
M AT H E M AT I C A L M O D E L L I N G O F T H E

C O M P L E X M E C H A N I C S O F

B I O L O G I C A L G E L S

james richard reoch

A thesis submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

School of Mathematical Sciences

The University of Adelaide

2020



James Richard Reoch: Mathematical modelling of the complex mechanics of biological gels,
Doctor of Philosophy, © 2020



A B S T R A C T

Biological tissues are comprised of cells surrounded by the extracellular matrix (ECM).
The ECM can be thought of as a fibrous polymer network, acting as a natural scaffold-
ing to provide mechanical support to the cells. Reciprocal mechanical and chemical
interactions between the cells and the ECM are crucial in regulating the development
of tissues and maintaining their functionality. Hence, to maintain in vivo-like behaviour
when cells are cultured in vitro, they are often seeded in a gel, which aims to mimic the
ECM. A range of natural and synthetic gels are used in such experiments, with these
gels primarily consisting of solvent and polymer.

In this thesis, we develop mathematical models that incorporate cell-gel interactions
together with osmotic pressure to better understand the mechanical behaviour of biolo-
gical gels. In particular, we consider an experiment where cells are seeded within a gel,
which gradually compacts due to forces exerted on it by the cells. We investigate how
cell traction forces interact with osmotic effects (which can lead to either gel swelling
or contraction depending on the gel’s composition) and the types of behaviour that
can arise as a result.

We begin by developing a multiphase model to study gel swelling and contraction. In
this model, the volume fractions of polymer and solvent (which together form the gel)
are tracked alongside cell density as the gel evolves. We consider the novel addition of
cell traction forces in this framework alongside chemical potentials in the polymer and
solvent.

We then study this model in one-dimensional coordinates. We find that a number
of qualitatively different behaviours are possible, depending on the composition of the
gel and the strength of cell traction forces. We discover spatially varying steady states
as well as an unusual case where the components of the gel oscillate between swelling
and contraction.

Since gels used in experiments are often formed as thin layers, we extend the model
to study the gel as a two-dimensional thin sheet. We derive an extensional flow model
by using the gel’s thinness to scale certain parameters; in this model, key variables are
functions of axial position and time. This allows us to derive a new leading order, one
dimensional model from the initial 2D system of equations.

We consider the thin film model for uniform and non-uniform initial conditions
separately. With uniform initial conditions, we find that the model reduces to a system
driven by an ordinary differential equation in the gel’s height. For non-uniform initial
conditions, spatially varying equilibrium solutions can be found.

In this thesis, we develop and analyse new mathematical models for a cell-gel sys-
tem incorporating cell-induced gel contraction alongside osmotic effects. We find new
emergent behaviours, derive a new leading order model from the two-dimensional thin
film problem, and compare the gel’s behaviours in 1D and 2D settings. We show that
adding cells can provide a switch between gel swelling and contraction, and that the
balance between chemical potentials and cell forces is pivotal in the system’s stability
and equilibrium outcomes.
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I N T R O D U C T I O N
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1.1 problem statement

Biological tissues are comprised of cells living in extracellular matrix, hereafter desig-

nated ECM. The ECM provides mechanical support to the cells in vivo and helps to

regulate cell behaviour, as well as playing a key role in the mechanical behaviour of

the tissues themselves (Frantz et al., 2010). The ECM in vivo can be thought of as a

fibrous polymer network; it can consist of a number of different substances, including

proteoglycans, collagens and glycoproteins (Rozario and DeSimone, 2010). To repro-

duce in vivo-like behaviour when cells are cultured in vitro, they are often seeded in a

gel, which aims to mimic the ECM. Since the structural protein collagen is the primary

component of the ECM in many animal tissues (Shoulders and Raines, 2009), collagen

gels are frequently used in laboratory studies (e.g. Moon and Tranquillo (1993); Steven-

son et al. (2010)), but a wide range of other natural (e.g. Matrigel (Krause et al., 2008))

or synthetic (e.g. poly(lactic acid) (Wayne et al., 2005)) gels are also used. Improved

understanding of the mechanical behaviour of biological gels, together with cell-cell

and cell-gel interactions, will lead to better understanding of the development and

functioning of tissues.

The mechanical characteristics of a tissue can have a powerful effect on cell beha-

viours such as proliferation, differentiation and cell motility (Rozario and DeSimone,

2010); this effect is, in fact, reciprocal, since the tissue is maintained by these cells

(Frantz et al., 2010). In vitro experiments aimed at gaining more insight into the cell-

ECM relationship and how each regulates and affects the other are conducted using

cell-seeded gels; these gels are studied in different physical configurations such as thin

films and small spheres. One such experiment, presented by Moon and Tranquillo

(1993), involves the contraction of a sphere of collagen gel under the influence of cell

traction forces. The cells’ mechanical interactions with the polymer network surround-

ing them lead to this polymer network being reorganised and compacted. This process

of ECM remodelling is important in tissue growth and development and, accordingly,

is important in a range of related topics such as wound healing and tissue engineering

(Moon and Tranquillo, 1993).
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Mathematical modelling of this experiment assumed that the only forces acting on

the gel were those exerted by the cells. However, biological gels can swell or contract

in the absence of cells, for example, due to osmotic effects whereby solvent molecules

enter or leave the gel’s polymer network until the gel equilibrates with the surrounding

solvent (Hong et al., 2010). Osmotic swelling and contraction of gels and gel-like sub-

stances is often studied mathematically using multiphase flow models, in which the

behaviour of the polymer and solvent components of the gel are each distinctly con-

sidered. Recent experiments have suggested that these osmotic effects could be used

to manipulate the mechanical environment of cells in vitro by, for example, applying a

compressive force to the gel in which they reside (Monnier et al., 2016).

In this thesis, we will model the behaviour of a biological gel. The gel is comprised

of a polymer network and a solvent and sits surrounded by a bath of pure solvent.

Initially, the gel is seeded with cells. As time progresses, the interface between the gel

and the surrounding solvent expands or contracts with the movement of solvent into or

out of the gel. This movement is a result of the underlying force balance in the system,

affected by factors like cell traction and osmotic pressure. Swelling or contraction oc-

curs until either a steady state is reached when the system is in equilibrium, or the gel

reaches a fully dissolved or contracted state. We will study the emergent behaviours of

this system in 1D and thin film geometries, reflecting different gel configurations.

Our aim is to gain better understanding of how cell and osmotic forces interact

within cell-seeded gels grown in vitro through the development and investigation of

these mathematical models. In particular, we are interested in the different qualitative

outcomes that may arise (e.g. gel contraction, swelling or dissolution), and how these

outcomes, together with the dynamics of the process, depend on factors such as the

gel composition, osmotic pressure, cell traction strength, and drag between the network

and solution phases of the gel.

This introduction provides an overview of current literature dealing with key aspects

of this problem. In Section 1.2, we look at modelling of the cells’ mechanical interac-

tions with the ECM in vitro. Section 1.3 discusses the mechanics of polymer-solvent

multiphase flow models, including osmotic effects. Finally, Section 1.4 describes mod-
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els for thin fluid layers. We conclude the introduction with an outline of the thesis in

Section 1.5.

1.2 cell-ecm modelling

Mechanochemical interactions between cells and the ECM they inhabit have been stud-

ied in a number of works (e.g. Murray (2001); Murray et al. (1983)). These models de-

scribe the movement of cells in ECM due to factors such as advection, chemotaxis and

diffusion, together with mechanical interactions between the cells and matrix. Cells mi-

grate within the ECM and, due to the traction forces they generate, deform the ECM as

they move. The mechanochemical model presented in Murray (2001) consists of mass

conservation equations for each of the cell and ECM densities, together with a force

balance equation, wherein stresses in the ECM and cell traction stresses balance body

forces.

Moon and Tranquillo (1993) used this theory to model the experiment already men-

tioned in Section 1.1. In this experiment, cells were seeded in a collagen gel and acted

to compact the gel over approximately two days through the traction stresses they gen-

erated. The use of a spherical gel in this experiment, as opposed to a thin disc, allows

for simpler modelling through the spherical symmetry of the gel; the isotropic distri-

bution of collagen fibres also assists modelling. The model and experimental results

are then used in the second part of this study by Barocas et al. (1995) to quantify the

force exerted by the cells by means of a cell traction parameter. Although the degree of

gel contraction can provide a measure of the cell forces exerted, we note that it is also

dependent on the specific procedures employed in the experiment (e.g. cell density, gel

composition and size, cell type, etc.).

The mechanochemical model is presented here as set out by Moon and Tranquillo

(1993), with the notation changed where possible for consistency with our models. We

let n(x, t) and ρ(x, t) denote the cell density and ECM density respectively at position

x and time t, while Sp(x, t) denotes the displacement vector of the ECM. Cells are
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advected with the gel and also move randomly; therefore, the conservation equation

for cell density is given by

∂n

∂t
+∇ ·

(
n
∂Sp

∂t

)
= D∇2n, (1.1)

where D is a constant diffusion coefficient. For simplicity, cell death and proliferation

are ignored. The velocity vp ≈ ∂Sp/∂t; this approximation assumes small displace-

ments in the ECM.

The ECM is modelled as a single, viscoelastic material. Mass conservation then gives

∂ρ

∂t
+∇ ·

(
ρ
∂Sp

∂t

)
= 0. (1.2)

There is no growth term in the conservation equation for the ECM since polymer

production and degradation is negligible over the experimental time scales of interest

(Green et al., 2013).

Momentum balance for the system is described by the equation

∇ ·σ+ F = 0, (1.3)

where σ is the gel stress tensor and F is the force per unit volume acting on the gel; F is

taken to be zero here as there are negligible body forces acting on the gel. We note that

inertial effects have been neglected in this model, since the time scale of deformation

is very long and the spatial scales are small (Murray, 2001).

The stress tensor σ is the sum of ECM and cell contributions, σ = σECM + σcell.

The ECM is assumed to be a viscoelastic material. Hence, σECM is the sum of viscous

and elastic stress terms involving the strain tensor and rate of strain tensor. The cell

contribution σcell captures the traction forces arising as cells pull on the ECM; it is

proportional to the cell and ECM densities and includes the parameter τ0, which is a

measure of the traction force exerted by a cell on the local ECM (Moon and Tranquillo,

1993). From equation (1.3), we see that cell traction forces are assumed to be in mechan-

ical balance with the viscoelastic forces in the ECM as well as external forces (Murray,

2001).
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An issue arising in these models is that cells are treated as a continuum material,

including a stress tensor to capture cell traction effects. However, given that the fraction

of cells existing in experimental gels is small, this treatment may not be appropriate.

Furthermore, these mechanochemical models treat the gel as a single material (either

fluid or solid) which must be assumed to be compressible for it to be able to contract.

However, many types of biological gel are largely made up of water, an incompressible

fluid, bringing the appropriateness of this assumption into question. Therefore, in this

thesis, we will investigate the possibility that gel contraction can be a result of syneresis,

i.e. fluid being separated out from the gel. This possibility was noted in Moon and

Tranquillo (1993), but was not pursued further. In order to address this separation of

fluid from the gel, the presence of the solvent surrounding the gel must be incorporated

into the mathematical model. This also allows us to introduce osmotic effects into our

model, and to consider their role in any syneresis seen. Osmotic pressure gradients can

induce the movement of solvent across the gel’s boundary, encouraging either swelling

or contraction depending on the gel’s composition.

Green et al. (2013) built on the work of Moon and Tranquillo (1993) in developing a

model for cell-induced gel contraction. Alongside the mechanical interactions present

in the model of Moon and Tranquillo (1993), they also hypothesised that chemotactic

signals secreted by cells may influence the gel’s contraction. These chemical effects are

incorporated through a diffusion equation describing the evolution of the chemical con-

centration. Green et al. (2013) considered a range of forms for the cell force function, in-

cluding force being a prescribed function of the radial distance, a mechanically-driven

cell force function akin to that proposed in Murray (2001), and a chemically-driven

force. They found best agreement with the results in Moon and Tranquillo (1993) us-

ing the mechanically-driven function. Green et al. also highlighted that syneresis may

be a factor in the gel’s contraction that is not covered in the mechanochemical mod-

els; they suggested that multiphase gel models with appropriate boundary conditions

for the solvent could be used to address this. In this thesis, we therefore investigate

multiphase flow models as a way to incorporate the flow of fluid into and out of gels

through syneresis, particularly focusing on osmotic effects. We note that Barocas and

Tranquillo (1994) studied the gel contraction problem in a multiphase flow setting; how-
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ever, they did not consider fluid flow across the interface of the gel, the surrounding

solvent, or any osmotic effects.

Outside the context of cell-seeded gels, a number of studies by Oster et al. have

considered combinations of osmotic and cell traction stresses, looking at problems like

cell crawling (Oster, 1984; Oster and Perelson, 1985) and limb growth (Oster et al., 1985).

However, these studies differ significantly in other ways from the problem that we will

analyse. One such difference is that they do not consider the movement of solvent,

instead considering it to be stationary. Secondly, the osmotic pressure is driven by

sol-gel polymerisation and depolymerisation inside the cell, as opposed to osmotic

pressure driven by chemical potential gradients between a gel and surrounding fluid.

Furthermore, the traction in some of these models is due to the cytogel pulling the

cells, as opposed to cells contracting the polymer network like in Moon and Tranquillo

(1993). The model presented in Oster et al. (1985) is not a multiphase flow model and

similarly does not consider solvent movement, with the osmotic component driven by

cell-produced chemical concentrations.

1.3 multiphase flow models and osmotic pressure

The models discussed in the previous section treated the gel or ECM as a single mater-

ial. However, more detailed models have been developed using multiphase flow theory

that study gels as a mixture of interacting polymer and solvent components, each with

its own properties. These include studies into polyelectrolyte gels (Mori et al., 2013;

Wolgemuth et al., 2004), biofilms (Cogan and Keener, 2004; Winstanley et al., 2011),

active cell motion (Oliver et al., 2005), and swelling polymer gels (Doi, 2011; Doi and

Onuki, 1992; Keener et al., 2011a,b). The polyelectrolyte and swelling gel models listed

here focus on the movement of solution across the boundaries of gels. Multiphase flow

theory is ideal for looking at gel behaviour, as it provides a mathematical framework in

which the mechanics of both polymer and solvent phases can be considered, together

with the interaction between phases (Cogan and Guy, 2010). It provides a macroscopic

model of the behaviour of the different phases, achieved through averaging the equa-

tions of motion (mass and momentum conservation) for each component over a rep-
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resentative volume (Drew, 1983). For the development and some general discussion of

two-phase flow models, see Drew (1983).

A general two-phase model is described by Oliver et al. (2005), where it is applied

to the actin network inside crawling cells. They consider a polymer network phase

with volume fraction θp and a solvent phase with volume fraction θs; these volume

fractions satisfy the no-voids condition θp + θs = 1 throughout the domain. We have

again modified the notation here where possible for consistency throughout the thesis.

Conservation of mass gives the equations

ρp

(
∂θp

∂t
+∇ · (θpvp)

)
= −J, (1.4)

ρs

(
∂θs

∂t
+∇ · (θsvs)

)
= J, (1.5)

where ρp and ρs denote the respective phase densities, vp and vs the respective phase

velocities, and J the average flux of mass between phases.

Given that inertial effects are negligible for biological gels, conservation of mo-

mentum gives the equations

∇ · (θpσp) + Fps = 0, (1.6)

∇ · (θsσs) − Fps = 0, (1.7)

where σp and σs are the average network and solvent stress tensors respectively, and

Fps denotes the inter-phase force exerted on the network by the solution.

The network is treated as an incompressible viscous fluid with stress tensor σp =

−PpI+ηp(∇vp+(∇vp)T ), where Pp is the intra-network phase pressure, I the identity

matrix, and the second term is the rate of strain tensor with viscosity ηp and polymer

velocity vp. The solvent is assumed to be inviscid and so has the stress tensor σs =

−PsI, where Ps is the intra-solvent pressure. The inter-phase force has the form Fps =

−ξθpθs(vp − vs) + Pps∇θp. The first term describes drag between the two phases,

while the second describes the pressure applied by the solvent on the network due to

surface traction between the phases.
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Oliver et al. define two pressure coefficients for use in their momentum equation:

the solvation coefficient Ψ = Ps − Pps, and the contractile coefficient Φ = Ps − Pp. The

solvation coefficient defines the difference between the intra-solvent pressure and the

pressure across the interface between network and solution, while the contractile coef-

ficient gives the difference in pressure between solvent and network phases. They note

that there are not strong physical interpretations for these pressure coefficients, due

to the artificial nature of the pressure terms coming out of the multiphase averaging

process.

Incorporating these pressure terms, the force balance on the polymer and solvent

phase respectively is given as

∇ · (θpηp(∇vp + (∇vp)T )) = θp∇Pp +Ψ∇θp + ξθpθs(vp − vs) −Φ∇θp, (1.8)

0 = θs∇Ps +Ψ∇θs − ξθpθs(vp − vs). (1.9)

Adding equations (1.8) and (1.9) gives the typical conservation of momentum equation,

∇ · (θpηp(∇vp + (∇vp)T )) = ∇P, (1.10)

where ∇P = θpPp + θsPs can be thought of as the overall pressure existing in the

mixture. In this model, there is assumed to be no solvent flow across the free boundary.

This type of model has been built upon by Keener et al. (2011a,b) and Mori et al.

(2013) to study the dynamics of gel swelling and contraction. The osmotic movement

of solvent across the gel boundary is incorporated in these models through particular

choices of functional forms for the force and pressure functions Fps, Ψ and Φ; typically

spatial gradients of chemical potential functions are used. These chemical potentials

are in turn functions of the volume fractions of network and solvent, and are defined

by Flory-Huggins free energy functions.

Osmotically-driven movement of solution into and out of gels has been studied in

the context of gel mechanics using Flory-Huggins theory. This theory is derived from

statistical thermodynamics, giving a measure of the entropy and enthalpy of the mix-

ture (Kumar and Gupta, 2003). Using these measures, we can calculate the free energy
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of the mixture per unit volume, and, thereby, the osmotic pressure (Kumar and Gupta,

2003; Winstanley et al., 2011). In experiments where pure solvent is separated from a

mixture of solute and solvent by a semi-permeable membrane, the osmotic pressure

can be measured as the additional pressure that must be applied to the mixture to

prevent the flow of solvent (Hong et al., 2010); it is thus a function of the difference in

the chemical potentials in the mixture and external solvent. In a gel, the cross-linked

polymers perform the role of a semi-permeable membrane; the cross-links allow the

flow of solvent into or out from the gel, but prevent polymers from leaving (Hong

et al., 2010). Osmotic pressure appears widely throughout multiphase treatments of gel

mechanics (Keener et al., 2011a); it will be included in our model through chemical

potential functions. This is discussed further in Section 2.4.

Keener et al. (2011b) evaluated the impact of free energy on the kinetics of gel swell-

ing. The aim was to extend multiphase flow models for gel swelling to incorporate free

energies; this allows for a better understanding of the manner in which the gel evolves.

Their model is comparable to that in Oliver et al. (2005), with osmotic pressure enter-

ing the model through the particular choice of pressure functions. They have advection

equations akin to equations (1.4) and (1.5), with phase densities ρp = ρs = 1 and flux

between phases J = 0. A key difference is that the solvent stress tensor in Keener et al.

(2011b) incorporates viscous stresses as well. Further, the pressures Pp and Ps are taken

to be identical, hence the contractile pressure Φ = 0. Osmotic pressure is incorporated

through the solvation coefficient Ψ, where in Keener et al. (2011b),

Ψ = θs
∂µs

∂θs
= θp

∂µp

∂θp
.

µs and µp are the chemical potentials of solvent and network respectively; this is con-

sistent with the relations discussed later in Section 2.4. In this model, these solvation

terms therefore describe the osmotic pressure gradients working to drive solvent into

or out of the gel.

In their work, Keener et al. found that these chemical potential gradients are the

forces driving the gel’s evolution. These chemical potentials can induce gel swelling

or contraction depending on the interaction energies between polymer and solvent
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which determine whether it is energetically advantageous for the phases to mix or

to minimise contact. The manner in which the gel evolves spatially and temporally

depends on physical factors such as drag between phases and viscosity in the polymer

and solvent.

Keener et al. closed their system of equations with boundary conditions at the inter-

face of the gel. There is a kinematic boundary condition governing the position of the

moving gel-solvent interface. There is also a continuity of stress condition at the free

boundary which imposes that the jump in normal stress is zero across the interface. We

note that this condition is corrected in a later work (Sircar et al., 2013) to incorporate the

free energy of the solvent outside the gel. While this boundary condition captures the

relation between velocity and free energy across the interface, it does not consider the

permeability of the boundary, which may significantly affect the flow of solvent across

this interface, and hence the dynamics of the gel. The permeability of the interface is

incorporated in other models such as Mori et al. (2013).

Mori et al. (2013) studied the dynamics of polyelectrolyte gels, in which the polymer

network contains a fixed charge. They noted that most biological gels are polyelectro-

lyte gels. They developed a multiphase model similar to those discussed previously, in

which Flory-Huggins free energy drives gel evolution, and extended the model to also

include ionic electrodiffusion. A key contribution of this work is the development of a

novel class of boundary conditions at the free boundary. One such boundary condition

is that the movement of solvent across the interface is proportional to the difference in

normal solvent stress. This condition was scaled by the parameter R, which describes

the permeability of the boundary, that is, how resistant the boundary is to fluid flow.

There is another interface condition similar to that in Keener et al. (2011b) requiring

that normal force across the gel-solvent interface is continuous.

We aim to combine the approaches taken in Keener et al. (2011b) and Mori et al. (2013)

with the mechanochemical theory presented in Section 1.2 to produce new mathemat-

ical models for the mechanics of cell-seeded gels which incorporate osmotic effects.
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1.4 thin film modelling

While many of the cell-ECM and multiphase flow models discussed so far are typically

presented in a general, three-dimensional form, the analysis is often carried out for 1D

cases (see e.g. Green et al. (2013); Keener et al. (2011b); Moon and Tranquillo (1993)).

Modelling the gel as a two-dimensional thin film allows us to study gel behaviour in

another experimentally relevant geometry, while simplifying the analysis compared to

a general 2D geometry.

Thin film models are employed in a range of mathematical problems. Such stud-

ies include modelling thin viscous sheets in both two and three dimensions (How-

ell (1996); King and Oliver (2005)), pattern formation in cell aggregation (Green et al.

(2017); Green (2006)), and osmotically-driven biofilm growth (Trinschek et al. (2016,

2017)). Howell (1996) considered a number of basic thin film problems, including the

stretching flow of a thin, single-phase viscous sheet, with the length or tension pre-

scribed. The model we will develop in this thesis is more complex, involving numerous

interacting components and with the length to be determined as part of the solution.

Consequently, we will build on the frameworks described in this section to develop

our model.

Howell (1996) studied the dynamics of a two-dimensional thin viscous sheet through

the use of asymptotic methods to derive tractable, leading order equations to describe

the sheet’s evolution. The model considered an incompressible Newtonian fluid which

flows between two free surfaces; the centre line of the sheet is a variable function of

time and space like the free boundaries. The asymptotic approach relies on the fact that

the inverse aspect ratio of the sheet (i.e. the ratio of its height to length) is small; this

ratio is represented by the small parameter ε. Accordingly, the height and velocities

in the y-direction were scaled by ε. The fluid was assumed to be governed by 2D

Stokes equations describing mass and momentum conservation of the fluid alongside

kinematic and dynamic boundary conditions.

To derive a leading order model for the thin sheet’s dynamics, the dependent vari-

ables were expanded in powers of ε2 and substituted into the system of equations.

Through analysing the equations at leading order and at O(ε2), a reduced system of
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equations was found where the leading order axial velocity u0 = u0(x, t), i.e. it is in-

dependent of the y-coordinate and so is uniform across the height of the sheet; this is

described as an extensional flow. The Trouton model was recovered, which consists of

the following equations for the axial velocity and the height of the sheet,

∂

∂x

(
4h0

∂u0
∂x

)
= 0, (1.11)

∂h0
∂t

+
∂

∂x
(u0h0) = 0, (1.12)

where h0 is the leading order height. The Trouton ratio (the ratio of extensional to shear

viscosity) is 4 in this problem; this ratio changes depending on the dimensionality of

the system.

Howell explored this model further under different scaling regimes for the system,

finding particular scalings describing how the sheet buckles as it is compressed, and

generalised the model to obtain equations governing three-dimensional sheets. It was

noted that these methods should be extendable to find leading order solutions for more

complicated problems.

Green et al. (2017) used similar techniques to study pattern formation in chemotactic

cell aggregation with a thin film model. They modelled cells and culture medium as

a two-phase mixture in a culture well. The culture well was studied in 2D Cartesian

coordinates and included a free boundary describing the height of the film, while the

film’s length was fixed. The aim of this paper was to determine the conditions under

which small perturbations to homogeneous steady states can lead to spatially varying

steady state solutions.

Key differences in Green et al. (2017) compared to other multiphase models such as

Keener et al. (2011b) and Mori et al. (2013) are the absence of osmotically-driven fluid

movement as well as the inclusion of cells. The model consists of coupled equations

describing conservation of mass and momentum for the cell and medium volume frac-

tions. It was assumed that the inverse aspect ratio of the thin film is small, so the

dependent variables were expanded in powers of ε2 and then, as in Howell (1996),

substituted into the model equations to derive leading order expressions.
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A key factor in deriving a leading order 1D model from their initial 2D equations is

the scaling of parameters. The parameters describing drag and cell chemotactic effects

relative to viscosity were scaled to be O(1/ε2), i.e. they were assumed to be large. The

chemotaxis scaling encodes the assumption that cell forces are large and a significant

determinant of behaviour, while the drag scaling couples together the movement of

cell and culture medium phases. These scalings were crucial for a non-trivial leading

order model to be derived.

The resulting model describes an extensional flow where the leading order variables

are independent of the y-coordinate. The system consists of equations averaged across

the height of the film, including mass conservation for cell and mixture phases as well

as the chemoattractant, and a force balance equation for the cell layer. Through integ-

rating across y in the model derivation, the free boundary at y = h was included in the

1D model through a mass conservation equation. We will use a similar methodology

in Chapter 4 when deriving a reduced model for our 2D thin film problem.

Similar modelling techniques were explored in multiphase, three-dimensional thin

films in King and Oliver (2005). They developed thin film models for poroviscous

flow, which were then applied to the active motion of crawling animal cells. Since the

cell was assumed to be ‘well-spread’, it was represented as a thin film on a substrate.

The cell was modelled as a two-phase material with network and solution phases; the

solution flows through the poroviscous network, with mass transfer between the solu-

tion and network phases occurring due to the polymerisation and de-polymerisation

process. Unlike the previous works discussed, the gel length is a free boundary in this

instance. We note that this model also does not include osmotic solvent flow, or indeed,

solvent flow outside the film.

As discussed with respect to the Green et al. (2017) study, the choice of parameter

scalings played a significant role in the resulting model derived. In their paper, King

and Oliver (2005) explored different thin film scaling limits, with a key result being to

demonstrate how the particular choice of scaling regime allows for different models

to be derived with a reduction in spatial dimensional dependency. The paper also

showed how scaling regimes can be applied to extract useful models from seemingly

intractable systems of equations. King and Oliver perturbed variables in powers of ε2
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like the previous studies discussed, and then obtained equations at leading order and

O(ε2) to derive an extensional flow model.

King and Oliver (2005) and Green (2006) also considered a lubrication scaling limit in

their models alongside the extensional limits discussed so far. The lubrication problem

differs from the extensional case through the presence of a no-slip condition on at least

one boundary. Green (2006) considered a similar model to that presented in Green et al.

(2017); the key difference in the lubrication limit is that while chemotaxis and drag

were still scaled to be large, the ECM pressure and surface tension were also scaled to

be O(1/ε2). These scalings indicate that the pressures created in the system are large,

and that significant surface tension and ECM pressure are required to accommodate

continuity of pressure and normal stress across the boundaries. In the culture medium

domain, equivalent to our gel, the pressure was found to be equal to the surface tension;

the balance between cell stresses and surface tension then played a significant role in

the evolution of the cell volume fraction. As in the extensional case, a 1D model for the

governing equations was derived.

These thin film models do not consider the effects of osmotic swelling. Indeed, to our

knowledge, osmotic pressure has not been included in a mechanical thin film model

similar to those discussed thus far. We will incorporate osmotic fluid flow in the thin

film gel model we develop in Chapter 4.

1.5 thesis outline

The thesis proceeds as follows. In Chapter 2, we develop a multiphase model for gel-

solvent interaction. An important contribution of this work is that, unlike the models

discussed in Section 1.2, we account for the flow of both polymer and solvent compon-

ents of the gel together with osmotic effects. We build on the multiphase flow models

discussed in Section 1.3 to incorporate cell-gel interactions, thereby creating a more

comprehensive model of the system.

In Chapter 3, we analyse this model in 1D Cartesian coordinates, finding small time

analytic solutions and studying the model numerically to better understand the pos-

sible qualitative behaviours. We see in this analysis that the gel swells or contracts
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depending on the balance of cell and chemical potentials and their gradients. We find

non-uniform spatial equilibria in this setting as well as cases where the polymer frac-

tion and cell density of the gel oscillate as it evolves.

In Chapter 4, we extend the theory discussed in Section 1.4 to develop a new thin

film model for the gel in 2D Cartesian coordinates. Exploiting that the gel height is

small relative to its length, we show that in particular scaling limits, a 1D extensional

flow model can be derived from the initial 2D system of equations. We then study

this model in Chapter 5 for uniform initial conditions. We show that a reduced model

can be derived which is governed by an ordinary differential equation (ODE) for the

gel height. We then find small time solutions and implement the model numerically,

evaluating the behaviours arising from the reduced system of equations. In Chapter 6,

we study the thin film model for non-uniform initial conditions. We consider the sta-

bility of equilibria in the thin film, followed by numerical evaluation of the model. We

find that spatially varying equilibria can be found when taking spatially non-uniform

initial conditions.

We conclude in Chapter 7 with a summary of the key findings in this thesis and an

outline of possible future work.
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2

M O D E L D E V E L O P M E N T
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2.1 model formulation

In this chapter, we develop a general model for gel mechanics which will be studied

throughout this thesis. We detail the problem to be modelled, the equations describing

the dynamics of the gel’s evolution, and appropriate initial and boundary conditions

to complete this system of equations. We use a multiphase flow approach based on the

work of Keener et al. (2011b) and Mori et al. (2013), modified to incorporate cells.

In this thesis, we will study a gel seeded with cells, which sits within a surrounding

bath of liquid solvent (e.g. nutrient medium). This gel-solvent system is sketched in Fig.

2.1. The domain Ω is divided into two regions: the gel region Ωg, and the surrounding

region of pure solventΩs. We note that the problem can be studied in different geomet-

ries, i.e. Ωg does not necessarily have to be spherical. Let x denote position in Ω and t

denote time. The centroid of the gel is at x = 0 and the gel-solvent interface, denoted

Γg(x, t) = 0, is the boundary between Ωg and Ωs. This interface between the gel and

surrounding solvent can move over time with the movement of solvent between the

two regions.

The gel is assumed to be made up of two phases, polymer and solvent, each of

constant density, with volume fractions denoted by θp(x, t) and θs(x, t) respectively.

Hence, we define Ωg to be the region where θp > 0 and θs > 0, and Ωs to be that

where θp = 0 and θs = 1. Cells are only present in the gel regionΩg, and for simplicity,

we assume that the volume they occupy within the gel is negligible; we therefore do not

include a cell volume fraction and instead consider cell density n(x, t), where n(x, t) =

0 in Ωs (similar to Barocas and Tranquillo (1994)). Thus, the no-voids condition

θp + θs = 1, (2.1)

is satisfied everywhere in the domain Ω = Ωg+Ωs. Moreover, the model given below,

while written for the gel region Ωg, is also applicable to the solvent region Ωs on

setting θp = n = 0 and θs = 1.
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Figure 2.1: Gel-solvent domain Ω = Ωg ∪Ωs. Ωg contains the cell population as well
as positive volume fractions for both the polymer network and solvent,
whereas Ωs contains only solvent. Γg(x, t) = 0 is the moving boundary
of the gel, also referred to as the gel-solvent interface. Γs is the external
boundary of the domain.

2.2 mass and momentum conservation equations

We assume the mass of both polymer and solvent is conserved (i.e. production and

degradation of both species is neglected), so that

∂θp

∂t
+∇ · (θpvp) = 0, (2.2)

∂θs

∂t
+∇ · (θsvs) = 0, (2.3)

where vp(x, t) and vs(x, t) are the polymer and solvent velocities respectively. Given

the no-voids condition (2.1), adding equations (2.2) and (2.3) yields

∇ · v = 0, (2.4)

where v = θpvp+θsvs is the volume-averaged velocity of the polymer-solvent mixture

(Keener et al., 2011b); we choose to replace (2.3) with (2.4). Note that in the solvent

region Ωs we simply have ∇ · vs = 0.

For simplicity, cell proliferation and death are neglected, so the cell population is

fixed. Cells are assumed to move by a combination of advection with the polymer net-

19



work and unbiased random motion, modelled by Fick’s Law with diffusion coefficient

D. Conservation of cells then gives

∂n

∂t
+∇ · (nvp) = D∇2n. (2.5)

We obtain equations for vp(x, t) and vs(x, t) by considering the momentum balance

throughout the domain. Green et al. (2013) note that the Deborah number (which gives

the ratio of elastic to viscous effects) found experimentally for gels like collagen is

small (O(10−1) −O(10−2)), meaning that elastic effects can be ignored. Hence, follow-

ing Keener et al. (2011b) and Mori et al. (2013), we model both the polymer and the

solvent phases as viscous fluids with a common pressure, P. The viscous stresses in

the two phases are encapsulated by the deviatoric tensors σp and σs, where the poly-

mer stress tensor σp and the rate of strain tensor ep are defined by

σp = 2ηpep + κpI∇ · vp, (2.6)

ep =
1

2

(
∇vp +∇vpT

)
, (2.7)

with the solvent tensors σs and es similarly defined with subscript s in place of p.

The constants ηi and κi (i = p, s) are the dynamic and bulk viscosities of each phase i

respectively, and I is the identity tensor.

As in Keener et al. (2011b), we assume that the forces exerted on the two phases come

from inter-phase drag (which is proportional to the product of the volume fractions of

the two phases) and chemical potential gradients. In addition, we include traction

stresses exerted by cells on the polymer network. Inertia can be neglected on the time

and length scales typical of experiments such as Moon and Tranquillo (1993), so that

the momentum balances for the two phases are given by

∇ · (θpσp)−ξθpθs(vp − vs) − θp∇µp − θp∇P+∇(θpG) = 0, (2.8)

∇ · (θsσs)−ξθpθs(vs − vp) − θs∇µs − θs∇P = 0. (2.9)

In equations (2.8) and (2.9), µp(θp) and µs(θp) are the chemical potentials for the

polymer and solvent respectively, while ξ is the constant drag coefficient. The traction
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force exerted by the cells on the polymer network is a novel addition in this context of

multiphase gel modelling; it is incorporated as a body force acting on the gel and is

given by the gradient of θpG(n), where G is a scalar potential energy function (Mori

et al., 2013). The forms of the cell potential function G and the chemical potentials µp

and µs are detailed in Sections 2.3 and 2.4 below.

2.3 cell potential energy function

We assume the energy potential associated with the cells to be given by the Hill equa-

tion

G(n) =
τ0n

2

1+ λn2
. (2.10)

This differs from the function described in previous works (Green et al., 2013; Moon

and Tranquillo, 1993; Murray, 2001) in having n2 rather than n in the numerator. This

means that ∂G/∂n > 0 for all n, which ensures that the cell traction force,

∇G =
∂G

∂n
∇n, (2.11)

acts in the direction of increasing cell concentration. The positive parameter τ0 provides

a measure for the strength of cell traction forces, and λ is a positive contact inhibition

parameter, which reflects that the force exerted by cells decreases as the cells become

more densely populated.
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2.4 chemical potentials

The chemical potential functions µp and µs describe the work done by the free energy

in the polymer and solvent to affect the swelling or compaction of the gel. These are

defined as

µp(θp) = f+ θs
∂f

∂θp
, (2.12)

µs(θp) = f− θp
∂f

∂θp
, (2.13)

where f(θp) is the free energy per unit volume of gel (Keener et al., 2011b). The free en-

ergy function, derived from polymer physics, is defined below. The polymer chemical

potential µp describes the change in free energy resulting from an additional poly-

mer unit being added to the gel, while the solvent chemical potential µs describes

the change in free energy from an additional solvent unit being added (Keener et al.,

2011b).

The free energy of the system per unit volume of gel is

f(θp) =
kBT

νm

(
θp

N
log(θp) + θs log(θs) + χθpθs + µ0pθp + µ

0
sθs

)
, (2.14)

where kB is the Boltzmann constant, T is temperature, νm is the characteristic volume

of a monomer in our system, N is the chain length of the polymer, χ is the Flory

interaction parameter and the constants µ0p and µ0s are dimensionless quantities known

as the standard free energies of the polymer and solvent respectively. The logarithmic

terms in the function describe the entropy of mixing polymer and solvent; these terms

always encourage swelling in the gel. The latter terms involving χ, µ0p and µ0s can

increase the tendency for the gel to swell or contract depending on the signs of these

parameters. The χ term describes the energy of mixing, while the terms involving µ0p

and µ0s describe the interaction energy in a pure polymer or solvent state respectively

(Rubinstein et al., 2003).

In most of the relevant literature (e.g. Mori et al. (2013); Rubinstein et al. (2003); Zhang

et al. (2008)) the standard free energy parameters µ0p and µ0s are not included, so that
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the free energy function represents only the interaction or mixing of the phases as op-

posed to the total free energy (Keener et al., 2011a). However, following the work of

Keener et al. (see Keener et al. (2011a,b); Sircar et al. (2013)), we retain the standard free

energy terms for generality. In the framework of Mori et al. (2013) that we adopt, we

will see that these terms do not contribute explicitly to the final model, due to cancel-

lations of terms involving f(θp) and its derivatives. They are, nevertheless, contained

implicitly through the derivation of the mixing parameter χ (see Rubinstein et al. (2003)

for further detail).

The Flory interaction parameter χ is a dimensionless parameter that characterises the

nature of the interaction between the phases in the mixture: χ < 0 indicates attraction

between the phases, and accordingly, mixing of these components being energetically

advantageous; χ > 0 corresponds to repulsion between the polymer and solvent, res-

ulting in the phases preferring to separate (Rubinstein et al., 2003).

As in Keener et al. (2011b), from equations (2.12) and (2.13), we can derive further

useful relations between the chemical potentials and free energy. Firstly, we have the

relation,

θpµp + θsµs = f(θp). (2.15)

We also have that

µp − µs =
∂f

∂θp
, (2.16)

which indicates that at stationary points of f(θp), the chemical potentials µp and µs

must be equal.

2.5 initial and boundary conditions

To close our system of equations, we need to impose suitable initial and boundary

conditions.
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The initial conditions for the volume fractions and cell density are given by

θp(x, 0) = θi(x), θs(x, 0) = 1− θi(x), n(x, 0) = ni(x), (2.17)

where 0 < θi(x) < 1 and ni(x) > 0 for x ∈ Ωp, and θi(x) = ni(x) = 0 for x ∈ Ωs. The

initial gel-solvent interface is given by

Γg(x, 0) = Γgi(x) = 0. (2.18)

We take the centroid of the gel to be fixed in space and, therefore, have zero velocity

at the origin for all time,

vp(0, t) = 0, (2.19)

while no slip and no penetration on the external boundary of the domain Γs is given

by

vs = 0. (2.20)

The gel-solvent interface Γg(x, t) = 0 moves over time due to movement of the poly-

mer phase, so that its position is given by the kinematic condition

∂Γg

∂t
+ vp · ∇Γg = 0. (2.21)

We assume there is no diffusive flux of cells out of the gel at the interface, so that

(D∇n) · n̂ = 0 on Γg = 0, (2.22)

where n̂ is the unit normal vector on Γg = 0. Continuity of stress across Γg = 0 is

described by

[θpσp + θsσs + f− θpf
′ + θpG] · n̂− [P+ µs] · n̂ = 0, (2.23)
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where the prime denotes differentiation with respect to θp (Mori et al., 2013). The

bracket notation [J] in equation (2.23) denotes the jump in the function J across the

boundary; thus [J] = 0 indicates that J is continuous across the boundary. Using equa-

tion (2.13), we simplify interface condition (2.23) to

[θpσp + θsσs + θpG− P] · n̂ = 0. (2.24)

Finally, at the interface, we have

Rθs(vs − vp) · n̂ = (n̂ ·σesn̂) − (n̂ ·σsn̂) + [P+ µs], (2.25)

where we have introduced the superscript e to clearly designate a quantity in the

solvent domain Ωs external to the gel. This condition describes how the difference in

pressure, chemical potential, and solvent stress across the interface drives fluid flow

into or out from the gel, at a rate proportional to the resistance R > 0 of the bound-

ary (see equation (3.15) in Mori et al. (2013)). We note that an increase in R increases

the resistance of the boundary so that it is more impervious to solvent flow, while a

decrease indicates that it is easier for fluid to move across the boundary in and out of

the gel. With the resistance R = 0, the normal solvent stresses are equal to the pressure

difference across the interface.

2.6 discussion

We have developed a new, multiphase model to study a gel-solvent system includ-

ing cells. This model extends those presented in Keener et al. (2011b) and Mori et al.

(2013), incorporating cell traction stresses alongside osmotic pressure. This will allow

us to study the gel’s emergent behaviours and characteristics under these competing

forces. Having derived the model here in a general, three-dimensional form, we will

now study particular cases representing different gel constructions. Chapter 3 presents

an analysis of the model in 1D Cartesian coordinates, this being the most tractable
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geometry for analytical and numerical investigations. The later chapters of the thesis

study thin films of gel, adapting the model to 2D Cartesian coordinates.
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1 D M O D E L F O R C E L L - G E L M E C H A N I C S
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3.1 introduction

We now consider the model developed in Chapter 2 in 1D Cartesian coordinates. We

study the gel in this simple setting to understand the behaviours that emerge from the

model. In this chapter, we set out the model equations in this 1D coordinate system,

non-dimensionalise the model, and transform it onto a fixed spatial domain. We then

consider equilibrium and short time behaviour, through which we can derive insights

into the stability of equilibrium states. We implement a numerical scheme to simulate

the model, exploring the forces driving gel swelling and contraction and the manner

in which this occurs.

3.2 one-dimensional cartesian model

For simplicity, we investigate the behaviour of a one-dimensional gel in the Cartesian

coordinate x, which is symmetrical about x = 0. We also assume that all quantities

are continuous and differentiable at x = 0. Thus, we consider 0 6 x 6 L(t) as the gel

domain Ωg in which 0 < θp(x, t) < 1, θs(x, t) = 1− θp(x, t), and n(x, t) > 0, while

the polymer and solvent velocities are vp(x, t) and vs(x, t). There is a fixed symmetry

boundary at x = 0 and a moving boundary at x = L(t) (equivalently, Γg(x, t) = x−

L(t) = 0) on which the kinematic condition (2.21) becomes

dL

dt
= vp(L(t), t). (3.1)

Outside the gel domain (x > L(t)), we have the solvent domain Ωs with θep(x, t) = 0

and θes(x, t) = 1, where we have introduced the superscript e to clearly designate the

solvent domain external to the gel. From hereon, this superscript notation will be used

for all quantities in Ωs, while lack of the superscript e denotes quantities in Ωg.

Since, by symmetry, vp(0, t) = vs(0, t) = 0, the continuity condition (2.4) implies that

throughout Ωg we have

θpvp + θsvs = 0. (3.2)
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Similarly, throughout Ωs we simply have ves = 0, which satisfies the no-penetration

condition (2.20) on the boundary Γs. In gel domain Ωg, from the mass conservation

equation (2.2) we also have

∂θp

∂t
+
∂

∂x
(θpvp) = 0, (3.3)

while the advection-diffusion equation for cell density (2.5) becomes

∂n

∂t
+
∂

∂x
(nvp) = D

∂2n

∂x2
, (3.4)

and the momentum equations (2.8) and (2.9) are now

∂

∂x

(
2ηpθp

∂vp

∂x
+ κpθp

∂vp

∂x

)
− ξθpθs(vp − vs) − θp

∂µp

∂x
− θp

∂P

∂x

+
∂

∂x
(θpG) = 0, (3.5)

∂

∂x

(
2ηsθs

∂vs

∂x
+ κsθs

∂vs

∂x

)
− ξθpθs(vs − vp) − θs

∂µs

∂x
− θs

∂P

∂x
= 0. (3.6)

On multiplying (3.5) by θs and (3.6) by θp and taking the difference, we eliminate

the pressure terms from the momentum equations, yielding

(2ηp + κp)θs
∂

∂x

(
θp
∂vp

∂x

)
+ (2ηs + κs)θp

∂

∂x

(
θs
∂

∂x

(
θpvp

θs

))
− ξθpθs(vp − vs) − θpθs

∂

∂x
(µp − µs) + θs

∂

∂x
(θpG) = 0. (3.7)

From equation (3.2), we have

vs = −
θp

θs
vp, (3.8)

and differentiating equation (2.16) with respect to x gives

∂

∂x
(µp − µs) = f

′′(θp)
∂θp

∂x
. (3.9)
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On substituting equations (3.8) and (3.9), (3.7) becomes

(2ηp + κp)θs
∂

∂x

(
θp
∂vp

∂x

)
+ (2ηs + κs)θp

∂

∂x

(
θs
∂

∂x

(
θpvp

θs

))
− ξθpvp

− θpθsf
′′(θp)

∂θp

∂x
+ θs

∂

∂x
(θpG) = 0. (3.10)

We use (3.10) to replace (3.5).

In the solvent region Ωs, where ves = 0, θep = 0 and θes = 1, the solvent viscous stress

tensor σes is zero, and from (2.13) and (2.14),

µes = f− θpf
′∣∣
θp=0

= f(0), (3.11)

where f(0) is a constant. From the definition of f(θp) in equation (2.14), we see that

f(0) = µ0s . The momentum equation (2.9) therefore simplifies to

∂Pe

∂x
= 0 (3.12)

and we see that Pe is at most a function of time t.

The 1D form of the interface condition (2.24) on x = L(t) becomes

(2ηp + κp)θp
∂vp

∂x
+ (2ηs + κs)θs

∂vs

∂x
+ θpG− (P− Pe) = 0, (3.13)

while (2.25) on x = L(t) becomes

Rθs(vs − vp) = −(2ηs + κs)
∂vs

∂x
+ (P− Pe) + (µs − µ

e
s). (3.14)

Using (3.14) to eliminate pressure from (3.13) and using (3.8) to substitute for vs, we

obtain

(2ηp + κp)θp
∂vp

∂x
+ (2ηs + κs)θp

∂

∂x

(
θpvp

θs

)
+ θpG+Rvp

+ µs − µ
e
s = 0 (3.15)

at x = L(t).
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From (2.19), the velocity at the origin is zero for all time,

vp(0, t) = 0 for t > 0. (3.16)

From the mass conservation equation (3.3), given that vp(0, t) = 0, there is a character-

istic along x = 0. On this characteristic, θp(0, t) satisfies the ODE

dθp(0, t)
dt

= −θp(0, t)
∂vp(0, t)
∂x

, (3.17)

subject to the initial condition θp(0, 0) = θi(0). Similarly, given that vp(L, t) = dL/dt,

there is a characteristic along x = L(t), and as such, θp(L, t) must satisfy

dθp(L, t)
dt

= −θp(L, t)
∂vp(L, t)
∂x

, (3.18)

subject to θp(L, 0) = θi(L). Therefore, assuming that vp is smooth for t > 0, θp is

determined from the initial condition and vp, and no boundary conditions on θp are

required.

Furthermore, given that vp and ∂vp/∂x are continuous and differentiable at x = 0

and that vp is an odd function, it can be shown from equation (3.3) that if ∂θi(0)/∂x = 0,

then ∂θp(0, t)/∂x = 0 for all t, i.e. if the polymer fraction θp is initially symmetric and

continuous about the origin, then it will remain so for all time. Since we take θi(x) to

be differentiable with ∂θi(0)/∂x = 0, we therefore have

∂θp(0, t)
∂x

= 0 for t > 0. (3.19)

Finally, the symmetry of the cell density at x = 0 requires

∂n(0, t)
∂x

= 0 for t > 0, (3.20)

while no diffusive cell flux at x = L(t) requires

D
∂n(L(t), t)

∂x
= 0 for t > 0. (3.21)
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The no-voids condition (2.1), the conservation equations (3.2), (3.3), (3.4), the mo-

mentum equation (3.10), and boundary conditions (3.1), (3.15), (3.20), (3.21) comprise a

complete model for the polymer and solvent volume fractions θp(x, t), θs(x, t), the cell

density n(x, t), and the polymer and solvent velocities vp(x, t), vs(x, t) in the gel, along

with the length L(t) of the gel. To solve for the pressure difference between the gel and

solvent regions, P(x, t) − Pe(t), we must add the momentum equation (3.6) and the

boundary condition (3.14). However, we choose not to solve for pressure throughout

the gel, given that we can study the mechanics driving the gel without its inclusion,

and so drop (3.6) and (3.14) from the model.

3.3 non-dimensionalisation

Let L = L(0) be the length scale, N be a characteristic cell density (typically the mean

initial density), and let the time scale be the ratio of polymer viscosity ηp to the free

energy scale kBT/νm. Using these scales, we non-dimensionalise our model variables

as follows, where tildes denote dimensionless quantities,

x = Lx̃, t =
ηpνm

kBT
t̃, L(t) = LL̃(t̃), (3.22a)

vp =
kBTL

ηpνm
ṽp, vs =

kBTL

ηpνm
ṽs, n = Nñ. (3.22b)

We also define the following dimensionless model parameters, again denoted by tildes,

κ̃p =
κp

ηp
, κ̃s =

κs

ηp
, η̃s =

ηs

ηp
, ξ̃ =

L2ξ

ηp
, (3.23a)

τ̃0 =
τ0N

2νm

kBT
, λ̃ = N2λ, D̃ =

ηpνmD

kBTL2
, R̃ =

LR

ηp
, (3.23b)

and the dimensionless free energy, chemical potential functions, and cell potential en-

ergy,

f̃(θp) =
νm

kBT
f(θp) =

(
θp

N
log(θp) + θs log(θs) + χθpθs + µ0pθp + µ

0
sθs

)
, (3.24a)

µ̃s =
νm

kBT
µs, µ̃p =

νm

kBT
µp, G̃ =

τ̃0ñ
2

1+ λ̃ñ2
. (3.24b)

32



The mass balance equations (3.2), (3.3) and (3.4) are unchanged in form on writing

them in terms of the scaled variables and parameters. Similarly, (2.12), (2.13), (2.15),

(2.16) and the boundary conditions (3.1), (3.20), (3.21) are unchanged in form. Hence

we do not re-write them here. The scaled forms of the momentum equation (3.10) and

interface stress condition (3.15) become

(2+ κ̃p)θs
∂

∂x̃

(
θp
∂ṽp

∂x̃

)
+ (2η̃s + κ̃s)θp

∂

∂x̃

(
θs
∂

∂x̃

(
θpṽp

θs

))
− ξ̃θpṽp

− θpθsf̃
′′∂θp
∂x̃

+ θs
∂

∂x̃

(
θpG̃

)
= 0, (3.25)

over 0 6 x̃ 6 L̃(t̃) and, at x̃ = L̃(t̃),

(2+ κ̃p)θp
∂ṽp

∂x̃
+ (2η̃s + κ̃s)θp

∂

∂x̃

(
θpṽp

θs

)
+ θpG̃

+ µ̃s − µ̃
e
s + R̃ṽp = 0. (3.26)

We now introduce a change in coordinates to shift our moving boundary problem

onto a fixed domain. We define new coordinates X = x̃/L̃(t̃) and T = t̃, so that the

domain 0 6 x̃ 6 L̃(t̃) is mapped to the fixed domain 0 6 X 6 1. On this fixed domain

the model becomes, using dots to denote differentiation with respect to time T , primes

to denote differentiation with respect to θp, and dropping tildes on dimensionless

variables and parameters for convenience,

θs = 1− θp, (3.27)

θpvp + θsvs = 0, (3.28)

∂θp

∂T
−
X

.
L

L

∂θp

∂X
+
1

L

∂

∂X
(θpvp) = 0, (3.29)

∂n

∂T
−
X

.
L

L

∂n

∂X
+
1

L

∂

∂X
(nvp) =

D

L2
∂2n

∂X2
, (3.30)

(2+ κp)
θs

L2
∂

∂X

(
θp
∂vp

∂X

)
+ (2ηs + κs)

θp

L2
∂

∂X

(
θs
∂

∂X

(
θpvp

θs

))
− ξθpvp −

θpθs

L
f ′′(θp)

∂θp

∂X
+
θs

L

∂

∂X
(θpG) = 0, (3.31)
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with boundary conditions at X = 0,

vp = 0,
∂n

∂X
= 0,

∂θp

∂X
= 0, (3.32)

and boundary conditions at X = 1,

(2+ κp)
θp

L

∂vp

∂X
+ (2ηs + κs)

θp

L

∂

∂X

(
θpvp

θs

)
+ θpG

+ µs − µ
e
s +Rvp = 0, (3.33)

D
∂n

∂X
= 0, (3.34)

.
L = vp. (3.35)

In addition, we must specify suitable initial conditions

θp(X, 0) = θi(X), n(X, 0) = ni(X), L(0) = 1, (3.36)

with θi(X) chosen such that ∂θi(0)/∂X = 0. This completes our derivation of the 1D

model.

3.4 steady state conditions

We now consider steady state (i.e. long time) solutions of our model. This allows us to

understand the necessary conditions in the gel for it to equilibrate. These conditions

will assist us in analysing the model’s analytic and numerical behaviours throughout

this chapter.

The system reaches equilibrium when θp and n are such that there is zero net force

everywhere, the velocities of polymer and solvent are zero everywhere, and
.
L = 0, i.e.

the free boundary stops moving. We find that both spatially uniform and non-uniform

steady state solutions can occur in θp and n.
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At a steady state, the mass and momentum conservation equations (3.29) - (3.31) are

1

L

∂

∂X
(θpvp) = 0, (3.37)

1

L

∂

∂X
(nvp) =

D

L2
∂2n

∂X2
, (3.38)

(2+ κp)
θs

L2
∂

∂X

(
θp
∂vp

∂X

)
+ (2ηs + κs)

θp

L2
∂

∂X

(
θs
∂

∂X

(
θpvp

θs

))
− ξθpvp −

θpθs

L
f ′′(θp)

∂θp

∂X
+
θs

L

∂

∂X
(θpG) = 0. (3.39)

To demonstrate that the velocities are zero at equilibrium, we evaluate the steady

state polymer advection equation (3.37), which gives

1

L

∂

∂X
(θpvp) = 0. (3.40)

Integrating with respect to X and applying the boundary condition vp = 0 at X = 0,

we find that

θpvp = 0. (3.41)

Since we must have θp > 0, we see that vp = 0 must hold at equilibrium. Accordingly,

we must also have vs = 0 using equation (3.28).

The momentum balance equation (3.39) then gives us the equilibrium condition

throughout the interior of the gel,

∂

∂X
(θpG) − θpf

′′(θp)
∂θp

∂X
= 0. (3.42)

From (2.13), we note that

∂µs

∂X
= −θpf

′′(θp)
∂θp

∂X
, (3.43)

and accordingly, equation (3.42) can be expressed in the form

∂

∂X
(θpG+ µs) = 0, (3.44)
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i.e. for the gel to be in equilibrium, the cell traction force must be balanced by the force

due to chemical potential gradients. We note that with n = 0 (and hence G = 0), this is

the same condition as in Keener et al. (2011b). Equation (3.44) is subject to the condition

(3.33) at the interface X = 1, which, at equilibrium, gives

θpG+ µs − µ
e
s = 0. (3.45)

After integrating (3.44) and using (3.45) to set the constant of integration, we obtain

θpG+ µs − µ
e
s = 0, (3.46)

and we see that the condition (3.45) applies everywhere at equilibrium. We note that,

as shown in (3.11), µes = f(0) is constant.

From the cell advection-diffusion equation (3.38), we see that, at equilibrium, we

must have

D
∂2n

∂X2
= 0. (3.47)

For D = 0, this is trivially satisfied, and equation (3.46) is sufficient for the gel to

equilibrate. In this case, it is possible to have equilibrium solutions in θp and n that

depend on X.

With D 6= 0, after integrating (3.47) and applying the no-flux condition (3.34), we

find that

∂n

∂X
= 0, (3.48)

i.e. at equilibrium, n must be spatially uniform.

Now, given spatially uniform n, equation (3.42) can be written

(
G− θpf

′′(θp)
) ∂θp
∂X

= 0, (3.49)
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indicating that either G− θpf
′′ or ∂θp/∂X must equal zero for equilibrium. Given the

functional form of f(θp) (see (2.14)), we have

f ′′ =
1

Nθp
+

1

1− θp
− 2χ. (3.50)

Evaluating G− θpf
′′ = 0, we find the following quadratic expression in θp,

θ2p +

{
1

2χ

(
1+G−

1

N

)
− 1

}
θp −

1

2χ

(
G−

1

N

)
= 0. (3.51)

This shows that, at most, we can have two positive solutions for θp, depending on the

values of the model parameters. However, given that θp must be continuous, only a

constant value of θp will satisfy this condition. Thus, we must have ∂θp/∂X = 0 to

satisfy G− θpf
′′ = 0 at equilibrium. Therefore, from equation (3.49), we see that we

must have at equilibrium,

∂θp

∂X
= 0, (3.52)

i.e. spatially uniform θp. Therefore, if diffusion D 6= 0, n and θp must be spatially

uniform and satisfy equation (3.46) for the gel to reach a steady state.

We note that, given conservation of mass in equations (3.29) and (3.30), we have the

relation between the mass of polymer at T = 0 and any later time T , and similarly for

the mass of cells,

L(T)

∫1
0

θp(X, T)dX =

∫1
0

θi(X)dX, L(T)

∫1
0

n(X, T)dX =

∫1
0

ni(X)dX, (3.53)

where L(0) = 1 as required by our scaling. This demonstrates that any perturbations

to the initial polymer fraction or cell density that change the total polymer or cell

mass will lead to changes in L, θp and n at later points in time. In particular, this

demonstrates that changing the initial mass of polymer or cells will result in a different

equilibrium solution in θp, n and L, i.e. the long time behaviour is not independent of

the initial conditions.
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We can use equation (3.46) to calculate the spatially uniform equilibrium values of

θp and n for a given set of parameter values (note that this does not preclude steady

states that are X-dependent also existing for such parameter values when D = 0).

This is useful for two reasons: firstly, it provides a method to confirm that numerical

simulations (such as we will see in Section 3.7) find the correct equilibrium values;

secondly, it allows us to analyse how the equilibrium values of polymer and cell density

change as chosen parameter values are adjusted. Together with a condition derived

from the short time solutions in Section 3.6, we will use this in Section 3.6.6 to analyse

steady state values of particular variables and parameters, as well as the stability of

these equilibria as different parameter values change.

3.5 short time analysis

We next study the behaviour of the 1D Cartesian system (3.27) - (3.36) on a short time

scale to investigate the early time evolution of the system from non-equilibrium initial

conditions. In Section 3.6, we will determine how the system evolves over small time

in response to small spatial perturbations to equilibria. Later, in Section 3.7.2, we will

compare these short time solutions with numerical solutions at early time to verify the

behaviour of our numerical scheme described in Section 3.7.

3.5.1 Evolution from non-equilibrium initial conditions

We proceed by introducing the short time scale δ� 1 and define T = δT̂ . We then write

the dependent variables as power series in δ, expanding about the initial conditions:

L(T̂) = L0 + δL1(T̂) + δ
2L2(T̂) + ..., (3.54)

vp(X, T̂) = v0(X) + δv1(X, T̂) + δ2v2(X, T̂) + ..., (3.55)

with expansions for θp and n similar to that for vp. Here L0 = 1, v0(X), θ0(X), and

n0(X) are the initial conditions. For simplicity, and in the interests of finding an analytic

solution, we shall restrict our attention to spatially uniform initial conditions for θp and
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n, i.e. θ0(X) = θi and n0(X) = 1, where θi is constant and we have scaled n using the

initial cell density as its characteristic value.

We substitute these expansions into (3.29) - (3.35). From the kinematic boundary

condition (3.35) at O(δ), we find

L1(T̂) = v0(1)T̂ . (3.56)

The momentum equation (3.31) at leading order becomes

(2+κp)(1− θi)θi
∂2v0
∂X2

+ (2ηs + κs)θ
2
i

∂2v0
∂X2

− ξθiv0 = 0. (3.57)

On applying the boundary condition v0(0) = 0, we find that this has the solution

v0 = A0 sinh(αX), α =

√
ξ

(2+ κp)(1− θi) + (2ηs + κs)θi
. (3.58)

The constant A0 is determined from the interface condition (3.33), where at leading

order (remembering that G = τ0n
2/(1+ λn2) and n0 = 1), we have

(2+ κp)θi
∂v0
∂X

+ (2ηs + κs)
θ2i

1− θi

∂v0
∂X

+
θiτ0
1+ λ

+ µs(θi) − µ
e
s +Rv0 = 0, (3.59)

which yields,

A0 = −

{
α cosh(α)

(
(2+ κp)θi +

(2ηs + κs)θ
2
i

(1− θi)

)
+R sinh(α)

}−1

×
(
θiτ0
1+ λ

+ µs(θi) − µ
e
s

)
. (3.60)

We note that by (3.46), the term in the final brackets in (3.60) is equal to zero if our

initial condition θ0 = θi, n0 = 1 is a steady state. We would then have A0 = v0(X) = 0,

as required for an equilibrium. For the remainder of this section, we therefore consider

the early time evolution from non-equilibrium initial conditions only.
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Finally, at O(δ) the polymer and cell advection equations (3.29) and (3.30) reduce to

∂θ1

∂T̂
= −θi

∂v0
∂X

, (3.61)

∂n1

∂T̂
= −

∂v0
∂X

, (3.62)

where θ1(X, 0) = n1(X, 0) = 0. These have the solutions

θ1(X, T̂) = −θiαA0 cosh(αX)T̂ , (3.63)

n1(X, T̂) = −αA0 cosh(αX)T̂ . (3.64)

Thus, we have obtained the following short time solutions for the length of the gel,

the polymer fraction and the cell density respectively,

L(T̂) = 1+ δT̂A0 sinh(α) +O(δ2), (3.65)

θp(X, T̂) = θi(1− δT̂αA0 cosh(αX)) +O(δ2), (3.66)

n(X, T̂) = 1− δT̂αA0 cosh(αX) +O(δ2), (3.67)

with α and A0 as defined above.

From these solutions we can determine how the gel will evolve away from uniform

initial conditions. The sign of each O(δ) term is determined by A0, whose sign is, in

turn, specified by the balance between the initial cell and chemical potentials. With

positive A0 (e.g. with a large negative mixing parameter χ in µs encouraging gel swell-

ing), the length L increases as the gel stretches in response to the influx of solvent,

causing θp and n to decrease. Meanwhile, for negative A0 (e.g. driven by a large cell

traction parameter τ0), the gel contracts in length as solvent is forced out, with θp and

n increasing accordingly.

Given that α > 0 here, the cosh(αX) functions in (3.66) and (3.67) increase monoton-

ically with X; accordingly, the magnitude of these functions is greatest at X = 1. This

indicates that θp and n will evolve most rapidly at the gel’s interface over small time.
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We also consider the small time solution for the model with no drag. Setting ξ = 0

in equation (3.57) and applying the boundary condition v0(0) = 0, we find that

v0 = k1X, (3.68)

where, from the interface condition (3.59),

k1 = −

{
(2+ κp)θi +

(2ηs + κs)θ
2
i

(1− θi)
+R

}−1

×
(
θiτ0
1+ λ

+ µs(θi) − µ
e
s

)
. (3.69)

After evaluating the model equations as done for ξ 6= 0 above, we arrive at the small

time solution for the zero-drag case,

L(T̂) = 1+ δT̂k1 +O(δ2), (3.70)

θp(T̂) = θi(1− δT̂k1) +O(δ2), (3.71)

n(T̂) = 1− δT̂k1 +O(δ2). (3.72)

We note that the zero-drag solution (3.70) - (3.72) is the same as that in equations (3.65)

- (3.67) in the limit α→ 0, which corresponds to drag ξ→ 0.

The behaviour here is again driven by the balance in cell and chemical potentials

which appear in the constant k1. The solution for this special case does not depend on

hyperbolic functions as was seen for ξ 6= 0, and furthermore, θp and n are independent

of X. Without drag, the gel therefore evolves in a spatially uniform manner over small

time; this is in contrast to the case with ξ 6= 0, where as previously mentioned, θp and

n evolve away from the initial conditions more rapidly with increasing X across the

spatial domain.

These solutions allow us to assess the early time behaviour with arbitrary uniform

initial conditions. We will use these small time solutions in Section 3.7 to verify that

our numerical method evolves as expected.
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3.6 spatial perturbations to equilibria over small time

We now examine how the system evolves over short time from initial conditions that

are small amplitude spatial perturbations to equilibrium solutions. This will suggest

the stability of the equilibrium state: an equilibrium will be taken as unstable if spatial

perturbations increase in amplitude over time, leading the system to evolve away from

the equilibrium; an equilibrium will be taken as stable if the perturbations decay. We

note that these stability criteria are supported by our numerical solutions to the model.

To find analytic solutions, we restrict our attention to spatially uniform equilibria as

required in the general case where D 6= 0, and owing to the difficulty of finding such

solutions for the non-uniform case.

3.6.1 Perturbations in space and time

We denote the dimensionless steady state by asterisks, L∗, θ∗, n∗, v∗, where v∗ = 0. The

length and cell density are scaled on their equilibrium values such that L∗ = n∗ = 1.

We take δ to be the short time scale as in the previous section and let ε be the amplitude

of the spatial perturbation, where δ� ε� 1. Next, we take the series (3.54), (3.55), etc.,

and expand each of the terms Lj, vj, θj, nj, j = 1, 2, . . ., in powers of ε, for example,

Lj = Lj0 + εLj1 + ε
2Lj2 + . . . , (3.73)

vj = vj0 + εvj1 + ε
2vj2 + . . . , (3.74)

while we take the initial conditions

L0 = 1, (3.75)

v0 = εv01(X) + ε
2v02(X) + . . . , (3.76)

θ0 = θ
∗ + εθ01(X), (3.77)

n0 = 1+ εn01(X). (3.78)
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We set θ01 = cos(γX), n01 = N01 cos(γX), such that

θ0 = θ
∗ + ε cos(γX), (3.79)

n0 = 1+ εN01 cos(γX), (3.80)

where N01 is an O(1) constant describing the magnitude of the spatial perturbation to

the cell density. We note that higher order terms of v0 must be determined in such a

way as is consistent with the other initial conditions.

Note that θ0 and n0 satisfy the symmetry boundary conditions (3.32) at X = 0 for

any choice of γ, while the no-flux cell boundary condition (3.34) at X = 1 requires

that γ = Zπ for some integer Z. For Z = 0, the spatial perturbation is constant and

so effectively only shifts our initial condition, resulting in a similar solution to that

presented in Section 3.5.1. Furthermore, changing the sign of Z does not change θ0 or

n0. We therefore restrict our analysis to positive values of Z.

We ensure that our choices of θ0 and n0 are such that the total masses of polymer

and cells over the domain 0 6 X 6 1 are unchanged from the unperturbed initial

masses (θ∗ for the polymer fraction and 1 for the cell density). As such, we have

θ∗ = L0

∫1
0

θ0(X)dX, (3.81)

and similarly,

1 = L0

∫1
0

n0(X)dX. (3.82)

On evaluating these expressions, we find that

θ∗ = θ∗ +
ε

γ
sin(γ), (3.83)

and

1 = 1+
εN01
γ

sin(γ). (3.84)
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Given the condition on γ above, we see that these equations are trivially satisfied,

and as such, the perturbations do not change the initial masses of polymer and cells.

Equation (3.84) also demonstrates that we are free to set N01 to any O(1) value and

still satisfy (3.82).

Incorporating these spatial perturbations in ε, the expansions (3.54), (3.55), etc., be-

come

L(T̂) = 1+ δL10(T̂) + δεL11(T̂) + δ
2L20(T̂) + ..., (3.85)

vp(X, T̂) = εv01(X) + δv10(X, T̂) + ε2v02(X)

+ δεv11(X, T̂) + δ2v20(X, T̂) + ..., (3.86)

and so on.

We now substitute these series into the governing equations for our gel to derive

solutions for θp, n, vp and L describing the small time behaviour.

3.6.2 Deriving small time solutions

To determine v01, we consider the O(ε) terms of the momentum balance equation

(3.31), finding

H
∂2v01
∂X2

− ξθ∗v01 − θ
∗(1− θ∗)f ′′(θ∗)

∂θ01
∂X

+ (1− θ∗)
τ0
1+ λ

∂θ01
∂X

+(1− θ∗)θ∗
2τ0

(1+ λ)2
∂n01
∂X

= 0, (3.87)

where H = (2+ κp)θ
∗(1− θ∗) + (2ηs + κs)θ

∗2. On substituting θ01 = cos(γX), n01 =

N01 cos(γX) in (3.87), we obtain

∂2v01
∂X2

−α2v01 +
(1− θ∗)

H
γz sin(γX) = 0, (3.88)

where α is as defined in (3.58) on replacing θi with θ∗, and

z = θ∗f ′′(θ∗) −
τ0
1+ λ

− θ∗
2τ0N01
(1+ λ)2

. (3.89)

44



This has the solution

v01 = A01 sinh(αX) +
(1− θ∗)γ

H(α2 + γ2)
z sin(γX). (3.90)

Using the interface condition (3.33) at O(ε), we find

A01 =

(
H

(1− θ∗)
α coshα+R sinhα

)−1

×
(

α2

α2 + γ2
z cos(γ)

−
R(1− θ∗)γ

H(α2 + γ2)
z sin(γ)

)
, (3.91)

which, given the condition on γ, simplifies to

A01 =

(
H

(1− θ∗)
α coshα+R sinhα

)−1

× α2

α2 + γ2
z cos(γ). (3.92)

We stop at finding v01(X) and do not continue with higher order terms for the initial

velocity v0, since these do not feature in the O(δ) and O(δε) corrections to θp and n.

Evaluating equations (3.29) and (3.30) at O(δ), we find that θ10 and n10 are inde-

pendent of time T̂ , hence θ10 = n10 = 0. Similarly, evaluating the kinematic boundary

condition (3.35) at O(δ) yields L10 = 0.

At O(δε), we have

∂θ11

∂T̂
= −θ∗

∂v01
∂X

, (3.93)

∂n11

∂T̂
= −

∂v01
∂X

+D
∂2n01
∂X2

, (3.94)

with solutions

θ11 =

(
−θ∗

∂v01
∂X

)
T̂ , (3.95)

n11 =

(
−
∂v01
∂X

+D
∂2n01
∂X2

)
T̂ . (3.96)

Evaluating the kinematic boundary condition (3.35) at O(δε), we find

dL11

dT̂
= v01(X = 1) = A01 sinh(α), (3.97)
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from which,

L11 = A01 sinh(α)T̂ . (3.98)

Putting everything together, we have small time analytic solutions for the polymer

volume fraction, cell density and gel length, respectively given as

θp(X, T̂) = θ∗ + ε cos(γX) − εδT̂θ∗
(
αA01 cosh(αX) +

(1− θ∗)γ2

H(α2 + γ2)
z cos(γX)

)
+O(δ2), (3.99)

n(X, T̂) = 1+ εN01 cos(γX) − εδT̂
(
αA01 cosh(αX) +

(1− θ∗)γ2

H(α2 + γ2)
z cos(γX)

+Dγ2N01 cos(γX)
)
+O(δ2), (3.100)

L(T̂) = 1+ εδA01 sinh(α)T̂ +O(δ2). (3.101)

We note that, at O(δε), equation (3.100) does not satisfy the no-flux cell boundary

condition at X = 1 due to the cosh(αX) term. In equation (3.94), we have neglected a

higher-order term involving ∂2n11/∂X2, meaning that we have a singular perturbation

problem and cannot satisfy all boundary conditions for n11. For the purposes of our

analysis herein, we will continue to discuss this solution, as any possible error is con-

fined to the small region near X = 1, hence not affecting behaviour in most of the gel.

However, we will see in Section 3.6.3 that, in the zero-drag case where v01 is given by

equation (3.103), the cosh(αX) term does not appear in the solutions for θp and n, and

accordingly, the boundary condition at X = 1 is satisfied.

3.6.3 Zero-drag solution

On setting the drag coefficient ξ = 0, we see in equation (3.58) that α = 0, and hence

one of the terms in equation (3.88) vanishes. Solving (3.88) then yields the following

solution for v01,

v01 =
(1− θ∗)

Hγ
z sin(γX) + k1(T̂)X+ k2(T̂), (3.102)
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where k1 and k2 are constants of integration. Using the boundary conditions (3.32) and

(3.33), we find that k1 = k2 = 0, and so the zero-drag solution for v01 reduces to

v01 =
(1− θ∗)

Hγ
z sin(γX). (3.103)

We take this zero-drag solution for v01 and evaluate the higher order terms of θp, n

and L in the same manner as Section 3.6.2. Given that v01(X = 1) = 0 here, we find

that L11 = 0 using the kinematic boundary condition. We therefore find the following

zero-drag solutions for θp, n and L,

θp(X, T̂) = θ∗ + ε cos(γX) − εδT̂θ∗
(1− θ∗)

H
z cos(γX) +O(δ2), (3.104)

n(X, T̂) = 1+ εN01 cos(γX) − εδT̂
(
(1− θ∗)

H
z+Dγ2N01

)
cos(γX)

+O(δ2), (3.105)

L(T̂) = 1+O(δ2). (3.106)

As was the case in Section 3.5, the zero-drag solution (3.104) - (3.106) here is the same

as that for the non-zero-drag solution in equations (3.99) - (3.101) in the limit α → 0,

corresponding to drag ξ→ 0.

As mentioned previously, in the absence of a cosh(αX) term, equation (3.105) now

satisfies the boundary condition ∂n/∂X = 0 at X = 1. We now discuss the behaviour of

both this solution and that with ξ 6= 0 over small time.

3.6.4 Behaviour of the small time solutions

We are interested in the temporal growth or decay of the spatial perturbations to the

model variables. Therefore, we investigate the amplitude of the terms involving trigo-

nometric and hyperbolic functions in the small time solutions.

We first describe the behaviour predicted by equations (3.99) - (3.101) over small time,

with ξ 6= 0. From equation (3.101), we see that L increases or decreases depending on

the sign of A01, which in turn depends on the value of z and the choice of γ. This

A01 sinh(α) term describes the 1D stretching or shrinking of the gel over the short
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time scale as a result of the spatial perturbation. The changes in θp and n due to this

expansion or contraction are described by the A01 cosh(αX) terms in their solutions; as

seen previously, cosh(αX) increases monotonically with X since α > 0. Greater changes

in θp and n therefore occur as X increases across the spatial domain. This is analogous

to the solution given by equations (3.65) - (3.67), where the gel length is governed by

a sinh(α) term, while the cosh(αX) terms determine the increase or decrease of the

polymer fraction and cell density.

The trigonometric terms in the solutions for θp and n, (3.99) and (3.100) respectively,

describe whether the initial spatial perturbations increase in amplitude or decay over

time. Growth in these perturbations is akin to an unstable equilibrium where the gel

evolves away from its steady state; decaying perturbations meanwhile correspond to a

stable equilibrium. We note that the presence of non-zero diffusion in (3.100) works to

dampen perturbations to n (even when the system is unstable).

In the zero-drag solution (3.104)-(3.106), L remains constant to O(δε) and no hyper-

bolic functions appear. Accordingly, θp and n evolve in space with no change in the

gel’s length, i.e. there is no flow at X = 1 when ξ = 0. Thus, a change in gel length only

occurs over short time when ξ > 0.

Since we are primarily interested here in the evolution of the polymer and cell dis-

tributions, we focus our attention on the case where ξ = 0. In this case, changes in

the amplitude of the perturbations are simply governed by the coefficients of the tri-

gonometric terms, avoiding any complications resulting from the small changes in gel

length with drag present.

3.6.5 Steady state stability conditions

As explained above, to simplify the interpretation of the stability results presented in

this section, we restrict our attention to the case where ξ = 0.

From the O(ε) and O(δε) terms, the solution for θp (3.104) includes the term

(
1− θ∗

(1− θ∗)

H
zδT̂

)
ε cos(γX), (3.107)
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while the solution for n (3.105) includes

{
1−

(
(1− θ∗)

H
z+Dγ2N01

)
δT̂

}
ε cos(γX). (3.108)

For the amplitude of the initial perturbations to both θp and n to be decreasing, and

accordingly, the equilibrium to revert back to a stable state, we require

z > 0, (3.109)

which can be expressed in the form

f ′′(θ∗) −
τ0
1+ λ

(
1

θ∗
+
2N01
1+ λ

)
> 0. (3.110)

In the case that z < 0, the perturbation will grow with time. We note that with z = 0,

the system remains largely static, with only diffusive cell flux occurring. Hence, the

growth or decay of perturbations in this system is dependent on the balance between

free energy and cell force. Without cells, it is the sign of f ′′(θ∗) which determines the

stability of an equilibrium. Given that

f ′′(θ∗) =
1

Nθ∗
+

1

1− θ∗
− 2χ, (3.111)

where N is typically large, we see that it is the sign and magnitude of the mixing

parameter χ together with the equilibrium fraction of solvent 1 − θ∗ that primarily

determines this. Adding cells to the model will always reduce the value of z, and with

other values held constant, move the equilibrium towards an unstable state. Similarly,

with cells present, increasing cell traction strength τ0 or reducing contact inhibition λ

will make instability more likely.
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3.6.6 Analysis of steady state stability

Using the stability condition (3.110) derived through the small time analysis, we can

determine whether equilibria are stable or unstable. We can therefore study how both

the equilibrium and its stability change as we adjust particular parameter values.

The diagrams presented in this section have been generated by solving the equilib-

rium condition (3.46), which, upon substituting for G and µS, becomes

θp
τ0n

2

1+ λn2
+ log(θs) + χθ2p − θp

(
1

N
− 1

)
= 0. (3.112)

For non-zero cell density, we have scaled the system such that the equilibrium cell

density n∗ = 1. Noting this, (3.112) can be expressed as

θ∗τ0
1+ λ

+ log(1− θ∗) + χθ∗2 − θ∗
(
1

N
− 1

)
= 0, (3.113)

while the first term vanishes for n∗ = 0.

We solve this expression for a chosen parameter as we vary θ∗ between 0 and 1,

holding other parameters fixed. Alternatively, we find the relationship between two

parameters using (3.113) while keeping θ∗ and other parameters fixed. Through this

analysis, we can also determine whether spatially uniform steady states exist for a

particular set of parameter values and initial conditions.

Figs. 3.1 - 3.3 demonstrate how θ∗ varies as we change the mixing parameter χ

at different values of τ0 (we note that changes in the dimensionless parameter τ0

can correspond to changes in the characteristic cell density – here the physical steady

state value – or the cell traction strength). In the majority of cases, larger values of χ

indicate greater levels of contraction in the gel, corresponding to larger values of θ∗;

this outcome should be expected, as increasing χ indicates that separation of the two

phases in the gel is more favourable. In Fig. 3.1, it is shown that in the absence of

cells (n∗ = 0), two equilibrium values of θ∗ – one stable and one unstable – exist for

the same parameter values. Note that the stability of these steady states is determined

using equation (3.110). We also see that, in the absence of cells, steady states θ∗ exist
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Figure 3.1: Equilibrium polymer fraction θ∗ vs. mixing parameter χ. The solid blue
curve shows stable equilibria while the red dashed curve shows unstable
equilibria. Fixed values: N = 100, n∗ = 0.

only for positive values of χ (given N = 100); with χ < 0, the terms in the free energy

function all promote mixing between solvent and polymer, and accordingly, the gel

keeps expanding until it dissolves. In this example, if a gel’s initial fraction of polymer

θi is in the region beneath the blue solid line, the gel will contract to equilibrium

with a greater value of θp, while if θi is above the branch of stable equilibria, the gel

will swell to a steady state. For χ < 0.62, there are no steady states possible for any

initial condition θi (i.e. the gel dissolves). This indicates that small changes to the initial

composition of a gel, e.g. the fraction of polymer or make-up of the solvent, could have

significant impacts on its subsequent behaviour and possible steady state.

With cells introduced into the system, θ∗ increases monotonically as χ increases, as

seen in Figs. 3.2 and 3.3 where τ0 = 0.25 and τ0 = 1 respectively. In these examples,

we see that there are no longer any unstable equilibria, and that stable equilibria now

exist over the spectrum of χ values. We see that as the traction parameter increases

from τ0 = 0.25 (Fig. 3.2) to τ0 = 1 (Fig. 3.3), the equilibrium polymer fraction is greater

for the same values of χ. For example, in Fig. 3.2 where τ0 = 0.25, at χ = 0 we have

θ∗ = 0.2, while in Fig. 3.3 where τ0 = 1, at χ = 0 we have θ∗ = 0.58. Similarly, we see
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Figure 3.2: Equilibrium polymer fraction θ∗ vs. mixing parameter χ with a small cell
traction parameter τ0 = 0.25. Only stable equilibria (solid blue line) are
present in this case. Fixed values: N = 100, n∗ = 1, τ0 = 0.25, λ = 1.

in these figures that with τ0 increasing from τ0 = 0.25 to τ0 = 1, the same particular

equilibrium value θ∗ is found with a decreasing value of the mixing parameter χ.

This relationship between τ0 and χ is reinforced in Fig. 3.4, where χ is plotted against

τ0 for fixed θ∗ = 0.5. We see that χ decreases linearly with increasing τ0; as the cells

exert more force, lower values of the interaction parameter are needed to keep the

system at the same equilibrium value of polymer. Similarly, with a larger value of

χ, less cell traction is necessary to maintain this equilibrium. This linear relationship

between χ and τ0 when the polymer fraction is fixed can be clearly seen in equation

(3.113).

In Fig. 3.5 it is shown that, as would be expected, larger values of τ0 correspond

to larger θ∗, i.e. greater compaction in the polymer network. We note that we must

have τ0 > 0; therefore, the equilibria that cross the vertical line at τ0 = 0 are not

biologically relevant. There is a very small branch of permissible unstable equilibria

in the region approaching θ∗ = 0, but the vast majority of initial conditions here will

reach a stable steady state. In the small region where two steady states exist, gels with

an initial polymer fraction above the unstable values of θ∗ will contract to the stable

equilibrium, whereas those below the unstable values will swell until the gel dissolves.
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Figure 3.3: Equilibrium polymer fraction θ∗ vs. mixing parameter χ with a larger cell
traction parameter τ0 = 1. Again, only stable equilibria (solid blue line) are
evident. Fixed values: N = 100, n∗ = 1, τ0 = 1, λ = 1.
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Figure 3.4: Relationship between τ0 and χ with the polymer equilibrium fixed at θ∗ =
0.5; this steady state is stable for this range of parameters. Fixed values:
θ∗ = 0.5, N = 100, n∗ = 1, λ = 1.
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Figure 3.5: Equilibrium polymer fraction θ∗ vs. cell traction parameter τ0. The solid
blue curve shows stable equilibria while the red dashed curve shows un-
stable equilibria. The solid green line is τ0 = 0; equilibria to the left of this
have τ0 < 0 and are not relevant. Fixed values: χ = 0.75, N = 100, n∗ = 1,
λ = 1.

3.7 numerical simulations

We now perform numerical simulations to investigate the behaviours predicted by our

model. We consider a range of initial conditions – both uniform and non-uniform –

and parameter values to better understand the emergent behaviours that can arise

as a result of the interacting forces in the system. We find uniform and non-uniform

equilibria can eventuate, as well as a novel example where the polymer fraction and

cell density in parts of the gel oscillate before the gel finally dissolves.

These simulations have been carried out in MATLAB using the 1D Cartesian system

(3.27) - (3.36) presented in Section 3.2. We use finite difference methods to discretise

these equations onto a uniform spatial grid. Central differencing is used in the velocity

equation (3.31), excluding at X = 1, where a one-sided difference is used for derivatives

of θp, and the boundary condition (3.33) is used to provide a ghost point for vp. The

Crank-Nicolson method is used for equations (3.29) and (3.30), with one-sided differ-

ences used for derivatives of vp at X = 1 (see Morton and Mayers (2005) for discussion
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of these numerical methods). We have found that this numerical scheme conserves

mass effectively over time. To check this, we calculated the percentage change in the

mass of polymer and cells at the initial and final points in time for each of the simu-

lations presented in this section. With a time step of dT = 0.0005 and spatial step of

dX = 0.002, the worst-case change in mass for θp or n between first and final time was

0.0076%.

The algorithm used to solve this model is as follows:

1. Set parameter values and initial conditions in θp, n and L.

2. Solve equation (3.31) using matrix inversion to find vp(T = 0) using the initial

conditions in step 1, subject to the boundary conditions (3.32) and (3.33).

3. For i = 1, 2, ...

a) Increment T by time step dT .

b) Update θp in time by solving equation (3.29) using a Crank-Nicolson scheme,

subject to the boundary condition on vp in (3.32) (we note that from cancel-

lation of terms in (3.29) at X = 0, this equation does not involve a ∂θp/∂X

term at X = 0).

c) Update n in time by solving equation (3.30) using a Crank-Nicolson scheme,

subject to boundary conditions (3.32) and (3.34).

d) Update vp by solving (3.31) with updated values of θp and n using the same

method as in step 2.

e) Update L(T) using the kinematic boundary condition (3.35) with an explicit

Euler time step.

Steps 3a - 3e are repeated until the specified end time is reached. This end time is

chosen such that the gel reaches a steady state or the system breaks down with the

polymer fraction approaching 0 or 1. We can then study the solutions found for θp, n

and L at each point in time to understand how the gel evolves temporally and how the

spatial characteristics of the variables change with time.
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3.7.1 Overview of initial conditions and parameter choices

We wish to study the effect that introducing cells has on the behaviour of a gel. Accord-

ingly, we present simulations for a cell-free gel initially, then add cells into the system.

We look at the effects of parameters like drag and viscosity, e.g. studying the impact

they have on the spatial distribution of model variables and the speed at which the gel

evolves. We start with uniform initial conditions for θp and n. We also consider how

taking spatially non-uniform initial conditions in the polymer fraction and cell density

affects the evolution of the system.

The aim of our simulations is to illustrate the qualitative behaviours of our model for

different initial conditions and in different parameter regimes. Lacking experimental

data to fit model parameters, we take the majority of parameters to be O(1).

Throughout these simulations, we will not change certain initial conditions and para-

meters (see Table 3.1) while investigating the effects of changing others between sim-

ulations (see Table 3.2). The terms which may vary between simulations in Table 3.2

will be discussed in the simulations that follow as they arise and are adjusted. We

note here that the mixing parameter χ is the only term appearing in the final system of

equations which allows negative values. As seen earlier, the length scale is set such that

the initial length L(0) = 1. When cells are present, we will choose the average initial

cell density as the characteristic value, so that ni = 1 for an initially uniform cell distri-

bution. Given that µ0p and µ0s do not appear in the final set of model equations due to

cancellation of terms when taking µs − µes in interface condition (3.33), we set these to

zero. We set the bulk viscosities κp and κs to zero without loss of generality, as these

terms only appear in linear combination with the dynamic viscosity parameters. The

polymer chain length N is generally large for polymer and solution mixtures, therefore

we set N = 100 (Rubinstein et al., 2003). We set the contact inhibition parameter λ = 1.
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Table 3.1: Dimensionless initial conditions and parameter values which we do not
change between simulations.

Term Symbol Value used

Initial length Li 1

Contact inhibition parameter λ 1

Polymer chain length N 100

Polymer standard free energy µ0p 0

Solvent standard free energy µ0s 0

Polymer bulk viscosity κp 0

Solvent bulk viscosity κs 0

Table 3.2: Dimensionless initial condition and parameter values which we may change
between simulations.

Term Symbol Range of values used

Initial polymer fraction θi 0.2 - 0.7

Initial cell density ni 0 - 1

Cell traction coefficient τ0 0.1 - 1

Cell diffusion coefficient D 0 - 1

Mixing parameter χ -0.1 - 1.5

Interface resistance R 0.1 - 5

Drag coefficient ξ 0 - 5

Solvent dynamic viscosity ηs 0.1 - 5

3.7.2 Numerical comparison with small time solutions

To validate our numerical method, we first compare simulation results with the analytic

small time solutions derived in Sections 3.5 and 3.6. Fig. 3.6 compares the numerical

solution for θp against the small time solution for θp with uniform initial conditions

given by equation (3.66). We see good agreement between the two solutions for the

polymer fraction θp at different points in the spatial domain. Similar agreement is

found between the solutions for n over early time (result not shown). For this example,

A0 = −0.145 < 0, indicating that θp should increase over small time; this is evident in

Fig. 3.6.
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In Fig. 3.7, we compare the numerical solution for θp against the short time solu-

tion for spatially perturbed equilibrium initial conditions as given by equation (3.104)

(noting that this is the zero-drag case). We do this using an arbitrary set of parameters

which solves the equilibrium condition (3.46). We again see that the two solutions for

θp are very close over the short time scale. Good agreement is also found between the

numerical and analytic solutions for n (result not shown). In this example, z = 0.98 > 0,

suggesting that this is a stable steady state and the perturbations will decay over time.

This is supported by Fig. 3.7, with θp at different points in space converging towards

a uniform value.

We also note that we have confirmed in the following simulations that the system

reaches an appropriate steady state which satisfies the equilibrium condition (3.46).
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Figure 3.6: Comparing the small time solution (3.66) for θp with uniform initial condi-
tions (blue dashed lines) with the numerical solution (red solid lines) over
early time at X = 0 and X = 1. We see that the solutions evolve closely over
this period of time. Values: θi = 0.6, ni = 1, χ = 0.75, ηs = 0.1, ξ = 0.5,
R = 0.5, τ0 = 1, D = 0.
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Figure 3.7: Comparing the small time solution (3.104) for θp with spatially perturbed
equilibrium initial conditions (blue dashed lines) with the numerical solu-
tion (red solid lines) over early time at X = 0, X = 0.5 and X = 1.
The solutions are closely matched over this period of time. Values: θi =
0.7+ 0.01 cos(3πX), ni = 1+ 0.01 cos(3πX), χ = 0.5785, ηs = 1, ξ = 0, R = 1,
τ0 = 0.65, D = 0.01, γ = 3π, ε = 0.01, N01 = 1.
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3.7.3 Cell-free gel, uniform initial conditions

In a cell-free gel (where n = 0), swelling or contraction is driven by the free energy of

the system; gradients in chemical potentials on either side of the gel-solvent interface

induce the movement of solvent and polymer. This is similar to the results presented

in Keener et al. (2011b). In Fig. 3.8, where θi = 0.6 and χ = 0.75, the balance in chemical

potentials µp and µs produces an osmotic pressure gradient, causing solvent to enter

the gel from the surrounding solvent regionΩs; the gel thus swells until an equilibrium

is reached with θ∗ = 0.45 and L∗ = 1.34. Conversely, in Figs. 3.9 and 3.10, we see the gel

contract to an equilibrium state. The free energy in the system has been altered in two

different ways here to induce contraction. In Fig. 3.9, we have taken the same initial

conditions as Fig. 3.8, but with an increased strength of mixing parameter χ = 1.5. In

Fig. 3.10, the initial fraction of polymer has been decreased to θi = 0.25, with the value

of χ remaining at χ = 0.75. The effect in both instances is to increase the initial free

energy in the gel, resulting in a situation where the gradient in chemical potentials will

induce solvent to flow out from the gel to balance the potentials, and hence result in a

smaller equilibrium length. The gel equilibrates with θ∗ = 0.86 and L∗ = 0.7 in Fig. 3.9,

and θ∗ = 0.45 and L∗ = 0.56 in Fig. 3.10. These equilibria all clearly satisfy the mass

conservation relation L∗θ∗ = θi, as given in equation (3.53) (as indeed will all steady

states found).

We note that the simulations in Figs. 3.8 and 3.10 reach the same equilibrium value,

θ∗ = 0.45, for the two different initial conditions; this corresponds to the equilibrium

predicted in Fig. 3.1 with χ = 0.75 and the same fixed set of parameter values otherwise.

Fig. 3.9 meanwhile confirms that, for the same initial conditions and parameter set,

increasing the value of χ will result in an equilibrium with a larger polymer fraction

(θ∗ = 0.86). This is also in agreement with Fig. 3.1.

We also note that the polymer fraction at X = 1 (shown by red dashed lines) evolves

slightly faster than that at X = 0 (blue solid lines). This lag reflects the time taken for

the solvent to flow into or away from the centre of the gel. We discuss the parameters

affecting this lag and the spatial profiles of the polymer as the gel evolves in Section

3.7.5.
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Figure 3.8: Time evolution of a cell-free gel. The gel swells to equilibrium due to os-
motic pressure. L(T) is the solid gold line, θp(X = 0) is the solid blue
line, θp(X = 1) is the dashed red line. Values: θi = 0.6, ni = 0, χ = 0.75,
ηs = 0.25, ξ = 0.5, R = 0.5. (θ∗,L∗) = (0.45, 1.34).

We have shown here that, in the absence of cells, the gel will swell or contract de-

pending on the balance between chemical potential gradients across the gel-solvent

interface. These behaviours echo those found by Keener et al. (2011b), which is expec-

ted since our gel model builds on their work. Comparing our model to that of Keener

et al., we note that while the inclusion of boundary resistance in our model only affects

the rate of the gel’s elongation or shrinking, the absence of any contribution from the

standard free energy parameters µ0p and µ0s will change the final gel length and poly-

mer fraction found here for the same set of parameters used in Keener et al.. We next

introduce cells into the simulations to study their effect on the gel’s behaviour.

3.7.4 Cell-gel system

In Fig. 3.11, we use the same gel parameters as for Fig. 3.8, and introduce a cell popu-

lation with weak traction (ni = 1, τ0 = 0.1; note also D = 0.01). We see that the gel still

swells to a steady state with the cell traction parameter set at this low level. However,
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Figure 3.9: Time evolution of a cell-free gel. With increased χ, the gel now contracts to
a smaller steady state length. L(T) is the solid gold line, θp(X = 0) is the
solid blue line, θp(X = 1) is the dashed red line. Values: θi = 0.6, ni = 0,
χ = 1.5, ηs = 0.25, ξ = 0.5, R = 0.5. (θ∗,L∗) = (0.86, 0.7).
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Figure 3.10: Time evolution of a cell-free gel. Decreasing the initial polymer fraction
changes the free energy balance such that the gel now contracts. L(T) is
the solid gold line, θp(X = 0) is the solid blue line, θp(X = 1) is the
dashed red line. Values: θi = 0.25, ni = 0, χ = 0.75, ηs = 0.25, ξ = 0.5,
R = 0.5. (θ∗,L∗) = (0.45, 0.56).
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compared to the simulation in Fig. 3.8, the final size of the gel is now smaller (equilib-

rating here at θ∗ = 0.54, n∗ = 0.91, L∗ = 1.1), indicating that the cells are exerting some

contractile force that counters the expansion due to osmotic effects. We increase the

traction parameter to τ0 = 1 in Fig. 3.12; once cell traction is increased over a certain

threshold, the gel will switch from expansion to contraction. In this instance, the cell

traction stresses are stronger than the chemical potential gradient, and as the cells com-

pact the polymer network, solvent is squeezed from the gel until it reaches a steady

state once the mechanical forces are in balance, where θ∗ = 0.86, n∗ = 1.44, L∗ = 0.69.

We have therefore established that introducing cells into a gel that would otherwise

swell can induce a switch in behaviour, resulting in a significantly different outcome

for the gel. As in Section 3.7.3, the equilibria found here satisfy the mass conservation

relations L∗θ∗ = θi, L∗n∗ = 1, as described in equation (3.53).

The time taken to equilibrate is noticeably different across the simulations seen so far,

as the rate at which the gel evolves is affected by the strength of a number of competing

forces. For example, we see in Fig. 3.8 that equilibrium is reached at approximately

T = 130, while in Fig. 3.9, due to the larger value of χ, not only does the gel contract, but

it equilibrates by T = 15. In a case like that presented in Fig. 3.9, where the free energy

alone induces gel contraction, adding cells to this gel will lead to a steady state being

reached more quickly (result not shown). Therefore, the magnitude of parameters like

the interaction energy χ and cell traction τ0 will affect the time taken to reach a steady

state. Alongside this, mechanical factors like drag and viscosity will impact the gel’s

temporal evolution.

3.7.5 Effects of mechanical parameters and diffusion on gel evolution

We now study how the ratios of drag ξ, resistance R, and solvent viscosity ηs relative

to polymer viscosity ηp affect the rate at which a gel evolves to equilibrium and the

manner in which it does so spatially. In the simulations presented in Figs. 3.13 - 3.16,

we take a gel with the same initial conditions, free energy parameters, and cell force

parameters as that presented in Fig. 3.12; this gel will therefore reach the same equi-

librium regardless of parameters like drag and viscosity (given that the equilibrium is
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Figure 3.11: Time evolution of a cell-gel system. With weak cell traction, the gel still
swells to an equilibrium state. L(T) is the solid gold line, θp(X = 0) is the
solid blue line, θp(X = 1) is the dashed red line, n(X = 0) is the dotted
purple line, n(X = 1) is the dash-dotted green line. Values: θi = 0.6, ni = 1,
χ = 0.75, ηs = 0.25, ξ = 0.5, R = 0.5, τ0 = 0.1, D = 0.01. (θ∗,n∗,L∗) =
(0.54, 0.91, 1.1).
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Figure 3.12: Time evolution of a cell-gel system. With increased cell traction, the gel
switches to contraction as the cell-induced forces are stronger than the
osmotic pressure. L(T) is the solid gold line, θp(X = 0) is the solid blue
line, θp(X = 1) is the dashed red line, n(X = 0) is the dotted purple line,
n(X = 1) is the dash-dotted green line. Values: θi = 0.6, ni = 1, χ = 0.75,
ηs = 0.25, ξ = 0.5, R = 0.5, τ0 = 1,D = 0.01. (θ∗,n∗,L∗) = (0.86, 1.44, 0.69).
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determined by equation (3.46), in which these mechanical parameters do not appear).

We first set ξ, R and ηs to be small, indicating that these effects are insignificant relative

to polymer dynamic viscosity, and as such, polymer dynamic viscosity is the dominant

mechanical characteristic; we will refer to this as the base case in the comparisons that

follow. We note that due to the scaling used here, we have effectively set ηp = 1. To

better understand the impact of each parameter on the gel’s evolution, we then change

one of ξ, R and ηs in turn while holding the others constant. We take D = 0 here so

that diffusion has no impact on the cell and polymer distributions. The gel reaches the

same steady state in each case (θ∗ = 0.86, n∗ = 1.44, L∗ = 0.69), albeit at different times

and with different lags between X = 1 and X = 0.

In Fig. 3.13, we compare the evolution of θp for the base case with ξ = R = ηs = 0.1

(shown by the red solid line for X = 0 and the red dashed line for X = 1) and for a gel

with large drag, where ξ = 5 and R = ηs = 0.1 (shown by the blue solid line for X = 0

and blue dashed line for X = 1). We see that increasing the drag coefficient slows down

the evolution of the polymer fraction (with the gel equilibrating at T ≈ 25 with large ξ

compared to T ≈ 10 with small ξ). Furthermore, for large drag, θp changes at a much

slower rate at X = 0 than at X = 1, while there is little difference in θp between X = 0

and X = 1 when drag is small. This is reflected in Figs. 3.15 and 3.16, which show

the spatial profiles for θp at increasing points in time for the base case and large drag

case respectively. With polymer viscosity dominant in Fig. 3.15, the gel evolves across

the spatial domain in a largely uniform manner. In Fig. 3.16, much stronger spatial

variations are evident, reflecting that, while the gel evolves quickly at the interface, it

takes much longer for solvent to flow through the domain due to the extra resistance

when drag is large.

In Fig. 3.14 we similarly compare the gel’s behaviour with interface resistance R

and solvent viscosity ηs each large relative to polymer viscosity. For large resistance

(shown by the green solid and dotted curves for X = 0 and X = 1 respectively), we

take R = 5, ξ = ηs = 0.1, while for large viscosity (shown by the black solid and

dotted curves for X = 0 and X = 1 respectively), we set ηs = 5, ξ = R = 0.1. Note

that this figure should be compared to the base case given by the red curves in Fig.

3.13. Increasing the resistance parameter R, the rate of change of θp is slowed at X = 1
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compared to the base case (with equilibrium now reached at T ≈ 20). This reflects the

fact that the boundary of the gel is less permeable to fluid flow with larger R. In this

case, the polymer fraction remains almost uniform across the spatial domain, i.e. there

is no additional lag induced between X = 1 and X = 0 with large R. Large solvent

viscosity ηs has the effect of slowing down gel contraction further still, with the gel

not equilibrating until T ≈ 80 (note that equilibrium for the large ηs case is not shown

in Fig. 3.14). As with R, in this case there is minimal lag between the evolution at X = 1

and X = 0.

We now study the effect of non-zero diffusion on the gel’s behaviour. As diffusion

increases, we expect to see more uniform spatial profiles in the cell density as well

as the polymer fraction, as cells spread more evenly across the gel through random

motion. In Fig. 3.16 we showed the spatial profiles of θp for a gel with a large drag

coefficient and zero diffusion. In Fig. 3.17, we see that the spatial distribution of cells

in this gel is similarly non-uniform over much of the gel’s evolution. We now take

this same gel with large drag, but introduce cell diffusion, setting D = 0.005; the time

evolution in this case is shown in Fig. 3.18. In Fig. 3.19, we see that with large drag, the

cell density initially increases rapidly at X = 1 (like in Fig. 3.17). Over time, cells move

down their density gradient towards X = 0 due to the diffusion term now present.

The cells become more dense in this region, eventually overshooting the equilibrium

value (see n in Fig. 3.18); however, as time progresses, the diffusive movement leads n

to converge to its equilibrium value across the domain. Increasing diffusion further to

D = 1 in Fig. 3.20, the strength of the random motion is such that the cells remain well

spread spatially for all time. We note that in this case, the polymer still evolves with a

lag across the spatial domain, like seen in Fig. 3.16 (result not shown).

3.7.6 Reduced initial polymer fraction

Taking a smaller initial polymer fraction, we can see different dynamics emerge in the

evolution of the gel. Setting θi = 0.2 and all other parameters as in Fig. 3.12, we see

in Figs. 3.21 and 3.22 that the polymer fraction and cell density evolve slowly over

the beginning phases (T = 0 to T ≈ 2), before a period of rapid increase (T ≈ 2 to

66



0 5 10 15 20 25

Time

0.6

0.7

0.8

0.9

p

Figure 3.13: Comparison of the polymer fraction’s evolution for the base case with
polymer viscosity dominant vs. case with large drag. For the base case,
(ξ = R = ηs = 0.1), θp(X = 0) is the solid red line and θp(X = 1) is the
dashed red line; for large drag (ξ = 5,R = ηs = 0.1), θp(X = 0) is the solid
blue line and θp(X = 1) is the dashed blue line. Other values: θi = 0.6,
ni = 1, χ = 0.75, ηs = 0.1, R = 0.1, τ0 = 1, D = 0.
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Figure 3.14: Comparison of the polymer fraction’s evolution with large resistance and
large solvent viscosity (note that these should be considered together with
the base case in Fig. 3.13). For large resistance (R = 5, ξ = ηs = 0.1),
θp(X = 0) is the solid green line and θp(X = 1) is the dashed green line;
for large solvent viscosity (ηs = 5, ξ = R = 0.1), θp(X = 0) is the solid
black line and θp(X = 1) is the dashed black line. Other values as in Fig.
3.13.
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Figure 3.15: Spatial profile of θp as the gel contracts for the base case where polymer
viscosity is dominant in Fig. 3.13 with ξ = R = ηs = 0.1, showing that the
gel evolves largely uniformly in space. Profiles are plotted (from bottom
to top) at T = 0, 0.2, 0.5, 1, 1.5, 2, 3, 5. Other values as given in Fig. 3.13.
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Figure 3.16: Spatial profile of θp as the gel contracts with large drag ξ = 5 and R =
ηs = 0.1, as seen in Fig. 3.13, showing that the gel evolves more rapidly
at the boundary, with changes taking time to flow across the length of the
gel. Profiles are plotted (from bottom to top) at T = 0, 0.5, 1, 2, 3, 5, 10, 22.
Other values as given in Fig. 3.13.
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Figure 3.17: Spatial profile of n as the gel contracts with large drag ξ = 5 and R = ηs =
0.1 as seen in Fig. 3.13, showing that, like θp, the cell density also increases
most rapidly at X = 1. Profiles are plotted (from bottom to top) at T = 0,
0.5, 1, 2, 3, 5, 10, 22. Other values as given in Fig. 3.13.

T ≈ 7), which slows down again as the gel moves towards its steady state (T ≈ 7 to

T ≈ 12). From this lower initial value of θp, much greater contraction is evident in

the gel, which reaches the steady state θ∗ = 0.91, n∗ = 4.54, L∗ = 0.22. The evolution

of the gel length here is quite rapid until the gel approaches its steady state length

(T ≈ 7). With a larger initial polymer fraction, θi = 0.4, the gel reaches the steady state

(θ∗,n∗,L∗) = (0.89, 2.23, 0.45) (result not shown). In Fig. 3.12, we saw that with θi = 0.6,

the resulting steady state was (θ∗,n∗,L∗) = (0.86, 1.44, 0.69). This demonstrates that,

with the initial cell density constant, there is a negative correlation between the initial

fraction of polymer in the gel and the degree to which both the gel contracts (seen

in L∗) and the polymer compacts (seen in θ∗). This negative correlation was seen in

experiments presented in Stevenson et al. (2010). This example is discussed further in

relation to other models in Section 3.8.
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Figure 3.18: Time evolution of a cell-gel system. With small diffusion, the cell density
and polymer fraction increase slightly above their equilibrium values at
X = 0 before slowly reducing to the steady state. L(T) is the solid gold line,
θp(X = 0) is the solid blue line, θp(X = 1) is the dashed red line, n(X = 0)
is the dotted purple line, n(X = 1) is the dash-dotted green line. Values as
given in Fig. 3.13 with ξ = 5 and D = 0.005. (θ∗p,n∗,L∗) = (0.86, 1.44, 0.69).
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Figure 3.19: Spatial profile of n as the gel contracts with large drag ξ = 5 and a small
diffusion coefficient D = 0.005. The added diffusion changes the dynamics
compared to Fig. 3.17 as the gel contracts, with the cell density becoming
larger towards X = 0 before easing back to a final uniform equilibrium.
Profiles are plotted (from bottom to top) at T = 0, 1, 3, 6, 8, 10, 14, 40.
Other values as given in Fig. 3.13.
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Figure 3.20: Spatial profile of n as the gel contracts with large drag ξ = 5 and large dif-
fusion coefficient D = 1. Large diffusion means that, compared with Figs.
3.17 and 3.19, the cells remain spatially well spread as the gel contracts.
Profiles are plotted (from bottom to top) at T = 0, 1, 2, 4, 6, 8, 10, 18. Other
values as given in Fig. 3.13.

The negative correlation here is evident when looking at the mass conservation re-

lations in equation (3.53) with spatially uniform steady states and initial conditions,

which give

L∗θ∗ = θi, L∗n∗ = 1; (3.114)

this also implies that n∗ = θ∗/θi. We see that the decrease in θ∗ and n∗ with θi

increasing, as in the examples above, requires an increase in the equilibrium length L∗

to conserve mass for these quantities.

We note that we see similar behaviour take place in a cell-free gel. For example,

amending the example in Fig. 3.21 such that θi = 0.2, ni = 0, χ = 1.5, the gel evolves

in a similar manner, with a slow initial phase of polymer compaction followed by rapid

evolution and then slowing near the steady state (see Fig. 3.23). In this instance, the

gel equilibrates with θ∗ = 0.86, L∗ = 0.23. Furthermore, taking θi = 0.4 and θi = 0.6,

we reach steady states of (θ∗,L∗) = (0.86, 0.47) and (θ∗,L∗) = (0.86, 0.70) respectively
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(result not shown for θi = 0.4; see Fig. 3.9 for θi = 0.6). While the equilibrium fraction

of polymer is the same regardless of the initial condition in the cell-free case (provided

the same free energy parameters are used), we see that the change in gel length is also

negatively correlated with the initial polymer fraction here. This is clear from the con-

dition L∗θ∗ = θi in equation (3.114), given θ∗ is fixed by the free energy parameters in

the cell-free case. These results indicate that the presence of cells is therefore necessary

to see the negative correlation between initial and final polymer fractions.

3.7.7 Non-uniform initial conditions

The numerical simulations presented thus far have been performed using spatially

uniform initial conditions. Despite spatial variations being evident while the gel is

evolving, these initial conditions eventually produce spatially uniform steady states.

This matches previous work such as Keener et al. (2011b) looking at cell-free models,

wherein only spatially uniform equilibria are found.

We now consider examples with spatially non-uniform initial conditions, finding

that these initial conditions can result in spatially varying equilibrium solutions. This

is a novel behaviour arising in our model from the presence of cells. We will consider

non-uniform initial conditions in both the polymer and cells separately.

We first evaluate a cell-free gel with a spatially varying initial polymer distribution;

this allows us to establish a baseline against which we can evaluate the impact of

cells. We take a gel as specified in Fig. 3.8 where θi = 0.6 and χ = 0.75, for which

the gel swells to an equilibrium with θ∗ = 0.45 and L∗ = 1.34. We add a spatially

varying component to the initial condition for the polymer fraction, such that θi =

0.6+ 0.025 cos(πX); this corresponds to a gel where the polymer is slightly bunched at

the gel’s centre (where X = 0) and less than the mean value at the gel’s edge (where

X = 1). We note that this initial condition satisfies the symmetry condition ∂θp/∂X =

0 at X = 0. In Fig. 3.24, we see that this gel swells to the same steady state as for

uniform θi = 0.6, and evolves on a similar time scale (see Fig. 3.8 for comparison).

In Fig. 3.25, we see the spatial distribution of polymer across the length of the gel

at increasing points in time; the polymer, initially more concentrated towards X = 0,
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Figure 3.21: Time evolution of θp and L in a cell-gel system with a small initial polymer
fraction θi = 0.2. A significant degree of contraction occurs, resulting in a
much smaller gel at equilibrium. L(T) is the solid gold line, θp(X = 0) is the
solid blue line, θp(X = 1) is the dashed red line. Values: θi = 0.2, ni = 1,
χ = 0.75, ηs = 0.25, ξ = 0.5, R = 0.5, τ0 = 1, D = 0.01. (θ∗p,n∗,L∗) =
(0.91, 4.54, 0.22).
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Figure 3.22: Time evolution of n in a cell-gel system with a small initial polymer frac-
tion θi = 0.2. A significant degree of contraction occurs, resulting in
a much smaller gel at equilibrium. n(X = 0) is the dotted purple line,
n(X = 1) is the dash-dotted green line. Values as given in Fig. 3.21.
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Figure 3.23: Time evolution of θp and L in a cell-free gel. In the absence of cells, the gel
still contracts significantly from the small initial polymer fraction θi = 0.2
and in a similar manner to Fig. 3.22. L(T) is the solid gold line, θp(X = 0)
is the solid blue line, θp(X = 1) is the dashed red line. Values: θi = 0.2,
ni = 0, χ = 1.5, ηs = 0.25, ξ = 0.5, R = 0.5. (θ∗p,L∗) = (0.86, 0.23).

smooths out over time as the gel swells, eventually becoming uniform as it expands

to its steady state where θ∗ is constant. Therefore, in the simulations we have seen,

spatial variations in the initial polymer distribution in a cell-free gel do not affect the

equilibrium outcome.

We now take the same gel with a spatially varying polymer initial condition and in-

clude a cell population where ni = 1 and τ0 = 1, noting that D = 0. The time evolution

for this gel is shown in Fig. 3.26; we see that the gel, which swelled in the absence of

cells due to osmotic effects, now contracts to an equilibrium with spatially non-uniform

solutions for both the polymer fraction and cell density. The mean equilibrium values

of θp and n here, (θ̄∗ = 0.86, n̄∗ = 1.44), are the same as the steady state found in Fig.

3.12. Figs. 3.27 and 3.28 show the spatial distributions of θp and n respectively over

time. In contrast to the cell-free case, the cell forces present in the system are stronger

than the chemical potentials, and so induce the gel to contract. We see that the polymer

is initially less compacted towards X = 1; it must therefore contract more in this region

to move to its steady state value. As the fraction of polymer increases in this region,
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Figure 3.24: Time evolution of a cell-free gel with non-uniform initial polymer fraction.
The gel swells to a spatially uniform steady state. L(T) is the solid gold
line, θp(X = 0) is the solid blue line, θp(X = 1) is the dashed red line.
Values: θi = 0.6 + 0.025 cos(πX), ni = 0, χ = 0.75, ηs = 0.25, ξ = 0.5,
R = 0.5. (θ∗p,L∗) = (0.45, 1.34).
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Figure 3.25: Spatial profile of θp for the case shown in Fig. 3.24 as the gel swells from a
non-uniform initial condition. Profiles are plotted (from top to bottom) at
T = 0, 2.5, 5, 10, 20, 30, 40, 150. Values as given in Fig. 3.24.
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Figure 3.26: Time evolution of a cell-gel system with non-uniform initial polymer frac-
tion. The gel contracts to a spatially-varying steady state. L(T) is the solid
gold line, θp(X = 0) is the solid blue line, θp(X = 1) is the dashed red
line, n(X = 0) is the dotted purple line, n(X = 1) is the dash-dotted green
line. Values: θi = 0.6+ 0.025 cos(πX), ni = 1, χ = 0.75, ηs = 0.25, ξ = 0.5,
R = 0.5, τ0 = 1, D = 0. (θ̄∗, n̄∗,L∗) = (0.86, 1.44, 0.69).

cells then become more concentrated, which reinforces this non-uniform evolution by

pulling more polymer and cells towards the edge of the gel. The presence of non-zero

drag also contributes to the formation of the spatial gradients seen, as discussed earlier.

With D = 0, there is no requirement for the cells to even out over time, and therefore,

we see a non-uniform distribution remaining at equilibrium. By the end of the process,

the polymer fraction has ended slightly larger at X = 1 than at X = 0, reflecting the

greater density of cells in that region.

We now take the same system and change the spatial perturbation to the initial

condition from the polymer fraction to the cell density, such that our initial conditions

are ni = 1+ 0.05 cos(πX), θi = 0.6. This corresponds to a gel where the cells are now

initially more densely seeded at X = 0 (i.e. the centre of a gel that is symmetric about

the origin). In the time evolution for this system, shown in Fig. 3.29, we see the gel

reaches a steady state with the same mean polymer fraction and cell density as the

previous example, albeit with different spatial distributions. Fig. 3.30 confirms that the
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Figure 3.27: Spatial profile of θp for the case shown in Fig. 3.26 as the gel contracts
from a non-uniform polymer initial condition. Profiles are plotted (from
bottom to top) at T = 0, 1, 2, 3, 4, 5, 6, 15. Values as given in Fig. 3.26.
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Figure 3.28: Spatial profile of n for the case shown in Fig. 3.26 as the gel contracts
from a non-uniform polymer initial condition. Spatial variations appear in
the cell profile in response to the non-uniformity in polymer. Profiles are
plotted (from bottom to top) at T = 0, 1, 2, 3, 4, 5, 6, 15. Values as given in
Fig. 3.26.
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Figure 3.29: Time evolution of a cell-gel system with non-uniform initial cell density
and uniform initial polymer fraction. The gel contracts to a steady state
with non-uniform profiles for n and θp. L(T) is the solid gold line, θp(X =
0) is the solid blue line, θp(X = 1) is the dashed red line, n(X = 0) is the
dotted purple line, n(X = 1) is the dash-dotted green line. Values: θi = 0.6,
ni = 1+ 0.025 cos(πX), χ = 0.75, ηs = 0.25, ξ = 0.5, R = 0.5, τ0 = 1, D = 0.
(θ̄∗, n̄∗,L∗) = (0.86, 1.44, 0.69).

polymer velocity vp goes to zero across the spatial domain over time, demonstrating

that the gel is maintaining its equilibrium state. The spatial profiles here are displayed

in Figs. 3.31 and 3.32. The presence of drag creates a slight increase in both θp and n

at X = 1 while the gel evolves. As the gel approaches its steady state, the evolution

at X = 1 slows while the polymer fraction and cell density continue to increase across

the rest of the domain. Greater cell concentrations around X = 0 result in polymer

being pulled to the gel centre, and finally, a higher polymer fraction in this region at

equilibrium. At this resulting steady state, we see that the amplitude of the cell profile

is greater than the amplitude of ni (the amplitude is approximately 0.04 at equilibrium

and 0.025 initially), while the polymer fraction is slightly larger at X = 0 compared to

X = 1, in contrast to the previous example.

These non-uniform equilibria have been found with diffusion D = 0. As shown in

Section 3.4, for the gel to equilibrate with D 6= 0, n∗ and θ∗ must be spatially uni-

form. Therefore, adding diffusion to these simulations will always result in a spatially
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Figure 3.30: Time evolution of velocity vp at different points in the spatial domain.
The velocity goes to zero across the spatial domain as the gel reaches its
spatially varying equilibrium before T = 20. In descending order initially,
vp(0, T) is the blue line, vp(0.25, T) is the red line, vp(0.5, T) is the yellow
line, vp(0.75, T) is the purple line, vp(1, T) is the green line. Values as given
in Fig. 3.29.

0 0.2 0.4 0.6 0.8 1

L(T)*X

0.6

0.65

0.7

0.75

0.8

0.85

p

Increasing time

Figure 3.31: Spatial profile of θp for the case shown in Fig. 3.29 as the gel contracts
from a non-uniform cell initial condition. Spatial variations emerge in the
polymer profile which are maintained at equilibrium. Profiles are plotted
(from bottom to top) at T = 0, 1, 2, 3, 4, 5, 6, 15. Values as given in Fig.
3.29.
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Figure 3.32: Spatial profile of n for the case shown in Fig. 3.29 as the gel contracts from
a non-uniform cell initial condition. Spatial variations persist in the cell
profile to equilibrium. Profiles are plotted (from bottom to top) at T = 0, 1,
2, 3, 4, 5, 6, 15. Values as given in Fig. 3.29.

uniform steady state on a long enough time horizon, with the additional random cell

motion smoothing the cell profile, and subsequently, polymer profile as well. In Fig.

3.33, we see that with a non-uniform initial cell distribution as in the previous ex-

ample, but with D = 0.01, the gel moves towards a uniform equilibrium in both cells

and polymer. We have found that with small diffusion parameters (e.g. D = 0.0005),

the gel will reach a quasi-steady state with non-uniform spatial profiles like those seen

in Fig. 3.29; from this state, as seen in Fig. 3.34, the gel moves very slowly towards a

uniform value over time due to diffusive motion (finally equilibrating at T ≈ 700, not

shown).

3.7.8 Oscillating behaviour

Our model exhibits a novel behaviour where the cell density and polymer fraction

will spatially oscillate as the system evolves, i.e. parts of the gel will switch back and

forth between swelling and contraction over time; this is displayed in Fig. 3.35. In this
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Figure 3.33: Time evolution of a gel with non-uniform cell initial condition. Adding
diffusion D = 0.01 here to the example shown in Fig. 3.29 leads to uniform
spatial equilibria, equal to the mean equilibrium values found in Fig. 3.29.
L(T) is the solid gold line, θp(X = 0) is the solid blue line, θp(X = 1) is the
dashed red line, n(X = 0) is the dotted purple line, n(X = 1) is the dash-
dotted green line. Values otherwise as given in Fig. 3.29. (θ∗,n∗,L∗) =
(0.86, 1.44, 0.69).
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Figure 3.34: Time evolution of a gel with non-uniform cell initial condition and a very
small diffusion coefficient D = 0.0005. The gel reaches a similar state to
that in Fig. 3.29 by T ≈ 10, before slowly moving to a uniform steady
state over time. L(T) is the solid gold line, θp(X = 0) is the solid blue
line, θp(X = 1) is the dashed red line, n(X = 0) is the dotted purple line,
n(X = 1) is the dash-dotted green line. Values otherwise as given in Fig.
3.29. (θ∗,n∗,L∗) = (0.86, 1.44, 0.69).
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case, uniform initial conditions are used, with θi = 0.5 and ni = 1, while there is a

negative mixing parameter χ = −0.1 (indicating that the polymer and solvent would

prefer to mix) and fairly strong cell traction τ0 = 0.8. This behaviour emerges from

the combination of parameters leading to the cell traction stress being finely balanced

with the free energy. We have found that it also requires both the drag parameter ξ

and the resistance parameter R to be sufficiently large (ξ = R = 1.5 here for example),

otherwise these oscillations are not evident. We note that this behaviour occurs on a

very long time scale and that the gel eventually dissolves in this situation (with θp → 0).

The length of the gel increases monotonically over time (result not shown).

This behaviour comes about as a result of the competition between osmotic effects

working to expand the gel and cell traction acting to contract it. The interface resistance

slows the evolution at X = 1, while due to the presence of drag, steep gradients develop

in the polymer fraction and cell density as the gel swells, with θp and n decreasing

most near X = 1. These significant gradients can be seen in the spatial profiles for θp

shown in Fig. 3.36. Large variations in the cell density are similarly evident between the

two ends of the spatial domain (result not shown). The greater density of cells around

X = 0 produces a gradient such that the cell force starts to pull polymer back towards

X = 0. The gel then contracts locally in this region, while still swelling across the

domain towards X = 1. Eventually, the chemical potential gradients are such across

the domain that the gel starts swelling for all X again, with these local fluctuations

repeating once more as the gel slowly expands in a non-uniform manner. Over a long

enough time frame, the gel eventually dissolves.

In Figs. 3.37 - 3.39, we see the effect of reducing the interface resistance and drag in

these simulations. With resistance and drag each taken separately to be small (Figs. 3.37

and 3.38 respectively), we see reduced oscillations in the gel; however, this behaviour

still occurs. When both parameters are taken to be small, the oscillations are no longer

present and the gel dissolves in a more typical manner (see Fig. 3.39). Similarly, with

very small diffusion (e.g. D ≈ 0.0001) the oscillations occur, but larger diffusion coef-

ficients smooth out spatial gradients in the cell density and so prevent this oscillating

behaviour from occurring (results not shown).
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Figure 3.35: Time evolution of θp for a swelling gel with oscillating behaviour. The gel
eventually dissolves as it continues to swell. θp(X = 0) is the solid blue
line, θp(X = 0.33) is the dashed red line, θp(X = 0.66) is the dotted gold
line, θp(X = 1) is the dash-dotted purple line. Values: θi = 0.5, ni = 1,
χ = −0.1, ηs = 0.1, ξ = 1.5, R = 1.5, τ0 = 0.8, D = 0.
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Figure 3.36: Spatial profile of polymer for the case seen in Fig. 3.35 as the polymer
fraction oscillates. Lines with increasing length correspond to increasing
points at time. Profiles are plotted (with increasing gel length) at T = 0, 50,
200, 350, 500, 1000, 2000, 4000. Values as given in Fig. 3.35.
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Figure 3.37: Reduced oscillations are seen in θp as the resistance parameter is reduced
to R = 0.5. θp(X = 0) is the solid blue line, θp(X = 0.33) is the dashed
red line, θp(X = 0.66) is the dotted gold line, θp(X = 1) is the dash-dotted
purple line. Values otherwise as given in Fig. 3.35.
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Figure 3.38: Reduced oscillations are also seen in θp as drag is reduced to ξ = 0.5.
θp(X = 0) is the solid blue line, θp(X = 0.33) is the dashed red line,
θp(X = 0.66) is the dotted gold line, θp(X = 1) is the dash-dotted purple
line. Values otherwise as given in Fig. 3.35.
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Figure 3.39: With ξ = R = 0.5, oscillations are no longer seen in θp as the gel swells.
θp(X = 0) is the solid blue line, θp(X = 0.33) is the dashed red line,
θp(X = 0.66) is the dotted gold line, θp(X = 1) is the dash-dotted purple
line. Values otherwise as given in Fig. 3.35.

3.8 discussion

In this chapter, we have analysed the cell-gel model developed in Chapter 2 in 1D

Cartesian coordinates. This has allowed us to develop a thorough understanding of

the conditions under which the gel equilibrates, the conditions affecting the early time

behaviour and the stability of the system, and, through numerical analysis, the qualit-

ative behaviours that can occur. Throughout this chapter, we have seen that the balance

between chemical potentials and cell-derived forces is crucial in the gel’s mechanical

behaviour. We have shown that the presence of cells can cause a gel that would other-

wise swell to contract; meanwhile, sufficiently strong osmotic forces can cause a gel to

swell even with cells present. Moreover, the initial fraction of polymer was shown to

negatively correlate with the final polymer fraction in cell-gel systems, and negatively

correlate with the final gel length with or without cells present.

In Sections 3.4 - 3.6, we studied the long and short time behaviour of the gel, showing

that it is governed by the balance between cell and osmotic forces. The gel equilibrates
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when the cell and solvent potentials inside the gel are in balance with the external free

energy; similarly, the early time behaviour and stability of equilibria is determined by

the gradients of these functions inside the gel. Through deriving an analytic solution

for the system’s short time behaviour, we investigated how steady states respond to

spatial perturbations and determined whether these perturbations will grow or decay.

This analysis also allowed us to evaluate how steady state values and stability change

with variations in parameter values. As discussed in Section 2.4, due to the boundary

conditions we use, the standard free energy constants µ0s and µ0p do not appear in the

final system of equations. As a result of this, we are not able to reproduce the examples

of bistable equilibria presented in Keener et al. (2011a) where µ0p is varied against θp.

However, as mentioned in Section 2.4, the parameters µ0p and µ0s are typically not

present in studies using the Flory-Huggins free energy.

In a laboratory setting, this analysis of parameter values and steady state outcomes

can be used to predict experimental outcomes given specific gel configurations, e.g.

suggesting whether a gel will equilibrate or dissolve, or if a different configuration is

needed to reach a desired experimental result. This analysis may also allow for physical

parameter values to be determined given comparison with experimental results. For

example, if we are given experimental data for an initial gel configuration and its

subsequent equilibrium state, we may be able to determine that particular parameters

must lie within certain ranges through comparison with such steady state diagrams as

presented in 3.6.6.

In Section 3.7, we presented novel results relating to the gel’s evolution, these being

the presence of non-uniform equilibria and the case where the polymer fraction and

cell density oscillate between increases and decreases. Spatially non-uniform steady

states were found to eventuate in the cell-gel system from non-uniform initial condi-

tions in the polymer fraction or cell density in the absence of diffusion. With small

diffusion, quasi-steady states were found where the gel evolved to a state with spatial

variations present in the variables, but which then gradually smoothed over time. In

the oscillating case, due to competition between the free energy and cell traction, we see

the fraction of polymer and the cell density repeatedly fluctuate within a spatial region
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as the gel swells, before it eventually dissolves. To our knowledge, this behaviour has

not been described in the literature before; this could be investigated experimentally.

Recent experimental work has suggested using osmotic pressure as a way to impose

a desired mechanical compression on cells cultured in vitro (Dolega et al., 2017; Monnier

et al., 2016). Our model provides a framework to quantify and evaluate such methods.

Although to our knowledge, no one has yet used osmotic pressure to impose dynamic

cycles of compression or tension on cells within a gel, our results suggest that this

might be possible by, for example, changing the composition of the solution in the

solvent bath surrounding the gel as a function of time. Again, this model could be used

to predict the ensuing cycles of gel expansion and contraction, as well as to match the

frequency and amplitude of these cycles to those seen in vivo. This might be beneficial

in culturing cartilage cells for example, where oscillating stresses can lead to better

mechanical and cell properties in the cells and tissues grown in vitro (Salinas et al.,

2018). Oscillating fluid flow has also been seen to be an important mechanism in areas

like proteoglycan production (Eifler et al., 2006) and regulating calcium concentrations

(Edlich et al., 2001).

Our analysis has focussed on the qualitative behaviours predicted by our model in a

simple 1D setting. To facilitate greater comparison with experiments, for example that

presented in Moon and Tranquillo (1993), a couple of different steps could be taken.

An extension to our work here, if a consistent set of data for relevant experiments was

available, would be to fit such experimental data for our model parameters and initial

conditions, allowing for a more direct comparison between these experiments and

simulations like those presented in Section 3.7. Transforming the model to spherically

symmetric coordinates would also help in comparing our results with models looking

at spheres of gel like those in Moon and Tranquillo (1993) and Green et al. (2013),

although we note that, given that such a model would be one-dimensional in the gel’s

radius r, we would not expect significantly different qualitative outcomes to those seen

with our model here, which is one-dimensional in the gel’s length.

In Figs. 3.21 and 3.22, we saw the contraction of a gel with a small initial polymer

fraction. In this instance, the polymer fraction and cell density increased gradually at

the beginning and end of the gel’s evolution, bookending a period of rapid contrac-
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tion where θp and n increased significantly. This behaviour is comparable to examples

of mechanically-driven gel contraction presented in Moon and Tranquillo (1993) and

Green et al. (2013). There was an initial lag in the evolution of the gel’s radius seen

in Green’s model which replicates experimental observations from Moon and Tran-

quillo (1993). This initial lag was not present in Moon and Tranquillo’s mathematical

model, and similarly, we did not see an initial lag in changes to the gel’s length in

our simulations. Moon and Tranquillo posit that the initial delay seen experimentally

is a consequence of the cells spreading after being seeded; it may not be present in

our simulations as a consequence of the cells being smoothly distributed at initial time,

therefore not requiring a lead time to redistribute themselves through the gel as may

happen in vitro.

We also saw in Section 3.7.6 that, with all else held constant, the gel reached a smaller

equilibrium length with a smaller initial polymer fraction. Similarly, with cells present,

a smaller initial polymer fraction resulted in a larger value for the polymer fraction at

equilibrium. Our model therefore captures the negative correlation between the initial

polymer concentration and final concentration highlighted in the experimental study

presented by Stevenson et al. (2010), who also reference this behaviour occurring in

experiments such as Zhu et al. (2001) and Evans and Barocas (2009).

In the absence of cells, in Fig. 3.23 and associated simulations, we saw that decreasing

the initial polymer fraction θi similarly led to gels with a smaller equilibrium length, i.e.

gels that have contracted further. Without cells, the equilibrium value of the polymer

fraction θ∗ is determined by the parameters in the free energy function; therefore,

unlike what was seen for cell-gel systems, θ∗ remained the same with increases in θi.

We can therefore see that cell forces play an important role in the negative correlation

between initial and final polymer concentrations seen experimentally.

Studies such as Barocas et al. (1995) that estimate the value of the cell traction para-

meter τ0 typically do so using models that focus on cell-gel mechanics, i.e. they do

not include the presence of chemical potentials. We have demonstrated herein that

chemical potentials can counteract cell traction and affect the degree of gel contrac-

tion witnessed. This therefore indicates that without considering the free energy in the

gel-solvent system, current models may in fact underestimate the magnitude of cell
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traction stresses, since the degree of compaction in the experiment will also depend on

the mixing energy of the polymer and solvent. It also highlights that the measure of

the traction parameter may be quite experiment-specific, depending on the particular

configuration of the gel and surrounding fluid. This is supported by Fig. 3.4, where we

see the balance between cell traction τ0 and mixing energy χ that maintains the same

equilibrium value of polymer; increasing χ indicates that the gel can equilibrate with

a smaller value of τ0, and vice versa.

We remark that while we have chosen a particular form for the cell force function G

here, other modelling choices have been used. Green et al. (2013) for example numer-

ically investigate numerous different cell force functions: the Murray force function

similar to that described in Section 2.3; a ‘preferred ECM density’ function; and func-

tions incorporating chemical concentration. Green et al. also consider whether contact

inhibition should be incorporated in the form λθ2p as opposed to the form λn2, i.e.

acting on the polymer network instead of the cell density. An extension to this work

would be to consider different forms of the cell force function, and again, given con-

sistent experimental data to fit the model, to determine if better agreement is found

with particular choices.

In the Moon and Tranquillo (1993) study, the gel is constructed as a microsphere;

however, in cell-gel experiments, the gels are often thin layers, where the height of the

gel is small relative to its length or radius. Therefore, another extension to this model is

to study the gel as a two-dimensional thin film, exploiting the ratio of the film’s vertical

and horizontal length scales as a small parameter to rescale the system and derive

a reduced system of equations. In this way, gel behaviour in different experimental

settings might be compared and analysed. We derive such a model in the following

chapter.
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4.1 introduction

Having considered the cell-gel model in a one-dimensional geometry in Chapter 3,

we now investigate gel behaviour in a two-dimensional, thin film geometry. Many

experiments into gel mechanics investigate such thin layers and discs of gel (see e.g.

Barocas et al. (1995); Stevenson et al. (2010)), again focusing on the contraction of gels

and the impact of cell-gel interactions. A key reason for the use of these thin films is

that they are easier to construct in experiments compared to gel microspheres (such

spheres were used in Moon and Tranquillo (1993) for example) (Green et al., 2013). In

studying the gel in this geometry, we therefore have two aims. Firstly, we would like to

better understand the mechanics of the gel in the thin film environment, and secondly,

we wish to compare the emergent behaviours in this system to those in the 1D case.

Such a model considering the interacting effects of cell traction and osmotic pressure

in the thin film geometry has not previously been presented.

We study the 2D Cartesian coordinate system for simplicity of modelling and to

facilitate comparison with the 1D Cartesian model presented in the previous chapter.

To develop a tractable model in the thin film setting, we will exploit the small inverse

aspect ratio of the thin film (the ratio of the film’s vertical and horizontal length scales)

to simplify our 2D model. Our goal is to derive a new leading order, 1D model which

again incorporates osmotically-driven solvent flow alongside cell traction stress in the

gel. Once more, we hypothesise that the balance between chemical potentials and cell

traction stress will be crucial in determining the equilibrium outcome for the gel.

In this chapter, we first briefly discuss studies into thin film flows. We then move into

the model derivation, adapting the model presented in Chapter 2 to fit a 2D Cartesian

thin film geometry. We demonstrate how, through our choice of scaling, we can derive

a leading order, extensional flow model, wherein the system is reduced to a 1D set of

equations in the x-coordinate. To conclude this chapter, we discuss this reduced model

in comparison to the 1D model derived in Chapter 3. The thin film model will be

further studied both analytically and numerically in Chapters 5 and 6.
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4.2 background

A review of thin film and extensional flow models relevant to this chapter was presen-

ted in Section 1.4. We will build on such techniques in developing the thin film model

in this chapter. The thin film models presented earlier do not consider the effects of

osmotic swelling; to our knowledge, osmotic pressure has not been included in a mul-

tiphase, mechanical thin film model such as these.

The influence of osmotic pressure in a thin film environment has been looked at in

the context of biofilm growth, in studies such as Trinschek et al. (2016, 2017). The aim

of this work was to study the spreading of bacterial biofilms, driven by the osmotic

movement of solution into the biofilm. The biofilm is modelled as a thin, biphasic ma-

terial which is a mixture of solvent and biomass. The free energy in the system drives

the influx of water from substrate into the biofilm as an osmotic pressure gradient; this

drives the growth of the biofilm over time. As in our modelling, osmotic pressure is

included as a chemical potential, with their models consisting of advection-diffusion

equations for the thin film height and surfactant concentration.

While neither the modelling approach used in these studies by Trinschek et al. nor the

biological problems themselves bear direct relevance to our work here (e.g. we consider

a free boundary problem in the thin layer and solve for the velocities of the phases),

one result which may be of interest in the thin gel environment is that of continuously

spreading biofilms. This describes films which swell in a relatively uniform manner

both vertically and horizontally until the film height reaches a particular level, at which

point the film then only spreads out horizontally (see Fig. 3 in Trinschek et al. (2017) for

example). In analysing the thin film model we develop here, we will consider whether

the gel length and height change at the same relative rate or if any differences emerge

as the gel swells or contracts.
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Figure 4.1: Thin film domain Ω = Ωg +Ωs. Ωg is the gel region with θp > 0, θs > 0
and cell density n > 0. Ωs is the region of pure solvent surrounding the gel
wherein θp = n = 0 and θs = 1. The gel is symmetric about the x-axis and
y-axis, and the ratio of gel height to length is small.

4.3 2d model for a thin film of gel with cells

In this chapter, we consider a thin film of gel consisting of polymer and solvent; this

gel is seeded with cells. We again study the model developed in Chapter 2, now using

a two-dimensional, Cartesian coordinate system with spatial coordinates x = (x,y).

The thin film is characterised by a small inverse aspect ratio, that is, a small vertical

length scale relative to the horizontal length scale. The small parameter ε describes this

inverse aspect ratio.

As seen in Fig. 4.1, the gel exists in the domain Ωg, which is surrounded by the pure

solvent domain Ωs. We consider a gel that is symmetric about y = 0 and x = 0, with

free boundaries for the gel height at y = h(x, t) and y = −h(x, t), as well as vertical

free boundaries for the gel length at x = L(t) and x = −L(t). The centre-line of the

gel is fixed at y = 0. We assume that all quantities are continuous and differentiable

at x = 0 and y = 0. Due to the gel’s symmetry, we restrict our attention to the region

0 6 y 6 h and 0 6 x 6 L. As in Chapter 3, terms in the solvent region Ωs will be

denoted with the superscript e; all other terms refer to quantities in the gel region Ωg.
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The conservation of mass equations (2.2), (2.3) and (2.5) for the volume fractions of

polymer and solvent as well as the cell density are

∂θp

∂t
+
∂

∂x
(θpvp) +

∂

∂y
(θpwp) = 0, (4.1)

∂θs

∂t
+
∂

∂x
(θsvs) +

∂

∂y
(θsws) = 0, (4.2)

∂n

∂t
+
∂

∂x
(nvp) +

∂

∂y
(nwp) = D

(
∂2n

∂x2
+
∂2n

∂y2

)
. (4.3)

We note here that our velocity vectors have the form

vp = (vp,wp), vs = (vs,ws), (4.4)

where vp is the polymer velocity in the horizontal direction and wp is the polymer

velocity in the vertical direction, and similarly for the solvent. Adding equations (4.1)

and (4.2) and using the no-voids condition θp + θs = 1 gives

∂

∂x
(θpvp + θsvs) +

∂

∂y
(θpwp + θsws) = 0. (4.5)

For simplicity, we will henceforth take the solvent viscosities ηs and κs to be zero as

in Green et al. (2017), which implies that the solvent stress tensor σs = 0. We recall

equations (2.8) and (2.9) describing conservation of momentum for the polymer and

solvent phases,

∇ · (θpσp) − θp∇µp − θp∇P+∇(θpG) = ξθpθs(vp − vs), (4.6)

−θs∇µs − θs∇P = −ξθpθs(vp − vs). (4.7)

Taking the sum of these equations and using the relation θp∇µp = −θs∇µs (see

(2.12) and (2.13)), we can express equation (4.6) in the form

∇ · (θpσp) −∇P+∇(θpG) = 0. (4.8)

Equations (4.7) and (4.8) are used as our momentum balance equations hereafter.
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These momentum balance equations have the following two-dimensional forms,

∂

∂x

(
2ηpθp

∂vp

∂x
+ κpθp

(
∂vp

∂x
+
∂wp

∂y

))
+
∂

∂y

(
ηpθp

(
∂wp

∂x
+
∂vp

∂y

))
−
∂P

∂x
+
∂

∂x
(θpG) = 0, (4.9)

∂

∂x

(
ηpθp

(
∂wp

∂x
+
∂vp

∂y

))
+
∂

∂y

(
2ηpθp

∂wp

∂y
+ κpθp

(
∂vp

∂x
+
∂wp

∂y

))
−
∂P

∂y
+
∂

∂y
(θpG) = 0, (4.10)

θs
∂µs

∂x
+ θs

∂P

∂x
− ξθpθs(vp − vs) = 0, (4.11)

θs
∂µs

∂y
+ θs

∂P

∂y
− ξθpθs(wp −ws) = 0. (4.12)

We have the kinematic boundary conditions at y = h(x, t) and x = L(t),

wp =
∂h

∂t
+ vp

∂h

∂x
at y = h, (4.13)

vp =
dL

dt
at x = L. (4.14)

On y = h(x, t), the zero normal stress boundary condition on the gel-solvent inter-

face (2.24) becomes

−

(
2ηpθp

∂vp

∂x
+ κpθp

(
∂vp

∂x
+
∂wp

∂y

)
− PM + θpG

)
∂h

∂x

+ ηpθp

(
∂wp

∂x
+
∂vp

∂y

)
= 0, (4.15)

−

(
ηpθp

(
∂wp

∂x
+
∂vp

∂y

))
∂h

∂x
+ 2ηpθp

∂wp

∂y
+ κpθp

(
∂vp

∂x
+
∂wp

∂y

)
− PM + θpG = 0, (4.16)

with the permeability condition (2.25) given as

−Rθs(vs − vp)
∂h

∂x

1√
∂h
∂x

2
+ 1

+Rθs(ws −wp)
1√

∂h
∂x

2
+ 1

= PM + µsM, (4.17)

where PM = P− Pe and µsM = µs − µ
e
s . We note that the normal vector at y = h is

n̂h =
1√

∂h
∂x

2
+ 1

(
−
∂h

∂x
, 1
)

. (4.18)
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Similarly, at x = L, the interface condition (2.24) becomes

2ηpθp
∂vp

∂x
+ κpθp

(
∂vp

∂x
+
∂wp

∂y

)
− PM + θpG = 0, (4.19)

ηpθp

(
∂wp

∂x
+
∂vp

∂y

)
= 0, (4.20)

with the permeability condition (2.25),

Rθs(vs − vp) = PM + µsM, (4.21)

where we have used the normal vector n̂L = (1, 0) at x = L.

Evaluating the force balance equations (4.9) - (4.10) in the solvent domain Ωs, we

find that the external pressure Pe is at most a function of time, i.e. Pe = Pe(t); we also

note that µes = f(0), where f(0) is constant (see Chapter 3 for further details).

Given symmetry of n about x = 0, we have the boundary condition

∂n

∂x
= 0 at x = 0. (4.22)

The no-flux cell boundary condition (2.22) indicates that

D
∂n

∂x
= 0 at x = L, (4.23)

and

−D
∂n

∂x

∂h

∂x
+D

∂n

∂y
= 0 at y = h. (4.24)

By symmetry at x = 0, we have

vp(0,y, t) = 0, (4.25)

which indicates that

∂vp

∂y
= 0 at x = 0. (4.26)
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Given that vp is an even function about y = 0, we also have

∂vp

∂y
= 0 at y = 0, (4.27)

where we have assumed vp is differentiable at y = 0. We similarly have by symmetry

at y = 0,

wp(x, 0, t) = 0, (4.28)

which gives that

∂wp

∂x
= 0 at y = 0. (4.29)

Likewise, wp is an even function about x = 0, such that

∂wp

∂x
= 0 at x = 0, (4.30)

where we have similarly assumed that wp is differentiable at x = 0.

We now re-scale our system. As in Chapter 3, we let L = L(0) be the length scale, N

be a characteristic cell density (typically set as the average cell density at t = 0), and

choose the time scale to be the ratio of polymer viscosity ηp to the free energy scale

kBT/νm. We let H be the height scale, typically set as the average height at t = 0. Thus,

the inverse aspect ratio is ε = H/L. We therefore non-dimensionalise the independent

variables as follows, where tildes denote dimensionless quantities,

x = Lx̃, y = εLỹ, t =
ηpνm

kBT
t̃,

with the dependent variables and functions being non-dimensionalised thus,

n = Nñ, L(t) = LL̃(t̃), h = εLh̃ = Hh̃,

vp =
LkBT

ηpνm
ṽp, vs =

LkBT

ηpνm
ṽs, wp =

εLkBT

ηpνm
w̃p, ws =

εLkBT

ηpνm
w̃s,

P =
kBT

ε2νm
P̃, µs =

kBT

ε2νm
µ̃s.
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We note that the variables which are common to the 1D Cartesian model are scaled

as previously in Chapter 3, with the exception of the pressure P and chemical potential

µs which are scaled to be large at O(1/ε2). The new variables which did not previously

appear in the model – y, h, wp and ws – are assumed to be O(ε) in line with our thin

film approximation.

After re-scaling, equation (4.3) becomes

∂ñ

∂t̃
+
∂

∂x̃
(ñṽp) +

∂

∂ỹ
(ñw̃p) = D̃

∂2ñ

∂x̃2
+
D̃

ε2
∂2ñ

∂ỹ2
, (4.31)

where we have defined the non-dimensional diffusion coefficient

D̃ =
ηpνm

L2kBT
D, (4.32)

which is scaled as in Chapter 3. The mass conservation equations (4.1) and (4.2) and

kinematic boundary conditions (4.13) and (4.14) are unchanged after being re-scaled.

Following re-scaling, the momentum balance equations (4.9) - (4.12) have the form

ε2
{
∂

∂x̃

(
2θp

∂ṽp

∂x̃
+ κ̃pθp

(
∂ṽp

∂x̃
+
∂w̃p

∂ỹ

))
+
∂

∂ỹ

(
θp
∂w̃p

∂x̃

)}
−
∂P̃

∂x̃

+
∂

∂x̃

(
θp

τ̃0ñ
2

1+ λ̃ñ2

)
+
∂

∂ỹ

(
θp
∂ṽp

∂ỹ

)
= 0, (4.33)

ε2
{
∂

∂x̃

(
θp
∂w̃p

∂x̃

)}
+
∂

∂x̃

(
θp
∂ṽp

∂ỹ

)
+
∂

∂ỹ

(
2θp

∂w̃p

∂ỹ
+ κ̃pθp

(
∂ṽp

∂x̃
+
∂w̃p

∂ỹ

))
−
1

ε2

{
∂P̃

∂ỹ
−
∂

∂ỹ

(
θp

τ̃0ñ
2

1+ λ̃ñ2

)}
= 0, (4.34)

θs
∂µ̃s

∂x̃
+ θs

∂P̃

∂x̃
− ξ̃θpθs(ṽp − ṽs) = 0, (4.35)

θs
∂µ̃s

∂ỹ
+ θs

∂P̃

∂ỹ
− ε2ξ̃θpθs(w̃p − w̃s) = 0, (4.36)

where we have defined the non-dimensional parameters

κ̃p =
κp

ηp
, ξ̃ =

ε2L2ξ

ηp
, τ̃0 =

ε2νmN2τ0
kBT

, λ̃ = N2λ. (4.37)
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Note that ξ̃ and τ̃0 are taken to be O(1). Hence, they encode our assumptions about

the strength of the unscaled drag and cell traction parameters, i.e. they are assumed to

be large here at O(1/ε2). The terms in (4.37) are otherwise scaled as in the 1D model.

We non-dimensionalise the interface conditions (4.15) - (4.17) at y = h to obtain

− ε2
{
2θp

∂ṽp

∂x̃
+ κ̃pθp

(
∂ṽp

∂x̃
+
∂w̃p

∂ỹ

)}
∂h̃

∂x̃
+ ε2θp

∂w̃p

∂x̃

−

(
P̃M − θp

τ̃0ñ
2

1+ λ̃ñ2

)
∂h̃

∂x̃
+ θp

∂ṽp

∂ỹ
= 0, (4.38)

− ε2θp
∂w̃p

∂x̃

∂h̃

∂x̃
− θp

∂ṽp

∂ỹ

∂h̃

∂x̃
+ 2θp

∂w̃p

∂ỹ
+ κ̃pθp

(
∂ṽp

∂x̃
+
∂w̃p

∂ỹ

)
−
1

ε2

(
P̃M − θp

τ̃0ñ
2

1+ λ̃ñ2

)
= 0, (4.39)

− R̃θs(ṽs − ṽp)
∂h̃

∂x̃

1√
ε2 ∂h̃∂x̃

2
+ 1

+ R̃θs(w̃s − w̃p)
1√

ε2 ∂h̃∂x̃
2
+ 1

= P̃M + µ̃sM, (4.40)

where the non-dimensional resistance parameter is defined

R̃ =
ε3LR

ηp
. (4.41)

As with the drag and cell traction parameters (ξ̃ and τ̃0 respectively) above, the scaled

resistance parameter is taken to be O(1), indicating that resistance is a significant in-

fluence in the thin film model. The resistance here is scaled to be large at O(1/ε3), as

distinct from the scaling in the 1D Cartesian model.

The interface conditions (4.19) - (4.21) at x = L after re-scaling have the form

2θp
∂ṽp

∂x̃
+ κ̃pθp

(
∂ṽp

∂x̃
+
∂w̃p

∂ỹ

)
−
1

ε2

(
P̃M − θp

τ̃0ñ
2

1+ λ̃ñ2

)
= 0, (4.42)

ε2θp
∂w̃p

∂x̃
+ θp

∂ṽp

∂ỹ
= 0, (4.43)

R̃θs(ṽs − ṽp) = ε(P̃M + µ̃sM). (4.44)

The no-flux boundary condition (4.24) at y = h is re-scaled such that

−ε2D̃
∂ñ

∂x̃

∂h̃

∂x̃
+ D̃

∂ñ

∂ỹ
= 0. (4.45)
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We henceforth drop tildes from non-dimensional quantities.

We have scaled a number of variables and parameters in the model to be large. We

assume a balance between the pressure P and cell traction parameter τ0 at O(1/ε2)

in the force balance equation (4.34) and interface condition (4.39) with both P and

τ0 scaled to be large; this is necessary to derive a non-trivial reduction to the model.

This then leads to a relation at leading order in equation (4.33) between pressure, cell

force and viscous terms. Scaling the chemical potential to be large in equations (4.35)

and (4.36) is also required for a non-trivial model reduction and ensures that both

chemical and cell potentials contribute to the leading order momentum balance, while

large drag in equation (4.35) is needed to couple together the polymer and solvent

axial velocities. A large resistance parameter is required in interface condition (4.38) to

maintain continuity as solvent flows across the long gel-solvent interface.

We now expand our variables in powers of ε as follows, and substitute these expan-

sions into our model equations,

θp = θp0 + εθp1 + ε
2θp2 + ...,

n = n0 + εn1 + ε
2n2 + ...,

h = h0 + εh1 + ε
2h2 + ...,

vp = vp0 + εvp1 + ε
2vp2 + ...,

and similarly for θs, vs, wp, ws, P and L. Unlike previous work discussed in Section

1.4, we expand our variables here in powers of ε instead of ε2. This is due to the O(ε)

term which appears in interface condition (4.44) after the model is re-scaled. The O(ε)

terms do not contribute to the leading order model derived in this chapter, but they

are included here for completeness.

4.3.1 Demonstrating the y-independence of leading order dependent variables

We begin by showing that the leading order cell density n0, pressure P0, polymer

fraction θp0 and polymer axial velocity vp0 do not depend on y. This facilitates the
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derivation of simplified mass and momentum equations, as we will demonstrate sub-

sequently.

Now, from equation (4.31) at O(1/ε2),

D
∂2n0
∂y2

= 0. (4.46)

At leading order, the no-flux boundary condition (4.45) gives D∂n0/∂y = 0 at y = h0.

Integrating (4.46) and applying this no-flux boundary condition, we have

D
∂n0
∂y

= 0, (4.47)

and so n0 = n0(x, t). Note that we have assumed D 6= 0 here to derive this condition

for n0. We will look at equation (4.31) at O(1) later in the model derivation to obtain a

leading order expression for ∂n0/∂t.

Considering (4.34) at O(1/ε2), we have

∂Π0
∂y

= 0, (4.48)

where we have defined Π0 = P0 − θp0G0, noting that G0 = G(n0(x, t)). This implies

that

Π0 = Π0(x, t). (4.49)

From interface condition (4.39), at y = h0,

P0 − P
e
0(t) − θp0G0 = 0. (4.50)

We have found that Pe0(t) and higher order equivalent terms do not feature in the final

system of equations; therefore, without loss of generality, we now set Pe = 0, and as

such, PM = P for each order of ε. Accordingly, applying (4.50), we find

Π0 = 0, (4.51)
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and so

P0 = θp0G0. (4.52)

We note that this result holds for all y and, accordingly, holds everywhere in our

system.

At O(1), equation (4.36) yields

θs0
∂

∂y
(µs0 + θp0G0) = 0, (4.53)

where µs0 = µs(θp0); therefore,

θs0

(
∂µs0
∂θp

+G0

)
∂θp0
∂y

= 0. (4.54)

Now, for (4.54) to hold, we must have that ∂θp0/∂y = 0 or that ∂µs0/∂θp = −G0. Given

that G0 is independent of y and that µs0 = µs(θp0), both these conditions imply that

we must have

θp0 = θp0(x, t), (4.55)

i.e. at leading order, θp0 is independent of y, and accordingly, µs0 is as well. Similarly,

we have now found that P0 = P0(x, t) by equation (4.52). We note that for equation

(4.55) to be true at all times, it must also hold for the initial polymer fraction θi(x,y),

i.e. our initial condition must satisfy ∂θi(x,y)/∂y = 0.

Using our definition for Π0 together with equation (4.33) at leading order, we have

−
∂Π0
∂x

+
∂

∂y

(
θp0

∂vp0
∂y

)
= 0. (4.56)

Noting from (4.51) that Π0 = 0, this becomes

∂

∂y

(
θp0

∂vp0
∂y

)
= 0, (4.57)

=⇒ θp0
∂vp0
∂y

= F1(x, t). (4.58)
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From boundary condition (4.38) at O (1),

θp0
∂vp0
∂y

= 0 at y = h0, (4.59)

and thus F1(x, t) = 0. Accordingly,

θp0
∂vp0
∂y

= 0, (4.60)

=⇒ vp0 = vp0(x, t), (4.61)

i.e. our leading order polymer axial velocity is independent of y.

From equation (4.35) at leading order,

vs0 = vp0 −
1

ξθp0

(
∂µs0
∂x

+
∂

∂x
(θp0G0)

)
. (4.62)

Therefore, we also have leading order solvent axial velocity vs0 = vs0(x, t).

4.3.2 y-independence of O(ε) terms

We now follow the same process to show that the O(ε) terms in cell density n1, pressure

P1, polymer fraction θp1 , and polymer axial velocity vp1 are also independent of y. This

simplifies later steps in our derivation of a leading order model.

Integrating equation (4.31) at O(1/ε) and using the no-flux boundary condition

∂n1/∂y = 0 at y = h0, we find that n1 = n1(x, t). This indicates that the first or-

der correction to the cell force function is also independent of y, that is, G1 = G1(x, t).

Evaluating (4.34) at O(1/ε) yields

∂Π1
∂y

= 0, (4.63)

=⇒ Π1 = Π1(x, t), (4.64)
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where Π1 = P1 − θp0G1 − θp1G0. Using (4.39), we find that

P1 − θp0G1 − θp1G0 = 0 (4.65)

at y = h0, and hence Π1 = 0. Therefore,

P1 = θp0G1 + θp1G0 (4.66)

everywhere in the domain. Now, equation (4.36) at O(ε) becomes

θs0
∂

∂y
(µs1 +G0θp1) = 0, (4.67)

where µs1 is the first order correction to µs; therefore,

θs0

(
∂µs1
∂θp

+G0

)
∂θp1
∂y

= 0. (4.68)

As in the leading order case, either possible solution to this equation requires that

θp1 = θp1(x, t); hence µs1 must also be independent of y. We also therefore have that

P1 = P1(x, t) from equation (4.66).

We evaluate equation (4.33) at O(ε), finding

−
∂Π1
∂x

+
∂

∂y

(
θp0

∂vp1
∂y

+ θp1
∂vp0
∂y

)
= 0. (4.69)

This simplifies to the condition

∂

∂y

(
θp0

∂vp1
∂y

)
= 0, (4.70)

from which, after integrating with respect to y and applying interface condition (4.38),

we have

θp0
∂vp1
∂y

= 0, (4.71)

=⇒ vp1 = vp1(x, t). (4.72)
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From (4.36) at O(ε), we find that

vs1 = vp1 −
1

ξθp1

∂

∂x
(µs1 + θp0G1 + θp1G0) . (4.73)

Thus, the solvent axial velocity must also be independent of y at first order, i.e. vs1 =

vs1(x, t).

4.3.3 Derivation of thin film mass balance equations

Having established that θp0 and vp0 are independent of y, the mass conservation equa-

tion (4.1) at leading order gives,

∂θp0
∂t

+
∂

∂x
(θp0vp0) +

∂

∂y
(θp0wp0) = 0,

=⇒ ∂

∂y
(θp0wp0) = −

(
∂θp0
∂t

+
∂

∂x
(θp0vp0)

)
,

=⇒ θp0wp0 = −

(
∂θp0
∂t

+
∂

∂x
(θp0vp0)

)
y+ F2(x, t). (4.74)

Since wp0 = 0 at y = 0, we have F2(x, t) = 0 in equation (4.74), and so our polymer

velocity in the y-direction is governed by

θp0wp0 = −

(
∂θp0
∂t

+
∂

∂x
(θp0vp0)

)
y; (4.75)

accordingly, wp0 is a linear function of y.

We have the kinematic boundary condition at y = h0,

wp0 =
∂h0
∂t

+ vp0
∂h0
∂x

. (4.76)

Applying this kinematic condition in equation (4.75) at y = h0, we find

∂

∂t
(θp0h0) +

∂

∂x
(θp0vp0h0) = 0. (4.77)

This equation describes the mass conservation of polymer across the height of the thin

film.
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Similarly, integrating the solvent conservation of mass equation (4.2) from y = 0 to

y = h0,

θs0ws0

∣∣∣∣h0
0

= −

∫h0
0

∂θs0
∂t

dy−

∫h0
0

∂

∂x
(θs0vs0)dy,

=

(
−
∂θs0
∂t

y−
∂

∂x
(θs0vs0)y

) ∣∣∣∣h0
0

. (4.78)

By symmetry at y = 0, ws0(y = 0) = 0. Therefore,

θs0ws0

∣∣∣∣
y=h0

= −
∂θs0
∂t

h0 −
∂

∂x
(θs0vs0)h0. (4.79)

From interface condition (4.40) at leading order, we also have

θs0ws0

∣∣∣∣
y=h0

=
1

R

(
µs0 − µ

e
s0

+ θp0G0
)
+ θs0(vs0 − vp0)

∂h0
∂x

+ θs0wp0

∣∣∣∣
y=h0

. (4.80)

Combining equations (4.79) and (4.80) and using the kinematic boundary condition

(4.76) for wp0 at y = h0, we find

∂

∂t
(θs0h0) +

∂

∂x

{
θs0h0

(
vp0 −

1

ξθp0

(
∂µs0
∂x

+
∂

∂x
(θp0G0)

))}
= −

1

R

(
µs0 − µ

e
s0

+ θp0G0
)

, (4.81)

where we have substituted for vs0 using equation (4.62). Equation (4.81) describes the

advection of solvent mass across the height of the gel.

Taking linear combinations of equations (4.81) and (4.77), we can obtain the mass

conservation equations for h0 and θp0 ,

∂h0
∂t

+
∂

∂x

(
h0vp0 −

h0θs0
ξθp0

(
∂µs0
∂x

+
∂

∂x
(θp0G0)

))
= −

1

R

(
µs0 − µ

e
s0

+ θp0G0
)

, (4.82)

∂θp0
∂t

+ vp0
∂θp0
∂x

+
θp0
h0

∂

∂x

(
h0θs0
ξθp0

(
∂µs0
∂x

+
∂

∂x
(θp0G0)

))
=
θp0
Rh0

(
µs0 − µ

e
s0

+ θp0G0
)

. (4.83)
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To derive an expression for ∂n0/∂t, we evaluate equation (4.31) at O(1). This gives

∂n0
∂t

+
∂

∂x
(n0vp0) +

∂

∂y
(n0wp0) = D

∂2n0
∂x2

+D
∂2n2
∂y2

. (4.84)

We express this in the following form, noting that all terms on the right-hand side are

independent of y,

D
∂2n2
∂y2

=
∂n0
∂t

+
∂

∂x
(n0vp0) +n0

∂wp0
∂y

−D
∂2n0
∂x2

. (4.85)

After integrating between y = 0 and y = h0, we have

D
∂n2
∂y

∣∣∣∣h0
0

=

(
∂n0
∂t

+
∂

∂x
(n0vp0) +n0

∂wp0
∂y

−D
∂2n0
∂x2

)
h0. (4.86)

We note that ∂n2/∂y = 0 at y = 0 from the symmetry condition (4.22). From the no-flux

boundary condition (4.45) at y = h0, we find that at O(ε2),

D
∂n2
∂y

= D
∂n0
∂x

∂h0
∂x

. (4.87)

Equation (4.86) then becomes

D
∂n0
∂x

∂h0
∂x

=

(
∂n0
∂t

+
∂

∂x
(n0vp0) +n0

∂wp0
∂y

)
h0 −D

∂2n0
∂x2

h0, (4.88)

which simplifies to

(
∂n0
∂t

+
∂

∂x
(n0vp0) +n0

∂wp0
∂y

)
h0 −D

∂

∂x

(
h0
∂n0
∂x

)
= 0. (4.89)

Given that h0 > 0 in the gel, we divide by h0 and use (4.75) to substitute for wp0 ,

obtaining the mass conservation equation for n0,

∂n0
∂t

+
∂

∂x
(n0vp0) −

n0
θp0

∂θp0
∂t

−
n0
θp0

∂

∂x
(θp0vp0) −

D

h0

∂

∂x

(
h0
∂n0
∂x

)
= 0. (4.90)
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4.3.4 Derivation of an equation for vp0

Having derived equations for the advection of polymer and solvent across the height

of the film and for advection-diffusion of cells, we now aim to find an expression for

vp0 . Equation (4.33) at O(ε2) gives

∂

∂x

(
2θp0

∂vp0
∂x

+ κpθp0

(
∂vp0
∂x

+
∂wp0
∂y

))
−
∂Π2
∂x

+
∂

∂y

(
θp0

∂wp0
∂x

)
+
∂

∂y

(
θp0

∂vp2
∂y

)
= 0, (4.91)

where Π2 = P2 − θp0G2 − θp2G0 − θp1G1.

Next we integrate equation (4.91) with respect to y from y = 0 to y = h0 to obtain

h0
∂

∂x

(
2θp0

∂vp0
∂x

)
+ h0

∂

∂x

(
κpθp0

∂vp0
∂x

)
+

∫h0
0

(
∂

∂x

(
κpθp0

∂wp0
∂y

−Π2

))
dy

= −

[
θp0

∂wp0
∂x

+ θp0
∂vp2
∂y

]h0
0

. (4.92)

From boundary condition (4.38) at O
(
ε2
)
, we have at y = h0

θp0
∂wp0
∂x

+ θp0
∂vp2
∂y

=

(
2θp0

∂vp0
∂x

+ κpθp0

(
∂vp0
∂x

+
∂wp0
∂y

)
−Π2

)
∂h0
∂x

. (4.93)

Further, by symmetry at y = 0, we have wp0(x, 0, t) = 0, and so ∂wp0/∂x = 0 at y = 0.

We also have that vp2 is an even function of y about y = 0, and thus ∂vp2/∂y = 0 at

y = 0. Therefore, from equation (4.92),

h0
∂

∂x

(
2θp0

∂vp0
∂x

)
+ h0

∂

∂x

(
κpθp0

∂vp0
∂x

)
+

∫h0
0

∂

∂x

(
κpθp0

∂wp0
∂y

−Π2

)
dy

= −

(
2θp0

∂vp0
∂x

+ κpθp0

(
∂vp0
∂x

+
∂wp0
∂y

∣∣∣∣
y=h0

)
−Π2

∣∣∣∣
y=h0

)
∂h0
∂x

. (4.94)

Using the Leibniz integral rule, we have

∫h0
0

∂

∂x

(
κpθp0

∂wp0
∂y

−Π2

)
dy =

∂

∂x

∫h0
0

(
κpθp0

∂wp0
∂y

−Π2

)
dy

−

[
κpθp0

∂wp0
∂y

−Π2

]
y=h0

∂h0
∂x

, (4.95)
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and substituting equation (4.95) into (4.94) yields,

∂

∂x

(
2θp0

∂vp0
∂x

h0 + κpθp0
∂vp0
∂x

h0

)
+
∂

∂x

∫h0
0

(
κpθp0

∂wp0
∂y

−Π2

)
dy

−

[
κpθp0

∂wp0
∂y

−Π2

]
y=h0

∂h0
∂x

= −

(
κpθp0

∂wp0
∂y

∣∣∣∣
y=h0

−Π2

∣∣∣∣
y=h0

)
∂h0
∂x

. (4.96)

This reduces to the expression

∂

∂x

(
2θp0

∂vp0
∂x

h0 + κpθp0
∂vp0
∂x

h0

)
+
∂

∂x

∫h0
0

(
κpθp0

∂wp0
∂y

−Π2

)
dy = 0. (4.97)

We will return to this further on in our derivation.

We now consider (4.34) at O(1), finding

∂

∂y

(
2θp0

∂wp0
∂y

+ κpθp0
∂vp0
∂x

+ κpθp0
∂wp0
∂y

)
−
∂Π2
∂y

= 0,

=⇒ 2θp0
∂wp0
∂y

+ κpθp0
∂vp0
∂x

+ κpθp0
∂wp0
∂y

−Π2 = F3(x, t). (4.98)

From boundary condition (4.39) on y = h0 at O(1),

2θp0
∂wp0
∂y

+ κpθp0
∂vp0
∂x

+ κpθp0
∂wp0
∂y

−Π2 = 0. (4.99)

Therefore, we find

F3(x, t) = 0, (4.100)

and from (4.98),

Π2 = (2+ κp)θp0
∂wp0
∂y

+ κpθp0
∂vp0
∂x

. (4.101)
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We can therefore simplify the integral term in (4.97), and after substituting in the

expression for Π2 above, equation (4.97) becomes

∂

∂x

(
2θp0

∂vp0
∂x

h0 + κpθp0
∂vp0
∂x

h0

)
−
∂

∂x

∫h0
0

(
2θp0

∂wp0
∂y

+ κpθp0
∂vp0
∂x

)
dy = 0. (4.102)

Noting that the integrand is independent of y, this becomes

∂

∂x

(
2θp0

∂vp0
∂x

h0 + κpθp0
∂vp0
∂x

h0

)
−
∂

∂x

[(
2θp0

∂wp0
∂y

+ κpθp0
∂vp0
∂x

)
y

]h0
0

= 0, (4.103)

from which,

∂

∂x

(
2θp0

∂vp0
∂x

h0 − 2θp0
∂wp0
∂y

h0

)
= 0. (4.104)

Now, using equation (4.75), we find

∂

∂x

(
2θp0

∂vp0
∂x

h0 + 2
∂θp0
∂t

h0 + 2
∂

∂x
(θp0vp0)h0

)
= 0,

=⇒ 2
∂

∂x

(
h0

(
2θp0

∂vp0
∂x

+
∂θp0
∂t

+ vp0
∂θp0
∂x

))
= 0. (4.105)

We integrate (4.105) with respect to x, finding

2h0

(
2θp0

∂vp0
∂x

+
∂θp0
∂t

+ vp0
∂θp0
∂x

)
= F4(y, t). (4.106)

Since the left-hand side of this expression is independent of y, we must have F4 = F4(t).

From equation (4.75), we have

∂θp0
∂t

= −θp0
∂wp0
∂y

−
∂

∂x
(θp0vp0) . (4.107)
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Substituting this into equation (4.106), we find

2h0

(
θp0

∂vp0
∂x

− θp0
∂wp0
∂y

)
= F4(t), (4.108)

while from equation (4.101),

−2θp0
∂wp0
∂y

= −Π2 + κpθp0

(
∂vp0
∂x

+
∂wp0
∂y

)
. (4.109)

Hence, equation (4.108) becomes

h0

(
2θp0

∂vp0
∂x

−Π2 + κpθp0

(
∂vp0
∂x

+
∂wp0
∂y

))
= F4(t). (4.110)

From the interface condition (4.42) at x = L0,

2θp0
∂vp0
∂x

+ κpθp0

(
∂vp0
∂x

+
∂wp0
∂y

)
−Π2 = 0; (4.111)

thus we find

F4 = 0, (4.112)

and equation (4.106) simplifies to

2θp0
∂vp0
∂x

+
∂θp0
∂t

+ vp0
∂θp0
∂x

= 0; (4.113)

this gives us a leading order expression for the polymer axial velocity vp0 .

Now, at x = L0, from the interface condition (4.44) at leading order, we have

vs0 = vp0 . (4.114)

Substituting this into (4.62), we find that, at x = L0,

∂µs0
∂x

= −
∂

∂x
(θp0G0) . (4.115)
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We also have no cell flux at x = L0, therefore ∂n0/∂x = 0, and we can express equation

(4.115) as

(
∂µs0
∂θp0

+G0

)
∂θp0
∂x

= 0; (4.116)

this indicates that at x = L0 we have the extra boundary condition

∂θp0
∂x

= 0. (4.117)

For consistency, we will always use initial conditions such that this boundary condition

is satisfied, i.e.

∂θi(L)

∂x
= 0, (4.118)

where θi(x) is the initial polymer fraction. We note that physically this may not always

be true; this may lead to more complicated scenarios (such as the existence of boundary

layers) which we do not address here.

4.3.5 Transformation to a 1D fixed domain

Finally, as in Chapter 3, we transform our model to a fixed domain with the coordinate

transformation t = T , x = L0(T)X.
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The leading order governing equations, (4.77), (4.81), (4.90) and (4.113), become

∂

∂T
(θp0h0) −X

.
L0
L0

∂

∂X
(θp0h0) +

1

L0

∂

∂X
(θp0h0vp0) = 0, (4.119)

∂

∂T
(θs0h0) −X

.
L0
L0

∂

∂X
(θs0h0)

+
1

L0

∂

∂X

{
θs0h0

(
vp0 −

1

ξL0θp0

(
∂µs0
∂X

+
∂

∂X
(θp0G0)

))}
= −

1

R

(
µs0 − µ

e
s0

+ θp0G0
)

, (4.120)

∂n0
∂T

−X

.
L0
L0

∂n0
∂X

+
1

L0

∂

∂X
(n0vp0)

−
n0
θp0

{
∂θp0
∂T

−X

.
L0
L0

∂θp0
∂X

+
1

L0

∂

∂X
(θp0vp0)

}
−

D

L20h0

∂

∂X

(
h0
∂n0
∂X

)
= 0, (4.121)

2θp0
L0

∂vp0
∂X

+
∂θp0
∂T

−X

.
L0
L0

∂θp0
∂X

+
vp0
L0

∂θp0
∂X

= 0, (4.122)

respectively.

Transforming equation (4.83) and substituting into (4.122) for the ∂θp0/∂T term, we

obtain

2h0
L0

∂vp0
∂X

−
1

L20

∂

∂X

{
θs0h0
ξθp0

(
∂µs0
∂X

+
∂

∂X
(θp0G0)

)}
+
1

R

(
µs0 − µ

e
s0

+ θp0G0
)
= 0. (4.123)

We can substitute this into (4.120), giving

∂

∂T
(θs0h0) −X

.
L0
L0

∂

∂X
(θs0h0) +

1

L0

∂

∂X
(θs0h0vp0) −

2h0
L0

∂vp0
∂X

= 0. (4.124)

We can also substitute equation (4.122) into equation (4.121) to eliminate the ∂θp0/∂T

term there, finding

∂n0
∂T

−X

.
L0
L0

∂n0
∂X

+
1

L0

∂

∂X
(n0vp0) +

n0
L0

∂vp0
∂X

−
D

L20h0

∂

∂X

(
h0
∂n0
∂X

)
= 0. (4.125)
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The mass conservation equations (4.119) and (4.124) can be expressed in the non-

conservative forms

∂θp0
∂T

−X

.
L0
L0

∂θp0
∂X

+
1

L0

∂

∂X
(θp0vp0) +

θp0
L0

∂vp0
∂X

= 0, (4.126)

∂h0
∂T

−X

.
L0
L0

∂h0
∂X

+
1

L0

∂

∂X
(h0vp0) −

2h0
L0

∂vp0
∂X

= 0. (4.127)

From equation (4.126), we find that, as in Chapter 3, the polymer advection equation

has characteristics on X = 0 and X = L; as such, the polymer fraction θp0 is determined

by the initial condition θi(X) and velocity vp0 . From equation (4.127), we see that the

height h0 similarly has characteristics on X = 0 and X = L, and is determined by its

initial condition hi(X) and vp0 .

We have again taken the initial condition θi(X) to be differentiable and to satisfy

∂θi(0)/∂X = 0, so that for all time, ∂θp0(0, T)/∂X = 0 (see Section 3.2). We have simil-

arly taken the initial height hi(X) to be differentiable and satisfy ∂hi(0)/∂X = 0, such

that ∂h0(0, T)/∂X = 0 for all time.

Therefore, our reduced 1D model is made up of the following system of equations,

θs0 = 1− θp0 (4.128)

∂

∂T
(θp0h0) −X

.
L0
L0

∂

∂X
(θp0h0) +

1

L0

∂

∂X
(θp0h0vp0) = 0, (4.129)

∂

∂T
(θs0h0) −X

.
L0
L0

∂

∂X
(θs0h0) +

1

L0

∂

∂X
(θs0h0vp0) −

2h0
L0

∂vp0
∂X

= 0, (4.130)

∂n0
∂T

−X

.
L0
L0

∂n0
∂X

+
1

L0

∂

∂X
(n0vp0) +

n0
L0

∂vp0
∂X

−
D

L20h0

∂

∂X

(
h0
∂n0
∂X

)
= 0, (4.131)

2h0
L0

∂vp0
∂X

−
1

L20

∂

∂X

{
θs0h0
ξθp0

(
∂µs0
∂X

+
∂

∂X
(θp0G0)

)}
+
1

R

(
µs0 − µ

e
s0

+ θp0G0
)
= 0, (4.132)
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subject to boundary conditions

∂θp0
∂X

= 0 at X = 0, X = 1, (4.133)

∂n0
∂X

= 0 at X = 0, X = 1, (4.134)

∂h0
∂X

= 0 at X = 0, (4.135)

vp0 = 0 at X = 0, (4.136)
.
L0 = vp0(X = 1), (4.137)

and initial conditions

θp(X, 0) = θi(X), n(X, 0) = ni(X), h(X, 0) = hi(X), L(0) = 1, (4.138)

where we assume

∂θi(0)

∂X
=
∂θi(1)

∂X
= 0,

∂hi(0)

∂X
= 0. (4.139)

As noted earlier, the mass conservation equations (4.129) and (4.130) can be ex-

pressed in the non-conservative form given in equations (4.126) and (4.127) (repeated

here for convenience),

∂θp0
∂T

−X

.
L0
L0

∂θp0
∂X

+
1

L0

∂

∂X
(θp0vp0) +

θp0
L0

∂vp0
∂X

= 0, (4.140)

∂h0
∂T

−X

.
L0
L0

∂h0
∂X

+
1

L0

∂

∂X
(h0vp0) −

2h0
L0

∂vp0
∂X

= 0. (4.141)

We will use both the conservative and non-conservative forms at different points in

subsequent chapters when analysing the thin film model.

4.3.6 Discussion

In this chapter, we developed a model to study the behaviour of a thin film of gel. We

exploited the small parameter in the system, namely the inverse aspect ratio ε, and

showed that under a particular set of scalings, the original two-dimensional system
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of equations can be reduced to a one-dimensional system of four coupled PDEs. This

leading order model consists of mass conservation equations for the volume fractions

of polymer and solvent across the height of the gel, equations (4.129) and (4.130) re-

spectively, a mass conservation equation for the cell density (4.131), and a force balance

equation governing the polymer axial velocity (4.132) which is first order in vp. Such a

model considering cell traction stresses and osmotic pressure in this thin film setting

has not been presented previously.

This reduced system of equations provides significant benefits when studying the

model both analytically and numerically. To solve the initial 2D model, we must not

only account for free boundaries defining the height and length of the gel, but also

solve the governing equations for θp, n and vp in two spatial coordinates. Having

shown that the solution is uniform across the gel height at leading order, we avoid

the complexity of solving our equations in the y-coordinate. Instead of needing to

solve for the free boundaries in 2D, our thin film model tracks the height of the gel

through mass conservation equations (4.129) and (4.130). We can then transform our

free boundary at x = L0(T) onto a fixed domain as was previously done in Chapter

3. This allows us to solve the model numerically in a conventional manner, using, for

example, a Crank-Nicolson scheme. The thin film model is also tractable for analytic

study; we will present a reduced ODE solution in Chapter 5 and small time solution

in Chapter 6, together with numerical results.

The model as presented in equations (4.128)-(4.139) has some key differences to the

1D model presented in Chapter 3, driven by the geometry of the thin film. In the

previous geometry, all solvent flowed in or out of the gel horizontally through the

gel’s endpoint at X = 1. In contrast, in the thin film model, we can have solvent flow

into the gel across the long boundary at y = h0. This manifests itself in the additional

terms seen in equation (4.120). This equation describes mass conservation of the solvent

fraction across the thickness of the gel, and includes a source term which depends on

the balance of chemical and cell potentials, scaled by the resistance of the interface

to fluid flow. This source term effectively emerges as a result of integrating over the

height of the gel.
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In the model presented in Chapter 3, the cell density is governed by an advection-

diffusion equation. In the thin film setting, cell density can additionally evolve as a

result of solvent flux across the y = h0 boundary (seen by substituting for ∂vp0/∂X

using (4.132) in (4.131)); as solvent flows across this boundary causing the gel to swell

or shrink, the cell density will decrease or increase accordingly. The model derivation

here uses the presence of diffusive terms to find that n0 is independent of y; there-

fore, unlike the previous 1D case, we cannot set D = 0 without violating one of the

assumptions underpinning the thin film reduction of the model.

Another key difference is that we have a first order equation (4.132) for the polymer

velocity in the thin film model as opposed to a second order equation previously. The

continuity of stress boundary condition which was required to close the system in

Chapter 3 is integrated into the velocity equation in the thin film setting.

As was previously discussed with reference to Howell (1996) in Chapter 1, the classic

Trouton model for a two-dimensional Newtonian sheet has a Trouton ratio of 4. We

note that taking the limit θp0 = 1 in equations (4.77) and (4.105), we recover the Trouton

model describing the leading order height and axial velocity of a thin sheet as given in

equations (1.11) and (1.12), with the Trouton ratio appearing in equation (4.105).

The scaling used to derive the thin film model here, with pressure taken to be large,

resulted in a relation between pressure and viscous stress emerging at leading order

in the momentum equation (4.33). This is typically seen in lubrication theory, leading

to parabolic solutions in y for the leading order axial velocity (Green, 2006). In our

model, the absence of a no-slip condition on the gel’s boundary leads to the leading

order axial velocity vp being uniform across the y-coordinate, which is typical of an

extensional flow such as in Howell (1996). The pressure in our system, scaled to be

large, is found to be created by the cell potentials in the gel; this pressure, together

with the large chemical potentials, drives the movement of solvent and polymer. In the

case without cells, it is the chemical potentials alone driving the flow, with the leading

order pressure contribution being zero.

As an aside, we note that if we take a cell-free system wherein n = 0, we can derive

the same model as that given by equations (4.129) - (4.132) (with n = 0 throughout) by

using a typical extensional flow scaling limit where pressure is not large. The deriva-
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tion in this alternative case follows largely the same methodology as that presented in

this chapter, with the key difference being that pressure P is scaled to be O(1) and does

not contribute to the leading order solution. This is consistent with the model derived

in this chapter, where the leading order pressure contribution is zero in the case of no

cells being present.

As has been discussed here, the thin film model contains key differences to the

model presented in Chapter 3. We will therefore now explore this thin film model both

analytically and numerically in Chapters 5 and 6. We aim to investigate the behaviours

arising from the model in this geometry and assess the results in comparison to those

presented previously. Chapter 5 will study the thin film with uniform initial conditions,

while in Chapter 6, non-uniform initial conditions are considered.
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5.1 introduction

In Chapter 4, we developed a new model for a two-dimensional thin film of gel. We

exploited the thinness of the gel to derive an extensional flow model, where the lon-

gitudinal velocity, polymer volume fraction and cell density are independent of the

y-coordinate; the evolution of the gel is therefore driven by the balance of cell trac-

tion stresses and chemical potentials along the length of the gel with the surrounding

solvent across the interface. In the next chapters, we investigate our thin film model

both analytically and numerically. We restrict our focus to spatially uniform initial

conditions in this chapter, while in Chapter 6, we study spatially non-uniform initial

conditions.

We first demonstrate that if the initial gel height, polymer fraction and cell density

are spatially uniform, a reduced, ordinary differential equation model can be derived.

We then develop a small time solution to this model. We present numerical solutions

for the ODE model, studying the qualitative behaviours predicted in this thin film

setting. Comparisons will be made to the results presented in Chapter 3 to better un-

derstand gel evolution in this new scenario.

5.2 reduced model for uniform initial conditions

We start this chapter studying the leading order model derived in Chapter 4 for a thin

film on a fixed spatial domain; this model is given by equations (4.128) - (4.139). For

notational convenience, we now drop the subscript zeroes on leading order variables.

We will consider the non-conservative forms of mass conservation equations (4.129)
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and (4.130), i.e. equations (4.140) and (4.141). We repeat the mass and momentum

conservation equations here for convenience, these being,

∂θp

∂T
−X

.
L

L

∂θp

∂X
+
1

L

∂

∂X
(θpvp) +

θp

L

∂vp

∂X
= 0, (5.1)

∂h

∂T
−X

.
L

L

∂h

∂X
+
1

L

∂

∂X
(hvp) −

2h

L

∂vp

∂X
= 0, (5.2)

∂n

∂T
−X

.
L

L

∂n

∂X
+
1

L

∂

∂X
(nvp) +

n

L

∂vp

∂X
−
D

L2h

∂

∂X

(
h
∂n

∂X

)
= 0, (5.3)

2h

L

∂vp

∂X
−
1

L2
∂

∂X

{
θsh

ξθp

(
∂µs

∂X
+
∂

∂X
(θpG)

)}
+
1

R
(µs − µ

e
s + θpG) = 0. (5.4)

For uniform initial conditions in θp, n and h, we now show that we can reduce this

thin film system of equations to a simpler model. This model is governed by an ODE

for h as a function of time, with the other variables specified in terms of h.

Given uniform initial conditions, the free energy and cell force are also initially uni-

form in X. This means that the velocity equation (5.4) at initial time is

∂vp

∂X
(T = 0) = −

L

2Rh
(µs − µ

e
s + θpG) , (5.5)

and given that the terms on the right hand side are all initially independent of X, the

initial velocity is given by

vp(T = 0) = −
L

2Rh
(µs − µ

e
s + θpG)X, (5.6)

where we have used the condition vp = 0 at X = 0. At initial time, equations (5.1), (5.2)

and (5.3) become

∂θp

∂T
(T = 0) = −

2θp

L

∂vp

∂X
, (5.7)

∂h

∂T
(T = 0) =

h

L

∂vp

∂X
, (5.8)

∂n

∂T
(T = 0) = −

2n

L

∂vp

∂X
. (5.9)
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Given that vp is linear in X at T = 0, these equations indicate that the solutions for h,

θp and n remain uniform in X at the next time step. Therefore, ∂vp/∂X must also be

constant in space at the next time step, and this process continues on as time progresses,

with no spatial dependency being introduced in θp, h or n.

Accordingly, given uniform initial conditions, our model reduces to the following

system of first order ODEs, together with an equation for vp,

vp(T ,X) = −
L

2Rh
(µs − µ

e
s + θpG)X, (5.10)

dh

dT
= −

1

2R
(µs − µ

e
s + θpG) , (5.11)

dθp

dT
=
θp

Rh
(µs − µ

e
s + θpG) , (5.12)

dn

dT
=
n

Rh
(µs − µ

e
s + θpG) . (5.13)

The kinematic condition gives

dL

dT
= vp(X = 1), (5.14)

and we take the initial conditions

h(T = 0) = 1, θp(T = 0) = θi, n(T = 0) = 1, L(T = 0) = 1, (5.15)

where we have scaled h and n on the initial height and cell density respectively.

We now demonstrate that this system can be reduced to a single ODE for the height

h. We substitute equation (5.11) into equation (5.10) to find

vp =
LX

h

dh

dT
, (5.16)

= LX
d

dT
(log(h(T))) . (5.17)

Similarly, substituting equation (5.11) into equation (5.12), we have

dθp

dT
= −2

θp

h

dh

dT
, (5.18)
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which can be written in the form

d

dT
(log(θp(T))) =

d

dT

(
log(h−2(T))

)
. (5.19)

Integrating this, we find that

log(θp(T)) = log(h−2(T)) +C, (5.20)

where, from our initial conditions, the constant C has the value

C = log(θi). (5.21)

We thus have

θp =
θi
h2

, (5.22)

and similarly, we find the solution for the cell density as

n =
1

h2
. (5.23)

Substituting for vp(X = 1) using equation (5.17), the kinematic boundary condition

(5.14) becomes

dL

dT
= L

d

dT
(log(h)) , (5.24)

and thus

d

dT
(log(L)) =

d

dT
(log(h)) . (5.25)

Given that L(0) = h(0) = 1, we find that

L(T) = h(T). (5.26)

123



Having found solutions θp and n as functions of h, we can also express the chemical

potential µs(θp) and cell force function G(n) as functions of h, and accordingly, reduce

our model to the following system in h(T),

dh

dT
= −

1

2R
(µs(θp) − µ

e
s + θpG(n)) , (5.27)

θp(T) =
θi
h2

, (5.28)

n(T) =
1

h2
, (5.29)

L(T) = h, (5.30)

vp(X, T) = X
dh

dT
. (5.31)

We note that while the solution for vp(X, T) has been included here, it is not required

to understand how h, and subsequently θp, n and L, evolve in time.

From this reduced model, we can draw a number of conclusions about how the gel

behaves under spatially uniform initial conditions. The foremost result here is that if

there is no initial spatial variation in the volume fractions and cell density, the gel will

remain uniform in space for all time. We see that the length of the gel is equal to its

height as it evolves, therefore any movement in the free boundaries of the gel will occur

in the same manner both length-wise and height-wise. We also see that the polymer

fraction and cell density are inversely proportional to the squared height, scaled by the

initial conditions.

The entire system is driven by the balance between the solvent chemical potential

µs and the cell potential θpG inside the gel with the external chemical potential µes . If

these forces are in balance, the system is in equilibrium, as expected. For the height to

be increasing, and accordingly, the gel to be swelling, we require that µes is greater than

the sum of θpG and µs; the opposite holds for the gel to contract. The gel equilibrates

when these forces are in balance, that is

µs(θp) − µ
e
s + θpG(n) = 0. (5.32)

We note that this is equivalent to the equilibrium condition given for the 1D model in

equation (3.46).
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The rate at which the gel evolves is determined by equation (5.27). Accordingly,

increasing the resistance of the interface R slows the rate of change of h and the rest of

the system. Similarly, larger values of parameters such as the mixing energy χ and cell

traction τ0 appearing in µs and G respectively will increase the rate of gel evolution.

The reduced model is independent of drag; with no dependence on the X-coordinate,

there is no relative motion between the polymer and solvent as the gel evolves and so

no shearing takes place.

We further note that one can arrive at the model given by equations (5.27) - (5.31) by

substituting the ansatz θp = θp(T), n = n(T), h = h(T), and vp = XL(T)V(T) (where

V(T) is to be determined) into equations (5.1) - (5.4) and simplifying as done above.

This ansatz encodes from the outset that θp, n and h are independent of X for all

time, whereas in the derivation above, we only assume that the initial conditions are

independent of X and demonstrate from there that, as time progresses, these variables

must remain spatially independent.

5.2.1 Short time solution

As in Section 3.5, we develop a short time solution to the reduced gel model given

by equations (5.27) - (5.31). This allows us to compute analytic solutions over early

time; these analytic solutions provide a means of understanding how the gel behaves

as it initially evolves from its initial conditions, as well as a method to validate our

numerical solution in Section 5.3.

We define the short time scale T = δT̂ , where δ � 1. We expand the dependent

variables about the initial conditions as power series in δ,

h(T̂) = 1+ δh1(T̂) + δ
2h2(T̂) + ..., (5.33)

and similarly for θp, n, L and vp. For these series, we have the initial conditions L0 = 1,

θ0 = θi, n0 = 1 and h0 = 1.
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After substituting these expansions into the model equations, from equation (5.27)

at O(δ) we find

∂h1

∂T̂
= −

1

2R
(µs(θi) − µ

e
s(0) + θiG(1)); (5.34)

therefore,

h1 = −
T̂

2R
(µs(θi) − µ

e
s(0) + θiG(1)). (5.35)

Using this expression for h1 in equations (5.28) - (5.30), we find the small time solu-

tions,

h = 1+ δh1, (5.36)

L = 1+ δh1, (5.37)

θp = θi(1− 2δh1), (5.38)

n = 1− 2δh1, (5.39)

where

h1 = −
T̂

2R
(µs(θi) − µ

e
s(0) + θiG(1)). (5.40)

As in the ODE (5.27), the small time behaviour is governed by the difference between

the external chemical potential and the internal cell and chemical potential energies.

We will use this solution to confirm our numerical results are evolving in the correct

manner in Section 5.3.

5.3 thin film numerics

We solve the reduced model described by equations (5.27) - (5.30) using an inbuilt

MATLAB ODE solver, specifically ode15s which is designed to handle stiff systems. We

use the short time solution (5.36) - (5.39) to verify this numerical method. As illustrated

by Fig. 5.1, we find good agreement between the two solutions, demonstrating that our
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Figure 5.1: Comparing the small time solution for uniform initial conditions (red
dashed lines) with the numerical ODE solution (blue solid lines) over early
time for n (increasing over time) and h (decreasing over time). The solu-
tions are closely matched over small time. Values: θi = 0.4, ni = 1, hi = 1,
χ = −0.1, N = 100, R = 1.5, τ0 = 1.2, λ = 1.

ODE scheme is evolving in the right manner from its initial conditions. In the next

chapter, we will compare the solutions given by the ODE solver and those given by

our full numerical scheme (described in Section 6.4), confirming that the two agree in

their description of the gel’s evolution and steady state values (see Fig. 6.2). We can also

solve the equilibrium condition (5.32) for the system with uniform initial conditions to

confirm that the simulation has reached an appropriate steady state.

5.3.1 Numerical simulations

We study a thin film with uniform initial conditions in the polymer fraction, cell density

and height. Recall that the solutions remain spatially uniform for all time and that

h(T) = L(T).

For a gel without cells, we can see either swelling and contraction take place, de-

pending on the chemical potentials in the system. Fig. 5.2, for example, demonstrates

swelling induced by osmotic pressure (with mixing parameter χ = 0.75), while, con-
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Figure 5.2: Time evolution of a cell-free thin gel. The gel swells to equilibrium uni-
formly across its domain. θp is the solid blue line, h is the solid maroon
line (note that h = L). Values: θi = 0.6, ni = 0, hi = 1, χ = 0.75, N = 100,
R = 1. (θ∗,h∗,L∗) = (0.45, 1.16, 1.16).

versely, Fig. 5.3 shows a case where the gel contracts (with mixing increased to χ = 1.5,

promoting separation between the polymer and solvent). The equilibria reached here,

θ∗ = 0.45 for the swelling case and θ∗ = 0.86 for the contracting case, are the same val-

ues as found for the equivalent initial conditions and parameters in the 1D Cartesian

gel (see Figs. 3.8 and 3.9 respectively).

Introducing cells into this system can precipitate a switch to contraction in a gel that

would otherwise swell. We take the same parameter values as in the swelling gel above

(Fig. 5.2) and introduce a cell population (ni = 1, τ0 = 1). In Fig. 5.4, we see that this

gel now contracts due to the presence of cells, reaching a steady state with a significant

reduction in height and length. This highlights that in this thin film geometry, given

sufficient traction stress, the presence of cells can outweigh the osmotic swelling pres-

sure created by chemical potentials in a gel. Reducing the traction parameter (τ0 = 0.1),

we see that the presence of cells does not necessitate contraction. In Fig. 5.5, it is evid-

ent that due to a weak cell contribution, osmotic pressure is still the dominant driver of

the gel’s behaviour, and the thin film will still swell to an equilibrium. The equilibrium
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Figure 5.3: Time evolution of a cell-free thin gel. The gel contracts to equilibrium with
sufficiently large χ. θp is the solid blue line, h is the solid maroon line (note
that h = L). Values: θi = 0.6, ni = 0, hi = 1, χ = 1.5, N = 100, R = 1.
(θ∗,h∗,L∗) = (0.86, 0.84, 0.84).

values of polymer and cell density again match those found for the 1D case for the

same initial conditions and parameters (see Figs. 3.12 and 3.11 for the contraction and

swelling examples respectively).

Increasing the resistance parameter R slows the evolution of the gel and hence in-

creases the time taken to reach a steady state; however, it does not affect the eventual

equilibrium reached. Fig. 5.6 shows the effect of increasing the resistance parameter

from R = 1 to R = 5, which increases the time taken for the gel to reach its steady

state approximately five-fold, from T ≈ 2 to T ≈ 10. This relation between R and T is

expected, given that the solution for h in equation (5.27) is of the form F(T/R).

For both the contracting and expanding examples here, the gel remains spatially

uniform throughout its evolution and at its steady state. As expected, the changes in

height and length are identical given hi = Li = 1, indicating that the gel grows in a

uniform ratio horizontally and vertically. Next, we will explore whether this remains

the case when the gel is constructed with non-uniform initial conditions.
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Figure 5.4: Time evolution of a thin cell-gel system. The gel contracts to equilibrium
due to the presence of cells. θp is the solid blue line, h is the solid maroon
line (note that h = L), n is the dotted purple line. Values: θi = 0.6, ni =
1, hi = 1, χ = 0.75, N = 100, R = 1, τ0 = 1, λ = 1. (θ∗,n∗,h∗,L∗) =
(0.86, 1.44, 0.83, 0.83).
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Figure 5.5: Time evolution of a thin cell-gel system. The gel swells to a steady state due
to osmotic pressure counteracting weak cell traction. θp is the solid blue
line, h is the solid maroon line (note that h = L), n is the dotted purple line.
Values: θi = 0.6, ni = 1, hi = 1, χ = 0.75, N = 100, R = 1, τ0 = 0.1, λ = 1.
(θ∗,n∗,h∗,L∗) = (0.54, 0.91, 1.05, 1.05).
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Figure 5.6: Comparing the effect of the size of the resistance parameter on the evolution
of the gel height. R = 1 is the light blue dotted line, R = 5 is the maroon
dashed line. Values otherwise as given in Fig. 5.4.

5.4 discussion

In this chapter, we have used analytic and numerical methods to study a new model

for a thin film cell-gel system. Given uniform initial conditions, we have developed

a reduced ODE model driven by the difference in chemical and cell potentials. Small

time solutions were found, which provided an analytic solution for the gel’s early

time behaviour. We then presented a numerical solution to the model, analysing the

dynamics seen as the gel evolves from uniform initial conditions. We found both gel

swelling and contraction possible depending on the balance of potentials.

A key finding here is that, for uniform initial conditions, the system of equations

reduces to a model defined by an ODE in time for the height h. From the reduced

model, we see that, given uniform initial conditions, there are no spatial gradients

in the dependent variables θp, n and h; accordingly, the gel evolves in a spatially-

invariant manner. This is a consequence of the 2D geometry, where due to the thinness

of the gel and the significant length of the boundary across y = h compared to that

131



at X = 1, solvent flows into or from the gel across the horizontal boundary in much

greater amounts than across the vertical interface at X = 1.

This manner of evolution is a significant difference between the thin film and 1D

model of Chapter 3. In the 1D case, fluid only flows into or out of the gel through the

boundary at X = 1. This means that even with uniform initial conditions, any non-zero

drag creates a shearing effect as the gel evolves, and non-uniform spatial profiles arise

in the dependent variables (these non-uniformities generally smooth out by the time

the gel equilibrates). Meanwhile, with uniform initial conditions in the thin film, the

gel’s contraction or swelling is driven by solvent flow in the thin direction; accordingly,

drag does not influence the gel’s behaviour. Given no such shearing occurs between

the polymer and solvent, the gel maintains its spatially uniform structure as it evolves

and reaches equilibrium. This is highlighted by the drag parameter not contributing to

the ODE model.

In this thin film case, the spatial uniformity is a product of the gel’s geometry, with

no assumptions necessary beyond taking uniform initial conditions. We note that we

can derive an ODE solution for uniform initial conditions in the 1D Cartesian model

(as was done in Keener et al. (2011b)); however, this is only possible by imposing the

assumption that drag ξ = 0. We remark that Moon and Tranquillo (1993) also derived

an ODE reduction to their 1D mechanochemical model on assuming that the velocity

was linear in space.

The ODE model is driven by the balance in cell and chemical potentials internally

with the external chemical potential. The simulations reach the same equilibrium val-

ues for θ∗ and n∗ given the same parameter values and initial conditions as in the 1D

model; this is to be expected given the same equilibrium conditions exist in both cases.

We note that the modelling assumption is made in Stevenson et al. (2010) when

calculating cell traction that the ratio of gel height to radius remains constant during

the gel’s evolution. The results seen here, where the scaled thin film length and height

are equal, add support to this modelling assumption.

Given uniform initial conditions, we have seen different dynamics at work in the

thin film problem compared to the 1D case. The extra source of solvent across the

large horizontal interface allows the gel to equilibrate more rapidly and in a spatially
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uniform manner. We will now study the thin film with non-uniform initial conditions

and consider the emergent behaviours that follow.
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6.1 introduction

In this chapter, we study the thin film model developed in Chapter 4 using spatially

varying initial conditions. In Chapter 5, we found that with uniform initial conditions,

we can reduce the thin film model to a system driven by a single ODE for the gel height

h; this simplified both analytic and numerical analysis of the model. For non-uniform

initial conditions, the gel need not remain spatially uniform as it evolves, and there-

fore, we must solve the full PDE system given by (4.128) - (4.139). We firstly discuss the

equilibrium conditions for the model. We then develop a small time solution to exam-

ine the stability of equilibria to spatial perturbations. Finally, we develop a numerical

scheme and present solutions for non-uniform initial conditions. We evaluate a range

of initial conditions and parameter choices, finding that spatial non-uniformities will

persist at equilibrium with non-uniform initial conditions in the gel.

In this chapter, we again evaluate the leading order thin film model on a fixed spatial

domain which was derived in Chapter 4; this model is given by equations (4.128) -

(4.139).

6.2 steady state conditions

In studying the steady state conditions, we use the non-conservative mass conservation

equations (4.140) and (4.141) in place of (4.129) and (4.130). We again repeat the mass

and momentum balance equations, where the subscript zeroes have been dropped

from leading order variables for notational convenience,

∂h

∂T
−X

.
L

L

∂h

∂X
+
1

L

∂

∂X
(hvp) −

2h

L

∂vp

∂X
= 0, (6.1)

∂θp

∂T
−X

.
L

L

∂θp

∂X
+
1

L

∂

∂X
(θpvp) +

θp

L

∂vp

∂X
= 0, (6.2)

∂n

∂T
−X

.
L

L

∂n

∂X
+
1

L

∂

∂X
(nvp) +

n

L

∂vp

∂X
−
D

L2h

∂

∂X

(
h
∂n

∂X

)
= 0, (6.3)

2h

L

∂vp

∂X
−
1

L2
∂

∂X

{
θsh

ξθp

(
∂µs

∂X
+
∂

∂X
(θpG)

)}
+
1

R
(µs − µ

e
s + θpG) = 0. (6.4)
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The steady state system here is

1

L

∂

∂X
(hvp) −

2h

L

∂vp

∂X
= 0, (6.5)

1

L

∂

∂X
(θpvp) +

θp

L

∂vp

∂X
= 0, (6.6)

1

L

∂

∂X
(nvp) +

n

L

∂vp

∂X
−
D

L2h

∂

∂X

(
h
∂n

∂X

)
= 0, (6.7)

2h

L

∂vp

∂X
−
1

L2
∂

∂X

{
θsh

ξθp

(
∂µs

∂X
+
∂

∂X
(θpG)

)}
+
1

R
(µs − µ

e
s + θpG) = 0. (6.8)

To demonstrate that there is zero velocity at a steady state, we return briefly to the

conservative advection equation (4.129). At equilibrium, this becomes

1

L

∂

∂X
(θphvp) = 0. (6.9)

Integrating with respect to X and applying zero velocity at X = 0, we find

θphvp = 0; (6.10)

given θp > 0 and h > 0, this means that we must have vp = 0 at equilibrium.

From equation (4.62) (translated to the fixed spatial domain), we then have

vs = −
1

ξLθp

∂

∂X
(µs + θpG) . (6.11)

We will see in this section that the right-hand side of this expression must be zero at a

steady state, demonstrating that vs = 0.

Thus, this system equilibrates when θp, n and h reach such values that there is

zero net force everywhere, there is zero velocity, and the gel length and height are not

changing.

We saw that in the case of uniform initial conditions, the equilibrium condition for

the thin film model was given by equation (5.32) as follows,

µs − µ
e
s + θpG = 0. (6.12)
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For the system to be at a steady state with non-uniform initial conditions, the following

condition in the momentum balance equation (6.4) must be satisfied,

−
1

L2
∂

∂X

{
θsh

ξθp

(
∂µs

∂X
+
∂

∂X
(θpG)

)}
+
1

R
(µs − µ

e
s + θpG) = 0. (6.13)

From the cell advection-diffusion equation (6.3), we also have

D

h

∂

∂X

(
h
∂n

∂X

)
= 0. (6.14)

Given the model derivation in Chapter 4, we must take D 6= 0. Therefore, integrating

(6.14) and applying the no-flux boundary condition (4.134), we find,

h
∂n

∂X
= 0; (6.15)

given h > 0, this indicates that, at equilibrium,

∂n

∂X
= 0, (6.16)

and accordingly, n must be spatially uniform.

Given that G = G(n), we can then express (6.13) in the form

−
1

L2
∂

∂X

{
θsh

ξθp

(
∂µs

∂θp
+G

)
∂θp

∂X

}
+
1

R
(µs − µ

e
s + θpG) = 0. (6.17)

We note that

∂

∂X
(µs − µ

e
s + θpG) =

(
∂µs

∂θp
+G

)
∂θp

∂X
, (6.18)

and therefore, if µs − µes + θpG = 0, equation 6.17 must be satisfied. We saw in equa-

tions (3.49) - (3.52) that for the right-hand side of (6.18) to equal zero, we must have

∂θp

∂X
= 0. (6.19)
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Therefore, sufficient conditions for equilibrium in the thin film are spatially uniform

values θp = θ∗ and n = n∗ that satisfy (6.12). These are the same conditions as seen in

Chapter 3 when D 6= 0. We note that there are no restrictions on h, i.e. the height can

be non-uniform in space at the gel’s steady state.

As mentioned, these equilibrium conditions match those discussed in Section 3.4 for

a 1D gel with D 6= 0. Therefore, we expect any equilibrium solution for θp and n in the

1D Cartesian model with D 6= 0 (Chapter 3) and the reduced thin film model (Chapter

5) to be an equilibrium here, and similarly, any equilibrium found herein to be a steady

state in these earlier models.

We now demonstrate that equation (6.12) together with uniform n and θp are the

necessary conditions for equilibrium. To see this, we revert back to the 2D model before

it is re-scaled. From equations (4.9) and (4.10), at a steady state we have,

∇P = ∇ (θpG) . (6.20)

From (4.11) and (4.12), we then see that, at equilibrium,

∇ (µs + θpG) = 0. (6.21)

We integrate this to find the steady state condition,

µs + θpG = C(t), (6.22)

where C(t) is to be determined. From the interface conditions (4.19) and (4.21) at x = L,

we find that

θpG+ µs − µ
e
s = 0, (6.23)

and accordingly, we see that C = µes , where µes is constant. We therefore have the

following equilibrium condition for the 2D system of equations,

θpG+ µs = µ
e
s . (6.24)
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We can also reinforce here that θp must be constant at a steady state. Firstly, from

equation (4.3) with no flux boundary conditions, we find that n is constant at equilib-

rium. Upon expanding µs and with constant n, (6.24) then becomes,

F(θp) = log(1− θp) + χθ2p + θp

(
G+ 1−

1

N

)
= 0. (6.25)

Now, in the limit θp → 0, F → 0. Meanwhile, F → −∞ as θp → 1. Differentiating F

yields,

F ′(θp) = −
1

1− θp
+ 2χθp +G+ 1−

1

N
. (6.26)

Setting F ′ = 0, we see that F has at most two turning points, and consequently, (6.25)

has at most two unique, non-zero solutions in θp. Accordingly, given that θp must be

continuous, we see that only constant values for the polymer fraction will satisfy the

equilibrium condition.

Therefore, spatially uniform values for θp and n satisfying equation (6.12) are the

necessary conditions for equilibrium in the thin film.

6.3 small time evolution of spatially perturbed equilibria

We now develop a short time solution to the thin film model. We evaluate the short time

behaviour of equilibrium initial conditions subject to spatial perturbations. As was the

case with the 1D model in Chapter 3, this analysis will allow us to suggest the stability

of equilibria through studying the behaviour of the spatially varying perturbations:

unstable equilibria will see an increase in the amplitude of the perturbations, while for

stable equilibria, the amplitude of the perturbations will decay. Alongside θp and n,

which we have found must be spatially uniform at equilibrium, we restrict our analysis

to spatially uniform equilibrium values of h, owing to the difficulty of finding analytic

solutions for non-uniform examples.

We denote the dimensionless equilibrium values by asterisks, L∗, θ∗, n∗, h∗, v∗

(where v∗ = 0). The equilibrium values of h, n and L are used as the characteristic
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values to scale these variables; this means that h∗ = n∗ = L∗ = 1. We take spatial

perturbations with amplitude ε, where δ � ε � 1; δ is the short time scale described

previously, such that T = δT̂ . Note that the amplitude ε is distinct from the inverse

aspect ratio ε seen in Chapter 4. We expand our variables as power series in ε and δ as

described in equations (3.73), (3.74), and so on, and take the initial conditions

L0 = 1, (6.27)

v0 = εv01 + ε
2v02 + ..., (6.28)

θ0 = θ
∗ + εθ01(X), (6.29)

n0 = 1+ εn01(X), (6.30)

h0 = 1+ εh01(X). (6.31)

Note that we set L0 = L∗ = 1, i.e. we do not perturb the initial length of the gel

from its equilibrium value. Also note that higher order terms of v0 are determined

through analysis of the momentum balance equation (6.4). We again set θ01 = cos(γX),

n01 = N01 cos(γX), and take h01 = −H01 cos(γX), where N01 and H01 are constants

that are O(1). Given that we expect h to move in the opposite direction to θp and n,

we have taken h01 to have the opposite sign to that of n01 and θ01 without loss of

generality. The initial conditions for θp, n and h therefore become

θ0 = θ
∗ + ε cos(γX), (6.32)

n0 = 1+ εN01 cos(γX), (6.33)

h0 = 1− εH01 cos(γX). (6.34)

We require θ0, n0 and h0 to satisfy the symmetry boundary conditions (4.133),

(4.134) and (4.135) at X = 0 for any choice of γ. The no-flux boundary conditions

(4.133) and (4.134) at X = 1 require that γ = Zπ for some positive integer Z.

We ensure that, for any choices of the constants H01 and N01, the masses of polymer

and cells under the perturbed initial conditions are, to O(ε), equal to the masses for the
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unperturbed initial conditions (which are θ∗ for the polymer and 1 for the cell density)

Integrating θ0h0L0 across the spatial domain 0 6 X 6 1, we have

θ∗ =

∫1
0

(θ0h0L0)dX,

=

∫1
0

(θ∗ + ε cos(γX)(1− εH01 cos(γX))dX,

= θ∗ + ε
1

γ
sin(γ) − ε

θ∗H01
γ

sin(γ) +O(ε2).

Since sin(γ) = 0 for all valid choices of γ, we see that mass is conserved to O(ε),

regardless of our choice of H01. Therefore, we are free to set H01 to any O(1) value. On

evaluating n0h0L0, we find that we are similarly free to set N01 to any O(1) value.

To find v01, we use equation (6.4) at O(ε), obtaining the expression

∂v01
∂X

=
(1− θ∗)

2ξθ∗
∂

∂X

(
−θ∗f ′′(θ∗)

∂θ01
∂X

+
τ0
1+ λ

∂θ01
∂X

+ θ∗
2τ0N01
(1+ λ)2

∂n01
∂X

)
−

1

2R

(
−θ∗f ′′(θ∗)θ01 +

τ0
1+ λ

θ01 + θ
∗ 2τ0N01
(1+ λ)2

n01

)
, (6.35)

After substituting for θ01 and n01, this simplifies to

∂v01
∂X

=

(
(1− θ∗)

2ξθ∗
γ2 +

1

2R

)
z cos(γX), (6.36)

where, as in equation (3.89) in the 1D Cartesian model,

z = θ∗f ′′(θ∗) −
τ0
1+ λ

− θ∗
2τ0N01
(1+ λ)2

. (6.37)

We therefore have the solution

v01 =

(
(1− θ∗)

2ξθ∗
γ+

1

2Rγ

)
z sin(γX). (6.38)

Solving the mass conservation equations (6.1) - (6.3) at O(δ), we find that θ10 = n10 =

h10 = 0, as these terms depend on v∗ = 0. The kinematic boundary condition (4.137)

for L similarly gives L10 = 0.
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We therefore consider the mass conservation equations at O(δε). From equation (6.1),

we find

∂h11

∂T̂
=
∂v01
∂X

, (6.39)

so that

h11 =
∂v01
∂X

T̂ . (6.40)

Similarly, we find from equations (6.2) and (6.3) respectively that

θ11 = −2θ∗
∂v01
∂X

T̂ , (6.41)

n11 =

(
−2
∂v01
∂X

+D
∂2n01
∂X2

)
T̂ . (6.42)

From the kinematic boundary condition at O(δε), we find that L11 = v01(X = 1) = 0.

Thus, we have the small time analytic solutions

θp(X, T̂) = θ∗ + ε cos(γX) − εδT̂θ∗
(
(1− θ∗)

ξθ∗
γ2 +

1

R

)
z cos(γX) +O(δ2), (6.43)

n(X, T̂) = 1+ εN01 cos(γX)

− εδT̂

{(
(1− θ∗)

ξθ∗
γ2 +

1

R

)
z+DN01γ

2

}
cos(γX) +O(δ2), (6.44)

h(X, T̂) = 1− εH01 cos(γX) + εδT̂
(
(1− θ∗)

2ξθ∗
γ2 +

1

2R

)
z cos(γX) +O(δ2), (6.45)

L(T̂) = 1+O(δ2). (6.46)

We note that these solutions satisfy the no-flux boundary conditions at X = 1.

We are again interested in the temporal growth or decay of the spatial perturbations

to our equilibrium initial conditions. We therefore evaluate how the amplitude of terms

involving cos(γX) evolves over the small time scale. From our solution for θp given by

equation (6.43), we have the terms,

{
1−

(
(1− θ∗)

ξθ∗
γ2 +

1

R

)
zθ∗δT̂

}
ε cos(γX). (6.47)
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From the solution for n (6.44), we have,

{
1−

((
(1− θ∗)

ξθ∗
γ2 +

1

R

)
z

N01
+Dγ2

)
δT̂

}
N01ε cos(γX), (6.48)

and similarly for h in (6.45),

{
1−

(
(1− θ∗)

2ξθ∗
γ2 +

1

2R

)
z

H01
δT̂

}
H01ε cos(γX). (6.49)

Given the absence of the cosh(αX) terms we saw previously in Section 3.6, the res-

ults here can be interpreted in a straightforward manner with respect to stability and

instability in the gel. The terms multiplying cos(γX) in each variable represent the spa-

tial perturbations. The growth or decay of the perturbations in equations (6.43) and

(6.45) is governed by the sign of z. For z > 0, the magnitude of the spatial perturba-

tions is decreasing, and accordingly, the local spatial variations decay over time. With

z < 0 on the other hand, the polymer fraction and height grow away from steady

state, signalling that the equilibrium is unstable. The cell density (6.44) follows this

same behaviour; however, the presence of diffusion may smooth unstable behaviour,

depending on the balance of parameters.

The equilibrium and stability conditions for the thin film model, including the value

of z, are equivalent to those presented in Chapter 3 for the 1D Cartesian gel. Therefore,

the results presented in Section 3.6.6 also remain valid for the thin film case. Accord-

ingly, we do not present these again here. We will use these small time solutions to

confirm that our numerical simulations are evolving in the correct manner in the fol-

lowing section.

6.4 thin film numerics

We develop a numerical scheme to evaluate the thin film described in equations (4.128)

- (4.139). We now consider both uniform and non-uniform initial conditions under a

variety of parameter choices to understand the forces driving gel swelling and contrac-
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tion. We find that it is possible for spatially non-uniform equilibria in the gel’s height

to emerge numerically in this thin film setting.

To study the thin film model for spatially varying initial conditions, we use a similar

numerical scheme to that presented in Chapter 3, and again solve using MATLAB. We

use a finite difference scheme to discretise the system of equations with a uniform

spatial grid between X = 0 and X = 1. The force balance equation (6.4) is first-order in

velocity vp, therefore we use a cumulative trapezoidal scheme to numerically integrate

the expression across the spatial domain and update the velocity at each new time step.

Central differencing is used for spatial derivatives in (6.4), except for the derivatives

of (6.55) at the endpoints of the domain, where one-sided differences are used. A

Crank-Nicolson method is used to solve equations (6.1) - (6.3) in the conservative form

detailed below.

We find that this scheme conserves mass effectively. Using a time step dT between

10−6 and 10−5 and spatial step dX = 0.025 in the simulations which follow, the worst-

case change in mass between initial time and end time for the cell density or polymer

fraction was 2.69× 10−5%. To further check our numerical scheme, in Section 6.4.1 we

compare the full numerical solution with the small time solution detailed in Section

6.3, and in Section 6.4.2 we compare this numerical solution with the ODE solution

from Chapter 5, finding good agreement in each case. While this numerical scheme

has performed well over a wide range of parameter choices and initial conditions, we

note that some instability and non-convergence has been encountered for particular

parameter combinations where the gel evolution is rapid, e.g. with large values of τ0

or χ.

We numerically solve the conservative form of the mass and momentum balance

equations given by (4.129) - (4.132). We define the quantities Q(X, T) = θph and

W(X, T) = θsh, and note the relations that follow,

h = Q+W, θp =
Q

Q+W
, θs =

W

Q+W
.
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We transform the chemical potential µs into a function of Q and W as follows,

µs = f(θp) − θpf
′(θp) = log(θs) +

(
1−

1

N

)
θp + χθ

2
p + µ

0
s ,

=⇒ µs(Q,W) = log
(

W

W +Q

)
+

(
1−

1

N

)
Q

Q+W
+ χ

(
Q

Q+W

)2
+ µ0s . (6.50)

Similarly, its derivative becomes

∂µs

∂X
=

(
−
1

θs
+ 1−

1

N
+ 2χθp

)
∂θp

∂X
,

=⇒ ∂µs

∂X
=

(
−
Q+W

W
+ 1−

1

N
+ 2χ

(
Q

Q+W

))
∂

∂X

(
Q

Q+W

)
. (6.51)

Equations (4.129), (4.130) and (4.132) can then be expressed respectively as

∂Q

∂T
−X

L̇

L

∂Q

∂X
+
1

L

∂

∂X
(Qvp) = 0, (6.52)

∂W

∂T
−X

L̇

L

∂W

∂X
+
1

L

∂

∂X
(Wvp) −

2(Q+W)

L

∂vp

∂X
= 0, (6.53)

2(Q+W)

L

∂vp

∂X
−
1

L2
∂

∂X
(V1(Q,W,n)) + V2(Q,W,n) = 0, (6.54)

where

V1(Q,W,n) =
1

ξ

(
−(Q+W) −

W

N

(
1+

W

Q

)
+ 2χW

)
∂

∂X

(
Q

Q+W

)
+

τ0
ξ

W(Q+W)

Q

∂

∂X

(
Q

Q+W

n2

1+ λn2

)
, (6.55)

V2(Q,W,n) =
1

R

(
log
(

W

W +Q

)
+

(
1−

1

N

)
Q

Q+W
+ χ

(
Q

Q+W

)2
+

Q

Q+W

τ0n
2

1+ λn2

)
= 0. (6.56)

The cell advection-diffusion equation remains as given in equation (4.131).

We evaluate these equations using the following algorithm:

1. Set parameter values and initial conditions in variables θp, n, h, L.

2. Compute Q and W at T = 0.
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3. Solve equation (6.54) for the velocity vp at T = 0 using the cumulative trapezoidal

rule to integrate the first-order PDE in space, subject to boundary condition

(4.136).

4. For i = 1, 2, ...

a) Increment T by time step dT .

b) Solve the polymer mass advection equation (6.52) using a Crank-Nicolson

scheme, subject to boundary conditions (4.133) and (4.135).

c) Solve the solvent mass advection equation (6.53) using a Crank-Nicolson

scheme, subject to boundary conditions (4.133) and (4.135).

d) Solve the cell advection-diffusion equation (4.131) using a Crank-Nicolson

scheme, subject to boundary conditions (4.134).

e) Update the velocity by solving equation (6.54) using the new values of θp,

h and n as in step 3, subject to boundary condition (4.136).

f) Use the kinematic boundary condition (4.137) with an explicit Euler time

step to update the length of the gel.

The end time is chosen to be large enough that the gel reaches a steady state or θp

approaches 0 or 1, in which case our model breaks down. We then analyse the solutions

for n, θp, h and L over time to understand the evolution of the gel.

Throughout the simulations presented in this section, we will again keep certain

parameters fixed and study the effects of changing others between simulations. The

fixed parameters retain the values given in Table 3.1 (noting that the solvent viscosities

ηs and κs have already been set to zero in Chapter 4). The ranges of values used for

the parameters and initial conditions which may vary between examples are presented

in Table 6.1. We note that the initial conditions for θp, n and h will have spatially

varying components included on occasion in the simulations which follow; accordingly,

we scale the initial conditions for height and cell density on the average initial value

for each, such that the mean values h̄i =
∫1
0 hi(X)dX = 1 and n̄i =

∫1
0 ni(X)dX =

1. Similarly, when spatial perturbations are added to θp, these are such that θ̄i =∫1
0 θi(X)dX.
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Table 6.1: Initial conditions (excluding spatially varying components) and parameters
which we change between simulations

Term Symbol Values

Initial polymer fraction θi 0.3 - 0.6

Initial cell density ni 0 - 1

Initial height hi 1

Cell traction coefficient τ0 0.75 - 1

Cell diffusion coefficient D 0 - 1

Mixing parameter χ -0.5869 - 0.75

Interface resistance R 0.4 - 4

Drag coefficient ξ 0.2 - 4

6.4.1 Comparison with small time solution

In Fig. 6.1, we compare the numerical solution for θp with the small time analytic

solution given by equation (6.43) over early time. We solve condition (6.12) to find an

equilibrium θ∗ and n∗ using an arbitrary choice of parameters. We see that the two

solutions for θp are in good agreement at different points in the spatial domain, albeit

for a short time frame. The presence of a significant diffusion coefficient here quickly

draws the numerical solutions back to equilibrium. We see similar behaviour in the

solutions for n and h (results not shown). For this equilibrium, z = 0.3, indicating a

stable equilibrium; we see in Fig. 6.1 that the polymer fraction accordingly reverts back

towards a uniform steady state.

6.4.2 Uniform initial conditions

In Chapter 5, we presented a numerical method for solving the reduced thin film

model, given by equations (5.27) - (5.30), which arises for uniform initial conditions.

We also presented simulations for different cases of gel swelling and contraction, both

with and without cells. Therefore, we do not repeat similar analysis for uniform initial

conditions here.
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p
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Figure 6.1: Comparing the small time solution (6.43) for θp with perturbed equi-
librium initial conditions (red dashed lines) with the numerical solution
(blue solid lines) over early time at X = 0 and X = 0.33. The solutions
are closely matched over small time. Values: θi = 0.3 + 0.01 cos(2πX),
ni = 1 + 0.01 cos(2πX), h = 1 − 0.01 cos(2πX), χ = −0.5869, ξ = 0.25,
R = 0.75, τ0 = 0.75, D = 1, γ = 2π, ε = 0.01, N01 = H01 = 1.
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Figure 6.2: Comparison of simulations for a gel with uniform initial conditions using
the ODE solver (blue dashed lines) and full numerical scheme (red solid
lines) for cell density, height and polymer fraction (in descending vertical
order). Values: θi = 0.6, ni = 1, hi = 1, χ = 0.7, ξ = 1, R = 1.5, τ0 = 0.8,
D = 1.

We note that the full numerical scheme described here behaves in agreement with

the numerical solutions for the reduced model. Fig. 6.2 compares the solutions for the

time evolution of a contracting gel with cells between the full numerics and the ODE

solver used in the previous chapter. We see that the two simulations are equivalent as

the gel evolves to its steady state.

6.4.3 Non-uniform initial conditions: introduction

We now consider spatially varying initial conditions in one or more of the polymer

fraction, cell density and height. We analyse the gel behaviours emerging in these dif-

ferent cases, in particular evaluating whether spatial non-uniformities persist or are

smoothed out as the gel evolves over time, and whether perturbing particular depend-

ent variables has different impacts on the system’s outcomes.
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6.4.4 Spatially varying initial polymer, cell-free gel

We first consider a cell-free gel with a non-uniform initial polymer distribution. We

take the initial condition θi = 0.6+ 0.02 cos(πX), noting that θi satisfies the boundary

conditions ∂θp/∂X = 0 at X = 0 and X = 1, and that the initial mass of polymer in the

gel remains 0.6 under this initial condition. This resembles a gel where the polymer is

initially slightly bunched around the centre of the thin film at X = 0. We will firstly

discuss the equilibrium outcomes for the gel, then describe how the variables change

over time.

We see in this environment that spatially varying steady states can be found without

the presence of cells. Fig. 6.3 displays the time evolution of θp(X, T) at X = 0 and

X = 1, while Fig. 6.4 shows the time evolution of h(X, T) at X = 0 and X = 1 as well

as L(T). We see that the gel height h evolves to a non-uniform equilibrium here. The

mixing parameter χ = 0.75 is at a value that promotes mixing between the polymer

and solvent. This drives an osmotic pressure gradient, causing the gel to swell to an

equilibrium state, with solvent flowing into the gel. The polymer fraction converges

to a uniform value as it evolves, reaching a steady state where θ∗ = 0.45. Meanwhile,

we see that non-uniformities develop in the gel height; these spatial variations persist

at equilibrium where the mean equilibrium value h̄∗ = 1.16 and the amplitude Ah∗ =

0.019, where Ah∗ = (h∗max − h
∗
min)/2. The amplitude Ah∗ is of a similar magnitude to

the amplitude of the initial polymer fraction. The gel length at equilibrium L∗ = 1.16

is equal to the mean equilibrium value of the height h̄∗.

Figs. 6.5 and 6.6 show the spatial distributions of θp and h respectively across the

gel length at increasing points in time. As seen in Fig. 6.5, the initial non-uniformity

in the polymer distribution quickly smooths out so that θp is uniform across the spa-

tial domain. Meanwhile, Fig. 6.6 demonstrates that sinusoidal variations matching the

shape of those in the initial polymer arise in the gel height. These variations persist

over time, resulting in varying height at the gel’s steady state.

In response to the osmotic pressure gradient here driven by the free energy, we

see more solvent enter the gel over early time (e.g. T = 0 to T = 0.5) in the regions

of higher polymer fractions near X = 0, resulting in these areas of the gel becoming
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locally thicker. This is seen in the gel height increasing to a greater degree close to

X = 0 since more solvent is entering the gel in that region. Conversely, we see θp

increase near X = 1 over this time period, i.e. there is some localised contraction in

the gel due to the initial presence of more solvent in this region. This corresponds to

decreases in h seen at corresponding times. By T = 1, the gel swells across the spatial

domain, with a uniform polymer profile developing as solvent continues to enter the

gel more rapidly in areas of greater polymer concentration. The height continues to

increase as the gel swells, maintaining its non-uniform distribution. These variations

that develop and persist in h correspond to local variations in mass across the spatial

domain that exist from the initial non-uniformity in θi. Accordingly, while the fraction

of polymer is constant by the time the gel equilibrates, the mass of polymer per unit

length θ∗h∗(X) varies in space.

In Section 6.2, we found that ∂θp/∂X = 0 is a necessary condition for equilibrium

in the thin film. We see here that the polymer is redistributed evenly such that there

is a balance in chemical potential from gel to solvent and within the gel itself. The

extra mass at different points in space (coming from the spatially varying height) en-

ables a constant polymer fraction to be maintained at equilibrium. We note that this

model does not consider surface tension. With surface tension present, we might ex-

pect the variations in height to smooth over time as well; however, in its absence, there

is no force driving the surface to flatten out and we see the non-uniformities persist at

equilibrium.

The equilibrium polymer fraction θ∗ = 0.45 matches that in Fig. 3.8 where θi = 0.6

and χ = 0.75, indicating that the spatial perturbation does not affect the equilibrium

quantity of polymer found. We also note that the same behaviour is evident in a cell-

free contracting gel, i.e. θp is uniform at equilibrium with spatially varying h (results

not shown).

We see the same qualitative outcome for the gel when taking non-uniform hi with

uniform θi, i.e. at the resulting steady state, h∗ will vary in space while θ∗ is uniform

(results not shown). As seen in the previous example, the variations in mass across the

spatial domain allow for a uniform polymer fraction to be maintained at equilibrium.
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Figure 6.3: Time evolution of a cell-free gel with non-uniform initial polymer fraction.
The polymer fraction evens out to a uniform equilibrium as the gel swells.
θp(X = 0) is the solid blue line, θp(X = 1) is the dashed red line. Values:
θi = 0.6+ 0.02 cos(πX), ni = 0, hi = 1, χ = 0.75, ξ = 1, R = 1. (θ∗, h̄∗,L∗) =
(0.45, 1.16, 1.16).
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Figure 6.4: Time evolution of a cell-free gel with non-uniform initial polymer frac-
tion. Spatial variations develop in the height in response to the initial non-
uniform polymer distribution; these variations persist to equilibrium. L is
the solid gold line, h(X = 0) is the dashed light blue line, h(X = 1) is the
dotted maroon line. Values as in Fig. 6.3.
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Figure 6.5: Spatial profile of θp as the gel swells from non-uniform polymer initial
condition. Spatial variations in the polymer profile decay quickly over time.
Profiles are plotted (from top to bottom) at T = 0, 0.1, 0.2, 0.5, 1, 2, 8, 120.
Values as in Fig. 6.3.
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Figure 6.6: Spatial profile of h as the gel swells from a non-uniform polymer initial
condition. Spatial variations emerge in the height which are maintained at
equilibrium. Profiles are plotted (from bottom to top) at T = 0, 0.1, 0.2, 0.5,
1, 2, 8, 120. Values as in Fig. 6.3.
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6.4.5 Spatially varying initial polymer, cell-gel system

We now take the system presented in Section 6.4.4 and introduce a cell population

where ni = 1 and τ0 = 1. We maintain the non-uniform initial condition for polymer,

θpi = 0.6+ 0.02 cos(πX). Figs. 6.7 and 6.8 display this system’s evolution. While the

gel was previously seen to swell, the introduction of cells switches the gel’s behaviour

to contraction, with the forces the cells generate outweighing the chemical potential

gradient. The gel reaches a steady state where θ∗ = 0.86, n∗ = 1.44, h̄∗ = 0.83, L∗ = 0.83.

We note that this is the same equilibrium in θ∗ and n∗ as the example presented in Fig.

3.12.

As in Section 6.4.4, the non-uniformity in θp evens out over time, with h developing

spatial variations that remain present at equilibrium; Figs. 6.9 and 6.11 show how the

spatial profiles of θp and h respectively change over time. Meanwhile, variations also

appear in the cell density n while the gel contracts. As in the example presented in

Figs. 3.26 - 3.28, the cell density increases more around X = 1 in response to the

smaller initial polymer fraction there; however, as time progresses, the variation in n

decays due to the presence of diffusion (see Fig. 6.10).

6.4.6 Spatially varying initial cell density, cell-gel system

We now take the initial cell density to be spatially varying, such that ni = 1+0.02 cos(πX),

with a uniform initial polymer fraction θi = 0.6. Small spatial variations arise in both

the polymer fraction and height here as the gel evolves (see Figs. 6.12 - 6.13). The

non-uniform cell distribution, shown in Fig. 6.14, leads to greater forces initially being

applied in the negative X-direction; this cell traction induces spatial gradients in the

polymer profile and, accordingly, the height, as more solvent is forced from the gel. Fig.

6.16 shows θp increasing towards X = 0 over early time in response to the cell force

gradient, while in Fig. 6.15, we see a corresponding decrease in height around X = 0.

Contrary to the previous examples seen in this chapter, the non-uniformity that arises

in the height as the gel evolves does not continue to equilibrium. In this instance, with
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Figure 6.7: Time evolution of a cell-gel system with non-uniform initial polymer frac-
tion. The polymer fraction evens out to a uniform equilibrium as the gel
contracts. Small variations appear in the cell density which also even out
over time. θp(X = 0) is the solid blue line, θp(X = 1) is the dashed red line,
n(X = 0) is the dotted purple line, n(X = 1) is the dash-dotted green line.
Values: θi = 0.6 + 0.02 cos(πX), ni = 1, hi = 1, χ = 0.75, ξ = 1, R = 1,
τ0 = 1, D = 1. (θ∗,n∗, h̄∗,L∗) = (0.86, 1.44, 0.83, 0.83).
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Figure 6.8: Time evolution of a cell-gel system with non-uniform initial polymer frac-
tion. Spatial variations develop in the height in response to the initial non-
uniform polymer distribution; these variations persist to equilibrium. L is
the solid gold line, h(X = 0) is the dashed light blue line, h(X = 1) is the
dotted maroon line. Values as in Fig. 6.7.
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Figure 6.9: Spatial profile of θp as the gel contracts from non-uniform polymer initial
condition. Spatial variations in the polymer profile decay quickly over time.
Profiles are plotted (from bottom to top) at T = 0, 0.1, 0.2, 0.5, 0.8, 1.2, 1.6, 3.
Values as in Fig. 6.7.
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Figure 6.10: Spatial profile of n as the gel contracts from a non-uniform polymer initial
condition. Small spatial variations briefly emerge in the cell density which
dissipate before the gel equilibrates. Profiles are plotted (from bottom to
top) at T = 0, 0.1, 0.2, 0.5, 0.8, 1.2, 1.6, 3. Values as in Fig. 6.7.
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Figure 6.11: Spatial profile of h as the gel contracts from a non-uniform polymer initial
condition. Spatial variations emerge in the height which are maintained at
equilibrium. Profiles are plotted (from top to bottom) at T = 0, 0.1, 0.2, 0.5,
0.8, 1.2, 1.6, 3. Values as in Fig. 6.7.

the polymer initially uniform, the small local variations in the gel’s thickness do not

persist at equilibrium. As required, the cell density is constant when the gel equilib-

rates, with the strong diffusion coefficient playing a significant role in smoothing out

the initial variations. The gel reaches the same steady state as the previous example

with θ∗p = 0.86, n∗ = 1.44, h∗ = L∗ = 0.83; therefore, we see that varying the initial cell

distribution does not led to greater contraction in the gel.

6.4.7 Spatially varying initial height, cell-gel system

We now vary the initial height for this gel, such that hi = 1 + 0.02 cos(πX), while

taking θi = 0.6 and ni = 1 to be constant. The gel again contracts to an equilibrium

with θp and n being constant, while spatial variations in h persist through to the

gel’s steady state. The mean equilibrium values of the model variables are unchanged

from previous examples. As this example does not demonstrate any new qualitative

outcomes, we do not include any figures.
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Figure 6.12: Time evolution of a cell-gel system with non-uniform initial cell density.
n evens out to a uniform equilibrium as the gel contracts, while small
variations appear in θp which then smooth out over time. θp(X = 0) is
the solid blue line, θp(X = 1) is the dashed red line, n(X = 0) is the
dotted purple line, n(X = 1) is the dash-dot green line. Values: θi = 0.6,
ni = 1 + 0.02 cos(πX), hi = 1, χ = 0.75, ξ = 1, R = 1, τ0 = 1, D = 1.
(θ∗,n∗, h̄∗,L∗) = (0.86, 1.44, 0.83, 0.83).

0 1 2 3

Time

0.85

0.9

0.95

1

L,
 h

Figure 6.13: Time evolution of a cell-gel system with non-uniform initial cell density.
Spatial variations develop in the height in response to the initial non-
uniform cell distribution; however, these variations decay before the gel
equilibrates. L is the solid gold line, h(X = 0) is the dashed light blue line,
h(X = 1) is the dotted maroon line. Values as in Fig. 6.12.
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Figure 6.14: Spatial profile of n as the gel contracts from non-uniform cell initial condi-
tion. Spatial variations in the cell profile decay quickly over time. Profiles
are plotted (from bottom to top) at T = 0, 0.06, 0.1, 0.2, 0.5, 0.8, 1.2, 3.
Values as in Fig. 6.12.
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Figure 6.15: Spatial profile of h as the gel contracts from a non-uniform cell initial
condition. Spatial variations briefly emerge in the height which dissipate
before the gel equilibrates. Profiles are plotted (from top to bottom) at
T = 0, 0.06, 0.1, 0.2, 0.5, 0.8, 1.2, 3. Values as in Fig. 6.12.
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Figure 6.16: Spatial profile of θp as the gel contracts from a non-uniform cell initial
condition. Spatial variations briefly emerge in the polymer fraction which
dissipate before the gel equilibrates. Profiles are plotted (from bottom to
top) at T = 0, 0.06, 0.1, 0.2, 0.5, 0.8, 1.2, 3. Values as in Fig. 6.12.

We note that taking different combinations of spatially varying initial conditions

in h, n and θp will result in the same qualitative outcomes for the system – if θp

or h are spatially varying initially, then h will be spatially dependent at equilibrium,

regardless of the initial cell density; only varying n initially will not induce a non-

uniform equilibrium by itself.

6.4.8 Influence of drag and resistance

We now investigate the effect that the drag parameter ξ and the resistance parameter

R have on the gel’s evolution. We take a contracting gel with cells with parameter

values and initial conditions as given in Fig. 6.7, where the initial polymer fraction is

non-uniform. We reiterate that in this case, the gel will equilibrate to a uniform value

of polymer, θ∗ = 0.86. We now modify the drag parameter ξ. In Figs. 6.17 and 6.18

we compare the polymer fraction’s spatial evolution over early time (up to T = 0.8) for

high drag (ξ = 4) and low drag (ξ = 0.2) respectively. In the high drag case, we see little
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change over this time to the spatial structure of the gel as it contracts. The amplitude

of the variations in the polymer fraction decreases over time (amplitude Aθp = 0.007

at T = 0.8); however, it retains the sinusoidal shape of the initial condition. In this case,

the large drag coefficient slows down solvent flow across the gel in the x-direction. It

is therefore easier for solvent to flow out of the gel primarily in the thin direction. It

does this at a relatively uniform rate across the domain, hence the spatial distribution

only slowly decreases in amplitude. With low drag on the other hand, we see that the

polymer fraction changes more rapidly near X = 1 than in the high drag case. The

polymer moves quickly towards a uniform spatial distribution, since it is now easier

for fluid to flow longitudinally within the gel as well as in the vertical direction. With

more cell forces being applied in the area near X = 1, the polymer fraction increases at

one point (at around T = 0.4) as it evolves, before evening out again as the gel moves

towards its equilibrium state. We note that the polymer fraction reaches a uniform

steady state at T ≈ 3 in both the low and high drag cases here (results not shown).

The resistance parameter R affects the speed at which fluid can flow across the gel-

solvent interface at both y = h and X = 1. We see dramatic differences comparing the

evolution in θp for low resistance with R = 0.4 in Fig. 6.20 compared to high resistance,

R = 4 in Fig. 6.19 (we note that in both these examples ξ = 1). For low resistance, the

gel quickly contracts, with θp smoothing out as it moves towards its steady state. With

this small value of R, the gel has equilibrated by T = 0.8. For high resistance, the

evolution is significantly slower. Indeed, by T = 0.8, the polymer fraction has only

increased to approximately θp = 0.64 at its maximum. Interestingly, in this case, while

the fraction of polymer is only changing slowly, the amplitude has halved from its

initial value by T = 0.8. This indicates that, while the resistance is slowing the flow of

solvent across the gel’s boundary, solvent inside the gel is flowing quickly enough to

flatten the polymer’s distribution.

6.4.9 Zero-diffusion case

The derivation of the thin film model, wherein the diffusive flux terms are used to

derive that n is independent of y, requires D to be O(1). Accordingly, the examples
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Figure 6.17: Spatial profile of θp between T = 0 and T = 0.8 as the gel contracts from
a non-uniform polymer initial condition with high drag ξ = 4. Spatial
variations slowly recede as the gel contracts over this time. Profiles are
plotted (from bottom to top) at T = 0, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8. Values
otherwise as given in Fig. 6.7.
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Figure 6.18: Spatial profile of θp between T = 0 and T = 0.8 as the gel contracts from
a non-uniform polymer initial condition with low drag ξ = 0.2. Over this
time, spatial variations quickly smooth out as the gel contracts. Profiles
are plotted (from bottom to top) at T = 0, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8.
Values otherwise as given in Fig. 6.7.
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Figure 6.19: Spatial profile of θp between T = 0 and T = 0.8 as the gel contracts from
a non-uniform polymer initial condition with high resistance R = 4. The
polymer fraction decreases very slowly due to the impermeability of the
boundary. Profiles are plotted (from bottom to top) at T = 0, 0.02, 0.05, 0.1,
0.2, 0.4, 0.6, 0.8. Values otherwise as given in Fig. 6.7.
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Figure 6.20: Spatial profile of θp between T = 0 and T = 0.8 as the gel contracts from a
non-uniform polymer initial condition with low resistance R = 0.4. The gel
quickly contracts to its equilibrium state. Profiles are plotted (from bottom
to top) at T = 0, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8. Values otherwise as given
in Fig. 6.7.
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presented in this chapter so far have been generated with D = 1. Nevertheless, for

the sake of completeness, we investigate the outcomes for the system here without

diffusion, although we cannot guarantee the validity of our thin film reduction in this

case. With zero diffusion, cells must move with the polymer and the cell distribution

does not need to be uniform at steady state, indicating that θp in turn is also not

required to be uniform at equilibrium.

We take D = 0 with initial conditions ni = 1 + 0.02 cos(πX), θi = 0.6, hi = 1.

We note here that due to issues with code convergence, we have run these examples

with a smaller interaction energy than previously, taking χ = 0.4. We show in Figs.

6.21 - 6.24 that with no diffusion and a non-uniform initial cell density, we obtain

equilibria that are non-uniform in the cell density, polymer fraction and height. This

reflects similar examples in the 1D model (see Figs. 3.26 and 3.29). In this instance,

the gel reaches a mean equilibrium cell density n̄∗ = 1.29 with amplitude An∗ =

0.033, which is greater than the initial amplitude. The polymer fraction evolves to

mean equilibrium value θ̄∗ = 0.78 with amplitude Aθ∗ = 0.004, while for the height,

h̄∗ = 0.88 with amplitude Ah∗ = 0.002. Fig. 6.25 demonstrates the time evolution of

velocity vp at different points in the spatial domain. We see that the velocity goes to

zero at all shown spatial points, confirming that the gel is at a steady state. With only

cells taken to be initially non-uniform, the gel reaches a steady state where the cells,

polymer and height are all non-uniform. This is a significant difference to the case

with diffusion, where non-uniform initial cell profiles did not lead to spatially varying

steady states. While this simulation does not fit with the particular derivation of the

thin film system here, it does demonstrate the possibility that spatially dependent

solutions may occur in both the polymer and cells. Examples with a small diffusion

coefficient (e.g.D ≈ 1x10−3− 1x10−5) were found to reach a similar non-uniform quasi-

steady state; however, given the presence of the small diffusive flux, cells and polymer

very slowly moved towards a uniform distribution (results not shown).
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Figure 6.21: Time evolution of a cell-gel system with zero diffusion and a non-uniform
initial cell density. Spatial variations develop in the polymer in response
to the non-uniform initial cell distribution; both θp and n remain non-
uniform at the gel’s steady state. θp(X = 0) is the solid blue line, θp(X = 1)
is the dashed red line, n(X = 0) is the dotted purple line, n(X = 1) is the
dash-dot green line. Values: θi = 0.6, ni = 1+ 0.02 cos(πX), hi = 1, χ = 0.4,
ξ = 1, R = 1, τ0 = 1, D = 0. (θ̄∗, n̄∗, h̄∗,L∗) = (0.78, 1.29, 0.88, 0.88).
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Figure 6.22: Time evolution of a cell-gel system with zero diffusion and a non-uniform
initial cell density. Spatial variations develop in the height in response to
the non-uniform initial cell distribution, this persists at the gel’s steady
state. L is the solid gold line, h(X = 0) is the dashed light blue line, h(X =
1) is the dotted maroon line. Values as in Fig. 6.21.
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Figure 6.23: Spatial profile of n as the gel contracts from non-uniform cell initial con-
dition with zero diffusion. Spatial variations in the cell profile grow and
persist at equilibrium. Profiles are plotted (from bottom to top) at T = 0,
0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 8. Values as in Fig. 6.21.
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Figure 6.24: Spatial profile of θp as the gel contracts from non-uniform cell initial condi-
tion with zero diffusion. Spatial variations in the polymer profile emerge
and persist at equilibrium. Profiles are plotted (from bottom to top) at
T = 0, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 8. Values as in Fig. 6.21.
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Figure 6.25: Time evolution of velocity vp at different points in the spatial domain.
The velocity goes to zero across the spatial domain as the gel reaches its
spatially varying equilibrium. In descending order initially, vp(0, T) is the
blue line, vp(0.25, T) is the red line, vp(0.5, T) is the yellow line, vp(0.75, T)
is the purple line, vp(1, T) is the green line. Values as in Fig. 6.21.

6.5 discussion

In this chapter, we have used analytic and numerical methods to study the thin film

cell-gel system with non-uniform initial conditions. Equilibrium conditions and small

time solutions were derived, allowing for predictions to be made about the stability

of steady states. We then presented a numerical scheme for the thin film, studying

gels with non-uniform initial conditions in θp, n and h. We found the novel result that

spatially non-uniform solutions can persist in the height of the thin film at equilibrium,

with or without cells present.

In the reduced model presented in Chapter 5, we saw that, with constant initial

conditions, the gel expanded or contracted uniformly, driven by fluid flow in the y-

direction. In the full model presented here, we see that more complicated dynamics

emerge with spatially varying initial conditions. The gel is still primarily driven by flow

in the thin direction; however, the terms involving drag and spatial derivatives in the

dependent variables are now active. Accordingly, we see spatial variations arising in
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θp, n and h as the gel evolves. We have found that solutions exist where the gel height

is non-uniform at steady state, even though the polymer fraction and cell density are

constant. When θi is non-uniform, local variations in the polymer induce solvent flow

into or out of the gel to even out this polymer fraction; this correlates with spatial

variations in the gel height at these points, reflecting the variations in mass. Similarly,

when hi is non-uniform, the height maintains its spatial dependency to ensure θp

remains constant.

A significant difference in this thin geometry from the 1D case is that increasing

drag now reduces spatial changes in the velocity. This is evident from equation (6.4),

where we see that increasing ξ decreases the influence of the spatial derivative terms

on the velocity. A consequence of this is evident in Fig. 6.17, where we see that, with

large drag, initial spatial variations persist longer through the gel’s evolution, as it is

easier for fluid to flow vertically out of the gel than across the spatial domain due

to the shearing forces present with a large drag coefficient. In the 1D case, we saw

that increases in the drag coefficient tended to induce greater spatial gradients in the

polymer and cells, as solvent could only enter and leave the gel through the endpoint

at X = 1, and so had to flow across the entire spatial domain. Like in the 1D Cartesian

model, the resistance parameter R has the expected effect of slowing gel evolution by

slowing the rate of solvent flow across the free boundaries.

Differences from the 1D Cartesian case are also found in the small time solutions

for perturbed equilibria presented in Section 6.3. In the 1D case, the solution for v01

(the first correction to the spatial perturbation in the velocity solution) is a function

of sinh and sin terms (see equation (3.90)). The hyperbolic term describes how the

gel length changes in response to the perturbation away from equilibrium, while the

trigonometric term describes the growth or decay of the spatial perturbations over

time. In the small time solution for v01 in the thin film case (equation (6.38)), there

is no hyperbolic term present. Mathematically, this is because the PDE for v01 is first-

order, rather than second-order like in the 1D case; this allows a solution to be found

as a function of sin only. It also reflects how the thin film predominantly evolves in the

thin y-direction; this solution indicates that L does not change to at least O(εδ) over the

small time scale. In the 1D case, there is also the presence of a boundary layer in the
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cells at X = 1; this does not appear in the thin film model due to the condition arising

from the thin film approximation that ∂θp/∂X = 0 at X = 1.

We have noted that our thin film model derivation assumes that the non-dimensional

diffusion coefficientD is O(1). Under this assumption, as seen in Section 6.2, we cannot

find equilibria in the thin film system with non-uniform polymer or cell distributions.

Diffusion causes the cells to spread until a uniform cell density is reached across the

gel. We note that examples with diffusion D 6= 0 in the 1D case (such as in Fig. 3.20)

also resulted in uniform equilibria. We have presented simulations with zero diffusion

in the thin film here, finding examples where non-uniform equilibria persist in θp and

n. While we cannot definitively say that n = n(x, t) for the zero diffusion case, we

have shown that, if such y-independent solutions can exist for D = 0, then we can find

non-uniform equilibria in the thin film environment as well. We note that with small

diffusion (D ≈ 0.0001), we do see quasi-steady states in θp and n, where non-uniform

states are found which slowly drift towards uniformity as a result of diffusive flux.

Unlike the studies by Trinschek et al. (2016, 2017) discussed in Section 4.2, we do not

see situations where, at a certain point, the gel continues expanding lengthwise while

its vertical swelling has stopped. Indeed, throughout these simulations, we see that

the scaled height (or its mean value) is equal to the scaled gel length at equilibrium.

As discussed in Section 5.4, this supports modelling assumptions used in Stevenson

et al. (2010), although we do note that, given its spatial dependency, h does not equal

L for all times in these results, counter to this assumption. In our model, there is no

mechanism to cause a change in behaviour and decouple the lengthwise expansion

from the vertical movement of the gel. This could possibly occur if the domain was

somehow vertically or horizontally limited, or if an additional external pressure was

imposed from one particular direction. A different cell force function might also see

more emphasis on horizontal forces. An avenue for future work may be to explore

whether these dynamics can be factored in, allowing for the expansion or contraction

of a gel to be tailored in a certain direction, not just a situation wherein the length and

height evolve similarly as seen here.

In this chapter, we have studied the qualitative behaviours emerging from the thin

film model with non-uniform initial conditions. There is significant scope to extend
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this research and validate the model’s behaviours through experimental collaboration.

This would allow for parameter values to be fit and suggest particular regions in the

parameter space for deeper analysis to be carried out. The numerical results in this

chapter suggest further avenues to investigate experimentally, for example, confirming

whether gels which are initially uniform in space retain this uniformity as they evolve,

and whether small variations in the initial polymer profile do indeed result in spatially

varying height profiles. A modelling extension to consider is to include surface tension

and study its effect in cases where the gel height is found to vary; the aim would be to

establish whether surface tension smooths out the height in such cases.
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C O N C L U S I O N
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This thesis explored the mechanical behaviour of biological gels. We developed a

new multiphase model to study the mechanics of cell-seeded gels, accounting for both

cell-derived forces and osmotically-driven solvent flow. The primary contribution of

this work has been to consider how cell traction stresses compete with chemical poten-

tials and the effect that this has on equilibrium outcomes for the gel. Previous math-

ematical models have either investigated how chemical potential gradients can cause

gel swelling or contraction in the absence of cells, or have only considered the forces

exerted by the cells, excluding solvent flux across the gel’s boundary. Our results have

demonstrated that the presence of cells can cause a gel to contract when it would other-

wise swell; on the other hand, the strength of the interaction energy between polymer

and solvent can cause a gel to swell even with cells present. The level of interaction en-

ergy can lead to either gel swelling or contraction in the absence of cells. Considering

these effects together is important in gaining a more comprehensive understanding of

the system.

In Chapter 2, we presented our multiphase model governing the behaviour of a

cell-gel system. Mass and momentum conservation equations described the evolution

of polymer and solvent volume fractions as well as the cell density. The velocity of

the system was driven by cell and chemical potential functions appearing in the mo-

mentum balance equations, as well as interface conditions which described continuity

of stress and fluid flow across the free boundary. This system of equations, complete

with appropriate initial and boundary conditions, provided the framework to explore

gel swelling and contraction under different assumptions and in different dimensions.

Throughout the subsequent analysis in both one and two spatial dimensions, we

saw that the system is driven by the balance between osmotic pressure gradients and

cell traction stresses. The magnitude of these forces inside the gel and in the surround-

ing solvent was found to determine, firstly, whether the gel swells or contracts, and

secondly, whether an equilibrium state is found and, if so, the values of model vari-

ables at this steady state. The conditions needed for the system of equations to equi-

librate were found to be the same in different gel geometries, relying on this balance

of cell and chemical potentials. Physical parameters like drag and viscosity affected

the manner in which the gel evolved both temporally and spatially, although did not
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affect the equilibrium state found. For example, the size of the drag coefficient influ-

enced the movement of polymer and solvent across the spatial domain, impacting the

gel’s behaviour differently in the 1D and 2D settings. Meanwhile, the resistance of the

interface changed the speed at which fluid moved across the gel’s free boundaries, and

accordingly, affected the rate at which the gel evolved.

Chapter 3 provided an investigation of the model in 1D Cartesian coordinates. This

simple geometry allowed us to gain an understanding of the qualitative behaviours

demonstrated by the gel. We showed the novel result that cell forces can cause con-

traction in a gel which would otherwise swell due to osmotic pressure. Increasing the

effects of drag relative to viscosity encourages steeper spatial gradients in polymer

and cell density as the gel evolves, leading to lags in evolution between the end and

centre of the gel. We found that our model agreed with existing experimental results

(such as Stevenson et al. (2010)) showing a negative correlation between the initial poly-

mer volume fraction and equilibrium volume fraction for the cell-gel system. We also

demonstrated novel results in the existence of spatially varying steady states when

taking non-uniform initial conditions, as well as oscillatory behaviour as the gel swells,

driven by competing traction and osmotic forces.

We presented a new, leading order model for a 2D thin gel incorporating osmotic

effects in Chapter 4. By taking a scaling limit in which, amongst other parameters,

the pressure and resistance of the boundary were assumed to be large, we derived an

extensional flow model in which key model variables were found to be independent of

the y-coordinate. This allowed for a system of equations describing the gel’s mechanics

in one spatial coordinate to be found. The presence of cell potentials was found to

generate the pressure in the thin film which, along with the chemical potentials, drives

the velocity of polymer and solvent and, accordingly, the gel’s evolution.

Owing to the different behaviour emerging in the thin film with uniform and non-

uniform initial conditions, we studied these separately. In Chapter 5, we considered

uniform initial conditions for the thin film, and found that the system reduced to an

ODE for h with all other variables given by algebraic expressions involving h. Signific-

antly, when θp, n and h are initially uniform, no spatial gradients develop in the thin
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film as the gel evolves. This is a consequence of the 2D geometry, wherein the primary

flow of solvent is in the thin direction.

In Chapter 6, we studied non-uniform initial conditions in the thin film. We found

novel behaviour in the existence of spatially varying steady states; initial variations in

polymer result in non-uniform height profiles at equilibrium, as the height changes

while the gel swells or contracts to accommodate local variations in mass. As in the

1D Cartesian case, the balance of cell traction and chemical potentials determines equi-

librium states and their stability. Increasing drag in this setting was found to maintain

existing spatial variations, as it is easier for fluid to flow out in the y-direction with

large drag than flow across the gel in the axial direction. This is different to the 1D

case, where large drag creates spatial gradients moving back from X = 1 as fluid can

only enter and leave the gel through this endpoint.

There are a number of directions that future work could take, both mathematically

and experimentally. We have discussed these exploratory avenues within each chapter;

some of these are touched on again here amongst other ideas. The availability of rel-

evant and consistent experimental data would allow for realistic parameter ranges to

be developed. With this, we could study the fit of our model in the different geo-

metries presented here, as well as other features such as the form of the cell force

function. Transforming the models developed here into radial and spherically symmet-

ric coordinates would reflect experiments performed using thin discs and gel spheres

respectively, facilitating more direct comparison with experimental results in these set-

tings. We would not expect significant shifts in the qualitative behaviours predicted

by our models under such changes to the geometry; however, analysing the model in

the appropriate coordinate system would allow for better comparisons between our

models and experiments to be made.

If the gel contracts significantly or there is a high cell seeding density, it may be the

case that the volume fraction of the cells is no longer negligible. To account for this

fact, we could extend our model to include the cells as an additional phase alongside

the polymer and solvent. This would add considerable complexity to the modelling

problem, and is left for future work.
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In this thesis, we have considered what are essentially floating gels surrounded only

by solvent, without any external pressure such as a piston or plates. Often experiments

are performed where such external compressive forces are applied to the gel from

either one or numerous directions (see e.g. Kim et al. (2006); Vervoort et al. (2005)).

Our cell-gel model could be adapted to consider such problems, with appropriate

adjustments made to features like boundary conditions to incorporate the external

forces.

Our work has not considered the potential role of chemical signalling on cell beha-

viour. Models of chemotactic cell aggregation consider cells and culture medium (see

e.g. Byrne and Owen (2004)) as well as ECM (see e.g. Green et al. (2017)), together with a

chemoattractant concentration. The chemoattractant induces the movement of cells in

response to a chemical stimulus produced by the cells themselves; this is an important

process in areas such as wound healing and tissue growth. Incorporating chemotaxis

in our model would facilitate better understanding of how the additional non-random

cell motion created by chemotactic gradients affects cell and polymer behaviour as

well as the gel’s overall evolution. To consider these effects, our model needs to be

modified to include equations for the chemical concentration and its effect on cells,

following methods like those used in the references above.

The oscillating results found in Chapter 3 indicate that, with fine tuning of paramet-

ers such as the chemical potential of the solvent, such behaviours might emerge in a

spherical gel. This suggests experimental investigation into this behaviour, potentially

using methods like those in Monnier et al. (2016) for example. Situations where the

thin film height and length change at different rates were discussed in the context of

biofilms in Chapter 4. Considering anisotropy in the alignment of the polymers, which

have been assumed here to be isotropic, would be a significant extension to this work

which may lead to different patterns of evolution in the gel height and length (see e.g.

Green and Friedman (2008); Holloway et al. (2018) for studies of transversely isotropic

fluids).

This thesis has studied the mechanics of biological gels under the competing forces

of cell traction and osmotic pressure. The utility of this cell-gel model can be seen in

the range of results presented for different geometries and under different initial con-
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ditions and parameter choices. This work can therefore be extended to model different

problems and influence future biological experiments, which would, in turn, help to re-

fine the system presented in this thesis. This will yield better understanding of cell-gel

mechanics that has the potential to impact tissue engineering.
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