated with a change in MDD 

status over 2-years, i.e. while upregulated in current MDD, the mean expression 

decreased more in recovered MDD than in the controls. Consistent with these findings, 

we show that upregulated TNFRSF10C and KIR3DL2 can induce the inhibition of NK cell-

mediated cytotoxicity pathway in recurrent MDD. We also support recent findings on 

changes in immunological profile in MDD (Leday et al., 2018). Authors proposed the 

transcriptional biomarkers panel, consisting of 165 genes differentially expressed 

between MDD cases and controls. We observed that 24 genes from this panel belong to 

the recurrent MDD-associated modules in our study (Supplementary materials, Table 

S15).  

The notable strength of this study is the utilisation of various clinical subtypes of 

depression in conjunction with a longitudinal assessment of participants. However, use 

of blood, the small size of depression subgroups, reliance on self-report for diagnosis, 

and a single time point for gene expression are the major limiting factors in our study. 

Using a population design for our analyses (i.e. each subgroup of MDD was contrasted 

against the rest of the population irrespective their depression status) can be viewed as 

a limitation since the control group could include people with a history of depression; 
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however, this might be of value in that it allows to compare different depression groups 

against each other (e.g. current vs recurrent vs lifetime). WGCNA as a non-supervised 

exploratory technique might be useful for this approach as this method does not require 

prior categorisation of the samples by phenotype, which allowed us increasing robustness 

of the findings by including all the samples available. In contrast, it is worthwhile to use a 

control group without history of any form of MDD albeit the resulting smaller sample size. 

To evaluate this approach using a control group without any form of depression, we 

conducted additional analyses utilising a reduced sMAS sample (N=465) consisting of 

recurrent MDD cases (N=27) and healthy controls only (N=438). We observed a large 

agreement between the results for both types of analyses: four modules were associated 

with recurrent MDD in a case/control design (Turquoise r=-0.12, p=0.01; Tan r=0.1, 0.04; 

Black r=0.09, p=0.045; Lightcyan r=0.09, p=0.046) in comparison to a population design 

(Turquoise r=-0.12, p=0.007; Tan r=0.1, 0.02; Black r=0.09, p=0.04; Lightcyan r=0.09, 

p=0.04) (Figure 3.1). Another important limitation of this study is that not all potential 

confounders were examined. Thus, while both our cohorts represent part of a relatively 

healthy community-dwelling aged Australian population, multiple medical comorbidities, 

inevitably accompanying ageing processes, and smoking that is known to affect gene 

expression (Vink et al., 2017, Huan et al., 2016), may have influenced the results. Given 

the ageing cohorts utilised in our analysis, we cannot rule out the possibility that our 

findings reflect a combined effect of MDD status and the ageing process itself.  

CONCLUSIONS 

This study supports the epidemiological link between the legacy of infectious diseases 

and their role in dysregulated biological pathways implicated in later life depression. 

Replication of our findings and further research utilising a network approach in a larger 

primary clinical cohort stratified for subtypes of depression is warranted. Specifically, 
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future research on the long-term effects of interaction between past infectious diseases 

and depression in later life is recommended. 

 

Supplementary data associated with this article, can be found in the online version, at 

https://doi.org/10.1016/j.jpsychires.2018.09.017 
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FROM BIOLOGICAL NETWORKS TO MACHINE LEARNING PREDICTIONS 

In the third chapter, the peripheral blood genome-wide gene expression signature of 

depression using the co-expression network approach was investigated. It was found that 

over 3,000 highly co-expressed genes were dysregulated in depression, which supports 

previous findings of depression being a highly heterogeneous disorder associated with 

multiple genes each with a small effect size. Using WGCNA, we identified these genes 

as forming four relatively unrelated clusters of highly co-expressed genes within the blood 

transcriptome network. Collectively, these genes are involved in several molecular 

pathways, such as protein processing in endoplasmic reticulum and adaptive and innate 

immune responses, which were found to be dysregulated in the disorder. Although these 

findings provide a comprehensive view of possible biological mechanisms underlying 

depression, it failed to replicate network-level findings on an independent cohort (largely 

due to a limited statistical power). Therefore, a possible translation of these findings into 

clinical settings is limited. To evaluate whether the mRNA findings in recurrent MDD can 

be potentially utilised as therapeutic targets or to inform better diagnostic decisions in 

clinical practice, there is a need to explore whether predictive markers of MDD can be 

identified when studying complex gene interactions  Previous chapters 2 and 3, 

determined linear associations between mRNA levels and depression. However, in light 

of the non-replicated findings it is highly unlikely for gene interactions in relation to MDD 

to be in a linear fashion. Therefore, application of statistical tools which are only able to 

capture linear interactions are not sufficient to uncover the complexity of molecular 

dysregulation in depression. To advance the field in this area requires the application of 

novel methodologies that extend beyond fitting a linear function onto transcriptome data. 

To this end, we applied machine learning techniques which accounts for both linear and 

non-linear interactions between mRNA expression levels and depression. 
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In the next chapter, the predictive capacity of blood transcriptome in recurrent MDD using 

the same elderly cohort (sMAS) will be evaluated. Using fuzzy forests (FF) approach, a 

novel machine learning algorithm, we develop a predictive model that assesses the 

predictive capacity of gene expression levels in recurrent MDD. Fuzzy forests were 

designed to overcome limitations seen in machine learning literature related to a large 

feature space relative to sample size in the presence of correlated features, which are 

known characteristics of transcriptome data that can limit the performance of the 

classifier. This study will help in identifying the top molecular predictors of recurrent MDD 

that may potentially serve as predictive markers for the disease. 
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ABSTRACT 

At present, no predictive markers for Major Depressive Disorder (MDD) exist, and there 

is limited understanding of the biological underpinnings of depression. The search for 

such markers is challenging due to clinical and molecular heterogeneity of MDD, the lack 

of statistical power in studies and suboptimal statistical tools applied to multidimensional 
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data.  Machine learning is a powerful data mining approach that has been proven 

successful in biomedical research. Transcriptomic data are highly multidimensional with 

the presence of correlated features organised in a network-like structure. To develop a 

meaningful predictive model using this type of data, a large number of observations are 

required; however the typical transcriptomic dataset is of a relatively small sample size. 

Multidimensional space with correlated features, coupled with a lack of observations, 

posits a challenge for machine learning classification. In an attempt to overcome these 

limitations, we adopted a novel Fuzzy Forests approach that takes advantage of the co-

expression network structure between genes aiming to identify predictive markers for 

recurrent MDD in the elderly at the blood gene expression level. Utilising transcriptome 

data from 521 individuals in the Sydney Memory and Aging Study (sMAS), we developed 

a model that correctly classified 63% of recurrently depressed individuals in the test 

dataset. We found that the most predictive marker, the gene TFRC, which encodes 

transferrin receptor, is downregulated in recurrent MDD and may represent a predictive 

marker for recurrent MDD. 

INTRODUCTION 

Currently investigations into biological underpinnings of MDD remain challenging; 

however it is paramount for developing reliable diagnostic tools and effective treatments. 

Despite decades of research, elucidation of the exact molecular mechanisms is in its 

infancy  (Cai et al., 2015, Okbay et al., 2016, Hek et al., 2013, Wray et al., 2018, Hyde et 

al., 2016, Jansen et al., 2016). MDD as a heterogeneous disorder is a complex dynamic 

system from both clinical (Cramer et al., 2016) and biological (Sibille and French, 2013) 

perspectives. The biological complexity of MDD can be accounted for by studying altered 

gene expression patterns in affected individuals compared to unaffected. These 

dysregulated patterns  can serve as a dynamic marker of the disorder. 
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As far as molecular biology is concerned, genes do not act in isolation; instead, they 

interact within each other akin to complex networks that might be disrupted in depression. 

In our previous study, we explored what genome-wide gene co-expression patterns are 

associated with depression. We applied Weighted Gene Co-expression Network Analysis 

(WGCNA) to transcriptomic data from 521 community-dwelling individuals aged over 65. 

We studied four subtypes of depression derived from the data collected at four time points 

with 2-year intervals between assessments: single episode, current MDD, recurrent MDD, 

and lifetime MDD. Although we were not able to detect a signal for the single episode, 

current or lifetime MDD, we found that four clusters containing 1,241 of highly interacting 

genes are associated with recurrent MDD status. Using in-silico Enrichment and 

Signalling Pathway Impact Analysis (SPIA) we found that this gene pool was biologically 

meaningful with 13 known molecular pathways significantly dysregulated in recurrent 

MDD in the elderly (Ciobanu et al., 2018b). While these findings were consistent with 

previous observations, and provided new insights into aetiology of depression, we sought 

to further explore the complex relationship between recurrent MDD, as the more severe 

subtype of depression, and transcriptome alterations.  

The typical biostatistical approach is to fit linear function between variables and the 

outcome. Although this approach is powerful in many scenarios, it can be suboptimal for 

multivariate transcriptome data. Machine learning (ML) provides an alternative view for 

data analysis, allowing for complex linear and non-linear interactions between the 

features to be explored. ML explicitly focuses on learning statistical functions from 

multidimensional data sets to make generalizable predictions about affected individuals.  

Random forests (RF) is an established technique for classification and feature selection, 

owing to its unique advantages in dealing with relatively small sample size, high-

dimensional feature space, and complex data structures. While RF is able to capture the 

true importance of features in settings where the features are independent, it is 
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established that RF is biased when features are correlated with one another and the 

correlation structure is not known a priori (Nicodemus and Malley, 2009), which is a typical 

scenario for transcriptome data. Fuzzy forests (FF) an extension of a RF algorithm, is 

designed to reduce this bias. FF is a novel algorithm which  takes advantage of the 

network structure between features and relies on WGCNA to create relatively 

uncorrelated clusters of highly correlated features (Zhang and Horvath, 2005).  FF uses 

recursive feature elimination RF to select features from separate clusters (Díaz-Uriarte 

and Alvarez de Andrés, 2006). The final RF is fit using the surviving features. The selected 

features are then used to construct a predictive model (Conn et al., 2015, Conn et al., 

2016).  

Although FF is based on WGCNA, these methodologies represent two different analytical 

strategies. WGCNA is primarily concerned with identifying important genes assumed to 

be involved in the same biological processes, which is useful in understanding biological 

underpinnings of depression. However, given that depression is a biologically 

multifactorial disorder, it is likely that hundreds to thousands of genes are involved in the 

disease, making it diagnostically impractical. RF aims to find a small number of genes 

sufficient for a good prediction of the response variable. While WGCNA is based on fitting 

a linear function into data, RF is non-parametric and non-linear. Athough this makes it 

difficult for interpretation it is more useful for identifying prediction markers and thereby 

clinical translation. Combining the two strategies in FF framework may help to overcome 

limitations of each individual method and enrich our understanding of the aetiology of 

depression. 

METHODS 

Sample characteristics 

The Sydney Memory and Aging Study (sMAS) was initiated in 2005 to examine the clinical 
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characteristics and prevalence of mild cognitive impairment and related syndromes, 

including depression, in a non-demented population aged 70-90 years at recruitment 

(N=1,037) (Sachdev et al., 2010). The phenotypic data were collected at four time points 

with 2-year intervals between assessments. Blood samples for gene expression analyses 

were collected at Wave 4 (N=521), six years after baseline data collection. 

MDD was assessed by two well-validated self-report, and two clinical interview-based, 

measures of depression including the Geriatric Depression Scale (GDS-15) (cut-off ≥ 6) 

(Yesavage et al., 1982a), the Patient Health Questionnaire (PHQ-9) (cut-off ≥ 10) 

(Kroenke K and R., 2002), the Neuropsychiatric Inventory (NPI) (depression sub-scale) 

(Cummings et al., 1994a), and the Mini International Neuropsychiatric Interview (M.I.N.I.) 

(Sheehan et al., 1998). MDD cases were defined as participants who were identified as 

clinically depressed by at least two of the above depression measures at any one study 

Wave, according to DSM-IV criteria. A recurrent MDD subgroup consisted of 27 

individuals as published in (Ciobanu et al., 2018b). 

Gene expression data pre-processing 

Whole blood gene expression data for 521 participants were generated from PAXgene 

tubes using the Illumina Whole-Genome Gene Expression Direct Hybridization Assay 

System HumanHT-12 v4 (Illumina Inc., San Diego, CA, USA) according to standard 

manufacturer protocols. After rigorous QC, filtering, and adjustments for known (RINs, 

age, sex) and latent non-biological variables, gene expression data for 11,018 probes 

were available for downstream analyses (Ciobanu et al., 2018b).  

Data partitioning and balancing  

Our data represent a population study design with extremely unbalanced classes of 

individuals with recurrent MDD and those without. Since the aim of any classification 
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algorithm is to minimize the overall error rate, it posits a challenge for ML algorithms to 

correctly predict the minority class. Our solution was to train the model on balanced 

dataset, containing an equal proportion of positive and negative instances, and test it on 

unbalanced dataset that better reflects population distribution. To balance our training set 

(70% of the whole dataset), we used Synthetic Minority Over-sampling Technique, 

SMOTE, a hybrid method allowing for down-sampling the majority class and 

synthesizing new data points in the minority class using k-nearest algorithm, where k 

was set to 5 (Chawla et al., 2002). The never seen before training set (30% of the 

whole dataset) was left in its original distribution.  

RESULTS 

Training and test data 

After partitioning the full dataset, our training consisted of two groups: 19 recurrently 

depressed individuals (group [1]) and 346 individuals without recurrent MDD (group [0]) 

(0.05 vs 0.95), which is highly unbalanced. Using SMOTE, a combined method of over-

sampling the minority (MDD) class and under-sampling the majority (non-MDD) class, we 

balanced training data to 38 observations in each group (Figure 4.1). The test data 

consisted of 8 recurrent MDD [1] and 148 non-recurrent MDD [0] individuals. 
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Figure 4.1. Balancing training dataset using SMOTE. A. Unbalanced dataset; B. 

Balanced dataset. 

Modules of co-expressed genes and FF model performance 

To determine the power of the adjacency function, we estimated network topology for 

various soft-thresholding powers. Based on these analysis, we used the scale-free 

topology criterion β = 6 (more details in Supplementary materials, Figure S1). Minimum 

module size, minModuleSize, was set to 100. Using WGCNA within the FF, we 

constructed a co-expression network consisting of 23 modules of co-expressed genes. 

Following the FF workflow, we applied recursive feature elimination RF to select features 

from separate modules. The last RF was performed on the genes from the survivors list. 

After parameter tuning, the best performance was achieved using the following 

hyperparameters: min_ntree = 500, final_ntree = 500, mtry factor = 5, ntry_factor = 5, 

drop_fraction = 0.25, keep_fraction = 0.05, number_selected = 1 (details in the Appendix 

A). This final model was tested on the test dataset achieving sensitivity of 63%, specificity 

of 66% and balanced accuracy of 63% for the top predictive feature – gene TFRC (ILMN 

_1674243) assigned to the module 2. (Figure 4.2). 
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Figure 4.2. Module membership distribution plot visualizing the relative importance of the 

modules for recurrent MDD. The blue bars represent the percentage of selected features 

in a particular module. The top predictive feature of recurrent MDD, gene TFRC, was 

assigned to the module 2. 

 

TFRC is implicated in recurrent MDD – consistent findings from co-expression network 

analysis, fuzzy forests machine learning algorithm and differential expression analysis.   

As described above, FF approach captures both non-linear and linear interactions 

between the genes to predict the outcome. Although we cannot directly estimate how 

much each type of interaction contributes to the final model, we sought to determine the 

effect of linear relationship between TFRC levels and recurrent MDD using differential 

expression analysis for the identified candidate gene, and, therefore, to establish the 

directionality of dysregulation of TFRC in recurrent MDD in our data. In our previous 

study, we investigated patterns of transcriptome dysregulations in recurrent depression 

using linear modelling implemented in co-expression network analysis (Ciobanu et al., 

2018b) and found that TFRC was assigned to a cluster of co-expressed genes, the 
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eigengene of which was associated with recurrent MDD (p=0.007). At the individual gene 

level, there was a significant difference of a small effect (at the FDR 20%) in the TFRC 

expression in recurrent MDD compared to those without this diagnosis in the sMAS cohort 

(logFC = -0.14), suggesting that TFRC is downregulated in people diagnosed with 

recurrent MDD. Although we could not replicate this finding in the independent replication 

cohort the Older Australian Twins Study (OATS) at the accepted level of significance, 

which was largely due to the limited sample size, it is worth noting that directionality of 

dysregulation was consistent with the primary findings (logFC = -0.01)  (details in Ciobanu 

et al. (2018b), Appendix A).  

DISCUSSION 

Downregulated transferrin receptor, TFRC, as a potential predictive marker for recurrent 

MDD 

In this study, we applied a novel ML algorithm on blood transcriptome data in order to 

identify a biological predictive marker in recurrent MDD. Using FF we developed the 

model that was able to correctly classify 63% of recurrently depressed elderly individuals 

on a test dataset. We found that the transferrin receptor gene, TFRC, was the top 

predictor of recurrent MDD in our cohort, suggesting that TFRC can potentially serve as 

a predictive marker for recurrent MDD. This finding was consistent with our previous study 

using this cohort, where downregulated TFRC was assigned to the module of 

interconnected genes the eigengene of which was associated with recurrent MDD 

(Ciobanu et al., 2018b). Taken together, we observed that three separate methodologies, 

namely WGCNA, FF, and differential expression produced comparative results, pointing 

towards TFRC as being involved in recurrent MDD. TFRC was also previously found 

dysregulated in the brains of MDD patients suffering from disrupted circadian rhythm (Li 

et al., 2013).However, it is unlikely that TFRC is the only gene that has a predictive 
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capacity given the molecular complexity of depression. Therefore, our model cannot be 

considered comprehensive. Instead a model capturing a larger pool of genes is likely to 

have a better predictive performance which could be achieved with a larger sample size. 

This will ensure the model is trained on sufficient number of observations to learn a true 

pattern of interactions between multiple genes.  

Transferrin receptor gene, TFRC, the gatekeeper of cellular iron uptake 

Transferrin receptor is a type II transmembrane glycoprotein expressed by all nucleated 

cells of the body. TFRC is an important modulator of iron homeostasis recognised as the 

gatekeeper of cellular iron uptake (Porto and De Sousa, 2007). Expression of TFRC is 

regulated at both the transcriptional and post-transcriptional levels by the cellular iron 

status: in a cellular iron-deficient state, TFRC expression increases, whereas in the 

presence of excess iron, TFRC expression decreases (Walker and Walker, 2000, 

Khumalo et al., 1998, Kawabata, 2018). Downregulated mRNA TFRC in blood, therefore, 

may indicate a disrupted iron homeostasis in depression (Brandao et al., 2005, Rostoker 

et al., 2015).  

The role of transferrin receptor in immunity 

Transferrin receptor plays a role in many immune-related processes, such as antigen 

processing and presentation, natural killer cell mediated cytotoxicity and T cell receptor 

signalling (Figure 4.3); these pathways were also previously found disrupted in 

depression (Haapakoski et al., 2016). 
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Figure 4.3. The TFRC immune-related functional relationships. The networks were 

constructed using ImmuNet software (Gorenshteyn et al., 2015). 

 

 

In our previous study, we found that multiple genes were associated with dysregulated 

immune system-related processes and activation of four pathogen-related pathways 

(Shigellosis, Herpes simplex infection, Pathogenic Escherichia coli infection, and Epstein-

Barr virus infection) in recurrent MDD, providing support for the role of previously 

observed complex interaction between pathogens and host’s immune response in 

depression (Carter, 2013, Ciobanu et al., 2018b). Furthermore, an emerging body of 

evidence indicates that many viruses and parasites use the transferrin receptor, for 

cellular entry into host cells (Weinberg, 1996). Downregulated TFRC coupled with 

dysregulated immune-related pathways therefore may indicate interplay between altered 

pathogen and host response mechanisms in recurrent MDD. Although we report on the 
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ability of our model to predict recurrently depressed individuals, these results should be 

treated with caution. While we identified TFRC as the most predictive gene for recurrent 

depression in the elderly our test sample was fairly small, relative to the feature space 

and could be a source of poor generalizability. While we corrected our data for age, sex, 

RINs and latent non-biological variables, we were unable to account for medications 

taken, comorbidities, and other environmental confounders that can be numerous in the 

elderly cohort. Furthermore, the serum levels of transferrin receptor were not assessed 

in this study. 

Using fuzzy forests framework, we identified that the most predictive gene, TFRC, can 

predict recurrent depression in the elderly with an accuracy of 63%. This finding, coupled 

with our previous observation that blood TFRC mRNA downregulated in recurrent MDD 

individuals as compared with those without, may potentially serve as a recurrent MDD-

specific predictive marker and provide some insights into pathophysiology of depression. 

Although our study is exploratory in nature providing preliminary results which require 

further exploration, the use of ML in biological psychiatry is an emerging field which will 

promote clinical translation and inform personalised psychiatry in the future.  

AN EMERGING NEED TO FOCUS ON IMMUNE DYSREGULATION IN DEPRESSION 

In the previous chapters, depression-relevant alterations of transcriptome using various 

approaches were explored, including traditional statistical approaches based on fitting a 

linear function into data, such as differential expression analysis (Chapter 2) and WGCNA 

(Chapter 3). Furthermore the machine learning approach enabled predictions to take into 

account linear as well as non-linear interactions between the genes and phenotype of 

interest (Chapter 4). While we did not find an absolute agreement between the findings, 

a common theme has emerged. Immune dysregulation was a highlight in all three studies, 
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suggesting that focusing on this aspect of transcriptome dysregulation might provide us 

with further insights into pathophysiology of depression.  

In Chapter 5, the research focus is on immune related biological pathways that we 

previously found dysregulated in recurrent depression. First, a comprehensive overview 

of previous findings on immune alterations in depression at gene expression level for both 

brain and periphery is presented. Next, in the experimental part of this chapter, the 

differential gene expression of immune genes that are known to be involved in immune-

related pathways in recurrent MDD on an independent cohort are evaluated. 
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CHAPTER 5 

Dysregulation of immune-related pathways in depression  

ABSTRACT 

Immune dysregulation is one of the most consistent findings in the biology of depression 

research. While many ‘immune’ genes were previously found implicated in depression, 

including upregulated pro-inflammatory cytokines IL1B, IL6, TNF, and INF, and 

transcription factors FN-kB and CREB1 identified in both the brain and  the periphery, the 

results are inconsistent across studies. Furthermore, at the transcriptome level, 

dysregulation of immune-related pathways at the periphery beyond the commonly studied 

cytokines was consistently found in multiple studies including our own. However, the 

exact mechanisms of peripheral immune dysregulation in depression are still largely 

unknown. In this study, we (1) provide a comprehensive overview of immune 

dysregulation in depression at gene expression level in both brain and periphery, and (2) 

using our previous exploratory findings on 13 immune-related pathways being 

dysregulated in recurrent MDD (Chapter 3), we examine the role of these pathways in 

recurrent MDD at individual gene level on independent cohort (the Older Australians Twin 

Study, OATS). To target the immune pathways, we selected all known genes (KEGG) 

involved in these 13 pathways (N = 1,302) and conducted a differential expression 

analysis on these candidates between individuals with recurrent MDD (N = 186). We 

found that two Illumina probes corresponding to CD14 were significantly downregulated 

in recurrent MDD (FDR < 0.05). This suggests that CD14 can potentially serve as a 

peripheral marker of immune dysregulation in recurrent MDD.  
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INTRODUCTION 

Gene expression of inflammation in depression presents as a relatively novel and 

promising approach to uncover the pathophysiology of depression and to possibly provide 

useful clinical information for predicting treatment response and for decision-making 

processes in depression treatment. Quantifying the abundance of mRNA molecules 

known to be involved in immune-related pathways in a single cell or in a population of 

cells provides essential information on the biological activity and functions of immune 

system. Studying gene expression alteration in genes that are involved in immune-related 

biological pathways in depression can be viewed as complementary to a gene discovery 

approach, both aiming at understanding the molecular mechanisms of depression. There 

is a body of research that investigates gene expression alterations in depression in the 

brain as well as in the periphery at genome-wide level (when all genes are assessed) as 

well as using gene targeted (when several candidate genes are assessed) approaches. 

These studies have substantially improved our understanding the biology of depression; 

in particular, it is now clear that the immune system plays a role in its aetiology. However, 

to the best of our knowledge, there were no depression-related pathway-targeted studies 

aiming to assess all genes known to be involved in a particular molecular pathway, which 

is essential to better understanding the role of the immune system in depression. In this 

study, we aim to answer two questions: (1) what genes known to be involved in specific 

pathways are dysregulated in depression and (2) do these genes perform in isolation in 

one pathway, or have a pleiotropic effect on multiple immune pathways? First, we provide 

a comprehensive overview of known alterations in expression of immune-related genes 

in the brain and in the periphery (this overview was published as a part of a book chapter 

(Ciobanu and Baune, 2018), the full chapter can be accessed via 

https://doi.org/10.1016/B978-0-12-811073-7.00011-8), and secondly, using a pathway-

https://www-sciencedirect-com.proxy.library.adelaide.edu.au/topics/neuroscience/decision-making
https://www-sciencedirect-com.proxy.library.adelaide.edu.au/topics/neuroscience/messenger-rna
https://doi.org/10.1016/B978-0-12-811073-7.00011-8
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targeted approach, we examine the expression levels of all genes known to be involved 

in 13 immune-related pathways that were found associated with depression. 

Gene expression patterns of immune dysregulations in the brain 

Studying the gene expression patterns in post-mortem brain tissues of individuals who 

suffered from depression provides us with valuable information about molecular changes 

occurring in depressed brains compared to healthy controls. Such studies have 

substantially advanced our understanding of the pathophysiological mechanisms of 

depression. Gene expression signatures derived from various brain regions collectively 

point towards molecular processes involving inflammatory pathways, cell survival, 

apoptosis and oxidative stress (Bakunina et al., 2015). 

Structural and functional neuroimaging studies in humans suggest that the limbic system 

(predominantly, amygdala (Ciobanu and Baune, 2018) and hippocampus) and the 

prefrontal cortex serve as primary brain areas responsible for disturbances in emotion 

processing and mood regulation in depression (Wise et al., 2014). Gene expression 

studies on human brain tissue, utilizing both candidate genes and genome-wide 

approaches, provide some support for dysregulated immune signalling within the brain, 

however the results lack consistency across the studies, which makes it challenging to 

specify how altered markers of inflammation found in different brain areas contribute to 

depression.  For instance, the most commonly reported circulating markers of 

inflammation, pro-inflammatory cytokines IL1B, IL6, TNF or INF were upregulated within 

various areas of prefrontal cortex (PFC), such as the dorsolateral prefrontal cortex, 

DLPFC (BA9) (Kang et al., 2007) and the anterior PFC (BA10) (Shelton et al., 2011, Malki 

et al., 2015) of depressed individuals, in the primary ventral regions of the prefrontal 

cortex (BA 44, 45, 46, 47) of depressed suicide victims (Klempan et al., 2009), in the 

orbitofrontal area (BA11) of adult suicide victims (Tonelli et al., 2008), in BA8 (part of the 
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frontal cortex involved in the management of uncertainty) and the anterior PFC (BA10) of 

teenage suicide victims (Pandey et al., 2012). However, none of these genes were 

replicated within the same brain area. Immune and apoptosis signalling along with 

synaptic and glutamatergic signalling pathways were also found disrupted in the 

hippocampal subfields DG and CA1 of middle-aged subjects diagnosed with MDD (Duric 

et al., 2013). An interesting study proposing synchronised dysregulation of expression in 

depression across different brain areas found a shift in coordinated gene expression 

levels between the amygdala and cingulate cortex for 100 to 250 individual genes, 

including IL1 and CREB1 in male MDD patients (Gaiteri et al., 2010b). Furthermore, 

several transcription factors known to be involved in immune response were found 

dysregulated in the depressed brain. For example, alterations in expression levels of 

CREB1, a transcriptional factor known to be involved in a wide variety of biological 

processes including immune response, is one of the most consistently replicated findings, 

however, the directionality of dysregulation is not consistent across different brain areas. 

For instance, Sibille et al. (2004) found that CREB1 is downregulated in the DLPFC (BA9 

and BA47) of depressed suicide subjects (noting that it did not survive correction for 

multiple testing), while Tochigi et al. (2008) observed upregulation of CREB1 in the 

anterior PFC (BA10) of non-suicide depressed subjects. This discrepancy may be 

explained by the presence of a suicide component in one study and its absence in 

another, pointing towards a differential role of CREB1 in depression and suicide. 

Alternatively, it may indicate that CREB1 is downregulated in the DLPFC and upregulated 

in the anterior PFC in depression.  Another transcription factor FOXD3, which functions 

as a transcriptional repressor, was found upregulated in the DLPFC together with 

TNFRSF11B, INFA6, and INFR1 (Kang et al., 2007). Moreover, it seems that post-

transcriptional regulation by short non-coding microRNAs, affecting both the stability and 

translation of mRNAs, are also involved in depression. Thus, utilising RNA-sequencing 
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data derived from DG granule cells, it has been found that posttranscriptional regulation 

by miR-182, which is involved in a broad range of biological processes including 

regulation of immune response, significantly contributed to disrupted signalling in the 

hippocampus (DG) in depression (Kohen et al., 2014b) (Table 5.1).  

Although all these findings suggest that brain dysregulation of immune genes, involving 

IL1B, IL6, TNF, INF, CREB1, FOXD3, and miR-182 might play a role in depression, they 

do not provide solid evidence, as the majority of those individual players of immune 

signalling have not been replicated. To further explore the level of replication of the 

findings in gene-expression studies,  we re-analysed data from 15 brain transcriptomic 

studies in depression and identified only seven genes of the immune response showing 

minimal replication (i.e. they were found dysregulated within the depressed brain but in 

different brain areas): FGFR3, ENPP2, PTP4A2 (innate immune response), CREB1, 

MOG, JUN (toll-like receptor signalling pathways), and LEPR, which belongs to the gp130 

family of cytokine receptors (cytokine-mediated signalling (Ciobanu et al., 2016). These 

findings point to a possible involvement of immune factors going beyond the typically 

reported pro-inflammatory cytokines. 

 

 

 

 

 

 

 

 



Transcriptome signature of depression 

101 
 

 

Table 5.1. Studies on the dysregulation of immune genes and oxidative stress factors in 

brain tissues in depression  
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It has been suggested that inflammation is tightly linked with oxidative stress in 

depression, which may lead to cell death and further inflammation, creating a vicious 

circle, and a mechanism which is not well understood (Bakunina et al., 2015). A recent 

integrative brain analysis of rat and human prefrontal cortex transcriptomes revealed that 

80% of dysregulated genes were functionally associated with a key stress response 

signalling cascade, involving NF-kB, AP-1 (activator protein 1) and ERK/MAPK, 

suggesting inflammation-mediated oxidative stress and further dysregulation of 

neuroplasticity and neurogenesis in the prefrontal cortex in MDD (Malki et al., 2015). 

Furthermore, oxidative stress, measured by expression levels of four antioxidant 

oxidative defence enzymes, A+B) superoxide dismutases (SOD1 and SOD2), C) catalase 

(CAT) and D) glutathione peroxidase (GPX1), which were significantly lower in depressed 

individuals, found to contribute to telomere shortening in oligodendrocytes of the 
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prefrontal cortex (BA10) (Szebeni et al., 2014). These findings provide evidence for a 

possible aetiological link between inflammation, oxidative stress, telomere shortening and 

white matter abnormalities previously observed in depression. 

Although many individual players of the immune and the oxidative stress pathways have 

been found altered in brain tissue of patients diagnosed with depression, an inconsistency 

on the direction and brain areas of dysregulated genes precludes firm conclusions on 

specific immune-related pathways dysregulated in the brain in depression. The current 

state of knowledge suggests that multiple brain areas are possibly involved in depression-

related immune dysregulation in a complex manner. 

Overlap of gene expression markers of inflammation across psychiatric disorders  

Given that a transdiagnostic assessment may reveal common biological features 

between depression, schizophrenia and bipolar disorder, the comparative assessment of 

gene expression levels can shed some light on shared and distinct pathophysiological 

mechanisms of these disorders, which can potentially provide a molecular basis for 

developing diagnostic guidelines. Molecular comparisons of different brain areas in 

schizophrenia, bipolar disorder and MDD at a transcriptome level suggested that (1) the 

prefrontal cortex in all three disorders have distinct gene expression signatures with 

shared upregulation of genes encoding proteins for transcription and translation (Iwamoto 

et al., 2004) and that (2) the activation of immune/inflammatory response in the 

hippocampus is present in all disorders.  However, despite these similarities across 

disorders, several differences in the specifics of the dysregulated transcriptomes were 

found. For MDD, abnormal activation of the first component of the complement cascade 

C1q (hub genes in co-expression analysis C1QA, C1QB and C1QC) and IL1B (Kim et al., 

2016) were observed in the hippocampus, while a dysregulation of the immune-related 

response in the thalamus, including B cell receptor signalling, was specific to 
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schizophrenia, as it was not found in depression (Chu et al., 2009) (Table 5.1).  

Taken together, there is a plethora of findings pointing towards inflammation and oxidative 

stress-related events in depressed brains, including upregulation of pro-inflammatory 

cytokines, transcriptional and post-transcriptional regulators of immune signalling in the 

prefrontal cortex and hippocampus. Emerging evidence also suggests a possible causal 

link between inflammation, oxidative stress and structural changes in the brain in 

depression. However, it is premature to propose a distinct inflammatory/oxidative stress 

transcriptomic signature of depression as of yet, as replication of these findings is minimal 

at present. Further exploration of transcriptomes across different brain areas at a single 

cell type level and peripheral blood has a great potential to discover how inflammation-

induced molecular changes lead to structural abnormalities and impair neural circuits 

involved in emotional and cognitive processing in depression. 

Peripheral Gene expression patterns of immune dysregulation  

Studying gene expression markers of depression in peripheral tissues is a promising 

approach to identify biomarkers that are potentially translatable into clinical practice for 

diagnostic and prognostic purposes. Dysregulated transcripts identified at candidate gene 

and genome-wide levels provide us with new insights into biological mechanisms of 

depression. However, similar to gene expression studies in post-mortem brain, the 

findings in peripheral tissues lack consistency. In a recent systematic review, we re-

analysed the results obtained from 10 transcriptomic studies in depression and showed 

that only 2.8% of genes (21 out of 752) identified as significantly differentially expressed 

in the periphery between depressed patients and healthy control subjects were replicated. 

Although a low level of replication at an individual gene level is discouraging, we made 

the observation that various factors of the immune response were consistently 

dysregulated. Among these 21 replicated genes, three were involved in the immune 
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system: IFIT3, which is involved in the type 1 interferon signalling pathway was found 

upregulated in MDD and downregulated in postpartum depression; STAT3, a 

transcription factor that mediates cellular responses to interleukins and SEMA3C, which 

is also known to be involved in the immune response, were found upregulated in MDD 

(Ciobanu et al., 2016).  This provides further evidence for an involvement of peripheral 

inflammation in the pathophysiology of depression.  

At this stage it is unknown how well the peripheral markers are predictors for brain 

inflammation (and vice versa). Despite a substantial overlap between brain and peripheral 

blood transcriptomes (Liew et al., 2006), the extent at which peripheral inflammation is a 

reflection of CNS inflammation in depressed individuals is not fully understood. One of 

the challenges in biomarker research for psychiatric disorders is to agree on the ‘best’ 

peripheral tissue source. While separated cell types or stimulated blood provide better 

resolution of signal compared to unstimulated blood, dysregulation of inflammatory and 

other immune-related genes is detectable even in unstimulated whole blood. For 

example, elements of disrupted immune signalling were found in unchallenged 

monocytes (Carvalho et al., 2014), PBMCs (Belzeaux et al., 2010, Savitz et al., 2013, 

Segman et al., 2010), dermal fibroblasts (Garbett et al., 2015b), whole blood after 

lipopolysaccharide (LPS) stimulation (Spijker et al., 2010), as well as in unstimulated 

whole blood (Jansen et al., 2016) from MDD patients. Although the aforementioned 

studies not only differ in cell type, but also in type of depression (postpartum, melancholic, 

induced by INF-α treatment), type of study design (targeted vs. genome-wide), and 

among cohort characteristics (age groups, medications), there was some agreement in 

findings on gene expression markers of inflammation between the studies .For instance, 

by studying a panel of 47 inflammatory-related genes Carvalho et al. (2014) found that 

one of two identified clusters, consisting primarily of pro-inflammatory mediators (IL1A, 

IL1B, IL6, PTX3, PDE4B, PTGS2, and TNF), were upregulated in monocytes of 47 
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patients with melancholic depression. This was somewhat consistent with genome-wide 

findings of a dysregulated functional network centred on differentially expressed TNF in 

PBMCs from 21 current and re-current moderately to severely affected MDD cases 

(Savitz et al., 2013). However, the latter study underscored that differentially expressed 

immune players were functionally linked with non-differentially expressed NF-kß, TGFß, 

and extracellular signal-regulated kinase (ERK), indicating that differential expression 

analysis might be a suboptimal option for detecting complex gene-gene interactions in 

depression. In another study, one of the TNF receptors, TNFRSF1 together with 

interferon-induced proteins IFIT1, IFIT2, and IFIT3 and 8 other genes involved in immune 

response (HELLS, HIST2H2B, GBPI, IGJ, SERPING, LOC44203, CXCL10, EREG) were 

found differentially expressed in PBMCs of 9 patients with postpartum depression 

(Segman et al., 2010). In contrast, among 40 studied candidate genes including TNF, 

IL1B, IL2, IL4, IL6, IL8, and IL10, only the anti-inflammatory cytokine IL10 was statistically 

significantly elevated in PBMCs of 11 individuals suffering from a severe melancholic 

depressive episode (Belzeaux et al., 2010). To overcome low signal to noise ratio of gene 

expression in basal blood, Spijker et al. (2010) used LPS challenged whole-blood cells 

from 21 individuals with a single MDD episode. They observed LPS-induced gene 

expression, among which there were several cytokines, such as TNF, NF-kB, IL1, IL6, 

and IL10. Although none of these genes displayed a differential expression level between 

MDD patients and control subjects, six out seven genes in a proposed diagnostic 

signature of depression are related to the immune system and deal with cellular 

proliferation (CAPRIN1, PROK2, ZBTB16) and differentiation (CLEC4A, KRT23, 

PLSCR1). Environmental influences, like lifestyle and medication use, can confound gene 

expression findings. Dermal fibroblasts were proposed as an alternative experimental 

model to study depression-specific gene expression alterationsas this cell type isless 

dependent of environmental influences (Garbett et al., 2015a). The authors argue that 
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after several rounds of fibroblasts’ division in the cell culture, many epigenetic changes 

disappear over time, leaving a more “pure” genetic model at hand. Findings in fibroblasts 

were consistent with previously described observations in other cell types, pointing to 

disrupted molecular pathways related to cell-to-cell communication that are known to play 

a role in the adaptive and innate immune system. A set of 13 PR-qPCR validated immune-

related genes was suggested to be associated with life style-independent and 

medication-free status in depression (CD74, HLA-DRA, HLA-DQB1, IL11, HLA-DPA1, 

S100B, HBEGF, HLA-DPB1, HLA-DQA1, MET, PCDH10, TNF19, GSTT1).  
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Table 5.2. Studies on the dysregulation of immune genes in peripheral tissues  
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While we report on some agreement of gene expression markers of inflammation in the 

periphery across studies, the majority of immune-related genes have not been replicated. 

One of the major factors that may have led to the disagreement between the studies is 

low statistical power. Small sample sizes, ranging from only 9 to 47 depression cases 

(Table 5.2), is one of the main limiting factors affecting statistical power to detect and 

replicate dysregulated transcripts. To overcome this limitation,  (Jansen et al., 2016) 
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performed the largest to date study on 882 patients with current MDD. Using both 

differential expression and co-expression clustering (WGCNA) (Zhang and Horvath, 

2005) methods and accounting for 16 demographic and technical covariates, they 

identified that MDD is characterised by upregulated  IL-6 signalling (IL6R, STAT3, 

MAPK14, RXRA) and downregulated NK cell activation (GZMB, KLRK1, PRF1, SH2D1B, 

KLDR1, NFATC2, IL2RB, CALM1, NCALD). Longitudinal analysis at 2-year follow-up 

showed that the levels of expression for 15% of genes out of the 129 genes identified in 

cross-sectional analyses were reversed in those who remitted after a previous depression 

episode. This indicates that transient gene expression patterns are detectable in 

peripheral blood and the results provide support for the potential success in the 

development of whole-blood gene expression-based biomarkers of depression. These 

results were also meta-analysed with a recent RNA-seq study, in which alone no 

significant association with depression on 463 self-reported MDD cases accounting for 

39 covariates were found. Binding the two largest datasets derived from microarrays and 

RNA-sequencing technologies together, resulted in 12 differentially expressed genes at 

FDR˂0.1 between MDD cases and healthy controls, 7 of which are known to be involved 

in activated immune signalling and oxidative stress (CALM1, FCRL6, APOBEC3G, 

RAP2B, PIPOX, PRR5L, and KLRD1), providing further support for the often reported 

peripheral inflammation in depression. 

Taken together, an intensive search for peripheral gene expression biomarkers of 

inflammation in depression at both the candidate gene and transcriptome levels identified 

some promising candidates, including IL1B, TNF, IL6, INF, CREB1 and NF-kB, the field 

is far away from claiming an immune signature of depression. Further understanding of 

gene expression alterations in depression with a particular focus on immune-related 

pathways will help us to better understand the role of immune system in depression.  
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In our previous study, employing co-expression network approach, we found that 13 

biological immune-related pathways are significantly altered (activated or inhibited) in 

older adults suffering with recurrent MDD. However, the exact mechanisms of this 

dysregulation requires further investigation. Targeting these immune related pathways at 

individual gene level to determine what genes are differentially expressed in depression 

is complementary to candidate gene and transcriptome-wide approaches. In this study, 

we select a pathway-targeted subset of biologically relevant genes that can provide us 

with more granular understanding on immune dysregulation in depression. To select a 

subset of targeted immune genes for further analyses, we (1) extracted the full list of 

genes that are known to be involved in a given pathway, (2) removed redundant 

information about genes involved in multiple pathways, and (3) conducted differential 

gene expression analysis between individuals with recurrent MDD and those without 

using the OATS cohort of elderly community-dwelling individuals. 

METHODS 

Candidate gene selection and mapping gene names to Illumina probes 

The 13 KEGG pathways associated with recurrent MDD in the elderly are listed in the 

Table 5.3. In total, there were 1,869 genes involved in these pathways with 30.3% (576) 

of them involved in multiple pathways. After removing duplicated values 1,302 individual 

genes across 13 KEGG pathways remained for further analysis. For viewing KEGG 

pathway diagrams with “depression” genes marked up, refer to Supplementary Materials 

for (Ciobanu et al., 2018b). The 1,302 genes of interest were mapped to the 2,085 

corresponding Illumina HumanHT-12 v4 probes.  
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Table 5.3. Thirteen KEGG pathways associated with recurrent MDD (Ciobanu et al., 

2018b) 

 

Pathway name 

 

KEGG ID 

 

Total N 

 
Status 
in MDD 

 

FDR 

 

Fc gamma R-mediated phagocytosis 

 

hsa:04666 

 

91 

 

Activated 

 

0.001 

Shigellosis hsa:05131 65 Activated 0.006 

mTOR signalling pathway hsa:04150 153 Activated 0.006 

Natural killer cell mediated cytotoxicity  hsa:04650 131 Inhibited 0.008 

Antigen processing and presentation hsa:04612 77 Activated 0.01 

Herpes simplex infection hsa:05168 492 Activated 0.01 

Insulin signalling pathway hsa:04910 137 Activated 0.03 

Pathogenic Escherichia coli infection hsa:05130 55 Activated 0.03 

RNA degradation hsa:03018 79 Activated 0.04 

Epstein-Barr virus infection hsa:05169 201 Activated 0.04 

Protein processing in endoplasmic reticulum hsa:04141 165 Activated 0.04 

Apoptosis hsa:04210 136 Activated 0.04 

T cell receptor signalling pathway hsa:104660 101 Inhibited 0.046 

Pathway name, KEGG ID, and Total N (total number of genes known to be involved in a given pathway) 
refer to the KEGG database; Status in MDD (activated or inhibited), MDD N (number of genes found 
differentially expressed in MDD), and FDR (at 5%) refers to the previous findings (Ciobanu et al., 2018b). 

 

Cohort characteristics 

To conduct the differential expression analyses on immune related genes in recurrent 

MDD we utilised the Older Australian Twins Study (OATS). The primary aim of OATS is 

to investigate healthy brain ageing in older twins (65+ years) (Sachdev et al., 2009). 

Depression data were collected at three time points with 2-year intervals between 

assessments. Blood samples for gene expression analyses were collected at Wave 3, 
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four years after baseline. The total sample size available for further analyses N=186 

(recurrent MDD = 7). Informed consent was obtained for all participants and study 

procedures were explained prior to study commencement. Further details on cohort 

characteristics can be found in (Ciobanu et al., 2018b). 

MDD definition 

MDD was assessed by two well-validated self-report, and two clinical interview-based, 

measures of depression including the Geriatric Depression Scale (GDS-15) (cut-off ≥ 6) 

(Yesavage et al., 1982), the Patient Health Questionnaire (PHQ-9) (cut-off ≥ 10) (Kroenke 

K and R., 2002), the Neuropsychiatric Inventory (NPI) (depression sub-scale) (Cummings 

et al., 1994), and the Mini International Neuropsychiatric Interview (M.I.N.I.) (Sheehan et 

al., 1998). The recurrent MDD cases were defined as participants who were identified as 

clinically depressed by at least two of the above depression measures, according to DSM-

IV criteria, at more than one study Wave. 

Gene expression data pre-processing 

Gene expression data for 186 whole blood samples collected in PAXgene tubes were 

generated using the Illumina Whole-Genome Gene Expression Direct Hybridization 

Assay System HumanHT-12 v4 (Illumina Inc., San Diego, CA, USA) according to 

standard manufacturer protocols. After rigorous QC (RIN<6), pre-processing, filtering, 

and adjustments for known (RINs, age, sex) and latent non-biological variables, 11,685 

probes for 186 individuals aged 69 and over from the OATS cohort (age range 69.4 – 

93.5, mean age 75.9±5.3, 72 males and 114 females) were available for downstream 

analyses.  

Differential gene expression analysis 

To assess differential gene expression, DGE, between individuals diagnosed with 
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recurrent depression and those without this diagnosis, we fit gene-wise linear modelling 

implemented in limma R package. The linear modelling was performed in a row-wise 

fashion, with regression coefficients and standard errors estimating the comparisons of 

interest. The fitted model and contrast matrix were used to compute log2-fold-changes 

and t-statistics for the contrasts of interest. For each coefficient in the contrast, empirical 

Bayes moderated t-statistics and their associated P-values were computed to assess the 

significance of the observed expression changes.  

RESULTS 

For the 1,302 individual genes that were identified using KEGG database there were 963 

Illumina corresponding probes (750 unique genes) in our OATS gene expression dataset 

available for DGE analysis. The 102 probes (90 unique genes) differentially expressed at 

nominal p < 0.05 (Appendix C). After FDR correction for multiple testing, two probes 

corresponding to two splice variants of the CD14 gene (ILMN1740014 and ILMN239644) 

remained significant at FDR 5%. Both probes were downregulated with comparable effect 

(logFC = - 0.7 and - 0.64 accordingly). Five more genes, namely LSM2, ACTB, 

ATP6V1B2, CFP and PAK 1, can be considered significantly dysregulated at relaxed FDR 

25% threshold (Figure 5.1, Table 5.4, Table S5.1).  
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Figure 5.1. Differentially expressed genes in recurrent MDD. The volcano plot displaying 

log fold changes on the x-axis versus a measure of statistical significance on the y-axis 

(here the significance measure is the posterior log-odds of differential expression (B-

statistics). The top six genes are named, statistically significant gene at FDR 5% marked 

with asterisk. 
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Table 5.4. The top 6 differentially expressed genes in recurrent MDD 

Official 
symbol 

Illumina probe ENTREZ Official gene 
name 

logFC p-value FDR 

CD14 ILMN_1740015 929 CD14 
molecule 

-0.7 

 

9.51E-07 0.00092 

CD14 ILMN_2396444 929 CD14 
molecule 

-0.64 3.19E-06 0.002 

LSM2 ILMN_2070300 57819 LSM2 
homolog, U6 
small nuclear 
RNA and 
mRNA 
degradation 
associated 

0.26 0.0006 0.16 

ACTB ILMN_2152131 60 actin beta -0.29 0.0007 0.16 

ATP6V1B2 ILMN_1787705 526 ATPase H+ 
transporting V1 
subunit B2 

-0.34 0.0009 0.17 

CFP ILMN_1658121 5199 complement 
factor 
properdin 

-0.3 0.001 0.18 

PAK1 ILMN_1767365 5058 p21 (RAC1) 
activated 
kinase 1 

-0.3 0.002 0.22 

   

DISCUSSION 

In our previous study (Chapter 3) using co-expression network analyses we reduced 

dimensionality of transcriptome data in a functionally relevant manner and identified 

immune- and pathogen-related pathways associated with recurrent depression. To gain 

further insight into immune dysregulation in recurrent MDD at gene expression level we 

employed a targeted candidate pathway approach. After selection of 13 immune-related 

pathways associated with recurrent depression in the elderly, we found two mRNA 

variants that encode for the CD14 molecule to be significantly downregulated in 

individuals with recurrent MDD compared to those without (FDR < 0.05) in independent 

cohort. This finding confirms previous observations that innate immune response-
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activating signal transduction mechanisms are altered in depression and suggests that 

CD14 may represent a novel putative biomarker for recurrent MDD. 

The role of CD14 in innate immune responses and oxidative stress 

Cluster of differentiation antigen 14 (CD14) is a glycosylphosphatidylinositol (GPI)-

anchored receptor known to serve as a co-receptor for several Toll-like Receptors (TLRs) 

both at the cell surface and in the endosomal compartment.  CD14 is mainly expressed 

in peripheral tissues, including whole blood; it also expressed in the brain (hippocampus, 

cortex, nucleus accumbens etc.) although in a much smaller quantity 

(https://gtexportal.org/home/gene/CD14). CD14 is known as a critical upstream regulator 

of the host's inflammatory response to pathogenic challenge; it influences the intensity 

and duration of inflammation to finely modulate NF-κB activity. While CD14 is a 

multifunctional molecule that participates in many immune-related biological pathways 

(Figure 5.2), current thinking emphasizes the role of CD14 in facilitating recognition of 

pathogens to initiate and orchestrate innate immune-mediated signalling events (Sahay 

et al., 2009, Zanoni and Granucci, 2013). 

The role of CD14 in oxidative stress is emerging. Recent studies show that CD14 has an 

impact on Reactive Oxygen Species (ROS) production when primed by Escherichia coli 

lipopolysaccharides in human leukocytes in vitro (Kabanov, 2019); activation of CD14-

dependent innate immune response was also found causal to neuronal oxidative damage 

and dendritic degeneration in vivo (Milatovic, 2004). Therefore, if the expression of CD14 

is compromised, activation of an intracellular signalling pathway NF-kB and inflammatory 

cytokine production that are responsible for facilitating the innate immune system would 

be impaired leading to damage by ROS (Liu et al., 2012, Lau et al., 2015). Together with 

our finding on a role of the peroxisome lipid and ROS metabolism pathway in depressive 

disorder (Chapter 2), the results on altered CD14 expression in recurrent MDD suggest 

https://gtexportal.org/home/gene/CD14
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that dysregulated CD14-dependent innate immune cascade leading to accumulation of 

ROS-induced damage plays a role in recurrent MDD and could represent a recurrent 

MDD-specific biomarker and potential therapeutic target. 
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Figure 5.2. Interaction network for CD14. Network nodes represent proteins. Enrichment 

for top 10 GO terms is presented  

 

The network was generated using STRING software https://string-db.org 

 

https://string-db.org/
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The role of CD14 in age-related alterations in innate immune response and ROS 

production 

Aging is associated with dysregulation of multiple components of the immune system that 

results in a decrease of adequate response to pathogens and increase in susceptibility to 

infections (Metcalf et al., 2015, Weiskopf et al., 2009). Furthermore, oxidative stress is a 

hallmark of ageing (Liguori et al., 2018). Considering that CD14 is an important modulator 

of both pathogen-activated innate immune response and production of ROS, our findings 

on dysregulated CD14 within the elderly can be partially attributed to the aging process 

itself. However, it can also indicate that within the elderly population depression could be 

stratified according to particular innate immune and oxidative stress mechanisms 

coordinated by CD14.  

While the population design employed in this study (individuals with recurrent MDD vs 

those without) may suggest that the results obtained have a stronger potential to be 

translated into actionable clinical insights, the unbalanced ratio of those affected 

(minority) with those not (majority) used in differential expression analysis can potentially 

produce unreliable results. Therefore, replication of these findings on a larger cohort 

employing case-control study design is required. 

CONCLUSIONS 

Considering a central coordinating role of CD14 in orchestrating the host’s inflammatory 

response to pathogenic challenge and association of downregulated CD14 with recurrent 

MDD in the elderly, our results suggest that CD14-mediated immune response is impaired 

in recurrent MDD. However, replication of these results on a larger cohort is warranted in 
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addition to cellular based experiments. 
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A NOVEL CANDIDATE PATHWAY FRAMEWORK  

Navigating our way towards a greater understanding of the pathophysiological 

mechanisms in depression requires a combined focus on the forest (global focus, 

transcriptome-wide view) and focus on the trees (local focus, individual genes view). It’s 

becoming clear that whilst it is important to identify individual players via for example 

differential gene expression analyses, that can be utilised as biomarkers and therapeutic 

targets, this cannot be done without taking a global perspective on a whole system of 

complex interactions between the genes. Co-expression network (WGCNA) and 

differential gene expression represent two different but complimentary analytical 

strategies. While co-expression network takes a global systems approach to identifying 

disrupted biological pathways in a disease, differential gene expression is a powerful 

method to pinpoint individual players. Combining these two methodologies in a workflow 

provides a much more comprehensive analytical approach to gain novel insights into the 

underlying biological mechanisms of MDD.  

We propose a novel candidate pathway framework that incorporates both global and local 

perspectives. The framework consists of the three major steps: (1) transcriptome co-

expression network construction (WGCNA) to identify biological pathways associated 

with depression (an example can be found in Chapter 3), (2) identification of all genes 

known to be involved in given candidate pathways using pathway database (KEGG), (3) 

differential gene expression analysis of genes involved in candidate pathways on an 

independent cohort (limma, R) (an example can be found in Chapter 5). Figure 5.3 

outlines the major steps of the candidate pathway framework. 
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Figure 5.3. A candidate pathway framework 

 

This framework allows for a comprehensive investigation of transcriptome signature in 

depression from a complex network of interactions at genome-wide level to individual 

genes and includes replication process on an independent cohort. Using proposed 

candidate pathway framework, we were able to identify pathogen- and immune-related 

molecular pathways implicated in recurrent MDD (Chapter 3) and identified CD14 as one 

of the central players that appear to be responsible for orchestration of these pathways 

(Chapter 5). This suggests that a candidate pathway framework is useful for detecting 

relevant signals in highly multidimensional transcriptome data with poor signal-to-noise 

ratio and can be further utilised for studying gene expression signatures of depression or 

other heterogeneous conditions. 
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CHAPTER 6 

Summarising the findings and outlining future directions 

 

 

Elucidating transcriptome signature of depression is critical for understanding biological 

underpinnings of depression. In general, transcriptome research in MDD Over the last 10 

years of has been challenging due to multiple limiting factors of technical and biological 

nature, which we extensively discuss throughout this manuscript. In particular, for this 

study some technical aspects and experimental limitations will be discussed. 

There are a number of highly significant confounders, which would potentially influence 

the replicability of expression levels of specific genes, and therefore, the interpretability 

of the results obtained in this work. Of pivotal relevance is the pharmacological treatment 

of patients included in each study, and the potential impact of confounding of 

pharmacological treatment received by MDD patients. It is quite possible that differences 

in gene expression between MDD patients and healthy controls reported in previously 

published studies (examined in Chapter 2) are influenced by those which are regulated, 

consequently, of the treatment received, and that differences in DEGs observed between 

studies may reflect different treatments received by patients in each study. Differences in 

treatments may also explain the lack of replicability across the studies observed (Ciobanu 

2016).  Our main experimental cohorts, namely sMAS and OATS, utilised in Chapters 3, 

4 and 5 for transcriptome data analyses in MDD also suffered from a lack of information 

regarding pharmachological treatments taken by patients prior to blood collection, which 

might have affected the obtained results. Future transcriptome studies should consider 

pharmacological treatment at the stage of study design to facilitate adjustment for this 

important confounder at data analysis step.   
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In addition, the different sensitivities of the methods used to capture gene expression (i.e. 

microarray vs RNA-seq) can have an effect on the results obtained. For example, when 

using microarray data, low abundance genes are usually filtered out before the analysis 

due to lack of sensitivity to reliably detect them, while RNA-seq has higher sensitivity for 

low abundance genes and these genes can be included in statistical analysis. 

Furthermore, microarrays cannot capture alternative mechanisms of functional gene 

regulation (e.g. alternative splicing isoforms or non-coding transcripts not typically 

captured by microarray), while RNA-seq technology can, which may also be relevant in 

the molecular mechanisms of depression.  

To overcome some of the limitations observed in the previous studies (Chapter 2) that 

may have affected the progress in the field, we applied several novel statistical and 

machine learning techniques, such as co-expression network (Chapter 3), fuzzy forests 

(Chapter 4), and candidate pathway (Chapter 5) on two large population cohorts of older 

adults. We found that (1) immune dysregulation characterised by thirteen pathogen- and 

immune-related molecular pathways appear to have an important role in recurrent MDD 

(Ciobanu et al., 2018b), the downregulated TFRC can predict recurrent MDD in the 

elderly, and therefore can potentially be used as a predictive marker of the disease for 

the specific subgroup of patients (Chapter 4, paper under review), and (3) CD14-

coordinated innate immune signalling is associated with recurrent MDD and can 

represent a potential novel therapeutic target (Chapter 5).  Future directions are outlined 

for the importance of emerging methodologies and suggest several approaches that have 

a potential to facilitate biological findings into actionable clinical insights. Figure 6.1 

illustrates summarised findings of the PhD thesis. 

 

 

 

 

 



Transcriptome signature of depression 

126 
 

 

Figure 6.1. Summary of the findings on investigation of transcriptome signature of 

depression 

 

 

In summary, while supporting previous findings on the immune system being involved in 

depression, our work provides converging evidence that pathogen-related immune 

dysregulation plays a role in recurrent MDD in older adults and highlights two candidate 

genes (TFRC and CD14) as potential peripheral markers of the disorder.  

The next section outlines how advanced analytical strategies can enhance biological 

psychiatric research for stratification of subgroups via molecular signatures and treatment 

response biotypes.  This will further advance our understanding of disorder mechanisms 

and accelerate transition into an era of personalized treatments in psychiatry. 
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GENE CO-EXPRESSION NETWORK AND MACHINE LEARNING APPROACHES TO TRANSLATE 

BIOLOGICAL FINDINGS INTO ACTIONABLE CLINICAL INSIGHTS 

Despite the success of collaborative international efforts to identify genetic variants 

involved in depression, the biological underpinnings of complex psychiatric traits, 

including depression, remain elusive. Increasing evidence suggests that depression is 

the result of complex interactions between genomic variations, epigenetic modifications, 

and other regulatory mechanisms involved in gene expression. Therefore, the 

transcriptome, representing a nexus of genetic and environmental interactions, can be 

seen as an essential biological layer of information for studying molecular dysregulations 

in mental disorders. Transcriptomics can be used for diagnostic purposes to differentiate 

disease from healthy controls, differentiate disease stages and identify subgroups of 

patients exhibiting different biological signatures within diagnosis. It also allows 

measuring the influence of drugs on the transcriptome, which can be useful in getting 

insights on molecular mechanisms of drug’s action and in predicting treatment response. 

Using co-expression network analysis-based methods, disease-relevant clusters of co-

regulated genes can be identified and further integrated with genetic and epigenetic data 

for a comprehensive investigation of biological underpinnings of depression. In this 

chapter, we provide an essential guide to the co-expression network approach as an 

important statistical tool that can enrich the understanding of disrupted molecular 

processes in psychiatric disorders. Furthermore, given the complex system structure 

inherent in psychiatric disorders, including depression, statistical learning frameworks 

that can translate these findings into actionable clinical insights are required. A number 

of emerging methodologies that address this problem are explored, including weighted 

gene co-expression network analysis, differential co-expression analysis, biclustering, 

and regularised machine learning.  
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Emerging evidence suggests that interactions between both genes and the 

environment can have a large impact on the phenotypic variability of psychiatric disorders 

(Kubota et al., 2012). Given that gene expression is a product of genetic effects, 

environmental influences and epigenetic modifications, studying alterations of mRNA 

levels in disease represents a promising approach to further our molecular understanding 

of depression. However, a major challenge has remained. How is it that we go about 

measuring and identifying the expression of which genes are altered in disease specific 

cells, tissues and brain regions?  

Early studies measuring the differential expression of candidate genes pointed towards 

many potential targets for depression. However, the replication of these findings has been 

limited due to methodological differences, inconsistencies in the diagnostic measures 

used, and underpowered study designs (Drago et al., 2007). Nevertheless, advances in 

high-throughput technologies have helped facilitate a shift from hypothesis-driven 

approaches, to less biased data-driven methodologies. A substantial body of research 

has applied microarray and RNA-seq technologies to investigate disease-associated 

genome-wide expression alterations in both brain and peripheral tissues. This work has 

been demonstrated in schizophrenia (Sanders et al., 2017, Cattane et al., 2015), bipolar 

disorder (for review, Seifuddin et al. (2013)), and MDD (for review, (Ciobanu et al., 2016)). 

While these findings have improved our understanding of the pathophysiological 

mechanisms in psychiatric disorders, replication of identified candidates has remained a 

challenge. One proposed reason for the lack of consistent results between studies is 

attributed to the molecular complexity of psychiatric disorders, which commonly, is further 

compounded by the small sample sizes often employed in this research. The capacity to 

detect multiple small effects from single molecules at the transcriptome-wide level places 

large sample size requirements on a study. Given the complex genetic architecture of 

psychiatric illness and the functional interdependencies between genes, emergent clinical 
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phenotypes are likely to reflect the interactions within a complex network of molecular 

processes. Therefore, capturing the most important genes that orchestrate the molecular 

cascades leading to psychiatric pathophysiology is of utmost importance. However, given 

the methodological constraints discussed above in traditional analysis, alternative 

methodologies are needed to further progress the field. A range of these methodologies 

will be discussed below. 

 DIAGNOSIS OF DEPRESSION 

Co-expression network analysis to differentiate disease from healthy controls 

Gene co-expression network analysis is a technique used to quantify the linear co-

expression of multiple genes in relation to disease diagnosis. This methodology allows 

for effective dimensionality reduction of transcriptome data (decreasing the number of 

independent variables in a dataset), as well as, clustering of interacting genes associated 

with a phenotype. It can be argued that if two (or more) genes are co-expressed, then the 

mechanisms regulating their expression must be either the same, or at least similar. 

Therefore, it is inferred that co-expressed genes are functionally related, and if associated 

with a disease status, are important contributors to a clinical phenotype.  

Weighted gene co-expression network analysis 

Gene clustering is a technique used in co-expression analysis that allows for the 

identification of sub-networks of convergent biological pathways. The Weighted Gene Co-

expression Network Analysis (WGCNA) is one of the most established techniques used 

in gene clustering. This technique utilises both  microarray and RNA-seq data (Zhang and 

Horvath, 2005). WGCNA organizes transcriptome data by defining genes as nodes and 

the relationships between nodes as edges. Biological networks tend to have a 
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hierarchical structure, such that their nodes can be clustered together into fewer 

modules of highly interconnected genes.  Inter-modular connectivity reflects a higher-

order structure of biological relationships within a gene network, while intra-modular 

connectivity can identify which genes behave as central hubs in the modules. In co-

expression networks, hubs are highly connected genes; therefore, being a hub is an 

indication of the importance of a gene in a module. Hubs are likely to be key molecular 

drivers that determine co-expression. Evidence also suggests that they may help to 

interpret a module as they likely reflect its predominant biological role. 

WGCNA has been successfully applied in many areas of medical research, including 

psychiatry. For example, WGCNA  has been used to differentiate disease cases from 

healthy controls and identify brain based immune system dysregulation in schizophrenia 

(Mistry et al., 2013), postsynaptic density implicated in the pathogenesis of bipolar 

disorder (Akula et al., 2015), peripheral inflammation in depression (Malki et al., 2013) 

and transcriptional and splicing dysregulation as underlying mechanisms of neuronal 

dysfunction in autism spectrum disorder (ASD) (Voineagu et al., 2011). Co-expression 

network analysis has also been applied to explore overlap and specificity across different 

disorders compared to healthy controls. For example, comparing gene co-expression 

patterns between adult and childhood attention-deficit hyperactivity disorder (ADHD), 

autism spectrum disorder (ASD), major depressive disorder (MDD) and healthy controls, 

it has been found that immune system dysregulation is involved in both MDD and adult 

ADHD and is inversely correlated with a disease status (de Jong et al., 2016). Using 

WGCNA, neuron differentiation and development pathways in cerebral cortex have been 

discovered as potential contributors to the etiologies for both schizophrenia and bipolar 

disorder (Chen et al., 2013);   while distinct molecular signatures have been found for 

ASD and intellectual disability (ID) (Parikshak et al., 2013). Recent work from Gandal et 

al. (2016) utilised WGCNA to compare molecular phenotypes across 5 major psychiatric 
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disorders, including autism (ASD), schizophrenia (SCZ), bipolar disorder (BD), 

depression (MDD), and alcoholism (AAD). From this comparison, authors were able to 

identify a clear pattern of shared and distinct gene-expression perturbations across all 

conditions. It has been found that neuronal gene co-expression modules were 

downregulated across ASD, SCZ, and BD, and astrocyte related modules were 

predominantly upregulated in ASD and SCZ.  

Differential co-expression network analysis to study differences among gene 

interconnections 

Differential co-expression analysis is a tool that is used to investigate the differences 

among gene interconnections. This is achieved by calculating the expression correlation 

change of each gene pair between conditions. Genes that are differentially co-expressed 

between different conditions are more likely to be regulators, thus, are likely to explain 

differences between phenotypes (Amar et al., 2013). By comparing the regulatory 

differences between cases and controls, specific differential networks of genes can be 

identified in psychiatric disorders. This methodology can be utilized to better understand 

the dynamic changes in gene regulatory networks in psychiatric illness, as well as 

comparing network properties across disorders. Thus, Xu et al. (2015) showed that 

mechanisms underlying MDD and subsyndromal symptomatic depression (SSD) were 

actually different. Authors found that there was no overlap between the MDD and SSD 

differentially regulated genes. Furthermore, the authors also found that Venlafaxine 

appeared to have a significant effect on the gene expression profile of MDD patients but 

no significant effect on the gene expression profiles of SSD patients. For more information 

on differential co-expression network analysis, see Hsu et al. (2015). 
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 DIAGNOSIS OF PATIENTS SUBTYPES 

Biclustering for identifying subgroups of patients  

Although gene co-expression clustering algorithms have proven useful for studying the 

molecular complexity of psychiatric disorders, the dominant clustering methodology 

discussed above is limited in its ability to detect gene expression patterns that are specific 

to subgroups of patients. An alternative approach called biclustering may be able to 

overcome this limitation. Biclustering is an alternative method for detecting differentially 

co-expressed genes between subgroups of patients, allowing for patient stratification into 

unique biological sub-groups. Biclustering algorithms perform clustering without the need 

for prior sample group classification, a beneficial characteristic given the uncertainty of 

diagnostic boundaries across psychiatric disorders. Using this approach, Cha et al. (2015) 

explored shared molecular basis of five neurodegenerative diseases (Alzheimer's 

disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic 

lateral sclerosis) and three psychiatric disorders (SCZ, BP, and ASD). The authors found 

that 4,307 genes were co-expressed in multiple brain diseases, whilst 3,409 gene sets 

were exclusively specified in individual brain diseases. Using the same approach in the 

field of oncology, Fiannaca et al. (2015) were able to identify unique molecular subgroups 

of breast cancer tumours based off of patients’ miRNA expression profiles. Interestingly 

enough, all patients presented with the same clinical profiles. These findings are 

beneficial for clinical practice as they may allow for the molecular stratification of both 

diagnosis and treatment of disease, thus, allowing clinicians to tailor treatment strategies 

to individual patients. At present, biclustering methods show promise to help further 

elucidate the complexity and biological heterogeneity of complex psychiatric traits. For an 

extensive overview of the different biclustering algorithms available, refer to (Pontes et 

al., 2015).  
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 PERSONALISED TREATMENTS 

Gene co-expression networks for understanding treatment response biotypes 

Understanding the biological basis of why some patients respond to certain therapies 

and others do not is essential for advancing personalised care in psychiatry. Due to the 

ability of gene co-expression analysis to approximate the complex interactions of 

biological information, it can be argued that this technique may help to inform the 

isolation of unique treatment response biotypes. Systematic characterisation of changes 

in gene co-expression patterns in responders vs. non-responders may provide biological 

grounds for developing predictive models that help to minimise therapeutic uncertainty. 

Furthermore, it may help to reveal novel mechanisms of action that remain unidentified 

in commonly used psychiatric drugs. Support for this notion has already been 

demonstrated in the field of oncology to delineate responders and non-responders to 

cancer treatment (Hsiao et al., 2016, Yang et al., 2014). In the field of psychiatry, co-

expression network analysis of peripheral blood has identified  immune-related pathways 

as important predispositions to antidepressant treatment response in MDD (Belzeaux et 

al., 2016). Blood-derived gene expression signature was found predictive of clozapine 

monotherapy in psychosis (Harrison et al., 2016). Furthermore, several gene co-

expression modules in patient-derived lymphoblastoid cell lines were discovered as 

lithium-responsive, indicating widespread effects of lithium on diverse cellular signalling 

systems including apoptosis and defence response pathways, protein processing and 

response to endoplasmic reticulum stress in bipolar disorder (Breen et al., 2016). As 

these studies suggest, applying co-expression based network methods across different 

disorders and medications can help to yield important insights on the molecular 

interactions regulating treatment response in complex psychiatric traits. 



Transcriptome signature of depression 

134 
 

 DISEASE MECHANISMS 

Gene co-expression network for integrative analyses in psychiatry 

Due to the multiple testing burden, large samples sizes are required to detect disrupted 

genes and pathways when multiple biological processes are analysed in unison (Chari et 

al., 2010). Gene co-expression network analysis may help to facilitate this goal by 

providing an endpoint for the quantification of such processes. For example, Parikshak et 

al. (2013) found that by intersecting co-expression modules with GWAS loci, they were 

able to identify ASD genes that tightly coalesced with modules implicated in distinct 

biological functions during human cortical development, including early transcriptional 

regulation and synaptic development. Furthermore, when modules of a network are 

combined with epigenetic information, we can substantially enrich our understanding of 

the epigenetic interplay between both genes and the environment in psychiatric disorders 

(Gibney and Nolan, 2010). As such, integrated transcriptome and methylome data 

derived from peripheral blood was able to identify 43 risk genes that discriminated youth 

patients and high-risk for bipolar disorder patients from controls (Fries et al., 2017), further 

demonstrating the utility of integrative analyses in the identification of biomarkers for 

disease risk. 

Combining more than two layers of biological data is a largely unexplored avenue 

in psychiatric research (Bersanelli et al., 2016). However, Ciuculete et al. (2017) 

investigated the interplay between 37 psychiatric-related genetic risk variants as well as 

shifts in both methylation and mRNA levels in 223 adolescents distinguished as being at 

risk for the development of psychiatric disorders. Using this approach, the authors were 

able to detect five SNPs (in HCRTR1, GAD1, HADC3 and FKBP5), which were 

associated with eight CpG sites. Three of these CpG sites, cg01089319 (GAD1), 

cg01089249 (GAD1) and cg24137543 (DIAPH1), manifest in significant gene expression 
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changes and overlap with active regulatory regions in chromatin states of brain tissues. 

Although these findings are preliminary, further studies employing multi-stage integrative 

analysis may help to advance the field and provide novel insights on how genetic variants 

may modulate risks for the development of specific psychiatric diseases (Ritchie et al., 

2015). 

Shared molecular mechanisms between disorders: implications for treatment response 

There is growing understanding that many psychiatric diseases share underlying 

biological mechanisms. The cross-disorder group from the Psychiatric Genomics 

Consortium (PGC) has provided empirical evidence for the shared genetic etiology of five 

psychiatric disorders, including, schizophrenia, bipolar disorder, major depressive 

disorder (MDD), autism spectrum disorder (ASD) and attention-deficit/hyperactivity 

disorder (ADHD) (Lee et al., 2013). Recently, (Lotan et al., 2014) curated all GWAS 

findings for ADHD, anxiety disorders, ASD, bipolar disorder, MDD, and schizophrenia, 

finding that 22% of identified genes overlapped across two or more disorders. An overlap 

in underlying biology between different conditions was also observed at the level of gene 

expression. For example, using microarrays, Iwamoto et al. (2004) compared gene 

expression profiles across different brain regions in bipolar disorder, MDD and 

schizophrenia. What they found is that although these mental disorders were molecularly 

distinctive, there was a relatively large overlap of the gene expression profiles in all three 

disorders. Using RNA-seq, further support was provided for these findings by Darby et al. 

(2016), finding that hippocampus and orbitofrontal cortex transcriptomes were consistent 

across diagnostic groups. These fundings may also help to explain why the same 

medication exerts its effects on patients diagnosed with different disorders.  

Although we have outlined many studies that have successfully exploited co-

expression network approaches in psychiatric research, this methodology is yet to be fully 
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embraced by the field. New methods and algorithms for gene expression analyses are 

growing. Including the use of co-expression networks in conjunction with machine 

learning methodologies (Lareau et al., 2015). In the following section the role of machine 

learning in both genetics and gene expression for developing predictive models for 

diagnostic purposes as well as for treatment response will be further explored. 

 FUTURE METHODS: MACHINE LEARNING 

Machine learning (ML) exists at the intersection of computer science, mathematics, and 

statistics and is proving to be one such methodology that can handle the modelling of 

large, complex systems datasets (Iniesta et al., 2016). Given the brevity of this chapter, 

only a very brief explanation will be provided (see Iniesta et al. (2016) for a more extensive 

review). Firstly, supervised ML algorithms learn from data and improve their performance 

through experience. This is achieved through learning a set of features (SNPs, gene 

expression data) that relate to a label. The label can be either binary (response/non-

response) or multiclass (low-response/moderate-response/high-response). Supervised 

ML can also be used for regression, where a continuous outcome such as psychiatric 

illness severity can be predicted (Hastie et al., 2009). In contrast, unsupervised ML 

algorithms identify clusters in data derived from a distance metric (such as Euclidean 

distance) that potentially contain unique characteristics related to an outcome of interest 

(Ghahramani, 2004).  In this section, we will focus on supervised ML models. 

Gene selection and complex trait prediction 

There are two main problems that ML may help to resolve in both gene expression and 

genome-wide association studies. Firstly, given the large p small n problem (𝑝 ≫ 𝑛), a 

methodology is needed that can not only reduce the dimensionality of a genetic feature 

space, but do so in a way that can lead to a clinically meaningful prediction of a complex 
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trait. For example, using a patient’s gene expression data, can we predict whether or not 

a patient will respond to drug A) or drug B)? In differential expression analysis (DEA), 

univariate statistical tests are often performed to discover quantitative changes in 

expression levels between case and control phenotypes (Gupta et al., 2012). However, 

according to Okser et al. (2014), regularized ML models have demonstrated an improved 

ability to select SNPs and differentially expressed genes that are most predictive of 

complex traits. In ML, a process called regularization penalises a models’ complexity, 

thus, enabling prediction in individuals outside of a training data set. A beneficial 

characteristic of this approach is that they search out the most predictive combinations of 

variants, rather than just individually predictive variants like in univariate statistical tests. 

It is therefore not surprising that variants that do not attain genome-wide significance in 

univariate tests, often contribute to the predictive capacity of multi-locus ML models 

(Abraham et al., 2013, Evans et al., 2009). Furthermore, evidence is beginning to suggest 

that genetic markers with highly significant and replicated odds ratios derived from 

genome wide association studies (GWAS) may actually be poor classifiers of disease 

(Jakobsdottir et al., 2009). This is not to suggest that findings from GWAS studies are not 

useful; they provide valuable information for establishing etiological hypotheses. What it 

may suggest is that regularized ML models may be more beneficial for the derivation of 

clinically translatable pathways and variants that evade detection in classical statistical 

methods when 𝑝 ≫ 𝑛. Therefore, the use of regularized ML models may lead to greater 

prediction of disease and overall utility in translational psychiatry. 

Support for this hypothesis has been demonstrated by (Wei et al., 2013) in their ML based 

prediction of Crohn’s disease. Using regularized (lasso) logistic regression, they trained 

a prediction model whist also minimising a feature space of 10,799 SNPs. Their final 

model contained 573 SNPs and obtained an area under the curve (AUC) of 0.86. They 

then compared this model to a traditional log odds model. For dimensionality reduction, 
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they estimated association significance and odds ratios for each variant by using two folds 

of data. They took all variants where 𝑝 < 0.01 and pruned correlated variants by setting 

the linkage disequilibrium threshold to 𝑟2 1

4
 0.8. The final feature space contained 15,158 

SNPs and obtained an AUC of 0.73, a score 13% lower than the penalized logistic 

regression model whilst containing a feature space that was more than 25 times the size. 

Thus, achieving both sub-optimal predictive performance and decreased computational 

tractability relative to the regularized ML model. 

Applications for gene expression 

The use of ML methodologies for both dimensionality reduction and prediction of complex 

traits in gene expression studies is less prevalent, however, some support for this 

methodology has been attained. For example, (Tan and Gilbert, 2003) trained a decision 

tree classifier with probes from 6,817 genes to predict cancerous colon tumours, attaining 

an accuracy score of 95% to discern between each type of tumour. Furthermore, using 

bagged decision trees, they were also able to differentiate between two different types of 

lung cancer with 93% accuracy. Whether such findings are possible in complex 

psychiatric traits such as major depression is questionable, yet the methodology is 

theoretically applicable; and as demonstrated; appears to outperform univariate statistical 

tests and classical methods for both dimensionality reduction and prediction of complex 

traits when 𝑝 ≫ 𝑛. In support of this, preliminary evidence suggests that the use of an ML 

based methodologies in complex psychiatric trait prediction may be possible, yet much 

larger studies are still needed. For example, using a prospective design, Guilloux et al. 

(2014) collected blood samples from a discovery cohort of 34 adult MDD patients with co-

occurring anxiety and 33 matched non-depressed controls. Data was collected at 

baseline and after 12 weeks of combined citalopram and psychotherapy treatment. Using 

linear support vector machines trained on gene-expression data from 13 genes, they were 
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able to predict remission/non-remission of MDD with a cross validated corrected accuracy 

score of 76.2% (sensitivity = 86.1%, specificity = 59.3%). Much larger studies are still 

warranted across a range of complex traits and treatments; however, the initial proof of 

concept is encouraging. 

 CONCLUSIONS 

Studying interactions between genes in relation to psychiatric phenotype using co-

expression network analysis is a promising complementary approach to better 

understand molecular mechanisms of psychiatric disorders, which may lead to 

developing clinically translatable diagnostic and treatment response biomarkers. 

However, further research needs to also utilise machine learning algorithms to quantify 

diagnosis and treatment response prediction. We believe that these methods, combined, 

can help to advance a rapidly developing field of personalised psychiatry. 
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1. Demographics and case definition for the MAS and OATS 

 

1.1. Sydney Memory and Aging Study (MAS) 

 

The Sydney Memory and Aging Study (MAS) was initiated in 2005 to examine the clinical 

characteristics and prevalence of mild cognitive impairment (MCI) and related 

syndromes, including depression, and to determine the rate of change over time. At the 

baseline assessment from 2005 to 2007, 1037 non-demented individuals aged 70-90 

were recruited from two areas of Sydney, following a random approach to 8914 

individuals on the electoral roll. They underwent detailed neuropsychological assessment 

and donated a blood sample for clinical chemistry, proteomics and genomics. Participants 

were excluded if they had a previous diagnosis of dementia, psychotic symptoms or a 

diagnosis of schizophrenia or bipolar disorder, multiple sclerosis, motor neuron disease, 

developmental disability, progressive malignancy (active cancer or receiving treatment 

for cancer, other than prostate – non-metastases, and skin cancer), or if they had medical 

or psychological conditions that may have prevented them from completing assessments. 

Participants were excluded if they had a Mini-mental Statement Examination (MMSE) 

(Folstein et al., 1975)  score of <24 adjusted for age, education and non-English speaking 

background at study entry, or if they received a diagnosis of dementia after a 

comprehensive assessment. Participants were followed up with brief telephone reviews 

annually and detailed assessments biannually. More details on study design are 

published somewhere else (Sachdev et al., 2010).  

For the purposes of current work, we utilised the MAS as an exploratory cohort. 

Participants who had their venous blood collected for transcriptome analysis in Wave 4 

in MAS (N=521) were included in further analyses. The demographic characteristics of 

the sample are presented in Table S1. The mean age of the sample was 77.84 years at 

Wave 1, and 83.73 years at Wave 4. The sex ratio was F 255/M 266. Participants had a 

mean education of 11.8 years. Just over 99% of the participants were of Caucasian origin 

(Table S1.1).  

 

 

 

 

Table S1.1. Statistical tests of independence for Age, Sex and BMI between cases and 
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controls for four MDD patient subgroups in MAS cohort  

 Age Sex BMI 

MDD 

patient 

subgrou

p 

MDD 
cases 

mean±S
D 

Controls 
mean±S

D 

 
t-test 

Numbe
r of 

MDD 
cases 
M / F 

Numbe

r of 

control

s 

M / F 

 
Χ2 test 

MDD 
cases 

mean±S
D 

Controls 
mean±S

D 

 
t-test 

LD 84.2±4.9 83.6±4.4 t(519)=1.0

2, p=0.3 

33 / 47  222 / 

219 

Χ2(3, 

N=521)=2.2

1, p=0.13 

27.2±4.3 26.7±4.2 t(519)=0.9

9, p=0.3 

SD 83.7±4.6 83.7±4.6 t(519)=0.9, 

p=0.3 

21 / 35 234 / 

231 

Χ2(3, 

N=521)=3.2

9, p=0.07 

27.3±4.4 26.8±4.2 t(519)=0.8, 

p=0.4 

CD 84.8±4.9 83.6±4.4 t(519)=1.7, 

p=0.07 

20 / 31 236 / 

234 

Χ2(3, 

N=521)=2.2

3, p=0.13 

27.6±4.3 26.7±4.2 t(519)=1.4, 

p=0.2 

RD 83.7±4.5 83.8±4.0 t(519)=0.1, 

p=0.9 

14 / 13 241 / 

253 

Χ2(3, 

N=521)=0.0

9, p=0.8 

27.4±4.4 26.8±4.2 t(519)=0.7, 

p=0.5 

LD – Lifetime diagnosis of MDD, SD – Single episode of MDD, CD – Current MDD, RD – Recurrent MDD 

 

Depression in MAS was assessed by a battery of well-validated self-report and interview-

based measures of depression. This buttery included: Geriatric Depression Scale (GDS-

15), Neuropsychiatric Inventory (NPI) (depression sub-scale), Mini International 

Neuropsychiatric Interview (M.I.N.I.), and Patient Health Questionnaire (PHQ-9). Given 

that the measures availability differed across the waves and the data in some of the 

measures were sparse, we argue that integration of all available data in time point 

diagnosis of depression at each wave is a meaningful approach to overcome these 

limitations. To integrate all available data on different measures of depression across the 

waves we created a composite variables depression for each wave. These composite 

scores represent a summative diagnosis of depression using all available information 

about the clinical representation of depression for 521 individuals. The step-by-step 

process of creating the composite variables of depression is detailed below. 

 

 

The process of creating composite variables of depression consisted of three steps: 

1) Creating unified dichotomous variables of depression for each measure in each 

wave. 
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2) Creating a composite diagnosis of depression for each wave using “minimum by 

two” approach.  

3) Creating a lifetime MDD, single episode, current, recurrent MDD variables of 

depression 

 

Step 1. Creating unified dichotomous variables of depression for each measure in each 

wave.  

Measures included: 

 Geriatric Depression Scale (GDS-15) 

The Geriatric Depression Scale (GDS-15) is a 15-item self-report assessment used to 

identify depression in the elderly (Yesavage et al., 1982b). In the MAS we used the GDS-

15 with item 9 as described in Brink (1982, here item 12) instead of the more common 

one. In order to determine whether this would affect the classification of depression, a 

statistical analysis was carried out on two data sets from the same sample, one with the 

GDS-15 containing the version used in MAS, and the other with the more common 

version. Using the same cut-point for depression (score ≥ 6) the results showed a high 

level of agreement between the two classifications (kappa = .931) with a total of only 4 

false positives, and no false negatives, out of a sample of 354. 

To derive a dichotomous variable of GDS scoring we applied commonly used a cut-off of 

6; participants scored ≥6 were assigned to 1 (depressed by GDS-15) and 0 (not 

depressed) if scored <6. 

 Neuropsychiatric Inventory (NPI). Depression sub-scales. 

The Neuropsychiatric Inventory (NPI) was developed by Cummings et al. (1994b) to 

assess dementia-related behavioural symptoms. The ratings of the NPI produce one 

score per behavioural domain. This score reflects the degree of disturbance of a particular 

domain. In this study, we used NPI sub-scales of depression to screen for depressive 

behaviours in our sample. Although using an individual NPI sub-scales have been 

subjected to further testing for its clinical utility (Lai, 2014), depression sub-scale showed 

moderate correlation with well-established Montgomery-Asberg Depression Rating 

Scale (MADRS) and Cornell Scale for Depression in Dementia (CSDD) depression 

instruments (MADRS: r = 0.70; CSDD: r = 0.62) (Leontjevas et al., 2009). This indicates 

that the NPI depression sub-scales are suitable for research purposes. 

A participant was assigned to 1 (depressed by NPI depression sub-scale) if a diagnosis 

was confirmed and to 0, if the diagnosis of depression was not confirmed.  

 Patient Health Questionnaire (PHQ-9) 
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The Patient Health Questionnaire (PHQ) is a self-administered version of the PRIME-MD 

diagnostic instrument for common mental disorders. The PHQ-9 is the depression module 

to assess depression severity; it scores each of the 9 DSM-IV criteria as “0” (not at all) to 

“3” (nearly every day).  A PHQ-9 score ≥10 (moderate to severe depression) was shown 

to have a sensitivity of 88% and a specificity of 88% (Kroenke et al., 2001) for major 

depression. In this study, we used the cut-off of ≥10 to identify participants with 

depression.  

 The Mini International Neuropsychiatric Interview (M.I.N.I.) 

The M.I.N.I. is a widely used psychiatric structured diagnostic interview instrument for the 

major Axis I psychiatric disorders in DSM-IV and ICD-10. The MINI is divided into modules 

identified by letters corresponding to diagnostic categories. Each diagnostic module 

consists of screening questions corresponding to the main criteria of the disorder. All 

questions are rated and clinical judgment used in coding the responses. At the end of 

each module, clinician indicate whether diagnostic criteria are met. In this study, to create 

a dichotomous variable of depression by M.I.N.I. we used the final diagnosis in the 

category of depression made by clinicians.  

 

Step 2. Creating a composite diagnosis of depression for each wave using “minimum by 

two” approach. 

In the second step, we summarised by how many measures of depression participants 

were diagnosed by interview-based or/and self-report measures at each wave. This 

summative measure reflected the level of diagnostic consensus across the measures 

within each Wave. Given that the measures availability differed across the waves and the 

data in some of the measures were sparse, we argued that integration of all available 

data in time point diagnosis of depression at each wave is a meaningful approach to 

overcome these limitations.  To make use of all measures available, a “minimum by two” 

approach for diagnosing MDD was defined. Accordingly, MDD cases were defined as 

participants who were identified as clinically depressed by at least two of the above 

depression measures, according to DSM-IV criteria at each Wave. 

 

Step 3. Creating lifetime MDD, single episode, current, recurrent MDD variables of 

depression 

In the third step, we created composite variables of MDD (lifetime, single episode, current, 

and recurrent) across the waves described in the main text and Table 1.  

The 3 steps approach applied to MAS phenotype data of depression resulted in 13.3% of 
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lifetime depression prevalence, which is in line with current estimations of global 

prevalence of depression in older adults (Fiske et al., 2009). 

 

1.2. Older Australians Twins Study (OATS) 

 

The Older Australian Twins Study is a longitudinal study investigating healthy brain 

ageing in older twins (65+ years). Healthy ageing is characterised by low levels of 

disability, high cognitive and functional capacity, and an active engagement in life. The 

most important ingredient of healthy ageing is a healthy brain, bereft of age-related 

diseases and dysfunction, including depression. OATS commenced in New South Wales 

in January 2007, in Queensland in December 2007, and in Victoria in February 2008. 

Since the OATS study started we have followed our twin volunteers up every two years 

to check on their psychological and physical health. Participants undergo rigorous 

medical and cognitive function tests, with many participants also providing blood samples 

and having a magnetic resonance imaging (MRI) scan of their brain. OATS assessed 623 

participants at baseline, 450 at the 2-year follow up, and 390 completed their 4-year 

follow-up (Sachdev et al., 2012). 

For the purposes of current work, we utilised the OATS as a replication cohort.  

186 unrelated OATS participants, which had their venous blood collected for 

transcriptome analysis in Wave 3 were randomly selected (one twin from each twin pair) 

for further analyses.  

Depression in OATS was assessed by self-report (GDS-15 and PHQ-9) interview-based 

measures (NPI, depression sub-scale) and SCID. All depression assessment measures 

of depression were consistent between MAS and OATS, except M.I.N.I./SCID. While in 

MAS was used M.I.N.I. OATS utilised SCID. 

The Structured Clinical Interview for DSM (SCID) is a semi-structured interview guide for 

making the major DSM diagnoses. It was administered by a clinician or trained mental 

health professional. 

Using the three steps methodology developed for MAS, we identified the subgroup of 

recurrently depressed individuals in OATS cohort (N=7), which was used to conduct 

replication analysis. 

 

 

 

2. Details on data generation and analyses   
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2.1. Purification of intracellular RNA  

To extract RNA form the whole blood we used the PAXgene Blood RNA System 

(PreAnalytiX, QIAGEN), which consists of a blood collection tube (PAXgene Blood RNA 

Tubes) and nucleic acid purification kit (PAXgene Blood RNA Kit). It is intended for the 

collection, storage, and transport of blood and stabilization of intracellular RNA in a closed 

tube and subsequent isolation and purification of intracellular RNA from whole blood. 

The whole blood of 536 MAS participants at wave 4 was collected into PAXgene Blood 

RNA Tubes for stabilization further processing after overnight fasting between 7 and 9 

am.  

The total RNA was successfully extracted from whole blood collected from 521 samples 

using PAXgene Blood RNA Kits following manufacturer’s protocol for manual purification. 

In short, 2.5 ml of whole blood was centrifuged to pellet nucleic acids in the PAXgene 

Tube. The pellet was washed and resuspended. The resuspended pellet was incubated 

in optimized buffers together with proteinase K to bring about protein digestion. After 

homogenising the cell lysate and removing residual cell debris, the supernatant of the 

flow-through fraction was transferred to a fresh microcentrifuge tube. Ethanol was added 

to adjust binding conditions, and the lysate was applied to a PAXgene spin column. 

During a brief centrifugation, RNA was selectively bound to the PAXgebe silica membrane 

as contaminants pass through. Remaining contaminants were removed in several wash 

steps. Between the first and second wash steps, the membrane was treated with DNase 

I to remove trace amounts of bound DNA. After the wash steps, RNA was eluted in elution 

buffer and heat-denatured. 

2.2. Whole-genome gene expression direct hybridization  

The gene expression data were generated using the Illumina Whole-Genome Gene 

Expression Direct Hybridization Assay System IlluminaHT-12 v4. The HumanHT-12 v4 

Expression BeadChip content provides genome-wide transcriptional coverage of well-

characterized genes, gene candidates, and splice variants, delivering high-throughput 

processing of 12 samples per BeadChip. Each array on the HumanHT-12 v4 Expression 

BeadChip targets more than 47,000 probes derived from the National Center for 

Biotechnology Information Reference Sequence (NCBI) RefSeq Release 38 (November 

7, 2009) and other sources. The gene expression data was generated in the Adelaide 



Transcriptome signature of depression 

148 
 

Microarray Centre (SA Pathology, Adelaide, Australia) by qualified personnel following 

manufacturer’s protocols. In short, unlabelled total RNA extracted from the whole blood 

samples were biotin-labelled and amplified producing a pool of cRNA corresponding to 

the polyadenylated (mRNA) fraction. The labelled RNA strand was then hybridized to the 

bead on the BeadChip containing the complementary gene-specific sequence. After the 

overnight hybridization, the BeadChips were removed and then washed. To detect a 

signal, Cy3-SA was introduced to bind to analytical probes that have been hybridized to 

the BeadChip. This allowed for differential detection of signals when BeadChips were 

scanned. The fluorescence intensity was scanned at each addressed bead location using 

the scanner Illumina HiScan. The intensity of the signal should correspond to the quality 

of the respective transcript in the original sample. The raw intensity images were analysed 

using Illumina’s Genome Studio Gene expression Module.  

 

 

 

2.3. Data quality control (QC) 

Quality control was performed in R environment using limma package. 

 

Figure S1.1. Housekeeping genes performance 
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Figure S1.2. System background noise 

 

The probes in this control category correspond to Cy3-labeled oligonucleotides. Following 

successful hybridization, they produce a signal independent of both RNA quality and 

success of the sample prep reactions. 

 

 

Figure S1.3. Array hybridization control 

 

Signal generation control consists of two probes with complementary biotin-tagged 
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oligonucleotides. Successful secondary staining is indicated by a positive hybridization 

signal from these probes. 

 

Figure S1.4. Signal generation control 

 

2.4. Data pre-processing 

Background correction. Maximum Likelihood Estimation (MLE) algorithm 

To control for background noise, which is inherited in gene expression experiments, 

Illumina allocated more than 1000 control bead types to each array, which are not 

associated with gene-specific probes, i.e. have no corresponding targets in the genomes. 

Therefore, the control beads are not expected to hybridize to any genes in the RNA 

samples. They serve as a comprehensive measurement of background, representing the 

imaging system background noise as well as any signal resulting from non-specific 

binding of dye or cross-hybridization in an experiment (Xie et al., 2009). The signals and 

signal standard deviation of these probes were used to establish gene expression 

detection limits (GenomeStudio). A model-based background correction implemented in 

R package MBCB allows incorporating information from these negative controls, which 

removes the non-specific signal from total signal and improves the efficiency of 

background correction, leading therefore to more precise determination of gene 

expression and better biological interpretation of the data (Allen et al., 2009). The 

maximum likelihood estimation (MLE) method showed the best estimation efficiency over 
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the other methods available in MBCB package (non-parametric (NP), robust multi-array 

average (RMA), Bayesian (B)) (Xie et al., 2009). 

Variance-stabilising transformation (VST) 

Variance stabilization is critical for subsequent statistical interference from microarray 

data. Illumina microarray platform provides a large number of technical replicates on each 

array (over 30 spatially distributed at random locations beads per probe). We performed 

the variance-stabilizing transformation (VST) method takes advantage of these technical 

replicates to stabilize the variance better and more efficiently (Lin et al., 2008). The VST 

requires the information of the standard deviation, however, the BeadStudio output file 

provides the standard error of the mean of the bead intensities corresponding to the same 

probe. Therefore, correction is required. The corrected value will be x * sqrt (N), where x 

is the standard error of the mean and N is the number of beads corresponding to the 

probe. VST can be viewed as a generalized log2 transformation, fine-tuned for the noise 

characteristics of each array.  

Normalization (quantile) 

When preparing microarray data for downstream analyses, it is important to remove 

sources of variation between arrays of non-biological origin. Normalization is a process 

for reducing this variation. There are different methods for data normalization available; 

quantile normalization is one of the most commonly used methods due to its robustness 

and performance speed (Bolstad et al., 2003). 

 

Figure S1.5. Intensity boxplots (mean and SD) before pre-processing and after pre-

processing (background correction, transformation, normalization) 
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Figure S1.6. Density plot of intensity before pre-processing and after pre-processing 

 

 

Filtering by detection value 

After filtering probes by a stringent criteria of detection p-value <0.01 in ≥50% of samples 

we had a dataset of 12,852 individual probes. 
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Filtering by coefficient of variation 

For the purpose of the gene co-expression analysis we are interested in the genes the 

expression of which vary across the samples, since low-expressed or non-varying genes 

usually represent noise. To filter out low-varying probes we used coefficient of variation. 

The coefficient of variation shows the extent of variability in relation to the mean of the 

sample and is defined as the ratio of the standard deviation to the mean. CV was 

computed for each probe across all samples. The threshold of 0.01 (red line) is used to 

filter out the probes with low variation. 1834 genes were filtered out giving us a final data 

set of 11, 018 probes corresponding to 9041 genes. 
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Figure S1.7. Filtering by coefficient of variation. Red line represents a threshold of 0.01. 

 

Figure S1.8. Density plot of intensity of pre-processed and filtered MAS data 

 

Data adjustment for technical covariates 

Data was adjusted for batch and RINs effects using Empirical bayes-moderated linear 

regression implemented in empiricalBayesLM function (WGCNA package). 

To estimate latent non-biological variables we used sva function (sva R package) (Leek 

et al., 2012). The number of significant surrogate variables was 0 (in both, MAS and 

OATS datasets), therefore there was no need to adjust the data for these factors. 
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2.5. Weighed gene co-expression network analysis (WGCNA) 

WGCNA was performed using the WGCNA R package, as previously described 

(Langfelder and Horvath, 2008). In short, this method selects the threshold for 

constructing the network based on the scale-free topology of gene co-expression 

networks. Using  biweight mid-correlation, which is a median-based rather than mean-

based robust to outliers alternative of Pearson’s correlation implemented in bicor function 

(Langfelder and Horvath, 2012),  we computed the networks for several thresholds and 

selected the threshold β=6, which led to a network with scale-free topology (Figure S1.9).  

 

 

Figure S1.9. Scale independence and mean connectivity.  

Analysis of network topology for various soft-thresholding powers. The left panel shows 

the scale-free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The 

right panel displays the mean connectivity (degree, y-axis) as a function of the soft-

thresholding power (x-axis). 

The network consisted of 24 modules of functionally related genes on the basis of their 
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expression patterns. The modules were labelled 1 through 24 in order of descending size, 

with sizes ranging from 2845 to 34 genes. The label 0 is reserved for genes outside of all 

modules (Table S1.2).  

 

 

Figure S1.10. Clustering dendrogram of genes, with dissimilarity based on topological 

overlap, together with assigned module colours. 

 

Table S1.2. Number of modules identified and the module sizes.  

 

 

To quantify the relationship between MEs and binary outcome variable (MDD status, 1 or 

0) we used bicor  function with the parameters robustX and robustY set to FALSE, with 
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reverses robust biweight midcorrelation to standard Pearson’s correlation (Langfelder 

and Horvath, 2012).Correction for multiple testing 

To correct obtained p-values for GS measure for transcriptome-wide multiple testing we 

used FDR at relaxed level of 0.2. The reason behind choosing this liberal threshold of 

FDT at 0.2 is based on previous literature suggesting that depression is a heterogeneous 

disorder with multiple genes of a small effect. Given the limited sample size of MDD 

cases, this study is underpowered to detect MDD-associated genes with a better 

precision. However, we believe that we were able to capture depression-relevant 

biological signal that can be validated in the future studies with larger sample sizes. 

There were 1,656 probes nominally associated with recurrent MDD (p < 0.05); after 

transcriptome-wide correction for multiple comparisons using Benjamini-Hochberg 

procedure, we identified 923 recurrent MDD-associated probes at FDR = 0.2; 82% of 

those (761 probes) belonged to the modules the MEs of which showed association with 

recurrent MDD. 162 probes belonged to other modules of the co-expression network. 

Table S1.3. Number of probes associated with recurrent MDD at FDR 0.2. DOWN 

represents downregulated genes, UP – upregulated. 

 

Module name 

 

Total N of probes 

 

DOWN, N (%) 

 

UP, N (%) 

Turquoise 614 565 (92%) 49 (8%) 

Tan 56 0 56 (100%) 

Black 58 0 58 (100%) 

Lightcyan 33 2 (6%) 31 94%) 

 

There were no probes associated with recurrent MDD in the replication study (OATS) 

after correction for multiple testing at FDR 0.2.  
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2.6. Type-specific markers of expression profiles in recurrent MDD-associated 

modules 

Whole blood is a complex tissue consisting of numerous cell types. To assess whether 

specific cell type/s driving the expression signature we found as relevant for recurrent 

MDD, we obtained known gene expression signatures for six major immune cell types 

and contrasted these to the modules of interest derived from our data. To define cell type-

specific gene expression signatures, we used the most recent in-silico estimations 

calculated from multiple data sources. Authors employed a curve fitting approach for 

linear comparison of cell types on harmonized 1822 pure human cell type transcriptomes 

from various sources, and introduced a novel spillover compensation technique for 

separating them (Aran et al., 2017). We combined cell-type specific markers obtained 

from 5 data sources (FANTOM, HPCA, IRIS, Blueprint, and Novershtern) for six major 

types of immune cells (B cells, CD4+ cells, CD8+ cells, monocytes, neutrophils, NK cells) 

into cell type-specific vectors, removed duplicated values (genes found in multiple 

datasets) and calculated proportion of these markers in each of four recurrent MDD-

related modules. The results are presented in Table S1.4 and Figure S1.11.  

Table S1.4. Number of cell type-specific markers found in recurrent MDD-related 

modules (N, number of markers in each cell type). 

 N Turquoise Tan Black Lightcyan 

B cells 135 22 (16.3%) 2 (1.5%) 1 (0.7%) 1 (0.7%) 

CD4+ T cells 160 49 (30.6%) 0 (0%) 0 (0%) 0 (0%) 

CD8+ T cells 116 23 (19.8%) 2 (0.9%) 0 (0%) 1 (0.9%) 

Monocytes 303 75 (24.8%) 4 (1.3%) 8 (2.6%) 5 (1.7%) 

Neutrophils 80 10 (12.5) 1 (1.3%) 0 (0%) 1 (1.3%) 

NK cells 100 23 (23%) 1 (1%) 1 (1%) 4 (4%) 
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Figure S1.11. Visualisation of relative proportions of genes belonging to recurrent 

MDD-associated modules found in cell type-specific gene expression signatures. 

Given the results presented we suggest that the Turquoise module is likely to be 

influenced by immune cells-specific gene expression, especially by CD4+ T cells. For the 

Tan, Black and Lightcyan module we found that negligible number of cell-specific markers 

(up to 2.6%) appear in these modules, suggesting minimal influence from these cell types. 

2.7. Functional analyses 

The results of Enrichment (DAVID) and Signalling Pathway Impact Analyses (SPIA) are 

presented in the Supplementary Table S7 and Table S8 (online manuscript). Graphical 

representation of each identified pathway can be viewed via KEGG link provided in this 

table. By clicking on the KEGG link, the pathway graph with the genes that driving 

dysregulation of this pathway in MAS dataset (highlighted in red) can be accessed. 
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2.8. Replication (OATS cohort) 

 

RNA purification, Illumina hybridisation, QC checks, pre-processing and filtering in 

replication cohort (OATS) were performed identically to what was done in the exploratory 

cohort (sMAS). Moreover, to reinforce high replicability, blood samples collection, RNA 

extraction and hybridisation were performed using the same protocols, by the same people 

in the same facilities across two studies.  

 

Assessing comparability of gene expression data  

 

 

Figure S1.12. General Network properties defined as correlations between ranked 
expression and ranked connectivity for 10654 genes expressed in both MAS and OATS 
data sets. 
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Module preservation  

Table S1.5. Module preservation in sMAS and OATS datasets quantified by Z summary 

score (5<Z<10 indicated moderate preservation, Z>10 indicates high preservation).  

 

Module  

 

Size (MAS) 

 

Size (OATS) 

 

Z summary 

 

Turquoise 

 

2845 

 

2773 

 

62.02 

 

Tan 

 

315 

 

298 

 

43.14 

 

Black 

 

410 

 

393 

 

42.78 

 

Lightcyan 

 

185 

 

180 

 

31.83 

 

 

 

Table S1.6. Replication of MAS findings in OATS. Correlations between the module 
eigengenes (ME) of Turquoise, Tan, Black, Lightcyan modules and single episode (SE), 
current (CD), recurrent (RD), and lifetime depression (LD), age, sex and BMI in OATS 
cohort. Associated p-values are indicated in parenthesis. 

 
Module 

 

 
Size 

(% of MAS) 
 

RD 
r (p-value) 

 

Age 
r (p-value) 

 

Sex 
r (p-value) 

 

BMI 
r (p-value) 

 

 
Turquoise 

 

 
2773 (97.5%) -0.06 (0.4) 

 
-0.13 (0.07) 

 
-0.09 (0.2) 

 
0.4 (0.6) 

 

 
Tan 

 

 
298 (94.6%) 

 
0.01 (0.8) 

 
0.02 (0.8) 

 
0.1 (0.2) 

 
0.02 (0.8) 

 
Black 

 

 
393 (95.9%) 

 
0.03 (0.7) 

 
0.02 (0.8) 

 
0.1 (0.2) 

 
0.02 (0.8) 

 
Lightcyan 

 

 
180 (97.3%) 

 
0.04 (0.6) 

 
0.03 (0.7) 

 
0.1 (0.1) 

 
-0.05 (0.9) 
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Table S1.7. Nine common genes identified across three modules in the discovery (MAS) 
and replication (OATS) cohorts as associated with recurrent MDD in older adults. Module 
Membership (MM) is computed as correlation of a given module gene with the 
eigenegene of a module. Gene significance (GS) is a correlation between module 
eigengene and recurrent depression. 

 
 
 

Chr 

 
 
 

SYMBOL 
ENTEZ ID 

 
 
 

Official full name 

 
 
 

Module 

 
MAS 

 

 
OATS 

 
MM  

 
GS 

r (p-value)  

 
MM  

 
GS 

r (p-value) 
 

11 CTSC 
1075 

cathepsin C Turquoise 0.38 -0.14  
(0.001) 

0.5 -0.17 (0.02) 

2 ORMDL1 
94101 

ORMDL sphingolipid biosynthesis 
regulator 1 

Turquoise 0.76 -0.13 
(0.003) 

0.85 -0.16 (0.03) 

13 NARG1L 
79612 

N(alpha)-acetyltransferase 16, NatA 
auxiliary subunit 

Turquoise 0.74 -0.12 
(0.008) 

0.75 -0.15 (0.046) 

3 B4GALT4 
8702 

beta-1,4-galactosyltransferase 4 Turquoise 0.39 -0.11 (0.02) 0.43 -0.16 (0.04) 

11 GTF2H1 
2965 

general transcription factor IIH subunit 1 Turquoise 0.34 -0.09 (0.04) 0.32 0.15 (0.046) 

10 AGAP6 
414189 

ArfGAP with GTPase domain, ankyrin 
repeat and PH domain 6 

Turquoise 0.46 -0.09 (0.04) 0.44 -0.15 (0.04) 

6 THEMIS 

387357 

thymocyte selection associated Turquoise 0.66 -0.09 (0.04) 0.75 -0.15 (0.04) 

3 IL5RA 

3568 

interleukin 5 receptor subunit alpha Tan 0.31 0.1 (0.03) 0.4 0.2 (0.007) 

15 SNX22 

79856 

sorting nexin 22 Lightcyan 0.81 0.1 (0.03) 0.8 

 

0.2 (0.008) 

 

 

2.9. Significance of the overlap between sMAS and OATS findings 

 

To test for statistical significance of the overlap between recurrent MDD-correlated probes 

in discovery (sMAS) and replication (OATS) cohorts we calculated the representation 

factor (RF) and the associated probability.  

The groups of probes associated with recurrent MDD were compared in sMAS and OATS 

found to have x probes in common (Table S).  

Representation factor (RF) 

The RF is the number of overlapping probes divided by the expected number of 

overlapping probes drawn from two independent groups.  
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RF > 1 indicates more overlap than expected of two independent groups; 

RF < 1 indicated less overlap than expected of two independent groups. 

 

Probability 

Exact hypergeometric test was used to calculate the probability of the overlap between 

sMAS and OATS recurrent MDD-related probes.  

Online tool: http://nemates.org/MA/progs/overlap_stats.cgi 

 

Further details on the calculation can be found at: 

http://nemates.org/MA/progs/representation.stats.html 

 

 

Table S1.8. Statistical significance of the overlap between recurrent MDD-related probes 
in the discovery (sMAS) and replication (OATS) cohorts. 
 

 

Module 

N of probes correlated with 

recurrent MDD at p < 0.05 

Overlap 

between 

sMAS and 

OATS 

 

Representation 

factor (RF) 

 

p-value 

 

sMAS 

 

OATS 

Turquoise 963 38 7 2.1 p < 0.04 

Tan  117 1 1 94.2 p < 0.01 

Black 99 0 0 NA NA 

Lightcyan 62 1 1 177.7 p < 0.006 

Total 1241 40 9 2.0 p < 0.03 

 

 

 

 

 

 

 

 

 

 

 

 

http://nemates.org/MA/progs/overlap_stats.cgi
http://nemates.org/MA/progs/representation.stats.html
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Table S1.9. List of 24 genes belonging to recurrent MDD-associated modules that 

previously were found as differentially expressed between MDD cases and controls 

(Leday et al., 2018) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MGST1 4257 Turquoise -0.02 0.66 0.60 0 0.08 0.083936767

TXN 7295 Turquoise -0.03 0.57 0.56 0 0.46 3.53E-28

CLEC4A 50856 Turquoise -0.08 0.08 0.27 0 0.59 3.46E-50

CKLF 51192 Turquoise -0.03 0.43 0.50 0 0.47 2.00E-30

S100A8 6279 Turquoise 0.01 0.75 0.63 0 0.50 4.53E-34

GABARAP 11345 Turquoise -0.07 0.09 0.27 0 0.47 1.11E-29

ZBTB4 57659 Turquoise 0.02 0.64 0.59 0 -0.33 4.80E-15

ASXL1 171023 Turquoise -0.01 0.88 0.67 0 -0.29 1.20E-11

MACF1 23499 Turquoise 0.01 0.86 0.66 0 0.40 1.17E-21

FNBP4 23360 Turquoise -0.06 0.15 0.33 0 0.61 4.51E-55

TBP 6908 Turquoise -0.08 0.06 0.24 0 0.34 1.40E-15

PDCD7 10081 Turquoise 0.00 0.93 0.68 0 0.14 0.000972626

SLC7A6 9057 Turquoise -0.05 0.25 0.40 0 0.35 7.47E-17

RPL22 6146 Turquoise -0.07 0.13 0.31 0 0.41 6.72E-23

ATP8B2 57198 Turquoise -0.07 0.11 0.30 0 0.17 0.000125648

NOL8 55035 Turquoise -0.05 0.25 0.40 0 0.63 6.11E-58

MTSS1 9788 Turquoise -0.03 0.43 0.50 0 0.54 4.39E-41

TMEM194A 23306 Turquoise -0.08 0.07 0.25 0 0.64 7.66E-62

ERMP1 79956 Turquoise -0.02 0.70 0.61 0 0.35 4.09E-16

NFATC3 4775 Tan 0.15 0.00 0.17 1 0.56 1.40E-43

PQLC1 80148 Black 0.05 0.24 0.39 0 0.60 3.20E-53

GDE1 51573 Black 0.06 0.15 0.33 0 0.64 2.15E-60

IMPDH1 3614 Lightcyan 0.09 0.03 0.21 0 0.73 3.88E-89

EPM2AIP1 9852 Lightcyan -0.04 0.36 0.47 0 -0.56 4.00E-45

q_value signif_at_FDR_0.2 MM p_MMGene_Symbol Entrez_ID Module GS_recurrent MDD p_GS_recurrent MDD
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Appendix B 

Supplementary materials for the manuscript “Downregulated 

transferrin receptor in the blood predicts recurrent MDD in the 

elderly cohort: a fuzzy forests approach” 

 

Our motivation for choosing fuzzy forests algorithm 

Fuzzy forests is an algorithm that combines two frameworks: co-expression based 

hierarchical clustering implemented in WGCNA and ensemble classifier Random forests. 

First, data is clustered into relatively uncorrelated modules of highly correlated features 

within the modules. Then, the most important features are selected using random forests 

recursive feature elimination in each module separately. The last iteration of random 

forests includes all survived features across all modules to build a final predictive model. 

The motivation for choosing this algorithm is twofold. Firstly, transcriptome data is highly 

multidimensional with a large proportion of correlated features. Clustering prior fitting 

random forests into clusters help to alleviate multicollinearity problem to which random 

forests is known to be sensitive to. Secondly, fuzzy logic implemented in the algorithm 

reduces dimensionality to alleviate overfitting due to p>>n problem. Given that the dataset 

was heavily unbalanced, we balanced our testing data using random undersampling of 

the majority class as well as k-nearest oversampling implemented in SMOTE algorithm.  

 

Overview of WGCNA 

WGCNA was developed to detect the correlational structure in biological networks, 

assuming that genes with high correlations are likely to be involved in the same biological 

processes. The R package WGCNA, a well-documented implementation of the WGCNA 

framework, has shown a great success in many biological applications, including our 

previous work (Langfelder and Horvath, 2008). Briefly, to construct a network, we first 

define a similarity function. This similarity function is based on Pearson’s’ correlation 

calculated for each possible pair of genes in transcriptome. To define the connection 
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strength measure between the genes in the network, these correlations are weighted by 

taking the absolute value and rising to the power β. Network connectivity is defined as a 

sum of connection strengths for each gene, describing how strongly each gene is 

connected to the other genes in the network. Next, we calculate the topological overlap 

for each pair of genes and identify groups of genes with high topological overlap, where 

both genes in a pair are strongly connected to the same group of genes.  Hierarchical 

clustering is used to identify clusters, or modules, of interconnected genes (Zhang and 

Horvath, 2005).  

 

Figure S2.1. Scale independence and mean connectivity.  Analysis of network topology 

for various soft-thresholding powers. The left panel shows the scale-free fit index (y-

axis) as a function of the soft-thresholding power (x-axis). The right panel displays the 

mean connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis). 

 

Random forests (RF) and Variable Importance Measures (VIM) 

RF is an ensemble method that works by combining the predictions of an ensemble of 

classification (or regression) decision trees introduced by Breiman (2001). The principle 

of RF is to combine many binary decision trees built using several bootstrap samples 

obtained from the training sample. Each tree is grown on a separate bootstrap sample of 

the training data. About one third of observations that are not selected in a particular 
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bootstrap sample are out of bag (OOB) for each tree. By averaging prediction error over 

multiple trees and many bootstrap samples the estimated prediction error was obtained 

to assess model performance. 

If the goal is to build a predictive model using transcriptome data that can be utilized for 

diagnostic purposes, selection of the most relevant features out of multidimensional 

feature space is necessary. This requires an understanding of how each individual feature 

affects the model, which can be evaluated by Variable Importance Measures, VIMs.  We 

estimated VIMs by calculating the effect of random permutations of the values of an 

individual feature (standardized level of gene expression) on predictive accuracy of the 

target outcome on test data, i.e. VIMs estimate the average decline in predictive 

performance for each individual feature across multiple trees, therefore providing reliable 

measure of variable importance for the prediction of outcome. RF VIMs were calculated 

for the final model. Given that random forests are non-linear and non-parametric, VIMs, 

defined above, thus, naturally take into account non-linear interactions between the 

genes. Score of importance of a given variable was calculated as Mean Decrease 

Accuracy and Mean Decrease Gini coefficients.  

 

The effect of the number of pre-selected features for the final prediction model 

The number of features included in the final model is a manually specified the 

number_selected parameter. We observed that while the ranking order of the features 

were relatively stable for different numbers of features selected the performance of the 

model was greatly affected by the number_selected parameter. As an example, Figure 

S2.2 shows variable importance for the number_selected = 10 as measured by Mean 

Decrease Accuracy and Mean Decrease Gini indices. As can be seen, the TFRC is the 

top predictor of the target outcome, which alone predicted the outcome with sensitivity of 

63%; however, we were unable to achieve clinically meaningful sensitivity using multiple 

features.  
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Figure S2.2. Variable importance plot for 10 most predictive features. The plot shows 

each variable on the y-axis, and their importance on the x-axis. 

 

Fuzzy forests algorithm 

FF, being an extension of random forests, is powerful algorithm that was proposed to deal 

with correlated, high dimensional data (Conn et al., 2015, Conn et al., 2016). FF works 

using piecewise approach. First, the network structure of the data and partition of features 

into distinct modules such that the correlation within each module is high and the 

correlation between modules is low is estimated using WGCNA (Zhang and Horvath, 

2005). FF reduces dimensionality of the data in two steps: a screening step and a 

selection step. The screening step uses recursive feature elimination random forests 

(RFE-RF) (Díaz-Uriarte and Alvarez de Andrés, 2006) independently on each module to 

screen out unimportant features assigned to the module by WGCNA. Given that we apply 

this algorithm to biological data, it is reasonable to assume that while modules are 

relatively independent from each other, there is potential for interaction between the 

modules. The selection step is the final iteration of RFE-RF, which was applied to all 

features from all modules that have been selected at the screening step. Thus, the 

potential correlation bias between the features is re-introduced, allowing, therefore, for 

interactions between features that were found to be important within individual modules. 
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Lastly, based on a specified number of a ranked variable importance list a final group of 

selected features is used to train a predictive model.  

To optimize the model performance, FF allows for tuning several parameters: 

drop_fraction (number of features to drop at each iteration), keep_fraction (number of 

features to retain at each iteration), number_selected (number of important features as 

the output of the final random forest), ntree_factor, min_ntree (minimum number of trees 

grown in each random forest), and final_ntree (number of trees grown in the final random 

forest containing all selected features). Since the number of features varies across 

random forests, for each random forest, parameters mtry (number of variables randomly 

sampled at each split) and ntree (number of trees to grow) were specified as a function 

of the current number of features:  

mtry = ceiling((p/3)*mtry_factor, 

where p is a number of features in a given module and mtry_factor = 5; 

The parameter ntree for each random forest is ntree_factor times the number of features: 

ntree = max(min_ntree, ntree_factor*p), 

where min_ntree = 5 and ntree_factor = 5. 

We set drop_fraction = 0.25 and  keep_fraction = 0.05; number_selected = 1, 3, 5, 10, 

20, 50, or 100 and min_ntree = 100, 500, 1000, 5000, 10000. 

The number_selected parameter, which is the number of features to be determined as 

the top predictors at the RF iteration, was set to 1, 3, 5, 10, 20, 50, 100. 

The algorithm was implemented using R package ‘fuzzyforest’.  
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  Appendix C 

Table S3.1. The top 100 pathogen- and immune-related genes in association with 

recurrent MDD 

       

ILMN_probe Gene symbol Entrez_ID logFC AveExpr P-value FDR 5% 

ILMN_1740015 CD14 929 -0.69448 9.90586 9.51E-07 0.000916 
ILMN_2396444 CD14 929 -0.6436 12.15393 3.19E-06 0.001535 
ILMN_2070300 LSM2 57819 0.263971 8.561128 0.000563 0.157371 
ILMN_2152131 ACTB 60 -0.29085 13.05806 0.000654 0.157371 
ILMN_1787705 ATP6V1B2 526 -0.33626 11.03821 0.000882 0.169787 
ILMN_1658121 CFP 5199 -0.30173 7.950343 0.00109 0.174956 
ILMN_1767365 PAK1 5058 -0.29518 8.469129 0.001564 0.215213 
ILMN_1700428 HLA-DOB 3112 0.310135 7.338196 0.002755 0.261859 
ILMN_1799134 KLRD1 3824 0.446587 8.018866 0.002999 0.261859 
ILMN_1729987 SRC 6714 -0.15924 7.190677 0.003263 0.261859 
ILMN_1782538 VIM 7431 -0.34665 11.5966 0.003358 0.261859 
ILMN_1728799 FBP1 2203 -0.26878 8.140827 0.004249 0.261859 
ILMN_1690546 PPP3CC 5533 0.178654 7.416294 0.004786 0.261859 
ILMN_1778977 TYROBP 7305 -0.30005 12.60216 0.004816 0.261859 
ILMN_1654396 ITGB2 3689 -0.29333 12.80852 0.004918 0.261859 
ILMN_1789074 HSPA1A 3303 -0.45897 9.398591 0.005326 0.261859 
ILMN_2386790 KLRC3 3823 0.17302 6.915689 0.005448 0.261859 
ILMN_1663160 ZNF337 26152 0.14795 7.634455 0.005534 0.261859 
ILMN_1799725 DOCK2 1794 -0.24106 9.758014 0.005846 0.261859 
ILMN_1740493 TRAF5 7188 0.17357 7.39066 0.006153 0.261859 
ILMN_2038777 ACTB 60 -0.30301 12.83257 0.006362 0.261859 
ILMN_2043816 ARPC5L 81873 0.147105 7.50646 0.006929 0.261859 
ILMN_2175912 ITGB2 3689 -0.28925 12.81918 0.006991 0.261859 
ILMN_1783709 RRAGA 10670 0.137455 8.49008 0.007355 0.261859 
ILMN_1738523 MYD88 4615 -0.19647 8.357946 0.0074 0.261859 
ILMN_1777220 VCP 7415 -0.14859 7.665732 0.007598 0.261859 
ILMN_1736577 ZNF688 146542 0.078748 7.044594 0.007691 0.261859 
ILMN_1743646 VASP 7408 -0.31046 8.125938 0.008101 0.261859 
ILMN_1785179 UBE2G2 7327 0.169525 7.738553 0.008508 0.261859 
ILMN_2156172 HK2 3099 -0.09421 7.041178 0.008652 0.261859 
ILMN_1677483 EXOSC1 51013 0.091585 7.206799 0.00895 0.261859 
ILMN_1797988 KLRD1 3824 0.385149 7.950138 0.008956 0.261859 
ILMN_1727284 CD4 920 -0.14903 7.437383 0.008973 0.261859 
ILMN_2058251 VIM 7431 -0.28734 10.76031 0.009289 0.263093 
ILMN_2310589 DIABLO 56616 0.114487 8.429549 0.009713 0.267237 
ILMN_1661554 DIAPH1 1729 -0.21661 7.877845 0.010864 0.280583 
ILMN_1670302 HK3 3101 -0.25128 8.298209 0.010915 0.280583 
ILMN_1710756 ENO1 2023 -0.23966 10.80819 0.011072 0.280583 
ILMN_1666269 CTSZ 1522 -0.21966 7.771136 0.013034 0.313932 
ILMN_1801105 PRKCD 5580 -0.25181 9.674262 0.014312 0.313932 
ILMN_1782704 CD19 930 0.364886 7.412291 0.014432 0.313932 
ILMN_1778360 PYGB 5834 -0.17446 7.535417 0.014624 0.313932 
ILMN_2399392 SIL1 64374 -0.07433 6.901988 0.014731 0.313932 



Transcriptome signature of depression 

174 
 

ILMN_1814465 UBE2G1 7326 0.136778 7.388585 0.014741 0.313932 
ILMN_1738326 EIF4E2 9470 -0.12767 8.235022 0.015087 0.313932 
ILMN_2397954 PARP3 10039 0.117501 7.403345 0.01512 0.313932 
ILMN_1696187 PYGL 5836 -0.32474 9.275016 0.015322 0.313932 
ILMN_1779177 U2AF1L4 199746 0.085796 7.138459 0.016295 0.323588 
ILMN_1723486 HK2 3099 -0.15133 7.28403 0.016465 0.323588 
ILMN_1657483 SEC23B 10483 -0.11031 7.783979 0.017062 0.328612 
ILMN_3300358 ZNF84 7637 0.082691 6.942481 0.017796 0.329452 
ILMN_2312149 ZNF160 90338 0.074512 6.976155 0.018338 0.329452 
ILMN_2360784 RRBP1 6238 -0.18561 7.968479 0.018348 0.329452 
ILMN_1704404 PSMD13 5719 -0.06521 6.989597 0.018474 0.329452 
ILMN_2209748 DERL1 79139 0.177152 7.729297 0.019163 0.331618 
ILMN_1698419 NCOR2 9612 -0.15518 7.509525 0.019544 0.331618 
ILMN_2126706 LMNB1 4001 -0.09505 7.016712 0.019628 0.331618 
ILMN_1675674 UBE4B 10277 -0.13078 7.85877 0.020035 0.332654 
ILMN_1812403 BCAP31 10134 -0.16238 9.093416 0.020957 0.337308 
ILMN_1766275 PIK3CD 5293 -0.24303 8.722367 0.021585 0.337308 
ILMN_1758105 ZNF791 163049 0.107228 7.383606 0.021666 0.337308 
ILMN_1729915 PILRA 29992 -0.23221 8.236452 0.021774 0.337308 
ILMN_1762003 SEC62 7095 0.108246 7.140513 0.022067 0.337308 
ILMN_2367020 SEC61G 23480 0.200263 8.986863 0.023566 0.35459 
ILMN_2241953 PILRA 29992 -0.22745 8.102257 0.025831 0.38269 
ILMN_1807277 IFI30 10437 -0.24818 9.018814 0.027117 0.39566 
ILMN_1795822 DIS3L 115752 0.136976 7.701837 0.028234 0.401373 
ILMN_1812915 TNFRSF10B 8795 -0.34032 8.652337 0.02867 0.401373 
ILMN_1675788 ZNF175 7728 0.062265 6.902299 0.029211 0.401373 
ILMN_1777049 ZNF160 90338 0.157271 7.496851 0.029727 0.401373 
ILMN_1674160 BIN1 274 0.205495 8.66141 0.030745 0.401373 
ILMN_2334242 CREB1 1385 0.287781 9.812279 0.031245 0.401373 
ILMN_1680693 ZNF419 79744 0.080125 7.474288 0.031286 0.401373 
ILMN_1662451 FCER2 2208 0.217731 7.163268 0.031599 0.401373 
ILMN_1674038 CTSD 1509 -0.25868 8.23181 0.031892 0.401373 
ILMN_2321416 DIAPH1 1729 -0.2275 8.913148 0.032941 0.401373 
ILMN_2083469 IRS2 8660 -0.22138 7.577877 0.033198 0.401373 
ILMN_2313821 AIFM1 9131 -0.06945 7.348443 0.033505 0.401373 
ILMN_1744980 ZCCHC7 84186 0.153612 7.342094 0.033782 0.401373 
ILMN_2309245 BIN1 274 0.190631 8.510109 0.033928 0.401373 
ILMN_1653711 FZD2 2535 -0.08769 6.955879 0.033939 0.401373 
ILMN_1762825 CANX 821 -0.12807 7.835239 0.034293 0.401373 
ILMN_1678962 DFFB 1677 0.066668 7.052557 0.034694 0.401373 
ILMN_1660533 RPN1 6184 -0.15075 9.445104 0.035011 0.401373 
ILMN_1772113 U2AF1 7307 -0.08878 7.575507 0.035827 0.403685 
ILMN_1768194 BIRC2 329 0.073412 6.985571 0.036593 0.403685 
ILMN_1727402 HCLS1 3059 -0.22965 11.40675 0.036762 0.403685 
ILMN_1781290 RHOA 387 -0.19906 11.16215 0.036889 0.403685 
ILMN_1787026 SEC61G 23480 0.192212 9.250013 0.03857 0.414548 
ILMN_1678919 YOD1 55432 0.281611 7.356455 0.038743 0.414548 
ILMN_1801928 YWHAZ 7534 -0.17459 11.06982 0.040615 0.428025 
ILMN_1781996 NUDT16 131870 -0.06442 6.989968 0.040891 0.428025 
ILMN_1779735 C7ORF59 389541 -0.17879 9.873468 0.041546 0.430202 
ILMN_1685365 ZNF773 374928 0.075789 7.004205 0.042572 0.433188 
ILMN_1733324 ITGB3 3690 -0.1723 7.03312 0.042734 0.433188 
ILMN_2131861 SOCS2 8835 0.130674 7.24166 0.043526 0.4362 
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ILMN_1665964 GAB2 9846 -0.22659 8.423128 0.043937 0.4362 
ILMN_1699265 TNFRSF10B 8795 -0.12544 7.987933 0.045314 0.445277 
ILMN_1742521 GRB2 2885 -0.1251 7.907487 0.045855 0.446003 
ILMN_1739792 RHOG 391 -0.24455 11.40908 0.046314 0.446003 
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