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Abstract

Markovian-Regime-Switching (MRS) models are commonly used for modelling economic

time series, including electricity prices. In this application it is common to include inde-

pendent regimes as these can more accurately capture the dynamics of electricity prices

compared to traditional MRS models. The advantage of independent regime MRS spec-

ifications is that they allow us to seperate dynamics between regimes. Despite their

popularity, parameter inference for MRS models with independent regimes is underde-

veloped. Until this thesis, there was no computationally feasible method to evaluate

the likelihood of, or find maximum likelihood estimate for, MRS models with indepen-

dent regimes. Moreover, there are no good discussions of Bayesian methods for such

models applied to electricity prices. In this thesis we develop both maximum likelihood

and Bayesian inference methodologies for MRS models with independent regimes, and

use simulations to investigate their behaviours. We use our methods to investigate the

South Australian wholesale electricity market, and find evidence of a significant jump in

price volatility which coincides with the closure of South Australia’s only coal generation

facility, and therefore a significant change in market structure. Our work also suggests

that Bayesian methods can be advantageous compared to maximum likelihood, since

Bayesian methods can avoid issues with inferring parameters of shifted distributions,

which are commonly used in this context.
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Chapter 1

Introduction

1.1 Introductory background

Electricity is a unique commodity as it cannot currently be stored efficiently and requires

immediate delivery to consumers. This, coupled with the facts that electricity demand is

inelastic, highly variable, and dependent on weather conditions and business activities,

causes electricity spot prices to exhibit extreme behaviour in deregulated markets [35].

The electricity spot price is the price that commercial generators, large consumers and

electricity retailers buy and sell electricity at, and not the price faced by the general pub-

lic. Large price spikes, periods of high volatility and regulations that restrict electricity

retailers passing risk on to consumers mean that market participants face significant risk.

To hedge this risk, derivative contracts are used, and to price derivatives a model of spot

prices is needed. Since electricity markets display spike characteristics not commonly

found in other markets, models developed for other markets do not adequately capture

the price dynamics of electricity, and modelling them is an active area of research.

The issues mentioned above are particularly relevant in South Australia, where relative

isolation and generation mix lead to high and volatile electricity spot prices; not to

mention issues regarding power system stability and blackouts. The power system in

South Australia, and more generally in Australia, has also become a popular issue for

politicians. The Australian Government is currently debating elements of the National

Energy Guarantee, a plan which aims to lower electricity prices and increase reliability

to stimulate economic growth, among other things.

A commonly used model for electricity prices is the Markovian-regime-switching (MRS)

model whereby multiple stochastic processes are interweaved by a Markov chain. The

general idea is that there exist multiple regimes underlying the price process, and de-

pending on which regime the system is in, different characteristics are displayed. For

1



Introduction 2

example, for electricity prices we could suppose that there is a normal or base regime

where prices are relatively low and comparatively non-volatile, and a spike regime where

prices are high and volatile. For MRS models, we assume that the regime the system is

in follows a discrete-time Markov chain which is not directly observable. MRS models

can be seen as extensions of hidden Markov models, since MRS models also allow for

dependence between observations, given the hidden regime process. In electricity price

modelling applications, this dependence is typically specified as an autoregressive process

of order 1 which relates random variables through the equation Xt = α+ φXt−1 + σεt,

where α, φ and σ are parameters, and {εt} is a sequence of independent, identically

distributed N(0, 1) random variables. More broadly, MRS models find application in

biology [2], weather modelling [72, 99], speech recognition [70] and more, and we hope

our contributions here can extend to these fields also.

In the electricity price modelling literature, it has become popular to specify MRS models

with independent regimes. To define an MRS model, for any time t, let us denote the

(hidden) regime of the system as Rt, and the observed price as Xt. Independent regime

MRS models are MRS models where, given Rt = i, Xt depends on previous prices from

Regime i only. The advantage of MRS models with independent regimes is that there

is no transitional behaviour after a change in regime. When applied to electricity price

modelling, this means these models can capture the rapid return to base levels after a

price spike. However, likelihood evaluation for MRS models with independent regimes is

complicated by this dependence structure – the dependence between prices is governed

by the hidden regime process and therefore is random. Parameter estimation for MRS

models with independent regimes is still underdeveloped, and it is the goal of this thesis

to address this.

The current method of inference for MRS models with independent regimes is an ap-

proximation to the EM algorithm, which we show can be unreliable. We then develop

and implement two solutions to this inference problem. We first develop a novel, com-

putationally feasible, and exact likelihood-based framework, and then a data-augmented

Bayesian framework.

1.2 The South Australian electricity market

The South Australian (SA) electricity market is a particularly interesting case study

due to its relative isolation, extreme weather and high penetration of renewables –

almost 50% of the generation in SA in 2016 was from renewables [7] – all of which can

contribute to high and volatile prices [7]. The SA market is part of a broader network of

connected markets called the National Electricity Market (NEM) which was established
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in December 1998. The NEM is comprised of five interconnected states of Australia

which also act as price regions: Queensland, New South Wales (including the Australian

Capital Territory), South Australia, Victoria, and Tasmania. Each state has its own

generation capacity and can also import/export electricity and ancillary services via

interconnectors between states. One aspect of the SA market, and more generally the

NEM, that makes Australia’s energy network interesting is the relative sparsity of the

network. The NEM stretches from Port Lincoln in the west of SA, across Bass Straight

to Hobart in the south of Tasmania, and up to Port Douglas in far north Queensland.

Compared to other electricity grids around the world the NEM is relatively sparse since

it services only 9 million customers [4]. Nonetheless, the NEM is crucial to Australia’s

economy supplying about 2000 terawatt hours of electricity to consumers each year.

There are currently over 300 registered participants (large generators, energy retailers

and large consumers) in the NEM who traded $16.6 billion through the NEM in the

financial year 2016-2017.

The majority of electricity generation in the NEM is from coal, accounting for 77%

of annual generation in the financial year 2016-2017; gas accounted for 9% of total

generation, hydro power 8%, followed by wind, 5%, and a small amount of solar, 0.3%

(not including behind-the-meter residential rooftop solar) and 0.7% other sources [5].

Small scale behind-the-meter solar accounts for approximately 2.5% of total electricity

generation in the whole NEM, but is not traded in the wholesale market. South Australia

is in contrast to this: there is a larger contribution from wind and no contribution

from coal. In SA, gas produced 50.5%, wind 39.2%, rooftop solar 9.2% and diesel and

other non-scheduled generators 1.1% of the 11,077 GWh of electricity produced in SA

in 2016-2017 [7]. Note that these numbers are only for energy production in SA and

not consumption. In 2016-2017 SA had significant net energy imports – 164 GWh

was exported while 2,869 GWh was imported from other states where there is a high

percentage of coal generation. There was no coal generation for this period since SA’s

last coal generator was decommissioned in May 2016.

The NEM is managed by the Australian Energy Market Operator (AEMO). AEMO has

many roles including organising and dispatching energy markets (which are the markets

that we are interested in), maintaining system stability, operating ancillary services

markets, roles in long-term forecasting and system planning, and also operating gas

markets in Australia. The five energy markets in the NEM (SA, Victoria, Queensland,

Tasmania and New South Wales) are dispatched every five minutes of every day. In this

process, scheduled generators submit initial bids to AEMO at a 30-minute resolution,

stating the amount of electricity they are willing to supply and at what price, as a stack

of ten quantity-price pairs. Generators may bid prices anywhere between the market

floor, −$1, 000 per MWh, and the market cap, $14, 000 per MWh. Some large consumers
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also submit demand bids. Initial bids must be submitted before 12:30pm on the day

before dispatch (the trading day is defined as 4:00am one day to 3:59am of the next

day), but rebids are allowed up to 5 minutes before dispatch. Generators are allowed to

rebid the amounts of energy they are willing to supply across the ten prices only, and

are not allowed to change the bid prices. Companies participating in this market are

informed of the pre-dispatch prices, which they use along with other updated information

such as weather forecasts, to inform their rebids for the 5-minute intervals. If a rebid

is made within a 30-minute interval, or less than 15-minutes before dispatch, it must

be accompanied by an explanation which can be reviewed by the Australian Energy

Regulator (AER).

AEMO also forecasts energy production from non-scheduled generators (such as wind

and solar) and consumer demand for each 5-minute interval. The system is dispatched

by AEMO who match supply with forecast demand using a large optimisation program,

with an objective to minimise costs subject to demand and system constraints. The

price set by the optimisation program is the dispatch price which is the lowest bid price

that causes generators to fulfil demand, and all generators are paid this price. The spot

price is the average of 6 dispatch prices in a half hour interval resulting in 48 realisations

of the spot price per day. The spot price is the price that we are interested in modelling,

as it is the price at which transactions actually take place and on which contracts are

valued.

Due to the nature of the bid and dispatch processes, as well as other factors such as

the number and composition of generators in the market, the NEM is vulnerable to

strategic bidding of generators [31]. For example, Hurn et al. [54] suggest that a base-

load generator could influence the price by rebidding generation from lower prices to

higher prices forcing the dispatch price upwards for some 5-minute interval. The inflated

dispatch price affects the spot price for the entire 30-minute interval, and the generator

can then offer a large portion of its generation at lower prices for the other intervals in

the trading period, ensuring that it is dispatched and knowing it will receive an inflated

price.

Of course price spikes occur naturally in this market also. A series of large price spikes

in the SA market occurred in winter, 2016, and these were largely attributed to poor

wind generation forecasts – AEMO estimated there was going to be much more wind

energy available than there was, leaving the market unprepared and peaking generators

had to be turned on to meet demand, causing the price to spike. Other natural causes

of spikes are generator breakdowns or transmission failures, which unexpectedly remove

supply from the market.
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Significant price drops also occur in this market, hence the price floor of −$1, 000. For

example, price drops can occur when there is an unexpected glut of wind generation,

which has a low marginal cost and is given priority over other generators in SA. Negative

prices occur when there is supply surplus. It can be impossible for some generators to

turn off at short notice, and it can take hours for them to restart, so it can occasionally

be cheaper for generators to momentarily pay to produce energy than to shut down.

Electricity prices, in general, exhibit trends which can largely be explained by demand.

For example, it is known that demands, and therefore prices, are higher on business days

than on non-business days on average, and that prices are often lower overnight when

fewer people are awake, and highest in the afternoon and evening. In South Australia this

is no different. However, there is one emerging trend in SA that may become significant

in the future: AEMO predict that by the year 2025-2026 the minimum demand for

electricity will become negative at times due to an oversupply of solar generation [7].

The strength of the SA electricity grid has come into question over the past few years

due to recurrent blackouts during extreme weather, including a ‘system black’ event

which occurred at 4:20pm on September 28, 2016, when all electricity supply to the

state was lost. The first customers had power restored by 7pm the same day, while

the whole system was not fully restored until the 11th of October. The system black

event was caused when strong winds severed two critical transmission lines resulting in

six voltage drops within two minutes. This was followed by nine wind farms reducing

power production as a precautionary control – generation from one wind farm was lost

completely, while eight others continued to produce at a reduced level. This totalled

a generation reduction of 456 MW in less than seven seconds. To compensate, energy

imports across the Haywood inteconnector were increased until they reached a level that

tripped the interconnector and SA was left separated from the rest of the NEM. At this

point, generators in SA were unable to maintain the frequency of the grid and supply to

the entire state was lost. Modelling performed by AEMO suggests that the system black

event could have been avoided had the wind generators continued to operate normally

and not reduced capacity.

The system black event caused AEMO to suspend market operation from the trading

period beginning at 4:00pm, on the 28th of September until 10:30pm on the 11th of

October. During this period, prices were set by AEMO and not the market. The prices

for this period were calculated as the average price in SA in the ‘same trading interval’

over the last four weeks. For this calculation the ‘same trading interval’ means different

things for weekdays and weekends. For a given 30-minute trading interval on a weekday,

the price was calculated as the average price at the same time only on weekdays over

the last four weeks. For a given 30-minute trading interval on a weekend, the price
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was calculated as the average price at the same time on weekend-days only. During the

market suspension, market participants were instructed to continue to submit price bids

in the usual way, and AEMO used these to dispatch generators in some sort of economic

merit order.

SA’s vulnerability is caused by many factors including its isolation, weather, sparsity

of customers and reliance on asynchronous generators. Sparsity can leave a system

vulnerable since it can be uneconomic to build precautionary backups in parts of the

network that do not supply many customers. Synchronous generators provide frequency

regulation which is necessary for stable operation – most of SA’s synchronous generators

are located in the Adelaide region, while the next closest synchronous generators that

are likely to be active are in the Latrobe Valley, 800km away in Victoria. In addition, SA

only has one alternating current interconnector to the rest of the NEM through which

frequency control can be received. Hence, as a result of being relatively weakly connected

to the rest of the NEM and having synchronous generators localised to the Adelaide

region, SA only has a marginal benefit from the strength in numbers of synchronous

generators [7]. However, new technologies such as battery storage and control systems

for wind generators are helping to manage this. Lastly, SA’s weather can cause issues

in a different way. Hot weather in SA’s summer can overheat infrastructure and also

increases demand (mainly from people using air conditioning) which can cause blackouts

and load shedding, where parts of the network are cut off to maintain system stability.

To help maintain system stability, SA has recently installed the world’s largest lithium

ion battery farm connected to the Hornsdale wind farm – the battery has equivalent

generation capacity of 100 megawatts and storage capacity of 125 megawatt hours.

These are exciting times in the energy industry as we debate economic, environmental

and system reliability trade-offs and explore innovative solutions to these problems.

In SA there are plans for another battery farm and investment in solar thermal storage

solutions. There is debate about incentivising private investment in small-scale batteries

and solar panels, and control systems to manage distributed storage solutions. There

are more wind generators planned, debate about another coal-fired plant and plans for

a solar thermal storage solution. And, of direct relevance to this thesis, there are plans

to change from a 30-minute pricing scheme, to a 5-minute pricing scheme in 2021 [6].

1.3 Structure of the thesis

Chapter 2 consists of three main sections. In Section 2.1 we provide definitions of

different classes of MRS models; Type I, a dependent regime model, and Types II and

III, which are two different specifications of independent regime models. There are slight
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subtleties in these definitions, and we hope to make them clear in Section 2.1. Section 2.2

gives a lengthy overview of technical concepts related to this thesis. While we do not

use every concept from Section 2.2 directly, we believe that a thorough understanding

of these concepts will assist the reader in fully appreciating our work. Section 2.3

gives a broad overview of different types of electricity price models, before thoroughly

exploring the development of MRS models for electricity prices. Section 2.3 also provides

a literature review of some current methods of inference for MRS models. First, the

forward algorithm of Hamilton [45], which is used to evaluate the likelihood of MRS

models of Type I, is presented. Then, the backward algorithm of Kim [67], together

with more work of Hamilton [45] to implement the EM algorithm for Type I models, is

presented. We also briefly mention the approximation of the EM algorithm by Janczura

and Weron [60], which we title the ‘EM-like’ algorithm and, until this thesis, was the

current method of choice for inference of MRS models with independent regimes. We

save a more thorough discussion of the EM-like algorithm for Chapter 3. Finally, we

conclude this chapter with a literature review of detrending techniques for electricity

prices.

In Chapter 3, we first discuss the EM-like algorithm of Janczura and Weron [60], then

present some theoretical issues with the algorithm and examples where the EM-like

methodology can fail. In Section 3.2, we develop a novel forward algorithm to evalu-

ate the likelihood of MRS models with independent regimes. Then, in Section 3.3, we

develop a backward algorithm which gives a computationally feasible way to calculate

smoothed inferences for MRS with independent regimes. Using our backward algorithm

we derive an Expectation-Maximisation (EM) algorithm to find the maximum likelihood

estimates of independent regime MRS models. The construction of our algorithms is

similar to the construction of analogous algorithms for hidden Markov models, tradi-

tional (dependent-regime) MRS models, and hidden semi-Markov models. The general

idea is to augment the hidden regime process with a ‘last-visit’ counter which keeps track

of the last time the system was in a given regime. Then, for each time t, the augmented

hidden regime process contains all the information needed to specify the distribution of

the price Xt, given all past prices. Furthermore, the hidden process remains Markovian

and so techniques from the existing literature can be applied. We conclude this section

with a discussion where we compare our EM algorithm to ‘black-box’ optimisation pro-

cedures using our forward algorithm, empirically investigate bias and consistency of the

MLE, discuss some difficulties relating to shifted distributions which are commonly used

in electricity price modelling, and conclude by mentioning some potential extensions of

our methods and future work.

Chapter 4 presents a Bayesian approach to parameter inference using a data-augmented

Markov chain Monte Carlo algorithm. Bayesian inference is a paradigm where model
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parameters are thought to be random variables, and the goal is to infer an entire distri-

bution of these parameters, called the posterior distribution. Data-augmented MCMC

is a powerful technique which enables efficient sampling of parameters from the pos-

terior distribution by extending the sample space to provide further information. We

take time to detail our MCMC implementation in Section 4.2, highlight the motiva-

tion for each element of the algorithm, and describe its intricacies. One element of our

MCMC implementation that we particularly enjoyed was implementing adaptive steps,

to automatically tune our algorithm, making our algorithm much more practical. In the

application of our Bayesian methodology we rely heavily on posterior predictive checks

(PPCs) to assess model fit. Our implementation of the PPC methodology is qualita-

tive, and similar to traditional diagnostic plots for simple regression models. For this

reason we investigate the power of our methods to distinguish between different models

in Section 4.4.

Our last major chapter is an application to the South Australian electricity market.

We first detail our trend estimation technique. Extreme observations such as spikes

in electricity prices can bias our estimate of trend components. For this reason we

implement an iterative filtering method, where we iterate between estimating the trend

components of the model, classifying prices as extreme and removing them from the

data. In Section 5.2, we present the candidate models which we then fit to the South

Australian electricity price dataset. In Sections 5.3 and 5.4 we apply our Bayesian and

maximum likelihood methodologies respectively. We also present some of our analysis

of the South Australian dataset in Appendix B to avoid repetition. Of note, we find

that there is a significant jump in volatility around April 2016, which corresponds to

the closure of South Australia’s only coal generation facility. We also find no need for a

regime to capture significant price drops for the South Australian market. In Section 5.4

we resort to ‘common-sense’ model checking since we cannot use the Akaike Information

Criterion, or related information-theoretic model comparisons, due to the entwinement

of our deterministic trend estimation methods with our estimation of the parameters

of our MRS models. We conclude this section with a discussion of our analyses, and

comment on some lessons learned.

Finally, in Chapter 6 we conclude the thesis, commenting on our significant contribu-

tions, possible future work, and the (many) lessons learned from this work.



Chapter 2

Background

2.1 Introduction to MRS models

An MRS model is built from two pieces, an unobservable regime sequence and an ob-

servable sequence. As the name suggests, MRS models assume the unobservable regime

sequence is a Markov chain. Let {Rt}t∈N be a Markov chain on a finite state space

S = {1, 2, ...,M}, with transition matrix P , and {Xt}t∈N be the observation sequence,

in this case electricity prices. Then Rt = i represents the event that the process Xt is

in Regime i at time t ≥ 0.

In this thesis we consider MRS models with regimes that either have independent and

identically distributed (i.i.d.) prices, or autoregressive of order 1 (AR(1)) prices. Typ-

ically, we define i.i.d. distributions with two or three parameters, a location parameter

µj , and a scale (or variance) parameter σ2
j , and a shifting parameter qi may also be in-

cluded, where j is the index denoting the regime. We parameterise AR(1) regimes with

a location parameter αj , correlation φj and conditional variance σj . That is, suppose

{Yt}t∈N is an AR(1) process for Regime j defined by

Yt = αj + φjYt−1 + σjεt,

where {εt}t∈N is a sequence of i.i.d. N(0,1) random variables. The parameter φj is the

correlation between Yt and Yt−1; moreover, the correlation between Yt and Yt−m is φmj .

The parameter αj shifts the long-run mean level of the AR(1) process to
αj

1− φj
. The

parameter σ2
j is the conditional variance of Yt given Yt−1, i.e. var(Yt|Yt−1) = σ2

j .

The simplest MRS model is the hidden Markov model (HMM), where observations Xt

take values in a discrete set, and Xt is independent of Xt−1, . . . , X0 and Xt+1, Xt+2, . . .

9
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given the regime at time t, Rt. In general, MRS models are specified in terms of distri-

butions that allow dependence on past observations, given the current regime. That is,

the model defines distributions,

Xt|Rt, Xt−1, Xt−2, ..., X0 ∼ FRt ,

for some distribution FRt . Dependent-regime MRS models were first developed by

Hamilton [44] in the context of modelling financial markets. Hamilton defined MRS

models where each regime followed autoregressive dynamics and developed estimation

techniques for these models. For example, a simple MRS model that fits into the class

introduced by Hamilton is the following. Let Xt = αRt + φXt−1 + σεt, where εt is a

sequence of i.i.d. N(0,1) random variables, so that

Xt|Rt, Xt−1, Xt−2, ..., X0 ∼ N(αRt + φXt−1, σ
2).

Here we have assumed that Xt follows AR(1) dynamics, and that the constant term αRt

is the only term dependent on the hidden regime. More generally, the traditional MRS

model specifies that

Xt|Rt, Xt−1, Xt−2, ..., X0

follows some time-series model with finite dependence on past observations for each

Rt ∈ S, and this dependence structure does not depend on R0, .., Rt−1. That is, the

dependence structure does not take into account which regime the past observations

Xt−1, Xt−2, ..., X0

belong to. We label these dependent-regime models as MRS models of Type I.

Example 2.1 (An MRS model with dependent regimes (Type I)). Let S = {1, 2}, and

P =

(
0.9 0.1

0.1 0.9

)
,

and specify

Xt|Rt = 1, Xt−1, Xt−2, ..., X0 ∼ N(0.6Xt−1, 1),

Xt|Rt = 2, Xt−1, Xt−2, ..., X0 ∼ N(1 + 0.9Xt−1, 1).

So Xt follows AR(1) dynamics in both Regime 1 and Regime 2. This is an MRS model of

Type I since Xt depends on Xt−1 regardless of which regime the lagged observation, Xt−1,

came from. In Figure 2.1 we plot a simulation of this model and colour the observations

from each regime to illustrate the characteristics of these models.
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Figure 2.1: A simulation of the Type I MRS model in Example 2.1 where we have
coloured the observations from each regime. Red points are from Regime 1 and blue
points are from Regime 2.

In the electricity price modelling literature it has become popular to specify MRS models

with independent regimes. These are models where, given Rt = i, Xt depends only on

lagged values from Regime i. We further classify these models in two groups depending

on what happens within each regime between times when they are observed. If the

processes within the regimes evolve regardless of whether they are observed or not, we

call them MRS models of Type II and describe them as MRS models with independent

regimes that evolve at all time points. An example of this type of model is in Example

2.2.

Example 2.2 (An MRS model of Type II). Let S = {1, 2}, and

P =

(
0.9 0.1

0.1 0.9

)
,

and define the following AR(1) processes

Bt = 0.6Bt−1 + εBt ,

St = 1 + 0.9St−1 + εSt ,

where εBt and εSt are i.i.d. sequences of N(0,1) random variables. Then, construct the

MRS model Xt as follows

Xt =

Bt, if Rt = 1,

St, if Rt = 2.

A simulation of this process is plotted in Figure 2.2.

The advantage of MRS models with independent regimes is that the behaviour of each

regime is distinct, and we do not need to have any transitional behaviour after a change

in regime. When applied to electricity price modelling, this means the model can capture
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Figure 2.2: A simulation of the Type II MRS model in Example 2.2 where observations
are coloured according to which regime generated them. The blue points are observed
values of the process Bt, the red points are observed values of the process St, and the
unobserved values within each processes are represented by the grey dots. Notice that
there are no ‘transition’ periods after a change of regime, rather there is a distinct jump
in the process at transition times.

a rapid return to base levels after a price spike occurs, which is a phenomenon that is

commonly observed [3].

We also introduce a new MRS model to the electricity pricing literature, which we label

an MRS model of Type III and describe these models as MRS models with independent

regimes which evolve only when observed. This model is similar to the MRS model

of Type II except the processes within each regime stop between times when they are

observed, which slightly simplifies the analysis since there are no unobserved values. An

example of an MRS model of Type III is illustrated in the following.

Example 2.3. Again, let S = {1, 2}, and

P =

(
0.9 0.1

0.1 0.9

)
,

and define the following AR(1) processes

BτB(t) = 0.6BτB(t−1) + εBτB(t),

SτS(t) = 1 + 0.9SτS(t−1) + εSτS(t),

where εBτB(t) and εSτS(t) are i.i.d. sequences of N(0,1) random variables, τB(t) =
t∑
i=0

I(Ri =

1) and τS(t) =
t∑
i=0

I(Ri = 2). Then, construct the MRS model {Xt} as follows

Xt =

BτB(t), if Rt = 1,

SτS(t), if Rt = 2.
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Figure 2.3: A simulation of the MRS model of Type III from Example 2.3 where ob-
servations are coloured according to which regime generated them. Red points are from
the process Bt and blue points are from the process St. Similar to the other indepen-
dent regime MRS model specification, there are no ‘transition’ periods after a change of
regime since regimes are independent. Notice that there are now no unobserved values
of within-regime processes, and hence correlations are equally strong regardless of the
gap in that regime.

A realisation of this process is plotted in Figure 2.3.

To make precise what we mean by dependent and independent regime models, define

the sets Ai := {t ∈ N : Rt = i}, i ∈ S. We say that a model has independent regimes

if the sets {Xt : t ∈ Ai}, i ∈ S, are independent (that is, if A = {Xt : t ∈ Ai} and

B = {Xt : t ∈ Aj}, for i 6= j, then A and B are independent) events. Otherwise, it is a

dependent regime model

2.2 Technical concepts

In this section we review technical concepts needed for this thesis.

2.2.1 Markov chains

Here, we focus only on discrete-time Markov chains on a finite state space, for clarity of

exposition. Later in this thesis we also deal with discrete-time Markov chains on general

spaces, for example AR(1) processes are Markov chains on R, as is our implementation

of Markov chain Monte Carlo algorithms. However, since the concepts behind general-

state-space Markov chains are more technical, we detail them in Appendix A rather

than here.

A discrete-time Markov chain is a sequence of random variables {Xt}t∈N that have the

Markov property. We denote by S the state space, which is the set of possible values Xt

can take. The Markov property says that the probability of moving into a state i ∈ S
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at time t+ 1, given the entire history of the process Xt = it, Xt−1 = it−1, ..., X0 = i0 for

i0, ..., it ∈ S, depends only on the current position of the chain, Xt = it;

P (Xt+1 = i|Xt = it, Xt−1 = it−1, ..., X0 = i0) = P (Xt+1 = i|Xt = it) ,

for all i0, ..., it, i ∈ S, and all t ∈ N, assuming both conditional probabilities are well

defined, i.e.

P(Xt = it, Xt−1 = it−1, ..., X0 = i0) > 0.

A Markov chain is called time homogeneous if P(Xt+1 = i|Xt = j) = P(X1 = i|X0 = j)

for all t ∈ N. In this thesis, we assume that Markov chains are time homogeneous unless

otherwise stated.

Without loss of generality, the state space S is assumed to be {1, 2, ...,M}, where

M < ∞. The probabilities pij := P (Xt+1 = j|Xt = i), i, j ∈ S, known as transition

probabilities, are represented collectively as the transition matrix

P =


p11 p12 . . . p1M

p21 p22 . . . p2M

...
...

. . .

pM1 pM2 . . . pMM

 .

The n-step transition probabilities are defined as P(Xt+n = j|Xt = i) and represented

collectively as P (n). We can show that the n-step transition probabilities are given by

P (n) = Pn.

A Markov chain is said to be irreducible if the process can get from any state to any

other state with positive probability; that is, if P(Xn = j|X0 = i) > 0 for some n ∈ N
and each i, j ∈ S.

2.2.2 Maximum likelihood

Maximum likelihood estimation is a popular technique to estimate the parameters of

a probabilistic model from observed data. The estimates produced by this method

are called maximum likelihood estimates (MLEs) and have numerous nice properties

[21, 78]. Maximum likelihood supposes that observed data, x0:t = (x0, ..., xt), were

generated from some distribution fθ(x0:t) with unknown parameters θ = (θ1, ..., θp)

that belongs to a parameterised family of distributions, {fθ(x0:t)|θ ∈ Θ}, where Θ is

the parameter space. The likelihood function is defined as L(θ) := fθ(x0:t), that is,

the density function fθ is evaluated at the observed data and treated as a function of
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the parameters θ. Maximum likelihood estimation finds the parameters that maximise

the likelihood, which are commonly denoted by θ̂ := arg maxθ∈Θ L(θ). In practice,

it is often easier to work with the log-likelihood `(θ;x0:t) = log fθ(x0:t); note that θ̂

maximises the likelihood if and only if it also maximises the log-likelihood.

Desirable properties of the maximum likelihood estimators are:

• Consistency ([78], Section 2): Under certain regularity conditions, if the data are

generated by fθ
∗
, where θ∗ are the true parameters, then the MLEs converge in

probability to the true parameters as the number of observations grows. Under

slightly stronger conditions, the MLEs converge almost surely to the true param-

eters as the number of observations grows.

• Functional invariance ([21], Section 7.2): If h(θ) is some transformation of the

parameter vector, θ, then the MLE for h(θ) is ĥ(θ) = h(θ̂).

• Asymptotically normally distributed ([78], Section 3): Define the Fisher informa-

tion as

I(θ∗) := Efθ∗
[
d2

dθ2 log fθ(X)|θ=θ∗

]
, (2.1)

where X are random variables with distribution fθ
∗
, and

d

dθ
is the vector deriva-

tive. Then, under certain regularity conditions,

√
t
(
θ̂ − θ∗

)
→ Np

(
0, I(θ∗)−1

)
in distribution,

where Np is the p-dimensional normal distribution. This means that, for large

sample sizes, we can expect that the MLEs approximately follow a Normal distri-

bution with known variance, which has practical applications in model selection

and hypothesis testing.

• Asymptotic efficiency ([78], Section 5): Under certain regularity conditions then

var
(
θ̂
)
→ I(θ∗)−1.

This means the MLE is an estimator that asymptotically has the smallest variance

of all unbiased estimators. That is, the MLE satisfies the Cramer-Rao lower bound

with equality as the sample size goes to infinity.
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2.2.3 The EM algorithm

General Expectation Maximisation theory was initially developed by Dempster et al. [29]

in the late 70s. However, it turned out that work on maximum likelihood estimation of

HMMs by Baum in the late 1960s [9–11] was a specific application of the EM algorithm.

The EM algorithm is a maximisation technique typically used to find the MLE for

problems involving missing or latent data. In missing data problems, the likelihood is

typically hard to evaluate and therefore the MLE is difficult to find directly. The EM

algorithm provides a way to find the MLE numerically, often without ever evaluating

the likelihood itself.

Suppose data, x0:t = (x0, ..., xt), is observed from some model with density fθ
∗

and

suppose this density can only be written as a marginal density,

fθ(x0:t) =

∫
fθ(x0:t,Y )dY , (2.2)

where Y is the missing, or latent, data in the problem, and the integral is over the

support of Y . We call fθ(x0:t,Y ) the complete data likelihood and fθ(x0:t) the incom-

plete data likelihood. The EM algorithm circumvents having to work with the integral

in Equation (2.2). The EM algorithm iterates between ‘expectation’ (E) and ‘maximi-

sation’ (M) steps to produce a sequence {θn}n∈N that converges to the maximiser of

the likelihood, θ∗ (under certain regularity conditions). The EM algorithm can also be

extended to find the maximum a posteriori estimate (MAPE) in a Bayesian setting.

At the nth iteration of the EM algorithm, suppose the current parameters are θn. In

the E-step of the algorithm, the function Q(θ,θn) is constructed as follows

Q(θ,θn) := Efθn (Y |x0:t)

[
log fθ(x0:t,Y )|x0:t

]
.

This expectation can be much easier to calculate than Equation (2.2), which is usually

the case for exponential families.

In the M-step of the algorithm the maximisers θn+1 are found,

θn+1 := arg max
θ∈Θ

Q(θ,θn),

which are then used at the (n+ 1)st iteration to construct Q(·,θn+1).
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The EM algorithm is a subclass of MM (majorisation-minimisation or minorisation-

maximisation) algorithms, and works because the functions Q(θ,θn) minorise the like-

lihood. That it, Q has the property

log fθ(x0:t)− log fθn(x0:t) ≥ Q(θ,θn)−Q(θn,θn).

So increasingQ(θ,θn) pastQ(θn,θn) must cause log fθ(x0:t) to increase past log fθn(x0:t).

Thus, if Q(θn+1,θn) > Q(θn,θn) then fθn+1(x0:t) > fθn(x0:t), and so the sequence

{θn}n∈N must increase the log-likelihood.

Unlike other optimisation methods, such as steepest decent, the EM algorithm does not

rely on evaluating or approximating derivatives of the log-likelihood, and this can be

advantageous. However, in general, there is no guarantee that the EM algorithm will

converge to the true maximiser, in particular, it is known that when the likelihood is

multimodal, the EM algorithm can get stuck at local maximisers or saddle points [105].

So, in practice, the algorithm should be initialised at a range of initial values to increase

the chances of finding the true MLE.

The EM algorithm is a first-order algorithm, in that the convergence of the sequence

{θn}n∈N to the true maximiser is linear. Consider the mapping M defined by θn+1 :=

M(θn) given by the EM algorithm, with a fixed point θ∗, then

θn+1 − θ∗ =
d

dθ
M(θ∗) (θn − θ∗) +O(||θn − θ∗||2),

where d
dθM(θ∗) is the Jacobian matrix, and ||·|| is the Euclidean distance [73]. In practice

the EM algorithm is terminated after some finite number of iterations, when the step size

becomes small, for example, when max |θn+1−θn| < ε, and/or |fθn+1(x)−fθn(x)| < ε.

This is a necessary but not sufficient condition for the EM algorithm to have found the

true MLE. As such, using this termination criterion the EM algorithm may terminate

in places where the likelihood is relatively flat, but not a local maximum.

2.2.4 Bayesian inference

Bayesian inference is a separate parameter estimation paradigm to maximum likelihood

inference. In a Bayesian setting, the parameters θ are treated as unknown random vari-

ables, which is different from the maximum likelihood setting where the parameters are

treated as unknown constants. The goal of Bayesian inference is to infer the distribu-

tion of the unknown parameters, given observed data; this is known as the posterior

distribution.
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Prior distributions The first step in a Bayesian inference problem is to define the

prior distribution, which is the distribution the observer thinks the parameters follow

before any observations are made. It is not always clear how to choose a prior distribu-

tion, and this is one of the points of contention for some statisticians about Bayesian

methods. However, in a sense it is not much different to choosing a model for the data

in the first place. There have been many attempts to derive uninformative or objective

prior distributions, but these depend on the definition of uninformative or objective. A

simple objective prior distribution is the uniform distribution,

π(θ) ∝ c,

for θ ∈ Θ with Θ bounded, and c a constant. In general we use the notation π(·) for prior

distributions. One interpretation of the uniform prior distribution is that no information

about the parameters is known before the data is observed. In many circumstances, it

is still valid to specify a uniform prior when Θ is unbounded and arrive at a posterior

distribution that is well-defined, but care needs to be taken as π(·) is technically no

longer a distribution since
∫

Θ π(θ)dθ = ∞. A drawback of uniform objective prior

distributions is that they are not invariant to transformations. For example, specifying

π(θ) ∝ c for some scalar parameter θ, is not equivalent to specifying π(θ2) ∝ c. Another

attempt at an objective prior is Jeffreys’ prior [63], which is defined as

π(θ) ∝
√
det(I(θ)).

Jeffreys’ prior is invariant to transformation, but comes with problems of its own, such

as it is sometimes not a well-defined distribution since
∫

Θ π(θ)dθ =∞.

Another important type of prior distributions is the conjugate prior distribution, which

is a distribution such that the posterior and prior distributions belong to the same

family. Conjugate prior distributions are particularly ‘nice’ since the posterior distri-

bution is available in closed form and very little computations are needed. Developed

in the age before computers, conjugate prior distributions are practical because heavy

computations are not needed, but with modern computing power this is no longer a

restriction.

The likelihood Bayesian inference also relies on the likelihood. In Bayesian inference

the likelihood is treated slightly differently than in maximum likelihood inference: it is

interpreted as the conditional distribution of the data given the parameters, f(x0:t|θ),

where x0:t = (x0, ..., xt) is observed data.
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Posterior distribution The posterior distribution is accessed via Bayes’ Theorem

which states

f(θ|x0:t) =
f(x0:t|θ)π(θ)

f(x0:t)
,

where f(θ|x0:t) is the posterior distribution, f(x0:t|θ) is the likelihood and

f(x0:t) =

∫
Θ
f(x0:t|θ)π(θ)dθ

is a normalising constant (with respect to θ). Often the constant term, f(x0:t), is

not available in closed form, or is not computable, and we only have the proportional

relationship

f(θ|x0:t) ∝ f(x0:t|θ)π(θ).

As a result, numerical methods are needed to approximate the posterior distribution,

such as Markov chain Monte Carlo (Section 2.2.5).

Properties Like maximum likelihood inference, Bayesian inference also has many nice

properties. Under certain regularity conditions the following can all be shown [40]:

• The posterior distribution is consistent: as sample size grows, the posterior distri-

bution converges in distribution to a point mass at the true parameter. Formally,

let {fθ(·|x0:t)}t∈N be a sequence of posterior distributions, and let θ∗ be the true

parameter that generated the data x0:t. The posterior distribution is called con-

sistent if, for every neighbourhood N of θ∗,∫
N
fθ(u|x0:t)du→ 1,

as t→∞, with probability 1 (i.e. under the assumption the data is generated from

the distribution f(x0:t|θ∗)). It might seem odd that there exists a ‘true parameter

value’ in a Bayesian setting since θ is a random variable, however, consider the

example of observing a single time series x0:t = (x0, ..., xt), then the assumption

that a single parameter vector generated this series is natural.

• Assuming again that there exists a true parameter value θ∗, then, as the sample size

grows the posterior distribution is asymptotically normally distributed. Formally,

lim
t→∞

∫
Θu

∣∣∣∣fU t(u|X0:t)−
1√
2π
det(I(θ∗))−1/2e−

1
2
u′I(θ∗)u

∣∣∣∣du = 0,

with probability 1 when the data is generated by the distribution f(x0:t|θ∗), where

fU t(u|X0:t) is the posterior distribution ofU t =
√
t(θ−θ∗) givenX0:t, I(θ∗) is the

Fisher information as in (2.1) and Θu is the parameter space of the transformation
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U t. This observation is useful for approximations to the posterior distribution

such as Laplace’s approximation, which provides a way to approximate posterior

distributions with a Normal distribution without heavy computations.

• A consequence of the consistency of posterior distributions is robustness to the

choice of prior distribution. Suppose π1(·) and π2(·) are prior distributions that

are positive and continuous at θ∗. Furthermore, suppose the posterior distributions

constructed with these prior distributions, f1(θ|x0:t) and f2(θ|x0:t) respectively,

are both consistent at θ∗, then

sup
A∈Θ

∣∣∣∣ ∫
A
f1(θ|x0:t)dθ −

∫
A
f2(θ|x0:t)dθ

∣∣∣∣→ 0,

as t → ∞. This says regardless of the choice of prior distributions, as long as

the posterior distributions are consistent, then we end up with the same posterior

distribution asymptotically.

Representing the posterior Another aspect of Bayesian inference is how to best

represent posterior inferences. The natural way is to present the entire posterior dis-

tribution, but sometimes it is more informative to present simpler summaries of the

posterior distribution. For example, when the posterior is high-dimensional the entire

posterior cannot be visualised so it is hard to get any intuitive sense for what the pos-

terior distribution looks like. Other common ways to report posterior inferences are

to use marginal distributions, i.e. report f(θi|x0:t) (or f(θi, θj |x0:t) when there is some

important dependence between parameters θi and θj), or to calculate posterior sum-

maries from the posterior distribution. For example, point estimates of the parameters

might be useful and one could report the posterior mean, median or maximum a pos-

teriori estimator (MAPE, which is defined as arg maxθ∈Θ f(θ|x0:t)), and the spread of

the posterior distribution can be summarised using the posterior variance.

Bayesian point estimates are sometimes justified by showing that they minimise some

loss function, L(θ∗,θ(x0:t)). Let θ(x0:t) be an estimator of the parameter θ∗, and

suppose we are interested in minimising the expected loss as measured by

E [L(θ∗,θ(x0:t))] = E
[
(θ∗ − θ(x0:t))

2
]
,

where the expectation is taken with respect to the joint distribution f(θ|x0:t). We can

show that the estimator that minimises this expected loss is the posterior mean

θ(x0:t) =

∫
Θ

θf(θ|x0:t)dθ.
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Similarly, when the loss function of interest is

L(θ∗,θ(x0:t)) = |θ∗ − θ(x0:t)|,

then the posterior median minimises the expected loss.

2.2.5 Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo is a broad class of algorithms that involve simulating Markov

chains, typically for the purpose of sampling from probability distributions. The general

idea is to construct a Markov chain with limiting distribution f , then, by simulating a

long realisation of this Markov chain, we can assume the chain is close to stationary and

the collection of samples towards the end of the chain are approximately distributed ac-

cording to f (although the samples may not be independent). The theory behind MCMC

techniques is vast and a popular area of research, which shows its importance. MCMC

algorithms provide an alternative to other sampling techniques, such as inverse sam-

pling, which is not always tractable, or rejection sampling, which can take prohibitively

long to compute a sufficient number of samples. This section is mostly based on Robert

and Casella [88].

Metropolis Algorithm The simplest MCMC algorithm is the Metropolis algorithm

[74] which has the following structure. Suppose we want to construct a Markov chain

with f(x)
c as its limiting distribution, where c is a normalising constant, and f(x) is a

probability density on a state space S. We explicitly write the normalising constant,

c, to emphasise the fact that these algorithms do not depend on it. Let q(x, ·) be a

symmetric probability density for each x ∈ S, that is q(x, y) = q(y, x) ∀y ∈ S. Here, q

is known as the proposal distribution. Given the current state of the chain is Xn = x,

the Metropolis algorithm simulates transitions of a Markov chain using the following:

1. Simulate y from the distribution q(x, ·).

2. Calculate the acceptance ratio α and acceptance probability a,

α(x, y) =

f(y)
c q(y, x)

f(x)
c q(x, y)

=
f(y)

f(x)
,

a(x, y) = min(1, α(x, y)).

3. Set Xn+1 = y with probability a(x, y), otherwise set Xn+1 = x.
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In Step 2 of the Metropolis algorithm, the density q(x, y) cancels from the top and

q(y, x) from the bottom of the ratio since q is symmetric. Also notice that the ratio

α(x, y) does not depend on the normalising constant c. The significance of this is that

the density f does not need to be normalised to implement this algorithm, which makes

MCMC algorithms particularly useful in Bayesian settings where the constant, c, may be

intractable. That f is the limiting distribution of this Markov chain follows immediately

after showing that the transition kernel of the Metropolis chain,

K(x,A) = m(x)I(x ∈ A) +

∫
A
q(x, y)a(x, y)dy,

is reversible, where m(x) = 1−
∫
S q(x, y)a(x, y)dy, and I(x ∈ A) is the identity operator.

Metropolis-Hasting algorithm In 1970 Hastings [46] extended the Metropolis al-

gorithm to use arbitrary proposals q(x, y) (i.e. q no longer has to be symmetric). This

extension means the acceptance probabilities in Step 2 remain,

a(x, y) = min

1,
f(y)q(y, x)

f(x)q(x, y)

 ,

without the benefit of the cancellation of the q(x, y) like in the Metropolis algorithm.

The arguments as to why f is the stationary distribution of this chain remain the same.

This algorithm is referred to as the Metropolis-Hasting (MH) algorithm. It turns out

that the choice of proposal distribution is relatively arbitrary, in that the chain will have

the correct stationary distribution regardless of which proposal distribution we choose

(up to some not very restrictive conditions). However, since we do not have the luxury

of simulating the chain for an infinite number of transitions, this choice is crucial so that

the chain is close to stationary in a computationally feasible number of steps.

Gibbs sampler Another popular MCMC algorithm is the Gibbs sampler [39]. The

Gibbs sampler is applicable when we wish to sample a random vector, θ = (θ1, ..., θp),

from a distribution f(θ), and the conditional distributions,

fθi(·|θ1, ..., θi−1, θi+1, ..., θp),

for each i = 1, ..., p, can be derived. Suppose the current state of the chain is θn =

(θn,1, ..., θn,p), the Gibbs sampler updates the chain using the following steps:

1. Sample θn+1,1 from fθ1(·|θn,1, ..., θn,p).

2. Sample θn+1,2 from fθ2(·|θn+1,1, θn,3, ..., θn,p).
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3. Sample θn+1,3 from fθ3(·|θn+1,1, θn+1,2, θn,4, ..., θn,p).
...

p− 1. Sample θn+1,p−1 from fθp−1(·|θn+1,1, ...θn+1,p−2, θn,p).

p. Sample θn+1,p from fθp(·|θn+1,1, ..., θn+1,p−1).

It is interesting to note that the Gibbs sampler is a special case of the Metropolis-

Hastings algorithm. To see this, suppose that q(x, y) = fθi(y|θ1, ..., θi−1, θi+1, ..., θp) is

the proposal distribution of an MH algorithm. Note that this proposal can be written

as

q(x, y) = fθi(y|θ1, ..., θi−1, θi+1, ..., θp) =
f(θ1, ..., θi−1, y, θi+1, ..., θp)

f(θ1, ..., θi−1, θi+1, ..., θp)
.

Then, the acceptance ratio is

α =
f(θ1, ..., θi−1, y, θi+1, ..., θp)q(y, x)

f(θ1, ..., θi−1, x, θi+1, ..., θp)q(x, y)

=

f(θ1, ..., θi−1, y, θi+1, ..., θp)
f(θ1, ..., θi−1, x, θi+1, ..., θp)

f(θ1, ..., θi−1, θi+1, ..., θp)

f(θ1, ..., θi−1, x, θi+1, ..., θp)
f(θ1, ..., θi−1, y, θi+1, ..., θp)

f(θ1, ..., θi−1, θi+1, ..., θp)

=
f(θ1, ..., θi−1, y, θi+1, ..., θp)f(θ1, ..., θi−1, x, θi+1, ..., θp)

f(θ1, ..., θi−1, x, θi+1, ..., θp)f(θ1, ..., θi−1, y, θi+1, ..., θp)

= 1.

Thus, an MH algorithm with this proposal always accepts updates and therefore does

the same thing as the Gibbs sampler.

The way the Gibbs sampler is presented here might suggest that we must do the updates

in a specific order, but this is not the case. The theory of the Gibbs sampler holds if

we execute the update steps in any order, or if we update the parameters in blocks, or

even if we randomly choose a parameter to update at each step, so long as we use the

appropriate conditional probability.

Metropolis-within-Gibbs An extension to the Gibbs sampler is the Metropolis-

within-Gibbs (also known as block-Metropolis-Hastings) algorithm. In this extension

to the Gibbs sampler, the update steps are replaced by Metropolis-Hastings updates.

That is, rather than sample directly from fθi(·|θ1, ..., θi−1, θi+1, ..., θp), we instead sample

using the following:

1. Simulate θ∗i from qi(·|θ1, ..., θi−1, θi+1, ...θp).
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2. Calculate

a = min

1,
f(θ1, ..., θi−1, θ

∗
i , θi+1, ...θp)qi(θi|θ1, ..., θi−1, θi+1, ...θp)

f(θn,1, ..., θi−1, θi, θi+1, ...θp)qi(θ∗i |θ1, ..., θi−1, θi+1, ...θp)

 .

3. Set θi = θ∗i with probability a, otherwise set θi = θi,

where qi is some proposal distribution. The advantage of the Metropolis-within-Gibbs

sampler is that it can be used even when the conditional distributions, fθi , are not

known. The Metropolis-within-Gibbs algorithm can also be seen as an extension of the

MH algorithm. The original MH algorithm is a multivariate update-all-elements-at-a-

time algorithm, whereas this extension breaks up the update step into univariate moves.

Other modifications of the MH algorithm also exist, for example, it can be beneficial to

update parameters in blocks of parameters that are strongly dependent.

Choosing an algorithm As mentioned before, the choice of proposal distribution for

MH-style updates is essentially arbitrary but it does affect the rate of convergence of

the chain to its stationary distribution. Similarly, whether a block-wise algorithm or

an update-all-elements-at-once algorithm is used, also affects the rate of convergence

of the chain. One advantage of using a block-updating algorithm is that suitable pro-

posal distributions are more obvious to find. For example, suppose the search for a

suitable proposal distribution is restricted to normal distributions centred around the

current position of the chain. For a p-dimensional parameter vector, if an update-

all-elements-at-once algorthm is chosen, then this leaves the covariance matrix of the

proposal distribution to specify, which has 1
2n(n+ 1) elements. If a one-parameter-at-a-

time algorithm is used instead (such as a Metropolis-within-Gibbs algorithm) then only

p variances need to be specified to define the proposal distributions. Of course, there

are also good reasons not to use a block-updating algorithm, for example it is known

that block-wise algorithms exhibit high correlation between steps of the algorithm and,

as a result, the algorithm might take a prohibitively long time to sample the entire state

space. Literature investigating optimal proposal distributions for MCMC algorithms is

available [89] but the models for which this theory hold is limited, although numerical

examples show that the theory can be insightful for more general problems [90].

Adaptive methods One way to choose proposal distributions is to use an adaptive

algorithm. Adaptive MCMC algorithms typically work by restricting the proposal dis-

tribution to a certain family of distributions (for example, normal distributions centred

around the current state of the chain) and the algorithm automatically adjusts the
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variance (or covariance matrix) of the proposal distribution(s) to target a prespecified

acceptance ratio that is theoretically optimal (such as that in [89]). Such an adaptive

algorithm was developed by Haario et al. [43], and other examples of adaptive algorithms

are in Roberts and Rosenthal [90].

Choice of proposal distribution A sufficient condition on the proposal distribution

of the Metropolis-Hastings algorithm that guarantees f is the stationary distribution is

the following [88].

Theorem 2.1. Let {Xt}t∈N be a Markov chain produced by a Metropolis-Hastings algo-

rithm. For every proposal distribution q(xt|xt−1) whose support includes the support of

f(·), the transition kernel of the chain is reversible, and f is the stationary distribution

of the chain.

Another sufficient condition on the proposal of the MH algorithm is the following [91].

Lemma 2.2. Assume f is bounded and positive on every compact set of its support. If

there exists ε > 0 and δ > 0 such that

q(xt|xt−1) > ε if |xt − xt−1| < δ,

then the Metropolis-Hastings chain is f -irreducible and aperiodic. Moreover f is the

stationary distribution of the chain.

Burn-in One issue with MCMC algorithms is that convergence only holds asymptot-

ically, in that the chain reaches stationarity only after an infinite number of samples.

As one obviously cannot simulate an infinitely long Markov chain, we must decide when

the chain is close to stationary. One common technique to assess stationarity of MCMC

chains is to look at trace plots of the chain, which plot the value of the chain against

iteration. From trace plots we look to see when the chain ‘settles down’ and shows

behaviour we would expect from a stationary chain. We can then conclude whether the

assumption of stationarity is reasonable, or more samples are needed. More rigorous

methods are described in [20]. The samples of the MCMC chain are useful only if they

are (close to) stationary, thus the portion of the chain that is deemed non-stationary is

discarded as burn in.

Data-augmented MCMC As mentioned in Section 2.3.3, the likelihood function is

not always easy to evaluate for MRS models, particularly MRS models of Type II with

independent regimes that evolve at all times, and Type III with independent regime
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that evolve only when observed. MCMC algorithms rely on being able to simulate long

realisations of the MCMC chain. So, for MCMC algorithms to be an effective solution,

the likelihood function needs to be computed efficiently, but sometimes this is not pos-

sible. In some cases this can be overcome by using a technique called Data Augmented

Markov Chain Monte Carlo (DA-MCMC), which we shall use for MRS models.

To set the scene for DA-MCMC, suppose we are fitting a model to data, x, in a Bayesian

setting and that numerical methods are needed to compute the posterior distribution.

Furthermore, suppose that the likelihood function f(x|θ) is not computationally feasible,

but can be written as a marginal distribution

f(x|θ) =
∑
R∈R

f(x,R|θ),

where R = (R0, ..., RT ) is the hidden sequence of regimes and R is the set of all possible

regime sequences. Note that R could be a vector of continuous random variables too,

in which case the sum would be replaced by the appropriate integrals. In a standard

MCMC setting, samples from the posterior distribution, f(θ|x), are obtained via the

proportionality relationship

f(θ|x) ∝ f(x|θ)π(θ),

but since f(x|θ) is computationally intractable this cannot be implemented. However if

the joint distributions, f(x,R|θ), are easy to evaluate, DA-MCMC provides a way for

us to proceed. In a DA-MCMC algorithm the joint posterior distribution, f(θ,R|x), is

inferred, and MCMC is used to sample from this posterior distribution via the propor-

tionality relationship

f(θ,R|x) ∝ f(x,R|θ)π(θ).

To obtain the (marginal) posterior distribution of interest, f(θ|x), we need to integrate

the joint posterior distribution over R, that is,

f(θ|x) =
∑
R
f(θ,R|θ).

Conveniently, this is equivalent to ignoring the elements R in the DA-MCMC chain, and

estimating the posterior distribution using the remaining dimensions of the chain, with

no extra computations needed.
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2.2.6 Model checking and selection

Once a model is fitted to data, we would like to assess how well it fits the data (model

checking) and to be able to compare models (model selection). Commonly used meth-

ods to compare two models are the likelihood ratio test [79] or the Akaike Information

Criterion (AIC) [1]. AIC can sometimes be more useful since it accounts for model

complexity and does not rely on the models being nested. Derived as the solution to the

problem of choosing a model that has the best out-of-sample predictive error, the AIC

statistic is AIC = 2p − 2`(θ̂), where p is the number of parameters in the model. An

implicit assumption of likelihood-based measures of goodness-of-fit is that each model

is capturing exactly the same data [84].

To assess model fit, goodness-of-fit statistics can be used. A simple way to check distri-

butional assumptions for MRS models is to compare the stationary distribution of the

observed data with the stationary distribution of candidate models using, for example,

the Kolmogorov-Smirnov test, which compares empirical and theoretical cumulative dis-

tribution functions. This checks stationarity assumptions only and does not warn us if

within-regime distributional assumptions are valid. A goodness-of-fit procedure devel-

oped by Janczura and Weron [62] enables one to check distributional assumptions within

each regime for MRS models. However, as it is presented, their method relies on the

EM-like algorithm being correct, which is not the case (see Section 3.1). It may be that

the theory of [62] still holds but more work is needed to show this.

A Bayesian approach to model checking is posterior predictive checks [37]. The idea is

to sample parameters (and latent variables) from the posterior distribution, use these

samples to calculate statistics of the observed data, and compare these to statistics

calculated under the assumption that the model is true. Repeating this for many samples

can warn us if there are any obvious ways in which our model fails.

2.2.7 Wavelet and Fourier filtering

In this context, filtering refers to estimating deterministic components of electricity

prices. Filters take electricity price series as inputs, and output a smoothed series.

Wavelet filtering is a popular technique used in the electricity price modelling literature

to model long-term deterministic components, and simulation studies have shown that

wavelet filters are good at capturing the complex deterministic patterns in electricity

prices for model estimation purposes [57, 82, 83]. However, due to the fact that wavelet

functions are localised in time, there are issues with out-of-sample forecasting of trend

components when using wavelets.
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To summarise the following discussion: electricity price series can be smoothed by pro-

jecting the data onto dilations and translations of father wavelets that are only able to

represent the data up to some level of detail. This projection takes the form of a linear

combination of dilations and translations of the father wavelet (Equation (2.4)). Due to

nice properties of mother and father wavelets, and the families of functions defined from

them, there exist simple recursive formulas to calculate the coefficients λm,n in Equation

(2.4).

Now, in more details, wavelet filtering is achieved by progressively projecting time series

data onto progressively coarser bases. The bases onto which the data is projected are

defined by wavelet functions. There are two types of wavelet functions, mother wavelets,

denoted ψ and father wavelets, denoted φ. It is easiest to first define the mother wavelet

and the family of functions it defines, since this then allows us to present families defined

from the father wavelets in an insightful way.

The following is closely based on Valens [97] and the interested reader should consult

this (and references therein) for more details.

The mother wavelet is a function, ψ(x) : R → R, which is non-zero only on a compact

interval of its domain and has the properties∫
R
ψ(x)dx = 0,

∫
R
ψ2(x)dx = 1,

∫
R

|s∞(x)|2

x
dx <∞,

where s∞ is the Fourier transform of ψ. We use this to define a family of wavelet

functions,

ψm,n(x) =
1√
2m

ψ
(
2−mx− n

)
for m,n ∈ Z. Each function ψm,n has the same properties as ψ; they integrate to 0

and are non-zero on a compact interval of their domain. Moreover, they also have the

property ∫ ∞
−∞

ψm,n(x)ψm′,n′(x)dx = 0

if m 6= m′ or n 6= n′, so {ψm,n : m,n ∈ Z} are orthogonal. Any square-integrable

function, f , can be represented as

f(x) =
∑
m,n∈Z

am,nψm,n(x),

for some coefficients am,n, m,n ∈ Z; this is the projection of f on to the wavelet family

defined using ψ. In the context of modelling data, this means that the data can be

modelled exactly (without error) by wavelet functions.
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For a finite number of discrete, equally- spaced time series observations, a finite number

of terms are needed in the projection onto the wavelet basis. Assume that the length of

the observation sequence is N = 2M . Then the data are completely captured by

f(x) =
M∑
m=0

2M−m∑
n=1

am,nψm,n(x), (2.3)

in the sense that f passes through every data point.

Now, the father wavelet is also non-zero only on a compact set of its domain, and families

of wavelets are defined from it in the same way; by scaling and dilation,

φm,n(x) =
1√
2m

φ
(
2−mx− n

)
.

Father wavelets must have the property that, for a given m,

span{ψm,n|n ∈ Z}+ span{φm,n|n ∈ Z} = span{ψm−1,n|n ∈ Z}.

As a consequence, since our data can be represented as the sum in Equation (2.3), then

the data can also be represented as

f(x) =

N∑
n=1

λ0,nφ(x− n),

for some coefficients λ0,n. We also have the property

f(x) =

N∑
n=1

λ0,nφ(x− n) =

N/2∑
n=1

λ1,nφ(2−1x− n) +

N/2∑
n=1

a1,nψ1,n(x).

This decomposition comes with an insightful interpretation: the first sum represents the

‘trend’ while the second represents the ‘detail’ in the data. Applying this decomposition

recursively J times, we can represent the data as

f(x) =

N

2J∑
n=1

λJ,nφ(2−Jx− n) +
J∑
j=1

N

2j∑
n=1

aj,nψj,n(x).

The first sum captures the trend at scale J , and the second sum captures all the details

up to and including scale J . This decomposition has nice properties that give simple

recursive formulas for the coefficients am,n and λm,n, which are used in practice. The

trend in the data is estimated as the first sum

f̂(x) =
2−JN∑
n=1

λJ,nφ(2−Jx− n), (2.4)
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and is sometimes referred to as an SJ approximation, or decomposition, of the data.

There are many different functions ψ that define wavelet families, and their correspond-

ing father wavelet, each of which has their own desirable properties. Popular classes of

functions ψ are Coiflets and Daubechies wavelets, which are typical in electricity price

modelling. The wavelets in the Daubechies family are indexed by the number of vanish-

ing moments they possess, which can be thought of as a measure of the complexity of

signals they can replicate.

One issue with implementing wavelet filtering is that the dataset must be of a length

that is a power of 2, which is rarely the case. This can be remedied by, for example,

making the data circular, or appending repeated mean or median values to each end of

the dataset to increase it to an appropriate length.

Wavelet filtering is more flexible than filters based on periodic functions (such as Fourier

filtering), since the wavelet bases are localised in frequency and time, whereas the peri-

odic functions are only localised in frequency. The result is that periodic filters are not

as robust to outliers and cannot represent aspects of time series that are not periodic.

2.3 Literature review

2.3.1 Modelling detrended electricity prices

Typically electricity prices are modelled as a sum of two processes, a deterministic trend

component, Tt, and a stochastic component, Xt, so the price at time t is given by

Pt = Tt +Xt (or Pt = TtXt). Our main interest is in the stochastic component Xt, but

we also need to deal with the trend component, the literature of which we review in

Section 2.3.4.

In this section we briefly review some of the many stochastic models used for electricity

prices, before specifically focusing on MRS models in Section 2.3.2. We categorise mod-

els, using a similar structure to Weron [102], into the following categories: reduced form,

statistical-forecast, fundamental, spike only, agent based and computer intelligence. Of

course, there is some overlap between these categories. Each type of model has its

advantages and disadvantages and serves its own purpose.

Reduced form models The goal of reduced form models is to capture the probabilis-

tic properties of electricity prices for use in derivative valuation and risk management.



Background 31

These models should accurately replicate electricity-price behaviour. Two popular mod-

els in this category are the MRS models, which are reviewed extensively in Section 2.3.2,

and jump diffusion processes.

Diffusion processes are continuous-time continuous-state stochastic processes that have

continuous sample paths with probability 1. The simplest diffusion process is standard

Brownian motion, denoted {Bt}0≤t. Standard Brownian motion is characterised by

normally distributed increments,

Bt −Bs ∼ N(0, t− s) for 0 ≤ s ≤ t,

independent increments (Bt1−Bs1 is independent of Bt2−Bs2 provided that the intervals

[s1, t1] and [s2, t2] do not overlap), continuous sample paths with probability 1, and

B0 = 0. Traditional financial markets are often modelled by geometric Brownian motion;

at time t, the price Pt is related to a standard Brownian motion through

Pt = P0e

(
µ−σ

2

2

)
t+σBt ,

where P0 is an initial price and µ and σ are parameters of the geometric Brownian

motion. There is an abundance of literature modelling financial markets with geometric

Brownian motion, including the celebrated Black-Scholes model. However, due to the

characteristics of electricity prices – spikes, drops, negative prices and mean reversion –

these models are unsuitable for electricity markets [14, 35].

A popular model for electricity prices is the stochastic jump-diffusion model [14, 35, 52],

where prices, or more commonly log-prices, are modelled as the sum of an Ornstein-

Uhlenbeck (O-U) process and a jump process. An O-U process is related to standard

Brownian motion through the equation,

Pt = P0e
−θt + µ

(
1− e−θt

)
+ σ

∫ t

0
e−θ(t−s)dBt,

where P0 is an initial condition, µ, θ and σ are parameters and the integral is a stochastic

integral with respect to standard Brownian motion. More general specifications of O-

U processes exist where the stochastic integral is with respect to more general Lévy

processes rather than Brownian motion.

The O-U process is a mean-reverting process – if we ignore the stochastic fluctuations,

the process naturally tends to the value µ. O-U processes have the property that, given

the value of the process at time s, the distribution of the process at time t, t > s, follows
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a normal distribution,

Xt|Xs ∼ N

(
µ+ (Xs − µ)e−θt,

σ2

2θ

(
1− e−2θt

))
.

If we consider observing an O-U process at discrete times, then the resultant discrete-

time process {Xt} is a Gaussian AR(1) process. This fact is often used to simplify

models with O-U process for electricity prices, since prices are only observed at discrete

equally-spaced times.

The behaviour of jump-diffusion models for electricity prices is to follow O-U dynam-

ics between spikes, and jump discontinuously at random times. Jump times are often

specified as a Poisson process and jump sizes have been specified as log-normal [16, 35],

normal [17], exponential [42] or truncated exponential random variables [38]. More gen-

eral processes have also been studied, for example, models with more than one jump

process [42], allowing for upward and downward jumps, incorporating periodicity into

the rate of the jump arrival process, or allowing the arrival rate of jumps to depend of

price level [38].

For models consisting of a single O-U process with additive jump components, the pa-

rameter θ of the O-U process must capture the mean reversion between, and immediately

after, spikes, even though it is known that prices return to the mean level at a much

faster rate immediately following spikes than between spikes [49]. To overcome this,

Benth et al. [15] model the spot price using a sum of generalised O-U processes driven

by non-Gaussian processes, with each O-U process having its own mean reversion term.

Similarly, Gonzalez et al. [42] model prices as a sum of a Gaussian O-U process and

non-Gaussian O-U processes which capture jumps, and they allow each jump process to

have its own mean reversion parameter. They fit their model to the Amsterdam Power

Exchange United Kingdom (APXUK) and European Energy Exchange (EEX) markets

using Bayesian methods, and show that their model fits well using posterior predictive

checks (Section 2.2.6).

All of these models are continuous-time models, however, electricity price evolution

is a discrete-time process as prices are only realised when the market is dispatched.

Continuous-time processes, particularly continuous-time jump processes, can be com-

plicated to fit to discretely observed data since, for example, we do not observe the

process at jump times that occur between observations. For this reason, either approxi-

mate methods such as approximate likelihood [38] or data-augmented Bayesian methods

[42] are used. MRS models of Type I can be seen as a discrete-time analogue to some

jump-diffusion models and are often easier to fit to data.
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Statistical-forecast Models Statistical models are typically built to make forecasts

(usually point forecasts) for electricity markets or can also be used as fundamental

models to determine the effects of fundamental price drivers. There is a vast array of

statistical techniques and models in the literature ranging from simple, so called similar

day methods, which we elaborate on below, to complex non-linear ARMA-GARCH

models incorporating exogenous factors.

Similar day methods are sometimes used as benchmark models for more extravagant

methods [94]. A similar day method works, for example, by comparing the attributes

of the forecast day to attributes of previous days, then the price forecast is made as the

average of the prices on all previous similar days. Attributes might include day of the

week, whether the day is a public holiday, the forecast weather, time of year or available

generation.

Autoregressive (AR) models are popular statistical models for financial time series.

When applied to electricity markets, AR models often include exogenous factors and

are sometimes labelled ARX models, e.g. the model defined by

Pt = φ1Pt−24 + φ2Pt−48 + φ3Pt−168 + φ4mpt + ψ1zt + d1DMon + d2DSat + d3DSun + εt,

where Pt is the logarithm of the current price, Pt−24, Pt−48 and Pt−168 are the logarithms

of the prices at the same hour yesterday, two days ago and last week, mpt is the minimum

of yesterday’s log-prices, zt is the logarithm of the load at time t, DMon, DSat and DSun

are indicators for Monday, Saturday and Sunday, respectively, φi, i = 1, 2, 3, 4, ψ1, dj ,

j = 1, 2, 3 are parameters which are estimated from the data, and {εt} is a sequence of

N(0, 1) random variables. This model was applied in Weron and Misiorek [104] to the

Nord-Pool and Pennsylvania-New Jersey-Maryland (PJM) markets.

Typically, simple AR models are not adequate to capture characteristics observed in

electricity markets [56] and more complex models are considered. For example, Chen

and Bunn [22] employ advanced regression techniques to fit mixture regression models

to electricity prices and use these to obtain point forecasts. They compare their models

to MRS models of Type I with exogenous variables and conclude that while MRS models

fit the data best, they may overfit the data and perform poorly out-of-sample.

Swider and Weber [56] fit ARMA, ARMA-GARCH, Gaussian mixture and MRS models

of Type I to the EEX market and compare models using a range of metrics: likelihood

values, Bayesian Information Criterion, R2 value, and mean error. They conclude that

standard Gaussian ARMA process are not adequate to model electricity prices.

Panagiotelis and Smith [85] use a vector autoregressive model with skew-t-distributed

errors to model New South Wales electricity prices and fit their model in a Bayesian
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setting. To evaluate their model, they obtain forecasts over a 72-hour horizon and use

a continuous ranked probability score (CRPS) to assess the quality of their forecasts,

where the CRPS is defined as
∞∫
−∞

(F (h) − I(h > yobs))2dh, where F is the model’s

predictive cumulative distribution function.

Recently, Pape et al. [86] apply sophisticated regression and time series techniques to

forecast the distribution of electricity prices at an hourly resolution. They use multiple

regression on log-prices with an offset to estimate a function for mean prices using

ordinary least squares. They then transform the residuals estimated using this mean

function, and model these residuals with an ARMA(1,1)-GARCH(1,1) process to capture

the distributional characteristics of electricity prices. They conclude that their model

can capture the complex nature of electricity prices and produce accurate point and

density forecasts.

Nowotarski et al. [82] review and implement a range of statistical models to forecast

electricity prices and investigate the forecasting performance of combining individual

forecasts models. They conclude that combining forecasts of statistical models can be

advantageous for forecasting performance.

Fundamental models These models capture the fundamental drivers of electricity

prices, such as load, weather and fuel prices, and quantifies their effect on prices. For

example, Kanamura and Ōhashi [65] model the electricity supply function of the PJM

market using a piece-wise polynomial function, where the range of the two pieces of the

polynomial function define a base regime and a spike regime. They use the fact that, at

the market-clearing price, supply and demand are equal to obtain a relationship between

price and demand. Then they model electricity demand using an AR(1) process and

relate prices to demand. Applying their methodology to real data, they show that the

frequency of jumps between prices in the base regime and spike regime are non-constant

over time.

Another example is Karakatsani and Bunn [66], where the effect of fundamentals and

prices are both stochastic. They model prices Pjt, where j indicates the time of day and

t represents the day, using

Pjt = β′jtxjt + εjt measurement equation,

βjt = βj(t−1) + vjt transition equation,

where βjt are time-varying regression coefficients, xjt are regressors, εjt ∼ i.i.d. N(0, σ2
εj )

and vjt = (vjt1, ..., vjtk) ∼ i.i.d. Nk(0,Σj) with Σj = diag(σ2
vjk

). They conclude that cap-

turing the time-varying nature of prices can improve model forecasts. Some applications
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of MRS models also fall into this category, such as Norén [80], Knapik [68], and Mount

[77].

Spike-only models The term ‘spike-only models’ is used to describe models that are

concerned with modelling the arrival of price spikes, and are not necessarily concerned

with the actual value of prices. That is, the arrival of spike events is modelled as a

point process. Researchers in this area focus on modelling the rate of arrival of spikes,

typically using time-varying functions which include exogenous information. Examples

are Clements et al. [26] who use multivariate self-exciting marked point processes to

model spikes in the National Energy Market (NEM) and capture the dependence between

connected markets. Herrera and González [48] use self-exciting marked point processes

to model markets in the NEM and conclude that the arrival of spikes depends on the time

between spikes. They also show that their model can improve value at risk forecasts.

Eichler et al. [32] use a logit model and autoregressive conditional hazard model to

capture price spikes in the NEM and conclude that these models can improve spike

forecasts.

Becker et al. [12] model prices in the NEM using Hawkes point processes and Poisson

autoregressive models, and use these to determine exogenous variables that affect the

arrival rate of spikes, such as load, temperature and the number of spikes in the previous

day. They compare their models and show they exhibit different behaviour when applied

to the same dataset, in particular, spike predictions from the Hawkes model are more

variable than the Poisson models in periods with lots of spikes. They also evaluate

forecasting performance of their models and show that the Hawkes model misses less

spikes but at the cost of more false alarms.

Christensen et al. [24] is one of the earlier papers to propose the autoregressive condi-

tional hazard model for electricity spike events and apply this to the NEM. Christensen

et al. [25] propose the Poisson autoregressive model to capture persistence in spike events

and show, using data from the NEM, that this persistence is a significant aspect of the

model. The reader may have noticed that all of these papers model markets in the NEM.

This is probably because the NEM has some of the most spiky markets in the world, in

both frequency of spikes (e.g. QLD) and the size of spikes (e.g. SA) [49].

Agent-based models Agent-based models attack the problem by modelling indi-

vidual market participants on both sides of the market, and then simulating market

operation to determine prices. They are typically useful for investigating market design

and policy changes in electricity markets, and not so relevant for derivative valuation

or price forecasting [98, 102]. Agent based models are not particularly relevant to our
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modelling approach and we do not investigate them further here; for a review of agent

based models, see Ventosa et al. [98].

Computer intelligence The last category is computer intelligence models, which

utilise recent developments in computing power to fit very complex non-linear models to

data, usually for point forecasts. Examples of computer intelligence models are neural

networks [23], which are complex non-linear functions which take data as inputs and

produce price forecasts as outputs. The forecast combining method of Nowotarski et

al. [82] can also be seen as a computer intelligence model. Computer intelligence models

are not particularly relevant to this thesis as they lack probabilistic interpretation, and

cannot be used for derivative pricing.

2.3.2 Development of MRS models for electricity prices

Some good review papers of MRS models for electricity prices are Janczura and Weron

[59, 102]. The earliest applications of MRS models for electricity prices are Ethier

and Mount [34] and Deng [30]. Ethier and Mount [34] use a MRS model of Type I

(with dependent regimes) with two AR(1) regimes to model log daily on-peak electricity

prices in American and Australian markets. They conclude the regime-switching nature

of prices is better modelled by a Markov chain than a simple independent process, and

there is significant evidence of different means and variances within the two regimes.

Deng [30] uses a slightly different two-state MRS model of Type I (with dependent

regimes). In [30], both regimes follow AR(1) dynamics with the same parameters, except

one regime is also shifted by an exponentially distributed random variable.

In the models of Ethier and Mount [34] and Deng [30], prices must decay back to base

levels following a spike; however, this is not consistent with observations from the market,

where there is a more immediate return to base levels. For this reason, Huisman and

Mahieu [53] introduce a three-regime MRS model of Type I (with dependent regimes)

which separates the behaviour of base and spike prices. They use one regime to capture

base prices, one regime to capture spikes, and one regime to return prices to base levels

following a spike: we label these regimes b, s and r respectively. The authors specify a

transition matrix of the form

P =

r b s

r

b

s


0 1 0

0 p 1− p
1 0 0

 ,



Background 37

where p is the only parameter to be estimated. The dynamics of the hidden regime

process is as follows. Suppose, for simplicity, the process starts in the base regime, then

the process stays in the base regime for a geometrically distributed amount of time with

parameter p, after which the process transitions to the spike regime for one time step,

and then to the spike-reverting regime for one time step, and then back to the base

regime where it stays for a geometrically distributed amount of time. There are clearly

shortcomings of this model, namely the model does not allow for consecutive spikes while

this is clearly a feature in the market [25].

Higgs and Worthington [49] apply the model of Huisman and Mahieu [53] to Australian

electricity markets. In their paper they compare the performance of Huisman and

Mahieu’s model with a simple i.i.d. model, and an AR(1) model. They find that Huis-

man and Mahieu’s model is best in terms of predicting prices, both in and out-of-sample,

that the probability of switching to the spike regime varies across markets (5% in NSW

up to 10% in VIC), the size of spikes vary between markets, with SA having the largest

average spikes, and that interconnectors appear to have lowered prices in QLD and SA.

They acknowledge the limitations of Huisman and Mahieu’s model and flag this as an

area for future research, along with extending MRS models to include exogenous factors

and a multivariate analysis of the NEM markets.

In 2003, MRS models for electricity prices started to evolve in two directions simul-

taneously. One set of literature develops MRS models of Type II (with independent

regimes), while another develops MRS models of Type I (with dependent regimes), in-

cluding exogenous factors in their analyses. The former aims to overcome the shortfalls

of Huisman and Mahieu’s model and this is where MRS models of Type II (with inde-

pendent regimes) are born. The first of the independent regime models is presented in

Huisman and de Jong [52] where a two-regime model is proposed. Their paper models

base prices by an AR(1) regime and captures spikes by a Gaussian distribution. They

apply their model to the Dutch APX market, compare it to Huisman and Mahieu’s

dependent regime model [53] and a simple AR(1) model. It is unclear how they fit the

model to data in this paper. They state that the Kalman filter is used to get a soft

classification of states in the model, and this soft classification is for weighting the like-

lihood function. However, it is not obvious how they apply Kalman filter methodology

to MRS models with independent regimes.

Since then, there has been a plethora of literature applying MRS models with inde-

pendent regimes to electricity prices, each paper contributing novel aspects to the area.

Of note, Weron et al. [103] propose a two-regime model with log-normally distributed

spikes and Bierbrauer et al. [17, 18] propose two-regime models with Pareto spikes and

exponential spikes, respectively. All three papers model log-prices and conclude that
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log-normal spikes are best. Weron [101] challenges the idea of modelling log-prices and

concludes that modelling raw prices can be advantageous. Janczura and Weron [58]

introduce heteroskedastic variance structures to within-regime dynamics by modelling

base prices with an autoregressive constant elasticity of variance (CEV) model

Bt = α+ φBt−1 + σ|Bt−1|γεt,

where α, φ, σ and γ are parameters, and {εt} is a sequence of i.i.d. N(0,1) random

variables. Janczura and Weron [58] also introduce shifted regimes into the literature.

A shifted regime is a regime that can only capture prices above (or below) a specified

level. For example, a shifted log-normal distribution, with shifting parameter q, can only

capture prices above the level q. Janczura and Weron [58] motivate shifted regimes by

citing that shifting is necessary for the calibration procedure to correctly separate spikes

(and drops) from ‘normal’ price behaviour. More recently, Regland and Lindström [87]

introduce Gamma distributed spikes to the MRS modelling literature.

Until 2010 it had gone unnoted that estimation for independent regime models was

underdeveloped. Up until that time, papers did not properly detail how they fit their

model to data and it is unclear if the methods they use are theoretically valid. In

2012 two papers addressing this issue appeared. One paper by Janczura and Weron

[60] develops an approximate maximum likelihood method which we explore in more

detail in Sections 2.3.3 and 3.1. The other, by Regland and Lindström [87], compares

the algorithm of Janczura and Weron [60] to another maximum likelihood method and

a Bayesian method utilising an MCMC algorithm. However, they neither detail their

new maximum likelihood method, nor mention any philosophical difference between

maximum likelihood and Bayesian methods. It is the aim of this thesis to develop new

algorithms for exact maximum likelihood and Bayesian inference for these models.

In parallel, the literature examining exogenous factors affecting electricity markets using

MRS models with dependent regimes was evolving. The first of these papers is Mount

et al. [77] who use a two-regime model of Type I, where both regimes are AR(1) pro-

cesses and include exogenous predictors. They also include exogenous factors in the

switching probabilities of the hidden Markov chain via a logistic transform of a linear

combination of exogenous variables. They use data from the PJM market in the United

States, and show that reserve margin and load can be used to predict mean prices and

regime switches. Huisman [51] notes that reserve margin is not often available to the

market and uses temperature as a proxy. His analysis is similar to Mount et al. [77] and

concludes that temperature is a significant predictor of spikes, but notes that temper-

ature does not provide as much information as the reserve margin. Becker et al. [13]
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model Queensland’s electricity prices using a two-regime model where within-regime dy-

namics are modelled as independent, scaled, beta random variables that dependend on

exogenous factors. Becker et al. [13] agree with Huisman [51] concluding that weather

can have a significant impact on prices. Karakatsani and Bunn [66] also make use of

MRS models with dependent regimes when analysing the impact of fundamentals on

electricity prices. More recently, the PhD thesis of Knapik [68] uses MRS models with

dependent regimes to examine the effects of load, water reservoir level, temperature and

wind on prices and switching probabilities.

These two avenues of literature were then recombined by Janczura and Weron [59] when

they produced a review article of MRS models for electricity prices and extended this

literature by fitting a MRS model with independent regimes and time-varying parameters

to electricity prices. They fit their models using their approximate algorithm and then,

post hoc, use kernel smoothing methods to estimate transition probabilities with seasonal

fluctuations. Another link between the two streams of literature came via the Masters

thesis of Norén [80], which looks at MRS models with independent regimes and transition

probabilities that depend on exogenous variables. Norén employs the approximation of

the EM algorithm developed by Janczura and Weron to estimate model parameters.

2.3.3 Estimation of MRS models for electricity prices

Due to the specification of MRS models, the distribution of each observation depends

the hidden regime sequence, and therefore the likelihood is written as a marginal distri-

bution. Let x = (x0, ..., xT ) be a sequence of observed prices, and R = (R0, ..., RT ) be a

sequence of unobserved regimes where each Rt lives on the state space S = {1, ...,M}.
Then, the likelihood is the marginal distribution

L(θ) := fθX(x) =
∑
R∈R

fθX,R(x,R) =
∑
R∈R

fθX|R(x|R)fθR(R), (2.5)

where R is the space of all possible regime sequences of length T 1. The number of

sequences in R is MT . For most realistic datasets, it is computationally infeasible to

enumerate all MT sequences and the sum in (2.5) cannot be calculated as it is presented.

The same problem arises for hidden Markov models (HMMs), which can be seen as

simplifications of MRS models where the observations only take discrete values and are

independently distributed, given the hidden regime. In the context of HMMs, the sum

(2.5) is made computationally feasible by the forward algorithm [11], while maximisation

1Note that in this section we use the notation fθX|Y (x|y) for the conditional density of X given Y
evaluated at the point x, y, and with parameters θ. This notation is necessary to avoid ambiguity.
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of the likelihood is commonly performed via the Baum-Welch algorithm [11], which is a

specific case of the EM algorithm [29] and uses the backward algorithm [11].

Hamilton [44, 45] extends the methods for HMMs to MRS models with dependent

regimes by extending the forward algorithm, developing a new algorithm to replace

the backward algorithm and applying the EM algorithm. Kim [67] refines the work of

Hamilton, developing a more efficient implementation of Hamilton’s algorithm which

mimics the backward algorithm for HMMs. In this section we review the algorithms of

Hamilton and Kim which are used for inference of MRS model of Type I (dependent

regime models). As we shall see, these methods are extended by Janczura and Weron

[60] to develop an approximate algorithm for MRS models of Type II (with independent

regimes), and are related to our own methods (Chapter 3).

Likelihood evaluation for dependent-regime models: The forward algorithm

Define xr:s = (xr, xr+1, ..., xs) for r ≤ s, then, observe that the definition of conditional

densities can be used to write the likelihood as

L(θ) := fθX(x) = fθX0
(x0)

T∏
t=1

fθXt|X0:t−1
(xt|x0:t−1).

The forward algorithm calculates fθX0
(x0) and fθXt|X0:t−1

(xt|x0:t−1) for t = 1, 2, ..., T,

from which it is straightforward to calculate the likelihood or log-likelihood.

Recall, {Rt}t∈N is a Markov chain that lives on the state space S = {1, ...,M} and

has transition probabilities pij , i, j ∈ S. The forward algorithm is initialised with

probabilities Pθ(R0 = i) = πi; πi is commonly taken to be the stationary probabilities of

the hidden Markov chain {Rt}t∈N. Using the law of total probability and the definition

of conditional probability, the first term, fθX0
(x0), is calculated as

fθX0
(x0) =

∑
i∈S

fθX0,R0
(x0, i)

=
∑
i∈S

fθX0|R0
(x0|i)Pθ(R0 = i)

=
∑
i∈S

fθX0|R0
(x0|i)πi.

The density fθX0|R0
(x0|i) is known from the model specification. Similar arguments

can be used to construct a recursive procedure to calculate fθXt|X0:t−1
(xt|x0:t−1) for



Background 41

t = 1, ..., T :

fθXt|X0:t−1
(xt|x0:t−1) =

∑
i∈S

fθXt,Rt|X0:t−1
(xt, i|x0:t−1)

=
∑
i∈S

fθXt|Rt,X0:t−1
(xt|i,x0:t−1)Pθ(Rt = i|x0:t−1)

=
∑
i∈S

fθXt|Rt,X0:t−1
(xt|i,x0:t−1)

×
∑
j∈S

Pθ(Rt = i|Rt−1 = j,x0:t−1)Pθ(Rt−1 = j|x0:t−1)

=
∑
i∈S

fθXt|Rt,X0:t−1
(xt|i,x0:t−1)

∑
j∈S

Pθ(Rt−1 = j|x0:t−1)pji,

where fθXt|Rt,X0:t−1
(xt|i,x0:t−1) is also known from the model specification. The proba-

bilities Pθ(Rt−1 = j|x0:t−1), can be calculated using Bayes’ Theorem,

Pθ(Rt−1 = j|x0:t−1) =
fθXt−1|Rt−1,X0:t−2

(xt−1|j,x0:t−2)Pθ(Rt−1 = j|x0:t−2)

fθXt−1|X0:t−2
(xt−1|x0:t−2)

, (2.6)

and are known as the forward probabilities. Required in Equation (2.6) are the prediction

probabilities,

Pθ(Rt−1 = i|x0:t−2) =
∑
j∈S

pjiPθ(Rt−2 = j|x0:t−2). (2.7)

In some applications, the forward and prediction probabilities may be quantities of

interest [57], or used for model checking [62] and also in the backward algorithm.

Maximum likelihood for MRS models with dependent regimes using the EM

algorithm

Hamilton’s forward algorithm is a computationally feasible way to evaluate the log-

likelihood, from which it is possible to use ‘black-box’ optimisation methods to find the

MLEs. However, it is common to use the EM algorithm [29, 76] instead, particularly

when the ‘E-step’ and ‘M-steps’ of the algorithm are available in closed form. The EM

algorithm for MRS models with dependent regimes [45] can be seen as an extension

of the Baum-Welch algorithm for hidden Markov models [9–11]. The EM algorithm, as

described in Section 2.2.3, proceeds by iterating between constructing functionsQ(θ,θn),

and then maximising Q with respect to θ ∈ Θ, where Θ is the parameter space, which

results in a sequence {θn}n∈N that converges to local maximisers of the likelihood. The
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function Q is constructed as

Q(θ,θn) = E
[
log fθX|R(x,R)|x;θn

]
.

The EM algorithm for MRS models with dependent regimes proceeds as follows [45].

Define ηij as the number of transitions from state i to state j in the sequence R =

(R0, ..., RT ) and let I(·) be the indicator function. The joint log-density of x and R can

be written as

log fθX,R(x,R)

= log fθX|R(x|R) + logPθ(R)

= log fθX0|R0
(x0|R0) +

T∑
t=1

log fθXt|Rt,X0:t−1
(xt|Rt,x0:t−1) + logPθ(R)

=
∑
j∈S

log{fθX0|R0
(x0|j)}I(R0=j) +

T∑
t=1

∑
j∈S

log{fθXt|Rt,X0:t−1
(xt|j,x0:t−1)}I(Rt=j)

+
∑
i,j∈S

log p
ηij
ij +

∑
i∈S

log π
I(R0=j)
j

=
∑
j∈S

I(R0 = j) log{fθX0|R0
(x0|j)}+

T∑
t=1

∑
j∈S

I(Rt = j) log{fθXt|Rt,X0:t−1
(xt|j,x0:t−1)}

+
∑
i,j∈S

ηij log pij +
∑
i∈S

I(R0 = j) log πj .

Taking the expectation given parameters θn and observed values x0:T (i.e. with respect

to Pθn(R|x0:T )) yields

Q(θ,θn) =
∑
j∈S

Pθn(R0 = j|x0:T ) log{fθX0|R0
(x0|j)}

+
T∑
t=1

∑
j∈S

Pθn(Rt = j|x0:T ) log{fθXt|Rt,X0:t−1
(xt|j,x0:t−1)}

+
∑
i,j∈S

E[ηij |x0:T ;θn] log pij +
∑
i∈S

Pθn(R0 = j|x0:T ) log πj .

The densities fθX0|R0
(x0|j) and fθXt|Rt,X0:t−1

(xt|j,x0:t−1), j ∈ S, t = 1, ..., T are given by

the model specification. For example, if Regime i is a Gaussian AR(1) regime then

fθXt|Rt,X0:t−1
(xt|i,x0:t−1) =

1
√

2πσi
e−(xt−αi−φixt−1)2/(2σ2

i ). (2.8)

The smoothed probabilities, also known as smoothed inferences, Pθn(Rt = j|x0:T ), re-

quired to construct Q are obtained using a backward recursion after running the forward
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algorithm with parameters θn, and storing the forward and prediction probabilities. This

backward recursion was developed by Kim [67] and is derived as follows. First, note that

Pθn(RT = j|x0:T ) is already given by the last iteration of the forward algorithm. For

t = T − 1, ..., 0,

Pθn(Rt = j|x0:T ) =
∑
i∈S

Pθn(Rt = j, Rt+1 = i|x0:T )

=
∑
i∈S

Pθn(Rt = j|Rt+1 = i,x0:T )Pθn(Rt+1 = i|x0:T )

=
∑
i∈S

Pθn(Rt = j|Rt+1 = i,x0:t)Pθn(Rt+1 = i|x0:T )

=
∑
i∈S

Pθn(Rt+1 = i|Rt = j,x0:t)Pθn(Rt = j|x0:t)

Pθn(Rt+1 = i|x0:t)
Pθn(Rt+1 = i|x0:T )

=
∑
i∈S

p
(n)
ji

Pθn(Rt = j|x0:t)Pθn(Rt+1 = i|x0:T )

Pθn(Rt+1 = i|x0:t)
,

where p
(n)
ij means the pij parameter under θn. Here the third equality holds since, given

Rt+1, Rt is independent of xt+1:T [55]. Intuitively we can think of this as xt+1:T giving

us no more information than Rt+1 provides about Rt.

In the case that Rt = j ∈ SAR, the process is defined by Xt = αj +φjXt−1 +σjεt, where

αj , φj and σj are parameters, and {εt} is a sequence of i.i.d. N(0,1) random variables.

If we assume

log fθX0|R0
(x0|j) = g(x0),

and g does not vary with parameters θ, then we can express the maximiser of Q at the

(n + 1)th iteration of the EM algorithm, θn+1, for n ≥ 1, as the following system of

equations [60].

φ
(n+1)
j =

T∑
t=1

Pθn(Rt = j|x0:T )xt−1B1,t

T∑
t=1

Pθn(Rt = j|x0:T )xt−1B2,t

,

α
(n+1)
j =

T∑
t=1

Pθn(Rt = j|x0:T )(xt − φ(n+1)
j xt−1)

T∑
t=1

Pθn(Rt = j|x0:T )

,

(σ2
j )

(n+1) =

T∑
t=1

Pθn(Rt = j|x0:T )(xt − α(n+1)
j − φ(n+1)

j xt−1)2

T∑
t=1

Pθn(Rt = j|x0:T )

,
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where

B1,t = xt − xt−1 −

T∑
t=1

Pθn(Rt = j|x0:T )(xt − xt−1)

T∑
t=1

Pθn(Rt = j|x0:T )

,

B2,t =

T∑
t=1

Pθn(Rt = j|x0:T )xt−1

T∑
t=1

Pθn(Rt = j|x0:T )

− xt−1.

In general, the switching probabilities are updated using the following [67]

p
(n+1)
ij =

T∑
t=1

Pθn(Rt = j|x0:T )
p

(n)
ij Pθn(Rt−1 = i|x0:t−1)

Pθn(Rt = j|x0:t−1)
T∑
t=1

Pθn(Rt−1 = i|x0:T )

, (2.9)

which rely on the smoothed, forward and prediction probabilities. Recall that we may

specify the πj ’s as the stationary distribution of the Markov chain {Rt}, as parameters to

be determined or some fixed distribution. However, note that the derivation of Equation

(2.9) implicitly assumes the terms πj are unrelated to the parameters pij , which is not

the case if the stationary distribution of {Rt} is used to specify the initial distribution of

the chain. Nonetheless, we expect this issue to have a vanishing affect on the MLEs as

the sample size grows, since the dependence of the likelihood on the initial distribution

will be overwhelmed by other terms in the likelihood (provided, of course, that the

Markov chain {Rt} is ergodic).

Thus, we implement the EM algorithm by initialising it with a guess of the true parame-

ters, then alternating between the forward and backward algorithms and calculating the

maximisers of Q. The algorithm terminates when the step size is below a prespecified

tolerance, i.e. |θn+1 − θn|∞ < ε where ε is some small tolerance.

Estimation of MRS models with independent regimes

The EM-like algorithm Currently the approximate method developed by Janczura

and Weron [60] is used for inference for MRS models of Type II. We label this algorithm

the ‘EM-like’ algorithm because of its resemblance to the EM algorithm; however, this

is not the EM algorithm and no theory surrounding convergence is available. Simula-

tions show that, for some cases, the EM-like algorithm can perform well [60]; however,

examples can be constructed where the EM-like algorithm fails to recover the true pa-

rameters. We present and analyse the EM-like method in detail in Section 3.1. Related
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to this, Regland and Lindström [87] examine the EM-like algorithm for MRS models

with independent regimes, and conclude that it works well compared to MCMC and

other maximum likelihood methods for their datasets. However, they detail neither

their implementation of the EM algorithm, nor their method for likelihood evaluation,

for which no computationally feasible method has been presented yet.

Monte Carlo Expectation Maximisation A tractable but approximate alternative

to the EM and EM-like algorithms is Monte Carlo Expectation Maximisation (MCEM)

[100], which has not been used in the electricity pricing literature to date. We do not

investigate the MCEM algorithm for electricity price models further, since we develop

exact likelihood methods in Sections 3.2-3.4, rather we simply mention MCEM for com-

pleteness. The MCEM algorithm has the same recipe as the EM algorithm, except the

E-step is replaced by a Monte Carlo approximation. The idea is, if the hidden regime

sequence can be sampled from the distribution fθn(R|x), then the sum in the E-step

can be approximated as

E
[
log fθX,R(x,R)|x;θn

]
= E

[
log fθX|R(x|R)|x;θn

]
+ E

[
log fθR(R)|x;θn

]
=
∑
R∈R

log{fθX|R(x|R)}fθnR|X(R|x) +
∑
R∈R

log{fθR(R)}fθnR|X(R|x)

≈
J∑
j=1

1

J
log{fθX|R(x|R∗j )}fθnR|X(R∗j |x) +

J∑
j=1

1

J
log{fθR(R∗j )}fθnR|X(R∗j |x)

where R∗j for j = 1, ..., J are samples from the fθnR|X(R|x). Obviously J is chosen such

that J � 2T to make the problem feasible. The strong law of large numbers ensures

that, as J →∞ the approximation converges to the true value. Due to the Monte Carlo

error introduced by this approximation, the monotonicity property of the EM algorithm

is lost, however, it has been shown that the algorithm gets close to a maximiser with a

high probability [19] for some cases.

Typical methods for sampling from the distribution, fθnR|X(R|x), are rejection sampling

or MCMC algorithms. Sampling from fθnR|X(R|x) via MCMC algorithms is discussed in

Section 4.2.

Bayesian methods An alternative parameter inference paradigm is Bayesian infer-

ence, where parameters are treated as random variables rather than unknown constants.

The goal of Bayesian inference is to infer the distribution of the parameters given ob-

served data, which is known as the posterior distribution. Section 2.2.4 provides a brief
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introduction to Bayesian inference. For MRS models, the posterior distribution is not

analytically available and numerical methods are needed to approximate it. Typically

Markov Chain Monte Carlo algorithms are used (introduced in Section 2.2.5 and ex-

plored in Chapter 4). To our knowledge, there is just one paper that mentions Bayesian

methods for MRS models with independent regimes in existing literature: Regland and

Lindström [87] which briefly compares maximum likelihood and Bayesian methods. They

simulate a single realisation of length 5000 of a 3-regime MRS model with independent

regimes, recover point estimates of the parameters in a Bayesian framework using an

MCMC algorithm, and compare these to likelihood-based estimates. They use their

MCMC algorithm to generate a single MCMC chain of length 20,000, the first 20% of

which is discarded as burn-in, and they use the rest of the samples to calculate poste-

rior inferences. They do not detail which point estimates they report from the poste-

rior distribution. They conclude that likelihood-based inferences compare favourably to

Bayesian-based inferences, while more MCMC iterations are needed for a more accurate

representation of the posterior distribution.

2.3.4 Detrending methods

As mentioned earlier, models of electricity prices are typically built out of two parts, a

deterministic trend component, Tt and a stochastic component Xt. This section reviews

literature focusing on the trend component Tt. The trend component is typically broken

up into two parts, a periodic short-term seasonal component (STSC), st, which can

capture weekly periodic behaviour, and a long-term component (LTC), `t, which can

capture mean price movements over periods of months and years. In electricity price

modelling literature, typical models for the LTC are:

• piecewise-constant functions and linear trends, e.g. [49] where the time series is

projected onto piecewise-constant functions,

• superpositions of sinusoidal functions, e.g. [16, 33, 38, 42], where the time series

is projected onto (typically one, two or three) sinusoidal functions of varying fre-

quencies,

• wavelets, e.g. [59, 60, 101], where prices are recursively projected onto wavelet

functions at progressively coarser scales,

• smoothing splines [71], where prices are projected onto basis functions, commonly

piecewise cubics (smoothing splines are less common in the electricity pricing lit-

erature),

• utilising the forward price, [15, 80], where the trend price is the forward price.
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The STSC is commonly modelled using piecewise-constant functions, as in De Jong [27].

There are numerous papers reviewing different models for the LTC and their effectiveness

[57, 71, 82, 83]. Lisi and Nan [71] compare a range of models, including those mentioned

above, to log-price data from the Pennsylvania-New Jersey-Maryland (PJM), Nord-Pool

(NP) and Amsterdam Power Exchange (APX) markets. The comparison metrics they

use focus on three aspects: (i) the residuals are stationary (that is, when the trend

is removed from the data, the resultant series is stationary), (ii) the residuals are not

periodic, (iii) out-of-sample predictions must be improved by the method.

To test (i) two models are fitted to the residuals, one with an extra seasonal component

(modelled using a regression spline) and one without the extra seasonal component.

The models are then compared to see if there is a significant difference between them

and if there is no statistically significant difference then condition (i) is passed. Point

(ii) is tested similarly: two models are fitted to the residuals, one with an extra term

capturing weekly dependence; the fitted models are then compared, and if the extra

term capturing weekly dependence is insignificant then the model passes test (ii). To

test (iii) a regression model is fitted to the residuals (this regression model includes

exogenous factors, demand and margin) and predictions made. The forecast performance

is measured by evaluating the out-of-sample mean-squared error and mean absolute error

between the prediction and the observed test data. These tests are all conducted across

24 different load periods for the APX and NP markets and over 48 load periods for the

PJM market. They conclude that the best LTC model uses smoothing splines, while

the best STSC model uses piecewise-constant functions and is estimated by trimmed

means to avoid bias from extreme prices. Nowotarski et al. [81] briefly note that spline

forecasting methods can perform poorly for longer range predictions.

Nowotarski et al. [82] compare 300 different models for the long-term trend compo-

nent. The models they consider are based on either piecewise-constant functions, su-

perpositions of sinusoids or wavelet methods. They fit all 300 models to data from

New South Wales, European Energy Exchange (EEX), Nord-Pool (NP), New England

Pool (NEP), New York Independent System Operator (NYISO) and Pennsylvania-New

Jersey-Maryland (PJM) markets, and compare their predictive performance over a range

of forecast time horizons. They conclude that wavelet-based methods are superior to

sine-based methods for forecasting up to one year ahead as measured by three out-of-

sample error measures (mean absolute error, mean squared error and mean absolute

percentage error). They also find that an LTC model based on the Coiflets wavelet

of order 4 is best. This specification also includes a linear decay to median prices, is

calibrated to a three-year window, using the wavelet filter recursively 6 times, and is

estimated after removing extreme values from the dataset and replacing them with the



Background 48

mean deseasonalised price. They note there is not much difference between the methods

using wavelets and wavelet-based methods outperform the rest. In their concluding re-

marks they also mention alternative models they have not considered. They agree with

Stevenson et al. [95] in that using forward prices may not be wise, since they can be

misleading, particularly in illiquid forwards markets.

Nowotarski and Weron [83] reach a similar conclusion regarding the superiority of wavelet

models when they investigate the importance of modelling the long-term seasonal com-

ponent of electricity prices for use in day-ahead forecasting. This study differs from

[82] since the datasets used are different – hourly prices are modelled rather than daily

average prices – and they also consider the Hodrick Prescott filter. They conclude that

wavelet-base LTC methods are best as measured by weekly-weighted mean absolute er-

ror (the mean absolute error normalised by dividing by the mean weekly price), and

that the Hodrick Prescott filter performs poorly.

Janczura et al. [57] investigate the effect of extreme prices on estimating the seasonal

component from electricity price series. They explore a range of different definitions of

spikes, ranging from fixed price thresholds, where prices over a certain level are classified

as spikes; to using a recursive filter where prices are recursively removed from the data if

they differ from the mean by 3 standard deviations or more, and the mean and standard

deviation are recalculated each time a spike is removed; to classifying prices as spikes

if they have over a 0.5 posterior probability of belonging to an extreme price regime of

an MRS model fitted to the data. They remove extreme prices from the data using the

different definitions and replace them with the mean of the detrended data, and then

estimate the trend components on this altered dataset. The LTC model that they choose

is based on the Daubechies wavelet family, and they estimate an S6 approximation of the

data. They compare the methods by simulating datasets using MRS models, applying

these detrending methods and comparing the true trend to the estimated trend. They

also re-fit a stochastic MRS model to the residuals and observe how close the parameters

of the re-estimated MRS model are to the true parameters. They conclude that the

classification of prices using MRS models is best in terms of recovering the parameters

of the simulated data. In this paper, extreme prices were replaced by the mean of

the deseasonalised data. However, there are many other methods proposed to replace

extreme values, e.g. by a neighbouring point [38], by the mean of the two neighbouring

points, or ‘similar day’ values [17] for example. Trueck et al. [96] explore some of these

alternatives and suggest further work is needed to determine which is best.



Chapter 3

Likelihood methods for MRS

models with independent regimes

For MRS models of Type I (with dependent regimes), the densities

fθXt|Rt,X0:t−1
(xt|i,x0:t−1)

are simple and given directly by the model specification (e.g. Equation (2.8)), and the

forward algorithm of Hamilton [44, 45] presented in Section 2.3.3 is an effective tool1.

The same forward algorithm is theoretically applicable to MRS models with independent

regimes (Type II and Type III models); however, it is not computationally feasible, even

for relatively small datasets, since more information about the hidden sequence is needed

to specify the conditional densities above. Specifically, the missing information required

is the time of the last observations from each regime.

For MRS models of Type II there is the added complexity of unobserved values of the

within-regime processes. Figure 3.1 illustrates this strange dependence structure for

MRS models of Type II. For MRS models of Type III, the problem is slightly simpler

since there are no unobserved values of the within-regime processes. Theoretically, the

densities fθXt|Rt,X0:t−1
(xt|i,x0:t−1) can be determined but this is an O(M t) operation,

where M is the number of regimes, but this is not computationally feasible for practical

values of M or T , where T + 1 is the length of the observed price sequence, x0:T . This

is the main challenge to overcome when evaluating the likelihood for MRS models with

independent regimes.

1In this chapter we use the notation fθX|Y (x|y) for the conditional distribution of X given Y under
the parameters θ, since it is more descriptive and necessary.

49
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Figure 3.1: Simulation of an MRS model of Type II with two independent regimes;
an AR(1) base regime and an i.i.d. spike regime. To write down the distribution of
the observation at time t = 13, we need to know either the observation immediately
before it, circled in green, or the time that the last observed price from that regime
occurred, highlighted by the pink box. The value circled in green is unobserved and
hence unknown. And since the regime sequence is unobserved we do not actually know
the last time the process was in the AR(1) regime, i.e. we do not know which time point
to put the pink box around.

This chapter details exact and approximate likelihood evaluation and maximisation tech-

niques for MRS models with independent regimes, specifically focusing on models for

electricity prices. That is, we restrict our attention to models with either AR(1) or

i.i.d regimes. However, we believe our methods can be extended to more general mod-

els.

First, in Section 3.1, we examine the approximate algorithm of Janczura and Weron

[60] who extend the works of Hamilton [44, 45] and Kim [67] and develop an ad-hoc

algorithm for inference for MRS models of Type II. Their algorithm is motivated by,

and similar to, the EM algorithm, so we title it the EM-like algorithm. However, the

convergence results of the EM algorithm do not carry over to the EM-like algorithm,

and there is currently no guarantee the algorithm will converge to the true parameters

or MLEs. Simulations have shown that the EM-like algorithm can produce reasonable

results [60], however it is easy to construct examples where the EM-like algorithm fails,

as we do in Section 3.1.

We then present our own exact and computationally feasible algorithms for MRS models

of Types II and III. In Section 3.2 we present a forward algorithm for likelihood evalu-

ation, then in Section 3.3 we build on Section 3.2 and develop a backward algorithm to
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calculate smoothed inferences which enables us to construct the EM algorithm presented

in Section 3.4. We discuss our methods in Section 3.5.

3.1 The ‘EM-like’ algorithm

In the existing literature, there is currently no computationally feasible way to imple-

ment the EM algorithm for independent regime models [28, 60]. In particular, there is no

efficient way to compute the E-step exactly (except when the within-regime processes are

all i.i.d. in which case we have a hidden Markov model with continuous observation dis-

tributions). An efficient algorithm to approximately infer the parameters of MRS models

of Type II, inspired by the EM algorithm of Hamilton [45], was developed Janczura and

Weron [60] which we label the EM-like algorithm. This is not the EM algorithm and

none of the EM theory holds.

For MRS models of Type II, the EM-like algorithm overcomes the problem of compu-

tational infeasibility by replacing lagged values for Regime i with sensible values, b̃
(n)
t−1,i

which are described as expectations [60],

E[Bi
t|x0:t;θn], (3.1)

where Bi
t := I(Rt = i)xt + I(Rt 6= i)

(
αi + φiB

i
t−1 + σiε

i
t

)
.

Simply put, whenever an observation xt−1 appears in an expression related to Regime i

in the EM algorithm in Section 2.3.3, it is replaced with b̃
(n)
t−1,i at the nth iteration. So,

the E-step of the nth iteration of the EM-like algorithm requires calculating the forward

probabilities for t = 1, ..., T using the recursion

P̃θn(Rt−1 = j|x0:t−1) =

fθn
Xt−1|Rt−1,B

(j)
t−2

(
xt−1|j, b̃(n)

t−2,j

) ∑
i∈S

p
(n)
ij P̃θn(Rt−2 = i|x0:t−2)∑

j∈S
fθn
Xt−1|Rt−1,B

(j)
t−2

(
xt−1|j, b̃(n)

t−2,j

) ∑
i∈S

p
(n)
ij P̃θn(Rt−2 = i|x0:t−2)

.

(3.2)

Assuming Regime i is an AR(1) regime, then the densities fθn are

fθn
Xt−1|Rt−1,B

(j)
t−2

(
xt−1|j, b̃(n)

t−2,j

)

=
1√

2π
(
σ

(n)
i

)2
exp

− 1

2
(
σ

(n)
i

)2

(
xt−1 − α(n)

i − φ
(n)
i b̃

(n)
t−2,j

)2

 .
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This recursion is initialised with the parameter P̃θn (R0 = i|x0) = ρ
(n)
i . We include a

tilde ( ˜ ) over the probabilities of the EM-like algorithm to differentiate them from

the smoothed and filtered probabilities calculated using an exact implementation of the

EM algorithm. Also part of the E-step, the smoothed probabilities are calculated for

t = T − 1, T − 2, ..., 0, using the backward recursion

P̃θn(Rt = j|x0:T ) =
∑
i∈S

p
(n)
ji

P̃θn(Rt = j|x0:t)P̃θn(Rt+1 = i|x0:T )∑
j∈S

p
(n)
ji P̃θn(Rt = j|x0:t)

.

The M-step of the EM-like algorithm for AR(1) regimes is,

φ
(n+1)
j =

T∑
t=1

P̃θn(Rt = j|x0:T )b̃
(n)
t−1,jB1,t

T∑
t=1

P̃θn(Rt = j|x0:T )b̃
(n)
t−1,jB2,t

,

α
(n+1)
j =

T∑
t=1

P̃θn(Rt = j|x0:T )(xt − φ(n+1)
j b̃

(n)
t−1,j)

T∑
t=1

P̃θn(Rt = j|x0:T )

,

B1,t = xt − b̃(n)
t−1,j −

T∑
t=1

P̃θn(Rt = j|x0:T )(xt − b̃(n)
t−1,j)

T∑
t=1

P̃θn(Rt = j|x0:T )

,

B2,t =

T∑
t=1

P̃θn(Rt = j|x0:T )b̃
(n)
t−1,j

T∑
t=1

P̃θn(Rt = j|x0:T )

− b̃(n)
t−1,j ,

(σ2
j )

(n+1) =

T∑
t=1

P̃θn(Rt = j|x0:T )(xt − α(n+1)
j − φ(n+1)

j b̃
(n)
t−1,j)

2

T∑
t=1

P̃θn(Rt = j|x0:T )

,

and ρ
(n+1)
i = P̃θn(R0 = i|x0:T ).

The b̃
(n)
t,i are calculated recursively

b̃
(n)
t,i = P̃θn(Rt = i|x0:t)xt + P̃θn(Rt 6= i|x0:t−1)

(
αi + φib̃

(n)
t−1,i

)
. (3.3)

Janczura and Weron [60] conduct simulation studies and show that this algorithm seems

to work well for the datasets they generate. However, no theoretical results are available

that show convergence of, or error bounds for, the EM-like algorithm and we cannot be

sure the parameter estimates produced by the EM-like algorithm are consistent.
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This is exemplified in Example 3.1, courtesy of Gary Glonek [41].

Example 3.1. Suppose Y1, Y2, ..., YT are i.i.d. N(µ, σ2) where both parameters are un-

known. Assume Y1, Y2, ..., Yt are observed and denote their observations y1, y2, ..., yt,

respectively, and suppose Yt+1, ..., YT are missing.

The true MLEs are

µ̂ =
1

t

t∑
i=1

yi and σ̂2 =
1

t

t∑
i=1

(yi − µ̂)2. (3.4)

The EM algorithm works by replacing the sufficient statistics for the parameters by

their conditional expectations. (Note that the conditioning is trivial in this case because

the data are independent.) The EM algorithm requires the log of the joint density,

log fθY 1:t,Y t+1:T
(y1:t,Y t+1:T ), where θ = (µ, σ2). We can write this joint density as

log fθY 1:t,Y t+1:T
(y1:t,Y t+1:T )

= log

 t∏
i=1

1
√

2πσ
e
−

1

2σ2
(yi−µ)2

T∏
j=t+1

1
√

2πσ
e
−

1

2σ2
(Yj−µ)2


= −

T

2
log 2π −

T

2
log σ2 −

1

2σ2

(
t∑
i=1

y2
i +

T∑
i=t+1

Y 2
i

)
+

µ

σ2

(
t∑
i=1

yi +
T∑

i=t+1

Yi

)
−
Tµ

2σ2
.

The E-step corresponds to replacing the missing data terms,
T∑

i=t+1
Yi and

T∑
i=t+1

Y 2
i , by

their conditional expectations:

T∑
i=t+1

Yi ← (T − t)µ̂n,

T∑
i=t+1

Y 2
i ← (T − t)(µ̂2

n + σ̂2
n),

where µ̂n and σ̂n are the parameters at the nth iteration of the EM algorithm. The

M-step can be seen to be

µ̂n+1 ←
1

T
{tµ̂+ (T − t)µ̂n},

σ̂2
n+1 ←

1

T
{t(σ̂2 + µ̂2) + (T − t)(σ̂2

n + µ̂2
n)− 2µ̂n(tµ̂+ (T − t)µ̂n) + T µ̂2

n}

=
1

T
{t(σ̂2 + µ̂2) + (T − t)σ̂2

n − 2tµ̂nµ̂+ tµ̂2
n},
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where µ̂ and σ̂2 are the true MLEs in Equation (3.4). It can be shown that the iterations

will converge to the true MLEs and that they are the fixed point of the iterations.

Consider now an EM-like algorithm in which the missing observations yt+1, ..., yT are

replaced by their conditional expectations,

E [Yj |y1, y2, ..., yt, θn] = µ̂n, for j = t+ 1, ..., T,

where θn = (µ̂n, σ̂n), at the E-step of the iterations. This corresponds to the omission

of the term σ̂2
n in the EM algorithm. In the same notation as for the EM algorithm,

T∑
i=t+1

Yi ← (T − t)µ̂n,

T∑
i=t+1

Y 2
i ← (T − t)(µ̂2

n),

and the M-step is

µ̂n+1 ←
1

T
{tµ̂+ (T − t)µ̂2

n},

σ̂2
n+1 ←

1

T
{t(σ̂2 + µ̂2)− 2tµ̂nµ+ tµ̂2

n}.

It can be shown that the iterations will converge to µ̂ and
t

T
σ̂2, respectively, so this

EM-like algorithm fails to converge to the true MLE of σ2.

This suggests that an EM-like approach might work when the log-joint-density is a linear

function of the missing data, but not in general. Moreover, since the log-joint-density for

MRS models with Gaussian AR(1) regimes is not linear, then we should not expect the

EM-like algorithm to perform well, particularly when estimating variance parameters.

Furthermore, examples of MRS models of Type II where the EM-like algorithm fails

to get close to the true parameter values can easily be constructed. The first example,

Example 3.2, is a ‘hard’ problem since it is not obvious which observations belong to

which regime, as shown in Figure 3.2.

Example 3.2. Consider the following MRS model of Type II,

Xt =

Bt, if Rt = 1,

Yt, if Rt = 2,
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Figure 3.2: A plot of a simulated dataset for Example 3.2. The blue line is the
entire process and points from Regime 1 are highlighted by red dots. Note that if the
observations were not highlighted in red, it would not be obvious which points belong
to which regime, this is why we label it a ‘hard’ problem.

where Bt is an AR(1) process,

Bt = 0.95Bt−1 + 0.2εt,

with {εt} being a sequence of i.i.d. N(0, 1) random variables, Yt is an i.i.d. sequence of

N(2, 1) random variables, and {Rt}t∈N is a Markov chain with state space S := {1, 2},
transition matrix

P =

[
0.5 0.5

0.2 0.8

]
,

and initial probability distribution (1, 0), so the process always starts in Regime 1. Thus,

the true parameter vector is

θ̂ =
(
α̂, φ̂, σ̂1, µ̂, σ̂2, p̂11, p̂22

)
= (0, 0.95, 0.2, 2, 1, 0.5, 0.8).

We simulated 20 realisations of length T = 2000 from this model and used the EM-like

algorithm to try to recover the true parameters. Figure 3.2 plots an example of one of

these realisations. To give the algorithm the best chance of converging to the true param-

eters, we initialise the EM-like algorithm at the true parameter values. The parameters

recovered by the EM-like algorithm are summarised in Figure 3.3. For comparison, the

MLEs obtained using our EM algorithm (Section 3.4) are also shown. Notice, in Figure

3.3, that the EM-like algorithm performs poorly, while our exact method performs much

better.

We can also construct ‘easier’ examples, where the EM-like algorithm fails, such as

Example 3.3. This is an ‘easier’ problem since we can almost eyeball which observations
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Figure 3.3: Boxplots of the parameters recovered by the EM-like algorithm (right)
and the MLEs recovered by our EM algorithm (left), for Example 3.2. The blue line
represents the true parameter value. Notice that the EM-like algorithm is not able to
recover the parameters, while the EM algorithm performs very well.

come from which regime, as shown in Figure 3.4.

Example 3.3. Consider the following MRS model of Type II,

Xt =

Bt, if Rt = 1,

Yt, if Rt = 2,

where {Bt} is an AR(1) process,

Bt = 0.95Bt−1 + 0.1εt,

with {εt} a sequence of i.i.d. N(0, 1) random variables, Yt is a i.i.d. sequence of N(3, 2)

random variables, and {Rt}t∈N is a Markov chain with state space S := {1, 2}, transition

matrix

P =

[
0.9 0.1

0.5 0.5

]
,

and initial probability distribution (1, 0), so the process always starts in Regime 1.

We simulated 40 realisations of this process were simulated, each of length T = 2000,

and the EM-like algorithm used to recover the parameters. For comparison, our EM

algorithm was used to obtain the MLEs. One of the simulated datasets is plotted in Fig-

ure 3.4. Figure 3.5 summarises the parameter estimates obtained from both algorithms

using box plots. Notice the EM-like algorithm struggles to recover the parameters of the

i.i.d. regime, µ and σ2, and the parameter p22.

We observed in Examples 3.2 and 3.3 the EM-like algorithm was not able to recover the

parameters, so the EM-like algorithm cannot be trusted to estimate the true parameters
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Figure 3.4: A dataset simulated from the model in Example 3.3
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Figure 3.5: Box plots of parameter estimates recovered by the EM-like algorithm
(right) and the MLEs recovered by the EM algorithm (left), for the model in Ex-
ample 3.3. Notice the EM-like algorithm struggles to recover the parameters of the
i.i.d. regime, µ and σ2, and the parameter p22.

in a practical problem.

Furthermore, the values b̃
(n)
t−1,i are described as the expectation (3.1), however they can

be seen to be approximations by the following arguments. First, use linearity of the

expectation operator and the definition of Bi
t above to write E[Bi

t|x0:t;θn] as

E[Bi
t|x0:t;θn] = E[I(Rt = i)xt + I(Rt 6= i)

(
αi + φiB

i
t−1 + σiε

i
t

)
|x0:t;θn]

= xtE[I(Rt = i)|x0:t;θn] + αiE[I(Rt 6= i)|x0:t;θn]

+ φiE[I(Rt 6= i)Bi
t−1|x0:t;θn] + σiE[I(Rt 6= i)εit|x0:t;θn].

As in [60], we have the following

E[I(Rt = i)|x0:t;θn] = Pθn(Rt = i|x0:t),

E[I(Rt 6= i)|x0:t;θn] = Pθn(Rt 6= i|x0:t),

E[I(Rt 6= i)εit|x0:t;θn] = E
[
E[I(Rt 6= i)εit|Rt 6= i,x0:t;θn]|x0:t;θn

]
= E

[
I(Rt 6= i)E[εit|Rt 6= i,x0:t;θn]|x0:t;θn

]



Likelihood methods for MRS models with independent regimes 58

= E [I(Rt 6= i)0|x0:t;θn]

= 0,

where the last equality holds as εit ∼ i.i.d. N(0, 1). The last term,

E[I(Rt 6= i)Bi
t−1|x0:t;θn] = E

[
E[I(Rt 6= i)Bi

t−1|x0:t;θn, Rt 6= i]|x0:t;θn
]
,

cannot be simplified. Since {Rt}t∈N is a Markov chain, knowing Rt 6= i gives us some

knowledge of Rt−1, and the knowledge of Rt−1 informs us about the relationship between

xt−1 and Bi
t−1. Thus Bi

t−1 is not independent of Rt 6= i. Also, knowing xt gives

information about which regime xt−1 could have come from, so, given xt−1, then Bi
t−1

is dependent on xt. If these dependencies are incorrectly ignored, then this term does

simplify and we arrive at the expression in Equation (3.3).

3.2 A novel forward algorithm

In this section we develop a computationally feasible forward algorithm to evaluate the

log-likelihood for MRS models of Types II and III. We saw in Examples 3.2 and 3.3 that

our methods perform well for MRS models of Type II when the EM-like algorithm fails.

To our knowledge, no literature exists for exact likelihood methods for MRS models of

Type II or III, so our contributions here are completely novel.

The general idea of our algorithm is to augment the hidden Markov chain with counters

that record the last time each AR(1) regime was visited. This augmented process is still

a Markov chain, which means similar arguments used to construct the forward-backward

algorithm for MRS models with dependent regimes can be used to construct a forward

and backward algorithms for these models. It turns out that our methods are related

to the forward and backward algorithms for hidden semi-Markov models, where the

hidden process is also augmented with a counter and the augmented hidden process is

then a Markov chain [106], although this link was only realised after the fact. Though

similar, the algorithms for hidden semi-Markov models are not applicable to the models

considered here.

To describe the algorithm, recall our notation for MRS models. Let {Rt}t∈N be a Markov

chain with state space S = {1, 2, . . . ,M} and transition matrix P = [pij ]i,j∈S , where

Rt ∈ S represents which hidden regime the MRS process is in at time t. Suppose the

set of states SAR = {1, . . . , k < M} are AR(1) regimes and all other regimes are i.i.d.
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Define another Markov chain

{Ht}t∈N = {(N t, Rt)}t∈N = {(Nt,1, . . . , Nt,k, Rt)}t∈N, (3.5)

(Ht is for hidden) where Nt,j ∈ N+ ∪∆j counts the number of lags since the process Rt

was last in Regime j before time t, for each AR(1) regime j = 1, ..., k, and we define ∆j

to represent when there is no time τ ∈ {0, 1, ..., t− 1} with Rτ = j, for each j = 1, ..., k.

Furthermore, to help describe the evolution of {Ht} succinctly, define ∆i 6= ∆j for

i 6= j, i, j ∈ SAR and define the operations ∆i + 1 = ∆i, 0 + ∆i = ∆i and ∆i −∆i = 0

for i ∈ SAR. The augmented Markov chain {Ht}t∈N lives on the state space

T := (N+ ∪∆1)× ...× (N+ ∪∆k)× S.

To describe the transitions of the Markov chain {Ht}, let

N := (N1, ..., Nk) ∈ (N+ ∪∆1)× ...× (N+ ∪∆k)

be an arbitrary vector of counters, with Nr 6= Ns unless r = s. Define 1 to be a row

vector of ones of length k, and ei to be a row vector of length k with all entries being 0

except the ith entry which is 1. Also, define

N (−i) := N −Niei = (N1, ..., Ni−1, 0, Ni+1, ..., Nk).

The transition probabilities of {Ht} are

Pθ(Ht+1 = (N t+1, j)|Ht = (N t, i)) =


pij , for i ∈ ScAR, j ∈ S,N t+1 = N t + 1,

pij , for i ∈ SAR, j ∈ S,N t+1 = N
(−i)
t + 1,

0, otherwise.

(3.6)

In words, when the current state is Ht = (N t, i) and i is not an AR(1) regime (so there

is no counter associated with state i), then, at time t+ 1, Rt transitions to state j with

probability pij and all the counters are advanced by 1 to N t+1 = N t + 1, since there

has been one more time step since {Rt} was last in any state with a counter (any state

in SAR). When the current state is Ht = (N t, i), where i is an AR(1) regime, then Rt

transitions to any state j ∈ S with probability pij , the counter for Regime i, Nt+1,i, is

set to 1, since the last time in state i was t, and all other counters are advanced by 1.

All other transition probabilities for {Ht} are 0.

The state space of {Ht} is countably infinite. However, due to the way {Ht}t∈N is
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initialised and evolves, many states in T are inaccessible for {Ht}t∈N for t ∈ {0, 1, ..., T <

∞}, and this makes our algorithm computationally feasible. Specifically, the Markov

chain Ht is initialised with a probability distribution

P(H0 = (N0,1, ..., N0,k, j)) =

πj , for N0,i = ∆i, i ∈ SAR, j ∈ S,

0, otherwise.
(3.7)

The distribution π := (π1, ..., πM ) can be any proper probability distribution, but is

commonly taken to be either the stationary distribution of {Rt}, or a point mass on a

single state, or, when used as part of the EM algorithm, the probabilities Pθn(H0|x0:T )

calculated at the previous iteration of the EM algorithm. The following lemma gives

the number of states that {Ht} can be in at time t.

Lemma 3.1. Define, S(0) := (∆1, ...,∆k) and S(t), for t = 1, 2, ..., T , as the set of all

vectors N := (N1, ..., Nk) such that

(i) Nj ∈ {1, 2, ..., t} ∪∆j for all j ∈ SAR,

(ii) there are at most min(t, k) elements of N with Nj 6= ∆j,

(iii) Nj 6= Nm for all j 6= m, j,m ∈ SAR.

Given {Ht} is initialised with the distribution in Equation (3.7), it is only possible for

Ht to reach states (N t, i) where N t ∈ S(t) and i ∈ S. The cardinality of S(t) is

|S(t)| =
min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!.

Proof. First, we explain why S(t) contains all possible values of the counters of Ht.

At time t = 0 the chain, {Ht} = {(N t, Rt)}, is initialised with the distribution in

Equation (3.7), so

S(0) := {(∆1, ...,∆k)}.

At t = 1 the previous regime, R0 = i, was either an element of SAR, in which case

N1,i = 1, and all other counters keep the value ∆j , j ∈ SAR \ {i}, since the chain is

yet to visit the states in SAR \ {i}. Otherwise, R0 = i was an element of ScAR and the

process {Rt} is yet to visit any state with a counter, so

N1,j = N0,j + 1 = ∆j + 1 = ∆j , for j ∈ SAR.
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Thus

S(1) = S(0) ∪ {(∆1, ...,∆i−1, 1,∆i+1, ...,∆k)|i ∈ SAR}.

For t = 2, first consider the case when the counters at t− 1 were of the form

N t−1 = (∆1, ...,∆i−1, 1,∆i+1, ...,∆k), for i ∈ SAR.

If the regime at time t− 1, was R1 = j ∈ SAR \ {i}, then N2,j = 1, since j was the state

just visited, N2,i = 2 as it has been one more time step since the chain visited state i,

and N2,m = ∆m for all m ∈ SAR \{{i}, {j}}, as the chain is still yet to visit these states.

If the regime at time t − 1, was R1 = i, then N2,i = 1 as the chain just visited state i,

and N2,m = ∆m for all m ∈ SAR \ {i}, as the chain is yet to visit any of these states.

Otherwise, at time t−1, the state was R1 = j ∈ ScAR, in which case Nt,i = Nt−1,i+1 = 2,

and Nt,m = ∆m for m ∈ SAR \ {i} as the chain is still yet to visit these states.

Alternatively, for t = 2, the counters at time t− 1 were of the form

N t−1 = (∆1, ...,∆k).

In this case, if at t − 1 the regime was R1 = j ∈ SAR, then N2,j = 1 since the state

j was the state just visited and all other counters remain the same, N2,k = ∆k for

k ∈ SAR \ {j}, as these states are yet to be visited. Otherwise the regime at t − 1 was

j ∈ ScAR and all AR(1) states are yet to be visited, so N t = (∆1, ...,∆k). Thus

S(2) := S(1) ∪A ∪B,

where

A := {(∆1, ...,∆i−1, 2,∆i+1, ...,∆k)|i ∈ SAR},

B := {(∆1, ...,∆i−1, 2,∆i+1, ...,∆j−1, 1,∆j+1, ...,∆k)|i 6= j, i, j ∈ SAR}.

In general, at time t, either {Rt} has never visited state j ∈ SAR, in which caseNt,j = ∆j ,

or {Rt} last visited j at time tj , in which case Nt,j = t − tj ∈ {1, 2, ..., t} (this is part

(i) of the definition). Since the process {Rt} can only be in one regime at a time, it

follows that Nt,j 6= Nt,m when j 6= m (part (iii) of the definition). Also, at time t, the

regime chain {Rt} could only possibly have visited min(t, k) possible states (this is part

(ii) of the definition).

Now, to prove the cardinality of S(t). The elements of S(t) are of the form (N1, ..., Nk).

At time t, let m be the possible number of counters that are not equal to ∆, so m is an
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element of {0, 1, ...,min(t, k)}. For each m ∈ {0, 1, ...,min(t, k)}, there are
(
k
m

)
ways of

choosing which m of the k counters are not equal to ∆. Next, the value of each of these

non-∆ counters needs to be specified. Each counter takes a distinct value in {1, ..., t},
so there are

(
t
m

)
ways of choosing the value of the m counters. There are m! possible

permutations to allocate the chosen values to the counters. So, in total there are

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!

elements in S(t).

As a consequence of Lemma 3.1, if N t /∈ S(t) then Pθ(Ht = (N t, j)) = 0 for any j ∈ S.

So the elements of the set S(t) partition the space of all counters which the process {Ht}
possibly has positive probability of reaching. Thus, for any (measurable) set A and any

t, the law of total probability can be applied as

Pθ(A) =
∑

N t∈S(t)

∑
j∈S

Pθ(Ht = (N t, j), A). (3.8)

We will use this fact multiple times in the following.

To describe our algorithm, first define L(0)
i := ∆i, and L(t)

i := {1, 2, ..., t} ∪ ∆i, and

notice that the log-likelihood of the data, `(θ) := log fθX0:T
(x0:T ), can be written as

`(θ) = log


∑
i∈SAR

∑
m∈L(0)i

fθX0|R0,N0,i
(x0|i,m)Pθ(R0 = i)


+ log

 ∑
i∈ScAR

fθX0|R0
(x0|i)Pθ(R0 = i)


+

T∑
t=1

log


∑
i∈SAR

∑
m∈L(t)i

fθXt|Rt,Nt,i,X0:t−1
(xt|i,m,x0:t−1)Pθ(Rt = i,Nt,i = m|x0:t−1)


+

T∑
t=1

log

 ∑
i∈ScAR

fθXt|Rt,X0:t−1
(xt|i,x0:t−1)Pθ(Rt = i|x0:t−1)


= log

∑
i∈S

∑
N0∈S(0)

fθX0|H0
(x0|(N0, i))Pθ(H0 = (N0,i, i))


+

T∑
t=1

log

∑
i∈S

∑
N t∈S(t)

fθXt|Ht,X0:t−1
(xt|(N t, i),x0:t−1)Pθ(Ht = (N t, i)|x0:t−1)

 .
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Our forward algorithm calculates the probabilities Pθ(Ht = (N t, i)|x0:t−1), for t =

1, ..., T , i ∈ S and N t ∈ S(t), by calculating the following

• α̂
(t−1)
N t−1(j) := Pθ(Ht−1 = (N t−1, j)|x0:t−1) for j ∈ S,

• α̃
(t)
N t

(j) := fθHt,Xt|X0:t−1
((N t, j), xt|x0:t−1) for j ∈ S,

• c(t) := fθXt|X0:t−1
(xt|x0:t−1),

for t = 1, 2, ..., T . We have to treat the calculations of some quantities differently for

t = 0, but then can proceed iteratively for t = 1, 2, ..., T .

Using the definition of conditional densities, calculate

α̃
(0)
N0

(j) := fθH0,X0
((N0, j), x0)

= fθX0|H0
(x0|(N0, j))Pθ(H0 = (N0, j)),

for N0 ∈ S(0) and j ∈ S. Here, fθX0|H0
(x0|(N0, j)) is known from the model specifica-

tion. Then using this, the law of total probability, calculate

c(0) := fθX0
(x0)

=
∑

N0∈S(0)

∑
j∈S

fθH0,X0
((N0, j), x0)

=
∑

N0∈S(0)

∑
j∈S

α̃
(0)
N0

(j)

Next, using the definition of conditional densities, calculate

α̂
(0)
N0

(j) := Pθ(H0 = (N0, j)|x0)

=
fθH0,X0

((N0, j), x0)

fθX0
(x0)

=
α̃

(0)
N0

(j)

c(0)
, (3.9)

for j ∈ S.

The algorithm then proceeds iteratively for t = 1, ..., T . First, for i ∈ S, calculate the

prediction probabilities

a
(t)
N t

(i) := Pθ(Ht = (N t, i)|x0:t−1)

=
∑
j∈S

Pθ(Ht = (N t, i), Rt−1 = j|x0:t−1). (3.10)
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By definition, at time t− 1, the counters either transition from N t−1 to N t = N t−1 + 1

when Rt−1 ∈ ScAR, or from N t−1 to N t = N
(−j)
t−1 + 1 when Rt−1 = j ∈ SAR. In the

former case all elements of N t are different from 1, and in the latter case exactly the

jth element of N t is equal to 1. So, given all elements of N t are different from 1, then

Rt−1 ∈ ScAR, and given the jth element of N t is 1, then Rt−1 = j ∈ SAR.

Thus, in the case where all elements of N t are different from 1, and thus Rt−1 ∈ ScAR,

then the prediction probability (3.10) equals

∑
j∈ScAR

Pθ(Ht = (N t, i), Rt−1 = j|x0:t−1)

=
∑
j∈ScAR

Pθ(Ht−1 = (N t − 1, j), Rt = i|x0:t−1),

=
∑
j∈ScAR

Pθ(Ht−1 = (N t − 1, j)|x0:t−1)Pθ(Rt = i|Ht−1 = (N t − 1, j),x0:t−1)

=
∑
j∈ScAR

α̂
(t−1)
N t−1(j)pji,

where the forward probabilities, defined as

α̂
(t−1)
N t−1(j) := Pθ(Ht−1 = (N t−1, j)|x0:t−1),

for N t−1 ∈ S(t−1) and j ∈ S, are known from the previous iteration of the algorithm.

The last equality holds because

Pθ(Rt = i|Ht−1 = (N t − 1, j),x0:t−1) = pji,

which comes from the fact Rt is independent of N t−1 and x0:t−1 given Rt−1.

In the other case, where exactly the jth element of N t is equal to 1, and thus Rt−1 =

j ∈ SAR and the counters transition from N t−1 to N t = N
(−j)
t−1 + 1, then

a
(t)
N t

(i) = Pθ (Ht = (N t, i) , Rt−1 = j|x0:t−1) ,

=
∑

m∈L(t−1)
j

Pθ (Ht = (N t, i) , Rt−1 = j,Nt−1,j = m|x0:t−1) . (3.11)

When Rt−1 = j, Rt = i, N t and Nt−1,j = m are known, then, by definition the value of

the counter at t− 1 is known, N t−1 = N t − 1 +mej =: N j,m
t−1, and thus (3.11) is equal

to

∑
m∈L(t−1)

j

Pθ
(
Ht−1 =

(
N j,m

t−1, j
)
, Rt = i,Nt,j = 1|x0:t−1

)
,
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=
∑

m∈L(t−1)
j

Pθ
(
Ht−1 =

(
N j,m

t−1, j
)
|x0:t−1

)
× Pθ

(
Rt = i,Nt,j = 1|Ht−1 =

(
N j,m

t−1, j
)
,x0:t−1

)
=

∑
m∈L(t−1)

j

α̂
(t−1)

Nj,m
t−1

(j)pji,

for all i ∈ S and all N t ∈ S(t) with Nt,j = 1. The last equality holds from the fact that

Pθ(Rt = i,Nt,j = 1|Ht−1 = (N j,m
t−1, j),x0:t−1) = pji, since Nt,j = 1 with probability 1

given Rt−1 = j, and Rt is independent of N t−1 and x0:t−1 given Rt−1.

Using the definition of conditional density, calculate α̃
(t)
N t

(j) for t ≥ 1 as

α̃
(t)
N t

(j) := fθHt,Xt|X0:t−1
((N t, j), xt|x0:t−1)

= Pθ(Ht = (N t, j)|x0:t−1)fθXt|Ht,X0:t−1
(xt|(N t, j),x0:t−1)

= Pθ(Ht = (N t, j)|x0:t−1)fθXt|Nt,j ,Rt,X0:t−1
(xt|m, j,x0:t−1)

= a
(t)
N t

(j)fθXt|Nt,j ,Rt,X0:t−1
(xt|m, j,x0:t−1),

where fθXt|N t,j ,Rt,X0:t−1
(xt|m, j,x0:t−1) is given by the model specification. Using the

values α̃
(t)
N t

(j), the law of total probability, then calculate for t ≥ 1

c(t) := fθXt|X0:t−1
(xt|x0:t−1)

=
∑

N t∈S(t)

∑
j∈S

fθHt,Xt|X0:t−1
((N t, j), xt|x0:t−1)

=
∑

N t∈S(t)

∑
j∈S

α̃
(t)
N t

(j).

The terms c(t) are used to calculate the forward probabilities as follows

α̂
(t)
N t

(j) := Pθ(Ht = (N t, j)|x0:t)

= Pθ(Ht = (N t, j)|xt,x0:t−1)

=
fθHt,Xt|X0:t−1

((N t, j), xt|x0:t−1)

fθXt|X0:t−1
(xt|x0:t−1)

=
α̃

(t)
N t

(j)

c(t)
,

for N t ∈ S(t), j ∈ S and t ≥ 1). The algorithm then proceeds to the next iteration,

calculating a
(t+1)
N t+1

(j) using the values α̂
(t)
N t

(j).
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Input: Data, x0:T , parameters, θ.
Output: The log-likelihood `(θ) := log fθX(x).
Initialise πj for j = {1, ...,M}; set ` = 0; c(0) = 0;
for j = 1, 2, ...,M do

α̃
(0)
∆1,...,∆k

(j) = fθX0|H0
(x0|(∆1, ...,∆k, j))π(j);

end

c(0) =
M∑
j=1

α̃
(0)
∆1,...,∆k

(j);

for j = 1, 2, ...,M do

α̂
(0)
∆1,...,∆k

(j) =
α̃

(0)
∆1,...,∆k

(j)

c(0)
;

end
for t = 1, 2, ..., T do

for N t ∈ S(t) do
for i = 1, ...,M do

if any Nt,p == 1 then

a
(t)
N t

(i) =
∑

m∈L(t)p

α̂
(t−1)

N i,m
t−1

(p)ppi;

else

a
(t)
N t

(i) =
M∑

j=k+1

α̂
(t−1)
N t−1(j)pji;

end

α̃
(t)
N t

(i) = a
(t)
N t

(i)fθXt|Ht,X0:t−1
(xt|(N t, i),x0:t−1);

end

end

c(t) =
M∑
j=1

∑
N t∈S(t)

α̃
(t)
N t

(i);

for all i and all N t ∈ S(t) do

α̂
(t)
N t

(i) =
α̃

(t)
N t

(i)

c(t)
;

end

` = `+ log c(t);

end
return `;

Figure 3.6: Pseudo-code implementing our forward algorithm

Finally, the log-likelihood is given by

`(θ) =

T∑
t=0

log(c(t)). (3.12)

The algorithm is presented in pseudo-code in Figure 3.6.
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Lemma 3.2. The complexity of our forward algorithm is

C = 2M +M2 +M

min(T,k)∑
m=0

(
T

m

)(
k

m

)
m!

+
T−1∑
t=1

M2

min(t,k−1)∑
m=0

(
t

m

)(
k − 1

m

)
m! + 2M

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!


≤ O(M2T k+1kk).

Proof. The complexity, C, of this algorithm is calculated by counting all multiplications

required. Recall that there are k elements in SAR, M elements in S, (M − k) elements

in ScAR, and
min(t,k)∑
m=0

(
t
m

)(
k
m

)
m! elements in S(t).

(a) Our forward algorithm first calculates

α̃
(0)
N0

(j) = fθX0|H0
(x0|(N0, j))Pθ(H0),

for N0 ∈ S(0) and j ∈ S. This takes M multiplications, one for each j ∈ S.

(b) Calculating c(0) takes no multiplications.

(c) Calculating

α̂
(0)
N0

(j) =
α̃

(0)
N0

(j)

c(0)
,

for N0 ∈ S(0), and j ∈ S, takes M multiplications, one for each j ∈ S.

Then the iterations for t = 1, 2, ..., T start.

(d) The algorithm calculates

a
(t)
N t

(i) =
∑
j∈ScAR

α̂
(t−1)
N t−1(j)pji,

for t ∈ {1, ..., T}, i ∈ S, and N t ∈ S(t) such that Nt,j 6= 1 for all j ∈ SAR. To

calculate these, the multiplication α̂
(t−1)
N t−1(j)pji needs to be done for every j ∈ SAR,

i ∈ S, and every N t − 1 ∈ S(t−1), for each t = 1, 2, ..., T . For a given t this requires

no. of i∈S︷︸︸︷
M

no. of j∈SAR︷ ︸︸ ︷
(M − k)

no. of N t−1∈S(t−1)︷ ︸︸ ︷min(t−1,k)∑
m=0

(
t− 1

m

)(
k

m

)
m!
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multiplications. So in total there are

M(M − k)
T∑
t=1

min(t−1,k)∑
m=0

(
t− 1

m

)(
k

m

)
m!


multiplications for this step.

(e) Our algorithm also calculates

a
(t)
N t

(i) = pji
∑

m∈L(t−1)
j

α̂
(t−1)

(Nj,m
t−1)

(j),

for t ∈ {1, ..., T}, i ∈ S, and all N t ∈ S(t) with Nt,j = 1, j ∈ SAR. For a given t ≥ 1,

there are

no. of j∈SAR︷︸︸︷
k

no. of N t∈S(t) with Nt,j=1︷ ︸︸ ︷
min(t−1,k−1)∑

m=0

(
t− 1

m

)(
k − 1

m

)
m!

elements in N t ∈ S(t) with Nt,j = 1, j = {1, 2, ..., k}. Since this calculation is

executed for each i ∈ S and t = 1, 2, ..., T it requires

Mk
T∑
t=1

min(t−1,k−1)∑
m=0

(
t− 1

m

)(
k − 1

m

)
m!


multiplications in total. Thus, calculating all of the a

(t)
N t

(j) terms, for t = 1, ..., T ,

N t ∈ S(t) and j ∈ S, in the algorithm takes

M(M−k)
T∑
t=1

min(t−1,k)∑
m=0

(
t− 1

m

)(
k

m

)
m!

+Mk
T∑
t=1

min(t−1,k−1)∑
m=0

(
t− 1

m

)(
k − 1

m

)
m!


multiplications.

(f) Our algorithm then calculates

α̃
(t)
N t

(j) = a
(t)
N t

(j)fθXt|Rt,Nt,j ,X0:t−1
(xt|j, n,x0:t−1),

for t ∈ {1, ..., T}, j ∈ S, and N t ∈ S(t). This requires

M

T∑
t=1

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!


multiplications in total.

(g) Calculating c(t) requires no multiplications.
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(h) Next, the calculation

α̂
(t)
N t

(j) =
α̃

(t)
N t

(j)

c(t)

only needs to be executed for t ∈ {1, ..., T − 1}, j ∈ S, and N t ∈ S(t). So, in total,

this takes

M
T−1∑
t=1

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!


multiplications.

So the total number of multiplications for the whole algorithm, C, is

α̃
(0)
N0

(j) terms︷︸︸︷
M +

α̂
(0)
N0

(j) terms︷︸︸︷
M

+

a
(t)
Nt

(j) terms︷ ︸︸ ︷
M(M − k)

T∑
t=1

min(t−1,k)∑
m=0

(
t− 1

m

)(
k

m

)
m!

+Mk

T∑
t=1

min(t−1,k−1)∑
m=0

(
t− 1

m

)(
k − 1

m

)
m!



+

α̃
(t)
Nt

(j) terms︷ ︸︸ ︷
M

T∑
t=1

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!

+

α̂
(t)
Nt

(j) terms︷ ︸︸ ︷
M

T−1∑
t=1

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!

 . (3.13)

Noting the following manipulations

T∑
t=1

min(t−1,k)∑
m=0

(
t− 1

m

)(
k

m

)
m!

 =

T−1∑
t=1

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!

+ 1

T∑
t=1

min(t−1,k−1)∑
m=0

(
t− 1

m

)(
k − 1

m

)
m!

 =

T−1∑
t=1

min(t,k−1)∑
m=0

(
t

m

)(
k − 1

m

)
m!

+ 1,

T∑
t=1

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!

 =

T−1∑
t=1

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!

+

min(T,k)∑
m=0

(
T

m

)(
k

m

)
m!,

then we can manipulate the sums over t in Expression (3.13) so they all have common

limits;

M +M +M(M − k) +Mk

+M(M − k)

T−1∑
t=1

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!

+Mk

T−1∑
t=1

min(t,k−1)∑
m=0

(
t

m

)(
k − 1

m

)
m!


+M

T−1∑
t=1

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!

+M

min(T,k)∑
m=0

(
T

m

)(
k

m

)
m!
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+M
T−1∑
t=1

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!


= 2M +M2 +M

min(T,k)∑
m=0

(
T

m

)(
k

m

)
m!

+

T−1∑
t=1

Mk

min(t,k−1)∑
m=0

(
t

m

)(
k − 1

m

)
m! + (2M +M2 −Mk)

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!

 .
By replacing k − 1 in the above by k, we get the upper bound

C ≤ 2M +M2 +M

min(T,k)∑
m=0

(
T

m

)(
k

m

)
m! +

(
M2 + 2M

) T−1∑
t=1

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m!


≤ 2M +M2 +M

min(T,k)∑
m=0

(
T

m

)(
k

m

)
m!

+
(
M2 + 2M

)
(T − 1)

min(T−1,k)∑
m=0

(
T − 1

m

)(
k

m

)
m!

 . (3.14)

Now, noting that k is fixed, observe

min(t,k)∑
m=0

(
t

m

)(
k

m

)
m! ≤

k∑
m=0

(
t

m

)(
k

m

)
m! ≤

k∑
m=0

tm

m!

km

m!
m! ≤ k t

kkk

k!
=

tkkk

(k − 1)!
, (3.15)

where the second inequality follows from the well-known result for binomial coefficients,(
t
m

)
≤ tm

m! . So (3.14) is less than

2M +M2 +M
T kkk

(k − 1)!
+
(
M2 + 2M

)
(T − 1)

[
(T − 1)kkk

(k − 1)!

]
= O

(
M2T k+1kk

)
.

Since k is usually not too large (1 or 2), our algorithm is feasible and is favourable

compared to the naive method, where the sum in Equation (2.5) is calculated directly,

which is O(MT ).

The densities As mentioned above, the densities

fθXt|Ht,X0:t−1
(xt|(N t, i),x0:t−1) = fθXt|Nt,i,Rt,X0:t−1

(xt|m, i,x0:t−1) (3.16)
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are determined by the model specification. For i.i.d. processes this is trivial,

fθXt|Nt,i,Rt,X0:t−1
(xt|m, i,x0:t−1) = fXt|Rt(xt|i)

is the density in the ith i.i.d. regime. For AR(1) regimes it depends on whether the

regimes are specified to evolve only when they are observed (models of Type III), or at

all time points (models of Type II).

The densities for Type III Models Consider the MRS model specification with

independent regimes which evolve only at times when they are observed. Let Regime i

be an AR(1) process from this model. That is,
{
B

(i)
τ(t)

}
t∈N

is an AR(1) process, defined

by

B
(i)
τ(t) = αi + φiB

(i)
τ(t−1) + σiε

(i)
τ(t),

where
{
ε

(i)
τ(t)

}
t∈N

is i.i.d. N(0,1) noise, τ(t) =
t∑̀
=0

I(R` = i) and τ(t− 1) =
t−1∑̀
=0

I(R` = i).

Then the distribution function in this regime is

fθXt|Nt,i,Rt,X0:t−1
(xt|m, i,x0:t−1) =

1
√

2πσi
exp−

1

2σ2
i

(xt − αi − φixt−m)2. (3.17)

The densities for Type II Models Consider the MRS model specification with

independent regimes which evolve at all times points (so AR(1) processes in this model

evolve regardless of whether they are observed or not) as in Figure 3.1. Let Regime i be

an AR(1) process from such a model,
{
B

(i)
t

}
t∈N

, defined by

B
(i)
t = αi + φiB

(i)
t−1 + σiε

(i)
t ,

where
{
ε

(i)
t

}
t∈N

is i.i.d. N(0,1) noise. A recursive argument gives

B
(i)
t = αi + φiB

(i)
t−1 + σiε

(i)
t

= αi + φi(αi + φiB
(i)
t−2 + σiε

(i)
t−1) + σiε

(i)
t

= αi(1 + φi) + φ2
iB

(i)
t−2 + φiσiε

(i)
t−1 + σiε

(i)
t

= αi(1 + φi) + φ2
i (αi + φiB

(i)
t−3 + σiε

(i)
t−2) + φiσiε

(i)
t−1 + σiε

(i)
t

= αi(1 + φi + φ2
i ) + φ3

iB
(i)
t−3 + σiε

(i)
t + φiσiε

(i)
t−1 + φ2

iσiε
(i)
t−2

...

= αi

m−1∑
k=0

φki + φmi B
(i)
t−m + σi

m−1∑
k=0

φki ε
(i)
t−k.
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Now, since ε
(i)
t is i.i.d. N(0,1) then

m−1∑
k=0

φki ε
(i)
t−k ∼ N

(
0,
m−1∑
k=0

φ2k
i

)
. Hence

B
(i)
t |B

(i)
t−m ∼ N

(
αi

m−1∑
k=0

φki + φmi B
(i)
t−m, σ

2
i

m−1∑
k=0

φ2k
i

)

= N

αi
1− φmi

1− φi

+ φmi B
(i)
t−m, σ

2
i

1− φ2m
i

1− φ2
i

 , (3.18)

for any m ∈ N+. So the distribution function when i is an AR(1) regime is

fθXt|Nt,i,Rt,X0:t−1
(xt|m, i,xt−1)

=
12πσ2

i

1− φ2m
i

1− φ2
i

(1/2)
exp


−

xt − αi 1− φmi
1− φi

− φmi xt−m

2

2σ2
i

1− φ2m
i

1− φ2
i




. (3.19)

Other useful results from our forward algorithm As a byproduct of the forward

algorithm the prediction probabilities

a
(t)
N t

(j) := Pθ(Ht = (N t, j)|x0:t−1), (3.20)

and the filtered probabilities,

α̂
(t)
N t

(j) := Pθ(Ht = (N t, j)|x0:t), (3.21)

for N t ∈ S(t) and j ∈ S are calculated. We refer to the prediction (3.20) and filtered

(3.21) probabilities again in Section 3.3 and use them as part of our backward algorithm.

The filtered probabilities, α̂
(t)
N t

(j) := Pθ(Ht = (N t, j)|x0:t), can be used to calculate the

probabilities

P θ(Rt = j|x0:t) =
∑

N t∈S(t)
Pθ(Ht = (N t, j)|x0:t).

Similarly, the prediction probabilities, a
(t)
N t

(j) := Pθ(Ht = (N t, j)|x0:t−1), can be used

to calculate the probabilities

P θ(Rt = j|x0:t−1) =
∑

N t∈S(t)
Pθ(Ht = (N t, j)|x0:t−1).

Remark 3.1. Note, when evaluating the likelihood using our forward algorithm, calcu-

lating α̂
(T )
NT

(j) is unnecessary. This is taken into account in the calculation of complexity
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above. However, if the forward algorithm is to be used as a precursor to our backward

algorithm in Section 3.3, then this step is necessary and adds to the computational

complexity but the complexity remains at worst O(M2T k+1kk).

Remark 3.2. The likelihood could also be evaluated using the following. Define

α
(t)
N t

(j) := fθHt,X0:t
((N t, j),x0:t)

for t = 0, 1, ..., T . First calculate

α
(0)
N0

(j) = fθX0|H0
(x0|(N0, j))Pθ(H0 = (N0, j)).

Then for t = 1, 2, . . . , T and for N t ∈ S(t), j ∈ S calculate

α
(t)
N t

(j) (3.22)

=


∑

i∈ScAR
fθXt|Ht,X0:t−1

(xt|(N t, j),x0:t−1)pijα
(t−1)
N t−1(i), Nt,` 6= 1,∀` ∈ SAR,

t∑
m=1

fθXt|Ht,X0:t−1
(xt|(N t, j),x0:t−1)p`jα

(t−1)

N`m
t−1

(`), Nt,` = 1, for some ` ∈ SAR

(3.23)

where N `m
t−1 = (Nt,1 − 1, . . . , Nt,`−1 − 1,m,Nt,`+1 − 1, . . . , Nt,k − 1). The likelihood is

given by

L(θ) =
∑
j∈S

∑
NT∈S(T )

α
(T )
NT

(j). (3.24)

While this is a more pleasant object than our algorithm above, it is not practical as it

can suffer from underflow.

3.3 A novel backward algorithm

In this section a new backward algorithm is presented, analogous to Baum’s backward

algorithm for HMMs [9–11], and Kim’s backward algorithm for MRS models with de-

pendent regimes [67] (see also Section 2.3.3). Our new backward algorithm gives a

computationally feasible method to calculate smoothed probabilities for MRS models

with independent regimes. Smoothed probabilties are of interest since, as we shall see

in Section 3.4, they can be used as part of the EM algorithm for MRS models with

independent regimes.

Recall our notation for the forward algorithm (Section 3.2) and assume the prediction

probabilities a
(t)
N t

(i) := Pθ(Ht = (N t, i)|x0:t−1) and filtered probabilities α̂
(t)
N t

(i) :=

Pθ(Ht = (N t, i)|x0:t) are known after running the forward algorithm. The goal is to
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calculate the smoothed probabilities

γ
(t)
N t

(i) := Pθ(Ht = (N t, i)|x0:T ),

for t = 0, 1, ..., T , N t = (N1,t, ..., Nk,t) ∈ S(t) and i ∈ S.

Lemma 3.3. The smoothed probabilities can be calculated using the following. Set

γ
(T )
NT

(i) = α̂
(T )
NT

(i), for all i ∈ S, NT ∈ S(T ).

Then, for t = T − 1, T − 2, ..., 0, calculate

γ
(t)
N t

(i) =


α̂

(t)
N t

(i)
∑
j∈S

pij
γ

(t+1)
N t+1(j)

a
(t+1)
N t+1(j)

for i ∈ ScAR, N t ∈ S(t)

α̂
(t)
N t

(i)
∑
j∈S

pij

γ
(t+1)

N
(−i)
t +1

(j)

a
(t+1)

N
(−i)
t +1

(j)
for i ∈ SAR, N t ∈ S(t).

This requires (2k+1)|S(t)|k multiplications for each t ∈ {0, 1, ..., T} and each i ∈ S, and

the total complexity of the algorithm, as measured by the total number of multiplications

is

C ≤ (M2 + 2M)
T k+1kk

(k − 1)!
= O(M2T k+1kk).

Proof. Consider the event {Ht = (N t, i)}, by the definition of {N t}, when i ∈ SAR,

then N t+1 = N
(−i)
t + 1, and when i ∈ ScAR, then N t+1 = N t + 1. Thus, when

Ht = (N t, i) is known, then N t+1 is also known. As a result,

γ
(t)
N t

(i) = Pθ(Ht = (N t, i)|x0:T )

=
∑
j∈S

∑
N t+1∈S(t+1)

Pθ(Ht = (N t, i),Ht+1 = (N t+1, j)|x0:T )

=


∑
j∈S

Pθ
(
Ht = (N t, i),Ht+1 =

(
N

(−i)
t + 1, j

)
|x0:T

)
, for i ∈ SAR,∑

j∈S
Pθ (Ht = (N t, i),Ht+1 = (N t + 1, j) |x0:T ) , for i ∈ ScAR,

(3.25)

for t = 0, 1, ..., T − 1, N t ∈ S(t) and i ∈ S. Since the following arguments are the same

for both cases, i ∈ SAR and i ∈ ScAR, for notational convenience, let N take the value

N
(−i)
t + 1 when i ∈ SAR and the value N t + 1 when i ∈ ScAR.
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Using the definition of conditional densities multiple times, the right hand side of (3.25)

can be written as

∑
j∈S

fθHt,Ht+1,Xt+1:T |X0:t
((N t, i), (N , j) ,xt+1:T |x0:t)

fθXt+1:T |X0:t
(xt+1:T |x0:t)

=
∑
j∈S

[
Pθ(Ht = (N t, i)|x0:t)Pθ (Ht+1 = (N , j) |Ht = (N t, i),x0:t)

×
fθXt+1:T |Ht,Ht+1,X0:t

(xt+1:T |(N t, i), (N , j) ,x0:t)

fθXt+1:T |X0:t
(xt+1:T |x0:t)

]

=
∑
j∈S

Pθ(Ht = (N t, i)|x0:t)pij
fθXt+1:T |Ht,Ht+1,X0:t

(xt+1:T |(N t, i), (N , j) ,x0:t)

fθXt+1:T |X0:t
(xt+1:T |x0:t)

,

(3.26)

where the last equality holds since Pθ (Ht+1 = (N , j) |Ht = (N t, i),x0:t) = pij , from

the definition of {Ht}t∈N and since Ht+1 is independent of x0:t given Ht. Now, noting

that xt+1:T is independent of Ht given Ht+1 and x0:t, then the right hand side of (3.26)

equals

∑
j∈S

Pθ(Ht = (N t, i)|x0:t)pij

fθXt+1:T |X0:t
(xt+1:T |x0:t)

fθXt+1:T |Ht+1,X0:t
(xt+1:T |(N , j),x0:t),

=
∑
j∈S

Pθ(Ht = (N t, i)|x0:t)pij

fθXt+1:T |X0:t
(xt+1:T |x0:t)

fθXt+1:T ,Ht+1|X0:t
(xt+1:T ,Ht+1 = (N , j) |x0:t)

Pθ (Ht+1 = (N , j) |x0:t)

=
∑
j∈S

Pθ(Ht = (N t, i)|x0:t)pij

fθXt+1:T |X0:t
(xt+1:T |x0:t)

fθXt+1:T |X0:t
(xt+1:T |x0:t)Pθ (Ht+1 = (N , j) |x0:T )

Pθ (Ht+1 = (N , j) |x0:t)

=
∑
j∈S

Pθ(Ht = (N t, i)|x0:t)pij
Pθ (Ht+1 = (N , j) |x0:T )

Pθ (Ht+1 = (N , j) |x0:t)

=
∑
j∈S

α̂
(t)
N t

(i)pij
γ

(t)
N (j)

a
(t)
N (j)

.

Writing out N explicitly for the two cases, then

γ
(t)
N t

(i) =



∑
j∈S

α̂
(t)
N t

(i)pij
γ

(t)
N t+1(j)

a
(t)
N t+1(j)

, for i ∈ ScAR,

∑
j∈S

α̂
(t)
N t

(i)pij

γ
(t)

N
(−i)
t +1

(j)

a
(t)

N
(−i)
t +1

(j)
, for i ∈ SAR.
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Now, to prove the complexity result, first consider t fixed. We need to calculate the

ratio
γ

(t+1)
N t+1

(j)

a
(t+1)
N t+1

(j)
for every corresponding N t ∈ S(t) and j ∈ S. This costs M |S(t)| mul-

tiplications. This quantity is independent of i, thus only needs to be done once for a

given t if we save the resulting quantities.

Now consider t, i and N t fixed. The calculation pij
γ

(t+1)
N t+1

(j)

a
(t+1)
N t+1

(j)
is done for every j ∈ S

which costs M multiplications (the division has already been executed and saved). The

sum over j ∈ S results in a single term, which is then multiplied by the corresponding

α̂
(t)
N t

(i), and this costs 1 multiplication. So, for fixed t, i and N t, (assuming the ratio

has already been calculated and saved) we require M + 1 multiplications. We do this

for all i ∈ S and N t ∈ S(t) which costs (M + 1)M |S(t)| multiplications.

So, for a given t we execute M |S(t)|+ (M + 1)M |S(t)| multiplications. This is done for

every t = 0, . . . ., T − 1, so the total number of multiplications is

T−1∑
t=0

M |S(t)|+ (M + 1)M |S(t)|

= (M2 + 2M)
T−1∑
t=0

|S(t)| ≤ (M2 + 2M)
T (T − 1)kkk−1(k + 1)

(k − 1)!

= O(M2T k+1kk),

where we have used similar arguments as those in the proof of Lemma 3.2 to bound the

complexity.

Remark 3.3. The smoothed probabilities Pθ(Ht = (N t, i)|x0:T ) can be used to calculate

the probabilities

Pθ(Rt = i,Nt,i = `|x0:T ) =
∑

N t∈S(t):
Nt,i=`

Pθ(Ht = (N t, i)|x0:T ),

which are used in the EM algorithm in Section 3.4, and

Pθ(Rt = i|x0:T ) =
∑

N t∈S(t)
Pθ(Ht = (N t, i)|x0:T ),

which may also be of interest.
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3.4 The EM algorithm for independent regimes models

In Sections 3.2 and 3.3 we presented new forward and backward algorithms to calculate

the probabilities Pθn(Ht = (N t, i)|x0:T ), which can be used to calculate the smoothed

probabilities Pθn(Rt = i,Nt,i = `|x0:T ) as in Remark 3.3. Here we show how these

probabilities can be used to implement an exact, computationally feasible EM algorithm

for MRS models with independent regimes.

3.4.1 The E-step

Recall that the EM algorithm is an iterative procedure, alternating between an expec-

tation step and a maximisation step. In the expectation step the function Q(θ,θn) is

constructed as

Q(θ,θn) = E[log fθX0:T ,R
(x0:T ,R)|x0:T ;θn] (3.27)

= E[log fθX0:T ,H0,...,HT
(x0:T ,H0, ...,HT )|x0:T ;θn], (3.28)

where R = (R0, ..., RT ) is a sequence of the hidden Markov chain {Rt}, and H0, ...,HT

is a sequence of the corresponding augmented hidden process {Ht}. The information

contained in the sequences R and H0, ...,HT is entirely equivalent but we opt for the

latter representation to remain consistent with, and emphasise the place of, the work in

the previous sections. In the M-step of the algorithm, the maximisers arg max
θ∈Θ

Q(θ,θn)

are found. To describe the EM algorithm for MRS models with independent regimes

recall our notation from our forward and backward algorithms in Sections 3.2 and 3.3.

First observe that, for MRS models, Q(θ,θn) can be written as

Q(θ,θn) (3.29)

= E
[
log fθX0:T ,H0,...,HT

(x0:T ,H0, ...,HT )|x0:T ;θn

]
= E

[
log fθX0:T |H0,...,HT

(x0:T |H0, ...,HT ) + logPθ(H0, ...,HT )|x0:T ;θn

]
= E

[
log fθX0:T |H0,...,HT

(x0:T |H0, ...,HT )|x0:T ;θn

]
+ E

[
logPθ(H0, ...,HT )|x0:T ;θn

]
.

(3.30)

Now, using the augmented hidden Markov chain, {Ht}t∈N from Equation (3.5), Equation

(3.30) can be written in such a way that the function Q is computationally feasible. First

note that, given Ht, xt is independent of Hτ for τ 6= t which, along with the definition

of conditional densities, allows the function log{fθX0:T |H0,...,HT
(x0:T |H0, ...,HT )} to be



Likelihood methods for MRS models with independent regimes 78

written as

log fθX0:T |H0,...,HT
(x0:T |H0, ...,HT )

= log

{
fθX0|H0

(x0|H0)
T∏
t=1

fθXt|Ht,X0:t−1
(xt|Ht,x0:t−1)

}

= log fθX0|H0
(x0|H0) +

T∑
t=1

log fθXt|Ht,X0:t−1
(xt|Ht,x0:t−1)

= log

∏
j∈S

∏
N0∈S(0)

fθX0|H0
(x0|(N0, j))

I(H0=(N0,j))


+

T∑
t=1

log

∏
j∈S

∏
N t∈S(t)

fθXt|Ht,X0:t−1
(xt|(N t, j),x0:t−1)I(Ht=(N t,j))


=
∑
j∈S

∑
N0∈S(0)

I(H0 = (N0, j)) log fθX0|H0
(x0|(N0, j))

+

T∑
t=1

∑
j∈S

∑
N t∈S(t)

I(Ht = (N t, j)) log fθXt|Ht,X0:t−1
(xt|(N t, j),x0:t−1).

Lastly, since fθXt|Ht,x0:t−1
(xt|(N t, j),x0:t−1) = fθXt|Nt,j ,Rt,X0:t−1

(xt|m, j,x0:t−1), and sim-

ilarly for fθX0|H0
(x0|(N t,j , j)), this expression simplifies to

∑
j∈S

∑
m∈L(0)

I(N0,j = m,R0 = j) log fθX0|N0,j ,R0
(x0|m, j)

+

T∑
t=1

∑
j∈S

∑
m∈L(t)

I(Nt,j = m,Rt = j) log fθXt|Nt,j ,Rt,X0:t−1
(Xt|m, j,x0:t−1). (3.31)

Taking the expectation of (3.31) with respect to the distribution fθnH0,...,HT |X0:T
(equiv-

alently the distribution fθnR|X0:T
) gives

E
[
log fθX0:T ,H0,...,HT |X0:T

(x0:T ,H0, ...,HT )|x0:T ;θn

]
=
∑
j∈SAR

∑
m∈L(0)

Pθn(N0,j = m,R0 = j|x0:T ) log fθX0|N0,j ,R0
(x0|m, j)

+
∑
j∈ScAR

Pθn(R0 = j|x0:T ) log fθX0|R0
(x0|j)

+

T∑
t=1

∑
j∈SAR

∑
m∈L(t)

Pθn(Nt,j = m,Rt = j|x0:T ) log fθXt|Nt,j ,Rt,X0:t−1
(xt|m, j,x0:t−1)

+
T∑
t=1

∑
j∈ScAR

Pθn(Rt = j|x0:T ) log fθXt|Rt,X0:t−1
(xt|j,x0:t−1).
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Using similar arguments E
[
logPθ(H0, ...,HT )|x0:T ;θn

]
is found to be

E
[
logPθ(H0, ...,HT )

∣∣∣∣x0:T ,θn

]
= E

log

∏
i∈S

π
I(R0=i)
i

∏
i,j∈S

p
ηij
ij


∣∣∣∣x0:T ,θn


= E

∑
i∈S

I(R0 = i) log πi +
∑
i,j∈S

ηij log pij

∣∣∣∣x0:T ,θn


=
∑
i∈S

Pθn(R0 = i|x0:T ) log πi +
∑
i,j∈S

E [ηij |x0:T ,θn] log pij ,

where ηij is the number of transitions from state Rt−1 = i to state Rt = j in the sequence

R = (R0, R1, ..., RT ). The expectation E [ηij |x0:T ,θn] can be calculated as

E [ηij |x0:T ,θn] = E

[
T∑
t=1

I(Rt−1 = i, Rt = j)

∣∣∣∣x0:T ,θn

]

=
T∑
t=1

E [I(Rt−1 = i, Rt = j)|x0:T ,θn]

=
T∑
t=1

Pθn (Rt−1 = i, Rt = j|x0:T ) .

So, the function Q is

Q(θ,θn)

= E
[
log fθX0:T ,H0,...,HT |X0:T

(x0:T ,H0, ...,HT )|x0:T ;θn

]
=
∑
j∈SAR

∑
m∈L(0)

Pθn(N0,j = m,R0 = j|x0:T ) log fθX0|N0,j ,R0
(x0|m, j)

+
∑
j∈ScAR

Pθn(R0 = j|x0:T ) log fθX0|R0
(x0|j)

+
T∑
t=1

∑
j∈SAR

∑
m∈L(t)

Pθn(Nt,j = m,Rt = j|x0:T ) log fθXt|Nt,j ,Rt,X0:t−1
(xt|m, j,x0:t−1)

+
T∑
t=1

∑
j∈ScAR

Pθn(Rt = j|x0:T ) log fθXt|Rt,X0:t−1
(xt|j,x0:t−1)

+
∑
i∈S

Pθn(R0 = i|x0:T ) log πi +
∑
i,j∈S

T∑
t=1

Pθn (Rt−1 = i, Rt = j|x0:T ) log pij . (3.32)

Lemma 3.4. The joint probabilities are given by

Pθn (Rt−1 = i, Rt = j|x0:T ) = Pθn (Nt,i = 1, Rt = j|x0:T )
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when i ∈ SAR, and

Pθn (Rt−1 = i, Rt = j|x0:T )

=
∑

nt−1∈S(t−1)

Pθn (Rt = j,N t = nt|x0:T )
p

(n)
ij Pθn (Rt−1 = i,N t−1 = nt − 1|x0:t−1)∑

`∈ScAR
p

(n)
`j Pθn(Rt−1 = `,N t−1 = nt − 1|x0:t−1)

(3.33)

when i ∈ ScAR.

Proof. This proof follows similar arguments to those in Kim [67] which develops algo-

rithms for MRS models of Type I (with dependent regimes).

For the case i ∈ SAR, note that Nt,i = 1 if and only if Rt−1 = i and we are done.

When i ∈ ScAR all counters in N t are different from 1, so N t − 1 ∈ S(t−1). Thus

Pθn (Rt−1 = i, Rt = j|x0:T )

=
∑

nt−1∈S(t−1)

Pθn (N t = nt, Rt−1 = i, Rt = j|x0:T )

=
∑

nt−1∈S(t−1)

Pθn (N t = nt, Rt = j|x0:T )Pθn (Rt−1 = i|N t = nt, Rt = j,x0:T )

=
∑

nt−1∈S(t−1)

Pθn (N t = nt, Rt = j|x0:T )Pθn (Rt−1 = i|N t = nt, Rt = j,x0:t−1) .

(3.34)

The last equality uses

Pθn (Rt−1 = i|N t = nt, Rt = j,x0:T ) = Pθn (Rt−1 = i|N t = nt, Rt = j,x0:t−1) ,

which is not obvious, but holds since, given Rt and N t, then xt:T is independent of

Rt−1. Focusing on the term Pθn (Rt−1 = i|N t = nt, Rt = j,x0:t−1) in Equation (3.34),

Pθn (Rt−1 = i|N t = nt, Rt = j,x0:t−1)

=
Pθn (Rt = j|N t = nt, Rt−1 = i,x0:t−1)Pθn (Rt−1 = i|N t = nt,x0:t−1)

Pθn(Rt = j|N t = nt,x0:t−1)

=
Pθn (Rt = j|Rt−1 = i)Pθn (Rt−1 = i|N t = nt,x0:t−1)

Pθn(Rt = j|N t = nt,x0:t−1)
,

=
p

(n)
ij Pθn (N t = nt, Rt−1 = i|x0:t−1)

Pθn(N t = nt, Rt = j|x0:t−1)
,
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where Pθn (Rt = j|Rt−1 = i) =: p
(n)
ij is the pij parameter in θn. In the second equality we

have used the fact that Pθn(Rt = j|N t = nt, Rt−1 = i,x0:t−1) = Pθn(Rt = j|Rt−1 = i),

which holds since, given Rt−1, then Rt is independent of N t and x0:t−1. Now, notice

that

Pθn (N t = nt, Rt−1 = i|x0:t−1) = Pθn (N t−1 = nt − 1, Rt−1 = i|x0:t−1) ,

since i ∈ ScAR. Thus, continuing from the right hand side of Equation (3.34),

∑
nt−1∈S(t−1)

Pθn (N t = nt, Rt = j|x0:T )Pθn (Rt−1 = i|N t = nt, Rt = j,x0:t−1)

=
∑

nt−1∈S(t−1)

Pθn (N t = nt, Rt = j|x0:T )
p

(n)
ij Pθn (N t−1 = nt − 1, Rt−1 = i|x0:t−1)

Pθn(N t = nt, Rt = j|x0:t−1)

=
∑

nt−1∈S(t−1)

Pθn (N t = nt, Rt = j|x0:T )
p

(n)
ij Pθn (N t−1 = nt − 1, Rt−1 = i|x0:t−1)∑

k∈SAR
p

(n)
kj Pθn(N t−1 = nt − 1, Rt−1 = k|x0:t−1)

.

The sum in the denominator is over k ∈ SAR since only when k ∈ SAR is N t − 1

defined.

Remark 3.4. Care should be taken when calculating (3.33) in Lemma 3.4 since the

probabilities Pθn(N t−1 = nt − 1, Rt−1 = k|x0:t−1) can be small and computational

errors may occur.

3.4.2 The M-step

Next, the maximisers, θn+1 = arg max
θ∈Θ

Q(θ,θn), are derived. Conveniently, for the

parameters pij , i, j ∈ S, we can use the work of Hamilton [45],

p
(n+1)
ij =

T∑
t=1

Pθn(Rt = j, Rt−1 = i|x0:T )

T∑
t=1

Pθn(Rt−1 = i|x0:T )

.

However note that to get this analytic update for the p
(n+1)
ij parameters, terms involving

πj in Equation (3.32) have been treated as if they are unrelated to pij , i, j ∈ S, which

is not true when πj is specified as the stationary distribution of the process {Rt}, but

holds for other cases, such as when πj is some predetermined distribution, or when the

πjs are specified as seperate parameters to be inferred. Nonetheless, this simplification

is appropriate if we assume that, as the sample size grows, the contribution of terms

involving R0 become insignificant.
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M-step for i.i.d. regimes The updates for parameters of the i.i.d. regimes can often

be found analytically too.

Lemma 3.5. Suppose Regime i is i.i.d. N(µi, σ
2
i ). The M-step updates µ

(n+1)
i and(

σ
(n+1)
i

)2
are found to be

µ
(n+1)
i =

T∑
t=0

Pθn(Rt = i|x0:T )xt

T∑
t=0

Pθn(Rt = i|x0:T )

,

(
σ

(n+1)
i

)2
=

T∑
t=0

Pθn(Rt = i|x0:T )
(
xt − µ(n+1)

i

)2

T∑
t=0

Pθn(Rt = i|x0:T )

.

Proof. Differentiate Q given by Equation (3.32) with respect to µi and find when the

derivative is zero:

∂Q

∂µi
=

T∑
t=0

Pθn(Rt = i|x0:T ) (xt − µi) = 0,

which leads to

µi =

T∑
t=0

Pθn(Rt = i|x0:T )xt

T∑
t=0

Pθn(Rt = i|x0:T )

. (3.35)

The second derivative test shows that (3.35) is a maximiser. Now differentiate Q with

respect to σ2
i and find when the derivative is zero:

∂Q

∂σ2
i

=
T∑
t=0

Pθn(Rt = i|x0:T )

 1

2σ2
i

−
1

2σ4
i

(xt − µi)2

 = 0.

Thus,

σ2
i =

T∑
t=0

Pθn(Rt = i|x0:T )(xt − µi)2

T∑
t=0

Pθn(Rt = i|x0:T )

. (3.36)

Now, to show that (3.36) is indeed a global maximum, define σ̂2
i to be the value in (3.36)

and σ̃2
i = σ̂2

i + ε for some ε ∈ R. The goal is to show Q(θ̂;θn) − Q(θ̂ + εeσi ;θn) > 0

for any ε 6= 0, where θ̂ is any parameter vector with σi = σ̂i and eσi is a vector of zeros

with 1 in the position corresponding to σi. Since the only terms in Q involving σi are
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the terms involving the density of Regime i,

Q(θ̂;θn)−Q(θ̂ + eσiε;θn)

=

T∑
t=0

∑
m∈L(t)i

Pθn(Rt = i,Nt,i = m|x0:T )

[
log

{
1√

2πσ̂i
2
e
−1

2σ̂2
i

(xt−µi)2
}]

−
T∑
t=0

∑
m∈L(t)i

Pθn(Rt = i,Nt,i = m|x0:T )

[
log

{
1√

2πσ̃i
2
e
−1

2σ̃i
2 (xt−µi)2

}]

=
T∑
t=0

∑
m∈L(t)i

Pθn(Rt = i,Nt,i = m|x0:T )

[
1

2
log

{
σ̃i

2

σ̂i
2

}
− 1

2
(xt − µi)2

(
1

σ̂i
2 −

1

σ̃i
2

)]

=
1

2
log

{
σ̃i

2

σ̂i
2

} T∑
t=0

∑
m∈L(t)

Pθn(Rt = i,Nt,i = m|x0:T )

− 1

2

(
1

σ̂i
2 −

1

σ̃i
2

) T∑
t=0

∑
m∈L(t)

Pθn(Rt = i,Nt,i = m|x0:T ) (xt − µi)2 .

Multiplying the second sum by

T∑
s=0

Pθn(Rs = i|x0:T )

T∑
s=0

Pθn(Rs = i|x0:T )

, and recalling the definition of σ̂i
2

gives

1

2
log

{
σ̃i

2

σ̂i
2

} T∑
t=0

Pθn(Rt = i|x0:T )

− 1

2

(
1

σ̂i
2 −

1

σ̃i
2

) T∑
t=0

Pθn(Rt = i|x0:T ) (xt − µi)2

T∑
s=0

Pθn(Rs = i|x0:T )

T∑
s=0

Pθn(Rs = i|x0:T )

=
1

2
log

{
σ̃i

2

σ̂i
2

} T∑
t=0

Pθn(Rt = i|x0:T )− 1

2

(
1

σ̂i
2 −

1

σ̃i
2

)
σ̂2
i

T∑
s=0

Pθn(Rs = i|x0:T )

=
1

2
log

{
σ̃i

2

σ̂i
2

} T∑
t=0

Pθn(Rt = i|x0:T )− 1

2

(
1− σ̂2

i

σ̃i
2

) T∑
s=0

Pθn(Rs = i|x0:T )

≥ 1

2

(
1− σ̂2

i

σ̃i
2

) T∑
t=0

Pθn(Rt = i|x0:T )− 1

2

(
1− σ̂2

i

σ̃i
2

) T∑
t=0

Pθn(Rt = i|x0:T ),

= 0,

where the last inequality holds since 1− 1
y ≤ log {y} with equality if and only if y = 1.

Thus (3.36) is a maximiser.

Lemma 3.6. Suppose Regime i follows i.i.d. shifted-log-normal dynamics, that is, if Xt

is from regime i, then log(Xt − qi) ∼ N(µi, σ
2
i ), and suppose the parameter qi is known.
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The M-step updates µ
(n+1)
i (qi) and

(
σ

(n+1)
i

)2
are found to be

µ
(n+1)
i =

T∑
t=0

Pθn(Rt = i|x0:T ) log(xt − qi)

T∑
t=0

Pθn(Rt = i|x0:T )

,

(
σ

(n+1)
i

)2
=

T∑
t=0

Pθn(Rt = i|x0:T )
(

log(xt − qi)− µ(n+1)
i

)2

T∑
t=0

Pθn(Rt = i|x0:T )

.

Proof. The proof is similar to the proof of Lemma 3.5.

Lemma 3.7. Suppose Regime i follows an i.i.d. shifted-Gamma distribution, that is, if

Xt is from Regime i, then (Xt − qi) ∼ Gamma(µi, σ
2
i ), and suppose the parameter qi is

known. The M-step update for the scale parameter
(
σ

(n+1)
i

)2
as a function of µi is

(
σ

(n+1)
i (µi)

)2
= µi

T∑
t=0

Pθn(Rt = i|x0:T )(xt − qi)

T∑
t=0

Pθn(Rt = i|x0:T )

.

The update for µi is then found by finding

µ
(n+1)
i = arg max

µ∈(0,∞)

{
− µ log

(
σ

(n+1)
i (µ)

)2
T∑
t=0

Pθn(Rt = i|x0:T )

− log Γ(µ)
T∑
t=0

Pθn(Rt = i|x0:T )

+ (µ− 1)
T∑
t=0

Pθn(Rt = i|x0:T ) log(xt − qi)

− µ
T∑
t=0

Pθn(Rt = i|x0:T )

}
,

where Γ(·) is the Gamma function.

Proof. The result follows after differentiating Q with respect to σ2
i , and solving for the

stationary point, which is a maximum by the second derivative test.

Note Lemmas 3.6 and 3.7 assume the parameter qi is known. This is necessary for the

shifted-log-normal distribution, and the shifted-Gamma distribution when the shape

parameter µi is less than 1. We elaborate on this more in Section 3.5.3.
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M-step for AR(1) regimes of MRS models of Type III Consider an MRS model

with independent regimes and let Regime i be an AR(1) regime, with

B(i)
τ = αi + φiB

(i)
τ−1 + σiε

(i)
τ ,

for τ ∈ N. Suppose that {B(i)
τ } only evolves when it is observed; that is, {B(i)

τ } only

evolves at times where the hidden Markov chain, {Rt}, is in state i. The EM algorithm

is most useful when analytic E- and M-steps can be derived. To obtain analytic updates

for parameters of models of this type, a slight simplification of the function Q is required:

we suppose that

fθXt|Nt,i,Rt,X0:t−1
(xt|∆i, i,x0:t−1) = gi(xt), (3.37)

for all θ ∈ Θ. That is, the first observation from each regime has the same density for

all possible parameter values, which allows us to ignore these terms when finding the M-

step updates. The benefit of this assumption stems from the fact that for Nt,i = ∆i, the

density fθXt|Nt,i,Rt,X0:t−1
(xt|∆i, i,x0:t−1) is the stationary distribution of the process in

Regime i, whereas when Nt,i ∈ {1, 2, ..., t}, then the densities fθ(xt|∆i, i,x0:t−1) have the

same form and therefore closed expressions for the M-step updates can be derived. The

same benefit is not achieved for MRS models of Type II since no closed form updates are

available, even with the assumption in Equation (3.37). As the number of observations,

T , gets large, we expect this assumption will have a vanishing impact on the shape of

the likelihood, and therefore the MLEs will be unaffected, asymptotically.

Lemma 3.8. Suppose the simplification in Equation (3.37) holds, and Regime i is an

AR(1) regime of a MRS model of Type III, then the updates in the M-step of the EM

algorithm are

α
(n+1)
i =

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )xt (A2 −A1xt−m)

A2

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )−A2
1

, (3.38)

where A1 =
T∑
s=1

s∑
`=1

Pθn (Rs = i,Ns,i = `|x0:T )xs−`, (3.39)

and A2 =
T∑
s=1

s∑
`=1

Pθn (Rs = i,Ns,i = `|x0:T )x2
s−`, (3.40)

φ
(n+1)
i =

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )xtxt−m − α(n+1)
i A1

A2
, (3.41)

(
σ

(n+1)
i

)2
=

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )
(
xt − α(n+1)

i − φ(n+1)
i xt−m

)2

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )

. (3.42)
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Proof. Differentiating Q, given by Equation (3.32) and conditional densities

fθnXt|Rt,Nt,j ,X0:t−1
(xt|j,m,x0:t−1)

given by Equation (3.17), with respect to αi, φi and σ2
i gives

∂Q

∂αi
=

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )

 1

σ2
i

(xt − αi − φixt−m)

 ,

∂Q

∂φi
=

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )

 1

σ2
i

(xt − αi − φixt−m)xt−m

 ,

∂Q

∂σ2
i

=
T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )

 − 1

2σ2
i

+
(xt − αi − φixt−m)2

2σ4
i

 .

Setting these derivatives to zero and solving gives the following system of equations

αi =

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T ) (xt − φixt−m)

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )

, (3.43)

φi =

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T ) (xt − αi)xt−m

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )x2
t−m

, (3.44)

σ2
i =

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T ) (xt − αi − φixt−m)2

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )

. (3.45)

Substituting Equation (3.44) into Equation (3.43) gives

αi =

T∑
t=1

Pθn (Rt = i,Nt,i = m|x0:T )xt − φiA1

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )

=

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )xt

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )

−

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T ) (xt − αi)xt−mA1

A2

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )

,
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and multiplying both sides by

T∑
s=1

s∑̀
=1

Pθn (Rs = i,Ns,i = `|x0:T )

A1
gives

αi

T∑
s=1

s∑̀
=1

Pθn (Rs = i,Ns,i = `|x0:T )

A1

=

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )xt

A1

−

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T ) (xt − αi)xt−m

A2
.

Then rearrange to get αi on the left hand side and a common denominator,

αi

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T ) (A2 −A1xt−m)

A1A2

=

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )xt(A2 −A1xt−m)

A1A2
,

and thus

αi =

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )xt(A2 −A1xt−m)

A2

T∑
t=1

t∑
m=1

Pθn (Rt = i,Nt,i = m|x0:T )−A2
1

,

which is Equation (3.38). Equations (3.41) and (3.42) follow after solving (3.44) and

(3.45) by substitution. The fact that αi and φi are maximisers can be proved by the

second derivative test. To show (3.45) is a maximiser, a similar argument to the inde-

pendent case can be used (see the proof of Lemma 3.5).

M-step for AR(1) regimes of MRS models of Type II Consider now an MRS

model with independent regimes with AR(1) regimes which evolve at all time points.

Let Regime i be an AR(1) process, B
(i)
t = αi + φiB

(i)
t−1 + σiε

(i)
t . Here, things do not

work out as nicely as they do for MRS models of Type III. The näive way to proceed

would be to find the maximisers of Q numerically in 3-dimensional space, (αi, φi, σ
2
i ).

However, the dimension of the optimisation can be reduced by deriving expressions for

α
(n+1)
i and σ

(n+1)
i in terms of φ

(n+1)
i .

Lemma 3.9. If Regime i is an AR(1) regime of a MRS model of Type II, the M-step of

the EM algorithm can be executed by the following. The updates α
(n+1)
i and

(
σ

(n+1)
i

)2
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as functions of φ
(n+1)
i are

α
(n+1)
i

(
φ

(n+1)
i

)
=

T∑
t=0

∑
m∈L(t)i

Pθn(Rt = i,Nt,i = m|x0:T )Bt,m

T∑
t=0

∑
m∈L(t)i

Pθn(Rt = i,Nt,i = m|x0:T )At,m

, (3.46)

where

At,m =

1−
(
φ

(n+1)
i

)m
1− φ(n+1)

i

 1 +
(
φ

(n+1)
i

)
1 +

(
φ

(n+1)
i

)m
,

Bt,m =
(
xt −

(
φ

(n+1)
i

)m
xt−m

) 1 +
(
φ

(n+1)
i

)
1 +

(
φ

(n+1)
i

)m,
and

(
σ

(n+1)
i

(
φ

(n+1)
i

))2
=

T∑
t=0

∑
m∈L(t)i

Pθn(Rt = i,Nt,i = m|x0:T )Ct,m

T∑
t=0

Pθn(Rt = i|x0:T )

, (3.47)

where

Ct,m =

xt − α(n+1)
i (φ

(n+1)
i )

1−
(
φ

(n+1)
i

)m
1− φ(n+1)

i

− (φ(n+1)
i

)m
xt−m

2

1−
(
φ

(n+1)
i

)2m

1−
(
φ

(n+1)
i

)2


.

The M-step update for φ
(n+1)
i is given by

φ
(n+1)
i = arg max

φi∈(−1,1)
g(φi),

where

g(φi) :=

T∑
t=0

∑
m∈L(t)i

Pθn(Rt = i,Nt,i = m|x0:T )Lt,m

(
φi, σ

(n+1)
i

)
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and

Lt,m

(
φi, σ

(n+1)
i

)
:=

1

2
log

 1− φ2
i

1− φ2m
i

− log
{
σ

(n+1)
i (φi)

}
.

Proof. Differentiate Q in Equation (3.32) with conditional densities fθ(xt|Rt = i,Nt,i =

m,x0:t−1) given by Equation (3.19), with respect to αi and solve for when the derivative

is zero:

∂Q

∂αi
=

T∑
t=0

∑
m∈L(t)i

Pθn(Rt = i,Nt,i = m|x0:T )

(
xt − αi

(
1−φmi
1−φi

)
− φmi xt−m

)(
1−φmi
1−φi

)
σ2
i

(
1−φ2mi
1−φ2i

) = 0,

which, after some simplifications, gives Equation (3.46), and can be shown to be a

maximiser by the second derivative test. Now,

∂Q

∂σ2
i

=

T∑
t=0

∑
m∈L(t)i

Pθn(Rt = i,Nt,i = m|x0:T )

 − 1

2σ2
i

+
1

2σ4
i

(
xt − αi

(
1−φmi
1−φi

)
− φmi xt−n

)2(
1−φ2mi
1−φ2i

)
 .

Setting this equal to zero, substituting in α
(n+1)
i (φi) and simple manipulations gives

(3.47). To show
(
σ

(n+1)
i (φi)

)2
is a maximiser we use a similar argument to the inde-

pendent regime case in the proof of Lemma 3.5.

Finally, substitute the maximisers in Equations (3.46) and (3.47) into Equation (3.32)

with conditional densities given by Equation (3.19) and collect all terms involving φi, to

give the function g. That we only need to search for the global maximiser of g on the

interval (−1, 1) comes from the fact that we have assumed Regime i is a stationary or

mean-reverting process, in which case |φi| < 1 is a necessary condition.

A pseudo-code implementation of our EM algorithm in given in Figure 3.7.

Remark 3.5. When using the EM algorithm, at the (n + 1)th iteration, the forward

algorithm can be initialised with probabilities Pθn(R0 = i|x0:T ) calculated as part of the

final step of the backward algorithm, rather than initialising the forward algorithm with

probabilities πj .

Remark 3.6. We terminate our implementation of the EM algorithm when the step

size is small, i.e. when |θn+1 − θn|∞ < ε where ε is a specified tolerance (we choose

ε = 1.5× 10−6).

Remark 3.7. The memory and time complexity of our algorithms can be too large to

be practical for models with two or more AR(1) regimes. A solution is to truncate the
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Input: Data, x0:T , termination condition, ε, starting value, θ0.
Output: MLEs, θ̂ = arg maxθ∈Θ log fθ(x0:T ).
Set error = ε+ 1; n = 0;
Calculate πj , the stationary distribution of {Rt}, for j = {1, ...,M};
Set Pθ0(H0 = (∆, j)) = πj ;
while error > ε do

E-step;

Run the forward algorithm, initialising it with Pθn(H0 = (∆, j)), and store α̂
(t)
N t

(i),

for t = 0, ..., T , N t ∈ S(t) and i ∈ S;

Run the backward algorithm and store γ
(t)
N t

(i), for t = 0, ..., T , N t ∈ S(t) and i ∈ S;

Set Pθn+1(H0 = (∆, j)) = Pθn(H0 = (∆, j)|x0:T )
M-step;
Set θn+1 = arg maxθ∈ΘQ(θ|θn);
Set error = maxi |(θi)n+1 − (θi)n|
Set n = n+ 1;

end

return θ̂ = θn

Figure 3.7: Pseudo-code implementing our EM algorithm

memory within Regime i at some lag `, so that the observation xt may only depend on

the values xt−1, ..., xt−`, else xt comes from the stationary distribution in Regime i. For

Type II models we expect this approximation to have minimal affect on the accuracy

of the inferences, since within regime processes decay to stationarity exponentially with

the counter. Type III models do not have this property and more analysis is needed

to determine the effects of this approximation. In practice, many of the smoothed

probabilities are very close to zero and a smart implementation of this algorithm could

easily take advantage of this.

3.5 Discussion

3.5.1 Convergence of EM and ‘black-box’ optimisation methods

MRS models of Type II To explore the practice of implementing maximum likeli-

hood estimation we considered the following 2-regime model.

Xt =

Bt, when Rt = 1,

St, when Rt = 2.
(3.48)

where Bt = α+φBt−1 +σ1εt and {εt} is i.i.d. N(0,1) noise and {St} is an i.i.d. N(µ, σ2
2)

process, and assume that Bt evolves at all time points regardless of whether it is observed

or not.
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Realisations of the process in Equation (3.48) were simulated for a range of parameter

sets and MATLAB’s fmincon function (with the default settings) was used to find the

maximisers of the likelihood, as given in Equation (3.12). We observed the points that

fmincon converged to were highly dependent on the starting point of the algorithm. This

was unsurprising as we know that fmincon converges to local and not necessarily global

minima (see MATLAB’s documentation and references therein). When initialised at

random starting points, this method converged to the global maximum of the likelihood

function about 40% of the time. The other 60% of the time this method either converged

to a local maximum or to a point where only one regime of the model was capturing

any of the data.

We also implemented our EM algorithm using the same simulated datasets and found

that the EM algorithm showed similar behaviour to fmincon, although the EM algorithm

showed some evidence that it was more stable since it converged to the true maximum

more often. Example 3.4 illustrates the types of behaviour shown by fmincon and the

EM algorithm.

Example 3.4. Consider the MRS model given by (3.48) with parameters α = 0, φ = 0.7,

σ1 = 1, µ = 5, σ2 =
√

2, p11 = 0.9 and p22 = 0.5. We simulated a single realisation

of length T = 2000 from this model and used fmincon and the EM algorithm to search

for the MLE. We randomly sampled 20 parameter sets to initialise the optimisation

algorithms and observed their terminating points. Table 3.1 details the starting and

terminating points for the fmincon algorithm, while Table 3.2 details the terminating

points for the EM algorithm.

In Table 3.1 notice there are five different terminating behaviours. Terminating be-

haviour A occurs when fmincon finds the MLEs. Terminating behaviour B occurs when

fmincon terminates at a local maximum corresponding to modelling the data generated

by Regime 2 with Regime 1 and the data generated by Regime 1 with Regime 2.

Terminating behaviour C occurs when fmincon terminates at a point where p11 = 0,

p22 < 1 and φ < 0, which is a local maximum also. It seems counter intuitive that

φ < 0, could produce a local maximum for this simulated model since we specify an

AR(1) process with positive correlation. However, since p11 = 0 the process cannot

show two consecutive observations from Regime 1, so no two consecutive points are

negatively correlated. Moreover, the corresponding lag 2 process of the AR(1) process

has positive correlation φ2. More generally, at even lags the AR(1) process has positive

correlation while at odd lags the AR(1) process shows negative correlation. In this case

the i.i.d. regime and the AR(1) regime capture data generated from both regimes.
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Terminating behaviour D is when fmincon finds p22 = 1, and the algorithm has con-

verged to a point where the data is being modelled by Regime 2 only. As a result,

there is no contribution to the likelihood from Regime 1 and the algorithm is flat with

respect to the parameters from Regime 1, thus fmincon terminates at a point where

the likelihood is at a local maximum in the dimension of Regime-2 parameters, but is

random in the Regime-1 parameters.

Terminating behaviour E is when fmincon finds p11 = 1, and the algorithm has con-

verged to a point that uses only Regime 1 to model the data. This is similar to behaviour

D, and we see the algorithm terminates at a point where the likelihood is at a local

maximum in the dimension of Regime-1 parameters, but is random in the Regime-2

parameters.

Table 3.2 shows that the EM algorithm displays four terminating behaviours. We see a

local maximum corresponding to the true MLE (behaviour A), the case when Regime 2

models data generated from Regime 1, and Regime 1 models data generated from

Regime 2 (behaviour B), and the case when p11 = 0, p22 < 1 and φ < 0 (behaviour

C). The fourth terminating behaviour is convergence of the algorithm to ‘Inf’ values,

which correspond to terminating behaviours D and E of the fmincon method. Since

the EM algorithm does not rely on the gradient, it does not care that the function may

be locally flat in some directions, rather the EM algorithm knows it is optimal to set

one of the variance terms to zero and this produces Inf values. For example, in the

case where the EM algorithm finds p22 = 1 (which corresponds to the terminating be-

haviour D), then the data are only being modelled by Regime 2, and Regime 1 models

no data points. Therefore the EM algorithm updates the variance parameter to σ1 = 0

and produces Inf values. This is technically the global maximum of the likelihood since

the value of the likelihood at this point is infinite, however it is clearly not useful and

does not give a sensible estimate of the parameters. While this behaviour is not too

problematic for this model, as we can just ignore cases where this happens or restrict

parameters to avoid these maxima, it does become problematic if we want to fit MRS

models with shifted-log-normal regimes or shifted-Gamma regimes (see Section 3.5.3).

To attempt to stop fmincon from terminating at boundaries where pjj = 1 or pjj = 0,

we constrained the probabilities pij to the interval [0.05, 0.95] and observed that this

increased the proportion of time that fmincon converged to the true MLE, but still

observed convergence to the new boundaries. We implemented this in Example 3.5.

The moral of the story is, we need to be careful when maximising the likelihood as

there can be multiple local maxima in the likelihood function. Constraining parameters

can help to avoid some sub-optimal terminating behaviours and can be implemented

in practice if, for example, we have reason to believe that the parameters pjj are not
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Table 3.1: Terminating points and exit flags of the fmincon algorithm in MATLAB from 20 random starting points for the simulation in Example
3.4. Behaviour A – MLEs; B – a local maximum where the regimes are switched; C – a local maximum with p11 = 0, p22 < 1, φ < 0; D – local
maximum p22 = 1; E – local maximum p11 = 1. ` is the value of the log-likelihood at these terminating points. Exit flag 1 occurs when fmincon

terminates because the first-order optimality measure is less than the specified tolerance (10−6) and the constraints are not violated. This means
that the gradient at the terminating point is close to zero and the algorithm thinks it is at a stationary point of the likelihood. Exit flag 2 occurs
when the constraints are not violated and the norm of the step size is below the tolerance (10−10).

Terminating point of fmincon Initial point

Behaviour ` α φ σ1 µ σ2 p11 p22 α φ σ1 µ σ2 p11 p22 Exit flag

A -3710.1 -0.01 0.73 0.98 4.84 1.59 0.90 0.54

3.60 0.17 1.54 7.43 8.66 0.08 0.38 2
2.03 0.89 6.85 3.15 0.04 0.66 0.26 2
8.25 -0.48 8.89 9.90 8.30 0.02 0.89 2
3.25 0.32 6.35 12.99 1.47 0.18 0.87 2
0.44 -0.90 4.94 17.63 0.48 0.07 0.30 2

B -4119.6 0.59 0.72 1.93 -0.29 1.04 0.79 0.76

0.30 0.86 8.24 3.06 3.08 0.34 0.31 2
0.96 0.79 8.64 18.98 1.09 0.33 0.66 2
2.05 -0.77 2.69 18.70 6.94 0.74 0.96 2
1.90 -0.37 0.99 18.65 1.93 0.90 0.58 2
5.30 0.90 0.84 10.69 1.35 0.76 0.58 2

C -4457.2 0.18 -0.85 0.77 1.30 2.65 0.00 0.45
6.31 0.24 2.37 14.63 1.56 0.24 0.55 2
5.17 0.14 0.89 3.33 2.44 0.61 0.87 2
7.48 -0.68 8.74 6.40 4.24 0.44 0.97 2

D -4575.2
7763.50 -0.86 5638.10 0.84 2.38 0.00 1.00 8.94 -0.50 7.74 6.36 9.47 0.00 0.22 1
-143.79 -0.86 220.38 0.84 2.38 0.00 1.00 6.46 0.97 3.51 8.49 2.00 0.87 0.51 1
-60.81 0.03 415.42 0.84 2.38 0.00 1.00 2.84 0.67 5.56 0.17 0.05 0.62 0.44 1

E -4306.3
0.43 0.49 2.08 18.98 1.22 1.00 0.55 1.21 0.10 7.73 10.86 6.51 0.81 0.03 1
0.43 0.49 2.08 18.80 1.74 1.00 0.48 5.11 -0.17 1.04 11.22 8.19 0.59 0.99 1
0.43 0.49 2.08 17.63 0.92 1.00 0.48 7.28 -0.79 9.04 18.80 1.54 0.49 0.39 1
0.43 0.49 2.08 -328.20 995.11 1.00 0.70 5.23 0.28 9.84 0.24 9.80 0.77 0.82 1
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Table 3.2: Terminating points of our EM algorithm from 20 random starting points in Example 3.4. Notice that there are four distinct terminating
behaviours. Behaviour A – the MLE; B – a local maximum where the regimes are switched; C – a local maximum with p11 = 0, p22 < 1, φ < 0;
D/E – a maximum with either p11 = 1 and σ2 = 0, or p22 = 1 and σ1 = 0. The terminating point Inf are analogous to terminating behaviours D
and E discussed for the fmincon method. ` is the value of the log-likelihood.

Terminating point Initial point

Behaviour ` α φ σ1 µ σ2 p11 p22 α φ σ1 µ σ2 p11 p22

A -3710.1 -0.01 0.73 0.98 4.84 1.59 0.90 0.54

6.46 0.97 3.51 8.49 2.00 0.87 0.51
8.25 -0.48 8.89 9.90 8.30 0.02 0.89
3.25 0.32 6.35 12.99 1.47 0.18 0.87
6.31 0.24 2.37 14.63 1.56 0.24 0.55
7.48 -0.68 8.74 6.40 4.24 0.44 0.97
1.21 0.10 7.73 10.86 6.51 0.81 0.03
5.23 0.28 9.84 0.24 9.80 0.77 0.82
0.30 0.86 8.24 3.06 3.08 0.34 0.31
2.05 -0.77 2.69 18.70 6.94 0.74 0.96
1.90 -0.37 0.99 18.65 1.93 0.90 0.58
5.30 0.90 0.84 10.69 1.35 0.76 0.58

B -4119.6 0.59 0.72 1.93 -0.29 1.04 0.79 0.76

2.84 0.67 5.56 0.17 0.05 0.62 0.44
3.60 0.17 1.54 7.43 8.66 0.08 0.38
5.17 0.14 0.89 3.33 2.44 0.61 0.87
5.11 -0.17 1.04 11.22 8.19 0.59 0.99

C -4457.2 0.18 -0.85 0.77 1.30 2.65 0.00 0.45 8.94 -0.50 7.74 6.36 9.47 0.00 0.22

D/E - Inf Inf Inf Inf Inf Inf Inf

2.03 0.89 6.85 3.15 0.04 0.66 0.26
0.44 -0.90 4.94 17.63 0.48 0.07 0.30
7.28 -0.79 9.04 18.80 1.54 0.49 0.39
0.96 0.79 8.64 18.98 1.09 0.33 0.66
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close to 1. Furthermore, we recommend initialising these optimisation algorithms from

a range of starting points so that they do not get stuck at a local maxima.

Example 3.5. Again consider the model in Equation (3.48) with the same parameters

as in Example 3.4. We simulated a single realisation of this process of length T = 2000

and use fmincon to find the MLE, initialising the algorithm from 20 random starting

points. This time we also restricted fmincon away from the boundaries by specifying

p11, p22 ∈ [0.05, 0.95]. The initial and terminating points for this example are in Table

3.3. Notice the higher proportion of terminating points corresponding to the true MLEs.

MRS models of Type III We also studied terminating points of optimisation al-

gorithms for MRS models with independent regimes that evolve only when observed.

Consider the following two regime model of Type III

Xt =

Bτ(t), when Rt = 1,

St, when Rt = 2.
(3.49)

where τ(t) =
t∑
t=0

I(Rt = 1), Bτ(t) = α + φBτ(t−1) + σ1ετ(t) and ετ(t) is i.i.d. N(0,1)

noise, St is i.i.d. N(µ, σ2
2) and {Rt} is a Markov chain on the state space {1, 2}. That

is, assume that Bτ(t) evolves only when it is observed. Again, using simulations, the

terminating points of fmincon and the EM algorithm were investigated. We observed

similar behaviours to those in Example 3.4. Example 3.6 demonstrates this.

Example 3.6. Consider the model in Equation (3.49) with parameters α = 0, φ = 0.7,

σ1 = 1, µ = 5, σ2 =
√

2, p11 = 0.9 and p22 = 0.5. A single dataset was simulated

from this model, and fmincon and the EM algorithm were used to find the MLEs from

20 random starting points. We report the starting points and terminating points for the

fmincon method in Table 3.4, and those for the EM algorithm in Table 3.5.

In Table 3.4 we see that fmincon displays four types of convergence behaviour corre-

sponding to behaviours A, B, D and E from before. Similarly to our simulation in

Example 3.4, for convergence behaviour D (respectively, behaviour E), fmincon finds

local maximisers for Regime 2 (respectively, Regime 1), but not for Regime 1 (respec-

tively, Regime 2). This is because the likelihood is flat in the dimensions of Regime 2’s

parameters (respectively, Regime 1’s parameters). Notice in Table 3.4 that we do not see

convergence behaviour C for Type III models. For Type III models, if φ < 0, consecutive

observations from the process {Bτ(t)} must be negatively correlated, regardless of the

distance between observations from the process {Bτ(t)}. Thus, Type III models do not

have the flexibility of Type II models, where correlations between successive observed
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Table 3.3: Terminating points of fmincon for Example 3.5 where we have restricted the parameters p11, p22 ∈ [0.05, 0.95]. Behaviour A – MLEs;
B – a local maximum where the regimes are switched; C – a local maximum with p11 = 0, p22 < 1, φ < 0; D – local maximum p22 = 0.95. ` is the
value of the log-likelihood. Exit flag 1 occurs when fmincon terminates because the first-order optimality measure is less than the specified tolerance
(10−6) and the constraints are not violated. This means that the gradient at the terminating point is close to zero and the algorithm thinks it is at
a stationary point of the likelihood. Exit flag 2 occurs when the constraints are not violated and the norm of the step size is below the tolerance
(10−10). Notice that restricting the parameters has increased the proportion of times that the algorithm finds the true MLE compared to Table 3.1,
but has not eliminated unwanted terminating points.

Terminating point Initial point

Behaviour ` α1 φ1 σ1 µ2 σ2 p11 p22 α1 φ1 σ1 µ2 σ2 p11 p22 Exit flag

A -3710.1 -0.01 0.73 0.98 4.84 1.59 0.90 0.54

2.71 -0.36 5.36 7.00 9.61 0.40 0.12 2
2.84 0.67 5.56 0.17 0.05 0.62 0.44 2
5.72 -0.76 4.51 9.44 9.75 0.80 0.98 2
2.05 -0.77 2.69 18.70 6.94 0.74 0.96 2
0.30 -0.47 8.19 12.60 1.05 0.90 0.20 2
3.25 0.32 6.35 12.99 1.47 0.18 0.87 2
1.21 0.10 7.73 10.86 6.51 0.81 0.03 2
8.85 1.00 0.32 19.11 4.62 0.64 0.34 2
9.76 0.19 2.72 16.18 0.35 0.39 0.24 2

B -4119.6 0.59 0.72 1.93 -0.29 1.04 0.79 0.76

5.41 0.66 1.38 1.34 3.80 0.86 0.94 2
5.23 0.28 9.84 0.24 9.80 0.77 0.82 2
1.62 -0.77 5.61 2.63 4.41 0.11 0.90 2
0.30 0.86 8.24 3.06 3.08 0.34 0.31 2
9.10 0.13 0.70 8.12 6.33 0.70 0.07 2
0.02 0.24 5.11 2.46 4.54 0.17 0.90 2
7.84 0.42 0.18 12.05 7.88 0.32 0.79 2
6.31 0.24 2.37 14.63 1.56 0.24 0.55 2

C -4461.7 0.11 -0.85 0.75 1.32 2.66 0.05 0.47 8.94 -0.50 7.74 6.36 9.47 0.00 0.22 2

D
-4614.7 -44.29 -1.00 0.16 0.81 2.35 0.05 0.95 9.66 -0.22 2.70 16.98 8.05 0.67 0.35 1
-4677.8 15.58 0.93 0.05 0.84 2.38 0.05 0.95 8.94 -0.13 9.50 6.45 6.32 0.63 0.92 1
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values from an AR(1) process can change sign depending on whether the distance be-

tween the two observations is odd or even. The data that we simulated from the model

in Example 3.4 has a large proportion of consecutive, positively correlated observations,

thus we hypothesise that it is unlikely for a Type III model with φ < 0 to fit the data

well, and that the domain of attraction for behaviour C is much smaller in this case.

In Table 3.5 we see three types of convergence behaviour. The EM algorithm either

finds the true MLE (behaviour A), or converges to a point where Regime 1 is used to

model data generated from Regime 2 and Regime 2 is used to model data generated

from Regime 1 (behaviour B), or the algorithm produces ’Inf’ values (behaviour D/E).

In the latter case, the EM algorithm has actually converged to a point where p11 = 1

and σ2 = 0 or p22 = 1 and σ1 = 0, which causes the algorithm to produce NaN values.

This behaviour is analogous to behaviours D and E of the fmincon method in Table 3.4.

In practice, choosing which optimisation method to use is problem-specific. We have seen

that the EM algorithm appears to converge to the true MLE more often; however, the

memory requirements of the EM algorithm are much larger than the forward algorithm.

For the code used in the previous examples, implementing the EM algorithm for the

simple two-regime models discussed in this section for datasets of size T = 20, 000 was

infeasible on an Apple iMac with 8 GB 1867 MHz DDR3 RAM, and we had to resort to

the University’s high performance computing facilities. Compare this to implementing

the forward algorithm and fmincon, which was easily executed on the Apple iMac.

In terms of computation time, for MRS model of Type III, the EM and fmincon methods

performed similarly, while for models of Type II the fmincon method was quicker. How-

ever, this is probably not a fair comparison, since MATLAB has optimised fmincon’s

code, while the code we use for the EM algorithm has not had the same treatment.

Lastly, when applying these maximisation techniques to real electricity price datasets

we can impose constraints on parameters to help these algorithms converge to the true

MLE as we did in Example 3.5. We can also consider other logical constraints such

as a constraint to ensure that low prices cannot be modelled by a spike regime, or

a constraint to ensure that the majority of points in the dataset belong to the base

regime, or constrain φ > 0 since we expect positive correlation between prices.

3.5.2 Bias and consistency of the MLE

To study the bias and consistency of our algorithm, we conducted a simulation study

which showed bias was small for sample sizes greater than 200 observations. As our

datasets are an order of magnitude larger than this, then we can expect negligible bias
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Table 3.4: Terminating points of fmincon for Example 3.6. Behaviour A – MLEs; B – a local maximum where the regimes are switched; D –
local maximum p22 = 1; E – local maximum p11 = 1. ` is the value of the log-likelihood. Exit flag 1 occurs when fmincon terminates because the
first-order optimality measure is less than the specified tolerance (10−6) and the constraints are not violated. This means that the gradient at the
terminating point is close to zero and the algorithm thinks it is at a stationary point of the likelihood. Exit flag 2 occurs when the constraints are
not violated and the norm of the step size is below the tolerance (10−10). Exit flag 0 occurs when fmincon has exceeded the maximum number of
iterations allowed, in this case 3000.

Terminating point Initial point

Behaviour ` α1 φ1 σ1 µ2 σ2 p11 p22 α1 φ1 σ1 µ2 σ2 p11 p22 Exit flag

A -3661.4 0.06 0.70 1.01 5.18 1.27 0.90 0.50

8.85 1.00 0.32 19.11 4.62 0.64 0.34 2
7.80 -0.03 8.69 10.75 5.90 0.40 0.93 2
6.19 0.17 7.87 10.95 7.07 0.48 0.56 2
8.11 0.47 4.85 16.99 5.02 0.50 0.04 2
1.07 0.96 4.04 7.95 1.09 0.94 0.96 2
0.30 -0.47 8.19 12.60 1.05 0.90 0.20 2
8.76 0.13 5.81 17.99 2.42 0.00 0.35 2
4.51 -0.51 9.65 15.06 2.23 0.93 0.59 2

B -4096.6 1.00 0.61 1.98 -0.24 1.09 0.79 0.82

7.46 0.73 4.79 9.03 6.18 0.13 0.63 2
9.19 0.69 7.28 7.33 9.10 0.18 0.96 2
1.07 -0.17 1.94 2.17 0.86 0.29 0.42 2
9.10 0.13 0.70 8.12 6.33 0.70 0.07 2
0.02 0.24 5.11 2.46 4.54 0.17 0.90 2
8.36 0.17 7.74 1.77 9.01 0.07 0.78 2

D

-4517.2 -0.48 -0.99 0.00 1.04 2.32 0.00 1.00 6.91 0.30 5.87 2.47 8.17 0.20 0.79 2
-4522.2 2655900 0.35 1080700 1.04 2.32 0.00 1.00 4.00 -0.96 4.31 2.23 3.59 0.41 0.19 1
-4522.2 -6.97 0.67 14.34 1.04 2.32 0.00 1.00 6.31 0.24 2.37 14.63 1.56 0.24 0.55 1
-4522.2 -20.21 -0.14 27.67 1.04 2.32 0.00 1.00 5.59 0.31 3.21 1.67 3.91 0.86 0.33 1
-4522.2 -10.50 0.00 64.80 1.04 2.32 0.00 1.00 8.44 0.08 7.04 10.32 2.40 0.60 0.52 1

E -4291.5 0.55 0.47 2.04 4564.10 7895.70 1.00 0.03 5.06 -0.51 1.98 2.88 0.87 0.38 0.61 0
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Table 3.5: Terminating points of EM for Example 3.6. Notice the three convergence behaviours. Behaviour A – MLEs; B – a local maximum
where the regimes are switched; D/E – maximum with p22 = 1/maximum with p11 = 1.

Terminating points Initial points

Behaviour ` α1 φ1 σ1 µ2 σ2 p11 p22 α1 φ1 σ1 µ2 σ2 p11 p22

A -3661.4 0.06 0.70 1.01 5.18 1.27 0.90 0.50

7.80 -0.03 8.69 10.75 5.90 0.40 0.93
6.19 0.17 7.87 10.95 7.07 0.48 0.56
8.11 0.47 4.85 16.99 5.02 0.50 0.04
1.07 0.96 4.04 7.95 1.09 0.94 0.96
8.76 0.13 5.81 17.99 2.42 0.00 0.35
4.51 -0.51 9.65 15.06 2.23 0.93 0.59
7.46 0.73 4.79 9.03 6.18 0.13 0.63
9.19 0.69 7.28 7.33 9.10 0.18 0.96
0.02 0.24 5.11 2.46 4.54 0.17 0.90
4.00 -0.96 4.31 2.23 3.59 0.41 0.19
8.44 0.08 7.04 10.32 2.40 0.60 0.52

B -4096.6 1.00 0.61 1.98 -0.24 1.09 0.79 0.82

1.07 -0.17 1.94 2.17 0.86 0.29 0.42
9.10 0.13 0.70 8.12 6.33 0.70 0.07
8.36 0.17 7.74 1.77 9.01 0.07 0.78
6.91 0.30 5.87 2.47 8.17 0.20 0.79
5.59 0.31 3.21 1.67 3.91 0.86 0.33
5.06 -0.51 1.98 2.88 0.87 0.38 0.61

D/E - Inf Inf Inf Inf Inf Inf Inf
8.85 1.00 0.32 19.11 4.62 0.64 0.34
0.30 -0.47 8.19 12.60 1.05 0.90 0.20
6.31 0.24 2.37 14.63 1.56 0.24 0.55
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Figure 3.8: Boxplots of MLEs for simulated MRS model from Example 3.7. Each box-
plot contains 40 MLEs from simulated datasets of length given on the x-axis. The solid
horizontal blue lines represent the true parameter value, θ = (α, φ, σ1, µ, σ2, p11, p22) =
(0, 0.75, 1, 5, 1, 0.9, 0.9). Notice the small and decreasing bias in the parameters φ, σ1
and σ2.

in our MLEs. Moreover, our simulation study suggests that the MLEs are asymptotically

consistent. These conclusions hold for both Type II and Type III MRS models. Example

3.7 illustrates these conclusions.

Example 3.7. Consider the MRS model of Type II in Equation (3.48) with parameters

θ = (α, φ, σ1, µ, σ2, p11, p22) = (0, 0.75, 1, 5, 1, 0.9, 0.9). We simulated 40 realisations of

this process for each length T = 50, 100, 200, 500 and 1000 (a total of 200 independent

simulations). Our methods were then used to find the MLEs for each simulation, with

the algorithms initialised at the true value of the parameters. Figure 3.8 shows box-plots

that summarise the MLEs for these simulated datasets. Notice the bias is small for these

datasets, and that the MLEs seem to converge to the true parameter values as the sample

size increases.

Related models have been proven to produce consistent MLEs. Robinson [92] proves

MLEs are consistent estimators for parameters of AR(1) processes observed at discrete,

not necessarily equally spaced times; Leroux [69] proves consistency of the MLEs for

hidden Markov models with general (not necessarily discrete) observation distribution;

and Francq and Roussignol [36] prove consistency of the MLEs for MRS models of

Type I (with dependent regimes). There are also other papers in the literature proving

consistency for the cases above, which modify and relax some of the assumptions in

these papers. It would be useful to prove the consistency of our algorithms, but this is

not the focus of this thesis.
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3.5.3 The difficulties of shifted-log-normal and shifted-Gamma distri-

butions

As we eluded to earlier, there are difficulties in estimating the shifting parameter qi

using maximum likelihood for the shifted-log-normal and shifted-Gamma distributions.

This is due to the likelihood approaching ∞ as the shifting parameter approaches the

MLE.

Shifted-log-normal distributions The shifted-log-normal distribution has density

function given by

f(x;µ, σ, q) =
1√
2πσ

(x− q)−1e
−

1

2σ2
(log(x−q)−µ)2

.

Suppose x := (x1, ..., xn), with x1 < x2 < ... < xn, are observations from a shifted-log-

normal distribution, then the likelihood is

L(µ, σ, q;x) =

(
1√
2πσ

)n n∏
i=1

(xi − q)−1e
−

1

2σ2

∑n
i=1(log(xi−q)−µ)2

,

for q < x1, and the log-likelihood is

`(µ, σ, q;x) =

−n log
√

2π − n log σ −
n∑
i=1

(xi − q)−
1

2σ2

n∑
i=1

(log(xi − q)− µ)2

 ,

for q < x1 also.

The MLEs for µ and σ are

µ̂(q) =
1

n

n∑
i=1

log(xi − q),

σ̂(q)2 =
1

n

n∑
i=1

[log(xi − q)− µ]2 .

Substituting µ̂(q) and σ̂(q) into the likelihood equation gives

L∗(q;x) ∝

 1

σ̂(q)

n
n∏
i=1

(xi − q)−1.
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Hill [50] notes that the following limits

lim
µ→−∞

L(µ, σ, q;x) = lim
µ→+∞

L(µ, σ, q;x) = 0,

lim
σ→−∞

L(µ, σ, q;x) = lim
σ→+∞

L(µ, σ, q;x) = 0,

lim
q→−∞

L(µ, σ, q;x) = lim
q→x1

L(µ, σ, q;x) = 0,

are all nicely behaved, but the function L∗ is not:

lim
q→−∞

L∗(q;x) =
1

n

n∑
i=1

xi − 1

n

n∑
j=1

xj

−n/2 , (3.50)

lim
q→x1

L∗(q;x) =∞. (3.51)

To see Equation (3.51), Hill shows σ̂(q)2 < log2(x1−q) for q ∈ (x1−ε, x1) for sufficiently

small ε > 0, hence

L∗(q;x) =

 1

σ̂(q)

n
n∏
i=1

(xi − q)−1 ≥ | log(x1 − q)|−n(x1 − q)−1
n∏
i=2

(xi − q)−1

for q ∈ (x1 − ε, x1). Noting that
n∏
i=2

(xi − q) →
n∏
i=2

(xi − x1) as q → x1, then the right

hand side goes to ∞ as q → x1, and the MLE is therefore (q, µ, σ) = (x1,−∞,∞).

Hill then comments that both of these results are surprising. We expect the likelihood

to be very small in remote regions of the likelihood, but Equation (3.50) shows this is

not the case, and Equation (3.51) says arbitrarily large likelihood values can be achieved

by allowing q to converge to x1 along the path (µ̂(q), σ̂(q), q). The function L∗ is a very

interesting function indeed.

A common workaround is to instead use a local maximum likelihood estimate for q.

However, when we extend this to the MRS model there are yet more problems. Firstly,

when we try to estimate the parameters of a shifted-log-normal distribution embedded

in an MRS model, the parameter q is no longer restricted to being less than the smallest

observation, and the likelihood is infinite at any point where q = xi. Furthermore, local

maxima of the likelihood exist which correspond to the shifted-log-normal collapsing to

a point mass on a single observation (where the variance of the shifted-log-normal is

small and the mode of the distribution is located at some observation xi) so there are

many more points where the likelihood is infinite.

Even if a local maximum likelihood method estimate is used instead, there is still a

problem: there exist many local maxima of the likelihood, all with similar likelihood
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values, but the estimates of q obtained from these local maxima can vary wildly. An

example of this is shown in Table 3.6, where we simulated a single realisation of length

400 from an MRS model of Type II, with one AR(1) regime and a shifted-log-normal

regime, and used our EM algorithm to find the maxima of the likelihood.

The shifted-Gamma distribution The shifted-Gamma distribution has density func-

tion

f(x;µ, σ2, q) =


1

σ2µΓ(µ)
(x− q)µ−1 exp

−x− q
σ2

 x > q,

0 otherwise.

Suppose x := (x1, ..., xn), with x1 < x2 < ... < xn, are ordered observations from a

shifted-Gamma distribution, then the likelihood is

L(µ, σ2, q;x) =

(
1

σ2µΓ(µ)

)n [ n∏
i=1

(xi − q)µ−1

]
exp

− n∑
i=1

xi − q
σ2

,
for q < x1, and the log-likelihood is

`(µ, σ2, q;x) = −2nµ log σ − n log Γ(µ) + (µ− 1)
n∑
i=1

log(xi − q)−
n∑
i=1

xi − q
σ2

,

for q < x1 also.

One issue with the shifted-Gamma distribution is, when µ < 1, the MLE is to set

q = x1, the likelihood is infinite, and the MLE for the other two parameters does not

exist. Johnson and Kotz [64] observe that related issues can arise when µ is near 1, and

advise against maximum likelihood estimation when µ < 2.5. Simulations suggest this

is also good advice when fitting MRS models with shifted-Gamma regimes.

After restricting µ > 2.5, one more issue stills exits. As was the case for shifted-log-

normal regimes, there are often many local maxima. However, unlike the shifted-log-

normal distribution, these local maxima are better behaved; there is typically a single

maxima, with the highest likelihood, and the parameters are ‘close’ to their true values.

Although, when µ < 2.5, simulations suggest this behaviour is not so nice, and there

can be local maxima with parameter values that do not relate the true parameters.

The restriction µ > 1 limits the shape of the Gamma distribution, by requiring the

density function to be zero at x = q. Moreover, the mode of the Gamma distribution is

(µ− 1)σ2, so the restriction µ > 2.5 ensures that the mode of the Gamma distribution

is away from the boundary at q (provided that σ > 0, which it should be, otherwise the
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` α φ σ1 q µ σ2 p11 p22 Mode

-1842.75 5.36 0.35 583.61 228.61 -7.50 113.88 0.99 0.00 228.61
-1842.10 5.36 0.35 583.61 228.61 -7.86 121.62 0.99 0.00 228.61
-1842.01 5.36 0.35 583.61 228.61 -7.91 122.69 0.99 0.00 228.61
-1805.69 4.85 0.34 450.17 179.39 -2.13 99.28 0.99 0.00 179.51
-1778.38 4.39 0.37 381.16 173.71 -1.24 82.38 0.99 0.00 174.00
-1778.31 4.39 0.37 381.16 173.71 -1.26 83.02 0.99 0.00 173.99
-1777.74 4.39 0.37 381.16 173.71 -1.40 88.40 0.99 0.00 173.95
-1742.89 3.73 0.38 275.87 115.19 3.89 0.64 0.98 0.00 163.98
-1742.89 3.73 0.38 275.87 115.19 3.89 0.64 0.98 0.00 163.98
-1742.89 3.73 0.38 275.87 115.19 3.89 0.64 0.98 0.00 163.98
-1715.45 2.29 0.45 181.80 4.82 4.38 0.46 0.94 0.00 84.75
-1715.44 2.29 0.45 181.76 5.24 4.37 0.46 0.94 0.00 84.65
-1715.43 2.29 0.45 181.71 5.74 4.37 0.47 0.94 0.00 84.54
-1667.02 2.48 0.32 141.33 52.85 3.19 2.61 0.96 0.27 77.03
-1667.02 2.48 0.32 141.33 52.85 3.19 2.61 0.96 0.27 77.03
-1646.80 2.13 0.34 122.33 50.58 2.97 2.99 0.95 0.32 70.00
-1623.08 1.66 0.33 96.97 39.97 3.14 2.04 0.95 0.38 63.04
-1607.71 1.22 0.36 78.36 28.03 3.52 0.94 0.93 0.34 61.72
-1607.71 1.22 0.36 78.36 28.03 3.52 0.94 0.93 0.34 61.72
-1595.44 0.69 0.40 61.47 21.42 3.27 1.45 0.91 0.37 47.80
-1583.56 0.26 0.44 51.33 11.96 3.33 1.17 0.91 0.47 39.90
-1582.11 0.09 0.46 48.49 5.29 3.41 1.01 0.90 0.51 35.50
-1581.18 0.11 0.51 47.22 -17.76 3.73 0.60 0.89 0.66 23.98
-1580.85 0.02 0.51 47.29 -11.52 3.54 0.78 0.89 0.66 22.94
-1580.85 0.02 0.51 47.29 -11.52 3.54 0.78 0.89 0.66 22.94
-1580.85 0.02 0.51 47.28 -11.40 3.53 0.79 0.89 0.66 22.84

NaN 6.33 0.28 723.25 245.37 1.94 0.00 1.00 0.00 252.36
NaN 6.33 0.28 723.25 234.91 2.86 0.00 1.00 0.00 252.36
NaN 6.33 0.28 723.25 251.34 0.01 0.00 1.00 0.00 252.36
NaN 6.33 0.28 723.25 234.62 2.88 0.00 1.00 0.00 252.36

True value 0.00 0.55 53.00 12.00 3.50 1.00 0.90 0.50 45.12

Table 3.6: Local maximisers found by EM for a simulated realisation of an MRS
model of Type II with a shifted-log-normal regime. Each row in the table corresponds
to a terminating point of our EM algorithm, and each run of the EM algorithm was
initialised from a randomly sampled starting point. The column ` corresponds to the
value of the log-likelihood at the terminating point. The rightmost column titled ‘mode’
is the mode of the shifted-log-normal distribution, which often is located exactly on an
observation, which is the case for the points at 252.36, 228.61 and 84.54. When this is
the case, either µ is negative and σ large and positive, or σ is close to zero. Both of
these behaviours occur when the EM algorithm is in the domain of attraction of one
of the points when the likelihood tends to infinity. Another case when the likelihood
is tending to infinity occurs when q is at one of the observation, which is the case, for
example, when q = 252.36, 228.62, 179.39, and 173.71. All the other terminating points
are local maxima, and notice that the value of q varies greatly between them.



Likelihood methods for MRS models with independent regimes 105

Gamma distribution is a point mass). When modelling electricity price data, recall that

the shifted-Gamma distribution is typically used to capture large price spikes, while

an AR(1) process is used to capture ‘base’ prices. It is logical that the mode of the

spike distribution is away from the shifting parameter q, as this ensures the majority

of the mass of the spike regime is away from the base regime. The spike regime should

capture those extreme prices, as well as some prices relatively near q that are not suitably

modelled by the AR(1) process. In summary, restricting µ > 2.5 is not as limiting as it

may seem, and is likely to make the model easier to interpret.

3.5.4 Applications/Extensions for more complex models

A natural extension to the time-homogeneous models considered here is to introduce

exogenous variables into the switching probabilities. This can be achieved by modelling

the switching probabilities using multinomial logistic regression. Let zt, t = 1, ..., T,

be row vectors of predictor variables with length r. Then, for example, the switching

probability can be modelled as

P(Rt = i|zt, Rt−1 = j) =
eβj,iz

′
t

1 +
M−1∑
k=1

eβj,kz
′
t

, (3.52)

where the superscript ′ is the transpose and βj,k j, k ∈ S are row vectors of regression

coefficients with length r. If the sequence {Rt}t∈{1,...,T} is known, the log-likelihood of

the switching process can be written as

T∑
t=1

∑
i∈S

I(Rt = i, Rt−1 = j) log
eβj,iz

′
t

1 +
M−1∑
k=1

eβj,kz
′
t

.

As the sequence {Rt} is not known for MRS models, then applying the EM methodology

to this log-likelihood expression (taking the expectation of this expression given the

observed prices, the predictor variables zt, and the current parameters θn) yields

T∑
t=1

∑
i,j∈S

Pθn(Rt = i, Rt−1 = j|x0:T , z0:T ) log
eβj,iz

′
t

1 +
M−1∑
k=1

eβj,kz
′
t

. (3.53)

Replacing the terms p
(n)
ij in the forward and backward algorithms with (3.52) evalu-

ated with regression parameters from the previous iteration of the EM algorithm, and
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replacing the sum ∑
i,j∈S

T∑
t=1

Pθn(Rt−1 = i, Rt = j|x0:T ) log pij

in Equation (3.32) with the expression (3.53) gives the appropriate function Q to im-

plement the EM algorithm for an MRS model with independent regimes and dependent

switching parameter. So, our forward algorithm or EM algorithm can be used to find

the MLEs for this model also.

Another possible extension would be to include exogenous variables in the mean for

each regime. For example, suppose Regime j is an AR(1) regime, then the parameter

αj could be replaced by the linear function

αj(βj , zt) = βjz
′
t,

where βj is a row vector of regression coefficients, and zt is exogenous data. However,

in this case the M-step of the EM algorithm may have to be performed numerically.

These types of model are explored in [80], although they rely on the EM-like algorithm

for approximate parameter estimation.

Our forward and backward algorithms can also be extended to cope with higher-order

autoregressive processes by adding more counters to the hidden Markov chain, for exam-

ple, for AR(2) processes, by augmenting the hidden Markov chain with last visit counters

and second-to-last visit counters. However, memory requirements and complexity would

greatly increase.

So far we have assumed there is at least one AR(1) regime and one i.i.d. regime, however

this is not necessary and our algorithms can be easily be modified for these models.



Chapter 4

Bayesian inference methods for

independent-regime MRS models

In this chapter, we describe a data-augmented Bayesian method for estimating the pa-

rameters of MRS models. We implement a sophisticated Markov Chain Monte Carlo

algorithm with an automatic parameter tuning aspect. The motivation for this was

to have a method that would adapt to various models, without the need for manually

editing each time.

4.1 The Bayesian framework

Recall from Section 2.2.4 that parameters, θ = (θ1, ..., θp), are treated as random vari-

ables and the goal of Bayesian inference is to infer the posterior distribution, f(θ|x),

where θ ∈ Θ is the parameter vector, and x is a vector of observed data. Depending

on the MRS model being investigated, the vector θ contains the parameters α`, φ`, σ
2
`

for each ` ∈ SAR, qk, µk and σ2
k for each k ∈ ScAR, and the switching parameters pij for

i, j ∈ S, i 6= j. The posterior distribution is accessed via Bayes’ Theorem,

f(θ|x) =
f(x|θ)π(θ)

f(x)
, (4.1)

where f(x|θ) is the likelihood, π(θ) the prior distribution, and f(x) a normalising

constant (with respect to θ). Until our algorithm in Section 3.2 there was no method to

evaluate the likelihood for MRS models with independent regimes, and thus evaluating

the posterior using Equation (4.1) was computationally infeasible. The likelihood can

107
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be written as a marginal distribution

f(x|θ) =
∑
R∈R

f(x,R|θ) =
∑
R∈R

f(x|θ,R)f(R|θ),

where R is the space of all possible regime sequences. Using this, the conditional dis-

tributions f(x|θ,R) and f(R|θ) are relatively straightforward to evaluate for any MRS

model, and so a natural way to proceed is using data-augmented methods.

In a data-augmented framework the goal is to infer the joint posterior distribution

f(θ,R|x). Bayes’ Theorem states that

f(θ,R|x) =
f(x,R|θ)π(θ)

f(x)
=
f(x|θ,R)f(R|θ)π(θ)

f(x)
,

where we call f(x|θ,R) the conditional likelihood, and f(R|θ) is the probability of the

regime sequence R, given the transition probabilities in θ. The normalising constant,

f(x), is intractable and we can only use the proportional relationship

f(θ,R|x) ∝ f(x|θ,R)f(R|θ)π(θ),

and must resort to numerical methods to approximate posterior distributions. Our

method of choice is a blockwise data-augmented adaptive Metropolis-Hastings algorithm,

as presented in Section 4.2.

Recall from Section 3.2, the definition of the event

{Nt,i = k} = {Rt−1 6= i, ..., Rt−k+1 6= i, Rt−k = i}.

Then the conditional likelihood can be written as

f(x|R,θ) =
∏
i∈S

f(x0|R0 = i,θ)I(R0=i)
∏

i∈ScAR

T∏
t=1

f(xt|Rt = i,θ)I(Rt=i)

×
∏

i∈SAR

T∏
t=1

t∏
k=1

f(xt|x0:t−1, Rt = i,Nt,i = k,θ)I(Rt=i,Nt,i=k),

where the densities f(x0|R0 = i,θ), i ∈ S, f(xt|Rt = i,x0:t−1,θ), i ∈ ScAR and

f(xt|x0:t−1, Rt = i,Nt,i = k,θ), i ∈ SAR, are given by the MRS model specification (for

example, Equation (3.19) or Equation (3.17)). The likelihood of the hidden sequence R

is

f(R|θ) = P(R0 = i)
∏
i,j∈S

p
ηij
ij ,
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where ηij =
T∑
t=1

I(Rt−1 = i, Rt = j), i, j ∈ S, is the number of transitions from state i to

state j in the sequence R. Assuming {Rt} is stationary, then P(R0 = i) is given by the

stationary probabilities.

Remark 4.1. Even with the forward algorithm of Section 3.2, there is still value in

employing a data-augmented algorithm since the forward algorithm has complexity

O(T k+1) (where T is the length of x and k is the number of AR(1) regimes), whereas

data-augmented MCMC methods can be implemented with complexity O(T ).

Prior distributions

In this thesis we choose to use a uniform prior distribution, π(θ) ∝ 1, which is a type of

objective prior distribution. Specifying a uniform prior distribution can be interpreted

as, ‘we are making no prior assumptions about the parameters before we have seen the

data.’ However, recall our note from Chapter 2, that this is not an entirely correct

interpretation due to the fact that the uniform prior is not invariant to transformations.

For example, if θ ∼Uniform(0, 1), then − log(θ) ∼Exponential(1). Note that our prior

distributions are not always proper, since the support of π(·) can be unbounded. Table

4.1 details the uniform prior distributions we use.

Parameter Prior distribution

αi U(−∞,∞)
φi U(−1, 1)
σ2
i U(0,∞)
qi U(ci,∞), ci = 1

3 , 2
3 or 0.98 quantile of the data

µi U(−∞,∞)
pij U(0, 1)

Table 4.1: Prior distributions for the parameters of our MRS models. U denotes the
uniform distribution. For qi, when Regime i is the first shifted-log-normal distribution
in the model, ci is the 2

3 quantile of the data, when Regime i is the second shifted-log-
normal distribution in the model, ci is the 0.98 quantile of the data, when Regime i is
a frops regime and follows a distribution of the form log(qi −X) ∼ N(µi, σ

2
i ), then ci

is the 1
3 quantile of the data.

4.2 MCMC implementation

As mentioned above, an approximate or numerical method must be used to obtain

posterior inferences since the normalising constant f(x) is not computable, and we

resort to data-augmented MCMC algorithms for this. Recall from Section 2.2.5 that the

idea behind data-augmented MCMC is to construct a Markov chain that has the joint
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posterior distribution, f(θ,R|x), as its stationary distribution. Then, by simulating a

long realisation of this process so that the process is close to stationary, samples towards

the end of the simulated chain will be approximately distributed as the joint posterior

distribution, f(θ,R|x). Denote the MCMC chain as
{
ψ(n)

}
n∈N

=
{(
θ(n),R(n)

)}
n∈N

.

Now we describe the development of our MCMC algorithms, including unsuccessful

attempts, since we believe these are still instructive.

Our initial MCMC algorithm Our first attempt was a data-augmented Metropolis-

Hasting algorithm which proposes moves for θ from the multivariate normal distribution

Np

(
θ(n), diag(s2

)
, where diag

(
s2
)

is a p×p diagonal matrix with s2
i along the diagonal.

The terms si are tuning parameters to be specified. Moves for the hidden regime sequence

R are proposed by simulating the process {Rt}t∈N for t = 0, 1, ..., T, using the transition

probabilities p
(n)
ij , i, j ∈ S, which are elements of θ(n), and initial distribution P(R0 =

1) = 1, for simplicity. Moves are proposed to the entire vector
(
θ(n),R(n)

)
at once.

The problem with this method is that the acceptance probability of proposed moves is

small, with high probability, and the chain rarely moves.

A second MCMC implementation To overcome this we implemented a blockwise

(element-at-a-time) Metropolis-Hastings (MH) algorithm, also known as a Metropolis-

within-Gibbs algorithm. This algorithm iterates over elements of θ and R sequentially,

as a Gibbs sampler does.

Moves for elements of θ are still made using a MH-style rule. That is, at the nth

iteration of the algorithm, to update the ith element of θ, a move is proposed from a

Normal distribution with mean θ
(n)
i and variance s2

i , and the proposed move is accepted

or rejected with an MH acceptance rule.

To sample the hidden sequence R, we obtain the conditional posteriors

P
(
Rt

∣∣∣R0, ..., Rt−1, Rt+1, ..., RT ,x0:T ,θ
(n)
)
, (4.2)

in a similar way to Henneke et al. [47], and use a Gibbs sampler to sample the components

Rt directly from these conditional posteriors.

This is different from our first implementation as at each step only one element of {ψ(n)}
is able to change, rather than trying to change the whole chain at once, and the Gibbs

sampler accepts moves with probability 1. When implementing this algorithm on real

data, we found constructing and sampling from the conditional posteriors in Equation

(4.2) was taking the majority of the run time. This motivated us to try MH-style updates
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for the components ofR. More specifically, to update the tth component ofR, we sample

uniformly from the set S \ {Rt}} and accept or reject this with a MH acceptance rule.

In a component-wise algorithm such as this, the acceptance probability of proposed

moves to the MCMC chain, {ψ(n)}, is generally higher than that in update-all-elements-

at-a-time MH algorithms, so this algorithm is more practical than our first implemen-

tation.

The issue with this implementation is finding suitable tuning parameters s2
i . It is not

difficult to find tuning parameters s2
i that are adequate for a specific dataset, or model,

using a trial and error approach. However, it is tedious. Over the course of this research

we investigated numerous real and simulated datasets to validate our methods, and the

algorithm had to be re-tuned often. This motivated us to use a Gibbs proposal for the

parameters pij , and an adaptive-MH algorithm for the rest of the elements of the MCMC

chain.

A third MCMC implementation A Gibbs proposal for the parameters pij , i, j ∈
S, was chosen since the construction of the conditional proposal distributions for the

parameters pij is rapid, and this eliminates any need to manually specify the proposal

distribution. For MRS models our conditional proposal distribution is the same as that

given in Henneke et al. [47]. The proposal distribution for the ith row of the transition

probability matrix of the hidden regime sequence is

f
(
pi1, ..., piM

∣∣∣R(n),x,θn

)
= f

(
pi1, ..., piM

∣∣∣R(n)
)
∼ Dirichlet (ηi1 + 1, ..., ηiM + 1) ,

where M is the number of regimes in the model and, as before,

ηij =

T∑
t=1

I
(
R

(n)
t−1 = i, R

(n)
t = j

)
for i, j ∈ S.

The rest of the parameter updates are executed using a blockwise-MH algorithm as

before, except the tuning parameters s2
i are adaptively determined by the algorithm.

The hidden sequence R, is still updated as before, using blockwise-MH steps.

Adaptive steps The adaptive algorithm we employ is the Adaptive-Metropolis algo-

rithm of Roberts and Rosenthal [90]. There is limited literature surrounding the optimal

acceptance rate of MH algorithms for general posterior distributions. In [90], Roberts

and Rosenthal provide an example of an adaptive scheme, which automatically adjusts

the parameters s2
i to asymptotically reach a given acceptance rate while maintaining the
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necessary ergodic properties. In [89], Roberts and Rosenthal prove, for an idealised ver-

sion of our blockwise Metropolis-Hasting algorithm, an optimal acceptance rate is 0.44.

Note that the theoretical results in [89] are derived for posterior distributions that are

multivariate Normal. However, for our problems, it is unlikely that the posterior distri-

butions are normal, and we additionally have to sample the hidden regime sequence, R.

Nonetheless, we use both their adaptive scheme and the proposed optimal acceptance

rate, as these works well for our purposes.

Our implementation of Roberts and Rosenthal’s adaptive scheme [90] is as follows. For

each parameter, we initialise the standard deviation of the proposal distributions to

s` = 1, ` = 1, ..., 3M , and begin our block-Metropolis-Hastings algorithm. After each

batch of 50 iterations of the block-Metropolis-Hastings algorithm, we update s`, by

multiplying by exp(δ(n)) if the acceptance rate for that parameter is above 0.44, or by

exp(−δ(n)) if the acceptance rate is less than 0.44. Following the ideas in [90], we define

δ(n) = min

(
2√
n
,
10

n
,
10000

n2

)
.

Note that to satisfy the conditions for convergence of this algorithm outlined in [90],

we also need to specify a bound K < ∞ and restrict log(si) to [−K,K]. In our imple-

mentation this bound is not needed, since we stop the adaptive iterations after some

specified burn-in. We observe that after a sufficient number of iterations the sequence

of si created by this algorithm converges to a fixed value, and that the acceptance rate

is close enough to 0.44 for our purpose. Stopping the adaptive steps after some burn-in

period also has the advantage of making the algorithm output easier to interpret. The

stochastic process produced by the algorithm during the adaptive steps is no longer a

Markov chain, since transitions depend on all previous values of the chain. By stopping

the adaptive steps and only considering the process from this point on, the resulting

process is a time-homogeneous Markov chain.

One last improvement We also found computational savings could be made when

sampling the hidden regime sequence. When the characteristics of each regime in the

model are sufficiently different the hidden regime sequence, R, is relatively obvious, in

that the posterior probability P(Rt = i|x,θ), is close to 1 or 0 for most values of θ,

and the variance of R in the posterior distribution is low. We found it much more

computationally efficient to update only a subsample of the hidden regimes at each

iteration of the algorithm. Although this makes the chain mix slower, this is typically

outweighed by the computational savings made. For some datasets, we found that we

needed to update as little as 1% of the hidden regimes and the algorithm still converged

within ≈ 100, 000 iterations. We settled on updating (a conservative) 10% of the hidden
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regime at each iteration of the MCMC algorithm, as this performed well for most of the

datasets we investigated.

The end result is a flexible and efficient MCMC algorithm to sample from the posterior

distribution of MRS models, which is a blockwise data-augmented adaptive Metropolis-

Hastings algorithm. We assess convergence of our algorithm by comparing trace plots

of four independent chains and observe when they show stationary characteristics. In

the following, we give more details behind the efficient computation in certain aspects

of the algorithm.

Simplifying the MH ratios for fast computation

Here we detail some intricacies for efficient computation of the MH-ratio when updating

some elements of the MCMC chain ψ(n). We show that evaluating the whole conditional

likelihood can be avoided when computing the MH-ratio.

Within-regime parameter updates By within-regime we mean the parameter αi,

φi, σ
2
i , qi or µi. In our algorithm, the MCMC chain updates for all of the within-

regime parameters are made by first proposing a move from the one-dimensional Normal

distribution, centred around the current value and with variance s2
` . First we note that,

the proposal distributions are symmetric, so they cancel out in the MH acceptance ratio.

Now, suppose the current state of the MCMC chain is
(
θ(n),R(n)

)
, and we are to update

the `th element of θ, which belongs to Regime j. If the algorithm proposes a move to

θ′ =
(
θ

(n)
1 , ..., θ

(n)
`−1, θ

′, θ
(n)
`+1, ..., θ

(n)
p

)
, then the MH-ratio is

α(x, y) =
f
(
x
∣∣∣θ′,R(n)

)
f
(
R(n)

∣∣∣θ′)π (θ′)
f
(
x
∣∣∣θ(n),R(n)

)
f
(
R(n)

∣∣∣θ(n)
)
π
(
θ(n)

)
=

f
(
x
∣∣∣θ′,R(n)

)
π
(
θ′
)

f
(
x
∣∣∣θ(n),R(n)

)
π
(
θ(n)

)

=

f
(
x0

∣∣∣θ′, R(n)
0 = j

)I(R(n)
0 =j

)
T∏
t=1

f
(
xt

∣∣∣x0:t−1,θ
′,R(n)

)I(R(n)
t =j

)

f
(
x0

∣∣∣θn, R(n)
0 = j

)I(R(n)
0 =j

)
T∏
t=1

f
(
xt

∣∣∣x0:t−1,θ
(n),R(n)

)I(R(n)
t =j

) π
(
θ′
)

π
(
θ(n)

),

where the second equality holds since the parameters pij are the same in both θ′ and

θ(n). Depending on the form on the densities f
(
x0

∣∣∣R0 = j,θ
)

and f
(
xt

∣∣∣x0:t−1,θ,R
)

this can possibly be simplified further, but that is model specific.
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Hidden regime sequence updates Suppose the current value of the MCMC chain

is
(
θ(n),R(n)

)
. Updates to R(n) are proposed by first sampling r := d0.1T + 1e indices

from {0, 1, ..., T}. Label this sample of indices τ = {τ1, ..., τr}. Let τ be any element of

τ . For each τ , a move is proposed to the τ th element of R in the following way. Suppose

the τ th element of R(n) is R
(n)
τ = i, then sample an alternative regime, j, uniformly from

S \ {i}. Set R′ =
(
R

(n)
0 , ..., R

(n)
τ−1, j, R

(n)
τ+1, ..., R

(n)
T

)
, and let m = Rτ−1 and ` = Rτ+1.

The most complex case is when i, j ∈ SAR, and the other cases are simplifications of this,

so we treat this first. When i, j ∈ SAR the relevant terms in the conditional likelihoods

concern AR(1) processes, which require knowledge of last visit and next visit times. We

use the notation t− btj , j ∈ S, to denote the time of the last visit to state j, before time

t, in the sequence R(n), and we use t+ atj , j ∈ S, to denote the time of the next visit to

state j, after time t, in the sequence R(n) (a for after, b for before). If there is no last

visit time, bτi , then set bτi = t+ 1. If there is no next visit time, aτi , then define

f(xτ+aτi
|Rτ+aτi

= i,Nτ+aτi ,i
= aτi + bτi ,x0:τ+aτi −1,θ

(n))

= f(xτ+aτi
|Rτ+aτi

= i,Nτ+aτi ,i
= aτi ,x0:τ+aτi −1,θ

(n))

= 1.

For simplicity, first assume τ 6= 0 and τ 6= T , then the MH ratio is

α(x, y) =
f
(
xτ

∣∣∣Rτ = j,Nτ,j = bτj ,x0:τ−1,θ
(n)
)

f
(
xτ

∣∣∣Rτ = i,Nτ,i = bτi ,x0:τ−1,θ
(n)
)

×
f
(
xτ+aτj

∣∣∣Rτ+aτj
= j,Nτ+aτj ,j

= aτj ,x0:τ+aτj−1,θ
(n)
)

f
(
xτ+aτi

∣∣∣Rτ+aτi
= i,Nτ+aτi ,i

= aτi ,x0:τ+aτi −1,θ
(n)
)

×
f
(
xτ+aτi

∣∣∣Rτ+aτi
= i,Nτ+aτi ,i

= aτi + bτi ,x0:τ+aτi −1,θ
(n)
)

f
(
xτ+aτj

∣∣∣Rτ+aτj
= j,Nτ+aτj ,j

= aτj + bτj ,x0:τ+aτj−1,θ
(n)
)p(n)

mjp
(n)
j`

p
(n)
mi p

(n)
i`

. (4.3)

The idea behind the derivation of Equation (4.3) is, since both i and j are AR(1) regimes,

then f
(
x
∣∣∣R′,θ(n)

)
and f

(
x
∣∣∣R(n),θ(n)

)
differ for terms that involve xτ−bτj , xτ−bτi , xτ ,

xτ+aτi
and xτ+aτj

only. Specifically, given R′, xτ+aτj
depends on xτ , xτ depends on xτ−bτj ,

and xτ+aτi
depends on xτ−bτi , and the relevant densities for these are

f
(
xτ+aτj

∣∣∣Rτ+aτj
= j,Nτ+aτj ,j

= aτj ,x0:τ+aτj−1,θ
(n)
)
,

and

f
(
xτ

∣∣∣Rτ = j,Nτ,j = bτj ,x0:τ−1,θ
(n)
)
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and

f
(
xτ+aτi

∣∣∣Rτ+aτi
= i,Nτ+aτi ,i

= aτi + bτi ,x0:τ+aτi −1,θ
(n)
)
.

Given R(n), xτ+aτi
depends on xτ , xτ depends on xτ−bτi , and xτ+aτj

depends on xτ−bτj ,

and the relevant densities for these are

f
(
xτ+aτi

∣∣∣Rτ+aτi
= i,Nτ+aτi ,i

= aτi ,x0:τ+aτi −1,θ
(n)
)
,

and

f
(
xτ

∣∣∣Rτ = i,Nτ,i = bτi ,x0:τ−1,θ
(n)
)

and

f
(
xτ+aτj

∣∣∣Rτ+aτj
= j,Nτ+aτj ,j

= aτj + bτj ,x0:τ+aτj−1,θ
(n)
)
.

When τ = 0 or T , a modifications to the terms pij is needed. When τ = 0 the ratio

becomes

α(x, y) =
f
(
xτ

∣∣∣Rτ = j,Nτ,j = bτj ,x0:τ−1,θ
(n)
)

f
(
xτ

∣∣∣Rτ = i,Nτ,i = bτi ,x0:τ−1,θ
(n)
)

×
f
(
xτ+aτj

∣∣∣Rτ+aτj
= j,Nτ+aτj ,j

= aτj ,x0:τ+aτj−1,θ
(n)
)

f
(
xτ+aτi

∣∣∣Rτ+aτi
= i,Nτ+aτi ,i

= aτi ,x0:τ+aτi −1,θ
(n)
)

×
f
(
xτ+aτi

∣∣∣Rτ+aτi
= i,Nτ+aτi ,i

= aτi + bτi ,x0:τ+aτi −1,θ
(n)
)

f
(
xτ+aτj

∣∣∣Rτ+aτj
= j,Nτ+aτj ,j

= aτj + bτj ,x0:τ+aτj−1,θ
(n)
)p(n)

j p
(n)
j`

p
(n)
i p

(n)
i`

, (4.4)

where p
(n)
j , j ∈ S, is the stationary distribution of R given θ(n). When τ = T the ratio

becomes

α(x, y) =
f
(
xτ

∣∣∣Rτ = j,Nτ,j = bτj ,x0:τ−1,θ
(n)
)

f
(
xτ

∣∣∣Rτ = i,Nτ,i = bτi ,x0:τ−1,θ
(n)
) p(n)

mj

p
(n)
mi

. (4.5)

Now, note that for k /∈ SAR, then

f(xτ+aτk
|Rτ+aτk

= k,Nτ+aτk ,k
= aτk + bτk,x0:τ+aτk−1,θ

(n))

= f(xτ+aτk
|Rτ+aτk

= k,Nτ+aτk ,k
= aτk,x0:τ+aτk−1,θ

(n))

= f(xτ+aτk
|Rτ+aτk

= k,θ(n)),

since k is an i.i.d. regime, thus, given the regime is k, then xτ+aτk
is independent of

Nτ+aτk ,k
= aτk, and x0:τ+aτk−1, where Nt,k for k ∈ S, and t = 0, ..., T , are random

variables denoting the time since the last visit to state k at time t. So when either one,
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or both, of i and j are in ScAR then the ratios (4.3), (4.4) and (4.5) simplify, since some,

or all, of the terms involving xτ+aτ terms cancel out.

4.3 Posterior predictive checks

The general idea behind posterior predictive checks (PPCs) is that data replicated under

the Bayesian posterior predictive distribution should look similar to the observed data.

By comparing statistics generated under the posterior predictive distribution, to statis-

tics calculated from the observed data, we can see where a model fails. The Bayesian

posterior predictive distribution is

f(xnew|x) =

∫
Θ

∑
R∈R

f(xnew|x,θ,R)f(θ,R|x)dθ,

where x is the observed data, R is the hidden regime sequence, and xnew is data gener-

ated independently of x. The statistics used to compare observed data to the posterior

predictive distribution in PPCs are typically related to characteristics of the data that

we want to capture. That is, if an important aspect of the model is to capture the vari-

ance of the data, then the sample variance of the observed data should be compared to

the variance of the posterior predictive distribution, or, compared to the sample variance

of data replicated by the posterior predictive distribution in the case that the variance

of the posterior predictive distribution is not known.

For our MRS models, suppose we are interested in some statistic T (x, (θ,R)) which

depends on observed data, parameters and the hidden regime sequence. To construct a

PPC:

Step 1. Sample θ∗ and R∗ from the posterior distribution.

Step 2. Calculate T (x, (θ∗,R∗)) from observed data.

Step 3. Determine the statistic’s true value under the distribution f(·|θ∗,R∗). If this

cannot be done analytically then we can approximate the true value by simulat-

ing xnew from f(·|θ∗,R∗), and use this sample to calculate the relevant statistic,

T (xnew, (θ
∗,R∗)).

Step 4. Compare the statistics T (xnew, (θ
∗,R∗)) and T (x, (θ∗,R∗)).

This is repeated for many samples of R∗ and θ∗, and we look to see if, overall, the statis-

tics calculated from the observed data and the statistics calculated from the predictive

distribution disagree in any significant way. For example, in the case that T (x, (θ,R)) is
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a scalar, one can determine the proportion of times T (x, (θ∗,R∗)) exceeds T (x, (θ,R))

as a measure of how well the model and data agree.

PPCs are a very flexible tool as they can be applied to a wide range of statistics T .

PPCs are able to notify us where a model might obviously be failing, however, like any

statistical process, they cannot tell us if our model is definitely correct.

PPCs were proposed by Rubin in 1984, [93]; Chapter 6 of Gelman et al. [37], is also

useful for this topic.

Some useful posterior predictive checks

Here we describe how we construct some posterior predictive checks used in our anal-

ysis. Note that these procedures are repeated for many samples from the posterior

distribution, and suitability of a model is assessed using all these samples.

QQ plots To test the distributional assumptions of each regime, samples of R∗ from

the posterior distribution can be used to classify data into regimes and quantile-quantile

(QQ) plots for each regime can be generated. QQ plots display empirical quantiles,

calculated from observed data, versus theoretical quantiles, calculated as if the model

were true. If the distributional assumption underlying the model is true, we expect to see

the data in the QQ plot to follow a straight line, and deviations from this suggests that

the model may not be correct. For i.i.d. regimes this is straightforward to implement

once the data has been classified by R∗, since these observations are i.i.d. and θ∗ defines

their theoretical distribution. For AR(1) regimes, the residuals of the AR(1) regime

are calculated using the sampled R∗ and θ∗. Since our models assume Gaussian AR(1)

processes, the theoretical distribution of the residuals is N(0, 1) and QQ plots can then

be generated. More specifically, suppose Regime i is an AR(1) regime, then, for Type

II models, the residuals are calculated as

r∗t =

xt − α∗i
1− (φ∗i )

`

1− (φ∗i )
− (φ∗i )

`xt−`

σ∗i

1− (φ∗i )
2`

1− (φ∗i )
2

1/2
, (4.6)

where xt has been classified into Regime i by R∗, and N∗t,i = `. Equation (4.6) follows

from Equation (3.18), where we show the mean and variance of xt in Regime i, given
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the last observed value from Regime i, xt−`, are

α∗i
1− (φ∗i )

`

1− (φ∗i )
+ (φ∗i )

`xt−`, and (σ∗i )
2

1− (φ∗i )
2`

1− (φ∗i )
2

 ,

respectively.

For Type III models,

r∗t =
xt − α∗i − φ∗ixt−`

σ∗i
,

where xt and xt−` are defined as before.

Since the main goal of our models is often to model the distribution of prices, this is one

of the more important PPCs that we use. If the QQ plots deviate from what we expect

in a systematic way, for a collection of samples from the posterior, this suggests there is

an issue with the distributional assumptions.

Residual plots The other posterior predictive checks that we use plot, for each regime,

residuals against time and residuals against lagged values. Since our MRS model assumes

the variance within each regime is constant across time, plotting residuals against time

can warn us if there is any significant time-heterogeneity present.

Similarly, for AR(1) regimes, our models assume constant variance with respect to lagged

values; that is, for an AR(1) process, {Yt}, we assume the variance of Yt does not depend

on Yt−1. Plotting residuals against lagged values can warn us if this assumption is

violated. Some analyses in the literature [58, 61] have found electricity prices can follow

a constant elasticity of variance (CEV) process, Yt = α + φYt−1 + σ|Yt−1|γεt for some

non-zero γ. To assess the assumption of constant variance with respect to lagged values,

and therefore reject the need for a CEV model, we use a scale-location plot, which plots√
|rt| from AR(1) regimes against the magnitude of the last value before time t from

the same regime, |xt−`|.

4.4 Validation of methods

To validate our methods we simulated datasets from MRS models and used our Bayesian

methodology to estimate parameters from the simulations. We also produced PPCs for

each simulated dataset to observe their behaviour. In the following we present only

simulations of MRS models of Type II, since the conclusions for models of Type III

are exactly the same. The parameters used in the following simulations are chosen to
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approximately match the parameters estimated from the South Australian electricity

market data, as explored in Chapter 5.

4.4.1 When the model fitted to data is correct

We simulated twenty datasets of length T = 2000 from the following MRS model of

Type II (with independent regimes which evolve at all time points):

Xt =

Bt, Rt = 1,

St, Rt = 2,
(4.7)

where

Bt = 0.55Bt−1 +
√

53εt

is an AR(1) process, {εt} is a sequence of i.i.d. N(0,1) random variables, {St} is a

sequence of shifted-log-normal random variables, i.e. log(St − 12) ∼ i.i.d. N(3.5,1), and

{Rt} is a Markov chain with transition probability matrix

P =

[
0.9 0.1

0.5 0.5

]
.

We used our Bayesian methodology to fit the correct model to the data by estimating

the posterior distributions, and produced PPCs. The posterior means, medians, and

univariate marginal modes are summarised in boxplots in Figure 4.1. It appears that

the point estimates of φ and σ2
1 are biased. In particular, posterior point estimates of

φ are biased towards 0, and the posterior point estimates of σ2
1 are biased upwards.

Other simulations have also shown this behaviour. Our hypothesis is that the prior

distribution is affecting the posterior inferences. The prior distribution on σ2
1 is the

improper uniform distribution on (0,∞), and assigns equal weight to every value on the

positive half-line, no matter how large, and we hypothesise this biases point estimates

of σ2
1 upwards. Similarly, the prior distribution for φ is uniform on (−1, 1), which has

mean zero, and we hypothesise this has a shrinkage affect on these point estimates of φ,

pulling them closer to 0.

To investigate this further, we simulated datasets of length T = 4000 from the same

model, applied our Bayesian methods and produced the same boxplot summary of pos-

terior point estimates, shown in Figure 4.2. Notice that the bias in these point estimates

is smaller than before. This suggests that these point estimates are at least consistent.
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Figure 4.1: Boxplots summarising Bayesian posterior point estimates of the parame-
ters of the model in Equation (4.7) for twenty simulated datasets of length T = 2000,
when the correct model is fitted to the data. The true parameters are α = 0, φ = 0.55,
σ2
1 = 53, q = 12, µ = 3.5, σ2

2 = 1, p11 = 0.9 and p22 = 0.5. The mode is the univariate
marginal mode. Note the apparent bias in the point estimates of φ and σ2
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Figure 4.2: Boxplots summarising Bayesian posterior point estimates of the parame-
ters of the model in Equation (4.7) for twenty simulated datasets of length T = 4000,
when the correct model is fitted to the data. The true parameters are α = 0, φ = 0.55,
σ2
1 = 53, q = 12, µ = 3.5, σ2

2 = 1, p11 = 0.9 and p22 = 0.5. The mode is the univariate
marginal mode. Notice the bias in the parameters φ and σ2

1 is smaller here than in
Figure 4.1.
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In Figures 4.3-4.5 the univariate marginal posterior distributions are plotted for the

simulations of length T = 2000. We see the marginal distributions for all parameters,

except q, are approximately symmetric.

In Figure 4.6 our QQ plot-PPCs are shown for the simulations of length T = 2000.

We use these to assess within-regime distributional assumptions. The model fitted to

the data is correct (it has one AR(1) regime and one i.i.d. shifted-log-normal regime,

which is the same as the model that generated the data), so we expect to see our PPCs

reflect this. Since the points on the QQ plots lie relatively close to a straight line, this

PPC suggests that the within-regime distributional assumptions are reasonable. Note

that in Figure 4.6 each pair of plots is generated by an independently simulated dataset,

and a single sample of θ and R from the posterior. This means there are two sources

of variability in this figure, variability in the dataset, and variability in the sampled

parameters from the posterior. Since these QQ plot PPCs are our main model checking

tool, we also investigate the variability of these plots due to the posterior only, that is,

for a fixed dataset and many samples from the posterior. In Figure 4.7 ten QQ plot

PPCs are show for a fixed dataset.

Figure 4.8 shows the residuals-versus-time plots produced as part of our PPCs. The fit-

ted model assumes the variance within each regime does not vary over time. Since there

is no obvious pattern in these residuals plots, this PPC suggests that this assumption is

reasonable.

Figure 4.9 shows the scale-location PPCs. The fitted model assumes the variance does

not depend on the magnitude of the lagged realisations from each regime. Since Fig-

ure 4.9 shows no obvious increase or decrease in the spread of the residuals as the

magnitude of lagged values increases or more generally any significant shape, this PPC

suggests that constant variance is appropriate.

4.4.2 Fitting a model with an incorrect spike regime

To see if our methods have any power to reject a model with an incorrect spike distri-

bution, we simulated datasets of length T = 2000 from the model in Equation (4.7) and

used our Bayesian methodology to fit a MRS model of Type II with one auto-regressive

regime and one i.i.d. shifted-Gamma regime.

In Figure 4.10 ten pairs of the QQ plot-PPCs are shown for these simulations. Each

pair of plots was produced from a different simulated dataset. Since the model fitted

to the data has an i.i.d. shifted-Gamma regime, instead of the i.i.d. shifted-log-normal

regime that was simulated, we expect this PPC to suggest the spike distribution is not
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Figure 4.3: Univariate marginal posterior distributions for the parameters of Regime
1 (the AR(1) regime) constructed from twenty simulated datasets of length 2000 of the
model in Equation (4.7), when the correct model is fitted to the data. There is one
marginal posterior density curve for each simulated dataset. The true parameter values
are α = 0, φ = 0.55, and σ2

1 = 53.
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Figure 4.4: Univariate marginal posterior distributions for the parameters of Regime
2 (the shifted-log-normal regime) constructed from twenty simulated datasets of length
2000 of the model in Equation (4.7), when the correct model is fitted to the data.
There is one marginal posterior density curve for each simulated dataset. The true
parameter values are q2 = 12, µ2 = 3.5, and σ2

2 = 1. Notice that the marginal posterior
distribution for q2 is not symmetric, and the marginal posterior distributions for µ2

and σ2
2 are approximately symmetric.
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Figure 4.5: Univariate marginal posterior distributions for the parameters of the
transition matrix constructed from twenty simulated datasets of the model in Equation
(4.7), when the correct model is fitted to the data. There is one marginal posterior
density curve for each simulated dataset. The true parameter values are p11 = 0.9 and
p22 = 0.5.

suitable. Notice that points in the QQ plots from the shifted-Gamma regime do not

follow a straight line, which suggests the Gamma regime is indeed unsuitable in this

model. This in turn implies that the QQ plot-PPC is able to distinguish between the

shifted-Gamma distribution and the shifted-log-normal distribution.

4.4.3 Fitting a constant variance model to data with non-constant vari-

ance

To see if our methods have any power to reject a model with incorrect homoscedasticity

assumptions, we simulated datasets of length T = 2000 from the following CEV model

Xt =

Bt, Rt = 1,

St, Rt = 2,
(4.8)

where

Bt = 0.55Bt−1 +
√

53|Bt−1|γεt

is an AR(1) process, and {St} is a sequence of shifted-log-normal random variables,

i.e. log(St − 12) i.i.d. N(3.5,1), and {Rt} is a Markov chain with transition probability

matrix

P =

[
0.9 0.1

0.5 0.5

]
,

for γ = −0.5,−0.25, 0.25 and 0.5. We then used our Bayesian methodology to fit the

MRS model of Type II in Equation (4.7) (a constant variance model) to each dataset,

and produced the scale-location PPCs. We expected to see evidence in the scale-location

plots that the fitted model is incorrect.
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Figure 4.6: Ten pairs of QQ plots generated as part of our PPCs for simulations of
the model in Equation (4.7), when the correct model is fitted to the data. Each pair
of plots was generated by an independently simulated dataset. These PPCs are used
to assess within-regime distributional assumptions. In each pair, the plot on the left is
the QQ plot of the residuals of the AR(1) regime, and the plot on the right is for the
shifted-log-normal regime. Since the points on each QQ plot are relatively close to the
reference line, this PPC does not reject the fitted model.
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Figure 4.7: Ten pairs of QQ plots generated as part of our PPCs for a single simulation
of the model in Equation (4.7), when the correct model is fitted to the data. Each pair
of plots was generated from an independent draw of θ and R from the posterior, but
from the same dataset. These PPCs are used to assess within-regime distributional
assumptions. In each pair, the plot on the left is the QQ plot of the residuals of the
AR(1) regime, and the plot on the right is for the shifted-log-normal regime.



Bayesian inference methods for independent regime MRS models 126

500 1000 1500 2000

t

0

5

10

re
s
id

u
a

l
Residuals vs time for AR

500 1000 1500

t

100

200

300

400

re
s
id

u
a

l

Residuals vs time for IR

time time

500 1000 1500 2000

t

-4

-2

0

2

re
s
id

u
a
l

Residuals vs time for AR

500 1000 1500

t

50

100

150

200

250

300

350

re
s
id

u
a
l

Residuals vs time for IR

time time

500 1000 1500 2000

t

-3

-2

-1

0

1

2

3

re
s
id

u
a

l

Residuals vs time for AR

500 1000 1500 2000

t

100

200

300

400

re
s
id

u
a

l

Residuals vs time for IR

time time

500 1000 1500 2000

t

-2

0

2

4

6

re
s
id

u
a
l

Residuals vs time for AR

500 1000 1500

t

100

200

300

400

500

600

700

re
s
id

u
a
l

Residuals vs time for IR

time time

500 1000 1500 2000

t

-3

-2

-1

0

1

2

re
s
id

u
a
l

Residuals vs time for AR

500 1000 1500

t

100

200

300

400

500

600

700

re
s
id

u
a
l

Residuals vs time for IR

time time

500 1000 1500 2000

t

-3

-2

-1

0

1

2

3

re
s
id

u
a
l

Residuals vs time for AR

500 1000 1500

t

100

200

300

400

500

re
s
id

u
a
l

Residuals vs time for IR

time time

500 1000 1500 2000

t

-4

-2

0

2

re
s
id

u
a
l

Residuals vs time for AR

500 1000 1500

t

100

200

300

400

500

600

700

re
s
id

u
a
l

Residuals vs time for IR

time time

500 1000 1500 2000

t

-3

-2

-1

0

1

2

3
re

s
id

u
a
l

Residuals vs time for AR

500 1000 1500

t

100

200

300

400

500

600

700

re
s
id

u
a
l

Residuals vs time for IR

time time

500 1000 1500 2000

t

-3

-2

-1

0

1

2

3

re
s
id

u
a
l

Residuals vs time for AR

500 1000 1500

t

200

400

600

800

re
s
id

u
a
l

Residuals vs time for IR

time time

500 1000 1500 2000

t

-3

-2

-1

0

1

2

3

re
s
id

u
a
l

Residuals vs time for AR

500 1000 1500

t

100

200

300

400

500

re
s
id

u
a
l

Residuals vs time for IR

time time

Figure 4.8: Ten pairs of residual-versus-time plots generated as part of our PPCs for
simulations of the model in Equation (4.7), when the correct model is fitted to the data.
Each pair of plots was generated by an independently simulated dataset. These PPCs
are used to assess within-regime time-homoscedasticity assumptions. In each pair, on
the left is the residuals-versus-time plot for the AR(1) regime, and on the right is the
residuals-versus-time plot for the shifted-log-normal regime. Since these plots show no
obvious pattern, the assumption of homoscedasticity seems reasonable.



Bayesian inference methods for independent regime MRS models 127

0 5 10 15 20 25 30
0

1

2

3

4
Scale-location for AR

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5
Scale-location for AR

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2
Scale-location for AR

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5
Scale-location for AR

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2
Scale-location for AR

0 5 10 15 20 25 30
0

0.5

1

1.5

2
Scale-location for AR

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5
Scale-location for AR

0 5 10 15 20 25 30
0

0.5

1

1.5

2
Scale-location for AR

0 5 10 15 20 25 30
0

0.5

1

1.5

2
Scale-location for AR

0 5 10 15 20 25 30
0

0.5

1

1.5

2
Scale-location for AR

Figure 4.9: Ten scale-location plots for AR(1) regime residuals, where
√
|rt| is plotted

against the absolute value of lagged values, |xt−`|, generated as part of our PPCs for the
simulations of the model in Equation (4.7), when the correct model is fitted to the data.
Each plot was generated by an independently simulated dataset. This PPC assesses
whether variance depends on the last observed value from each regime. A smoothed
regression line is also included in these plots to help us spot any trend in the mean
of the residuals. Since these plots show no obvious increase/decrease in spread as a
function of lagged values or shape in the residuals, the assumption of constant variance
with respect to lagged values seems reasonable.
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Figure 4.10: Ten pairs of QQ plots generated as part of our PPCs for when a model
with Gamma distributed spikes is fitted to data generated from the model in Equation
(4.7). Each pair of plots was generated by an independently simulated dataset. This
PPC assesses within-regime distributional assumptions. In each pair, the plot on the
left is the QQ plot of the residuals of the AR(1) regime, and the plot on the right is a
QQ plot for the shifted-Gamma regime. Notice, in the QQ plots of the i.i.d. shifted-
Gamma regime, the points stray well away from the straight line. In particular, all the
points lie above the line. This suggests that the Gamma regime is unsuitable: it does
not have enough mass in its tail.
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In Figure 4.11 five scale-location PPCs are shown for γ = −0.5 (left), and γ = −0.25

(right), and in Figure 4.12 five scale-location PPCs are shown for γ = 0.25 (left), and

γ = 0.5 (right). Each plot was produced from a different simulated dataset. The scale-

location-PPC is used to assess constant variance assumptions: if the assumption of

constant variance is correct, there should be no increase or decrease in the variance of

the residuals as we move along the x-axis.

In all the plots in Figure 4.11, the spread of the residuals clearly narrows as the mag-

nitude of the lagged value gets larger for both γ = −0.25 and −0.5, suggesting the

constant variance model is inappropriate for both simulated datasets. In addition, no-

tice the scale of the x-axis is much larger in these plots compared to the case when the

model fits well (in Figure 4.9), which indicates that some of the extreme values from the

shifted-log-normal regime are being captured by the AR(1) process.

In Figure 4.12, when γ = 0.25 (left) there are limited significant indications that the

variance may be non-constant; compared to Figure 4.9, there are only very subtle differ-

ences between the scale-location PPCs apart for the larger lagged values. When γ = 0.5

(right) there generally appears to be an increase in the residuals as a function of the

magnitude of lagged values, |xt−`|, compared to Figure 4.9 where there is no such trend,

particularly for the more reasonable lagged values. This is an interesting observation.

When γ > 0 we expected to see the spread of the residual increase as a function of |xt−`|,
but what we see instead is an increase in the magnitude of the residuals as a function

of |xt−`|, and an upward trend line. We suspect this is due to the shifted-log-normal

regime capturing large observations generated by the CEV regime.

These observations indicate that the scale-location-PPC has some power to reject a

constant variance model when data follows CEV dynamics, with negative values of γ.

When γ is positive, this PPC has less power to differentiate between a constant variance

and CEV model, although an upward trend in the residuals as a function of |xt−`|, can

indicate that a model may be inappropriate.

The poor model fit also shows up in our QQ plot-PPCs for the AR(1) regime (Figure

4.13) since the fitting process has had to compromise in the regime allocation process.

Notice the residuals of the AR(1) regime deviate from a straight line in the tails. This

is perhaps the stronger signal that the model is not appropriate.

4.4.4 Determining when more regimes are needed

We also want our methods to inform us if more regimes are needed to model the data.

First, we investigate the case when there should be more than one i.i.d. regime.
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(b) γ = −0.25

Figure 4.11: Scale-location-PPC plots generated as part of our PPCs when fitting the
model in Equation (4.7) to simulated data generated from the model in Equation (4.8)
for γ = −0.5 (left) and γ = −0.25 (right). Each plot is generated by an independent
simulation. The red line is a smoothed regression line to help spot possible trends in
the points. For both γ = −0.25 (left) and γ = −0.5 (right) it is clear the variance
decreases as we move from left to right.
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Figure 4.12: Scale-location-PPC plots generated as part of our PPCs when fitting
the model in Equation (4.7) to simulated data generated from the model in Equation
(4.8) for γ = 0.25 (left) and γ = 0.5 (right). Each plot is generated by an independent
simulation. The red line is a smoothed regression line to help spot possible trends in
the points. Comparing the plots produced when γ = 0.25 (left) to the plots in Figure
4.9, (where γ = 0, and the fitted model is correct) we see only slight differences. When
γ = 0.5 (right) we see the residuals increase as we move from left to right.
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(d) γ = 0.5

Figure 4.13: QQ plots generated as part of our PPCs when fitting the model in
Equation (4.7) to simulated data generated from the models in Equation (4.8) for
γ = −0.5, (left), γ = −0.25 (centre-left), γ = 0.25 (centre-right), and γ = 0.5 (right).
Each plot was generated by an independently simulated dataset. Notice there is some
deviation from the reference line in these QQ plots, particularly for γ = ±0.5, suggesting
either the AR(1) model in Equation (4.7) may not be appropriate for the data, or that
the fitting process has poorly allocated points to this regime.
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We simulated 20 independent realisations of length T = 2000 from the following MRS

model of Type II:

Xt =


Bt, Rt = 1,

S
(2)
t , Rt = 2,

S
(3)
t , Rt = 3,

(4.9)

where

Bt = 0.55Bt−1 +
√

53εt

is an AR(1) process, {εt} is a sequence of i.i.d.N(0,1) random variables, {S(2)
t } is a

sequence of shifted-log-normal random variables with log(S
(2)
t − 12) ∼ i.i.d. N(3.5,1),

{S(3)
t } is also a sequence of shifted-log-normal random variables with log(S

(3)
t − 185) ∼

i.i.d. N(4.7,0.3), and {Rt} is a Markov chain with transition probability matrix

P =


0.82 0.13 0.05

0.36 0.62 0.02

0.38 0.13 0.49

 .

Then we used our Bayesian methodology to fit a two-regime MRS model of Type II,

with one AR(1) regime and one shifted-log-normal regime. Some QQ plot-PPCs from

this are shown in Figure 4.14. Clearly this two-regime model is unable to capture the

extreme values as shown by the QQ plots for the shifted-log-normal regime.

We also simulated 20 independent realisations of length T = 2000 from the following

MRS model of Type II:

Xt =


B

(1)
t , Rt = 1,

B
(2)
t , Rt = 2,

St, Rt = 3,

(4.10)

where

B
(1)
t = 0.55B

(1)
t−1 +

√
53ε

(1)
t ,

and

B
(2)
t = 0.55B

(2)
t−1 +

√
530ε

(2)
t ,

are AR(1) processes and {ε(i)
t } i = 1, 2, are independent sequences of i.i.d. N(0,1) random

variables, {St} is a sequence of shifted-log-normal random variables, with log(St−12) ∼
i.i.d. N(3.5,1) and {Rt} is a Markov chain with transition probability matrix

P =


0.82 0.13 0.05

0.36 0.62 0.02

0.38 0.13 0.49

 .
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Figure 4.14: Ten pairs of QQ plots generated as part of our PPCs for simulations of
the model in Equation (4.9), when a two-regime model, with one AR(1) regime and one
shifted-log-normal regime, is fitted to data generated by a model with three regimes,
one AR(1) regime and two shifted-log-normal regimes. Each pair of plots was generated
by an independently simulated dataset. These PPCs are used to assess within-regime
distributional assumptions. The plots on the left are QQ plots of the residuals of the
AR(1) regime, and the plots on the right are for the shifted-log-normal regime. In the
QQ plots for the shifted-log-normal regime, the points clearly deviate very badly from
the reference line.
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Then we used our Bayesian methodology to fit a two-regime MRS model of Type II,

with one AR(1) regime and one shifted-log-normal regime. Some QQ plot-PPCs from

this are shown in Figure 4.15. Clearly this two-regime model is unable to capture the

the data generated by the model in Equation 4.10, as shown by the QQ plots for the

AR(1) regime.

Summary

In this chapter we introduce our Bayesian framework for model estimation and selec-

tion/checking. For all models under consideration, we specify uniform prior distributions

as a form of objective prior. To sample from posterior distributions of MRS models,

we develop a data-augmented MCMC algorithm. Data-augmentation is advantageous

as it permits an O(T ) implementation of our MCMC algorithm. Our algorithm is also

flexible: it can handle many types of model specifications without the need for manual

tuning, thanks to the adaptive procedure that we implement.

For model checking in our Bayesian framework, we utilise PPCs, which we implement in

a similar manner to residual diagnostics in a traditional ordinary regression setting. To

validate our methods, we simulate MRS models, then use our data-augmented MCMC

algorithm to sample from the posterior distributions given by the simulated datasets, and

create PPCs. Our simulations confirm that our PPCs are able to distinguish between

different models, and have some power to tell us when models are incorrect, although,

of course, they cannot tell us if our model is correct.
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Figure 4.15: Ten pairs of QQ plots generated as part of our PPCs for simulations
of the model in Equation (4.10), when a two-regime model, with one AR(1) regime
and one shifted-log-normal regime, is fitted to data generated by a model with three
regimes, two AR(1) regimes and one shifted-log-normal regime. Each pair of plots
was generated by an independently simulated dataset. These PPCs are used to assess
within-regime distributional assumptions. The plots on the left are QQ plots of the
residuals of the AR(1) regime, and the plots on the right are for the shifted-log-normal
regime. In the QQ plots of the AR(1) regime, the points clearly deviate significantly
from the reference line.



Chapter 5

Applications to South Australian

electricity prices

In this chapter we apply our likelihood and Bayesian inference methods to estimate

the parameters of, and assess goodness-of-fit for, MRS models for the SA electricity

market. Our MRS models for electricity prices are built out of two pieces: a deterministic

trend component, Tt, and a stochastic component, Xt, and we model prices as the

sum Pt = Tt + Xt. In Section 5.1 we present a novel technique to estimate the trend

component of MRS models for electricity prices. There are an unlimited number of

models we could consider for electricity prices, so in Section 5.2 we narrow the search

and describe candidate models. In Sections 5.3 and 5.4 we discuss applications of our

Bayesian and likelihood methods, respectively, and make concluding remarks in Section

5.5.

The dataset The South Australian electricity market is a particularly interesting case

study due to a number of factors including its relative isolation, occasional extremely

hot weather, and generation mix – in 2016 SA had 39.2% of its total generation come

from wind farms, 50.5% from gas and 9.2% from residential solar panels [7]. All these

factors can contribute to a high and volatile electricity price. In this dataset, on the 1st

of December 2016, we observed a spot price of $13, 767, compare this to the average price

for 2016 of $80.59 per megawatt hour. Our dataset consists of 81,792 half-hourly spot

prices from the South Australian electricity market (available at the AEMO website [8])

for the period 00:00 hours, 1st of January 2013 to 23:30 hours 31st of September 2017.

Note that this dataset contains a period of 14 days over which the market was sus-

pended. The suspension was due to a market-wide blackout which occurred at 4:20pm

on September 28, 2016. Although the majority of the state had power restored by

137
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Figure 5.1: The daily average wholesale electricity spot price for South Australia for
the period from the 1st of January 2013 to the 31st of September 2017, quoted in $AUD
per megawatt hour.

the night of September 28, the market operator, AEMO, suspended the market from

4:00pm, on the 28th of September until 10:30pm on the 11th of October. During this

period prices were set by AEMO. Prices for this period were calculated as the average

price in SA in the ‘same trading interval’ over the last four weeks. For this calculation

the ‘same trading interval’ means different things for weekdays and weekends. For a

given 30-minute trading interval on a weekday, the price was calculated as the average

price at the same time only on weekdays over the last four weeks. For a given 30-minute

trading interval on a weekend, the price was calculated as the average price at the same

time on weekend-days only. During the market suspension, market participants contin-

ued to submit price bids in the usual way, and AEMO used these to dispatch generators

in an economic merit order, but the bids did not affect prices. In our modelling we do

not take this market suspension into account, and model the data ‘as is’.

We follow a common practice in the literature and model daily average prices, since the

daily average price is sometimes used in derivative valuation. Thus we have a dataset

of 1,704 daily average price observations to which we fit our model. The data that we

model is plotted in Figure 5.1. Notice that there appears to be an increase in price

volatility since about April 2016, which roughly corresponds to the closure of SA’s last

coal generator.

5.1 Estimation of the trend component

The trend model Electricity spot prices exhibit seasonality on daily, weekly, and

longer scales. To capture this multi-scale seasonality, the trend component consists of

two parts: a short-term component, gt, and a long-term component, ht. We model the
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long-term component, ht, using wavelet filtering since it has been shown to perform well

for this application [57]. Among the many available wavelet families, we use D24 wavelets

and filter out the long-term seasonality by applying the wavelet filter recursively six times

[57]. We use the short-term component, gt, to capture the mean price for different days

of the week and indicator functions to model this:

gt = βMonI(t ∈ Mon) + βTueI(t ∈ Tue) + ...+ βSunI(t ∈ Sun),

where βMon, βTue, ... , βSun, are the mean deviations from the long-term trend price

on Monday, Tuesday, ... , Sunday, respectively. This model is very common for our

application.

Estimation of the trend component Extreme prices in electricity markets can bias

estimates of trend components [57]. A solution proposed by Janczura and Weron [57]

is to first identify, remove and replace extreme prices with more reasonable values, and

then estimate the trend component on this altered dataset, before ultimately estimating

the stochastic model. We take this one step further, and iterate between identifying

extreme prices, replacing them, and estimating the trend component.

The spike identification method that we choose uses the MRS model, which is one of

the methods suggested in [57]. Janczura and Weron [57] conclude this classification

technique can work well when the goal is to estimate parameters of an MRS model.

We define extreme observations as observations that were not generated by an AR(1)

(base) regime. An MRS model can be used to identify extreme observations using the

posterior probabilities P(Rt = i|x0:T ), produced as a byproduct of the fitting process

(in both the Bayesian and EM methods). We obtain a hard classification of prices as

extreme if
∑

i∈SAR
P(Rt = i|x0:T ) < 0.5, where SAR is the set of regimes corresponding to

AR(1) processes.

After classifying observations as extreme, they are removed and replaced by ‘more rea-

sonable’ values. Some different options for these ‘more reasonable’ values are explored

in [96], but they do not come to a conclusion about what the best option is. We re-

place extreme values with the value of the trend component at the last iteration of our

estimation procedure.

To summarise, our trend estimation procedure is as follows:

Step 0. Estimate the trend components from the raw data.

Step 1. Remove the trend component from the raw data, and then estimate the stochastic

component and classify observations into regimes.
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Step 2. Replace prices not classified as base prices by their trend values from the last

iteration of this process.

Step 3. Re-estimate the trend components.

Step 4. Iterate Steps 1-3.

In practice, we have found that four or five iterations are usually sufficient for satisfactory

results for our purposes, since the difference between successive estimates of the trend

is small compared to the magnitude of prices.

To estimate the parameters of the trend component, we first estimate ht using wavelet

filtering (see Section 2.2.7) and remove this from the current representation of the prices.

The short-term component is then estimated using averaging:

ĝt = β̂MonI(t ∈ Mon) + β̂TueI(t ∈ Tue) + ...+ β̂SunI(t ∈ Sun),

where

β̂d =

T∑
t=1

(P̂t − ht)I(t ∈ d)

T∑
t=1

I(t ∈ d)

,

for d = Mon, Tue,..., Sun, where P̂t, t = 0, 1, ..., T , is the current representation of prices

without spikes.

5.2 Models under consideration

To simplify our exploration, we restrict attention to a specific subset of candidate models.

We consider models with up to five regimes, with either one or two AR(1) regimes, and

either one, two or three independent and identically distributed (i.i.d.) regimes. So the

biggest model we consider is the five-regime model

Xt =



B
(1)
t if Rt = 1,

B
(2)
t if Rt = 2,

Y
(3)
t if Rt = 3,

Y
(4)
t if Rt = 4,

Y
(5)
t if Rt = 5,
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where
{
B

(i)
t

}
for i = 1, 2 are AR(1) processes, and

{
Y

(j)
t

}
for j = 3, 4, 5 are i.i.d. pro-

cesses. We only ever specify AR(1) processes of the form

B
(i)
t = αi + φiB

(i)
t−1 + σiε

(i)
t ,

where
{
ε

(i)
t

}
is a sequence of i.i.d. N(0,1) random variables. We label AR(1) regimes

as base regimes, since they are included in the model to capture prices under normal

operating conditions.

The i.i.d. components either capture price spikes, or price drops, depending on their

specification. Following [58] we specify shifted i.i.d. distributions (with shifting param-

eter q), as these can more accurately separate spikes and drops from base prices. We

explore the following distributions for the i.i.d. processes, to attempt to find the distri-

bution that fits the data best:

• Y
(j)
t − qj ∼ Gamma(µj , σ

2
j ), to capture spikes.

• Y
(j)
t − qj ∼ Log-normal(µj , σ

2
j ), to capture spikes.

• qj − Y (j)
t ∼ Log-normal(µj , σ

2
j ), to capture drops.

We only ever specify models with one drop regime, and allow up to two spike regimes.

In our Bayesian model estimation, we leave the shifting parameters as parameters to

be inferred by the model but on a restricted domain, since, leaving them completely

unrestricted can lead to erroneous results. When left unrestricted, the shifting parameter

for the spike distribution (drop distributions) becomes negative (positive), and rather

than capturing extreme events, the spike (drop) regime captures periods of high volatility

in the base regime. For this reason we restrict the support of the posterior of q, using

the prior distribution. For the drop regime the support of the posterior for q is below the
1
3 -quantile of the detrended data, and for the spike regimes the support of the posterior

for q is above the 2
3 -quantile for the first spike regime, or above the 98th percentile for

the second spike regime.

As discussed in Chapter 3 there are issues in estimating the shifting parameter q when

using maximum likelihood. When fitting shifted log-normal distributions using maxi-

mum likelihood, we fix the value of q based on our Bayesian analysis. We leave the

shifting parameter q for the shifted-Gamma distribution to be estimated using maxi-

mum likelihood, but recall from Section 3.5.3 that we restrict the shape parameter, µ,

to be greater than 2.5 so that estimation of q is more stable. We also restrict these

shifting parameters, exactly as in the Bayesian analysis.
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We restrict the shape parameter, µ, of the shifted-Gamma distribution in our Bayesian

analysis to be greater than 2.5 also. Restricting the shape parameter in this way in

the Bayesian case is a modelling choice. With a shape parameter µ > 1 the Gamma

density function is continuous at 0, whereas when µ ≤ 1 it is not, and the mode of

the distribution is at 0. The mode of the shifted-Gamma distribution is q + (µ− 1)σ2,

therefore, when we specify µ > 2.5, we are requiring the majority of the mass in the

Gamma distribution to be away from the boundary at q. We believe this makes for

a more sensible model since there should not be a mass of spike-regime points at the

boundary q. Rather, the majority of spikes should be above q, but there should be the

possibility of having low spikes (near q), where prices are not high relative to the whole

dataset, but are higher than, and/or not highly correlated with, surrounding prices so

they are not well-modelled by the base process(es).

The reader may have noticed that, in the previous paragraph, we imply that the location

of the mode of the shifted-Gamma distribution can be shifted via either the parameter

q or µ and σ2. Similarly, for the shifted-log-normal distribution the location of the

mode of the distribution can be shifted by the parameters µ and σ2 or by the shifting

parameter q (the mode is given by q+ exp (µ− σ2)). We want to make clear that these

are not equivalent. The difference between shifting the mass of these distributions using

the parameters µ and σ2 rather than q is that when the mode of these distributions

gets further from q, they must become more and more symmetric. Figure 5.2 shows

this behaviour. In Figure 5.2 five log-normal and five Gamma density functions with

different modes but constant variance (a variance of 4 and q = 0) are plotted. Notice

that as the locations of the modes increase the distributions become more symmetric.

Thus, shifting the mass of these distributions via q is different from shifting the mass of

these distributions via µ or σ2.

When two AR(1) regimes are included in the model we specify σ2
1 < σ2

2, so the second

AR(1) regime has a higher variance than the first. This is to stop the aliasing of the

regimes. We do not consider models with an AR(1) base regime with CEV dynamics,

i.e. of the form

Bt = α+ φBt−1 + σ|Bt−1|γεt,

and leave this as an area for future research.
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Figure 5.2: (a) Log-normal density functions with different modes, all with variance 4
and q = 0. (b) Gamma density functions with different modes, all with variance 4 and
q = 0. Notice that as the location of the modes of these distributions increases they
become more symmetric.

5.3 Bayesian estimation and selection

Here we apply our Bayesian methodology to the South Australian electricity prices. We

first consider MRS models of Type II, followed by models of Type III. There are many

similarities between the two analyses, and so some of the details for Type III models are

shown in Appendix B.1.

Type II MRS models

In Table 5.1 we summarise our Bayesian model selection for MRS models of Type II.
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Model 1 Model 2 Model 4

Xt =

{
B

(1)
t , if Rt = 1,

Y
(3)
t , if Rt = 3,

Y
(3)
t − q3 ∼ LN(µ3, σ

2
3).

Xt =


B

(1)
t , if Rt = 1,

B
(2)
t , if Rt = 2,

Y
(3)
t , if Rt = 3,

Y
(3)
t − q3 ∼ LN(µ3, σ

2
3).

Xt =


B

(1)
t , if Rt = 1,

B
(2)
t , if Rt = 2,

Y
(3)
t , if Rt = 3,

Y
(4)
t , if Rt = 4,

Y
(3)
t − q3 ∼ Gamma(µ3, σ

2
3),

Y
(4)
t − q4 ∼ Gamma(µ4, σ

2
4) .

QQ plots Figure 5.3: distributional as-
sumptions violated for Regimes
1 and 3.

Figure 5.6: distributional assumptions are
suitable for Regimes 1 and 2, but questionable
for Regime 3.

Figure 5.8: distributional assumptions are
suitable for all regimes.

Residuals
vs time

Figure 5.4: variance is non-
constant over time.

Figure 5.9: there are only slight indications
that the time-homoscedasticity assumption
may be unsuitable for Regime 2, and some
of the apparent change in variance can be at-
tributed to fewer observations in Regime 2
at earlier times. We conclude that the time-
homoscedasticity assumptions are reasonable.

Figure 5.9: there are only slight indications
that the time-homoscedasticity assumption
may be unsuitable for Regime 2, and some
of the apparent change in variance can be at-
tributed to fewer observations in Regime 2
at earlier times. We conclude that the time-
homoscedasticity assumptions are reasonable.

Scale-
location

Not shown. Figure 5.10: self-dependent-homoscedasticity
assumptions are suitable for Regimes 1 and 2.

Figure 5.11 self-dependent-homoscedasticity
assumptions are suitable for Regimes 1 and 2.

Comments Not a good model. Regime 2 is included to capture time-
heteroscedasticity. QQ plots in Figure 5.6 sug-
gest shifted-log-normal spikes are more suit-
able than shifted-Gamma spikes (not shown).
When two AR(1) regimes are included in a
model, no drop regime is necessary.

Regime 4, a second spike regime, is included
to capture the very largest spikes. QQ plots in
Figures 5.7 and 5.8 show slight differences be-
tween sifted-log-normal spikes (Model 3) and
shifted-Gamma spikes, but suggest the latter
are more suitable.

Table 5.1: A summary of our Bayesian model selection process for Type II MRS models for the SA dataset. We also considered a range of other
models, such as the models in this table with an added drop regime or alternative spike distribution specifications, but, compared to these models,
they either did not fit well, or the drop regime was not necessary, and so discussing them in this thesis is not necessary.
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We first considered the following two-regime model.

Model 1 of Type II

Xt =

B
(1)
t , if Rt = 1,

Y
(3)
t , if Rt = 3,

(Model 1 of Type II)

where Y
(3)
t − q3 follows a log-normal distribution.

A sample of five QQ plot PPCs for each regime in Model 1 of Type II are shown

in Figure 5.3 where it is clear that distributional assumptions for both regimes are

inappropriate. A sample of five residuals versus time PPCs for each regime in Model

1 of Type II are show in Figure 5.4, where it is obvious that the the residuals of the

AR(1) regime are not constant over time. We also fitted Model 1 of Type II with shifted-

Gamma spikes instead, but observed even worse violations of distributional assumptions

in our QQ plots (results not shown).

The time heteroscedasticity observed for Model 1 of Type II suggests that we might

need two AR(1) base regimes.

Model 2 of Type II with two base regimes B
(i)
t i = 1, 2, and one spike regime, Y

(3)
t :

Xt =


B

(1)
t if Rt = 1,

B
(2)
t if Rt = 2,

Y
(3)
t if Rt = 3,

(Model 2 of Type II)

where Y
(3)
t − q3 follows a log-normal distribution.

This model was fitted to the data and PPCs produced. To visualise which prices each

regime in this model are capturing, we classify prices using the posterior probabilities

P(Rt = i|x0:T ). We highlight a data point in red if P(Rt = i|x0:T ) > 0.5; this is

shown in Figure 5.5. Here we see the second base regime, B
(2)
t , capture a significant

jump in volatility around April 2016, which roughly coincides with the closure of South

Australia’s last coal generation facility, and therefore a change in market structure.

We also fitted Model 2 of Type II with a drop regime (results not shown), however, we

found this was not needed and all drops are preferably modelled by the AR(1) processes,

as evidenced by the fact that our Bayesian methodology assigned no mass to the drop

regime at all. Moreover, for any model with two base regimes and at least one spike
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regime, we found any drops in prices are best modelled by the AR(1) regimes, and not

a drop regime.

A sample of five QQ plot PPCs for the residuals of each regime of Model 2 of Type II are

shown in Figure 5.6. These QQ plot PPCs suggest the assumptions for the AR(1) regimes

are reasonable. However, there is some evidence that the single shifted-log-normal spike

regime is unable to capture extreme spikes. We also fitted a three-regime model like

Model 2 of Type II, except with shifted-Gamma spikes, and the QQ plot PPCs for this

model suggested that shifted-log-normal spikes are more appropriate (results not shown).

The addition of the second AR(1) regime also removed the time-heteroscedasticity, as

discussed below.

To investigate if a second spike regime is needed to capture the largest spikes, we fit the

following models.

Model 3 of Type II which has two base regimes B
(i)
t , i = 1, 2, two spike regimes,

one for ‘typical’ spikes, Y
(3)
t , and another for extreme spikes, Y

(4)
t , and no drop regime:

Xt =



B
(1)
t if Rt = 1,

B
(2)
t if Rt = 2,

Y
(3)
t if Rt = 3,

Y
(4)
t if Rt = 4,

(Model 3 of Type II)

where Y
(3)
t − q3 and Y

(4)
t − q4 follow log-normal distributions.

Model 4 of Type II which is the same as Model 3 of Type II except the spike

distributions follow shifted-Gamma distributions.

A sample of QQ plot PPCs for the spike regimes in Models 3 and 4 of Type II are

shown in Figures 5.7 and 5.8, respectively. Observing Figures 5.7 and 5.8 we see the

performance of Models 3 and 4, as measured by these PPCs, is similar, however, it

appears as if Model 4 captures extreme observations more accurately.

Our QQ plot PPCs suggest both Models 2 and 4 of Type II are reasonable, and now

we investigate other assumptions of these models using our other PPCs. In Figure 5.9

a sample of five residuals versus time PPC plots are shown for each AR(1) regime in

Models 2 and 4 of Type II. For Regime 1, since there is no obvious fanning of the resid-

uals as a function of time, or shape in the residuals, we conclude that the assumption

of time-homoscedasticity is reasonable for both models. For Regime 2 there is a small

amount of evidence that the variance of residuals increases over time for both models,
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but this evidence is not strong. Furthermore, some of the apparent change in varia-

tion can be attributed to fewer observations in Regime 2 at earlier times, rather than

time-heteroscedasticity, and we conclude that the assumption of time-homoscedasticity

is reasonable for Regime 2 for both models. In Figures 5.10 and 5.11 a sample of

five scale-location PPCs are shown for each AR(1) regime in Models 2 and 4 of Type

II, respectively. There is little evidence in Figures 5.10 and 5.11 that self-dependent-

homoscedasticity assumptions are violated for either regime in either model since there

is no obvious increase or decrease in the magnitude or variance of residuals as a function

of lagged values, |xt−`|.

To summarise, the QQ plots for Model 4 of Type II are a slight improvement on the QQ

plots for Model 2 of Type II; the residuals versus time PPCs show no serious violation of

the time-homoscedasticity assumptions for either Model 2 or 4 of Type II; and the scale-

location PPCs suggests self-dependent-homoscedasticity assumptions are not violated

for either model. From these PPCs alone we could conclude Model 4 of Type II is

best. However, we should note that Model 4 of Type II has nine more parameters than

Model 2 of Type II and may be subject to overfitting. More work is needed here such

as out-of-sample model assessment.

The posterior means for the parameters of Models 2 and 4 of Type II are shown in Table

5.2, while some of the non-trivial correlation structures in the posterior distributions

are shown in the scatter-plots of Figures 5.13-5.17. Surprisingly, there is no obvious

correlation structure between the parameters αi, φi and σ2
i within the AR(1) regimes.

The estimated trend components for Models 2 and 4 of Type II are shown in Figure 5.12.

Type II MRS models

See Appendix B.1.
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Figure 5.3: A sample of five QQ plot PPCs for each regime in Model 1 of Type II.
(Left) QQ plot PPCs for Regime 1, the AR(1) regime. (Right) QQ plot PPCs for
Regime 3, the shifted-log-normal spike regime. The points in the QQ plots for both
regimes clearly do not lie on a straight line, suggesting the model does not capture the
data well.
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Figure 5.4: A sample of five residuals versus time plots for each regime in Model 1
of Type II. (Left) Residuals-versus-time PPC plots for Regime 1, the AR(1) regime.
(Right) Residuals-versus-time PPC plots for Regime 3, the shifted-log-normal spike
regime. The residuals of Regime 1 clearly increase over time, which suggests our as-
sumptions of time-homoscedasticity is violated.
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Figure 5.5: Prices classified into regimes according to their posterior probabilities
using the rule P(Rt = i|x0:T ) > 0.5 for Model 2 of Type II. The plots at the top show
the prices series with data highlighted red when it is classified into a regime. The plots
at the bottom show the posterior probabilities, P(Rt = i|x0:T ). (a) Data allocated into
base regime 1 (Regime 1). (b) Data allocated into base regime 2 (Regime 2). (c) Data
allocated into the spike regime (Regime 3).
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Figure 5.6: A sample of five QQ plot PPCs for the residuals of Regimes 1, 2 and

3 in Model 2 of Type II. (Left) QQ plot PPCs for the first AR(1) base regime, B
(1)
t .

(Middle) QQ plot PPCs for the second AR(1) base regime, B
(2)
t . (Right) QQ plot

PPCs for the first shifted-log-normal spike regime, Y
(3)
t . The points in the QQ plots for

the spike regime (right) do not lie on a straight line, suggesting the single shifted-log-
normal distribution is unable to capture extreme observations. However, this violation
may not be too significant in practice, and more work is needed to determine this. The
QQ plots for Regimes 1 and 2 suggest the assumptions about the AR(1) regimes are
reasonable.
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Figure 5.7: A sample of five QQ plot PPCs for each regime in Model 3 of Type II.

(Left) QQ plot PPCs for base regime 1, B
(1)
t , an AR(1) regime. (Center-left) QQ plot

PPCs for base Regime 2, B
(2)
t , another AR(1) regime. (Centre-right) QQ plot PPCs for

Regime 3, Y
(3)
t , a shifted-log-normal spike regime. (Right) QQ plot PPCs for Regime 4,

Y
(4)
t , a second shifted-log-normal spike regime for extreme spikes. The points in the QQ

plots for the spike regimes (Regimes 3 and 4) stray from the reference line, suggesting
the log-normal assumption may not be appropriate.
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Figure 5.8: A sample of five QQ plot PPCs for each regime in Model 4 of Type

II. (Left) QQ plot PPCs for base regime 1, B
(1)
t , an AR(1) regime. (Center-left) QQ

plot PPCs for base Regime 2, B
(2)
t , another AR(1) regime. (Centre-right) QQ plot

PPCs for Regime 3, Y
(3)
t , a shifted-Gamma spike regime. (Right) QQ plot PPCs for

Regime 4, Y
(4)
t , a second shifted-Gamma spike regime for extreme spikes. The QQ

plots for Regimes 1, 2 and 4 suggest the distributional assumptions are good for these
regimes. However, there is some evidence to suggest Regime 3 is not well-modelled by
a Gamma distribution, but this evidence is very not strong.



Applications to South Australian electricity prices 154

500 1000 1500

-3

-2

-1

0

1

2

3

500 1000 1500

-3

-2

-1

0

1

2

3

500 1000 1500

-3

-2

-1

0

1

2

3

500 1000 1500

-3

-2

-1

0

1

2

3

500 1000 1500

-3

-2

-1

0

1

2

3

500 1000 1500

-3

-2

-1

0

1

2

500 1000 1500

-3

-2

-1

0

1

2

500 1000 1500

-3

-2

-1

0

1

2

3

500 1000 1500

-3

-2

-1

0

1

2

3

500 1000 1500

-3

-2

-1

0

1

2

3

(a) Model 2 of Type II
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(b) Model 4 of Type II

Figure 5.9: A sample of five residuals versus time PPCs for each AR(1) regime in
Models 2 (Left) and 4 (Right) of Type II. These PPCs show no obvious signs that the
time-homoscedasticity assumption is violated for Regime 1. There are slight indications
that the variance of the residuals from Regime 2 increase over time for both models.
However, it is not clear how much change in variation is due to time-heteroscedasticity,
or due to less observations at earlier times. We conclude that the time-heteroscedasticity
assumption is reasonable for both models.
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Figure 5.10: A sample of five scale-location PPCs for each AR(1) regime in Model 2
of Type II. These PPCs show no obvious signs that self-dependent-homoscedasticity
assumptions are violated for either regime.
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Figure 5.11: A sample of five scale-location PPCs for each AR(1) regime in Model 4
of Type II. These PPCs show no obvious signs that self-dependent-homoscedasticity
assumptions are violated for either regime.
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Figure 5.12: Estimated trend components for Models 2 (Left) and 4 (Right) of Type II

Parameter Model 2 of Type II Model 4 of Type II

α1 -0.0881 -0.218
φ1 0.536 0.559
σ2

1 50.2 49.5

α2 0.283 0.601
φ2 0.412 0.416
σ2

2 413 409

q3 17.6 9.711
µ3 3.89 2.69
σ2

3 1.34 26.5

q4 - 167
µ4 - 2.88
σ2

4 - 165

Transition matrix

 0.923 0.014 0.063
0.011 0.905 0.084
0.297 0.225 0.479




0.923 0.019 0.056 0.001
0.016 0.900 0.080 0.003
0.304 0.279 0.370 0.047
0.116 0.094 0.378 0.411


Table 5.2: Posterior mean estimates for the parameter of Models 2 and 4 of Type II.
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Figure 5.13: Bivariate scatter-plots of samples from the posterior distribution of

parameters from Regime 3, Y
(3)
t , for Model 2 of Type II.
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Figure 5.14: Bivariate scatter-plots of samples from the posterior distribution of the
transition matrix P , for Model 2 of Type II.

Figure 5.15: Bivariate scatter-plots of samples from the posterior distribution of

parameters from Regime 3, Y
(3)
t , for Model 4 of Type II.

Figure 5.16: Bivariate scatter-plots of samples from the posterior distribution of

parameters from Regime 4, Y
(4)
t , for Model 4 of Type II.
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transition matrix P , for Model 4 of Type II.
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5.4 Maximum likelihood model estimation

Here we encountered one practical limitation of our EM methodology, for models with

two AR(1) regimes, the run time and memory requirements of the algorithm are im-

practically large (for the more complex models, we would have had to use the high

memory nodes of the University’s high-performance computer, and run the algorithm

for twenty days). For this reason we simplify all models in this section by limiting the

maximum memory of each within-regime process to 56 days (eight weeks), and after

this, the within-regime process is assumed to be stationary. That is, we limit the value

of Nt,i ≤ 56, so at time t, given Rt = i, xt can only possibly depend on xt−1 or xt−2

or ... or xt−56, else xt comes from the stationary distribution in Regime i. For MRS

models of Type II we expect this simplification of the model to have minimal impact

on the likelihood function and MLEs, since for MRS models of Type II the conditional

distributions, fθ(xt|Rt = i,Nt,i = n,x0:t−1), decay exponentially to stationary as n gets

large. For MRS models of Type III within-regime processes cease between visits, and

therefore we do not see the same decay to stationary. However, we think it is reason-

able to truncate the memory of within-regime processes for these models, since it is a

reasonable approximation to assume this type of long-range dependence in prices is not

a significant feature of the market.

Additionally, recall from Chapter 3 that maximum likelihood estimation of MRS models

with shifted-log-normal regimes is not possible. For this reason, when shifted-log-normal

distributions are included in our MRS models, we fix the shifting parameter at a value

informed by the mode of the marginal posterior distribution of the parameter q in the

corresponding Bayesian analysis. Furthermore, we also saw in Chapter 3 that many local

maximisers can exist, particularly when trying to estimate shifting parameters. For this

reason, we initialise our EM-algorithm-based model estimation procedure at 20 random

starting points, and pick the terminating point with the highest likelihood to increase

our chances of finding the MLE.

Our EM algorithm and trend estimation technique were used to iteratively filter the data

as discussed in Section 5.1, and ultimately estimate the parameters of the models. In

existing literature for electricity prices, once models are fitted to data, some information

theoretic model selection criterion, such as AIC or BIC, is typically used to rank models

on how well they fit the data. However, we believe this to be erroneous in this setting

due to the model-dependent nature of the trend estimation technique used. Since the

stochastic model is used to obtain a classification of data into regimes, and the trend

is estimated from data classified into base regime(s) only, then the specification of the

stochastic model affects the estimate of the trend. Therefore the stochastic component

of each model is ultimately fitted to a slightly different dataset depending on the model
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Model 2 Model 4

Xt =


B

(1)
t if Rt = 1,

B
(2)
t if Rt = 2,

Y
(3)
t if Rt = 3,

Y
(3)
t − q3 ∼ LN(µ3, σ

2
3).

Xt =


B

(1)
t if Rt = 1,

B
(2)
t if Rt = 2,

Y
(3)
t if Rt = 3,

Y
(4)
t if Rt = 4,

Y
(3)
t − q3 ∼ Gamma(µ3, σ

2
3),

Y
(4)
t − q4 ∼ Gamma(µ4, σ

2
4).

QQ plots Figure 5.18: distributional
assumptions are suitable for
Regimes 1 and 2, but question-
able for Regime 3.

Figure 5.20: distributional as-
sumptions are reasonable for all
Regimes.

Residuals
vs time

Figure 5.19 (A): the time-
homoscedasticity assumption is
suitable for Regime 1.
Figure 5.19 (B): Regime 2 shows
only slight indications that the
variance of residuals increases
over time, and part of the appar-
ent increase in variation can be
attributed to fewer observations
at earlier times. We conclude
that the time-homoscedasticity
assumptions are reasonable.

Figure 5.21 (A): the time-
homoscedasticity assumption is
suitable for Regime 1.
Figure 5.21 (B): Regime 2 shows
only slight indications that the
variance increases over time, and
part of the apparent increase
in variation can be attributed
to fewer observations at earlier
times. We conclude that the
time-homoscedasticity assump-
tions are reasonable.

Scale-
location

Figure 5.19 (C) and (D): self-
dependent-homoscedasticity
assumptions are suitable for
Regimes 1 and 2.

Figure 5.21 (C) and (D): self-
dependent-homoscedasticity
assumptions are suitable for
Regimes 1 and 2.

Table 5.3: A summary of our likelihood-based analysis for Type II MRS models for
the SA dataset.

specification, and accordingly the likelihoods for each model are therefore incomparable

[84]. In other words, estimation of the trend component varies between models, and

cannot be directly accounted for in the value of the likelihood. Therefore, the traditional

information theoretic measures of model fit are not applicable.

So instead we resort to common sense checks. We use the soft classification of data

from the EM algorithm to classify data into regimes. In particular, we classify the

data point xt into Regime j = arg max
i∈S

Pθ̂(Rt = i|x0:T ), where θ̂ is the MLE. Using

this classification we construct QQ plots, residuals versus time plots, and scale-location

plots, exactly as for the PPCs in Section 5.3.

Maximum likelihood estimation for Type II models

Our likelihood-based analysis of Type II MRS models is summarised in Table 5.3.
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First, consider Model 2 of Type II, which has two AR(1) base regimes, and one shifted-

log-normal spike regime. We fit this model to the SA dataset using our EM algorithm

methodology. Classifying data into regimes, we produced the QQ plots in Figure 5.18

to check within-regime distributional assumptions. These QQ plots suggest the dis-

tributional assumptions on the AR(1) regimes are suitable but the shifted-log-normal

distribution is not capturing the very largest observations. We also produced residuals-

versus-time plots, and scale-location plots for the residuals of the AR(1) regimes, to

assess homoscedasticity assumptions; these are shown in Figure 5.19. Figure 5.19 (A)

suggests the time-homoscedasticity assumption is suitable for Regime 1. Figure 5.19

(B) shows slight indications that the variance of Regime 2 may increase with time, al-

though part of the apparent increase in variation can be attributed to the fact that

there are fewer observations from Regime 2 at earlier times. We conclude that the

time-homoscedasticity assumption is reasonable for Regime 2 of this model. The scale-

location plots in Figures 5.19 (C) and (D) show no obvious evidence that the variance

of Regimes 1 and 2 increase as a function of the magnitude of the last observed value

from the same regime.

Now consider Model 4 of Type II, which has two AR(1) base regimes, and two shifted-

Gamma spike regimes. Using our EM algorithm methodology, we fit this model also.

Then, classifying data into regimes, we produced the QQ plots in Figure 5.20 to check

within regime distributional assumptions. These QQ plots suggest the distributional as-

sumptions of all four regimes are suitable. We also produced residuals versus time plots,

and scale-location plots for the residuals of the AR(1) regimes, to assess homoscedas-

ticity assumptions; these are shown in Figure 5.21. Figure 5.21 (A), suggests that the

time-homoscedasticity assumption is reasonable for Regime 1. Figure 5.21 (B), shows

slight indications that the variance of Regime 2 may increase over time, although, as

is the case for Model 2 above, part of the apparent increase in the variance can be at-

tributed to the fact that there are fewer observations in Regime 2 at earlier times. We

conclude that the time-homoscedasticity assumption is reasonable for Regime 2 of this

model. The scale-location plots in Figures 5.21 (C) and (D) show no obvious evidence

that the variance of either regime increases as a function of the magnitude of lagged

values.

The MLEs for Models 2 and 4 are shown in Table 5.4.
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Figure 5.18: QQ plots of residuals from each regime for Model 2 of Type II, estimated
by maximum likelihood. The QQ plots for the base regimes, (A) and (B), suggest the
distributional assumptions of these regime are reasonable. The QQ plot of the shifted-
log-normal spike regime, (C), suggests that the log-normal assumption may not be
appropriate, at least in the tail of the distribution.

Parameter Model 2 Model 4

α1 -0.0420 -0.0658
φ1 0.512 0.532
σ2

1 45.3 50.6

α2 0.127 0.280
φ2 0.415 0.415
σ2

2 431 382

q3 14 11.9
µ3 3.87 2.50
σ2

3 1.16 21.9

q4 - 168
µ4 - 2.50
σ2

4 - 104.6

Transition matrix

 0.917 0.005 0.078
0.000 0.923 0.077
0.256 0.134 0.610




0.929 0.008 0.062 0.000
0.000 0.906 0.092 0.002
0.313 0.260 0.377 0.050
0.062 0.048 0.456 0.433


Table 5.4: MLEs of the parameter of Type II Models 2 and 4 for the SA dataset.
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Figure 5.19: Residuals plots for AR(1) regimes of Model 2 of Type II, estimated
by maximum likelihood. Figures (A) and (B) plot the raw residual against time for
Regimes 1 and 2 respectively. Figures (C) and (D) plot

√
|rt| against the absolute

value of the last observed value from the same regime, before time t, |xt−`|. Figure
(A) suggests there is no issue with the time-homoscedasticity assumption for Regime
1. Figure (B) shows slight evidence that the variance of Regime 2 may increase over
time, although it is not clear how much of the apparent change in variation is due to
time-heteroscedasticity, or due to fewer observations at earlier times. We conclude that
the time-homoscedasticity assumption is reasonable for Regime 2. Figures (C) and (D)
suggest the variance of the residuals does not vary with the magnitude of lagged values.
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Figure 5.20: QQ plots of residuals from each regime for Model 4 of Type II, estimated
by maximum likelihood. In all four plots, the points lie in a relatively straight line,
suggesting the distributional assumptions are reasonable.
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Figure 5.21: Residuals plots for AR(1) regimes of Model 4 of Type II, estimated
by maximum likelihood. Figures (A) and (B) plot the raw residual against time for
Regimes 1 and 2 respectively. Figures (C) and (D) plot

√
|rt| against the absolute value

of the last observed value from the same regime, before time t. Figure (A) suggest there
is no issue with the time-homoscedasticity assumption for Regime 1. Figure (B) shows
only slight evidence that the variance of Regime 2 may increase over time, although
it is not clear how much change in variation is due to time-heteroscedasticity, or due
to fewer observations at earlier times. We conclude that the time-homoscedasticity
assumption is reasonable for Regime 2. Figures (C) and (D) show no obvious signs that
the variance of Regimes 1 or 2 vary as a function of the magnitude of the last observed
value from the same regime, |xt−`|.
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Maximum likelihood estimation for Type III models

In this likelihood setting, our analysis of Type III models has many similarities than

the analysis of Type II models above, and so the details for Type III model fitting are

reserved for Appendix B.2.

5.5 Discussion

In this chapter we apply techniques we developed in the previous chapters, to estimate

the parameters of independent regime MRS models for the South Australian dataset.

This dataset is far from friendly for two main reasons. First, the dataset contains a two-

week market suspension, from the 28th of September 2016 to the 11th of October 2016.

During this period prices were determined based on average prices of the past four weeks.

We do not address this issue at all in our modelling and use the dataset ‘as is’. Second,

around April 2016 there is a significant jump in market volatility, which roughly coincides

with the closure of South Australia’s last remaining coal-fired generation facility. Thus,

at this time there is a significant change in the market structure. We do not account

for this directly, rather we specify two possible base regimes, one with a higher variance

than the other. Upon fitting our models to the data, in either the Bayesian or likelihood

framework, we see our models automatically pick out this change in market structure.

Another issue with our modelling is that the trend estimation technique that we employ

has ramifications when it comes to model comparison. Our trend estimation technique

relies on iterating1 between estimating the stochastic model to classify data into regimes,

and then, using the classified data, estimating the trend. This technique has been

employed in previous literature, and shown to produce good estimates of the parameters

of MRS models for electricity prices [57]. However, this technique can cause problems

with model comparison due to the fact that the estimate of the trend component is

dependent on the specification of the stochastic component model, and this is not directly

accounted for in the value of the likelihood. Another way to think about this is, since the

trend component estimated for each dataset is different, the stochastic model is fitted to a

slightly different set of data for each different model specification. Thus, likelihood-based

comparison techniques such as AIC, BIC or likelihood ratio, are not appropriate. Further

work is needed to either investigate model-independent trend estimation techniques, or

to include the trend directly in the stochastic component of the model, in which cases

the use of likelihood-based model comparisons would then be permissable.

1Note that this issue also applies under the original implementation of this trend estimation method
where this process is executed once, since the chosen model still affects the trend and hence the data
used for fitting the stochastic component.
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As a consequence, we rely on ‘common-sense’ model checking. In the Bayesian setting

this comes in the form of our PPCs, which we use to assess within-regime distributional

assumptions. Using our PPCs we narrow our search for a good model down to two

candidates: Model 2, with two AR(1) base regimes and one shifted-log-normal spike

regime, and Model 4 with two AR(1) base regimes and two shifted-Gamma-spike regimes.

Since we cannot use AIC or BIC, we have no simple way to recommend either model and

more work is needed, nor can we give preference to either Type II or Type III models.

We investigate Models 2 and 4 in our maximum-likelihood setting also. Our common-

sense checks in this setting rely on classifying data into regimes based on the smoothed

inferences obtained as part of the EM algorithm. We then produce QQ plots and residu-

als plots to assess within-regime distributional assumptions. One issue with this checking

procedure is that the Markovian nature of the hidden regime sequence is not fully ac-

counted for in this classification, and more work is needed here. One possible solution

would be to develop a type of Viterbi algorithm for these independent regime MRS mod-

els, which would give a hard classification of the data while respecting the Markovian

nature of the hidden regime process. Another possible solution would be to sample hid-

den sequences from the distribution Pθ̂(R|x0:T ), which could then be used in a PPC-type

framework, but with parameters fixed at θ̂.

Our modelling is further complicated by considering two types of independent regime

MRS models, Types II and III. Type III models are simpler than Type II models since

there are no unobserved values of within-regime processes in Type II models. However,

our modelling does not give any indication about which type of model is preferable, and

this is yet another area for further research.

Estimation of our models is complicated by the inclusion of shifted regimes. In the

Bayesian setting this issue is not as troublesome, since the MCMC sampling technique

is not attracted into areas of the likelihood that are infinity. Furthermore, for this

dataset, we found that we had to restrict the support of the shifting parameters so that

they remain in some reasonable range. We found that, if left unrestricted, the shifting

parameter for the spike distributions would become negative and the spike distribution

would capture base prices. In the maximum-likelihood setting, we are forced to fix the

value of the shifting parameter for shifted-log-normal distributions, and we must restrict

the shape parameters of the shifted-Gamma distribution to ease optimisation issues.

However, this does not eliminate all convergence issues, since, as we saw in Chapter

3, the likelihood can have many local maximisers, especially when shifting parameters

are to be estimated by maximum likelihood. For this reason, we suggest that Bayesian

estimation of parameters of MRS models be used when shifting parameters are involved.



Applications to South Australian electricity prices 169

Lastly, we understand that this is a preliminary analysis of the application of MRS mod-

els to this dataset, and is by no means exhaustive. For example, one simple refinement of

our work would be to investigate models with two base regimes where only the variance

of the processes is allowed to differ. We have also not challenged the time-homogeneous

Markovian assumptions in the model. It would be interesting to investigate models for

which the hidden regime process is time varying, such as in [80], dependent on the time

since the last spike, a feature sometimes used in spike-only models, or semi-Markovian,

and we believe our methods can be extended for estimation of all of these cases. Another

feature of electricity prices that we have not considered in our modelling is dependence

on exogenous factors such as weather (as in, for example, [80] or [77]), and this is another

possibility for future research.



Chapter 6

Conclusion

In this thesis we have developed novel forward, backward and EM algorithms to evaluate

the likelihood for, and find MLE of, independent-regime MRS models, and investigated

issues related to these methods. We have also developed a Bayesian framework for

inference of independent-regime MRS models for electricity prices, which has not been

done in this detail to date. Furthermore, we have provided an initial analysis of the

South Australian electricity market using our methods. Here we recap our findings of

each chapter, discuss lessons learned, and describe some future work.

Chapter 3: Likelihood methods for MRS models with independent

regimes

Findings In this chapter we first discussed the EM-like algorithm, which, until this

thesis, was the current method of choice for MRS models with independent regimes. We

showed that the EM-like algorithm has some theoretical failings, and provided examples

where it failed to recover parameters from simulated datasets.

We then developed novel and computationally feasible, forward, backward and EM

algorithms to evaluate the likelihood for, and find maximum likelihood estimates of,

independent-regime MRS models. We followed this by a discussion of issues related to

these methods: a comparison of our EM algorithm to ‘black-box’ optimisation, bias and

consistency, difficulties of shifted distributions, and extensions of our work.

Of note, we found there can be numerous local maximisers of the likelihood, and this

issue is accentuated when shifted distributions are included in the model. Restricting

the parameter space when searching for maximisers can increase the chances of finding

the true global maximiser, but may not eliminate erroneous behaviours. Via simulations,

we showed that the maximum likelihood estimator appears to be a consistent estimator,

170
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and minimal bias is present for reasonably-sized datasets. We described some of the

known difficulties when estimating the parameters of shifted-log-normal and shifted-

Gamma distributions via maximum likelihood, and then discussed how these issues are

even more apparent when included in an MRS model. We concluded that maximum

likelihood estimation of the shift parameter for shifted-log-normal distributions in an

MRS context is not possible, and it is best to restrict the scale parameter of the shifted-

Gamma distribution to reduce erroneous behaviour when searching the likelihood surface

for the MLE.

Lessons learned and future work Limitations of our algorithms are their time and

memory complexity, which can make exact computations impractical for models with

just two AR(1) regimes. As such, one area of future work is to investigate computational

techniques to reduce time and memory requirements. In practice our algorithm can

produce many quantities that are zero, and a smart implementation of our algorithms

would be able to take advantage of this to reduce complexity.

In Chapter 5 we resorted to truncating the memory of the counting processes in our

models to reduce computational demands. So, another area for future research would

be to investigate the effects of this approximation. Our algorithm could be used for

more complex models, where transition probabilities of the hidden regime sequence are

allowed to depend on exogenous variables. Lastly, it would be useful to prove consistency

results for our algorithm.

Chapter 4: Bayesian inference methods for independent-regime MRS

models

Findings In this chapter we explored a Bayesian framework for parameter inference of

MRS models with independent regimes; something which has not been done in this detail

before. We implemented a data-augmented MCMC algorithm which enabled efficient

sampling of the posterior distribution. One advantage of a data-augmented framework is

that it enables O(T ) computations, whereas our likelihood methods are O(T k+1) where

k is the number of AR(1) components in the model.

We described some practical issues faced when implementing our algorithms, and some

expressions to simplify computations. We also implemented an adaptive scheme to

automatically tune our MCMC algorithm, which made our algorithm practical for a

wide range of models and datasets. Our main tools for model checking in this Bayesian

environment are PPCs, where samples from the posterior are used to calculate statistics

that can then be compared to model assumptions. We provided simulations to show
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that our Bayesian methods are valid and our PPCs have some power to reject models

when they are false.

Lessons learned and future work In this chapter we implemented three PPCs

which target distributional assumptions of within-regime processes only. We investi-

gated some other PPCs based on the periodogram, autocorrelation function and partial

autocorrelation function, but our analysis of these was not thorough, and is omitted

from the thesis. One model assumption that we did not assess is the time-homogeneous

Markovian assumption of the hidden regime process. Thus, it would be interesting to

investigate PPCs to assess these assumptions. Another assumption that we did not ad-

dress was the independence within the spike regimes, and PPCs could be developed to

assess this assumption also.

Chapter 5: Applications to South Australian electricity prices

Findings We started by introducing the South Australian dataset which consists of

prices from 1st of January 2013, to the 31st of September 2017. Interesting features of

this dataset are the significant jump in volatility during 2016 – which roughly coincides

with the closure of SA’s only coal generation facility, and therefore a significant change

in market structure – and the magnitude of price spikes, and a period of 14 days during

which the market was suspended. We then detailed our trend estimation method. Since

extreme observations can bias the estimate of trend components, we used an iterative

method to remove and replace extreme values, and then estimate the trend on this

altered dataset. Our trend model was built out of two parts, a short-term periodic

component to capture weekly seasonalities, and a long-term component estimated using

wavelet filtering.

We used our Bayesian methodology to fit models to the dataset and assess their goodness-

of-fit. Using our PPCs we concluded that prices are well-modelled by MRS processes that

include two AR(1) base processes, due to the significant jump in price volatility in 2016.

We observed that one AR(1) regime, with a lower volatility, predominantly modelled

prices before April 2016, and the other predominantly model prices from this point

onward. To capture spikes, our PPCs suggested either a single shifted-log-normal regime,

or two shifted-Gamma distributions are suitable. The model with two shifted-Gamma

spike regimes was motivated by the fact that the shifted-log-normal regime struggled

to capture the most extreme observations. We used one shifted-Gamma distribution to

capture typical spikes, and one to capture the most extreme spikes. We also found that

price drops, if there are any, are preferably modelled by AR(1) processes than by a drop
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regime, since our Bayesian analysis allocated no probability mass to a drop regime when

it was included in models with two AR(1) regimes.

We then applied maximum likelihood methods to the two final models from our Bayesian

analysis. Since one of these models included a shifted-log-normal regime, we fixed its

shifting parameter at the mode of the marginal posterior distribution for the correspond-

ing parameter from our Bayesian analysis. We noted that typical model comparison

techniques, such as AIC or BIC, are not suitable in this setting. This is due to the way

in which we estimated the trend component. The trend was estimated for each model

by iteratively using the stochastic itself model to classify and remove extreme prices.

As a result, the stochastic model is ultimately being fitted to a different dataset for

each model, which means any likelihood-based measure of fit cannot be used to com-

pare models. Hence we resorted to using ‘common-sense’ model checking, by classifying

prices into regimes and producing QQ plots and residuals plots using this classification.

Our QQ plots tend to agree with our Bayesian analyses about the appropriateness of

the distributional assumptions.

We concluded Chapter 5 with a brief discussion of our methods, and some suggested

improvements.

Lessons learned and future work This chapter sets the scene for more future work,

which we had intentions to cover in this thesis, but instead we developed computationally

feasible likelihood methods, which absorbed much of our time. First, since electricity

prices are known to be affected by weather, business activities, day of the week, it would

be interesting to investigate including exogenous predictors in our model. Exogenous

factors could be included in any, or all of, the mean of within-regime processes, the

overall trend component, the volatility component, or the regime-switching component.

In fact, we extended our Bayesian methodology to be able to cope with models includ-

ing exogenous factors in the regime-switching probabilities via a multinomial logistic

regression, and in the mean of the AR(1) base regime (not presented in this thesis), but

never fully investigated this approach since we shifted our focus to the development of

the maximum likelihood methods.

Another related area of future research is to challenge the time-homogeneous Markovian

assumption of the hidden regime process, an assumption that is likely violated by this

dataset. One possibility would be to include a dependence on the time since the last

observed spike in the model. This could be achieved by supposing the transition prob-

abilities of {Ht} depend on the counting process {N t}, as well as the regime process

{Rt}. Another interesting possibility would be to include a semi-Markovian structure in
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the hidden regime process, and we believe our methods can be extended to accommodate

this.

Yet another related area of future research is to include the trend model within the

stochastic model, so that the likelihood accounts for the model-dependent trend. This

would mean that AIC or BIC could be used for model comparison. Another advantage

of including the trend model in the stochastic component would be that one could test

significance of coefficients of the trend model using likelihood ratio techniques. Alterna-

tively, model-independent trend estimation techniques could be used, which would also

permit the use of AIC, BIC, or likelihood ratio tests for comparing components of the

stochastic model only.

Finally, one more important aspect of modelling, which this thesis does not address, is

the use of cross-validation techniques or out of sample testing, and we recommend this

as an important area for future research.

Closing remarks

Here we have provided a brief analysis of South Australian electricity prices using MRS

models with independent regimes, and we hope our methods will be used in future work

investigating electricity markets. We would recommend the South Australian electricity

market as a case study due to its many interesting features. We believe this thesis leaves

such an analysis well-posed and informed, and we hope researchers learn from our lessons

summarised above. More generally, we hope our methods find applications elsewhere,

and make valuable contributions to those fields.



Appendix A

General-state-space Discrete-time

Markov Chains

A Markov Chain is a sequence of random variables {Xt}t∈N that have the Markov prop-

erty. Define S as the state space, which is the set of possible values that Xt can take and

define Σ as a σ-algebra, which, in a rough sense, corresponds to the set of all subsets of

S that we could possibly be interested in. More specifically, a σ-algebra is a collection

of subsets of S that contains the empty set, is closed under complement, and countable

unions. The Markov property says that the probability of moving into a set A ∈ ± at

time t+ 1, given the entire history of the process Xt = xt, Xt−1 = xt−1, ..., X0 = x0 for

x0, ..., xt ∈ S, depends only on the current position of the chain, Xt = xt. Thus

P (Xt+1 ∈ A|Xt = xt, Xt−1 = xt−1, ..., X0 = x0) = P (Xt+1 ∈ A|Xt = xt) ,

assuming both conditional probabilities are well defined. A Markov chain is called time

homogeneous if P(Xt+1 ∈ A|Xt = i) = P(X1 ∈ A|X0 = i) for all t ∈ N, i ∈ S, A ∈ ±.

When S is countable the probabilities pij := P (Xt+1 = j|Xt = xt), i, j ∈ S, are known

as transition probabilities. Since, S is countable then there is a one-to-one mapping

between some set {1, 2, ...} =: N ⊆ N and S, so, without loss of generality, we may

assume N is the state space which makes notation simpler. The transition probabilities

and are often represented collectively as the (possibly infinite dimensional) transition

matrix

P =


p11 p12 . . .

p21 p22 . . .
...

...
. . .

 .
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When S is a more general space, we represent the movement of the chain using the

transition kernel, K(x,A) := P(Xt+1 ∈ A|Xt = x) for A ∈ Σ.

For example, an AR(1) process is a Markov chain on R with transition kernel

K(yt−1, A) =

∫
A

1√
2πσ2

e−
1

2σ2
(yt−α−φyt−1)2dyt.

The n-step probabilities are defined as P(Xt+n ∈ A|Xt = x). It can be shown that the

n-step transition probabilities are given by

P (n) = Pn

in the countable-state-space case. For general state space processes we define the n-step

transition kernel as

K(n)(x,A) :=

∫
S
...

∫
S
K(x, dy1)...K(x, dyn−1)K(yn−1, A).

A discrete-state Markov chain is said to be irreducible if it is possible to get from any

state to any other state, i.e. if for all i, j ∈ S, there exists an n ∈ N such that

P(Xn = i|X0 = j) > 0.

For general state space chains the definition of irreducibility is slightly more complex

since we have to take into account the size of sets in Σ. Suppose we use the measure

ψ(·) to assign a notion of size to sets in Σ, so ψ(A) ≥ 0 for all A ∈ Σ. We say that a

Markov chain on a general space S is ψ-irreducible if, for every A ∈ Σ with ψ(A) > 0,

and for every x ∈ S, K(n)(x,A) > 0 for some n ∈ N. In words, this means that from

any point (x) in the state space, there is positive probability of reaching any ‘sufficiently

big’ set (A such that ψ(A) > 0) after some number of transitions (n).

We define π(·) as the invariant measure of the transition kernel K(x,A), if it satisfies

π(A) =

∫
S
K(x,A)dπ(x), ∀A ∈ Σ

and note that it may not always be possible to find such a measure (in the discrete case

the integral is replaced by the appropriate sum). If π is a finite measure (π(S) < ∞),

then we say that the associated Markov chain is positive recurrent and we may also call

the measure π(·)
π(S) the stationary distribution; otherwise the associated Markov chain is

null recurrent or transient. Recurrence implies that a Markov chain returns to every set
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A ∈ Σ with ψ(A) > 0 with positive probability, and positive recurrence implies that the

expected return time between visits is finite.

In the discrete-state-space case, the period k, of a Markov chain is defined as

k := gcd{n > 0 : P(Xn = x|X0 = x) > 0},

where gcd means the greatest common divisor. An analogous definition of period exists

for Markov chains on general spaces, but this requires us to define numerous objects

that are beyond the scope of what is needed for this thesis. The interested reader should

consult Meyn and Tweedie [75], on which this section is based. For us it suffices to know

that if a Markov chain has period k, then transitions from a set C with ψ(C) > 0 to

itself, can only occur with positive probability at multiples of k time steps. If a Markov

chain has k = 1 then the chain is said to be aperiodic. A Markov chain is called strongly

aperiodic if K(x, x) > 0 for all x ∈ S.

Now we can describe an important result regarding convergence of Markov chains to

their stationary distribution. Suppose that an irreducible Markov chain admits a finite

invariant probability measure π, then π is unique, and

sup
A∈Σ
|K(n)(x,A)− π(A)| → 0,

as n→∞, for every x ∈ S. That is, π is the limiting distribution of the Markov chain.

The fact that π is unique follows from Theorems 10.0.1 and 10.1.2 of Meyn and Tweedie

[75], while the fact that it is the limiting distribution follows from Theorem 13.0.1 of

Meyn and Tweedie [75] also.

A transition kernel K(x,A) is said to be reversible with respect to a measure π if∫
S

∫
S
g(x, y)π(dx)K(x, dy) =

∫
S

∫
S
g(y, x)π(dx)K(x, dy),

for any bounded function g. When this is the case, then π is invariant for the kernel

K(x,A). This is a key result used to construct Markov chains with specific station-

ary distributions, such as those used in Markov chain Monte Carlo (Section 2.2.5), and

coupled with the convergence result above, ensures convergence to the stationary distri-

bution of the Markov chain.
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Model fitting and checking

B.1 Bayesian Model selection for Type III MRS models

In Table B.1 we summarise our Bayesian model selection for MRS models of Type III.

Figures B.1-B.8 show our checking for Type III models. The estimated trend components

for Models 2 and 4 of Type III are shown in Figure B.9, and the posterior means are

shown in Table B.2.
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Model 1 Model 2 Model 4

Xt =

{
B

(1)
t , if Rt = 1,

Y
(3)
t , if Rt = 3,

Y
(3)
t − q3 ∼ LN(µ3, σ

2
3).

Xt =


B

(1)
t , if Rt = 1,

B
(2)
t , if Rt = 2,

Y
(3)
t , if Rt = 3,

Y
(3)
t − q3 ∼ LN(µ3, σ

2
3).

Xt =


B

(1)
t , if Rt = 1,

B
(2)
t , if Rt = 2,

Y
(3)
t , if Rt = 3,

Y
(4)
t , if Rt = 4,

Y
(3)
t − q3 ∼ Gamma(µ3, σ

2
3),

Y
(4)
t − q4 ∼ Gamma(µ4, σ

2
4).

QQ-plots Figure B.1: distributional assumptions
violated for Regimes 1 and 3.

Figure B.3: distributional assumptions
are suitable for Regimes 1 and 2, but
questionable for Regime 3.

Figure B.5: distributional assumptions
are suitable for all regimes.

Residuals
vs time

Figure B.2: variance is non-constant
over time.

Figure B.6: there are only slight indi-
cations that the time-homoscedasticity
assumption may be unsuitable for
Regime 2, and some of the apparent
change in variance is due to fewer ob-
servations at earlier times. We con-
clude that the time-homoscedasticity
assumption is reasonable for both
AR(1) regimes.

Figure B.6: there are only slight indi-
cations that the time-homoscedasticity
assumption may be unsuitable for
Regime 2, and some of the apparent
change in variance is due to fewer ob-
servations at earlier times. We con-
clude that the time-homoscedasticity
assumption is reasonable for both
AR(1) regimes.

Scale-
location

Not shown. Figure B.7: self-dependent-
homoscedasticity assumptions are
suitable for Regimes 1 and 2.

Figure B.8 self-dependent-
homoscedasticity assumptions are
suitable for Regimes 1 and 2.

Comments Model not suitable. Regime 2 is included to capture time-
heteroscedasticity. QQ plots in Figure
B.3 suggest shifted-log-normal spikes
are more suitable than shifted-Gamma
spikes (not shown). When two AR(1)
regimes are included in a model, no
drop regime is necessary.

Regime 4, a second spike regime, is
included to capture the very largest
spikes. QQ plots in Figures B.4
and B.5 show slight differences be-
tween sifted-log-normal spikes (Model
3) and shifted-Gamma spikes, but sug-
gest shifted-Gamma spike are more
suitable.

Table B.1: A summary of our Bayesian model selection process for Type III MRS models for the SA dataset.
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Parameter Model 2 Model 4

α1 -0.239 -0.411
φ1 0.523 0.548
σ2

1 49.8 48.8

α2 0.323 0.596
φ2 0.418 0.420
σ2

2 415 413

q3 18.9 10.2
µ3 3.88 2.71
σ3 1.38 26.5

q4 - 168
µ4 - 2.88
σ4 - 165

Transition matrix

 0.921 0.020 0.059
0.016 0.895 0.089
0.292 0.239 0.469




0.920 0.026 0.053 0.001
0.024 0.890 0.083 0.004
0.297 0.294 0.361 0.048
0.128 0.082 0.380 0.410


Table B.2: Posterior mean estimates for the parameter of Type III Models 2 and 4
for the SA dataset.
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Figure B.1: A sample of five QQ-plot PPCs for each regime in Model 1 of Type III.

(Left) QQ-plot PPCs for Regime 1, B
(1)
t , the AR(1) regime. (Right) QQ-plot PPCs

for Regime 3, Y
(3)
t , the shifted-log-normal spike regime. The points in the QQ plots

for both regimes clearly do not lie on a straight line, suggesting this model does not
capture the data well.
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Figure B.2: A sample of five residuals versus time plots for each regime in Model 1 of

Type III. (Left) Residuals versus time PPC plots for Regime 1, B
(1)
t , the AR(1) regime.

(Right) Residuals versus time PPC plots for Regime 3, Y
(3)
t , the shifted-log-normal

spike regime. The residuals of Regime 1 clearly increase over time which suggests our
assumptions of time-homoscedasticity is violated.
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Figure B.3: A sample of five QQ-plot PPCs for the residuals of Regimes 1, 2 and

3 in Model 2 of Type III. (Left) QQ-plot PPCs for the first AR(1) base regime, B
(1)
t .

(Middle) QQ-plot PPCs for the second AR(1) base regime, B
(2)
t . (Right) QQ-plot

PPCs for the first shifted-log-normal spike regime, Y
(3)
t . The points in the QQ plots for

the spike regime (right) do not lie on a straight line, suggesting the single shifted-log-
normal distribution is unable to capture extreme observations. However, this violation
may not be too significant in practice, and more work is needed to determine this. The
QQ-plots for Regimes 1 and 2 suggest the assumptions about the AR(1) regimes are
reasonable.
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Figure B.4: A sample of five QQ-plot PPCs for each regime in Model 3 of Type III.

(Left) QQ-plot PPCs for base regime 1, B
(1)
t , an AR(1) regime. (Center-left) QQ-plot

PPCs for base Regime 2, B
(2)
t , another AR(1) regime. (Centre-right) QQ-plot PPCs for

Regime 3, Y
(3)
t , a shifted-log-normal spike regime. (Right) QQ-plot PPCs for Regime

4, Y
(4)
t , a second shifted-log-normal spike regime for extreme spikes. The points in the

QQ plots for the spike regimes (Regimes 3 and 4) stray slightly from a straight line,
suggesting the shifted-log-normal distributions may not be suitable.
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Figure B.5: A sample of five QQ-plot PPCs for each regime in Model 4 of Type III.

(Left) QQ-plot PPCs for base regime 1, B
(1)
t , an AR(1) regime. (Center-left) QQ-plot

PPCs for base regime 2, B
(2)
t , another AR(1) regime. (Centre-right) QQ-plot PPCs

for Regime 3, Y
(3)
t , a shifted-Gamma spike regime. (Right) QQ-plot PPCs for Regime

4, Y
(4)
t , a second shifted-Gamma spike regime for extreme spikes. The QQ plots for

Regimes 1, 2 and 4 suggest the distributional assumptions for these regimes are suitable.
The QQ plots for Regime 3 suggests the Gamma distribution may not be suitable for
this regime since the points stray from the reference line, however this evidence is not
strong.
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(a) Model 2 of Type III
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(b) Model 4 of Type III

Figure B.6: A sample of five residuals versus time PPCs for each AR(1) regime in
Models 2 (Left) and 4 (Right) of Type III. These PPCs show no obvious signs that the
time-homoscedasticity assumption is violated for Regime 1. For both models, there are
slight indications that the variance of Regime 2 may increase over time, although it is not
clear how much of the apparent increase in variance is due to time-heteroscedasticity, or
due to fewer observations at earlier times. We conclude that the time-homoscedasticity
assumption is reasonable for the AR(1) regimes of both models.
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Figure B.7: A sample of five scale-location PPCs for each AR(1) regime in Model 2
of Type III. These PPCs show no obvious signs that self-dependent-homoscedasticity
assumptions are violated for either regime.
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Figure B.8: A sample of five scale-location PPCs for each AR(1) regime in Model 4
of Type III. These PPCs show no obvious signs that self-dependent-homoscedasticity
assumptions are violated for either regime.
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Figure B.9: Estimated trend components of Models 2 (Left) and 4 (Right) of Type
III.
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B.2 Maximum likelihood for Type III models

We consider Models 2 and 4 of Type III, and use our EM methodology to fit these

models to the data. We classify prices using the soft classification given by the EM

algorithm and produce QQ-plots and residuals plots to check model assumptions, see

Figures B.10-B.13. In Table B.3 we summarise our findings and in Table B.4 the MLEs

for Models 2 and 4 are shown.

Model 2 Model 4

Xt =


B

(1)
t , if Rt = 1,

B
(2)
t , if Rt = 2,

Y
(3)
t , if Rt = 3,

Y
(3)
t − q3 ∼ LN(µ3, σ

2
3).

Xt =


B

(1)
t , if Rt = 1,

B
(2)
t , if Rt = 2,

Y
(3)
t , if Rt = 3,

Y
(4)
t , if Rt = 4,

Y
(3)
t − q3 ∼ Gamma(µ3, σ

2
3),

Y
(4)
t − q4 ∼ Gamma(µ4, σ

2
4).

QQ-plots Figure B.10: distributional
assumptions are suitable for
Regimes 1 and 2, but question-
able for Regime 3.

Figure B.12: distributional as-
sumptions are reasonable for all
Regimes.

Residuals
vs time

Figure B.11 (A) and (B): the
time-homoscedasticity assump-
tion is reasonable for Regime 1.
There are only slight indications
that the time-homoscedasticity
assumption may be unsuitable
for Regime 2, and some of the
apparent change in variance is
due to fewer observations at ear-
lier times. We conclude that the
time-homoscedasticity assump-
tion is reasonable for Regime 2.

Figure B.13 (A) and (B): the
time-homoscedasticity assump-
tion is reasonable for Regime 1.
There are only slight indications
that the time-homoscedasticity
assumption may be unsuitable
for Regime 2, and some of the
apparent change in variance is
due to fewer observations at ear-
lier times. We conclude that the
time-homoscedasticity assump-
tion is reasonable for Regime 2.

Scale-
location

Figure B.11 (C) and (D): self-
dependent-homoscedasticity
assumptions are suitable for
Regimes 1 and 2.

Figure B.13 (C) and (D): self-
dependent-homoscedasticity
assumptions are suitable for
Regimes 1 and 2.

Table B.3: A summary of our likelihood-based analysis for Type III MRS models for
the SA dataset.
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Figure B.10: QQ-plots of residuals from each regime for Model 2 of Type III, es-
timated by maximum likelihood. The QQ-plots for the base regimes, (A) and (B),
suggest the distributional assumptions of these regime are reasonable. The QQ-plot
of the shifted-log-normal spike regime, (C), shows some deviation from linear which
suggests the log-normal assumption may be unreasonable.

Parameter Model 2 Model 4

α1 -0.122 -0.64
φ1 0.503 0.555
σ2

1 44.8 48.0

α2 0.0373 0.689
φ2 0.421 0.419
σ2

2 420 401

q3 14 18.0
µ3 3.85 2.50
σ2

3 1.19 26.1

q4 - 150
µ4 - 2.50
σ2

4 - 104

Transition matrix

 0.919 0.006 0.075
0.000 0.913 0.087
0.245 0.153 0.602




0.924 0.027 0.049 0.000
0.028 0.890 0.080 0.002
0.279 0.347 0.317 0.057
0.081 0.038 0.435 0.446


Table B.4: MLEs of the parameter of Type III Models 2 and 4 for the SA dataset.
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Figure B.11: Residuals plots for AR(1) regimes of Model 2 of Type III, estimated
by maximum likelihood. Figures (A) and (B) plot the raw residual against time for
Regimes 1 and 2 respectively. Figures (C) and (D) plot

√
|rt| against the absolute

value of the last observed value from the same regime, before time t, |xt−`|. Figure
(A) suggests there is no issue with the time-homoscedasticity assumption for Regime 1.
Figure (B) shows slight evidence that the variance of Regime 2 may increase over time,
although it is not clear how much change in variation is due to time-heteroscedasicity, or
due to fewer observations at earlier times. We conclude that the time-homoscedasticity
assumption is reasonable for Regime 2. Figures (C) and (D) suggest no obvious violation
of the self-dependent-homoscedasticity assumptions.
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Figure B.12: QQ-plots of residuals for each regime of Model 4 of Type II, estimated by
maximum likelihood. In plots (A), (B) and (D), the points lie in a relatively straight
line, suggesting the distributional assumptions are reasonable for these regimes. In
plot (C) there is slight some deviation from a straight line, suggesting the Gamma
distribution assumption for Regime 3 may not be entirely appropriate.
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Figure B.13: Residuals plots for AR(1) regimes of Model 4 of Type II, estimated by
maximum likelihood. Figures (A) and (B) plot the raw residual against time for regimes
1 and 2 respectively. Figures (C) and (D) plot

√
|rt| against the absolute value of the

last observed value from the same regime, before time t, |xt−`|. Figure (A) suggests
there is no issue with the time-homoscedasticity assumption for Regime 1. Figure (B)
shows slight evidence that the variance of Regime 2 may increase over time, although
it is not clear how much change in variation is due to time-heteroscedasicity, or due
to fewer observations at earlier times. We conclude that the time-homoscedasticity
assumption is reasonable for Regime 2. Figures (C) and (D) show no obvious evidence
that the variance of the base regimes increases as a function of lagged values.
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