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Abstract 

Background/Aims: Irinotecan, a highly effective chemotherapeutic used to treat colorectal cancer, is 

associated with chemotherapy-induced gastrointestinal toxicities (CIGT) which limit its widespread 

use. CIGT pathogenesis involves intestinal toll-like receptors (TLRs), particularly TLR4, whose 

expression is increased during CIGT. While global TLR4 deletion attenuates symptoms of CIGT, it 

has yet to be investigated if intestinal deletion of epithelial TLR4 impacts CIGT and how this pathway 

interacts with the tight junction protein, claudin-2. 

Methods: Twenty-four wild-type (WT) and intestinal epithelium-specific TLR4 knock out (Tlr4ΔIEC) 

colorectal-tumour bearing C57BL/6 mice received an intraperitoneal dose of irinotecan (270 mg/kg) 

or vehicle control and were killed at day 3 post treatment. CIGT was defined by clinically-relevant 

measures of body weight and diarrhoea severity. Irinotecan efficacy was defined as tumour burden 

relative to body weight. Claudin-2 expression was quantified using real-time PCR (fold-change), and 

immunofluorescence (percentage area staining) in the ileum and colon.  

Results: Tlr4ΔIEC treated mice had less severe diarrhoea (day 1 WT versus Tlr4ΔIEC p-value <0.0001), 

however, significantly more weight loss in comparison to WTs (day 3 WT versus Tlr4ΔIEC p-value = 

0.0045). Irinotecan efficacy was similar in Tlr4ΔIEC and WT treated mice. Claudin-2 fold-change was 

significantly greater in Tlr4ΔIEC control versus treated mice in the colon (p-value = 0.0163).  

Conclusion: This study demonstrated that different TLR4 mechanisms underlie diarrhoea and weight 

loss change in CIGT, however, that epithelial TLR4 could be targeted to decrease diarrhoea severity. 

This has significant clinical application as severity of diarrhoea is strongly correlated to treatment 

reduction and breaks.  
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Introduction 

Colorectal cancer is the fourth most commonly diagnosed and second leading cause of cancer-related 

deaths,1 making it one of Australia’s most prevalent and lethal cancers. Irinotecan, a highly effective 

chemotherapeutic used to treat advanced-stage colorectal cancer, is known to have detrimental toxic 

side effects, with diarrhoea considered the most common and impactful symptom.2 This toxicity is 

clinically referred to as chemotherapy-induced gastrointestinal toxicity (CIGT) and is underpinned 

by severe intestinal injury and breakdown of the mucosal barrier. Patients who experience CIGT have 

twice the infection risk, a 3-fold higher chance of hospitalisation and a 4-fold higher chance of death, 

ultimately necessitating treatment reduction and breaks.2 Up to 25% of irinotecan-treated patients 

experience grade 3 or 4 diarrhoea that requires urgent hospitalisation.3 In addition, to the huge clinical 

impact, severe CIGT contributes a large economic burden, with it costing AUD~$1,350 per 

hospitalised diarrhoea episode.4  

Irinotecan, a topoisomerase I inhibitor,5, 6 prevents the covalent bonding of the DNA strands,5 

resulting in an irreparable DNA double-strand break which triggers cell death.5-7 Irinotecan-induced 

injury and death of highly vulnerable intestinal crypt cells activates an inflammatory cascade, 

inducing CIGT.8 Furthermore, amplification of irinotecan-induced CIGT occurs due to its unique 

enterohepatic recirculation.9 Initially carboxylesterase converts irinotecan to the active metabolite 

SN-38 in the liver and intestines.6 SN-38 is then processed in the liver by hepatic uridine diphosphate 

glucuronosyltransferase 1A1 (UGT1A1) to form the non-toxic metabolite SN-38-glucuronide (SN-

38G).6 SN-38G is transported in bile into the intestine.9 However, intestinal bacteria, such as 

Escherichia coli, produce β-glucuronidases which converts SN-38G back to SN-38 through 

deconjugation,6 resulting in a secondary intestinal exposure, more severe mucosal injury and CIGT.8, 

9 This mechanism has been demonstrated as mice, treated with irinotecan and a β-glucuronidase 

inhibitor, had decreased irinotecan-induced diarrhoea.10 The clear link between the intestinal 

microbiota and their products modulating irinotecan toxicity is further shown as irinotecan-induced 

diarrhoea is associated with alterations in intestinal microbiota composition.8, 9 Both the microbial 
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and cellular factors released during irinotecan-induced damage influence mucosal immune 

responses,8 including toll-like receptor (TLR) activation. 

TLRs are a family of pattern recognition receptors that recognise various commensal bacterial ligands 

to maintain gut homeostasis, restraining inflammation and accelerating healing.8 Thus, TLRs form an 

important part of the gastrointestinal innate immune response,2 being expressed on both immune and 

intestinal epithelial cells, and are implicated in states of intestinal inflammation, including 

inflammatory bowel disease11 and CIGT.9  

There is a strong biological rationale implicating TLR4 in CIGT pathobiology, largely based on its 

interaction with microbial ligands and regulation of innate immune responses.12 It is well documented 

that irinotecan-induced acute cytotoxic injury in CIGT is perpetuated by indirect cellular injury,5, 7 

initiating innate immune activation and pro-inflammatory cytokine production.7, 12 Here, the cytokine 

profile is consistent with that of TLR4 activation,12 including increased interleukin-6 (IL-6), 

interleukin-1-beta (IL-1β) and tumour necrosis factor-α (TNF-α).12-14 Furthermore, during CIGT, the 

conditions favour gram negative bacteria as there is increased lipopolysaccharide (LPS) production, 

TLR4s main activating ligand in CIGT.12  

Based on a strong foundation of anecdotal evidence implicating TLR4 in CIGT, it is not surprising 

that it is documented to be upregulated in the gut following chemotherapy treatment.8, 9, 15-17 More 

recently, it has been shown that TLR4 global knockout (Tlr4-/-) mice are protected from both CIGT9 

and ulcerative colitis-induced colorectal cancer.18 While insightful, this data is inherently limited in 

translational capacity as emerging evidence suggests that tumour-bearing mice with diminished 

TLR4 signalling have decreased chemotherapeutic efficacy, and consequently, increased tumour 

burden.19, 20 This suggests tumour response to chemotherapy requires TLR4 signalling.19 However, 

little research has sought to understand whether TLR4 regulation of chemoefficacy and toxicity is via 

its expression on immune or epithelial cells. In villin-TLR4 mice, where epithelial TLR4 is over-

expressed, impaired epithelial barrier, microbiota alterations and increased predisposition to colitis 

have been reported.21 Contrastingly, when epithelial TLR4 is diminished, the epithelium is hypo-
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responsive to LPS,22 suggesting a homeostatic role for epithelial TLR4.23 Together these studies 

demonstrate epithelial TLR4 plays a role in intestinal homeostasis and immune response,23 implying 

its contribution to inflammation and therefore the possibility to restrict interventional approaches to 

epithelial TLR4 to control CIGT.  

Disruption of the intestinal barrier is a prominent feature of CIGT, as the severity and duration of 

intestinal barrier injury is associated with increased symptoms and infection risk.17, 24 TLR4 has been 

indicated to be imperative in intestinal barrier injury in CIGT, as Tlr4-/- mice were protected from 

barrier injury, and hence, had reduced duration and severity of diarrhoea in comparison to wild-type 

(WT) mice.9 Furthermore, TLR4-produced cytokines have been implicated in inducing tight junction 

dysfunction,25 as Tlr4-/- mice had decreased pro-inflammatory cytokines and retained tight junction 

expression.9 Apical tight junction proteins, particularly claudins, play a key role in intestinal barrier 

function.25, 26 The tight junction proteins most commonly associated with CIGT are claudin-1, zonula 

occludens (ZO-1) and occludin.17, 27, 28 After irinotecan treatment, their expression is known to remain 

unchanged, however their relocation contributes to poor barrier function and leakiness.17 Other tight 

junction proteins implicated in intestinal inflammation are yet to be investigated.  

Claudin-2 is a pore-forming protein responsible for increasing intestinal permeability to promote 

transport across the mucosa.26 In addition, claudin-2 directly decreases the barrier function of the 

claudin-1 and -4 strands.26 Previously, in an inflammatory state, of dextran sodium sulfate-induced 

colitis, claudin-2 overexpression protected barrier function and decreased inflammation.29 

Opposingly, claudin-2 has also been shown to upregulate and contribute to symptomology in 

intestinal inflammatory states, including ulcerative colitis30 and FOLFOX-induced CIGT (a 

combination of 5-fluorouracil, leucovorin, and oxaliplatin).15 This literature demonstrates that little 

research has sought to understand claudin-2 expression in intestinal inflammatory states, particularly 

irinotecan-induced CIGT.  

The literature clearly covers TLRs role in gut homeostasis, particularly by identifying the implication 

of TLR4 in CIGT. Despite a clear biological rationale and translational potential, few studies have 
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explored whether CIGT manifestations are a result of epithelial or immune TLR4 signalling. 

Furthermore, it is unknown whether mice lacking TLR4 in intestinal epithelial cells (Tlr4ΔIEC) display 

differences in irinotecan efficacy and response. Lastly, whilst the clear link between TLR4 and tight 

junction disruption is defined, TLR4’s interaction with claudin-2 remains entirely unexplored, thus 

producing a knowledge gap. 

Therefore, from the literature it was hypothesised that:  

 Deletion of intestinal epithelial TLR4 will result in decreased severity of irinotecan-induced 

CIGT. 

 There will be no effect of epithelial TLR4 intestinal deletion on tumour growth. 

 A lack of epithelial TLR4 signalling will prevent changes in claudin-2 expression following 

irinotecan treatment. 

As guided by the hypotheses, this study aimed: 

 To measure the effect epithelial TLR4 intestinal deletion has on severity of irinotecan-induced 

CIGT manifestations, including, diarrhoea, weight loss and organ atrophy. 

 To determine the effect epithelial TLR4 intestinal deletion has on tumour growth. 

 To characterise the change in expression of claudin-2 before and after irinotecan treatment in 

WT and Tlr4ΔIEC mice.
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Materials & Methods 

Ethics 

This study was approved by the University of Adelaide Animal Ethics Committee (M-2020-028) 

and complied with the National Health and Research Council Australian Code for the care and use 

of animals for scientific purposes (8th edition: 2013).31  

Experimental Design 

Animal Model  

The study was conducted in male and female C57BL/6 mice. Hemizygous vil1-cre and homozygous 

floxed TLR4 mice were crossed to obtain Tlr4ΔIEC mice. Tlr4ΔIEC and WT littermates were used in all 

experiments. All mice were subcutaneously implanted with the colorectal tumour cell line MC-38, in 

the right flank, according to methods previously established by Milczarek et al (2013), who 

demonstrated reproducible responses of the cell line to irinotecan treatment in C57BL/6 mice.32 

Briefly, 24 mice, aged between 6-10 weeks, were injected with 200 μL of MC-38 cell suspension at 

a concentration of 1 × 107 cells/mL.33
 Tumours were grown until they reached 0.2 cm3 in volume 

before being treated,33 taking ~7 to 10 days. Daily measurements were taken with digital callipers. 

Tumour volume was calculated with the formula:32 

 

((tumour width
2
) × tumour length))

2
 

 

Tumour burden was assessed by calculating tumour volume as a percentage of body weight.  

Treatment 

WT and Tlr4ΔIEC mice were randomly divided into two treatment groups: Control (sorbitol lactic acid 

buffer; WT n = 6, Tlr4ΔIEC n = 6) or irinotecan hydrochloride (kindly provided by Pfizer; WT n = 6, 

Tlr4ΔIEC n = 6).  



Page | 8  

 

Irinotecan was dissolved in sorbitol lactic acid buffer (pH 3.4) and administered in a single 270 mg/kg 

intraperitoneal dose.9 Mice were humanely killed at 72 hours after treatment, via CO2 inhalation and 

cervical dislocation (figure 1).  

_______________________________________________________________________________________ 

Figure 1. Experimental Design 

 

Clinical Outcomes 

Animals were weighed once daily. Diarrhoea was graded as none (G0), mild diarrhoea with staining 

of the anus (G1), moderate diarrhoea with staining spreading over the top of the legs (G2), and, severe 

diarrhoea with staining over the legs and abdomen, often with continual anal leakage (G3).9, 16 Once 

tumours reached a measurable size, they were measured daily throughout the experiment. At time of 

cull the spleen, small intestine and colon were removed and weighed.  

Tissue Preparation  

Cold phosphate-buffered saline (PBS) was used to flush the gastrointestinal tract after removal, before 

weighing. Samples of the ileum and proximal colon were cut into ~2 cm length pieces and fixed in 

10% neutral buffered formalin for 24 hours. Samples were transferred to 70% ethanol, before being 

processed and embedded in paraffin wax. Remaining sections of the ileum and colon were snap-

frozen and stored at -80°C.  
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Immunofluorescence Staining  

All histopathological analysis was performed on samples of ileum and proximal colon. All samples 

were cut to 4 μm using a microtome and mounted onto FLEX IHC microscope slides (Flex Plus 

Detection System, DAKO, China; #K8020) for immunofluorescence analysis, as described 

previously.17 In brief, immunofluorescence analysis was performed for claudin-2, using DAKO 

reagents on an automated machine, AutostainerPlus (DAKO, China; #AS480), following 

manufacturers protocols. Sections were dewaxed in histolene, before slowly being rehydrated through 

graded ethanol (100%, 90% and 70%) and introduced into water. Antigen retrieval used EDTA-

NaOH buffer (0.37 g/L ethylenediaminetetraacetic acid (EDTA), pH 9), in a preheated 65°C DAKO 

PT LINK water bath (DAKO; #PT10126). Samples were immersed and raised in temperature to 97°C 

for 20 minutes. After returning to 65°C, slides were placed into the DAKO AutostainerPlus and 

blocked using 10% normal horse serum (NHS). The claudin-2 rabbit polyclonal primary antibody 

was diluted with 5% NHS at concentration of 5 μg/ml. The fluorescently labelled secondary antibody, 

donkey anti-rabbit (AlexaFluor 568) at a concentration of 0.8 μg/mL, was diluted with 1% PBS, 1% 

bovine serum albumin (Sigma-Aldrich, #1002440032) and 2% foetal bovine serum. Similarly, slides 

were counterstained with 1 μg/mL 4′,6-diamidino-2-phenylindole (DAPI; Life Sciences; #D1306), 

which was diluted with 1 x PBS. Slides were cover slipped with Fluoroshield mounting medium 

(Sigma-Aldrich, #1003019312), and sealed with nail polish. The primary antibody was omitted for 

all negative controls. Slides were imaged on the Axio Scan.Z1 (ZEISS). Immunofluorescence was 

assessed by quantification of percentage area staining, using ImageJ (Fiji) (technical note 07, area 

and intensity of stain).34  

Real-Time PCR (qPCR) 

RNA Extraction 

Thirty mg of tissue (either ileum or colon) was placed into 350 μL of lysis buffer and 3.5 μL of beta-

mercaptoethanol and homogenised, using the Qiagen Tissue Lyser LT (Germany). The protocol was 

followed in accordance with the manufacturer’s instructions (Macherey-Nagel, 2013) to achieve 
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RNA that was eluted in 60 μL of RNase-free water. RNA yield and purity were measured using the 

BioTek® multi-mode microplate reader, with the Take3 micro-volume plate (BioTek® Instruments 

Inc. USA). A 260/280 ratio of ~≥2.0 was accepted as RNA with a high purity yield (ThermoFisher 

USA, 2012). All RNA was stored at -20°C. Randomly RNA samples were chosen and underwent 

RNA integrity number (RIN) analysis to ensure quality (Adelaide Microarray Centre).  

cDNA Conversion  

1 μg of RNA was converted to cDNA using the iScript cDNA Synthesis Kit, as per manufacturer’s 

instructions (Bio-Rad, #1708891). cDNA yield and purity were measured using the BioTek®Take3 

micro-volume plate. A 260/280 ratio of ~1.8 was accepted as cDNA with a high purity yield 

(ThermoFisher USA, 2012). cDNA was diluted to 200 ng/μL concentration and stored at -20°C.  

qPCR 

Primers were used from the literature or designed, by accessing the National Centre of Biotechnology 

Information (NCBI) and retrieving the sequence of the gene of interest. The sequence was placed into 

Primer 3 (version 4.0) to produce the forward and reverse primer sequences. The quality of all primers 

used was checked using Net Primer (Premier Biosoft). Table 1 outlines the mRNA sequences for 

primers, all of which were synthesised by Sigma-Aldrich. 

 

Table 1: qPCR Primers  

Primer Name Sequence  Primer 

Length (bp) 

Reference 

GAPDH forward  5’-CCTCGTCCCGTAGACAAAATG-3’ 21 (Wardill et 

al 2016) GAPDH reverse  5’-TCTCCACTTTGCCACTGCAA-3’ 20 

Claudin-2 forward  5’-GGAGATCTGTCCCCAAACCA-3’ 20 As designed 

for this 

study 

Claudin-2 reverse  5’-AAGCTTCAGGGCCCATTACT-3’ 20 
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qPCR was performed on the Rotor Gene Q (Qiagen, Australia). Each well contained 10 μL which 

included 0.5 μL of the appropriate forward and reverse primers (50 pmol), 1 μL (200 ng) of cDNA, 

3 μL of nuclease-free water, and, 5 μL of fluorescent SYBR green dye (QuantiTect SYBR® Green, 

Qiagen). The claudin-2 forward and reverse primer were optimised to the thermal cycling conditions. 

All samples were run with the following thermal cycling conditions, hold at 95°C for 10 minutes and 

amplification through 40 cycles of denaturation at 95°C for 10 seconds, annealing at 58°C for 30 

seconds and extension at 72°C for 45 seconds. GAPDH, cited from Wardill et al (2016), was chosen 

as the appropriate housekeeping gene for normalising expression.17 Transcript expression was 

calculated by the delta delta CT method and presented as a fold-change.35 

Statistical Analyses 

Prism 8.0 (GraphPad Software) was used for all statistical analysis. Data was tested for normality 

using the Kolmogorov-Smirnov test. Normally distributed data was analysed with a one-way or two-

way ANOVA with Tukey’s post-hoc test, while non-parametric data was analysed with a Kruskal-

Wallis with Dunn’s post-hoc test. This excluded diarrhoea severity, which was analysed with a chi-

square test. In all cases a p-value of ≤0.05 was considered statistically significant.
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Results 

Irinotecan-treated mice lost weight, reaching nadir at day 2  

WT and Tlr4ΔIEC mice lost significant weight following treatment compared to control counterparts 

(figure 2). On day 3, treated Tlr4ΔIEC were significantly lighter than treated WT mice (figure 2).  

 

 

 

 

 

 

________________________________________________________________________________ 

Figure 2. Change in body weight (%) from baseline (day 0). Treated mice weighed significantly 

less then control (*WT control versus treated p-value = 0.0050, 0.0047 (day 1 and 2, respectively), 

**Tlr4ΔIEC control versus treated p-value <0.0001 (day 1, 2, and, 3), #WT control versus Tlr4ΔIEC 

treated p-value <0.0001 (day 1, 2, and, 3), ##Tlr4ΔIEC control versus WT treated p-value = 0.0006, 

0.0050 (days 1 and 2, respectively), and, ***WT treated versus Tlr4ΔIEC treated day 3 p-value = 

0.0045). Data was presented as mean ± SEM.
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Tlr4ΔIEC mice are protected from irinotecan-induced diarrhoea 

40% of WT and 17% of Tlr4ΔIEC mice treated with irinotecan experienced diarrhoea on day 1 (figure 

3B). The percentage of WT treated mice with a higher grade of diarrhoea was significant in 

comparison to other groups on day 1 (figure 3B). Diarrhoea improved on day 2 and was completely 

resolved by day 3 (figure 3C & D). 

________________________________________________________________________________

Figure 3. Percentage (%) of mice with diarrhoea grade at (A) 6 hours, (B) day 1, (C) day 2, and 

(D) day 3. On day 1 WT treated (+/+) had significantly more diarrhoea than WT control (+/-) mice 

(*p-value <0.0001) and Tlr4ΔIEC treated (-/+) mice (**p-value <0.0001).  
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Epithelial TLR4 deletion has no effect on organ or tumour weight  

There was no difference in small intestine or colon weight between control and irinotecan treated 

groups in both WT and Tlr4ΔIEC animals (figure 4). Both treated groups had a significant decrease in 

spleen weight in comparison to control groups (figure 4C). 

________________________________________________________________________________ 

Figure 4. The (A) small intestine, (B) colon, (C) spleen weight relative to body weight. The 

splenic weight of treated groups was significantly less than that of the Tlr4ΔIEC controls (p-value, 

*WT treated = 0.0020, **Tlr4ΔIEC treated = 0.0105). Data was presented as mean ± SEM. 
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Irinotecan efficacy does not require epithelial TLR4  

On day 3, tumour burden was significantly less in treated mice compared to their control counterparts, 

for both WT and Tlr4ΔIEC (figure 5).  

 

 

 

 

 

 

________________________________________________________________________________ 

Figure 5. Tumour burden expressed as % change from baseline (day 0). Irinotecan caused 

decreased tumour growth in WT treated (*p-value = 0.0086), and Tlr4ΔIEC treated (#p-value = 0.0192) 

mice in comparison to controls. Data presented as mean ± SEM.
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Irinotecan impacts claudin-2 expression differently in the small intestine and colon 

Representative immunofluorescence images are shown in figure 6A. There were no differences in 

ileum claudin-2 staining or transcript expression between the groups (figure 6B, C & D). There were 

increased claudin-2 colon transcript levels in Tlr4ΔIEC control, in comparison to Tlr4ΔIEC treated mice 

(figure 6E).  
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________________________________________________________________________________ 

Figure 6. Claudin-2 expression in the ileum and colon. (A) Sections of ileum and proximal colon 

were stained for claudin-2 and visualised using an AlexaFluor 568. Blue counterstain (DAPI) shows 

nuclei. Original magnification 40x. Percentage (%) area of claudin-2 staining in (B) ileum and (C) 

proximal colon, and claudin-2 expression as a fold-change in (D) ileum and (E) colon. In the colon 

there was increased claudin-2 transcript expression in Tlr4ΔIEC control relative to treated group (*p-

value = 0.0163). Data presented as mean ± SEM.  
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Discussion 

Gastrointestinal complications of cancer therapy remain poorly prioritised and without effective 

intervention. Strong anecdotal evidence suggests supportive care interventions targeting TLR4 may 

be of clinical benefit, however, its dual regulation of mucosal toxicity and chemoefficacy challenge 

translation of TLR4-based therapeutics. This study proposed to understand the relationship between 

intestinal TLR4 signalling, intestinal inflammation, and response to irinotecan treatment, in a mouse 

model of colorectal cancer.  

This study found disparate effects in irinotecan-induced manifestations. While treated Tlr4ΔIEC had 

less diarrhoea compared to WT mice, they showed increased weight loss and delayed body weight 

recovery. This finding is of interest since previous work in Tlr4-/- mice has shown reduced weight 

loss following irinotecan compared to WT counterparts.9 Alternatively, other models of inhibited 

TLR4 signalling in CIGT and acute colitis showed no weight difference in comparison to WT.20, 36 

Contrastingly metabolic syndrome studies, utilising Tlr4ΔIEC mice with no intestinal inflammation, 

showed a significant weight gain response in the Tlr4ΔIEC mice in comparison to WT.37 This suggests 

different weight governing mechanisms in Tlr4ΔIEC and WTs.37 It is important to note that whilst these 

studies cannot be discounted, all compared studies used different strains of mice and, since there are 

immune response differences between mice strains,38 the comparison of the current study to others 

needs to be interpreted with caution. Nevertheless, these studies allude to a critical role of TLR4 in 

weight regulation, however the underlying mechanisms and how the weight change may present itself 

are unknown. My results demonstrate, in irinotecan-induced CIGT, that epithelial TLR4 potentially 

regulates weight-loss recovery after treatment.  

The day 1 diarrhoea response is supported by previous literature, as Tlr4-/- mice have displayed this 

response to irinotecan.9 However, this is contrasting to TLR4 antagonism studies, which reported no 

differences between the TLR4 antagonist group and control rats in irinotecan-induced diarrhoea.20 To 

support the current studies response, it has been suggested that Tlr4-/- mice have decreased intestinal 

motility and delayed emptying, in comparison to WT,39 which could contribute to attenuated 
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diarrhoea. Therefore, as supported by Tlr4-/- models, this study shows that Tlr4ΔIEC mice are protected 

from irinotecan-induced diarrhoea, which could be a result of decreased intestinal motility and 

emptying. 

Furthering this, the small intestine and colon weight response in both WT and Tlr4ΔIEC treatment 

groups does not support the current literature, as previously conducted unpublished data from our lab 

showed small intestine and colon wet weight decreased after one dose of irinotecan, at 24 hours 

(Wardill 2016). This is thought to be a result of irinotecan targeting highly rapid proliferating cells. 

In light of this conflicting evidence, it could be suggested the response was seen as the explored 

timepoint was after some indicators of toxicity had lessened, such as no groups had diarrhoea on day 

3. This limitation could be improved with the employment of a more sensitive marker of microscopic 

architectural changes to measure mucosal thickness, such as crypt depth and villus height ratios. In 

contrast, the spleen weight response was as expected, as previously irinotecan treated groups have 

had a reduced spleen weight.40 Mechanisms underlying irinotecan’s splenic effect is currently 

unknown, however other chemotherapeutics, oxaliplatin, also showed decreased spleen weight.41 

This was suggested to be the result of the chemotherapeutics immunogenic effects, particularly spleen 

B-cell depletion.41  

The current study found that epithelial TLR4 deletion did not significantly impact irinotecan efficacy. 

This is contrasting to previous work, where global Tlr4-/- have shown decreased doxorubicin efficacy 

against mouse colon carcinomas.19 Furthermore, our lab previously showed that TLR4 antagonism 

significantly reduced irinotecan efficacy against mammary adenocarcinomas.20 Taken together, this 

data suggest that immune TLR4 is more likely to mediate irinotecan efficacy, at least for certain 

tumour types. This is highly plausible as the immune system is critical in anti-cancer responses, with 

TLR4 facilitating immunogenic cell death that amplifies chemotherapy efficacy.19 Taken with 

previous findings, this enables the potential for targeting of epithelial TLR4 to reduced diarrhoea 

severity, without inhibiting chemoefficacy.  
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In addition, this study revealed different amounts of claudin-2 expression in the ileum and colon. In 

the ileum, there was no difference in claudin-2 expression at the protein or transcript level. Here, due 

to lack of TLR4, it is rational to expect that claudin-2 would not increase in Tlr4ΔIEC mice. This is 

because a link between claudin-2 and TLR4 is implied, as previous studies have found a simultaneous 

increases in claudin-2 and TLR4 in WT mice following FOLFOX treatment.15 However, it is 

interesting the expected claudin-2 increase was not seen in the WT mice. This could be a result of 

claudin-2 not being implicated in irinotecan-induced CIGT, the small sample size of groups and thus 

underpowered study, the large variability in the data, or, the analysis technique being unable to 

recognise more subtle changes. To improve this limitation a more appropriate technique could have 

included Z-stacks to quantify tight junction placement, as irinotecan treatment can result in relocation 

away from the membrane and hence render tight junction proteins non-functional for regulating 

permeability.17 Contrastingly, in the colon, there were low relative levels of claudin-2 transcript 

expression in the Tlr4ΔIEC control mice, but levels were more similar to WT control in the Tlr4ΔIEC 

treated mice. Intriguingly, however, there was no difference observed between the Tlr4ΔIEC and WT 

groups. This indicates that potential molecular differences between the groups trigger different 

responses in claudin-2 expression. This is supported in the literature, as when a colonic cell culture 

was treated with the different inflammatory signalling molecules the expression of claudin-2 differed, 

as it increased after anti-inflammatory interleukin-13 (IL-13) and decreased after pro-inflammatory 

interferon gamma (INFγ)/TNF treatment.42 It is currently unclear as to why the Tlr4ΔIEC control 

mice would have such low levels of caludin-2 expression, since from initial analysis they 

phenotypically have normal barrier function in comparison to WT control, as shown by tissue 

resistance scores (preliminary unpublished data). Because of the contradictory results in claudin-2 

expression further tissue analysis needs to be undertaken before more robust conclusions can be 

drawn. 

Due to the differing severity of CIGT manifestations, particularly weight loss and diarrhoea, in 

Tlr4ΔIEC mice the hypothesis, deletion of intestinal epithelial TLR4 will result in decreased severity 
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of irinotecan-induced CIGT, was partially supported. Furthermore, due to the observed irinotecan 

efficacy in Tlr4ΔIEC mice the hypothesis, there will be no effect of epithelial TLR4 intestinal deletion 

on tumour growth, was supported. Lastly, the hypothesis, a lack of epithelial TLR4 signalling will 

prevent changes in claudin-2 expression following irinotecan treatment, was partially supported. This 

is because, whilst there were no changes in ileum claudin-2 expression, there was in the colon claudin-

2 transcript expression between Tlr4ΔIEC groups. Therefore, due to the partial support of hypotheses, 

further research into this area is warranted to confirm the responses. 

In an effort to correlate markers of irinotecan-induced gastrointestinal toxicity and predictors of 

CIGT, an additional piece of work was conducted to find statistical associations between variables 

through the use of multivariate logistic regression (supplementary materials). Using this approach, 

we were able to identify that body weight, diarrhoea, intestinal weight and spleen weight, were 

strongly and significantly associated with histopathologically defined CIGT. These validate the use 

of these outcomes in the assessment of CIGT, however, further challenge the disparate results 

obtained in the current study (weight loss vs diarrhoea). This could be due to differences between the 

study and the model used for the scoring system development, which was different in mouse strain 

and age. This therefore poses the need for the creation of a universally used robust tool that is 

modelled off multiple models to accurately and sensitively predict CIGT markers. 

Due to result discrepancies, future improvements could be to conduct studies focusing on longitudinal 

changes across initial injury to full recovery time points, with the addition of histological analysis to 

quantify architectural differences between groups, using tissue injury scores. This may give further 

reasoning behind the disparate results in weight change and diarrhoea severity. Additionally, 

irinotecan dosage could be modified to be more reflective of a clinical setting, with the inclusion of 

multiple doses. Furthermore, when conducting the animal experiment, future studies should 

implement a food consumption and activity monitoring system, such as metabolic cages with motion 

tracking, to potentially aid in the interpretation around weight change.  
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In addition, to explore the role of TLR4 deletion on response to irinotecan, future studies would need 

to be powered for the expected tumour burden. Given our variability in growth patterns, as shown by 

the large error bars, more animals would be needed to adequately power the study. Together, these 

improvements would further strengthen the conclusion made regarding irinotecan efficacy and be 

particularly beneficial for model validation, as this was the first time our lab has used Tlr4ΔIEC mice 

in a tumour bearing model. 

Lastly, since TLRs are known to be the interface between the microbiota and downstream processes, 

it would be beneficial for future research to investigate the implications that Tlr4ΔIEC mice have on 

microbiota composition, which may further elucidate the manifestations seen in both toxicity and 

tumour growth. 

In conclusion, this study outlined for the first time that different TLR4 mechanisms underlie diarrhoea 

and weight loss manifestations in CIGT, which have to this point been considered markers of the 

same underlying disease mechanisms. Importantly, we have confirmed there are differing roles of 

epithelial and immune TLR4 and that future TLR4 agonist research should account for this when 

using models of inflammation. In addition, whilst not being directly studied, the findings revealed a 

novel potential requirement of immune TLR4 on irinotecan efficacy, opening a new research avenue 

to control TLR4-mediated side effects without impairing tumour kill. Taken together, these findings 

warrant future research targeting epithelial TLR4 to attenuate irinotecan-induced diarrhoea in tumour-

bearing models, with caution exercised when monitoring animal weight. Attenuation of irinotecan-

induced diarrhoea would provide immense clinical relief, as this is a key contributor to treatment 

reductions and breaks in patients with cancer.2  
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Supplementary material  

Mucositis Severity Scoring System 

Data that has previously been collected from a mouse model of mucositis (n = 23) was statistically 

evaluated to uncover variables that are significantly associated with mucositis. This was performed 

with a univariate binary logistic regression where ileum mucositis was the outcome that predictors 

were tested against. The gold standard used to define ileum mucositis was tissue injury score (TIS), 

a validated tool across the literature. The following was the given data ranges for ileum mucositis 

definition: 

 Small bowel (jejunum) TIS of 4 or above (out of a possible 8) 

 Large bowel (colon) of 3 or above (out of a possible 6) 

 Total (i.e. small and large bowel): TIS score of 7 and above (out of a possible 14). 

The results are outlined in the table below.  

Variables associated 

with mucositis 

severity 

Statistical 

significance 

p-value Negative or positive correlation with 

mucositis? 

Weight change from 

baseline 

+ + 0.0090 For every 0.1% increase in weight change 

the odds of having ileum mucositis 

decrease by 2%. 

Diarrhoea grade + 0.0102 For every 1 unit increase in diarrhoea grade 

the odds of having ileum mucositis is 

multiplied by 15.23. 

Small intestine weight + 0.0281 For every 0.1 unit increase in small 

intestine weight the odds of having ileum 

mucositis is multiplied by 1.18. 
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Large intestine weight  + 0.0108 For every 10 unit increase in large intestine 

weight the odds of having ileum mucositis 

is decreased by 13%. 

Organ spleen weight + + <0.0001 For every unit increase in organ spleen 

weight the odds of having ileum mucositis 

is decreased by 6%. 

Welfare score + + <0.0001 For every unit increase the odds of having 

ileum mucositis is multiplied by 4.47. 

  


