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Controlling Trajectories Globally via Spatiotemporal Finite-Time Optimal Control\ast 

Li Zhang\dagger and Sanjeeva Balasuriya\ddagger 

Abstract. The problems of (i) maximizing or minimizing Lagrangian mixing in fluids via the introduction of
a spatiotemporally varying control velocity and (ii) globally controlling the finite-time location of
trajectories beginning at all initial conditions in a chaotic system are considered. A particular form
of solution to these is designed which uses a new methodology for computing a spatiotemporally
dependent optimal control. An L2-error norm for trajectory locations over a finite-time horizon is
combined with a penalty energy norm for the control velocity in defining the global cost function. A
computational algorithm for cost minimization is developed, and theoretical results on global error
and cost presented. Numerical simulations (using velocities which are specified, and obtained as data
from computational fluid dynamics simulations) are used to demonstrate the efficacy and validity of
the approach in determining the required spatiotemporally defined control velocity.
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1. Introduction. In fluid mechanical systems, particles move according to a velocity field
v which is typically dependent on both space x and time t. This field is often known only
numerically, through observational data or computational fluid dynamics simulations. This
has the inevitable consequence that the data is finite-time, which has resulted in a preponder-
ance of studies on understanding the flow characteristics and important moving flow regions
(``coherent structures"") in finite-time nonautonomous flows [28, 8, 54]. Often, there is a de-
sire to control the flow, usually in order to enhance or suppress mixing (e.g., in optimizing
performance in mixing/combustion devices, or reducing the impact of a spreading pollutant).
A specific example arises in oil recovery, where one might be interested in driving oil flows to
a target region, by using the control strategy of forcing a secondary flow (a chemical slug) in
certain locations [35, 62]. Current theoretical developments in the area of mixing optimiza-
tion/suppression area are varied (e.g., parametric investigation of flow protocols in specific
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1610 LI ZHANG AND SANJEEVA BALASURIYA

geometries in zero-flow situations [57, 45, 41], maximizing mixing [48, 24], controlling particu-
lar trajectories [5, 9], or optimizing fluid mixing across flow barriers [7, 4]). Most do not utilize
optimal control theory to control particle trajectories but rely on other aspects of optimiza-
tion, control, or numerical methods (some exceptions: controlling the Navier--Stokes equations
[43, 31] and multiobjective mixing control [48]). Here, we specifically examine globally control-
ling trajectories of an existing flow, whose nonautonomous velocities may only be known from
observational or experimental data. This is ``one step before"" the issue of controlling mixing
[41, 45, 48, 24], in which diffusion also needs to be taken into account. In this case, we are able
to specify the targeted locations of all initial conditions after a finite-time flow and seek an
added spatiotemporally dependent control velocity which helps achieve this target globally.

Physically, the flow can be controlled by introducing additional velocities which are
spatiotemporally dependent, e.g., by moving a solid or flexible boundary in some specified
way [19, 58], introducing fluid inlets/outlets at various locations [46, 60, 29], displacement by
chemical slugs [35, 62], or via microtransducers [32]. Thus, a control velocity which is both
spatially and temporally dependent is achievable physically. In this case, since we specify
eventual trajectory locations, we build a cost function which includes both a distance norm
(which captures how closely all particles reached the targeted location) and a penalty term
(which limits the size of the control velocity). Assuming that the original velocity field is
given (possibly in terms of data), in this paper we develop a method for determining the
spatiotemporally varying control velocity field which minimizes the cost function. This is
achieved by modifying and adapting optimal control methods to this setting, while providing
both theoretical results and computational strategies for using our technique.

Many methods have been suggested in the fluid mechanics literature for different types of
flow control. These include turbulence control in various ways by conditioning velocity gradi-
ents, energy or enstrophy [11, 31, 43, 53], drag forces [11], or boundary layers and skin friction
[34, 38]. In most of these cases, the issue is to control the (Eulerian) velocity field, which
evolves according to the Navier--Stokes equation (or some approximation/modification). This
is a challenging infinite-dimensional situation, often requiring geometry-specific methods and
projections into finite dimensions (e.g., Fourier modes or orthogonal decompositions [34, 53]).
Of course, in highly turbulent situations in which gradients are large over small scales, achiev-
ing such a control would require velocity modifications at smaller and smaller scales, which
is impractical. Moreover, difficulties in achieving control over long-term time horizons are
well-established [11]. In contrast to controlling Eulerian velocities which are solutions to the
Navier--Stokes equations, what we study in this paper is the control of Lagrangian trajectories
associated with such an Eulerian velocity field. Given that Lagrangian trajectories are solu-
tions to an ordinary differential equation associated with the Eulerian velocity, the control
problem is now a low-dimensional one, with dimensionality given by the spatial dimension of
the flow. However, the difficulty here is that we seek spatially global trajectory control at a
final time, which we are able to achieve in a certain way while taking advantage of the low-
dimensionality of the control problem. Given that control velocities can in reality be achieved
only at some spatial resolution, our methods are expected to have accuracy if the turbulence
is moderate, but not excessive.

While fluid mechanics is the motivation for this paper, our development is independent
of it. Our methodology applies to general systems of ordinary differential equations in anyD
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SPATIOTEMPORAL OPTIMAL CONTROL 1611

dimension, which are moreover either autonomous or nonautonomous and subject to a state
equation governed by a vector field v. However---pertinent to the fact that fluid mechanical
systems are confined to two or three dimensions---we only claim efficiency at low dimensions.
A particular application is to the control of chaos [42, 22, 51, 55]. Generally, chaotic systems
have unpredictable trajectories, and classical methods for chaos control include the deter-
mination of controls which result in chaotic synchronization [30, 14] or which locally push
trajectories toward unstable ones [22, 51, 27, 52]. Since we seek to push trajectories globally
over the given time period, our method can be construed as a global control framework, in
which we simultaneously specify the required fate of all trajectories in our phase space. Addi-
tionally, we will not confine attention to equilibria (which generically do not exist anyway for
nonautonomous systems) or invariant sets such as periodic orbits, and neither will we be con-
cerned about the stability of such sets. Thus, instead of working within this realm of ``classical
chaos control,"" our method targets the fate of all trajectories after a given finite-time.

Some background to our work comes from optimal control theory. Optimal control meth-
ods for determining a time-dependent control function for individual trajectories is a mature
research area [33, 49, 2, 61, 1]. One class of this focuses on obtaining different laws, e.g.,
feedback control theory with diffusive terms as coverage control [44], sliding control with
mismatched uncertainties [33], synchronization for nonautonomous chaotic systems using in-
tegral control [40], global criteria via linear state error equations [17], and via delayed terms
[15]. Another aspect is that of a nonautonomous system, e.g., minimum time control [13].
Classically, optimal control methods focus on a single trajectory of an autonomous system
and often relate to stabilizing unstable equilibria [16, 18, 25, 37]. The theoretical results
are usually based on the Pontryagin minimum (or maximum) principle and the associated
Hamilton--Jacobi--Bellman partial differential equations. In this work, we extend optimal con-
trol to the problem of determining a spatiotemporally dependent control, to globally control
trajectories over a finite-time. By ``globally,"" we mean that we can specify the fate of initial
conditions as a global function on the initial space, rather than, for example, insisting that
all initial conditions go to one invariant set [22, 51, 52, e.g.]. Moreover, the method works for
general nonautonomous (unsteady) vector fields and thus is not dependent on the presence of
fixed points, periodic orbits, or chaotic attractors.

The remainder of this paper is organized as follows. The problem and its theoretical
solution are outlined in section 2. We develop both the computational methodology for de-
termining a spatiotemporal optimal control function, as well as theoretical results indicating
the robustness of the procedure and error analyses on the achievement of the finite-horizon
target. The algorithm we develop includes novel uses of the Newton--Raphson algorithm and
an ``approximant"" [20] method to determine the control function spatiotemporally. Section 3
demonstrates the efficacy of the spatiotemporal optimal control in several examples. We
demonstrate the ease of implementation of our algorithm, as well as validate the theoretical
results concerning the target achievement, and the cost function. The proofs of the theo-
retical results of section 2 are separated out for easy readability of the paper and given in
Appendix A. Finally, in section 4 we briefly remark on potential extensions of this work.

2. Spatiotemporal optimal control. Suppose we are given a nonautonomous nonlinear
state equationD
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1612 LI ZHANG AND SANJEEVA BALASURIYA

\.x = v (x, t) ; t \in [0, T ] ,(2.1)

where x \in \Omega , and \Omega is an open and bounded subset of \BbbR n. We will assume that v is smooth
and that solutions to (2.1) exist for all t \in [0, T ] (thereby precluding issues such as ``blow-up
in finite-time"" [56]). For v obtained on a spatiotemporal grid instead, we imagine that v
is smoothly extended to the subgrid level (a strategy that is usually done when computing
trajectories in such cases; see the citations in [8, 28]). Since such an extension may give values
of v which are in reality inaccurate, we will (in Theorem 2.4) establish that our method is
robust toward these errors.

Our goal is to find an additive spatiotemporal control c (x, t) such that initial conditions x0

at t = 0, in a restricted domain \Omega 0 \subseteq \Omega , approach the final time T specified target locations,
which are identified via a globally defined target function \Theta : \Omega 0 \rightarrow \BbbR n. This target function
must be achievable in that it is generated by a flow (i.e., there exists a velocity field u(x, t)
such that the flow map of \.x = u(x, t) from time 0 to T is \Theta (x)). In particular, \Theta cannot
demand flow trajectories which must cross each other, or reverse orientation in other ways
(for example, setting \Theta (x) =  - x if x \in \BbbR is unachievable, since this requires trajectories to
cross each other---which is impossible for a flow). However, we may specify \Theta to have jump
discontinuities, enabling, for example, steering trajectories into three different target locations.
We emphasize that there is no restriction to equilibria or other specialized trajectories of (2.1),
but we rather seek to steer all trajectories globally to any achievable specified locations by
time T . The controlled nonautonomous state equation will take the form

\.x = v (x, t) + c (x, t) ; t \in [0, T ] ,(2.2)

where we use the notation c(x, t) for the control. In the standard language of fluid mechanics,
this represents the control velocity in the ``natural"" Eulerian coordinate x, based on informa-
tion from the Lagrangian trajectories of (2.1). We will denote by x (x0, t) solutions of (2.2)
at time t \in [0, T ] subject to the initial condition x0 at time 0. The optimal control problem
globally on the t = 0 spatial domain \Omega 0 can then be posed as the determination of the control
c (defined on a spatiotemporal domain (x, t)) which minimizes the cost function

G :=

\int 
\Omega 0

\biggl[ 
\| x(x0,T ) - \Theta (x0)\| 2+\eta 

\int T

0
\| c(x(x0,t),t)\| 2dt

\biggr] 
dx0 ,(2.3)

in which \| \dotp \| is the standard Euclidean norm and \eta > 0 encapsulates the penalty for the energy
contained in c over the time period [0, T ]. This regularizes the problem (and hence jump
discontinuities are specifiable in \Theta ; these will be approximately achieved when minimizing G
for small but nonzero \eta ).

We will develop a method for solving the minimization problem numerically for any given
initial domain \Omega 0, final time T , evolution law v defined on [0, T ], target function \Theta , and energy
parameter \eta . We will moreover provide theoretical estimates on how the error in achieving
the target decays with time and \eta . We also remark that within this formulation (specifically
attempting to find a control velocity in the form c(x, t) for minimizing the spatially integrated
cost function G), proceeding through the Hamilton--Jacobi--Bellman approach directly is un-
feasible because a numerical minimization is required within the partial differential equation.D
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SPATIOTEMPORAL OPTIMAL CONTROL 1613

We instead adopt an approach which uses different established methods (from optimal control,
fluid mechanics, differential equations theory, computer visualization) in an unusual way.

For x0 \in \Omega , we define

g(x0) := \| x(x0,T ) - \Theta (x0)\| 2+\eta 

\int T

0
\| c(x(x0,t),t)\| 2dt ,(2.4)

and note that G =
\int 
\Omega 0

g(x0) dx0. Since g \geq 0 for all x0 \in \Omega , minimizing G can be accom-
plished by minimizing g at each x0---a canonical optimal control problem---and then combining
the results. (There is a caveat to this statement, which we will return to in describing the
process in more detail subsequently.) Now, once minimizing g has been achieved for a par-
ticular initial condition x0, it will result in a control c defined along the specific trajectory
(x (x0, t) , t) of spacetime. Subsequently, we will detail a method for concatenating the results
for each such x0 to be able to define c across all (relevant) spacetime (x, t).

Theorem 2.1 (single-trajectory optimal control). For x0 fixed in \Omega , any optimal control c
locally minimizing (2.4) is representible as

c (x (x0, t) , t) =  - 1

2\eta 
p(t); t \in [0, T ] ,(2.5)

in which the conjugate momentum p obeys the coupled system

\.x = v (x, t) - 1
2\eta p

\.p =  - [\nabla v (x, t)]\top p

\Biggr\} 
(2.6)

subject to the implicitly defined initial and end conditions

x(0) = x0

p(T ) = 2 (x(T ) - \Theta (x0))

\biggr\} 
.(2.7)

Here, [\dotp ]\top denotes the matrix transpose, and \nabla v is the n\times n matrix derivative of v with respect
to the spatial variable x.

Proof. See section A.1; this is an elementary application of optimal control.

The fact that the condition on p in (2.7) is an end condition (while that of x is an initial
condition), and moreover depends on the unknown value x(T ), necessitates some care when
solving (2.6)--(2.7) numerically. Methods such as indirect shooting, multiple shooting, and
collocation approaches as well as sequential, simultaneous, or direct transcription have been
suggested for this well-known problem. While indirect methods suffer difficulties in acquiring
a good initial guess and in repeated differentiation, the discretization associated with direct
methods tends to obtain less accurate solutions. Here, we opt for a Newton--Raphson based
(indirect) method which, as we demonstrate, has quick convergence. Having guessed an initial
condition q := p(0) \in \BbbR n, we implement (2.6) in forward time (in this case, we use the built-
in ordinary differential equation solvers in MATLAB) and, consequently, determine x(T ) and
p(T ) for that initial choice. Given that these depend on the initial guess q, we use the notation
x(T,q) and p(T,q), respectively, and define
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1614 LI ZHANG AND SANJEEVA BALASURIYA

F(q) := p(T,q) - 2x(T,q) + 2\Theta (x0) .(2.8)

If we find a root q of F, this is a correct initial condition p(0) to use to generate c from
(2.5). To find such a q, we make an initial guess q0 and choose a small quantity \delta . We then
take the 2n ``nearest neighbors"" of q0, i.e., q0 \pm \delta ei for i = 1, 2, . . . , n, where the eis are the
rectangular basis elements on \BbbR n. Given x(0) = x0 and each of these initial conditions for
p, we then advect (2.6) numerically forward to time T . We can now calculate the value of
F using q = q0 and can use the results of all the nearest neighbor advections to numerically
evaluate each of the values F (q0 \pm \delta ei) and hence estimate the matrix \nabla F(q0) using standard
finite-differencing. We then make an improved guess for the root q (which we call q1) using
the Newton--Raphson method. More concretely, we go from our jth guess to the (j + 1)st
guess by

qj+1 = qj  - [\nabla F (qj)]
 - 1F (qj)(2.9)

and stop the process once \| F(qj)\| is smaller than a specified threshold. The corresponding
solution p(t) then gives us the required (single-trajectory) control c using (2.5).

Thus, for any x0 \in \Omega 0, we can determine the solution trajectories x (x0, t). To quantify
how we approach the target at time T , we define the global target error

E(t) :=

\biggl( \int 
\Omega 0

\| x (x0, t) - \Theta (x0)\| 2 dx0

\biggr) 1/2

(2.10)

for times t \in [0, T ]. We note that E(0) is the L2(\Omega 0)-norm of the function x0 - \Theta (x0) and can
be assumed known from the problem statement. We now characterize, in terms of ``given""
quantities (i.e., information about v, \Omega , T , \eta , and \Theta ), the rate at which E(t) approaches its
final value E(T ). We first require definition of some norms for functions h : \Omega \times [0, T ] \rightarrow \Omega .
If \| \dotp \| is the standard Euclidean norm in \BbbR n, let

\| h\| a := sup
(\bfx ,t)\in \Omega \times [0,T ]

\| h (x, t)\| and(2.11)

\| h\| b := sup
(\bfx ,t)\in \Omega \times [0,T ]

sup
\bfy \in \Omega ,\bfy \not =\bfzero 

\bigm\| \bigm\| \nabla h\top (x, t)y
\bigm\| \bigm\| 

\| y\| 
.(2.12)

Theorem 2.2 (global error decay). If there exist constants A and B such that \| v\| a \leq A <
\infty and \| v\| b \leq B < \infty , then the rate of decay of E(t) to E(T ) obeys

| E(t) - E(T )| \leq 
\surd 
2

\Biggl[ 
A
\sqrt{} 
\mu (\Omega 0)(T - t)+

E(T )

\eta 

\bigl( 
eB(T - t) - 1

\bigr) 
B

\Biggr] 
,(2.13)

where \mu (\Omega 0) is the standard Lebesgue measure on \Omega 0.

Proof. See section A.2.

As t approaches T , E(t) approaches E(T ) due to two effects: a linear rate which is
characterized by \| v\| a and an exponential rate which is characterized by \| v\| b. We emphasize
that these results hold even if \Theta is discontinuous (as we will demonstrate in section 3).D
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SPATIOTEMPORAL OPTIMAL CONTROL 1615

Next, we address \eta -dependence in the cost and global error. By choosing \eta smaller and
smaller, since the penalization of the control velocity c is reduced in (2.3), one can achieve a
target \Theta with infinitesimal accuracy by choosing c closer and closer to the exact value u - v,
where u is the velocity field which engenders the flow map \Theta when considering the flow from
time 0 to T . Thus, E(T ) decreases with \eta . We now establish a relationship with the decay of
the total cost G.

Theorem 2.3 (comparative \eta -dependence). Suppose the hypotheses of Theorem 2.2 are
satisfied. If there exists \alpha > 1/2 such that

lim
\eta \downarrow 0

E(T )

\eta \alpha 
< \infty , then lim

\eta \downarrow 0

G

\eta 2\alpha  - 1
< \infty .

Proof. See section A.3.

If we know that the global error decays as\scrO (\eta \alpha ), then the total cost will decay as\scrO (\eta 2\alpha  - 1).
We note that if \alpha = 1, Theorem 2.3 states that E(T )'s \scrO (\eta ) decay implies that G also has
\scrO (\eta ) decay. We will demonstrate this particular behavior in our numerical simulations.

Next, we address the issue of how to determine c as a spatiotemporal function. By the
process associated with using Theorem 2.1 and the Newton--Raphson method (2.9), given
any initial condition x0 \in \Omega , we can find the optimal control function c's values along the
spacetime curve (x(x0, t), t). By doing this for a grid of initial conditions x0 \in \Omega 0, we generate
a collection of such spacetime curves along which we know the value of c. We now seek c as
a spatiotemporal function (i.e., as a function on (x, t)). In doing so, we make the assumption
that the generated spacetime curves are consistent, that is, should any two curves intersect
in spacetime, the determined values of c at the point of intersection by following along either
of the curves should give the identical value. (Since numerical approximation is being used,
exactly identical is not necessary, but rather these should agree to within the resolution
sought.) This is the caveat necessary to ensure that minimizing g and then extending to all
spacetime is equivalent to minimizing the global cost G.

Now, performing numerical interpolation proves to be ineffective and difficult because the
spacetime curves do not uniformly traverse spacetime. Moreover, given the possibility that the
function \Theta is nonsmooth (e.g., if different collections of initial conditions are steered toward,
say, two different points---this example shall be shown in our simulations in section 3), the
consequent roughness of c results in wild oscillations in the interpolants. Thus, we instead use
an approximant for c based on knowledge of the values of c along the collection of nonuniformly
distributed spacetime curves. This is achieved easily in two dimensions in MATLAB by using
the package gridfit [20], which regularizes the interpolation problem in seeking a smoother
surface fitting for c = c (x, t). (The basic idea, described in detail in [20], is to fit an elastic
plate approximately through the given points, with a stiffness parameter which penalizes
deviation from the points.) Throughout this work we use the Laplacian as the regularizer
(the Laplacian integrated over the fitted surface is to be kept small [20]). An N -dimensional
version of this, regularizeNd, has also been developed [47] and is what we use when we
consider higher-dimensional situations in our examples.

Using our theoretical results, we can comment on the robustness of the process in the
following sense. Suppose that instead of v, the true governing vector field is \~v, where while \~vD
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1616 LI ZHANG AND SANJEEVA BALASURIYA

is unknown, we know that it is ``close"" to v (for estimates on Lagrangian trajectory uncertainty
resulting from this, see [6]). This is inevitable if v were known from data; even if know exactly
at the gridpoints, v would need to be interpolated in some way at the subgrid level when
performing trajectory calculations. Moreover, the values at the gridpoints, if obtained from
experimental or observational data, will carry their own measurement errors. Thus, there will
always be an error in v when considered over the domain \Omega \times [0, T ].

Theorem 2.4 (robustness to uncertainties in v). Suppose there exists \epsilon > 0 such that
\| v  - \~v\| a < \epsilon and \| v  - \~v\| b < \epsilon . If the ``tilde"" variables are the quantities associated with
using \~v rather than v in calculations of the control velocity, global error, and cost, then

c(x, t) = \~c(x, t) +\scrO (\epsilon ) in \Omega \times [0, T ] ,

E(T ) = \~E(T ) +\scrO (\epsilon ), and

G = \~G+\scrO (\epsilon )

\right\}   .(2.14)

Proof. See section A.4.

Theorem 2.4 ensures that, since we follow our procedure by using v rather than the
unknown (but \scrO (\epsilon )-close) \~v, all relevant computed quantities are similarly \scrO (\epsilon )-close to the
``true"" values. This suggests a (specific type) of robustness of the procedure: results will be
correct to the same order of uncertainty as in v.

We have thus developed a methodology for determining a spatiotemporal control in finite-
time, in relation to globally defined targets, by a process of utilizing an unusual viewpoint
and methodology to the optimal control discipline. Our algorithm is summarized below.

1. Reduce the spatiotemporal minimization problem (2.3) to individual single-trajectory
optimal control problems related to minimization of (2.4).

2. Solve the resulting initial/end-condition problem (as identified in Theorem 2.1) by us-
ing the Newton--Raphson algorithm detailed in (2.9) for each initial condition, thereby
determining the trajectory x(x0, t) and the control c (x(x0, t), t).

3. Amalgamate the results for each initial condition by applying the gridfit [20] or
regularizeNd [47] method to approximate the spatiotemporal control c as a function
of (x, t).

4. This algorithm is supported by the theoretical conditions on the decay of | E(t) - E(T )| ,
and the \eta -dependence of E(T ) and G, and robustness toward deviations in v.

3. Simulations. In this section, we present several simulations which demonstrate the ease
at which the spatiotemporal control can be computed and moreover validate the theoretical
results on \eta -dependence and decay rates.

3.1. A one-dimensional example. For x \in \BbbR , and t \in [0, 1], let

v(x, t) = x sin (7t+ 0.3)w1(t) - 4x3 cos (5t)w2(t) ,(3.1)

in which some roughness to the velocity is obtained by implementing on a time-scale \Delta t = 0.02
a specific realization of stochasticity via w1(t) = 3U1(t)+0.5 and w2(t) = 2U2(t) - 2, where the
Ui(t) are independently chosen from the uniform distribution on [0, 1]. We show in Figure 1(a)
the result of implementing (2.1) for x0 \in \Omega 0 = [ - 0.4, 0.5]. We first define \Theta (x0) = 0.2 forD

ow
nl

oa
de

d 
08

/0
9/

20
 to

 1
29

.1
27

.5
.2

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPATIOTEMPORAL OPTIMAL CONTROL 1617

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

(a)

0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

1

2

3

4

5
10-3

(c)

1

0.5-2
1

0

0.5

2

0

4

6

-0.5 0-1

(d)

Figure 1. Spatiotemporal control for (3.1): (a) uncontrolled, (b) controlled to approach two points, (c) cost
distribution, and (d) spatiotemporal control function.

x0 \geq 0.3 and \Theta (x0) =  - 0.3 for x0 < 0.3, which separates \Omega 0 at 0.3 and aims to send each seg-
ment of initial conditions toward a different target point. By using \eta = 0.01 and \delta = 10 - 5 and
implementing part 2 of our algorithm, we obtain an excellent approach to our targets (red lines
near t = 1), as shown in Figure 1(b). The desired separation point at x0 = 0.3 is shown by the
red line near t = 0. The distribution of the required costs for each initial condition x0 (i.e.,
(2.4)) is shown in Figure 1(c); the trajectory beginning near  - 0.15 requires hardly any adjust-
ment, and there is a sharp transition in the cost near x0 = 0.3 because it is necessary to split
the trajectories in different directions. The computed control c for each trajectory is shown
in spacetime as the green curves in Figure 1(d). The red surface---which approximates c(x, t)
across the spacetime domain based on the information at the green values---is obtained by ap-
plying gridfit with its default parameters. We note from Figures 1(b) and (d) that although
this process allows us to determine c on a connected spatiotemporal domain (i.e., the domain
associated with the red surface in Figure 1(d)), in reality its values on the wedge into which
trajectories do not enter (because of the separation achieved by the process) are irrelevant.

In Figure 2(a), we show by the red circles the cost G as \eta is varied. Performing linear
regression on the 10 smallest values of \eta yields the green line, whose slope indicates that
G \sim \eta 1.0782. We similarly analyze the final target error E(T )'s decay with \eta in Figure 2(b),
and regression reveals that E \sim \eta 0.9447. Thus, these are consistent with choosing \alpha \approx 1 inD
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1618 LI ZHANG AND SANJEEVA BALASURIYA

Theorem 2.3. We next demonstrate the error decay with time in Figure 2(c). Rapid decay as
t \rightarrow T is displayed, and in all other implementations (not shown), as predicted by (2.13).

We finally briefly illustrate the impact of choosing different target functions \Theta in Figure 3,
noting that \Theta must be a monotonic function to avoid trajectories having to cross each other.
Excellent results are achieved with these parameters, with costs G \sim 10 - 3 in both instances.
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(c)

Figure 2. Analysis for the optimal control associated with Figure 1: (a) dependence of cost on \eta , (b) decay
of E(T ) as \eta is reduced, and (c) error decay as per Theorem 2.2.
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Figure 3. Different target functions applied to (3.1): (a) \Theta (x0) = x2
0/4 (G = 0.00134), and (b) \Theta (x0) =

x0 + 1 (G = 0.00477).D
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3.2. A two-dimensional example. For x = (x, y) \in \BbbR 2, suppose that

v(x, t) =

\biggl( 
v1(x, y, t)
v2(x, y, t)

\biggr) 
=

\biggl( 
2x+ ty
sin y  - t

\biggr) 
,(3.2)

and let the initial time set be \Omega 0 = [ - 1, 1]\times [0, 1], to be advected to time T = 1. We specify
as our target function

\Theta (x0) =

\Biggl( 
x2
0
4 + y0
cosx0  - 2x0y0

\Biggr) 
.(3.3)

There is no difficulty in implementing our methodology in this two-dimensional situation (once
again, our default values are \eta = 0.01 and \delta = 10 - 5). We show in Figures 4(a) and (b) the
uncontrolled and the controlled trajectory evolution, respectively; this implementation incurs
a cost of G = 0.0317 and the target error E(T ) = 0.0069. As an example to demonstrate the
achievement of the target locations, we shown in Figure 4(c) how the controlled final location
(green crosses) is close to the target x-coordinate (orange surface) for (x0, y0) \in \Omega 0.

The total cost G and final target error E(T ) are composed by integrating over \Omega 0. The
distribution of the contributions to each of these integrals with (x0, y0) \in \Omega 0 is shown in
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Figure 4. (a) Flow associated with (3.2); (b) the controlled flow from our algorithm subject to the target
function (3.3); (c) target x-value surface (orange) and achieved values (green crosses).D
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Figure 5. The distribution of contributions to (a) the cost G and (b) the total error E(T ), over points
(x0, y0) \in \Omega for the two-dimensional example.
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Figure 6. Computed control function \bfc = (c1, c2) illustrated by green crosses, with the orange surfaces
indicating its approximant: (a) c1(x, y, t = 0.58) and (b) c2(x, y, t = 0.78). Different viewing angles are used
for better visibility.

Figure 5. The largest contributions to each of these occurs along the sides of \Omega 0; this is since
the middle regions require the least effort to control for this chosen target function.

Visualizing the control c = (c1, c2) as a function of (x, y, t) requires higher dimensions.
Instead, in Figure 6, we show computed values of c1 and c2 at different instances in time. The
green crosses are the computed values based on our algorithm for single-trajectory optimal
control, while the orange surface indicates the result of applying gridfit [20] to obtain ap-
proximating functions. While visualizing the full control is difficult, the computations did not
present any significant difficulty.

Finally, we validate \eta \rightarrow 0 behavior in Figure 7. The fitted regression lines (green) give
the facts that G \sim \eta 0.990 and E(T ) \sim \eta 0.975. Thus, both the cost G and the final error E(T )
demonstrate the behavior as intimated in Theorem 2.3 with \alpha \approx 1.

3.3. ABC flow. Having validated our theorems in several elementary flows, we next in-
vestigate the flow associated with an exact solution to the three-dimensional steady Euler
equations of fluid motion: Arnold--Beltrami--Childress (ABC) flow, whose velocity field is
given by [3, 21]D
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Figure 7. The variation of (a) the cost G and (b) the error E(T ) with \eta for the two-dimensional example.

v(x) =

\left(  v1(x, y, z)
v2(x, y, z)
v2(x, y, z)

\right)  =

\left(  A sin z + C cos y
B sinx+A cos z
C sin y +B cosx

\right)  ,(3.4)

where x = (x, y, z). When considered on the cell [0, 2\pi )\times [0, 2\pi )\times [0, 2\pi ) with triply periodic
boundary conditions, the resulting trajectories are well-known to be chaotic [21]; Arnold's
criterion for generic integrability of trajectories arising from steady Euler flow [3] fails in this
instance because the velocity and vorticity fields are collinear. The ABC velocity field (3.4) is
also an exact solution to the Navier--Stokes equation under a particular choice of body force
[21]. We use the parameter values A = 1, B = 2/3, and C = 1/3 (also considered in [21]) for
our simulations. In the spirit of chaos control [42, 22, 51, 55], we seek here to make trajectories
all approach the same final destination (\pi , \pi , \pi ).

In using our algorithm, since the problem is spatially three-dimensional, we need to use
a seven-point stencil at each point p (the central point, plus points adjacent to this in all
three coordinate directions) in conjugate momentum space to estimate the gradient of the
flow map with respect to p, and then we have to invert the 3 \times 3 matrix in the Newton--
Raphson step. Additionally, we require the usage of the higher-dimensional regularizeNd
[47] rather than gridfit [20] in determining the control velocity globally. We demonstrate
in Figure 8(a) the trajectories in (x, y, z)-space for a grid of initial conditions, evolved from
time 0 to T = 0.4 using the ABC velocity (3.4), using an Euler method with \Delta t = 0.001. Our
control algorithm is then applied with the identical time-spacing and with \eta = 0.0001. The
controlled trajectories are displayed in Figure 8(b) with each trajectory shown in a different
color. All trajectories are seen to approach (\pi , \pi , \pi ) as required.

The control velocity c = (c1, c2, c3) has three components, with each component being a
function of (x, y, z, t). Illustrating the computed control in a complete way is therefore difficult.
We show several time-slices, in several z = constant planes, for one of the components in
Figure 9. These are shown as contour fields. We note that since these are computed based on
where trajectories are at each time-instance (i.e., from the trajectory data in Figure 8(b)), we
can only obtain reliable nformation in sets which are within a convex domain of the existing
data points. That is, extrapolation in the (xy)-plane beyond the available data points is
unreasonable. Hence, the information at each time is confined to the current locations of theD
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Figure 8. ABC flow trajectories from time 0 to 0.4: (a) uncontrolled, and (b) controlled using \eta = 0.00001,
with a target destination (\pi , \pi , \pi ) for all trajectories.
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Figure 9. Displaying the control velocity component c2(x, y, z, t) for the ABC flow control at several time-
and z-slices: (a) t = 0.1 and z = 2.3106, (b) t = 0.2 and z = 2.599, (c) t = 0.3 and z = 2.869, and (d) t = 0.4
and z = 3.139.

controlled trajectories. At each time-frame, for the demonstration of the control c2(x, y, z, t)
in Figure 9, we choose a z-plane which is exactly in the middle of the z-range of all the current
trajectory locations. At t = 0.4, since the trajectories have all closely approached (\pi , \pi , \pi ),
information is only available in a small neighborhood near this.
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3.4. A Navier--Stokes data example. Finally, we demonstrate applicability when veloc-
ities are genuinely given by data, by generating them from a computational fluid dynamics
simulation of the Navier--Stokes equations. The spatial domain [0, 1] \times [0, 1] is used, with
periodic boundary conditions in both directions. The Reynolds number is moderate at 5000,
and 100 equally spaced intervals are used in each direction to define a spatial grid. The
Navier--Stokes equations are solved in this case using the vorticity formulation, with a speci-
fied forcing function and a randomly generated initial vorticity distribution. A pseudospectral
code is used: discrete Fourier transforms in space, and a Crank--Nicolson algorithm in time,
with \Delta t = 0.01. The equations are numerically solved from an initial time t = 0 to a final
time T = 2. Thus, the two components of the velocity field v = (v1, v2) are generated on
a spatiotemporal grid. To get a sense of the computed velocity, we show in Figure 10 the
components v1 and v2 at a couple of instances in time.

The velocity data from the Navier--Stokes simulation is then stored and used as input into
a spatiotemporal control strategy. We take an equally spaced grid of 25 initial points (x0, y0),
and first plot their evolution under the uncontrolled unsteady velocity data in Figure 11(a).
Our control aim in this instance is to have these approach the target destination function

\Theta (x0) =

\biggl( 
x0  - y0

y0

\biggr) 
(3.5)
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Figure 10. The velocity components v1 (left) and v2 (right), computed at times 0.5 (top row) and 2.0
(bottom row), as generated from the Navier--Stokes computational fluid dynamics solver.D
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Figure 11. The (a) uncontrolled and (b) controlled trajectories from the Navier--Stokes example.
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Figure 12. The (a) x-coordinate and (b) y-coordinate of the controlled trajectories at the final time T = 2
(green crosses), along with the relevant target surface (3.5) (orange planes).

by the final time (T = 2), and we choose \eta = 0.0001. Applying the methodology that we
have described is now straightforward. Even though the velocity is given purely in terms of
data on a discrete grid, it is possible to approximate quantities such as \nabla v (as needed for
implementation of (2.6)) by standard finite-differencing, and interpolating as needed when
trajectories are off the grid. The controlled trajectories derived from this process are shown in
Figure 11(b). To verify that the desired targets have been achieved, in Figure 12 we illustrate
with green crosses the x- and y-coordinates of the final locations as functions of the initial
location (x0, y0). The planes displayed are the exact target functions given in (3.5). Clearly,
the targets have been achieved to excellent accuracy. It turns out that the global error E(T )
in (2.10) is 0.00184, and the total cost (2.3) is 4.26\times 10 - 6.

Finally, we demonstrate the computed control velocity c(x, y) = (c1, c2) at several inter-
mediate time-instances in Figure 13. As before, the green crosses indicate the computed value
of the control velocity from the integration along trajectories, while the orange surface (the
global control velocity) is obtained by applying the gridfit technique. In all cases, the (x, y)
domain is automatically limited here to the spatial regions the relevant trajectories traverse,
and not the full domain of the Navier--Stokes simulation (which would entail spurious extrap-
olation). We have thus demonstrated the applicability of our optimal control technique to
computational fluid dynamics data as well.
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Figure 13. The control velocity components c1 (left) and c2 (right), computed at times 0.5, 1.0, 1.5, and
2.0 (in order of rows). The green crosses are computed from the controlled trajectories, while the orange surface
extends these globally using gridfit.
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4. Discussion and conclusions. By combining and adapting different techniques (Hamil-
tonian formulation of optimal control, Newton--Raphson method, approximating surfaces us-
ing gridfit [20] and/or regularizeNd [47], and the applied analysis of differential equations),
we have developed a methodology for determining a spatiotemporal optimal control function
for a finite-horizon globally specified target achievement. With this specific focus in mind, the
cost function we chose takes the most amenable convex form (2.3); however, the algorithm we
propose can be extended to more general forms of G. For this cost function, we were able to
provide theoretical estimates which show the rate of decay of the error, and the comparative
\eta -dependence on the error and cost, in elementary ways, avoiding elaborate functional analytic
arguments.

We have highlighted that our formulation is particularly relevant to fluid mechanical sys-
tems in which v is an observed/computationally determined velocity field, and then the spa-
tiotemporal control c will be something physically realizable by imposing additional flow
conditions such as boundary vibration [19, 58], or sinks/sources positioned at strategic loca-
tions [11, 53, 46, 60, 29]. Often, fluid mixing is to be controlled or enhanced by pushing fluid
trajectories in some specified way over a time duration; our assumptions in this paper (i.e.,
that \Theta is specified) are particularly suited to this situation. Significant future applications of
this method in fluid mechanical systems is therefore anticipated.

Controlling the Navier--Stokes equations of fluid mechanics is a mature research field (see
the reviews [11, 31]), in which principal difficulties arise in the infinite-dimensionality of the
control problem, finite-dimensional projections also being of sufficiently large dimension to
make the control procedure computationally expensive, highly turbulent situations requiring
highly resolved information, and unpredictability over longer time-horizons. Generally, the
task is to control the Eulerian velocity by limiting its ``turbulence level"" as measured in
terms of its gradients, vorticity, enstropy, etc. Controllability is usually via the boundary,
thereby restricting the nature of the control. Our approach is different, instead targeting the
eventual Lagrangian locations of trajectories, while seeking a spatiotemporally distributed
control velocity. Consequently, our control problem has a dimensionaliity equal to that of
the physical space in which the fluid resides (i.e., no more than three), allowing the effective
usage of a Hamiltonian formulation of optimal control. We recover the spatiotemporal nature
of the control velocity by using an approximant based on the control algorithm applied to an
ensemble of trajectories. Of course, we would expect the method to face greater difficulties
when the turbulence or the time-horizon is large; these require higher resolutions spatially
and temporally.

Our framework can also be thought of as an interesting approach for controlling chaotic
systems which may be autonomous or nonautonomous [10, 59, 63]. We have the ability to
steer trajectories globally over some finite-time using our method. We have demonstrated
the application of this to an example from fluid mechanics---ABC flow. Thus, this provides
a contribution to chaos control theory which is different from standard ones such as chaotic
synchronization [50, 12, 36] and local control near chaotic saddles [23, 26]. The smoothness
our theorems require in v is consonant with chaotic systems; the unpredictability of corre-
sponding Lagrangian trajectories because of sensitivity to initial conditions is apparently not
an impediment to our theory and algorithm. As in the turbulent flow situation, the difficulty
will be that the control velocity would need to be specified on finer and finer scales, and theD
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control will be achievable for times which are not too large. We also note that the criteria we
have developed apply even for nonsmooth \Theta allowing, for example, the separation of trajecto-
ries into specified clusters. Thus, we expect this methodology to be a promising new approach
for chaos control.

The numerical simulations we presented in section 3 demonstrated the power of the
method. We have illustrated the usage in both analytically defined velocities and velocities on
a spatiotemporal grid obtained from a computational fluid dynamics simulation of the Navier--
Stokes equation. While we showed one-, two-, and three-dimensional examples, the method
works in any spatial dimension. However, the computational complexity does increase with the
dimension, rendering the method impractical in large dimensions. Moreover, in instances in
which the initial velocity field is highly turbulent, the presence of large velocity gradients will
mean that the control velocities may become difficult to compute. Put another way, highly tur-
bulent situations will have large \| \dotp \| b norms in the velocity fields, and thus our theorems which
provide decay rates and rubustness of the optimal control methodology have less value because
the size of this norm is relevant. There is also a subtle issue which requires further exploration:
the implicit assumption that an optimal control c exists as a function of (x, t). Should differ-
ent trajectories give different predictions for c at a point of intersection of spacetime curves,
determining c as a genuine spatiotemporal function becomes problematic. We plan to explore
this issue, and seek an alternative formulation which is both analytically and physically reason-
able, in future work. Additionally, we are seeking improvements in computational efficiency of
the algorithm, for improved performance on densely defined and/or higher-dimensional data.

Appendix A. Proofs of theorems. Here, we provide the proofs of the theorems of
section 2.

A.1. Proof of Theorem 2.1. This is a result emerging from classical optimal control
theory [39], which works even when the evolution law is nonautonomous. We first use the
following standard result (e.g., see sections 2.5 and 2.6 in [39]), written here in our notation.
The notation \nabla \bfy represents the n\times n matrix derivative with respect to the variable y \in \BbbR n.

Theorem A.1 (nonautonomous optimal control). Consider for x \in \BbbR n a system

\.x = f (x, c, t) ; t \in [0, T ],

in which c is the control, and the optimization of a quantity

g = h1 (x(T )) +

\int T

0
h2 (x(t), c, t) dt

is sought. Upon definition of the Hamiltonian

H(x, c,p, t) := h2(x, c, t) + f (x, c, t)\top p ,

a necessary condition for c to be a local optimizer of g is \nabla \bfc H = 0, in which x = x(t) and
p = p(t) are solutions to the system

\.x = \nabla \bfp H
\.p =  - \nabla \bfx H

\biggr\} 
, where

x(0) = x0

p(T ) = \nabla \bfx h1(x(T ))

\biggr\} 
.

Moreover, the solution corresponds to a minimizer if \partial 2

\partial c2
H is positive definite.D
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To prove Theorem 2.1, we apply Theorem A.1 with the choice f (x, c, t) = v (x, t) + c,
h1(x) = \| x - \Theta (x0)\| 2, and h2(x, c, t) = \eta \| c\| 2. Then, the Hamiltonian is

H(x, c,p, t) = \eta \| c\| 2 + (v(x, t) + c)\top p .

The condition \nabla \bfc H = 0 yields \eta 2c+p = 0, and thus c (x(x0, t), t) =  - 1/(2\eta )p(t). Now, since

\nabla \bfx H = [\nabla \bfx v]
\top p and \nabla \bfp H = v(x, t) + c ,

the differential equations (2.6) emerge immediately. Moreover, \nabla \bfx h1(x(T )) = 2(x(T ) - \Theta (x0)),
which gives the end condition for p in (2.7). To establish that this critical c corresponds to

a minimizer of g, we observe that \partial 2

\partial c2
H = 2\eta \BbbI , where \BbbI is the n \times n identity matrix. Since

\eta > 0, this is positive definite. (More simply, the convexity of H in c in fact ensures that this
is a global minimizer.)

A.2. Proof of Theorem 2.2. By taking the t-derivative of E(t)2, we get

d

dt

\bigl[ 
E(t)2

\bigr] 
= 2

\int 
\Omega 0

d

dt
[x(x0, t)]

\top [x(x0, t) - \Theta (x0)] dx0.

Now, using the fact that (d/dt)x = v + c, and subsequently applying the Cauchy--Schwarz
inequality on the right-hand side, we get\bigm| \bigm| \bigm| \bigm| ddt \bigl[ E(t)2

\bigr] \bigm| \bigm| \bigm| \bigm| \leq 2

\biggl( \int 
\Omega 0

\| v + c\| 2 dx0

\biggr) 1/2

E(t)

\leq 2

\biggl( 
2

\int 
\Omega 0

\| v\| 2 dx0 + 2

\int 
\Omega 0

\| c\| 2 dx0

\biggr) 1/2

E(t)

\leq 2
\surd 
2

\Biggl[ \biggl( \int 
\Omega 0

\| v\| 2 dx0

\biggr) 1/2

+

\biggl( \int 
\Omega 0

\| c\| 2 dx0

\biggr) 1/2
\Biggr] 
E(t)

\leq 2
\surd 
2

\Biggl[ 
A
\sqrt{} 

\mu (\Omega 0) +

\biggl( \int 
\Omega 0

\| c\| 2 dx0

\biggr) 1/2
\Biggr] 
E(t) .(A.1)

In the above, we have suppressed the arguments (x(x0, t), t) in both v and c for brevity and
at the last step used the bound on \| v\| a. Now from Theorem 2.1, for any fixed x0, we know
that c =  - p/(2\eta ) with p obeying (2.6) with condition for p(T ) given in (2.7). Using the
abuse of notation c(t) := c (x(x0, t), t), this means that

\.c =  - [\nabla v (x(x0, t), t)]
\top c

subject to the condition c(T ) =  - [x (x0, T )) - \Theta (x0)] /\eta . We rewrite this in a new indepen-
dent variable \tau = T  - t and let \^c(\tau ) = c(t). Setting L(\tau ) := [\nabla v (x(x0, t), t)]

\top , we have

\partial 

\partial \tau 
\^c = L(\tau )\^c ; \^c(0) =  - x (x0, T ) - \Theta (x0)

\eta 
.
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Premultiplying the differential equation above by \^c\top , we obtain

1

2

\partial 

\partial \tau 
\| \^c\| 2 = \^c\top L(\tau )\^c ,

and consequently

\partial 

\partial \tau 
\| \^c\| 2 \leq 2

\bigm\| \bigm\| \bigm\| \^c\top \bigm\| \bigm\| \bigm\| \| L(\tau )\^c\| 

\leq 2
\bigm\| \bigm\| \bigm\| \^c\top \bigm\| \bigm\| \bigm\| B \| \^c\| = 2B \| \^c\| 2

using the bound on \| v\| b. Separating variables and integrating from \tau = 0 to a general \tau value
in [0, T ], we have

ln
\| \^c(\tau )\| 2

\| \^c(0)\| 2
\leq 2B\tau ,

and applying the value of \^c(0) we acquire the bound

\| \^c(\tau )\| 2 \leq \| x(x0, T ) - \Theta (x0)\| 2

\eta 2
e2B\tau .

Reverting to t \in [0, T ] as the independent variable, this means that

\| c(t)\| 2 \leq \| x(x0, T ) - \Theta (x0)\| 2

\eta 2
e2B(T - t) .(A.2)

Inserting this bound into (A.1) yields\bigm| \bigm| \bigm| \bigm| ddt \bigl[ E(t)2
\bigr] \bigm| \bigm| \bigm| \bigm| \leq 2

\surd 
2

\Biggl[ 
A
\sqrt{} 
\mu (\Omega 0) +

E(T )eB(T - t)

\eta 

\Biggr] 
E(t) .

This means that \bigm| \bigm| \bigm| \bigm| ddt [E(t)]

\bigm| \bigm| \bigm| \bigm| \leq \surd 
2

\Biggl[ 
A
\sqrt{} 
\mu (\Omega 0) +

E(T )eB(T - t)

\eta 

\Biggr] 
,(A.3)

and integrating from a general time t to T results in

E(T ) - E(t) \leq 
\surd 
2

\Biggl[ 
A
\sqrt{} 

\mu (\Omega 0)(T - t) - 
E(T )

\bigl( 
1 - eB(T - t)\bigr) 
B\eta 

\Biggr] 
.

Similarly working with the fact that (d/dt)E(t)2 is greater than negative the term on the right
of (A.3) enables

E(T ) - E(t) \geq  - 
\surd 
2

\Biggl[ 
A
\sqrt{} 
\mu (\Omega 0)(T - t) - 

E(T )
\bigl( 
1 - eB(T - t)\bigr) 
B\eta 

\Biggr] 
.

Combining these two results gives us the required equation (2.13).D
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A.3. Proof of Theorem 2.3. We can write (2.3) as

G = E(T )2 + \eta 

\int 
\Omega 0

\int T

0
\| c (x(x0, t), t)\| 2 dtdx0 .(A.4)

Using (A.2) we have\int 
\Omega 0

\int T

0
\| c (x(x0, t), t)\| 2 dt dx0 \leq 

E(T )2(e2BT  - 1)

2B\eta 2
,

and so

G \leq E(T )2
\biggl[ 
1 +

e2BT  - 1

2B\eta 

\biggr] 
.

Now if E(T ) = \scrO (\eta \alpha ) for some \alpha > 1/2, then

G \leq \scrO (\eta 2\alpha )

\biggl[ 
1 +

e2BT  - 1

2B\eta 

\biggr] 
= \scrO (\eta 2\alpha  - 1)

as required.

A.4. Proof of Theorem 2.4. If we consider the initial system (2.1) with \~v instead of v,
the procedure outlined will then generate a control \~c, a global error \~E(t) at a general time t, a
global error \~E(T ) at the final time T , and the minimizing cost \~G. Now, since \~v is \scrO (\epsilon )-close to
v in both the norms \| \dotp \| a and \| \dotp \| b, this theorem is a simple consequence that every step in the
previous theorems inherits this closeness because \Omega 0 is bounded, and the time-interval [0, T ]
over which integration is performed is finite. Specifically, \~x(x0, t) and \~p must be \scrO (\epsilon )-close
to the variables x(x0, t) and p generated via Theorem 2.1. Since \~c =  - \~p/(2\eta ), this property
transfers to \~c. Then (2.10) ensures that \~E(t) is \scrO (\epsilon )-close to E(t), and furthermore, (A.4)
ensures that \~G = G+\scrO (\epsilon ) as well. The decay expression in Theorem 2.2 also remains valid,
with of course the replacements A \rightarrow \~A and B \rightarrow \~B, thereby only perturbing the results by
\scrO (\epsilon ).
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