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Abstract

F
REQUENCY selective surfaces (FSSs) made of subwavelength periodic struc-

tures have been broadly applied in various electromagnetic applications. Their

main function is to tailor the frequency response to incident waves, or to ob-

tain electromagnetic (EM) properties that do not exist in homogeneous natural mate-

rials. When increasing the design complexity to enhance performance, however, the

computation cost hikes dramatically in analysis and synthesis as additional design

variables are introduced. In contrast to such complexity increase, this thesis aims at

systematically developing effective and efficient design and optimization approaches

for FSS-based structures adopting fundamental unit-cell patterns, such as rectangular

patches, rings and grids. Additionally, impedance matching to free space is thoroughly

investigated and adapted as a means towards performance improvement in both ab-

sorbers and filters. Hereby, multiple designs are demonstrated with realizations from

the microwave to the terahertz (THz) frequency spectrum. In spite of their simplicity,

the proposed designs outperform the state-of-the-art counterparts in the literature by

fully exhausting the potentials of their spatial structures and material attributes.

Specifically, Chapter 3 challenges a common belief that adding an impedance match-

ing superstrate to an absorber will broaden its operation bandwidth at the cost of in-

creased total thickness profile. This Chapter proves that it is possible to increase the

bandwidth-to-thickness ratio. The concept is firstly demonstrated at the circuit level,

and then verified by full-wave simulations. The optimization process can be illustrated

with an admittance Smith chart. The distinctive performance of the proposed single-

FSS-layer absorber is justified with a figure of merit (FoM) which comprehensively

involves the relative bandwidth, the normalized thickness and the level of reflectivity.

In Chapter 4, a semi-analytical approach for absorber design is developed by system-

atically combining analytical, empirical and numerical techniques. The optimization

space can be simplified from millions of exhaustive search cases to merely a few hun-

dreds of seed simulations, by exploiting insights into the linearity, scalability and in-

dependence regarding the major components of an absorber. For any specified level of

absorption and operation bandwidth, the obtained semi-analytical algorithm enables

fast synthesis of an absorber with a minimal thickness. Both absorbers proposed in the
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above chapters have been realized using patterned resistive layers and experimentally

validated under oblique angles of incidence for transverse-electric (TE) and transverse-

magnetic (TM) modes. The design methods can be readily expanded for structures of

multiple FSS layers.

In the terahertz frequency range, common microfabrication technologies do not accom-

modate those resistive inks used for silk-printing lossy FSS patterns. As an alternative,

a sub-skin-depth metal layer with nanoscale thickness is proposed in Chapter 5 to meet

this requirement. The Drude model is adopted to simulate the ultra-thin metallic FSS,

as it satisfactorily describes the frequency dependent properties of noble metals. The

proposed absorber is robust to dimensional tolerance in fabrication and attains a stable

absorption bandwidth under oblique impinging waves.

In Chapter 6, a frequency reconfigurable terahertz bandpass filter is proposed and ex-

perimentally verified. It includes two identical double-layer FSSs separated by an air

spacer which can be mechanically tuned. The filter allows a highly selective transmis-

sion sweeping across a wide spectrum. The underlying mechanism can be explained

from two perspectives, namely through interpretation as Fabry-Perot resonant cav-

ity and through consideration of the admittance Smith chart. The designed device is

insensitive to fabrication tolerances and stable to oblique angle of incidence. The fabri-

cated filter confirms a 40% tuning range and less than 1 dB insertion loss. This design

is among the first few practical reconfigurable terahertz bandpass filters reported in

the literature.

Overall, the research outcomes suggest that developing complicated FSS patterns with

a large number of degrees of freedom is unnecessary in many cases if the potential of

fundamental geometries is fully exploited through rigorous algorithmic optimization

methods. The design approaches illustrated in this thesis are generic to all FSS-based

structures and can potentially be extended to multi-FSS layers and impedance surfaces,

to satisfy performance requirements in specific applications.
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Chapter 1

Introduction

T
HIS introductory chapter briefly presents an overview of the

frequency-selective surfaces (FSSs) and discusses their electro-

magnetic (EM) characteristics in association with geometric fea-

tures. The motivation and objectives of the research work are highlighted

together with the original contributions. The structural organization of the

thesis is outlined at the end of this chapter.
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1.1 Introduction

1.1 Introduction

1.1.1 Frequency-Selective Surfaces: Definition and Applications

A frequency-selective surface (FSS), in essence, is a thin periodic array that interacts

with electromagnetic (EM) waves at specific frequencies. It enables improved EM per-

formances that cannot be easily or economically obtained by layered structures adopt-

ing homogeneous natural materials. A typical two-dimensional (2D) FSS periodically

assembles identical unit-cells with subwavelength spacings [1].

A considerable number of research projects have been focusing on exploration of FSS

unit-cell patterns [2–7], the study of which facilitates the acquisition of empirical de-

sign principles for FSS-based structures. Figure 1.1 illustrates four groups of typical

unit-cell patterns which are categorized based on the similarities in their geometric fea-

tures. This structural resemblance translates into similarity in the electromagnetic char-

acteristics including resonating modes, polarization response, bandwidth control and

sensitivity to angle of incidence [1]. For additional degrees of freedom (DoFs) in con-

trolling the response, the fundamental FSS shape may evolve into more sophisticated

geometries [5–12], adopt 3D-printed materials of non-negligible thickness [13–15], or

incorporate varactor diodes for reconfigurability [16, 17].

There exists a variety of FSS-based applications. Resonance is the most common phe-

nomenon of an FSS under excitation. Therefore an FSS can be employed as a spatial

bandpass or bandstop filter for wireless communications [7, 13, 16]. Modern airborne

radomes adopt FSS as a shield to reduce the radar cross section (RCS) in an increased

frequency range [1, 15]. Further reduction in the RCS can be achieved by involving

surface resistance for circuit analog (CA) absorbers and rasorbers in stealth technol-

ogy [2, 3, 6, 8–12, 14]. A metallic FSS over a thin grounded dielectric slab can be re-

garded as a subwavelength cavity. Its “total reflection” and “total absorption” states

encode the “0” and “1” bit thus can be adapted for chipless radio-frequency identifica-

tion (RFID) tags [18]. When designing a partially reflecting surface (PRS) antenna for

high directivity, low profile and simple configuration, the planar PRS material can be

realized with a similar method used to design an FSS [17]. Other applications include

but are not limited to meanderline polarizers [1], reflectarrays [4, 5, 17], and energy

harvesters [19].
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Chapter 1 Introduction

Group 1: “Center Connected” or “N-Poles”

Group 2: “Loop Types”

Group 3: “Solid Interior” or “Plate Type”

Group 4: “Combinations”

Figure 1.1. Fundamental unit-cell patterns arranged in groups. The categorization is based on

the geometric features and EM characteristics. Adapted from [1].

1.1.2 Research Motivations and Thesis Objectives

Although design principles for the fundamental unit-cell patterns have been empiri-

cally developed as mentioned earlier, a more reliable approach with sufficient accu-

racy and broad versatility is required. The finite-elements method (FEM), the finite-

difference time-domain (FDTD) method, Finite-Integration Technique (FIT) and the

method of moments (MoM) are suitable candidates for full-wave simulation from com-

putational electromagnetics (CEM). Momentum™ is a typical MoM simulator element

of ADS platform, which is notably weak when handling losses in heterogeneous ge-

ometries. The FEM based simulator HFSS™ and FIT based simulator CST™ have been

well acknowledged for their capacity and reliability regarding any FSS shapes with

lossy supporting dielectrics. However, as the DoF increases with additional geometric
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features in the unit-cell, these full-wave simulations quickly become computationally

prohibitive in terms of hardware resources or simulation time.

With a physical insight into the unit-cell geometry, an FSS layer can be alternatively

regarded as a shunt equivalent circuit branch in a transmission line (TL) formalism

[20]. In response to the electrical field of an impinging wave, a disconnection can be

represented by an equivalent capacitor whilst a strip can be modeled as an equivalent

inductor. Sheet resistance can be presented as lumped resistors depending on the unit-

cell geometry, and their values are inversely related to the effective area relative to

the unit-cell size [21, 22]. The performance of an FSS can be then described by the

Maxwell’s equations and corresponding analytical formulas from TL theory [1, 23].

The Smith chart enhances perception in analysis and synthesis via circuit modeling

software such as Keysight ADS™.

On such a basis, it is firstly worth investigating whether the TL techniques have been

extensively utilized when designing an FSS-based structure. Considering the CA ab-

sorber for example, impedance matching to free space not only can be improved by

exploring increasingly sophisticated FSS [8–12, 24], but also by considering the trans-

mission line topology as a whole [1, 22, 25]. There are drawbacks in building an equiv-

alent circuit model. For a specified unit-cell pattern, a simple RLC in series is un-

likely to reproduce the wideband performance accurately except for a square patch

FSS. Furthermore, existing analytical expressions that link the geometrical dimensions

to equivalent circuit configurations are often complicated, and their accuracy does not

satisfy practical needs [26–29]. Thus, circuit models are mainly used as an analysis tool

rather than for synthesis purpose.

So far, the theories and realizations of FSSs have concentrated on the microwave do-

main. However, most conclusions in the microwave spectrum can be applied directly

to the neighboring terahertz range. There are however aspects that need to be specifi-

cally adapted or taken into account:

• Material attributes. Low-loss dielectrics in the microwave range can be signifi-

cantly lossy in the terahertz range, which can restrict the choice of available ma-

terials for a desired permittivity [30].

• Fabrication techniques. Unit-cell patterning is restricted by the current microfab-

rication technology. It is also impractical to obtain reconfigurability via voltage
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varactors, because the THz components are much lossier due to decreased ca-

pacitance and hence decreased capacitor’s cross-section and thus increasing re-

sistance in series.

• Adaptability. The resistive surface is a necessity when designing planar CA ab-

sorbers. Accessible printed resistive surfaces for microwave designs cannot be

treated as infinitely thin in the terahertz domain, because their thicknesses be-

come comparable to the operation wavelength. The design approach from the

microwave spectrum can only be adapted with a readily available technique in

fabricating suitable resistive sheets.

• Evaluation criteria. The total thickness of the dielectric layers, for example, is

critical for the microwave absorber designs but not practically necessary in the

terahertz spectrum. The benefit in miniaturization may not well offset the in-

creased difficulty and reduced robustness in microfabrication.

In response to the earlier background findings, the major objectives of this thesis are

listed as follows:

1. Revisit simple and readily available techniques based on the transmission line

theory to design microwave CA absorbers. Based on this investigation, a system-

atic approach for global optimization will be proposed. The design algorithm

aims for acceptable accuracy in comparison to full-wave simulators while dra-

matically reducing the time consumption so as to maximize the potential of a

chosen FSS shape. This approach should be generic, and its effectiveness needs

be verified by comparing the standardized performance, namely accepted Figure

of Merit (FoM), to any other single-FSS-layer designs in the literature. The fab-

ricated absorbers should consider the limitation in materials and accommodate

fabrication tolerances.

2. Within the state-of-the-art microfabrication technology, extend the design ap-

proach for CA absorbers from the microwave spectrum to the terahertz regime

without violating the presumptions. Explore FSS-based resonant structure and

propose a highly selective and mechanically reconfigurable bandpass filter that

operates in a wide frequency range.
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1.2 Statement of Original Contributions

A number of original contributions to the field of FSS are included in this thesis, which

can be grouped into four major parts.

• Single-FSS-Layer Absorber Adopting Impedance Matching Superstrate for Im-

proved Bandwidth-Thickness

Electromagnetic absorption can be regarded as an impedance matching problem

to free space. A dielectric cover as impedance transformer has been known to en-

hance the bandwidth and absorption level at the cost of increased total thickness.

In Chapter 3, this common belief is challenged by demonstrating that improved

absorption performance and lower thickness profile can be achieved simultane-

ously. The proof involves an optimized equivalent circuit which is then verified

by the full-wave simulation. It also can be inferred that air spacer is an ideal sub-

strate for wideband absorber design. For fair comparison, an appropriate FoM is

evaluated by considering how close the thickness of an absorber is to the theoreti-

cal optimum for the obtained absorption performance [31]. The fabricated design

outperforms other experimentally validated polarization-independent counter-

parts adopting single-layer FSS in the literature. This design has been reported in

IEEE Antennas and Wireless Propagation Letters under the title of ”Single-FSS-Layer

Absorber With Improved Bandwidth-Thickness Tradeoff Adopting Impedance-

Matching Superstrate” [22].

• Semi-Analytical Method for Fast Global Optimization

Despite the fact that equivalent circuit models have been widely used when de-

signing CA absorbers, there are no sufficiently accurate analytical expressions

linking the geometric dimensions with equivalent circuit parameters. In this

case, the potential of fundamental FSS patterns cannot be fully exhausted, and

such non-global optimization leads to additional efforts in exploring unnecessar-

ily complicated unit-cell geometries. In Chapter 4, a few sets of multi-regression

functions for square patch and ring are obtained by systematically integrating an-

alytical, empirical and numerical techniques. Executing only a limited number

of seed simulations, the proposed semi-analytical algorithm can effectively and

efficiently search the entire solution space with acceptable accuracy. Embedding

a genetic algorithm (GA) in this design approach enables fast optimization for

any specified absorption performance within a feasible range. The performance
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margins for proposed absorber topologies can be generated for comparison pur-

pose. It is found that an optimized square ring absorber can have a lower profile

for specified absorption performance compared to other more complex single-

FSS-layer absorbers in the open literature. The fabricated absorber takes into

account material availability and fabrication tolerance. This work has been pub-

lished in IEEE Open Journal of Antennas and Propagation under the title of ”Fast

Semi-Analytical Design for Single-FSS-Layer Circuit-Analog Absorbers” [32].

• Terahertz Absorber with Metallic FSS in Sub-Skin-Depth Thickness

Considering the current capability and reliability in microfabrication technolo-

gies, the resistive sheets commonly used in the microwave spectrum (e.g., printed

conductive polymer) are no more suitable for terahertz FSS designs, since a pre-

cise control of the geometric dimensions and sheet resistance becomes unfeasi-

ble. To apply the design techniques developed in the previous chapters, Chap-

ter 5 presents an approach to determine surface resistance of FSS with patterned

noble metal layers of sub-skin-depth thickness, which satisfies the readily avail-

able microfabrication techniques. The Drude model is adopted for calculation

of the metal properties because of its frequency-dependent feature in the tera-

hertz range. This design was presented at IEEE Asia-Pacific Microwave Conference

(APMC), 2019 under the title of ”Terahertz Absorber Design Adopting Metallic

FSS in Sub-Skin-Depth Thickness” [33].

• Mechanically Reconfigurable Terahertz Bandpass Filter of High Selectivity and

Wide Tuning Range

The complimentary shape of a ”Center Connected” or ”Loop” FSS resonator per-

forms as a bandpass filter according to the Babinet’s principle [1]. However, fil-

ters of this type usually come with strong spurious transmission, poor selectivity

and low transmission efficiency. Due to the fabrication complexity at the mi-

crometer scale, the realization of tuning structures becomes challenging for ter-

ahertz applications. It has been proposed in the literature that reconfigurability

can be realized by adopting phase-change materials with a heating source [34].

In Chapter 6, a mechanical reconfigurable bandpass filter operating in the fre-

quency range from 220 GHz to 330 GHz is proposed. The filter is composed of

multiple FSS-layers and can be regarded as a Fabry–Perot cavity where the op-

eration frequency can be tuned by changing the thickness of the air spacer. The
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filter attains high transmission of over 80% in power whilst remaining high selec-

tivity throughout the tuning range. This research work has concluded and will be

submitted to IEEE Transactions on Terahertz Science and Technology for peer review.

The research work in this dissertation mainly concentrates on optimizing CA absorbers

and reconfigurable bandpass filters. However the proposed design approach can be

adapted for analyzing and synthesizing any other FSS-based multilayer structures.

1.3 Thesis Structure

As illustrated in Fig. 1.2, this thesis starts with introduction and literature review in

the first two chapters and ends up with conclusion and outlook in the last chapter. The

chapters in-between detail the major contributions, including impedance matching su-

perstrate for CA absorber, fast semi-analytical optimization, metallic FSS in sub-skin-

depth and reconfigurable bandpass filter.

I Introduction (Chapters 1 & 2)

The first part of the thesis includes this introductory chapter and Chapter 2 where

the fundamentals and the background information for the whole dissertation are

provided. The second chapter contains a literature review on the FSS-based struc-

tures with related background theories and a few preliminary designs to gain some

insight into the CA absorber and spatial filter.

II Systematic Design Approach and Evaluation Criteria for Microwave Absorbers

(Chapters 3 & 4)

Chapter 3 encompasses a simple but effective approach to improving the bandwidth-

thickness trade-off of an absorber without seeking for complicated FSS shapes.

The demonstration challenges the common perspective on using a dielectric trans-

former, and the fabricated sample outperforms its single-FSS-layer counterparts.

Chapter 4 adopts the impedance matching superstrate and realizes a semi-analytical

algorithm that systematically integrates available formulas, empirical observations

and statistical tools. The proposed fast computation capacity allows true global

optimization thus an absorber with fundamental FSS shape can be fully exploited

for a better bandwidth-thickness ratio compared to designs of more complicate

patterns.
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Introduction

Chapter 3 Single-FSS-Layer Absorber Adopting Impedance Matching Superstrate

Chapter 4 Fast Semi-Analytical Design Approach for Circuit-Analog Absorbers

Design Principles for FSS-Based Structures in the Terahertz Spectrum

Conclusion and Outlook

Systematic Design Approach and Evaluation Criteria for Microwave Absorbers

Chapter 5 Terahertz Absorber Design Adopting Metallic FSS in Sub-Skin-Depth Thickness

Chapter 7 Conclusion and Outlook

Chapter 1 Introduction

Chapter 2 Literature Review and Preliminary Result

Chapter 6 Reconfigurable THz Bandpass Filter of High Selectivity and Efficiency

I

II

III

IV

Figure 1.2. Thesis outline. The first two chapters include introduction and literature review while

the last chapter concludes the dissertation with future work. The chapters in-between detail the

original contributions of the dissertation.

III Design Principles for FSS-Based Structures in the Terahertz Spectrum (Chap-

ters 5 & 6)

Chapter 5 explores the property of sub-skin-depth metal using the Drude model

at terahertz frequencies. It allows a CA absorber design embedding an electrically

thin FSS so that the majority conclusions from the microwave spectrum can be

reused. Chapter 6 shows a reconfigurable terahertz bandpass filter operating in

the frequency range from 220 to 330 GHz. The mechanism is based on the Fabry-

Pérot cavity and the performance is compared to the state-of-the-art designs in the

literature.

IV Conclusion and Outlook (Chapter 7)

The last chapter concludes all the projects presented in this thesis, and also dis-

cusses an outlook into this field.
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Chapter 2

Background of Frequency
Selective Surfaces

F
REQUENCY selective surfaces (FSSs) have been widely used in

wireless systems to create spatial filters and in stealth technology

to realize thin absorbers. The patterning of a unit-cell effectively

shapes the electromagnetic performance in terms of bandwidth, selectivity

or efficiency. This chapter firstly systematically covers a series of funda-

mental theories and techniques for FSS-based structure design. Then the

fabrication techniques, evaluation criteria and typical experimental setups

for circuit analog (CA) absorbers are briefly discussed. The possibility of

adding reconfigurability to FSS filters is also reviewed at the end of this

chapter.
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2.1 Introduction

FSS-based planar structures have attracted increasing attention because of their broad

operation bandwidth, low thickness profile and flexibility of material realizations. The

analysis and synthesis of an FSS in full-wave simulations, however, tend to be compli-

cated. Thus, more efficient design approaches are always preferred.

This chapter begins with a number of existing design principles and techniques for

FSS modeling. Then, a brief literature review of the state-of-the-art CA absorbers and

bandpass filters will be presented from the perspective of equivalent circuit models

and transmission line topologies. A focus will be placed on the research challenges of

obtaining outstanding performance by exhausting the potentials of simple geometries

made of widely available materials and readily accessible fabrication technologies.

2.2 Fundamental Theories and Techniques

Although modern full-wave electromagnetic simulators are capable of predicting ac-

curate frequency response for an FSS-based structure, a global optimization becomes

unrealistically time-demanding when adding more geometric features to a fundamen-

tal unit-cell pattern or when stacking multiple FSS layers. Before applying optimiza-

tion tools such as the genetic algorithm (GA), it is advantageous to reduce the number

of full-wave simulations by involving relevant physical laws, empirical rules and mod-

eling techniques.

2.2.1 Babinet’s Principle for Complementary FSSs

A pair of periodic arrays or FSSs are said to be complementary when the unit cell

metallic pattern of one can be exactly filled up by the other. According to the Babinet’s

principle, the reflection coefficient for a free-standing lossless FSS equals the transmis-

sion coefficient of its complementary [1]. Taking the example of a square ring FSS and a

central-loaded grid FSS, the |S11| of the former and the |S21| of the latter match closely

as demonstrated in Fig. 2.1.

On this basis, the number of full-wave simulations can be reduced to a half when

exploring unit-cell geometries. It should be noted that, however, there exist a few

restrictions [1]:
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Figure 2.1. Babinet’s principle for a pair of complementary unit-cell patterns. Both square

ring and square patch loaded grid FSSs are lossless and free-standing. The periodicity is 20 mm, and

the other dimensional parameters are randomly picked for demonstration purpose.

Zero surface impedance. To ensure a good matching in paired S-parameters, the com-

plementary FSSs must be made of near perfect electrical conductors (PECs), and

near infinitely thin i.e., less than 1/1000 of the wavelength at the highest opera-

tion frequency λH.

Free-standing array. A supporting dielectric substrate thinner than a quarter of λH

equally lowers the resonance frequency for both complementary FSSs, but the

mismatching of paired S-parameters in a broader frequency range becomes sig-

nificant as they are no longer complementary with the dielectric layers. In prac-

tice, a PF4 (εt = 1.06, tanδ = 0.0001) foam spacer or 100 µm polyester (PET) film

can be used for mechanical supporting purpose without significantly breaching

the requirements for complementary FSSs in the microwave spectrum.

Single layer. Stacking multiple FSS layers can improve performance in terms of in-

creased operation bandwidth, more consistent in-band response and steeper fall-

off edges. However, this renders the Babinet’s principle invalid. To maintain va-

lidity of this principle, the overall frequency response has to be calculated from

the transmission line topology and the frequency response of each FSS.
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2.2.2 Scalability: from Physical Dimensions to Frequency Response

Resizing an FSS-based structure with a three-dimensional scaling factor ζ will propor-

tionally relocate the transmission and reflection coefficients by 1/ζ in the frequency

spectrum. In contrast to the Babinet’s principle, scalability has less restrictions if the

properties of metals and dielectrics remain constant across the frequency range of in-

terest.

Scalability remains valid for an FSS of any surface impedance, on any supporting di-

electric substrate, and when cascaded to any other FSSs. As illustrated in Fig. 2.2,

an example design adopts an annulus and a patch loaded grid as the unit cell. The

physical dimensions, dielectric spacer and surface resistance are all randomly picked.

Rescaling the structure with ζ = 50% precisely stretches the reflection coefficient curve

by a factor of 2 in the spectrum.

When optimizing FSS-based structures, the bandwidth is always evaluated on a rela-

tive basis because of the scalability. The periodicity can then adopt a constant value

and thus the number of design variables will be readily reduced by 1. The scaling

factor applies on the physical dimensions excluding the thickness of the FSS which

determines its surface resistance.

2.2.3 Equivalent Circuit Modeling of a Unit-Cell Geometry

Similarly to the analysis of microstrip lines or electromagnetic band-gap (EBG) struc-

tures, an appropriate equivalent circuit model provides in-depth understanding that

may enable full exploitation of the potentials of an FSS topology. Typically, a strip that

allows current flow can be modeled as an inductor, whilst a gap that stores electric

charges can be modeled as a capacitor.

When synthesizing the unit-cell geometry as shown in Fig. 2.3 (a), an explicit circuit

model illustrated at the left of Fig. 2.3 (b) allows precise analysis of the S-parameters

and fine tuning. Although at a specific frequency this high-order circuit configuration

can be simplified into an RLC in series, such over-simplification is invalid for non-

fundamental FSS patterns across a broad spectrum. Figure. 2.3 (c) indicates a close

fitting of the results from the explicit circuit calculation to the full-wave simulation,

while the over-simplified model fails in matching the wideband S-parameters.
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Figure 2.2. Empirical observation of scalability. The unit-cell size is 20 mm, and the other

dimensional parameters are randomly picked for demonstration purpose. The surface resistance for

both FSSs is 50 Ω/�, and the dielectric spacer is silicon dioxide (εr = 4, tanδ = 0). The scaling

factor here is 50%.

It should also be noted that the equivalent circuit modeling is a design aid rather than a

replacement for the full-wave simulation. Considering the additional computation cost

arising from adding more circuit elements, a trade-off in simplicity versus accuracy is

necessary, where not all geometric features of the FSS must be explicitly reflected in the

equivalent circuit model. In practice, a circuit model depicting the major geometric fea-

tures can suffice and yield acceptable accuracy in a limited frequency range. As shown

in Fig. 2.4 [35], an RLC in series does not qualify to describe the wideband frequency

response for a staggered Jerusalem cross FSS. However, with only one equivalent ca-

pacitor added in parallel, which is still insufficient for explicit modeling, the reflection

coefficient of the modified circuit model closely matches the full-wave simulated re-

sult.
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Figure 2.3. Equivalent circuit modeling for a free-standing lossless FSS. (a) The unit-cell

geometry adopts nested square loops with randomly picked dimensions; (b) Two equivalent circuit

models at different levels of complexity where the parameters are obtained by matching the zeros

and poles; (c) Reflection coefficient curves from the full-wave simulation and the equivalent circuit

calculation.

2.2.4 Transmission Line Approach for Multilayer Structures

A multilayer structures can be depicted with a topology where the FSSs are shunting

circuit branches and the dielectric spacers are transmission line sections. For both CA

absorbers and filters, the design problem in essence is impedance matching to the free

space. The intrinsic impedance of air is
√

µ0/ε0 = 377 Ω, and a metal plate is modeled

as a shorting [23].The following details the basics of building and analyzing equivalent

circuit models that represent multilayer structures.
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Figure 2.4. Balanced trade-off between accuracy and complexity when modeling staggered

Jerusalem cross FSS. (a) The unit-cell geometry with four essential design variables; (b) over-

simplified and appropriate circuit models; and (c) frequency responses from the FDTD simulation

and equivalent circuit calculations. [35]

Multilayer Buildup

Assuming that an initial layer of FSS arrays or dielectric spacer with an input impedance

Zload is given as the basis. A planar multilayer structure can be synthesized by se-

quentially and alternately stacking more FSSs and dielectrics, which are respectively

demonstrated in the following:

• When adding an FSS array to this existing structure, as shown in Fig. 2.5 (a), the

input impedance can be directly calculated as:

Zin = ZFSS||Zload, (2.1)

where ZFSS represents the impedance for the FSS, and || indicates parallel circuit

topology for simplicity. If the intrinsic impedance of a dielectric layer added on
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Figure 2.5. Equivalent circuits for multilayer structures. Equivalent topology when adding (a)

an FSS as a circuit branch; (b) a dielectric slab of specified propagation constant and length as a

transmission line section.

top of the FSS is Zp, then the reflection coefficient at this interface is:

Γ =
ZFSS||Zload − Zp

ZFSS||Zload + Zp
. (2.2)

• By adding a lossless dielectric layer of permittivity εp and thickness l, as shown

in Fig. 2.5 (b), the total input impedance including the dielectric slab can be cal-

culated as:

Zin = Zp
Zload + jZp tan βl
Zp + jZload tan βl

, (2.3)

where β = 2π f√εpµ0 is the propagation constant, and Zp is the intrinsic impedance

of this dielectric layer.

Theory of Small Reflections

In some special cases, the total frequency response of a multilayer structure can be

more conveniently investigated through a physical insight into the partial response at

each discontinuity and applying the concept of interference. This theory of small re-

flections has been used in various multisection transformers for improved impedance

matching or enlarged bandwidth.
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Figure 2.6. Theory of small reflections. Partial reflections and transmissions across a single-

section matching transformer. Adapted from [23].

As the basis, a single-layer dielectric transformer is illustrated in Fig. 2.6, where the

partial reflection and transmission coefficients are [23]:

Γ1 =
Zp − Z
Zp + Z

;

Γ2 = −Γ1;

Γ3 =
Zload − Zp

Zload + Zp
;

T21 = 1 + Γ1 =
2Zp

Z + Zp
;

T12 = 1 + Γ2 =
2Z

Z + Zp
.

(2.4)

Thus, the overall reflection coefficient can be expressed as an infinite summation in

form of the geometric series:

Γ = Γ1 + T12T21Γ3e−2jβl + T12T21Γ2
3e−4jβl + ...

= Γ1 +
T12T21Γ3e−2jβl

1− Γ2Γ3e−2jβl

=
Γ1 + Γ3e−2jβl

1 + Γ1Γ3e−2jβl .

(2.5)

This theory also can be applied to the analysis of CA absorbers under oblique wave

incidence. In Fig. 2.7, the load is shorted by a ground plane and the FSS circuit branch
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is placed at the discontinuity. The total reflection coefficient can be calculated using

Equation (2.5), in which the partial reflection coefficients are:

Γ1 =
ZFSS||ZI − ZII

ZFSS||ZII + ZI
;

Γ2 =
ZFSS||ZI − ZII

ZFSS||ZI + ZII
;

Γ3 = −1,

(2.6)

where the equivalent wave impedance for the superstrate and substrate are ZI =

Z1/ cos θ1 and ZII = Z2/ cos θ2 under TE mode, whilst ZI = Z1 cos θ1 and ZII =

Z2 cos θ2 for TM mode. θ1 and θ2 respectively represent the incidence and refraction

angles. The reflection coefficient for the metal ground is −1.

Smith Chart

In addition to the above analytical approach adopting a multi-section transformer, the

Smith chart as a qualitative tool can efficiently aid the synthesis procedure aiming for

improved impedance matching [1, 20, 25, 36]. Specifically, the Smith chart can intu-

itively direct the optimization of multilayer structures including the thickness and per-

mittivity of a dielectric slab as well as surface impedance of an FSS.

The performance of a CA absorber or an FSS filter can be estimated by the length and

shape of the input impedance or admittance locus located inside the standing wave

ratio (SWR) circle that represents a specified level of acceptable reflectivity. Adding a

patterned resistive surface will shift and resize the locus based on the real and imagi-

nary parts of its equivalent circuit model, whilst appending a dielectric slab will rotate

the locus depending on its physical thickness and relative permittivity. To broaden the

operation bandwidth and reduce the level of reflectivity, a dense locus clustered into

the center of the Smith chart is expected. Such a series of manipulations are not always

unidirectional, where under-compensation or over-compensation are sometimes nec-

essary at intermediate steps. In other words, the impedance matching is not gradually

improved after adding each FSS or dielectric slab, but rather globally optimized as a

whole.

The Smith chart not only suits analysis for specular TEM mode, but also works for TE

and TM modes under oblique incidence. Figure 2.8 shows an example of a Jaumann

absorber for simplicity, however this design approach still remains feasible to multi-

layer CA absorbers [36]. As illustrated in the Smith chart, each locus corresponds to
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Figure 2.7. Single-layer CA absorber under oblique angle of incidence. (a) Partial reflections

and transmissions inside the physical structure, which also shows the phase delays along the paths;

(b) equivalent transmission line topology.

the input impedance over the spectrum of interest at a position in the multilayer ab-

sorber. The loci evolve differently for TE and TM modes because the equivalent wave

impedance for the dielectric spacers differ under oblique incidence as calculated pre-

viously.
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(c)

(a)

(b)

© 2010 IEEE

Figure 2.8. Frequency responses when building up a Jaumann absorber in the Smith chart.

(a) TE and (b) TM polarization under 45° oblique angle of incidence. Each colored locus represents

the input impedance after adding an FSS or dielectric in (c) Jaumann absorber structure. Adapted

from [36].

2.3 FSS-Inspired Circuit Analog Absorbers

Planar electromagnetic (EM) absorbers have been used in a variety of wireless ap-

plications to reduce EM interference. Under this category, the Salisbury absorber or

the Jaumann layers [1] were invented based on the principle of destructive interfer-

ence and usually consist of homogeneous resistive films and quarter-wavelength spac-

ings. These homogeneous resistive sheets can be further patterned into periodic arrays

namely FSSs to further enhance the bandwidth-to-thickness ratio.
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(a)

(b)

© 2016 IEEE

© 2007 IEEE

Figure 2.9. Synthesis for surface resistances with high-frequency lumped resistors. Unit cell

in correspondence to the equivalent circuit models for (a) double square-loop FSS [38]; (b) cross

FSS [37].

2.3.1 Embedding Surface Resistance

A typical CA absorber is an assembly of FSS layers and dielectric spacers on top of a

metal ground. Equivalent circuit modeling has been discussed in the previous sections

for lossless FSSs. However for CA absorbers, adding losses in a controlled manner

and taking them into consideration at the modeling stage is essential. There are two

existing approaches to fabricate a resistive FSS array, namely by soldering lumped RF

resistors or using a thin layer of lossy conducting material.

Lumped RF Resistor

High-frequency resistors can be soldered at specified positions on each metallic FSS el-

ement, as shown in Fig. 2.9 [37, 38]. This enables straightforward synthesis for desired

resistances in the corresponding equivalent circuit branches. The dimensions of the

unit-cell geometry are configured based on the equivalent reactive components inde-

pendently, thus the design approach can be significantly simplified.
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Since these lumped resistors must be specially fabricated to avoid parasitic effects

and customized for specific resistances, the cost is high. Furthermore, thicknesses of

lumped RF resistors are not negligible, and they add to the calculation of the bandwidth-

to-thickness ratios. For high frequency applications, it is also difficult to obtain lumped

resistors that fit the small unit-cell size of an FSS.

Resistive Ink

In contrast to lumped RF resistors, surface resistance also can be introduced by using a

thin layer of resistive material, which can be obtained for example by silk-printing with

lossy ink as illustrated in Fig. 2.10. The advantages of this technique include negligible

FSS thickness, light weight, flexibility and relatively low cost for applications in the

microwave frequency range. Nonetheless, as both reactive and resistive elements are

inter-dependent, the difficulty in optimization is significantly enhanced. Moreover,

microfabrication technologies do not well accommodate the commonly used resistive

inks for silk-printing in the terahertz frequency range.

(a) (b) © 2015 IEEE

Figure 2.10. Introducing surface resistance by silk-printing with silver nanoparticle ink.

(a) Unit-cell pattern; (b) fabricated flexible FSS on thin PET sheet with unit-cell inspections [39].
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2.3.2 Evaluation Criteria

The total energy of an impinging EM wave can be divided into reflection, transmission

and absorption. From the perspective of energy conservation, to improve the perfor-

mance of a CA absorber over a metal ground, the reflection should be suppressed con-

sidering that there is no transmission through such a metal-backed structure. In other

words, in this case, absorption can be evaluated by the reflection coefficient alone. In

addition to the bandwidth and absorption level, the total thickness of the realized ab-

sorber also needs be taken into consideration.

For comparison purpose, the commonly used levels of absorption are at 10 dB or 20 dB

which respectively correspond to 90% or 99% power absorption. Other considerations

are the following:

• The operation bandwidth BW must always be evaluated in ratio:

BW =
fH − fL

( fH + fL)/2
, (2.7)

where fH and fL are the upper and lower boundaries for the operation frequency

range at a specified level of reflection as shown in Fig. 2.11;

• The total thickness hL must be normalized:

hL =
d

λL
, (2.8)

where d is the realized thickness in absolute scale, and λL is the free-space wave-

length at the lowest operation frequency.

There is a trade-off between the relative bandwidth, the absorption level and the nor-

malized thickness. For performance evaluation of an absorber, a comprehensive crite-

rion is required. The Bode-Fano criterion in the transmission line theory indicates the

optimum result that can be achieved for a given structural complexity. It provides a

benchmark against practical designs for comparison purpose [23]. On this basis, the

minimal achievable thickness of a non-magnetic multilayer absorber can be estimated

based on a given reflection coefficient curve [31]:∣∣∣∣∫ ∞

0
ln |ρ(λ)|dλ

∣∣∣∣ ≤ 2π2 ∑
i

di , (2.9)

where ρ is the reflection coefficient as a function of the wavelength λ, and di is the

thickness of the i-th dielectric layer. The above relationship effectively enables a fair
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Figure 2.11. Absorber performance at specified absorption levels. The reflectivity of −10 dB

and −20 dB respectively indicates 90% and 99% power absorption of the incident wave.

comparison between a thinner absorber of narrower bandwidth and a thicker absorber

of broader bandwidth by calculating the proximity to their physically achievable min-

imal thicknesses.

2.3.3 Experimental Setup for Frequency Response Measurement

The simulated absorption performance of a CA absorber can be verified in an anechoic

chamber by measuring the reflection coefficient either with a bi-static or mono-static

configuration. A metallic plate of the same size as the testing sample is used for ref-

erencing purpose. Since the unit-cell geometries for the vast majority of absorbers are

symmetric and thus insensitive to polarization, the measurement mainly focuses on

the frequency responses under normal and oblique angles of incidence [40].

Bistatic Measurement

As shown in Fig. 2.12, the fabricated absorber is placed on the symmetry axis between

a pair of horn antennas which are equally tilted with a specified angle. The surround-

ings should be covered with pyramidal foam absorbers to avoid interference from the

equipment, holders and walls. The results for TE and TM modes can be obtained

by setting the shorter or longer edges of the horn antennas parallel to the horizontal

plane [41].
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© 2015 IEEE

Figure 2.12. Bistatic measurement. A pair of horn antennas are placed on the circumference

of a circle, and the sample under test is located in the center of this circle. Both antennas are

symmetrically aligned for their maximum gain directed toward the sample along the radius to ensure

an effective path for obliquely incident EM wave from the transmitter to the receiver [39].

It should be noted that ideally the absorber sample must be placed in the far-field

region of the antennas, i.e. at a distance larger than

d = 2D2/λAH, (2.10)

where D is the longer dimension of the absorber sample, and λAH is the wavelength at

antenna’s highest operation frequency. In practice, the calculated value is likely to be

unrealistically large and a compromise has to be made considering the height or width

of the anechoic chamber.

The data post-processing is carried out by normalizing the reflection coefficient of the

absorber relatively to the metallic reference.
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(a)

(b)

(c)

© 2015 IEEE

Figure 2.13. Monostatic measurement. (a) A typical setup including a vector network analyzer

(VNA), a coaxial cable, a horn antenna with dielectric lens and a supporting platform; (b) time-gating

at a proper position and with a reasonable width; (c) final result as a ratio of reflection coefficients

between the sample and the reference [39].

Monostatic Measurement

If there is only one antenna available or insufficient space in the anechoic chamber,

a mono-static setup as illustrated in Fig. 2.13 (a) can be applied. To mitigate beam

diffraction, a dielectric lens is typically placed in front of the horn antenna to flatten the

phase fronts. In most cases, the reflected wave is weaker than the level of undesired

reflections from the surroundings. Thus, a time-gating method has to be adopted for

post-processing. The window position can be decided based on the distance between

the antenna and the sample under test, with an additional transit time in the coaxial
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cable, whilst the gate width can be chosen based on the positions of obstacles in the

surroundings and the requirement on resolution.

The primary disadvantage of this mono-static schematic is the incapacity of measuring

frequency responses under obliquely incident EM waves. Although the far-field condi-

tion is not critical for such a setup, the lens must be specially designed, fabricated and

calibrated. Possible distortion of the frequency response curve caused by time gating

should be mitigated through a thorough analysis of the time scales and distances in

the experimental setup.

2.4 FSS-Inspired Reconfigurable Filters

Filters are among the most important applications for FSS-based structures. They aim

for maximizing the level of transmission in the passband whilst reflecting the out-of-

band energy. They are widely used in wireless communications systems and are com-

plementary to signal processing techniques that are associated with aliasing effects.

Without significantly increasing the number of design parameters, multiple identical

FSS layers can be stacked to achieve a high-order filter with enhanced bandwidth and

steep transitions. However, in many applications, a high selectivity, i.e., a high Q-factor

that can be tuned across a wide frequency range is required. Such reconfigurable filters

allow shifting of the operation frequency in a feasible range via electrical or mechanical

approaches. It should be noted that adapting a microwave design to the terahertz spec-

trum is not as straightforward as scaling down all its geometric dimensions, because

the material attributes and fabrication processes become different. More importantly,

varactors for terahertz applications are challenging to fabricate and come with high

power dissipation. Thus, thermal control on novel materials has been considered as

an alternative approach. In the reminder of this section, a few types of reconfigurable

bandpass filters from the literature are illustrated.

To adaptively cover a broad spectral range whilst maintaining high frequency selec-

tivity, a series of FSS filters of large Q-factors operating at discrete frequencies can be

arranged on a rotatable circular disk [42]. As shown in Fig. 2.14, an FSS patterned

with orthogonal slots is adopted for narrowband filtering. Its operation frequency

depends on the slot design. By sequentially embedding a series of these filters on a ro-

tary switch, frequency reconfiguration can be achieved. Although its design principle
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(a)

(b)

© 2018 IEEE

Figure 2.14. Design schematic and experimental configuration of high-selectivity terahertz

filter. (a) Generic unit-cell geometry and overall assembly; (b) measurement setup [42].

is simple and straightforward, such tunability is limited to a series of pre-determined

discrete frequencies rather than in a continuous spectrum sweep.

Another mechanical approach to obtain frequency reconfigurability is by adjusting the

compression level of a three-dimensional spring FSS [15]. Equivalent circuit model-

ing still remains valid for this geometry as shown in Fig. 2.15. This design allows

continuously tuning the operation frequency by mechanically compressing the spring

array. In contrast to planar FSS structures, nonetheless, the circuit elements vary along

with compression, which increases the complexity in analysis and synthesis. In ad-

dition, considering the challenges in fabrication, this design approach better suits the

microwave frequency range.

A varactor is a diode with capacitance controlled by controlling a bias voltage applied

between its terminals. Embedded on an FSS geometry, the varactors are used to adjust

Page 30



Chapter 2 Background of Frequency Selective Surfaces

(a) (b) © 2013 IEEE

Figure 2.15. Spring geometry and frequency tunability. (a) Array element and its equivalent

circuit model; (b) frequency shift via change in compression level [15].

the local reactance and thus manipulate the frequency response. The zeros and poles

of the equivalent circuit branches for an FSS-based filter can be changed correspond-

ingly, which determine the passband or stopband. The primary challenge for design-

ing an active FSS-based filter is embedding a dedicated bias network on the periodic

array, especially when there are multiple FSSs. One possible solution proposed in [43]

was to include a grid pattern in all unit cells as illustrated in Fig. 2.16. These grids in

combination with the metallic vias were not only part of the filter geometry, but also

provided bias for the varactors. Although a tuning range of 8.8% fractional bandwidth

was achieved in [43], the transmission coefficients measured in a parallel-plate waveg-

uide show that the insertion loss within the passband amounted up to 6 dB, which

was mostly explained by the ohmic loss of the diodes in the varactors. Along with

an increase in the bias voltage, the insertion loss became lower due to a smaller series

resistance as indicated in Fig. 2.17 (b) [43].

A design adopting vanadium dioxide (VO2) phase-change material (PCM) which has

a transition between an insulator and metal phase at a practical temperature was re-

ported [34]. As illustrated in Fig. 2.18 (a) and (b), the FSS array was surrounded by an
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(a) (b) © 2016 IEEE

Figure 2.16. FSS-based varactor-tunable bandpass filter. (a) Exploded view for multi-layer FSS;

(b) perspective and cross-sectional views for placement of varactors and vias for the bias network [43].

(a)

(b)

© 2016 IEEE

Figure 2.17. Passband reconfiguration and insertion loss of a varactor-based FSS spatial

filter. (a) Measured transmission coefficients in the tuning range under normal incidence; (b) rela-

tionship between bias voltage and series resistance of the varactors [43].
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(a) (b)

(c) (d)

© 2016 IEEE

Figure 2.18. Bandpass and bandstop FSSs using phase-change materials with integrated

meander loop heater. (a) Generic design schematic; (b) temperature contour of the integrated me-

ander loop heater; fabricated (c) broadband on/off bandpass filter and (d) frequency-reconfigurable

bandstop filter [34].

integrated meander loop heater that was controlled by a voltage. The types of filter-

ing are determined by the unit-cell geometries, as the on/off bandpass filter and the

tunable bandstop filter respectively illustrated in Fig. 2.18 (c) and (d).

Switching of the bandpass filter in Fig. 2.19 (a) is clear at different temperatures, and

a high transmission at 0.35 THz can be observed at its ON mode. The insertion loss is

mainly from the non-ideal conductive material. The very limited usable bandwidth,

however, does not support the claim of a broadband design. The bandstop filter in

Fig. 2.19 (b) shows a narrow operation bandwidth of 30.77%. The frequency responses

of these proposed filters may be improved by further optimizing the unit-cell geome-

tries, and selecting novel materials for the FSS array and the substrate [34].
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(a) (b)

© 2016 IEEE

Figure 2.19. Frequency responses for reconfigurable bandstop and bandpass filters.

(a) On/off switch bandpass filter; (b) frequency tunable bandstop filter [34].

2.5 Summary

This chapter has summarized the relevant theories, design principles and existing tech-

niques for FSS structures. The Babinet’s principle and scalability can be used to reduce

the number of design variables and thus improve the efficiency in global optimization.

Equivalent circuit modeling is the most widely used analysis and synthesis approach

for FSS-based structures, whilst the transmission line theory provides a simple but ef-

fective way of modeling multilayer structures. The theory of small reflections can be

adapted for calculating the S-parameters and further exploited for oblique incidences.

In addition to the analytical formulas and equations, the Smith chart is also useful for

synthesizing multilayer structure by qualitatively manipulating its input admittance

locus. The existing absorbers in the literature have been discussed in terms of the sur-

face resistance, evaluation criteria and experimental setup. The reconfigurable filters
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mostly adopt varactors in the microwave spectrum. However, special materials are

required for the tunable terahertz filters due to the small unit cell size.
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Chapter 3

Single-FSS-Layer Absorber
Adopting Impedance

Matching Superstrate

C
IRCUIT analog (CA) absorbers embedding a lossy frequency

selective surface (FSS) have gained increasing popularity in

applications such as high-quality telecommunication systems

and high-resolution navigation devices. The bandwidth-thickness trade-off

is fundamental to the design of thin absorbers. In this chapter, we chal-

lenge the common belief that adding a dielectric superstrate will enlarge

the bandwidth at the cost of increased thickness. It is firstly demonstrated

using lumped circuit considerations that a wider relative operating band-

width can be achieved with a thinner absorber including an impedance

matching cover. By adopting this dielectric superstrate, we further show on

the basis of full-wave simulation that the highest bandwidth ratio (BWR) at

10 dB absorption can be increased from 1:3.54 to 1:6.94, with the normalized

thickness being reduced from 0.0920λL to 0.0906λL (including superstrate).

Restricted by readily available materials, an experimentally validated de-

sign obtains a BWR of approximately 1:5.32 at 10 dB absorption for a figure

of merit of 88.26%. This performance is superior to existing designs with

more complicated FSS patterns.
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3.1 Introduction

Electromagnetic absorbers have found diverse applications, such as improving elec-

tromagnetic compatibility (EMC) of integrated circuits, reducing backscattering and

eliminating electromagnetic interferences (EMI) in complicated environments or even

being adapted as chip-less radio frequency identification (RFID) tags [18,35,37]. There

primarily exist three interdependent criteria to evaluate an absorber, namely its rela-

tive bandwidth, level of absorption, and normalized thickness. For simplicity in com-

parison, a figure of merit measures how close an absorber approaches the theoretical

minimal thickness [31] for a given absorption performance [26, 44]. In practice, ad-

ditional criteria including complexity, flexibility, robustness, sensitivity under oblique

incidence, and cost-effectiveness [45] should also be considered.

Compared to bulky wedge-tapered absorbers, metal-backed planar absorbers are wide-

ly considered as a trade-off between high performance and low profile [8]. Under this

category, the Salisbury absorber or the Jaumann layers [1] were invented based on the

principle of destructive interference and usually consist of homogeneous resistive films

and quarter-wavelength spacings. However, their thickness-to-bandwidth ratio is far

from the theoretical limit. This has motivated the development of CA absorbers con-

sisting of lossy periodic arrays to provide low-Q-factor resonances. To avoid parasitic

effects, resistors specially made for high-frequency applications were often employed

to introduce ohmic loss in metallic FSSs [26, 37, 38, 46, 47], thus increasing manufac-

turing complexity and cost. As an alternative, flexible and lightweight lossy FSSs can

be created from resistive inks made of graphene, conductive polymers or silver nano-

particles [21, 35, 39, 48].

Based on such lossy layers, a large number of existing broadband absorber designs in

the microwave spectrum have focused on exploring various patterns of FSS [8–12, 24].

The absorption bandwidth can indeed be enlarged by adding more resonances derived

from more complex FSS shapes. Nonetheless, complicated coupling existing among

resonators could severely hinder accurate analysis and preclude rigorous synthesis.

Further to the bandwidth consideration, recent studies revealed that the addition of an

outermost dielectric slab as superstrate can help maintaining performance for oblique

incidence by reducing the frequency shift and mitigating the absorption level deterio-

ration [25,36]. Due to concerns of excessive thickness [46], however, the hidden benefit

on bandwidth arising from the additional superstrate has neither been thoroughly in-

vestigated nor experimentally verified.
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In this chapter, the author challenges the common belief that adding a dielectric su-

perstrate will enlarge the bandwidth at the cost of increased thickness. Section 3.2.1

adopts a simple resistive square as unit cell geometry for demonstration purpose, and

its circuit configuration is optimized using a genetic algorithm (GA). The insight into

the circuit equivalence enables exhaustive exploration of the potential of the chosen

topology. The synthesis based on the Smith chart is shown in Section 3.2.2 where the

superstrate acts as an impedance matching transformer that effectively improves the

absorption performance while reducing the overall absorber thickness (including su-

perstrate). Section 3.3 examines an experimentally validated design which uses avail-

able dielectric as the superstrate and resistive ink for the FSS. The measured result

is compared to the best single-FSS-layer absorbers in the literature. The comparison

highlights a highly competitive performance, namely a BWR of approximately 1:5.32

at 10 dB absorption for a figure of merit of 88.26%, in spite of the simplicity of the

design.

3.2 Absorber Design with Dielectric Superstrate

When interacting with an object in free space, the total energy of an incident electro-

magnetic wave is divided into 3 parts, namely reflection, transmission and absorption.

The design principle for electromagnetic absorbers can be built upon the law of energy

conservation, where the power absorption will be maximized given that the transmis-

sion and reflection are minimized. For planar absorbers whose transmission path is

terminated with a metal ground, the absorption performance can be solely determined

by the level of reflection, which motivates the adoption of impedance matching tech-

niques in the modeling using transmission line (TL) theory. On such a basis, a dielectric

superstrate is applied on top of the classic single-FSS-layer absorber as an adapter, and

the Smith chart is used for qualitative analysis.

Figure. 3.1 illustrates the investigated structure, which consists of a simple resistive

square patch array in-between a metal-backed substrate and a dielectric superstrate.

The central operation frequency is primarily determined by thickness and relative

permittivity of the substrate. The thin superstrate not only contributes to the over-

all impedance matching to the free space, but also can protect the resistive FSS from

the UV light, moisture and abrasion. In the following, we will demonstrate the perfor-

mance benefits of this outermost dielectric cover, and explain the physical mechanism

Page 39



3.2 Absorber Design with Dielectric Superstrate

p

dd

(d)

h
t

h
b

h
p

dd

(b)

p

h
p (PET Film)

h
t

h
b

Lossy FSS

Metal Ground

D
ie

le
ct

ri
c 

C
o

v
er

(c)

B
o

tt
o

m
 F

o
am

(a)

Figure 3.1. Schematics of a single-FSS-layer absorber with dielectric matching cover.

(a) Perspective view of the absorber; (b) unit-cell; (c) side view, and (d) top view. A PET (polyethy-

lene εp = 2.25) film supports the patterned resistive layer.

behind this improvement through equivalent circuit modeling and impedance match-

ing.

3.2.1 Equivalent Circuit Modeling and Full-wave Simulation

The square patch, as the most fundamental unit cell geometry, corresponds to the sim-

plest FSS equivalent circuit model, namely RLC in series as illustrated in Fig. 3.2. The

values for RLC elements can be considered as frequency-independent within the spec-

trum of interest from 2 GHz to 25 GHz. The patch edge length d and the gap width

g = p− d are considered as determinant variables when synthesizing reactive compo-

nents, whereas the distance between the FSS and the metal ground has little impact on

the equivalent inductance or capacitance [49]. Under normal incidence, the reactive el-

ements in the equivalent circuit remain unchanged with regard to polarization because

of the intrinsic symmetric feature of square unit cells. Nevertheless, the constraint on

symmetry also gives rise to slight interdependence between L and C. In addition, a di-

electric cover shielding the FSS will also affect the reactive components in accordance
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Figure 3.2. Equivalent circuit model of a single-layer CA absorber. The transmission line

sections correspond to the layered dielectric materials with assigned characteristic impedances in

association with their relative permittivities. The numbers along the transmission line positions

indicate the steps in developing the admittance loci in the following subsection.

to its relative permittivity. The series resistance can be evaluated through an empirical

formula [21]:

R = (1 + ζ)Rs

( p
d

)2
, (3.1)

where Rs is the surface resistance of the resistive layer, and ζ is assigned to 5% as an

empirical correction factor considering the fringing effect on current distribution.

Based on the obtained circuit model, the genetic algorithm (GA) toolbox [50] can be

employed with recommended values for initial parameters in Matlab™ to seek for the

minimal thickness upon the predefined −10 dB bandwidth ratio (BWR). According to

Fig. 3.3, the topology with superstrate can significantly help reduce the thickness for

a predefined BWR starting at 2:1, as well as increase the largest BWR achievable. It

has been cross-validated through exhaustive searches that the GA results are accurate

and reliable. Alternative optimization algorithms can be used to determine the global

optimum for the problem under consideration.

To approach widest possible BWR in practical settings, additional considerations are

necessary. These include limitations due to the interdependence between reactive com-

ponents in the square patch geometry, as well as due to diffraction effects linked to the

finite unit cell size. Taking into account these constraints, the absorber is synthesized in

the full-wave electromagnetic solver HFSS™, on the basis of the GA optimized circuit

attributes (e.g., layer thicknesses) and S-parameter fitting. The corresponding equiva-

lent RLC values and the transmission line characteristics for this best realizable design

are tabulated in Table 3.1, whilst the geometric dimensions and material parameters are

listed in Table 3.2. The broadest bandwidths realizable for the configurations without

and with a top dielectric cover are 1:3.54 and 1:6.94 respectively, as shown in Fig. 3.4.
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Figure 3.3. Bandwidth-thickness relationship for GA optimized topologies without and with
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sponds to the wavelength at the lowest operation frequency for 10 dB absorption level. Assuming fL

is 2 GHz, the absolute thickness in mm can be calculated and measured on the right vertical axis.

The scatter plots of the raw data are fitted with polynomial regression lines for visual aid.

Table 3.1. Equivalent RLC values and transmission line attributes for both topologies.

Absorber R (Ω) L (pH) C (fF) Zt (Ω)

Without superstrate 225.44 1140.04 464.81 N/A

With superstrate 163.53 203.40 584.65 190.90

The thicknesses of these absorbers are 0.0920λL and 0.0906λL, respectively. The com-

parison suggests that enhanced bandwidth and lowered profile can be achieved simul-

taneously via proper implementation of dielectric superstrate. To match the maximal

BWR of 1:3.54 of its counterpart, the total thickness of an absorber with a dielectric

cover can be reduced by 0.0121λL or 1.82 mm.

3.2.2 Impedance Matching Analysis

This subsection supplements the previous one with a thorough analysis on perfor-

mance improvement with a dielectric superstrate. The efficiency in optimization can
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Table 3.2. Dimensions and material parameters for both topologies. εt is the relative permit-

tivity of the dielectric superstrate.

ht hb p d εt Rs (Ω/�)

without superstrate N/A 13.4 45.0 40.0 N/A 160

With superstrate 4.3 8.9 21.1 19.1 3.9 125

All dimensions above are in mm.

0 2 4 6 8 10 12 14 16

Frequency (GHz)

-25

-20

-15

-10

-5

0

R
ef

le
ct

io
n

 c
o

ef
fi

ci
en

t 
(d

B
)

Full-wave SimulationCircuit Modelling

w/o superstrate w superstrate

Substrate

Superstrate

Substrate

h
w

/o
=

1
3

.4
 m

m

0.2 mm

Lossy

FSS

45.0 mm 21.1 mm

h
w/o

 = 13.4 mm

h
w
 = 13.2 mm

h
w
=

1
3

.2
 m

m

Figure 3.4. Optimization aiming at −10 dB level of reflection for single-layer CA absorbers

without and with dielectric superstrate. With the lowest operating frequencies aligned at 2 GHz,

the latter achieves significantly larger bandwidth with smaller thickness and miniaturized unit cell

geometry. The 100 µm PET film is omitted for simplicity.

be enhanced by intuitively manipulating the loci that indicates the level of reflection in

a specified frequency range.

Wideband absorption corresponds to a broad spectral range where the input impedance

of the absorber matches the intrinsic impedance of free space, thus the reflection is sup-

pressed to a given level. To better understand the effect of adding a impedance match-

ing dielectric, the Smith chart which illustrates the frequency-dependent impedance
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Figure 3.5. Admittance Smith chart for wideband impedance matching manipulation.

It shows the schemes for the optimized designs (a) without and (b) with dielectric superstrate.

The loci span the frequency range from 2 to 14 GHz clockwise. The circled numbers refer to the

corresponding transmission line positions in Fig. 3.2.

can be used for qualitative analysis [1,21,25,36]. The absorption bandwidth can be es-

timated from the length and shape of the reflectivity locus captured within the standing

wave ratio (SWR) circle that corresponds to a given level of reflectivity. More specifi-

cally, a broadband absorber would typically require a short locus with dense frequency

distribution clustering around the center of the Smith chart.

To begin with, the input admittance Yb associated with a metal-backed dielectric spacer

is represented by loci denoted as 1© in Fig. 3.5 (a) and (b). The circled number refers the

corresponding position in the transmission line topology of a single-FSS-layer absorber

as illustrated by Fig. 3.2. This input impedance is purely imaginary and located on the

rim of the Smith chart. The length of the loci is in positive correlation with the electrical

length of the substrate [1]. Since any metal-backed substrate of relative permittivity

larger than that of free space would generate a longer curve for the same frequency

range, a spacer with relative permittivity close to unity becomes the preferable choice.
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Next, the admittance of the FSS, according to the lumped circuit model in Fig. 3.2, can

be calculated as:

YFSS =
R + j 1−ω2LC

ωC

R2 +
(

1−ω2LC
ωC

)2 . (3.2)

Since the resonance frequency ω0 = 1/
√

LC of this FSS is located beyond the upper

spectral boundary ωH, the square patch exhibits a capacitive response. Owing to the

series resistance, the real part < of the combined input admittance 2© is scaled down

from 1© and approaches the conductance circle 1/R:

lim
ω→ω0

<{YFSS + Yb} = lim
ω→ω0

<{YFSS} =
1
R

. (3.3)

On the other hand, the imaginary part of the total admittance increases, which leads to

clockwise rotation and compression of the locus, according to: ={YFSS} > 0.

As an impedance matching transformer, the dielectric superstrate circulates the locus

around its normalized admittance Yc =
√

εr. Therefore, trace 2© in Fig. 3.5 (b) is further

clustered into 3©. The rotating angle at each operation frequency on the locus is in

direct correlation with the electrical length of the superstrate, which can be deduced

from its physical thickness and relative permittivity. Via proper manipulation in the

Smith chart, reasonable estimations can be made to effectively reduce the effort on

parametric study of the superstrate.

3.3 Experimental Validation and Comparison

The physical realization of an absorber design is limited by accessibility to materials.

Therefore, to validate the consideration above, the optimal configuration needs further

adjustment. To this end, the bottom dielectric spacer adopts a standard 6.4 mm thick

PF4 foam (εt = 1.06, tanδ = 0.0001) and the dielectric cover mounted on the FSS plane is

a 3 mm Rogers RT6002 board (εt = 3.0, tanδ = 0.0012). The surface resistance of a com-

mercially obtained resistive layer printed on a PET sheet is 160 Ω/�. On that basis, an

optimal unit cell size p of 10.5 mm, and a patch size d of 10 mm are acquired through

parametric studies. The absorption band for this configuration extends from 3.32 to

19.96 GHz, which is equivalent to 1:6.01 BWR with an overall thickness of 0.105λL. In

this design process, a margin of −1 dB is added to the reflectivity threshold to accom-

modate tolerances in material parameters and dimensions. As shown in Fig. 3.6, the
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Figure 3.6. Reflection coefficients for the proposed design accounting for material availabil-

ity. The total thickness, including 6.4 mm PF4 foam, 3 mm RT6002 dielectric cover and 0.1 mm

PET sheet, equals to 9.5 mm.

Figure 3.7. Equipment for the proposed absorber validation. (a) LPKFr laser machine for FSS

patterning; (b) EddyCusr contactless platform for surface resistance measurement.

reflection coefficients obtained from the full-wave simulator HFSS™ and the circuit

modeler ADS™ fit closely over the operation spectrum.

The core equipment tools used for absorber validation are shown in Fig. 3.7, includ-

ing a LPKFr laser milling machine and a contactless surface resistance measurement

platform EddyCusr TF Lab 2020. Figure. 3.8 shows the absorber before assembly. A

zoom-in view depicts the laser-cut and silk-printed trails forming the patches on the

resistive layer. The surface resistance has been adjusted to 195 Ω/� in simulation to
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Figure 3.8. Exploded view of the fabricated absorber. (a) from bottom to top: metal ground,

PF4 foam, FSS patterned on the PET film, and dielectric superstrate; (b) side-view.

Figure 3.9. Experimental setup for absorption performance measurement. The sample size is

210 mm by 300 mm, and the radius of the arch is 1.35 m.

match a value found in the independent contactless measurement. For experimen-

tal verification of the absorbing performance, two wideband ridged horn antennas are

symmetrically mounted on a wooden arch at a certain angle of incidence with the sam-

ple under test placed at the arch center as illustrated in Fig. 3.9. The reflectivity of the
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Figure 3.10. Measured and simulated reflection coefficients. (a) TE and (b) TM modes under

oblique incidence up to 50 degrees.

absorber is measured by normalizing the bi-static transmission to a piece of metal ref-

erence of equal size. Although ideally the radius of the arch should extend beyond the

far-field distance throughout the entire spectrum [40, 41], a realistic compromise has

to be made considering the available anechoic chamber height. The measured BWR is

1:5.32 with a normalized thickness 0.117λL, which is in agreement with the simulated

result under normal incidence (approximated in the measurement as 10 degrees off the

normal incidence). The absorption performance is significantly worsened under TM

oblique incidence [25, 36] because of a variation in the tangential electrical component

(insets of Fig. 3.10). At the lower spectrum end, the measured results seem to be better

than simulation due to the limited size of the absorber sample. Only a small portion
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Table 3.3. Comparison of the notable fabricated single-FSS absorbers. *Red blocks indicate

lumped resistors whose thickness is not counted in the overall thickness, resulting in over-estimated

figure of merit. • Polarization sensitive absorption due to planar anisotropy. DoF is the abbreviation

of ”degrees of freedom”.

Reference FSS Pattern DoF BWR ( fL : fH) h(λL) Figure of Merit

[37]* 8 1 : 2.11 0.077 88.14%

[35] 6 1 : 2.86 0.111 64.22%

[12] 10 1 : 3.30 0.073 84.20%

[52]• 5 1 : 3.67 0.076 89.60%

[26]* 12 1 : 4.46 0.088 80.94%

Proposed 6 1 : 5.32 0.117 88.26%

of the operation bandwidth, namely less than 1 GHz at the higher spectrum end, is

affected by diffraction at 30 degrees angle of incidence according to [1, 51]:

fg = c/[p
(
1 + sin θg

)
], (3.4)

where θg is the angle of incidence, and fg is the lowest frequency from which a grating

lobe starts to occur.

A collection of notable experimentally validated single-FSS-layer wideband absorber

designs, aiming at −10 dB reflectivity, are listed in Table 3.3. The featured designs are

ranked in ascending order with regard to their relative bandwidths, and the realized to-

tal thicknesses h are normalized to the free-space wavelengths at the lowest operation

frequencies. The figure of merit is a comprehensive criterion for performance evalu-

ation, which abstracts the trade-off between BWR and h. It can be estimated by the

ratio of Rozanov’s optimal thickness d [31] to the achievable thickness h. The available
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simulated reflection coefficients ρ have been used to determine the optimal thickness:

d =

∫ ∞
0 ln(|ρ(λ)|dλ)

2π2µs
;

Figure of Merit =
d
h

.

(3.5)

where ρ is treated as a function of the free-space wavelength λ, and µs is the static

permeability of the slab. Our absorber has the widest BWR of all featured works.

Comparing with the polarization-insensitive designs (i.e., excluding [52]), it combines

performance with simplicity, as evidenced by a high figure of merit and a low number

of degrees of freedom (DoF).

3.4 Conclusion

The absorber design investigated in this chapter consists of a single resistive FSS layer

and a dielectric superstrate. A square patch, as the most fundamental FSS pattern, is

chosen to simplify the circuit analysis and synthesis procedure. By fully exploiting the

potential of a series RLC, a very competitive performance has been achieved compared

to existing more complicated designs in the literature. The most significant conclusion

drawn from the considerations is that broader bandwidth and overall thinner structure

can be achieved simultaneously by adopting a superstrate as the outermost matching

cover. In addition, the fabrication tolerance and insensitivity to oblique incidence have

been experimentally verified.

The unit cell geometry may be further adapted into other elementary shapes for im-

proved absorption performance, or evolve into more sophisticated patterns to further

approach theoretical limits. The materials adopted for the superstrate and substrate

also can be varied to satisfy specific mechanical and thermal properties.

Page 50



Chapter 4

Fast Semi-Analytical
Design Approach for

Circuit-Analog Absorbers

E
XTENDING from the qualitative techniques proposed in

the previous chapter for optimizing absorbers with a single

frequency-selective surface (FSS), a quantitative design approach

is developed in this chapter to exhaustively exploit the potential of funda-

mental FSS patterns and the absorber topology as a whole. The proposed

semi-analytical design method systematically integrates analytical, empiri-

cal, and numerical techniques for analyzing and synthesizing circuit analog

(CA) absorbers. It dramatically reduces the number of full-wave simula-

tions required for global optimization, so that the near optimal bandwidth-

thickness can be quickly and reliably calculated for a given single-FSS-layer

topology with the semi-analytical algorithm. To demonstrate the robust-

ness of our semi-analytical approach, a square-patch and square-ring FSS

absorbers at 10 dB level of absorption are revisited and optimized. The de-

signs are constrained by available materials and standard tolerances for ex-

perimental validation. A manufactured prototype achieves a relative band-

width of 144.15% and a normalized thickness of 0.0972λL, which is superior

to existing designs with more complicated FSS patterns in the literature.
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4.1 Introduction

4.1 Introduction

The past few decades have seen a great leap in the number of wireless communi-

cation devices, which have led to an increasingly complicated electromagnetic (EM)

environment. Correspondingly, EM absorbers find wide applications in interference

reduction and compatibility enhancement for integrated radio frequency (RF) com-

ponents [53, 54]. Another application includes resolution improvement for satellite

navigation systems by eliminating backscattering [35].

In practice, a microwave absorber can be primarily evaluated in terms of its absorption

level, relative operation bandwidth, and thickness expressed in wavelength at the low-

est operation frequency. Despite a high absorptivity and broad bandwidth, pyramidal

absorbers are bulky and fragile, and thus their usage is limited in anechoic chambers.

Composed of homogeneous resistive sheets, the Jaumann absorber offers reduced pro-

file but modest performance [1, 8]. To further enhance the bandwidth-to-thickness ra-

tio of planar absorbers, circuit-analog (CA) absorbers have been introduced with lossy

periodic patterns to manipulate the input impedance through shunt equivalent cir-

cuit elements. Based on the Bode-Fano constraint of transmission line (TL) theory, the

trade-offs in absorber performance were quantified by Rozanov via a theoretical min-

imal thickness for a specified reflection level and operation bandwidth [26, 31, 37, 44].

On that basis, the objective function for absorber optimization can be accordingly de-

fined as how close the realized thickness is to this theoretical limit [22].

Most studies on CA absorbers have focused on exploration of various unit-cell pat-

terns with multiple resonances [8–12, 24]. The main limitation of the approach stems

from the fact that full-wave optimizations rapidly become computationally prohibitive

with increasing degrees of freedom (DoF) in the geometry. To reduce the compu-

tation cost, frequency-selective surfaces (FSSs) are typically approximated by funda-

mental RLC circuits [55]. A particularly important aspect is the control of the resistive

loss, which can be achieved by silk-printed resistive sheets [21, 35, 39, 48], or by using

high-frequency chip resistors [26, 37, 38, 46, 47], noting that the manufacturing scala-

bility of the latter approach may be limited. Nonetheless, it is generally challenging

or even intractable for equivalent circuits to a-priori reproduce the impedance varia-

tion throughout a wide spectral range or to predict mutual coupling among geometric

features with sufficient accuracy. As such, the absorbers designed in this way are of-

ten not approaching the theoretical limit. A number of analytical formulas describing

the relationship between a specific FSS shape and its equivalent circuit configuration
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Chapter 4 Fast Semi-Analytical Design Approach for Circuit-Analog Absorbers

have been adopted to facilitate absorber design [26–28]. However, their complexity

hikes dramatically with each additional geometric feature (e.g., from square patch to

square loop [56]) whilst their accuracy is not sufficient. The gap in-between circuit op-

timization and generic structure synthesis motivates the development of concise semi-

analytical tools that benefit from the speed and comprehensiveness from analytical

models, while achieving the accuracy close to full-wave simulations.

In this chapter, an efficient and effective optimization approach for CA absorbers is de-

veloped by systematically integrating analytical, empirical and numerical techniques.

In view of the control variates method (i.e., varying one design variable whilst re-

taining the others), it is first observed that the unit-cell geometry, the lossless dielec-

tric substrate/superstrate and the sheet resistance linearly and independently affect

the equivalent circuit elements of a lossy FSS. Importantly, in lieu of an exhaustive

full-wave parametric sweep, the proposed approach allows to reduce the millions of

full-wave evaluations into three small groups of dozens or hundreds of generic seed

simulations. Regression functions are then obtained by fitting circuit topologies with

full-wave seed simulations as illustrated in Fig. 4.1. These functions can be recom-

bined for semi-analytical synthesis which leads to accurate and fast computations with

the aid of appropriate circuit models. This approach can be broadly considered as re-

lated to a Surrogate Model in space-mapping technique [57, 58]. Global optimization

methods such as the genetic algorithm (GA) can then be adopted to accelerate the

search in the parameter space of the fundamental FSS geometries towards enhanced

absorption performance. Adopting this technique, we can not only draw corollaries

on choice of materials (i.e., dielectrics and resistive sheet), but also demonstrate that

the FSS pattern of a CA absorber does not necessarily need to be complicated, where

relatively simple shapes can achieve performance close to the theoretical limit exploit-

ing the fact that they are tractable for optimization. To verify the effectiveness of the

proposed methodology, a single-FSS-layer absorber adopting square rings as the unit-

cell pattern is synthesized and experimentally characterized. Despite the structural

simplicity, it achieves a relative bandwidth of 144.15% for a polarization-independent

10 dB absorption level. The design outperforms single-FSS-layer wideband absorbers

demonstrated in the open literature.
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Unit-Cell Geometry

Supporting Dielectric
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Regression Functions

Dielectric Cover Metal-backed Spacer

Single-Layer CA Absorber
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Figure 4.1. Overview of the semi-analytical design approach. The control variates method

is applied to each essential element of a dielectric supported lossy FSS, for which regression func-

tions can be obtained by fitting the Z -parameters. The overall absorber assembly is based on the

transmission line (TL) theory.

4.2 Semi-Analytical Design Approach

A typical single-FSS-layer CA absorber includes a lossy periodic array of resonators

and a metal-backed spacer. Its bandwidth-to-thickness ratio and insensitivity to an-

gle of incidence can be simultaneously improved by adding a dielectric cover, which

serves as an impedance transformer [22, 25]. Exhaustive search on such an absorber

requires mn1+n2+n3 full-wave simulations in total, where m is the sample size for each

design variable, and n1, n2, n3 are the number of design variables for each part of the

FSS, namely the unit-cell resonator geometry, the lossless dielectrics and the sheet resis-

tance. Here for simplicity in demonstration, m has been assumed equal for each vari-

able without restriction to generality. In the following subsections 4.2.1, 4.2.2 and 4.2.3,

we will detail how the number of required simulations is determined and how to lower

it to a much smaller set of 2mn1−1 +mn2−2 seed simulations by exploiting the properties

of the FSS including linearity, independence and scalability. The Z-parameters of these
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Figure 4.2. Dielectric-supported lossless single-layer FSS. (a) 3D view of a unit-cell geometry;

(b) generic transmission line topology; equivalent circuit for (c) square patch and (d) square ring.

seed simulation results will be statistically fitted with their equivalent circuit models,

where the RLC components can be reversely expressed as a function of geometric di-

mensions and material attributes of the FSS. This lays a foundation for the proposed

semi-analytical method.

Based on a generic structure with no ground plane, the FSS pattern, the supporting

dielectrics and the sheet resistance are independently investigated in subsections 4.2.1,

4.2.2 and 4.2.3 to obtain multi-regression models. They are then recombined with a

metallic ground using the TL theory in subsection 4.2.4 for synthesizing single-FSS-

layer absorbers. Square patch and square ring, as the most fundamental FSS shapes,

are studied in parallel throughout the following subsections. All full-wave simulations

are performed with Ansys HFSS™.

4.2.1 Equivalent Circuit Elements for Lossless FSS Patterns

Our investigation begins with a lossless FSS on a supporting substrate and its generic

transmission-line topology, as shown in Fig. 4.2(a) and (b). A simple square patch is

considered first because of its simplicity. From there, further geometric features such
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as an inner aperture in the patch can be added to enhance the overall performance or

to reduce the total thickness. Equivalent circuit models are presented in Fig. 4.2(c) and

(d) next to their unit-cell patterns.

Square Patch Array

The impedance Zc of a lossless square patch array, according to the lumped circuit

model as illustrated in Fig. 4.2(c), can be calculated for a given angular frequency ω

as [21]:

Zc = jωL1 +
1

jωC1
. (4.1)

By extracting its resonant frequency ω0 = 1/
√

L1C1 from the full-wave simulated

transmission coefficient S21, Zc can be expressed as a univariable function of L1 at each

frequency:

Zc = j
ω2 −ω2

0
ω2 L1. (4.2)

To avoid diffraction effects that could mask the fundamental resonance at high fre-

quencies, a supporting dielectric layer can be introduced to lower the resonance fre-

quency of the simulated square patch array, as illustrated in Fig. 4.3(a). The resonance

is then shifted to the left by approximately ω0/
√

εs, where εs is the relative permit-

tivity of the substrate. In this study, for referencing purpose but without restriction

to generality, a 7-mm thick lossless substrate of relative permittivity εs = 4 is chosen.

This supporting dielectric is sufficient to avoid the masking effect of diffraction for all

cases of interest.

On the basis of the TL theory [23], the impedance of the FSS can also be expressed in

terms of the full-wave simulated reflection coefficient S11

Zc =
Z0Ze (1 + S11)

Ze (1− S11)− Z0 (1 + S11)
, (4.3)

where Z0 is the intrinsic impedance of free space, and Ze is the impedance of the sub-

strate together with the free space behind, as indicated in Fig. 4.2(b). By minimizing

the root-mean-square deviation between the circuit-analyzed impedance in (4.2) and

the full-wave simulated impedance in (4.3) across the spectrum, the values of the re-

active components L1 and C1 for this particular patch configuration can be obtained.

This will only be necessary for a few seed simulations as will be explained later in this

section.
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Figure 4.3. Full-wave simulated S-parameters for fundamental unit-cell patterns. (a) trans-

mission coefficients for lossless square patch FSS (p = 20 mm, d = 18 mm); and (b) transmission

and reflection coefficients for air foam supported lossless square ring FSS (p = 20 mm, d = 18 mm,

a = 12 mm). fn = ωn/2π (n = 0, 1, 2). According to Equation (3.4), the onset frequency from

which a grating lobe starts to occur equals c/p under normal impinging waves.

Square Ring Array

The equivalent circuit model for a lossless square-ring FSS is illustrated in Fig. 4.2(d).

Its impedance can be calculated as:

Zc =
1−ω2L2 (C2 + C3)

jωC2 (1−ω2L2C3)
. (4.4)

The zero and pole are at critical angular frequencies ω1 =
√

1/[L2 (C2 + C3)] and ω2 =√
1/ (L2C3) which can be extracted from the minima of the full-wave simulated scat-

tering coefficients S21 and S11 respectively. Then, by substituting C3 = 1/
(
ω2

2L2
)

and
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C2 = 1/
(
ω2

1L2
)
− 1/

(
ω2

2L2
)

in (4.4), Zc can be represented as a frequency-dependent

function of L2

Zc =
1− ω2

ω2
1

jω
(

1
ω2

1
− 1

ω2
2

) (
1− ω2

ω2
2

)L2. (4.5)

The resonant trough at ω1, as indicated in Fig. 4.3(b), is located far away from the

diffraction region, and as such a supporting dielectric is not essential in this case. As

a simplified version of (4.2) where Ze = Z0, the corresponding impedance determined

from the simulated reflection coefficient is

Zc = −
Z0 (1 + S11)

2S11
. (4.6)

Similarly, the values of the reactive components L2, C2 and C3 will be obtained by

fitting Zc in (4.5) to (4.6) across the spectrum.

A square patch can be considered as the special case of a square ring with no aper-

ture. If the inner aperture length a is not sufficiently large, the pole at ω2 may fall

in the diffraction region due to small L2 and C3. In this case, the initial value of ω2

has to be assumed at the diffraction onset and then adjusted adaptively to probe the

best Z-parameter fit. Further evolved FSS patterns with more design variables can be

analyzed by investigating the zeros and poles of their Z-parameters with appropriate

equivalent circuit models.

Tabulated Seed Simulations

A limited number of seed simulations are conducted for investigating the contribution

of each essential part of a dielectric-supported lossy FSS to the RLC configurations of

their equivalent circuit model. The obtained values of circuit components for feasible

combinations of design variables are tabulated and then fitted by semi-analytical func-

tions using least-square method with a reasonably large coefficient of determination

(R2 ≥ 0.9). In conjunction with the TL topology and FSS properties, these regression

functions can be recombined for synthesizing and optimizing a single-FSS-layer ab-

sorber.

A square patch array contains two DoFs, namely the patch length d and the period-

icity p of a unit-cell. Accordingly, the required lookup tables for its equivalent induc-

tance and capacitance should be two-dimensional. Nonetheless, based on the fact that

rescaling the FSS with a factor ζ will proportionally relocate the transmission and re-

flection coefficients by 1/ζ in frequency, the seed simulations can be simplified to a

Page 58



Chapter 4 Fast Semi-Analytical Design Approach for Circuit-Analog Absorbers

one-dimensional set using α = d/p as parameter, which empirically needs to be larger

or equal to 0.7 to obtain a practically sufficiently large capacitance C1B in-between ad-

jacent patches. With arbitrarily chosen (scalable) reference periodicity p = 20 mm,

L1B and C1B can be statistically fitted in Matlab™ toolbox as univariable functions of α

based on a very limited number of seed simulations:

L1B = 9.4 (1− α)1.48 + 0.2 nH;

C1B = 147.8 (1− α)−0.67 − 104.5 fF.
(4.7)

A square-ring FSS has one more independent variable β = a/p that describes the inner

aperture size. It is observed that this parameter empirically needs to be larger or equal

to 0.45 to ensure a distinguishable resonant performance from a square patch. The

lookup tables for equivalent reactive components therefore become two-dimensional

and depict biharmonic surfaces as a function of (α, β)

L2B = e−4.06α+4.27β+1.89 − 0.29 nH;

C2B = e31.67α−24.24 + 111β + 75.76 fF;

C3B = e5.67α−4.49β+1.65 − 3.26 fF.

(4.8)

Assuming the sample size is m = 15 for each design variable, and the number of

independent design variables for the unit-cell geometry is n1 − 1 = 1 for square patch

or n1 − 1 = 2 for square ring, then their reactive components can be interpolated via

regression function sets (4.7) or (4.8) with m1 = 15 or m2 = 225 seed simulations

respectively.

4.2.2 Impact of Dielectric Substrate on Reactive Components

So far the modeling has assumed a fixed permittivity and thickness for the supporting

dielectric layer. The substrate and a dielectric cover (if present) do not only contribute

to the EM wave propagation as transmission lines, but also impact on the equivalent re-

actance of the FSS. Indeed, lateral coupling between unit-cells and current distribution

on conductive patterns are both affected by the supporting dielectric. Therefore, the

equivalent inductance and capacitance change accordingly. Within a practical range of

FSS dimensions, we found that the same dielectric slab contributes to the reactive com-

ponents with the same set of scaling factors. The impact of permittivity and thickness

can then be investigated with a arbitrarily selected reference FSS.
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Our previous work [22] indicated that an air spacer as the substrate would maximize

the bandwidth-to-thickness ratio of a CA absorber with a dielectric superstrate. There-

fore, the relative permittivity of the substrate can be set to εr = 1 and the number of

DoFs for the FSS can be further reduced by 2 (i.e., the permittivity and thickness of

the substrate). On that basis, the number of additional seed simulations required to

characterize the effect of substrate and superstrate on the FSS is only m2, where m is

the sample size for each design variable, and n2 − 2 = 2 is the number of independent

design variables for the lossless dielectrics, including permittivities and thicknesses for

both superstrate and substrate. Specifically, if the sample size is m = 15 for each design

variable, only 225 seed simulations are needed for any FSS array.

Square Patch Array

For the reference lossless square-patch FSS, as shown in Fig. 4.4, its equivalent induc-

tance and capacitance are positively correlated to the permittivity εs and thickness hs

of a dielectric superstrate. We obtained empirical formulas for L1 and C1 of the patch

in the presence of a superstrate in conjunction with (4.7) as:

L1 = L1BΘL1(εs, hs);

C1 = C1BΘC1(εs, hs),
(4.9)

with the normalized scaling factors ΘL1 and ΘC1 of this dielectric represented as re-

gression functions of εs and hs

ΘL1(εs, hs) =

√
εs

2.5

[
tan−1

(
hs

6.3

)
+

e1−0.29εs

2

]
;

ΘC1(εs, hs) =
(1− 0.79εs) e−hs/2 + 2ε0.77

s
5.5

,

(4.10)

where the permittivity εs is no more than 10 taking into account the impedance match-

ing purpose of the dielectric superstrate, and the thickness hs is no more than 20 mm

within the considered operating frequency range.

Square Ring Array

The impact of the dielectric layer on reactive components of a square-ring FSS are

dominated by εs provided that hs is larger than 0.05λ1 [1] (e.g., hs > 0.75 mm given

λ1 = c/( f1
√

εs), f1 = 10 GHz and εs = 4), as the evanescent wave decays dramati-

cally with the distance from the array surface. Through a similar approach as for the
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Figure 4.4. Impact of dielectric substrate on equivalent reactive components for a reference

square patch FSS. The periodicity p = 20 mm and the patch length d = 18 mm. (a) Inductance

and (b) capacitance are a function of dielectric thickness and permittivity. Circuit modeling is an ideal

analyzer with macro physical insight, and thus insignificant systematic fluctuations can be observed

in the analyzed results. The scatter plots are fitted with regression lines defined by function sets

(4.10).

square-patch FSS, the normalized scaling factors of a supporting dielectric for L2, C2,

and C3 can be approximated in terms of εs only, provided the condition hs > 0.05λ1 is

satisfied:
ΦL2(εs) = 1;

ΦC2(εs) = ΦC3(εs) =
1 + εs

2
.

(4.11)

The scaling factor for inductance is approximately 1 because the strips of a typical

square ring (i.e., β ≥ 0.45) introduce significantly larger current densities than the

square patch. Compared to the relatively small impact from the dielectric slab, the
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equivalent inductance is dominated by the geometric features of the conductors. In

contrast to the side-to-side electric flux of a patch array, the equivalent capacitances of

a typical square ring can be differently explained by an edge-to-edge model. With

a single-side dielectric support, the equivalent capacitances are proportional to the

averaged relative permittivities of the free space and the supporting material. Thus,

the critical frequencies will be lowered by ratio of 1/
√
(1 + εs)/2 which equals the

square-root of the scaling factor for capacitance. In analogy to (4.9), the complete set

of empirical formulas for L2, C2 and C3 can be acquired through pair-wise products of

expressions in (4.8) and (4.11)

L2 = L2BΦL2 ;

C2 = C2BΦC2 ;

C3 = C3BΦC3 .

(4.12)

4.2.3 Impact of the Sheet Resistance

The equivalent circuit models for resistive square-patch and square-ring FSSs, as shown

in Fig. 4.5, are expansions of Fig. 4.2(c) and (d) which depicted corresponding lossless

FSS patterns. Since the equivalent reactive components are dominantly determined by

the FSS geometry [21,22], the results from subsection 4.2.1 can be directly used to limit

the number of seed simulations. In the circuit model, the placement of lumped resis-

tors depends on the geometrical shape of the FSS, whilst their values are in proportion

to the surface resistance of the conductive area in a unit cell [21].

The number of design variables for the sheet resistance itself is n3 = 1, namely a value

in Ω/�. In conjunction with scalability and linearity, the numbers of seed simulations

for resistive square-patch or square-ring FSS is only mn1−1+n3−1 = mn1−1. Specifically,

if the sample size is m = 15 for each design variable, then their resistive components

can be interpolated with m1 = 15 or m2 = 225 seed simulations for the square-patch or

square-ring FSS respectively.

Square Patch Array

The equivalent shunt circuit for the square-patch FSS, according to Fig. 4.5(a), is an

RLC in series:

Zc = jωL1 +
1

jωC1
+ R1. (4.13)
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Figure 4.5. Equivalent circuit models for unit-cell FSS adopting a patterned resistive layer.

(a) square patch and (b) square ring. The distribution of lumped resistors depends on the unit-cell

geometry.

Then, the relationship between α and R1 can be determined by fitting (4.13) to (4.3) with

only 15 seed simulations. The estimated equivalent lumped resistance for a square-

patch FSS can be expressed in reverse proportion of the square patch size to the unit

cell area:

R1 = (1 + ζ)Rs

(
1
α

)2

, (4.14)

where Rs is the surface resistance in Ω/�, and ζ = 5% acts as an empirical correction

factor because of the fringing effect. Incidentally, this model is in agreement with the

existing empirical formula [21, 22].

Square Ring Array

The impedance of the resistive square-ring FSS can be calculated in accordance with

Fig. 4.5(b)

Zc =
jωL2 + R3

1−ω2LC3 + jωR2C3
+

1
jωC2

+ R2. (4.15)

The relationship between the equivalent lumped resistors (i.e., R2 and R3) and the FSS

dimensional parameters can be obtained by fitting Zc in (4.15) to (4.6) with only 225

seed simulations. Because R2 and R3 are proportional to the surface resistance Rs, the

number of DoF can be reduced by adopting an arbitrary reference resistive sheet of

R0 = 100 Ω/� to facilitate the calculation:

R2 =
(

e−20.82α2+24.12α+8.50β−5.31 + 148.1
) Rs

R0
;

R3 =
(

e−5.78α+5.48β+6.57 − 13.8α4
) Rs

R0
.

(4.16)

The above expressions are however found to remain valid for surface resistance Rs up

to 1000 Ω/� in practice.
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Table 4.1. Dimensions and material attributes for schematics in Fig. 4.6.

Schematic α β hs (mm) εs Rs (Ω/�)

I.A 0.9 Nil 10 3 150

I.B 0.75 Nil 3 7 300

I.C 0.95 Nil 7 10 75

II.A 0.9 0.6 6 5.5 200

II.B 0.95 0.8 5 10 75

II.C 0.8 0.5 10 2.1 100

The periodicity p is fixed to 20 mm, and the thickness of the air spacer h0 remains equal to 10 mm.

Table 4.2. Equivalent circuit components (two decimals) for lossy FSSs in Fig. 4.6.

Schematic L1 (nH) C1 (fF) C2 (fF) R1 (Ω) R2 (Ω)

I.A 0.56 471.04 Nil 194.44 Nil

I.B 0.87 413.08 Nil 576.81 Nil

I.C 0.36 2023.93 Nil 581.72 Nil

Schematic L2 (nH) C2 (fF) C3 (fF) R2 (Ω) R3 (Ω)

II.A 1.90 766.50 175.65 482.22 191.25

II.B 3.88 2956.22 148.94 298.45 144.75

II.C 1.91 213.57 73.99 271.19 143.90

4.2.4 Absorber Assembly and Algorithm Validation

Based on the acquired semi-analytical function sets described in subsections 4.2.1, 4.2.2

and 4.2.3, a direct mapping between the physical dimensions of a single-FSS-layer ab-

sorber and its equivalent circuit can be established with very quick calculation for anal-

ysis and synthesis. To validate the proposed approach and demonstrate its reliability,

four single-FSS-layer absorber topologies are examined by comparing the performance

determined from the full-wave simulation to those obtained from the semi-empirical

circuit analysis. Within the feasible ranges of FSS dimensions, arbitrarily selected struc-

tural parameters and material attributes are listed in Table 4.1, whilst the estimated

equivalent circuit elements are tabulated in Table 4.2.
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The reflection coefficient for a single-FSS-layer absorber can be calculated in two dif-

ferent cases:

• With dielectric substrate:

S11 =
Zc//Ze − Z0

Zc//Ze + Z0
, (4.17)

where Ze = jZs tan(2π f
√

εsε0µ0hs), and // indicates parallel circuit topology for

simplicity.

• With air spacer and dielectric superstrate:

S11 =
Zs(Zt − Z0) + j tan(2π f

√
ε0µ0h0)(Z2

s − Z0Zt)

Zs(Zt + Z0) + j tan(2π f
√

ε0µ0h0)(Z2
s + Z0Zt)

, (4.18)

where Zs =
√

µ0
ε0εs

, and Zt = Zc//jZ0 tan(2π f
√

ε0µ0h0).

As illustrated in Fig. 4.6, the reflection coefficients calculated using the semi-analytical

method closely resemble the HFSS™ simulated results throughout the frequency range.

It is emphasized that the absorber designs listed are randomly selected to verify the ac-

curacy of the proposed algorithm, and as such they are unlikely to be optimal in the

bandwidth-to-thickness ratio.

4.3 Global Optimization and Evaluation Criterion

In contrast to a full parametric sweep that would demand mn1+n2+n3 full-wave simu-

lations, the proposed design approach merely requires 2mn1−1 + mn2−2 reusable seed

simulations for thorough search with acceptable reliability. Taking a typical sample

size m = 15 for example, the number of full-wave simulations dramatically reduces

from 1.71× 108 to 255 for a square patch absorber optimization, and correspondingly

from 2.56× 109 to 675 for a square ring configuration. Once the once-off seed simu-

lations are completed, the optimization can be carried out using the semi-analytical

computations in MATLAB™, which are approximately 105 order of magnitude faster

than full-wave simulations in HFSS™. Of course, those computation times can be fur-

ther reduced using evolutionary optimization algorithms, such as GA. By virtue of this

proposed fast calculation algorithm, global optimization becomes feasible to determine

the near-optimal absorber designs that yield a minimal thickness for a specified relative
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Figure 4.6. Reflection coefficients for random designs in four different absorber topologies.

Categorization is based on the position of dielectric slab and the FSS geometry. These are not

optimized absorber designs, but only for validation of the semi-analytical calculation. Absorption

performances for 3 random designs for each topology as indicated in Table 4.1 and Table 4.2 are

obtained from full-wave simulations and circuit calculations respectively. The dielectric substrate is

colored in blue whilst dielectric superstrate is colored in green. The substrate and superstrate have

identical properties.

bandwidth at a given absorption level (e.g., 10 dB) in relation to the topologies shown

in Fig. 4.6. In the present case, the GA is chosen as optimization technique [50], al-

though other choices of global optimization algorithm could be considered. Figure. 4.7

shows the minimal thickness curves obtained from optimizing these absorber topolo-

gies for specified relative bandwidth at a reflection level of −10 dB. Each scatter point

distributed along the curve represents a CA absorber synthesized by the optimization

algorithm that aims for the smallest thickness at a specified bandwidth. The perfor-

mance for all these designs are further verified using the full-wave simulator. The
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Figure 4.7. Optimized bandwidth-thickness curves for different topologies as illustrated in

Fig. 4.6. The discrete solutions are verified with full-wave simulation and then fitted with polynomial

trend lines for visual aid. Simulation results for notable experimentally validated single-FSS-layer

absorbers in the literature are indicated as stars or arrow (if located out of the range). The red dots

with regard to [26, 37] indicate HF resistors whose physical thickness is not counted.

maximum absorption bandwidth for a square patch CA absorber is found to be around

110% (magenta curve). This can be increased to 120% by evolving into a square ring CA

absorber (green curve), noting that a significantly smaller thickness can be achieved.

Alternatively, further improvement can be attained by adopting an impedance trans-

former [22], with a possible bandwidth up to 150% (red curve). It is unnecessary to add

an inner aperture to a square patch CA absorber with a superstrate (red curve vs. blue

curve), because such a geometric feature does not appear to effectively contribute to

further the absorption performance. Despite the simplicity in geometry, the maximal

absorption bandwidth achievable for all topologies with an impedance transformer is

around 150%, which is among the widest bandwidth found for single-FSS-layer ab-

sorbers reported in the literature.

A collection of simulated bandwidth-thickness coordinates for notable state-of-the-art

single-FSS-layer absorbers [12,26,35,37,52,56] are also included in Fig. 4.7. Design [56]

Page 67



4.4 Experimental Validation

adopts square loop but its FSS is placed above both the air spacer and the dielectric

layer. If a design is located lower than an optimized curve, then it outperforms the

corresponding topology. Among the state-of-the-art designs, only [52] is lower than

all the margins, but that design is polarization-dependent. We can deduce that a re-

markable absorption performance can be achieved by fully exploiting the potential of

fundamental shapes of FSS-based CA absorbers without necessarily resorting to so-

phisticated geometrical shapes that may be intractable for semi-analytical calculations.

4.4 Experimental Validation

4.4.1 Wideband Single-FSS-Layer Absorber Design

In order to further demonstrate the effectiveness of our design approach, a wideband

single-layer absorber adopting a square ring lossy FSS and a dielectric superstrate is

proposed, fabricated and experimentally characterized. Importantly, a practical de-

sign has to take into account the restricted availability of material characteristics and

manufacturing tolerances. Therefore, a 2 dB margin for the absorption spectrum is re-

served against tolerances in material attributes and structural dimensions. With a goal

function aiming for the minimal total thickness at the maximal bandwidth, the opti-

mization starts with a predetermined periodicity p of 20 mm to facilitate the numerical

synthesis. Given an available dielectric substrate (i.e., 3 mm Rogers RT6002; εs = 3.0,

tanδ = 0.0012), the whole structure then needs to be rescaled accordingly. The resistive

layer acquired from the commercial supplier Polychemr is silk-printed with conduc-

tive polymer ink on a 100 µm PET film to introduce sheet resistance. Its nominal sur-

face resistance Rs is 75 Ω/�, which is independently confirmed with our contact-less

measurement equipment using the EddyCusr TF Lab 2020.

For the initial design, the equivalent circuit parameters are C2 = 860.57 fF, C3 = 260.74

fF, L2 = 0.78 nH, R2 = 137.70 Ω and R3 = 22.95 Ω, whilst its synthesized physical

dimensions are d = 19.05 mm, a = 9.52 mm, hs = 5.81 mm and h0 = 12.19 mm.

The reflection coefficients obtained from the full-wave simulator HFSS™ and from the

semi-analytical algorithm implemented using MATLAB™ match well throughout the

absorption spectrum, as shown in Fig. 4.8. On this basis, the final manufacturable ab-

sorber design is obtained by rescaling the structure with a factor ζ0 = 0.525. Despite

limited accessibility to materials, the simplicity in topology, and small total thickness

of 9.5 mm, the fabricated prototype exhibits a measured operation bandwidth ranging

Page 68



Chapter 4 Fast Semi-Analytical Design Approach for Circuit-Analog Absorbers

R
ef

le
ct

io
n

 c
o

ef
fi

ci
en

t 
(d

B
) 

0 5 10 15 20 25

Frequency (GHz)

-20

-15

-10

-5

0

Initial Circuit Model

Initial Synthesized Absorber

Scaled Absorber

144.15%

144.15%

Figure 4.8. Absorption performance for designs during steps of the synthesizing process. It

includes the initial circuit model, the initial synthesized spatial absorber, and the rescaled absorber.

The scaling factor depends on the desired start frequency. The relative bandwidth remains unchanged

as per discussion in subsection 4.2.1.

from 3.07 to 18.95 GHz, which is equivalent to a relative bandwidth of 144.15% and a

normalized thickness of 0.0972λL. For the same simulated reflection coefficients and

FSS pattern, the proposed algorithm applied with an assumption of no material re-

strictions would yield a minimal total thickness of 9.37 mm. The Rozanov’s thickness

limit for this case would be 8.38 mm. This theoretical limit does not set any limitations

on the complexity of the unit-cell geometry. Compared to our previous work [22] with

1 dB margin reserved against fabrication tolerance, the proposed design with 2 dB mar-

gin more completely exhausts the potential of the available materials and of the chosen

topology as illustrated in Fig. 4.9.

4.4.2 Fabrication and Measurement

The exploded layers of the fabricated single-FSS-layer absorber before assembly are

illustrated in Fig. 4.10. The resistive sheet is patterned with a LPKFr laser-milling

machine. As shown in the inset of Fig. 4.11(a), a pair of ridged horn antennas are sym-

metrically mounted on a wooden arch to measure the reflectivity for TE or TM modes

at the incidence angle ranging from 10 degrees to 50 degrees. Ideally, it is suggested

that the absorber sample should be placed in the far-field of its operation range for

measurement [40, 41]. The far-field distance equals 2D2/λ = 11.15 m, where D is the
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Figure 4.9. Optimized bandwidth-thickness curves for single-FSS-layer absorbers with per-

formance margin included for fabrication tolerances. The benchmark for the relative bandwidth

and normalized thickness are recalculated at 11 dB and 12 dB absorption level for our previous work

and the proposed design respectively.

longer dimension of the A4 sized absorber and λ is the wavelength for the highest op-

eration frequency 18.95 GHz. However, the radius of the wooden arch cannot be made

beyond the height of our anechoic chamber. Nevertheless, results are expected to have

only a small deviation, as the reflected energy (i.e., bi-static transmission coefficient) is

normalized to a reference metal plate of the same size, rather than given as an absolute

value.

As shown in Fig. 4.11, the measured 10 dB absorption under 10 degrees oblique inci-

dence spans 3.15 to 19.2 GHz, which is a good approximation to the simulated result

under normal incidence. At larger impinging angles, a deterioration in reflectivity can

be observed under both TE and TM modes (Fig. 4.12). Specifically, the level of ab-

sorption decreases uniformly across the operation spectrum for the TE mode, whilst

the absorption bandwidth reduces significantly on its lower frequency bound for the

TM mode. This effect is typical for FSS-based structures. According to our previous

work [22], the dielectric cover not only protects the FSS from detrimental environ-

ments and contributes to the impedance matching as an effective transformer, but also
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Figure 4.10. Fabricated single-FSS-layer absorber. (a) The exploded view reveals a copper

ground, a PF4 (εr = 1.06, tanδ = 0.0001) foam as substrate, square ring FSS (Rs = 75 Ω/�)

printed on a thin PET film, and a Rogers RT6002 (εs = 3.0, tanδ = 0.0012) as superstrate; (b)

Side view.
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Figure 4.11. Simulated and measured reflection coefficients for near-normal incidence. The

performance has been verified at 10 degrees. The absorber is in standard A4 size, and the radius of

the wooden arch is 1.35 m. Due to the ultra-wide operation bandwidth, two pairs of ridged horn

antennas are used to cover the spectra of 2−8 GHz and 6−20 GHz respectively.
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Figure 4.12. Proposed absorber under oblique incidences for (a) TE and (b) TM modes.

The performance has been verified under incidence from 10 to 50 degrees.

contributes to the miniaturization of the FSS, which can alleviate a degradation in per-

formance under oblique incidence [25, 36].

4.5 Conclusion

A semi-analytical approach has been proposed for efficiently and effectively synthesiz-

ing single-FSS-layer absorbers. By integrating the transmission line theory and empir-

ical characteristics of an FSS (i.e., linearity, independence and scalability), the number

of seed simulations required for multi-regression has been dramatically reduced. Con-

sidering a sample size of 15 for each design variable for example, the semi-analytical

algorithm runs approximately a million times faster than the parametric sweep in a
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full-wave simulator. This fast calculation enables near global optimization that ex-

hausts the potential of the considered FSS shapes for maximal absorption bandwidth-

thickness ratio. With the aid of the GA, achievable bandwidth-thickness curves can be

obtained for selected absorber topologies of fundamental FSS shapes. By comparing

to existing absorbers proposed in the literature, the better bandwidth-thickness ratios

indicate that more complicated and calculation-intensive FSS patterns may not neces-

sarily ensure better absorption performance.

For verification, a wideband single-layer CA absorber has been fabricated and mea-

sured under oblique angles of incidence. The agreement between simulation and mea-

surement has verified the reliability and robustness of the proposed semi-analytical

method. The realized absorber prototype exhibits a very wide measured operation

band of approximately 144% (at 10 dB absorption) while maintaining a small thickness

of less than 0.1λL, which outperforms the single-FSS-layer absorbers in the literature.

In practice, the semi-analytical algorithm is not only efficient for designing CA ab-

sorbers, but also for other FSS based structures such as spatial filters or reflectarrays.
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Chapter 5

Terahertz Absorber with
Sub-Skin-Depth Metal

R
ESISTIVE surfaces are frequently used as lossy layers consti-

tuting planar absorbers for microwave applications. Despite

that, resistive materials are not common in microfabrication

processes. In this chapter, we propose a means to achieve of controlled

surface resistance using sub-skin-depth metal for circuit analog (CA) ab-

sorber designs at terahertz frequencies. The Drude model is adopted to

accurately determine the frequency dependent features of metal in the ter-

ahertz range. The proposed single-layer absorber is firstly synthesized via

equivalent circuit modeling, and then verified with silver and lead square

ring in full-wave simulations. With readily available materials, the absorber

design adopting simple square ring patterns is predicted to achieve a rela-

tive bandwidth of approximately 94% at−10 dB level of reflectivity. The ab-

sorption performance is robust to expected fabrication tolerances and stable

to oblique incidence.
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5.1 Introduction

Electromagnetic absorbers have found a wide range of applications, such as back-

scattering suppression in anechoic chambers, electromagnetic interference (EMI) miti-

gation between wireless communications devices, and resolution enhancement in spec-

troscopy [35, 53, 54, 59]. Among the commonly proposed physical realizations, the cir-

cuit analog (CA) absorber is of high popularity because of its balanced trade-off be-

tween thickness and performance (defined by the bandwidth at a given absorption

level). The operation spectral range can be broadened by either exploring the topolog-

ical features of the embedded FSS layer to introduce additional resonances [8–12, 24]

or by fully exploiting the low-Q-factor of the existing unit-cell shapes [21, 22, 36, 44].

The latter typically does not increase the complexity of the geometry, but requires an

appropriate impedance manipulation of the unit cell with the aid of equivalent circuit

modeling and transmission line techniques.

In addition to the equivalent reactive components that depend on the FSS geome-

try, the resistive components are crucial to the absorber performance and they can

be patterned using lossy inks such as conductive polymer, graphene or silver nano-

particles [22, 35, 39, 48]. As the frequency of interest increases beyond the millimeter-

wave range, however, the frequency-dependent material attributes such as conductiv-

ity can be significantly different from their values in the microwave range. Fabrication

with resistive inks also becomes challenging for accurate periodic patterning at mi-

croscale.

Due to fabrication complexity of resistive layers at microscale, a variety of broadband

CA absorbers have been proposed in the literature but verified with only full-wave

simulated results [60–62]. To ease experimental validation, as a compromise, broad-

band absorbers for the terahertz spectrum have been realized by classic Jaumann lay-

ers adopting novel materials with no patterning [63], or 3D FSSs which are indeed a

variant of pyramidal prototypes [64]. CA absorbers with resistive patterns compatible

with microfabrication technologies are of great interest to improve absorption perfor-

mance.

In this chapter, we focus at the spectrum between 200 and 400 GHz in the terahertz

frequency range. This band overlaps with an atmospheric window and therefore is en-

visaged for various short-range wireless applications. Therefore, we propose to control

surface resistance by exploiting sub-skin-depth thickness of a noble metal in common
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microfabrication processes. The metallic FSSs will be sub-micron thick, which is sig-

nificantly smaller than the wavelength at the highest operation frequency, thus the

approximation regarding thin resistive sheet stands. For realistic and accurate compu-

tations, the Drude model [65] is applied in all simulations. Moreover, a dielectric su-

perstrate is adopted to protect the metal layer, to improve impedance matching to the

free space, and to enhance absorption performance at oblique incidence [22, 25]. Aim-

ing for a 10 dB level of absorption, the proposed single-FSS-layer absorber is designed

for a wide relative bandwidth of approximately 94% ranging from 165 to 460 GHz.

5.2 Metallic FSS-Based Terahertz Absorber

5.2.1 Equivalent Circuit Analysis and Synthesis

The proposed absorber design is illustrated in Fig. 5.1 (a) via an exploded view. Each

unit cell comprises a grounded substrate, a metallic square ring array in sub-skin-depth

thickness, and a dielectric superstrate. The corresponding transmission line topology

in Fig. 5.1 (b) and the equivalent circuit model for the FSS branch in Fig. 5.1 (c) are

obtained from physical considerations. The capacitance and inductance are dependent

on only the dimensions of the square ring: C1 and C2 are created between gaps perpen-

dicular to the electric field, whilst L is obtained along the strips parallel to the electric

field. The resistances R1 and R2 are not only associated with the FSS geometry, but

also controlled by the thickness of the metallic layer. This metallic layer is designed

to be much smaller than the skin depth δ = 1/
√

π fHµ0σdc at the highest operation

frequency fH, where µ0 is the free space permeability and σdc is the DC conductivity of

the selected metal [66]. Taking silver (Ag) as a practically relevant material for the FSS,

the skin depth at 500 GHz is approximately 84 nm. The perfectly conductive ground

can be approximated by a 300 nm gold layer, which is significantly thicker than its skin

depth across the operation spectrum.

In the terahertz spectrum, the classical first-order Leontovich boundary condition is

however inaccurate for surface impedance estimation as the quasi-PEC assumption

becomes invalid. Therefore, the Drude model for the high-frequency response of noble

metals should be applied. Although the surface impedance Zs is frequency dependent,

its variation is not significant in the considered frequency range. On this basis, it can
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Figure 5.1. Unit-cell schematic of a square ring based single-FSS-layer absorber. (a) Exploded

view; (b) generic transmission-line topology; (c) equivalent circuit branch for the periodic array.

be firstly assumed as a constant to simplify the equivalent circuit optimization and ab-

sorber synthesis. In later stages, calculations can be refined using frequency-dependent

models to finalize the design.

The optimization begins with the circuit model which then guides the synthesis of

the FSS geometry considering the inter-dependence between equivalent lumped ele-

ments. With the aid of the semi-analytical approach as demonstrated in Chapter 4, the

circuit and geometric parameters for 10 dB absorption in the spectral range from 200

to 400 GHz can be easily obtained. It should be noted that the air spacer as substrate

for microwave applications is replaced with the nearly lossless supporting dielectrics,

and thus additional seed simulations are required. The values for the equivalent cir-

cuit elements are tabulated in Table 5.1, and the realized geometrical dimensions are

listed in Table 5.2. The electrical lengths of the transmission lines omitted in Table 5.1

can be calculated from the physical thicknesses of the dielectrics as listed in Table 5.2.

As shown in Fig. 5.2, the reflection coefficients obtained from the circuit calculation in

MATLAB™ and full-wave simulation in HFSS™ agree reasonably well. To ease the
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Table 5.1. Equivalent circuit and transmission line characteristics.

R1 (Ω) R2 (Ω) L (pH) C1 (fF) C2 (fF) ε1 ε2

104.48 16.96 15.4 7.3 5.56 3.5 3.5

Table 5.2. Structural dimensions and material attributes.

p (µm) d (µm) a (µm) h1 (µm) h2 (µm) Rs (Ω/�)

193.4 163.2 121.6 94.3 73.6 16.5

fabrication, the dielectric substrate and superstrate both adopt polyimide. It is worth

noting that to cope with possible fabrication imperfections, about 15% tolerance in

band edges, as well as 2% tolerance in absorption level are applied.

5.2.2 Surface Impedance of Sub-Skin-Depth Metals

To realize the optimal surface resistance Rs, we can adopt a thin layer of noble metal

with a sub-skin-depth thickness. At terahertz frequencies, the damping effect of elec-

trons must be accounted for, and therefore, the frequency-dependent complex dielec-

tric permittivity of the metal can be represented as [65]:

ε(ω) = ε∞ −
ω2

p

ω2 + jγω
. (5.1)

For Ag: ε∞ = 4, ωp = 1.38 × 1016 s−1; γ = γ1 + βω2, γ1 = 2.73 × 1013 s−1, and

β = 5.9× 10−18 s−1 [65]. In the full-wave simulator HFSS™, silver can then be de-

scribed by the calculated frequency-dependent relative permittivity <{ε(ω)}, and the

conductivity σ = −ω={ε(ω)}, as illustrated in Fig. 5.3.

To obtain the desired surface resistance in Table 5.2 (i.e., 16.5 Ω/�), the thickness of

the silver layer can be approximated by 1/(Rsσ) = 1 nm, which specifically results in a

sheet impedance changing from 16.17+j0.61 Ω/� to 16.02+j1.68 Ω/� in the operation

spectrum from 165 to 460 GHz. As shown in Fig. 5.4, this small spectral variation does

not significantly affect the overall performance. Nonetheless, precisely fabricating a

1 nm silver layer is challenging.
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Figure 5.2. Simulated and calculated reflection coefficients for the proposed design. The

tolerances introduced in the design are indicated with arrows.

Considering the fact that the resistivity of silver is not high enough below 1 THz, lead

(Pb) is considered as an alternative, since it is a more lossy metal suitable for future

experimental validation. Similar to silver, the variations of permittivity and conduc-

tivity for lead are limited in the operation frequency range, thus its Drude model can

be simplified with constants (i.e., σ = 4.5× 106 Ω−1m−1, ε = −1800 [66]) without af-

fecting accuracy. The required thickness is then 13.5 nm, which specifically results in a

sheet impedance varying between 16.46+j0.07 Ω/� to 16.46+j0.19 Ω/� in the targeted

spectrum in the terahertz range.

5.2.3 Reliability Evaluation

In practice, the microfabrication technology for FSS lateral features is highly accurate.

Thus, for simplicity, it is assumed that the fabrication imperfections mainly come from

depositing the metallic FSS to a certain sub-skin-depth thickness and spin-coating the

dielectric substrates and superstrates for a given thickness. As shown in Fig. 5.5, with

±5% tolerance in h1, h2, and the thickness of the metal deposit l, the performance re-

mains largely preserved over the nominated bandwidth from 200 to 400 GHz at−10 dB

level of reflectivity.
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Figure 5.3. Frequency-dependent relative permittivity and bulk conductivity of silver (Ag).

The curves are obtained based on the Drude model up to 1 THz.

The sensitivity to TE and TM oblique incidence is demonstrated in Fig. 5.6, demon-

strating that the 10 dB absorption bandwidth is not significantly deteriorated up to an

incidence angle of 40 degrees for both the TE and TM modes. Typically, it is observed

that under oblique incidence the absorption level is reduced for the TE modes, while

the operation spectrum is shifted to the right for the TM modes.

5.3 Conclusion and Validation Progress

A concept of CA absorber is proposed in this chapter for terahertz waves. Instead of

using lossy printing inks, an appropriate surface resistance can be attained by imple-

menting a metallic layer with a sub-skin-depth thickness, using metal such as Ag or Pb.

Considering the frequency-dependent characteristics of metals, the Drude model has

been applied. The predicted 10 dB absorption bandwidth ranges from 165 to 460 GHz,

equivalent to approximately 94%. The design can tolerate potential fabrication imper-

fections and is not strongly sensitive to TE and TM oblique incidences.

A few preliminary results have been collected for experimental validation, and the

level of reflection is at approximately −5 dB. Such disagreement in simulation and
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measurement could originate from the uncertainties in the realized sub-skin-depth

metal thickness and the metal properties. The requirement in metal layer thickness

is less stringent for typical lossless FSS structures where the performance is not signifi-

cantly affected as long as their metallic patterns are much thicker than a skin depth. In

addition, metal properties are informed by different sets of parameters for the Drude

model that are found in the literature due to different metal fabrication techniques and

various measurement approaches. To ensure agreement in modeling and experiment,

the follow-up tasks will start with testing a series of Salisbury absorbers adopting ho-

mogeneous metal layers in sub-skin depth thickness. Based on this information, the
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proposed terahertz absorber can be designed accordingly assuming that the fabrica-

tion process is reproducible. This will be the subject of future work.
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Chapter 6

Mechanically
Reconfigurable Terahertz

Bandpass Filter

F
REQUENCY tunable filters are in demand for applications re-

quiring high spectral selectivity in a broad bandwidth. To this

end, frequency-selective surfaces (FSSs) have been widely applied

at microwave frequencies for spatial filtering, and varactors well serve the

purpose for electronic reconfiguration. For terahertz applications, however,

varactors in micron scale are unavoidably lossy to provide sufficiently small

capacitance. In this chapter, we propose a terahertz bandpass multi-layer

FSS with a finesse around 20 with 80% power transmission, while its op-

eration frequency is tunable in a 40% frequency range by varying an inter-

layer spacer thickness. The filter is insensitive to misalignment and can

maintain tunability under oblique angles of incidence. The design has been

fabricated and experimentally verified. The measured results closely match

the simulated transmission performance, and outperforms a series of no-

table reconfigurable filters available in the literature. The proposed design

is among the first few reconfigurable terahertz filters and the methodology

can be readily applied to other FSS-based structures.
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6.1 Introduction

Filters are among the most commonly embedded components in communications de-

vices. As opposed to a digital filter, a circuit-based analog filter achieves latency-free

response without adopting a powerful chip and, more importantly, it is free from fre-

quency aliasing. FSSs are periodic arrays that can be explicitly analyzed and synthe-

sized via equivalent circuit models with physical insights into their unit-cell geome-

tries. Therefore FSS-based structures have been widely applied for spatial filtering,

including but not limited to radar cross-section (RCS) reduction, radio-frequency in-

terference (RFI) mitigation and electromagnetic compatibility (EMC) [67].

FSS filters of high Q-factors, for example, are in demand in high-quality terahertz

communications [68], but their frequency band of operation is typically fixed. To

adaptively cover a broad terahertz spectrum, a series of narrowband filters can be at-

tached to a rotating wheel [42]. However, such tunability is limited to a number of

pre-determined discrete frequencies rather than a continuous frequency sweep. This

motivates the design of a continuously reconfigurable bandpass filter in a wide tera-

hertz frequency range with high selectivity. An FSS-based spatial filter interacts with

impinging waves from free space. Therefore, its stability to oblique incidence angles

and insensitivity to polarizations are essential [69,70]. Desirable filtering performance,

such as fast roll-off transitions, can be straightforwardly obtained by stacking multiple

FSS layers for high-order frequency response characteristics [32, 71, 72].

To obtain reconfigurability, a tuning mechanism for the unit-cell characteristics is re-

quired [1]. In the microwave frequency range, a well developed approach is by adopt-

ing semiconductor elements such as PIN diodes or varactors because of their low cost,

high response speed and broad dynamic ranges [43]. However, a dedicated bias net-

work is difficult to realize considering the large number of unit cells, and this ad-

ditional metallic structure will also unavoidably affect the frequency response of the

filter [43, 73, 74]. At terahertz frequencies, the cross-sectional area of a varactor is ex-

tremely small to deliver required capacitance but in turn elevating series resistance.

An alternative tuning method is to adopt novel phase-change materials (PCMs) such

as vanadium dioxide (VO2) which comes with a temperature-controlled transition be-

tween insulator and metal phases [75]. Although an FSS array can be tuned with a

contactless meander loop heater, this approach better suits an on/off operation rather
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than a dynamic frequency scanning within the spectrum of interest [34]. Combina-

tion of semiconductors and infrared photoexcitation can also provide reconfiguration

at THz [76], however the spectral reconfigurability is limited.

This chapter proposes a reconfigurable bandpass filter working in a strategic frequency

range between 220 and 330 GHz, envisaged for numerous short-range applications. Its

spectral tunability is realized by mechanically changing the distance between a pair

of identical double-layer FSS structures. The frequency response is narrowband with

sharp out-of-band rejection. Its high selectivity is insensitive to polarization and stable

to oblique impinging waves. The power transmitted through the filter is above 80%

across the tuning spectrum, which is even higher than the vast majority of existing

terahertz bandpass filters without reconfigurability. Fabrication tolerances are consid-

ered to ascertain a desired frequency response, and the impact of misalignment of the

multiple FSS layers has been examined.

6.2 Frequency Reconfigurable Bandpass Filter Design

A unit cell of the proposed frequency reconfigurable bandpass filter is illustrated in

Fig. 6.1(a). The design includes two identical double-layer FSSs separated by an air

spacer. A capacitive square patch FSS is on one side of the supporting dielectric, whilst

on the other side exists an inductive grid FSS. To minimize power dissipation, gold

and cyclic olefin copolymer (COC) are adopted for the metallic patterns and dielec-

tric layers respectively. As shown in Fig. 6.1(b), except for the unit-cell period p, only

one single design variable is needed for each FSS layer i.e., the gap width g for the

square patch and the aperture length a for the grid FSS layer. The capacitance C and

inductance L, as shown in Fig. 6.1(c), can be respectively determined by the geometri-

cal parameters g and a. The in-between supporting dielectric also affects the reactive

components and is modeled as a transmission line section.

The optimization begins with an equivalent topology including transmission line sec-

tions and circuit branches. For simplicity, the dielectrics and the metallic patterns are

firstly considered lossless. Aiming for selective bandpass filtering with high power

transmission over a broad tuning spectrum, the reactive components and transmis-

sion line attributes are optimized in the circuit analyzer ADS™. Then, each metallic

layer can be synthesized by individually matching the S-parameters obtained from the

ADS™ and the full-wave electromagnetic solver HFSS™.
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Figure 6.1. Proposed FSS-based frequency reconfigurable bandpass filter. (a) Perspective

view of the unit-cell geometry; (b) top view of the FSS patterns; (c) equivalent topology including

transmission lines and circuit branches. The optimized inductance L and capacitance C are 31.00 pH

and 1.68 fF respectively. Correspondingly, the synthesized dimensional parameters are p = 246 µm,

g = 22 µm, a = 175 µm, and hs = 120 µm. Permittivity εs of the supporting dielectric is 2.34.

As illustrated in Fig. 6.2(a), when the separation h0 of the paired double-layer FSSs is

increased from hmin = 50 µm to hmax = 400 µm with a 50 µm step, the transmission

coefficients obtained from the ADS™ and the HFSS™ fit closely. Here, hmin is chosen

for sufficient clearance between the two layers, whilst hmax is selected to avoid the

onset of a higher-order mode. A tiny shift between the circuit and full-wave results

can be observed due to the simplification of the circuit models. Specifically, there is a

small inductance in series to C for the square patch FSS, as well as a small capacitance

in parallel to L for the grid FSS.
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Figure 6.2. Power transmission of the proposed tunable FSS. (a) Initial lossless models; (b)

realistic models accounting for material losses. The color shading indicates a variation of air spacing

from 50 to 400 µm with a step of 50 µm. The dark and white shades indicate the proportion of

loss from the metallic FSS pattern and the dielectric substrate respectively. The objective frequency

range is between 220 and 330 GHz, and the buffering bands (grayed out) are reserved at the band

edges.

Although 300 nm for the gold FSS patterns is much thicker than the skin depth (161 nm

at 220 GHz) within the spectrum of interest, the surface impedance remains complex

and cannot be ignored. Also, the loss tangent tanδs = 0.0007 of the COC needs be taken
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Figure 6.3. Modified equivalent circuit including lossy transmission line sections and RLC

branches. RC and RL are determined by the surface impedance of gold and the FSS patterning,

whilst the loss tangent tanδs of the COC spacers also contributes to the power attenuation.

into consideration. As demonstrated in Fig. 6.2(b), the final design accounting for ma-

terial losses reaches 80% power transmission over the frequency tuning range from 220

to 330 GHz. Wide spectrum margins for the reconfiguration spectrum are preserved for

any possible imperfections in fabrication and assembly. Figure 6.3 is modified based

on Fig. 6.1(c), where the equivalent lumped resistances RC = 1.68 Ω and RL = 0.58 Ω

are included and the transmission line is characterized with attenuation.

6.3 Insights into Selectivity and Reconfigurability

In this section, the physical mechanisms of the highly selective reconfigurable band-

pass filter will be explained from the multiple-path interference and impedance match-

ing perspectives. In addition to the equivalent circuit modeling, these techniques can

aid understanding and support the design process.

6.3.1 Fabry-Perot Resonance Cavity

The overall structure can be considered as a Fabry-Perot resonance cavity as shown in

Fig. 6.4. According to the law of energy conservation, the power transmission can be

maximized when the multiple reflected waves result in destructive interference. Un-

like a common Fabry-Perot cavity, however, the FSS patterns on both sides of the COC

are different, thus the reflectivity of the proposed design is direction dependent. More

Page 90



Chapter 6 Mechanically Reconfigurable Terahertz Bandpass Filter

h
0

θ

θ

Patch FSS

Grid FSS

Φ
FSS

I II
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proportion of energy conveyed in each beam is visualized by the thickness of arrow. The reflection

phase change at the upper patch FSS for path I is balanced out by the reflection phase change at

the lower patch FSS for path II thus neither are represented in E.q. (6.1).

importantly, the double-layer FSS can delay or advance the phase of a transmitted

wave. For perfectly destructive interference, the phase difference between path I and

II must be π rad. Therefore, under normal incidence (i.e., θ = 0):

2 (ΦFSS − h0k0) = −π, (6.1)

where ΦFSS is the total phase change per transmission through the double-layer FSS,

h0 is the thickness of the air spacer, and k0 is the free-space wavenumber. Thus, the

thickness of the air spacer h0 for an operation frequency f0 can be therefore calculated

as:

h0 =
π + 2ΦFSS

4π

c
f0

. (6.2)

By de-embedding the Floquet ports to both side of a double-layer FSS, ΦFSS can be ex-

tracted from the full-wave simulation. Figure 6.5 includes a non-linear curve depicting

the correspondence between the air spacer thickness h0 and the operation frequency

f0. It can be used as a mapping tool to precisely indicate the spatial separation of the

paired double-layer FSSs for frequency reconfiguration.

Page 91



6.3 Insights into Selectivity and Reconfigurability

O
p

er
at

io
n

 F
re

q
u

en
cy

 (
G

H
z)

150

200

250

350

300

400

0 100 200 300 400 500

*
*

*

*

*

*
*

*

50 μm

400 μm

Air spacer thickness (μm)

Figure 6.5. Non-linear relationship between the air spacer thickness and the operation

frequency. The solid line is from E.q. (6.2). Each scatter point corresponds to an individual curve

as shown in Fig. 6.2

The selectivity can be evaluated by adopting the definition of finesse from a Fabry-

Perot cavity [77]:

F =
π
√

4R
(1−R)2

2
, (6.3)

where R represents the power reflection of a double-layer FSS from the square patch

side. Figure 6.6 includes bothR and F as functions of the operation frequency. As the

double-layer FSS on average attains a high level of reflectivity R ≥ 0.8, the selectivity

F of the filter reaches 20 approximately. Because R of the double-layer FSS remains

relatively stable across the operation frequency range, the variation of F is not signifi-

cant. Such coherence in selectivity during frequency tuning can be further verified by

calculating the full-width at half maximum (FWHM) which slowly varies from 3 to 4%

when h0 increases from 50 to 400 µm.

6.3.2 Impedance Matching with Smith Chart

As mentioned above, to maximize the power transmission in a passband, the reflection

needs to be suppressed. In essence, this is an impedance matching problem. The Smith
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Figure 6.6. Power reflection of the double-layer FSS and finesse of the reconfigurable filter.

The higher power reflection R results in the higher selectivity F .

chart provides a visualized solution that allows intuitive manipulation of the locus

indicating the reflectivity in the spectrum of interest [1, 21, 22, 25, 36].

As shown in Fig. 6.7(a), the circuit branches are in parallel thus an admittance Smith

chart would better fit the demonstration purpose. The loci for input admittance are

sequentially obtained at different reference planes as demonstrated from Fig. 6.7(b) to

(f). To begin with, the blue locus in Fig. 6.7(b) represents the input admittance of a

double-layer FSS plus the semi-infinite free space in the frequency range from 150 to

425 GHz. When adding an air spacer, the power transmission is not affected as shown

in Fig. 6.7(c), but however the phase varies and a rotation of the locus can be observed.

With an additional grid FSS as shown in Fig. 6.7(d), the locus is rotated anti-clockwise

and scaled down to the left half-plane. In Fig. 6.7(e), the COC layer then circulates and

stretches the locus to the right half-plane around its normalized admittance
√

εs. To

achieve a near perfect narrowband impedance matching, the outermost square patch

FSS rotates the locus clockwise and precisely makes it just pass through the center of

the Smith chart as shown in Fig. 6.7(f). Frequency reconfiguration can be obtained by

adjusting the thickness of the air spacer, which is equivalent to a change in the degree of

rotation of the locus in Fig. 6.7(c). The ultimate objective is still to ensure that the locus
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Figure 6.7. Admittance Smith charts for narrowband perfect impedance matching manipula-

tion. The loci span the frequency range from 150 to 425 GHz. Each locus from (b) to (f) corresponds

to the input admittance at a different transmission line position, as indicated in subplot (a).
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Figure 6.8. Frequency reconfiguration demonstrated with admittance Smith chart. Loci in

correspondence to different air spacer thicknesses pass through the center of the Smith chart at

different frequencies.

pass through the center of the Smith chart. This tuning results in perfect impedance

matching at different frequencies as demonstrated in Fig. 6.8.

Via this interactive approach, a highly selective and frequency reconfigurable band-

pass performance can be efficiently obtained for the proposed multilayer FSS-based

structure without onerous analytical calculation.

6.4 Robustness and Reliability

6.4.1 Misalignment of Unit-Cell Patterns

In practice, assembly misalignment in multi-layer FSS-based structures is unavoidable,

especially when the unit-cell geometries are in the sub-millimeter scale. Without the

aid of calibration instruments, it is necessary to examine the robustness of the proposed

design by randomly shifting the FSS layers as shown in Fig. 6.9. The impact of rotating

the FSSs is negligible as the unit-cell geometries i.e., square patch and grid, are fourfold

symmetric thus insensitive to polarization under normal incidence.

Although the corresponding full-wave simulated results in Fig. 6.10 shows a small shift

in the transmission peak, the transmission power is still no less than 80% from 220 to
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Figure 6.9. Filter assembly with random misalignment of FSSs. The bottommost layer is the

reference plane while the other FSSs are horizontally shifted with random two-dimensional vectors.
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Figure 6.10. Impact of unit-cell misalignment on reconfigurable bandpass filtering. Trans-

mission power is obtained from the full-wave simulator HFSS� for both the ideal and misaligned

assemblies as shown in Fig. 6.9. This outcome is typical because the inter-layer couplings are negli-

gible.
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330 GHz. This is not unexpected because the evanescent waves decay quickly away

from the periodic arrays [22]. In other words, the FSS layers can be approximated as

homogeneous surfaces of complex sheet impedance, where the inter-layer couplings

are weak and negligible.

6.4.2 Stability to Oblique Impinging Waves

Under oblique incidence, the lengths of transmission paths for EM waves in the air

spacer and the supporting dielectrics will be increased, whilst the equivalent permit-

tivities will be rescaled differently for the TE and TM modes. This prompts the need

to verify the stability of the frequency response to oblique impinging waves. The full-

wave simulated results, for extreme COC thicknesses hmin and hmax at angles of inci-

dence from 0° to 45° with a 15° step, are illustrated in Fig. 6.11(a) to (d).

Despite the fact that the impact on selectivity is indistinguishable, oblique incidence

leads to an upward shift of the operation frequency as commonly seen in FSS-based

designs. It also can be observed that the frequency drift is less severe for the TE mode,

whilst the level of power transmission for the TM mode remains at least 80%. The

proposed design is able to secure the tuning frequency range from 220 to 330 GHz up

to 30°. Indeed, by extending the thickness of the air spacer to 500 µm as illustrated in

Fig. 6.11(e) to (f), this frequency reconfigurability can be guaranteed up to 45°.

6.5 Experimental Validation

6.5.1 FSS Fabrication and Filter Assembly

Fabrication of the double-layer FSS has been performed by our collaborators at RMIT.

The process starts with spin coating a 5 µm COC layer at 3000 rpm on the PMMA

(methyl methacrylate)/Si wafer. The grid FSS is patterned on this thin COC base as

shown in Fig. 6.12(a). Then, the supporting COC is independently fabricated and

bonded to the grid array as shown in Fig. 6.12(b). Lastly, the square patch FSS is added

on top of the supporting COC as shown in Fig. 6.12(c), where the grid FSS can be seen

in the blurred background. The extra 5 µm COC adopted at the beginning of this pro-

cess is unavoidable because the sample buildup is one directional and the FSS cannot

be free-standing. However, it imposes a negligible effect when attached to the grid FSS

side which is inductive thus not sensitive to a change in the adjacent dielectric.
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Figure 6.11. Power transmission for TE and TM modes under oblique incidence. different

angles of incidence, (a-d) show both modes for hmin=50 µm and hmax=400 µm respectively. Then,

the performance for an additional separation h0=500 µm (black curve) is also included as shown in

(e-f), which roughly covers the spectrum of interest.
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p=246 μm (a) p p(b) (c)

Figure 6.12. Observations under the optical microscope during FSS fabrication process. (a)

Grid FSS on a thin COC; (b) thick COC spacer on top of the grid FSS; (c) added square patch FSS.

Each dashed red square indicates one unit cell, and (c) corresponds to the solid red rectangular area

in (b). All FSSs adopt 300 nm gold as mentioned earlier. Color variation is due to lighting condition.

The schematic diagram for filter assembly is illustrated in Fig. 6.13. The metallic screw

holder with etched scales allows a fine tuning of layer separation down to a 10 µm step.

However, because of the thickness introduced by the FSS samples, this holder must be

carefully calibrated by fitting a pair of measured and full-wave simulated transmission

coefficient curves.

Mechanical Tunning

(10 μm/div)

A
tta
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 F

SS S
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A
ttach FSS Sam

ple

Top View

Bottom View

Figure 6.13. Reconfigurable bandpass filter assembly on a mechanically tunable holder. The

mechanical holder can be tuned from 50 µm to 500 µm continuously and the resolution is 10 µm per

division. The top and bottom views of the filter are also included.
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Sample Holder
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Figure 6.14. Setup for experimental verification of the proposed design. The system works in

the frequency range from 220 to 330 GHz.

6.5.2 Equipment Setup and Measurement

The overall setup of the transmission path, as shown in 6.14, includes a vector network

analyzer (VNA), two VNA extension modules, transmitting and receiving antennas,

and guiding optics. This figure is for illustrating the equipment setup only, which was

not taken during the measurement progress. A well focused beam of 2 mm diameter

can be obtained by aligning the horn antennas and focusing lenses with the aid of the

graded slide rail. All the measured results are normalized to a transmission with the

same setup but with the absence of the sample.

The measured results are shown in 6.15 where the double-layer FSSs are separated

from 100 to 300 µm with a 50 µm step. The extra 5 µm COC base, due to the restriction

in fabrication technique, has been considered in these simulation results. Overall, the

measured results well match the simulations. However slight shifts in frequency can
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Figure 6.15. Measured power transmission of the proposed reconfigurable bandpass filter.

The mechanical holder is discretely tuned from 100 µm to 300 µm. The measured data are filtered

with a time-gating window in the time domain to remove spurious reflections from other optical

components.

be observed because of the imperfections of the mechanical tuner. On average, power

attenuation from the simulated results is at most 5% of the total incident power, which

is mainly caused by the fabrication tolerance in geometric dimensions of the double-

layer FSSs. The slightly broadened and attenuated peaks may be also due to the fact

that a focused beam is used which has a broader angular spectrum compared to a

collimated Gaussian beam [78, 79].

A few notable experimentally validated microwave and terahertz reconfigurable fil-

ters are listed in Table 6.1 in terms of FSS geometry, tuning mechanism, spectral range,

and insertion loss. The proposed design adopts fundamental unit-cell shapes and two

identical double-layer FSS without using novel materials such as liquid metal [81]. Its

tuning mechanism is mechanical and as such, no bias network is required, which sim-

plifies modeling and implementation. The proposed filter has the widest tuning range,

and its insertion loss (IL) is among the lowest, despite its high operation frequencies.
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Table 6.1. Comparison with other frequency reconfigurable filters.

Geometry FSS Layers f0 Mechanism Tunability (%) IL (dB)

[15] 3D Spring NA 3.5 GHz Mechanical 17 <1

[43] Non-Fundamental 3 4.45 GHz Varactor 34 3-6

[80] Patch and Grid 5 5.25 GHz Varactor 10 1.6-7.2

[81] Patch and Grid 5 10 GHz Mechanical 32 <1

[42] Crosses * 1.25 THz Mechanical Discrete 1.4

Proposed Patch and Grid 4 275 GHz Mechanical 40 <1

* One layer including 16 different cross FSS samples.

6.6 Conclusion

A multilayer FSS-based reconfigurable bandpass filter has been proposed in this chap-

ter. With high and consistent selectivity, the filter operates in a wide frequency range

from 220 to 330 GHz where the power transmission remains at least 80%. This fre-

quency range is equivalent to 40% fractional bandwidth and overlaps with an atmo-

spheric window that allows free-space transmission with low loss.

This design adopts fundamental unit-cell patterns and a pair of identical double-layer

FSSs, and thus can be precisely analyzed and synthesized with simple equivalent RLC

circuit models. From different physical perspectives, namely the multi-path interfer-

ence and impedance matching, its selectivity and reconfigurability have been explicitly

deduced and explained, which in-turn can aid the synthesis. In addition, the robust-

ness against fabrication tolerances and reliability under oblique angles of incidence

has been verified by full-wave simulations. The filter is capable of maintaining the

full-band reconfigurability up to 45° angle of incidence.

The experimentally validated power transmission shows a close agreement with the

simulated results regarding selectivity, tuning range and power efficiency. Compared

to the state-of-the-art designs in the literature, this work demonstrates the widest fre-

quency reconfigurable range of 40% and the lowest insertion loss at less than 1 dB. The

proposed design can be implemented for multi-band high-quality terahertz telecom-

munications.
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Chapter 7

Summary and Outlook

T
HE research work presented in this thesis has been divided into

two major parts based on the operation frequencies. The first part

has focused on design methods for CA absorber in the microwave

spectrum. Without exploring complicated FSS shapes, the bandwidth-to-

thickness ratio of an absorber can be enhanced either by adding a proper

impedance matching superstrate or by exhaustively exploiting a funda-

mental topology optimized with a semi-analytical algorithm. The second

part has firstly demonstrated a realistic approach to controlling surface re-

sistance for broadband absorbers in the terahertz spectrum, then has illus-

trated and validated a reconfigurable filter design adopting lossless FSSs.

This chapter concludes the thesis and suggests possible future research top-

ics.
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7.1 Circuit Analog Microwave Absorbers

7.1.1 Chapter 3: Absorber Adopting Impedance Matching Super-

strate

Background: For planar absorbers, the trade-off between relative bandwidth and nor-

malized thickness at a specified level of reflectivity is mathematically explained by

Rozanov’s criterion. In contrast to classic designs such as Jaumann layers, FSS-based

circuit analog (CA) absorbers can achieve improved absorption performance with-

out increasing their thickness profile. To further approach the theoretically maximal

bandwidth-to-thickness ratio, CA absorbers featured with a variety of complicated

unit-cell patterns have been reported in the literature. The supporting dielectrics are

indispensable components for CA absorbers, however, their exploitation for optimized

designs has been neglected in the literature.

Methodology: From the energy conservation perspective, the absorption performance

can be improved if the reflection is suppressed. The design problem hereby becomes

the impedance matching to free space. A dielectric superstrate can be regarded as a

transformer which is among the simplest impedance matching techniques in the trans-

mission line (TL) theory. A fundamental square-patch FSS is also adopted for simplic-

ity in analysis and synthesis. The Smith chart can be used as a visualization tool that

aids the choices of substrate and superstrate.

Results: The experimentally validated single-FSS-layer absorber obtains a relative band-

width of 1:5.32 at −10 dB level of reflectivity. Defined by the ratio of theoretical min-

imal thickness to the realized thickness for such absorption performance, its figure of

merit (FoM) of 88.26% is superior to the existing designs based on more complicated

FSS shapes [22].

Original Contribution: It is firstly demonstrated with circuit models and then verified

in the full-wave simulations that bandwidth enhancement and thickness reduction

can be simultaneously achieved with a proper impedance transformer. The optimal

permittivity and thickness for the superstrate can be systematically obtained from the

Smith chart. To maximize the relative bandwidth, it is also proven that an air spacer is

the best choice for the substrate.

Future Work: In principle, it can be expected that the dielectric superstrate would be

able to improve the bandwidth-to-thickness ratio of existing CA absorbers adopting
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any FSS patterns. It should be noted that, however, the equivalent capacitors of the

FSS will be affected by the superstrate, thus the absorber structure must always be op-

timized as a whole. The Smith chart is a qualitative tool with limited accuracy in prac-

tice. Therefore, a series of quantitative expressions would be preferable for choosing

dielectrics. Moreover, according to Munk [25], a dielectric cover could also be bene-

ficial to absorption stability under oblique incident waves. It would be of interest to

further investigate if the superstrate can also contribute to the stability under oblique

incidence.

7.1.2 Chapter 4: Design Approach for Circuit-Analog Absorbers

Background: To obtain a broad operation bandwidth, the majority of CA absorber de-

signs focus on exploration of FSS shapes with multiple resonances. However, with

larger degrees of freedom (DoF) in the unit-cell geometry, their optimization rapidly

become computationally prohibitive. Although there exist a number of analytical for-

mulas adapted from microstrip lines for a few specific FSS shapes, these expressions

are sophisticated and generally not sufficiently accurate. Before evolving a fundamen-

tal FSS shape into a complex one with more design variables, it is important to ensure

that the potential of the existing topology has already been fully exhausted. In ad-

dition, when comparing a thin absorber of narrow bandwidth to a thicker wideband

design, the FoMs must be calculated based on Rozanov’s theory.

Methodology: A CA absorber is investigated with regard to its unit-cell geometry,

lossless supporting dielectrics and sheet resistance. Regression functions for each part

can be individually developed by matching the Z-parameters of the equivalent circuit

calculations to the full-wave simulations, and then combined as a whole based on lin-

earity, scalability and independence. The versatility of this design method is verified

by evolving the existing fundamental FSS shape (square patch) with an additional DoF

(square ring).

Results: For polarization-independent absorption at 10 dB level, the fabricated CA ab-

sorber based on square rings achieves a relative bandwidth of 144.15% despite of its

structural simplicity [32]. Such absorption performance is insensitive to oblique inci-

dence up to 50 degrees for both TE and TM modes. It is illustrated that the proposed

design outperforms other single-FSS-layer absorbers in the open literature.
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Original Contribution: An efficient and effective optimization approach for CA ab-

sorbers has been developed by systematically integrating analytical, empirical and

numerical techniques. With the obtained semi-analytical algorithm, the number of

full-wave simulations required for a near global optimum can be dramatically reduced

from millions to a few hundreds. On such basis, an absorber topology can be config-

ured for any specified absorption performance within a feasible range, which allows

a direct comparison to the state-of-the-art designs. It also suggests that more com-

plicated and calculation-intensive unit-cell geometry may not necessarily guarantees

improved larger bandwidth-to-thickness ratio.

Future Work: According to a series of optimized designs aiming for 10 dB absorption

with bandwidth ranging from 50% to 150%, the material attributes, including rela-

tive permittivities of the supporting dielectrics and surface resistances of the FSS, are

conjectured to be monotone functions regardless of the unit-cell patterns. The design

parameters may be tabulated to indicate the proper choice of materials for specified

absorption performance so that the DoF can be further significantly lowered. Similar

to a square ring, a cross is another fundamental FSS shape which can be regarded as an

evolved square patch with corners cropped. It would be of interest to compare these

two FSS shapes and clarify the differences in the achievable performance.

7.2 FSS-Based Structures for Terahertz Applications

7.2.1 Chapter 5: Terahertz Absorbers with Sub-Skin-Depth Metal

Background: Electromagnetic (EM) absorbers also find wide applications in the tera-

hertz frequency range. The patterned resistive sheets are essential for the CA absorber

designs, where the EM power is effectively converted into heat. However, microfabri-

cation technologies applied for THz devices do not well accommodate the commonly

used resistive inks for silk-printing lossy FSS patterns, whilst the frequency-dependent

material attributes such as conductivity can be significantly different from their values

in the microwave range.

Methodology: In terahertz applications, accurate fabrication for of planar metallic

structures is mature. Therefore, as an alternative resistive sheet, a piece of noble metal

in sub-skin-depth thickness can be used. Based on the frequency-dependent conduc-

tivity described by the Drude model, surface resistance can be manipulated by control-

ling the thickness of metal deposition. To obtain practically large enough equivalent
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lumped resistance, noble metals of relatively low conductivity (e.g., titanium, lead,

etc.) and FSS shapes with narrow conductive area (e.g., square ring, cross, etc.) are

preferable.

Results: At 10 dB level of absorption, the operation spectrum ranges from 165 to 460

GHz which is equivalent to a relative bandwidth of 94% approximately [33]. The pro-

posed absorber is robust to fabrication tolerance and attains a stable absorption perfor-

mance under oblique impinging waves up to 40 degrees.

Original Contribution: Instead of exploring complicated unit-cell geometries or seek-

ing novel materials, the proposed CA absorber creatively adopts metallic square ring

FSS in sub-skin-depth, which satisfies the readily available microfabrication techniques.

Future Work: The first few fabricated samples have been measured, but however, their

absorption performances do not closely match the simulated results. The issue is likely

related to calibration of metallic deposition for desired sub-skin depth or because of

the parameters for the Drude model adopted from the literature that is different from

the actual metal in use. In order to bridge the gap between simulation and measure-

ment, a series of homogeneous metal surfaces in different nominated thicknesses can

be firstly fabricated. Then, their surface resistances can be deduced based on the mea-

sured S-parameters. Thus, the relationship between sub-skin-depth metal thickness

and surface resistance can be established. The CA absorber can be designed on such

basis assuming that these metallic sheets can be accurately reproduced.

7.2.2 Chapter 6: Mechanically Reconfigurable Terahertz Bandpass

Filter

Background: FSS-based spatial filters are commonly seen in communications devices.

In particular, reconfigurable designs are highly desirable since they may simultane-

ous achieve high selectivity and wide frequency tuning range. However, for terahertz

applications, micro-fabricated varactors incur very high dissipation due to a small PN-

junction cross section required by a small capacitance. Even with the aid of novel

materials, practical reconfigurable terahertz filters are rarely reported in the literature.

Methodology: A pair of identical double-layer FSSs separated by an air spacer can

be regarded as a variant of Fabry-Perot cavity. The power transmission at a specific

frequency can be maximized if multiple superposed reflected waves cancel out. This

operation frequency can be shifted by changing the spacing in-between these FSSs,
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whilst the finesses depends on the transmission coefficient of each double-layer FSS.

The underlying mechanism for selectivity and reconfigurability can be intuitively il-

lustrated with an admittance Smith chart which effectively facilitates the optimization.

Results: The proposed reconfigurable filter demonstrates a highly selective and con-

sistent bandpass performance over a broad frequency range. The targeted tuning spec-

trum can be maintained under oblique impinging waves up to 45 degrees. It has been

experimentally verified from 220 to 330 GHz that the power transmission remains

above 75%. In comparison to the existing frequency reconfigurable filters, this design

achieves the widest operation spectrum and the lowest insertion loss.

Original Contribution: This design is among the first few tunable free-space terahertz

bandpass filters reported in the open literature. Two design approaches from analytical

and graphical aspects are explicitly demonstrated in parallel for analysis and synthesis.

Future Work: If the proposed design is rescaled for microwave applications, the level

of transmission is expected to be higher because the metallic FSSs will be less lossy.

Furthermore, when combined with varactors, the tuning range of this prototype may

be broadened. It should also be noted that the periodicity for the square patch and

grid FSSs are in a ratio of 1:2, which allows more flexibility in synthesizing the equiv-

alent circuit elements. Indeed, the ratio does not necessarily need to be an integer. Al-

though the modeling in a full-wave simulator becomes difficult, the S-parameters can

be precisely calculated with the previously obtained semi-analytical functions. With

this additional flexibility, the tuning range and selectivity could be improved.

7.3 Concluding Remark

Although FSS-based structures can be analyzed and synthesized with the aid of equiv-

alent circuit models, a number of challenges still exist. Firstly, it is often impossible to

explore a complicated unit-cell pattern in a broad spectrum with a simple RLC circuit.

In addition, explicitly modeling all the geometric features will elevate the computation

cost dramatically for global optimization. Secondly, the FSS shape must be fourfold

symmetric to obtain polarization insensitivity, however this also leads to interdepen-

dence among equivalent circuit elements. For example, increasing the gap width of

a square patch FSS will reduce the equivalent capacitance whilst simultaneously in-

creasing the equivalent inductance. Thus, optimal circuit parameters for a desired fre-

quency response may not be fully realizable. Thirdly, the Floquet ports in the full-wave
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simulators limit the ratio of periodicities for multiple FSS layers to rational numbers.

Therefore, versatility in synthesizing equivalent circuit elements is restricted. Fourthly,

the physical mechanisms for equivalent capacitance or inductance in FSSs differ from

those in microstrip lines, as the electromagnetic wave is perpendicularly transmitted

through the FSS rather than being guided along it. With regard to the same geometric

shapes, the empirical formulas adapted from the microstrip line have been verified to

be not sufficiently accurate for FSSs in general. Lastly, the dielectric spacers will have

an impact on the equivalent circuit components for FSSs and react differently depend-

ing on the angle of oblique incidence for TE and TM modes.

All the above research challenges are crucial and fundamental but not yet fully re-

solved in the open literature. Furthermore, the built-in optimization tools in the full-

wave simulators do not always converge to a global optimum. In contrast, efficiency

and reliability of the classic techniques, such as the Smith chart, remain valuable and

verified tools for wideband designs.

Besides stealth and interference mitigation, specific industrial applications of wide-

band planar absorbers need be explored. For example, they can be adapted in compact

RF circuit to improve electromagnetic compatibility [18]. The reconfigurable bandpass

filter can be modified for high resolution micro-imaging [34] in addition to short range

terahertz communications as mentioned.
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