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Abstract. The nucleon-nucleon interaction is an important requirement for investigations of nuclear structure
and reactions, as well as for astrophysical models such as r-process nucleosynthesis and neutron stars. The
traditional approach to low-energy nuclear physics is to treat nucleons as immutable objects interacting via
phenomenological forces. The use of phenomenological interactions, rather than one derived from a micro-
scopic theory, raises questions as to the reliability of predictions for exotic regions of the nuclear chart. The
quark-meson coupling (QMC) model uses a relativistic mean-field approach to provide a microscopically de-
rived nucleon-nucleon interaction, which takes into account the quark structure of the nucleon.
The Skyrme energy density functional is a popular phenomenological tool in studies of nuclear structure and
reactions. In this work, the QMC density functional was used to produce a set of Skyrme parameterisations,
in the hopes that they will give more reliable predictions for exotic nuclei. In conjunction with Hartree-Fock-
Bogoliubov (HFB) calculations, the Skyrme-QMC (SQMC) parameterisations have been used to model the
ground-state properties of individual nuclei and nucleus-nucleus potentials for Ca + Sn reactions. The SQMC
parameterisation performs with an accuracy comparable to modern phenomenological functionals. From this,
one can investigate the importance of the isovector terms of the nucleon-nucleon interaction, which are partic-
ularly significant for exotic, neutron-rich regions of the nuclear chart.
One of the notable successes of the QMC model is its derivation of nuclear spin-orbit coupling. The isovector
dependence of the spin-orbit equation of state is remarkably similar to that of the modern UNEDF1 phenomeno-
logical density functional. HFB calculations along the Sn isotopic chain reveal that the isovector properties of
the spin-orbit term impact binding energies to a level that will be significant for astrophysical r-process mod-
elling.

1 Introduction

The behaviour of exotic nuclear systems is an important
question for nuclear, particle and astrophysics. While new
experimental facilities and techniques are constantly ex-
panding the limits of known nuclei, many regions remain
largely out of reach, including the astrophysical r-process
path, superheavy elements, and the neutron dripline.

Theoretically, one is faced with the quantum many-
body problem posed by a system of strongly interacting
nucleons. One of the most successful tools currently used
is the Skyrme energy density functional. It gives the en-
ergy density at each point in the nuclear system, as a func-
tion of the local nucleon densities. The functional can be
derived from the Skyrme interaction [1], which is the most
general two-body, zero-range nucleon-nucleon interaction
up to second-order in derivatives. The downside of the
Skyrme density functional is that it is phenomenological.
Its set of 10–17 parameters are typically determined by a
fit to experimental masses and radii of nuclides near sta-
bility, calling into question the predictions for very exotic
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systems. A possible solution to this is to obtain the in-
teraction between nucleons from the more fundamental,
high-energy degrees-of-freedom of the system.

The quark-meson coupling (QMC) model is a rela-
tivistic mean-field approach which self-consistently ac-
counts for the in-medium modification of the quark struc-
ture of bound nucleons. Proposed by P. A. M. Guichon
in Ref. [2], and since developed in Refs. [3–5], it confines
three quarks to a nucleon bag and allows the quarks of dif-
ferent bags to interact by exchanging σ, ω and ρ mesons.
This results in an energy density functional with only four
free parameters (a coupling constant for each meson field
and the mass of the σ meson). The reduced number of
parameters should make the QMC model more predictive
than standard phenomenological approaches.

Thanks to its inclusion of quark degrees-of-freedom,
the QMC model offers a possible explanation to the fa-
mous “European Muon Collaboration” (EMC) effect [6–
8] and also gives a remarkably successful description of
hypernuclei [9, 10].

While the QMC model assumes that nucleons move
slowly, the quarks are treated relativistically and the model
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naturally includes certain relativistic corrections. Most no-
tably, the model derives nuclear spin-orbit coupling, a rel-
ativistic effect essential for shell structure of nuclei and
dissipation in collisions.

2 Spin-orbit energy density functional

2.1 The QMC model

The spin-orbit energy density functional from the QMC
model is given by [4]

HQMC
SO =

−1
4M2

N

[
(Gσ +Gω (2µs − 1)) ρ∇ · J

+

(
Gσ
2
+

Gω
2

(2µs − 1) +
3Gρ

8
(2µv − 1)

)

×
∑

q=n,p

ρq∇ · Jq

]
, (1)

where ρn (ρp) is the neutron (proton) particle density and
ρ is the total particle density, ρ = ρn + ρp; similarly for
the spin-orbit density, J. The coefficients are formed from
the meson coupling constants (Gσ, Gω, Gρ), the isoscalar
and isovector nucleon magnetic moments (µs and µv, re-
spectively), and the free nucleon mass (MN). Though not
strictly necessary, the ω and ρ meson fields can be iden-
tified with real particles and their experimental masses
used. This leaves only four free parameters in the QMC
model, Gσ, Gω, Gρ and the σ meson mass, all of which
are fixed by the central terms of the functional. Un-
like non-relativistic approaches such as Skyrme, the QMC
spin-orbit functional has no extra spin-orbit parameters
to adjust. The small number of free parameters in the
QMC model is expected to make it more predictive than a
standard Skyrme functional, particularly for the spin-orbit
term.

2.2 Skyrme

The most general form of the Skyrme density functional
[11],

HSkyrme
SO = −1

2

[
W0ρ∇ · J +W ′0

∑
q=n,p

ρq∇ · Jq

]
, (2)

takes the same form of the nucleon densities but now with
free coefficients W0 and W ′0. As the Skyrme interaction is
non-relativistic, obeying Galilean rather than Lorentz in-
variance, the coefficients of the spin-orbit term are com-
pletely unknown and must be adjusted to experiment.

2.3 Isovector dependence

The isovector dependence of the spin-orbit functionals
quantifies how they are affected by differences between
proton and neutron densities, which become increasingly
important for studying very neutron rich nuclei. It is con-
trolled by the second term of equations 1 and 2, as the pro-
ton and neutron densities appear individually. Therefore,
the ratio of the two coefficients can be used to compare

Table 1. Ratio of the spin-orbit coupling constants illustrating
the isovector dependence of spin-orbit energy density

functionals.

W ′0/W0 Model
1 Standard Skyrme
1.86 Modern Skyrme: UNEDF1 [12]
1.78 QMC

0.1 Standard relativistic mean-field (RMF) [13]
0.2 QMC, Hartree terms only, Dirac µ

Table 2. Parameters of the spin-orbit functional.

Model W0 (MeV fm5) W ′0 (MeV fm5)
QMC 82.8602 147.4411
UNEDF1 76.736144 142.63304

the isovector properties of different approaches, as done in
Table 1.

Traditionally, Skyrme functionals only had one spin-
orbit parameter, W0. The modern Universal Nuclear En-
ergy Density Functional (UNEDF1) [12] released this con-
straint, and from its state-of-the-art fitting procedure, had
actually derived a much stronger isovector dependence.
The QMC model, with its more fundamental, relativistic
basis gives a very similar value.

On the other hand, a standard relativistic mean-field
(RMF) model of inert nucleons, neglecting exchange
(Fock) terms, gives a substantially weaker isovector de-
pendence. By keeping only the direct (Hartree) terms
of the QMC spin-orbit functional and setting the nucleon
magnetic moments to their Dirac (µs = µv = 1) rather than
experimental (µs = 0.88, µv = 4.7) values, one would ob-
tain a similarly weak isovector dependence. This implies
that the weak isovector dependence of RMF is primar-
ily due to these two approximations, neglect of exchange
terms and use of Dirac magnetic moments. These are ap-
proximations which are not required in the QMC model.

There is a remarkable similarity between the spin-
orbit functionals of UNEDF1 and the QMC model (see
Tab. 2). However, the significance of this fact is depen-
dent upon whether the isovector dependence of the spin-
orbit term alone has any impact on Hartree-Fock calcula-
tions of nuclei. The following section investigates the use
of a Skyrme parameterisation from the QMC model and
the importance of the isovector properties of the spin-orbit
term.

3 Skyrme-QMC parameterisation

There exist many codes based on Hartree-Fock approxi-
mations which can be used to compute properties of nu-
clear structure [14–16] and reactions [17–24]. The major-
ity of them are based on Skyrme functionals. While the
QMC functional has a similar form to the Skyrme func-
tional, it is not identical.

We have constructed a Skyrme functional which is
as close as possible to that of the QMC model, called
Skyrme-QMC (SQMC) [25]. For the central part of the
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term.
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ity of them are based on Skyrme functionals. While the
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tional, it is not identical.

We have constructed a Skyrme functional which is
as close as possible to that of the QMC model, called
Skyrme-QMC (SQMC) [25]. For the central part of the

functionals there is a difference in the density dependence
and they are matched around the saturation point of nu-
clear matter. But for the spin-orbit term, SQMC and the
QMC model are identical, making SQMC a convenient
tool to test the isovector dependence of the original QMC
functional.

A similar SQMC was obtained in Ref. [26], however
with W0 = W ′0. Here, our SQMC has W ′0/W0 = 1.78 as in
the original QMC model.

4 Hartree-Fock calculations

Hartree-Fock-Bogoliubov codes are well-suited to the
study of exotic nuclear structure as the treatment of pair-
ing remains robust for weakly bound nuclei. Also, long
isotopic chains provide a large range of neutron excesses,
useful for revealing trends in the isovector properties of
the functionals. The axial Hartree-Fock-Bogoliubov code,
HFBTHO [15], was used to calculate the ground-state
binding energies of tin (Z = 50) nuclei.

Relative to experimental data [27], as seen in Figure 1,
the SQMC functional performs at a level comparable to
UNEDF1, especially away from stability. This is par-
ticularly remarkable when one recalls that the stable tin
masses were included in the fit of UNEDF1, while no ex-
perimental masses were used to derive the SQMC func-
tional.
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Figure 1. Difference between calculated and experimental bind-
ing energies for ASn nuclei. The error bars are from the experi-
mental data (Eexp).

It is possible to extract the impact of only the isovec-
tor dependence of the spin-orbit term by comparing a
SQMC parameterisation with the isovector dependence of
the QMC model (W ′0/W0 = 1.78), against a baseline which
has only one spin-orbit parameter (W0 = W ′0 = 104.3872
MeV fm5) but is otherwise identical. Calculations along
the Sn isotopic chain out to the dripline, as shown in the
upper panel of Figure 2, reveal that the isovector depen-
dence of the spin-orbit term leads to a change of approxi-
mately 1 MeV in the region of the r-process (134−152Sn). A
change half this size is expected to have a significant im-
pact on r-process abundances [28]. This illustrates that it is

crucial to properly account for the isovector properties of
the spin-orbit functional, as predicted by the QMC model
for example.
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Figure 2. (a) Binding energy difference between SQMC with
W ′

0/W0 = 1.78 and SQMC with W ′
0/W0 = 1, for ASn nuclei. (b)

Quadrupole deformation, β2, predicted by the SQMC parameter-
isation.

The lower panel of Fig. 2 shows the deformation of
the mean-field ground-states in the tin isotopes. We ob-
serve that the effect of the isovector contribution to the
spin-orbit functional is clearly enhanced by the presence
of prolate deformation in neutron-rich nuclei (146−162Sn).
A more detailed investigation of the interplay between de-
formation and the isovector contribution to the spin-orbit
functional will be the focus of a future study.

5 Fusion
The SQMC parameterisation can also be used to investi-
gate any effect the isovector dependence of the spin-orbit
term has on nucleus-nucleus potentials and fusion cross-
sections. Ref. [29] showed that isovector terms (central
and spin-orbit) were significant for density-constrained
time-dependent Hartree-Fock (DC-TDHF) calculations of
the nucleus-nucleus potential of the 40Ca + 132Sn system.
As a preliminary study, frozen Hartree-Fock (FHF) [30–
33] was used with the SQMC parameterisation for the
same system. FHF calculations provide the bare nucleus-
nucleus potential from the Hartree-Fock ground-states,
with no polarisation effects from dynamics.

Again we compare the two SQMC functionals with
different spin-orbit isovector dependences (W ′0 = W0 =

104.3872 MeV fm5 and W ′0/W0 = 1.78), shown in Fig-
ure 3. While SQMC is in good agreement with the phe-
nomenological UNEDF1 functional, the isovector depen-
dence of the spin-orbit interaction has no impact on the
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fusion barrier of 40Ca + 132Sn. Similar results were ob-
tained for the 40Ca + 100Sn and 48Ca + 100,132Sn systems.
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Figure 3. Nucleus-nucleus potential for 40Ca + 132Sn.

Future work will involve calculations using TDHF
[34, 35] and the DC-TDHF technique [36], which self-
consistently treats dynamical effects and nuclear structure,
to investigate any potential impact of the isovector depen-
dence of the spin-orbit term coupling to the dynamics or
deformation of the system.

6 Conclusions

The isovector dependence of the spin-orbit term from the
QMC model, with its high-energy degrees of freedom, is
remarkably similar to that of UNEDF1. This is significant
because, while no change to bare fusion potentials was ob-
served, this dependence is an important factor that should
be accounted for in r-process calculations [25].

A Skyrme functional from the QMC model can suc-
cessfully reproduce ground-state binding energies. In the
future, the SQMC functional will be used to study further
exotic structure effects or, using a time-dependent Hartree-
Fock code, dynamic processes including reactions with ex-
otic nuclei, fusion barriers, transfer and fission.

It will also be possible to perform similar investi-
gations using the original QMC functional, rather than
the SQMC parameterisation, by modifying Skyrme-based
Hartree-Fock codes to accept the more complicated den-
sity dependence of the central terms. Stone et al. [5] mod-
ified the static skyax code [37] in this way and used nuclear
data to fix the few free parameters of the QMC model. A
similar implementation in a time-dependent code will al-
low for a study of the giant monopole resonance [38, 39]
to explore the effects of the unique density dependence of
the QMC model.
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