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ABSTRACT

A number of well known techniques have been studied to investigate their use as simple

tools for øssesing the operability characteristics of nonlinear system.

Stability criteria for nonlinear systems are discussed and the second method of

Lyapunov is applied to a CSTR and a Heat Exchanger system. Qìr#;,óuta/ systems,

such as heat exchangers are dealt with by the application of discontinuous physical

mod.els. It has been shown that it is possible to obtain the stability regions for a CSTR

and a heat exchanger provided a suitable Lyapunov function is constructed.

The operability analysis of a CSTR and a heat exchanger is carried out by making use

of singular value analysis techniques. The dynamic characteristics of the system are

investigated for the model linearised at several steady states over a range of frequencies

for different operating conditions. The condition numbers of both unscaled and

optimally scaled transfer function matrices of a CSTR and a heat exchanger have also

been evaluated and applied in the analysis.

The condition numbers evaluated in a CSTR case show that high temperature and

conversion are the optimum operating regions but it may not be feasible to operate the

reactor in those regions because the system is much more difficult to control. In heat



exchanger analysis, the optimal scaling method reduces the condition numbers to very

small values even in the case of high fouling, suggesting that fouling in heat exchangers

does not seem to affect controllability signifrcantly.

The condition numbers of unscaled state space matrices of both the systemt are also

obtained and it has been shown that the condition number of the scaled state space

matrix is not a reliable measure of controllability. It masks potential problems with

nonlinearities, and although it is scale dependent, scaling policies can remove important

information from the analysis.

Dynamic simulation of both the systems is carried out by making use of the SpeedUp

simulation package to verify the results obtained in dynamic operability analysis. It is

hoped that the results of the present work may be of some value to practical situations

in industry, particularly in the case of the systems having nonlinear behaviour.
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CHAPTER 1

INTRODUCTION

"I keep six honest serving men
(They taught me all I know);

Their names areWhat andWhy andWhen
And How andWhere andWho."

Kipling, T he Elephants' C hild

Chemical processes are nonlinear in their behaviour at least over portions of their

operational range so that linear methods of analysis are somewhat restrictive. Therefore

the consideration of nonlinearities in the process is essential toond¿r¡t""4 its performance.

A number of approaches have been proposed for assuring process operability but none

consider nonlinearities explicitly. This thesis looks at how some of these methods may

be extended to cover nonlinear systems.

ee,
Systems with nonlinear behaviou{exhibit stability problems and the stability analysis

of these systems can be carried out by the help of Lyapunov's second method. This

method can be utilized for certain naturally occurring systems of nonlinear

simultaneous differential equations. The equations arise when there is a flow of some

physical quantity such as heat, liquid flow, diffusion and chemical reaction.

'When these equations obey nonlinearqan/tÅions, their stability may not always be self

evident, and it can be investigated by the use of Lyapunov method. This method

provides information on the stability of a system by transforming the differential

equations to a form from which one can see directly, that is without integrating the

system equations, whether its trajectory approaches the state of rest or not. However,

construction of Lyapunov function for a particular process system still remains a
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difficult task. The lack of a generally applicable guide to the construction of Lyapunov

functions is the biggest drawback to the method's use. There have been attempts to

generate successively general forms of Lyapunov functions by Warden et al. (1964),

Gurel and Lapidus (1965), Chen and Kinnen (1970), and Davison and Kurak (1970).

These approaches have not received a great deal of use. Numerous methods have been

proposed in the literature to derive suitable Lyapunov functions to study the stability of

nonlinear systems.

Once the stability criteria of these systems are established, then they are subjected to

dynamic operability analysis. Dynamic operability of a process refers to the ability of

the plant to perform satisfactorily under conditions different from the nominal design

conditions. The plant should be able to make the transition from operating conditions to

stand-by or shutdown conditions without violating its environmental or safety

constraints. Dynamic operability assessment can be made by making use of singular

value analysis techniques. The singular values depend only on the process design and

are independent of the particular controller used. They are easy to compute and utilize

as a dynamic operability measure:,. By analysing the singular values of the system

matrix or of the transfer function matrix, its condition number (the ratio of maximum to

minimum singular values ) can be evaluated which can be used as a measure of

sensitivity of control performance to modelling error and as such is a measure of

controllability (M orari, I 9 83 ).

Since the condition number is a measure of sensitivity of the system, therefore, it is

desirable that this number should be small. , The smaller the condition number, the

more it will tolerate a larger uncertainty before going unstable.

Since the singular values depend on the scaling of the system, ie; the physical

dimensions which are used in defining the variables and the equations, a method of

optimum scaling is suggested by Perkins and Wong (1985). The method entails
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comparing transfer function matrices only on the basis of the optimal condition number

in the maximum norrn as defined by Bauer (1963) which is an upper bound on the

optimal condition number in the 2-norm.

Operability analysas' have been developed to avoid extensive use of dynamic

simulation. A multipurpose simulation programme was developed (Perkins, 1981)

which performs steady state and dynamic simulation with the same set of models. It is

used in this thesis to evaluate results predicted by the operability analysis.

In Chapter 2, stability criteria for nonlinear systems are discussed and the second

method of Lyapunov is described in detail. A standard form of Lyapunov function due

to Krasovskii has been utilized and applied to a CSTR and a heat exchanger system and

the stability regions of these systems are examined. Mathematical and geometrical

interpretations of the method are also given. A literature survey is also provided

including the recent developments in the construction of Lyapunov functions.

Chapter 3 deals with an overview of dynamic operability analysis. It provides an insight

into the methodology developed for operability analysis. This chapter hightights the

significance of the condition number which quantifies the sensitivity of the system with

respect to unceftainties in the model. Mathematical interpretations of singular values

and process control properties provided by them have also been described. Since

singular values are scale dependent, a method of scaling the system matrix is also

provided. The optimal scaling method suggested by Perkins andWong (1985) has been

utilised.

The dynamic operability concepts presented in Chapter 3 are applied to a CSTR system

in Chapter 4. As the CSTR system is nonlinear, the dynamic characteristics of the

system are investigated for the model linearised at several steady states over a range of

frequencies for different operating conditions. The control potential of the system is

.J
rl,l

,t:

þ
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established by analysing the singular values of the steady state system matrix and

extending it to include the dynamics of the system. The condition numbers of both

unscaled and optimally scaled transfer function matrices of the CSTR at different

operating conditions were evaluated for the analysis. Also the condition numbers of

unscaled state space system matrix were evaluated. All these numbers obtained were

plotted on a log-log plot in function of frequency to assess the controllability of the

system.

In Chapter 5, dynamic operability and sensitivity analyses arccarned out on heat

exchangers undergoing fouling. The analysis is performed at three different stages,

when the exchanger is clean, with moderate fouling and with high fouling.

Chapter 6 deals with the dynamic simulation of a CSTR and heat exchangers

undergoing fouling. Simulation work is carried out using the SpeedUp programme. The

main idea of using the simulation was to see whether the results obtained during the

simulations are in agreement with the dynamic operability analysis carried out in

Chapters 4 and 5.

Finally, Chapter 7 gives general conclusions on the overall work in the thesis and some

suggestions for future investigations.

È
I

¡
ri]l

I
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CHAPTER 2

STABILITY OF NONLINEAR SYSTEMS

"All these tidal gatherings, growth and decøy,
Shining and darkeníng, are forever
Renewed; and the whole cycle í,mpenitently
Revolves, and and all the past is luture:-
Makes it a dfficult world... for practícal people."

Robinson f effers, Practical P eople

In this Chapter, stability criteria for nonlinear systems are discussed and the well known

second method of Lyapunov is described in detail. Geometrical interpretations of the

Lyapunov function are also given. However, detailed analysis may be found in

literature discussed by Berger and Perlmutter (1964), Luecke and McGuire (1965) and

Berger and Lapidus (1969).

A literature survey is also provided and recent advancements in consffuction of

Lyapunov function¡have been highlighted.

The Lyapunov method is applied to a CSTR and a Heat Exchanger system and the

stability regions of these systems are examined. Mathematical results are also obtained

for these systems. Distributed systems, such as heat exchanger, give rise to partial

differential equations; these systems are dealt with by the application of drscv"ti¿eol

physical models.
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2.1 Introduction

In practical applications most control systems are non-linear to some extent, at least

over portions of their operational range, so that linear methods of analysis are at best an

approximation and many at worst produce results that are positively misleading. Linear

methods are normally used, of course, because they can usually be expected to provide

a good first estimate of behaviour, because they are much more fully developed than

non-linear methods and because they are in general very much simpler in application.

However, even quite simple practical control systems are apt to be inherently so

r nonlinear that a linear analysis cannot be used at all, and it is appreciated' Gt fru/''"¡i
today that the introduction even of simple non-linearitiesþay improve the performance

of a system beyond that attainable with the most sophisticated linear synthesis

(Macmíllan, 1962).

General methods for the design of nonlinear systems are not available but a number of

methods based on approximate solutions have been developed. Of particular mention

are the following methods of design:

. The Phase-Plane Method

. Piecewise Linear Methods

. The Describing Function Technique

. Lyapunov Stability Analysis

The last of these techniques is the only one to have been used to any extent by

Chemical Engineers. It is a geometrical tool and a number of simple geometrical

methods have been proposed to assure stability. The work described in this thesis only

uses Lyapunov's second method.



2.2 Stability in the Sense of Lyapunov

One of the most important events in the theory of stability of dynamic systems was the

publication ln 1892 of Lyapunov's famous paper in a Russian journal. Translated into

French in 1907, its application for control problems was not discovered until 1944; this

was because the diff,rculties in studies of stability of nonlinear control problems were

not understood and the work of Lur'e (1951) and Letov (1955) on this subject prepared

the ground for systematic studies of these questions.

Developments in the west in the analysis of nonlinear systems occurred much later and

were much less fruitful than Lyapunov's method (Mínorslq, 1962).In these works the

nonlinear problem is usually considered to be almost linear or a problem of searching

for approximate solutions of some form. The unifying concept of qualitative theory did

not reach western control literature until the important paper of Bertram and Kalman

(1960) was published. In the short time since the publication of these papers, a

phenomenal interest has developed in the west in Lyapunov's method which is also

known as the second or direct method.

The theory of stability was advanced by V. M. Popov (1960), who showed that certain

concepts of linear theory (such as the so-called frequency characteristics) can also be

used in nonlinear theory under certain conditions which are frequently encountered in

applications. The most interesting feature of his discovery is the fact that this new

concept of stability is closely related to Lyapunov's second method. This was the

situation towards the end of 1963. A review of developments with Lyapunov's method

is given by Gurel and Lapidus (1969). The same authors (1968) review applications to

chemical systems.
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2.3 Lyapunov's Direct Method

The fundamental idea of Lyapunov's second method is as follows: instead of attacking

the problem of stability on the basis of the variational equations, one tries to transform

the differential equations to a form from which one can see directly (that is, without

integration) whether its trajectory approaches the state of rest (the trivial solution) or

not. If one succeeds in showing that the trajectories enter a certain region o surrounding

the position of equilibrium and never leave it, one can assert that the equilibrium

position (i.e. the unperturbed solution) is stable. If, moreover, one can show that the

trajectory approaches the position of equilibrium for I -+ -, tho unperturbed solution is

asymptotically stable.

The underlying idea of Lyapunov's second method is an obvious, and simple fact. If the

initial motion is small and the subsequent motion is also small, the system is stable; if

for small initial conditions the later motion is not small, the motion is unstable (Berger

and Perlmuner, 1964).

2.4 Mathematical Interpretations

Lyapunov's direct method is extensively discussed in the applied mathematical

lirerature by Lasalle and Lefschetz (1961), Hahn (1963) and Letov (1962). Briefly

stated this method entails defining a positive definite function, the Lyapunov function,

and it is the sign definiteness of the total time derivative of the Lyapunov function

which determines the stability of a system.
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Consider an autonomous system represented by the equation

i, = f,(xr,x2,...x,) i = 1,2,....n (2.r)

where the origin is one of the equilibrium states

f(0)=0 i=1,2,....n (2.2)

The search for stability properties of the solution x,(x,., xÐ....x¡', to, t) is reduced to the

search for a scalar function, V(x,, xr,....., x") ) 0 , with the following properties

1. Outside the origin: V(x,,xr,....., x") > 0

2. V(0) = 0

3. V(x,, X2¡.....r x") is continuous and has continuous first partial derivatives in an open

region o about the origin (LaSalle and Lefschetz,196I).

4. y : ¡ràV lãx, + fràV lò4+ .....f,àV lòx^< 0 e O

A function with the properties given above is a Lyapunov function. If such a function

exists, the system is "stable in the sense of Lyapunov." If condition 4 is modifred as

follows

. Y < 0 e C) outside the origin.

'V(0) = g

then the stability is asymptotic. The existence of a Lyapunov function is a sufficient

condition for stability. Lyapunov's direct method involves a search for such a function.
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In some applications, the region, may not include the entire region of interest. It is then

very useful to determine the extent of asymptotic stability by giving an independent

proof that all solutions remain in the region o.

Properties 1 and 2 requtre that the Lyapunov function be positive definite except when

the state is at the origin. Property 2 indicates that V is in some rough sense a measure of

the distance from the origin. The stability conditions state that V is decreasing toward

zero or at worst not increasing with time.

There ¿ìre two properties which are extremely important to nof¿. Since there is no

definite method available to construct a Lyapunov function representing a particular

process, therefore, there can be no limit to the number of potential Lyapunov functions

which can be considered. However, it is sufficient to have just one to ensure

stability. The second point is closely related. It is that the existence of a Lyapunov

function guarantees stability. But if none of the following conditions are satisfied by the

function

Y<O x*0

V<o )c+o

then it does not say that the system is unstable; it simply says that the function under

consideration is not a Lyapunov function. The search must continue for other

candidates.



2.5 Construction of Lyapunov Function

The lack of a generally applicable guide to the construction of Lyapunov functions is

the biggest drawback to the method's use. There have been attempts to generate,

successively general forms of Lyapunov functionsby Warden et al. (1964), Gurel and

Lapidus (1965), Chen and Kinnen (1970), and Davison and Kurak (1970). These

approaches have not received a great deal of use. Numerous methods have been

proposed in the literature to derive suitable Lyapunov functions to study the stability of

nonlinear systems. These methods are written briefly as

. The method of canonical variables (Lur'e 1951, Lu,r'e and Rozenvasser 1960, Letov

1955,1962).

. The method of squaring (Krasovskii 1954).

. The method of analogy with linear systems (Malkin 1952, Barbasin 1960).

. The method of separation of variables (Barbasin 1960, 1961, Chin 1967).

. The method of Zubov (Zubov 1964).

. The method of integration (Ingwerson 1961, Ponzo 1965, Brocken 1966, Puri 1966,

Huawc 1967).

. The variable gradients method (Schultz and Gibson 1962, 1963).

. The method of Szego (Szego 1962).

. The initiating function method (Mukherjee et al. 1972).

. The Lagrange-Charpit method (Miyagi andTaniguchi 1980).

. The method of system energy (Marino andNicosia 1983).

. The integral method (Chin 1986).

. Other methods (Ku and Puri 1963, Kalman and Bertram 1960, Skidmore 1966).

All these methods listed above are applied to derive suitable Lyapunov functions for

several nonlinear problems related to electrical or mechanical engineering problems.
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Some authors have tried to apply these methods in chemical engineering literature as

well.

2.6 Krasovskii Forms

One standard form of Lyapunov function which has received wide use is that due to

Krasovskii (1963).In the chemical engineering literature it was applied to extraction

units by Koepcke and Lapídus (1961) and to the CSTR by many other authors. Among

the most useful applications are the works by Leathru.rn et al. (1964), Berger and

Perlmutter (1964), Luecke and McGuire (1965), Paradis and Perlmutter (1966),

Stevens andWanninger (1966), Berger and Lapídus (1968). Berger and Lapidus (1969)

have also considered the use of the Krasovskii form on the tubular reactor modeled by a

series of continuous sttred tank reactors. In general the results of all these analyses

have been rather conservative. The predicted stable range has been quite small as

compared to the actual nonlinear system behaviour.

The basic features of Krasovskii's theorem can be outlined in a simple fashion if the

nonlinear systems of equations can be represented in the form of equations 2.1 and2.2

Then these will be subject to a theorem due to Krasovskü (1954):

Let f have continuous first partial derivatives and its Jacobian matrix be given by

F(x):ðf,/òxt.If F'(x) is defined as

F'(x) = F(x)+ frçx¡ (2.3)
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and F'(x) is negative definite, then the steady state x" = 0 of the system is

asymptotically stable in the large, and

v(x)=llrel ll' (2.4)

is a Lyapunov function for the system.

In the course of proving this theorem Kalman and Bertram (1960) have shown that the

sign of the derivative of V(x) depends on the sign definiteness of the matrix F'(x). If the

matrix F'(x) is negative definite, then the scalar derivative of V(x) will be negative.

Another interesting feature of Krasovskii's method is that it proposes a Lyapunov

function which describes closed surfaces (Letov 1962) in the n-dimensional space of the

state variables. The proposed Lyapunov function is of the following form (Hahn 1963)

v@) = fA¡ (2.s)

where A is a constant positive symmetric matrix. Thus V(x) is a positive definite

quadratic form in the derivatives of the state variables.

There are several important features concerning the above form of Lyapunov function.

First, in chemical reactor stability studies where multiple equilibria states occur the

region of asymptotic stability (RAS) is bounded and not global. The Lyapunov function

defined by equation (2.5) permits determination of the bounded RAS because within the

bounded region the derivative of V(x) must be negative definite and outside this region

it may be positive definite. The bounded region is defined by the surface V(x) equal to a
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constant and these surfaces, V(x)= K, are closed in n-space. Another fortunate feature is

that the closed surfaces, V(x)= K, are nested surfaces, and as the constant K of the

surface increases the distance of the surface from the origin uniformly increases.

The quadratic forms of the function discussed above, used by Lyapunov and Krasovskii

made the Lyapunov function a measure of the distance from the origin. An alternative

nonn of the state space was used by Rosenbrock (1963).

À¡

v = Zlf,lj=r
(2.6)

where V is somewhat analogous to the Krasovskii norm with A=I. Equation (2.6)

satisfies the conditions of a Lyapunov function for certain nonlinear systems.

2.7 Applications

The Lyapunov function can be used for certain naturally occurring systems of nonlinear

simultaneous differential equations. The equations arise when there is a flow of some

physical quantity such as heat, . , liquid flow, diffusion and chemical reaction.

V/hen these systems obey nonlinear equations their stability may not always be self

evident, and it can be investigated by the use of Lyapunov function. Lyapunov's dire<;t

method is used to examine the stability of a chemical reactor and heat exchanger in this

section.



2.7.I CSTR

The need to determine a finite region of asymptotic stability (RAS) for nonlinear

systems arises, for example, in the case of an exothermic reaction taking place within a

CSTR. An exothermic type reactor operating at some steady state is subject to a number

of disturbances which cause this condition to change. If following such a disturbance

the reactor variables (temperature and concentration, for example) remain within some

bounded range, the system is called "stable". If in addition the system approaches its

steady state condition with increasing time, it is termed asymptotically stable. If on the

other hand the system behaves such that a given disturbance produces a runaway

(unbounded) response, it is called "unstable" with respect to that disturbance. The

stabilitlr of a gi.rrcn :reactor is 5n general deperdent on its i¡titial

crcrd.ition, on tlre fo:m ard nagnitude of tlre disturdcances ard also on

tlre i¡helent ¡ihysics arxt clrønistry of ttre systen urder sü$r.

Furthermore, these concepts can be exien¿ed to develop definitions for stability over

larger regions. If a system's steady state is stable for inputs of any magnitude, that is if

trajectories from any initial condition converge on a steady state, the system is called

"globally asymptotically stable". In many cases of practical interest this behaviour can

n
only be demgb:rated for a restricted set of initial conditions. The system is then said to

be asymptotically stable in a bounded region.

However, in addition to these definitions it is important to establish the stability limits

of a region around each stable point such that one may predict the result of a finite

perturbation. One way to approach this problem is to consider the direct solution or

integration of the nonlinear system equations. However, this becomes more and more

difficult as the number of variables increases. The numerical or linearized approach is

limited in one important aspect: that the result can only provide information on local

stability. For practical design a guatantee that a particular steady state is locally stable is
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not as useful as quantitative information showing stability over at least a region of

interest because from local stability alone it is not possible to establish whether a small

disturbance can produce instability. In this CSTR system, nonlinear kinetics are

retained by using a Lyapunov function and equations are transformed in a suitable form

in order to analyse the system by Krasovskü's theorem.

2.7-l,l The System Equations

A well stirred tank reactor is considered in which a homogeneous reaction is taking

place. The system is exothermic, and heat üansfer takes place at the walls of the vessel.

This system was discussed by Berger and Perlmutter (1964), and has been selected to

elaborate the application of a Lyapunov function and to provide a geometrical

interpretation of the method. The equations representing the heat and material balance

are

Pvc r# = Nrvr - uA,(T -To) - Pqc o(T -To)

v#=-vr -q(c -co)

(2.7)

(2.8)

where T and c are the state variables of the system.

These equations were transformed into a suitable form for further analysis by

Krasovskii's theorem. Firstly, these equations were normalized and then transformed to

form a system of equations in which the steady state has the vector coordinate equal to

zero. The transformation equations are given in Berger and Perlmutter (1964)
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Equations (2.7) and (2.8) after subsequent analysis reduce to

d\'__t_L rl'dtcso

(2.10)

where r'=t-t", Ìl':î-1ì" ând y'=y-y are the specifrc perturbations from the

steady state point.

where n and y are the normalized temperature and concentration respectively.

Equations (2.9) and (2.10) combined with equation (2.4), give a Lyapunov function of

the form

dy'r'1,
--_-atdt- cs rt

v(r(,y') =(t -Zr)'
\'co a )

(2.e)

(2.rr)

In this set of equations the only nonlinear term is r which is a rate equation given by

r =Ae4'Tcn (2.r2)

Also the rate term in the equations is considered as an implicit function of concentration

and temperature, r = r (T,c) = r(\',y).

Equations (2.9) and (2.10) can easily be treated with Krasovskii's theorem. Reducing

these equations with Krasovskii's theorem the results may be further simplified using
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Sylvester's inequalities (Hohn, 1958). Sylvester's inequalities reduce equations (9) and

(10) so that the elements of the system matrix of state variables must satisfy the

following inequalities:

b -(NrvQrtT2)>o

(ryfr,.ïÏ4bnr
ac

(2.r3)

(2.t4)

Equations (2.13> and (2.L4) together with equation (2.12) define two curves in the

temperature - concentration plane. If these equations are combined with the Lyapunov

function given by equation (2.I1), they are sufficient to fix the RAS about an arbitrary

steady state.

2.7-1.2 Geometrical Interpretations

In order to give a better understanding of the ideas explained above, a geometrical

interpretation of the Lyapunov function has been given in the figure 2.1. The plot in the

temperature and concentration plane explains the mathematical developments

discussed above.

Equations (2.13) and (2.14) determine the two curves 1 and 2 respectively as shown in

the T, c plane of figure 2.1. For a hypothetical Lyapunov function V=K, contours are

drawn. Increasing the value of K, would increase the value of V, resulting in a larger

area covered by a contour in the T, c plane. Inequalities (2.13) and (2.14) are satisfied

under the curves 1 and 2, and above those curves they are contradicted. At any point in
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the region of the plane which lies below both lines v1x¡ will be negative. Therefore any

region which is below the curves and within a contour satisfies all the requirements of

the LaSalle and Lefschetz theorem (1961) and is a region of asymptotic stability.

Dependi¡g on tlre rnlues of K, tlre st¡bility regions for a ¡nrticular

Ll/a[n¡no\¡ fi¡nction shoør i¡r fLq. 2.L cor¡Id be targer' Itre la::ger the

r¡alue of K satisfying tlre crcndition of Lyalr:nov fi.lnction, ttre less

constervatir¡e wilÌ be ttre prediction of the stability lægion'

Figure 2.1 shows that the curve V = K, gives an RAS which includes point A. It shows

that a disturbance to this point will ultimately vanish, and the system will retum to its

steady state. The curve V = IÇ shows that the same idea is valid for the point B. Also

the area shown by the contour V=IÇ is the largest possible RAS for the particular

Lyapunov function. If for example, V=K, is considered, then the contour encloses areas

in the plane for which y is indeterminate in sign. Points C and D, for example, are in a

region of indeterminate behaviour as regards this Lyapunov function. The behaviour of

the trajectory from point E is also indeterminate. Although E is in the region of locally

stable states, it cannot be included in the RAS. It might be of interest to find another

Lyapunov function for which an RAS includes points which are in the indeterminate

region.

2.7-1.3 Results and Discussions

The numerical example given by Berger and Perlmutter (1964) has been considered for

the analysis with a view to obtaining the largest RAS for the given Lyapunov function.

Numerical data may be found in Appendix A. The method entails determining the

V1x¡=0 curve and placing it on the T, c plane. For this pu{pose the Lyapunov function
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V given by equation (2.11) was differentiated with respect to time and the values of the

variables were put in the derivative form of Lyapunov function. Then beginning at a

very small value of the Lyapunov constant K the closed curyes of V(x)=tç were also put

on the plot. The constant K is increased until the closed Lyapunov curve just touches

the curve V1x¡=0, determining the largest RAS. Therefore, within the closed curve V(x)

= K, v(x) < 0. On the closed curve V1x¡=0 at only one point, and it will be less than zero

at all other points. Figure 2.2 shows that for a Lyapunov function K=0.42, the largest

region of asymptotic stability is obtained since the curye vlx¡=O intersects the closed

curve. However, for K=0.30 the closed surface obtained does not intersect the curve

Vçx¡=0 which means that everywhere upon the closed surface the value of l(x) will be

less than zero.

Table 2.1 gives the stability range for disturbances in temperature and concentration. It

is apparent from this table that the Lyapunov function K=0.42 yields the largest RAS

where the system will exhibit asymptotic stability for disturbances in temperature as

great as + 30"R and in composition as large as + 1.4 Kg.moles/cu.meter.

Table 2.1 Stability Range for Disturbances
in Temperature and Concentration

2.7-2 Heat Exchanger

Lyapunov's second method is applied to a shell and tube heat exchanger with

condensation of vapours on the shell side. For this situation, we always expect to have a

nonlinear heat release curve. The system of heat exchangers is usually considered to be

+ t.44+30550o.42

+0.80+205s00.30

Disturbance
in Conc.

Kg.moleslm3

Disturbance
in Temp.

.R

steady state
Temp.

"R

Lyapunov
Function
V(x)=Y
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continuous and its behaviour is expressed by partial differential equations. However in

order to apply the second method of Lyapunov, the continuous system is divided into

small elements within which conditions can be considered uniform.

Figure 2.3 shows the heat exchanger system. The exchanger has been divided into n

sections where the rth element occupies the length between sections at s and s + ôs. Two

streams of liquid are flowing through the exchanger with constant flow rates. Within

each element conditions are assumed uniform. In the rth element, masses H, andH', with

temperatures Q and 0', exchange heat at the rate W, per unit time. !7, is considered to be

some function of 0, and 0',.

A lumped model of a heat exchanger given by Rosenbrock (1962) is considered which

gives the following energy balance equations around the rth section:

ft{r,, or,) = LCoo,-r- LCoe,+w,

ft{r',"' rt',) = L'c' og', - L'c' pg', -t - w,

(2.ts)

(2.16)

where (co= c) and qc'o= c) are the specific heats of the liquids in the two streams. All the

values of specific heats are assumed to be independent of time. If we identify variables

of the system with the equations of the form

x - f(x) "f(0) = 0 (2.17)

then the two-dimensional state vector x can be expressed as follows
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I

Xi= X2r= HrCpA,

=xzr+l=H"C'pït,

r =o,1,.....n

i =0,1,.....2n+l

x'b, x2r*t

cHr'c'H',

(2.18)

(2.re)

The set of equations (2.15) and (2.16) combined with (2.18) gives the following

equations

,u="?i-ri,.*,{

, x2r-l
(2.20)

)Cù, Xzr+t

'H,'t'H,
irr*r= L

H r-l

These equations have steady state solutions ît xu= x, *r= 0 and the nonlinear heat flux is

an implicit function w, : f(0,, o',).

Equations (2.19) and (2.2O) can be analysed by Krasovskii's theorem. If the heat flux is

treated as an implicit function of the two inlet temperatures of the process streams such

as Iryr= w,(ono',)=w,(4,q*1), then the Jacobian matrix is written as

cL-
ðW,

aot

ðW,

Nr

F(x) =
CH, C,H,,

(2.2r)
àW, àW,

æ N,

CH,

c'L'+
,Hc f

In order to satisfy Krasovskii's theorem, it is necessary to ensure that the Jacobian

matrix F(x) represented by equation (2.2L) satisfies the condition that

t

I

F'(x) = F(x)+ Fr@) (2.22)
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is negative definite. Then the steady state r2":0 of the system is asymptotically stable in

the large, and

v(x)=ll/trl ll' Q.23)

is a Lyapunov function for the system.

In the equation (2.22), r'1.r¡ is the transpose of F(x) and is given by

cL
àW,

-æ,

àW,

-æ,

ðW,

æ,

Frlx¡ =
CH, CH,

(2.24)
àW, ,+ àW,

N,N,

C,H,, C,H,,

Therefore, the matrix F'(x) can be calculated from equations (2.21) and (2.24) and is

given by

cL- àW,

æ.

àW,

F'(x) =
-2 CH,

æ, ñ,
_-I-

cH.' c'H',
(2.2s)

,Lc

àW,

ðw, ðw,

-4- 
4

cH,' c'H',
I

ctL'+
ðW,

Nr

C,H f

The condition that F'(x) <0 can be restated âs -F'(.r) > 0. The converted matrix is given

by

àW,

CH,
àW,

ao, à9,

ðw, àw,

ær Nr

c'L'+
àW,

Nl

CL

2 cH, c'H',

cH, c'H',

-F'(x) =

2
C,H,,

(2.26)
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In order to prove that the matrix -F'(x) is positive definite its elements must satisfy

Sylvester's inequalities (Hohn 1958), given by the following equations

(2.27)

(2.2e)

> 0 (2.28)

These inequalities determine the two curves in the heat flux - temperature plane.

Inequalities (2.27) and (2.28) can be interpreted in a simplified form as

^?'-#)h?,.#,)ä1#*-w#.)',

aw_
=-j = -UA <O
d0.

ãw_

t=UA>0 (2.30)

These inequalities are always satisfied except for very high rates of heat transfer as an

increase in local temperature difference between the t\ryo liquids will in most

circumstances increase the local rate of heat transfer (Rosenbrock 1962).

The sign of the derivative of the Lyapunov function tzlx¡ is fixed by the sign

definiteness of the matrix F'(x) with reference to a theorem due to Krasovskii (1954). If

in a region of the heat flux - temperature plane these inequalities are satisfied, then v(x¡

is negative in that region.

In order to check the other conditions for asymptotic stability in a bounded region it is

necessary to examine the Lyapunov function for this system for the largest possible

region V(x)<K that lies within the region in which V@).0. Therefore the set of
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equations (2.19), (2.2O) and (2.23), gives the following Lyapunov function of the form

(2.3t)

where the variablas xv,,rcv.¡y are implicitinw,(4,ry*,) ând K is a Lyapunov constant.

Replacing the variables of equation (2.18) in equation (2.31) a simplified form of

Lyapunov function is obtained

V(H,c0,,H',c'0',) = (W,-Lc0,)2 + (W,+L'c'0',)' = K (2.32)

where W,:f(Q,,ï',).

The Lyapunov function given by equation (2.32) is solved for IV,, which gives a

quadratic equation of the form

(nr,, (h-i,,)'.(h-#,*1=*+v x2,
')

1*, K
2

0 (2.33)

2.7-2.1 Results and Discussions

The equation (2.33) gives for a value of r = s.se x 106, two values of heat flux. Figure 2.4

shows the plot of V(x)=t( curve. The curve Vçx)=0 was also determined and placed on

the Temperature-Heat Flux plane. The value of K was increased gradually to 5.80x106

until the V(x)=¡ç curve touches the curve Vlx¡=g, determining the largest RAS for the

given conditions in the heat exchanger. It should be pointed out that in figure 2.4 the

stability regions drawn satisfy specific processing conditions for a particular value of a

Lyapunov function. If conditions change due to some problems in operations, for

instance due to fouling in heat exchanger, then the stability regions obtained will be

w! -w,1tco,-L'c'o',) {(Lcï,)z + çL'c'0',)2}
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smaller in shape as compared to one shown in the figure 2.4 due to reduction in heat

transfer coefficient. This fact can also be demonstrated from the stability regions drawn

in figure 2.4 which shows the stability regions for vapours condensing from a

temperature of 66oC to 38oC. However, if fouling takes place in the exchanger it will

tend to increase the outlet temperature of vapours, thereby decreasing the condensation

range of temperature and this decreasing effect in condensation will shrink the stability

regions. Since it is always possible to find a stability region in a heat exchanger even in

the case of fouling, the stability problem of heat exchangers in industrial operation does

not seem to pose much diffrculty. However, it will be interesting to study the stability

criteria of a system with a feed effluent heat exchanger and an exothermic CSTR. In

this type of situation, feed effluent heat exchange may lead to serious stability problems

( Stephanopottlos, 1984).

It has been shown analytically in Appendix A that the derivative of a Lyapunov

function is always negative in the case of a heat exchanger, and that the inequalities

given by equations (2.29) and (2.30) are always satisfied.

2.8 Conclusions

It is appreciated today that since chemical processes are nonlinear in their behaviour, a

linear analysis of control gives an approximation only and the consideration of

nonlinearities in the process is essential to enhance its performance. Lyapunov's second

method does provide information on the stability analysis of nonlinear system but the

construction of Lyapunov function for a particular chemical process is still a

challenging research area. There are some forms of Lyapunov functions due to

Krasovskii which provide an insight into the stability of chemical processes like CSTR

and heatexchanger.
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However, the mathematical results developed so far to study the stability criteria have

limited applications due to the following constraints

. 'When there is a flow of two or more interacting quantities, the results cannot bs

applied. On multicomponent distillation, for example, the results have not been

applied effectively (Rosenbrock, 1960).

The results cannot be applied when a flow depends upon conditions in other

sections.

o

ô The results cannot be applied also to the systems in which both the potential and

kinetic energy are stored.

Nevertheless, an attempt has been made in this Chapter to show that it is possible to

obtain the stability regions for a CSTR and a heat exchanger provided a suitable

Lyapunov function is constructed. Stability of a chemical process is also important for

dynamic operability point of view. If at an initial design stage a thorough analysis of

stability can be made with the methods discussed in this Chapter, it will be of great help

in the operability analysis of the process system. For example, if a plant is unstable it

may be rejected at an early design stage before making an extensive studies with

regards to dynamic operability. Therefore, in the proceeding Chapters a dynamic

operability studies is carried out to understand the dynamic behaviour of the two

systems discussed in this Chapter.
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CHAPTER 3

DYNAMIC PROCE S S OPERAB I LITY

AN D SEN SITIV ITY ANALYSIS

A good theory must be useful to process control
engineers and should be developed to
accommodate the needs and skills of the potential
users..... It was once saíd that only Frank Lloyd
Wright can design a house for a family without
asking about the number of children, or the family
budget.

W . Lee andV .W .Weelcrnan.

This chapter deals with analysing constraints on dynamic operability imposed by

process design and control system design. It also gives an overview of dynamic

operability analysis to provide an insight into the methodology developed for

operability analysis.

The effect of physical constraints on dynamic operability can be measured by making

use of singular value analysis techniques, hence some important aspects of singular

value analysis have also been discussed. The significance of the condition number,

which quantifies the sensitivity of the system with respect to uncertainties in the matrix

(modelling errors), is also highlighted.

Since the singular values depend on the scaling of the system, i.e. the physical

dimensions which are used in defining the variables and the equations, a method of
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optimum scaling of the transfer function matrix has also been discussed.

All these techniques have been applied to a CSTR with exothermic reaction and a Heat

Exchanger in the following chapters.

3.1 Introduction

Dynamic process operability is defined as the ability of the plant to perform

satisfactorily under conditions different from the nominal design conditions. The plant

should be able to make the transition from operating conditions to stand-by or shutdown

conditions without violating its environmental or safety constraints.

Dynamic process operability has a wide range of application, covering a broad field of

process and control topics from efficient normal operation to startup and shutdown. It

also includes considerations such as safety, reliability and profrtability. For a particular

process, dynamic operability analysis involves adjusÍnent to changes in operating

conditions such as product quality, product distribution and demand, energy

conservation aspects and changes in feedstocks.

Most of the time process design work has been carried out without having much

interaction with the control system design. General practice today depends heavily on

detailed dynamic simulations, empirical overdesign and trial and enor methods to

encounter dynamic operability problems. But due to the complexity of integrated plants

it is desired that an engineer be able to assess and improve the dynamic operability

characteristic s with more ri gorous technique s.

The main objectives that should be kept in mind in order to achieve better operability of

a chemical plant include the following
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a A plant should recover from disturbances as quickly as possible.

It should be capable of fast and smooth switchover from one set of operating

conditions to another.

o

a It should be

conditions.

(en"omreo()
feasibty/for different ranges of feed conditions and other plant

During equipment failure it should still be able to operate safely.

There should not be any problem during startup and shutdown of the plant.

Figure 3.L shows a simple representation of the design and operation of a chemical

plant. This figure consists of the process design and the control system design within

which several alternatives should be taken into account before a final plant design is

decided. Furthermore, each of the factors described in figure 3.1 imposes different

constraints on the system which limit the dynamic operability of the final design. The

main idea for any dynamic operability study is then to be able to identify these

constraints, quantify their efforts, and propose design changes to remove them.

Details of these factors and other fundamental constraints on dynamic operability have

been addressed in literature by Arkun (1986), Grossmann and Morari (1983) and

Morari (1983). Here a brief overview on dynamic operability analysis is given in order

to provide an insight into the methodology developed for operability analysis.

a

a
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3.2 Dynamic Operability Analysis - An Overview

A rational scheme based on frequency-domain decoupling was developed by Buckley

(1964). More formal attempts have been made to develop a framework for control

synthesis (Govind and Powers, 1982; Morari, 1980), but these techniques remain to be

fully tested. In multivariabte control systems, considerable progress has been made

(Bruns, 1982; Garcia and Morari, 1982 a and 1982 b; Lau et al., 1982), but this is only

a part of the entfue control system synthesis problem. Progress has also been made in

the flowsheeting requirements to meet a range of operating conditions. The work of

(Grossmann and Sargent, 1978; Marselle et al., 1982; Morari, 1982 a and 1982 b)

provide r milestones in this area. Lenhoff and Morari (1982) provided an interesting

study of the tradeoff between optimal flowsheets and controllabitity. The variable

control structure strategies developed by these authors can be considered as

methodologies designi/o proroiae more flexibility in the plant by either altering the

control system or changing the process interconnections. The final aim of these

strategies is to increase the performance and the reliability of the system.

Many methods are also developed for the design of regulatory control structue

problems in which the measurements, the manipulated variables, and their

interconnections are synthesized to regulate the process. These methods range from a

relatively simple criterion such as static relative gain aray (Bristol, 1966) and its

dynamic extensions (Tung and Edgar, 1977; Witcher and McAvoy, 1977; Gagnepain

and Seborg, 1982) to sophisticated computer aided methods using interactive graphics

such as the direct Nyquist array (Jensen et al., 1983) and singtlar value analysis (Lau et

al., 1985). The review papers of Ray (1982) and Stephanopoulos (1982) give detailed

discussions on this topic.
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Singular value analysis \ilas proposed by Doyle (1982) to study the stability and

performance of control systems in the presence of uncertainty. The method offers

opportunities to treat several different uncertainty descriptions in a nonconservative

way (Skogestad and Morari, 1985).

The development of synthesis of control policy, that is taking the process from a crurent

operating condition to the new operating condition was carried out in a different ìways.

Arkun and Stepanopoulos (1950) addressed the synthesis of control policy in the form

of steady-state optimizing control, Bamberger and Isermann (1978); Prett and Gíllette

(1950); Garcia and Morari (IgSi) studied it as on-line optimizing control and Kao

(1980); Brooks (1979) considered the synthesis of control as a start-up control policy.

A new representation called Intemal Model Control (DvIC) has been introduced by

Morari (1953). IMC provides the right theoretical basis for the analysis of dynamic

operability during process design and constitutes a powerful framework for the

synthesis of control systems. Morari et al., 1985 evaluated the operability

characteristics of several given designs by comparing their robustness indices. Also

(Palazoglu et al., 1955) suggested that starting from a given region, one can evolve to

designs with better operability by conducting a sensitivity analysis in terms of the

pertinent design variables, and making design modifications. The key to the robustness

analysis is that it inffoduces new ways for characterizing the structure of the

modeVplant mismatch, and estimating the associated model error maffix and its

magnitude bound.

Process simulation for operability analysis requires a lot of time, particularly in going

from the steady-state to dynamic problems. A multipurpose simulation programme \ryas

developed (Perkíns and Sargent 1982) to perform steady-state and dynamic simulation

for the same set of models. It also interfaces directly with a state-space conffol system

design package.



38

Most chemical companies are now making quantitative operability analysis part of their

engineering procedurcs (Tippets, 1982; Whíte, 1982). The quantitative operability

analysis refers to the system simulation approach to operations analysis under

conditions of uncertainty.

3.3 Singular Value Analysis

The effect of physical constraints on dynamic operability can be measured by making

use of singular value analysis techniques (Klema and Laub, 1980).

In the structural analysis of multivariable systems, singular value analysis plays a vital

role. The method is a powerful and computationally efficient tool for analysing matrix

system (Noble and Daniel 1977; Forsythe et a1.,1977). Recent development shows its

applications in systems engineering (Doyle and Stein, 1981; Safanov et al., 1981; Cruz,

et al., 1981; Postlewaite et al., 1981). These studies are based upon particular feedback

controllers and consider some form of closed loop matrix operators. Many sources in

the literature describe the physical interpretations (Weber and Brosilow, 1972; Morari,

1982; Lau et al., 1985) of singular value analysis.

3.3.1 Mathematicallnterpretations

Essentially, singular value analysis allows us to express a general matrix in terms of a

dyadic expansion or three decomposition matrices as in equation (3.2).

S,'= I o,Z,V!=ZÌyV*
i=1

(3.1)

where S- is the steady state version of the system matrix defined by Rosenbrock (1970)

and
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Z = (zrzr. .2,2,*t)

= Left singular value decomposition matrix

y* = (viv|. .viv!*r)

= Right singular value decomposition matrix

Iy = diag (o po2,.... . ...,o,,0)

=Diagonal matrix of singular values.

Singular value analysis application to the system of an (m x n) transfer function matrix

G(s) leads to the equation (Noble andDaniel, 1977).

G(s) =z(s)^(s)v.(s) (3.2)

This representation provides the basic sffucture for the method used to analyse the

CSTR and Heat Exchanger system by singular values in the proceeding chapters.

The manipulated variables are less likely to be saturated by load changes for those

process designs whose minimum singular values are large over a large frequency range

(Morarí, 1983). Singular Values (also known as principal gains) of the transfer function

matrix may be used to evaluate stability margins for multiinpulmultioutput (MIMO)

systems in the same manner as the amplitude ratio is used in SISO systems.

The singular value depends only on the process design and is independent of the

particular controller used.[t is easy to compute and is utilized as a dynamic operability

measures.

Doyle andstein,(1981) andsmithet al.,(1981) have adopted SVD to theloop selection

in a steady state system. Morari (1982) used the SVD to quantify the control
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performance attainable in a process and interpreted implementability and sensitivity of

the plant, concepts which quantify the resiliency of the plant, in terms of the norms of

the transfer function operator.

3.3.2 Process Control Properties Provided by SVA

It has been shown that the condition number of a system can be used as a measure of

sensitivity of control performance to modelling error and as such is a measure of

controllability (Morarí, 1983). It is also a measure of robustness, i.e., the ability to

guarantee a set of fixed outputs y given errors in the process model G since for the

linear system

errors in u may be estimated as

Gu=!

ll¡cll

(3.3)

(3.4)
ll-c ïT

where yis the condition number of the matrix G (Perkins andWong, 1985) and

y(G)=llcll llc'll (3.s)

The analysis comes directly from analysing the singular values of the matrix G since the

condition number of a matrix is defined as:

'(G)=#3
(3.6)
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where o' and o. denote the maximum and minimum singular values, respectively.

Since the condition number is a measure of the sensitivity of the system to modelling

errors, it is desirable that this number should be as small as possible. The smaller the

condition number, the more it will tolerate a larger uncertainty before going unstable.

This also indicates that when the condition numbers are low, higher gain for the

feedback filter is allowed, thus improving the dynamic performance.

Perkins and Wong (1985) studied the dynamic behaviour of a model representing the

double effect distillation of methanol with three different configurations. They have

observed by plotting the minimum condition numbers as a function of frequency that

one of the configurations is influenced by the large values of condition numbers at high

frequencies whereas the best configuration seems to be the one having low condition

numbers at high frequency.

Joseph and Brosilow (1978) used the singular values to select measurement structures

for inferential control. The magnitude of the minimum singular value is a measure of

the minimum distance to the nearest singular matrix and hence also a measure of the

invertibility of the system. Therefore, the minimum singular value may be interpreted

physically as an indicator of control effort required to reject a disturbance. Thus o.(G)

gives a measure of potential difficulties when implementing feedback control (Morari,

re82)

Consider a system matrix given by

G',)S.= (3.7)
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where A is a linearized state transition matrix, B is a linearized input matrix and C is

defined as a measurement matrix and the four coefficient matrices are those of the

standard linear state space equations. The system description can be formulated as

(3.8)

The transfer function matrix G(s) is then related to the matrix (3.8) in the following way

G(s) = -CA4B +D(s) (3.e)

and its dynamic version is written as

G(s) = C(sI -A)-18 +D(s) (3.10)

If D(s):0, thenG(s) -->o as .r -â æ and G(s) is then said to be strictly proper. D=0 for

most systems, since the measurements rarely are influenced by the manipulated

variables.

Lau and Jensen (1985), described a method for evaluating the controllability of a

process by SVA using the system matrix. By plotting contours of the minimum singular

value and the condition number of the steady state system matrix over the feasible

range, defined by the state and constraint equations, they visualizedthe sensitivity and

operability of the process system.

3.4 Dynamic Analysis of System Matrix

The steady-state expression of the system matrix is given by equation (3.7), whereas its

dynamic version is given by the following formula:
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ß^-sl A\
tc o)

(3.1 1)

Steady-state analysis has been applied to a CSTR system by Lau and fensen (1985) as a

preliminary tool to identifying critical points in the feasible operating region. The

steady-state maffix represented by equation (3.7) provides information on how the

oulputs of the system will be effected due to changes in the inputs. However, S^ does

not supply information on how the ouçput variables change with respect to time and it

does not reflect the dynamic characteristics of the system. This situation is best

represented by transfer function of the system given by equation (3.10) or by the

dynamic version of the state space matrix represented by the equation (3.11).

This study is based on a dynamic analysis of the open loop transfer function and state

space matrices. Open loop analysis refers to the system itself, that is the reactor without

the addition of controllers. This approach provides insight into important closed loop

system properties such as stability (Postlewaite et al., 1981), sensitivity (Weber, 1972),

and invertibility (Morari, 1981). Again o.(G) gives a measure of potential difficulties

when implementing feedback control but as a function of the frequency of the

disturbance.

3.5 The Effect of Scaling

Singular values depend on the scaling of the system. By selecting an appropriate scaling

method the condition number of the scaled system may be reduced from the original

values. If D, and D, are diagonal scaling matrices then

1(A) + \(DtAD2) (3.t2)
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Perkins and Wong (1955) suggested comparing transfer function matrices only on the

basis of the optimal condition number in the maximum nonn as defined by Bauer

(1963) which is an upper bound on the optimal condition number in the 2-norm. Lau

and fensen (1955) take into consideration a series of scaling procedures for the state

space matrix. They investigated the effects of scaling on the analysis by scaling the

steady-state system matrix with empirical methods, equilibration, and geometric

scaling. They have also demonstrated that the scaling of the variables and equations can

drastically change the contours of sensitivity and invertibility.

Taking the optimally scaled condition number of the state space matrix is inappropriate,

however. The optimal condition number of a matrix S is given by the maximum eigen

value n of the matrix

ls lls'l (3.13)

(3.14)

(3.1s)

where the modulus represents taking the absolute values of elements. It can be shown

that the optimal æ- nonn condition number of the matrix P, tle), for strictly proper (D

= 0) square system is given by

{rpl = maxli.(B), yl(c)l

i.e, yl(p) is independent of A for this class of systems

If the matrix S. of equation (3.7) is denoted by P, then its inverse would be given by

o'=Go' -í;r)
Tle eq. (3.15) has been derir¡ed in Àppendi:r A.
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The matrix lp llp'lis therefore

lr llp-' l=
a ll¡' I

0

le ll c'l+l¿ ll B-'AC-'
lc ll c'l (3.16)

The maximum eigenvalue of this marix, n(p llr'l;, is, therefore, the maximum of

æd ¿ ll¡'l¡ and æ( c ll c' D.

Eigenvalues of eq. (3.16) do not depend on tlre s1æten tmtrix A,

thqefore, ttre optirmlac- norm qcndition nr¡nber of P is independent of

A. lltre cordition nr¡nber of this ratrix is inapp:opriate as it does not

æflect tlre cont¡ollabiliQr of tlre p:ocess ard t}re optimal scaling of

tlús natrix rærrpves irrpoftant ilfonmtion frsn tle anal1æis.

Therefore in the next chapters optimal scaling method is applied only to transfer

function matrices whereas the state-space matrices are treated without being scaled.

3.6 Conclusions

The main important conclusion that may be drawn from the survey of dynamic

operability studies is that operability must be considered early in the process design

work. Due to the trend toward increased mass and energy recycling in processes, the

entire plant must be taken into consideration as a whole rather than as a collection of

individual unit operations.

A plant design for optimum economic performance at nominal design conditions is

usually not sufficient to ensure a successful design. Likewise, a plant design to meet the

energy conservation aspects does not necessarily guarantee safe operation. The

objective of ensuring good operability characteristics is often of greater importance due

to uncertainties and changing conditions that are normally encountered during plant

operation.

I

ü
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The general concepts of oversizing the equipment for feasibility of steady-state

operation for a range of different feed conditions and avoiding long dead times for

dynamic operability are not the best solutions to the problems faced these days. There is

a great need for much more rigorous techniques for the assessment and improvement of

the dynamic operability characteristics of chemical plants. The actual solution to the

problems lies in comectly quantifying the dynamic operability of the problem,

understanding easily the area of trouble shooting on the plants, process monitoring and

improving the dynamic operability of the process design and the control system design

systematically.

Since the steady state analysis of the system matrix does not give information on how

the output variables change with respect to time, therefore, a dynamic analysis of the

system matrix is essential to look into the dynamic characteristics of the system.

Since the singular values are scale dependent, a method of optimal scaling is also

essential to compare the transfer function matrices. However, the condition number of

the scaled state space matrix is not a reliable measure of controllability as scaling

policies can remove important information from the analysis.

Finally, since chemical processes are nonlinear, sensitivity conclusions based on the

condition number of the linear system will only be valid in a small region around the

operating point at which the linearization was derived. It will be very useful to develop

nonlinear methods to assess the effect of constraints on dynamic operability of chemical

plants.
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CHAPTER 4

DYNAMIC MEASURES OF SENSITIVITY

AND OPERABILITY OF A CSTR

"The Nature alone has the power to
expand a body in all directions so that
it remains unruptured and preserves
completely its previous form."

Galen, On the Natural Facultíes

In this chapter a study of a CSTR system is canied out making use of irreversible, first
lytkn

order, exothermic reaction kinetics having nonlinear modelling equations. Thiy

expected to have more control diffrculties than the endothermic system studied by Lau

and fensen (1985). The dynamic characteristics of the system are investigated for the

model linearised at several steady states over a range of frequencies for different

operating conditions. It has been observed that a system design for one steady state may

not be the best at another steady state t'romv dynamic point of view because of its

nonlinear behaviour. System control measures, sensitivity, and invertibility are

evaluated over a wide range of operatin ,?".1'"rínich are of practical importance for a

particular processing unit. The control potential of the system is established by

analysing the singular values (also known as principal gains) of the steady state system

matrix and extending it to include dynamics of the system.

-{
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I

t
Ì

;

I



4E

The condition numbers of both unscaled and optimally scaled transfer function matrices

of the CSTR at different operating conditions have also been taken into consideration.

The optimal scaling procedure has not been applied to state-space matrices as the

condition number of the scaled state-space matrix is not a reliable indication of the

controllability of the system.

It appears by studying the sensitivity and invertibility contours that optimal economic

performance is obtained in a region of high conversion and high temperature, but it may

not be feasible to operate the reactor at the optimum conditions because the system is

much more difficult to control under those conditions.

It has been observed that the singular value plots drawn in the case of CSTR analysis

remain constant at low frequencies and decrease linearly at high frequencies.

Furthermore, the sensitivity of the system deteriorates in a high frequency range.

4.1 Introduction

Most of the existing control theory is applicable only to linear systems with constant

coefficients, but the $eat majority of practical process control problems involve

nonlinear systems.

Systems described by nonlinear differential equations are very common in the process

industries and have models of the general form

ff = ¡6,ud') x(t) = xo (4.1)

y = h(x,u) (4.2)



+,

where

x(t) is an n vector of states,

u(t) is an m vector of controls,

d(t) is a k vector of disturbances,

y(t) is an I vector of measured oulputs.

When

f=Ax+Bu+fd
h=Cx+Du

(4.3)

(4.4)

(4.s)

the nonlinear system given by equations (4.1) and (4.2) reduce to a linear problem.

4.2 Ray, Uppal and Poore CSTR Model

Material and energy balances for the first order, exothermic, irreversible reaction A -> B,

in a well mixed stirred tank reactor lead to the following modelling equations (Ray et al.

r974).

v
dco

dt' =F(cx-cn)-vkoexp{-*þ

PCoV
dT
dt'

Fpco(r¡-r)+v(-Nr,*.*n{-#þ^ - hA(r -r") (4.6)

The quantity VpCo represents the thermal capacity of the reacting fluid alone. Similarly

V is the aeacfion uol'ane '

V/e define the following dimensionless quantities:
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xr

= Reactant Concentration.

)cz

= Reactant Temperature.

E
T R

Tj

T -T¡
Tr T

= Activation Energy.

çpCr)r hAp pCo FpC,

= Heat Transfer Coefficient.

Da=trt\

= Damkohler Number

Fr
ur

Fo

= Feed Flow Rate

u2 v
T"-T¡

Tr

= Cooling Temperature.
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B = (-NI)t" 
pq-L+

= Heat of Reaction.

, =r'T

= Time

After substituting these dimensionless quantities in equations (4.5) and (4.6), the

modelling equations of the CSTR take the following form:

drc,

i = -rt+ Da(l - xr)
)c2

hl+:
T

* ur= fr(xr,xr,ttr) (4.7)

# = -*,rr. + þ) + B Da(l -¡,) "-{+} + þu,= fz(xpxz, Itz) (4.s)

4.3 Linearization of CSTR Modelling Equations

For dynamic analysis of nonlinear systems there are many methods which can be used

to solve the system, such as:

. Simulation of nonlinear system on an analog or digital computer and computing its

solution numerically.

" Transforming the nonlinear system into a linear one by an approximate

transformation of its variables (if possible).
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a Developing a linear model that approximates the dynamic behaviour of a nonlinear

system in the neighbourhood of specified operating conditions.

Developing a linear model that approximates the dynamic behaviour of a nonlinear

system in principle is always feasible. Ltneanzatton of the CSTR system is carried out

by the last method written above. The problem under discussion is to linearise system

equations (4.7) and (4.8) with many variables.

Expanding the nonlinear functions f,(x,, x' u,) and fr(x,, x' u) into a Taylor's series

around the steady state of interest, we obtain a system which takes the following

general form of linear differential equations

4= At *Bu
dt

(4.e)

(4.10)

(4.11)

! =Cx

where system matrices A, B, and y are written as

ðf'
ðx,
ðf,
:-
òx,

ðr,

ðu,

ðr,
ðu,

àr,

A",

ðr,

A",

B

=xtpxz=xz,

= ulr', b2= t+h

(4.r2)
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(4.13)

(4.rta)

(4.rrb)

(4.1lc)

where

A = Linearized State Transition Matrix.

B = Linearized Input Matrix.

y = Measurement Matrix.

Therefore in order to write A, the following derivatives were calculated from the CSTR

modelling equations.

! --t-padxt Àl+:I

x2

ðÍ'
ðr,

(1-x')

('.;I
Da

af"

==_BDadxt

)$
Ll+:
v

(4.rrd)

Replacing these four derivatives back in the equation (4.11), the linearized state

transition matrix A takes the following form

#=-rr+þ)+BDaffi".n{+}
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)c'zs (1-¡t") x.2s

-I-Da

- BDa

-hrl+-
v ('.?)'

Da

1-
-4l+-

v

(1 -¡t") xzs

-(1+ þ)+BDa
('.?)' t+2,{

(4.r4)

(4.1s)

(4.16)

xx

t+2,t

=xltx2=4

where x," and x2" are solutions of steady state equations..trrr is the dimensionless reactant

concentration and x* is the dimensionless reactant temperature and the system matrices

B and C are written as follows:

h
" =[o

0\
þ)

C_I Ð

where B and C are the input and ouçut matrices respectively.

4.4 Application to CSTR Model

Modelling equations (4.7) and (4.8) of a CSTR have two measured variables, the

reactant concentration and the temperature of the reactor. The two manipulated

variables are feed flow rate and the cooling water flow rate as shown in figure 4.1.

Using equations (4.7) and (4.8) and the measured variables, the followng 4x4

steady-state system matrix was calculated



u

External disturbances

(Measured Output)

^Z = rea*tor temp (T)

Xl 
= reactant conc (C)

Figure 4.1 lnput and output variables around CSTR systern

1

u
2

Manipulated
Variables
( or input)

CSTR
Processing System

{ = State variables

x
1

*2

lr!
¡rì
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-l-Da

-BDa

0I

0
Jc2")c¡s^:

-(r +Ê) +nnof]!
fl+jl
\ ï/

1

0

B

0

0

0

0

t+3
f

t+3.T

(4 . L7)

(4.18)

0

1

For dynamic analysis, the system matrix represented by equation (4.L7), was substituted

in equation (3.9) and pammeter values were estimated from figure 4.2 which was drawn

by taking into consideration the influence of the parameters discussed by (Ray at El.

1974) on the types of dynamic behaviour in a CSTR. They have observed during the

studies of dynamic behaviour of the reactor that for small values of y, the activation

energy, higher values of B, the heat of reaction, and P, the heat ffansfer coefficient are

obtained. They suggested that for multiplicity and limit cycle behaviour a much more

exothermic reaction would be required. The physical implications of these results

suggest that it is possible to achieve more stable and less exotic operation by

accomplishing the necessary cooling through increasing the value of B.

Since the model was linearised at several steady state conditions therefore the values for

each steady state condition we¡¿estimated by figure (4.2) which is drawn for one steady

state case. However, parameter estimation for other steady state conditions can also be

made by the simple formula (Ray et aI.1974)

The 4x4 system matrix given by equation (4.17) was then solved for different

frequencies (ro). Figure 4.3 shows the singular values o, (i=1, ... 4) of 4x4 system matrix
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as functions of frequency on a log-log plot, while figure 4.4 gives the corresponding

condition number as a function of frequency. The graphical representation is similar to

that employed in Bode plots and the singular values are multivariable analogs to the

gain in an SISO system.

4.5 Results and Discussions

Dynamic analysis of the CSTR system matrix (4.I7) was also performed at different

operating conditions. The analysis carried out for the range of conversion x,"=(0.3 ,...,

0.9) and temperatura x^=(2,..., 5) and the results of the analysis are presented in table

4.1. In a practical situation there usually is a maximum temperature constraint, (Arkun,

1979) and therefore the region of temperature x^ ) 5 has not been included in the

analysis.

Analysis of the unscaled state space matrix is shown by the two figures 4.5 and 4.6.

This matrix has not been scaled optimally, as the optimally scaled condition number of

the state space matrix does not reflect the controllability of the process.

Figures 4.5 and 4.6 show the sensitivity and invertibility of the system. At low

temperatures, the sensitivity of the system is poor for a wide range of frequencies and

increases sharpty at high frequencies. Therefore, large control efforts will be needed in

the feedback control scheme. Another interesting feature is that the condition number

does not deteriorate so significantly in the region of high temperature (x^=5) and high

frequency (ro= 100) in comparison with other steady state conditions shown in figure

4.5. A further increase in frequency shows that all the contours converge to a one point

in the plane where the condition number is very high giving an indication of difficulties

in control.
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Table 4.1 Sensitivity and Singular Value Analysis

1000

100

1 0

1

0.1

0.01

0.001

FREQ.
(w)

0.0005

0.0050

0.0341

0.0491

0.0494

0.0446

0.0446

sv(MrN)

BETA=.5

2.018+6

2.128+4

477.63

209.47

206.3r

252.80

252.80

COND.NR

B=7.5

0.00099

0.0087

0.0315

0.0348

0.0349

0.0301

0.0301

sv(MrN)

BETA=1

1.03E+6

1.338+4

1.01E+3

825.24

823.30

1.10E+3

1.10E+3

COND.NR

B=10

0.00099

0.0098

0.0223

0.023r

0.0231

0.0197

0.0197

sv(MrN)

BETA=2

1.05E+6

1.728+4

3.88E+3

3.698+3

3.698+3

5.11E+3

5.11E+3

COND.NR

B=15

0.00099

0.0079

0.0134

0.0135

0.0135

0.0115

0.0115

sv(MrN)

BETA=3

l.l2E+6

3.258+4

1.64F+4

1.61E+4

l.6LE+4

2.248+4

2.248+4

COND.NR

B=20

o
d
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It is possible to obtain optimal economic performance in a region of high temperature

and conversion, but due to exothermicity of the reaction, the operation becomes more

sensitive and would likely pose more difficulties in reactor control. Lau and fensen

(1985), arrived at the same conclusion when they treated an exothermic second order

polymerization CSTR model. Although their analysis is based on the steady-state

system, it gives sufficient information to identify critical points in the feasible region of

operation. Figure 4.5 also illustrates that at low temperatures and high frequency

region, a small perturbation in the system causes a large deviation in its response.

For example, the reactor was operated at some steady-state condition with temperature,

xz"=3 and heat of reaction, B=10, a small change in operating condition brought the

temperature down to x^=), and B=7.5, bringing the system into a high sensitivity region.

Therefore, it would be more advantageous to operate the system at a suboptimal

condition in exchange for better controllability. It is also evident, however, that in order

to arrive at a feasible region, the operating route passes through a region of higher

sensitivity.

The condition numbers of both unscaled and optimally scaled transfer function matrices

of the CSTR are determined and plotted. Figures 4.7 arñ 4.8 give the variation of

condition numbers with respect to frequencies on a log-log plot. As x^, the reactor

temperature increases from 2 to 5, conversion and heat of reaction also increase,

thereby increasing yield. The highest value of x* corresponds to the most economic

operating conditions under normal circumstances. It is of interest to see whether

increasing yield and therefore prof,rtability, affects controllability, and also whether

controllability assessments based on a linea¡ analysis made at the lower steady state

design rating provide erroneous conclusions at higher yields.

At low frequencies while the optimally scaled condition number indicates that high



oÐ

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

I

0.8

0.6

0.4

o.2

0

a
uJ
d¡

lz
2I
L
Lô
6g
(9
o
J

DYNAMIC ANALYSIS OF A CSTR

tr x2s=2,8=7.5,BETA=.5

-1 1

FREOUENCY LOG(W)

+ x2s=3,8-1o,BETA=1
x2s=5,8=æ,BETA=3A

Figure 4.7 Analysis of an Unscaled Transfer Function Matrix

3-3



\l

66

DYNAMIC ANALYSIS OF A CSTR

1.5

't.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

o.2

0.1

0

e
LIJ
ff!

=Þz
zo
ho
z.os
c¡o
J

-1

tr x2s=2,8=7.5,BETA=.s

FREOUENCY LOG(W)

+ x2s-g,B=10,BETA-1
a x2s=5,8=20,BETA=3

Figure 4.8 Analysis of an Optimally Scaled Transfer Function Matrix

3-3



67

temperature and conversion provide no extra control problems the unscaled results do

not agree. This indicates that as expected scaling must be taken into account in some

way. The optimal scaling of Perkins andWong (1985) seems to be the most appropriate

procedure for comparing sets of conditions which have differing scales.

It can also be seen from figure 4.5, that the condition number increases with higher

frequencies in contrast to the transfer function matrix condition number, shown by

figures 4.7 and 4.8. This is because the matrix G contains (s/-,4)-' in its product

(equation 3.10).

The state space condition numbers converge to one curye while the condition numbers

of the ffansfer function matrix have more variation between the operating points. The

conclusions drawn from figure 4.7 at intermediate frequencies cannot be drawn from

figure 4.8.

4.6 Conclusions

In this Chapter, attempts have been made to investigate how seriously nonlinearities in

the CSTR system mar controllability assumptions made on the basis of linearisations.

System control measures, sensitivity, and invertibility are evaluated at different steady

state over the range of operating conditions.

The optimal scaling procedure was carried out for the transfer function matrix and the

results then compared with the unscaled analysis. The analysis showed that the CSTR at

high throughputs has a significantly higher condition number under certain conditions

thereby providing unpredicted diffrculties for a system design at low yields. It has been

shown also that the condition number of the scaled state space matrix is not a reliable
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measure of controllability. It masks potential problems with nonlinearities, and although

it is scale dependent, scaling policies can remove important information from the
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CHAPTER 5

DY NAMIC OPERAB ILITY AND SEN S IT IV ITY

ANALYilS OF A DISTRIBUTED SYSTEM

"... always from a deftnition or rough
sketch of whatever presents itself to the
mind; strip it naked and look at its
essential nature, contemplating the whole
through its separate parts, and these parts
in their entirety."

M arcus Aurelíus, M editations

In this Chapter, dynamic operability and sensitivity analyses are carried out on a heat

exchanger model with fouling conditions. The shell and tube heat exchanger is a

condenser with condensation taking place on the shell side.

The dynamic characteristics of the system are investigated for the model linearised at

several steady-states over a range of frequencies for different operating conditions. The

analysis is performed at three different cases: when the exchanger is clean, with

moderate fouling and with a high fouling. Results are interpreted graphically. Also, the

condition numbers of both unscaled and optimally scaled transfer function matrices at

different operating conditions have been obtained and tabulated for comparison.

It has been shown that although the optimal scaling method reduces condition numbers

of transfer function matrix to very small values, their plots have the same profile as

obtained in the unscaled case.

:1

f
I

h
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5.1 fntroduction

In all processes which have heat, mass, or momentum transfer there must be gradients

in spatial directions. There are some processes which are specifically designed to take

advantage of gradients along the axis of flow. The most common examples representing

these type of processes are the tubular reactor, the shell and tube heat exchanger, and

packed mass exchange columns.

Such physical systems are usually regarded as continuous and their behaviour is

expressed as partial differential equations. The general situation, however is that in

which variables such as flow rate, temperature, pressure and composition are not only

distributed in spatial dimensions but also vary with time.

The most common approach to solve partial differential equations, which is suitable to

computer simulation, is that of converting the partial differential equations into multiple

sets of simultaneous, ordinary differential equations, for which there is only one

independent variable, usually time. The continuous system is divided into small

elements within which conditions are considered uniform. floattu¿2, mo¡t *c/ta'4¡
olintelge ff, "fo/iq/ Uaiq'le ancl flcn le/c't¿ 7r *e a/efe>'h>,/-
(.tati.6ã o" 7x; /ri4 y'o;n/r '

5.2 Heat Exchanger Model

A heat exchanger model given by Rosenbrock (1962) is considered for the dynamic

operability and sensitivity analysis. This model has been discussed in detail in Chapter

2.

If the heat flux rate is treated as an implicit function of the two inlet temperature¡of the

process streams such as W,=W,(0n8'):W,(xr,xu*r), then the Jacobian matrix, A'is written

as
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CL
ðW,

-æ, N,
ðW,

A
àW,

æ,
c

CH, C,H,,

and the system mafrices B' andC' take the the following form

B

CH, C,H,,

'"t *'#

aw_

d= -UA <0

(s.t¡

(s.2)

(s.3)

(5.4)

0

,À

il

L
H,

A' is the state transition matrix, B' is the input matrix and C'is the measurement or

output matrix. The two outlet variables (y) are the outlet temperatures, the state

variables (x) are the inlet temperatures and the manipulated variables (u) are the

flowrates.

Since condensation is taking place on the shell side and heat is transferred from shell to

tube the inequalities

aw-

t=+UA >0 (s.s)
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where r = 0, 1, ...... n are always satisfied except for very high rates of heat transfer as

an increase in local temperature difference between the two liquids will in most cases

increase the local rate of heat transfer (Rosenbrock 1962).

In order to form a state space matrix of the heat exchanger system, system matrices A',

B' and C' were substituted in the equation (3.7).

After replacing the above values in equation (3.7) the following 4x4 state-space system

matrix was obtained

cL-
àW,

æ.

òW,

N,

CH, C,H,,
àW,

c'L'+
àW,

N,æ, L, (s.6)

0
L
H,

S-=

0

0

0

0

CH,

1

0

C,H,,

0
1

H,,

0
c

For dynamic analysis, the system matrix given by equation (5.6) was substituted in

equation (3.9).

5.3 Dynamic Analysis with Fouling

In industry fouling is a major problem. Plant operation is also affected by fouling.

Effects of fouling come as a source of additional fuel costs, maintenance costs, use of

antifoulants, plant downtime, reduced throughput etc. In industrial practice, a variety of

approaches can be adopted to mitigate the effects of fouling. Which method is followed

depends on the type and severity of fouling encountered. In some cases, the asymptotic

value of fouling may be such that the problem can be tolerated, provided that the
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exchanger is initially oversized, and an appropriate bypass installed. However, if

fouling is heavy, and the bypass used to control fouling is also used as a process

controller, it may eventually become inoperative. Therefore these difflrculties due to

fouling make it necessary to consider fouling aspects in the operability and sensitivity

analysis of heat exchanger.

In the case of scaling of cooling tower water, if the fouling resistance-time relationship

reaches an asymptote, the effect of surface temperature may be determined by the

following formula (Knudsen, 1984)

(R)- = C exP(-EIRT,) (s.7)

where E is the activation energy, C is a constant, R is the gas constant, (Ð- is the

asymptotic fouling resistance and T" is the absolute temperature at the surface of the

deposit.

The effect of fouling on the heat transfer coefficient of an exchanger, is generally taken

into account by the formula

(s.8)

where % and U are the overall heat transfer coefficients in clean and fouled cases

respectively. The fouling factor R/ can be selected either from commercial data or

rEMA (1978).

Fouling is considered to be a transient process. Therefore, exchangers designed to

incorporate the equation (5.8) are initially oversized, which reflect poorly on the

dynamic operability of the network (Morari ønd Grossmann, 1984). If operation is at a

1=1+n.
UUor
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constant heat duty, fouling has the effect of increasing the overall temperature driving

force, thereby lowering the heat transfer. Fouling results in lower cold stream and

higher hot stream outlet temperatures.

Sensitivity of heat exchangers to fouling was discussed by Fryer (1986), who derived

linearised equations to study the sensitivity of the network. In this Chapter, a sensitivity

analysis using the system matrix is also performed taking into consideration the fouling

equation (5.8) which introduces a nonlinearity.

5.4 Results and Discussions

The process configuration for a typical condenser is shown in figure 5.1. Process

conditions are given in Appendix C. A dynamic analysis of the 4x4 system matrix was

performed for different frequencies. Analysis of the unscaled state space matrix is

shown by figure 5.2. This figure indicates that in the case of heat exchanger analysis the

condition number varies linearly without being influenced by the variation in

frequencies. Again, this matrix has not been scaled optimally for the same reasons as

explained in Chapter 4, in the case of the CSTR analysis.

The condition number of both unscaled and optimally scaled transfer function matrices

of the heat exchanger has been determined and plotted. Figures 5.3 and 5.4 give the

variation of condition numbers with respect to frequencies in both the cases, whereas

tables 5.1 and 5.2 provide a comparison of the magnitude of the condition numbers.

Since the heat exchanger is sensitive to fouling (Fryer et al. 1987) and poses some

problems of control, therefore, the analysis is performed at conditions without fouling,

with a moderate amount of fouling, and with high fouling.

Table 5.1 shows the condition numbers of optimally scaled matrices. It can be observed

that condition numbers vary slightly (T= t.t8 to 1.27) at a high frequency from the clean
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case to the high fouling case. Since the values of condition numbers are very small in

all these cases, it suggests that fouling in heat exchangers does not affect controllability

significantly.

Figures 5.3 and 5.4 show that the prof,rle of the curves in both cases is the same,

indicating that the optimal scaling in this case does not provide extra information.

However, it seems likely in this case that since nonlinearities are not significant in the

heat exchanger model, the conditioning based on a linear analysis would be sufficiently

accurate even in the case of high fouling.

5.5 Conclusions

Dynamic operability and sensitivity analyses of a heat exchanger with fouling

considerations carried out in this Chapter. Fouling in heat exchangers though a problem

does not seem to affect controllability signiflrcantly.

The optimal scaling method although reducing condition numbers of transfer function

matrix to a very small values have their plots with the same profile as obtained in the

unscaled case.

Although the fouling process can be controlled in practice by the use of additives and

cleaning methods, the cost of such methods is considerable. Also the idea of oversizing

the heat exchanger to overcome the fouling problem leads to the operability problem in

the network. Since individual exchangers interact with each other in the network, they

are more sensitive to fouling, therefore, it would perhaps be more useful to set up a

mathematical model representing the fouled heat exchanger network and to analyse it to

see the effects of fouling on it. The networks whose response is not acceptable may be

rejected at an early stage. Fryer et al. 1987, have studied the operability problems and
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simplicity of control schemes in the heat exchangers where fouling on the tube side

takes place due to milk deposits. However, much work is still be needed for the

investigation of dynamic operability of fouled heat exchangers.
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DYNAMIC ANALYIS OF A HEAT EXCHANGER

Table 5.1 Condition Numbers of the Optimalty Scaled Matrix

G =C(sI -A¡-tn +o

0.0751.1880.093t.2400.106r.2753

o.223t.6670.2751.8830.3092.0352

0.4272.67t0.s093.2300.5633.6541

o.44r2.758o.5233.333o.5773.7730

0.441,2.7590.5233.3340.5773.7741

0.44r2.7590.5233.3340.5773.774-2

0.441.2.759o.5233.334o.5773.774-3

loe(y)vloe(v)vloe(v)vFREQ

CLEAN CASEFOULED CASEHIGH FOULING
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DYNAMIC ANALYIS OF A HEAT EXCHANGER

Table 5.2 Condition Numbers of Unscaled Matrix

G =C(sI -A¡-rn +o

4.8407.35 xl}a4.9901.01x 1055.0701.18 x 1053

5.8207.05 x 1055.9705.97 x 10s6.050I.l2x1062

6.3702.40x1066.4803.06 x 1066.5403.45 x 1061

6.4002.54x1066.5003.16 x 1066.5603.61 x 1060

6.4002.54x1066.5003.16 x 1066.5603.61x 1061

6.4002.54x1O66.5003.16 x 1066.5603.61 x 106
_)

6.4002.54x1066.5003.16 x 1066.5603.61x 106-3

loe(v)vloe(v)vloe(y)vFREQ

CLEAN CASEFOULED CASEHIGH FOULING
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CHAPTER 6

DYNAMIC SIMULATION

"It must be remembered that the object of
the world of ídeas as a whole is not the
portrayal of realiry.... this would be an
utterly impossible task.... but rather to
provide us with an instrument for finding
our way about in the world more easí|y."

Hans Vaihinger,
Philosophy of "As If'

6.1 Introduction

The development of a computer program by (Perkins and Sargent, 1982), called

SpeedUp is the most dedicated and ingenious work in the area of dynamic simulation

of chemical processes. SpeedUp is a process simulation system which can be used for

both steady-state and dynamic simulation of chemical processes. It also includes

facilities for optimizing process conditions.

The need for development of a dynamic simulation package was due to increasing

interest in control system design, hazard analysis and operability studies. Dynamic

simulation has evolved quite independently of the activity in steady-state flowsheeting

since its roots are in digital simulators of analogue computers hence the forms of the
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models and data requirement are usually different for the two systems. In 1979, a new

package called SpeedUp was developed at Imperial College which incorporated

dynamic simulation. It solves differential and algebraic equations used in the models.

Using the same program for steady-state and dynamic simulation results in greater

efficiency for the user, since much of the data for both types of simulation of the same

process is common. Also the same models can be used in SpeedUp for steady-state and

dynamic simulation of units.

The system is interactive though an option is available for running portions in batch

mode. It is also modular so that the user can change not only data and operating

conditions but also the level of sophistication of the models for the various parts of the

plant"

6.2 Main Features

The main features of SpeedUp are briefly highlighted below to give an idea of how

useful the program is

It solves steady-state process simulation or design problems.

Given limiting conditions, it uses an objective function to optimize steady-state

solutions.

For graphical display of the results of dynamic simulations, it is possible to

interface SpeedUp to a plotting package.

o

O

a

a It operates from a library of steady-state and dynamic models.
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o It creates an environment where processes of any kind may be simply described

as sets of equations and procedures, and where the problem description may be

modified and updated easily.

6.3 SpeedUpDescription

SpeedUp contains all the information entered in problem descriptions on the SpeedUp

database. Data for the input file may be written outside SpeedUp and can be stored on

the data base from within SpeedUp, or it may be edited directly from the database by

using the editor within SpeedUp. Individual sections of the problem may also be edited

from within the SpeedUp executive using the editor.

The whole system interfaces with a databank which comprises design data for process

models and physical properties. The library includes standard flowsheeting models such

as heat exchangers, compressors and distillation columns. It also contains a library of

FORTRAN subroutines used by the executive. It is also possible to add more

information to the databank.

Since dynamic simulation is the main object of study here only those sections are

discussed giving details which are used to specify the dynamic simulation problem. The

following sections must be defined to set up a problem:

FLOWSHEET A process FLOTWSHEET, describing the connections between

the various units.

The modelling equations representing each of the unit-types

occurring in the process.

MODEL
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UNIT The design specif,rcations for each unit, stating which models

are used to model particular processes and giving values for

parameters used within those models.

OPERATION The operating strategies to be followed during the simulation,

by setting or initializing the values of variables occurring in the

process.

DECLARE The types of streams and variables are defined and upper and

lower bounds and initial guesses for variable types are set. The

components are identified by name or number.

TITLE A title section describing the problem may be included.

OPTIONS An option section is required in order to specify numerical

routines to be used, giving printout levels and tolerances.

For dynamic problems, the basic stn¡cture of the model remains unchanged. Dynamic

aspects may be introduced by the help of equation or procedures. Dynamic equations

determine the rate of change of variable with respect to time and are denoted by

preceding that variable with a dollar symbol which enjoys the same status as that of the

operator dldî.

6.4 Methods for Solving Nonlinear Equations

Mathematically speaking, the steady-state simulation problem can be represented as the

solution of a large, sparse set of nonlinear equations. A review of the numerical

techniques is given for such problems by Sargent (1980).
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One of the best recent studies is that of Hiebert (1980). The conclusions from that

study are that a number of robust and efficient codes are available for solving

"well-scaled" problems. However, there are some problems with these codes in some

situations. To overcome these difficulties, methods were developed and their details can

be found in Paloschi (1981). Much work has also been done on numerical performance

of Newton-like algorithms for the direct solution of sparse systems of nonlinear

equations. Details of different methods can be found in Bogle and Perkins (1988).

6.5 Numerical Methods for Dynamic Simulation

Numerical techniques in SpeedUp are available to solve a set of coupled ordinary

differential equations and nonlinear algebraic equations. Two integration methods, one
t

explicit and one implicit, are supplied to solve such problems. Methods like

Runge-Kutta and linear multistep (Adams) methods fall into the first class. Implicit

methods are required for stiff problems because of their increased stability. The

Backward differentiation formula proposed by Gear (1971) falls into this category.
*rttt 

¡rrrrnf llere aîe no eay'/ìe;r ztefla{t' in ,þeclup t îa/tt¿ D¡t îytloo't

Since the implicit methods have extended stability regions, stable solutions may be

generated for truly unstable problems. However, this must be recognised when using

these methods, and in the case of unstable problems explicit methods are preferred since

they usually detect solution growth (Perkins and Sargent, 1982).

6.6 Dynamic Problems

Two examples discussed in previous Chapters, namely a CSTR and a heat exchanger,

were selected from the literature and dynamic simulationswereperformed using the

SpeedUp simulation package to verify the results obtained in the dynamic operability

analysis. Detailed problem descriptions set up in SpeedUp input language may be found

in Appendix D.
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6.6.1 Simulation of a CSTR

Dynamic simulation of a CSTR was performed using the set of a nonlinear differential

equations (4.7) and (4.8). These equations were written in the model section of

SpeedUp.

An operation section was used in order to give different operating conditions for which

this model was solved. Initial conditions \ilere provided to give a starting solution.

Given below is an example of the OPERATION section used to solve the problem of a

CSTR. In dynamic simulation, it is permissible to make certain variables arbitrary

functions of time, either using standard functions or using conditional statements.

OPERATION

SET V/ITHIN CSTR

Da = O.2

Beta = 0.5

Gamma = 20

B=7.5

U,=IfT>5

TTIEN

1.1

ELSE

0

ENDIF

Ut=0

v

INTTIAL WITHIN CSTR
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X, = 0'1

Xt = 1'0

These conditions were varied to see the influence of operating conditions on the

performance of reactor.

6.6.1.1 Results and Discussions

Figure 6.1 shows response to step changes in reactor temperature obtained by dynamic

simulation using SpeedUp at different operating conditions. The simulation results

suggest that at high temperature, a small perturbation in the reactor brings it to a very

high temperature region where reactor control might cause some problems. Although, it

may be possible to obtain better economic retum in that region, but due to control

problems the best option seems to be to operate the reactor at a. slightly lower

temperature for the sake of a better control.

Figures 6.1 and 6.2 show that at dimensionless temperature 12" equal to 5, although

conversion .r," is very high (0.92) the reactor is pushed to x% greater than 7 before

settling down to normal operating temperature. However, when x* equals 4, the

conversion is still equal to 0.88 and the reactor temperature is greater than 5. The

second option is better with regards to leactor control.
Since tlre¡æ is a naxùmm-tsnperatuæ crcnstraint (x2s <5) in a practical

sitr:ation (Arl<un, LgTg), lt is n¡¡re practical and easy to cont-rcÌ the

:eacl.tor if its tsrperatul€ or¡ershoot :grains h/itlliJt tlte crcnt¡ol limits.

lltre res¡nnse to a step ctrange at (x2s=4rÈ15) in figuæ 6.1 is better

than (x2s=5,8=2}) \Àrith regaads to betten crcntrcI as the r€astor

operates n¡rst of tlre tiJrÞ \fithin tlre tençnratuæ constraints.
FÏgure 6.3 shows that two different responses to step changes in temperature were

obtained when the reactor was operated at x^ equal to 5. Keeping the other conditions
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Figure 6.1 Response to Step Changes in Reactor Temperature
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constant in the reactor a dynamic simulation was performed at two different values of

heat transfer coefficient B. V/hen B is equal to 2, less exotic operation is observed and

exotic operation is achieved when the value of p is equal to 1.

These simulation results are in agreement with Ray et al. (1974), who suggested that it

is possible to achieve more stable and less exotic operation by accomplishing the

necessary cooling through increasing the value of B, the heat transfer coefficient.

6.6.2 Simulation of a Fouled Heat Exchanger

In practical situations, the most severe limitations on heat exchanger performance may

be the formation of fouling deposits on the heat transfer surfaces which impede heat

transfer and increase the pressure drop. The fouling within a heat exchanger, in which

the temperatures of the tubes and shell side fluids vary in a complex manner, will not be

uniform. Deposition will be concentrated in regions of highest temperature when the

fouling is due to reaction, or the lowest flowrate. The value of R, obtained from the

operation of such an exchanger will thus be a lumped parameter, representing an

average condition.

Fryer and Slater (1986) have discussed a computational technique for the dynamic

simulation of heat exchanger performance in the presence of tube side chemical

reaction fouling. In that analysis, they have observed that deposit accumulation obeys

the familiar Taborek (1972) form of kinetics. The technique employs the method of

characteristics to integrate simultaneously the constitutive enthalpy balance equations

and the fouling rate equations. Temporal and spatial variations of temperatures through

the exchanger have also been taken into consideration by the same authors.

In chemical processes, fouling commonly takes place over a longer time scale.

Sundaram and Froment (1979) considered influence of coke accumulation on the walls
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of the fumace tubes in thermal gasoline cracking plants. He described a simulation

procedure in which gas temperatue prof,lles in furnace tubes were maintained constant

during fouling. Industrially, fouling simulations may be employed in two different

\üays: to aid in the design of new plant, or in the redesign, for more efficient operation

of old plant"

Many experimental studies have been made of the effects of fouling on industrial

equipment. In general the fouling factor may increase, at either a constant or a falling

rate. The period of fouling may be preceded by one in which the heat transfer

coefficient is unchanged, or may increase slightly: an induction period. In many cases

fouling eventually reaches an asymptote.

In SpeedUp, the dynamic simulation of a fouled heat exchanger was ca¡ried out using

the modelling equations (5.14) and (5.15). However, since in practical situation fouling

takes place gradually, it is desirable to use a model reflecting the variation of fouling

with respect to time. For this purpose a fouling resistance-time relationship can be

developed in the form of

Rr=(R¡)_(l-e"') (6.1)

and it is possible to determine values of constants (R - and B by the help of nomograph

developed by Zanker (1978).

6.6.2.1 Results and Discussions

The dynamic simulation of a heat exchanger was performed using the set of equations

described in Chapter 2. Initially, it is assumed that the heat exchanger is placed in

operation in the clean condition. A sudden change in water flowrate is introduced

during the simulation runs in order to see the effect of these changes on the outlet
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temperature of the heat exchangers. These sudden changes may occur in practical

situations on many occasions: for instance, an operational mistake, pump failure,

impurities in water cÚcalatin¡ in the tubes, etc. Figure 6.4 shows response to step

change in flowrate. This figure suggests that when the exchanger is clean a change in

the water flowrate does not affect the heat exchanger trirget temperature significantly.

When the exchanger is clean (Ç:o) conditions are such that the excess area in the heat

exchanger is not used, and is subjected to fouling.

Figures (6.5) and (6.6) show the simulation of heat exchangers canied out for two

different cases, one which represents moderate fouling (U=90) and the other with high

fouling (U=80). In the two types of exchangers, the hot stream outlet temperature is

greater in the case of counter current exchanger. From the overall results of dynamic

simulation, given in table 6.1, it can be seen that for equal amount of fouling, co-current

exchangers have the best response, sinçe they are able to compensate for the effects of

fouling.

Table 6.1 Effect of Fouling on the Exchanger

0.01333r-32t.9Counter Current

0.013329-32r.9Co-Current

0.0r2328-32t.9Counter Current

0.or2326.9-321,.9Co-Current

!+n,
Uor

Drift in
Outlet Temp.(K)

(Hot Stream)

Type of
Exchanger

Figures 6.7 and 6.8 show the dynamic response to a step change in flowrate in the case

of two different types of exchangers. It can be seen from the figures that dynamic

effects due to fouling in both the cases are not very significant. These results are in

agreement with the operability analysis of fouled heat exchanger in Chapter 5 where the
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condition numbers obtained from the system matrix tvere very small even in the

fouling case which suggested that fouling in heat exchanger does not affect

controllability significantly.

Figure (6.9) explains the simulation results in more details. It may be observed from

this figure that as fouling resistance becomes higher than the value used in the design,

the drift in outlet temperature becomes more severe which may affect the operability

problem in two ways. On one hand an increase in the process outlet temperature may

cause difficulties in the operation and on the other hand water usage becomes greater

than the design value to control the outlet temperature and therefore a significant cost

penalty is incurred due to increased friction losses which will reflect poorly on the

profitability of the process.

6.7 Conclusions

Simulation results of a CSTR are in agreement with the dynamic operability analysis

caried out in Chapter 4. It has been found during simulation that when the reactor is

operated at a high temperature, a small perturbation in the reactor brings it to a very

high temperature region where it seems that as predicted from large condition numbers

much more effort will be required to control the reactor. Simulation results also show

that the best option seems to be to operate the reactor at a slightly lower than the design

temperature for the sake of a better control.

Simulation of a fouled heat exchanger reveals that as dynamic effects due to fouling are

not very pronounced, fouling in the heat exchanger does not seem to affect

controllability significantly. However, a severe drift in hot stream outlet temperature

due to fouling in counter-current heat exchanger highlighted by the simulationrcan be

minimised by the usual methods followed in the industries.

,;!

ùl

¡



lo2

I

n

t5

to

5

o

o
co

E
E
elt
c
aé.E
o

.5

-to

-15

-æ

lrss

Design Value

0 o.ü)t o.002 o.oct

Fouling Redeance

Figurc 6.9 Effcct of Fouling Resistance on Outlet Temperature

o.æ4

I

I

1'l
I

I



t0¡

CHAPTER 7

GENERAL CONCLUSIONS

The purpose of the work described in this thesis has been to study the methods for

assessing dynamic operability of nonlinear process systems. Dynamic operability is

defined as the ability of the plant to perform satisfactorily under conditions different

from the nominal design conditions. In order to study dynamic operability of a

nonlinear process it is desirable that the process should be stable. If at an initial design

stage a thorough analysis of stability can be made with the methods discussed in the

thesis, it will be of great help in the operability analysis. For instance, if a plant is

unstable it may be rejected at an early design stage before making an extensive studies

with regards to dynamic operability. Operability must also be considered early in the

process design work. Dynamic simulation plays an important role as it can be used to

see whether the results obtained by operability analysis are in agreement with the

simulation.

In order to investigate the stability of nonlinear processes considered in this thesis the

Lyapunov second method has been utilized. This method gives information on the

stability of a system by transforming the differential equations without integrating them

to a form from which one can see directly whether the system is stable in a region of

interest. Application of Lyapunov's second method to CSTR and heat exchanger

systems has shown that the method is useful for stability analysis of nonlinear systems

provided a suitable function of Lyapunov is constructed for a particular chemical

system. In the analysis it has been shown that the stability regions can be obtained for

each steady state conditions by the help of a Lyapunov function.'When the method is
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applied to a heat exchanger, it has been shown that if fouling takes place in the

exchanger it will tend to increase the outlet temperature of vapour, thereby decreasing

the condensation range of temperature which shrinks the stability regions.

Dynamic operability and sensitivity measures of a CSTR and heat exchanger were

caried out by making use of the condition number of the system. The condition number

of a system can be used as a measure of sensitivity of control performance to modelling

error and as such is a measure of controllability. Although the optimal economic

performance of an exothermic reactor is obtained in a region of high conversion and

high temperature, the singular value analysis has shown that it may not be feasible to

operate the reactor at the optimum conditions because the system is much more difficult

to control under those conditions. The system control measure of sensitivity is also

evaluated for the model linearised at several steady state conditions over the range of

frequencies. The analysis reveals that a system design for one steady state may not be

the best at another steady state for a dynamic point of view because of its nonlinear

behaviour

Since the singular values are scale dependent, ie; the physical dimensions which are

used in defining the variables and the equations, a method of optimal scaling is taken

into consideration for the transfer function matrix and the results then compared with

the unscaled analysis. At low frequencies while the optimally scaled condition number

indicates that high temperature and conversion provide no extra control problems the

unscaled results do not agree. This indicates that scaling must be taken into account in

some way. The optimal scaling procedure of Perkins andWong (1985) seems to be the

most appropriate procedure for comparing sets of conditions which have differing

scales. It has also been shown that the condition number of the scaled state space matrix

is not a reliable measure of controllability. It masks potential problems with

nonlinearities, and although it is scale dependent, scaling policies can remove important



to5

information from the analysis. In the case of the heat exchanger, dynamic operability

and sensitivity analysis have shown that the fouling does not seem to affect

controllability si gnificantly.

Dynamic simulation of a CSTR has verif,red the operability analysis, suggesting that at

high temperatures, a small perturbation in the reactor brings it to a very high

temperature region where reactor control might cause some problem. Simulation results

also show that the best option is to operate the reactor at a slightly lower temperature

for the sake of a better control.

Dynamic simulation of heat exchangers undergoing fouling has shown that as fouling

increases in a heat exchanger, the drift in the outlet temperature becomes more severe

which affects the operability of the system. However, it has been shown that since the

condition numbers obtained by the optimal scaling methods are very small in the case

of heat exchanger analysis, the drift in temperature due to fouling highlighted by the

simulation should cause difficulties in control. Since in practical situations fouling takes

place gradually, it is suggested that a model which reflects the variation of fouling with

respect to time should be utilized for the simulation in order to cope with the fouling

problems in a better way.

The methods utilized in the thesis for assessment of stability and dynamic operability of

nonlinear systems provide a suitable way of looking into the nonlinearities of the

system. It is therefore suggested that these methods should be taken into consideration

for analysing the system with nonlinearities as this approach enhances the dynamic

performance of the process considerably.
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APPENDIX A

Consider the Lyapunov function of the the following form as discussed in Chapter 2

V(xruxr,*r)=t +t,*, (1)

where the two dimensional state vector x can be expressed as follows

xzr=HrCïr r =0,1,...n

x2r*L= H'rc'g', (2)

Taking the first derivative of Lyapunov function with respect to time, the following

expression is obtained

ff=v=rþ,,**,,,.,+l

= +-V, i'ù* *,, *,(-*, - #^ù
L,_ 
H,,

fz,*t-WJz,+t

t,*r+W,(Xr,*r-xr,)

4- i,, - #*L ., - w,(xu *, - x,,)

L,
-l_ 

-
' H',
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This derivative is always negative (property 4 of Chapter 2), if the following inequality

is true

LNL,'
,,*i * 

nx"xz, * r> W,(xr, *, - xr,)

AC-t*Bp

(3)

(4)

(3.7.r)

(3.7.1). To

r.) = ^\\o.t.z,J

Replacing the values from the eqution (2), the inequality becomes

ftr, ,, t,>' * f,{n' ,c'o' ,)' > w,(H' ,c'e' , - H ,c e,)

Deriwation of eq. (3.15)

In order to get the form given by equation (3.15),consider the system matrix -gi.,r"n ¡i. 
"-q=;tion:

p-,:( o c-'l
\¡-' p )

However the value of p is unknown in equationget this value we should first calculate ¡,p-,

first

B

D (s.7)

.Fot strictly proper system D=0 r the inverse of p is givenby

'-: (Í

P P-I :
(
t

c-'l ( t
p /:[o

B\(
o/(.

A
C

0

B

0 c-l
B-t - B-t AC-l

I
)I

From egu4tion (3.7.2) it implies that

AC-t + BP:O

P: - B-' AC-'

replacing the value of p in equation (3.2.1), we obtain thefollowing form of equation <gltSl:

P-l
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Numerical Example for a CSTR

A = 1.08 hr-r

P = 647 Kglm3

Q.' = l.2l x 104 oR

U =24.4Kcallmzh"C

A,=4.65m2

V =0.71m3

Co=0.5 KcallKg"C

Tr=T¡ = 520 oR

LH = 2.24 x l}a Kcal lKg .mole

e =0.7r*tlhr

Co=3.20 Kg.molelm3
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Operating Conditions for a CSTR

A1l the quantities used in the analysis are dimensionless, other informations on these

quantities and their nomenclature are provided in Chapter 4.

Case 1 Case 3

xu=2

xrr=0.3

Þ =0.5

^t =20

B=7.5

Da4.2

Case 2

4=3
rr, =0.5

F=1

^t=20

B =10

Da{.2

4=4
xr" =0.'l

þ=2

^( =20

B =15

Da=O.2

Case 4

/"2, =5

xr, =0.9

Ê=3

T=20

B =2O

Da{.2
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Process Conditions for a Condenser

Shell Side Tube Side

Flow 100,000 LBlhr (13.58 Kg/sec) 800,000 Lblhr (108.64 Kg/sec)

Temperature 150 - 100 F (65.56-37.8) C 80 - 100 F (26.66-37.8) C

Sp. gravity

(vÃ)

0.01 / 0.s

Sp. Heat

(v/L)

0.4 I 0.6 [Kcal/Kg C]

SurfaceArea q+0aflz(ngsn\

Heat Transfer tllBtuthr.fr2"F (6z5wtm2"c)

Coefficient

(Clean)

- lr.o

- I l.O [KcallKg Cl

Tube Length 20fr (6.1m)
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APPENDIX D

SpeedUp Input for a CSTR

FLOV/SHEET
INPUT 1 OF CSTR IS FEED

****

MODEL CSTR
SET NOCOMP
TYPE

X1,XlDASH AS DIMLESS_CO}N/ERSION
X2,X2DASH AS DIMLESS_TEMP
DA,BETA,GAMMA,B AS DIMLESS NUMBER
U1 AS FLO}VRATE
U2 AS TEMPERATURE

STREAM
INPUT IUI,U2

EQUATION
$XIDASH = -Xl + DA *(1.-X1)* ExP(x2/(t +(X2/GAMMA))) + Ul;
$X2DAS H = -X2* ( 1 . +B ETA) +B x p4* ( 1 _X 1 ) 

*EXp(X2l (t. + (X2 / GAMMA)) )
+BETA*U2;

X1=XlDASH;
X2=X2DASH;

*d<{<{r

UNIT CSTR IS A CSTR

***{r

OPERATION
SET WITHIN CSTR

DA = 0.2
BETA = 0.5
GAMMA = 20
ff = 7.5
UL = IF T>5

TTIEN
1.1

ELSE
0

ENDIF
U2= 0

INTTIAL WITHIN CSTR

X1 =
X2=

0
1

1

I

..¡

-ï,t

:k*{<r<
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DECLARE
TYPE

DIMLESS_NUMBER = 0:0:25
DIMLESS_TEMP = 1:0:10
DIMLESS_CONVERSION = 0.1:0:1
FLOV/RATE = 0:0:L
TEMPERATURE = 3:0:1E4

STREAM MAINSTREAM
SET NOCOMP = 1

TYPE FLO\ryRATE,TEMPERATURE

****

OPTIONS
EXECUTION
PRINTLEVEL = 4
TARGET = TERMINAL

d<d<*{<

SpeedUp Input for a Heat Exchanger

FLOWSHEET
INPUT 1 OF TTEAT_EXCHANGER IS FEED 1

INPUT 2 OF IIEAT EXCHANGER IS FEED 2
OUTPUT 1 OF I{EAT_EXCHANGER IS PRODUCT 1

OUTPUT 2 OF TIEAT EXCHANGER IS PRODUCT 2

rl<:k {< {<

MODEL T{EAT_EXCHANGER # TWO STREAM HEAT EXCHANGER #
SET NOCOMP
TYPE
LT,LS,FLOTW_IN_1, FLOV/_IN_2 AS ARRAY(NOCOMP) OF FLOWRATE,
FLOV/_OUT_I, FLOV/_OUT_2 AS ARRAY(NOCOMP) OF FLOWRATE,
XNT,XNS,TEMP_IN_1, TEMP_IN_2 AS TEMPERATURE,
XNTT,XNSS,TEMP_OUT_1, TEMP-OUT_2 AS TEMPERATURE,
CT,CS,SPEC_T{EAT_IN_1, SPEC_IIEAT_IN_2 AS SPECIFIC HEAT,
TEMP_CHANGE-1, TEMP_CHANGE-2 AS DELTA,
HNT,HNS, MAS S-WEIGT{T_IN_1, MAS S_V/EIGHT_IN_2 AS MAS S,
A AS AREA,
U AS HEAT_TRANS_COEF,
WN AS DUTY,
LMTD AS LOG MEAN TEMP
RESULT
TEMP_IN_ 1, TEMP_OUT_ 1, TEMP_IN_2, TEMP-OUT 2,
FIEAT TRANS COEF
STREAM
INPUT 1 FLOW_IN_I, TEMP_IN_I
INPUT 2 FLOV/_IN_2, TEMP_IN_2
OUTPUT 1 FLOV/_OUT_I, TEMP_OUT 1

OUTPUT 2 FLOW_OUT2, TEMP_OUT 2
EQUATION

if

:

i

I
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# MASS BALANCE #
FLOV/-IN-I = FLOW-OUT-I = LT;
FLOW-IN_2 = FLOV/-OUT 2 = LS;
# TEMPERATURE RELATIONSHIP #
TEMP_IN_I + TEMP_CHANGE_I = TEMP_OUT_I = XNTT;
TEMP_IN_2 + TEMP_CHANGE 2 = TEMP_OUT2 = XNSS;

# ENERGY BALANCE #'wN=u*AREA*LMTD;
$XNTT = ( (LT* CT)/(HNT* CT)X. (XNTT-XNT) +WN/(HNT* CT) ;
$XNS S = ((LS *CS )/(HNS * CS ))* (XNS -XNS S )-WN/(HNS * CS );
{.**{r

UNIT I{EAT EXCHANGER IS A HEAT EXCHANGER
:1. * {< {<

OPERATION
SET V/ITHIN T{EAT EXCHANGER
FLOV/-IN-I = 800,000
FLOV/-IN-2 = 100,000
TEMP IN 1=80
TEMP IN 2=170
LMTD = 32.75
CT= 1

CS = 0.5
AREA = 4406
WN = 16000000
HNT = 15.30
HNS = 18596

INTTIAL WITHIN HEAT EXCHANGER
XNT-I = 100
XNSS = L20

t< {< *:1.

DECLARE
TYPE
FLOWRATE = 1000 : 0 : 10E8 UMT="LBSÆ{R",
TEMPERATURE = 100 : 0 : 500 UNIT ="DEGREE F",
IIEAT-TRANS_COEF = 50 : 0 : 200 UNTT = "BTU/SQR.FT*HR*F",
LOG MEAN TEMP =20:0:55
AREA =4000 : 0 : 5000 UNTT = "SQR.FT",
MASS =30:0:20000 UNIT= "LBS",
DELT=3:0:30
DUTY = 16E6 ;-I820:L820 UNIT = "BTL/hr"
*rk**

OPTIONS
EXECUTION
PRINTLEVEL = 2
TARGET = TERMINAL
**t<{<




