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Abstract 

Background: The sensing of nutrients by the small intestine generates signals, including the 

secretion of gastrointestinal (GI) hormones, which are important determinants of subsequent 

energy intake and postprandial glycaemia. Recent studies have identified that specific free 

fatty acid (FFA) and sweet taste sensors/receptors, localised to enteroendocrine cells and/or 

absorptive cells, in the small intestine, play a central role in mediating nutrient-induced GI 

hormone release. Furthermore, studies in knock-out (KO) and diet-induced obese (DIO) 

animal models have revealed that altered expression of a number of these receptors 

attenuates GI hormone secretion, and consequently alters food intake and glycaemic control, 

thereby, providing evidence that intestinal nutrient sensing plays a significant role in the 

pathophysiology of obesity and type 2 diabetes (T2D). However, our understanding of the 

relationships between expression of nutrient receptors in the small intestine, nutrient-induced 

release of GI hormones, appetite regulation, and glycaemic control in human health and 

metabolic conditions such as obesity and T2D remains limited.  

 

Aims: The studies presented in this thesis aimed to characterise the expression and 

functional role of duodenal nutrient sensors for fats and carbohydrates in human health, 

obesity and T2D. Specifically, the aims were to investigate: 

1) The effect of acute intraduodenal (ID) nutrient exposure (lipid or glucose) on 

duodenal nutrient sensor expression. 

2) Relationships between the expression of nutrient sensors at baseline (fasted), and 

after nutrient infusion, with the secretion of GI hormones involved in regulating 

appetite, energy intake and glycaemia. 
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3) Relationships between the expression of nutrient sensors at baseline (fasted), and 

after nutrient infusion, with appetite perceptions, habitual energy and macronutrient 

intakes. 

 

Methods: For the studies presented in Chapter 3 and 4, 57 volunteers classified as lean (n 

= 20, body mass index (BMI) 18-24 kg.m2), overweight (n = 18, BMI 25-29 kg.m2) or obese 

(n = 19, BMI ≥ 30 kg.m2) underwent unsedated endoscopy. Duodenal biopsies were 

collected at baseline (following a 12 hour fast), and 30 min after an ID infusion of 10% 

Intralipid® (2 kcal/min). Duodenal expression of free fatty acid receptor 1 (FFAR1), FFAR4, 

G-protein coupled receptor 119 (GPR119), and the cluster-of-differentiation-36 (CD36) was 

assessed by quantitative reverse-transcription polymerase chain reaction (RT-PCR), relative 

to expression of the housekeeper gene β-2 microglobulin (β2M). On a separate visit, the 

effects of a 120 min ID infusion of Intralipid® (2 kcal/min) infusion on blood glucose, and 

plasma cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), glucose-dependent 

insulinotropic peptide (GIP), peptide-YY (PYY), insulin and leptin concentrations were 

evaluated, followed by an ad libitum buffet-meal, from which energy and macronutrient 

intake was quantified. Habitual dietary intake was assessed using food frequency 

questionnaires (FFQs).  

 

For the study presented in Chapter 5, 12 healthy control individuals (HC), 12 patients with 

well-controlled T2D (WC-T2D; HbA1c 6.3 ± 0.2%), and 9 patients with poorly-controlled 

T2D (PC-T2D; HbA1c 10.6 ± 0.5%) undertook an oral glucose tolerance test (OGTT) 

following an overnight fast, as previously described1. These participants were then studied 

during a euglycaemic clamp (5 ± 1 mmol/L), with duodenal biopsies collected at baseline 

(fasted) and after a 30 min ID glucose infusion (4 kcal/min). Copy numbers of taste receptor 

type 1, member 2 (T1R2), the sodium-glucose co-transporter 1 (SGLT-1) and glucose-
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transporter 2 (GLUT2) transcript were assessed at t = 0, 10 and 30 min by RT-PCR. Plasma 

concentrations of GIP, GLP-1, and C-peptide were measured at 10 min intervals from 

baseline (t = 0 min) for 60 min (t = 60 min). Plasma concentrations of 3-ortho-methylglucose 

(3-OMG) were measured at t = 30 and 60 min, using mass spectrometry, to assess glucose 

absorption.  

 

Results:  

Duodenal fatty acid sensing receptor expression in lean, overweight and obese 

individuals 

During fasting, duodenal expression of FFAR1 and FFAR4 was lower (P ≤ 0.05), and CD36 

higher (P ≤ 0.001), in obese, compared with lean and overweight, participants. ID lipid 

increased GPR119 and FFAR1 transcript levels independent of BMI (both P ≤ 0.05), while 

levels of CD36 and FFAR4 did not change. The lipid-induced change in FFAR1 was 

positively associated with the incremental area under the curve (iAUC) of GIP (r = 0.3, P ≤ 

0.05). ID lipid induced the secretion of GIP, GLP-1, CCK, PYY and insulin, but there was 

no relationship between hormone levels with fat sensor expression. There was no 

relationship between acute energy and macronutrient intake at the buffet-meal and duodenal 

expression of fat sensors, however, habitual consumption of polyunsaturated fatty acids 

(PUFAs) was negatively associated with GPR119 in healthy, lean participants (r = -0.5, P ≤ 

0.05) (Chapter 3, Chapter 4). 
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Duodenal sweet taste receptor (STR) and glucose transporter expression in health, and 

patients with well- and poorly-controlled type 2 diabetes 

Blood glucose concentrations were higher in PC-T2D than WC-T2D and HC groups before 

and during the OGTT (P ≤ 0.001). Basal T1R2 transcript levels were similar across groups, 

while SGLT-1 transcripts were lower in PC-T2D than in the WC-T2D group (P ≤ 0.01), and 

GLUT2 transcripts lower in PC-T2D than in both WC-T2D and HC groups (P ≤ 0.01). 

Plasma GIP concentrations were higher in WC-T2D than in the HC group at baseline (P ≤ 

0.01), with no group differences in GLP-1 and C-peptide concentrations. ID glucose 

increased SGLT-1 and decreased GLUT2 transcripts at 10 min (group × time interaction) in 

both HC and WC-T2D groups (both P ≤ 0.001, P ≤ 0.05 respectively), but had no effect on 

SGLT-1 or GLUT2 transcripts in the PC-T2D group. T1R2 transcripts were lower in PC-

T2D at 10 min than in the WC-T2D group (P ≤ 0.05), while transcript levels of all targets 

were similar across groups at t = 30 min. ID glucose increased plasma GIP, GLP-1 and C-

peptide concentrations (all P ≤ 0.001), with GIP higher in PC-T2D (iAUC, P ≤ 0.05) than in 

the HC group, GLP-1 higher in WC-T2D than the HC group (P ≤ 0.05), and C-peptide 

highest in HC compared to both WC-T2D and PC-T2D groups (P ≤ 0.01, P ≤ 0.001). T1R2 

and GLUT2 transcripts at baseline, and in response to ID glucose, were unrelated to GIP, 

GLP-1 or C-peptide iAUC.  GIP concentrations after 10 min were negatively associated with 

basal SGLT-1 transcripts (r = -0.6, P ≤ 0.05), and the degree of change in SGLT-1 during 

ID glucose (r = -0.5, P ≤ 0.05). Serum 3-OMG at 30 min was positively related to the change 

in T1R2 transcript level at 10 min in HC participants (r = 0.7, P ≤ 0.05) (Chapter 5). 

 

Conclusions: These studies have identified notable differences in the duodenal expression 

of the FFA sensors FFAR1, FFAR4 and CD36 in human obesity at baseline. GPR119 was 

linked to habitual PUFA consumption in health, indicating that dietary fatty acid 

composition, rather than high-fat diet (HFD) consumption per se, may influence fat sensor 
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expression. Overall, the response of FFA sensors to acute ID lipid remained intact in obesity, 

with BMI-independent increases in FFAR1 and GPR119, but no association between FFA 

sensor expression and fat-induced secretion of gut hormones across the cohort. In separate 

studies we demonstrated that baseline expression of duodenal glucose transporters SGLT-1 

and GLUT2 was lower in PC-T2D patients at euglycaemia. Incretin and transcriptional 

responses to glucose infusion, and 3-OMG absorption, was similar in WC-T2D and HC, 

however, PC-T2D patients showed a dysregulated T1R2 response, lack of transcriptional 

change in SGLT-1 and GLUT2 to ID glucose infusion, and exaggerated GIP secretion and 

3-OMG absorption. Therefore, impaired glycaemic control in PC-T2D patients may be 

linked to impairment of luminal sweet sensing and its downstream signals. Further 

investigations are needed to define the functional connections between altered GI nutrient 

sensing and the pathophysiology of obesity and T2D.
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Obesity (BMI ≥ 30 kg.m2) is a prevailing condition in westernised societies, and is associated 

with a number of co-morbidities, which significantly impact both individual and population 

health. The global prevalence of obesity has doubled since 19802. Although a complex 

interplay of factors, including genetics, contribute to the development of obesity, lifestyle 

factors, including the consumption of energy-dense diets, high in fats and sugars, and 

increasingly sedentary lifestyles, have undoubtedly contributed to the current epidemic3,4. 

While there is a desperate need to prevent and treat obesity and its serious co-morbidities, in 

particular T2D, the underlying pathophysiology of these metabolic conditions remains 

unclear, limiting the long-term efficacy of current therapeutic interventions.  

 

Lifestyle interventions (i.e. calorie restricted diets and exercise) are the first line therapy for 

obesity, yet weight loss is often modest, and a lack of compliance presents issues with long-

term effectiveness. Additionally, metabolic adaptations to weight loss can also occur, 

making caloric restriction and weight loss difficult to maintain5. Pharmacological 

interventions can result in modest weight reductions, however these are not maintained long-

term and are often associated with significant side effects. Currently, Roux-en-Y gastric 

bypass surgery (RYGB) is the most effective surgical treatment for obesity6,7, and is 

commonly associated with rapid remission of T2D8. Importantly, the effectiveness of RYGB 

is associated with changes in the secretion of specific hormones from the GI tract which 

regulate satiety, energy intake and glycaemia. Therefore, it is of substantial interest to 

understand the mechanisms governing the secretion of these GI hormones, as they may 

present novel targets for the development of therapies which could mimic the effectiveness 

of RYGB.  

 

It has recently been shown that the GI tract is equipped to detect and respond to ingested 

nutrients via intestinal ‘taste’ sensors on enteroendocrine cells. Changes in the expression or 
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function of these intestinal taste systems in mammals (e.g. genetic KO models, human 

polymorphisms) attenuates the effects of fats and carbohydrates on GI hormone secretion, 

appetite and energy intake, and glycaemia. While the existence of these GI sensors has been 

established in rodents, there are limited human studies. Chapter 2 comprises a 

comprehensive review of the current state of knowledge of oral and intestinal fatty acid and 

sweet taste sensors in health, obesity, and T2D.  

 

The study presented in Chapter 3 characterised the expression of duodenal FFA sensors in 

health, during fasting, and following an acute ID lipid infusion. Examination of relationships 

between fat sensor expression and GI hormone secretion, appetite, and acute energy and 

macronutrient intake in response to lipid was also undertaken. Relationships between 

habitual dietary intake and fat sensor expression were examined to determine whether 

dietary patterns influenced intestinal fat sensitivity. Chapter 4 extended this investigation, 

to determine whether expression of fat sensors was 1) altered in obese individuals, and 2) 

responded differently to an acute lipid stimulus compared to responses in healthy 

individuals. Relationships between transcriptional changes of fat sensors with GI hormone 

secretion, appetite, and energy intake were also assessed to evaluate whether changes in fat 

sensors influenced these events.  

 

Chapter 5 focussed on the intestinal sweet taste system, and whether changes in the 

regulation of intestinal glucose sensing and transport had the potential to impact on control 

of glycaemia in patients with T2D. We previously showed that transcriptional regulation of 

the intestinal sweet taste system was similar in healthy individuals and patients with diet-

controlled T2D at ‘normal’ glycaemic levels (euglycaemia), but was dysregulated in the 

latter when blood glucose levels were elevated (hyperglycaemia). In the hyperglycaemic 
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state, patients with T2D also showed an exaggerated glucose absorption, and worsened 

postprandial glycaemia.  It is unknown, however, whether the sweet taste system is more 

profoundly altered as T2D progresses, in patients who have prevailing hyperglycaemia due 

to ‘poorly’ managed disease. This study, therefore, aimed to characterise transcriptional 

regulation of duodenal sweet taste receptors (STRs) and glucose transporters SGLT-1 and 

GLUT2 in healthy individuals, and patients with ‘well’ or ‘poorly’ controlled T2D, in 

response to ID glucose infusion at euglycaemia. As patients with T2D are known to have an 

increased capacity for glucose absorption, and may show changes in their glucose-dependent 

release of incretin hormones which govern postprandial glycaemia, these factors were 

investigated in healthy individuals and patients with different degrees of T2D control in 

association with transcript changes.  

 

The studies presented in this thesis provide novel information regarding intestinal nutrient 

sensors for fats and carbohydrates in healthy individuals, and individuals with metabolic 

diseases (obesity and T2D). The studies explored the relationships between both fasting, and 

nutrient-stimulated changes in these nutrient sensors, and subsequent GI signalling 

regulating appetite, energy intake, and glycaemic control.  
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2.1 Abstract 

The human body has evolved with a disposition for nutrient storage, allowing for periods of 

irregular food availability and famine. In contrast, the modern diet is characterised by 

excessive consumption of fats and sugars, resulting in a surge in the rates of obesity and 

T2D. Although these metabolic disorders arise from a complex interaction of genetic, social, 

and environmental factors, evidence now points to fundamental changes in nutrient 

metabolism at the cellular level contributing to the underlying pathology. Taste receptors 

detect nutrients in the oral cavity and GI tract and can influence the hormonal response to 

nutrients; they may also become maladaptive in conditions of excess fat or sugar 

consumption. Precise links between taste receptor activity, and downstream effects on 

energy intake and glycaemia are not well defined. This review outlines the candidate taste 

receptors for carbohydrates and fats in the oral cavity and within the small intestine, 

highlighting the contributions of underlying genetics (polymorphisms) and sensory 

challenges (e.g., HFD) to the development of obesity and T2D. 
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2.2 Introduction 

Fats and sugars activate reward pathways in the brain that elicit pleasant taste and hedonistic 

sensations, enhance palatability, reinforce taste preference, and promote consumption9-12. 

Humans have developed an innate preference to consume fats and sugars in energy-dense 

foods and then to store energy (lipids, glycogen), limit glucose utilisation, and preserve 

protein in preparation for periods of irregular food availability9. However, in today’s 

environment, energy-dense, high-fat, and high-sugar foods are readily available; in the 

absence of periods of food scarcity, the innate human preference for these foods promotes 

excess energy intake and the development of obesity and its comorbidities (cardiovascular 

disease, hypertension, stroke, osteoarthritis, dyslipidaemia13), most notably, T2D14 (as 

reviewed by Cordain et al.4). It has been proposed that sensory challenges such as a high-fat 

or high-sugar diet may trigger maladaptation of the homeostatic mechanisms of nutrient 

detection and energy regulation in the GI tract. Significant evidence now points to 

fundamental changes in cellular nutrient metabolism as the potential source of 

maladaptation, although the specific mechanisms involved are poorly defined. 

 

The GI tract generates powerful signals that act pre- and postprandially to regulate energy 

intake and glycaemia via modulation of food selection, digestion, and absorption15. Food 

selection is driven through a combination of sensory inputs that include sight, smell 

(olfactory), texture (trigeminal), and taste (gustatory) cues, as well as post oral GI cues. Taste 

receptors on both the lingual and olfactory epithelium form the front line of sensory input to 

the GI tract and detect the chemical composition of ingested foods to provide key sensory 

inputs in order to determine those that are of nutritional benefit (e.g., sugar, fat, protein) and 

those that present risk, such as toxic compounds (e.g., bitter, sour). A large number of animal 

and human studies have established that taste receptors, analogous to oral taste receptors, are 

found throughout the length of the GI tract, where they detect the presence of 
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monosaccharides, FFAs, and peptides/amino acids and trigger the release of the key 

hormones that regulate satiety and glycaemia from the gut wall (see review by Depoortere16). 

The present review highlights the emerging evidence for a role of these GI taste receptors 

for sweet and fat in the regulation of energy intake and glycaemia, as well as the mechanisms 

underlying their role, while acknowledging that present understanding of the precise 

intracellular mechanisms that link GI taste receptors to hormone release and downstream 

effects is rapidly evolving. 

 

Significant research is currently dedicated to uncovering the mechanisms of nutrient 

detection in health and potential dysregulation or maladaptation in metabolic diseases. In 

order to expand present knowledge in this area, an understanding of how the form and/or 

function of taste receptors may be altered in metabolic disease states is of critical importance. 

The relative contributions of underlying genetic predispositions (e.g., receptor 

polymorphisms) or environmental influences such as chronic exposure to a HFD or excess 

consumption of sugars and artificial sweeteners to changes in oral or GI nutrient receptors 

remains to be established. 

 

This review provides a brief overview of GI signals that regulate energy intake and 

glycaemia as well as a summary of oral and small intestinal receptors for sweet and fat taste. 

For each of these taste modalities, functionality in health, obesity, and T2D is compared, as 

is the contribution of sensory challenges (e.g., high-fat and high-sugar diets or non-caloric 

sweeteners) and functional maladaptation (e.g., polymorphisms) of these sensor systems to 

these metabolic conditions. Importantly, how these nutrient sensors may serve as novel 

targets for therapeutic benefits in the settings of obesity and T2D is highlighted. 
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2.3 Gastrointestinal signals critically control energy intake and glycaemia  

GI signals triggered in response to a meal are critical in the regulation of subsequent food 

intake, and the efficient coordination of nutrient digestion, absorption, and subsequent 

utilisation in the body17. Satiation signals are initiated at two sites – in the stomach, largely 

through gastric distension and activation of gastric mechanoreceptors, and in the small 

intestine, upon nutrient-dependent release of peptides from enteroendocrine cells within the 

gut wall17. Other cell types such as brush cells (tuft cells) may also contribute to luminal 

chemosensing18; however, understanding of the role of these cells is limited, and a 

comprehensive discussion is beyond the scope of the current review. Signals arising from 

the small intestine also determine the rate of gastric emptying and are major determinants of 

the postprandial glycaemic response; it is, therefore, critical to understand how nutrient 

sensors and their effectors in the small intestine function in a state of health as well as their 

potential for maladaptation in disease. 

 

2.4 Effects of gastrointestinal hormones on satiation and glycaemia  

More than 20 different hormones are released by specific populations of small intestinal 

enteroendocrine cells in response to ingested nutrients (as reviewed by Rindi et al.19). These 

hormones modulate a variety of GI functions, including pancreatic secretion, motility, 

glycaemia, and, importantly, energy intake and satiety18. Key gut hormones involved in the 

satiety response include CCK derived from I-cells20, and GLP-1 and PYY from L-cells21,22. 

Traditionally, each GI hormone was viewed as being secreted from a specific cell type; 

however, there is now evidence of considerable overlap in hormone expression between I-, 

K, and L-cells, with enteroendocrine cells co-expressing numerous functionally related 

peptides23. This suggests that a single cell type may be tuned to secrete specific hormones 

depending on the cells’ location along the axis of the gut and their exposure to specific 
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dietary components. Further studies in this area will be critical to determine the factors that 

control the phenotypes of enteroendocrine cells along the axis of the intestine. CCK, GLP-1, 

and PYY work to modulate GI motility, appetite, and energy intake, and they slow the rate 

of gastric emptying. GLP-1 in conjunction with K-cell-derived GIP acts as an incretin 

hormone to substantially augment insulin secretion when glucose is given orally, compared 

to as an isoglycaemic intravenous (IV) infusion24. By contrast, ghrelin, the best known 

orexigenic hormone, is produced in enteroendocrine cells of the gastric mucosa; it 

powerfully stimulates food intake in humans25, increases motility, and decreases insulin 

secretion26. 

 

It is now well established that intestinal taste receptors can trigger the release of CCK, PYY, 

GLP-1, and GIP27-30, which supports a link between taste receptor expression and/or 

functionality and the control of energy intake and/or glycaemia. To date, there is limited 

knowledge regarding a link between nutrient-induced ghrelin suppression and taste receptor 

activation, with available functional evidence highlighting α-gustducin activity linked to 

bitter receptor activation in ghrelin- releasing cells in the stomach31. The focus of the current 

review is on the localisation and characteristics of sweet and fat taste receptors in the tongue 

and small intestine, as well as their links with GI hormone release from open enteroendocrine 

cells. The review also documents recent evidence of how these sweet and fat taste receptors 

may be dysregulated in metabolic disease states, such as in obesity and T2D (Table 2.1)1,3, 

27-29, 32-65.   
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Table 2.1: Candidate free fatty acid (FFA) and sweet taste receptors (STRs) in the gastrointestinal (GI) tract: their location, GI mediators and 

physiological responses to metabolic challenge and genetic knockout (KO). 

Abbreviations: circumvallate (CV); long-chain fatty acid (LCFA); glucagon-like peptide-1 (GLP-1); glucagon-like peptide-2 (GLP-2); peptide tyrosine 

tyrosine (PYY); cholecystokinin (CCK); high-fat diet (HFD); glucose-dependent insulinotropic peptide (GIP); knockout (KO); oleoylethanolamide (OEA); 

type 2 diabetes (T2D); sodium-glucose co-tranporter-1 (SGLT-1) 

Gene and reference Location Example of ligands Gastrointestinal mediator 
Physiological response to 

HFD/obesity/T2D 

Physiological change in 

response to genetic KO 

FFAR4 
Matsumura et al. (2007)32; Martin et al. 

(2012)33; Cartoni et al. (2010)34; Hirasawa et al. 

(2005)28; Ichimura et al. (2012)35; Duca et al. 
(2013)36; Kawai et al. (2003)37; Tanaka et al. 

(2008)27 

Oral: CV, foliate, fungiform papillae32-34 
Small intestine: enteroendocrine L 

cells28 

Unsaturated LCFA28, 33 GLP-128, PYY28,CCK27 
HFD: 

↓protein expression36 

↓Fat taste preference37; 

↓GLP-128, 35; 
↓glucose tolerance35; 

↑insulin resistance35, 

↑obesity35 

FFAR1 

Cartoni et al. (2010)34; Itoh et al. (2003)38; 

Edfalk et al. (2008)39; Liou et al. (2011)40; Lan 
et al. (2008)41; Steneberg et al. (2005)42; Latour 

et al. (2007)43; Briscoe et al. (2003)44; Kebede 

et al. (2008)45 

Oral: CV, foliate, rarely fungiform34 

Small intestine: enteroendocrine L and 
K cells39 

Pancreas: pancreatic β cells38 

Saturated and unsaturated 

medium- and LCFA34 

 

GLP-139, GIP39, CCK40 

KO on HFD42: 

↓insulin secretion; 

↓insulin resistance; 
↔glucose tolerance 

 

KO on HFD41, 42: 
↑insulin resistance; 

↑liver steatosis, 

↑obesity 

↓Fat taste preference34; 

↓GLP-139; ↓CCK40; 

↔weight43; 
↔insulinemia43; 

↔plasma FFA43; 

↔fasting blood glucose43 

GPR119 
Lauffer et al. (2009)46; Lan et al. (2009)47; 

Overton et al. (2006)48; Hansen et al. (2012)49; 

Chu et al. (2008)50 

Small intestine:  

enteroendocrine L cells46 
Pancreas: pancreatic β cells47 

OEA48, 2-oleyl glycerol, 2-

monoacylglycerols49   
GLP-147, 50, GIP50  ↓GLP-146 

CD36 

Laugerette et al. (2005)3; Simons et al. 

(2011)51; Drover et al. (2005)52; Zhang et al. 
(2011)53; Poirier et al. (1996)54; Lobo et al. 

(2001)55; Schwartz et al. (2008)56 

Oral: CV, foliate3, 51 

Small intestine: brush border of 
enterocytes54, 55 

Saturated and unsaturated 

LCFA (C≥ 16)3, OEA56 
OEA56 

HFD: 

↓CV transcript expression53 

↓Fat taste preference3; 
 hypertriglyceridaemia52;  

↓OEA mobilisation in response 

to fat56 

T1R2/T1R3 

Nelson et al. (2001)57; Margolskee et al. 

(2007)58; Jang et al. (2007)59; Dyer et al. 
(2005)60; Young et al. (2009)61; Young et al. 

(2013)1; Daly et al. (2012)66 

Oral: CV57 

Small intestine: 
enteroendocrine I and K cells1, 59-61 

Sugars, d-amino acids, sweet 
proteins, non-caloric 

sweeteners (e.g., saccharin58, 

acesulfame-k58)57 

GLP-158, 59, GIP58, GLP-266 

T2D vs healthy1: 

↔T1R2 transcript at baseline; 
↑T1R2 by luminal glucose at 

euglycaemia, ↓at hyperglycaemia 

(healthy); 
↑by luminal glucose in T2D 

irrespective of glycaemia (T2D) 

↑glucose absorption at 
hyperglycaemia 

T1R3/α-gustducin KO58: 

↔SGLT-1 transcript on low or 
high-carbohydrate diet;  

↔SGLT-1 transcript or protein 

in response to dietary non-
caloric sweeteners 

SGLT-1 

Yoshida et al. (1995)62; Gorboulev et al. 
(2012)63; Dyer et al. (2002)64; Margolskee et al. 

(2007)58; Stearns et al. (2010)65; Moran et al. 

(2010)29 

Small intestine: brush border membrane 

of enterocytes62, 64 

Substrates: D-glucose29, 65, D-

galactose 

Inducing ligands: D-fructose58, 
saccharin29, 58, 65, sucralose58 

GLP-158, GIP67 

T2D: 

↑transcript and protein 

↑brush border membrane vesicle 
transport64 

Glucose-galactose 

malabsorption syndrome63; 

↓glucose-mediated GIP and 
GLP-1 secretion63 
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2.5 Gastrointestinal taste receptors 

Well-developed knowledge of oral taste receptors has enabled rapid advances in 

understanding the intestinal nutrient-sensing mechanisms following the identification of 

so-called GI taste receptors in the intestine. The recognition of morphological and 

phenotypic similarities between lingual taste cells and intestinal enteroendocrine cells has 

refocused research efforts towards understanding the mechanisms by which intestinal 

enteroendocrine cells sense nutrients and initiate signalling to regulate food intake and 

glycaemia. Both cell types are polarised and possess apical microvilli exposed to the lumen 

that are equipped with specific G protein-coupled receptors (GPRs) tuned to individual taste 

modalities. These receptors detect sweet, sour, salty, bitter, and umami tastants, as well as 

fatty acids, and, in turn, activate intracellular signalling pathways comprised of ion channels, 

ligand-gated channels, and enzymes, leading to the release of specific mediators at their 

basolateral membrane68. These mediators then act in an autocrine, paracrine, or endocrine 

fashion, and can activate cognate receptors on adjacent sensory nerve endings to initiate 

signalling to brain centres68. Activation of oral taste receptors and lingual afferents elicits a 

conscious perception of taste, and, via higher brain centres, generates immediate and critical 

response mechanisms driving food selection and avoidance69. Activation of intestinal taste 

receptors does not elicit a conscious perception of taste; however, the capacity of these 

receptors to trigger hormone release and activate gut-brain signalling pathways via the vagus 

nerve significantly contributes to the generation of meal-related sensations70. 

 

2.6 Sweet sensing in the gastrointestinal tract  

2.6.1 Sweet taste receptors in the oral epithelium 

Sweet tastants are detected by a heterodimer of the GPR subtypes T1R2 and T1R3, which 

acts as a broadly tuned receptor for sugars, D-amino acids, sweet proteins, and non-caloric 
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sweeteners1,57-61,66. Studies focused on the oral sweet taste receptor heterodimer have 

demonstrated multiple binding sites for non-caloric sweeteners, supporting broad tuning of 

STRs to structurally diverse stimuli71. Interaction of sweet tastants with oral sweet taste 

receptors leads to activation of the taste-specific G protein, α-gustducin60, and in turn, to a 

rise in intracellular calcium and the gating of a taste-specific transient receptor potential ion 

channel, transient receptor potential cation channel subfamily M member 5 (TRPM5)72. 

Gating of this channel facilitates cell depolarisation, the basolateral release of mediators, 

including noradrenaline, acetylcholine, serotonin and glutamate, and activation of inputs 

from the lingual afferent nerves to the nucleus of the solitary tract in the brainstem to 

generate the perception of sweet taste68,73. 

 

2.6.2 Oral sweet taste receptors and sweet taste preference 

Preference for sweet substances is thought to be inherent rather than learnt. Newborns 

demonstrate the ability to differentiate varying degrees of sweetness and consume greater 

volumes of solutions that taste sweeter74. Many factors influence food preferences, and even 

flavours from the maternal diet transmitted through breast milk can influence early food 

preference75. Although the positive hedonic responses to sweet taste are a universal trait, 

substantial inter-individual variation in the perceived intensity of, and preference for, 

sweetness has generated significant interest in the field of sweet taste sensing. Although links 

between sweet taste preference and BMI are not consistently observed76, there is evidence 

to support a heightened preference for sweet substances in obesity, which may drive the 

consumption of excess calories77. Interestingly, obese individuals who have undergone 

RYGB have an enhanced oral perception of sweetness and reduced desire to consume 
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high-carbohydrate (and high-fat) foods78,79. However, the extent to which these changes 

involve modifications in intestinal STR expression or function requires further investigation.  

 

2.6.3 Sweet taste receptor polymorphisms and sweet taste perception 

A number of STR polymorphisms have been identified in humans80,81 (see Table 2.2)35, 80-88. 

For example, two single-nucleotide polymorphisms (SNPs) located upstream of the 

promoter region of T1R3 are strongly associated with reduced oral sucrose sensitivity in 

humans81. These SNPs resulted in reduced levels of T1R3 transcripts in vitro; however, care 

must be exercised in interpretation of this finding, as the study used bile-duct derived cells, 

which may have different proteins interacting at this promoter region89. Further evidence of 

the effects of polymorphisms on sweet taste perception comes from a worldwide survey of 

human polymorphisms in the T1R receptor family (T1R1, T1R2, T1R3), which revealed that 

T1R2 is highly diverse compared to other  human genes; this corresponds with the variability 

seen in sweet taste thresholds amongst humans90. Importantly, the majority of amino acid 

variants occur in the first extracellular domain of T1R receptors, the domain that contains 

the ligand-binding site for carbohydrates. Further investigation is needed to determine the 

role of STR polymorphisms in driving preference for sweet foods and whether 

polymorphisms in gut STRs have functional implications for food selection and metabolic 

signalling in humans81-88. 
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Table 2.2: Characteristics of commonly described polymorphisms of fatty acid and sweet sensors in the human GI tract 

Gene and reference Polymorphism Region Population Physiological effects 

FFAR1 
Hamid et al. (2005)82 

 

Ogawa et al. (2005)83 

 

 

 

 

Vettor et al. (2008)84 

 

Arg211His 

(rs2301151) 

 

 

 

 

 

Gly180Ser 

 

Coding region 

 

 

 

 

 

 

Coding region 

 

Danish Caucasians (T2D and 

healthy) 

Japanese males (healthy) 

 

 

 

 

Sicilian (healthy and obese) 

↔Insulin response (OGTT) 

↔Allele frequency between T2D and glucose-tolerant controls 

 

His/His>Arg/Arg: 

↑serum insulin levels, 

↑insulin resistance, 

↔plasma glucose, 

↔serum lipids 

↑Allele frequency with ↑BMI; transfection of variant in HeLa cells alters 

FFAR1 function resulting in ↓ability to sense lipids, impaired Ca2+ release 

and β-cell secretion in a model of insulin secretion 

FFAR4 
Ichimura et al. (2012)35 

 

R270H 

 

Coding region 

 

European (healthy and obese) 

↓Receptor expression in human intestinal NCI-H716 cells with ↓GLP-1 

release, ↑risk of obesity and insulin resistance 

CD36 
Pepino et al. (2012)85 

 

 

Keller et al. (2012)86 

 

 

Bokor et al. (2010)87 

 

 

 

 

Heni et al. (2011)88 

 

 

rs1761667 

 

 

Genotypes: AA, AG, 

GG 

 

rs3211867, 

rs3211883, 

rs3211908, rs1527483 

 

 

rs9784998, 

rs3211883, 

rs3211908, rs3211956 

 

Promoter region 

 

 

 

 

 

Various 

 

 

 

 

Various 

 

African-American, Caucasian 

(obese)85 

 

African-American (healthy 

and obese)86 

 

European adolescents (healthy 

and obese) 

 

 

 

White European (non-diabetics 

at risk for T2D) 

 

 

Oral threshold for oleic acid and trinolein: GG>AG>AA85 

 

 

↔Food consumption, fat preference85, 

↑preference for fat (AA genotype) 86 

 

↑risk of obesity, ↑adiposity  

 

 

 

 

↑BMI,  

↑Waist circumference (rs3211883, rs3211908),  

↔insulin sensitivity, 

↔hepatic lipid accumulation 

T1R2 

Eny et al. (2010)80 

 

Eny et al. (2010)80 

 

 

Ser9Cys (rs9701796) 

 

Ile191Val 

(rs35874116) 

 

Single-peptide region 

 

Large extracellular 

domain and ligand 

binding site 

 

White, South Asian, East 

Asian, other (healthy and 

T2D) 

 

White, South Asian, East 

Asian, other (healthy and 

T2D) 

 

↔Carbohydrate intake 

 

 

↑Carbohydrate consumption (effects seen in BMI ≥ 25) in healthy and T2D 

 

 

 

T1R3 
Fushan et al. (2009)81 

rs307355, rs35744813 Upstream of T1R3 

coding sequence 

European, Asian, African ↓Sensitivity to sucrose 

Abbreviations: BMI, body mass index; GLP-1, glucagon-like peptide-1; OGTT, oral glucose tolerance test; T2D, type 2 diabetes
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2.6.4 Sweet taste receptors in the intestinal epithelium 

2.6.4.1 Functional evidence for a role for sweet taste receptors in incretin 

hormone release 

STRs have been localised to subpopulations of enteroendocrine cells within the proximal 

small intestine of mice and humans, which is a key region of nutrient detection1,59-61,91-93. 

Co-localisation of α-gustducin and GLP-1 within the L-cells of the mouse duodenum 

provides evidence for a functional relationship between activation of the STR-gustducin 

pathway and subsequent incretin release94. Importantly, animals that lack either α-gustducin, 

or the T1R3 subunit, demonstrate major defects in glucose-mediated GLP-1 secretion and 

disrupted glucose homeostasis59,94. This provides the strongest functional evidence for a role 

of the STR-gustducin-coupled pathway as a significant contributor to overall glycaemic 

control. 

 

The human L-cell line NCI-H716 expresses all components of the sweet taste pathway. 

Administration of glucose and the non-caloric sweetener sucralose in one study induced 

GLP-1 secretion, an effect that was inhibited by both RNA interference of α-gustducin, and 

the sweet taste receptor inhibitor lactisole59. In a seminal study of 35 healthy volunteers, 

Gerspach et al.30 also demonstrated that glucose-dependent GLP-1 release was attenuated in 

the presence of lactisole, providing direct evidence of a functional role of intestinal sweet 

taste receptors in the regulation of incretin hormone release. In this study, lactisole reduced 

the GLP-1 and PYY response to intragastrically and intraduodenally administered glucose 

and mixed-nutrient loads, but the effect was greater following intragastric administration. 

The prominent effect of lactisole from the gastric compartment was unexpected, particularly 

given that the highest STR expression in humans occurs within the duodenum and since 

gastric emptying was not altered by lactisole. STR expression was not directly measured in 
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this study; however, an important point to note is that STR transcript expression is rapidly 

downregulated in mice receiving jejunal glucose infusion61. Accordingly, reduced STR 

availability to luminal stimuli in the study of Gerspach et al.30 may have affected the 

subsequent release of GLP-1. As it is not known whether lactisole antagonism affects the 

regulation of STR expression, this possibility must be considered. The effect of lactisole on 

GLP-1 release may also occur via an indirect mechanism that utilises hormones released 

from the stomach. T1R3 has been localised to gastric brush cells95, and may trigger hormonal 

or neural pathways to stimulate satiation peptide release in the intestine. The potential 

interaction between gastric and intestinal signalling mechanisms is an area that requires 

further investigation. 

 

2.6.4.2 Effects of intestinal sweet taste receptor activation on glucose 

transporter availability 

Landmark studies in animals have provided strong evidence for a link between intestinal 

STR activation and an increase in levels of the primary intestinal glucose transporter, 

SGLT-1, as well as luminal substrate transport capacity29,58,65. SGLT-1 is located in the brush 

border membrane (BBM) of enterocytes in the proximal intestine, and in addition to an 

absorptive role, the apical transport of sugars by SGLT-1 is also an important determinant 

of intestinal “incretin” release in both rodents and humans. Rodents administered 

intraluminal phloridzin (a competitive inhibitor of SGLT-1) show attenuated incretin 

responses to sweet stimuli96, while mice deficient in SGLT-1 do not have an effective first 

phase GLP-1 response, which involves glucose-mediated insulin secretion and inhibition of 

hepatic glucose production63. Intracellular glucose diffuses into the bloodstream via the 

facilitative transporter GLUT2 at the basolateral membrane of enterocytes97. While early 

rodent studies indicated that GLUT2 was translocated to the apical surface in the presence 
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of luminal sugars93, recent studies have indicated that GLUT2 translocation does not occur 

following a glucose load in healthy humans63,98. Further work is needed to understand the 

potential role of GLUT2 in taste signal transduction. 

 

Indeed, SGLT-1 expression and function is directed by the presence of luminal sweet 

tastants, and SGLT-1 is upregulated in the presence of a broader range of sweet ligands than 

its substrate specificity, including by non-caloric sweeteners, highlighting the upstream role 

of a broadly-tuned sensor29,58,62,65-98 (see Table 2.1). The upregulation of SGLT-1 in 

enterocytes is known to occur via a cAMP-dependent pathway that involves early 

post-transcriptional stabilisation of SGLT-1 transcripts99. Importantly, intake of dietary 

sugars and non-caloric sweeteners have been shown to increase intestinal SGLT-1 transcript, 

protein and function in wild-type (WT) mice, an effect that is absent in mice lacking the 

sweet taste molecule T1R3 or α-gustducin58. These findings indicate that SGLT-1 levels are 

linked to the broadly-tuned STR, and that intestinal STRs are engaged in the regulation of 

glucose uptake in animals. In this manner, activation of STRs is likely to trigger the release 

of autocrine and/or paracrine signals from taste cells, which may act upon adjacent 

enterocytes, to regulate SGLT-1 expression and function58. Candidate signal mediators 

released include GIP58, GLP-158,59, and GLP-2100-103, which are co-expressed in many of the 

enteroendocrine cells that contain T1R258. Accordingly, STRs have been proposed as the 

intestinal sensor for dietary sweet tastants, with SGLT-1 acting as an important effector1. 

The implications of such a relationship include the potential for therapeutic targets that can 

specifically work to enhance, or reduce, carbohydrate transport; this is an issue of critical 

relevance to metabolic diseases, which are characterised by maladaptive carbohydrate 

absorption. 
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2.6.5 Disordered sweet taste receptor expression in type 2 diabetes 

Patients with T2D often show disordered GI responses to nutrients, with frequently delayed 

gastric emptying and a high prevalence of GI symptoms104-106. There are a number of 

abnormalities that may impact intestinal glucose sensing in T2D; secretion of GLP-1 and 

GIP have been inconsistently reported to be diminished in these patients107,108, while 

intestinal levels of SGLT-1 may be increased, thus increasing the capacity for glucose 

absorption64. It was recently demonstrated that the intestinal STR system is reciprocally 

regulated by luminal glucose exposure and blood glucose concentrations in humans. Under 

euglycaemic conditions, ID glucose infusion increased intestinal expression of T1R2, while 

the same infusion under hyperglycaemic conditions decreased T1R2 levels; this regulation 

may serve to limit SGLT-1 recruitment during hyperglycaemia. However, in patients with 

T2D, T1R2 levels increased upon glucose infusion, irrespective of the prevailing glycaemia, 

while glucose absorption was increased at hyperglycaemia, as seen by an elevation in levels 

of the glucose-absorption marker 3-OMG, a non-metabolisable substrate of SGLT-11. Taken 

together, these results indicate that STR signals persist during hyperglycaemia in T2D 

patients, and, as a consequence, may sustain the availability of SGLT-1 transport and 

augment postprandial hyperglycaemia. The proposed pathways for STR signalling in health, 

and changes that occur in T2D conditions are outlined in Figure 2.1. Therapeutics that block 

STRs, such as lactisole, may therefore improve glycaemic control in the setting of T2D, but 

this hypothesis needs to be directly tested. 

 

Importantly, to date, no studies have directly investigated whether lactisole blockade of 

STRs is capable of modifying glucose absorption in human T2D. Given the presence of 

impaired incretin secretion in T2D, it is of interest to investigate further how STR expression 

and function is altered in this state. Such knowledge is critical in order to determine the 

potential therapeutic benefit of lactisole in the clinical setting. 
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Figure 2.1: Generalised model of intestinal sweet taste sensing in healthy individuals 

and those with T2D under hyperglycaemic conditions. Heterodimeric STRs comprising 

the GPR subunits T1R2 + T1R3 detect a wide range of luminal stimuli, such as sugars, 

D-amino acids, and non-caloric sweeteners. Tastants bind to the receptor and activate the 

taste-specific G-protein α-gustducin via subunits Gαq to activate PLC βII or Gαs to stimulate 

cAMP/cGMP-dependent pathway. Upon activation of secondary messengers, calcium is 

released from inositol triphosphate–sensitive intracellular stores, leading to the gating of 

TRPM5. The subsequent influx of sodium and cell depolarisation trigger basolateral 

mediator release of the incretin hormones GLP-1 and GIP or GLP-2, which  enter the blood 

and function as hormones or paracrine signals at adjacent enterocytes to upregulate the 

primary intestinal glucose transporter, SGLT-1. Upregulation of SGLT-1 increases apical 

glucose transport capacity, with intracellular glucose entering the bloodstream via the 

basolateral facilitative GLUT2 transporter. In healthy humans, intestinal STRs are 

reciprocally regulated by luminal glucose according to prevailing glycaemia, i.e., increased 

during euglycaemia, decreased during hyperglycaemia. This may limit SGLT-1 function to 

control postprandial glycaemic excursions. In contrast, in T2D, STR transcript levels 

increase irrespective of prevailing glycaemia, and glucose absorption is increased during 

hyperglycaemia.  
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2.6.6 Activation of sweet taste receptors by non-caloric sweeteners and 

implications for metabolic disease 

Increased consumption of dietary sugars has been linked to the rising incidence of T2D in 

Western populations109. Non-caloric sweeteners have become a topic of much debate. 

Typically considered to be metabolically inert and consumed as a calorie-free sugar 

substitute, non-caloric sweeteners have been marketed as a healthy alternative to nutritive 

sugars as part of a weight loss regimen or for individuals with T2D110, with initial findings 

suggesting benefits relating to body weight and decreased energy intake111. However, recent 

epidemiological data have shown that heavy consumers of beverages sweetened with 

non-caloric sweeteners have an increased risk of developing T2D112. Although further 

research is required, this finding implies that non-caloric sweeteners may not be functionally 

inert and may negatively affect glycaemic control, thereby offsetting any gains due to 

reduced energy intake. 

 

Although evidence is convincing in animal models, human studies have not yet established 

a direct functional role of non-caloric sweeteners. Sucralose, aspartame, and acesulfame-K 

are known to act on intestinal STRs to increase SGLT-1 expression and function in pigs29, 

rats65, and mice58. In studies performed in healthy humans, diet soda containing sucralose 

and acesulfame-K has been shown to significantly increase GLP-1 release and, 

consequently, decrease peak glucose levels when ingested prior to an oral glucose load113,114, 

but the same effects were not observed in T2D patients114. However, these studies did not 

control for other compounds in the soda that may have affected GLP-1 responses. When 

these same doses of sucralose and acesulfame-K were infused together into the duodenum 

of healthy humans, there was no acute effect on gastric emptying, GLP-1 release, or 

glycaemic response following an oral glucose load115. Similarly, other studies have found 
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that non-caloric sweeteners, such as sucralose116-118, saccharin117, aspartame118,  

acesulfame-K118, and stevia117, when administered alone, are not sufficient to modify acute 

in vivo gut hormone secretion119. It has been postulated that the observed increase in GLP-1 

in healthy volunteers potentially requires an adjunct caloric, metabolisable sugar, in addition 

to the non-caloric sweetener, to elicit GLP-1 changes114. It is also notable that circulating 

levels of gut hormones may be a blunt marker for local release based on evidence in rodents, 

whereby non-caloric sweetener triggered gut hormone levels were several orders higher in 

intestinal lymph than in circulation120. Clearly, additional studies are required to elucidate 

the effects of non-caloric sweeteners on GI and metabolic functions, particularly in chronic 

intake settings. 

 

The predominance of non-caloric sweeteners in the modern food supply highlights the 

importance of understanding the specific intracellular pathways activated by individual 

non-caloric sweeteners and their downstream effects110. For example, the non-caloric 

sweetener acesulfame-K can induce glucose uptake in rat intestinal cell lines (Caco-2, RIE-1, 

and IEC-6) at high glucose concentrations by triggering the translocation of GLUT-2 from 

the basolateral to the apical membrane121. The use of a phospholipase βII (PLC βII) inhibitor 

(U-73122) abolished this effect, indicating the importance of PLC βII in mediating enhanced 

glucose uptake via increased STR signalling121. Research in this area is active, yet no 

definitive conclusions have been formed. 

 

It is well established that intestinal STRs are engaged in sweet sensing, and may influence 

glycaemic control; in this, their GI function extends beyond simple nutrient detection in the 

periphery. However, further research is needed to determine the direct effects of STR 
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modification on metabolic disease in response to chronic ingestion, and whether actively 

targeting STRs can be of potential therapeutic benefit for conditions such as T2D. 

 

2.7 Fat sensing in the gastrointestinal tract  

2.7.1 Evidence for oral fat taste in humans 

Recent evidence for the existence of fat taste has profound implications, particularly in the 

setting of the current obesity epidemic. The oral perception of dietary fat has long been 

considered to be based only on texture, odour, and postingestive cues3,122. However, this 

view was challenged by the discovery that triacylglycerols (TAGs), the principal form of fat 

in food, are digested by lingual lipases to release FFAs, which can act as effective stimuli 

for oral fatty acid taste receptors in both rodents and humans37,123. In humans, lipase activity 

is sufficient to liberate FFAs at a detectable range of 0.02–6.4 mM123, and in rats, the addition 

of the potent lipase inhibitor, orlistat, results in a lower preference for dietary TAG intake, 

but not FFAs37, indicating that FFAs are the key stimulus required for oral perception of fat 

“taste.” 

 

2.7.2 Oral sensitivity to fatty acids and fat preference 

Fats are an energy-dense source of nutrition possessing hedonistic qualities through the 

activation of central reward pathways in the brain, enhancing palatability, and reinforcing 

taste preferences10-12. Indeed, a preference for fatty foods is a common trait amongst 

mammals, and a relationship exists between oral sensitivity to fatty acids and fat 

preference124. Rodents spontaneously prefer fatty foods in a free-choice situation, with 

dietary fat preferences inversely correlated with oral FFA sensitivity. For example, when 

placed on a 3-choice macronutrient selection paradigm (protein, carbohydrate, and fat), 

DIO-prone Osborne-Mendel (OM) rats prefer a HFD, and rapidly become obese, compared 
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with DIO-resistant (DIO-R) S5B/PL rats, which are naturally inclined to ingest relatively 

little fat and reduce their total caloric intake when exposed to a HFD in order to stay lean125. 

In humans, studies have shown that when fed a low-fat diet for 4 weeks, both lean and 

overweight/obese individuals have an increased taste sensitivity (i.e., decreased taste 

threshold) to oleic acid (C18:1). Conversely, when consuming a HFD, lean individuals have 

reduced taste sensitivity to C18:1, whereas no change in sensitivity is observed in 

overweight/obese individuals126. Failure of the HFD to alter taste thresholds in the obese 

may be due to a pre-existing adaptation to a HFD, resulting in a greater preference for, and 

increased consumption of, high-fat foods123,126. Indeed, obese subjects have increased fat 

detection thresholds relative to lean individuals127. However, further investigation is needed 

to provide empirical evidence of such an adaptation. As such, understanding the mechanisms 

underlying differences in fat sensitivity, as well as their functional responses, is the next step 

towards determining whether maladaptation of fat sensors may predispose individuals to 

obesity. 

 

2.7.3 Fat taste in the small intestine 

As with STRs, FFA receptors have been localised to the intestine, where they can trigger gut 

hormone release, influencing satiety signals and energy intake27,28,39,46,47. When TAGs are 

infused directly into the duodenum of humans, food intake is significantly reduced, an effect 

that is abolished through addition of the lipase inhibitor tetrahydrolipstatin, highlighting that 

fat digestion (i.e., the release of FFAs) is also an essential requirement for intestinal fat 

sensing21,128. Importantly, in the small intestine, it is long-chain fatty acids (LCFAs) with a 

chain length of 12 carbon atoms that induce the most potent, fat-induced hormone secretion, 

slowing of gastric emptying, and suppression of energy intake129-133. Evidence from rodent 

and human studies supports a relationship between impaired oral receptor-mediated 

fat-sensing, particularly of LCFA, and obesity, potentially driving energy 
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overconsumption123,134. In the same manner, the sensitivity of FFA receptors within the small 

intestine may be impaired in obesity127, leading to overconsumption due to reduced satiety 

signalling. The potential contribution of FFA receptors to satiety signalling is discussed 

further below, and the importance of further investigations into these orosensory processes 

is worth emphasising.  

 

2.7.4 Candidate fatty acid receptors 

Multiple receptors for oral and intestinal FFAs have now been identified. This review is 

focused on the FFAs responsible for the detection of LCFAs, since LCFAs have the most 

potent suppressive effects on GI function and play a critical role in fat-induced satiety 

signalling. The lead GPR candidates include FFAR4 (previously GPR120)27,28,32-36,124, 

FFAR1 (previously GPR40)34,38-45, GPR11946-50, and the multi-functional protein 

CD363,51-56, 86 (Table 2.1). Evidence for the effects of HFD/obesity on the availability and 

function of these receptors is also discussed, with links between receptors and hormonal 

signalling from the small intestine highlighted for their potential influence on subsequent 

energy intake (Figure 2.2). 

 

2.7.5 Fatty acid receptor FFAR4 

2.7.5.1 Oral FFAR4 

FFAR4 is expressed in the circumvallate (CV), foliate, and fungiform taste buds of rats32 

and mice33,34, as well as the lingual taste cells of humans122. FFAR4 KO mice demonstrate 

diminished preference for linoleic and oleic acid, and attenuated lingual nerve responses to 

several fatty acids, with normal responses to other tastants (e.g., sour, salty, umami)34. 
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Figure 2.2: Generalised model of intestinal fat taste sensing in normal and in high-fat 

diet/obese conditions. FFAs, the breakdown product of dietary TAGs, activate GPRs 

located on the apical surface of small intestinal enteroendocrine cells. LCFAs, potent 

stimulators of GI function, bind to FFA receptors (FFAR4, FFAR1) and activate a 

taste-specific G-protein α-gustducin (Gαq) and a secondary messenger cascade via 

phosphatidylinositol 4, 5-bisphosphate (PIP2) or cAMP (Gαs) in the case of GPR119. PIP2 

is converted to inositol triphosphate via activation of PLC βII, triggering the release of 

calcium from intracellular endoplasmic reticulum stores, gating of cation channel TRPM5, 

and the influx of sodium and cell depolarisation. Basolateral mediators (e.g., CCK, GLP-1) 

are subsequently released and act upon vagal afferents within the gut wall, signalling to the 

brainstem and higher brain centres to regulate satiety via the slowing of gastric emptying 

and subsequent suppression of energy intake. The multifunctional glycoprotein CD36 is 

responsible for uptake of FFAs, and is also critical for the production and/or mobilisation of 

the oleic acid derivative, oleoylethanolamide (OEA), which reduces meal frequency via 

activation of the peroxisome-proliferator-activated receptor-α (PPAR-α) pathway. PPAR-α 

also contributes to the formation of TAG-rich chylomicrons within the endoplasmic 

reticulum and, in particular, the component apolipoprotein A-IV, which potentially mediates 

CCK-induced satiety signalling. The quantity and quality of chylomicron production may 

affect blood clearance, potentially affecting atherogenicity of the chylomicrons produced 

and, in CD36 KO mice, the chylomicrons produced contain less TAG and are much smaller, 

leading to TAG retention in enterocytes, particularly in HFD conditions135. In HFD and 

obesity conditions, it is hypothesised that the increased luminal exposure to FFAs 

downregulates FFAR expression, resulting in attenuated secretion of GI signalling peptides 

and, consequently, impaired fat-induced suppression of gastric emptying and energy intake.  
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FFAR4 co-localises with GLP-1 within a subset of cells that co-express CD36 in the mouse 

CV papillae, and may modulate oral sensitivity thresholds for sucrose and unsaturated 

LCFA33. The addition of oleic or α-linoleic acid to isolated mouse CV papillae triggers a rise 

in active GLP-1 levels, an effect mimicked by the potent FFAR4 agonist, GSK137657A, 

providing evidence of oral FFAR4-mediated GLP-1 release in the signalling of LCFA33. The 

potential involvement of GLP-1 release in the oral detection of LCFA is further suggested 

by the observation that GLP-1 receptor KO mice display a reduced preference  for  oral  

LCFA, and are unable to detect low concentrations of oil (0.02–0.5% w/v)33. 

 

2.7.5.2 Effects of a high-fat diet/obesity on intestinal FFAR4: links to the 

regulation of energy intake 

FFAR4 is expressed on L-cells that release GLP-1 and PYY in the mouse small intestine28. 

While a role for FFAR4 in energy regulation has been demonstrated, the precise mechanisms 

involved remain unclear. For example, rats with HFD-induced obesity have increased levels 

of FFAR4 transcript and protein in the proximal small intestine (duodenum and jejunum), 

but decreased CCK, PYY, and GLP-1 protein expression relative to DIO-R rats36. In 

contrast, in mouse STC-1 cells, which model small intestinal enteroendocrine cells, fatty 

acid-induced GLP-1 release is abolished following silencing of FFAR4 by RNA 

interference27,28. Correspondingly, mice that completely lack FFAR4 receptors demonstrate 

attenuated GLP-1 secretion in response to fatty acid exposure28,35, and on a HFD they 

develop more profound obesity, glucose intolerance, and insulin resistance compared to their 

WT counterparts35. These outcomes indicate a loss of satiety signalling generated through 

FFAR4 activation, and a subsequent attenuation of the suppressive effects of fat on appetite 

and energy intake in the development of obesity and its metabolic comorbidities. 
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The modulation of FFAR4 in obesity is complex and may involve an initial acute response 

to increase FFAR4 to compensate for attenuated satiety signalling from L-cells during a 

HFD. Thereafter, modifications of intracellular and downstream pathways, such as 

post-translational modifications, may occur, leading to a disconnect between FFAR4 

signalling and peptide secretion36. 

 

Current evidence supports a role for FFAR4 receptors in the detection of LCFAs and release 

of GLP-1 in both the oral and intestinal epithelium. Moreover, the potential loss of peripheral 

satiety signalling in FFAR4 KO and DIO rodent models provides strong support for a role 

of FFAR4 in energy regulation. In humans, key information on FFAR4 regulation is awaited, 

with studies to date focused on changes in human cell-lines, which may not necessarily 

reflect the in vivo setting. In order to extrapolate FFAR4 dysregulation to the tendency to 

overeat in obesity, changes at the mucosal level will need to be investigated to determine the 

luminal availability and subsequent function of the receptor. 

 

2.7.5.3 Effect of FFAR4 polymorphisms on receptor function and body weight 

Numerous FFAR4 polymorphisms have been identified in humans; with evidence that these 

genetic variations are linked to BMI35 (see Table 2.2). A loss-of-function variant of FFAR4 

(R270H) has been associated with an increased risk of obesity and insulin resistance in 

European populations35 but to a lesser extent in other populations, such as the Japanese136. 

For example, variant R270H is rare in Japan (1 in 1,585 subjects was a heterozygous carrier) 

but is polymorphic in European populations35; this may explain discrepancies in population-

based analysis. Few studies have evaluated the functional implications of FFAR4 variations; 

however, Ichimura et al.35 reported that LCFA-induced GLP-1 release from human intestinal 

NCI-H716 cells is attenuated when transfected with the R270H variant. Further research is 
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needed to fully determine the functional implications of FFAR4 polymorphisms, but studies 

such as these are generating improved knowledge of how genotypic variation in nutrient 

receptors manifests in phenotypes of eating behaviour that may increase the risk of obesity. 

 

2.7.6 Fatty acid receptor FFAR1  

2.7.6.1 Oral FFAR1 

FFAR1 is present in lingual taste cells in mice34, yet it has been inconsistently reported 

in rat and human lingual epithelium32,122,124 and its presence in the human oral epithelium 

remains controversial. FFAR1 is activated by LCFA, and mice that lack FFAR1 possess 

diminished taste nerve responses to, and preference for, LCFA (i.e., linoleic acid), while 

responses to other taste stimuli (e.g., bitter, sweet, salty, and umami) remain intact34. 

Interestingly, six non-fatty acid agonists of FFAR1 (Rosiglitazone, Medica 16, Compound 

9.2, Compound 5, Compound 20, and Compound 10.14) are detected in sip-and-spit tests 

in humans and trigger a fat taste similar to linoleic acid; however, in 2-bottle preference 

tests in mice, these agonists were not sufficient to modify taste preference137. This 

indicates that FFAR1 activation generates a taste response, but may not be sufficient, alone, 

to modify taste preference; further human investigations are required to support this notion. 

 

2.7.6.2 Intestinal FFAR1 

 FFAR1 is highly expressed in pancreatic β-cells, and is also found in L- and K-cells of the 

proximal intestine in mice, where it co-localises with GLP-1 and GIP, respectively39. As 

such, FFAR1 can enhance glucose-stimulated insulin secretion (GSIS) via direct actions 

on the pancreas38, and indirectly via regulation of incretin hormone release from 

enteroendocrine cells39. Due to its tissue distribution and documented effects on fat-

mediated insulin release, FFAR1 is an attractive target for potential treatment of obesity 
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and T2D, with early reports suggesting that FFAR1 KO mice were resistant to numerous 

HFD-induced effects, including hyperinsulinaemia, hyperglycaemia, 

hypertriglyceridaemia, and hepatic steatosis42, and as such, that FFAR1 antagonists have 

the potential to prevent and treat obesity and T2D. Furthermore, linoleic acid-induced CCK 

secretion is abolished in pure populations of I-cells isolated from FFAR1 KO mice40, which 

is an effect not previously seen in studies using STC-1 cell lines27 and demonstrates that 

FFAR1 mediates LCFA-induced CCK secretion in response to dietary fat. However, later 

studies using the same HFD failed to show any protective effects in FFAR1 KO mice, and 

HFD exposure caused obesity, insulin resistance, and fatty liver41. Moreover, chronic 

over-expression of FFAR1 in β-cells of transgenic mice led to lipotoxicity and diabetes 

due to pancreatic dysfunction42. 

 

Further research is required to determine the extent to which FFAR1 mediates fat-induced 

effects on satiety and glycaemic control. For example, DIO and DIO-R rats subjected to a 

10-week HFD demonstrated upregulated FFAR1 transcript and protein expression upon 

intragastric nutrient exposure, concurrent with decreased CCK, GLP-1, and PYY peptide 

expression36. The reasons behind this differential response to fatty acids at the GPR and 

gut peptide level during obesity remain unclear, and the debate continues as to whether 

FFAR1 agonists or antagonists would constitute the most appropriate therapeutic strategy. 

 

2.7.6.3 FFAR1 polymorphisms 

While mutations in FFAR1 have been identified, and include an Arg211His 

polymorphism, or the rare mutation variant Asp175Asn, there is little agreement on their 

functional implications82-84 (see Table 2.2). One study found no significant relationship 

between Arg211His polymorphisms and insulin secretion or T2D risk82, while another 
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reported that this polymorphism explained variations in serum insulin levels in Japanese 

men83. A study into a newly identified polymorphism, Gly180Ser, identified impaired 

intracellular calcium increase as the basis for inadequate β-cell sensing of dietary lipids as 

an insulin secretory stimulus84. While further research is needed to uncover the 

contribution of genetic differences in FFAR1 to energy intake and glycaemic control, it 

remains a therapeutic target of interest, due to its potential to control the incretin axis in 

patients with T2D. 

 

2.7.7 Fatty acid receptor GPR119 

The receptor GPR119 was originally localised to pancreatic islets, where it is highly 

expressed and modulates GSIS47. Importantly, however, GPR119 is also localised to 

L-cells of the small intestine, where it mediates glucose-independent GLP-1 secretion138. 

The restricted localisation of GPR119 makes it an attractive therapeutic target for both 

obesity and T2D, due to its potential to promote both euglycaemia, and satiety. For 

example, ileal perfusion of OEA, a naturally occurring fatty acid amide and an endogenous 

ligand for GPR11948, induces GLP-1 secretion46. GPR119 is also expressed in GLUTag 

cells, human NCI-H716, and rat primary intestinal cell lines; in the last, OEA has been 

shown to increase GLP-1 secretion via GPR119 activation46. 

 

However, OEA-dependent suppression of food intake is intact in mice that lack GPR119, 

indicating that other pathways are involved in mediating the hypophagic effects of OEA47. 

Oral administration of the GPR119 agonist AR231453 in mice stimulates GLP-1 release 

and improves glucose tolerance, an effect abolished by blockade of GLP-1 receptor 

signalling50. Combined administration of AR231453 plus sitagliptin, an inhibitor of the 

GLP-1 breakdown enzyme dipeptidyl peptidase-4, enhanced the effect of AR231453, 
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whereas the presence of sitagliptin had no such effect in GPR119 KO mice50. Despite these 

findings in mice, the extent to which GPR119 agonists modulate GLP-1 release in humans, 

and their subsequent effects on energy intake and glycaemia, is unclear, and the few 

completed Phase II trials have not provided grounds for optimism (see review by Kang139). 

 

2.7.8 Fatty acid sensor CD36 

2.7.8.1 Oral CD36 

CD36 is a receptor-like glycoprotein that binds saturated and unsaturated LCFAs (carbon 

chain ≥ 16) in foliate and CV papillae in the rodent and human oral epithelium. CD36 is 

absent from non-gustatory oral tissue, highlighting its taste-specific function3,51. CD36 also 

mediates fat preference; this was demonstrated through a loss of preference for fatty acids 

(linoleic acid) in CD36 KO mice compared to their WT counterparts, while sensitivity to 

other taste modalities remained functional3. 

 

2.7.8.2 Intestinal CD36 and fatty acid transport 

CD36 is present in the BBM of enterocytes of the proximal intestine, the primary site of fat 

absorption, suggesting a role for CD36 in fatty acid uptake55. Functional evidence for such 

a role comes from KO mice, and studies of polymorphisms in rodents and humans. CD36 

KO mice fed a HFD for 6 weeks, and equipped with lymph duct fistulae, had impaired lipid 

secretion into the mesenteric lymph in the proximal small intestine, reflecting an impaired 

ability to uptake fatty acid into enterocytes, synthesise TAG, and form lipoproteins in the 

absence of CD3652. 
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Research into the intracellular signalling mechanisms linking fat ingestion to satiety have 

shown that activation of CD36 by LCFA induces the production and/or mobilisation of OEA, 

an effect that is abolished in CD36 and PPAR-α KO mice56. CD36 may also influence the 

CCK-mediated effects on satiety, with CD36 KO mice also demonstrating a significant 

reduction in CCK secretion in response to intragastric lipid infusion compared to WT 

mice140. A similar reduction in CCK secretion is also seen in response to fatty acids in STC-1 

cells generated to stably express a mutated form of human CD36 (CD36K/A), which impairs 

CD36-mediated signalling to intracellular calcium but has normal FFA uptake ability140. In 

CD36-deficient humans, abnormal plasma lipid profiles are also observed, including higher 

postprandial hypertriglyceridaemia, which may also imply a defective clearance of dietary 

TAGs135. However, more research is required into the specific mechanisms involved. 

Therefore, in addition to a transporter role, CD36 may also influence the satiety effects of 

fat ingestion, a pathway potentially mediated by OEA. 

 

2.7.8.3 CD36 polymorphisms  

The SNP rs1761667 is a common variant in the CD36 gene leading to reduced CD36 

expression, and is associated with human obesity. Obese subjects homozygous for the 

A-allele, which is associated with lower CD36 expression, have lower sensitivity (i.e., higher 

detection thresholds) to oleic acid and triolein emulsions85. Several SNPs of CD36 are also 

associated with measures of whole-body adiposity, including BMI and waist circumference, 

in European populations87,88 (Table 2.2). Importantly, many of the numerous genetic 

variants of CD36 do not confer changes to the protein. While it is important to clarify which 

polymorphisms affect protein availability and/or function, identifying relationships between 

the non-functional variants in the gene with phenotypes of eating behaviour will be of value 

in investigating markers of chronic disease risk141. 
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2.7.8.4 CD36 and high-fat diet exposure 

Studies in rodents have established links between CD36 expression and susceptibility to 

obesity. For example, data in mice show that CV papillae protein levels of CD36 reduce 

significantly 1 hour after re-feeding, and are followed by a progressive return to levels 

observed during fasting, with an inverse correlation between CD36 protein and food 

intake142. Conversely, exposure to a 3-day HFD upregulates CD36 expression in rats54 and 

may explain the increased capacity to absorb fat in the small intestine in obesity143. 

 

Importantly, there are differences in the responsiveness of CD36 receptors to fat exposure 

that align with reported differences in CD36 expression among rat strains53,144. These 

findings add support to a role of intrinsic variation in CD36 in response to fatty acid 

exposure, leading to overconsumption in the obese. For example, CD36 expression on the 

tongue and duodenum was assessed at 2 time points to assess acute response (3-day HFD) 

and adaptive response (14-day HFD) in rat strains either resistant to (S5B) or prone to obesity 

(OM). Basal levels of oral CD36 were not significantly different between strains, however 

consumption of a HFD induced significant strain-specific changes in CD36144. Oral CD36 

expression was significantly increased by HFD consumption in OM rats only, with a greater 

consumption of HFD compared to S5B at both time points, linking increased CD36 with 

hyperphagia in these rats. Duodenal expression was higher at baseline in S5B rats; however, 

duodenal CD36 expression only increased following the 14-day HFD, whereas OM rats 

increased duodenal CD36 expression and persistently overconsumed fat at both time points, 

indicating an increased absorptive capacity for FFAs but a deficiency in satiety signalling in 

this strain144. This may indicate that S5B rats are more resistant to HFD challenges, with 

CD36 receptors able to generate sufficient responses to FFAs to promote adequate feelings 

of satiety. Therefore, increased expression and availability of CD36 may not necessarily 

confer differences in function/sensitivity. Studies such as these highlight that CD36 
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signalling can be modulated by chronic fatty acid exposure, with implications for orosensory 

perception of dietary fats, satiety signalling, and activation of reward pathways, factors 

which may promote  overconsumption, particularly in obesity.  

 

2.7.8.5 CD36 and the gut microbiota 

Observations of distinct differences in the gut microbiome in genetically obese rodents and 

humans have piqued the interest of researchers145. Very little is known about the interaction 

and significance of the microbiome to nutrient sensing, although it has recently been shown 

that germ-free mice, lacking microbiota, are significantly leaner on a standard-chow diet 

compared to normal animals, despite having a higher energy intake146. Moreover, germ-free 

mice are completely resistant to HFD-induced obesity147. Interestingly, although germ-free 

mice demonstrate an increased preference for caloric intake from fats relative to normal 

mice, this is associated with increased lingual levels of CD36, yet a marked decrease in 

intestinal expression of both FFAR1 and FFAR4, as well as CCK, PYY, and GLP-1148. The 

potential role of gut microbiota in metabolism, energy intake, and body weight, highlights 

the complexity of investigations into taste receptor function in health and disease. The 

significance of an altered microbiome in metabolic diseases represents a novel area of gut 

research, although more investigation is required to ascertain how microbiota communicates 

with the gut to regulate intestinal nutrient sensing. 

 

2.8 Conclusion 

The gut plays a critical role in the control of appetite, energy intake, and glycaemia. The 

exact mechanisms that mediate gut hormone responses to nutrient intake are not established, 

but sufficient evidence now indicates that oral and intestinal taste receptors can determine 

the sensitivity to, preference for, and, ultimately, the metabolic response to ingested 
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nutrients. Studies of genetic modifications within these sensing pathways (e.g., human 

polymorphisms, genetically prone obese animal models) are now revealing their functional 

role in both health and metabolic diseases. The role of STRs in sweet taste sensing is well 

established in rodents and emerging in humans, with links to glucose absorption highlighting 

the importance of this luminal sensor in the control of postprandial glycaemia. This is 

observed through the augmentation of glucose absorption by intestinal STRs during 

hyperglycaemia in T2D patients, as well as evidence that STR blockade dose-dependently 

reduces glucose-stimulated incretin hormone release. Whether or not direct blockade of 

STRs is effective in controlling glycaemia in human T2D remains an exciting new area of 

investigation with the capacity for widespread benefits in the clinical setting. 

 

Given the high fat intake associated with modern diets, it is now important to increase 

understanding of how the function of FFA receptors may change in response to dietary cues. 

Candidate receptors such as GPR119, while initially a promising target to modulate 

glycaemia through pancreatic and intestinal incretin secretion, has proven to be less 

successful in the clinical setting. Similarly, there is controversy in the literature regarding 

the potential for therapeutic development targeting FFAR1, since it is unclear whether 

agonism or antagonism of this receptor would be more beneficial. Finally, FFAR4 has 

emerged as a leading receptor target with consistent functional impact, which is particularly 

evident in KO models via effects on GLP-1 secretion. The critical next step in taste receptor 

research is to translate the findings that link receptor activation, hormone release, and altered 

GI function to modifications in eating behaviour and glycaemic control in animals to positive 

outcomes in patients with obesity and T2D. If this is achieved, these receptors will provide 

important new targets for the treatment of these human diseases.
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3.1 Abstract 

Background and aims: FFAs and their derivatives are detected by GPRs on 

enteroendocrine cells, with specific transporters on enterocytes. It is unknown whether acute 

fat exposure affects FFA sensors/transporters, and whether this relates to hormone secretion 

and habitual fat intake.  

 

Methods: We studied 20 healthy participants (10M, 10F; BMI: 22 ± 1 kg/m2; age: 28 ± 2 

years), after an overnight fast, on 2 separate days. On the first day, duodenal biopsies were 

collected endoscopically before, and after, a 30-min ID infusion of 10% Intralipid®, and 

relative transcript expression of FFAR1, FFAR4, GPR119 and the FFA transporter CD36 

was quantified from biopsies. On the second day, ID Intralipid® was infused for 120-min, 

and plasma concentrations of CCK and GLP-1 evaluated. Habitual dietary intake was 

assessed using FFQs.  

 

Results: ID Intralipid® increased expression of GPR119, but not FFAR1, FFAR4 and CD36, 

and stimulated CCK and GLP-1 secretion. Habitual PUFA consumption was negatively 

associated with basal GPR119 expression. 

 

Conclusions: GPR119 is an early transcriptional responder to duodenal lipid in lean humans, 

although this response appeared reduced in individuals with high PUFA intake. These 

observations may have implications for downstream regulation of gut hormone secretion and 

appetite. This study was registered as a clinical trial with the Australia and New Zealand 

Clinical Trial Registry (Trial number: ACTRN12612000376842). 
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3.2 Introduction 

Dietary TAGs stimulate upper GI motor activity and hormone secretion, and suppress 

appetite and energy intake in humans149. The liberation of FFAs is critical for the sensing of 

fat in the GI tract, since fat-induced responses are attenuated when TAG digestion is blocked 

by lipase inhibitors150. FFAs with a carbon chain length ≥ 12, in particular, are potent stimuli 

of GI activity and interact with FFAR4 and FFAR1 on enteroendocrine cells within the small 

intestine28,40. Importantly, these fat sensors play a role in mediating GI hormone secretion in 

rodents, but their expression and function is poorly characterised in humans.  

 

FFAR4 and FFAR1 are present on enteroendocrine cells that release the gut hormones, CCK 

(from small intestinal I-cells) and GLP-1 (from small intestinal L-cells). Attenuated 

fat-induced hormone release from these cells has been demonstrated using RNA 

interference28 or genetic KO40 of these receptors. GPR119 is also present on L-cells, but, in 

contrast to FFARs, is activated by 2-monoacylglycerols and fatty acid derivatives, including 

the lipid messenger, OEA46,151. A functional role for GPR119 in fat-induced hormone 

signalling is evidenced by RNA inhibition of GPR119 in mouse GLUTag cells, which leads 

to reduced OEA-induced GLP-1 secretion46. The absorption of dietary LCFAs by 

enterocytes is mediated by the brush border transporter, CD36152. This transporter is a critical 

determinant of OEA mobilisation, which is markedly attenuated in CD36 KO mice56. 

 

Human obesity appears to be associated with reduced oral and GI sensitivity to fat, reflected 

in reduced fat-induced suppression of energy intake and GI hormone release127. Positive 

associations between duodenal expression of FFAR4 and CD36 with BMI have been 

reported, along with reduced numbers of enteroendocrine I- and L-cells153. Importantly, 

these fat sensors in the small intestine represent a unique system which may be dysregulated 

in obesity. However, whether these receptors respond to an acute fat stimulus, and whether 
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this is associated with subsequent gut hormone secretion, has not been assessed in humans. 

Investigating the influence of habitual fat intake on the expression of fat sensors in health is 

an important first step to determining their role in settings of high-fat consumption and 

obesity.  

 

The aims of this study were, therefore, to investigate whether acute ID lipid infusion would 

alter expression of FFAR1, FFAR4, GPR119 and CD36 in the duodenum of lean, healthy 

participants, and whether this expression would be associated with fat-stimulated CCK and 

GLP-1 secretion, and related to habitual fat intake. We hypothesised that 1) acute ID lipid 

infusion would alter expression of these fat sensors, 2) these changes would be associated 

with fat-induced CCK and GLP-1 release, and 3) habitual fat intake would relate to basal 

FFAR1, FFAR4, GPR119 and CD36 expression. 

 

3.3 Materials and methods 

3.3.1 Participants 

Twenty healthy volunteers (10M, 10F; 28 ± 2 years; BMI: 22 ± 1 kg.m2) participated in the 

study. Participants were recruited through an existing departmental database, newspaper 

advertisement, and flyers at local universities and hospitals. All participants were of stable 

weight for at least 3 months prior to inclusion in the study and were unrestrained eaters (score 

≤ 12 in the eating restraint section (Factor 1) of the Three-Factor Eating Questionnaire 

(TFEQ)154). Participants reported no GI symptoms, had no prior GI surgery, did not take 

medications or supplements known to affect GI motility or appetite, consumed ≤ 20 g of 

alcohol per week, were non-smokers, and did not regularly consume fish oil supplements. 

The study protocol was approved by the Royal Adelaide Hospital Research Ethics 
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Committee and carried out in accordance with the Declaration of Helsinki as revised in 2000. 

Written informed consent was obtained from each participant prior to inclusion in the study.  

 

3.3.2 Study design and protocols  

3.3.2.1 Part A: Endoscopy and collection of duodenal mucosal biopsies 

Participants attended the Department of Gastroenterology and Hepatology, Royal Adelaide 

Hospital, at 0830 h following a standardised evening meal (400g beef lasagne, energy 

content: 2470 kJ; fat, 20g; protein, 20g; carbohydrate 80g; McCain’s Foods, Australia) and 

an overnight fast of 12 h from solids and 10 h from liquids. Anaesthetic spray 

(Co-Phenylcaine Forte Nasal Spray, ENT Technologies, Australia) was then administered 

into the nasal cavity and pharynx, and a small diameter video endoscope (external diameter: 

5.3 mm, GIF-XP160, Olympus), lubricated with lignocaine gel (Orion Laboratories, 

Australia), was passed through the nose into the second part of the duodenum. Once 

positioned (t = 0 min), 2 duodenal biopsies were collected using standard endoscopic biopsy 

forceps and placed immediately in Allprotect® Tissue Reagent (Qiagen, Australia). 

Following this, an ID infusion of 10% Intralipid® (Fresenius Kabi AB, Sweden; 2 kcal/min) 

commenced via the endoscope infusion channel for 30 min. This design was based on our 

previous endoscopic studies combining nutrient infusion and biopsy collection, and 

establishing that expression of small intestinal glucose sensors was modulated within that 

time (i.e., 30 min) in humans1. At the conclusion of the ID infusion (t = 30 min), two 

additional biopsies were collected, and the endoscope removed. Participants were provided 

with a meal and discharge instructions and then permitted to leave the hospital. 

 

3.3.2.2 Part B: Intraduodenal lipid infusion  

Participants attended the Discipline of Medicine at 0830 h following a standardised evening 

meal and overnight fast, as described above. Anaesthetic spray and gel was administered 
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into the nasal cavity (as above) prior to insertion of a small-diameter (3.5 mm) catheter 

(Dentsleeve International, Mui Scientific), which was allowed to pass via peristalsis through 

the pylorus into the second part of the duodenum. Accurate positioning of the catheter across 

the pylorus was achieved by monitoring the transmucosal potential difference using a Red 

Dot monitoring electrode (3M Healthcare) placed on the forearm as a reference155. Once 

positioned, an IV cannula was inserted into a forearm vein, and a baseline blood sample (10 

ml) was collected (t = 0 min). ID infusion of 10% Intralipid® then commenced at a rate of 2 

kcal/min for 120 min (t = 0 - 120 min), during which blood samples were collected every 15 

min and placed in ice-chilled EDTA-treated tubes. Plasma was separated by centrifugation 

for 15 min at -4°C within 15 min of collection. Our study design purposefully omitted a 

control (saline) arm, as we have shown previously, under the same study conditions that ID 

infusion does not affect GI hormone secretion133,150,156,157. Mindful of the burden on 

participants, we considered that repeating this was unjustified. 

 

3.4 Measurements 

3.4.1 RNA extraction 

Frozen duodenal biopsies were disrupted using a bead-based tissue homogeniser 

(TissueLyser LT, Qiagen) and homogenised through Qiashredder columns (Qiagen). Total 

cellular RNA was isolated using the PureLinkTM MicroKit (Invitrogen, Thermo Fisher 

Scientific), which included an on-column DNase digestion, as per manufacturer’s 

instructions. RNA quantity was determined using a NanodropTM Lite Spectrophotometer 

(Thermo Fisher Scientific) and purity assessed using A260/A280 ratio.  
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3.4.2 Quantification of gene expression by relative RT-PCR 

Real-time RT-PCR was performed using the 7500 fast Real-Time PCR system (Applied 

Biosystems, Thermo Fisher Scientific). Taqman® primers (Life Technologies, Thermo 

Fisher Scientific) were used to determine the expression of FFAR1 (Hs03045166_s1, 

product# 4453320), FFAR4 (Hs00699184_m1, product# 4453320), GPR119 

(Hs02825719_s1, product# 4453320) and CD36 (Hs01567185_m1, product# 4448892) 

relative to expression of the housekeeper β2M (HS00984230_m1, product# 4331182). All 

targets were assessed in triplicate according to manufacturer’s instructions. 

 

3.4.3 Gut hormones 

Plasma CCK. Plasma CCK-8 concentrations (pmol/L) were measured by radioimmunoassay 

using a protocol adapted from Santangelo and colleagues158. Samples were extracted in 66% 

ethanol; extracts were dried down and resuspended in assay buffer (50 mM phosphate, 10 

mM EDTA, 2 g/L gelatin, pH 7.4). Standards were prepared using synthetic sulphated 

CCK-8 (Sigma Chemical) with antibody (C2581, Lot 041K4838, Sigma Chemical) added at 

a working dilution of 1:17,500. Sulphated CCK-8 125I-labeled with Bolton and Hunter 

reagent (Perkin Elmer, USA) was used as tracer. Incubation was for 7 days at 4˚C. The 

antibody-bound fraction was separated by the addition of dextran-coated charcoal containing 

gelatin (0.015 g gelatin, 0.09 g dextran, 0.15 g charcoal in 30 ml assay buffer) and the 

radioactivity determined in the supernatants following centrifugation. The antibody binds all 

CCK peptides containing sulphated tyrosine residue in position 7, shows a 15% 

cross-reactivity with non-sulphated CCK-8, ≤ 2% cross-reactivity with human gastrin I, 

0.1% with CCK (30-33) and 1% with human Big Gastrin, and does not bind structurally 

unrelated peptides. Intra-assay CV was 5.2% and inter-assay CV was 15.4%. The detection 

limit was 1 pmol/L. 
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Plasma GLP-1. Plasma total GLP-1 concentrations (pg/mL) were analysed using a multiplex 

assay (Milliplex® MAP Human Metabolic Hormone Magnetic Bead Panel, HMHEMAG-34K) 

using the Bio-plex® MAGPIXTM Multiplex Reader (Luminex®, Millipore Corporation) and 

xPONENT® software (Luminex®, Millipore Corporation, version 4.2) according to 

manufacturer’s instructions. There was negligible antibody cross-reactivity. Intra-assay CV 

was ≤ 10%, and inter-assay CV was ≤ 15%. The detection limit was 2.5 pg/mL.  

 

3.4.4 Habitual dietary intake 

A FFQ was completed by each participant to assess their average daily energy and fat intakes 

over the previous 12 months (DQES v2; Cancer Council Victoria, Carlton, Victoria, 

Australia159). This questionnaire has been validated for use in Australian adults160. 

 

3.4.5 Data and statistical analyses 

Sample size was based on power functions derived from our a priori data153 using 

within-subjects contrasts with P ≤  0.05 and statistical power (1-β) = 0.8. Statistical analysis 

was performed using SPSS® software (SPSS Inc, IBM®, version 20), and all graphs were 

generated using GraphPad Prism 6 (GraphPad Software Inc). One-way analysis of variance 

(ANOVA) with post-hoc Bonferroni testing was used to compare basal expression of all 

receptor targets. Paired samples t-tests were used to compare post-infusion (t = 30 min) 

expression with baseline (t = 0 min) for each of FFAR1, FFAR4, GPR119 and CD36. 

Relationships between receptor expression and habitual energy and fat intake were 

determined by correlation, with Pearson’s r values presented.  Paired samples t-tests were 

also used to compare gut hormone stimulation at t = 120 min with baseline concentrations  

(t = 0 min). Blood samples were collected on the longer infusion day for logistical reasons, 

as our research has shown that plasma CCK161 and GLP-1162 concentrations are comparable 

across multiple, identical study day visits. Hormone data were expressed as AUCs 
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(calculated using the trapezoidal rule from t = 0 min to 120 min). This AUC value (pmol.L 

min-1 or pg.mL min-1) was divided by the time of last measurement to obtain a final weighted 

average (AUC, pmol/L or pg/mL) to account for occasions (in n = 2 participants) when 

samples could not be collected (e.g., bathroom breaks). Relationships between receptor 

expression at t = 0 min and t = 30 min with plasma hormone AUC, were determined by 

correlation, Pearson’s r values presented. Data are expressed as means ± standard error of 

the mean (SEM), with statistical significance accepted at P ≤ 0.05. 

 

3.5 Results 

Endoscopic and infusion procedures were well tolerated, and biopsies were successfully 

collected from all 20 participants.  

 

3.5.1 Expression of fat sensors in the proximal human duodenum following 

acute ID lipid exposure 

Expression of FFAR1, FFAR4, GPR119 and CD36 was detected in all duodenal biopsies at 

baseline, with relative abundance of CD36>>FFAR1>FFAR4>GPR119 (all P ≤ 0.05). ID 

lipid infusion increased duodenal expression of GPR119 (P ≤ 0.05), while other transcripts 

were unchanged. β2M was stably expressed in all biopsies and unchanged by the 

experimental paradigm (Figure 3.1). 
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Figure 3.1: Relative transcript expression of FFAR1 (A), FFAR4 (B), GPR119 (C), and CD36 (D) in human duodenal biopsies at baseline (T0) and 

following 30 min ID Intralipid® infusion (T30) (2 kcal/min). Expression of A) FFAR1, B) FFAR4 and D) CD36 mRNA expression was unchanged by ID 

lipid infusion. C) GPR119 mRNA expression increased at t = 30 min (inset: optimised axes, *P ≤ 0.05) following ID lipid infusion. Data are expressed as 

mean ± SEM, n = 20. 
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3.5.2 Gut hormones 

ID lipid stimulated CCK release (P ≤ 0.05, Figure 3.2). The time to maximum concentration 

(TMax, group median), maximum concentration (CMax, group mean) and total AUC are 

detailed in Table 3.1. There was no correlation between FFAR1, FFAR4, CD36 and 

GPR119 expression at baseline, or following ID lipid, and CCK AUC.  

 

ID lipid also stimulated release of GLP-1 (P ≤ 0.05, Figure 3.2). The TMax, CMax and total 

AUC are indicated in Table 3.1. There was no correlation between FFAR1, FFAR4, GPR119 

and CD36 expression at baseline, or following ID lipid, and GLP-1 AUC. 

 

3.5.3 Relationship between habitual fat intake and duodenal expression of 

FFARs and CD36 

Habitual dietary intake assessed from FFQs is summarized in Table 3.2. Three participants 

had incomplete questionnaires, which were rejected by the automated analysis. There were 

no relationships between baseline, or post-lipid duodenal expression, of FFAR1, FFAR4, 

GPR119 or CD36 with habitual energy, total fat, saturated fat, monounsaturated fat, protein, 

or carbohydrate intakes. Habitual PUFA consumption (13 ± 1 g/day) was negatively 

correlated with basal duodenal GPR119 expression (r = -0.5, P ≤ 0.05, Figure 3.3).  

a 
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Figure 3.2: Plasma CCK (A) and GLP-1 (B) concentrations during 120 min ID 

Intralipid® infusion (2 kcal/min). Plasma CCK and GLP-1 were both increased by ID lipid 

infusion (both P ≤ 0.05). Data are mean ± SEM, n = 19 (CCK) and n = 17 (GLP-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Relationship between habitual consumption of PUFAs (g/day) and 

duodenal mRNA expression of GPR119.  Habitual consumption of PUFA was negatively 

correlated to basal expression of GPR119 (r = -0.5, n = 17, P ≤ 0.05).  
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Table 3.1: Plasma gastrointestinal hormone concentrations in healthy, lean humans 

during 120-min ID Intralipid® infusion (2 kcal/min). 

Hormone Tmax (min) Cmax AUC 

CCK (pmol/L) 

(n=19) 

15 7.9 ±  0.6 7.5 ± 0.6 

GLP-1 (pg/mL) 

(n=17) 

90 168 ± 21 105 ± 10 

Data are mean ± SEM. AUC: Area under the curve; CCK: Cholecystokinin; Cmax; 

maximum concentration; GLP-1: glucagon-like peptide-1; Tmax: time to maximum 

concentration 

 

Table 3.2: Average daily energy and macronutrient intake assessed over the previous 

12 months  

 
Mean ± SEM 

Energy intake, kJ/day 9757 ± 785 

Total fat, g/day 99 ± 9 

Saturated fat, g/day 41 ± 4 

Polyunsaturated fat, g/day 13 ± 1 

Monounsaturated fat, g/day 36 ± 4 

Protein, g/day 121 ± 13 

Carbohydrates, g/day 241 ± 17 

Sugars, g/day 103 ± 10 

Starch g/day 137 ± 10 

Fiber, g/day 27 ± 3 
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3.6 Discussion 

This study has evaluated the expression of the fat sensors, FFAR1, FFAR4, GPR119, and 

the sensor/transporter, CD36, in the human duodenum, and the effects of acute ID lipid 

infusion. We showed expression of these targets in the duodenum of healthy participants, 

with relative abundance mirroring our earlier findings153. CD36 was the most abundant 

transcript expressed in the duodenum, consistent with its known localisation to the BBM of 

enterocytes and suggested FFA transport capabilities153. We further demonstrated that an 

acute, meal-relevant fat stimulus, known to trigger acute GI responses (as evidenced by gut 

hormone secretion), increased expression of GPR119, but not FFAR1, FFAR4 or CD36, in 

the duodenum of healthy participants. In addition, GPR119 expression was negatively 

correlated with habitual PUFA intake, supporting an ability of long-term dietary patterns to 

influence the availability of this sensor. These results are novel and bridge a gap in our 

understanding of how transcriptional control of these FFA-sensing GPRs is regulated in an 

acute in vivo setting. 

 

Lipid-induced increases in GPR119 expression in our study, if linked to increased 

availability of the apical receptor, or its signalling, would support a capacity to respond to 

the ongoing presence of luminal fat. This, in turn, may augment secretion of gut hormones 

and/or increase satiety signalling. Although we did not detect significant associations 

between GPR119 and hormone secretion, this may have been due to a type 2 error owing to 

the relatively small sample size. Further, while the magnitude of the change in GPR119 

expression was modest,  previous work utilising RNA interference of GPR119 has 

demonstrated that even modest knockdown of GPR119 transcript (23%) in mGLUTag cells 

was sufficient to block the rise in cAMP in response to a GPR119-specific stimulus, and also 

resulted in a 45% reduction in GLP-1 secretion46. While the mechanisms linking luminal 

sensing and hormone secretion are largely unknown and cannot be derived from the current 
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data, there is extensive evidence supporting a role of GPR119 in mediating 

glucose-independent incretin secretion from enteroendocrine cells50, and growing evidence 

for a role in satiation46.  

 

GPR119 is tuned to detect the oleic acid derivative, OEA, a potent trigger for GLP-1 

secretion in human and rodent cell lines46. OEA and small molecule agonists of GPR119 are 

capable of suppressing food intake in animals, the former by prolonging latency between 

meals163. However, the hypophagic capacity of OEA is not established in humans, further 

complicated by the ability for OEA to signal through multiple mechanisms, for example via 

PPAR-α, a pathway implicated in the absorption, storage and utilisation of dietary fat56,163. 

Indeed, mice lacking CD36 (required for fat-induced OEA production in enterocytes) or 

PPARα show attenuated fat-induced satiety56, suggesting that the appetite-suppressant 

effects of OEA may be GPR119- and CD36-dependent.  

 

GPR119-mediated satiation may also be linked to GLP-1 release and subsequent activation 

of GLP-1 receptors on mucosal vagal afferents. As vagal afferent endings do not directly 

interact with luminal content, it is feasible that GPR119 may link luminal fats to secretion 

of hormones, such as GLP-1. While there is currently no direct evidence in humans of a 

functional role for GPR119 in energy intake regulation,  ID infusion of the putative GPR119 

ligand, 2-oleylgylcerol, in humans increases plasma GLP-1 and GIP151, and the GLP-1 

antagonist, exendin(9-39), attenuates the beneficial glucoregulatory effects of the GPR119 

agonist, AR23145, in mice50. Therefore, a stimulus known to enhance incretin secretions in 

vivo also activates GPR119 in vitro, implicating GPR119 in this process. Our data show that 

acute fat exposure is not only sufficient to elicit a hormone response, but also triggers 

transcriptional regulation of GPR119. Together with previous work, our findings add support 

to the view that GPR119 activation may be linked to gut hormone secretion in humans.  
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We acknowledge that proteomics will be a critical step in accurately linking transcript 

changes seen in GPR119 to luminal receptor activity and intracellular/downstream signalling 

events. This remains a challenge for GPR119, as commercially available antibodies suitable 

for Western blotting for G-proteins are often found to be non-specific for the same target 

(for review see164). In addition, in-group anti-sera have also been shown to produce 

inconsistent immunolocalisation165,166. Nonetheless, transcript data here justify further 

proteomic investigations. GPR internalisation in the face of ongoing stimulus results in a 

loss of signalling fidelity, with evidence from cell-based assays revealing that FFAR1, 

FFAR4 and GPR119 show dose- and time-dependent internalisation in response to 

endogenous and synthetic agonists28,167-169. However, a sustained cAMP elevation has been 

noted in GPR119-containing HEK293 cells chronically exposed to physiological doses of 

OEA, or the synthetic GPR119 agonist, AR231435170. While discussion of these 

discrepancies is beyond the scope of this work, it highlights the fact that GPCR 

desensitisation in fat sensor systems is not well understood. 

 

Our results provide support that basal GPR119 expression is driven, at least in part, by 

habitual PUFA consumption. While studies have not previously addressed the relationship 

between long-term habitual fat intake and GPR119 gene expression, chronic consumption 

of a HFD is associated with obesity, while consumption of PUFA is linked to lower levels 

of adiposity171. PUFAs (such as linoleic acid) are known to bind to PPARα to regulate 

various genes involved in fat metabolism172, and although GPRs are uncommon targets of 

PPARα action, it is conceivable that factors which act upon this nuclear receptor may 

regulate GPR119 expression. Recent studies have also shown that the type and amount of 

habitual fat intake is an important predictor of intestinal OEA production, and therein, 

potential GPR119 activation. For example, a 1-week diet high in monounsaturated fatty 

acids (MUFAs), PUFAs, saturated and unsaturated fats in rodents attenuated basal jejunal 
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levels of OEA173, while 1 week of diets high in MUFAs (olive oil) had no effect on basal 

OEA levels in the rat jejunum174. Accordingly, participants with higher habitual PUFA 

intake in our study may have a greater capacity for PPARα activation, and lower basal 

GPR119 expression. The reasons for such an effect remain elusive, but illustrate the potential 

for habitual fat intake to influence expression of genes relating to fat sensing. A limitation 

of our study is that the FFQ analysis did not have the specificity to reveal habitual intakes of 

different PUFAs. In addition, the questionnaire may not accurately account for participants’ 

acute fat intake immediately prior to the study. Prospective studies are warranted to 

investigate the effects of dietary composition on fat sensor expression. 

 

In summary, this study provides the first evidence of transcriptional upregulation of GPR119 

in the face of an acute ID fat stimulus within the human duodenum. Further investigations 

that extend the postprandial period may reveal changes in other targets. We also revealed 

associations between GPR119 and habitual PUFA intake, indicating that fat sensing systems 

can be influenced by dietary fat intake. Further studies also need to determine the molecular 

mechanisms by which GPR119 operates in humans, and the significance of its endogenous 

ligands, such as OEA, in paracrine signalling within the duodenal mucosa. Finally, whether 

acute changes in GPR119 in response to fat are maintained under metabolic challenges, such 

as a HFD or in obesity, in humans should be the subject of further research, to determine the 

potential for fat sensing mechanisms to become dysregulated.  
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4.1 Abstract 

Background and Aims: The small intestinal FFA sensors, FFAR1, FFAR4, GPR119 and 

CD36, mediate the fat-induced release of GI hormones. We investigated whether expression 

of duodenal FFA sensors in humans was (i) altered by ID lipid infusion, (ii) disordered in 

overweight or obese individuals, (iii) related to lipid-induced GI hormone secretion or (iv) 

affected by habitual dietary patterns. 

 

Methods: Endoscopic duodenal biopsies were collected from 20 lean (BMI: 22 ± 1 kg.m2), 

18 overweight (BMI: 27 ± 1 kg.m2) and 19 obese (BMI: 35 ± 1 kg.m2) participants at 

baseline, and following a 30 min ID Intralipid® infusion (2 kcal/min); FFA sensor expression 

was quantified by RT-PCR. On a separate day, participants underwent ID Intralipid® 

infusion (2 kcal/min) for 120 min, to assess GI hormone responses. Habitual diet was 

evaluated using FFQs. 

 

Results: Baseline FFAR1 and FFAR4 expression were lower, and CD36 higher, in obese 

compared to lean participants. ID lipid increased GPR119 and FFAR1 expression equally 

across study groups, but did not alter FFAR4 or CD36 expression. Increased FFAR1 

expression correlated positively with GIP secretion (r = 0.3, P ≤ 0.05), while there was no 

relationship between habitual diet with the expression of FFA sensors. 

 

Conclusions: Obesity is associated with altered duodenal expression of FFAR1, FFAR4 and 

CD36, suggesting altered capacity for the sensing, absorption and metabolism, of dietary 

lipids. GPR119 and FFAR1 are early transcriptional responders to the presence of ID lipid, 

while FFAR1 may be an important trigger for lipid-induced GIP release in humans. This 

study was prospectively registered with the Australia and New Zealand Clinical Trial 

Registry (www.anzctr.org.au trial number: ACTRN12612000376842). 
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4.2 Introduction 

Small intestinal sensing of FFAs potently triggers the release of GI hormones such as CCK 

and GLP-1, slows gastric emptying, and suppresses subsequent energy intake150. However, 

chronic consumption of a HFD promotes increased energy intake175 and is associated with 

the development of obesity. In animal studies, chronic HFD consumption markedly 

attenuates GI sensing of dietary fat, GI hormone secretion, and motility responses (reviewed 

in176,177), and is likely to be an important mechanism underlying increased energy intake. 

While studies investigating the influence of HFD consumption on GI fat sensing in humans 

are limited, we previously reported that obese humans with high habitual fat and energy 

intakes had reduced stimulation of pyloric motility and CCK in response to ID infusion of 

the FFA, oleic acid (C18:1), and a higher energy intake at a subsequent ad libitum meal, 

when compared with lean individuals127. Collectively, this indicates that small intestinal 

sensitivity to fat may be reduced in human obesity, contributing to dysregulated energy 

intake. However, the mechanisms underlying these changes in GI fat sensing are poorly 

understood. 

 

Rodent models and cell line studies have determined that the FFA sensors, FFAR1, FFAR4 

and GPR119, localised on enteroendocrine cells, and the putative FFA transporter, CD36, 

localised on enterocytes, detect the presence of dietary FFAs in the small intestine and trigger 

the release of GI hormones28,36,38-40,46,178. We demonstrated that fasting duodenal expression 

of CD36 and FFAR4 were increased, and GPR119 decreased, with increasing BMI153. 

Furthermore, a 30-min ID lipid infusion upregulated duodenal expression of GPR119 in 

healthy, lean individuals, with the magnitude of this response reduced in individuals with a 

high habitual consumption of PUFAs179. Therefore, the expression of GPR119 is likely to 

be modulated both acutely by small intestinal nutrient exposure, and chronically by habitual 

dietary patterns. Small intestinal changes in FFA sensor expression would be likely to impact 
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downstream signalling events linked to GI hormone secretion and energy intake, but this has 

not been investigated in humans.   

 

Therefore, the aims of the current study were to (i) evaluate the effects of acute ID lipid 

infusion on the duodenal expression of the FFA sensors, FFAR1, FFAR4, GPR119 and 

CD36, in healthy lean, overweight and obese participants, and (ii) determine relationships 

between expression of these sensors and habitual fat and energy intakes, BMI, GI hormone 

secretion and ad libitum energy intake.  

 

4.3 Materials and methods 

4.3.1 Participants 

20 lean (10M: 10F, age: 28 ± 2 years; BMI: 22 ± 0.5 kg.m2), 18 overweight (12M: 6F, age: 

32 ± 3 years; BMI: 27 ± 0.3 kg.m2) and 19 obese (12M: 7F, age: 30 ± 2 years; BMI: 35 ± 1 

kg.m2) volunteers were included in the study. Participants were weight-stable for at least 3 

months prior to enrolment and were unrestrained eaters154. Participants had no GI symptoms 

or previous GI surgery, did not take medications or supplements known to affect GI motility 

or appetite, consumed ≤ 20g of alcohol per week, were non-smokers, and did not take fish 

oil supplements. At the screening visits, their HbA1c and iron levels were within normal 

ranges (Table 4.1). The study protocol was approved by the Royal Adelaide Hospital 

Research Ethics Committee and carried out in accordance with the Declaration of Helsinki. 

Each participant provided written informed consent prior to study inclusion. 

 

 

 

 



Duodenal fat sensors in lean, overweight, and obese humans Chapter 4 

 

61 

Table 4.1: Participant demographics at initial screening 

 Lean Overweight Obese P 

n 20 18 19  

Sex 10M : 10F 12M : 6F 12M : 7F NS 

Age (years) 28 ± 2 32 ± 3 30 ± 2 NS 

BMI (kg.m2) 22 ± 0.5 27 ± 0.3 35 ± 1 *#˄P ≤ 0.001 

HbA1c % 5.2 ± 0.1 5.2 ± 0.1 5.3 ± 0.1 NS 

Iron (μmol/L) 21 ± 2 22 ± 1 20 ± 2 NS 

Data are mean ± SEM. *Lean vs overweight; #Obese vs lean; ˄Obese vs overweight  

 

4.3.2 Study design and protocols 

4.3.2.1 Part A: Endoscopic collection of duodenal mucosal biopsies 

Participants attended the Gastrointestinal Investigation Unit at the Royal Adelaide Hospital, 

at 0830 h, following a standardized evening meal (400g lasagne, 2470 kJ; fat, 20g; protein, 

20g; carbohydrate, 80g; McCain Foods, Australia) and an overnight fast (12 hrs for solids, 

10 hrs for liquids). The protocol for endoscopic collection of mucosal biopsies has been 

previously described179. Briefly, duodenal biopsies were collected using standard biopsy 

forceps, and separate biopsies collected into Allprotect® Tissue Reagent (Qiagen, Australia) 

or archived at -20˚C. An ID infusion of 10% Intralipid® (Fresenius Kabi AB, Sweden; 2 

kcal/min; 109 ml/hr) was then commenced via the infusion channel of the endoscope and 

maintained for 30 min, with two additional biopsies collected at the conclusion of the ID 

infusion (t = 30 min). The duration of infusion was based on a previous study from our group 

showing changes in intestinal expression of sweet taste receptors within 10 min of a 30-min 

ID infusion of glucose in humans1.   

 



Duodenal fat sensors in lean, overweight, and obese humans Chapter 4 

 

62 

4.3.2.2 Part B: GI hormone, appetite, and energy intake responses to ID lipid 

Participants arrived at 0830 h following a standardised evening meal and overnight fast, as 

described above. A small-diameter (3.5mm) catheter was positioned in the second part of 

the duodenum, and an IV cannula inserted into a forearm vein and a baseline blood sample 

collected (t = 0 min), as previously described179. ID infusion of 10% Intralipid® was then 

commenced at a rate of 2 kcal/min for 120 min (t = 0 - 120 min). Blood samples were 

collected in ice-chilled EDTA-treated tubes every 15 min and separated by centrifugation 

(15 min at 4°C), within 15 min of collection. Visual analogue scales (VAS) were completed 

every 15 min from t = 0 – 120 min. At t = 120 min participants received a standardized, cold, 

buffet-style meal as previously described161.  

 

4.4 Measurements 

4.4.1 RNA extraction 

Frozen duodenal biopsies were disrupted using a bead-based homogeniser (TissueLyser LT, 

Qiagen) and homogenised through Qiashredder columns (Qiagen). Total cellular RNA was 

isolated using the PureLinkTM MicroKit (Invitrogen, Thermo Fisher Scientific, Australia) 

with on-column DNase digestion, as per the manufacturer’s instructions. RNA quantity was 

determined using a NanodropTM Lite Spectrophotometer (Thermo Fisher Scientific) and 

purity assessed using A260/A280 ratio. 

 

4.4.2 Quantification of FFA sensor expression by relative RT-PCR 

Real-time RT-PCR was performed using a 7500 fast Real-Time PCR system (Applied 

Biosystems, Thermo Fisher Scientific). Taqman® primers (Life Technologies, Thermo 

Fisher Scientific) were used to determine the expression of FFAR1 (Hs03045166_s1, 

product# 4453320), FFAR4 (Hs00699184_m1, product# 4453320), GPR119 
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(Hs02825719_s1, product# 4453320) and CD36 (Hs01567185_m1, product# 4448892) 

relative to expression of the housekeeper gene β2M (HS00984230, product# 4331182). All 

targets were assessed in triplicate according to manufacturer’s instructions. 

 

4.4.3 Gut hormones 

4.4.3.1 Plasma CCK 

CCK-8 was measured by radioimmunoassay using a protocol adapted from Santangelo and 

colleagues158, as described previously179. 

 

4.4.3.2 Total GLP-1 and GIP, PYY, insulin and leptin 

Total GLP-1 and GIP, PYY, insulin and leptin were determined using a multiplex assay 

(Milliplex® MAP Human Metabolic Hormone Magnetic Bead Panel, HMHEMAG-34K, 

Millipore Corporation, USA) and analysed on a Bio-plex® MAGPIXTM Multiplex Reader 

(Luminex®, Millipore Corporation) using xPONENT® software (Luminex®, Millipore 

Corporation, version 4.2) according to the manufacturer’s instructions. There was negligible 

antibody cross-reactivity. Intra-assay CV was ≤ 10%, and inter-assay CV was ≤ 15% for all 

analytes. The detection limits were: GLP-1, 2.5 pg/mL; GIP, 0.6 pg/mL; PYY 28 pg/mL; 

insulin 87 pg/mL; and leptin, 41 pg/ml.   

 

4.4.4 Blood glucose 

Venous blood glucose (mmol/L) was measured at collection by the glucose oxidase method 

using a portable glucometer (Medisense Precision QID; Abbott Laboratories, USA).  
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4.4.5 Appetite perceptions, and ad-libitum buffet meal intakes 

VAS were used to determine perceptions of hunger, fullness, desire to eat, prospective 

consumption, nausea and bloating180.  

 

Energy intake (kJ), amount (g) and percentage energy from fat, carbohydrate and protein 

consumed at the buffet meal was analysed using commercial software (FoodWorks® 2009, 

Version 6, Xyris Software Pty Ltd). 

 

4.4.6 Habitual dietary intake 

Participants completed a FFQ to assess their average energy and macronutrient intake (fat, 

carbohydrate, protein) over the previous 12 months (DQES v2; Cancer Council Victoria, 

Carlton, Victoria, Australia159). This questionnaire has been specifically validated for use in 

Australian adults160. 

 

4.4.7 Data and statistical analyses 

Sample size was based on power functions derived from our a priori data153 using 

within-subject contrasts of P ≤ 0.05 and statistical power (1-β) = 0.8. Statistical analysis was 

performed using SPSS® software (SPSS Inc, IBM®, Version 20), in collaboration with a 

professional biostatistician. Expression levels of FFA sensors at t = 0 min and t = 30 min 

were normalised to levels of β2M using delta CT comparison (cycle threshold - target of 

interest cycle threshold)181. One-way ANOVA was used to compare baseline (t = 0 min) 

expression of FFAR1, FFAR4, GPR119 and CD36, with BMI group (i.e., lean, BMI: 18-24 

kg.m2; overweight, BMI: 25-29 kg.m2; or obese, BMI ≥ 30 kg.m2) as the factor. Two-way 

repeated measures ANOVA was used to compare changes in receptor expression from 

baseline (t = 0 min) to post-infusion (t = 30 min), with BMI group as a between-subjects 

factor. Post-hoc pairwise comparisons, corrected for multiple comparisons using the 
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Bonferroni method, were performed if ANOVAs were significant. Baseline plasma hormone 

and blood glucose concentrations, and VAS scores, were calculated from mean values 

obtained at t = -15 min and t = 0 min. Blood samples were collected only on the longer 

infusion day for logistical reasons. We have previously demonstrated that plasma CCK and 

GLP-1 responses to nutrient do not differ across multiple, identical study days within an 

individual161, 162. iAUCs for gut hormones, blood glucose, and VAS were calculated using 

the trapezoidal rule from t = 0 min to 120 min (pmol.L min-1 or pg.mL min-1), which was 

divided by the time of last measurement to obtain a final weighted average (iAUC, pmol/L 

or pg/mL) to account for occasions (in n = 8 participants) when samples could not be 

collected (e.g., during bathroom breaks). In occasional instances where the t = 15 min time 

point was below the detection limit of the assay (PYY, n = 5; insulin, n = 3, leptin n = 1), 

the minimum limit of detection was halved to obtain a baseline estimate for iAUC 

calculation. The maximum concentration of blood glucose and gut hormones (CMax), was 

calculated from t = 0 - 120 min. Associations between the transcript expression and BMI, 

plasma hormones, blood glucose, and acute and habitual dietary intakes were determined by 

Pearson’s correlations, with r values presented, with transcript expression expressed as 

change from baseline (Δ, t30 - t0) due to variability in individual transcript data. Data are 

expressed as mean ± SEM, with statistical significance accepted at P ≤ 0.05. 

 

4.5 Results 

Endoscopic procedures were well tolerated, and biopsies collected from 56 out of 57 

participants. One obese participant did not complete the endoscopy for reasons unrelated to 

the study. Eight participants did not complete the full 120-min infusion protocol due to 

nausea (2 lean, 4 overweight, 1 obese; duration of infusion ranging from t = 15 min to t = 90 

min) or catheter displacement (lean, n = 1); buffet meal intake was not measured in these 
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participants. Eight participants (3 lean, 4 overweight, 1 obese) had incomplete FFQ 

questionnaires, which were, therefore, rejected by the automated analysis.  

 

4.5.1 Habitual dietary intake 

Average daily energy and macronutrient intakes over the previous 12 months did not differ 

between the lean, overweight and obese groups (Table 4.2).  

 

4.5.2 Duodenal FFA sensor expression at baseline and following the 30-min 

ID lipid infusion 

FFAR1, FFAR4, GPR119 and CD36 expression was detected in all duodenal biopsies at 

baseline (i.e., during fasting), with relative abundance CD36 >> FFAR1 > FFAR4 > GPR119 

seen in all subject groups (Figure 4.1). Expression of the housekeeper gene, β2M, was stable 

in all biopsies across time points and groups. Baseline FFAR1 expression was 62% lower in 

the obese compared with lean (P ≤ 0.05), and 51% lower in the overweight (P = 0.054) 

compared with lean, with no difference between obese and overweight groups. Baseline 

FFAR4 expression was 62% lower in the obese compared with the lean group (P ≤ 0.05), 

with no differences between overweight and obese, or overweight and lean groups. Baseline 

GPR119 expression was not different between the groups. CD36 expression was higher in 

the obese compared with both the lean (242-fold, P ≤ 0.001), and overweight (202-fold, P ≤ 

0.001) groups, with no difference between lean and overweight (Figure 4.2). 

 

Within each group, FFAR1 expression increased after ID lipid when compared to baseline; 

by 1.4 ± 0.2-fold in the lean (P ≤ 0.05), by 1.6 ± 0.2-fold in the overweight (P ≤ 0.05), and 

by 1.7 ± 0.3-fold in the obese (P ≤ 0.05). GPR119 expression also increased from baseline 

after ID lipid; by 2.0 ± 0.3-fold in the lean (P ≤ 0.05), by 2.4 ± 0.7-fold in the overweight   
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(P ≤ 0.05), and by 2.0 ± 0.3-fold in the obese (P ≤ 0.05). There was no effect of ID lipid on 

expression of FFAR4 and CD36 in any group (Figure 4.2).  

 

Table 4.2: Daily energy and macronutrient intakes over the previous 12 months, and 

ad libitum consumption at a buffet meal following 120 min ID Intralipid® infusion  

(2 kcal/min). 

Habitual Lean Overweight Obese P 

Energy intake (kJ/day) 9757 ± 785 9820 ± 857 9320 ± 1476 NS 

Total fat (g/day) 99 ± 9 99 ± 10 101 ± 17 NS 

Saturated fat (g/day) 41 ± 4 41 ± 5 43 ± 8 NS 

Polyunsaturated fat (g/day) 13 ± 1 13 ± 2 13 ± 2 NS 

Monounsaturated fat (g/day) 36 ± 4 36 ± 4 37 ± 6 NS 

Protein (g/day) 121 ± 13 126 ± 13 114 ± 15 NS 

Carbohydrates (g/day) 241 ± 17 239 ± 20 219 ± 36 NS 

Sugars (g/day) 103 ± 10 92 ± 11 87 ± 14 NS 

Starch (g/day) 137 ± 10 146 ± 13 131 ± 22 NS 

Fiber (g/day) 27 ± 3 25 ± 2 21 ± 3 NS 

Buffet meal     

Energy intake (kJ) 4413 ± 434 4407 ± 443 4125 ± 383 NS 

Amount (g) 1001 ± 88 1062 ± 78 931 ± 89 NS 

Fat (g) 38 ± 4 36 ± 5 40 ± 4 NS 

Fat (%) 32 ± 1 29 ± 2^ 36 ± 2^ ^ ≤ 0.01 

Protein (g) 60 ±7 57 ±7 56 ± 6 NS 

Protein (%) 23 ± 1 22 ± 1 23 ± 1 NS 

Carbohydrate (g) 115 ± 11 123 ± 11 99 ± 10 NS 

Carbohydrate (%) 43 ± 2 48 ± 3^ 40 ± 2^ ^ ≤ 0.05 

^Obese vs overweight; Data are mean ± SEM; Habitual, lean, n = 17; overweight, n = 14; 

obese, n = 18; Buffet meal, lean, n = 17; overweight, n = 14; obese, n = 18. 
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Figure 4.1: Baseline (fasting) duodenal expression of FFAR1, FFAR4, GPR119 and 

CD36 in lean, overweight and obese humans. A) FFAR1 and B) FFAR4 expression was 

lower at baseline in obese compared to lean subjects (#P ≤ 0.05), but did not differ between 

lean and overweight participants. There were no differences in expression of C) GPR119 

between study groups, while D) CD36 expression was higher in obese compared to both lean 

and overweight participants (#˄P ≤ 0.001). Data are mean ± SEM. Lean (L, n = 20), 

overweight (OW, n = 18), obese (OB, n =18). 
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Figure 4.2: Intralipid®-induced changes in duodenal expression of FFAR1, FFAR4, GPR119 and CD36. Expression of A) FFAR1 and C) GPR119 was 

increased in response to lipid infusion in all groups (*P ≤ 0.05), whereas D) CD36 and B) FFAR4 expression was unchanged. Data are mean ± SEM.  

Lean (n = 20), overweight (n = 18), obese (n = 18). 
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4.5.3 Blood glucose and plasma GI hormone concentrations 

Baseline blood glucose and plasma GLP-1, insulin and leptin concentrations were higher in 

the obese compared with lean and overweight groups (Table 4.3), without any difference 

between the latter groups. Baseline CCK, PYY and GIP concentrations did not differ 

between the groups. Blood glucose and plasma leptin concentrations were unchanged after 

ID lipid, but plasma CCK, PYY, GLP-1, GIP and insulin concentrations increased in all 

groups (iAUC P ≤ 0.05, Table 4.4, Figure 4.3), with no difference between the groups 

(Table 4.4). Peak blood glucose, plasma insulin and leptin concentrations in response to ID 

lipid were higher in the obese compared with the lean (CMax, P ≤ 0.01 for all) and the 

overweight (P ≤ 0.01 for all) groups, with no difference between lean and overweight. Peak 

CCK, PYY, GLP-1, and GIP concentrations did not differ between the groups (Table 4.4).  

 

Table 4.3: Fasted plasma gut hormone concentrations 

Baseline Lean Overweight Obese P 

Blood glucose (mmol/L) 5.4 ± 0.1 5.4 ± 0.1 6.0 ± 0.1 # ˄ 
# ≤ 0.001 
˄ ≤ 0.001 

CCK (pmol/L) 3.0 ± 0.3 3.2 ± 0.4 2.6 ± 0.3 NS 

GLP-1 (pg/mL) 33 ± 4 49 ± 6 72 ± 8 # ˄ 
# ≤ 0.001 
˄ ≤ 0.05 

GIP (pg/mL) 23 ± 3 22 ± 3 25 ± 4 NS 

PYY (pg/mL) 46 ± 8 62 ± 23 46 ± 6 NS 

Insulin (pg/mL) 196 ± 21 223 ± 31 450 ± 74# ˄ 
# ≤ 0.01 
˄ ≤ 0.01 

Leptin (pg/mL) 3076 ± 919 5464 ± 1233 17047 ± 3835#˄ 
# ≤ 0.001 
˄ ≤ 0.01 

CCK, cholecystokinin; GIP, glucose-dependent insulinotropic peptide; GLP-1, 

glucagon-like peptide-1; PYY, peptide YY. #Obese vs lean; ^Obese vs overweight. Data are 

mean ± SEM; lean, n = 19; overweight, n = 17; obese, n = 18. 
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Table 4.4: Plasma gut hormone and blood glucose concentrations in response to a 120 

min ID infusion of 10% Intralipid® (2 kcal/min). 

Post-infusion Lean Overweight Obese P 

Blood glucose (mmol/L) 

CMax (mmol/L) 

0.10 ± 0.03 

5.8 ± 0.1 

0.04 ± 0.02 

5.6 ± 0.1 

0.10 ± 0.05 

6.4 ± 0.1#˄ 

NS 
# ≤ 0.01, ˄ ≤ 0.001 

CCK iAUC (pmol/L) 

CMax (pmol/L) 

3.1 ± 0.4 

8 ± 0.6 

4.0 ± 0.5 

9 ± 1 

4.0 ± 0.3 

8 ± 1 

NS 

NS 

GLP-1 iAUC (pg/mL) 

CMax (pg/mL) 

75 ± 9 

173 ± 21 

89 ± 22 

222 ± 49 

75 ± 9 

206 ± 19 

NS 

NS 

GIP iAUC (pg/mL) 

CMax (pg/mL) 

148 ± 21 

264 ± 34 

150 ± 22 

278 ± 35 

163 ± 15 

295 ± 22 

NS 

NS 

PYY iAUC (pg/mL) 

CMax (pg/mL) 

28  ± 6 

118 ± 12 

29  ± 8 

123 ± 18 

49  ± 7 

134 ± 10 

NS 

NS 

Insulin iAUC (pg/mL) 

CMax (pg/mL) 

142 ± 45 

395 ± 54 

84 ± 20 

425 ± 57 

163 ± 35 

868 ± 125#˄ 

NS 
#˄ ≤ 0.001 

Leptin iAUC (pg/mL) 

CMax (pg/mL) 

232 ± 117 

3632 ± 1012 

503 ± 195 

6716 ± 1538 

1432 ± 417# 

21001 ± 4893#˄ 

# ≤ 0.01 
# ≤ 0.001, ˄≤ 0.01 

CCK, cholecystokinin; CMax, concentration maximum; GIP, glucose-dependent 

insulinotropic peptide; GLP-1, glucagon-like peptide-1; iAUC, incremental AUC; PYY, 

peptide YY. #Obese vs lean; ^Obese vs overweight. Data are mean ± SEM; lean, n = 19; 

overweight, n = 17; obese, n = 18. 

 

4.5.4 Appetite perceptions and ad libitum energy and macronutrient intake 

Baseline appetite perception scores for hunger and fullness were similar in all study groups 

and did not change in response to ID lipid. The proportion of energy consumed as fat at the 

ad libitum buffet meal was higher in the obese compared with the overweight group (36 ± 

2% vs. 29 ± 2%, P ≤ 0.01), with no difference between the obese and lean, or the lean and 

overweight, groups. Lower carbohydrate consumption (% of energy) was also evident in the 

obese, compared with the overweight group (P ≤ 0.05). Energy intake, amount consumed 

and protein intakes at the buffet meal did not differ between groups (Table 4.2). 
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Figure 4.3: Intralipid®-induced changes in plasma hormones and gut peptides. Relative 

to baseline, concentrations of A) CCK, B) GLP-1, C) GIP, D) PYY and E) insulin were 

increased by lipid infusion over 120 min (group comparisons of baseline and iAUC values 

are presented in Table 4.4 of the manuscript) with similar responses in all study groups. 

Plasma F) leptin concentrations were unchanged during lipid infusion. Data are mean ± 

SEM.  
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4.5.5 Relationships between BMI and duodenal FFA sensor expression 

BMI was negatively related to baseline expression of both FFAR1 (r = -0.4, P ≤ 0.01, Figure 

4.4A) and FFAR4 (r = -0.3, P ≤ 0.01, Figure 4.4B) but unrelated to baseline expression of 

GPR119 (Figure 4.4C). BMI was positively related to baseline expression of CD36 (r = 0.5, 

P ≤ 0.001, Figure 4.4D). There was no relationship between BMI and the magnitude of the 

lipid-induced changes in duodenal FFA sensor expression. 

 

Figure 4.4: Relationships between BMI and duodenal expression of FFAR1, FFAR4, 

GPR119 and CD36. BMI was negatively associated with baseline expression of A) FFAR1 

(r = -0.4, P ≤ 0.01) and B) FFAR4 (r = -0.3, P ≤ 0.01) and positively associated with baseline 

D) CD36 expression (r = 0.5, P ≤ 0.001). C) GPR119 expression was unrelated to BMI.
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4.5.6 Relationships between habitual dietary intake, and BMI and duodenal 

FFA sensor expression  

No relationships were evident between habitual dietary energy or macronutrient intakes and 

BMI. There were also no relationships evident between habitual energy or macronutrient 

intakes and the expression of duodenal lipid sensors at baseline, or following ID lipid 

infusion. 

 

4.5.7 Relationships of blood glucose and gut hormones, with BMI and 

duodenal FFA sensor expression  

BMI was positively related to baseline concentrations of blood glucose (r = 0.5, P ≤ 0.01), 

plasma GLP-1 (r = 0.5, P ≤ 0.01), insulin (r = 0.6, P ≤ 0.001) and leptin (r = 0.7, P ≤ 0.001). 

In contrast, baseline plasma CCK, PYY and GIP concentrations were unrelated to BMI. 

Lipid-stimulated PYY concentrations were positively related to BMI (iAUC r = 0.4, P ≤ 

0.05, Figure 4.5), however, no relationships were evident between changes in CCK, GLP-1 

or GIP and BMI. There was a positive relationship between lipid-induced changes in FFAR1 

expression with plasma GIP across all study groups (iAUC, r = 0.3, P ≤ 0.05, Figure 4.6). 

This correlation was largely due to the strength of the relationship in the overweight group 

(r = 0.7, P ≤ 0.05), and was not apparent in analyses limited to the lean or obese groups. 

There were no other relationships between expression of duodenal FFA sensors, with 

baseline or lipid-induced hormone concentrations.  
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Figure 4.5: Relationship between Intralipid®-induced changes in PYY and BMI.  As a 

cohort, the change in PYY secretion from baseline in response to ID lipid infusion was 

positively correlated with BMI (r = 0.4, P ≤ 0.05).   

 

 

 

 

 

 

 

 

 

Figure 4.6: Relationship between Intralipid®-induced changes in duodenal FFAR1 

expression and GIP secretion. As a cohort, the change in FFAR1 expression in response 

to lipid infusion was positively associated with plasma GIP concentration (iAUC r = 0.3, P 

≤ 0.05). This correlation emerged particularly from the overweight group (r = 0.7, P ≤ 0.05), 

as both lean and overweight groups alone did not reach a significant correlation (P = 0.1 and 

0.4 respectively). 
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4.5.8 Relationship of buffet meal energy and macronutrient intakes with BMI 

and duodenal FFA sensor expression 

The proportion of energy consumed as fat at the buffet meal was positively related to BMI 

(r = 0.4, P ≤ 0.01), however, total energy intake, total amount of food eaten, and protein or 

carbohydrate consumed at the buffet meal were unrelated to BMI. The expression of FFA 

sensors at baseline, or following ID lipid, was unrelated to total energy intake, total amount 

of food eaten, or protein, fat or carbohydrate consumed at the buffet meal.  

 

4.6 Discussion 

This study examined the effects of acute ID lipid on duodenal expression of the FFA sensors 

FFAR1, FFAR4, GPR119 and CD36 in lean, overweight and obese humans. Compared to 

lean participants, obese participants had increased CD36 expression, and decreased FFAR1 

and FFAR4 expression at baseline. FFAR1 expression was also decreased in overweight 

compared to lean participants. GPR119 and FFAR1 were positive and early transcriptional 

responders to ID lipid infusion, and their expression was increased to a similar extent in all 

study groups. In contrast, expression of CD36 and FFAR4 was unchanged by ID lipid. 

Lipid-induced gut hormone secretion was comparable across study groups. Interestingly, 

participants with the largest lipid-stimulated increase in FFAR1 expression had higher 

plasma GIP levels, supporting a role for FFAR1 in GIP secretion in humans. Finally, the 

proportion of energy consumed as fat at the buffet meal was higher in the obese group. 

Further research is required to establish whether dysregulation of duodenal FFA sensors is 

intrinsic to human obesity or results from chronic overconsumption of fat.  
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The reduced FFAR1 and FFAR4 expression seen in obese participants may explain, in part, 

the lower intestinal fat sensitivity reported in human obesity127. It is known that knockdown 

of FFAR4 in cell lines and in rodents attenuates LCFA-induced GLP-1 and CCK 

secretion27,28. Furthermore, FFAR4 KO mice fed a HFD also develop obesity, glucose 

intolerance, and insulin resistance27,28. In humans, a FFAR4 loss-of-function polymorphism 

(R270H) increases the risk of developing obesity and insulin resistance in European 

populations, and when transfected into the human endocrine cell line, NCI-H716, attenuates 

GLP-1 secretion35. We previously demonstrated a positive association between FFAR4 

expression and BMI153, however, these outcomes, which appear contradictory to the 

outcomes in the current study, were probably due to notable differences in study design, 

including the use of a cross-section of patients attending the endoscopy unit with various, 

systemic co-morbidities (non-GI), including morbid obesity (BMI > 60) and differences in 

PCR methods. Nevertheless, these difference in FFAR4 data highlight the potential for 

plasticity of this FFA sensor in disease states. 

 

FFAR1 stimulates insulin secretion via direct actions on pancreatic β-cells, and indirectly by 

augmenting incretin hormone release from the intestine38,39. We showed that obese 

individuals had the lowest FFAR1 expression at baseline, while lipid-induced increases in 

FFAR1 were associated with higher plasma GIP levels across the cohort, and were strongest 

in the overweight group, possibly a compensation to preserve FFAR1-GIP signalling at 

similar levels to those in lean participants. Low fasting FFAR1 may be an adaptation in obese 

individuals to the long-term negative effects of dietary FFAs on insulin secretion, to 

re-establish homeostasis under conditions of excess caloric intake182,183. Importantly, the 

protective effects of FFAR1 deletion against metabolic dysfunction in HFD-fed mice 

remains controversial41,45, and consequences of chronic alterations in FFAR1 in humans 

require further investigation.  
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GPR119 was expressed independent of BMI in the current study. We showed earlier that 

baseline GPR119 expression was negatively related to habitual PUFA consumption in lean 

participants179. The present findings included one individual whose data weakened the 

otherwise strong trend to the same correlation (r = -0.3, P = 0.06). While further 

investigations are needed to link chronic HFD consumption with FFA-sensor expression, 

this finding indicates that the type of fat, rather than fat consumption per se, may influence 

duodenal GPR119 expression. Relationships between GPR119 and hormone secretion have 

described, for example, RNA interference of GPR119 resulting in modestly reduced 

expression (23%) in murine endocrine cell lines (GLUTag) attenuated GLP-1 secretion46, 

while antagonising GLP-1 in mice attenuated the glucoregulatory effects of the GPR119 

agonist, AR2314650. In humans, infusion of GPR119-specific ligands, including 

2-oleoylglycerol, enhanced the secretion of GLP-1 and GIP151. 

 

While baseline CD36 expression was higher in the obese, several lines of evidence suggest 

that LCFA transport is not the primary mode of action of CD36, suggesting that alterations 

in CD36 may have broader implications for lipid metabolism. For example, CD36 protein 

expression on enterocytes is reduced as early as 1 hour following FFA exposure, as CD36 is 

rapidly ubiquinated184. Moreover, while deletion of CD36 from enterocytes in the proximal 

intestine of mice attenuates LCFA uptake152, LCFA absorption is unaffected in 

CD36-deficient mice184. CD36, however, is vital in the formation of chylomicrons, which 

are critical for LCFA-induced CCK secretion, gastric emptying and food intake, and plasma 

lipid transport184,185. In mice with diet-induced metabolic syndrome, dysregulated sensing of 

lipid by CD36 results in altered chylomicron formation, and postprandial 

hypertriglyceridaemia186. Indeed, postprandial hyperlipidaemia in humans with CD36 

deficiency has been primarily linked to an impairment of triglyceride metabolism135. 
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Therefore increased CD36 expression may reflect post-absorptive defects in lipid 

metabolism, rather than enhanced LCFA uptake. 

 

Limitations 

Our study design of acute ID lipid infusion was based on our work investigating the effects 

of glycaemic state and glucose exposure on STRs in the human duodenum1,61, which 

revealed transcriptional regulation of STRs within 30 min of ID glucose, with functional 

links to glucose absorption1,61. The current study, however, cannot exclude the possibility 

that larger changes in expression of FFA sensors may occur over a longer duration of 

postprandial exposure to dietary lipid and other nutrients, or in response to a higher nutrient 

load. While we assessed transcriptional changes in the current study, confirmation of these 

changes at the protein level will add further support. However, this analysis will require 

verified, commercial antibodies for human use, which are not currently available. Reported 

dietary intakes did not differ between groups, although there are known limitations with 

questionnaires such as FFQs, particularly the underreporting of fat and energy intakes in the 

obese187.  

 

Conclusions 

This study demonstrated differences in the transcriptional regulation of FFA sensors, 

FFAR1, FFAR4, GPR119 and CD36 in the human duodenum in obesity. Further 

investigations into the in vivo consequences of altered expression of these targets in obesity 

will be necessary to provide causal links between luminal sensing and subsequent satiety 

signalling. 
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5.1 Abstract 

Background and aims: Enteroendocrine cells in the small intestine express STRs (a 

heterodimer of T1R2 + T1R3) which are tuned to detect all sweet stimuli, and can, in turn, 

regulate postprandial glycaemia by enhancing insulin secretion (i.e., the “incretin” effect) 

and increase glucose absorption by augmenting expression and function of the glucose 

transporter SGLT-1. In diet-controlled T2D patients with ‘well’ controlled glycaemia 

(WC-T2D), the intestinal STR system at euglycaemia responds similarly to healthy 

individuals, yet at hyperglycaemia, there is an impairment in transcriptional regulation of 

T1R2 and exaggerated glucose absorption. It is unknown, however, whether the prevailing 

hyperglycaemia in ‘poorly’ controlled T2D (PC-T2D), has more profound effects on the 

intestinal STR system with exaggerated consequences for postprandial glycaemic control. 

 

Materials and methods: Twelve healthy individuals, 12 patients with WC-T2D (HbA1c 

6.3 ± 0.2%), and 9 patients with PC-T2D (HbA1c 10.6 ± 0.5%) undertook an OGTT 

following an overnight fast, as previously described1. The participants were then studied 

during a euglycaemic clamp (5 ± 1 mmol/L), with duodenal biopsies collected at baseline 

(fasted) and after a 30-min ID glucose infusion (4 kcal/min). Copy numbers of T1R2, 

SGLT-1 and GLUT2 transcript were assessed at t = 0, 10 and 30 min by RT-PCR. Plasma 

concentrations of GIP, GLP-1, and C-peptide were measured at 10-min intervals from 

baseline (t = 0 min) for 60 min (t = 60 min). Plasma concentrations of 3-OMG were measured 

at t = 30 and 60 min, using mass spectrometry, to assess capacity for glucose absorption.  

 

Results: PC-T2D patients had higher blood glucose concentrations during the OGTT, at all 

times, compared to WC-T2D and HC groups (P ≤ 0.001), while WC-T2D patients had higher 

blood glucose beyond t = 30 min compared to the HC group (P ≤ 0.001). Basal SGLT-1 
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transcripts were lower in PC-T2D patients than in WC-T2D (2-fold, P ≤ 0.01), and GLUT2 

transcripts 3-4 fold lower than in HC and WC-T2D groups (both P ≤ 0.01). Transporter 

expression did not differ between HC and WC-T2D groups, while basal T1R2 expression 

was similar across all groups. Fasting concentrations of GLP-1 and C-peptide did not differ 

between groups, whereas GIP was higher in WC-T2D patients than in the HC group (P ≤ 

0.01). Glucose infusion increased SGLT-1 and decreased GLUT2 transcripts at 10 min 

(group × time interaction) in both HC and WC-T2D groups (both P ≤ 0.001, P ≤ 0.05 

respectively), but not in PC-T2D patients. When corrected for baseline, T1R2 transcripts 

were lower in PC-T2D patients after 10 min compared to WC-T2D (P ≤ 0.05). All transcript 

levels were similar to basal levels at 30 min, and did not differ between groups. ID glucose 

increased plasma GIP, GLP-1 and C-peptide in all groups (all P ≤ 0.001). GIP 

concentrations, however, were higher in both T2D groups than in HC; at 20, 40, 50 and 60 

min in WC-T2D (P ≤ 0.05), and t = 10 to 30 min in PC-T2D (P ≤ 0.01). Accordingly, GIP 

iAUC was increased in PC-T2D patients. GLP-1 concentrations were similar between PC-

T2D and HC groups, but were higher in the WC-T2D group than in PC-T2D and HC groups 

between 30-50 min (P ≤ 0.05), with correspondingly higher iAUC (WC-T2D vs. PC-T2D, 

P ≤ 0.05). C-peptide concentrations were lower in both T2D groups at 30 min compared to 

the HC group (P ≤ 0.01) and in PC-T2D at 60 min compared to both HC (P ≤ 0.01) and WC-

T2D groups (P ≤ 0.05). C-peptide iAUC was higher in HC then either T2D group (P ≤ 0.05).  

 

Conclusions: Glucose absorption is increased in patients with PC-T2D at euglycaemia, as 

and is likely to arise due to a loss of transcriptional regulation of SGLT-1 and GLUT2, and 

augmented cellular accumulation of SGLT-1 and GLUT2 protein. Increased glucose 

absorption in PC-T2D patients, together with preserved GIP responses, but lower GLP-1 and 

C-peptide responses, could exacerbate hyperglycaemia, and may be linked to impaired 

sensing of luminal glucose by duodenal T1R2. 
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5.2 Introduction 

The presence of carbohydrates within the small intestine generates neural and hormonal 

signals that play a key role in the regulation of postprandial glycaemia. In particular, the 

secretion of the incretin hormones GIP and GLP-1 from intestinal enteroendocrine cells 

accounts for ~70% of the insulin released in response to enteral glucose in healthy 

individuals, compared to insulin responses to an isoglycaemic IV glucose stimulus188. In 

patients with T2D, the incretin effect is impaired189, due to a markedly diminished 

insulinotropic effect of GIP190 and, in some cases, reduced GLP-1 secretion107. Importantly, 

there is also evidence of an enhanced capacity to absorb glucose in both animal models of 

T2D and in patients with T2D61,64,191-193. However, while the incretin hormones are a critical 

determinant of postprandial glycaemia, the contribution of glucose sensing and absorption 

within the gut and their subsequent effects on glycaemic control in patients with T2D, is 

poorly understood. 

 

STRs, a heterodimer of the G-protein coupled receptors T1R2 and T1R3, are localised to the 

BBM of a subset of intestinal enteroendocrine cells57,61. Intestinal STRs detect the presence 

of luminal sweet stimuli and initiate a cascade of intracellular signaling events, resulting in 

cell depolarisation and the basolateral secretion of the incretin hormones, as well as the 

intestinotrophic peptide hormone, GLP-260,72,194. Mice lacking either T1R3 or the 

taste-specific G-protein, α-gustducin, have attenuated glucose-stimulated GLP-1 secretion59. 

Although less established in humans, intestinal STRs have been shown to participate in 

glucose-stimulated GLP-1 secretion in humans as this secretion is dose-dependently 

attenuated by blockade of intestinal STRs by the carboxylic acid lactisole30,195. STRs have 

also been linked to regulation of the primary intestinal glucose transporter, SGLT-1, 

localised to the BBM of intestinal enterocytes. The secretion of GLP-2 is a likely mechanism, 

as it is co-secreted with GLP-1 in an STR-dependent manner, and positively regulates the 
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expression of SGLT-1 in rodents, and in patients with short-bowel syndrome103,120,194,196. 

Increased SGLT-1 expression increases the capacity for glucose absorption at the 

BBM59,61,91,93,194, which is matched by an increase in facilitated glucose transport to the 

portal circulation via the basolaterally located, facilitative GLUT2 transporter197. As such, 

STRs have the capacity to direct glycaemia through actions on incretin hormone release, or 

by regulating SGLT-1 availability for glucose absorption, via GLP-2.  

 

We recently demonstrated that duodenal expression of T1R2 was similar in healthy 

individuals and patients with diet-controlled T2D at baseline euglycaemia, and that in both 

groups, T1R2 expression was rapidly upregulated in response to luminal glucose infusion. 

In contrast, at hyperglycaemia, while T1R2 expression was downregulated by enteral 

glucose in healthy individuals, it remained elevated in patients with T2D. This was linked to 

augmented glucose absorption, as assessed by increased absorption of the non-metabolisable 

glucose analogue, 3-OMG, which serves as a marker of glucose absorption and is transported 

by SGLT-11. Importantly, patients with PC-T2D commonly have elevated glycated 

haemoglobin (HbA1c) and hyperglycaemia, and remain at higher risk of diabetic 

complications, despite the provision of standardised treatments198-200. While HbA1C is 

strongly influenced by postprandial glycaemia in T2D patients201, the contribution of 

intestinal glucose absorption is underappreciated and poorly understood. It is therefore of 

interest to investigate whether PC-T2D patients demonstrate more profound defects in the 

intestinal STR system, and whether this equates to increased risk of postprandial 

hyperglycaemia.  

 

It is critical that we develop a better understanding of the influence of longstanding 

hyperglycaemia on the transcriptional regulation of the STR system, and of SGLT-1 and 

GLUT2, since this has the potential to identify new targets for therapy in patients with 
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PC-T2D. We, therefore, characterised the duodenal expression of T1R2, SGLT-1 and 

GLUT2 at euglycaemia in healthy individuals, and in patients with both WC-T2D and 

PC-T2D. Changes in plasma incretins, C-peptide (a marker of insulin production), and 

glucose absorption were also assessed, together with transcriptional changes. We 

hypothesised that in response to enteral glucose, patients with PC-T2D would exhibit further 

defects in the regulation of intestinal STRs, SGLT-1 and GLUT2, impaired incretin 

responses, exaggerated glucose absorption, and increased blood glucose, when compared 

with patients with WC-T2D and HC individuals.  

 

5.3 Materials and methods 

5.3.1 Participants 

Twelve healthy individuals, 12 patients with WC-T2D (HbA1c 6.3 ± 0.2%), and 9 patients 

with PC-T2D (HbA1c 10.6 ± 0.5%) were recruited through existing departmental databases, 

newspaper advertisement, and flyers displayed at local universities and hospitals, and were 

screened for significant co-morbidities. World Health Organisation criteria were used to 

define those with WC-T2D (HbA1c ≤ 7%) from PC-T2D (HbA1C ≥ 9%, and ≤12%). 

Participant demographics are presented in Table 5.1. All had normal haemoglobin (> 135 

g/L) and ferritin (> 10 mcg/L), no history of GI disease, and had normal renal and liver 

function. All WC-T2D patients and four PC-T2D patients were managed by diet alone. The 

remaining five PC-T2D patients were metformin treated, which was withheld for 48 hr prior 

to the study day due to known effects of metformin on GLP-1 release202. The study protocol 

was approved by the Royal Adelaide Hospital Research Ethics Committee and carried out 

in accordance with the Declaration of Helsinki. After receiving verbal and written study 

information, all participants provided written, informed consent. 
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Table 5.1: Demographic, anthropometric and metabolic characteristics of study 

participants  

 HC WC-T2D PC-T2D P 

n 12 12 9  

Sex 10M : 2F 4M : 8F 9M P ≤ 0.01 

Age (years) 31 ± 3 65 ± 2 59 ± 3 *#P ≤ 0.05 

BMI (kg.m2) 25 ± 2 28 ± 1 31 ± 1 #P ≤ 0.05 

HbA1c (%)  6.3 ± 0.2 10.6 ± 0.5 ˄P ≤ 0.001 

Fasting blood glucose 

(mmol/L) 
5.9 ± 0.1 7.5 ± 0.4 12.7 ± 1.2 #˄P ≤ 0.05 

Duration of T2D (years)  5 ± 1 7 ± 3  

HC, healthy controls; WC-T2D, well-controlled type 2 diabetes; PC-T2D, 

poorly-controlled type 2 diabetes. Data are mean ± SEM. *WC-T2D vs HC, #PC-T2D vs 

HC, ˄WC-T2D vs PC-T2D.  

 

5.3.2 Oral glucose tolerance test 

All participants underwent an OGTT at a screening visit, as previously described1. Briefly, 

each participant attended the laboratory at 0830 hr following an overnight fast. An IV 

cannula was inserted for blood collection and participants consumed a glucose drink 

consisting of 75 g glucose dissolved in 300mL water, within 5 min. Blood was collected at 

t = 0, 30, 60, 120 and 180 min following the glucose drink, with blood glucose concentrations 

measured by portable glucometer (Medisense Precision QID, Abbott Laboratories, Bedford, 

MA, USA).  

 

5.3.3 Endoscopy protocol 

Participants attended the Gastrointestinal Investigation Unit at the Royal Adelaide Hospital, 

at 0830 hr following a standardised evening meal (400g beef lasagne, McCain Foods, 

Australia) and overnight fast from 1900 hr. On arrival, an IV cannula was positioned into an 
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antecubital vein of each arm. Blood glucose was clamped at euglycaemia (5 mmol/L), first 

by administering a 50 mL IV bolus of 0.9% saline (Baxter Healthcare) for 1 min, then a 

continuous infusion at a rate of 150ml/hr, then 100 IU of insulin IV (Actrapid; Novo Nordisk, 

Baulkham Hills, NSW, Australia) in 500 mL of 4% succinylated gelatin solution 

(Gelofusine; B, Braun Australia, Bella Vista, NSW, Australia) administered at a variable 

rate to maintain euglycaemia.  A 25% dextrose solution was administered if blood glucose 

fell below 5 mmol/L. 

 

Once blood glucose concentrations were at stable euglycaemia for 30 min, a small-diameter 

video endoscope (GIF-XP160, Olympus, Tokyo, Japan) was inserted into an anaesthetised 

nostril to the second part of the duodenum, and 2 duodenal biopsies collected using standard 

biopsy forceps, and placed in RNAlater (Qiagen, Sydney, Australia). After baseline 

collection (t = 0 min), an ID glucose infusion was commenced via the biopsy channel of the 

endoscope (30g glucose with 3g 3-OMG, Sigma-Aldrich, St. Louis, MO; in water to a total 

volume of 150 mL, 4 kcal/min (total: 120 kcal)), and maintained for 30 min. At t = 10 min, 

the infusion was paused for 1 min and 2 additional biopsies taken. At t = 30 minutes, 2 final 

biopsies were taken and the endoscope removed. Blood samples (20 mL) were collected 

every 10 min for 1 hour (t = 0 - 60 min), with IV insulin and glucose infusions terminated at 

t = 60 min. Plasma or serum were separated from whole blood by centrifugation (15 min at 

4°C), within 15 min of collection, and stored at -80˚C for later analysis. Participants were 

then given a meal and blood glucose was checked to exclude hypoglycaemia (≤ 4 mmol/L), 

prior to them leaving the hospital. 
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5.4 Measurements 

5.4.1 Quantification of T1R2, SGLT-1 and GLUT2 expression by RT-PCR 

 

Total RNA was extracted from a biopsy at each time point using the PureLinkTM MicroKit 

(Invitrogen, Thermo Fisher Scientific, Australia) as per the manufacturer instructions. The 

other biopsy was placed into archival storage. RNA quantity was determined using a 

NanodropTM Lite Spectrophotometer (Thermo Fisher Scientific, Australia) and purity 

assessed using A260/A280 ratio. Absolute standard curves were generated by including known 

copy number standards for each target in each RT-PCR assay (Table 5.2), as described 

previously61. RT-PCR was performed using a QuantiTect® SYBR Green® one-step RT-PCR 

kit (Qiagen) and 7500 fast Real-Time PCR system (Applied Biosystems, Thermo Fisher 

Scientific) according to the manufacturer’s specifications. Each assay was performed in 

triplicate and included no-template, and no reverse-transcription controls. Validated human 

primers for T1R2, SGLT-1 and GLUT2 were used (Table 5.3) (QuantiTect®, Qiagen). All 

replicates were averaged for final mRNA copy number, which was expressed as copies per 

25 ng of total RNA.  

 

Table 5.2: Human primers used to generate RT-PCR products containing the target 

amplicon to create absolute standard curves  

Gene Forward primer (5’ to 3’) Reverse primer (5’ to 3’) 
Amplicon 

(bp) 

T1R2 TACCTGCCTGGGGATTAC AAATAGGGAGAGGAAGTTGG 390 

SGLT-1 TGGAATGCCCTGGTTTTGGT GGAAGATGTGGAAGGAGTCGG 493 

GLUT2 ACCCTGGTTTTCACTGTCATCA AATTAGCCCACAATATAGTCCTGA 480 

T1R2, taste receptor type 1, member 2; SGLT-1, sodium-glucose co-transporter-1; GLUT2, glucose 

transporter-2; bp, base pairs. 
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Table 5.3: Human primers used for absolute quantification of SGLT-1, T1R2 and GLUT2 by 

RT-PCR 

Gene Primer information Amplicon (bp) 

T1R2 QT01026508 94 

SGLT-1 QT00001246 81 

GLUT2 QT01008399 88 

QT = QuantiTect® primer assay (Qiagen) 

 

5.4.2 Plasma GLP-1, GIP, C-Peptide and serum 3-OMG assays 

Total plasma GLP-1 was measured by RIA (GLPIT-36HK, Millipore, Billerica, MA). The 

minimum detectable limit was 3 pmol/L, and intra-, and inter-, assay CVs were 5.3% and 

8.1%, respectively. Plasma GIP was measured by radioimmunoassay using a modified 

version of a previously published method203. The standard curve was prepared in buffer and 

the radio-iodinated label was supplied by Perkin Elmer (Boston, MA).  The minimum 

detectable limit was 2 pmol/L, and intra- and inter-assay CVs were 9.6% and 8.6%, 

respectively. C-peptide was measured by ELISA immunoassay (10-1136-01, Mercodia, 

Uppsala, Sweden). The sensitivity of the assay was 15 pmol/L, and intra- and inter-assay 

CVs were 5.2% and 5.7%, respectively. Serum 3-OMG concentrations were measured by 

commercial liquid chromatography mass spectrometry with assay sensitivity of 10 pmol/L1, 

204.  

 

5.4.3 Data and statistical analyses  

Statistical analysis was performed using SPSS® software (SPSS Inc, IBM®, version 20). A 

one-way ANOVA, with group as a factor, was used to determine differences in age, BMI, 

and fasting blood glucose at the screening visit. Sex distribution across groups was assessed 

using Fishers Exact test (Chi-squared). Differences in HbA1C (%) between WC-T2D and 
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PC-T2D groups was assessed using an independent samples t-test. Basal transcripts, and 

transcript changes in response to glucose of T1R2, SGLT-1 and GLUT2 in response to ID 

glucose were assessed by two-way repeated measures ANOVA, with group, and time, as 

factors. Due to inter-subject variability in transcript levels, the responses to ID glucose were 

also assessed as change from baseline (t = 30 – 0 min), with group as the between-subjects 

factor. The iAUC for blood glucose, GIP, GLP-1 and C-Peptide was calculated using the 

trapezoidal rule from t = 0 - 180 min (blood glucose) and t = 0 - 60 min (gut hormones), and 

analysed by one-way ANOVA. A two-way, repeated measures ANOVA was also performed 

on these variables with time and group as factors. The maximum concentration (Cmax) of 

gut hormones were calculated from t = 0 - 120 min. Post-hoc pairwise comparisons, 

corrected for multiple comparisons using the Sidak method, was performed for all 

ANOVA’s that were significant. Relationships between transcript expression and blood 

glucose, GIP, GLP-1 and C-Peptide (iAUCs) were evaluated by Pearson’s correlation 

coefficient (r). GIP assays were incomplete at the time of thesis preparation (PC-T2D, n = 

3). There was low signal detection for GIP in n = 2 HC, and n = 2 WC-T2D participants, 

which were excluded from analysis. GLP-1 was below signal detection for n = 1 HC 

participant, which was similarly excluded. Statistical significance was accepted at P ≤ 0.05. 

Data are expressed as mean ± SEM. 
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5.5 Results 

The procedures were well tolerated and biopsies were collected from all participants.  

 

5.5.1 Blood glucose concentrations during the OGTT 

 

Blood glucose increased in response to the glucose drink in all groups (P ≤ 0.001), and was 

highest in PC-T2D patients compared with HC participants and WC-T2D patients at all time 

points (P ≤ 0.001). Blood glucose in the WC-T2D group was also higher than in the HC 

group beyond t = 30 min (P ≤ 0.001, Figure 5.1). Blood glucose iAUC was higher in 

PC-T2D patients than in both HC and WC-T2D groups (P ≤ 0.001), with the HC group also 

lower in comparison to the WC-T2D group (P ≤ 0.05).   

 

5.5.2 Baseline T1R2, SGLT-1 and GLUT2 expression in the proximal human 

duodenum  

T1R2, SGLT-1 and GLUT2 transcripts were detected in all duodenal biopsies at baseline, 

with abundance SGLT>>GLUT2>T1R2 in all groups (Figure 5.2). T1R2 transcript levels 

at baseline did not differ between groups. Baseline SGLT-1 transcript levels were 1.8-fold 

lower in PC-T2D, compared to WC-T2D (P ≤ 0.01). Baseline GLUT2 transcript levels were 

3.8-, and 3.4-fold lower in PC-T2D compared to HC (P ≤ 0.01) and WC-T2D (P ≤ 0.01), 

respectively. Baseline transcript levels of T1R2, SGLT-1 and GLUT2 did not differ between 

HC and WC-T2D groups. 
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Figure 5.1: Blood glucose concentrations during the OGTT. Consumption of glucose 

drink increased blood glucose concentrations in all groups (P ≤0.001), with higher 

concentrations in PC-T2D patients at all time points compared with both HC and WC-T2D 

groups (P ≤ 0.001), and in WC-T2D compared with HC from t = 30 min onwards (P ≤ 0.001).  

Data are mean ± SEM. *WC-T2D vs HC, #PC-T2D vs HC, ˄WC-T2D vs PC-T2D. HC, 

healthy controls; PC-T2D, poorly-controlled type 2 diabetes; WC-T2D, well-controlled type 

2 diabetes. HC, n = 12; WC-T2D, n = 12; PC-T2D, n = 9.  
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Figure 5.2: Duodenal transcript levels of T1R2, SGLT-1 and GLUT2 in HC, WC-T2D 

and PC-T2D groups at baseline. A) T1R2 transcripts did not differ between groups at 

baseline. B) SGLT-1 transcripts were 1.8-fold lower in PC-T2D compared to the WC-T2D 

group (P ≤ 0.01). C) GLUT2 transcripts were 3.8 and 3.4-fold lower in PC-T2D compared 

to HC (P ≤ 0.01) and WC-T2D (P ≤ 0.01) groups, respectively. Data are mean ± SEM. HC, 

healthy controls; PC-T2D, poorly controlled type 2 diabetes; WC-T2D, well controlled type 

2 diabetes. #PC-T2D vs HC; ^WC-T2D vs PC-T2D. HC, n = 11; WC-T2D, n = 12; PC-T2D, 

n = 9 (T1R2, n = 8).  
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5.5.3 Effects of ID glucose on expression of T1R2, SGLT-1 and GLUT2  

T1R2 transcript levels did not change in response to ID glucose in subject groups, but when 

assessed as change from baseline, were lower in the PC-T2D group at 10 min compared to 

other groups (group × time interaction, P ≤ 0.05). T1R2 levels were unchanged from baseline 

at t = 30 min, and were not different between groups (Figure 5.3A). 

 

SGLT-1 transcript levels were higher in HC and WC-T2D subjects after 10 min of ID 

glucose than in PC-T2D subjects (group × time interactions, P ≤ 0.001), whereas levels were 

similar across groups at 30 min. The increase in SGLT-1 transcripts from baseline was larger 

in the HC group at t = 10 min compared to the WC-T2D (P ≤ 0.05) and PC-T2D groups (P 

≤ 0.01), with no difference between both T2D groups. SGLT-1 levels were unchanged across 

all study groups at 30 min (Figure 5.3B). 

 

GLUT2 transcripts were similar and lower in HC (P ≤ 0.01) and PC-T2D subjects (P ≤ 0.05) 

compared to WC-T2D subjects after 10 min of ID glucose (group × time interactions). 

GLUT2 levels in HC subjects were similar to levels in WC-T2D subjects by 30 min, but 

remained lower in PC-T2D in comparison to these two groups (both P ≤ 0.05). When 

assessed as baseline changes, GLUT2 transcripts were significantly lower in both the HC (P 

≤ 0.001) and WC-T2D groups (P ≤ 0.05) compared to the PC-T2D group at 10 min, however 

GLUT2 levels were unchanged across all study groups at 30 min (Figure 5.3C).   
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Figure 5.3: Glucose-induced changes in duodenal T1R2, SGLT-1 and GLUT2 

transcript levels in HC, WC-T2D and PC-T2D groups. A) The decrease in T1R2 

transcript copy number from baseline was larger in PC-T2D than in HC and WC-T2D at 10 

min (both P ≤ 0.05). B) At the same time SGLT-1 transcript numbers increased from baseline 

in the HC group compared with WC-T2D (P ≤ 0.05) and PC-T2D (P ≤ 0.01) groups, with 

no difference between the two T2D groups. C) GLUT2 transcripts decreased further in the 

HC (P ≤ 0.001) and WC-T2D groups (P ≤ 0.05) at 10 min than in the PC-T2D group. 

Transcripts of all targets were unchanged from baseline at 30 min. Data are mean ± SEM. 

HC, healthy controls; PC-T2D, poorly-controlled type 2 diabetes; WC-T2D, well-controlled 

type 2 diabetes. *WC-T2D vs HC; #PC-T2D vs HC; ^WC-T2D vs PC-T2D.   
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5.5.4 Plasma GIP, GLP-1 and C-peptide concentrations 

GIP concentrations were higher in the WC-T2D group at baseline compared to both the HC 

(P ≤ 0.01) and PC-T2D groups (P ≤ 0.05, Table 5.4), but similar in HC and PC-T2D groups. 

GIP increased in response to ID glucose in all groups (P ≤ 0.001, Figure 5.4A), and was 

higher in WC-T2D at t = 20 and between t = 40-60 min compared with the HC group (group 

× time interaction, P ≤ 0.05). GIP concentrations were also higher in the PC-T2D group than 

in the HC group from t = 10 to 30 min (P ≤ 0.01), and, accordingly, GIP iAUC was increased 

in PC-T2D (P ≤ 0.05, Table 5.5). GIP concentrations did not differ between the WC-T2D 

and PC-T2D groups during the infusion (Figure 5.4A). Peak GIP concentration (Cmax) did 

not differ between the T2D groups, but both WC-T2D and PC-T2D had higher peak 

concentrations than the HC group (P ≤ 0.05) (Table 5.5).  

 

Plasma GLP-1 concentrations were not different at baseline (Table 5.4) but increased in 

response to ID glucose in all groups (P ≤ 0.001, Figure 5.4B). GLP-1 concentrations were 

higher in the WC-T2D group between t = 30 to 60 min than in HC (group × time interaction, 

P ≤ 0.05) and between t = 30 to 50 min than in the PC-T2D group (P ≤ 0.01); GLP-1 

concentrations were not different between PC-T2D and HC groups throughout the study. 

The iAUC for GLP-1 was higher in WC-T2D than in the PC-T2D group (P ≤ 0.05; Table 

5.5), and showed a trend to be higher than in HC (P = 0.06). Peak GLP-1 concentration was 

higher in WC-T2D compared to HC and PC-T2D groups (both P ≤ 0.05), while peak levels 

in HC and PC-T2D groups did not differ (Table 5.5). 

 

Plasma C-peptide concentrations did not differ between groups at baseline (Table 5.4), but 

increased in response to ID glucose in all groups (P ≤ 0.001, Figure 5.4C). C-peptide was 

higher in the HC group than WC-T2D (group × time interaction, P ≤ 0.01) or PC-T2D  
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(P ≤ 0.001) groups at 30 min, with no differences between the T2D groups. At t = 60 min, 

C-peptide concentrations were not different between HC and WC-T2D groups, and 

significantly higher than concentrations in the PC-T2D group (P ≤ 0.05, P ≤ 0.01 

respectively, Figure 5.4C). The iAUC of C-peptide was higher in the HC group than 

WC-T2D (P ≤ 0.05) and PC-T2D groups (P ≤ 0.01), but did not differ between T2D groups. 

Peak C-peptide concentrations were higher in HC than the PC-T2D group (P ≤ 0.01), but 

were not different compared to WC-T2D, or between T2D groups (Table 5.5). 

 

Table 5.4: Baseline plasma concentrations of GIP, GLP-1, and C-peptide  

 HC WC-T2D PC-T2D P 

GIP1 (pmol/L) 9 ± 2 16 ± 2 10 ± 1 *˄P ≤ 0.01 

GLP-12 (pmol/L) 21 ± 1 23 ± 2 22 ± 2 NS 

C-peptide3 (pmol/L) 313 ± 49 327 ± 37 294 ± 38 NS 

HC, healthy controls; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, 

glucagon-like peptide-1; PC-T2D, poorly-controlled type 2 diabetes; WC-T2D, well-

controlled type 2 diabetes. Data are mean ± SEM. *WC-T2D vs. HC; ̂ WC-T2D vs PC-T2D. 
1HC, n = 10; WC-T2D, n = 10; PC-T2D, n = 6, 2HC, n =11; WC-T2D, n = 12; PC-T2D, n = 

8; 3HC, n = 12, WC-T2D, n = 12, PC-T2D, n = 8. 
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Figure 5.4: Effects of ID glucose on plasma GIP, GLP-1 and C-peptide concentrations 

in HC, WC-T2D and PC-T2D groups. A) GIP B) GLP-1 and C) C-peptide concentrations 

increased in response to ID glucose in all groups (group × time interaction: P ≤ 0.001, for 

all). A) GIP was higher in WC-T2D (P ≤ 0.01) and PC-T2D (P ≤ 0.05) groups at baseline 

compared with the HC group. GIP concentrations remained elevated at t = 20, and between 

t = 40-60 min in WC-T2D compared with HC (P ≤ 0.05), and between t = 10-30 min in 

PC-T2D compared with HC (P ≤ 0.01). B) GLP-1 was higher in WC-T2D than the HC group 

between t = 30-60 (P ≤ 0.05), and higher than the PC-T2D group between 30-50 min (P ≤ 

0.01). C) C-peptide concentrations were higher in HC than WC-T2D (P ≤ 0.01) or PC-T2D 

groups at t = 30 min (P ≤ 0.001), but similar in HC and WC-T2D groups at 60 min, when 

both concentrations were higher than in the PC-T2D group (P ≤ 0.05, P ≤ 0.01 respectively).  

Data are mean ± SEM. HC, healthy controls; PC-T2D, poorly-controlled type 2 diabetes; 

WC-T2D, well-controlled type 2 diabetes. *WC-T2D vs HC; #PC-T2D vs HC; ^WC-T2D 

vs PC-T2D.  
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Table 5.5: Effects of 30-min ID glucose infusion (4 kcal/min) on plasma GIP, GLP-1 

and C-peptide concentrations. 

 HC WC-T2D PC-T2D P 

GIP iAUC 

(pmol/L.min)1 

 

CMax (pmol/L) 

765 ± 104 

 

 

26 ± 3 

1008 ± 131 

 

 

40 ± 4 

1464 ± 234 

 

 

43 ± 5 

#P ≤ 0.05 

 

 

*#P ≤ 0.05 

GLP-1 iAUC 

(pmol/L.min)2 

 

CMax (pmol/L) 

466 ± 183 

 

 

36 ± 5 

1045 ± 174 

 

 

56 ± 6 

369 ± 131 

 

 

35 ± 5 

˄P ≤ 0.01 

 

 

*˄P ≤ 0.05 

C-peptide iAUC 

(pmol/L.min)3 

 

CMax (pmol/L) 

22540 ± 4017 

 

 

932 ± 140 

9621 ± 3439 

 

 

611 ± 86 

2060 ± 978 

 

 

361 ± 60 

*P ≤ 0.01, #P ≤ 0.001 
 

 

#P ≤ 0.01 

CMax, concentration maximum; GIP, glucose-dependent insulinotropic peptide; GLP-1, 

glucagon-like peptide-1; HC, healthy controls; iAUC, incremental AUC; PC-T2D, 

poorly-controlled type 2 diabetes; WC-T2D, well-controlled type 2 diabetes. Data are mean 

± SEM; *WC-T2D vs HC; #PC-T2D vs HC; ˄WC-T2D vs PC-T2D. 1HC, n = 10, WC-T2D, 

n = 10, PC-T2D, n = 6; 2HC, n = 11, WC-T2D, n = 12, PC-T2D, n = 8; 3HC, n = 12, WC-T2D, 

n = 12, PC-T2D, n = 8. 
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5.5.5 Serum 3-OMG concentrations 

Serum 3-OMG increased in response to ID glucose in all groups (P ≤ 0.001, Figure 5.5), but 

was significantly higher in PC-T2D after 30 min than in HC (P ≤ 0.05) and WC-T2D (P ≤ 

0.01) groups (group × time interactions). The iAUC for 3-OMG was higher in PC-T2D than 

in the WC-T2D group (P ≤ 0.05).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Effect of ID glucose on serum 3-OMG concentrations. ID infusion increased 

serum 3-OMG concentrations in all groups (P ≤ 0.001), with higher levels in PC-T2D at 30 

min than HC (P ≤ 0.05) or WC-T2D groups (P ≤ 0.01).  Data are mean ± SEM. HC, healthy 

controls; PC-T2D, poorly-controlled type 2 diabetes; WC-T2D, well-controlled type 2 

diabetes. HC, n = 11; WC-T2D, n = 12; PC-T2D, n = 8. *WC-T2D vs HC, ˄WC-T2D vs 

PC-T2D. 

 

5.5.6 Relationships between variables 

Fasting blood glucose concentrations were positively related to HbA1C in both T2D groups 

(r = 0.7, P ≤ 0.01), and with age (r = 0.4, P ≤ 0.05) and BMI (r = 0.4, P ≤ 0.01) across the 

entire cohort. The iAUC of blood glucose also positively associated with HbA1C levels (r = 

0.7, P ≤ 0.01). There were no associations between fasting blood glucose with GIP, GLP-1 

or C-peptide at baseline. HbA1C was negatively related to basal GLUT2 (r = -0.7, P ≤ 0.01) 

and SGLT-1 transcript levels (r = -0.6, P ≤ 0.01) in T2D groups. A similar negative 
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association also existed between fasting blood glucose and basal GLUT2 transcript level  

(r = -0.5, P ≤ 0.01). Basal T1R2 transcript levels did not relate to any demographic factors. 

Baseline transcript levels of T1R2, SGLT-1 or GLUT2 were not associated with GIP, GLP-1 

or C-peptide concentrations.  

 

Levels of T1R2 or GLUT2 transcript at baseline, or their change during ID infusion, were 

unrelated to GIP, GLP-1 or C-peptide iAUC. GIP concentrations at 10 min were, however, 

were negatively related to basal SGLT-1 transcripts (r = -0.6, P ≤ 0.05), as was the degree 

of SGLT-1 transcript change during ID infusion (r = -0.5, P ≤ 0.05). C-peptide and blood 

glucose were negatively associated across the cohort (iAUCs, r = -0.5, P ≤ 0.01). There were 

no other associations between GIP, GLP-1, C-peptide, or blood glucose iAUCs.   

 

Serum 3-OMG concentrations were unrelated to duodenal transcript expression at 10 or 30 

min into glucose infusion across study groups. However, the change in T1R2 at 10 min was 

positively related to 3-OMG after 30 min in HC participants (r = 0.7, P ≤ 0.05). 3-OMG 

concentrations at 30 and 60 min were also positively associated with C-peptide concentration 

across the cohort (r = 0.4, P ≤ 0.05 and r = 0.5, P ≤ 0.01, respectively).  

 

5.6 Discussion 

This study investigated the effects of ID glucose on transcriptional regulation of intestinal 

T1R2, SGLT-1 and GLUT2, and whether these effects differed in patients with WC-T2D 

and PC-T2D, and had consequences for incretin secretion and glycaemic control. We 

demonstrated that T1R2 transcripts were similarly abundant in HC, WC-T2D and PC-T2D 

groups at baseline, extending our previous findings1. To our knowledge, our study is the first 
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to show that patients with PC-T2D had lower basal expression of SGLT-1 and GLUT2 than 

WC-T2D patients. In response to ID glucose, transcriptional regulation of SGLT-1 and 

GLUT2 was also attenuated in PC-T2D patients. By contrast, T1R2 expression decreased in 

response to ID glucose in PC-T2D, but not in HC or WC-T2D groups. Given that 1) glucose 

absorption (assessed by 3-OMG) was higher in PC-T2D patients, and 2) GIP responses were 

preserved, while 3) GLP-1 and C-peptide responses were lower, we propose that a loss of 

intestinal STR signalling fidelity in PC-T2D patients may impair their ability to 

appropriately regulate glucose absorption, and promote a GIP-led incretin response, both of 

which could exacerbate hyperglycaemia. 

 

Differences in prevailing glycaemia between HC participants, WC-T2D and PC-T2D 

patients did not influence intestinal T1R2 transcription at baseline. However, the transient 

downregulation of T1R2 upon ID glucose infusion in PC-T2D patients at euglycaemia 

paralleled T1R2 responses to ID glucose we had previously observed in HC participants 

during hyperglycaemia1. This may indicate a failure of glycaemic status to direct 

transcription of T1R2 by luminal glucose in PC-T2D patients, leading to altered luminal 

sensing by T1R2, and potentially, impaired coordination of glucose transport via SGLT-1. 

 

The lower expression of SGLT-1 at baseline in PC-T2D patients did not correspond with 

reduced glucose absorption. Rather, glucose absorption was higher in PC-T2D participants 

early and over the first hour, supporting a role for post-transcriptional modification of 

SGLT-1 as an early determinant of postprandial glucose absorption in these patients. This is 

supported by findings in Sprague-Dawley rats, where intestinal infusion of D-glucose for up 

to 3 hours upregulated SGLT-1 protein, but did not change mRNA expression65. 

Accordingly, post-transcriptional modification of SGLT-1 may have an under-appreciated 
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role in functional absorption in patients with PC-T2D, which will need to be confirmed in 

follow-up proteomic experiments. The loss of transcriptional regulation of SGLT-1 in 

PC-T2D patients contrasted the early upregulation of SGLT-1 in HC participants and 

WC-T2D patients, which paralleled glucose absorption. While further studies of SGLT-1 

protein kinetics in response to nutrient stimulation are required, a dissociation between 

luminal sweet sensing and transporter control may occur in PC-T2D, leading to a 

T1R2-independent, and post-transcriptional, gain in SGLT-1 absorptive capacity, and 

hyperglycaemia. Our evidence of exaggerated blood glucose excursions and lower C-peptide 

secretion in patients with PC-T2D is consistent with a progressive failure of GSIS with T2D 

disease progression.  

 

Together with a loss of transcriptional control of SGLT-1 in PC-T2D patients, 

glucose-induced GIP secretion is preserved in the presence of augmented glucose 

absorption. This mechanism may also underlie the attenuated GLP-1 secretion in patients 

with PC-T2D, due to reduced luminal glucose exposure to L-cells in the distal small 

intestine. In contrast, the increased glucose-induced GLP-1 response seen in WC-T2D 

patients with normal absorption supports the existence of increased duodenal L-cell density 

and augmented glucose-stimulated GLP-1 secretion, as reported in newly diagnosed T2D 

patients205. As such, an increase in L-cell density, and glucose-induced GLP-1 secretion, 

may be limited in patients with more severe diabetes, as evidenced in the current study and 

supported by an earlier report where 4 weeks of insulin therapy failed to restore postprandial 

GLP-1 secretion in a similar and poorly controlled T2D patient cohort206. While several 

studies have described attenuated GLP-1 secretion as a feature of patients with WC-T2D107, 

a recent meta-analysis has identified that patient-specific characteristics (e.g., age, body 

weight, fasting glucagon concentrations) exert a stronger influence on GLP-1 secretory 

responses. Such patient diversity may underpin reports of normal, and even augmented, 
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GLP-1 secretion in response to nutrient intake across T2D patient cohorts207. The GIP-led 

incretin response observed in our PC-T2D group, coupled with augmented glucose 

absorption, supports findings of studies in morbidly obese, non-diabetic participants exposed 

to a similar acute ID glucose stimulus208. Glucose absorption in these participants was 

markedly increased, in association with increased GIP secretion, but attenuated GLP-1 

secretion, and suppression of glucagon. This occurred in concert with increased SGLT-1 

expression, and led to hyperglycaemia and hyperinsulinaemia208. Although the directionality 

of SGLT-1 responses to glucose differed between non-diabetic, morbidly obese participants 

and non-obese diabetic participants, in both cases a GIP-led incretin response, attenuated 

GLP-1 secretion and augmented glucose absorption posed an increased risk for 

hyperglycaemia. Moreover, this combination with a loss of GSIS in patients with PC-T2D 

(attenuated C-peptide response) highlights multiple challenges for ongoing glycaemic 

homeostasis.  

 

We found no association between GLUT2 and incretin secretion, in accord with studies 

showing that incretin secretion is largely unaltered in GLUT2 KO mice98. However, based 

on evidence of similar GLUT2 changes at transcript and protein levels in islets of a mouse 

model of T2D209, the reduced intestinal GLUT2 expression after ID glucose in HC 

participants and WC-T2D patients may attenuate glucose egress from enterocytes. This 

could, in part, limit postprandial glycaemic excursions, as occurs in GLUT2 KO mice 

following intragastric gavage of glucose98. Together with SGLT-1 changes described in 

patients with PC-T2D, the absence of such a GLUT2 response could promote further 

hyperglycaemia, and indicate a failure to control glucose uptake and egress from intestinal 

enterocytes.  
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Limitations 

Our study had a number of limitations. We did not quantify changes in protein levels of 

T1R2, SGLT-1 or GLUT2 in parallel to those of transcripts, however, similarly rapid 

changes in these proteins occur in the BBM of the rat jejunum in response to STR activation, 

while glucose absorption assessed by 3-OMG is expected to parallel function of SGLT-193. 

We also acknowledge that euglycaemia does not reflect a physiologically normal state for 

PC-T2D patients, and although recruitment of these patients was challenging, future studies 

should establish whether changes in the STR system also occurs during hyperglycaemia. 

This would enable determination of the significance of prevailing glycaemia on the intestinal 

STR system. However, even at the therapeutically desired euglycaemia, we showed that 

PC-T2D patients respond differently to luminal glucose cues with dysregulated control of 

intestinal T1R2, SGLT-1 and GLUT2 transcription. The short infusion time used was chosen 

to minimise discomfort to participants, but further transcript and protein changes for these 

targets may occur into the postprandial period.  

 

 

Conclusions 

This study has demonstrated that patients with PC-T2D have reduced basal expression of 

glucose transporters SGLT-1 and GLUT2 which then fail to undergo transcriptional 

regulation by ID glucose, in contrast to the responses observed in HC and WC-T2D 

participants. Despite this, PC-T2D patients showed augmented glucose absorption 

supporting a role for post-transcriptional control mechanism(s), and augmented cellular 

accumulation of SGLT-1 and GLUT2 as the basis of these absorptive gains. Together with 

preserved glucose-induced GIP release, but attenuated GLP-1 and C-peptide responses, 

these findings indicate that hyperglycaemia in patients with PC-T2D arises due to a 

convergence of augmented glucose absorption with an impaired, GIP-led incretin and insulin 
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response, which may be linked to impaired sensing of luminal glucose by duodenal T1R2. 

Future studies should investigate these responses under hyperglycaemic conditions in 

PC-T2D, including proteomics, to investigate the influence of prevailing glycaemia on the 

intestinal STR system, and absorptive and glycaemic control.  
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The studies presented in this thesis have examined the roles of intestinal sensors and 

transporters for fatty acids in the impaired appetite control in obesity, and intestinal sensors 

and transporters for carbohydrates in the glycaemic dysregulation of patients with T2D, in 

comparison to healthy participants. These studies have revealed fundamental and underlying 

differences in their transcriptional regulation that improve understanding of connections 

between intestinal nutrients and energy/glycaemic homeostasis. Novel therapeutics that 

capitalise on these unique pathways of metabolic control hold the potential to improve 

management of these chronic human diseases.  

 

The study presented in Chapter 3 characterised the expression of the intestinal fat sensors 

FFAR1, FFAR4, GPR119, and the fatty acid transporter CD36, in the duodenum of healthy 

individuals before and after an acute ID lipid infusion. Associations between fasted, and 

lipid-induced changes in these targets with the secretion of GLP-1 and CCK, was also 

investigated. To determine the influence of habitual energy and macronutrient intake on 

fasting fat sensor expression, and the potential impact on intestinal fat sensitivity, analysis 

of habitual dietary patterns were also undertaken. This results of this study revealed that all 

targets were expressed in the duodenum, with their order of transcript abundance matched 

to their cellular distribution (e.g., highly abundant CD36 expression on intestinal 

enterocytes153). We also observed that GPR119 expression was negatively associated with 

habitual consumption of PUFAs in healthy individuals. Although long-term consumption of 

habitual fat and GPR119 expression in humans has not been studied, consumption of PUFA 

is linked with lower levels of adiposity171. Future investigations should look to characterise 

the role of dietary fatty acid composition on these intestinal FFAR pathways, and to 

determine whether dietary modifications may enhance their sensitivity and improve fat 

metabolism.  
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The study presented in Chapter 4 expanded on the findings in Chapter 3, by investigating 

the duodenal expression of FFAR1, FFAR4, GPR119 and CD36 across a broad BMI range 

in otherwise healthy individuals, and in response to acute ID lipid. The purpose of this design 

was to determine whether there was a reduced sensitivity to lipid with increasing BMI, as 

observed through the attenuation of satiety hormone secretion, and reduced suppression of 

appetite and energy intake, and to determine whether this was associated with transcriptional 

changes in duodenal fat sensors. The study revealed that BMI was positively associated with 

basal expression of CD36, but negatively associated with basal FFAR1 and FFAR4 

expression, while GPR119 expression was independent of BMI. As such, human obesity 

may lead to a progressive and reduced ability to adequately respond to ingested LCFAs, 

through reduced availability of FFAR1 and FFAR4. This is supported by human studies of 

a loss-of-function-variant of FFAR4, shown to be associated with increased risk of obesity 

and insulin resistance35. Furthermore, FFAR4 KO mice that are fed a HFD develop obesity, 

glucose intolerance, and insulin resistance27,28, indicating that a loss of FFAR4 has 

implications for obesity development. However, the metabolic implications for reduced 

FFAR1 in obesity remains unclear, as FFAR1 deletion in mice does not consistently protect 

against metabolic dysfunction in HFD-fed mice41,45, and as such requires further 

investigation. 

 

Although we found CD36 expression was increased in obese humans, the consequences for 

fatty acid transport is unclear, as knockdown of this transporter in mice does not affect 

overall LCFA absorption152,184. However, alterations in CD36 may impair postprandial 

triglyceride metabolism, as CD36 plays a vital role in the formation of lipid-rich 

chylomicrons, which are critical for the secretion of CCK in response to LCFAs, as well as 

gastric emptying, food intake, and plasma lipid transport52,135. Future experiments that will 
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analyse postprandial triglycerides in plasma are planned for this cohort, and will be related 

to changes in CD36 observed in the current dataset. 

 

Chapter 4 also confirmed that while basal FFAR1 expression was lower in obese 

participants, it increased in response to lipid in a BMI-independent manner. Moreover, this 

study provided the first evidence that FFAR1 expression was positively associated with 

augmented GIP secretion following ID lipid. This adds support to the previously reported 

role for FFAR1-stimulated insulin secretion from pancreatic β-cells in rodents38, and 

highlights a potential dual role for FFAR1 to augment postprandial insulin secretion in 

humans via direct (pancreatic) and indirect (intestinal GIP secretion) mechanisms. As in 

Chapter 3, GPR119 expression increased in response to ID lipid in a BMI-independent 

manner. As such, acute changes in GPR119 expression should be explored in future 

investigations, particularly in relation to the effect of lipid on plasma OEA, as OEA is a 

ligand for GPR119 and triggers the secretion of GLP-1 in both humans and rodent cell 

lines46, and has been linked to between-meal satiety in rodents163. Previous work has shown 

that the type and amount of habitual fat consumption is a predictor of intestinal OEA 

production, and thus capacity for GPR119 activation173. Analysis of the plasma OEA 

content, along with lipid content of the duodenal biopsies is planned for future studies by 

our group, and will provide a vital piece of information about the link between GPR119, 

OEA, and satiety in humans.  

 

Although we observed differences in the expression of FFAR1, FFAR4 and CD36 across 

BMI, this did not alter secretion of GLP-1, CCK and PYY across lean, overweight and obese 

participants. We did, however, note an increase in the proportion of energy consumed as fat 

at the buffet meal with increasing BMI, suggesting that individuals in the current study 
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represent an early phase of metabolic disruption, where they are still able to adequately 

compensate for increases in luminal fat exposure. It is possible that these responses would 

be altered in metabolically unhealthy obese, or T2D cohorts.  As such, it would be 

worthwhile to determine in future studies the effects of chronic HFD consumption on GI 

responses, and fat sensor expression, and whether fat sensors are susceptible to modifications 

to habitual dietary intake, and as such whether they represent novel targets for obesity 

treatment and prevention. 

 

The study presented in Chapter 5 focussed on the intestinal sweet taste system across 

patients with a range of T2D disease control. Our group had previously established that 

transcriptional regulation of the intestinal STR system was similar at euglycaemia in patients 

with diet-controlled T2D disease and healthy participants during ID glucose, but became 

disordered in T2D patients at hyperglycaemia1. This study investigated whether patients with 

prevailing hyperglycaemia and more advanced T2D disease had further impairments in the 

intestinal STR system and incretin responses, predisposing to worsened postprandial 

glycaemia. This study extended findings that intestinal T1R2 expression was unaffected by 

diabetic status, and revealed a profound loss of basal SGLT-1 and GLUT2 expression in 

PC-T2D patients. Moreover, intestinal SGLT-1 and GLUT2 was upregulated by ID glucose 

in HC participants and patients with WC-T2D at euglycaemia, but not in patients with 

PC-T2D. From this study it is also clear that post-transcriptional modification of SGLT-1, 

and GLUT2, may play a prominent role in functional glucose absorption in patients with 

PC-T2D. However, this must be confirmed in follow-up proteomic experiments. PC-T2D 

patients also experienced a rapid and early downregulation of T1R2, and the potential 

uncoupling of SGLT-1 regulation from luminal sweet sensing. This was supported by 

evidence of increased glucose absorption and GIP secretion in patients with PC-T2D, along 

with the absence of an augmented, and potentially compensatory, GLP-1 secretion, which 
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occurred in patients with WC-T2D. Overall, postprandial hyperglycaemia in patients with 

PC-T2D may arise due to enhanced glucose absorption and an altered, GIP-led incretin 

response that fails to adequately stimulate insulin release, all of which may occur secondary 

to impaired sensing of luminal glucose by duodenal T1R2. This is in line with previous 

studies of morbidly obese humans, in which associations emerged between enhanced 

glucose absorption and the augmented secretion of glucagon and GIP, but reduced GLP-1, 

contributing to observed hyperglycaemia208. However, whether enhanced glucose absorption 

in PC-T2D is associated with attenuated glucagon suppression is unknown, and will form 

the basis of future analysis. Investigation of this system in PC-T2D under hyperglycaemic 

conditions will be necessary, to elucidate the influence of prevailing glycaemia on this 

system, as well as reflecting a more physiological state for PC-T2D patients. 

 

Future investigations should also investigate whether non-caloric (i.e., ‘artificial’) 

sweeteners produce similar results. Animal studies have shown that non-caloric sweeteners 

activate STRs, and upregulate SGLT-1 expression in several species29,58,65. The use of 

non-caloric ‘artificial’ sweeteners, particularly in diet beverages, is emerging as a key 

contributor to the rising incidence of T2D, particularly amongst Western populations109. 

Importantly, while sweeteners such as sucralose, aspartame and acesulfame-K were 

originally marketed as suitable calorie-free sugar substitutes, particularly for those with 

T2D110, these animal studies provide evidence that these substances may not be 

metabolically inert, and under conditions of high intake, may worsen glycaemic control.  

 

Limitations 

There were limitations to these studies which must be considered in data interpretation. First, 

the time frame of ID infusion of both Intralipid® and glucose was based on previous studies 
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which used ID glucose to examine intestinal regulation of STRs1,61. We cannot, therefore, 

exclude the possibility that transcriptional changes may occur further into the postprandial 

period. Secondly, the changes in mRNA expression in response to either lipid or glucose 

may not necessarily correlate with changes in cell-surface protein, and as such, proteomics 

will be a critical focus of future investigations. Due to the inconsistent quality of commercial 

antibodies targeting GPRs in pilot protein expression experiments (Western blots) through 

my candidature, the decision to commit regular protein experiments was postponed. Finally, 

the use of habitual dietary questionnaires to establish dietary consumption patterns is 

inherently flawed, as they do not determine acute consumption prior to the study, and intakes 

are commonly underreported by obese individuals187. Future studies in which diets are 

controlled are clearly needed. Despite these limitations, the studies presented in this thesis 

provide novel insights into intestinal nutrient sensing mechanisms, and open up new 

pathways of investigation. 

 

In conclusion, the studies presented in this thesis provide important new knowledge to the 

field of intestinal nutrient sensing. Study findings have the potential to direct future 

investigations to establish the basis of functional connections between luminal nutrient 

sensing, GI hormone secretion and subsequent regulation of energy intake and glycaemia. 

These intestinal nutrient sensors for fats and carbohydrates represent a unique system that 

could be strategically targeted to re-establish energy, and glycaemic homeostasis in 

conditions such as obesity and T2D. The development of specific therapeutic interventions 

that capitalise on their unique localisation and distribution within the GI tract, hold the 

potential for less-invasive and more targeted therapies than those currently available, for the 

treatment of obesity and T2D. 
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