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Abstract: Many features of a karst massif can either be modelled using fractal geometry or have a 
fractal distribution. For the exokarst, typical examples include the geometry of the landscape 
and the spatial location and size-distribution of karst depressions. Typical examples for the 
endokarst are the geometry of the three-dimensional network of karst conduits and the length-
distribution of caves. In addition, the hydrogeological parameters of the karst massif, such as 
hydraulic conductivity, and karst spring hydrographs may also exhibit fractal behaviour. In 
this work we review the karst features that exhibit fractal behaviour, we review the literature 
in which they are described, and we propose hypotheses and conjectures about the origin of 
such behaviour. From the review and analysis, we conclude that fractal behaviour is exhibited 
at all scales in karst systems.
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INTRODUCTION

Scale-invariance and self-similarity (Mandelbrot, 
1967; Stoyan & Stoyan, 1994; Ben-Avraham & Havlin, 
2000) are important concepts in geology (Korvin, 1992; 
Turcotte, 1997) in general, and in geomorphology 
(Dodds & Rothman, 2000) in particular. A third 
concept of universality (Sapoval, 2001) is becoming 
more evident and relevant as, increasingly, spatial 
structures of very different physical origin are being 
shown to exhibit similar spatial patterns, which 
is reflected in the exponents that characterize 
their scaling laws. The geometry of river networks 
(Tarboton et al., 1988; Nikora & Sapozhnikov, 1993; 
Rodríguez-Iturbe & Rinaldo, 2001) and the statistical 
structure of topography (Xu et al., 1993; Klinkenberg 
& Goodchild, 1992) are typical examples of fractals 
in geomorphology (Dodds & Rothman, 2000). These 
concepts are increasingly evident in so many areas of 
Earth Sciences that the hypothesis is shifting towards 
whether nature itself is fractal (Mandelbrot, 1983; 
Avnir et al., 1998). 

Loosely speaking, a geometrical object or a set is 
said to be fractal if it exhibits at least one self-similar 
property in an exact way (deterministic fractals) 
or through a probabilistic distribution (random or 
statistical fractals), (Hutchinson, 1981; Falconer, 
1990; Schroeder, 1991). 

For our presentation and subsequent discussion, 
we follow the distinction of geometric fractals and 
probabilistic fractals as described in Crovelli & Barton 
(1995) and in Ghanbarian & Hunt (2017): fractal 
geometries of random sets and properties (random 
variables) of random sets for which the probability 
density function follows a power law (fractal-like 
behaviour). The former has a fractal dimension that 
describes its irregularity or how a random set in a 
topological space of integer dimension i fills the 
fractal space of non-integer dimension greater than 
i. The latter does not have a fractal dimension but 
has an exponent that characterizes the power law; 
the characteristic analysed (for example, size) can be 
considered a random variable for which the probability 
density function is a power law and there is no need 
to relate it to an irregular geometry. In any case, the 
essential assumption of the fractal model is self-
similarity which makes it possible to describe fractals 
by parameters that are either dimensions (fractal 
geometry of a set) or exponents (fractal property of  
a set).

Geometrical fractals are geometric shapes or 
patterns that have a fractional dimension (i.e., the 
fractal dimension of the geometry of a given set of 
interest). The fractal dimension can be estimated by 
different methods. For example, the fractal dimension 
of a one-dimensional geometry (e.g., a contour), that 
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characterizes its irregularity, can be determined by 
calculating its length using measures of different 
size. If the line is fractal, the relationship between the 
length of the line and the length of the measure would 
be expected to follow a power law of the form (Stoyan 
& Stoyan, 1994):

l (r )=cr 1−D     (1)

where c is a constant. A perfect straight line, i.e. 
without irregularities, will still follow the power law in 
equation (1), but with D = 0 that is, its dimension is 
integer not fractal. 

Taking logarithms of both sides of the equation (1) 
gives: 

ln l (r)= lnc − (1−D)lnr    (2)

which is the equation of a straight line with a slope 
equal to one minus the fractal dimension. Similar 
power laws are used in other methods to estimate the 
fractal dimension of sets in the plane and in three 
dimensions. 

Probabilistic fractals (i.e., random variables with 
fractal behaviour) have a probability density function 
that follows a power law distribution, which requires 
that the number of objects, N, with a size greater than 
r, follows a power law distribution: 

N (R >r )=Ar −K    (3)

where R is a measurable property, A is a constant and 
K is the exponent characterising the power law.

Thus, power law behaviour can be assessed by 
studying the probability distribution fitted to a given 
set of data. This distribution could, for example, 
take the form of Zipf’s law (Laverty, 1987; Schroeder, 
1991) or the Korcak-law (Mandelbrot, 1975; Imre 
and Novotny, 2016). The power-law distribution is 
a scale-free distribution and represents the spatial 
distribution of phenomena that do not have a 
characteristic size but one that varies across several 
orders of magnitude. Taking logarithms of both sides 
of equation (3) gives: 

lnN = lnA −K lnr    (4)

which is the equation of a straight line with a slope 
equal to the Korcak exponent. Thus, probabilistic 
fractals are characterized by the exponent of a power 
law. In some cases, this exponent is related to a fractal 
dimension (Jang & Jang, 2012). 

It should be noted that size, shape, abundance, 
spatial location and distribution of karst geoforms 
can have a fractal behaviour. In addition, the same 
geoform can be assessed from several points of view. 
For example, we can calculate the fractal dimension 
of the irregularities of the contour of a single sinkhole 
(or doline). For a family of sinkholes in a given karst 
terrain, which have been mapped by appropriate 
means, there are various aspects that could be 
assessed for fractal behaviour; for example, their size-
distribution and the spatial location of their centroids. 
For geometrical fractals, the fractal dimension (the 
exponent in the power law in equation 1) describes, in 
simple terms, how the fractal object fills the available 
Euclidean space. The contour (one-dimensional object) 

of a sinkhole on a plane (two-dimensional Euclidean 
space) will be a number between 1 and 2. The larger 
the number, the more irregular is the contour. For 
probabilistic fractals, the interpretation of the fractal 
dimension is related to the frequency of the size of 
the objects. The frequency of an occurrence of a given 
size is inversely proportional to some power of its 
size. In karst terrains, fractality (i.e. karst features 
that can be modelled using fractal geometry or karst 
characteristics that have a fractal distribution) can be 
found in the exokarst, the endokarst and the karst 
hydrogeology, which we review in separate sections. 

FRACTALS IN THE EXOKARST

Sinkholes (or dolines) are considered the most 
typical landform in karst landscapes (Ford & Williams 
2007). As areas of preferential recharge, they have 
important implications for karst hydrogeology. They 
trap sediments that can provide information about 
past climate conditions, they may indicate geological 
tectonic activity and they can host important ecosystems. 

Reams (1992) found that sinkhole perimeters of 
large sinkholes appear to be fractals with fractal 
dimensions ranging from 1.20 to 1.56; i.e., the 
contours of sinkholes have irregularities that can be 
quantitatively assessed by their fractal dimension. 
The same author also concludes that large sinkhole 
size-number distributions are fractal. Nevertheless, 
it should be noted that White & White (1987) were 
the first to test sinkhole populations for their fractal 
character and their results were negative. 

The results of a fractal analysis of sinkholes depend 
on how the experimental data are obtained. Thus, 
if data are obtained from maps which are not on a 
sufficiently small scale, only large sinkholes can be 
mapped, and the level of detail in the contours will 
not be sufficient for the analysis, as they will be much 
smoother than reality. This may explain why the size-
distribution of dolines has long been assumed to be 
log-normal (Telbisz et al., 2009). 

The situation has changed with modern digital 
elevation models (DEM) of topography that allow, 
subject to the DEM resolution, the detection and 
delineation of karst depressions in an automatic, 
exhaustive and efficient manner (Pardo-Igúzquiza et 
al., 2013; Pardo-Igúzquiza et al., 2014a). Fig. 1 shows 
the high-quality resolution of mapped sinkholes in 
the Sierra de las Nieves karst massif in Southern 
Spain using a DEM with a resolution of 5 m, i.e., 
each cell of the DEM represents the altitude of a pixel 
of 5 m by 5m in terrain units. The authors of this 
work have verified the procedure in the field and even 
one-cell karst depressions proved to be real dolines 
in the field. It should be noted that the success of 
this method also depends on high-quality altimetric 
precision of the DEM. Thus, the mapped depressions 
are reliable, and the contours of the sinkholes in 
Figure 1 do not have the irregularities that would have 
been introduced if the DEM was noisy and of poor 
quality. The DEM was obtained as a free download 
from the web-site of the Instituto Geográfico Nacional 
of Spain. The DEM for the whole country (an area of 
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Fig. 1. High resolution karst depressions (dolines and uvalas) mapped 
by an automatic procedure (Pardo-Igúzquiza et al., 2013) and using a 
digital elevation model with a resolution of 5 m (size length of the square 
pixel or cell). The map legend is the depth of each karst depression (in 
metres) from its rim. The high quality of the mapped contours of the 
depressions and of the mapped depth is evident.

half a million of square kilometres) has a resolution of 
5m and for many parts of the country the resolution 
increases to 1 m. All mapped karst depressions are 
shown in Figure 2. The power-law size-distribution of 
the population of sinkholes is shown in Figure 3. 

Fig. 2. Karst depressions (dolines and uvalas) in the Sierra de las 
Nieves karst massif in Southern Spain. The statistics of these sinkholes 
are given in Pardo-Igúzquiza et al. (2016b).

The same procedure can be used to map karst hills 
as described in Pardo-Igúzquiza et al. (2016b). The 
fractal dimension of these doline fields can be used 
as a geomorphometric parameter to compare different 
karst massifs. 

Other aspects of sinkholes can be assessed when 
each sinkhole is replaced by its centroid, giving a 
spatial distribution of points in the plane. Figure 4A 
shows the point field obtained with the 3,100 sinkholes 
of the karst massif of Sierra Gorda (López-Chicano, 
1995) in Southern Spain and Figure 4B shows the 2,457 
sinkholes of the karst massif of Cotiella (Belmonte-
Ribas, 2004) in Northern Spain. The fractal dimension 
of a point field can be assessed by the pair correlation 
function (Bour et al., 2002):

C r
2N r
N N

p( ) =
( )
−( ) 1

where C (r ) is the pair correlation function; Np(r )is the 
number of pairs separated by a distance less than r 
and N is the total number of points.

    (5)

If the point field has a fractal behaviour, the 
correlation function will scale with distance following 
a power-law:

Fig. 3. Graph showing a power law fitted to the number of sinkholes 
(shown in Fig. 2) with an area larger than a value given by the X axis. 
The straight line in a log–log plot indicates fractal behaviour. The fractal 
exponent of the power law is equal to 0.86.

C (r )∝ r DM     (6)

where DM is the so-called mass fractal dimension.
A third point field is shown in Fig. 4C, in which each 

point represents a galaxy. Fig. 4C is a full cylinder 
section of the 2MASS Redshift Survey database 
(Huchra et al., 2012). The thickness of the cylinder 
is 1,000 km s−1, and its radius is 15,000 km s−1. 
The mass fractal dimension has been calculated for 
the three point-fields in Figure 4 and the results are 
shown in Figure 5. The mass fractal dimensions for the 
Sierra Gorda karst massif, Cotiella karst massif and 
celestial galaxies map are, respectively, 1.67, 1.46, 
and 1.25. The Cotiella and galaxies graphs in Figure 5 
are similar for short distances. These figures confirm 
the intuitive similarity of the spatial patterns in  
Figure 4 and they reflect the universality of the fractal 
law: very different physical processes give rise to 
similar spatial patterns. Pardo-Igúzquiza et al. (2016c) 
and Yizhaq et al. (2017) have recently demonstrated 
the fractal character of sinkholes.

Other important aspects of the exokarst are the 
karst landscape (or karst topography) and karren 
(Ford & Willians, 2007). Karren has also been shown 
to be a scale-free karst surface dissolution feature. 
Maire et al. (2004) found that different types of karren 
have a fractal character, although they do not provide 
the fractal exponents of the karren scaling. 

We now review the fractal character of karst 
landscapes. Fractal analysis of surface roughness 
has been widely used for both the natural landscape 
(Borrough, 1981; Klinkenberg & Goodchild, 1992; 
Xu et al., 1993, Liucci & Melelli, 2017) and artificial 
surfaces (Persson, 2014). This type of analysis has 
improved with the availability of digital elevation 
models that allow global and local fractal dimensions 
of landscape to be calculated. 

The global fractal dimension quantifies in a single 
number the complexity and irregularities of the 
landscape, while the local fractal dimension provides 
a spatial map of the landscape fractal dimension that 
quantifies the variations in landscape roughness 
across the study area. The resulting fractal dimensions 
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Fig. 4. A) Sierra Gorda karst massif point field in which each point is 
the location of a doline; B) Cotiella karst massif point field in which 
each point is the location of a doline; C) Top-down view of a cylindrical 
portion of the universe where each point represents a Galaxy.

have been used as geomorphometric parameters and 
as textural indices (Taud & Parrot, 2005). There are no 
widely available studies of the fractal analysis of karst 
landscapes and the most recent account is provided 

by Pardo-Igúzquiza & Dowd (2018). In the latter 
reference the variogram is used to estimate the local 
fractal dimension of a karst massif and the authors 
conclude that the complexity of the karst landscape, 
as revealed by local fractal analysis, is related to the 
abundance of karst depressions and karst hills on a 
range of scales accessible from the available digital 
elevation model. 

This complexity can be assessed for different zones 
of the study area by calculating the histogram of the 
local fractal dimension of specified areas. Remarkably, 
they also found that most local fractal dimensions in 
karst terrains are less than 2.3, as was theoretically 
proposed by Persson (2014) for natural and engineered 
surfaces.

Fig. 5. Pair correlation functions for the point fields in Fig. 4. The 
distance has been normalized by the maximum distance between 
points in each set. The mass fractal dimension DM is 1.67, 1.46 
and 1.25 for the Sierra Gorda karst, Cotiella karst and galaxies, 
respectively.

FRACTALS IN THE ENDOKARST

Several decades ago Curl (1960, 1966) showed that 
the length-distribution of caves is fractal and the 
number of caves, N,of length greater than l, is given by:

N l N l l
l

D

( ) = ( )








−

0
0

    (7)

where N ( l0 ) is the number of caves with a length 
greater than a reference length l0. Clearly, equation 
(7) is another form of equation (3) but it is included 
here to recognize the pioneering work of Curl not 
just in fractals in karst science but also as one of 
the first applications of fractals in general. Curl 
(1986) obtained, for most of the examined cases, a 
value of D around 1.4 (with values ranging from 1.2 
to 1.6). Curl (1986) also showed that the conditional 
distribution of sizes of modular elements (caves 
limited by passages smaller than a given size) also 
has a fractal distribution; he obtained a value of 2.8 
for the Little Bruce Creek cave in the United States. 
This value of 2.8 is close to the fractal dimension of 
a Menger sponge, which has a fractal dimension of  
log(20)/log(3) = 2.727 (Fig. 6A). Figure 6B shows a 
limestone slate that can be represented as a stochastic 
Menger sponge. The voids in Figure 6B are not caves 
(Curl, 1964, 1986) but porosity that can be regarded 
as micro-caves. In principle, these micro-caves could 
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be accessed and mapped by micro-electronic or other 
means. Thus, the fractal analysis of karst conduits is 
more general than the fractal analysis of proper caves 
(caves accessible by humans). 

Fig. 6. A) Menger sponge, a deterministic fractal after four iterations 
in its construction. Figure from Wikipedia created and distributed by 
Niabot under the GNU Free Documentation Licence; B) Fragment of 
an Upper Miocene reef limestone slate that can be represented as a 
stochastic Menger sponge.

Karst conduits are formed from the dissolution of 
fractures and by bedding planes and other lithological 
or structural discontinuities in carbonate rocks. 
The exhaustive network of karst conduits is not 
observed and mapped by speleological exploration, 
which is limited to the mapping of accessible caves or 
accessible parts of caves. Additionally, speleological 
mapping is biased because not all existing passages 
have been found, not all the found passages have 
been explored and not all existing passages are 
accessible. Nevertheless, based on speleological 
data, Pardo-Igúzquiza et al. (2014a) used fractal 
extrapolation to estimate the conduit porosity of the 
Sierra de las Nieves Karst aquifer in Southern Spain. 
In addition, fractal dimension was proposed as a 
geo-morphometric descriptor of three-dimensional 
networks of karst conduits (Pardo-Igúzquiza et al., 
2011) and the fractal character of these networks 
was used in Pardo-Igúzquiza et al. (2012) to generate 
realistic synthetic networks of karst conduits using 
a diffusion limited aggregation method. The fractal 
dimension of these networks has a typical value of 
1.67 (Jeannin et al., 2007). However, in practice, 
smaller values are usually estimated. For example, 
experimental values of 1.65 for a karst network in 

France (Pardo-Igúzquiza et al., 2011), 1.50 for the 
Yukatan karst networks (Hendrick & Renard 2016a), 
1.50 for a karst network in China (Pardo-Igúzquiza et 
al., 2012) and 1.23 and 1.63 for two different karst 
networks in Spain (Pardo-Igúzquiza et al., 2016, a, 
b). These smaller values may be due to the fact that 
some parts of the system are still unexplored, which 
suggests the possible use of the fractal dimension 
to estimate the percentage of a karst network that 
has not yet been discovered. The value of 1.67  
(Jeannin et al., 2007) is the fractal dimension of a 
self-avoiding random walk (Havlin & Ben-Avraham, 
1982). Other studies of the fractal dimension of cave 
systems can be found in Kusumayudha et al. (2000) 
and Verbovšek (2007) and a study of the fractal 
dimension of gypsum cave networks can be found in 
Andreychouk et al. (2013). 

An example of the universality of fractals, with respect 
to these networks of caves, is provided in Figure 7 which 
shows the three-dimensional representation of the 
Shuanghe network (Bottazi, 2004; Pardo-Igúzquiza 
et al., 2012) and the projection of the network onto 
the horizontal plane. Figure 8A shows the projection 
of the Sakany network (Cassou y Bigot, 2007; Pardo-
Igúzquiza et al., 2011) onto the horizontal plane, which 
can be compared with the map of the underground rail 
system of the city of Madrid (Fig. 8B). This is another 
example of fractal universality where very different 
physical processes (in 8A a natural process and in 8B 
a man-made structure) have similar spatial patterns, 
as can be qualitatively assessed by visual comparison 
of both figures. The network of karst conduits in 
Figure 8A is optimal for draining the water of a karst 
massif while the underground network in Figure 8B 
is optimal for the transportation and distribution 
of people in a large city. Nevertheless, it should be 
noted that the network of karst conduits is the result 
of a complex process that has taken place over a 
long (geological) time. During this time some parts 
of the system that were optimal for given climatic 
conditions may have become inactive but remain part 
of the network structure. Thus, the network of karst 
conduits is optimal in a global historical sense. 

Adequately capturing the complexity of karst 
networks by mapping is the most challenging aspect 
of karst modelling especially for modelling and 
predicting flow and transport in karst media (Ford & 
Ewers, 1978; Kaufmann & Braun, 2000; Bakalowicz, 
2005). Using a lumped model of a karst system and 
assuming a fractal structure for the karst media, 
Maramathas & Boudouvis (2006) show that the 
power law is the optimal relationship between certain 
parameters of a MODKARST spring model and gives 
the best agreement between field measurements and 
model-calculated values of chloride concentration.

FRACTALS IN KARST HYDROGEOLOGY

In a karst massif there are three types of coexisting 
porosity: rock matrix porosity, fracture porosity and 
conduit porosity. The three types of porosity have 
fractal behaviours. Conduit porosity is the ratio of the 
volume of conduit voids to the total volume and can 
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Fig. 8. A) Projection of the Sakany network (France) onto the X–Y 
plane; B) Underground rail map of the city of Madrid (Consorcio de 
Transportes Madrid, Comunidad de Madrid, Spain).

Fig. 7. A) the 130 km of karst conduits of the subtropical Shuanghe 
network in China; A) 3D view of the network in which the Z-axis scale 
has been magnified by a factor of 5; B) projection of the network onto 
the X–Y plane.

be calculated by fractal extrapolation using the fractal 
character of karst conduits (Pardo-Igúzquiza et al., 
2014a). Fracture porosity is the ratio of the volume 
of fracture voids to the total volume and depends 
on the extent and apertures of fractures. The fractal 
character of fractures has been amply demonstrated 
in the literature (Berkowitz, 2002; Mace et al., 2005). 
Finally, matrix rock porosity can be observed in hand 
samples, such as the one shown in Figure 4B, and 
in thin-section photographs (Fig. 9). The internal 
surfaces of the pores are very rough due to dissolution 
and mineralization (Fig. 9). The fractal character of 
(general) porous media has been widely studied and 
reported (Katz & Thompson, 1985; Lenormand, 1997; 
Yu & Liu, 2004).

With respect to hydraulic conductivity, Worthington 
& Ford (2009) recognized the self-organized character 
of permeability in carbonate aquifers. This is due 
to the dissolution and enlargement of fractures, 
bedding planes and other rock discontinuities that 
occur along the entire length of pathways through 
carbonate aquifers, which results in a network 
of channels at all scales. The self-organization of 

this three-dimensional network implies a 
hierarchization of flow (Lauber et al., 2014), 
in the same way as there is hierarchization 
of surface flow in a river network (Rodríguez-
Iturbe & Rinaldo, 2001), and this hierarchical 
network of karst conduits is fractal. This implies 
that there is no typical scale of permeability in 
carbonate aquifers; the scale increases with 
the observation scale (Ford & Williams, 2007, 
Fig. 5.2). This self-organization complexity is 
general in geomorphology as pointed out by 
Turcotte (2007). 

Hergarten & Birk (2007) found that, during 
the recession of karst spring hydrographs, 
there is a power-law decrease of discharge over 
short times after a rainfall event. The discharge 
at short times after rainfall events involves fast 

flow through the network of karst conduits, which has 
a fractal geometry (Shevenell, 1996; Bacdk & Krothe, 
2001).

Hendrick & Renard (2016a) use transport properties 
in the fractal characterization of karst networks and 
show that, for two large networks, conductivity scales 
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Fig. 9. Irregular pores in a thin-section of dolostone from the Sierra  
de las Nieves karst aquifer (Málaga, Spain). The width of the section 
is 2 cm.

as a power law. They analysed the mapped karst 
network as spatially embedded graphs and computed 
the fractal dimensions by using the scale-invariant 
re-normalisation procedure proposed by Song et al. 
(2005) for complex networks.

DISCUSSION

Many features of karst terrains exhibit fractal 
behaviour and several theoretical models have 
been proposed to explain why this should be so. 
Mandelbrot (1983) proposes a conjecture in relation 
to the power law of the size-distribution of lakes that 
can be applied to karst geoforms. He proposes that 
the underlying reason that the power-law is found 
in nature is its “resistance” to different forms of 
“torture”; for example, multiplying the multiplicand 
in the power law by an arbitrary multiplier does not 
change the form of the power law. The multiplicand 
may be determined by an initial state in which the 
terrain has a power law character and the multiplier 
can involve many geological and tectonic factors that 
affect the form of the karst features. In karst terrains, 
the initial state of the karst system before any 
extensive dissolution process takes place, is fractured 
carbonate rocks; and fracture networks have been 
shown to have a fractal character (Barton, 1995; 
Berkowitz, 2002; Kruhl, 2013). The multiplier is a 
measure of the interplay of all the processes involved 
in the formation of karst features (Ford & Williams, 
2007), the product of which is fractal, as shown in 
the work presented here. This raises the obvious 
question of why fracture networks are fractals in the 
first place and a number of physical arguments have 
been provided and reviewed in Bonnet et al. (2001), in 
particular, the absence of characteristic length scales 
in the fracture growth process.

Multifractal analysis is a generalization of fractal 
analysis (Stanley & Meakin, 1988). It can identify 
cases in which the fractal dimension is not constant 
over all scales of variability. Thus, instead of a single 
fractal dimension, a complete range of values, the 
fractal spectrum, is estimated from the experimental 
data (Majone et al., 2002, 2004). However, multifractal 

analysis requires significantly more experimental 
data than fractal analysis, which may explain why it 
has not found many applications in karst studies.

CONCLUSIONS

Fractals are widespread in nature including karst 
geomorphology and karst hydrogeology. Although the 
fractal concept does not appear in standard textbooks 
of karst geomorphology and hydrogeology (Ford & 
Williams, 2007) and speleogenesis (Klimchouk et al., 
2000), recent publications, discussed in this review, 
have shown that fractals in karst, far from being a 
mere scientific curiosity, have important practical 
applications that can contribute to advancing karst 
and cave science. There are many practical uses of 
the fractal analysis of karst features. For example, 
fractal extrapolation can be used to determine the 
number of small features that cannot be measured 
because of the fixed range of variation of the available 
data; fractal simulation can be used to generate 
realistic synthetic karst features that can be included 
in mathematical models (Pardo-Igúzquiza et al., 2012; 
Hendrick & Renard, 2016b); fractal indices can be used 
as geomorphometric parameters that can be linked 
to physical generation processes or used to compare 
different karst massifs. The best of fractal analysis 
in karst is still to come, as modern techniques (such 
as LIDAR) for mapping the karst landscape and laser 
mapping of cave interiors will provide the required 
high-resolution data. Fractal analysis will then provide 
a means of exploring and understanding high-detail 
features. We conclude with the open question of why 
nature in general, and karst systems in particular, tend 
to have fractal geometry and why natural variables tend 
to follow a fractal distribution. Physicists have started 
to address this question (Sornette, 2006) although 
many unknowns remain.
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