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Abstract 34 

 35 

Comparative phylogeography can inform many macroevolutionary questions, such as 36 

whether species diversification is limited by rates of geographic population 37 

differentiation. We examined the link between population genetic structure and 38 

species diversification in the fully aquatic sea snakes (Hydrophiinae) by comparing 39 

mitochondrial phylogeography in 16 species from two closely related clades that 40 

show contrasting diversification dynamics across northern Australia. Contrary to 41 

expectations from theory and several empirical studies, our results show that, at the 42 

geographic scale studied here, rates of population differentiation and speciation are 43 

not positively linked in sea snakes. The eight species sampled from the rapidly 44 

speciating Hydrophis clade have weak population differentiation that lacks 45 

geographic structure. In contrast, all eight sampled Aipysurus-Emydocephalus species 46 

show clear geographical patterns and many deep intraspecific splits, but have three-47 

fold slower speciation rates. Alternative factors, such as ecological specialisation, 48 

species duration, and geographic range size, may underlie rapid speciation in sea 49 

snakes.  50 

 51 
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Background 68 

 69 

Speciation biology predicts that if population differentiation and species 70 

diversification are limited by similar causal factors, their rates will be linked over 71 

macroevolutionary timescales (TEMPLETON 1986; TURELLI et al. 2001). However, the 72 

few studies that have examined relationships between rates of intraspecific 73 

differentiation and speciation show inconsistent patterns. For example, studies of 74 

birds (HARVEY et al. 2017a) and fish (RIGINOS et al. 2014) have found positive 75 

associations between genetic estimates of population geographic structure and 76 

speciation, supporting theory that the generation of differentiated populations 77 

contributes to broad-scale species diversity. However, work on orchids has revealed 78 

decoupled differentiation and diversification rates (KISEL et al. 2012), indicating that 79 

speciation in this group is limited by other factors, such as ecological opportunity or 80 

population persistence. Better understanding of the links between population 81 

differentiation and species diversification requires phylogeographic comparisons of 82 

recently diverged groups that show contrasting diversification dynamics, ideally 83 

across a shared landscape. Such examples may be atypical but have the potential to 84 

provide important insights into the speciation mechanisms that explain diversity 85 

patterns in focal taxa.  86 

Here, we compare phylogeographic patterns in two clades of sea snakes 87 

(Hydrophiinae) that share a common ancestor only ~6-16 million years ago but have 88 

undergone very different rates of species diversification. The Hydrophis clade is the 89 

most rapidly speciating group of reptiles known, with 47 species that are ecologically 90 

diverse and typically have wide geographic distributions in the Indo-West Pacific 91 

(RASMUSSEN et al. 2011). In contrast, the Aipysurus-Emydocephalus clade has only 92 

nine species, most of which are less ecologically specialised and have narrower 93 

geographic ranges restricted to the Australasian region. Estimates of speciation rates 94 

based on dated molecular trees are more than three times higher for Hydrophis 95 

compared to Aipysurus-Emydocephalus: 0.333 versus 0.090 species per million years, 96 

respectively (LEE et al. 2016). Many species in the two clades have overlapping 97 

distributions in various shallow-water habitats across northern Australia. These 98 

habitats experienced recurrent cycles of contraction and expansion in response to sea 99 

level fluctuations from the late Miocene to the late Pleistocene (BOWEN et al. 2016). 100 

Phases of habitat contraction during glacial maxima are thought to explain 101 
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geographically concordant patterns of population differentiation in many marine taxa, 102 

including Australian sea snakes (LUKOSCHEK 2018), and have been linked to 103 

speciation in some groups (e.g. SHEN et al. 2011). 104 

In this paper, we generated mitochondrial cytochrome b sequences to analyse 105 

phylogeographical histories of 16 sea snake species in the Hydrophis and Aipysurus-106 

Emydocephalus clades. If rates of population geographic differentiation and species 107 

diversification are positively linked at the geographic scale studied here, we would 108 

expect to find stronger intraspecific differentiation in the Hydrophis taxa because 109 

these have three-fold higher speciation rates compared to Aipysurus-Emydocephalus.  110 

 111 

Methods 112 

 113 

We analysed 375 individual samples from sixteen species collected from across their 114 

ranges in northern Australia (electronic supplementary table S1). Eight species were 115 

sampled from each of the Aipysurus-Emydocephalus and Hydrophis clades. Thirteen 116 

species (including one complex of two nominal species) were densely sampled, with 117 

15-63 (mean 29) individuals sampled per species or species complex (Table 1). Three 118 

Hydrophis species that were less densely sampled (6-8 individuals per species) were 119 

included only in the phylogenetic analysis (see below). Sampling localities were 120 

grouped into three major regions (Figure 1): the Western Australia coast (WAC), 121 

Timor Sea Reefs (TS), and northern and eastern Australia (N&E Aus) (Figures 1 and 122 

2).  123 

DNA was extracted and mitochondrial cytochrome b gene was amplified and 124 

sequenced using standard protocol. A time-calibrated phylogeny was reconstructed 125 

using BEAST v2.4.7 (BOUCKAERT et al. 2014), haplotype networks were created 126 

using TCS network methods in PopART (LEIGH et al. 2015), and genetic diversity 127 

statistics and estimates of pairwise population genetic differentiation were calculated 128 

in Arelequin v3.5.2.2 (Excoffier and Lischer, 2010) and DnaSP v5 (LIBRADO AND 129 

ROZAS 2009) (see electronic supplementary material). 130 

 131 

Results 132 

 133 

The final alignment comprised 375 cytochrome b sequences of 1099 base pairs. 134 

Divergence time estimates are broadly consistent with previous studies (Sanders et al. 135 
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2013; Lukoschek 2018) and most intraspecific splits are dated within the last ~2 136 

million years (Figure 1). Species sampled from the two clades show contrasting 137 

phylogeographic patterns. All Aipysurus-Emydocephalus species have strong 138 

population structure that is broadly congruent with geographic regions. The BEAST 139 

tree (Figure 1) recovered well-supported clades corresponding to the WAC versus TS 140 

and N&E Aus in A. laevis; WAC versus TS in A. foliosquama, A. fuscus-A. tenuis, A. 141 

apraefrontalis, and E. annulatus; and WAC versus N&E Aus in A. mosaicus. A. 142 

foliosquama also contained monophyletic groupings within the WAC (Shark Bay 143 

versus more northern WAC localities). Haplotype networks for Aipysurus-144 

Emydocephalus species show clear geographic segregation with no haplotypes shared 145 

among regions (Figure 2), and pairwise comparisons of Nei’s genetic distance were 146 

significant for 7 of the 11 comparisons among geographic regions (Table 1). The only 147 

significant Tajima’s D value was for the A. laevis WAC population (-1.66226; p-148 

value: 0.034).  149 

None of the eight Hydrophis species showed clear phylogeographical 150 

structure. Two (H. major, H. ocellatus) were recovered in the BEAST tree as shallow 151 

clades with no discernable geographic structure (Figure 1), and yielded star-shaped 152 

haplotype networks with haplotypes shared across distant localities (Figure 153 

2).  Tajima’s D values were significantly negative for WAC populations of these 154 

species, at -2.00107 (p-value: 0.006) and -1.54236 (p-value: 0.02), respectively. The 155 

three other densely-sampled Hydrophis species (H. peronii, H. elegans, H. stokesii) 156 

contained weakly supported clades in the BEAST tree but these did not correspond to 157 

geographic regions, and haplotypes were shared among regions in H. peronii and H. 158 

elegans. Of the 8 pairwise comparisons of Nei’s genetic distance in Hydrophis, only 159 

one was significant (Table 1). Nucleotide and haplotype diversities were high within 160 

regions for most species (electronic supplementary table S2). 161 

 162 

Discussion  163 

 164 

Contrary to expectations from theory and several empirical studies, our results show 165 

that rates of fine-scale population differentiation are not positively linked to 166 

speciation in sea snakes. The species sampled from the rapidly speciating Hydrophis 167 

clade have weak population differentiation that lacks geographic structure. In 168 

contrast, all sampled Aipysurus-Emydocephalus species show clear geographical 169 
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patterns and many deep intraspecific splits, but have three-fold slower speciation rates 170 

(Figures 1 and 2) (Lee et al. 2016). Species in the two groups have diversified across 171 

very similar habitats and regions over the last ~2 million years (Figure 1). Hence, 172 

these lineages’ contrasting phylogeographic patterns indicate heritable differences in 173 

their responses to historical landscape conditions.  174 

All shallow marine species in northern Australia must have been impacted by 175 

the recurrent contractions of their habitats during the Miocene and Pleistocene 176 

(BOWEN et al. 2016). However, the persistence of geographic population structure 177 

(and therefore the extent that it contributes to species diversity) will depend on the 178 

propensity of previously allopatric populations to introgress during expansion phases. 179 

Various demographic factors must influence the rate of gene flow in expanding 180 

populations that are incompletely reproductively isolated, particularly dispersal-181 

related traits such as population size, intra-specific competition, habitat preference, 182 

and dispersal ability. Unfortunately, most of these traits are poorly known for sea 183 

snakes. However, Hydrophis species typically have large geographic ranges in the 184 

Indo-West Pacific, whereas all but two Aipysurus-Emydocephalus species are 185 

restricted to Australasian waters. Species’ range sizes are often indicative of their 186 

dispersal capacity (e.g. JABLONSKI 2008). If Hydrophis species underwent rapid post-187 

glacial colonisation, exporting haplotype diversity over large geographic distances, 188 

this may have eroded phylogeographic signal in genetically structured species H. 189 

peronii and H. elegans, and could explain the star-shaped haplotype networks and 190 

significant, negative Tajima’s D values (indicating recent population expansion) in H. 191 

major and H. ocellatus. It is also possible that range expansion of Hydrophis species 192 

is less constrained by interspecific competition, given that they are more ecologically 193 

specialised than most Aipysurus and often co-occur in diverse assemblages 194 

(HEATWOLE AND COGGER 1994). Future studies are needed to examine dispersal 195 

dynamics in sea snakes, and identify whether any clade-specific differences are due to 196 

life-history traits and/or interspecific interactions. It will also be important to identify 197 

the locations of refugia (such as the remote Timor Sea reefs) used by the two clades 198 

during peak habitat contractions.    199 

Regardless of their causative factors, the phylogeographic patterns reported in 200 

this paper have several important implications. It is clear that the anomalously high 201 

rates of speciation in Hydrophis are not limited by rates of population genetic 202 

differentiation at the geographic scale studied here. Instead, speciation rates may be 203 
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promoted by greater range sizes in Hydrophis that enhance species persistence and 204 

provide opportunities for divergence across major biogeographic and ecological 205 

boundaries. Our previous studies of Hydrophis have shown strong vicariance at inter-206 

regional scales (E.G.UKUWELA et al. 2016), and rapid morphological evolution driven 207 

by ecological specialization (e.g. SHERRATT et al. 2018). However, work is needed to 208 

identify links among geographic, ecological and life-history traits in sea snake species 209 

formation and diversity limits. Our findings also provide a valuable evolutionary 210 

context for sea snake conservation planning. In particular, the contrasting 211 

phylogeographic histories of Hydrophis and Aipysurus-Emydocephalus species 212 

suggest that they may respond differently to shared threats and require different 213 

spatial strategies to preserve genetic diversity and population processes. 214 
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Table 1. Nei’s pairwise population genetic distances between major regions; values in 303 

bold are significant (p<0.05) and are underlined to show monophyletic clades in the 304 

BEAST tree. Superscripts denote numbers of haplotypes shared between regions.  305 

 306 

Figure 1. Mitochondrial maximum clade credibility tree for all 16 sampled species. 307 

Sampling localities are shown as colours and correspond to the map. Timescale is in 308 

millions of years ago (MYA). Posterior probability support values >0.95 are shown as 309 

black dots. 310 

 311 

Figure 2. Mitochondrial haplotype networks for twelve densely sampled species or 312 

species complexes. Circles represent haplotypes with sizes of nodes and pie 313 

segments proportional to haplotype frequency. Sampling localities are shown as 314 

colours based on the corresponding map. 315 

 316 
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Table 1.  337 

 338 

 339 

 340 

 WAC v TS WAC v N&E 

AUS  

TS v N&E 

AUS 

E. annulatus  0.461
 - - 

A. mosaicus - 0.305 - 

A. duboisii  0.103 0.023 0.545 

A. foliosquama  0.163 - - 

A. apraefrontalis  0.581 - - 

A. fuscus/tenuis complex  0.175 - - 

A. laevis 1.754 0.148 0.243
2
 

H. elegans - 0.336
3
 - 

H. ocellatus - -0.048
1
  

H. stokesii - 0.033 0.846 

H. peronii -0.015
1
 0.083 0.365 

H. major - 0.147
2
 - 
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