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Non-specific lipid transfer proteins (nsLTPs) are small, basic proteins that are characterized
by an eight-cysteine motif. The biological functions of these proteins have been reported to
involve plant reproduction and biotic or abiotic stress response. With the completion of the
barley genome sequence, a genome-wide analysis of nsLTPs in barley (Hordeum vulgare L.)
(HvLTPs) will be helpful for understanding the function of nsLTPs in plants. We performed a
genome-wide analysis of the nsLTP gene family in barley and identified 70 nsLTP genes,

Keywords: which can be divided into five types (1, 2, C, D, and G). Each type of nsLTPs shares similar
Lipid transfer protein exon and intron gene structures. Expression analysis showed that barley nsLTPs have
Barley diverse expression patterns, revealing their various roles. Our results shed light on the
Classification

phylogenetic relationships and potential functions of barley nsLTPs and will be useful for
Sequence analysis

Gene expression

future studies of barley development and molecular breeding.
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1. Introduction transferring lipids between membranes [3]. nsLTPs are abun-

dant in plant species and represent 4% of soluble protein.

Lipids are important in plant growth and development. They
function in many physiological pathways, especially in stress
response, energy storage, and cuticle layer formation [1,2].
Non-specific lipid transfer proteins (nsLTPs) are small, basic
proteins, characterized by eight conserved cysteine residues
with the general form C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C.
They also have a tunnel-like hydrophobic cavity, capable of
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Investigations of nsLTP classification, structure, gene expres-
sion, and chromosome locations will be helpful for revealing
their functions in plant development and physiological
adaption to environmental changes.

nsLTP has an N-terminal signal peptide, guiding proteins
being translocated between intracellular membranes or se-
creted to the apoplastic space. Each nsLTP structure is
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maintained through disulfide bonding. The hydrophobic cavity
binds lipids and other molecules [4]. The secondary structure
endows nsLTP with heat and chemical resistance. The tertiary
structure of nsLTPs was determined by X-ray crystallography and
nuclear magnetic resonance [4]. nsLTPs have a high content of a-
helices, with a tertiary fold characterized by an eight-cysteine
motif (8CM). A large number of H bonds contributes to protein 3D
structure, helping maintain stability to thermal or chemical
effects [5]. LTP1 and LTP2 protein structures have been relatively
well studied. The two families’ disulfide bridges have different
pairings [6]. For LTP1, the cysteine residues 1-6 and 5-8 are paired,
differing from the pairing of cysteine residues 1-5 and 6-8 in LTP2.
The distinct manners of disulfide bonding lead to different
tertiary structures in LTP1 and LTP2, resulting in one long
tunnel-like cavity in LTP1 and two adjacent hydrophobic cavities
in LTP2 [4]. Many nsLTPs have a glycosylphosphatidylinositol
(GPI) anchor [3].

Categorization of nsLTP based on phylogenetic analysis
provides comprehensive information and facilitates nsLTP
functional analysis. Based on the length of the mature protein
and the molecular weight, nsLTPs have been divided into two
major groups: LTP1 (90 amino acids, about 9 kDa) and LTP2 (70
amino acids, about 7 kDa). Boutrot et al. [7] classified nsLTPs
in rice (Oryza sativa) and Arabidopsis thaliana into nine types (I-
IX). In this classification system, nsLTPs are grouped accord-
ing to sequence similarity and pattern of spacing between the
eight cysteine residues. This classification method has been
applied to studies of other species with some modifications
[8,9]. Liu et al. [8] clustered Solanaceae nsLTPs in Boutrot’s
system, adding a new group, X. Li et al. [9] included a novel XI
group in classifying Brassica rapa nsLTPs.

The classification methods described above cannot include
all identified nsLTPs, especially those from non-flowering plant
nsLTPs, owing to low sequence similarity. Edstam et al. [3]
developed a new classification system of plant nsLTP families
based on intron positions, GPI modification sites, Cys spacingin
8CM, and sequence similarity. In this classification system, the
well-established groups based on previous methods, including
type 1 and type 2, are retained. Others are classified into several
subfamilies: types C-K. Some types overlap with those de-
scribed in Boutrot’s system, while others comprise new groups
in non-flowering species: types F, H, ], and K. Among all the
types, D and G occur in early land plant species such as mosses
and tracheophytes. Some other types are restricted to a single
species: for example, type H is found only in Selaginella
moellendorffii. nsLTPs are distributed widely in land plants, but
are not present in algae and species outside of the plant
kingdom [3]. It is likely that nsLTP genes were acquired when
plants colonized land. As land plants evolved, novel nsLTP
types arose. Edstam’s classification system gives more infor-
mation for further functional analysis and a more complete
understanding of nsLTPs’ evolutionary history of nsLTPs are
expressed in diverse plant organs and tissues. In barley
(Hordeum vulgare Linnaeus), nsLTP transcripts were initially
observed in the barley aleurone layer. Later, expressions of
barley nsLTPs were also detected in vegetative tissues. In other
species, nsLTPs have been reported to be expressed in seeds,
seedlings, leaves, stems, anthers, microspores, and ovaries
[10,11]. The transcription of many nsLTPs is induced by biotic or
abiotic stresses [12-14].

Because nsLTPs are targeted to the domain most suitable for
conducting their function, nsLTP localization is of great
importance in functional studies. One key element determining
nsLTP subcellular localization is the signal peptide that induces
the secretion of many nsLTPs outside the cell [15] such as those
found in barley [16], Arabidopsis (Arabidopsis thaliana) [17],
tobacco (Nicotiana tabacum) [18], grapevine (Vitis vinifera) [19],
and rice (Oryza sativa) [18]. Using various biological methods
such as proteomics [18], cell culture [20], and immunochemical
[21] and fusion protein assays [22], nsLTPs have been shown to
have various intracellular locations, such as the cell wall [23] or
the plasma membrane [22], even though nsLTPs are targeted
mainly to the extracellular space.

The various locations and diverse expression patterns of
nsLTPs suggest their involvement in a wide range of biological
functions. In fact, nsLTPs have been shown to be involved in
pathogen resistance [24], cutin and wax assembly [25], and plant
growth and development [26], as well as being food allergens [27].
DIR1 in Arabidopsis has been shown [28] to be involved in long-
distance signaling for pathogen defense. Moreover, the expres-
sion of some nsLTP genes is responsive to environmental
influences, such as freezing stress [29], salinity [30], and drought
[31], suggesting their role in mediating responses to stress during
plant growth and development [4]. Overexpression of LTP3
enhances drought and freezing stress tolerance in Arabidopsis
[32]. The CALTP1 gene in pepper has been predicted [33] to
increase plant tolerance to salinity and drought in developmental
stages. It has been suggested [3] that nsLTPs participate in cutin
and wax assembly. In Arabidopsis and Brassica oleracea, the
expression of nsLTPs is higher in young tissue, where surface
waxes are actively synthesized. Previous study [3] has confirmed
that nsLTPs are involved in plant pollen development and in
recycling endosperm lipids. OsC6 in rice plays a crucial role in
regulating postmeiotic anther development [10].

In barley, a major staple food and feed source, nsLTPs play
essential roles in plant development and stress response.
However, only a small proportion of barley nsLTPs have been
well characterized. The lipid transfer protein LTP1 was
isolated from the aleurone layer and identified as a novel
amylase/protease inhibitor [16]. Two nsLTP genes have been
isolated from barley leaves and coleoptile, in which they are
specifically expressed [34]. The LTP4 gene promoter from
barley responds to ABA treatment and cold treatment [35].
Several barley nsLTP genes are upregulated in response to
infection by fungal pathogens [36]. The three-dimensional
structure of barley nsLTP has been reported [37]. No genome-
wide study of the barley nsLTP gene family has yet been
reported. The recent release of a high-quality barley reference
genome sequence [38-40] makes it feasible to conduct a
comprehensive analysis of barley nsLTP genes, which is the
basis for further functional characterization.

In this study, we identified 70 nsLTP genes in the barley
genome. To overcome the difficulty in phylogenetic analysis
of nsLTPs due to short and changeable sequences, we grouped
these barley nsLTPs into five types based on the sequence
identity of mature proteins, GPI modification sites, intron
positions, and Cys spacing in 8CMm as well as on comparison
with nsLTPs of rice and Arabidopsis. We performed a detailed
analysis of protein characteristics, chromosome locations,
gene expression, and phylogenetic events.
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2. Materials and methods

2.1. Retrieval and identification of nsLTPs from the barley
genome

Identification of barley nsLTPs from the plant genomics
database Phytozome (https:/phytozome.jgi.doe.gov/pz/portal.
html) [41] was performed by key word searching in the barley
genome. Phytozome v12.1.6 hosts 93 assembled and annotated
genomes, including the annotated barley (Hordeum vulgare cv.
Morex) genome (International Barley Sequencing Consortium
annotation rl on assembly rl). Repetitive sequences were
removed. The downloaded protein sequences were manually
examined for an eight-cysteine motif (8CM) and those lacking
such a motif were removed. Multiple sequence alignment of the
candidate nsLTPs was then performed. Genes showing large
sequence differences from other genes were excluded. The
remaining candidate proteins were submitted to SMART (http://
smart.embl-heidelberg.de/) [42] to confirm the presence of the
LTP domains.

2.2. Primary sequence analysis

All identified nsLTPs were submitted to SignalP 4.1 (http://
www.cbs.dtu.dk/services/SignalP/) [43] for signal peptide
prediction using the default cutoff. All full length proteins
submitted to ProtParam (https://web.expasy.org/
protparam/) [44] for calculating number of amino acids,
molecular weight, and theoretical pl. Intron position was
obtained from sequence information provided by
Phytozome, which was determined from publicly available
barley full-length cDNAs and RNA-seq data generated in the
International Barley Genome Sequencing project (the ge-
nome annotation workflow is described in [38,40]). GSDS
software (http://gsds.cbi.pku.edu.cn/) was used to illustrate
gene features. For better visualization and comparison, 5’
UTR sequences were removed. The prediction tool GPI
Modification Site Prediction (http://mendel.imp.ac.at/sat/
gpi/gpi_server.html) was used to check or the presence of
GPI anchor sites. To predict subcellular targeting, the
TargetP 1.1 (http://www.cbs.dtu.dk/services/TargetP/) [45]
was used. Gene distribution on chromosomes was drawn
manually based on data from Gramene (http://ensembl.
gramene.org/Hordeum_vulgare/Info/Index) [46].

were

2.3. Sequence alignment and phylogenetic reconstruction

Multiple alignment of the 8CM motifs of nsLTP proteins was
performed with MUSCLE [47], using default settings. Based on
these alignments, a maximume-likelihood tree was generated
with Phyml 3.0 in SeaView [48] using the following parame-
ters: LG model; aLRT (SH-like) branch support; amino acid
model equilibrium frequencies: model-given; optimized in-
variable sites and across-site rate variation; tree searching
operations: NNI; and starting tree: BioNJ with optimized tree
topology. The rice and Arabidopsis homologs used were those
reported by Edstam et al. [3]. The rice and Arabidopsis nsLTP
protein sequences were downloaded from Phytozome and
TAIR (http://www.Arabidopsis.org/) [49], respectively.

2.4. Gene expression analysis

The expression profiles of nsLTPs genes were compared. RNA-
seq data of different barley tissues or the same tissues at
different development stages were obtained from BARLEX
(Barley Genome Explorer) (https://apex.ipk-gatersleben.de/
apex/f?p=284:10) [50]. A heat map showing expression differ-
ences on the log, scale was generated with the gplots package
in R (https://www.r-project.org/). A hierarchical clustering
algorithm was used to identify similar patterns in expression
profiles.

3. Results
3.1. The barley nsLTP gene family is composed of 70 members

A total of 70 unique nsLTPs were found in the barley genome
[14]. To obtain a full and nonredundant set of nsLTPs in barley,
barley protein-encoding genes were extracted from
Phytozome. Initially, 90 potential HvLTPs were identified in
the barley genome sequence by keyword searching, following
the removal of sequences with incomplete 8CM domains.
Each of the candidate protein sequences was then manually
assessed to identify an eight-cysteine pattern. Among the 90
candidates, two containing no 8CM domain, 13 with incom-
plete patterns, and two redundant sequences were removed.
Three others with large sequence differences from the others
were also removed on the basis of the sequence alignment,
leaving 70 proteins selected as barley nsLTPs.

Classification of the identified barley nsLTPs was per-
formed based on sequence identity of mature proteins, GPI
modification sites, intron positions, Cys spacing in 8CM, and
comparison with nsLTPs of rice and Arabidopsis. The 70
HvVLTPs were classified into five types: 1, 2, C, D, and G. Type
G proteins accounted for the largest proportion of barley
nsLTP proteins: 31 nsLTPs, comparable to the 27 (of 78) in rice
and 29 (of 71) in Arabidopsis (Table S1). There were eight type 2
proteins and only one type 1 protein in barley, fewer than in
rice and Arabidopsis. Of the 70 barley sequences, 27 were
assigned to type D, more than the corresponding numbers in
the other two species. The numbers of type C sequences was
low in all three species. The barley nsLTPs were named
according to their types. The gene encoding a barley type 1
nsLTP was named HuLTP1, with corresponding numbers being
assigned for the other types.

3.2. Characteristics of lipid transfer proteins in barley

The characteristics of the 70 HVLTPs are summarized in Table
1. Of the 70, 47 were predicted to have a signal peptide, with
length ranging from 19 to 49 amino acids. Most of the proteins
were predicted to lie in the secretory pathway, whereas some
were predicted by signal peptide analysis to be localized in the
mitochondria. Barley nsLTPs are small and of low molecular
weights ranging from 9439.32 to 46,722.68 Da. Types 1, 2, and
D were mostly 10 kDa proteins whereas types G and C were
mostly 20-kDa proteins. The molecular weight of type G was
much higher than that of the other types because of the C-
terminal extra amino acid residues. Judging from the pI value,
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Table 1 - Occurrence and features of nsLTPs in barley.

Name? Signal peptide Mature protein GPI€ Number of introns
Amino acid Target® Amino acid Mass (Da) pl
Type 1
HvLTP1.1 28 s 122 12,306.42 8.98 No 1
Type 2
HvLTP2.1 m 133 13,939.36 8.96 No n/a¢
HvLTP2.2 m 122 12,652.69 9.46 No n/a
HvLTP2.3 28 s 96 9995.91 8.68 No 0
HvLTP2.4 28 s 96 10,004.95 9.03 No 0
HvLTP2.5 m 123 12,844.08 9.32 No n/a
HvVLTP2.6 m 124 12,825.04 9.68 No n/a
HvLTP2.7 23 S 91 9439.32 8.72 No 0
HvLTP2.8 28 s 100 10,243.07 6.78 No 0
Type C
HvLTPcl 44 s 230 22,988.88 8.33 No 1
Type D
HvLTPd1 24 s 127 13,983.17 8.02 No 1
HvLTPd2 22 s 109 11,944.25 8.69 No 1
HvLTPd3 20 S 107 11,760.01 8.69 No 1
HvLTPd4 Other 111 12,026.97 9.06 No n/a
HvLTPd5 20 S 107 11,762.02 8.69 No 1
HvVLTPd6 Other 113 No n/a
HvLTPd7 48 m 139 14,388.36 9 No n/a
HvLTPd8 20 s 124 12,878.05 8.45 No n/a
HvLTPd9 27 S 105 10,985.01 8.47 No 0
HvLTPd10 27 s 105 10,994.02 8.47 No 0
HvLTPd11 27 S 105 10,966.95 8.15 No 0
HvLTPd12 27 s 105 10,994.02 8.47 No 0
HvLTPd13 21 S 132 13,999.28 6.69 No 1
HvLTPd14 28 s 136 14,382.82 7.98 No 0
HvLTPd15 19 s 106 11,401.65 8.06 No 1
HvVLTPd16 20 s 128 13,670.39 5.64 No 1
HvLTPd17 m 145 15,006.25 9.61 No n/a
HvLTPd18 29 s 109 10,880.7 9.45 No 0
HvLTPd19 26 s 103 10,379 8.65 No 0
HvLTPd20 33 s 107 10,662.31 8.81 No 0
HvLTPd21 24 s 102 10,701.51 4.85 No 0
HvLTPd22 20 s 157 16,858.71 5.24 Yes 1
HvLTPd23 20 s 157 16,890.83 5.61 Yes 1
HvLTPd24 Other 124 12,673.9 9.24 No n/a
HvVLTPd25 21 s 114 11,569.65 8.14 No 1
HvLTPd26 24 s 127 13,985.15 8.02 No 1
HvLTPd27 24 s 127 13,936.47 8.07 No n/a
Type G
HvLTPgl 21 s 184 18,612.6 8.14 Yes 2
HvLTPg2 29 s 177 16,873.3 7.48 No 0
HvLTPg3 29 S 176 16,710.1 8.09 No 0
HvLTPg4 m 253 25,330.26 9.24 No n/a
HvLTPg5 Other 234 23,072.62 9.06 Yes n/a
HvLTPg6 m 264 26,845.85 9.29 No n/a
HvLTPg7 Other 150 15,146.83 5.48 No n/a
HvLTPg8 s 213 21,574.13 6.37 No n/a
HvLTPg9 Other 429 46,722.68 8.1 No n/a
HvLTPg10 m 284 29,194.82 9.61 No n/a
HvLTPgl1 Other 246 25,778.15 6.19 No n/a
HvLTPg12 23 S 200 20,744.29 8.89 No 0
HvLTPg13 m 320 32,834.74 9.5 Yes n/a
HvLTPgl4 25 s 185 18,394.51 8.07 Yes 1
HvLTPg15 23 s 194 18,793.44 5.52 No 2
HvLTPgl6 m 234 23,390.93 9.05 Yes n/a
HvLTPgl7 28 s 191 19,147.81 4.41 Yes 2
HvLTPg18 44 m 189 18,314.87 8.92 Yes n/a
HvLTPg19 s 203 20,115.06 8.47 Yes n/a
HvLTPg20 Other 226 22,904.95 8.91 Yes n/a

HvLTPg21 30

12

162 15,399.71 6.49 No 2
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(continued)

Name?® Signal peptide Mature protein GPI€¢ Number of introns
Amino acid Target® Amino acid Mass (Da) pl
HvLTPg22 27 ] 185 18,855.91 8.65 Yes 2
HvLTPg23 30 s 181 19,065.2 8.83 No 1
HvLTPg24 Other 164 16,891.56 531 No n/a
HvLTPg25 24 s 150 14,952.49 4.57 No 0
HvLTPg26 Other 122 12,357.29 4.41 No n/a
HvLTPg27 25 S 176 18,103.08 6.49 No 0
HvLTPg28 m 157 16,204.77 8.64 No n/a
HvLTPg29 25 s 200 19,385.55 8.76 Yes 2
HvLTPg30 23 S 173 18,233.81 5.44 No 2
HvLTPg31 31 S 183 17,750.42 8.05 No 2
Single
HvLTPx1 21 s 230 22,483.59 4.19 Yes 1
HvLTPx2 49 m 220 21,468.48 8.6 No n/a
@ For the gene ID of each protein, see Table S1.
b

The presence or absence of introns has not been determined.

Subcellular targeting of each protein: s, secretory pathway; m, mitochondria; other, any other location.
GPI modification site was predicted at http://mendel.imp.ac.at/sat/gpi/gpi_server.html.

types 1, 2, C, and D are mostly alkaline proteins, except for
some type D proteins. Some of the type G nsLTPs are alkaline
and some are acidic (Table 1). The average molecular weight is
16,408.21 Da and the theoretical pI is 7.76 pl.

Most type G proteins contained GPI modifications whereas
few putative GPI modification residues were observed in other
types. Among the nsLTPs, 11 type G but only two type D
HVLTPs contained putative GPI modification residues.

3.3. Sequence analysis of the barley nsLTPs

The main characteristic of plant nsLTPs is the presence of a
highly conserved eight-cysteine motif (C-Xn-C-Xn-CC-Xn-
CXC-Xn-C-Xn-C). The conserved residues form four disulfide
bonds that stabilize the tertiary structure of the hydrophobic
cavity. In an attempt to build a specific 8CM consensus for
each nsLTP type found, the eight-Cys spacing was examined
in all of the classified HVLTPs (Table 2). Because all the
cysteine residues were located at a conserved position, BioEdit
was used to perform the multiple alignment (Fig. 1).

The numbers of inter-cysteine residues in different types
of HVLTPs varied widely (Tables 2, 3). Three HVLTP types could
be identified according to typical spacings of the motif. Type 2
and type C HvLTPs contained respectively 7 and 11 residues
between the conserved Cysl and Cys2 residues. Similarly,

type 1 HVLTPs contained 19 residues between the conserved
Cys4 and Cys5 residues. The resulting features of type 1 and 2
proteins were consistent with those described in previous
reports [3,7]. In contrast, types D and G could not be
distinguished based on the cysteine spacing features. Some
HvLTPs harbor an additional cysteine, such as HvLTPd14,
which has an extra cysteine between Cys6 and Cys7.

A closer analysis of the sequences indicates that aside
from the eight Cys residues, Type 1, 2, and C HvLTPs were
characterized by a leucine residue present three aa 5’ to Cys2.
In type 1, the number of amino acids between Cys4 and Cys5
was greater than that in other types. Leucine is a hydrophobic
residue and the most frequent residue appearing in the X
position in the CXC motif of all the HVLTPs. The conserved
residues may play important roles in the biological function of
nsLTPs. There were seven different residues (Arg, Leu, Phe,
Met, Val, Ile, and Ala) at the X position of the CXC motif (Fig. 1).
Five (Leu, Phe, Val, Ile, and Ala) are hydrophobic and two (Arg
and Met) hydrophilic.

3.4. Intron—exon structures of barley nsLTPs
Intron-exon structure predicts the evolution of a gene family.

Forty-two HULTP genes were predicted to be interrupted by 1-6
introns (Fig. 2). Similar intron-exon patterns were found

Table 2 - The spacing patterns of eight-cysteine motifs of HVLTPs.

Type Spacing pattern

1 @ 9 @ 15 €e 19* C-1-C 21 € 13 @
2 C 7* C 13 CcCc 8 C-1-C 23 C 6 C
(@ (@ 11* (@ 16 CC 12 G-1-G 28 (@ 2 (@
D C 6,9, 10, 14 C 12, 14, 16-18 cc 9-12 c-1-C 21-24, 26, 27 C 6-10 C
G @ 6,9, 10, 12 € 8, 10, 14-18, 21 @ 11,12, 14 c-1-C 22-27,29 € 8,9, 11-13 C

The consensus motif of each LTP type was deduced from analysis of the mature sequences of 70 putative HVLTPs.

*# Direct identification of the LTP type.
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Fig. 1 — Multiple sequence alignment of barley LTPs. Amino acid sequences were downloaded from Phytozome. Sequences
were aligned using BioEdit to maximize the eight-cysteine motif alignment and manually refined. The conserved amino acids

are marked in black boxes.

within groups. For instance, the nsLTP genes in type 2 lacked
an intron, the genes in types 1, C, and D contained one intron,
and the genes in type G contained variable numbers of introns
from none to six. HULTPg9 had the highest number of introns
in all barley nsLTP genes. The exact number of introns in some
proteins could not be determined, owing to incomplete
sequencing. In types I and C, the intron was positioned
respectively 5 and 4 bp downstream of the codon encoding
the eighth cysteine in the 8CM. In nine of 11 type D nsLTPs
carrying one intron, the intron was positioned 4 bp down-
stream of the eighth cysteine codon. In HuLTPd22 and
HuLTPd23, the intron was 16 bp downstream of the eighth
cysteine codon. HULTP gene structures were similar to those of
nsLTPs in Arabidopsis, rice and maize [14].

3.5. Chromosomal locations of HULTP genes

The 70 HuLTPs were unevenly located on the seven barley
chromosomes (Fig. 3). The maximum number of HULTPs (14)
was located on chromosome 1. A further 12 were located on
chromosome 4, 11 on chromosome 2, and nine and eight on
chromosomes 3 and 5, respectively. Seven genes were located
on chromosome 7 and six on chromosome 6. Most of the
HULTPs were located close to the ends of chromosomes, but

absent from some regions on several chromosomes, such as
the long arm of chromosome 5 and the short arm of
chromosome 3. HuLTPd1, HuLTPd2, and HuLTPgl were not
assigned to any chromosomes but were included in Chr.Un.
Chr.Un is composed of sequence fragments from BAC overlap
clusters not placed in the Hi-C (high-throughput/resolution
chromosome conformation capture) map, gene-bearing frag-
ments of BAC sequences and Morex WGS contigs selected in
addition to the nonredundant sequence [40]. The positions of
HuLTPs on barley chromosomes are shown in Table S2.

Analysis of physical chromosome localization revealed
that 36 of the 70 HULTPs were arranged in 15 direct tandem
duplicate repeats (Fig. 3). Two tandem repeats of type 2 were
identified on chromosome 1 and one on chromosome 3.
Eighteen type D HULTPs were clustered into six tandem
repeats, located on chromosomes 1, 2, 3, 4, and 7. Seven
tandem repeats of type G were found on chromosomes 2, 4, 5,
and 6. Genes in the same tandem repeat were closely related.
For instance, HULTP26 and HuLTP27 shared 95% identity.

3.6. RNA-seq-based expression profile of HULTPs

Gene expression pattern analysis gives useful clues to gene
function. Hierarchical clustering was used to investigate the
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le 3 - Diversity of the eight-cysteine motif in barley

types. (continued)
C Xn C Xn CC Xn CXC Xn C Xn C C Xn C Xn CC Xn CXC Xn C Xn C

Type 1 HvLTPg22 9 16 12 26 8
HVLTP1.1 9 15 19 21 13 HvLTPg23 9 16 12 26 8

Type 2 HvLTPg24 9 15 12 27 11
HVLTP2.1 7 13 8 23 6 HvLTPg25 9 15 12 27 11
HVLTP2.2 7 13 8 23 6 HvLTPg26 9 15 12 27 11
HvVLTP2.3 7 13 8 23 6 HvLTPg27 9 16 14 23 9
HvLTP2.4 7 13 8 23 6 HvLTPg28 9 16 14 23 9
HVLTP2.5 7 13 9 23 6 HvLTPg29 10 21 12 24 8
HVLTP2.6 7 13 9 23 6 HvLTPg30 9 14 12 29 9
HVLTP2.7 7 13 8 23 6 HvLTPg31 6 13 12 25 8
HVLTP2.8 7 13 8 23 6 Single

Type C HVLTPx1 9 14 12 24 6
HvLTPcl 11 16 12 28 2 HvLTPx2 9 14 12 21 6

Type D
HvLTPd1 10 18 10 22 9
HvLTPd2 10 17 9 22 9 . .
HVLTPd3 B . 9 - g ?,patlal and te.mporal ex_pressmn patterns of the nsLTP genes
HvLTPd4 10 17 9 22 9 in the barley life cycle. Given that HuULTPg25 was not expressed
HvLTPd5 10 17 9 22 9 in any tissues based on RNA-seq data, it was removed for
HvLTPd6 10 17 9 22 9 expression profiling. Visual global transcription profiles of the
HVLTPd7 10 16 9 23 7 remaining 69 HVLTP genes across 15 different developmental

HvLTPd8 14 14 12 24 10 stages were constructed based on expression data provided by

:Ztggio 59; 12 g ;2 ; BARLEX database (https://apex.ipk-gatersleben.de/apex/f?
" 9 e 9 % o p=284:10). As shown in Fig. 4, the heat map can be divided
HVLTPd12 9 16 9 26 7 into four clusters. Clusters I-IV contained respectively 23, 15,
HvLTPd13 14 14 11 24 10 13, and 18 members.
HvLTPd14 10 16 9 22 9 Genes in cluster I showed relatively high expression levels
HVLTPd15 10 17 9 22 9 and those in cluster IV relatively low expression levels. In
HvLTPd16 @ 7 9 22 9 cluster II, genes were expressed at a moderate level. In cluster
Eztggg 18 12 g ;i 2 III, genes were expressed specifically in some tissues. Com-
HVLTPd19 10 16 9 21 6 pared with those in other tissues, the expressions of most
HvLTPd20 10 16 9 21 6 HuLTPs were diminished in senescing leaves (SEN). HULTP
HvLTPd21 9 17 9 24 7 transcripts were also less abundant in developing inflores-
HvLTPd22 6 12 12 27 6 cences (INF) and lodicules (IOD). Genes in the same tandem
HvLTPd23 6 12 12 27 6 repeat showed generally similar expression patterns.
LI ° = 2 A 4 HULTP genes in cluster I showed the most ubiquitous and
Eztgggz 13 1: 13 g;} ;O stable expression in root, embryo, grain, seedling, tillers,
HVLTPd27 10 18 10 22 9 internode, inflorescence, and floral organs (Fig. 4). HULTPg30
Type G is the closest homolog of Arabidopsis AtLTPG1, which has been
HvLTPgl 9 14 12 26 8 shown [25] to be required for normal export of wax to the
HVLTPg2 9 14 12 26 9 cuticle. HULTPg30 is widely expressed and may also be
HvLTPg3 9 14 12 26 9 involved in cuticular lipid deposition. Genes in cluster II
Eztgg g 12 12 ;Z 2 showed dynamic expression throughout the entire life cycle.
HVLTPg6 9 15 12 % 11 For example, the expressions of HULTPd9, HuLTPd10, and
HvLTPg7 9 15 12 26 1 HuLTPd11 were strong in the epidermal strip (EPI), but much
HvLTPg8 10 18 12 24 ) lower in developing grain. Gene expressions in cluster Il were
HvLTPg9 12 8 14 24 12 markedly more specific and were high in developing grain (5
HvLTPg10 9 16 12 25 9 DAP and 15 DAP). The 13 members occur almost exclusively in
LRI 1z o e 2i 1z kernel tissues. In cluster IV, gene expressions were low and in
Eztggg 12 2 1;} zi 1; root, embryo and epidermal strips, gene expressions were
HvLTPgl4 9 16 12 24 9 relatively high.
HvLTPg15 9 16 12 24 9
HVLTPg16 9 14 12 26 9 3.7. Phylogenetic analysis of barley, rice and Arabidopsis
HvLTPgl7 9 14 12 26 9 nsLTPs
HvLTPg18 9 14 12 26 9
LARALIHEELD 2 ik 12 28 2 To characterize the phylogenetic relationship of the
gztggg ;0 5} 1; ;: 2 nsLTPs among barley, rice and Arabidopsis, 219 nsLTPs from

these three species were analyzed (Fig. S1). A multiple
sequence alignment of the eight-cysteine domain sequences
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Fig. 3 - Genome distribution of LTP genes from barley. Distribution of 70 HVLTP genes on seven barley chromosomes and Chr.
Un. Chromosomal distances are given in Mb. The name of each chromosome is shown at the top of the corresponding bars. The
approximate locations of LTPs are marked on each chromosome and gene names are shown to right of the bar.

from barley, rice and Arabidopsis was performed and a
phylogenetic tree was generated with PhyML using the
maximume-likelihood method. nsLTPs from the three species
were classified into five types: types 1, 2, C, D, and G, in
agreement with the previous report [3]. As shown in Fig. S1,
type 1 and type 2 members from the three species formed a
single clade in the tree, indicating that genes in these two
types originated from a common ancestor. Type D and G
sequences are placed in specific clusters. The sequences from
the minor nsLTP type C form a clade close to type D. But none
of these types forms a distinct monophyletic clade supported
with high bootstrap values.

4, Discussion

Barley is well known for its tolerance to salinity, alkali,
drought, and cold. nsLTPs have been reported to be involved
in abiotic stress tolerance and may play roles in the
adaptation of barley to diverse environmental conditions.
However, the barley nsLTP family has not been comprehen-
sively characterized. In this study, 70 nsLTP genes were
identified in the barley genome and divided into five types
(1, 2, C, D, and G) supported by phylogeny, protein character-
istics and gene structures.

The finding that most of the nsLTP genes are located at the
distal region of chromosomes is consistent with the observation
[38] that both ends of barley chromosomes are especially gene-
rich. Higgins et al. [51] reported that in barley, meiotic homolo-
gous chromosome recombination is confined predominantly to
distal regions on all chromosomes. Biased distribution to
recombination-rich regions ensures flexibility for generating

sequence diversity required to cope with dynamic environmen-
tal changes and stressful conditions.

Gene structure and chromosome locations suggest that
numerous gene birth events have occurred in the barley
genome during evolution. Among the 70 barley nsLTP genes, 36
are clustered into 15 tandem duplication repeats. Similarly,
large numbers of gene duplication events are also observed in
several other angiosperms, including Arabidopsis, rice, sorghum,
maize, and wheat [7,14,52]. By contrast, many fewer gene
duplication events occur in lower plants, such as liverworts,
mosses, and lycopods [3]. Sequence variation and differential
expression profiles suggest the occurrence of neofunc-
tionalization or subfunctionalization following gene duplica-
tion. For instance, HuLTPg20 (HORVU5Hr1G104750) and
HuLTPg21 (HORVUS5Hr1G104760), two tandem nsLTP genes in a
distal region of barley chromosome 5 share only 38% identity at
the nucleic acid level and 19% identity at the protein level.
HuLTPg20 is broadly expressed in several tissues, whereas
HuLTPg20 is weakly expressed in roots, embryos, and develop-
ing tillers. In another example, HULTPd26 (HORVU7Hr1G105960)
and HuLTPd27 (HORVU7Hr1G106020) exhibit distinct expression
profiles although they share more than 95% identity at both
DNA and protein levels. HULTPd26 is highly expressed in the
embryo and carpel, but only very low levels of HuLTPd27
transcripts are detected in the carpel. These differential
expression patterns suggest that they may diverge in the
regulatory regions of their gene promoters. These observations
support the hypothesis that the nsLTP gene family has
expanded considerably during flowering plant evolution,
allowing both conservation and divergence of gene function.

The expression profiles of HULTPs in different tissues
across developmental stages indicate that nsLTP genes

Fig. 2 - Intron-exon arrangement of barley LTP genes. Exons and introns are drawn based on the scale of the respective
encoding regions. Exons are depicted as yellow boxes and introns as connecting thin lines. Non-encoding regions are depicted

in blue boxes.
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Fig. 4 - Hierarchical clustering display of 69 HVLTP transcripts in 15 tissues in different developmental stages based on RNA-
Seq data provided by BARLEX [50]. Sample names are shown at the bottom of each column. ROO1, roots from seedlings (10 cm
shoot stage); ROO2, roots (28 DAP); EMB, 4 day embryos; CARS5, developing grain (5 DAP); CAR15, developing grain (15 DAP);
LEA, shoots from seedlings (10 cm shoot stage); ETI, etiolated seedling, dark cond. (10 DAP); EPI, epidermal strips (28 DAP); INF,
developing inflorescences (1-1.5 cm); RAG, inflorescences, rachis (35 DAP); LEM, inflorescences, lemma (42 DAP); LOD,
inflorescences, lodicule (42 DAP); PAL, dissected inflorescences, palea (42 DAP); NOD, developing tillers, 3rd internode (42 DAP);
SEN, senescing leaves (56 DAP). The color scale (representing log signal values) is shown at the upper left.

perform a variety of functions in different tissues at multiple
developmental stages. But to date, only a few HULTPs have
been functionally characterized. Barley LTP1 is involved in
membrane biogenesis, responses to stresses, and transport of
cutin [53,54]. Overexpression of barley LTP2 in tobacco and
Arabidopsis enhances plant tolerance to bacterial pathogens
[55]. However, the biological functions of most barley nsLTPs
remain enigmatic. Further investigations, using molecular
genetic, biochemical, physiological, and developmental ap-
proaches will be required to clarify these functions.

In summary, our analysis has established a foundation for
further understanding the functional significance of this
dynamic and fascinating gene family in barley development
and stress resistance, which will contribute to barley molec-
ular breeding in the future.

Supplementary data for this article can be found online at
https://doi.org/10.1016/j.cj.2018.07.009.
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