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Abstract 

Water distribution systems are constructed to supply water for domestic, industrial and 

commercial consumers. The design, operation and management of these distribution 

systems is usually supported by the application of hydraulic models, which are built to 

replicate the behavior of real systems. Conventional demand driven models simulate flows 

and pressures of a water distribution system requiring assumptions of known demands 

and known valve statuses. Due to the stochastic behavior of the water demands as well 

as the complexity of the piping network, these assumptions usually lead to an inadequate 

understanding of the full range of operational states in the water system. Installation of 

sensor devices in a network can provide information about some components in the 

system. However, calibration of the water demands and identification of valve statuses is 

either still not feasible or very difficult being attributable to the usual limited number of 

available measurement devices in most real water networks.  

This dissertation addresses three main issues of water distribution modelling, which 

include: (1) calibration of water demands under ill-posed conditions where the number of 

measurements is less than the number of parameter variables, (2) estimation of water 

demands under uncertainty in a near real-time context, and (3) calibration and localization 

of unknown partially/fully closed valves in a water network. The solutions for these 

problems, which are the main contributions of the research, are described by three journal 

papers included in this dissertation.  

The first journal paper presents a novel approach to calibration of the water demand 

multipliers under ill-posed (i.e. underdetermined) conditions by the multiple runs of a 

Genetic Algorithm model. The results from three case studies show that the average values 

of multiple runs of the Genetic Algorithm model can deliver very good estimates of the 

water demand multipliers, the flow rates and nodal heads at non-measured locations with 

a limited number of the measurements. In addition, the effects of the location and the 

number of measurement sites to the output of the demand calibration model are also 

analysed in the paper. 
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The second journal paper introduces a predictor-corrector approach for the online (near 

real-time) estimation of demand multipliers. A conventional particle filter and an 

improved particle filter method, which incorporates an evolutionary scheme from Genetic 

Algorithms into the resampling process to prevent particle degeneracy, impoverishment 

and convergence problems, are investigated to implement the predictor-corrector 

approach. Furthermore, the paper proposes a first order approximation method to 

quantify the uncertainties of the model outputs caused by measurement errors. Two case 

studies are presented to demonstrate the effectiveness of the proposed particle filter model.  

The third journal paper proposes an innovative methodology for the identification of 

unknown partially/fully closed valves in a water distribution network. Three sequentially 

applied methods are proposed in the methodology, which include: a local sensitivity 

analysis, an application of Genetic Algorithms and an application of the Levenberg-

Marquardt algorithm. In the first method, the sensitivity of the flow rates and nodal heads 

at measurement locations with respect to the change in the minor losses of the valves is 

computed. This computation is used to identify the valves that are unable to be localized 

by the measurement data. The second method applies a Genetic Algorithm in an extended 

period simulation in order to preliminarily identify the locations of the partially/fully 

closed valves and their setting values, i.e. the degree of opening of the valve. Finally, the 

application of the Levenberg-Marquardt algorithm to a steady state simulation is 

implemented to correct the results from the Genetic Algorithm model. 

This research has made significant contributions to the body of knowledge. Two novel 

methodologies have been developed for calibration of demands in water distribution 

systems. The impact of the location and number of measurement sites on the output of 

the demand calibration models has been evaluated in detail. In addition, a novel 

methodology for the calibration of unknown valve statuses has also been proposed. Results 

from realistic-size case studies have shown that the proposed methodologies are capable 

of solving real world problems, which enhances calibration approaches for water 

distribution system models.
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Chapter 1 Introduction

As an indispensable component of the urban infrastructure, a water distribution system 

(WDS) has to accommodate large water transfer volumes on a daily basis. From the first 

basic aqueducts thousands of years ago, WDSs nowadays have become a labyrinth of 

networks of pipes, valves, tanks, pumps and monitoring systems. The growth of cities due 

to rapidly increasing population as well as limited capacity of water sources have required 

additional linkages between water sources and demand regions. As a result, the difficulty 

in designing, managing and understanding the operation of the system has also increased.  

The management and control of WDSs require understanding of the dynamics of 

hydraulics (e.g. the variations of flow rate in pipes and the pressure at customer’s taps) 

and water quality within the distribution piping networks. These tasks can be completed 

by the use of hydraulic simulation models, which are built to imitate the real systems. A 

WDS model is an indispensable tool for providing engineering insight into the WDS, 

assessing water quality conditions as well as improving operational performance. In 

addition, the hydraulic model can also be used to simulate and evaluate extreme 

conditions, predict system responses to abnormal events without interrupting the actual 

system. Such simulation applications significantly enhance the ability of water companies 

to proficiently control, manage, maintain their WDSs and to provide reliable service to 

their customers.  

A simulation model is the mathematical approximation of a real physical system. The 

system could be simulated with high level of confidence if perfect understanding of the 

system was available. However, it is not the case for most of the WDSs. In fact, a WDS 

is an environment of change and uncertainty. Water consumption from domestic, 

residential, restaurants, hospitals, parklands or industrial users is always changing and 

cannot be predicted. The piping system deteriorates over time as a result of aging and 

corrosion, resulting in changes of pipe characteristics and also increasing the frequency of 
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leaks or main breaks. Human interactions with the system is another factor that can also 

introduce uncertainty to the WDS. These factors often contribute to sometimes significant 

approximations of the simulation outputs to the actual physical system. As a result, a 

calibration analysis should be performed before the hydraulic model is used.  

Calibration of a WDS model is the process of adjusting network parameters so that the 

output from the computer model matches the field measurements. The network 

parameters may include the water demands, roughness coefficients or the settings of the 

valves in the system, whilst the field measurements usually are the flows in pipes and 

pressures at some particular locations. A calibration process is essential for the following 

reasons: (1) improving the level of confidence for engineers and modellers in making 

decision as calibration shows the model’s ability to mimic the present conditions of the 

system; (2) offering better understanding of the system. Analyses during calibration 

processes can evaluate which parameters are most sensitive in the model, thereby 

providing better knowledge of different components in the system as well as their 

contributions to the reaction of the system; and (3) discovering potential issues that are 

happening in the system. A large difference found during calibration process can be caused 

by an abnormal problem, which may be a pipe break, an unknown throttled or a closed 

valve.  

The sensor technology recently applied in WDSs can assist in providing the flowrates and 

pressures at specific locations in real-time. In such cases, robust calibration of WDS models 

needs to be implemented so that the resulting model can represent important dynamic 

aspects of the actual system. The research implemented in this dissertation is dedicated 

to developing innovative methods for water demand calibration/estimation as well as 

innovative calibration techniques for determining the unknown valve statuses, which 

contribute toward enhancing the calibration approaches for WDS steady state models.  
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1.1  Research objectives 

The overall aim of the research is to develop reliable and effective methodologies for 

calibrating WDS steady state and extended period simulation models, which includes 

calibration of water demand multiplier factors and calibration of valve settings. In fact, 

water demands are the main parameters that affect the uncertainty of the output of 

simulation models in the short term (e.g. hourly, daily) while a change in the valve settings 

can cause a huge discrepancy between the actual system and its simulation model. The 

presence of unknown valves/valve statuses is also one of the largest sources of uncertainty 

in terms of the physical properties of the system. Other properties include pipe lengths, 

pipe diameters and pump curves. Therefore, it is important to calibrate these parameters. 

Given the knowledge gaps in current research identified in Chapter 2, the aim can be 

divided into six objectives: 

Objective 1: to develop a methodology for calibration of the water demand multipliers and 

estimating of flow rates, nodal heads under ill-posed (underdetermined) conditions where 

the number of measurements is less than the number of unknown demands being 

estimated. 

Objective 2: to investigate the effect of measurement locations and the number of 

measurements on the outputs of demand calibration models. 

Objective 3: to improve estimation methodologies for the online (near real-time) 

estimation of the water demand multiplier factors.  

Objective 4: to provide a methodology quantifying the uncertainty of demand estimation 

models caused by different sources of error. 

 Objective 5: to formulate a sensitivity method of the flow rates in pipes and pressures at 

nodes with respect to changes in the settings of valves to better understand the system 

Objective 6: to develop a framework model for the calibration and localization of 

inadvertently partially/fully closed valves in a water network. 
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Figure 1.1 shows the relationships between the six objectives that contribute to the main 

aim of the research. The first four objectives (from Objectives 1 to 4) focus on the problem 

of demand calibration while the last two objectives (Objectives 5 and 6) investigate the 

problem of identifying partially/fully closed valves using calibration techniques.  

	
Figure 1.1 Connections between the six objectives 

The ill-posed problem resulting from a limited number of measurements for calibration of 

a steady state model is investigated in Objective 1. The second objective evaluates the 

impacts of measurement locations and the number of measurement sites to the accuracy 

of the demand calibration model that was developed in Objective 1. These two objectives 

are presented in Chapter 4, which is also the first journal publication of the research. 

Objectives 3 and 4 focus on the development of an online demand estimation model of 

aggregated networks, in which the uncertainty of the demand outputs caused by 

measurement errors is computed using the proposed first-order approximation method. 

The effects of measurement locations to the outputs of the online model (Objective 2) are 

again analysed. The work implemented to achieve these objectives is shown in Chapter 5, 

and published in the second journal publication. Chapter 6 (i.e. the third journal 

publication) explores the potential issue of inadvertently partially/fully closed valves, 

which may occur in a WDS. This chapter consists of Objectives 5 and 6, in which 

Objective 5 is a necessary step for achievement of Objective 6.  
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1.2  Thesis outline 

This thesis is presented as a collection of three journal publications that have been 

published, accepted or submitted to internationally recognized journals and is arranged in 

seven chapters. Chapter 2 gives a detailed review of the relevant literature on the topic of 

WDS model calibration. A summary of the three publications that make up this research 

is presented in Chapter 3. 

Chapter 4 introduces the first publication (Do et al. 2016a): ’Calibration of water demand 

multipliers in water distribution systems using genetic algorithms’, published in the 

Journal of Water Resources Planning and Management. This paper presents an approach 

to calibration of the demand multiplier factors (DMFs) under an ill-posed condition where 

the number of measurements is less than the number of parameter variables (Objective 

1). The problem is solved using a Genetic Algorithm (GA).  The results from three 

synthetic (i.e. artificial) case studies show that the average values of multiple runs of the 

GA model can deliver very good estimates of the water demand multipliers, the flow rates 

and nodal heads at non-measured locations with a limited number of measurement sites. 

In addition, the effects of the location and the number of the measurement sites to the 

output of the demand calibration model (Objective 2) are also analyzed in the paper.  

Chapter 5 presents the second publication (Do et al. 2017a): ‘A particle filter - based model 

for online estimation of demand multipliers in water distribution systems’, accepted for 

publication in the Journal of Water Resources Planning and Management. In this paper, 

a predictor-corrector approach for the online (near real-time) estimation of demand 

multipliers is developed (Objective 3). A conventional particle filter and an improved 

particle filter method, which incorporates the evolutionary scheme from genetic algorithms 

into the resampling process to prevent particle degeneracy, impoverishment and 

convergence problems, are investigated to implement a predictor-corrector approach. 

Furthermore, the paper proposes a first order approximation method to quantify the 

uncertainties of the model outputs caused by measurement errors (Objective 4). The 

impacts of the measurement placements to the results of the estimation model (Objective 
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3) are also discussed. Two synthetic case studies are presented to demonstrate the 

effectiveness of the proposed particle filter model.  

Chapter 6 contains the final publication (Do et al. 2017b): ‘Localization of inadvertently 

partially closed valves in water distribution systems’, submitted to the Journal of Water 

Resources Planning and Management. This paper introduces an innovative methodology 

for the identification of unknown partially/fully closed valves in a water distribution 

network (Objective 6). Three sequentially applied methods are proposed in the 

methodology, which include: a local sensitivity analysis (Objective 5), an application of 

the Genetic Algorithms and an application of the Levenberg-Marquardt algorithm. In the 

first method, the sensitivity of the flow rates and nodal heads at measurement locations 

with respect to the change in the minor losses of the valves is computed. This computation 

is used to remove the valves that are unable to be localized by the measurement data. 

The second method applies a genetic algorithm in an extended period simulation in order 

to preliminarily identify the locations of the partially/fully closed valves and their setting 

values, i.e. the degree of opening of the valve. Finally, the application of the Levenberg-

Marquardt algorithm is implemented to correct the results from the GA model. Results 

and discussions from two synthetic case studies show that the proposed methodologies are 

capable of solving real world problems. 

In the last chapter, Chapter 7, a summary of conclusions and important contributions is 

presented. This chapter also offers a number of possible future research direction.
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Chapter 2  Literature review

Hydraulic simulation models are commonly used by engineers, consultants and water 

utilities. The use of hydraulic models covers many application areas in the field of water 

distribution system engineering: design of water infrastructure, optimization of system 

operation, prediction and detection of abnormal events, or risk management and decision 

making purposes. Such hydraulic models usually fall into one of two categories, either 

unsteady state models or steady state models. 

Unsteady state models consider the variation of the flow conditions with time (Junior & 

Vatavuk 2006). The term “unsteady” in WDS modelling is usually referred to a hydraulic 

transient (i.e. a pressure wave travels through the pipe network) that occurs due to the 

rapid change of a flow control device or sudden stopping of a pump in the system. If the 

compressibility effects of fluid and the elasticity of pipe materials are neglected, the 

hydraulic transients can be analyzed by a rigid water column modeling approach (also 

known as a slow transient model), in which the fundamental rigid model equation for each 

time instant of the transient period is applied (Walski et al. 2003). Examples of these 

models are Onizuka (1986), Shimada (1989), Ahmed (1997) and Nault and Karney (2016). 

On the other hand, hydraulic transients can be studied by an elastic model if the pipelines 

are considered to be deformable and the liquid is compressible. According to Walski et al. 

(2003), the main objectives of hydraulic transient analysis are: (1) to determine the 

magnitude of transient pressures that can result from flow control operations (e.g. Pinder 

and Cooper (1970), Liggett and Chen (1994) and Wood et al. (2005)) and (2) to formulate 

the design criteria for water system devices, so as to provide a tolerable level of protection 

against system failure (e.g. Boulos et al. (2005) and Soares et al. (2008)). In addition, 

hydraulic transient analysis is also applied to the problem of leak detection, for example: 

Vitkovsky et al. (2000), Kapelan et al. (2003) and Vitkovsky et al. (2007)). Because of the 

difficulty and long computational time of hydraulic transient evaluations, unsteady state 
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models are often applied to relatively small to medium sized distribution systems. These 

approaches remain computationally impractical for the analysis of very large systems 

(Filion and Karney 2002). 

Steady state models consider only the steady condition of the flows. These models can 

simulate a water network at a specific point of time (steady state simulation) or over a 

period of time (extended period simulation, or a series of steady state simulations) if 

dynamic analysis of the network is required. Steady state and extended period analysis is 

fundamental for the design, operation and maintenance of complex WDSs. The ease and 

speed associated with this type of model gives an engineer the ability to examine many 

solutions under a wide range of conditions, which can bring more cost-effective and robust 

designs (Walski et al. 2003). In addition, steady state solutions are also required as an 

initial point for solving the unsteady state equations. According to Boulos et al. (2006), 

the relation between analyzing a WDS under steady state and transient conditions is 

interdependent. The transient analysis is built based on the analysis of steady state 

conditions and the transient problem can only be solved if the initial hydraulic grade line 

elevations and flow velocities are known. Finally, Sanz (2015) has pointed out that for a 

complex WDS, the network tends to be less variable in terms of pressure variation as the 

transient events are dissipated quickly in space. Accurate estimates of variables such as 

pressures and flows of the network can be obtained if the steady state model is well 

calibrated. For these reasons, the application of steady states models in WDS modeling is 

necessary given the noisy nature and unstable conditions of real systems.  

Research in this thesis focuses on the calibration of steady state models. The following 

section describes the formulation of the steady state hydraulic simulation in WDS 

modeling. 

2.1  Basic equations for steady state simulation of WDSs 

Hydraulic models are governed by two principles: the conservation of mass and the 

conservation of energy. Under the steady state condition of the network modelling, the 
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conservation of mass states that the fluid mass entering any junction must be equal to the 

mass leaving the junction, i.e. the algebraic sum of the flows at nodes or junctions is equal 

to zero: 

𝑎"#𝑄#

%&

#=1
+ 𝐷𝑀" = 0          (𝑖 = 1, … , 𝑁, ) (2.1) 

where 𝑁-  is the number of links in the network. 𝑄# is the flow in link 𝑗.  𝐷𝑀" is the 

demand at node 𝑖. 𝑁,  is the total number of nodes or junctions. 𝑎"# is an element that 

provides information about the connectivity of the nodes and the links in the network. 𝑎"# 

is assigned a value of -1 or 1 if the link enters or leaves the node, respectively. Otherwise, 

𝑎"# is assigned a value of 0.  

The conservation of energy of a network model states that energy must be conserved 

between any two junctions or nodes, which is presented by the head loss equation in each 

link: 

𝐻" − 𝐻1 − 𝑟#𝑄#|𝑄#|3−1 = 0          (𝑗 = 1, … , 𝑁- ) (2.2) 

where 𝐻", 𝐻1 are the nodal heads at two ends of the link (i.e. at node 𝑖 and node 𝑘). 𝑟# 

is the resistance factor for link 𝑗. 𝑄# is the flow in link 𝑗 and 𝑛 is the exponent of the head 

loss equation, whose value is 2 for the use of the Darcy-Weisbach equation or 1.852 for 

the use of the Hazen-Williams equation. 

Equation (2.1) and (2.2) are the elementary equations for the steady state modeling of a 

WDS. When dealing with real systems, these equations must be altered in order to account 

for local losses, pumps and/or different types of valves, etc. (Todini and Rossman 2012). 

For example, if the minor losses of pipes/valves are considered (as in Chapter 6 of the 

thesis), Equation (2.2) will be modified as: 

𝐻" − 𝐻1 − 𝑟#𝑄#|𝑄#|3−1 − 𝑚#𝑄#
2 = 0 (2.3) 

where 𝑚# is the minor loss coefficient for link 𝑗. 

Various approaches have been developed for solving this set of (𝑁, + 𝑁- ) equations (i.e. 

Equations (2.1) and (2.2)), for example the Hardy Cross method (Cross 1936), the linear 
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theory method (Wood & Charles 1972), the Newton Raphson method and the global 

gradient algorithm (Todini & Pilati 1988). These algorithms simulate the flows distributed 

in pipes and pressures at nodes of a network based on underlying assumptions that the 

nodal demands, network characteristics (e.g. pipe roughnesses, diameters and lengths, etc.) 

and other boundary conditions (such as pump status, valve status) are known inputs. The 

outputs from steady state hydraulic models, therefore, represent the water distribution 

system behavior during the period at which these assumptions are verified (Preis et al. 

2009).  

In fact, a WDS is an environment of change and uncertainty. Water consumptions from 

domestic, residential, restaurants, hospitals, parklands or industrial users always change 

and cannot be predicted. The piping system deteriorates over time as a result of aging 

and corrosion, resulting in changes of pipe characteristics and also increasing the frequency 

of leaks or main breaks. Human interactions with the system is another factor that can 

also introduce uncertainty to the WDS. If a steady state model simulates the WDS based 

on the above assumptions, it may lead to a large approximation between the simulation 

outputs and the actual physical system.  

Sensor technology that has recently been applied in WDSs can assist in providing the 

flowrates and pressures at specific locations in real-time (e.g. Shihu (2011) and Whittle et 

al. (2013)). In such cases, robust calibration of WDS models needs to be implemented so 

that the resulting model can represent important dynamic aspects of the actual system. 

2.2  Calibration of WDS steady state models 

Calibration of a WDS model is the process of adjusting network parameters so that the 

output from the computer model matches the field measurements, which are usually the 

pressures and flow rates at particular locations in the network (Shamir & Howard 1977). 

The calibration procedure can generally be implemented by seven steps suggested by 

Ormsbee (1989): (1) Identifying the intended use of the model, (2) Determining estimates 

of the model parameters, (3) Collecting calibration data, (4) Evaluating the results of the 



Chapter 2: Literature review 

 

 11 

model, (5) Performing a macro level calibration of the model, (6) Performing a sensitivity 

analysis and (7) Performing a micro level calibration of the model.  

Mathematically, the calibration problem can be formulated as a nonlinear problem: 

𝑧 = ℎ 𝑥 + 𝑒 (2.4) 

where 𝑧 is the field measurement vector (i.e. pipe flow rates and nodal pressures). 𝑥 is the 

unknown input parameter that is required to be calibrated/estimated (e.g. pipe roughness 

coefficients, nodal demands, etc.). ℎ() is the nonlinear vector function relating the field 

measurements to the unknown parameters, (i.e. Equation (2.1) and (2.2)). 𝑒 is the 

measurement vector error that is usually assumed to be normally distributed with zero 

mean.  

Approaches for this calibration problem can be classified into three categories: ad hoc (trial 

and error) calibration, explicit calibration and implicit calibration models, which are 

comprehensively reviewed by Savic et al. (2009). Initial studies of the ad hoc calibration 

schemes were pioneered by Rahal et al. (1980), Walski (1983) and Bhave (1988), in which 

an iterative process to update unknown model parameters was implemented. Due to the 

slow convergence rate, this method was only assessed as being applicable to small water 

networks. 

Explicit calibration methods were introduced and employed by Ormsbee and Wood 

(1986), Boulos and Wood (1990) and Boulos and Ormsbee (1991). These methods solved 

an even-determined set of water network equations where the number of unknown 

parameters was grouped to be equal to the number of measurements. As the measurement 

errors were also neglected, these methods usually did not adequately consider real-world 

practical outputs. Therefore, explicit calibration models were often used to analyze 

historical events in water systems (Savic et al. 2009).  

The third type of calibration techniques is implicit calibration. This method considers the 

calibration problem as an optimization process and solves it using a hydraulic solver 

coupled with an optimization technique. An objective function is usually associated with 



Chapter 2: Literature review 

 12 

these optimization models and often formulated as a least absolute value (LAV) criterion, 

a least square (LS) criterion or a root mean square error (RMSE) criterion. Numerous 

optimization techniques have been applied for the implicit calibration (i.e. optimization) 

problem, from mathematical methods (e.g. modified Newton Raphson method (Shamir 

1974), the Simplex method (Sterling & Bargiela 1984), Complex method (Ormsbee 1989), 

the generalized reduced gradient method (Lansey & Basnet 1991), sensitivity analysis 

using a Taylor series approach (Datta & Sridharan 1994), the Levenberg-Marquardt 

algorithm (Koppel & Vassiljev 2012) and the singular value decomposition (SVD) method 

(Cheng & He 2010; Sanz & Perez 2015)) to evolutionary optimization methods (e.g. 

Genetic Algorithms (Meier & Barkdoll 2000; Preis et al. 2009; Abe & Peter 2010)).  More 

recently, some probabilistic methods have been introduced (e.g. Kalman filter method 

(Shang et al. 2006), the shuffled complex evolution metropolis algorithm (Kapelan et al. 

2007) and the particle filter method (Hutton et al. 2012b)). These models were built in an 

attempt to determine the uncertainty of the calibrated parameters caused by 

measurement errors. 

2.3  Selection of calibrated parameters 

There are many factors that contribute to the uncertainty of a WDS model. Pipe 

roughness coefficients, the water demands at nodes and control valve settings are of great 

interest for researchers in steady state calibration given their high impact on network 

uncertainty. However, roughness coefficients usually vary only in the long term due to 

pipe deterioration, for example the annual variation of these parameters was considered 

in Haddad et al. (2008) and Seifollahi-Aghmiuni et al. (2013). On the other hand, water 

demands are the main parameters that affect the uncertainty of the output of models in 

the shorter term (e.g. hourly, daily) while a change in the valve settings can cause a huge 

discrepancy between the actual system and its simulation model. 

Because the detail of pipe roughness calibration can be found elsewhere (e.g. Ormsbee and 

Lingireddy (1997), Bush and Uber (1998) and (Wu et al. 2002)), this topic has been 
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excluded from the research presented in this thesis. The following discussion focuses on 

the calibration of the water demands and valve settings in WDS hydraulic models. 

2.3.1 Unknown demand parameters 

The hydraulic dynamics that happen in WDSs are driven by the consumption of water, 

also known as the water demand (Walski et al. 2003). This “driving force” should ideally 

be observed via smart demand metering system or sensor measurements. However,	

because of budgetary and physical constraints, the observation of the water demand is 

difficult to achieve. Nodal demands are therefore usually selected as the time varying 

parameters to be calibrated. 

Modelling of water demands in a WDS model commonly uses the concept of baseline 

demand and a demand pattern (Shang et al. 2006). At each time step, the water demand 

at each node can be calculated by the multiplication of a base demand with its 

corresponding demand multiplier factor (DMF): 

𝐷1,= = 𝐷0,1 ∗ 𝑓1,= (2.5) 

where 𝐷0,1 is base demand at the 𝑘=ℎ node and 𝑓1,= is the DMF at the 𝑘=ℎ node at time 

step t. 

The base demand can be calculated using quarter/annual water usage billing information. 

Thus, the calibration of water demands usually focuses on calibrating the demand 

multiplier factors. Examples of DMF calibration can be found in Shang et al. (2006), Kang 

and Lansey (2009), Preis et al. (2009) and Hutton et al. (2012b). Shang et al. (2006) 

applied an extended Kalman filter, an iterative linear algorithm for nonlinear state 

estimation, to approximate water demand patterns. In that paper, water demand patterns 

were predicted by an ARIMA time series model and were refined using real-time 

observations. Similarly, Hutton et al. (2012b) introduced a particle filter method and an 

ensemble Kalman filter for the estimation of the demand of a single district meter area, 

which was assumed to follow a linear time series model. In Kang and Lansey (2009), two 

comprehensive methods were introduced, the Kalman filter and the tracking state 
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estimator (TSE). For the Kalman filter model, the water demand patterns were also 

assumed to follow a linear time series model, while the TSE model involved recursively 

computing the sensitivity matrix (i.e. the Jacobian matrix of the measurement vector with 

respect to the change in the state vector). In Preis et al. (2009), the DMFs were calibrated 

by the application of a genetic algorithm model, in which the measurement errors were 

ignored. 

It should be noted that the previously mentioned models have been developed for an 

overdetermined problem where the DMFs parameters are grouped to be less than the 

number of measurements. The outcomes, therefore, rely on this assumption, which can 

lead to large approximations in real water distribution systems. Limited work has 

investigated the underdetermined systems where the number of unknown DMFs 

parameters are more than the number of measurements. From the theoretical point of 

view, the underdetermined problem should not be formulated nor solved due to the 

presence of non-unique solutions. Ideally, it should be formulated to be well-posed by 

reducing the number of calibration parameters and/or obtaining additional observed 

information. However, this issue is a reality in engineering practice and need to be solved 

if simplification of the problem cannot be implemented. Previous research includes the 

proposal of a proportional demand method (Davidson & Bouchart 2006) and the 

application of a singular value decomposition (SVD) method (Cheng & He 2010; Kun et 

al. 2015; Sanz & Pérez 2015). The application of mathematical methods (e.g. local 

linearization methods such as QR decomposition, SVD or using the Moore-Penrose 

pseudoinverse matrix in the Newton-Raphson method) can find a local solution of the 

problem. However, due to the possibility of non-uniqueness of the solutions, the results 

from these mathematical methods may be far from the actual solution. Providing a reliable 

method for the underdetermined problem of demand calibration is a challenging task for 

hydraulic researchers. 

There are several other issues that need to be addressed for the problem of demand 

calibration. First of all, the accuracy of demand calibration models not only relies on the 
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use of calibration methods (mathematical, optimization or probabilistic methods) but also 

depends on the locations of the measurements and the number of measurement sites in 

the network. In calibration models, the measurement location problem has been 

investigated using sampling design (SD) methodologies. Piller (1995) used a SD method 

to minimize the influence of measurement errors in the state vector estimation. Bush and 

Uber (1998) developed three SD methods derived from D-optimality criteria: max-sum, 

weighted sum and max-min methods in order to select measurement locations based on 

the analysis of the Jacobian matrix. Meier and Barkdoll (2000) used a GA for the optimal 

SD problem with the aim of finding a set of measurement locations which maximizes the 

presence of non-negligible pipe velocities. De Schaetzen (2000) proposed three SD 

approaches for the optimal measurement locations based on shortest path algorithm, rank 

measurement locations and maximization of Shannon’s entropy. Kapelan et al. (2005) 

developed two SD models using a GA to find the optimal set of pressure locations, where 

the first model is formulated as a single objective GA and the second is modelled as a 

multi-objective optimization problem. On the other hand, no research has been found that 

evaluates the impact of the number of measurement sites on the accuracy of the outputs 

from a calibration model. The question of “how many measurements are required to have 

a good calibration of the water demands” is, therefore, a research question that needs to 

be answered.  

The second aspect of this research is to select a suitable technique for real-time (or near 

real-time) demand calibration/estimation. In a real-time context, the measurement data 

can be recorded in a relatively short time period (e.g. every few minutes). In this case, the 

temporal variation of consumer demands can only be obtained by fast and robust 

calibration models. Few attempts have focused on calibrating the nodal demands in real-

time (e.g. Shang et al. (2006), Kang and Lansey (2009), Hutton et al. (2012b) and Okeya 

et al. (2014)). However, these models have either been tested on relatively simple case 

study (e.g. in Hutton et al. (2012b), particle filter model was applied to estimate a single 

DMF) or required large number of flow measurements to achieve good results (e.g. in 
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Shang et al. (2006), the model was tested on a 59-node network with 40 flow 

measurements, while in Kang and Lansey (2009) the model was tested on a 90-node 

network with 19 flow measurements and 5 pressure measurements). It has been noted 

that the cost of flow measurement devices is expensive and the installation of these devices 

is more difficult compared to pressure measurement devices. As a result, flow measurement 

devices are usually not as commonly used as pressure measurement devices in real world 

situations. Consequently, given all of these issues the development of a fast and robust 

demand calibration model that can be applied for real and complex WDS networks is still 

needed. 

The final issue is related to the uncertainty quantification methods. According to Hutton 

et al. (2012a), the uncertainty in WDS modeling can be divided into three categories: (1) 

structural uncertainty, (2) parameter uncertainty and (3) measurement uncertainty. 

Structural uncertainty derives from the mathematical representation of the real system, 

such as network skeletonization and model aggregation. The second category, parameter 

uncertainty, refers to the errors of the parameters used to represent system components. 

Finally, measurement/data uncertainty is the uncertainty from measurement devices and 

more importantly, uncertainty from the inability to capture the temporal and spatial 

variation of consumer water demands. If the demand parameter is selected to be 

calibrated, the uncertainty of the demands caused by other sources of uncertainty (i.e 

structural uncertainty, uncertainty from other parameters and measurement uncertainty) 

needs to be quantified. In the literature, only a few uncertainty quantification methods 

can be found. Three methods have been presented in Bargiela and Hainsworth (1989): 

Monte Carlo simulation (uncertainty is calculated by a series of simulations), an 

optimization-based approach (uncertainty is computed by means of an optimization 

problem) and a sensitivity-based method (uncertainty is defined by an analysis of the 

sensitivity matrix).  The most common method is the first-order second-moment method 

(FOSM), which computes the uncertainty based on linear regression theory as can be seen 

in Reddy et al. (1996), Bush and Uber (1998), Ahmed et al.(1999), Lansey et al. (2001), 
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Kapelan et al. (2003b, 2005), Behzadian et al. (2009) and Kang and Lansey (2009). Despite 

these efforts, there is a need to find a reliable method that can effectively quantify the 

uncertainty of the calibrated distributed demand caused by different sources of 

uncertainty. 

2.3.2 Unknown valve settings 

The use of valves within distribution piping networks is aimed at improving the reliability 

in operation as well as maintenance of the systems. Two types of valves are usually 

considered in WDS modeling: control valves and isolation valves.  

Control valves are automated devices that are used to regulate the flows or pressures of 

water throughout the distribution piping system. The hydraulic behavior in local regions 

of the network where these valves are placed can be adjusted by the valve settings. For 

example, a flow control valve enables the flow passing through the valve to be less than 

or equal to a specific flow setting value, or a pressure reducing valve (PRV) is set to 

prevent the downstream pressure from exceeding a value that could cause damage to the 

system (Walski et al. 2003). Because of their important role in the operation of WDSs, 

calibration of control valve settings is usually considered in WDS modeling (e.g. Piller and 

Bremond (2001), Deuerlein et al. (2005) and Piller and van Zyl (2014)).  Piller and 

Bremond (2001) formulated a least squares method that minimizes the difference between 

targeted settings and computed values to find the control valve states. Deuerlein et al. 

(2005) applied a gradient-based algorithm to estimate the correct setting of pressure 

control valves. Piller and van Zyl (2014) introduced a method associated with the Karush-

Kuhn-Tucker equations for the modeling of control valves in extended period simulations.  

Isolation valves, the most common type of valves in WDSs, are used to close off and block 

any flow through pipes (Van Zyl 2014). These valves are usually placed at the ends of a 

pipe, around junctions or at critical locations of a WDS. The primary role of isolation 

valves is to isolate some portions of the system for inspection, replacement or maintenance. 

Therefore, research on this type of valves has mainly focused on the design of the isolation 

valve system to ensure the connectivity of the network when some of the isolation valves 
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are required to be closed. Various studies have formulated the valve placement problem 

as an optimization problem (including single objective optimization and multi-objectives 

optimization) and solved it with different techniques such as Simulated Annealing (Ozger 

and May 2004), Genetic Algorithms (Giustolisi and Savic 2010) or NSGAII (Creaco et al. 

2010). In Jun and Loganathan (2007), a mathematical method was introduced, which 

represents the presence of isolation valves by a valve location matrix and a valve deficiency 

matrix. This method was used to evaluate the connectivity of the network as well as to 

detect unintended isolations when some of the valves in the system were closed. Some 

other studies also looked at the connectivity of the WDS such as Davidson et al. (2005) 

and Ostfeld (2005).  

It should be noted that most of the aforementioned studies focused on the fully closed 

status of the valve. Given the thousands of isolation valves in a network and despite the 

fact that these valves are suggested to be inspected and maintained at least once a year 

(van Zyl 2014), there is always a possibility that one or some of the valves are closed or 

partially closed. Possible problems related to these valves come from a number of reasons 

such as: missing valves due to poor or not existing documentations, errors in data transfer, 

valve mechanical failure or temporary closed during inspection/rehabilitation time without 

adequately being reported. This issue might cause a huge disagreement of the hydraulic 

behavior between the real system and its simulation model. Little effort has investigated 

the problem of calibrating and identifying unknown valve settings and their corresponding 

locations. Previous research includes Delgado and Lansey (2008) and Wu et al (2012). In 

the Delgado and Lansey (2008) paper, a transient analysis method was used to detect 

closed/partially closed valve in a single pipeline, while Wu et al (2012) applied Genetic 

Algorithms to find unknown partially closed valve locations and to estimate their settings. 

The problem of calibrating fully/partially closed valve settings is, therefore, still a research 

gap that needs to be filled.  
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2.4  Summary 

In this chapter, the state of the art in calibration of WDS steady state models has been 

reviewed. Generally, calibration has been previously implemented by trial and error, 

explicit or implicit methods. Implicit methods, which consider the calibration problem as 

an optimization process and solve it using a hydraulic solver coupled with an optimization 

technique, have gained a prominence and have drawn a high degree of attention from 

researchers. Nodal demands are usually selected as the time varying parameters to be 

calibrated because these parameters have high impact on model uncertainty during short 

periods of time (or in real-time). In addition, the valve setting parameters also need to be 

considered because they can cause a huge disagreement between the actual system and 

its simulation model. Although previous work has covered almost all aspects of calibration 

problem, there are some knowledge gaps that need to be addressed, which include: (1) the 

requirement for a reliable method to calibrating water demand under ill-posed conditions; 

(2) a comprehensive evaluation on the impacts of location and the number of the 

measurement sites to the outputs of a demand calibration model;  (3) the necessity of a 

fast and robust demand calibration model that can be applied for real and complex WDS 

networks; (4) the need of a method that can be applied to effectively quantify the 

uncertainty of the calibrated demand caused by different sources of uncertainty and (5) 

the lack of a methodology to calibrate fully/partially closed valve settings and identify 

their locations. 

These knowledge gaps have been translated into six research objectives as presented in 

Section 1.1. Solutions for each research gap and more detailed review of the literature can 

be found in Chapters 4, 5, and 6, which are the main contributions of this thesis to the 

body of knowledge. 
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Chapter 3  Synopsis of Publications

This chapter gives a summary of three publications presented in this thesis and how they 

address the objectives of the work.  

Publication 1 proposes a methodology, which is the application of multiple runs of a GA 

model, for the calibration of the demand multiplier factors under ill-posed conditions in 

which the number of measurement locations is less than the number of unknown 

parameters (Objective 1). The methodology uses the EPANET toolkit to solve the system 

of water network equations while GAs are applied to find the best match between known 

measurement inputs and their simulated values (i.e. the simulated flow rates and nodal 

pressures at measurement locations). The average output values of multiple GA runs are 

proposed to use as the estimates of the demands in a system. Different scenarios of 

measurement availability in water networks are tested to evaluate the reliability of the 

model. Furthermore, this study also investigates the use of a sampling design technique 

for the selection of optimal measurement locations in order to improve the quality of the 

calibration model (Objective 2). The approach for estimation of demand multiplier factors 

using GA optimization has been tested on three synthetic case studies. The first case study 

shows that the average values of multiple runs of the GA model can deliver a very good 

approximation of the water demand multipliers with little information from the SCADA 

system. The first case study also shows that the location of the measurement sites does 

influence the performance of the GA model. The second case study demonstrates the 

advantage of the GA model in comparison to the singular value decomposition model that 

has been developed for the same calibration problem. It also confirms the conclusions 

made from the first case study about the sensitivity of the GA model to the measurement 

locations. Therefore, the GA model is suggested to be implemented in combination with 

a supporting tool for the selection of optimal measurement locations such as the sampling 

design (SD) greedy algorithm model.  The third case study validates the approach for a 
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slightly larger sized network, which again exhibits the superior performance of the GA 

model.  

Publication 2 presents a particle filter model for the online (near real-time) demand 

estimation of a WDS, which is named the DMFLive model (Objective 3). A predictor-

corrector methodology is adopted in the DMFLive model to predict the hydraulic behavior 

of the water network based on a nonlinear demand prediction sub-model, and to correct 

the prediction by using online pressure observation data. A particle filter method is applied 

to implement the predictor-corrector approach. The typical problems of the particle filter 

approach (particle degeneracy, impoverishment and particle convergence) are investigated 

by two different resampling schemes: a systematic resampling (SR) algorithm and a 

systematic resampling method integrated with a GA process (SRGA). Uncertainties of 

model outputs are quantified and evaluated in terms of confidence intervals by the first-

order approximation formula (Objective 4). The performance of the DMFLive model is 

evaluated by two WDS case studies. The results showed that the nonlinear demand 

prediction model combined with the particle filter method used in the paper are well suited 

for the near real-time demand estimation problems. Within the first case study, the 

benefits of having additional information about the tank level at the next time step have 

been explored. If the estimation of the demand multipliers can be delayed by one time 

step, the tank level at the beginning of the next time step can be used by the model to 

improve the estimation of the total volume of water used. Within the second case study, 

three versions of the DMFLive model have been developed to be used for large networks 

with multiple demand patterns. All versions provided good results, showing that the 

models are capable to be used in large networks. Finally, the effect of the measurement 

locations on the uncertainty of the estimated demand multipliers has been explored 

(Objective 2). Results showed that the uncertainty can be used to identify which 

measurement locations need to be improved.  

Publication 3 develops a methodology to solve the problem of calibrating and localizing 

partially closed valves in a water distribution network based on integration of 
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measurement data and the demand driven model EPANET (Objective 6). Three 

sequentially applied methods have been proposed in the methodology, which includes: (1) a 

sensitivity analysis, which calculates the sensitivity of flow rates and pressure heads at 

measurement locations with respect to (wrt) the variations of the minor loss in the valves 

(Objective 5). These sensitivity values were used to identify the valves that are insensitive 

to the measurement locations; (2) an application of a GA model during an extended period 

simulation (e.g. 24, 48 hours) to reduce the size of the search region as well as provide a 

preliminary estimate of the settings of the valves; and (3) an application of the Levenberg-

Marquardt algorithm to localize the regions of partially closed valves and correct the 

settings of the valves. The performance of the methodology has been evaluated for two 

case studies. The first case study has shown that the exact solution can be found, in terms 

of both statuses and minor loss setting values, if the necessary conditions for the 

Levenberg-Marquardt are satisfied. The second case study showed the applicability of the 

proposed methodology when applied to a realistically sized problem. Although the valve 

problem of the second case study contains non-unique solutions, the methodology still can 

identify very well the locations of partially closed valves in the network. The proposed 

methodology is, therefore, an efficient tool for dealing with the problem of finding unknown 

partially/ fully closed valves in water distribution systems 
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Abstract 

Hydraulic models have been widely used for design, analysis and operation of water 

distribution systems. As with all hydraulic models, water demands are one of the main 

parameters that cause the most uncertainty to the model outputs. However, the 

calibration of the water demands is usually not feasible due to the limited quantity of 

available measurements in most real water networks. This paper presents an approach to 

calibration of the demand multiplier factors under an ill-posed condition where the number 

of measurements is less than the number of parameter variables. The problem is solved 

using a Genetic Algorithm (GA). The results show that not only is the GA able to match 

the calibrated values at measured locations, but by using multiple runs of the GA model, 

the flow rates and nodal heads at non-measured locations can be estimated. Three case 

studies are presented as an illustration of the problem. The first case study is a small 

network that demonstrates the calibration model. The second case study shows a 

comparison between the genetic algorithm model and a singular value decomposition 

model. The last case study is a large network that allows for practical considerations in 

applying the proposed methodology to a realistic context. 

Keywords: Genetic algorithms, optimization, demand calibration, water distribution 

systems 
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4.1 Introduction 

As an indispensable component of urban infrastructure, a water distribution system 

(WDS) has to accommodate large water transfer volumes on a daily basis. The problem 

of ensuring a satisfactory and reliable service is further complicated by population growth 

which often leads to the need for augmentation of the system. Determination of flow rates 

and pressure heads in the existing system is a necessary step in the modification of a WDS. 

This task can be accomplished by using measurement devices, such as sensors, however, 

sensors can only capture the status of some component locations in the system. Calibration 

of the full WDS model using limited measurements from these devices is therefore a 

research area that requires further development.  

Calibration of a WDS model is the process of adjusting network parameters so that the 

output from the computer model matches the field measurements, which are usually the 

pressures and flow rates at particular locations in the network (Shamir and Howard 1977). 

The calibration procedure for a water network model has been well addressed by Ormsbee 

and Lingireddy (1997). In their paper, the authors suggested a seven-step calibration 

process, which includes: (1) Identifying the intended use of the model, (2) Determining 

estimates of the model parameters, (3) Collecting calibration data, (4) Evaluation of the 

results of the model, (5) Performing a macro level calibration of the model, (6) Performing 

a sensitivity analysis and (7) Performing a micro level calibration of the model.  

Savic et al. (2009) presented a comprehensive literature review on the calibration of water 

network models where the calibration methods can be classified by their dynamic 

(transient and static), by their calculation methods (iterative, explicit and implicit) or by 

the use of optimization methods (traditional and evolutionary).  

In terms of calibration in transient analysis, the calibration models have been constructed 

mainly to detect leakage in distribution systems (Pudar and Liggett 1992, Liggett and 

Chen 1994, Vítkovský et al. 2000, Kapelan et al. 2003). These transient calibration 

procedures usually consider a pure leak or leaks combined with unknown nodal demands 
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and pipe friction factors as parameters to be calibrated. However, due to the complexity 

of the method, such as generating and measuring reflections of water hammer waves, 

transient analysis has not been widely used in practice for practical leak detection 

applications. 

In static hydraulic analysis, an iterative procedure was applied in the early use of 

calibration models (Walski 1983, 1986, Bhave 1988). This procedure was implemented to 

update the unknown model parameters using heads/flows obtained by solving the water 

network equations. Due to slow convergence rate, these models are only suitable for small 

problems or require simplification of the water network.  

The second technique is explicit calibration, which was employed in Ormsbee and Wood 

(1986), Boulos and Wood (1990), and Boulos and Ormsbee (1991). This technique 

involves solving an extended set of continuity and head-loss equations where the 

calibration problem is required to be even-determined (i.e. the number of calibrated 

parameters must be equal to the number of measurements). Measurement errors are also 

neglected. When the number of unknown parameters is larger than the number of 

measurements, calibration parameters are often grouped that may result in potentially 

impractical outputs. Therefore, explicit calibration models are often used for the purpose 

of system analysis.  

Implicit calibration is the third type of static calibration model. This method considers the 

calibration problem as an optimization process and solves it using a hydraulic solver 

combined with either a traditional or an evolutionary optimization technique. The implicit 

method has been investigated by a majority of the previous research (e.g. Ormsbee (1989), 

Lansey and Basnet (1991), Datta and Sridharan (1994), Ormsbee and Lingireddy (1997), 

Andersen and Powell (2000), Nagar and Powell (2002), Shang et al. (2006), Preis et al. 

(2009), Kang and Lansey (2009), Piller et al. (2011) and Hutton et al. (2012)).  

The uncertainty of results from water network models is caused by many influences, such 

as pipe roughness, nodal demands or valve states (e.g. Martínez et al. (2003), Liberatore 

and Sechi (2009)). Pipe roughness coefficients and the water demands at nodes are 
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normally used for the static calibration given their high impact on network uncertainty. 

However, roughness coefficients usually vary only in the long term, for example the annual 

variation of these parameters was considered in Haddad et al. (2008) and Seifollahi-

Aghmiuni et al. (2013). Therefore, water demands are the main parameters that affect 

the uncertainty of the output of models in the shorter term (e.g. hourly, daily). 

The calibration of water demand has been studied using various techniques, for instance 

a Predictor-Corrector algorithm (Shang et al. 2006, Preis et al. 2009), Bayesian recursive 

approach (Kapelan et al. 2007), Kalman filtering and tracking state estimator (Kang and 

Lansey 2009) and particle filter modeling (Hutton et al. 2012). Most of these models have 

been developed based on given frameworks where the measurement locations were 

predetermined and the calibration parameters are grouped to be less than the number of 

measurements. The outcomes, therefore, rely on these additional assumptions, which can 

lead to large approximations in real water distribution systems. Only few papers have 

directly dealt with underdetermined systems such as a proportional demand method 

(Davidson and Bouchart 2006) and singular value decomposition (SVD) (Cheng and He 

2010, Kun et al. 2015). 

Mathematically, the calibration of the demand in water distribution systems in which the 

number of measurements is less than the number of calibrated variables, is a nonlinear 

underdetermined problem. A local solution of the problem can be found by local 

linearization methods such as QR decomposition, SVD or using the Moore-Penrose 

pseudoinverse matrix in the Newton-Raphson method. However, due to the possibility of 

non-uniqueness of the solutions, the results from mathematical methods are either far from 

the actual solution or result in negative demands at some nodes. Apparently, if the data 

from measurement devices are considered as the only known inputs, the quest for a reliable 

demand calibration model is still a challenge for hydraulic researchers.  

This paper proposes a methodology for the calibration of water demand multipliers for an 

underdetermined system where the number of measurements is less than the number of 

demand parameter variables. The EPANET toolkit is used to solve the system of water 
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network equations while Genetic Algorithms (GAs) are applied to find the best match 

between known measurement inputs and their calibrated values. The average values of 

multiple GA runs have been found to give the best estimates of the flow rates and nodal 

heads as well as the calibration of the demands in a system. Different scenarios of 

measurement availability in water networks are tested to evaluate the reliability of the 

model. Furthermore, this study also investigates the use of a sampling design technique 

(Piller 1995) for the selection of optimal measurement locations in order to improve the 

quality of the calibration model. This is followed by application of the model to three case 

studies. Finally, conclusions and suggestions for future work are given. 

4.2 GA Calibration model 

The proposed model applies an implicit technique for the steady state hydraulic simulation 

where the calibration process is formulated as an optimization problem. The objective 

function is the minimization of the differences between simulated values from the model 

and their corresponding measured values. The decision variables are the demand 

multiplier factors (DMFs) for the nodal demands as described in the Decision variables 

sub-section. 

4.2.1 Objective function 

In this study, a least-squares method is applied for the objective function. The method 

minimizes the sum of squared residuals between the measured and computed values of 

pipe flow rates and nodal heads at the measurement locations. The objective function is 

given by:  

𝑀𝑖𝑛𝐹 = 𝑤&(𝐻&
()*+ − H&

-&.)2
01

&=1
+ 𝑤3(𝑄3

()*+ − Q3
-&.)2

05

3=1
 (4.1) 

where 𝐻&
-&., 𝑄3

-&. are the simulated nodal head and flow rate for the 𝑖6ℎ node and 𝑗6ℎ 

pipe, respectively; 𝐻&
()*+, 𝑄3

()*+ are the measured head and flow rate at the 𝑖6ℎ node 

and 𝑗6ℎ pipe; 𝑁: , 𝑁; are the number of head and flow measurement sites in the network 
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respectively and 𝑤&, 𝑤3  are the weighting factors applied to different terms to ensure they 

have similar magnitude and unit.  

Flows and heads as well as nodal demands are time dependent. However, they can be 

considered constant during short periods of time, e.g. 30 minutes or one hour. Given that 

the proposed approach is applied to each steady state step during an extended period 

simulation, the time dependency symbol is not explicitly given in Equation (4.1). Measured 

values are obtained from field measurement devices or, for testing the methodology as in 

our case, these values can be generated by running a hydraulic simulation toolkit such as 

EPANET. Weighting factors 𝑤& and 𝑤3 can be computed by taking the inverse of the 

square of the observed values 𝑤& = 1/ 𝐻&
()*+ 2 and 𝑤3 = 1/ 𝑄3

()*+ 2, respectively), 

which is the approach that has been used in Nardo et al. (2015).  

4.2.2 Decision variables 

In a WDS model, the water demand at each node is calculated by the multiplication of a 

base demand with its corresponding DMF at each time step 𝑡: 

𝐷>,6 = 𝐷0,> ∗ 𝑓>,6 (4.2) 

where 𝐷0,> is base demand at the 𝑘6ℎ node, which is calculated using quarter/annual 

water usage billing information; and 𝑓>,6 is the DMF at the 𝑘6ℎ node at time step 𝑡. The 

decision variables for the optimization problem, therefore, are the demand multiplier 

factors 𝑓>,6 𝑘 = 1, … , 𝑁D(  at nodal demands at each time step. A bounded range of 

demand factors may apply as: 

𝑓>
.&E ≤ 𝑓> ≤ 𝑓>

.*G (4.3) 

where (𝑓>
.&E, 𝑓>

.*G) are  the bounds of decision variables. The value of 𝑓>
.&E must be 

equal to or larger than zero, while 𝑓>
.*G can be selected based on typical values of peaking 

demand factors such as those reported in Beal and Stewart (2014). In this paper, a value 

of 𝑓>
.*G = 1.5 has been selected for all case studies, which also guarantees that it is much 

larger than the “true” multiplier used to generate the calibration data. 



Publication 1: Calibration of Water Demand Multipliers in WDSs Using Genetic Algorithms 

 

 33 

Figure 4.1 shows an example of a GA solution (namely a chromosome) for six demand 

multiplier factors at one time step, which are chosen from a lower bound of 0.00 and an 

upper bound of 1.50 with the increment step of 0.02 (these values would be problem 

dependent and selected accordingly). Each demand multiplier factor is coded by an integer 

number, ranging from 0 to 75. By using this coding information, the chromosome from 

GA process is decoded into a set of demand multiplier factors that are multiplied by the 

base demand and can be used for the hydraulic simulation process.   

	

Figure 4.1: Example of GA chromosome and decoding for the demand calibration problem 

4.2.3 GA process and operators 

The genetic algorithm (GA) calibration model implemented for this research has been 

written in the C-sharp language. The flowchart of the algorithm is shown in Figure 4.2. 

An initial population of chromosomes is randomly generated and decoded into 

corresponding DMF values for each member. To each node of the network exactly one of 

these DMFs is assigned and EPANET is subsequently called to simulate the steady state 

hydraulics of the system. Simulated flows and heads 𝑄-&., 𝐻-&.  at the measurement 

locations are obtained and compared with their measured values via the calculation of the 

objective function. The inverse of the objective function is applied to define the fitness 

function for each member of the GA population. This is the measure for the quality of 

each member, and is used to determine its opportunity for survival. 
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Figure 4.2: Flowchart for the GA calibration of demand multiplier factors 

By applying GA selection, crossover and mutation, new generations that inherit features 

of previous generations are created, and the calibration process is then repeated until the 

stopping criteria is met. 

For the selection operator, a study by Goldberg and Deb (1991) recommended the use of 

tournament selection because of its better convergence compared to proportionate 

selection or ranking selection (see Nicklow et al. (2010) for a review of GAs). In addition, 

Goldberg (1989) also suggested that the two-point crossover operator with a relatively 

high probability (𝑃I = 0.6 to 1.0) and the bitwise mutation with a probability of 

𝑃. » 1/𝑠𝑡𝑟 (𝑠𝑡𝑟 is the length of the string) can be used to improve the performance of 

GA models. Therefore in the study presented in this paper, tournament selection, two-

point crossover and bitwise mutation have been applied in the GA calibration model. 

4.3 Selection of measurement locations 

The accuracy of demand calibration models not only depends on the number of site 

measurements but also on the locations of the measurements. The optimal measurement 

location problem has been investigated by a number of researchers using various 

mathematical and statistical methods, such as: Yu and Powell (1994), Vítkovský et al. 

(2003), Berry et al. (2005), Propato et al. (2006),  Krause et al. (2008) and Giustolisi and 
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Ridolfi (2014). In calibration models, sampling design (SD) methodologies have been 

applied for the selection of the observation locations. Piller (1995) used a SD method to 

minimize the influence of measurement errors in the state vector estimation. Bush and 

Uber (1998) developed three SD methods derived from D-optimality criteria: max-sum, 

weighted sum and max-min methods in order to select measurement locations based on 

the analysis of the Jacobian matrix. Meier and Barkdoll (2000) used a GA for the optimal 

SD problem with the aim of finding a set of calibration locations which maximizes the 

presence of non-negligible pipe velocities. De Schaetzen (2000) proposed three SD 

approaches for the optimal measurement locations based on shortest path algorithm, rank 

measurement locations and maximization of Shannon’s entropy. Most recently, Kapelan 

et al. (2005) developed two SD models using a GA to find the optimal set of pressure 

locations, where the first model is formulated as a single objective GA and the second is 

modelled as a multi-objective optimization problem. 

In this paper, the SD method proposed by Piller (1995) based on a greedy algorithm is 

applied to select the best measurement locations for the GA calibration model of the 

demand multiplier factors. Influences of the measurement locations on the calibration 

results, thereafter, are examined by evaluating the convergence of the GA model. 

4.3.1 Sampling design method 

The hydraulic steady state of a water network solves a non-linear problem of the 

continuity equations at nodes and the energy equations for pipes. The sensitivity of the 

nodal heads and flow rates with respect to the demand parameters q at nodes can be 

computed as: 

𝐴M 𝜕𝑞
𝜕𝜃

+ 𝐺D = 0E+,ER

𝐷 𝜕𝑞
𝜕𝜃

− 𝐴 𝜕ℎ
𝜕𝜃

= 0ET,ER

 (4.4) 

where 𝐴 and 𝐴M  are the unknown head node incidence matrix and its transposed matrix, 

which provides information about the connectivity of the nodes and the links in the 

network; 𝑞 and ℎ are the flow rate and nodal head vectors of 𝑛𝑝 pipes and 𝑛𝑠 nodes; 𝐺D 
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is the 𝑛𝑠 by 𝑛𝑑 matrix of nodal demand allocation. As demand aggregation is not 

considered in this study, 𝐺D is the diagonal matrix of the base demands; and 𝐷 is the 𝑛𝑝 

by 𝑛𝑝 diagonal matrix where the diagonal elements are the derivatives of the head-loss 

equations of the flows in pipes. The solution for Equation (4.4) is the Jacobian matrix 𝐽  

of flows and heads with respect to water nodal demands: 

𝐽 𝑦 =

𝜕𝑞
𝜕𝜃

= −[𝐷−1𝐴][𝐴M 𝐷−1𝐴]−1𝐺D

𝜕ℎ
𝜕𝜃

= −[𝐴M 𝐷−1𝐴]−1𝐺D              
 (4.5) 

Given an estimate of the unknown demand parameters (𝑓0), the SD greedy algorithm 

method from Piller (1995) iteratively selects the measurement locations (𝑆 matrix) by 

minimizing the influence of measurement errors on the state vector estimation. The 

selection matrix 𝑆 of the measurement locations is chosen so that the matrix (𝑆𝑇0) is full 

rank and the infinity norm of its pseudo inverse matrix, (𝑆𝑇0)†
∞, has a minimum 

value. The matrix 𝑇0 = 𝐸1𝐽0𝐸2 is the equilibrium matrix of the Jacobian matrix, where 

E1 is the pre-multiplied diagonal matrix to ensure the precision of the measurements at 

links and nodes, E2 is the post-multiplied matrix corresponding to the change of the 

parameter variables, and 𝐽0 = 𝐽(𝑦^0
) is the Jacobian matrix computed by Equation (4.5) 

at 𝑓0. In this study, 𝐸1 is the identity matrix given that all measurements are assumed 

to have the same precision, and 𝐸2 is computed by Equation (4.6) given that only the 

demand parameters need to be calibrated. 

𝐸2 = 𝑑𝑖𝑎𝑔 𝑓0  (4.6) 

Table 4.1 shows an example of a selection matrix where the elements are assigned a value 

of 1 if the pipes/nodes are selected as measurement sites, and 0 for non-selected pipes/ 

nodes. A detailed explanation of the method is described in Piller (1995). 

Table 4.1: Example of selection matrix 𝑺 for 4 measurements in the 9 pipe network in Figure 4.3 

L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 1 N2 N3 N4 N5 N6 N7 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
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4.4 Case study 1 

The first case study used to evaluate the methodology is shown in Figure 4.3. The network 

consists of 9 pipes, 6 nodes with unknown demands (from 2 to 7) and a 5.0 m-diameter 

tank at node 8 with a water surface elevation of 15.0 m. The system is fed by a reservoir 

at node 1 with the head of 31.5 m. All nodes are assumed to have an elevation of 0.0 m 

and base demands of 15.1; 10.3; 11.8; 15.6; 11.3; 8.4 (L/s) for node 2 to node 7, respectively. 

The demand multiplier factors assigned for the system (and which will need to be 

calibrated by the GA) are 𝑋0 = [0.5;  0.6;  0.8;  0.7;  0.6;  0.9] at nodes 2 to 7, 

respectively. Table 4.2 shows the pipe characteristics for the test network.  

 

Figure 4.3: Case study 1 for calibration problem 

Table 4.2: Pipe characteristics for Case study 1 

Pipe L[m] D[mm] e[mm] 

2 1609 254 0.25 

3 1609 254 0.25 

4 1609 203 0.25 

5 1609 203 0.25 

6 1609 203 0.25 

7 1609 254 0.25 

8 1609 203 0.25 

9 643.7 254 0.25 

1 828 356 0.25 

4.4.1 Input for calibration model 

In practice, input data for the calibration process are usually collected from a supervisory 

control and data acquisition (SCADA) system. In this research, input data is generated 

using EPANET toolkit as follows: (1) known demand multiplier factors are assigned to 
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nodal demands; (2) run EPANET to retrieve the corresponding “true” pipe flow rates and 

nodal heads (these are then the “measured” data); (3) select the flows and heads at the 

locations chosen by the SD model as input for the calibration model. The output flows 

and heads for selected pipes and nodes based on the simulation of the “measured” values 

are used for the calibration process. 

The selection of measurement locations for case study 1 using the SD greedy algorithm 

method is shown in Table 4.3. For one available measurement device, the method selects 

pipe 1 as the most sensitive location with respect to the demands, given that this pipe 

provides the main flow to the system from the source reservoir. When two measurement 

sites need to be selected, pipe 1 and pipe 9 are chosen as the two most sensitive places for 

the measurement of the flow. The availability of these two measurements provides the 

information of the total inflow to the network, which is equivalent to the total water 

demand of the system. It should be noted that the proposed calibration method is to be 

applied to cases where the number of measurement locations is less than the number of 

unknowns. Because there are six unknown demand multiplier factors that need to be 

calibrated, only up to five available measurement sites are considered for this test network. 

From a practical point of view, having so many measurement devices (relative to the total 

number of nodes of 6) in a water network would be unreasonable due to their cost. 

However, the main purpose of this section is to evaluate the ability of the GA model to 

calibrate the demands at the nodes with acceptable accuracy. Thus, the problems related 

to device costs are ignored in this context.  

Table 4.3: Selection of the measurement locations for case study 1 

No. of measurements Location(s) (𝑆𝑇0)†
∞ 

1 P1 0.054 

2 P1, P9 0.133 

3 P1, P3, P9 0.229 

4 P1, P3, P7, P9 0.299 

5 P1, P3, P7, P8, P9 0.456 

* Bold values are selected based on the minimum value of (𝑆𝑇0)†
∞for the SD greedy algorithm 

(Piller 1995) 
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4.4.2 Non-uniqueness of the solutions 

Figure 4.4 shows an example of alternative solutions when two measurement locations at 

pipe 1 and pipe 9 are available. Figure 4.4a presents the true solution of the problem, 

where the set of 6 nodal demands has a total of 48.43 (L/s) and results in the flow rates 

of 65.46 (L/s) and 17.09 (L/s) for pipe 1 and pipe 9, respectively. In Figure 4.4b and 

Figure 4.4c, two different sets of nodal demands also cause the same values of flow rates 

at the measurement locations.  

 

Figure 4.4: Example of non-uniqueness of solutions with 2 available measurement locations 

Apparently, for this network, different sets of 6 nodal demands with the total of 48.43 

(L/s) that satisfy the water network equations can be a possible solution of the problem. 

Moreover, the number of possible solutions that match the measured flows will increase if 

the constraint of the total demand (given by the measurement in pipes 1 and 9) is released, 

i.e. the two measurements are located in different pipes of the network. A single run of 

the GA model, therefore, might converge to any of the non-unique solutions or be trapped 

at a local optimal solution where the simulated values cannot perfectly match the known 

values at measurement locations. As a result, it appears that a good approximation of the 

demand multiplier factors calibration problem can only be obtained if multiple runs of the 

GA model are implemented. The following section shows the results of the multiple runs 

of the proposed GA model. 

4.4.3 Results of GA calibration model 

The GA calibration model has been tested with four different scenarios of measurement 

locations, from 2 to 5 available measurement sites. In order to evaluate the influence of 

the number of measurement sites on the GA model, the GA parameters are kept constant 

during all experiments with the size of population 𝑁 = 100, probability of crossover 𝑃I =
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0.8, probability of mutation 𝑃. = 0.3 and the number of generations is 1000. The range 

of decision variables is selected from 0 to 1.5 with the increment of Dq = 0.02, 

corresponding to a search space size of 766 = 1.927*1011 possible solutions. In addition, due 

to the non-uniqueness and the stochastic behaviour of the problem, for each GA 

application, 100 runs with 100 different seeds were implemented. The results of different 

GA runs to the case study 1 are presented in Figure 4.5, Figure 4.6 and Figure 4.7. 

Figure 4.5a, Figure 4.6a and Figure 4.7a plot the results of flow rates, nodal heads and 

nodal demands, respectively, from 100 GA runs where two measurement locations at pipe 

1 and pipe 9 are available. As can be seen from Figure 4.5a, the calibrated flows at the 

measurement locations are well matched with the actual known or measured values for all 

100 GA runs. Specifically, the simulated values at pipe 9 are 17.03 ± 0.02 (L/s) (the actual 

value is 17.03 (L/s)), the simulated values at pipe 1 are 65.46 ± 0.03 (L/s) (the actual value 

is 65.46 (L/s)). On the other hand, large variations of simulated flow rates are observed in 

all other pipes of the network for the individual 100 GA runs, for instance, the range of flow 

at pipe 6 is from 8.28 to 18.46 (L/s) while the actual value is 13.83 (L/s) in Figure 4.5a. 

 

Figure 4.5: Results of flow rates from GA calibration model for case study 1 
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Figure 4.6: Results of nodal heads from GA calibration model for case study 1 

 

Figure 4.7: Results of nodal demands from GA calibration model for case study 1 

Similar to the variation of the simulated flow rates is the variation of nodal heads, as 

shown in Figure 4.6a. Given the similarity of the simulated results for the flow rates at 
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pipe 1 and pipe 9, the estimation of nodal heads for the individual 100 GA runs at node 

2 and node 7 are also well matched with the actual values. Meanwhile, the simulated 

heads at the remaining nodes (node 3, 4, 5 and 6), compared to actual heads, vary 

approximately ±0.7, ±0.9, ±1.0 and ±0.8 (m), respectively. In Figure 4.7a, the calibrated 

nodal demands for the individual 100 GA runs show quite a large variation at all nodes, 

starting from 0 (L/s) up to approximately twice the magnitude of the actual nodal 

demands. 

It can be observed in Figure 4.5b, 4.5c, 4.5d, Figure 4.6b, 4.6c, 4.6d and Figure 4.7b, 4.7c, 

4.7d that the addition of measurement sites to the network increases the accuracy of the 

calibration model. As an example, consider the effect of adding a measurement at a pipe 

in the network, from 3 measurements (at pipe 1, 3 and 9) to 4 measurements (at pipes 1, 

3, 7 and 9). The simulated flow rates and nodal heads at all non-measured locations are 

slightly improved. If with 3 measurement locations, the simulated flows and the simulated 

heads at pipe 6 and node 6 vary for the individual 100 GA runs in the ranges of [8.79, 

17.67] (L/s) and [26.14, 27.56] (m), respectively, with four measurement locations, the 

simulated values are improved, varying in smaller ranges of [11.71, 16.35] (L/s) and [26.41, 

27.53] (m). On the other hand, the calibrated demands show a significant improvement 

when the number of measurement sites increased. At node 5, for instance, the variation 

of the demand is improved from the maximum allowable range [0, 23.4] (L/s) to [8.42, 

13.01] (L/s). 

The best GA solution and the average values of 100 GA runs are also plotted in order to 

compare them with the actual solution. The results show that increasing number of 

measurement sites leads to a better accuracy of the best GA result. Due to the large search 

space size, the GA calibration model cannot find the exact solution in any of the 100 GA 

runs unless five measurement sites are provided. However, the optimal solution is only 

found 3 times out of 100 GA runs in the scenario of five available measurement sites.  

The average values of 100 GA runs, on the contrary, yield a very good match with the 

actual values of the problem. In all measurement scenarios, the mean flow rates, nodal 
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heads and nodal demands, which are tabulated in Table 4.4, Table 4.5 and Table 4.6 

respectively, are slightly different to the actual values, with less than 10% error for the 

flow rates, less than 1% error for the nodal heads and less than 20% error for the nodal 

demands. The results clearly indicate that the nodal heads are estimated more accurately 

than the flows. In addition, the standard deviations computed based on the 100 GA runs, 

which represent the variation of the calibrated results, show that the change of the nodal 

demands causes greater variation of the flow rates rather than the nodal heads in this 

looped network. As a result, the flow rates are more sensitive to the demands than the 

nodal heads. 

Table 4.4: Comparison of mean estimated pipe flows and actual flows for case study 1 

Measurements 
Pipe P2 P3 P4 P5 P6 P7 P8 P9 P1 

Actual flows 33.15 20.14 10.70 13.89 13.83 24.75 6.83 17.03 65.46 

2 measurements  

(P1, P9) 

Average flows of 100 GA runs 33.38 19.46 10.46 13.33 14.47 23.76 6.93 17.03 65.46 

Standard deviation 1.92 2.95 2.41 1.71 2.26 3.94 2.40 0.01 0.01 

% D(Average flows, actual flows) 0.67% 3.35% 2.25% 4.01% 4.57% 4.01% 1.38% 0.01% 0.00% 

3 measurements 

(P1, P3, P9) 

Average flows of 100 GA runs 33.63 20.14 10.10 12.97 14.18 25.07 7.24 17.02 65.46 

Standard deviation 1.61 0.02 1.60 1.49 2.05 3.79 2.55 0.03 0.03 

% D (Average flows, actual flows) 1.44% 0.02% 5.60% 6.62% 2.50% 1.28% 5.95% 0.04% 0.00% 

4 measurements  

(P1, P3, P7, 

P9) 

Average flows of 100 GA runs 34.09 20.14 9.66 13.21 14.41 24.75 6.37 17.02 65.46 

Standard deviation 1.43 0.04 1.47 1.08 1.00 0.04 2.08 0.03 0.03 

% D (Average flows, actual flows) 2.82% 0.00% 9.69% 4.87% 4.18% 0.02% 6.76% 0.02% 0.00% 

5 measurements 

(P1, P3, P7, 

P8, P9) 

Average flows of 100 GA runs 33.97 20.14 9.84 13.23 14.41 24.75 6.84 17.03 65.46 

Standard deviation 1.12 0.04 1.14 0.86 0.80 0.06 0.05 0.03 0.04 

% D (Average flows, actual flows) 2.46% 0.01% 8.06% 4.70% 4.19% 0.00% 0.15% 0.00% 0.00% 

* Bold-Calibrated values at measurement locations. D-Differences between calibrated values and 
actual values. 

Table 4.5: Comparison of mean estimated nodal heads and actual heads for case study 1 

Measurements 
Node N2 N3 N4 N5 N6 N7 

Actual head 30.49 27.53 26.39 28.80 27.07 25.33 

2 measurements  

(P1, P9) 

Average head of 100 GA runs 30.49 27.48 26.39 28.89 26.97 25.33 

Standard deviation 0.00 0.33 0.44 0.50 0.39 0.00 

% D(Average head, actual head) 0.00% 0.17% 0.01% 0.31% 0.39% 0.00% 

3 measurements 

(P1, P3, P9) 

Average head of 100 GA runs 30.49 27.44 26.30 28.72 26.88 25.33 

Standard deviation 0.00 0.28 0.28 0.50 0.33 0.00 

% D(Average head, actual head) 0.00% 0.32% 0.34% 0.27% 0.72% 0.00% 

4 measurements  

(P1, P3, P7, 

P9) 

Average head of 100 GA runs 30.49 27.36 26.22 28.80 26.92 25.33 

Standard deviation 0.00 0.25 0.25 0.00 0.25 0.00 

% D(Average head, actual head) 0.00% 0.61% 0.64% 0.00% 0.55% 0.00% 

5 measurements 

(P1, P3, P7, 

P8, P9) 

Average head of 100 GA runs 30.49 27.38 26.25 28.80 26.93 25.33 

Standard deviation 0.00 0.20 0.20 0.01 0.20 0.00 

% D(Average head, actual head) 0.00% 0.53% 0.55% 0.00% 0.54% 0.00% 
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Table 4.6: Comparison of mean calibrated nodal demands and actual demands for case study 1 

Measurements 
Node N2 N3 N4 N5 N6 N7 

Actual demand 7.55 6.18 9.44 10.92 6.78 7.56 

2 measurements  

(P1, P9) 

Average demand of 100 GA runs 8.32 6.98 9.01 9.29 8.06 6.76 

Standard deviation 4.53 3.99 4.86 5.78 4.73 3.30 

% D(Average demand, actual demand) 10.20% 13.00% 4.60% 14.89% 18.93% 10.53% 

3 measurements 

(P1, P3, P9) 

Average demand of 100 GA runs 6.76 6.26 10.03 10.89 8.45 6.05 

Standard deviation 3.93 3.51 1.61 5.51 4.25 2.63 

% D(Average demand, actual demand) 10.52% 1.23% 6.30% 0.26% 24.63% 19.98% 

4 measurements  

(P1, P3, P7, P9) 

Average demand of 100 GA runs 6.62 7.58 10.48 10.34 7.57 5.85 

Standard deviation 1.43 3.06 1.48 1.00 3.54 2.24 

% D(Average demand, actual demand) 12.32% 22.63% 10.98% 5.34% 11.70% 22.62% 

5 measurements 

(P1, P3, P7, P8, 

P9) 

Average demand of 100 GA runs 6.73 6.98 10.30 10.34 8.02 6.04 

Standard deviation 1.10 1.11 1.15 0.81 1.67 2.01 

% D(Average demand, actual demand) 10.80% 13.00% 9.15% 5.31% 18.33% 20.04% 

Effects of increment of decision variables on GA calibration results 

One of the factors that may affect the accuracy of the GA calibration model is the 

increment (∆𝜃) of the demand multiplier factors. The selection of a large increment for 

the decision variables leads to faster convergence of the GA model although it may result 

in a coarser approximation of the calibrated demands. Alternatively, the GA model can 

give better results if smaller increment steps are selected. However, the model requires 

more computational effort to converge due to the larger search space size. In order to 

evaluate the effect of increment steps on GA calibration results, different increment steps 

of 0.1, 0.02, 0.01 and 0.002 were selected and tested in the case of four available 

measurement locations at pipe 1, 3, 7 and 9. The average calibrated demands and 

estimated flows are shown in Figure 4.8. 

The results of the GA model for different increment steps of the decision variables are 

approximately comparable. Consider the average calibrated demand at node 7 as an 

example. The largest demand error (22.62%) occurs at Dq = 0.02, followed by 21.22% 

at Dq = 0.1, 20.23% at Dq = 0.01 and 15.2% at Dq = 0.002. With regard to the 

simulated flows, the estimation errors for different increment steps are relatively small. 

The maximum errors all occur at pipe 4 and are of almost the same magnitude, 6.28%, 

8.02%, 8.03% and 9.69%, corresponding to Dq = 0.002, 0.01, 0.1 and 0.02, respectively. 
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Hence, for this case study, it can be concluded that the GA model is not particularly 

sensitive to the increment of the decision variable in the range of 0.002 to 0.1. 

 

 
Figure 4.8: Calibrated demands & estimated flows with different increment steps for case study 1 

Effects of measurement locations on GA calibration results 

The GA calibration results showed that, even with a very large search space, the GA 

model is able to find the exact solution of the problem for at least one of the 100 GA runs. 

Thus, the effects of measurement locations on the GA calibration results can be evaluated 

by the number of times the algorithm converges to the true solution when different 

combinations of measurement sites are tested. 

In this investigation, it is assumed that there are four measurement sites available. Four 

different combinations of measurement sites are tested to evaluate the convergence of the 

GA model, which is shown in Table 4.7.  

Table 4.7: Effects of measurement locations on GA calibration results 

Experiment Measurement locations Number of convergences  Note 

1 P1, P3, P7, P9  16/100 SD method 

2 P1, P6, P8, P9 7/100 Random 

3 P1, P9, N3, N6 4/100 Random 

4 N2, N5, N4, N7 5/100 Random 



Publication 1: Calibration of Water Demand Multipliers in WDSs Using Genetic Algorithms 

 

 46 

The measurement locations in the first experiment are selected by the SD greedy 

algorithm method and the four flow measurement sites are placed at pipes 1, 3, 7 and 9. 

In the second and the third experiments, two flow measurements are kept at the same 

locations at pipe 1 and pipe 9, while the two other measurement locations are selected 

randomly. This leads to two flow measurement sites being located at pipe 6 and pipe 8 

for experiment 2 and two pressure measurement sites located at node 3 and node 6 for 

experiment 3. The last experiment involves the presence of four pressure measurement 

sites at nodes 2, 4, 5, and 7.  

The GA parameters of the GA model were kept constant and set equal to the values 

presented in the previous section, except for the increment of the decision variables. The 

increment in this test was selected Dq = 0.1, so that it was possible to fully enumerate 

the search space (16.77*106 possible solutions). The enumeration of the problem shows 

that with this relatively small search space size, the problem has a unique optimal solution 

for all four experiments. In this case, the objective function reaches exactly zero when the 

calibrated demand multiplier factors are identical to the actual demand multiplier factors 

assigned to the network. The number of convergences to the optimal solution therefore, is 

the number of times out of 100 GA runs in which the GA model can find the exact solution 

of the problem. As seen in Table 4.7, the first experiment results in the highest number of 

convergences with 16 times out of 100 runs. The second experiment has 7 times, followed 

by the fourth and the third experiment where the number of convergences is 5 times and 

4 times out of 100 runs, respectively. The output of the GA calibration model in this case 

study, therefore, seems to be sensitive to the locations and the types of the measurement 

in the network.  

4.5 Case study 2 

The second case study is considered to compare the performance of the GA model with 

the SVD model from Cheng and He (2010). The network has 9 nodes, 12 pipes, one tank, 

one pump and one reservoir. The network topology and all information including the pipe 
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parameters, length, roughness and pump characteristic can be found from the EPANET 

example (Rossman 2000), namely the Net1 network (Figure 4.9). 

 

Figure 4.9: Case study 2 network for calibration problem 

The GA calibration model (with a population size of 𝑁 = 100, probability of crossover 

𝑃I = 0.8 and probability of mutation 𝑃. = 0.15) was tested for three scenarios of 

measurement sites according to Cheng and He (2010). In the first test, three pressure 

sensors are assumed to be located at nodes 3, 5 and 8. The second test assumes the flow 

meters are set at pipes 2, 4 and 11, while the third test assumes two flow sensors and a 

pressure sensor are placed at pipes 7, 11 and node 4, respectively. The calibrated demands 

and the differences between real demands and calibrated demands of the SVD model and 

GA model are shown in Table 4.8.  

Table 4.8: Comparison of SVD model (Cheng and He 2010) and GA model for case study 2 

Node 

 number 

Real 

DM 

Test 1 Test 2 Test 3 

SVD GA DSVD DGA SVD GA DSVD DGA SVD GA DSVD DGA 

(GPM) (GPM) (GPM) (%) (%) (GPM) (GPM) (%) (%) (GPM) (GPM) (%) (%) 

2 150 185.78 118.67 23.85 20.89 145.67 157.94 2.89 5.29 158.49 150.09 5.66 0.06 

3 100 151.09 93.15 51.09 6.85 112.80 101.88 12.80 1.88 122.65 85.76 22.65 14.24 

4 300 216.44 327.15 27.85 9.05 200.54 265.88 33.15 11.37 279.36 314.48 6.88 4.83 

5 50 49.26 50.34 1.48 0.69 49.49 51.63 1.02 3.25 77.64 52.81 55.28 5.62 

6 50 64.01 35.90 28.02 28.20 62.11 38.90 24.22 22.20 58.43 38.92 16.86 22.16 

7 150 159.26 164.15 6.17 9.43 151.05 142.06 0.70 5.29 127.40 153.85 15.07 2.57 

8 150 221.00 140.58 47.33 6.28 209.63 96.45 39.75 35.70 157.52 141.97 5.01 5.35 

9 150 129.21 131.45 13.86 12.36 164.80 168.36 9.87 12.24 114.76 162.12 23.49 8.08 

SDM 1100 1198.0 1061.4 8.91 3.51 1099.9 1043.1 0.00 5.17 1100 1100 0.00 0.00 

* Bold - Cases where the GA model finds better calibrated results 

It can be seen that for all three tests, the average of 100 runs of the GA model gives more 

reasonable results for the nodal demands.  In test 1, while the SVD model leads to large 

differences between actual and calibrated values at node 3 and node 8 (51.09% and 47.33% 
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respectively), the average GA results in relatively small errors (6.85% and 6.28%) at the 

corresponding nodes. In test 2, the largest error of the two models occurs at node 8, with 

an error of 39.75% for the SVD model and a slightly smaller error of 35.7% for the GA 

model. The last test presents the best performance of the GA model with the maximum 

error of 22.16% at node 6 while the SVD model still remains a large error of 55.28% at 

node 5. For estimating the total water demands of the system (the last row of Table 4.8), 

both models achieve reasonable results, especially for the SVD model in test 2 and 3. The 

total calibrated demand of the GA model only matches with the real total demand in test 

3, where one of the flow sensors is placed at pipe 7 to measure the flow from the tank to 

the system. This highlights the importance of the selection of the optimal measurement 

locations. Reasonably accurate results can be achieved if information related to the total 

flow is provided. 

4.6 Case study 3 

The third test network aims at testing the performance of the proposed methodology for a 

larger network. This network is provided by EPANET, namely the Net2 network, which 

consists of 40 pipes and 35 nodes, one tank and one pump station. The pump station is 

modelled as a node with negative demand, which feeds water into the network. It is assumed 

that up to 3 measurement devices are able to be installed in the network. In addition, the 

pump flow is also assumed to be known. The network diagram is shown in Figure 4.10.  

 

Figure 4.10: Case study 3 water distribution network (Net2 network) 
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The SD greedy algorithm model for the selection of measurement locations found that, for 

this network, the flows in pipes are much more sensitive to the demands than the heads 

at nodes. Three flow measurement sites are suggested to be located at pipes 12, 22 and 

29. The GA calibration model of the Net2 water network was implemented with the 

following characteristics: (1) the number of decision variables is 32 corresponding to a total 

of 32 nodal demand multiplier factors of the network; (2) the size of the choice table for 

the decision variables is selected from 𝑓>
.&E = 0 to𝑓>

.*G = 1.5; (3) a population of 𝑁 =

500, probability of crossover 𝑃I = 0.8, probability of mutation 𝑃. = 0.04 and the 

number of generations 𝑁 = 1000 were selected for the GA model parameters; (4) in order 

to evaluate the effects of the increment of the decision variables, different increment steps 

of Dq = 0.0005, 0.005, 0.02 and 0.1, respectively, were examined. 

A hundred runs of the GA model were undertaken on the Intel Ò Core™ i5 (2.9GHz) 

computer. The total elapsed run time was approximately 16.3 hours, or about 10 minutes 

for one run. Table 4.9 summarizes the average errors of the nodal demands, flow rates and 

nodal heads in comparison with the true value at nodes and pipes in the network. It can 

be seen that the errors are approximately equal for four different increment steps of the 

decision variables. The average errors fluctuate slightly around 15% for the demands, 10% 

for the flows and only 0.01% for the nodal heads. Hence, also this case study shows that 

the GA calibration model is not sensitive to the increment selected for the decision 

variables. 

Table 4.9: Summary of average GA output errors for Net2 network with different increment steps 

Increment step Average  
demand errors (%) 

Average  
flow error (%) 

Average  
head error (%) 

0.1 16.41 10.72 0.009 

0.02 14.74 10.81 0.009 
0.005 15.19 9.96 0.010 

0.0005 15.30 10.78 0.011 

Figure 4.11 and Figure 4.12 plot the outcome from the GA model corresponding with the 

increment value Dq = 0.02 as a demonstration of the results. The bottom graph of each 

figure presents the average calibrated/simulated values and the true values of the nodal 



Publication 1: Calibration of Water Demand Multipliers in WDSs Using Genetic Algorithms 

 

 50 

demands/flow rates. The top graph of each figure shows the error percentage of the 

difference between the calibrated/simulated values and their true values. Due to the 

relatively accurate estimation of the nodal heads, the plot of the simulated heads and 

actual heads is not shown here.   

 

Figure 4.11: Comparison of average calibrated demands versus actual demands of Net2 network  

 

Figure 4.12: Comparison of average simulated flows versus actual flows of Net2 network  

Let us consider three groups of the demands (0 to 10 GPM, 10 to 30 GPM, and > 40 

GPM). Figure 4.11 shows that large calibration percentage errors only occur in the first 

group, where the demands are small. The errors in this group are within 16.5% and 

45.48%. However, all the differences are less than 1.52 GPM in absolute value. The second 

group shows a very good approximation of the demand, as the percentage errors vary 

from 0.48% to 8.51%. The last group, which contains only node 11 with the actual demand 

of 43.82 GPM, also obtains a relatively accurate calibrated result of 49.47 GPM, equivalent 

to an error of 12.89%. 
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Similarly, Figure 4.12 shows that the flow estimation is generally much more accurate for 

the pipes with high flows than the pipes with low flows. The largest estimation error, 

approximately 84.8%, occurs at pipe 36 at which the actual flow is 0.63 GPM and the 

simulated flow is 1.16 GPM. For all the pipes that have actual flows larger than 30 GPM, 

the estimation errors are smaller than 6.5%. 

4.7 Conclusions and recommendations 

Calibration of water demand in real water distribution systems is complicated by the 

limited number of measurement sites. A GA model has been developed for the calibration 

of the demand multiplier factors for underdetermined water distribution systems where 

the number of measurement locations is less than the number of unknown parameters. 

The approach for estimation of demand multiplier factors using GA optimization has been 

tested on three case studies. The first case study has shown that the average values of 

multiple runs of the GA model can deliver a very good approximation of the water demand 

multipliers with little information from the SCADA system. The first case study also 

shows that the location of the measurement sites does influence the performance of the 

GA model. The second case study demonstrates the advantage of the GA model in 

comparison to the singular value decomposition model. It also confirms the conclusions 

made from the first case study about the sensitivity of the GA model to the measurement 

locations. Therefore, the GA model is suggested to be implemented in combination with 

a supporting tool for the selection of optimal measurement locations such as the SD greedy 

algorithm model.  The third case study validates the approach for a slightly larger sized 

network, which again exhibits the superior performance of the GA model. The model run 

time for this last case study (approximately 16.3 hours) might be a disadvantage of the 

GA model. The model might, therefore, be suitable for the networks at which the SCADA 

data are provided on a daily basis, or if real-time calibration is required, parallel computer 

systems would need to be implemented for the GA model. 
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Future research efforts will involve finding advanced methods for the calibration of the 

demand to reduce the computational time. In addition, uncertainty of the calibration 

model is another consideration given the presence of errors (or noise) in measurement 

data. Finally, addressing the problem of leakage in the network is also important in 

achieving reliable results. 
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Abstract 

Accurate modeling of water distribution systems is fundamental for the planning and 

operating decisions in any water network. One important component that directly affects 

model accuracy is the knowledge of nodal demands. Conventional models simulate flows 

and pressures of a water distribution network either assuming constant demands at nodes 

or using a short-term sample of demand data. Due to the stochastic behavior of the water 

demands, this assumption usually leads to an inadequate understanding of the full range 

of operational states in the water system. Installation of sensor devices in a network can 

provide information about some components in the system. However, the requirement for 

a reliable water distribution model that can assist with understanding of real-time events 

in the entire water distribution system is still an objective for hydraulic engineers. 

This paper proposes a methodology for the estimation of online (near real-time) demand 

multipliers. A predictor-corrector approach is developed which predicts the hydraulic 

behaviors of the water network based on a nonlinear demand prediction model, and 

corrects the prediction by integrating online observation data. The standard particle filter 

and an improved particle filter method, which incorporates the evolutionary scheme from 

genetic algorithms into the resampling process to prevent particle degeneracy, 

impoverishment and convergence problems, are investigated to implement the predictor-

corrector approach. Uncertainties of model outputs are also quantified and evaluated in 

terms of confidence intervals. Two case studies are presented to demonstrate the 

effectiveness of the proposed particle filter model. Results show that the model can provide 

a reliable estimate of demand multipliers in near real-time contexts. 

Keywords: Particle filters, sequential Monte Carlo method, real-time demand estimation, 

water distribution systems, uncertainty 
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5.1 Introduction 

Water distribution systems (WDS) are constructed to supply water for domestic, 

industrial and commercial consumers. The design, operation and management of these 

distribution systems is usually supported by the application of hydraulic models, which 

are built to replicate the behavior of real systems. These conventional models simulate 

flows and pressures of a WDS either under steady state conditions (constant demands and 

operational conditions) or under a short term extended period simulation (time-varying 

demands and operational conditions), for example a day or a week (USEPA 2005). The 

outputs from hydraulic models, therefore, usually represent the distribution system 

behavior during the sampling period (Preis et al. 2009). This leads to an inadequate 

understanding of the full range of operational states in the water system.  

The installation of sensor devices as well as the Supervisory Control and Data Acquisition 

(SCADA) systems within the WDS can provide information on the status of some 

components in the system. However, the use of this additional data is currently limited to 

computing gross differences between the model outputs and reality (Kang & Lansey 2009). 

Modification of the hydraulic models to maintain the consistency between observed data 

and simulated data is still a challenge that needs to be dealt with. Estimation of the model 

states/parameters, hence, is required so that the model is able to represent the real system.  

Estimation is the process of fitting the outputs from the computer model, usually the 

pressures and flow rates at particular locations in the water network, with the field 

measurements, in order to calculate unknown variables of interest. Initial estimation 

studies in WDSs were pioneered by Rahal et al. (1980), Walski (1983) and Bhave (1988) 

with the proposal of the ad hoc (trial-and-error) calibration schemes, in which an iterative 

process to update unknown model parameters was implemented. Due to the slow 

convergence rate, this method is only applicable to small water networks. Later, explicit 

calibration methods were introduced (Ormsbee & Wood 1986; Boulos & Wood 1990; 

Boulos & Ormsbee 1991). These methods solved an even-determined set of water network 

equations where the number of unknown parameters is grouped to be equal to the number 
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of measurements. As the measurement errors were also neglected, these methods usually 

did not represent real-world practical outputs. Therefore, explicit calibration models were 

often used to analyze historic events in water systems (Savic et al. 2009). Subsequently, 

implicit methods were developed using either mathematical techniques or evolutionary 

optimization techniques, for example: Complex Method (Ormsbee 1989), Weighted Least 

Squares approaches (Lansey & Basnet 1991; Datta & Sridharan 1994), Singular value 

decomposition (SVD) method (Sanz & Pérez 2015) or Genetic Algorithms (GA) (Preis et 

al. 2009; Abe & Peter 2010; Do et al. 2016). These methods have drawn a high degree of 

attention from researchers. However, these models are mostly impractical due to either a 

requirement for a large quantity of ‘good’ observation data (Savic et al. 2009) or ignoring 

model uncertainties. Furthermore, few approaches have attempted to estimate model 

parameters and model states in conjunction with model uncertainties. Bargiela and 

Hainsworth (1989) found that a good approximation of pressure uncertainty bounds can 

be obtained by a linearization of the mathematical network model. Piller (1995) and Bush 

and Uber (1998) used a sampling design method to estimate the model parameters and 

approximate the uncertainties. Lansey et al. (2001) applied a first-order approximation 

method to identify pipe roughness uncertainty. Nagar and Powell (2002) applied a linear 

fractional transformation and semi-definite programming method to estimate the pressure 

heads and their confidence bounds. In addition, some probabilistic methods (Xu & Goulter 

1998; Kapelan et al. 2007; Hutton et al. 2013) have also been investigated for the 

estimation of model parameters. Due to the complexity of the uncertainties, estimation 

methods associated with uncertainty quantification are still a continuing research area, 

especially for real-time estimation purposes.  

The complexity of uncertainties in WDS modeling has been addressed in Hutton et al. 

(2012b), in which the uncertainty is divided into three categories: (1) structural 

uncertainty, (2) parameter uncertainty and (3) measurement/data uncertainty. Structural 

uncertainty derives from the mathematical representation of the real system, such as 

network skeletonization and model aggregation. Skeletonized and/or aggregated models 

are predominantly used instead of all-pipes models to reduce the complexity of the network 
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being analyzed as well as to increase computational speed. It has been shown that 

skeletonized/aggregated network models can closely resemble the behaviour of full sized 

systems under steady state conditions (e.g. Perelman et al. (2008) and Preis et al. (2011)). 

The second category, parameter uncertainty, refers to the errors of the parameters used 

to represent system components (e.g. pipe roughnesses, pipe diameters). According to 

Kang and Lansey (2009), these parameters are time invariant or vary slowly over time. 

Hence, this source of uncertainty can be neglected for real-time estimation problems. 

Finally, measurement/data uncertainty is the uncertainty from measurement devices and, 

more importantly, uncertainty from the inability to capture the temporal and spatial 

variation of consumer demands. Because of their high impact on model uncertainty during 

short periods of time (or in real-time), nodal demands are therefore usually selected as the 

time varying parameters to be estimated.  

The issue of short term demand forecasting and real-time demand estimation under 

uncertainties can be found in some recent studies. Note that the short-term demand 

forecasting and demand estimation are two different problems. The former focuses on 

predicting future demands (e.g. Cutore et al. (2008), Hutton and Kapelan (2015) and 

Alvisi and Franchini (2017)). The latter focuses on estimation of the current demands, 

which is also the main interest of this paper. This is useful, as demand estimation can be 

used at regular time steps to verify the accuracy of the predicted value and update the 

system operations. The problem of near real-time demand estimation has been studied 

using different approaches. Shang et al. (2006) applied an extended Kalman filter, an 

iterative linear algorithm for nonlinear state estimation, to approximate water demand 

patterns. In that paper, water demand patterns were predicted by an ARIMA time series 

model and were refined using real-time observations. Similarly, Hutton et al. (2012a) 

introduced a particle filter method and an ensemble Kalman filter for the estimation of a 

single district meter area, which was assumed to follow a linear time series model. The 

particle filter model was implemented with and without measurement error to show its 

effect on the demand prediction uncertainty. An alternative for the demand estimates can 

be found in Kang and Lansey (2009). In their paper, two comprehensive methods for the 
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demand estimation problem were introduced, the Kalman filter and the tracking state 

estimator (TSE). For the Kalman filter model, the water demand patterns were also 

assumed to follow a linear time series model, while the TSE model involved recursively 

computing the sensitivity matrix (i.e. the Jacobian matrix of the measurement vector with 

regards to the change in the state vector). The uncertainties of the demand estimates were 

suggested to be quantified by applying the first-order second moment formula. The two 

models were then tested on a case study (116 pipes, 90 nodes, 1 source and 1 tank) with 

an assumption that 19 flow measurement sites and 5 pressure measurement sites were 

available. It should be noted that the demand estimation problem is sensitive to the 

locations and types of the measurements (Do et al. 2016). Demand estimation models 

usually perform better with flow measurements rather than pressure/head measurements. 

However, due to the cost and difficulty of installing flow measurement devices compared 

to pressure measurement devices, flow measurement devices are usually not as commonly 

used as pressure measurement devices in real WDS networks. 

In summary, water demands in WDS studies are usually assumed to be known and varied 

based on a diurnal curve. However, this assumption might lead to large approximations 

of WDS states in real-time due to the unpredictable variation of the water demands. Some 

efforts have been focused on the real-time demand estimation. By assuming that the water 

demand follows a linear time series prediction model, these models approximated the water 

demand patterns with some linear algorithms such as the Kalman filter or extended 

Kalman filter. Given the nonlinear stochastic nature of the water demands as well as the 

need for practical applicability, real-time estimation modeling of WDS still requires much 

research effort. 

This paper presents a model framework for the online (near real-time) demand estimation 

of a WDS, which is named the DMFLive model. A predictor-corrector methodology is 

adopted in the DMFLive model to predict the hydraulic behaviors of the water network 

based on a nonlinear demand prediction sub-model, and to correct the prediction by using 

online pressure observation data. A particle filter method is applied to implement the 

predictor-corrector approach. The typical problems of the particle filter approach (particle 
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degeneracy, impoverishment and particle convergence) are investigated by two different 

resampling schemes: systematic resampling (SR) algorithm and systematic resampling 

integrated with a genetic algorithm process (SRGA). Uncertainties of model outputs are 

quantified and evaluated in terms of confidence intervals. 

The paper is structured as follows. First, an explanation of the state estimation problem 

and its conceptual solution is introduced. Second, the basic concepts of particle filter 

methods to solve the estimation problem are explained. This is followed by a detailed 

description of the particle filter methodology applied for water demand state estimation 

in WDS. Two case studies are then used to evaluate the model. Finally, conclusions and 

suggestions for future work are given. 

5.2 State estimation problem and its conceptual solution 

The problem of state estimation involves finding a target state vector 𝑥" that evolves 

according to a discrete time stochastic model (Ristic et al. 2004): 

𝑥" = 𝑓"−1 𝑥"−1, 𝜐"−1  (5.1) 

where 𝑘 is the index of discrete time steps; 𝑓"−1 is a known, possibly nonlinear function 

of the previous state and u is the process noise sequence. The value of 𝑥" can be found 

from measurements 𝑧", which are related to 𝑥" via the measurement equation: 

 𝑧" = ℎ" 𝑥", 𝑤"  (5.2) 

where ℎ is a known implicit or explicit, possibly nonlinear function and 𝑤 is the 

measurement noise sequence. The noise terms u" and 𝑤" are usually assumed to be white 

noise and independent. 

From a statistical and probabilistic perspectives, the state model can be represented by a 

probability density function (pdf). The state estimation problem, therefore, becomes a 

process of recursively quantifying some degree of belief in the state 𝑥" given the 

measurement series 𝑍" (𝑧,, 𝑖 = 1, … , 𝑘) up to time 𝑘. This process can be obtained by 

two stages: prediction and correction/update. The prediction stage involves applying the 

system model to predict the prior pdf of the state: 
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𝑝 𝑥" 𝑍"−1 = 𝑝 𝑥" 𝑥"−1 𝑝 𝑥"−1 𝑍"−1 𝑑𝑥"−1 (5.3) 

where 𝑝 𝑥" 𝑥"−1  is the probabilistic model of the state model, or the transitional 

probability density function, which is defined by the system equation, i.e. Equation (5.1), 

with the known statistics of 𝜐"−1 and 𝑝 𝑥"−1 𝑍"−1  is the pdf of the model at time 𝑘 − 1, 

which is supposed to be known. 

The correction/update stage implements Bayes’ rule to compute the posterior probability 

density of the state model when the measurement 𝑧" becomes available:  

𝑝 𝑥" 𝑍" = 𝑝(𝑧"|𝑥")𝑝(𝑥"|𝑍"−1)
𝑝 𝑧" 𝑥" 𝑝 𝑥" 𝑍"−1 𝑑𝑥"

 (5.4) 

where 𝑝(𝑧"|𝑥") is the likelihood function, defined by the measurement equation (Equation 

(5.2)) with the known statistics of 𝑤".  

According to Ristic et al. (2004), the recursive propagation of the posterior pdf shown in 

Equation (5.3) and Equation (5.4) is only a conceptual solution that cannot be analytically 

solved. The solution requires the storage of a fully non-Gaussian pdf, corresponding to an 

infinitive dimensional vector. Since the true solution is too complex and almost impossible 

to compute, an implementation of approximation techniques or suboptimal Bayesian 

algorithms is developed. The following section introduces an approximation technique, 

namely the particle filter, to solve the aforementioned state estimation problem. 

5.3 Particle filters 

Over the last decade, particle filters have been successfully applied to the state and 

parameter estimation of complex system models in various environmental engineering 

fields, such as hydrology (Moradkhani et al. (2005), Weerts and El Serafy (2006)), 

hydraulic (Hutton et al. 2012a) and geoscience (van Leeuwen (2010)). Unlike the Kalman 

filter (for linear problems), extended Kalman filter (which requires a linearization of the 

nonlinear problems) or the unscented Kalman filter (which uses a small number of 

deterministically chosen samples), the particle filter can use a large number of Monte Carlo 

samples to estimate fully nonlinear, possibly non-Gaussian target states. The key concept 
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of a particle filter is to approximate the posterior pdf of states, defined in Equation (5.4), 

by an ensemble of samples (𝑁1 ), each of which contains an associated weight (𝑤"
, ), and 

to compute estimates based on these samples and weights: 

𝑝 𝑥" 𝑍" ≈ 𝑤"
,

34

,=1
𝛿(𝑥" − 𝑥"

, ) (5.5) 

𝑤"
, = 𝑤"−1

, 𝑝(𝑧"|𝑥"
, )𝑝(𝑥"

, |𝑥"−1
, )

𝑝(𝑥"
, |𝑥"−1

, , 𝑧")
 (5.6) 

where d is the Dirac delta function; 𝑖 is the particle index; and 𝑝(𝑥"
, |𝑥"−1

, , 𝑧") is the 

importance density function. In order to simplify the weight update of the particle, the 

importance density function is usually chosen as the transitional density function, 

𝑝 𝑥"
, 𝑥"−1

, , 𝑧" =  𝑝 𝑥"
, 𝑥"−1

, , which yields with scaling: 

𝑤"
, = 𝑝(𝑧"|𝑥"

, )
𝑝(𝑧"|𝑥"

, )34
,=1

 (5.7) 

These equations form the basis of most particle filters. However, it has been shown by 

Doucet et al. (2000) that the variance of the weights will increase over time if the particle 

filtering process is limited at executing only these equations. Since the particles drift away 

from the “truth” as well as obtain negligible weights (Moradkhani et al. 2005), the model 

will fail to estimate the real states of the system. To avoid this problem, a resampling 

process, which replaces samples with low importance weights by the samples with high 

importance weights, is added to the procedure of particle filter models. In this paper, the 

systematic resampling method, also called the stochastic universal resampling, introduced 

by Kitagawa (1996), is selected for the resampling procedure of the particle filter model. 

A comprehensive explanation of the systematic resampling and the full review of particle 

filtering methods are described in (van Leeuwen 2009). In addition, an improved 

resampling method which integrates the evolutionary scheme from genetic algorithms into 

the resampling process, is also proposed to improve the efficiency of the particle filter 

model. 
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5.4 Particle filters applied for water demand state estimation in WDS 

In this study, the predictor-corrector approach implemented by a particle filter model for 

the estimation of water demands in real-time is proposed, namely the DMFLive model.  

The demand prediction sub-model presented by van Zyl et al. (2008) has been applied to 

predict the water demand multipliers (DMF) in a WDS. The hydraulic EPANET toolkit 

(Rossman 2000) which solves the hydraulic equations was used to compute the model 

equivalent of the measurement data (i.e. the nodal pressures, flow rates at measurement 

locations or the final tank levels at the end of each time step). These computed values 

then were integrated with the corresponding field measurements in order to 

correct/update the particle weights. Particles were, thereafter, resampled (with either SR 

or SRGA) and subsequently used as input for the prediction model.  Simultaneously, the 

estimated demand multipliers were computed and selected for uncertainty quantification. 

The uncertainties of the demand multipliers caused by the errors from measurement 

devices were computed using the first-order approximation formula. The flowchart of the 

DMFLive model is shown in Figure 5.1. 

	

Figure 5.1 Process of particle filter model for real-time demand estimation in WDS 

5.4.1 Initialization of particles 

The DMFLive model starts with a creation of an ensemble of the particles (𝑁6). The 

particles are the demand residuals, driven by the demand prediction model to predict the 

demand multipliers. In addition, each particle is assigned an initial weight equal to 1/𝑁6. 
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5.4.2 Demand prediction sub-model 

The initial particles (for the first iteration) or the particles after resampling (from the 

second iteration onwards) are transferred to the demand prediction sub-model. Demand 

residual information carried by the particles is used to track the states and predict the 

demand multipliers via the following equations (van Zyl et al. 2008): 

ln 𝑥"
7 = 𝜙,

7
9

,=1
ln 𝑥"−,

7 + ln 𝜐"
7  (5.8) 

where 𝑥"
7  is the demand residual state at time step 𝑘 of the 𝑗;ℎ 𝐷𝑀𝐹 ; 𝑖 is the lag counter; 

𝑚 is the number of autocorrelation lags (for the state estimation problem 𝑚 = 1 as 

referred to Equation (5.1)); 𝜙, is the auto-regression coefficient for lag 𝑖 and 𝜐"(0, 𝜎ℎ) is 

the white noise with mean zero and standard deviation 𝜎ℎ.  

The 𝑗;ℎ𝐷𝑀𝐹  is calculated as: 

𝐷𝑀𝐹"
7 = 𝐶"

7𝑥"
7  (5.9) 

where 𝐶"
#
 is the value at time k of a typical diurnal demand pattern of the 𝑗;ℎ𝐷𝑀𝐹 . The 

𝐶 value can be identified based on meter information of different water users (e.g. in Beal 

and Stewart (2014)).  

5.4.3 Real-time hydraulic data 

In practice, hydraulic data can be captured in real-time via the SCADA system or sensor 

devices. For the DMFLive model, two types of real-time hydraulic data are required. First 

are the tank levels, pump and valve statuses, and second are the nodal heads and pipe 

flow rates at measurement locations.  Tank levels, pump and valve statuses are used as 

boundary conditions for the hydraulic simulation of the water network model while the 

observations at measurement locations are used to correct/update the weight of the 

particles. 

In order to validate the performance of the proposed model as well as its practical 

applicability to real WDS networks, all case studies in this research are assumed to have 

pressure measurements only. The input data sets to evaluate the DMFLive model are 

synthetically generated based on deterministic models, where the water network 
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parameters are fully known, as follows: (1) known demand patterns are assigned to nodal 

demands; (2) EPANET is run to record tank levels, pump statuses, and pressures at 

selected measurement locations; (3) to introduce the measurement errors, a normal 

distributed random error in an allowable range (±∆9DEF) is added to each nodal pressure. 

5.4.4 Simulator 

The hydraulic behavior of the water distribution network at each time step is simulated 

using an EPANET steady state simulation. The inputs are the predicted DMFs, tank 

levels, and pump and valve statuses. The water network characteristics such as pipe 

lengths, diameters, roughness coefficients, node elevations, pump curves, etc. are assumed 

to be known and constant. The outputs from the EPANET hydraulic solver is the model 

equivalent of the observations, i.e. the simulated nodal heads and pipe flow rates at 

measurement locations.  

5.4.5 Corrector 

The weights of the particles are corrected/updated by associating the simulated heads and 

flows with the actual observations via Equation (5.7) where the likelihood function is 

assumed to be Gaussian: 

𝑝 𝑧" 𝑥"
, = 1

2𝜋 𝑅
𝑒 −1

2 KL−ℎ ML
N O P−1 KL−ℎ ML

N
 (5.10) 

where ℎ(𝑥"
, ) is the model equivalent of the observations 𝑧" (simulated nodal heads and 

flow rates), and 𝑅 is the covariance matrix of the observation errors, which in general is 

caused by errors from two main sources: forward model error and measurement device 

error. The forward model error, 

∆;RSD= 𝑍;RSD − ℎ(𝑥;RSD) (5.11) 

is the difference between the true observation vector, 𝑍;RSD, and the corresponding vector 

output from the hydraulic simulation model EPANET using the true state 𝑥;RSD. The 

true observation vector is a theoretical vector that represents observations measured by 

perfect measurement devices.  It is linked to the actual measured values via the expression: 

𝑍 = 𝑍;RSD + ∆9DEF (5.12) 
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The observation error covariance matrix, therefore, can be estimated as 𝑅 = 𝑅;RSD +

𝑅9DEF, where 𝑅;RSD  and 𝑅9DEF  denote the covariance of the forward model error and the 

covariance of measurement error, respectively (see Waller (2013) for a detailed explanation 

and calculation of the observation error covariance matrix). To produce good estimates of 

the model state in real case studies, the error covariance matrix must be well understood 

and properly calibrated. As previously mentioned in this paper, the measured data in all 

case studies were synthetically generated from the EPANET model based on “true” 

demand patterns. The forward model error, therefore, equals to zero. The covariance 

matrix 𝑅, as a result, is the diagonal matrix where the diagonal elements are the variances 

of the measurement errors, since observations are independently measured at different 

locations of the network by different measurement devices. The measurement errors with 

specified ranges are assumed to be known so that the covariance matrix 𝑅 can be 

identified.  

5.4.6 Resampling 

Resampling is applied to create new ensembles of particles from the posterior pdf of the 

previous step. In this paper, two alternatives of resampling are tested: systematic 

resampling algorithm (SR) and systematic resampling integrated with the GA operators 

(SRGA).  

The SR algorithm generates a random number us from the uniform density 𝑈 [0, 1/𝑁1 ], 

and consequently creates 𝑁1  ordered numbers (Hol et al. 2006): 

𝑢, = 𝑖 − 1
𝑁1

+ 𝑢F     (𝑖 = 1, … , 𝑁1 ) (5.13) 

New particles are then selected that satisfy Equation (5.14): 

𝑥VDW
, = 𝑥(𝐹 −1 𝑢, ) (5.14) 

where 𝐹 −1 denotes the generalized inverse of the cumulative probability distribution of 

the normalized particle weights. 

To reduce the convergence problem of the particles (i.e. all the particle weights are equal 

to zero) when applying the model for large networks with multiple demand patterns, the 

SRGA method is also applied. Three GA operators of selection, crossover and mutation 
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are responsible for modifying the predicted demands before computing the weight of a 

particle by Equation (5.10). In the selection step, particles are compared to each other 

through tournament selection and the best particles are selected as parents. Parent 

particles are then paired and go through crossover and mutation to generate offspring 

solutions. While the details of GA can be found in Nicklow et al. (2010), it is important 

to know that new parameters need to be introduced: the probability of crossover 𝑃Y, the 

probability of mutation 𝑃9 and the number of generations 𝑁ZDV. 

5.4.7 Demand multiplier outputs and uncertainty quantification 

The estimate of the state 𝑥" is obtained by taking the mean of the particle filter sample 

set (Salmond & Gordon 2005): 

𝑥" ≈ 1
𝑁6

𝑥"
, ∗

3\

,=1
 (5.15) 

where 𝑥"
, ∗ is the state updated based on the posterior analysis of the model weights. 

For particle filter models, the uncertainty of the model output can be computed by taking 

the variance of the samples: 

𝑣𝑎𝑟 𝑥" ≈ 1
𝑁6

𝑥"
, ∗ − 𝑥" 𝑥"

, ∗ − 𝑥"
`

3\

,=1
 (5.16) 

For the demand multiplier estimation problem, it should be noted that a small change in 

the demand multiplier can cause a large change in nodal demands (for nodes with large 

base demands) and consequently result in large variations of nodal pressures, especially at 

nodes that are sensitive to nodal demands. Most of the demand forecasting models are 

required to capture both peak-demand hours and off-peak demand hours, with a demand 

multiplier factor that can vary from 0 to 4 (Chin et al 2000). The weight of the particles 

via Equation (5.10) can, therefore, easily approach zero which leads to either particle 

degeneracy or particle non-convergence. Using a larger number of particles can prevent 

this problem, however, if the dimension of the state vector increases, the required number 

of particles increases exponentially. One way to solve these issues is to incorporate the 

covariance of the forecasting nodal heads/pipe flow rates into the likelihood function:  
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𝑝 𝑧" 𝑥"
, = 1

2𝜋 𝑅∗
𝑒 −1

2 KL−ℎ ML
N O (P∗)−1 KL−ℎ ML

N
 (5.17) 

where 𝑅∗ = 𝑅 + Σ, Σ is the covariance matrix of the forecast nodal heads or pipe flow 

rates, computed based on the forecast demands. This covariance matrix can be estimated 

by running the demand forecasting model multiple times to obtain the range of forecast 

demand multipliers, then applying these values into the hydraulic model to compute the 

variance of simulated nodal heads and pipe flow rates at measurement locations.  

Although the method can ensure some of the particles always contain weights to avoid 

particle non-convergence and degeneracy, this would increase the noise of the output 

model. The variance of the model output (i.e. the uncertainty of the model output) is 

required to be computed by a different method instead of using Equation (5.16). 

Another way to overcome the convergence and degeneracy issues is to integrate the GA 

operators into the resampling process as mentioned in the previous sections. The 

integrated GA approach can prevent the model from experiencing these problems by 

exploring the state-space region and selecting the best particles (including the replication 

of good solutions). However, it might lead to another problem for the particle filter, 

referred to as particle impoverishment. The distribution of the state model, because of the 

particle impoverishment, is poorly represented by only one or a few particles which 

significantly reduces the variance of the model state.  

To ensure reliable outputs from the particle filter model, it is proposed to approximate the 

uncertainty of the model state by an independent method, such as the first-order 

approximation (FOA) method adopted from Piller (1995). This also has the advantage of 

significantly decreasing the computational time, as it will be shown in the case studies. 

The model outputs, therefore, are the estimate of the demand multipliers computed by 

Equation (5.15) and the confidence intervals computed by FOA method. For example, 

the 95% confidence interval of the estimated demand multiplier (i.e. the range in which 

the true demand multipliers are expected to be 95% of the time) can be obtained by the 

following expression: 

∆𝐷𝑀𝐹" ≤ 1.96(𝑊
1
2𝐽)† (5.18) 
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∆𝐷𝑀𝐹"
7 ≤ 1.96 𝑆,7

9
7=1 , with 𝑆 = (𝑊 1

2𝐽)† 

where 𝐽  is the Jacobian matrix of flows and heads with respect to the water nodal demand 

at time 𝑘; 𝑊  is the weight matrix where the diagonal elements are the reciprocals of the 

variances of measurement errors (𝑊 = 𝑅−1); superscript † represents the pseudo-inverse 

operator. The derivation of Equation (5.18) is explained in detail in Appendix A. 

By considering the Jacobian (sensitivity) matrix, the uncertainty of the output model 

from FOA method can provide meaningful information about the sensitivity of the 

pressure with respect to the change in the nodal demand. This information can be used 

to guide where to place measurement stations. However, the method requires calculation 

of the sensitivity matrix, which may be time consuming when applied to large and complex 

networks.  

5.4.8 Summary of assumptions and input requirements for the DMFLive model 

Several assumptions are made for this study: (1) the model of the water distribution 

network perfectly represents the real system with known network characteristics (e.g. pipe 

roughness coefficients, length and diameters, etc.), and only demand multipliers are 

required to be estimated; (2) typical demand patterns for different homogeneous demand 

groups in WDS are assumed to be known. The homogeneous demand groups can be 

identified based on a multi-criteria demand zones clustering algorithm presented in Preis 

et al. (2010). There is uncertainty of the model outputs associated with demand groupings, 

but this is not considered here. Therefore, (3) the source of uncertainty is only from the 

errors from measurement devices; (4) the errors of the measurement devices are assumed 

to be known and to follow a Gaussian distribution; (5) the observation data for the online 

(near real-time) estimation model is available every 10, 15 minutes, 1 hour or larger time 

steps. The influence of slow transients (mass oscillations) are, therefore, ignored in this 

context. 

The inputs required for the DMFLive model consist of the number of particles, the inputs 

for the demand prediction sub-model, inputs for the hydraulic simulation model 

(EPANET), input for the correction step and the parameters for the integrated GA 
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operators (𝑃Y, 𝑃9 and 𝑁ZDV). The prediction sub-model requires the data of typical 

demand patterns, the auto-regression coefficient (𝜙,) and the variance of noise of demand 

residuals (sℎ
2 ). These parameters are calibrated independently based on historical demand 

data for specific networks, for example 𝜙, = 0.7 and sℎ
2 = 0.132 as in van Zyl et al. 

(2008). The EPANET model requires the known data of tank levels, pump and valve 

statuses. The correction step requires the observation data at measurement sites. Note 

that the particle filter model associated with the GA process can only be applied to 

networks with multiple demand patterns (e.g. the second case study in this paper). Two-

point crossover operator with the probability of crossover 𝑃Y = 0.7, bitwise mutation with 

the probability of 𝑃9 = 1/𝑁hi  (𝑁hi  is the number of demand patterns in the 

network, 𝑁hi = 5, corresponding with 𝑃9 = 0.2 for the second case study) and the 

number of generations 𝑁ZDV = 50 were selected for the GA process. 

5.5 Case study 1 

The first case study used to evaluate the model is shown in Figure 5.2a. The network has 

9 nodes (8 nodes with demands), 12 pipes, one tank and one reservoir. The network 

characteristics can be found from the EPANET example, namely the Net1 network. Three 

pressure measurements (with a precision of D9DEF = ±0.2 m, consistent with a standard 

deviation of  s9DEF =  0.1 for the measurement error at 95% confidence interval) are 

assumed to be placed at three random locations (nodes 13, 22 and 31). All nodal demands 

are assumed to follow a single demand pattern that varies every 15 minutes, (represented 

by the continuous line in Figure 5.2b). The demand pattern is a random daily demand 

pattern (from a yearly demand pattern) for 100 households obtained from the BESS model 

(Thyer et al. 2011). The DMFLive model is required to track this demand pattern using 

the three pressure measurements, which are also obtained every 15 minutes.  

In this case study, the default demand pattern given in the Net1 example (represented by 

the dashed line in Figure 5.2b) was selected as the typical demand pattern. Different 

values of the auto-regression coefficient (𝜙) as well as variance of noise (sℎ
2 ) were applied 

for the demand prediction sub-model. 
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Figure 5.2: (a) Case study 1 network; (b) typical and actual demand patterns case study 1 network 

The accuracy of the demand estimates from the DMFLive model were evaluated in terms 

of the coefficient of determination (𝑅2) and the root mean squared error (RMSE). For a 

number of particles 𝑁1 = 100, the results of the demand estimates from the DMFLive 

model are presented in Table 5.1. 

Table 5.1: Coefficient of determination (𝑹k) and root mean squared error (RMSE) of demand 
estimates corresponding to different parameter values of the demand prediction model for case study 1 

No Auto-regression coefficient (𝜙) Variance of demand residual (sℎ
2 ) 𝑅2 RMSE 

1  0.04 0.465 0.198 

2 0.3 0.25 0.986 0.030 

3  0.64 0.983 0.033 

4  0.04 0.528 0.189 

5 0.5 0.25 0.986 0.030 

6  0.64 0.987 0.029 

7  0.04 0.982 0.033 

8 0.7 0.25 0.988 0.028 

9  0.64 0.986 0.031 

10  0.04 0.987 0.029 

11 0.9 0.25 0.986 0.031 

12  0.64 0.985 0.031 

The DMFLive model performed very well when the auto-regression coefficient was selected 

in the range of 0.3 £ 𝜙 £ 0.9 and the noise variance was selected in the range of 0.25 £ sℎ
2  

£ 0.64. Due to the large difference between the typical demand value and the actual 

demand value at each time step (Figure 5.2b), the selection of small values of the auto-

regression coefficient and noise variance resulted in relatively poorer performance of the 

model (e.g. 𝑅2 = 0.465 and 𝑅𝑀𝑆𝐸 = 0.198 for 𝜙 = 0.3 and sℎ
2 = 0.04). The best 

output of the DMFLive model was obtained at 𝜙 = 0.7 and sℎ
2 = 0.25, with 𝑅2 = 0.988 

and 𝑅𝑀𝑆𝐸 = 0.028, respectively.  
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For this best estimated demand pattern, the confidence intervals and the scattergram 

between actual demand multipliers and estimated demand multipliers are plotted in 

Figure 5.3a.  

In Figure 5.3a, the estimated demand pattern yields a very good match with the actual 

demand pattern during the time period (24 hours, corresponding to 96 time steps). The 

actual demand pattern is entirely covered by the range of the 95% confidence intervals 

calculated from FOA method. This confidence interval range, which is expected to bracket 

the “true” demand multipliers in 95% of the cases, represents the uncertainty magnitude 

of the estimated demand due to the error from measurement devices. 

 

Figure 5.3: Estimated demand pattern and confidence intervals: (a), (c) uncertainty quantification 
based on first-order approximation (FOA) method (Equation (5.18)) for NP = 100 and NP = 20; 
(b), (d) uncertainty quantification based on variance of the particle samples (Equation (5.16)) for 
NP = 100 and NP = 20 

The model has also been run with the number of particles 𝑁1 = 100 and 𝑁1 = 20 to 

provide a comparison between the FOA method (i.e. Equation (5.18)) and the posterior 

analysis (i.e. Equation (5.16)) for uncertainty quantification, as shown in Figures 5.3b, 

5.3c and 5.3d. Figures 5.3a and 5.3c show the uncertainty quantified by the FOA method 

while Figures 5.3b and 5.3d shown the uncertainty quantified by the variance of particles. 
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For 𝑁1 = 100 particles, the 95% confidence intervals from both methods are comparable 

to each other, which demonstrates that the FOA method can provide reliable results 

compared to the variance of the particle filter samples.  

A good estimate of the demand multipliers (𝑅𝑀𝑆𝐸 = 0.047) is obtained by the 

DMFLive model even when the number of particles is reduced by a factor of five (𝑁1 =

20), as seen in Figures 5.3c, and 5.3d. The uncertainty boundary calculated by the FOA 

method in Figure 5.3c has a similar range to the case with 𝑁1 = 100 particles and covers 

most of the actual values. On the other hand, the uncertainty bounds calculated by 

Equation (5.16) in Figure 5.3d are collapsed into single value at some time steps due to 

an insufficient number of the particles. Application of Equation (5.16) for uncertainty 

quantification, therefore, requires an in-depth evaluation of the number of particles in the 

model if it is selected for the uncertainty quantification.  

The range of demand multipliers predicted in time according to the evolution of the 

particles is presented in Figure 5.4a. The predicted values range from 𝐷𝑀𝐹9,V =

0.1 to 𝐷𝑀𝐹9EM = 7.0, indicating that the demand prediction sub-model can predict a 

large range of demand multipliers, and cover the range 0 £ 𝐷𝑀𝐹  £ 4 suggested by Chin 

et al. (2000). Figure 5.4b plots the scattergrams of the actual demand multipliers versus 

the predicted demand multipliers (i.e. the mean of the prediction) and actual demand 

multipliers versus estimated demand multipliers. The scattergram shows a constant and 

strong correlation between actual demand multipliers and estimated demand multipliers 

over time with 𝑅2 being close to unity. Due to large difference between the typical demand 

pattern and the actual demand pattern, the forecasting model does not provide good 

prediction, resulting in weak and skewed correlation between the actual values and the 

predicted values. Despite this, the DMFLive model is still capable to provide very good 

estimates of the demand multipliers. 
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Figure 5.4: (a) Prediction range of demand multipliers during simulation period; (b) Predicted 
demand multipliers and estimated demand multipliers 

5.5.1 Effects of tank level update on the estimation 

In extended period simulations of most hydraulic solvers (including EPANET), the nodal 

demands are considered to be constant during the time step. The levels of the tanks in 

the network at the end of the time step are consequently computed based on this 

assumption and are used as the initial tank level for the next step. Due to continuously 

unpredictable change of the water demand in practice, the actual tank level at the end of 

the time step is usually different to the tank level computed by the model. As a result, the 

estimated total volume of water used during the time step is also different from the actual 

volume of water used in practice. This issue can be overcome by minimizing the difference 

between actual tank levels at the beginning of the time step and the final estimated tank 

level at the end of the previous step. The demand estimation model, however, will be 

delayed until the information of the tank level at the beginning of the next time step 

becomes available. In other words, the model outputs will be the estimates of the demand 

multiplier at the previous time step. 

In order to evaluate the effect of including tank level information at the end of every time 

step, an additional test is conducted. Instead of assuming that the observations are 

available at every 15 minutes, in this test it is assumed that the data can be obtained 

every hour and the model is required to estimate the demand pattern at each hour time 

step (while the actual demand pattern is varied every 15 minutes).  
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Figure 5.5 plots the two estimated demand patterns with and without tank level 

information (herein referred to as DMF-WTLive and DMFLive). Note that the DMF-

WTLive model is the modified version of DMFLive model at which the final tank level 

information is taken into account. 

 
Figure 5.5: Estimated demand patterns with and without tank level updated 

It can be seen that the estimates for both cases are matched with the actual demand 

pattern at every hour time step. The inclusion of tank information only causes a slight 

difference between two estimated demand patterns at some of the time steps. The root 

mean squared errors between estimated demand multipliers and actual demand 

multipliers at every hour step indicates that the DMFLive model obtained slight better 

results than the DMF-WTLive model (𝑅𝑀𝑆𝐸 = 0.046 compared to 𝑅𝑀𝑆𝐸 = 0.080, 

respectively). However, the total estimated water usages tabulated in Table 5.2 shows 

that the DMF-WTLive model is more accurate in predicting the volume of water delivered 

to the users.  

The total estimated water usage during the 24-hour simulation period from DMFLive 

model was 5942.43 m3/day, 46.81 m3/day (or 0.78%) less than the actual water usage. On 

the other hand, total estimated water usage from DMF-WTLive model was 6007.31 

m3/day, only 18.07 m3/day (or 0.30%) more than the actual value. Therefore, if the 

estimation can be delayed one time step, the final tank level information should be 

included into the model to improve the accuracy of the estimated total volume of water 

used. 
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Table 5.2: Actual and estimated total volume of water usage during calculated period  

Cases 
Total Difference % Difference 

(m3/day) (m3/day) (%) 

Actual daily water usage 5989.25   
Estimated water usage with DMFLive 5942.43 46.81 0.78 
Estimated water usage with DMF-WTLive 6007.31 18.07 0.30 

5.6 Case study 2 

In order to evaluate the performance of the proposed model in large networks that contain 

more than one demand pattern, the C-Town network from Ostfeld et al. (2011) is selected 

as the second case study. The network consists of 429 pipes, 1 reservoir, 7 tanks, 5 pump 

stations (with a total of 11 pumps), 4 PRV valves and 388 nodes (334 nodes with 

demands), which are divided into five district demand areas. Each district demand area 

follows a different hourly demand pattern. As the data of the demand patterns is available 

for seven days, the first 24 hours of these demand patterns are assumed to be the typical 

demand patterns for the demand prediction sub-model. The performance of the particle 

filter model is then evaluated by estimating the remaining 6-day hourly demand patterns.  

It is assumed that there are 14 pressure measurement sites (from P1 to P14) that are 

randomly located at 14 places. These pressure measurements, again, are assumed to have 

a measurement error of D9DEF = ±0.2 m. The inputs for the real-time demand 

estimation model are, therefore, the pressures at these locations, the tank levels of seven 

tanks and the pump statuses of 11 pumps at each hour time step. The topology and 

measurement locations of the C-Town network are shown in Figure 5.6. Five different 

demand prediction sub-models were used to predict the five demand patterns. The 

parameters of the five demand prediction sub-models were assumed to have the same 

values of 𝜙 = 0.7 for the auto-regression coefficients and 𝜎ℎ
2 = 0.16 for the variances of 

noise.  
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Figure 5.6: Case study 2 network (the C-town network) 

The standard particle filter model (i.e. using systematic resampling), herein referred as the 

DMFLive-I model, provides good results only if 𝑁1 ≥ 25,000 particles. The estimates of 

five different demand patterns for 6 days (from 25h to 168h) are shown in Figure 5.7. It 

is seen that the estimated demand patterns closely match the actual demand patterns, 

especially for DMF 2 (𝑅𝑀𝑆𝐸 = 0.021), DMF 3 (𝑅𝑀𝑆𝐸 = 0.024), DMF 1 (𝑅𝑀𝑆𝐸 =

0.029) and DMF 4 (𝑅𝑀𝑆𝐸 = 0.036). The estimated demand pattern DMF 5 is less 

accurate, with the root mean squared error of 𝑅𝑀𝑆𝐸 = 0.061.  

Figure 5.7 also plots the 95% confidence intervals for calculated by the FOA formula. The 

intervals for the estimated DMF 1, DMF 2 and DMF 3 (in Figure 5.7a, 5.7b and 5.7c, 

respectively) are narrow and they cover almost the entire set of the actual demand 

multiplier values. The actual values of DMF 4 are also within the confidence interval of 

estimated DMF 4 (Figure 5.7d) for most of the time. However, due to the locations of the 

measurements (P7 and P9 - Figure 5.6), the confidence interval of estimated DMF 4 

pattern is relatively large compared to the others. The effect of measurement locations on 

the confidence intervals of the estimates is discussed later in the paper. In Figure 5.7e, 
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approximately 37% of the actual demand values of the demand pattern DMF 5 are outside 

the 95% confidence intervals, which is caused by the relatively poor estimates for DMF 5. 

 
Figure 5.7: Five estimated demand patterns for case study 2 network (NP = 25,000) using DMFLive-I 

Figure 5.8 displays the scattergrams and coefficients of determination of the five predicted 

demand patterns, as well as the estimated demand patterns versus their actual values.  

The predicted DMFs in this case show an average correlation to the actual DMFs with 

the 𝑅2 ranging from 0.69 to 0.74, while the estimated DMFs are strongly correlated to 



Publication 2: Particle filter-based model for online estimation of demand multipliers in WDS under uncertainty 

 

 79 

the actual ones with all 𝑅2 values being close to unity. The estimation for these five DMFs 

are also reliable during the simulation period (six days), as the spreads of the scattered 

dots are close to bisector lines.  

 

Figure 5.8: Scattergrams and coefficients of determination for five estimated demand patterns in 
case study 2 

5.6.1 Improving DMFLive model performance by SRGA and modified likelihood function 

The DMFLive-I model can only perform well with a large number of particles (𝑁1 ≥

25,000). Smaller numbers of particles result in weak estimates of the DMFs due to particle 

collapse at some steps. Since increasing the number of demand patterns requires an 

exponentially increasing number of particles, it is necessary to improve the efficiency of 

particle filter model so that it can be applied to complex systems.  

Two methods have been investigated as mentioned previously in the paper: (1) 

incorporating the variance of the forecasting nodal heads into the likelihood function. The 

weights of particles in the model, referred as DMFLive-II model, are then calculated by 

the modified likelihood function (Equation (5.17)); and (2) by the integration of a GA 

process into the systematic resampling of the model, herein referred as DMFLive-III model. 

Table 5.3 presents results (in terms of the RMSE of each demand pattern) of running 

these models with 𝑁1 = 1000 and 𝑁1 = 5000 for DMFLive-I, II and with 𝑁1
no = 20 
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and 𝑁1
no = 100 for DMFLive-III. It may be seen that for both NP values, the DMFLive-

I gives very poor estimates of the DMFs. On the other hand, the DMFLive-II model only 

requires 𝑁1 = 1000 (corresponding to 1.43*105 evaluations for 143 hours) to provide fairly 

good results, while the DMFLive-III performs well when 𝑁1
no = 100. The results of 

DMFLive-II (𝑁1 = 5000) and DMFLive-III (𝑁1
no = 100) give similar to the results of 

DMFLive-I running at 𝑁1 = 25,000 (corresponding to total evaluations of 3.575*106). 

This means the computation can be reduced by approximately a factor of five times. 

Table 5.3: Performance of DMFLive model with SR (I), modified likelihood function (II) and SRGA (III) 

Model type DMFLive-I DMFLive-II DMFLive-III (NGen = 50) 

No. Particles 𝑁1 = 1000 𝑁1 = 5000 𝑁1 = 1000 𝑁1 = 5000 𝑁1
no = 20 𝑁1

no = 100 

No. Eval. 1.43* 105 7.15*105 1.43* 105 7.15* 105 1.08*105 5.43*105 

RMSEDMF1 0.386 0.405 0.050 0.027 0.107 0.030 

RMSEDMF2 0.365 0.422 0.026 0.021 0.067 0.025 

RMSEDMF3 0.416 0.237 0.029 0.027 0.068 0.023 

RMSEDMF4 0.385 0.229 0.043 0.038 0.086 0.032 

RMSEDMF5 0.366 0.246 0.074 0.049 0.190 0.050 

Figure 5.9 shows the DMF 1 uncertainty ranges from 25 to 49 hours of the three models 

DMFLive I, II and III computed by FOA method and by variance of the particles Equation 

(5.16). As can be seen from Figures 5.9a and 5.9c, due to particle impoverishment, the 

uncertainty computed by particle variance, represented by the dashed lines, is merged into 

a single line at almost all of the time steps. The uncertainty in Figure 5.9b computed by 

this method is wide due to the incorporation of the forecasting nodal heads into the likelihood 

function. 

 
Figure 5.9: DMF 1 uncertainty ranges from 25 to 49 hours computed by FOA method and posterior 
analysis 
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On the other hand, the uncertainties by FOA method, which are directly computed from 

the sensitivity matrix and the measurement errors, show consistent ranges in both cases. 

Given good estimates of the demand multipliers (as in Figures 5.9b and 5.9c) these ranges 

can cover the actual values most of the time. 

5.6.2 Effect of the locations of measurements on the quantification of demand uncertainty 

As discussed in a number of studies such as in Piller (1995) and Do et al. (2016), the 

locations of the measurements have a strong impact on the results of the demand 

estimation models. Furthermore, the selection of measurement locations also affects the 

confidence intervals of the estimation outputs. 

From the mathematical point of view, the uncertainty of estimated demands depends on 

the sensitivity of the flows/heads at measurement locations in relation to the change in 

the water nodal demands. This sensitivity is represented by the sensitivity matrix 𝐽  

(Equation (5.18)), which is, in this case study, the Jacobian matrix of the heads with 

respect to the demand multipliers. The sensitivity of the heads with respect to the change 

of the demand multipliers depends on two factors: (1) the position of the nodes in the 

network and (2) the base demands at the nodes. In fact, the nodes close to fixed-head 

nodes (tanks or reservoirs) are less sensitive than the ones far from the fixed-head nodes. 

This is because of a change in nodal demands will result in a smaller change in the 

pressures of the closer nodes than the farther nodes. In a similar way, small base demands 

in the same pattern will result in small friction losses and consequently small changes in 

pressures. Therefore, nodes selected in these regions may cause large uncertainty in 

demand multiplier estimation. The sensitivity matrix takes into account these two factors. 

Small values in the sensitivity matrix values mean that the nodes are less sensitive to the 

demands and the estimation might have large uncertainty. Therefore, the uncertainty of 

the estimated DMFs can be reduced by selecting the more sensitive locations in the 

network.  

Let us conduct an additional test to evaluate the effect of the measurement locations on 

the uncertainty of the estimated demand multipliers, for example the uncertainty of the 
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estimated DMF 4. For this test, the locations of measurements P7 (with the base demand 

of 𝐷7
0 = 0.50 L/s) and P9 (𝐷9

0 = 0.59 L/s) are relocated to P7A (𝐷7o
0  = 1.33 L/s) and 

P9A (𝐷9o
0  = 1.13 L/s). The DMFLive model was implemented with the same conditions 

and the other measurement locations are fixed at the same places as the original test. 

Figure 5.10 shows the sensitivity matrixes 𝐽0 (for the original test) and 𝐽0
o (for the 

modified test) corresponding to a set of estimated values DMFs = [0.46; 0.54; 0.65; 0.47; 

0.62]  

 
Figure 5.10: Sensitivity matrixes of nodal heads at measurement locations wrt demand multipliers 
at t=0 

It is seen that, for this network, the heads at measurement locations are only sensitive to 

the change of the DMF that they belong to. For example, the variation in the DMF 4 

pattern only affects the sensitivity of the heads at measurement locations P7 and P9 (for 

original test) and at measurement locations P7A and P9A (for the modified test). The 

non-zero values in the sensitivity matrices, therefore, correspond to the measurement 

locations. For the sensitivity of the heads, the new locations P7A ( st
shiu4 = 5.31) and 

P9A ( st
shiu4 = 11.76) are considerably more sensitive than the locations P7 ( st

shiu4 =

2.59) and P9 ( st
shiu4 = 2.55). As a result, the confidence intervals of the estimated DMF 

4 for the modified test, as shown in Figure 5.11, are much narrower than the confidence 

intervals of the estimated DMF 4 for the original test presented in Figure 5.7d. Note that 

in this network case study, the demand patterns are well geographically distributed. The 

heads at measurement locations are, therefore, affected by independent demand patterns, 

which results in a narrow uncertainty range for the estimate. For non-geographically 

a) b)

DMF 1 DMF 2 DMF 3 DMF 4 DMF 5 Measurements DMF 1 DMF 2 DMF 3 DMF 4 DMF 5 Measurements

0 22.37 0 0 0 P1 0 22.37 0 0 0 P1
0 0 0 0 3.72 P2 0 0 0 0 3.72 P2
0 0 0 0 10.81 P3 0 0 0 0 10.81 P3
0 18.80 0 0 0 P4 0 18.80 0 0 0 P4

4.31 0 0 0 0 P5 4.31 0 0 0 0 P5
0 18.80 0 0 0 P6 0 18.80 0 0 0 P6

J0 = 0 0 0 2.59 0 P7 JA
0 = 0 0 0 5.31 0 P7A

2.95 0 0 0 0 P8 2.95 0 0 0 0 P8
0 0 0 2.55 0 P9 0 0 0 11.76 0 P9A

3.20 0 0 0 0 P10 3.20 0 0 0 0 P10
0 0 23.32 0 0 P11 0 0 23.32 0 0 P11
0 0 22.39 0 0 P12 0 0 22.39 0 0 P12

9.75 0 0 0 0 P13 9.75 0 0 0 0 P13
4.77 0 0 0 0 P14 4.77 0 0 0 0 P14
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distributed DMF networks, the sensitivity of the heads at measurement locations are 

required to be accounted and accumulated for all the related DMFs. This might cause 

much larger uncertainty and likewise bring difficulty for the estimation of the demand 

multipliers, as has been addressed in Sanz and Perez (2014).  

 
Figure 5.11: Estimated DMF 4 and its confidence interval with the relocated measurement 7A and 9A 

The relocation of the pressure measurements also improves the estimation of DMF 4, with 

a 𝑅𝑀𝑆𝐸 = 0.028 for the modified test, compared to a 𝑅𝑀𝑆𝐸 = 0.036 of the original 

test. The placement of the two new measurement sites also causes a slight difference in 

the results of other estimated DMFs due to the change in the particle weights. However, 

the results of the four remaining DMFs are still very good and similar to the estimated 

values of the original test. 

To sum up, the uncertainty of estimated demand multipliers caused by the errors of 

measurement devices is influenced by the measurement locations. It is suggested to choose 

the locations that are more sensitive to the demand multipliers (see Do et al. (2016) for 

an example of optimal measurement location). However, it has also been shown that the 

DMFLive model can be used to estimate the demand multipliers even when the 

measurement devices are located at some less sensitive places. The uncertainty of the 

estimated demand multipliers can be used to identify which measurement locations need 

to be improved. This is another advantage of the DMFLive model. 
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5.7 Conclusions and recommendations 

Real-time demand estimation under uncertainties is exceptionally difficult due to the 

unpredictable stochastic behavior of the water demand as well as the nonlinearities of 

hydraulic systems. In this paper, the DMFLive model framework has been introduced, 

which can be used to estimate the demand multipliers of a WDS in near real-time. A 

predictor-corrector approach has been adopted and solved by a particle filter method. A 

nonlinear demand prediction model is applied to predict water demand multipliers at each 

time step, while the online pressure observations are used to correct the prediction. Output 

uncertainty caused by the measurement errors has also been quantified by the first-order 

approximation formula. The performance of the DMFLive model is evaluated by two 

WDS case studies. The results showed that the nonlinear demand prediction model 

combined with the particle filter method used in the paper are well suited for the near 

real-time demand estimation problem.  

Within the first case study, the benefits of having additional information about the tank 

level of the next time step have been explored. If the estimation of the demand multipliers 

can be delayed one time step, the tank level at the beginning of the next time step can be 

used by the model to improve the estimation of the total volume of water used.  

Within the second case study, three versions of the DMFLive model were developed to be 

used in large networks with multiple demand patterns. All versions provided good results, 

showing that the models are capable to be used in large networks. Finally, the effect of 

the measurement locations on the uncertainty of the estimated demand multipliers has 

been explored. Results showed that the uncertainty can be used to identify which 

measurement locations need to be improved. Future work involves considering adding 

additional uncertainties into the DMFLive model. Moreover, testing the model for non-

geographically distributed demand networks is also necessary to show its capability when 

applied in practice. 
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5.8 Appendix A 

The problem of demand calibration involves finding the demands of the network hydraulic 

model to best fit the data set. Consider the nonlinear regression equation: 

𝑦,
iDEF = 𝑦, 𝑥 + 𝜀,,    𝜀,~𝑁(0, 𝜎,) (A5.1) 

where 𝑥 is the 𝑛𝑑 by 1 vector of parameters to calibrate (the demand multiplier factors 

that depend on time); 𝑦, 𝑥  is the scalar multivariate function of predictions from the 

network hydraulic model, given the parameter 𝑥; 𝜀, is the residual between model 

prediction and observation, which is assumed to be Gaussian with mean of zero and 

standard deviation of 𝜎,; 𝑦,
iDEF is the 𝑖;ℎ measurement site in the data set. 

The demand calibration can be formulated as a box-constrained least squares problem 

that minimizes the differentiable criterion at each time step: 

𝑓 𝑥 = 1
2

𝑦, 𝑥 − 𝑦,
iDEF

𝜎,

2

= 1
2

𝜀P
2

9

,=1

9

,=1
 

𝑠. 𝑡 𝑥9,V ≤ 𝑥 ≤ 𝑥9EM 

(A5.2) 

where 𝑚 is the number of measurement sites, 𝜀P is the reduced residual, which is the 

residual divided by the corresponding standard deviation, 𝜀P~𝑁 0,1 . 

The gradient of 𝑓  at 𝑥0 is: 

∇𝑓0 = 𝐽 𝑥0 ` 𝑊 (𝑦 𝑥0 − 𝑦iDEF) (A5.3) 

where 𝑊  is the weight matrix where the diagonal elements are the reciprocals of the 

variances of measurement errors; 𝐽 𝑥0 ` = 𝜕M𝑦 𝑥0 `  is the transposed Jacobian matrix 

of the prediction function at 𝑥 =  𝑥0. 

The Hessian approximation takes the simple form of the symmetrical, positive semi-

definite matrix:  

𝐻0 = 𝐽(𝑥0)` 𝑊𝐽(𝑥0) (A5.4) 

It is essential for the Jacobian to be full rank of the size of 𝑥, so that 𝐻0 is invertible and 

a definite matrix.  
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An approximation of function 𝑓 to minimize Equation (A5.2) by a quadratic function at 

𝑥0 leads to the approximation of 𝑥: 

𝑥 = 𝑥0 − (𝐻0)−1∇𝑓0 (A5.5) 

By replacing Equation (A5.3) and Equation (A5.4) into Equation (A5.5), the 

approximation of x can be expressed as:  

𝑥 = 𝑥0 − 𝐽(𝑥0)` 𝑊𝐽(𝑥0) −1𝐽 𝑥0 ` 𝑊 (𝑦 𝑥0 − 𝑦iDEF) (A5.5’) 

Using Equation (A5.1): 

𝑥(𝜀) = 𝑥0 + 𝐽(𝑥0)` 𝑊𝐽(𝑥0) −1𝐽 𝑥0 ` 𝑊𝜀 (A5.6) 

The influence of the measurement errors with regards to the parameter estimates, 

therefore, can be obtained at the first-order of Equation (A5.6): 

∆𝑥 = (𝐽 (𝑥0)` 𝑊𝐽 (𝑥0))−1𝐽 (𝑥0)` 𝑊𝜀 = (𝑊
1
2𝐽 (𝑥0))†𝑊

1
2𝜀 = (𝑊

1
2𝐽 (𝑥0))†𝜀P (A5.7) 

The uncertainty in term of confidence limits can be expressed as: 

- For 99% confidence intervals ( 𝜀, ≤ 2.58𝜎,): 

∆𝑥 ≤ 2.58 𝐽 𝑥0 ` 𝑊𝐽 𝑥0 −1
𝐽 𝑥0 ` 𝑊

1
2 = 2.58 (𝑊

1
2𝐽(𝑥0))†  

∆𝑥, ≤ 2.58 𝑆,7
9
7=1 , with 𝑆 = (𝑊 1

2𝐽)† 
(A5.8) 

- For 95% confidence intervals ( 𝜀, ≤ 1.96𝜎,): 

∆𝑥 ≤ 1.96 (𝑊
1
2𝐽(𝑥0))†  

∆𝑥, ≤ 1.96 𝑆,7
9
7=1 , with 𝑆 = (𝑊 1

2𝐽)† 
(A5.9) 
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Abstract 

The reliability of a water distribution system is highly dependent on the management of 

its pipeline network. A pipe or a portion of the network can be isolated for inspection, 

maintenance and replacement by the installation of isolation valves along the pipelines.  

However, the presence of isolation valves may cause a large discrepancy in the hydraulic 

behavior between the real system and results from a simulation model if the statuses of 

some of the valves in the system are unknown.  Possible problems related to these valves 

are missing valves in the model due to poor or non-existent documentation, errors in data 

transfer or valve mechanical failure. 

This paper introduces an innovative methodology for the identification of unknown 

partially/fully closed valves in a water distribution network. An optimization problem is 

formulated for the unknown valve issue and solved by application of three sequentially 

applied methods, which include: a local sensitivity analysis, an application of genetic 

algorithms and an application of the Levenberg-Marquardt algorithm. In the first method, 

the sensitivity of the flow rates and nodal heads at measurement locations with respect to 

the change in the minor losses of the valves is computed. This computation is used to 

identify the valves that are unable to be localized by the measurement data. The second 

method applies a genetic algorithm combined with an extended period simulation in order 

to preliminarily identify the locations of the partially/fully closed valves and their setting 

values, i.e. the degree of opening of the valve. Finally, the application of the Levenberg-

Marquardt (LM) algorithm was implemented to correct the results from the GA model. 

Results and discussions from two case studies show that the proposed methodologies can 

solve real world problems. 

Keywords: Partially/fully closed valves, unknown valve status, Genetic Algorithms, 

Sensitivity analysis, Levenberg- Marquardt Algorithm, Water distribution systems. 
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6.1 Introduction 

Water distribution systems (WDS), which are built to provide adequate quantity and 

quality of drinking water to customers, are complex infrastructure consisting of a number 

of diverse components such as pumping stations, junctions, links, tanks and valves. The 

use of valves in distribution networks is aimed at improving the reliability in operations 

as well as maintenance of the systems. Various types of valves are installed with two main 

purposes: either controlling pressures and flows or isolating pipes from the supply system 

for replacement, modification and repair.  

Control valves are automated devices that are used to regulate the flows or pressures of 

water through the distribution piping. The hydraulic behavior at local regions of the 

network where these valves are placed can be adjusted by the valve settings. For example, 

a flow control valve limits the flow passing through the valve to a specific flow setting 

value, or a pressure reducing valve (PRV) is set to prevent the downstream pressure from 

exceeding a value that could cause damage to the system (Walski et al. 2003). Because of 

their important role in the operation of WDS, control valves are usually considered in 

water distribution modeling. In various hydraulic software models, such as EPANET 

(Rossman 2000), modeling of these valves requires their settings or statuses (open/closed) 

to be known. The hydraulic models, based on these settings, find the hydraulic conditions 

of the system by solving the hydraulic network equations, simultaneously computing the 

flow rates and head losses of the valves. 

Another approach for modelling of control valves is the determination of the valve settings. 

Piller and Bremond (2001) formulated a least squares method that minimizes the 

difference between targeted settings and computed values to find the control valve states. 

Deuerlein et al. (2005) applied a game-theoretic algorithm to calculate the correct minor 

loss coefficients of interacting pressure and flow control valves. In another paper Deuerlein 

et al. (2009) dealt with the presence of flow control and check valves in water network 

models by applying content and co-content theory (to ensure the existence and uniqueness 
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of the solution), sub-differential analysis (to handle the non-differential flow versus head 

loss relationship of flow control and check valves) and then solving the water network 

equations as a constrained nonlinear programming problem. Piller and van Zyl (2014) 

introduced a method associated with the Karush-Kuhn-Tucker equations for the modeling 

of control valves in extended period simulations.  

Numerous studies have also focused on the optimal regulation and location of control 

valves to manage water losses by leakages or pipe bursts in WDS. PRVs are usually 

considered in this research since PRVs can maintain the targeted pressures at downstream 

of the valves regardless how large the upstream pressures are. The problem is usually 

formulated as a nonlinear optimization problem where the objective is to minimize the 

leak flows by minimizing surplus pressure at leak locations, and the decision variables are 

the valve locations and settings of valve operating strategies. Examples are Sterling and 

Bargiela (1984); Savic and Walters (1995); Liberatore and Sechi (2009) and Nicolini and 

Zovatto (2009). For the same pressure management purpose, an alternative to PRVs is 

the application of pumps as turbines (PAT) at locations that have enough difference in 

elevation (e.g. Carravetta et al. (2013), Barbarelli et al. (2016) and de Marchis et al. 

(2016)). This technical solution can provide both the system flexibility and economical 

benefits for the network.  

Isolation valves, the most common type of valves in WDS, are used to close off and block 

any flow through pipes (Van Zyl 2014). These valves are usually placed at the ends of a 

pipe, around junctions or at critical locations of a WDS. The AWWA (1996), GLUMB 

(2003) Ozger and May (2004), Walski et al. (2006) and Jun and Loganathan (2007) have 

listed all the rules of thumb for the placement of isolation valves, which include: (1) 

isolation valves should be located at not more than 500 foot (152 m) intervals in 

commercial districts and at not more than one block of 800 foot (244 m) intervals in other 

districts; (2) at least (𝑁" − 1) valves are required around a junction to which 𝑁"  links 

are connected while an ideal (or fully valved) system requires two valves at the ends of 

each pipe; (3) valves must be placed at all critical locations such as at each city block or 
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at each hydrant lateral and (4) no more than four valves are required to close to isolate a 

pipe in order to reduce the complexity of the valving system. 

The primary role of isolation valves is to isolate some portions of the system for inspection, 

replacement or maintenance. The reliability of the WDS, defined as the ability of the 

system to provide uninterrupted demands at adequate pressure to customers, is therefore, 

highly dependent on this type of valves and their numbers in the network. The roles of 

valves in determining the reliability of the WDS when a pipe breaks have been discussed 

in Bouchart and Goulter (1991). In their paper, the impact of isolation (due to pipe failure) 

was proposed to be measured by calculating a volume of deficit, i.e. the water volume of 

demands located in the isolated portion of the system. A methodology was also introduced 

to identify the number of isolation valves based on the computation of this deficit volume. 

Similarly, Walski (1993) described the importance of isolation valves in providing WDS 

reliability. The paper pointed out that the link-node model, a common representation of 

the WDS, failed to account for the indispensable role of isolation valves and their impact 

of disconnecting pipes and other components from the network. The paper then defined 

the term “segment” as the portion of the network isolated by valves, which was used in an 

approach to visually evaluate the adequacy of valves in the system.  

One of the main aspects affecting the reliability of a WDS is the location of the isolation 

valves. Ozger and May (2004) emphasized that it is only possible to isolate a pipe break 

and determine the deficient performance of the network if the valve layout is known. 

Design of the isolation valve system to ensure the connectivity of the network, therefore, 

is of great interest for researchers. Various studies have investigated the valve placement 

problem using different techniques, for example Simulated Annealing (Ozger and May 

2004), Genetic Algorithms (Giustolisi and Savic 2010) and Multi Objective Genetic 

Algorithms (MOGA) such as NSGAII (Creaco et al. 2010). In Jun and Loganathan 

(2007), a mathematical method was introduced, which represents the presence of isolation 

valves by a valve location matrix and a valve deficiency matrix. This method was used to 

evaluate the connectivity of the network as well as to detect unintended isolations when 



Publication 3: Localization of inadvertently partially closed valves in Water Distribution Systems 

 93 

some of the valves in the system were closed. Some other studies also looked at the 

connectivity of the WDS such as Davidson et al. (2005) and Ostfeld (2005). 

It should be noted that most of the aforementioned studies focused on the reliability of 

the WDS, which solely considered the fully closed status of the valve. Given the thousands 

of isolation valves in a network, there is always a possibility that one or some of the 

valves/valve statuses are unaccounted for or unknown in the model. Possible problems 

related to these valves may be for a number of reasons such as: missing valves in a 

hydraulic model due to poor or non-existent documentation, errors in data transfer, valve 

mechanical failure or temporarily closed valves during inspection/rehabilitation times 

without adequate reporting. As a result, a huge discrepancy may result between the 

performance of the real system and its hydraulic simulation model. In such cases, 

calibration of unknown valve statuses and identification of their location is required. 

However, little effort has previously investigated the calibration and identification 

problems of unknown valve statuses and their corresponding locations. Previous research 

includes Delgado and Lansey (2008) and Wu et al (2012). In the Delgado and Lansey 

(2008) paper, a transient model was used to detect a closed/partially closed valve in a 

single pipeline, while Wu et al (2012) applied Genetic Algorithms for an extended period 

simulation of the EPANET model to calibrate partially closed valve settings.  

In general, calibration of a water network model can be formulated as an optimization 

problem, in which the calibrated parameters are adjusted by an optimization method such 

as mathematical algorithms (e.g. modified Newton Raphson method (Shamir 1974), the 

generalized reduced gradient method (Lansey & Basnet 1991), the Levenberg-Marquardt 

algorithm (Koppel & Vassiljev 2012), singular value decomposition (Sanz & Perez 2015)) 

or evolutionary optimization algorithms (e.g. Genetic Algorithms (Abe & Peter 2010)). 

An objective function is usually associated with these optimization models, which is the 

minimization of the residuals between measured values and their corresponding simulated 

values from the hydraulic model. Mathematical optimization methods, or in other words, 

gradient-based optimization methods are robust in solving even and overdetermined 
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problems where the number of variables is equal or less than the number of measurements. 

In order to find the search directions, these methods compute a Jacobian matrix, which is 

relatively challenging when applied to an extended period simulation. As a result, 

simplifcation of the problem is usually required so that the problem is solvable (e.g. Lansey 

& Basnet (1991). For underdetermined problems (i.e. the number of variables is more 

than the number of measurements) such as the unknown valve statuses problem in this 

study, the application of gradient methods is likely to be unstable since the Jacobian and 

approximated Hessian calculated during the optimization procedure are often ill-

conditioned. Additional steps might be used, such as Tikhonov regularization, Choleski 

decomposition or QR factorization, however, their solutions are still dependent on the 

initial guesses.  

Evolutionary optimization methods, on the other hand,  are gradient free methods and 

can easily overcome these limitations. In  fact, the search of evolutionary algorithms is 

based on the use of an external simulation model in order to assess the goodness of the 

solutions. Computing derivatives to define the direction of the search is not necessary, 

which allows these algorithms to easily escape local optima. However, given the random 

component in an evolutionary algorithm search, they usually require long computational 

times (e.g. Do et al. 2016) and, depending on the parameters chosen, may lack the 

exploitation of the information of the search in space. In this last case, they may provide  

a final solution that is not a local or global optimum or they may require more 

computational effort to achieve these solutions. 

 For the reasons given above, this paper proposes a hybrid methodology which takes 

advantage of both mathematical optimization algorithms and evolutionary optimization 

algorithms to calibrate and, more importantly, identify partially closed valves in a water 

distribution network. By integrating measurement data into the demand driven model 

EPANET (Rossman 2000), this problem can be solved via three sequential steps: (1) a 

sensitivity analysis, which calculates the sensitivity of flow rates and pressure heads at 

measurement locations with respect to (wrt) the variations of the minor loss in the valves, 
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to remove unidentifiable valves; (2) an application of a Genetic Algorithm (GA) model 

during an extended period simulation (e.g. 24, 48 hours) to reduce the size of the search 

region as well as to provide a preliminary estimate of the settings of the valves; and (3) 

an application of the Levenberg-Marquardt algorithm to localize the regions of partially 

closed valves and correct the settings of the valves. 

The paper is structured as follows. First, the modeling of partially closed valves in 

EPANET hydraulic model is presented. Second, the methodology to solve the problem is 

introduced. This is followed by the application of the methodology for two case studies. 

Finally, conclusions are given. 

6.2 Modeling of partially closed valves in EPANET  

A throttle control valve (TCV) is usually used to model a partially closed valve in 

EPANET, such as in Wu et al. (2012). A TCV is modelled as a short smooth pipe that 

also contains a local loss. An example of a simple network with TCVs that follow the 

(𝑁 − 1) valves’ rule is shown in Figure 6.1a and 6.1b with different TCV settings. In this 

network valve TCV1 is placed in pipe P1, valves TCV 2A and 2B are placed in pipe P2 

while TCV3 and TCV4 are placed in pipes P3 and P4, respectively. The setting value (i.e. 

the dimensionless valve coefficient) 𝐾 = 0 corresponds to a fully opened status of the 

valve or, in other words, the valve is inactive. The setting value 𝐾 > 0 corresponds with 

the partially opened status of the valve.  
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Figure 6.1: Modelling of partially closed valves in EPANET, in which simulated values are 
underlined and in SI unit (mH2O for nodal heads, L/s for flow rates and m/s for velocities) 

Simulating the two networks in Figure 6.1a and 6.1b in EPANET shows that flow rates, 

velocities in pipes and nodal heads can be the same with different settings of TCV2A and 

TCV2B (located at pipe P2). Although the settings of these two valves are different in 

the two cases, they result in the same total minor loss. For example, the setting of TCV2A 

is 300 and TCV2B is 100 (with the total of Σ𝐾 = 400) in Figure 6.1a while the 

corresponding values in Figure 6.1b are 400 and 0 (also with the total of Σ𝐾 = 400). In 

both cases, the flow in pipe P2 is 45.28 L/s and the pressure at the extremity nodes are 

84.45 m and 30.60 m as shown in Figure 6.1.  

The same hydraulic behavior can be simulated for the network in which all valves have 

been removed (shown in Figure 6.1c) with the minor loss setting of the pipe equal to the 

total setting of all TCVs belonging to that pipe. Therefore, the partially closed settings 

and statuses of the valves can be incorporated into the pipes by changing the minor loss 

in the pipe. The problem of identifying partially closed valve locations and their settings 

using EPANET now becomes the problem of finding the minor losses in each of the pipes. 

Correct locations of partially closed valves are required to be searched for along the pipe 



Publication 3: Localization of inadvertently partially closed valves in Water Distribution Systems 

 97 

where the valves are located. Fully closed valve can be simulated by changing the fixed 

status of the pipe from “Open” into “Closed” in EPANET. 

The minor loss in a pipe caused by a partially closed valve is computed as: 

ℎ' = 𝑚𝑄 𝑄  (6.1) 

where 𝑄	is the flow through the pipe and m is the minor loss coefficient which is expressed 

as: 

𝑚 = 𝐾
2𝑔𝐴2 = 8𝐾

𝑔𝜋2𝐷4 (6.2) 

where 𝐾 is dimensionless valve coefficient, which represents different opening states of the 

valve. 𝐷 and 𝐴 are the pipe diameter (in SI units) and its corresponding area, respectively. 

6.3 Methodology 

As previously mentioned, the problem of finding partially closed valves of a WDS in this 

paper is considered as the problem of finding cumulated minor losses in the pipes where 

in reality the valves are located. The proposed solution approach is based on the 

minimization of the difference between observed and calculated values for flows and 

pressures and consists of three sequential stages: (1) observability of valve statuses by the 

computation of the sensitivity of the flow rates and nodal heads at measurement locations 

wrt the change in the minor loss coefficients of the pipes, (2) the application a of genetic 

algorithm to an extended period simulation and (3) the application of the Levenberg-

Marquardt (LM) algorithm to a steady state simulation. The flowchart of the 

methodology is shown in Figure 6.2, in which all stages involve the use of the EPANET 

model to simulate the behavior of the system. 
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Figure 6.2: Process for identifying partially closed valves in WDS 

6.3.1 Observability based on sensitivity analysis 

In WDSs, measurement devices are usually installed to observe system flows and pressures 

or to detect abnormal situations such as pipe bursts or hydraulic transients. Usually, these 

devices have not been installed for the purpose of finding partially/fully closed valves 

(herein, refers as pipes with minor losses) and the sensor network may not cover the entire 

distribution system. As a result, a sensitivity analysis step is required in order to identify 

“unobservable pipes”. An unobservable pipe is defined as a pipe for which any change in 

the status or minor loss has no impact on the measured values. This analysis requires the 

computation of the sensitivity of the pipe flow rates and nodal heads in the network wrt 

variation of minor loss coefficients. Pipes that are insensitive to the measured locations 

will be removed from the problem as their potentially closed valves will not be able to be 

identified. The sensitivity matrix can be computed by considering the hydraulic steady 

state of the water network that solves a partially nonlinear problem of the continuity 

equations at nodes and energy equations for pipes taking into account minor losses 

(adapted from Piller et al. (2016)):  
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−𝐴0 𝑞 − 𝑑 = 034 
(6.3) 

𝑔 𝑟 𝑞 , 𝑞 + 𝐵𝑚 − 𝐴ℎ − 𝐴7𝑒9 = 03: 
(6.4) 

where 𝐴 and 𝐴0  are the unknown head node incidence matrix and its transpose matrix, 

which provide information about the connectivity of the nodes and the links in the network 

(i.e. an element 𝑎<4 of the matrix 𝐴 is assigned a value of -1 or 1 if link 𝑗 enters or leaves 

node 𝑖, respectively. Otherwise, 𝑎<4 is assigned a value of 0); 𝑞 and ℎ are the flow rate and 

nodal head vectors of 𝑛𝑝 links and 𝑛𝑗 nodes; 𝑑 ∈ 𝑅34 is the vector whose elements are 

the values of water consumption at nodes; 𝑔(𝑟(𝑞), 𝑞) is the vector of the friction head loss 

function values, which depends on the link resistance factors 𝑟(𝑞) and flow rates 𝑞; 𝐵 is 

the diagonal matrix with diagonal elements 𝑞<|𝑞<| and 𝑚 is the column vector of minor 

loss coefficients for the 𝑛𝑝 links (where some 𝑚< are zeros); 𝐴7  is the fixed-head nodes 

incidence matrix and 𝑒9 is the elevation vector of fixed-head nodes.  

Denote ∇D= E7
ED1

, … , E7
EDG

 the partial derivative of the function 𝑓 wrt the parameter 𝑥.  

Differentiating Equation (6.3) and Equation (6.4) wrt the minor loss coefficients, gives: 

𝐹∇K𝑞 + 𝐵 + 𝑀∇K𝑞 − 𝐴∇Kℎ =  𝐷∇K𝑞 − 𝐴∇Kℎ + 𝐵 = 03:,3: (6.5) 

−𝐴0 ∇K𝑞 = 034,3: (6.6) 

where 𝐹 = ∇N𝑔 𝑟 𝑞 , 𝑞 . Formulae of 𝐹  for different flow regimes (laminar, transitional 

and turbulent) can be found in detail in Piller et al. (2016); 𝑀  is the diagonal matrix 

whose diagonal elements are 2𝑚< 𝑞<  and 𝐷 = 𝐹 + 𝑀 . 

Multiplying Equation (6.5) by 𝐴0 𝐷−1 on the left and adding to Equation (6.6) 

−𝐴0 𝐷−1𝐴∇Kℎ + 𝐴0 𝐷−1𝐵 = 034,3: 
(6.7) 

The sensitivity of the heads ℎ wrt 𝑚 is, therefore, given by: 

∇Kℎ = 𝐴0 𝐷−1𝐴 −1𝐴0 𝐷−1𝐵 (6.8) 

The sensitivity of the flows 𝑞 wrt 𝑚 follows by: 

∇K𝑞 = 𝐷−1𝐴 𝐴0 𝐷−1𝐴 −1𝐴0 𝐷−1𝐵 − 𝐷−1𝐵 (6.9) 

Finally, the sensitivity matrix of size (𝑁P + 𝑁Q, 𝑛𝑝) is the matrix selected from [𝛻Kℎ; 

𝛻K𝑞] where the number of rows is the total number of measured locations [𝑁P + 𝑁Q] 
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(𝑁P is the number of pressure measurements and 𝑁Q is the number of flow 

measurements) and the number of columns is equal to the number of pipes 𝑛𝑝 in the 

network.  

A pipe flow rate or a nodal head that is not sensitive to the variation of the minor loss of 

a pipe in the network results in a zero value at its corresponding element in the sensitivity 

matrix. Therefore, the pipes that are insensitive to all of the measured locations of the 

network will have all zero values in their column of the sensitivity matrix. These 

corresponding pipes are unobservable and need to be removed from the set of unknowns 

in order to reduce the search space size of the problem. The number of remaining pipes, 

which may contain minor losses, are selected as the number of decision variables in the 

GA model. 

6.3.2 Application of the GA model 

Genetic algorithms have been applied in WDS modeling and analysis for over three 

decades. This optimization technique has been used for various purposes such as optimal 

network design (e.g. Simpson et al. (1994), Dandy et al. (1996)), optimal operation of 

WDS (e.g.  Marchi et al. (2016), Blinco et al. (2016)), event detection (e.g. Vitkovsky et 

al. (1999), Preis and Ostfeld (2008)) or for parameter calibration in WDS (e.g. Lingireddy 

(2002), Nhu et al. (2016)). In this paper, a GA model is introduced, which integrates a 

genetic algorithm, the EPANET toolkit and measurement data during an extended period 

simulation to determine possible status values and locations of partially/fully closed valves 

in the network in a preliminary way (i.e. the statuses of the valves can only be discrete 

values, which are based on an integer coding scheme of the GA model). The GA model is 

mainly used to reduce the size of the search space of the valve problem, which enables the 

application of a Levenberg-Marquardt mathematical method in the third stage. 

The objective function of the GA model has been formulated by the sum of squared 

residuals between the measured and simulated values of pipe flow rates and nodal heads 

at measurement locations during a selected period of time (24, 48 hours,…), expressed as: 
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𝑀𝑖𝑛	𝐺(𝐾) =
1
2

𝑤. 𝑄.
/.0 − 𝑄.

2345 678

.9:
+ 𝑤< 𝐻<

/.0 − 𝐻<
2345 67>

<9:

7?

@9:

+ 𝑝𝑒𝑛 (6.10) 

where 𝑄<
S<K, 𝐻4

S<K are the simulated flow rate and nodal head for the 𝑖Uℎ pipe and 𝑗Uℎ 

node, respectively; 𝑄<
WXYZ, 𝐻4

WXYZ are the measured flow rate and head for the 𝑖Uℎ pipe 

and 𝑗Uℎ node; 𝑁Q, 𝑁P are number of head and flow measurement sites in the network; 

𝑤<, 𝑤4 are weighting factors applied to different terms to ensure they have similar units 

as well as to reflect the actual accuracy of measurement devices. 𝑁0  is the number of time 

steps during the simulation period. Finally, a penalty term (pen) is added into the 

objective function to constrain cases in which the EPANET solver generates negative 

pressures at some nodes of the network. The penalty term is defined by the 

multiplication of a constant penalty value (𝑘 = 10) with the number of times that 

EPANET gives negative pressure warnings during the extended period simulation. 

The decision variables for the GA model are the minor loss setting values 𝐾 (the loss 

coefficients of pipes in the EPANET model) for the remaining pipes as selected from the 

sensitivity analysis. The range of the decision variables (0 ≤ 𝐾 ≤ 𝐾KYD
^_ ) that defines the 

size of the search space of the valve problem can be selected based on the boundary 

conditions given by Wu et al. (2012), which is 𝐾KYD
^_ = 15,000. The value of 𝐾 = 0 

represents the situation with no minor loss in the pipe, i.e. all the valves in that pipe are 

fully opened. A value of 𝐾 = 15,000 has been chosen to represent the situation for a 

closed valve in the pipe. In this case, the status of the pipe in the EPANET solver is 

switched to “Closed”, which does not allow any flow through the pipe. This relatively small 

value of 𝐾04CDE  (compared to maximum value 𝐾04CF2 	 used in the LM method, which will 

be explained later in the paper) has been selected in order to reduce the search space of 

the GA and improve its convergence speed. 

Tournament selection, two-point crossover and bitwise mutation were chosen for the GA 

model. In addition, an integer coding scheme has been applied. The values of the loss 

setting 𝐾, therefore, are taken as discrete values, with the increment of D𝐾 being selected 

based on the size of specific network. The pipes with positive 𝐾 values from the GA model 
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are used as initial values for and will be refined by the LM algorithm presented in the 

following section. Pipes with 𝐾 = 0 found from the GA model are assumed to be fully 

opened and not considered in the next step. 

6.3.3 Application of the Levenberg-Marquardt algorithm 

The preliminary search of the loss coefficient settings of the partially/fully closed valves in 

a water network using a GA model during an extended period simulation can be refined 

by the application of the LM algorithm, which is applied for a steady state simulation. At 

each time step, the valve problem can also be formulated as a nonlinear differentiable least 

squares minimization: 

𝑀𝑖𝑛	𝑔 𝐾 =
1
2

𝑤. 𝑄./.0 − 𝑄.2345
678

.9:
+ 𝑤< 𝐻</.0 − 𝐻<2345

67>

<9:
=
1
2
	 𝑤HI.K 𝑦/.0 𝐾 − 𝑦2345

6
 (6.11) 

where 𝑦S<K and 𝑦WXYZ are the simulated flow rates (or nodal heads) and their 

corresponding measured values at measurement locations, respectively.  

A solution of the nonlinear least squares problem can be found by applying a modification 

of the LM method that considers all the constraints. The minor losses in the pipes are 

estimated with the iterative formula: 

 𝑚<+1 =  𝑚< − 𝐽<
0 𝐽< + 𝜆<𝑆<

−1𝐽<
0   r<; 𝐾<+1 = 2𝑔𝐴2𝑚<+1         

𝑖𝑓 𝐾<+1 ≤ 0, 𝑠𝑒𝑡 𝐾<+1 = 0 →  𝑚<+1 = 0)                       
𝑖𝑓 𝐾<+1 ≥ 𝐾KYD

hW , 𝑠𝑒𝑡 𝐾<+1 = 𝐾KYD
hW   →  𝑚<+1 = 𝑚KYD

hW )    
 (6.12) 

where: 𝑚< is the minor loss coefficient associated with the minor loss setting 𝐾< via 

Equation (6.12).  𝐽< and 𝐽<
0  are the Jacobian matrix and its transpose at iteration 𝑖. The 

Jacobian matrix is a selection of the rows of ∇Kℎ (in Equation 6.8) and ∇K𝑞 (in Equation 

6.9) corresponding to the measurement locations. l< is the damping factor for the LM 

algorithm; 𝑆 = 𝑑𝑖𝑎𝑔(𝐽<
0 𝐽<); r< i = 𝑤i 𝑦i

S<K 𝐾 − 𝑦i
WXYZ  is the weighted residual 

between the 𝛼th simulated values and measured values at iteration 𝑖. Note that for GA 

model, a maximum value of 𝐾KYD
^_ = 15,000 is used above, at which the status of the 

pipe is switched from ”Open” to ”Closed”. In this case, no flow is allowed through the pipe. 

A zero flow pipe has no impact on the GA model as it does not require computation of 

the Jacobian matrix. However, a zero flow in pipes may cause singularity in the Jacobian 
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matrix and prematurely stops the LM method. Therefore, a large value	𝐾04CF2  is assigned 

to a pipe instead of closing it. This value allows a small flow through the pipe but only 

causes a small difference on the simulated values at measurement locations compared to 

having fully closed pipes.  For the two case studies in this paper, a maximum value of 

𝐾KYD
hW = 500,000 was selected, which has been shown to be sufficient to represent an 

almost closed pipe in both case study networks.  

A number of necessary conditions, based on the gradient of  𝑔(𝐾) and its Hessian, are 

required in order to achieve a local optimal and a unique solution 𝐾 of the problem, which 

includes: (1) the problem needs to be overdetermined, i.e. the number of pipes selected 

from the GA model is less than the number of measurements; (2) the residuals r< i are 

small or equal to zero at the optimum; and (3) the Jacobian matrix 𝐽(𝐾) is of full rank 

(see Piller (1995) for the detailed derivation of the gradient and Hessian of 𝑔). In complex 

networks, these conditions are usually not satisfied due to a limited number of 

measurements, which means that the correct setting of the partially closed valves cannot 

be determined by the LM method. However, the methodology is still useful to identify the 

locations of the partially closed valves in the networks. This will be shown in the second 

case study of the paper where the condition of full rank for the Jacobian matrix is not 

satisfied. 

For the LM method, two stopping criteria are applied: either the change of the K values 

after every iteration is less than Δ𝐾< = 0.01 or the number of iterations 

reaches 𝑁<UXk = 200. 𝑁<UXk is used to terminate the method if the function in Equation 

(6.11) cannot converge to a solution. 

6.4 Case studies 

A relatively small network and a much larger network of realistic size are used to 

demonstrate the possible use of the proposed methodology to find partially/ fully closed 

valves. The exact solutions (i.e. the valve setting values) in both cases are given and used 

in the networks to create synthetic measurement data. The problems associated with noisy 
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data, which results from measurement devices, demand aggregation or caused by 

incomplete system knowledge, are not considered in this paper. 

6.4.1 Case study 1 

The first case study is shown in Figure 6.3. The network has two reservoirs, 9 nodes, 13 

pipes that contain 24 valves. The following assumptions are made for the network: (1) five 

measurement devices (three flow measurements and two pressure measurements) are 

placed at pipe P10, pipe P11, pipe P50, Node 13 and Node 31, respectively; (2) two 

partially closed valves V40A (𝐾 = 5437) and V21A (𝐾 = 560) are located at pipe P40 

and pipe P21 and (3) all nodal demands follow a single demand pattern. The proposed 

methodology is applied to locate these partially closed valves given a collection of 

measurement data during 48 hours with a time step 𝑡 = 1 hour. 

	
Figure 6.3: (a) Case study 1 network; (b) Results from sensitivity analysis and GA model 

The total inflow ( 𝑄U
l3) and outflow ( 𝑄U

mnU) to the system at a time step t is 

identified based on two measured flows at pipes P10 and P11. The demand multiplier of 

the demand pattern at each time step is required to be known in the demand driven model 

EPANET, therefore, can be computed as: 

𝐷𝑀𝐹U = 𝑄U
l3 − 𝑄U

mnU

𝐷<
034

<=1

 (6.13) 
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where 𝐷<
0 is the base demand of node 𝑖Uℎ in the network.  

Table 6.1 shows the transpose of the sensitivity matrix at a steady state 𝑇 = 0 (𝐷𝑀𝐹0 =

0.616) of flow rates and nodal heads at measured locations wrt the variation of minor 

losses in all pipes of the network. It can be seen that the sensitivity for pipe P61 results in 

zeros at all measured locations, which means that this pipe is insensitive to the measured 

values. As a result, the pipe is required to be removed from the search process of the 

further stages. Note that fully closed status of the valves are not considered in the 

sensitivity analysis due to the fact that this status can change the topology of the network, 

which may cause inaccurate removal of pipes. For example, if a valve in pipe P31 is fully 

closed, pipe P60 becomes insensitive wrt the measurements and would need to be 

removed.  

Table 6.1: Sensitivity of flow rates (m3/s) and nodal heads (m) at measurement locations wrt variation of 
minor losses (s2/m5) 

Pipe ID 
 �𝜕ℎ/�𝜕𝑚  �𝜕𝑞/𝜕�𝑚 

Node 13 Node 31 Pipe 10 Pipe 50 Pipe 11 

40 -6.2*10-8 2.0*10-5 -2.1*10-7 7.1*10-9 2.1*10-7 

41 -1.0*10-3 -1.4*10-5 3.8*10-8 2.4*10-8 -3.8*10-8 

50 -2.8*10-6 1.7*10-5 -1.9*10-7 -3.0*10-7 1.9*10-7 

51 -2.3*10-5 1.9*10-5 -5.1*10-8 -3.2*10-8 5.1*10-8 

60 -1.7*10-6 8.6*10-5 -1.2*10-7 6.6*10-8 1.2*10-7 

61 0 0 0 0 0 

20 -1.1*10-4 -1.4*10-2 -7.7*10-6 -4.8*10-6 7.7*10-6 

21 -4.3*10-5 -7.1*10-4 1.9*10-6 1.2*10-6 -1.9*10-6 

22 5.8*10-7 -4.8*10-7 1.3*10-9 8.2*10-10 -1.3*10-9 

30 -1.3*10-5 -3.6*10-3 -8.7*10-7 4.9*10-7 8.7*10-7 

31 1.9*10-6 -9.5*10-5 1.3*10-7 -7.3*10-8 -1.3*10-7 

10 -4.5*10-4 -4.7*10-2 -9.3*10-5 -1.7*10-5 9.3*10-5 

11 -1.5*10-2 -3.8*10-3 2.1*10-5 3.8*10-6 -2.1*10-5 

The application of the GA model, after removing all unidentifiable pipes, has 12 decision 

variables. The objective function of the GA model follows Equation (6.10), with 𝑁0 = 48 

hours, 𝑁Q = 3 and 𝑁P = 2. The following parameters are set for the GA model: the 

probability of crossover 𝑃s = 0.75, the probability of mutation 𝑃K» 1/𝐿 = 0.085 (𝐿 =

12 is the length of a chromosome), population size 𝑁 = 100 and the number of 

generations was selected as 𝑁ZUu: = 1000. In Wu et al. (2012), the range of the decision 

variables  was selected from 0 to 15,000 with the increment of 1000. With this relatively 
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small network, the increment is selected Dv = 500 in order to improve the accuracy of 

the GA model.  

The GA model were undertaken on the Intel Ò CoreTM i5 (2.9GHz) computer. The total 

elapsed run time for this case study was approximately 40 minutes. The model finds that 

three pipes P40, P21 and P22 contain minor losses with the 𝐾 values respectively equal 

to 𝐾"40 = 5500 (actual 𝐾"40 = 5437), 𝐾"21 = 500 (actual 𝐾"21 = 560) and 𝐾"22 =

500 (actual 𝐾"22 = 0), as shown in Figure 6.3b. The minor losses of the other pipes are 

all equal to zero, i.e. all the valves in these pipes are fully opened. In this case, it can be 

seen that the GA model does not find the K values appropriately. Thus, a refinement step 

(i.e an application of the LM algorithm) for the three possible partially closed valves is 

implemented. 

Table 6.2 summarizes the results of the LM method given three possible partially closed 

valves obtained from the GA model. The acronyms RSS and GRAD represent the residual 

sum of squares Equation (6.11) and the norm of the gradient along the search direction, 

respectively. The damping factor l< starts at l0 = 0.0001 and is changed throughout the 

iterations based on the least squares criterion as follows: if RSS decreases, l< is set to be 

decreased 60% (i.e. multiplied by a factor of 0.4) for the next iteration. Otherwise, l< is 

forced to be increased by a factor of 10 and a new least squares value is recalculated based 

on the new value of l<. Within the iteration, this process is repeated until the least squares 

value decreases. 

Table 6.2: Convergence of case study 1 network with two partially closed valves 

Iteration # RSS GRAD l< KP40 KP21 KP22 

0 0.0523 5.2158*10-6 0.0001 5500 500 500 

1 4.213*10-5 5.2276*10-8 4.00*10-5 4933.201 545.863 0 

2 6.561*10-6 8.1804*10-8 1.60*10-5 5264.362 555.559 0 

3 1.822*10-7 1.2480*10-8 6.40*10-6 5409.255 559.307 0 

4 2.343*10-9 3.3520*10-9 2.56*10-6 5435.21 559.959 0 

5 1.840*10-14 3.3516*10-9 1.02*10-6 5436.919 559.997 0 

6 1.225*10-14 3.3515*10-9 0.1024 5436.991 559.999 0 

Actual values    5437 560 0 
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The method is terminated after six iterations (with the total run time of 5.5 seconds), 

which found very accurately that two valves, one in pipe P40 and the other in pipe P21, 

are partially closed with the loss setting values 𝐾"40 = 5436.991 (actual 𝐾"40 = 5437) 

and 𝐾"21 = 559.999 (actual 𝐾"21 = 560), respectively. The status of the valve in pipe 

P22 is corrected by the LM method, which becomes fully opened with 𝐾"22 = 0. The 

Jacobian matrix is checked after each iteration to verify that the requirement of full rank 

is satisfied. The residual  of the observations and the simulated values represented by the 

RSS values is approximately zero. As a result, the LM method converges to the true 

solution as higlighted in Table 6.2. 

6.4.2 Case study 2 

The second case study (shown in Figure 6.4a) is used to describe the complexity of the 

problem in practice as well as to evaluate the applicability of the proposed methodology. 

This realistic size network is part of the C-town network (Ostfeld et al. 2011), which has 

147 pipes, 135 nodes, 1 reservoir, one tank and a pump station with 3 pumps. The network 

is divided into 3 DMAs, where the demand multipliers factors can be computed by 

measuring the inflows and outflows to each DMA. The valving system of the network 

follows the 2*N valve rule (Jun and Loganathan 2007), corresponding to 294 valves across 

the network. Among them, three valves are assumed to be both partially closed (a valve 

in Pipe 122 and another in Pipe 139) and fully closed (a valve in Pipe 302). These valves 

are required to be localized by the proposed methodology. For this case study, the setting 

values of 𝐾"122 = 2489, 𝐾"139 = 4357 and fully closed state of the valve in Pipe 302 are 

used to synthesize the measurement data. Figure 6.4a also displays the locations of 20 

measurement devices (10 flow measurements and 10 pressure measurements), which are 

assumed to be placed within the network in order to record data at every hour. Data for 

a period of 48 hours are available to be used in the GA model.  

The sensitivity analysis shows that 50 out of 147 pipes (shown in Figure 6.4b as the dashed 

lines) are not sensitive to the measured locations and hence, are removed from the 

localization process. The number of the remaining pipes is selected as the number of 
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decision variables in the GA model, which is 97 variables. The GA model is implemented 

with the following parameters: the probability of crossover 𝑃s = 0.75, the probability of 

mutation 𝑃K = 0.01, population size 𝑁 = 1000 and the number of generations 𝑁ZUu: =

2000. Similar to Wu et al. (2012), the minor loss setting K is selected from 0 to 15,000 

with an increment of 1000. The value of 𝐾 = 15,000 corresponds to fully closed status of 

the pipe. The total run time of the GA model for this case study was approximately 4.6 

hours. 

	

Figure 6.4: (a) Case study 2 Network; (b) Results from sensitivity analysis 

Figure 6.5a shows the output from the GA model. It is seen that the model has 

significantly reduced the size of the search space, from 97 pipes to 19 pipes that possibly 

contain minor losses. These 19 pipes can be divided into 4 areas. Area I is located between 

Node J337 and Node J218 where three pipes P12, P139 and P7 are connected in series. 

Area II and area III both have two links P301, P302 and P3, P122, respectively. These 

three areas cover the locations of the partially/fully closed valves that need to be 

determined, which are two partially closed valves in P139 (area I) and in P122 (area III) 

and a fully closed valve in P302 (area II). The last area is the region of the remaining 

pipes, i.e. 12 out of 19 pipes. This large set of pipes is selected by the GA model because 

the small flow rates in these pipes make them almost insensitive to the variation of the 

minor losses.    
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Figure 6.5b shows an example of the results from the LM model at time step 𝑇 = 2, 

where the LM method converges to a very good solution (this is not always the case as it 

will be shown in Table 6.4). It took only approximately 10.2 seconds to complete a run of 

the LM model. The results point out that all pipes in area IV no longer have minor losses, 

which means all the valves in this area are fully opened. On the other hand, all pipes in 

areas I and II contain minor losses while in area III, the LM method indicates that only 

pipe 122 contains a minor loss. 

	

Figure 6.5: (a) Results from GA model; (b) Results from LM model at time step T=2 

The values of the minor losses for each pipe, RSS, GRAD and l are shown in Table 6.3. 

In order to obtain smaller value of RSS at each iteration, the value of l is altered within 

the iteration. For example, the first iteration required four modifications of l (from 0.0001 

to 0.1) before moving to the second iteration. The method stops after 55 iterations, with 

the sum of square of the residuals approaching zero. It is observed that the Jacobian 

matrix for this case study problem does not have full rank (𝑟 = 8). As a result, the LM 

method does not converge to the true solution. In area I, the result from the LM method 

showed that all the pipes have minor losses (𝐾"12 = 1643.45, 𝐾"139 =

1643.60 and 𝐾"7 = 2575.53), while actually only a valve in P139 is partially closed 

with 𝐾"139 = 4357. In area II, the LM model finds that pipe 302 is fully closed 

(represented by the maximum value of 𝐾 = 500,000), which matches the actual status 
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of the valve in this pipe. However, the minor loss setting in pipe P301 identified by the 

model is 𝐾"301 = 67,826.89 while the actual value in this case is 𝐾 = 0. Only in area 

III, the minor loss setting value of pipe P122 from the model is found to be close to the 

actual value with 𝐾"122 = 2490.51 (𝐾YsUnY9 = 2489).  

The results for case study 2 are to be expected due to the non-uniqueness of solutions for 

the problem. Non-unique solutions are caused by two main reasons. The first issue is 

caused by pipes connected in series and the second is the observability problem due to the 

limited number of measurement devices. 

Table 6.3: Correction of valve setting values and statuses by the LM model at time step T=2 

Areas Pipe Iteration 0 Iteration 1 Iteration 2 … Iteration 55 Actual values 

 P12 1000 2966.74 2607.06 … 1643.45 0 

I P139 1000 0.00 76.42 … 1643.60 4357 

 P7 1000 2941.48 2589.31 … 2575.53 0 

II 
P301 2000 0 820.37 … 67,826.89 0 

P302 15,000 0 951.11 … 500,000 Closed 

III 
P3 1000 0 81.79 … 0 0 

P122 2000 5599.47 4782.58 … 2490.51 2489 

IV 

P255 9000 0 0 … 0 0 

P961 8000 423,735.00 500,000 … 0 0 

P964 8000 73,575.14 500,000 … 0 0 

P967 15,000 0 0 … 0 0 

P970 5000 500,000 0 … 0 0 

P971 2000 0 0 … 0 0 

P973 1000 0 24,898.93 … 0 0 

P974 1000 500,000 0 … 0 0 

P975 1000 398,411.88 0 … 0 0 

P989 1000 0 2092.74 … 0 0 

P990 15,000 389,393.48 0 … 0 0 

P995 1000 9297.22 20,494.59 … 0 0 

Final RSS 13.28 11.34 7.29 … 9.92*10-10  

 Grad 0.0022 0.0004 0.0003 … 3.35*10-9  

 Lamda 0.0001 0.1 100 … 1.93  

The first issue of the valve problem is the non-unique solution of minor loss settings for 

pipes in series. As discussed previously (see Figure 6.1), multiple combination of 𝐾 values 

can result in the same total energy loss. This is valid also for pipes with different flows 

and velocities, if the sum of their minor losses (𝐾<𝑉<
2/2𝑔) is the same. Hence, if there are 

no intermediate measurements along a set of pipes in series, it is not possible to define 
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exactly the minor loss setting of each single valve. The non-uniqueness of solutions of the 

valve problem can be seen more clearly if there is a closed valve in the series. An example 

is area III for case study 2. Since a valve in pipe P302 is closed, pipe P301 disconnects 

from its loop and becomes insensitive to the nodal heads or flow rates at measurement 

locations. Therefore, the loss setting value in P301 can accept any value without changing 

the values at measurement locations. In other words, the problem does not have a unique 

solution.  

A possible way to overcome this problem is to consider the minor loss for only one single 

pipe of the series where the others are assumed to have no minor loss (i.e. these pipes no 

longer need to be evaluated). This consideration can be implemented as a preprocessing 

step in order to reduce the search space and regularize the problem. If the method finds 

that there exists a minor loss in that pipe, it will be necessary to physically check all the 

valves along the series of the pipes in this area.  

The second issue is related to the observability of the network. Although the number of 

the measurements is larger than the number of the pipes with unknown valve statuses, 

the problem may still be underdetermined due to limited number of the measurements 

locations at some parts of the system. Specifically, the sensitivity matrix shows that only 

the nodal heads and flow rates at 6 measurement locations in the DMA1 of the network 

are sensitive to the minor losses of 12 pipes in area IV. Figure 6.6 plots an example of the 

sensitivity in pipe P973 and pipe P995.  
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Figure 6.6: Sensitivity of nodal heads and flow rates at measurement locations wrt minor loss of 
pipe P973 and P995 

It is seen that the nodal heads at nodes J1157, J336, J1123 and J206 are sensitive to the 

variation of the minor losses in pipes P973 and P995. The sensitivity of nodal heads at 

other locations is trivial, which results in approximately zero values in the sensitivity 

matrix. Similarly, only the flow rates for pipes P992 and P972 are sensitive to the change 

in minor losses of these two pipes. Apparently, the determination of 12 unknown minor 

loss settings based on these 6 measurement values cannot obtain a unique solution. 

Due to the lack of observability within area IV of the network, the results for these pipes 

in this area are relatively unstable when the LM method is applied for different time steps. 

Table 6.4 presents the results of the LM model applied for 11 time steps from 𝑇 = 0 to 

𝑇 = 10. 

It is seen that the fully opened statuses of all the pipes in area IV is found at 𝑇 = 2, 3, 4. 

For other time steps, one or several pipes in this area are found to contain minor losses.  

This shows the importance of choosing the number of the sensors and their locations so 
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that an observable system with high sensitivity can be obtained. As the main aim of the 

methodology presented in this paper is to identify the locations of partially/fully closed 

valves, the results from the LM model are acceptable in this case. With the application of 

the proposed methodology, the partially/fully closed valve problem has been simplified 

from the search of 147 pipes (i.e. 304 valves) to 7 pipes (as at 𝑇 = 2, 3, 4) or to a maximum 

of 14 pipes (as at 𝑇 = 9), which is equivalent to the search of only 14 valves or maximum 

of 28 valves in the network. 

Table 6.4 Minor loss setting from LM method for 11 time steps from T=0 to T=10 (Case study 2) 

Area Pipe T=0 T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10 

I 

P12 1663.20 1642.71 1643.46 1644.59 1645.35 1644.95 11.14 1666.50 1675.03 1662.68 1506.98 

P139 1615.64 1643.07 1643.60 1644.81 1645.55 1645.15 781.55 1645.76 1642.81 1592.55 1595.94 

P7 2248.78 2575.13 2575.53 2580.08 2582.24 2580.95 8416.09 2458.38 2390.91 2107.50 3412.72 

II 
P301 62,239.8 73,956.0 67,826.9 76,379.6 85,827.9 74,886.8 69,546.6 75,072.6 63,970.9 67,278.7 57,920.4 

P302 500,000 454,150 500,000 500,000 500,000 500,000 500,000 0 500,000 132,701 500,000 

III 
P122 1677.90 2504.00 2490.51 2501.67 2505.67 2494.48 0 1375.77 1378.43 2031.57 2130.06 

P3 1565.92 0 0 0 0 0 3668.92 1958.81 2087.70 935.76 825.79 

IV 

P255 0 0 0 0 0 16.729 16.806 0 0 0 0 

P961 0 0 0 0 0 0 0 0 0 0 0 

P964 0 0 0 0 0 0 0 26.25 0 0 0 

P967 34.81 0 0 0 0 0 0 526.05 404.21 938.50 0 

P970 0 30.93 0 0 0 0 0 660.99 89.62 40.32 0 

P971 0 0 0 0 0 0 0 105.19 245.42 161.14 0 

P973 0 0 0 0 0 0 0 0 0 0 0 

P974 0 0 0 0 0 0 0 0 0 0 0 

P975 0 0 0 0 0 0 0 0 36.26 82,326.4 0 

P989 61.94 0 0 0 0 0 0 1168.28 500,000 272.15 3645.99 

P990 194.18 0 0 0 0 0 0 0 0 12.33 961.17 

P995 0 0 0 0 0 0 0 0 0 0 14.06 

RSS 1.19*109 6.59*109 9.9*1010 2.28*109 1.95*109 4.9*1010 8.4*1010 2.1*108 1.6*108 4.21*109 1.6*108 

In this case study, if the correct setting values are required, this observability problem can 

only be solved by installing additional measurements into the underdetermined area or by 

running additional ad hoc tests (e.g. opening fire hydrants). Moreover, considering all the 

observations over an extended period simultaneously could improve the observability of 

the system, but it would require modifications the LM method and additional 

computation effort as presented in the following sub-section.  

Consideration of extended period simulation in LM method 
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The output from the GA model can be fine-tuned by the application of the LM method 

for an extended period simulation. In this case, the objective of the LM model is similar 

to the objective function of the GA model (i.e. Equation (6.10)) without the penalty term: 

𝑀𝑖𝑛 𝐺(𝐾) =
1
2

𝑤< 𝑄<
S<K − 𝑄<

WXYZ 2|}

<=1
+ 𝑤4 𝐻4

S<K − 𝐻4
WXYZ 2|~

4=1

|�

U=1
 (6.14) 

The minor losses in the pipes are estimated with the following expression: 

 𝑚<+1 =  𝑚< − 𝐽<,U
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−1
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U=1
; 𝐾<+1 = 2𝑔𝐴2𝑚<+1         

𝑖𝑓 𝐾<+1 ≤ 0, 𝑠𝑒𝑡 𝐾<+1 = 0 →  𝑚<+1 = 0)                                               
𝑖𝑓 𝐾<+1 ≥ 𝐾KYD

hW , 𝑠𝑒𝑡 𝐾<+1 = 𝐾KYD
hW   →  𝑚<+1 = 𝑚KYD

hW )                            

 (6.15) 

where 𝐽<,U and 𝑟<,U are the Jacobian matrix and the weighted residuals, respectively, at 

time 𝑇 = 𝑡 and at iteration 𝑖.  

Table 6.5 shows the results from the LM model for an extended period (𝑇 = 48 hours). 

The model converges after 10 iterations (114.85 seconds). Results for areas I, II and III are 

similar to the previous case (where the LM method was applied to each single time step) 

as the actual statuses of valves in pipes in series cannot be determined due to the 

previously mentioned problem. Results for area IV are intermediate. As seen in Table 6.5, 

four valves are classified as partially closed in this area, which is not as good as 𝑇 =

2, 3 and 4 of the LM method applied to a single time step. On the other hand, this is a 

clear improvement over the worst results of the LM applied to a single step (𝑇 = 9) where 

6 pipes have partially closed valves. Depending on the case study, applying the LM 

method to a series of single time steps may have advantages compared to applying the 

LM method to an extended period simulation. For example, in this case study, analyzing 

the results of 𝑇 = 2, 3 and 4 in Table 6.4 highlights that there are no partially closed 

valves (and hence there cannot be also closed valve in the other time steps). However, 

using the LM method on an extended period simulation may provide more reliable results 

since the Jacobian matrix is always of full rank during the computation process of the LM 

method. 
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Table 6.5: Minor loss setting from LM method for an extended period T=48 hours (Case study 2) 

Area Pipe Iteration 0 Iteration 1 Iteration 2 ... Iteration 10 Actual 
values 

I 

P12 1000 1676.41 1642.75 ... 1685.75 0 

P139 1000 1665.22 1631.70 ... 1655.29 4357 

P7 1000 2552.08 2471.37 ... 2388.68 0 

II 
P301 2000 0.00 43.76 ... 225,784.33 0 

P302 15,000 0.00 50.55 ... 500,000 Closed 

III 
P122 1000 0.00 27.54 ... 1593.02 0 

P3 2000 0.00 30.91 ... 2347.46 2489 

IV 

P255 9000 500,000 0.00 ... 0.00 0 

P961 8000 0.00 110.27 ... 1044.70 0 

P964 8000 0.00 0.00 ... 0.00 0 

P967 15,000 45,355.49 22,877.10 ... 4456.44 0 

P970 5000 3275.70 4403.19 ... 21,721.52 0 

P971 2000 3308.39 379.96 ... 0.00 0 

P973 1000 2680.95 1628.87 ... 0.00 0 

P974 1000 0.00 295.40 ... 0.00 0 

P975 1000 0.00 0.00 ... 0.00 0 

P989 1000 8541.55 26,059.31 ... 0.00 0 

P990 15,000 0.00 0.00 ... 120,642.77 0 

P995 1000 0.00 0.00 ... 0.00 0 

Final RSS 2677.83 12.53 5.96  0.34  

 Grad 0.0199 0.0003 8.30*10-5  2.41*10-5  

 Lamda 10 4 40  0.065  

6.5 Conclusions 

The reliability of a WDS is highly dependent on the presence of valves in the network, 

which are used to isolate a pipe or a portion of pipes for inspection, maintenance and 

replacement. However, the unknown statuses of these valves may cause a large difference 

in the hydraulic behavior between the real system and its simulation model. A 

methodology for the localization of the partially/fully closed valves in the water 

distribution network has been introduced in this paper. Three sequentially applied 

methods have been proposed in the methodology, which includes: a local sensitivity 

analysis, application of a genetic algorithm and finally an application of the Levenberg-

Marquardt algorithm. Within the first method, the sensitivity of the flow rates and nodal 

heads at measurement locations with respect to the change in the minor losses of the pipes 

was computed. These sensitivity values were used to remove the valves that are insensitive 

to the measurement locations from the search space. Within the second method, a genetic 
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algorithm was implemented in an extended period simulation to preliminarily identify the 

locations of the partially/fully closed valves and their setting values, i.e. the degree of 

opening of the valve. Finally, the third method applied the Levenberg-Marquardt 

algorithm in order to correct the results from the GA model. The performance of the 

methodology has been evaluated for two case studies. The first case study has shown that 

the exact solution can be found, in terms of both statuses and minor loss setting values, if 

the necessary conditions for the Levenberg-Marquardt are satisfied. The second case study 

showed the applicability of the proposed methodology when applied to a realistic problem. 

Although the valve problem of the second case study contains non-unique solutions, the 

methodology still can identify very well the locations of partially closed valves in the 

network. The proposed methodology is, therefore, an efficient tool for dealing with the 

problem of finding unknown partially/fully closed valves in water distribution systems. 
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Chapter 7  Conclusions and future work

Water distribution systems are constructed to supply water for domestic, industrial and 

commercial consumers. The design, operation and management of these distribution 

systems is usually supported by the application of hydraulic models, which are built to 

replicate the behavior of real systems. Conventional demand driven models simulate flows 

and pressures of a water distribution system requiring assumptions of known demands 

and known valve statuses. Due to the stochastic behavior of the water demands, the 

complexity of the piping network as well as the existence of systematic errors in 

measurements, these assumptions usually lead to an inadequate understanding of the full 

range of operational states in the water system. Installation of sensor devices in a network 

can provide information about some components in the system. However, calibration of 

the water demands and identification of valves statuses are still either not feasible or very 

difficult. This is attributable to the usual limited quantity of available measurement 

devices in most real water networks. This thesis has addressed these gaps in Chapter 2 and 

formulated the six objectives in Chapter 1. 

The work in this thesis has been implemented to achieve these objectives and is shown in 

Chapters 4, 5 and 6. Three methodologies have been developed for calibration of water 

demands as well as the unknown valve statuses, which partially fulfilled those addressed 

research gaps.  

In this last chapter, the thesis is concluded with a short summary of key contributions 

and recommendations for future research. 

7.1 Research contributions 

The overall aim of the research has been to develop reliable and effective methodologies 

for calibrating WDS steady state models, which include calibration of water demand 
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multiplier factors and calibration of valve settings. From three publications presented in 

Chapter 4 to 6 of this thesis, the following major contributions have been made. 

The first contribution has been the development of a novel approach to calibrate the water 

demand multipliers under ill-posed conditions where the number of measurement sites is 

less than the number of unknown water demands. The novel approach, which is the 

application of multiple runs of a GA model, has been found to effectively calibrate the 

water demands as well as to give relatively good estimates of the nodal heads and flow 

rates at non-measured locations in a WDS. Details of this approach are presented in 

Chapter 4. 

The second contribution has been a comprehensive evaluation of the impacts of location 

and number of the measurement sites to the outputs of a water demand calibration model, 

which can be found in Chapters 4 and 5. In Chapter 4, the use of a sampling design 

technique for the selection of optimal measurement locations for the calibration of the 

water demands has been investigated. The GA calibration model was tested with different 

simulations of measurement locations (i.e. measurement sites are placed at optimal 

locations versus random placement of measurements). Results from case study 1 and 2 

have highlighted the importance of both the selection of the optimal measurement site 

locations and the type of measurements on the calibration of the demand multiplier 

factors. Moreover, the GA model was also tested with various scenarios of measurement 

availability in water networks, showing that the addition of measurement sites to the 

network significantly increases the accuracy of the calibration model. In Chapter 5, an 

additional evaluation of the measurement location problem is presented, in which the 

effect of measurement location on the uncertainty quantification has been evaluated. 

The third contribution is presented in Chapter 5, which has been the development of a 

particle filter model for the online estimation of water demands under uncertainty. The 

proposed model, namely the DMFLive model, implements a predictor-corrector process, 

in which: (1) a demand forecasting model has been used to predict the water demand 

multiplier factors, (2) the EPANET hydraulic solver has been applied to simulate the flow 
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rates and nodal heads at measurement locations and (3) real-time observation has been 

integrated via a Bayesian formulation of the particle filter model to correct the demand 

predictions.  

The fourth contribution has been the development of an improved particle filtering model 

for the online estimation of water demands. In order to prevent degeneracy, 

impoverishment and convergence problems that often occur in the particle filter model, 

an improved resampling process has been developed. This resampling process incorporates 

an evolutionary scheme from genetic algorithms. Three GA operators of selection, 

crossover and mutation are responsible for improving the prediction of the water demands. 

The application of the improved particle filter model to case study 2 in Chapter 5 shows 

a significant improvement of the demand calibration model in terms of both accuracy and 

computational effectiveness.  

The fifth contribution has been the investigation of the first order approximation (FOA) 

method for quantifying the demand uncertainty. This is presented in Chapter 5. The 

uncertainty of the calibrated demands caused by measurement errors is quantified and 

evaluated in terms of confidence intervals. Through its application to the two case studies 

in Chapter 5, the FOA method has been shown to be a very reliable method. In addition, 

the uncertainty of the output model from FOA method can also provide meaningful 

information about the sensitivity of the pressure with respect to the changes in the nodal 

demands. 

The sixth contribution in this thesis has been the formulation of a sensitivity analysis 

method, which is the computation of the sensitivity of the flow rates and nodal heads at 

measurement site locations with respect to the changes in the minor loss coefficients of the 

valves. This sensitivity analysis has been used to evaluate whether a valve is sensitive to 

the measurements. Valves that are insensitive to the measured locations need to be 

removed from the problem as their potentially partially/fully closed settings will not be 

able to be identified. For the problem of calibration and localization of partially/fully 
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closed valves, this step is very important as it can significantly reduce the size of the search 

space. Details of the method may be found in Chapter 6. 

The last, but not least, contribution has been the development of an innovative 

methodology to calibrate and localize partially/fully closed valves in a water network. This 

is the application of three sequentially applied methods: a local sensitivity analysis, the 

application of a genetic algorithm model and the application of the Levenberg-Marquardt 

algorithm. These sensitivity values were used to remove from the problem the valves that 

are insensitive to the measurement locations. The genetic algorithm was implemented in 

an extended period simulation to preliminarily identify the locations of the partially/fully 

closed valves and their setting values. Finally, the third method applied the Levenberg-

Marquardt algorithm in order to correct the settings and locations of the potential 

partially/fully closed valves found by the GA model. This methodology is presented in 

Chapter 6. 

7.2 Recommendations for future research 

The issue of WDS model calibration is known to be an exceptionally difficult problem in 

WDS analysis. Although the research presented here has made a considerable 

advancement to this field, several important issues remain unresolved. A number of 

possible future research directions are suggested as follows: 

In Chapter 4, a GA model was proposed to calibrate the water demands under ill-posed 

conditions. The GA model was tested with three different case studies. However, the 

measurement data in these case studies was assumed to be perfect, which does not 

represent the practicality of the actual systems. Uncertainty of the GA calibration model 

given the presence of errors (or noise) in measurement data is, therefore, an aspect that 

needs to be considered. As also seen in Chapter 4, one of the conclusions made for the GA 

model was that the model run time might be a disadvantage of the GA approach. Hence, 

future research efforts could involve finding advanced methods for the calibration of water 

demands to reduce the computational time. 
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The particle filter model developed in Chapter 5 has been tested for two case studies. 

Nevertheless, in the second case study where a real network is simulated, the demand 

patterns are assumed to be perfectly geographically distributed. This assumption should 

be discussed as in real cases the demand patterns may be non-geographically distributed 

all over the network. Moreover, some of the other assumptions made in the studies (e.g. 

the model of the water distribution network perfectly represents the real system with 

known network characteristics and the errors of the measurement devices are assumed to 

be known and to follow a Gaussian distribution) might not be valid in real networks. It 

would be interesting to evaluate the most robust model for an actual system in the future. 

In Chapter 6, the problem of calibration and localization of inadvertently partially/fully 

closed valves is solved based on assumptions of perfect measurement data, aggregated 

demand groups and applied to synthetic networks that have relatively high density of 

measurement devices compared to current reality in most networks. In practice different 

measurements may have very different error scales and the demands in each group may 

not be homogeneous. These issues need to be addressed and especially, the proposed 

methodology needs to be tested with real networks to evaluate its performance. In 

addition, the second case study shows that it took almost 5 hours for the model to identify 

the locations of the partially/fully closed valves. Meanwhile, blockages caused by unknown 

closed valves are critical in some emergency cases (e.g. in the case of fire), in which 

immediate identification of the unknown closed valves are required. Therefore, advanced 

methods have to be investigated to improve the computational time of the proposed 

model. 

Further study for the identification of partially/fully closed valve in Chapter 6 also needs 

to be implemented as in real-life situations it is luxury to only calibrate the valve statuses. 

The detection of partially closed valve should, therefore, be performed in combination with 

other problems, e.g. detecting leakage in the pipe network. 

Addressing the problem of leakage in the networks is also important issue in achieving 

comprehensive results of the demand estimation models. Although leakage has not been 
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considered, the demand calibration models could be used to calibrate the total demand, 

i.e. the sum of user demands and leakage. This can be useful in emergency situations due 

to water contamination or in situations where the leakage level has not changed. However, 

further research has to be done in order to distinguish between real demand and leakage. 

Additional effort also needs to be implemented so that these demand calibration models 

can be used to detect and manage leakage in the systems. 

Finally, the proposed models are developed based on the common assumption of having 

a series of steady state conditions in the system. Nevertheless, real systems usually 

experience many simultaneous transient events at any point in time. This can affect the 

magnitude of the measurements and, consequently, the estimated demands and valve 

statuses. Future work using real data in a controlled environment and in real systems 

needs to be conducted in order to assess the effects of these transient events on the 

estimates.
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Calibration of Water Demand Multipliers in Water
Distribution Systems Using Genetic Algorithms
Nhu C. Do1; Angus R. Simpson, M.ASCE2; Jochen W. Deuerlein3; and Olivier Piller4

Abstract: Hydraulic models have been widely used for design, analysis, and operation of water distribution systems. As with all hydraulic
models, water demands are one of the main parameters that cause the most uncertainty to the model outputs. However, the calibration of the
water demands is usually not feasible attributable to the limited quantity of available measurements in most real water networks. This paper
presents an approach to calibration of the demand multiplier factors under an ill-posed condition where the number of measurements is
less than the number of parameter variables. The problem is solved using a genetic algorithm (GA). The results show that not only is
the GA able to match the calibrated values at measured locations, but by using multiple runs of the GA model, the flow rates and nodal
heads at nonmeasured locations can be estimated. Three case studies are presented as an illustration of the problem. The first case study is a
small network that demonstrates the calibration model. The second case study shows a comparison between the genetic algorithmmodel and a
singular value decomposition model. The last case study is a large network that allows for practical considerations in applying the proposed
methodology to a realistic context. DOI: 10.1061/(ASCE)WR.1943-5452.0000691. © 2016 American Society of Civil Engineers.

Author keywords: Genetic algorithms; Optimization; Demand calibration; Water distribution systems.

Introduction

As an indispensable component of urban infrastructure, a water dis-
tribution system (WDS) has to accommodate large water transfer
volumes on a daily basis. The problem of ensuring a satisfactory
and reliable service is further complicated by population growth
which often leads to the need for augmentation of the system.
Determination of flow rates and pressure heads in the existing sys-
tem is a necessary step in the modification of a WDS. This task can
be accomplished by using measurement devices, such as sensors;
however, sensors can only capture the status of some component
locations in the system. Calibration of the full WDS model using
limited measurements from these devices is therefore a research
area that requires further development.

Calibration of a WDS model is the process of adjusting network
parameters so that the output from the computer model matches the
field measurements, which are usually the pressures and flow rates
at particular locations in the network (Shamir and Howard 1977).
The calibration procedure for a water network model has been well
addressed by Ormsbee and Lingireddy (1997). In their paper, the
authors suggested a seven-step calibration process, which includes:
(1) Identifying the intended use of the model, (2) Determining
estimates of the model parameters, (3) Collecting calibration data,
(4) Evaluation of the results of the model, (5) Performing a macro

level calibration of the model, (6) Performing a sensitivity analysis,
and (7) Performing a micro level calibration of the model.

Savic et al. (2009) presented a comprehensive literature review
on the calibration of water network models where the calibration
methods can be classified by their dynamic (transient/static), by
their calculation methods (iterative/explicit/implicit), or by the use
of optimization methods (traditional/evolutionary).

In terms of calibration in transient analysis, the calibration
models have been constructed primarily to detect leakage in distri-
bution systems (Pudar and Liggett 1992; Liggett and Chen 1994;
Vítkovský et al. 2000; Kapelan et al. 2003). These transient cali-
bration procedures usually consider a pure leak or leaks combined
with unknown nodal demands and pipe friction factors as param-
eters to be calibrated. However, because of the complexity of the
method, such as generating and measuring reflections of water
hammer waves, transient analysis has not been widely used in prac-
tice for practical leak detection applications.

In static hydraulic analysis, an iterative procedure was applied
in the early use of calibration models (Walski 1983, 1986; Bhave
1988). This procedure was implemented to update the unknown
model parameters using heads/flows obtained by solving the water
network equations. Owing to slow convergence rate, these models
are only suitable for small problems or require simplification of the
water network.

The second technique is explicit calibration, which was
employed in Ormsbee and Wood (1986), Boulos and Wood
(1990), and Boulos and Ormsbee (1991). This technique involves
solving an extended set of continuity and head-loss equations
where the calibration problem is required to be even-determined
(i.e., the number of calibrated parameters must be equal to the
number of measurements). Measurement errors are also ne-
glected. When the number of unknown parameters is larger than
the number of measurements, calibration parameters are often
grouped that may result in potentially impractical outputs. There-
fore, explicit calibration models are often used for the purpose of
system analysis.

Implicit calibration is the third type of static calibration model.
This method considers the calibration problem as an optimization
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process and solves it using a hydraulic solver combined with
either a traditional or an evolutionary optimization technique.
The implicit method has been investigated by a majority of the
previous research (e.g., Ormsbee 1989; Lansey and Basnet
1991; Datta and Sridharan 1994; Ormsbee and Lingireddy 1997;
Andersen and Powell 2000; Nagar and Powell 2002; Shang et al.
2006; Preis et al. 2009; Kang and Lansey 2009; Piller et al. 2010;
Hutton et al. 2012).

The uncertainty of results from water network models is caused
by many influences, such as pipe roughness, nodal demands or
valve states (e.g., Martínez et al. 2003; Liberatore and Sechi 2009).
Pipe roughness coefficients and the water demands at nodes are
normally used for the static calibration because of their high impact
on network uncertainty. However, roughness coefficients usually
vary only in the long term; for example, the annual variation of
these parameters was considered in Haddad et al. (2008) and
Seifollahi-Aghmiuni et al. (2013). Therefore, water demands are
the main parameters that affect the uncertainty of the output of
models in the shorter term (e.g., hourly, daily).

The calibration of water demand has been studied using various
techniques, for instance a Predictor–Corrector algorithm (Shang
et al. 2006; Preis et al. 2009), Bayesian recursive approach (Kapelan
et al. 2007), Kalman filtering and tracking state estimator (Kang and
Lansey 2009), and particle filter modeling (Hutton et al. 2012).
Most of these models have been developed based on given frame-
works where the measurement locations were predetermined and
the calibration parameters are grouped to be less than the number
of measurements. The outcomes, therefore, rely on these additional
assumptions, which can lead to large approximations in real water
distribution systems. Only a few papers have directly dealt with
underdetermined systems such as a proportional demand method
(Davidson and Bouchart 2006) and singular value decomposition
(SVD) (Cheng and He 2010; Kun et al. 2015).

Mathematically, the calibration of the demand in water distri-
bution systems in which the number of measurements is less
than the number of calibrated variables, is a nonlinear underde-
termined problem. A local solution of the problem can be found
by a local linearization methods such as QR decomposition,
SVD, or using the Moore-Penrose pseudoinverse matrix in the
Newton-Raphson method. However, because of the possibility
of nonuniqueness of the solutions, the results from mathematical
methods are either far from the actual solution or result in
negative demands at some nodes. Apparently, if the data from
measurement devices are considered as the only known inputs,
the quest for a reliable demand calibration model is still a chal-
lenge for hydraulic researchers.

This paper proposes a methodology for the calibration of water
demand multipliers for an underdetermined system where the
number of measurements is less than the number of demand
parameter variables. The EPANET toolkit (Rossman 2000) is used
to solve the system of water network equations, whereas genetic
algorithms (GAs) are applied to find the best match between
known measurement inputs and their calibrated values. The aver-
age values of multiple GA runs have been found to give the best
estimates of the flow rates and nodal heads and the calibration of
the demands in a system. Different scenarios of measurement
availability in water networks are tested to evaluate the reliability
of the model. Furthermore, this study also investigates the use of a
sampling design technique (Piller 1995) for the selection of opti-
mal measurement locations to improve the quality of the calibra-
tion model. This is followed by application of the model to three
case studies. Finally, conclusions and suggestions for future work
are given.

GA Calibration Model

The proposed model applies an implicit technique for the steady-
state hydraulic simulation where the calibration process is formu-
lated as an optimization problem. The objective function is the
minimization of the differences between simulated values from
the model and their corresponding measured values. The decision
variables are the demand multiplier factors (DMFs) for the nodal
demands as described in the “Decision Variables” subsection.

Objective Function

In this study, a least-squares method is applied for the objective
function. The method minimizes the sum of squared residuals be-
tween the measured and computed values of pipe flow rates and
nodal heads at the measurement locations. The objective function
is given by

MinF ¼
XNH

i¼1

wiðHMeas
i − HSim

i Þ2 þ
XNQ

j¼1

wjðQMeas
j − QSim

j Þ2 ð1Þ

where HSim
i , QSim

j = simulated nodal head and flow rates for the ith
node and jth pipe, respectively; HMeas

i , QMeas
j = measured head and

flow rate at the ith node and jth pipe; NH , NQ = number of head
and flow measurement sites in the network respectively and wi,
wj = weighting factors applied to different terms to ensure they
have similar magnitude and unit of measurement.

Flows and heads and nodal demands are time dependent. How-
ever, they can be considered constant during short periods of time,
e.g., 30 min or 1 h. Because the proposed approach is applied to
each steady state step during an extended period simulation, the
time dependency symbol is not explicitly given in Eq. (1). Mea-
sured values are obtained from field measurement devices or, for
testing the methodology as in our case, these values can be gener-
ated by running a hydraulic simulation toolkit such as EPANET.
Weighting factors wi and wj can be computed by taking the inverse
of the square of the observed values [wi ¼ 1=ðHMeas

i Þ2 and wj ¼
1=ðQMeas

j Þ2, respectively], which is the approach that has been used
in Di Nardo et al. (2015).

Decision Variables

In a WDS model, the water demand at each node is calculated by
the multiplication of a base demand with its corresponding DMF at
each time step t

Dk;t ¼ D0;k × fk;t ð2Þ

where D0;k = base demand at the kth node, which is calculated
using quarter/annual water usage billing information; and fk;t =
demand multiplier factor at the kth node at time step t. The decision
variables for the optimization problem, therefore, are the demand
multiplier factors fk;t (k ¼ 1; : : : ;NDM) at nodal demands at each
time step. A bounded range of demand factors may apply as

fmin
k ≤ fk ≤ fmax

k ð3Þ

where (fmin
k , fmax

k ) = bounds of decision variables. The value of fmin
k

must be equal to or larger than zero, whereas fmax
k can be selected

based on typical values of peaking demand factors such as those
reported in Beal and Stewart (2014). In this paper, a value of fmax

k ¼
1.5 has been selected for all case studies, which also guarantees
that it is much larger than the true multiplier used to generate
the calibration data.
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Fig. 1 shows an example of a GA solution (namely a chromo-
some) for six demand multiplier factors at one time step, which are
chosen from a lower bound of 0.00 and an upper bound of 1.50 with
the increment step of 0.02 (these values would be problem depen-
dent and selected accordingly). Each demand multiplier factor is
coded by an integer number, ranging from 0 to 75. By using this
coding information, the chromosome from GA process is decoded
into a set of demand multiplier factors that are multiplied by the
base demand and can be used for the hydraulic simulation process.

GA Process and Operators

The GA calibration model implemented for this research has been
written in the C-sharp language. The flowchart of the algorithm is
shown in Fig. 2. An initial population of chromosomes is randomly
generated and decoded into corresponding DMF values for each
member. To each node of the network exactly one of these DMFs
is assigned, and EPANET is subsequently called to simulate the
steady state hydraulics of the system. Simulated flows and heads
(QSim, HSim) at the measurement locations are obtained and com-
pared with their measured values through the calculation of the ob-
jective function. The inverse of the objective function is applied to
define the fitness function for each member of the GA population.
This is the measure for the quality of each member, and is used to
determine its opportunity for survival.

By applying GA selection, crossover and mutation, new gener-
ations that inherit features of previous generations are created, and
the calibration process is then repeated until the stopping criteria
are met.

For the selection operator, a study by Goldberg and Deb (1991)
recommended the use of tournament selection because of its better
convergence compared with proportionate selection or ranking
selection [Nicklow et al. (2010) for a review of GAs]. In addition,
Goldberg (1989) also suggested that the two-point crossover

operator with a relatively high probability (Pc ¼ 0.6 to 1.0) and the
bitwise mutation with a probability of Pm ≈ 1=str (str is the length
of the string) can be used to improve the performance of GA mod-
els. Therefore, in the study presented in this paper, tournament
selection, two-point crossover, and bitwise mutation have been ap-
plied in the GA calibration model.

Selection of Measurement Locations

The accuracy of demand calibration models not only depends on
the number of site measurements but also on the locations of the
measurements. The optimal measurement location problem has
been investigated by a number of researchers using various math-
ematical and statistical methods, such as Yu and Powell (1994),
Vítkovský et al. (2003), Berry et al. (2005), Propato et al. (2006),
Krause et al. (2008), and Giustolisi and Ridolfi (2014). In calibra-
tion models, sampling design (SD) methodologies have been ap-
plied for the selection of the observation locations. Piller (1995)
used a SD method to minimize the influence of measurement errors
in the state vector estimation. Bush and Uber (1998) developed
three SD methods derived from D-optimality criteria: max-sum,
weighted sum, and max-min methods to select measurement loca-
tions based on the analysis of the Jacobian matrix. Meier and
Barkdoll (2000) used a GA for the optimal SD problem with the
aim of finding a set of calibration locations which maximizes the
presence of nonnegligible pipe velocities. De Schaetzen (2000)
proposed three SD approaches for the optimal measurement loca-
tions based on shortest path algorithm, rank measurement loca-
tions, and maximization of Shannon’s entropy. Most recently,
Kapelan et al. (2005) developed two SD models using a GA to find
the optimal set of pressure locations, where the first model is for-
mulated as a single objective GA, and the second is modeled as a
multiobjective optimization problem.

In this paper, the SD method proposed by Piller (1995) based
on a greedy algorithm is applied to select the best measurement
locations for the GA calibration model of the demand multiplier
factors. Influences of the measurement locations on the calibration
results, thereafter, are examined by evaluating the convergence of
the GA model.

Sampling Design Method

The hydraulic steady-state of a water network solves a nonlinear
problem of the continuity equations at nodes and the energy equa-
tions for pipes. The sensitivity of the nodal heads and flow rates
with respect to the demand parameters θ at nodes can be com-
puted as

8>><
>>:

AT ∂q
∂θ þGD ¼ 0ns;nd

D
∂q
∂θ − A

∂h
∂θ ¼ 0np;nd

ð4Þ

Fig. 1. Example of GA chromosome and decoding for the demand calibration problem

Fig. 2. Flowchart for the genetic algorithm calibration of demand
multiplier factors
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where A and AT = unknown head node incidence matrix and its
transposed matrix, which provides information about the connec-
tivity of the nodes and the links in the network; q and h = flow
rate and nodal head vectors of np pipes and ns nodes; GD ¼ ns
by nd matrix of nodal demand allocation. As demand aggregation
is not considered in this study, GD = diagonal matrix of the base
demands; and D ¼ np by np diagonal matrix where the diagonal
elements are the derivatives of the head-loss equations of the flows
in pipes. The solution for Eq. (4) is the Jacobian matrix J of flows
and heads with respect to water nodal demands

JðyÞ ¼

8>><
>>:

∂q
∂θ ¼ −½D−1A�½ATD−1A�−1GD

∂h
∂θ ¼ −½ATD−1A�−1GD

ð5Þ

Because of an estimate of the unknown demand parameters (f0),
the SD greedy algorithm method from Piller (1995) iteratively se-
lects the measurement locations (S matrix) by minimizing the in-
fluence of measurement errors on the state vector estimation. The
selection matrix S of the measurement locations is chosen so that
the matrix (ST0) is full rank and the infinity norm of its pseudoin-
verse matrix, jjðST0Þ†jj∞, has a minimum value. The matrix
T0 ¼ E1J0E2 = equilibrium matrix of the Jacobian matrix, where
E1 = premultiplied diagonal matrix to ensure the precision of the
measurements at links and nodes, E2 = postmultiplied matrix cor-
responding to the change of the parameter variables, and J0 ¼
Jðyf0Þ = Jacobian matrix computed by Eq. (5) at f0. In this study,
E1 = identity matrix given that all measurements are assumed to
have the same precision, and E2 is computed by Eq. (6) because
only the demand parameters need to be calibrated

E2 ¼ diagðf0Þ ð6Þ

Table 1 shows an example of a selection matrix where the
elements are assigned a value of 1 if the pipes/nodes are selected
as measurement sites, and 0 for nonselected pipes/nodes. A detailed
explanation of the method is described in Piller (1995).

Case Study 1

The first case study used to evaluate the methodology is shown in
Fig. 3. The network consists of nine pipes, six nodes with unknown
demands (from two to seven) and a 5.0 m-diameter tank at node 8
with a water surface elevation of 15.0 m. The system is fed by a
reservoir at node 1 with the head of 31.5 m. All nodes are assumed
to have an elevation of 0.0 m and base demands of 15.1, 10.3, 11.8,
15.6, 11.3, and 8.4 L=s for nodes 2 to 7, respectively. The demand
multiplier factors assigned for the system (and which will need to
be calibrated by the GA) are X0 = [0.5; 0.6; 0.8; 0.7; 0.6; and 0.9] at
nodes 2 to 7, respectively. Table 2 shows the pipe characteristics for
the test network.

Input for Calibration Model

In practice, input data for the calibration process are usually col-
lected from a supervisory control and data acquisition (SCADA)
system. In this research, input data are generated using the EPA-
NET toolkit as follows: (1) known demand multiplier factors are
assigned to nodal demands; (2) run EPANET to retrieve the corre-
sponding true pipe flow rates and nodal heads (these are then the
measured data); (3) select the flows and heads at the locations
chosen by the SD model as input for the calibration model. The
output flows and heads for selected pipes and nodes based on sim-
ulation of the measured values are used for the calibration process.

The selection of measurement locations for case study 1 using
the SD greedy algorithm method is shown in Table 3. For one avail-
able measurement device, the method selects pipe 1 as the most
sensitive location with respect to the demands, because this pipe
provides the main flow to the system from the source reservoir.

Table 1. Example of Selection Matrix S for Four Measurements in the Nine Pipe Network in Fig. 3

L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 1 N2 N3 N4 N5 N6 N7

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Fig. 3. Case study 1 for calibration problem

Table 2. Pipe Characteristics for Case Study 1

Pipe L (m) D (mm) ε (mm)

2 1,609 254 0.25
3 1,609 254 0.25
4 1,609 203 0.25
5 1,609 203 0.25
6 1,609 203 0.25
7 1,609 254 0.25
8 1,609 203 0.25
9 643.7 254 0.25
1 828 356 0.25

Table 3. Selection of the Measurement Locations for Case Study 1

Number of measurements Location(s) jjðST0Þ†jj∞
1 P1 0.054
2 P1, P9 0.133
3 P1, P3, P9 0.229
4 P1, P3, P7, P9 0.299
5 P1, P3, P7, P8, P9 0.456

Note: Bold values are selected based on the minimum value of jjðST0Þ†jj∞
for the SD greedy algorithm (Piller 1995).
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When two measurement sites need to be selected, pipes 1 and 9 are
chosen as the two most sensitive places for the measurement of the
flow. The availability of these two measurements provides the in-
formation of the total inflow to the network, which is equivalent to
the total water demand of the system. It is noted that the proposed
calibration method is to be applied to cases where the number
of measurement locations is less than the number of unknowns.
Because there are six unknown demand multiplier factors that need
to be calibrated, only up to five available measurement sites are
considered for this test network. From a practical point of view,
having so many measurement devices (relative to the total number
of nodes of six) in a water network would be unreasonable owing
to their cost. However, the main purpose of this section is to evalu-
ate the ability of the GA model to calibrate the demands at the no-
des with acceptable accuracy. Thus, the problems related to device
costs are ignored in this context.

Nonuniqueness of the Solutions

Fig. 4 shows an example of alternative solutions when two
measurement locations at pipes 1 and 9 are available. Fig. 4(a)
presents the true solution of the problem, where the set of six nodal
demands has a total of 48.43 L=s and results in the flow rates of
65.46 L=s and 17.09 L=s for pipe 1 and pipe 9, respectively. In
Figs. 4(b and c), two different sets of nodal demands also cause
the same values of flow rates at the measurement locations.

Apparently, for this network, different sets of six nodal demands
with the total of 48.43 L=s that satisfy the water network equations
can be a possible solution of the problem. Moreover, the number of
possible solutions that match the measured flows will increase if the
constraint of the total demand (given by the measurement in pipes 1
and 9) is released, i.e., the two measurements are located in differ-
ent pipes of the network. A single run of the GA model, therefore,
might converge to any of the nonunique solutions or be trapped at a
local optimal solution where the simulated values cannot perfectly
match the known values at measurement locations. As a result, it
appears that a good approximation of the demand multiplier factors
calibration problem can only be obtained if multiple runs of the GA
model are implemented. The following section shows the results of
the multiple runs of the proposed GA model.

Results of GA Calibration Model

The GA calibration model has been tested with four different
scenarios of measurement locations, from two to five available
measurement sites. To evaluate the influence of the number of
measurement sites on the GA model, the GA parameters are kept
constant during all experiments with the size of population
N ¼ 100, probability of crossover Pc ¼ 0.8, probability of muta-
tion Pm ¼ 0.3 and the number of generations is 1,000. The range of
decision variables is selected from 0 to 1.5 with the increment of

Δθ ¼ 0.02, corresponding to a search space size of 766 ¼ 1.927 ×
1011 possible solutions. In addition, owing to the nonuniqueness
and the stochastic behavior of the problem, for each GA applica-
tion, 100 runs with 100 different seeds were implemented. The
results of different GA runs to the case study 1 are presented in
Figs. 5–7.

Figs. 5(a), 6(a), and 7(a) plot the results of flow rates, nodal
heads, and nodal demands, respectively, from 100 GA runs where
two measurement locations at pipes 1 and 9 are available. As seen
from Fig. 5(a), the calibrated flows at the measurement locations
are well matched with the actual known or measured values for
all 100 GA runs. Specifically, the simulated values at pipe 9 are
17.03� 0.02 L=s (the actual value is 17.03 L=s), the simulated
values at pipe 1 are 65.46� 0.03 L=s (the actual value is
65.46 L=s). On the other hand, large variations of simulated flow
rates are observed in all other pipes of the network for the individ-
ual 100 GA runs, for instance, the range of flow at pipe 6 is from
8.28 to 18.46 L=s, whereas the actual value is 13.83 L=s in
Fig. 5(a).

Similar to the variation of the simulated flow rates is the varia-
tion of nodal heads, as shown in Fig. 6(a). Because of the similarity
of the simulated results for the flow rates at pipes 1 and 9, the es-
timation of nodal heads for the individual 100 GA runs at nodes 2
and 7 are also well matched with the actual values. Meanwhile, the
simulated heads at the remaining nodes (node 3, 4, 5, and 6), com-
pared with actual heads, vary approximately �0.7,�0.9,�1.0, and
�0.8 m, respectively. In Fig. 7(a), the calibrated nodal demands for
the individual 100 GA runs show a large variation at all nodes, start-
ing from 0 L=s up to approximately twice the magnitude of the
actual nodal demands.

It is observed in Figs. 5(b–d), 6(b–d), and 7(b–d) that the addi-
tion of measurement sites to the network increases the accuracy of
the calibration model. As an example, consider the effect of adding
a measurement at a pipe in the network, from three measurements
(at pipe 1, 3, and 9) to four measurements (at pipes 1, 3, 7, and 9).
The simulated flow rates and nodal heads at all nonmeasured
locations are slightly improved. If with three measurement loca-
tions, the simulated flows and the simulated heads at pipe 6 and
node 6 vary for the individual 100 GA runs in the ranges of
½8.79; 17.67� L=s and [26.14, 27.56] m, respectively, with four
measurement locations, the simulated values are improved, varying
in smaller ranges of ½11.71; 16.35� L=s and [26.41, 27.53] m. On
the other hand, the calibrated demands show a significant improve-
ment when the number of measurement sites increased. At node 5,
for instance, the variation of the demand is improved from the
maximum allowable range ½0; 23.4� L=s to ½8.42; 13.01� L=s.

The best GA solution and the average values of 100 GA runs are
also plotted to compare them with the actual solution. The results
show that an increasing number of measurement sites leads to better
accuracy of the best GA result. Owing to the large search space
size, the GA calibration model cannot find the exact solution in

(a) (b) (c)

Fig. 4. Example of nonuniqueness of solutions with two available measurement locations: (a) actual solution; (b) solution 1; (c) solution 2
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(a) (b)

(c) (d)

Fig. 5. Results of flow rates from GA calibration model for case study 1: (a) two measurements at pipes 1 and 9; (b) three measurements at pipes 1, 3,
and 9; (c) four measurements at pipes 1, 3, 7, and 9; (d) 5 measurements at pipes 1, 3, 7, 8, and 9

(a) (b)

(c) (d)

Fig. 6. Results of nodal heads from GA calibration model for case study 1: (a) two measurements at pipes 1 and 9; (b) three measurements at pipes 1,
3, and 9; (c) four measurements at pipes 1, 3, 7, and 9; (d) five measurements at pipes 1, 3, 7, 8, and 9
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any of the 100 GA runs unless five measurement sites are provided.
However, the optimal solution is only found three times out of 100
GA runs in the scenario of five available measurement sites.

The average values of 100 GA runs, on the contrary, yield a very
good match with the actual values of the problem. In all measure-
ment scenarios, the mean flow rates, nodal heads, and nodal de-
mands, which are tabulated in Tables 4–6, respectively, are slightly
different from the actual values, with less than 10% error for the
flow rates, less than 1% error for the nodal heads, and less than
20% error for the nodal demands. The results clearly indicate that
the nodal heads are estimated more accurately than the flows. In
addition, the standard deviations computed based on the 100
GA runs, which represent the variation of the calibrated results,

show that the change of the nodal demands causes greater variation
of the flow rates rather than the nodal heads in this looped network.
As a result, the flow rates are more sensitive to the demands than
the nodal heads.

Effects of Increment of Decision Variables on GA
Calibration Results
One of the factors that may affect the accuracy of the GA calibra-
tion model is the increment (Δθ) of the demand multiplier factors.
The selection of a large increment for the decision variables leads to
faster convergence of the GA model, although it may result in a
coarser approximation of the calibrated demands. Alternatively,
the GA model can give better results if smaller increment steps

(a) (b)

(c) (d)

Fig. 7. Results of nodal demands from GA calibration model for case study 1: (a) two measurements at pipes 1, and 9; (b) three measurements at pipes
1, 3, and 9; (c) four measurements at pipes 1, 3, 7, and 9; (d) five measurements at pipes 1, 3, 7, 8, and 9

Table 4. Comparison of Mean Estimated Pipe Flows and Actual Flows for Case Study 1

Measurements

Pipe P2 P3 P4 P5 P6 P7 P8 P9 P1

Actual flows (L=s) 33.15 20.14 10.70 13.89 13.83 24.75 6.83 17.03 65.46

2 measurements
(P1, P9)

Average flows of 100 GA runs (L=s) 33.38 19.46 10.46 13.33 14.47 23.76 6.93 17.03 65.46
Standard deviation 1.92 2.95 2.41 1.71 2.26 3.94 2.40 0.01 0.01

% ΔðAverage flows; actual flowsÞ 0.67% 3.35% 2.25% 4.01% 4.57% 4.01% 1.38% 0.01% 0.00%
3 measurements
(P1, P3, P9)

Average flows of 100 GA runs (L=s) 33.63 20.14 10.10 12.97 14.18 25.07 7.24 17.02 65.46
Standard deviation 1.61 0.02 1.60 1.49 2.05 3.79 2.55 0.03 0.03

% ΔðAverage flows; actual flowsÞ 1.44% 0.02% 5.60% 6.62% 2.50% 1.28% 5.95% 0.04% 0.00%
4 measurements
(P1, P3, P7, P9)

Average flows of 100 GA runs (L=s) 34.09 20.14 9.66 13.21 14.41 24.75 6.37 17.02 65.46
Standard deviation 1.43 0.04 1.47 1.08 1.00 0.04 2.08 0.03 0.03

% ΔðAverage flows; actual flowsÞ 2.82% 0.00% 9.69% 4.87% 4.18% 0.02% 6.76% 0.02% 0.00%
5 measurements
(P1, P3, P7, P8, P9)

Average flows of 100 GA runs (L=s) 33.97 20.14 9.84 13.23 14.41 24.75 6.84 17.03 65.46
Standard deviation 1.12 0.04 1.14 0.86 0.80 0.06 0.05 0.03 0.04

% ΔðAverage flows; actual flowsÞ 2.46% 0.01% 8.06% 4.70% 4.19% 0.00% 0.15% 0.00% 0.00%

Note: Bold = calibrated values at measurement locations; Δ = differences between calibrated values and actual values.
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Table 5. Comparison of Mean Estimated Nodal Heads and Actual Heads for Case Study 1

Measurements

Node N2 N3 N4 N5 N6 N7

Actual head (m) 30.49 27.53 26.39 28.80 27.07 25.33

2 measurements (P1, P9) Average head of 100 GA runs(m) 30.49 27.48 26.39 28.89 26.97 25.33
Standard deviation 0.00 0.33 0.44 0.50 0.39 0.00

% ΔðAverage head; actual headÞ 0.00% 0.17% 0.01% 0.31% 0.39% 0.00%
3 measurements (P1, P3, P9) Average head of 100 GA runs(m) 30.49 27.44 26.30 28.72 26.88 25.33

Standard deviation 0.00 0.28 0.28 0.50 0.33 0.00
% ΔðAverage head; actual headÞ 0.00% 0.32% 0.34% 0.27% 0.72% 0.00%

4 measurements (P1, P3, P7, P9) Average head of 100 GA runs (m) 30.49 27.36 26.22 28.80 26.92 25.33
Standard deviation 0.00 0.25 0.25 0.00 0.25 0.00

% ΔðAverage head; actual headÞ 0.00% 0.61% 0.64% 0.00% 0.55% 0.00%
5 measurements (P1, P3, P7, P8, P9) Average head of 100 GA runs(m) 30.49 27.38 26.25 28.80 26.93 25.33

Standard deviation 0.00 0.20 0.20 0.01 0.20 0.00
% ΔðAverage head; actual headÞ 0.00% 0.53% 0.55% 0.00% 0.54% 0.00%

Table 6. Comparison of Mean Calibrated Nodal Demands and Actual Demands for Case Study 1

Measurements

Node N2 N3 N4 N5 N6 N7

Actual demand (L=s) 7.55 6.18 9.44 10.92 6.78 7.56

2 measurements (P1, P9) Average demand of 100 GA runs (L=s) 8.32 6.98 9.01 9.29 8.06 6.76
Standard deviation 4.53 3.99 4.86 5.78 4.73 3.30

% ΔðAverage demand; actual demandÞ 10.20% 13.00% 4.60% 14.89% 18.93% 10.53%
3 measurements (P1, P3, P9) Average demand of 100 GA runs (L=s) 6.76 6.26 10.03 10.89 8.45 6.05

Standard deviation 3.93 3.51 1.61 5.51 4.25 2.63
% ΔðAverage demand; actual demandÞ 10.52% 1.23% 6.30% 0.26% 24.63% 19.98%

4 measurements (P1, P3, P7, P9) Average demand of 100 GA runs (L=s) 6.62 7.58 10.48 10.34 7.57 5.85
Standard deviation 1.43 3.06 1.48 1.00 3.54 2.24

% ΔðAverage demand; actual demandÞ 12.32% 22.63% 10.98% 5.34% 11.70% 22.62%
5 measurements (P1, P3, P7, P8, P9) Average demand of 100 GA runs (L=s) 6.73 6.98 10.30 10.34 8.02 6.04

Standard deviation 1.10 1.11 1.15 0.81 1.67 2.01
% ΔðAverage demand; actual demandÞ 10.80% 13.00% 9.15% 5.31% 18.33% 20.04%

Fig. 8. Calibrated nodal demands and estimated pipe flows with different increment steps for case study 1
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are selected. However, the model requires more computational ef-
fort to converge attributable to the larger search space size. To
evaluate the effect of increment steps on GA calibration results,
different increment steps of 0.1, 0.02, 0.01, and 0.002 were selected
and tested in the case of four available measurement locations at
pipes 1, 3, 7, and 9. The average calibrated demands and estimated
flows are shown in Fig. 8.

The results of the GA model for different increment steps of the
decision variables are approximately comparable. Consider the
average calibrated demand at node 7 as an example. The largest
demand error (22.62%) occurs at Δθ ¼ 0.02, followed by 21.22%
at Δθ ¼ 0.1, 20.23% at Δθ ¼ 0.01, and 15.2% at Δθ ¼ 0.002.
With regard to the simulated flows, the estimation errors for differ-
ent increment steps are relatively small. The maximum errors all
occur at pipe 4 and are of almost the same magnitude, 6.28, 8.02,
8.03, and 9.69%, corresponding to Δθ ¼ 0.002, 0.01, 0.1, and
0.02, respectively. Hence, for this case study, it can be concluded
that the GA model is not particularly sensitive to the increment of
the decision variable in the range of 0.002 to 0.1.

Effects of Measurement Locations on GA Calibration
Results
The GA calibration results showed that, even with a very large
search space, the GA model is able to find the exact solution of
the problem for at least one of the 100 GA runs. Thus, the effects
of measurement locations on the GA calibration results can be
evaluated by the number of times the algorithm converges to the
true solution when different combinations of measurement sites
are tested.

In this investigation, it is assumed that there are four measure-
ment sites available. Four different combinations of measurement
sites are tested to evaluate the convergence of the GA model, which
is shown in Table 7.

The measurement locations in the first experiment are selected
by the SD greedy algorithm method, and the four flow measure-
ment sites are placed at pipes 1, 3, 7, and 9. In the second and
the third experiments, two flow measurements are kept at the same
locations at pipes 1 and 9, whereas the two other measurement lo-
cations are selected randomly. This leads to two flow measurement
sites being located at pipes 6 and 8 for experiment 2 and two pres-
sure measurement sites located at nodes 3 and 6 for experiment 3.
The last experiment involves the presence of four pressure meas-
urement sites at nodes 2, 4, 5, and 7.

The GA parameters of the GA model were kept constant and set
equal to the values presented in the previous section, except for the
increment of the decision variables. The increment in this test was
selected Δθ ¼ 0.1, so that it was possible to fully enumerate the
search space (16.77 × 106 possible solutions). The enumeration
of the problem shows that with this relatively small search space
size, the problem has a unique optimal solution for all four experi-
ments. In this case, the objective function reaches exactly zero
when the calibrated demand multiplier factors are identical to the
actual demand multiplier factors assigned to the network. The num-
ber of convergences to the optimal solution therefore, is the number
of times out of 100 GA runs in which the GA model can find the
exact solution of the problem. As seen in Table 7, the first experi-
ment results in the highest number of convergences with 16 times
out of 100 runs. The second experiment has seven times, followed
by the fourth and the third experiment where the number of con-
vergences is five times and four times out of 100 runs, respectively.
The output of the GA calibration model in this case study, there-
fore, seems to be sensitive to the locations and the types of the
measurement in the network.

Case Study 2

The second case study is considered to compare the performance of
the GA model with the SVD model from Cheng and He (2010).
The network has nine nodes, 12 pipes, one tank, one pump, and
one reservoir. The network topology and all information including
the pipe parameters, length, roughness, and pump characteristic can
be found from the EPANET example (Rossman 2000), namely the
Net1 network (Fig. 9).

The GA calibration model (with a population size of N ¼ 100,
probability of crossover Pc ¼ 0.8 and probability of mutation
Pm ¼ 0.15) was tested for three scenarios of measurement sites

(a) (b) (c)

Fig. 9. Case study 2 network for calibration problem: (a) test 1 (three heads measured); (b) test 2 (three flows measured); (c) test 3 (two flows, one
head measured)

Table 7. Effects of Measurement Locations on GA Calibration Results

Experiment
Measurement
locations

Number of convergences
to optimal solution
out of 100 runs Note

1 P1, P3, P7, P9 16 SD method
2 P1, P6, P8, P9 7 Random
3 P1, P9, N3, N6 4 Random
4 N2, N5, N4, N7 5 Random

© ASCE 04016044-9 J. Water Resour. Plann. Manage.
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according to Cheng and He (2010). In the first test, three pressure
sensors are assumed to be located at nodes 3, 5, and 8. The second
test assumes the flow meters are set at pipes 2, 4, and 11, whereas
the third test assumes two flow sensors and a pressure sensor are
placed at pipes 7 and 11 and node 4, respectively. The calibrated
demands and the differences between real demands and calibrated
demands of the SVD model and GA model are shown in Table 8.

For all three tests, the average of 100 runs of the GAmodel gives
more reasonable results for the nodal demands. In test 1, whereas
the SVD model leads to large differences between actual and
calibrated values at nodes 3 and 8 (51.09 and 47.33%, respec-
tively), the average GA results in relatively small errors (6.85 and
6.28%) at the corresponding nodes. In test 2, the largest error of the
two models occurs at node 8, with an error of 39.75% for the SVD
model and a slightly smaller error of 35.7% for the GA model. The
last test presents the best performance of the GA model with the
maximum error of 22.16% at node 6, whereas the SVD model still
remains a large error of 55.28% at node 5. For estimating the total
water demands of the system (the last row of Table 8), both models
achieve reasonable results, especially for the SVD model in tests 2
and 3. The total calibrated demand of the GA model only matches
with the real total demand in test 3, where one of the flow sensors is
placed at pipe 7 to measure the flow from the tank to the system.
This highlights the importance of the selection of the optimal meas-
urement locations. Reasonably accurate results can be achieved if
information related to the total flow is provided.

Case Study 3

The third test network aims at testing the performance of the pro-
posed methodology for a larger network. This network is provided
by EPANET, namely the Net2 network, which consists of 40 pipes
and 35 nodes, one tank and one pump station. The pump station is
modeled as a node with negative demand, which feeds water into
the network. It is assumed that up to three measurement devices
are able to be installed in the network. In addition, the pump flow
is also assumed to be known. The network diagram is shown in
Fig. 10.

The SD greedy algorithm model for the selection of measure-
ment locations found that, for this network, the flows in pipes are
much more sensitive to the demands than the heads at nodes. Three
flow measurement sites are suggested to be located at pipes 12, 22,
and 29. The GA calibration model of the Net2 water network was
implemented with the following characteristics: (1) the number of
decision variables is 32 corresponding to a total of 32 nodal demand
multiplier factors of the network; (2) the size of the choice table for
the decision variables is selected from fmin

k ¼ 0 to fmax
k ¼ 1.5; (3) a

population of N ¼ 500, probability of crossover Pc ¼ 0.8, proba-
bility of mutation Pm ¼ 0.04 and the number of generations N ¼
1,000 were selected for the GA model parameters; (4) to evaluate
the effects of the increment of the decision variables, different in-
crement steps of Δθ ¼ 0.0005, 0.005, 0.02, and 0.1, respectively,
were examined.

Table 8. Comparison of SVD Model (Cheng and He 2010) and GA Model for Case Study 2

Node
number

Real DM

Test 1 Test 2 Test 3

SVD GA ΔSVD ΔGA SVD GA ΔSVD ΔGA SVD GA ΔSVD ΔGA

(GPM) (GPM) (GPM) (%) (%) (GPM) (GPM) (%) (%) (GPM) (GPM) (%) (%)

2 150 185.78 118.67 23.85 20.89 145.67 157.94 2.89 5.29 158.49 150.09 5.66 0.06
3 100 151.09 93.15 51.09 6.85 112.80 101.88 12.80 1.88 122.65 85.76 22.65 14.24
4 300 216.44 327.15 27.85 9.05 200.54 265.88 33.15 11.37 279.36 314.48 6.88 4.83
5 50 49.26 50.34 1.48 0.69 49.49 51.63 1.02 3.25 77.64 52.81 55.28 5.62
6 50 64.01 35.90 28.02 28.20 62.11 38.90 24.22 22.20 58.43 38.92 16.86 22.16
7 150 159.26 164.15 6.17 9.43 151.05 142.06 0.70 5.29 127.40 153.85 15.07 2.57
8 150 221.00 140.58 47.33 6.28 209.63 96.45 39.75 35.70 157.52 141.97 5.01 5.35
9 150 129.21 131.45 13.86 12.36 164.80 168.36 9.87 12.24 114.76 162.12 23.49 8.08
ΣDM 1,100 1,198.0 1,061.4 8.91 3.51 1,099.9 1,043.1 0.00 5.17 1,100 1,100 0.00 0.00

Note: Bold = cases where the GA model finds better calibrated results.

Fig. 10. Case study 3 water distribution network (Net2 network)
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A hundred runs of the GA model were undertaken on the Intel fi
Core i5 (2.9 GHz) computer. The total elapsed run time was ap-
proximately 16.3 h, or approximately 10 min for one run. Table 9
summarizes the average errors of the nodal demands, flow rates,
and nodal heads in comparison with the true value at nodes and
pipes in the network. The errors are approximately equal for four
different increment steps of the decision variables. The average er-
rors fluctuate slightly approximately 15% for the demands, 10% for
the flows, and only 0.01% for the nodal heads. Hence, this case
study also shows that the GA calibration model is not sensitive to
the increment selected for the decision variables.

Figs. 11 and 12 plot the outcome from the GA model corre-
sponding with the increment value Δθ ¼ 0.02 as a demonstration

of the results. The bottom graph of each figure presents the average
calibrated/simulated values and the true values of the nodal de-
mands/flow rates. The top graph of each figure shows the error per-
centage of the difference between the calibrated/simulated values
and their true values. Because of the relatively accurate estimation
of the nodal heads, the plot of the simulated heads and actual heads
is not shown here.

Let us consider three groups of the demands (0 to 10, 10 to 30,
and >40 GPM). Fig. 11 shows that large calibration percentage
errors only occur in the first group, where the demands are small.
The errors in this group are within 16.5 and 45.48%. However, all
the differences are less than 1.52 GPM in absolute value. The sec-
ond group shows a very good approximation of the demand, as the
percentage errors vary from 0.48 to 8.51%. The last group, which
contains only node 11 with the actual demand of 43.82 GPM, also
obtains a relatively accurate calibrated result of 49.47 GPM, equiv-
alent to an error of 12.89%.

Similarly, Fig. 12 shows that the flow estimation is generally
much more accurate for the pipes with high flows than the
pipes with low flows. The largest estimation error, approximately
84.8%, occurs at pipe 36 at which the actual flow is 0.63 GPM and
the simulated flow is 1.16 GPM. For all the pipes that have actual
flows larger than 30 GPM, the estimation errors are smaller
than 6.5%.

Table 9. Summary of Average GA Output Errors for Net2 Network with
Different Increment Steps

Increment
step

Average demand
errors (%)

Average flow
error (%)

Average head
error (%)

0.1 16.41 10.72 0.009
0.02 14.74 10.81 0.009
0.005 15.19 9.96 0.010
0.0005 15.30 10.78 0.011

Fig. 11. Comparison of average calibrated demands (100 GA runs) with actual demands of Net2 network

Fig. 12. Comparison of average simulated flows (100 GA runs) with actual flows of Net2 network
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Conclusions and Recommendations

Calibration of water demand in real water distribution systems is
complicated by the limited number of measurement sites. A GA
model has been developed for the calibration of the demand multi-
plier factors for underdetermined water distribution systems where
the number of measurement locations is less than the number of
unknown parameters. The approach for estimation of demand
multiplier factors using GA optimization has been tested on three
case studies. The first case study has shown that the average values
of multiple runs of the GA model can deliver a very good approxi-
mation of the water demand multipliers with little information from
the SCADA system. The first case study also shows that the loca-
tion of the measurement sites does influence the performance of the
GA model. The second case study demonstrates the advantage of
the GAmodel in comparison with the singular value decomposition
model. It also confirms the conclusions made from the first case
study about the sensitivity of the GA model to the measurement
locations. Therefore, the GA model is suggested to be implemented
in combination with a supporting tool for the selection of optimal
measurement locations such as the SD greedy algorithm model.
The third case study validates the approach for a slightly larger
sized network, which again exhibits the superior performance of
the GA model. The model run time for this last case study (approx-
imately 16.3 h) might be a disadvantage of the GA model. The
model might, therefore, be suitable for the networks at which the
SCADA data are provided on a daily basis, or if real-time calibra-
tion is required, parallel computer systems would need to be imple-
mented for the GA model.

Future research efforts will involve finding advanced methods
for the calibration of the demand to reduce the computational time.
In addition, uncertainty of the calibration model is another consid-
eration because of the presence of errors (or noise) in measurement
data. Finally, addressing the problem of leakage in the network is
also important in achieving reliable results.
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Particle Filter–Based Model for Online Estimation of
Demand Multipliers in Water Distribution

Systems under Uncertainty
Nhu C. Do1; Angus R. Simpson, M.ASCE2; Jochen W. Deuerlein3;

and Olivier Piller4

Abstract: Accurate modeling of water distribution systems is fundamental for planning and operating decisions in any water network.
One important component that directly affects model accuracy is knowledge of nodal demands. Conventional models simulate flows
and pressures of a water distribution network either assuming constant demand at nodes or using a short-term sample of demand data.
Given the stochastic behavior of water demand, this assumption usually leads to an inadequate understanding of the full range of opera-
tional states in the water system. Installation of sensor devices in a network can provide information about some components in the system.
However, the requirement for a reliable water distribution model that can assist with understanding of real-time events over the entire
water distribution system is still an objective for hydraulic engineers. This paper proposes a methodology for the estimation of online
(near-real-time) demand multipliers. A predictor-corrector approach is developed that (1) predicts the hydraulic behaviors of the water
network based on a nonlinear demand prediction model; and (2) corrects the prediction by integrating online observation data. The standard
particle filter and an improved particle-filter method that incorporates the evolutionary scheme from genetic algorithms into the resampling
process to prevent particle degeneracy, impoverishment, and convergence problems, are investigated to implement the predictor-corrector
approach. Uncertainties of model outputs are also quantified and evaluated in terms of confidence intervals. Two case studies are presented
to demonstrate the effectiveness of the proposed particle-filter model. Results show that the model can provide a reliable estimate of
demand multipliers in near-real-time contexts. DOI: 10.1061/(ASCE)WR.1943-5452.0000841. © 2017 American Society of Civil
Engineers.

Author keywords: Particle filters; Sequential Monte Carlo method; Real-time demand estimation; Water distribution systems; Uncertainty.

Introduction

Water distribution systems (WDS) are constructed to supply water
for domestic, industrial, and commercial consumers. The design,
operation, and management of these distribution systems is usually
supported by the application of hydraulic models, which are built to
replicate the behavior of real systems. These conventional models
simulate flows and pressures of a WDS either under steady-state
conditions (constant demands and operational conditions) or under
a short-term extended-period simulation (time-varying demand
and operational conditions), for example a day or a week (USEPA
2005). The outputs from hydraulic models, therefore, usually re-
present the distribution system’s behavior during the sampling

period (Preis et al. 2009). This leads to an inadequate understanding
of the full range of operational states in the water system.

The installation of sensor devices as well as the supervisory
control and data acquisition (SCADA) systems within the WDS can
provide information on the status of some components in the sys-
tem. However, use of these additional data is currently limited to
computing gross differences between the model outputs and reality
(Kang and Lansey 2009). Modification of the hydraulic models to
maintain consistency between observed data and simulated data is
still a challenge that needs to be dealt with. Estimation of the model
states/parameters, hence, is required so that the model is able to
represent the real system.

Estimation is the process of fitting the outputs from the com-
puter model, usually pressures and flow rates at particular locations
in the water network, with field measurements, in order to calculate
unknown variables of interest. Initial estimation studies in WDSs
were pioneered by Rahal et al. (1980), Walski (1983), and Bhave
(1988) with the proposal of the ad hoc (trial-and-error) calibration
schemes, in which an iterative process to update unknown model
parameters was implemented. Because of the slow convergence
rate, this method is only applicable to small water networks. Later,
explicit calibration methods were introduced (Ormsbee and Wood
1986; Boulos and Wood 1990; Boulos and Ormsbee 1991). These
methods solved an even-determined set of water network equations
where the number of unknown parameters was grouped to be equal
to the number of measurements. Because the measurement errors
were also neglected, these methods usually did not represent real-
world practical outputs. Therefore, explicit calibration models
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were often used to analyze historic events in water systems (Savic
et al. 2009).

Subsequently, implicit methods were developed using either
mathematical techniques or evolutionary optimization techniques,
for example, the complex method (Ormsbee 1989), weighted least-
squares approaches (Lansey and Basnet 1991; Datta and Sridharan
1994), singular-value decomposition (SVD) method (Sanz and
Pérez 2015), or genetic algorithms (GA) (Preis et al. 2009; Abe
and Peter 2010; Do et al. 2016). These methods have drawn a high
degree of attention from researchers. However, these models are
mostly impractical because of either a requirement for a large quan-
tity of good observation data (Savic et al. 2009) or ignoring model
uncertainties. Furthermore, few approaches have attempted to es-
timate model parameters and model states in conjunction with
model uncertainties. Bargiela and Hainsworth (1989) found that
a good approximation of pressure uncertainty bounds can be ob-
tained by a linearization of the mathematical network model. Piller
(1995) and Bush and Uber (1998) used a sampling design method
to estimate the model parameters and approximate the uncertain-
ties. Lansey et al. (2001) applied a first-order approximation
method to identify pipe-roughness uncertainty. Nagar and Powell
(2002) applied a linear fractional transformation and semidefinite
programming method to estimate pressure heads and their confi-
dence bounds. In addition, some probabilistic methods (Xu and
Goulter 1998; Kapelan et al. 2007; Hutton et al. 2013) have also
been investigated for the estimation of model parameters. Given the
complexity of the uncertainties, estimation methods associated with
uncertainty quantification are still a continuing research area, espe-
cially for real-time estimation purposes.

The complexity of uncertainties in WDS modeling has been
addressed by Hutton et al. (2012b), who divided uncertainty into
three categories: (1) structural uncertainty; (2) parameter uncer-
tainty; and (3) measurement/data uncertainty. Structural uncertainty
derives from the mathematical representation of the real system,
such as network skeletonization and model aggregation. Skeleton-
ized and/or aggregated models are predominantly used instead of
all-pipes models to reduce the complexity of the network being
analyzed, as well as to increase computational speed. It has been
shown that skeletonized/aggregated network models can closely re-
semble the behavior of full-sized systems under steady-state con-
ditions (e.g., Perelman et al. 2008; Preis et al. 2011). The second
category, parameter uncertainty, refers to the errors of the param-
eters used to represent system components (e.g., pipe roughnesses
or pipe diameters). According to Kang and Lansey (2009), these
parameters are time-invariant or vary slowly over time. Hence, this
source of uncertainty can be neglected for real-time estimation
problems. Finally, measurement/data uncertainty is the uncertainty
from measurement devices and, more importantly, uncertainty from
the inability to capture the temporal and spatial variation of con-
sumer demand. Because of their high impact on model uncertainty
during short periods of time (or in real-time), nodal demands are
therefore usually selected as the time-varying parameters to be
estimated.

The issue of short-term demand forecasting and real-time de-
mand estimation under uncertainties has been considered in some
recent studies. Short-term demand forecasting and demand estima-
tion are two different problems; the former focuses on predicting
future demand (e.g., Cutore et al. 2008; Hutton and Kapelan 2015;
Alvisi and Franchini 2015). The latter focuses on estimation of the
current demand, which is also the main interest of this paper. This is
useful because demand estimation can be used at regular time steps
to verify the accuracy of a predicted value and update the system
operations. The problem of near-real-time demand estimation has
been studied using different approaches. Shang et al. (2006) applied

an extended Kalman filter, an iterative linear algorithm for nonlin-
ear state estimation, to approximate water demand patterns. In that
paper, water demand patterns were predicted by an autoregressive
integrated moving average (ARIMA) time-series model and were
refined using real-time observations. Similarly, Hutton et al.
(2012a) introduced a particle-filter method and an ensemble Kal-
man filter for the estimation of a single district meter area, which
was assumed to follow a linear time-series model. The particle-
filter model was implemented with and without measurement error
to show its effect on the demand prediction uncertainty.

An alternative for the demand estimates has been offered by
Kang and Lansey (2009). In their paper, two comprehensive meth-
ods for the demand estimation problem were introduced, the
Kalman filter and the tracking state estimator (TSE). For the
Kalman-filter model, water demand patterns were also assumed to
follow a linear time-series model, whereas the TSE model involved
recursively computing the sensitivity matrix (i.e., Jacobian matrix
of the measurement vector with regards to the change in the state
vector). The uncertainties of the demand estimates were suggested
to be quantified by applying the first-order second-moment for-
mula. The two models were then tested on a case study (116 pipes,
90 nodes, 1 source, and 1 tank) with an assumption that 19 flow
measurement sites and 5 pressure measurement sites were avail-
able. The demand estimation problem is sensitive to the locations
and types of the measurements (Do et al. 2016). Demand estimation
models usually perform better with flow measurements rather
than pressure/head measurements. However, given the cost and
difficulty of installing flow-measurement devices compared to
pressure-measurement devices, flow-measurement devices are usu-
ally not as commonly used as pressure-measurement devices in real
WDS networks.

In summary, water demand in WDS studies is usually assumed
to be known and varied based on a diurnal curve. However, this
assumption might lead to large approximations of WDS states
in real-time due to unpredictable variation in water demand. Some
efforts have been focused on real-time demand estimation. By as-
suming that the water demand follows a linear time-series predic-
tion model, these models approximated the water demand patterns
with some linear algorithms such as the Kalman filter or extended
Kalman filter. Given the nonlinear stochastic nature of the water
demand, as well as the need for practical applicability, real-time
estimation modeling of WDS still requires much research effort.

This paper presents a model framework for the online (near-real-
time) demand estimation of a WDS, named the DMFLive model.
A predictor-corrector methodology is adopted in the DMFLive
model to (1) predict the hydraulic behaviors of the water network
based on a nonlinear demand prediction submodel; and (2) correct
the prediction by using online pressure observation data. A particle-
filter method is applied to implement the predictor-corrector
approach. The typical problems of the particle-filter approach
(particle degeneracy, impoverishment and particle convergence) are
investigated by two different resampling schemes: (1) systematic
resampling (SR) algorithm; and (2) systematic resampling inte-
grated with a genetic algorithm process (SRGA). Uncertainties of
model outputs are quantified and evaluated in terms of confidence
intervals.

The paper is structured as follows. First, an explanation of the
state estimation problem and its conceptual solution is introduced.
Second, the basic concepts of particle-filter methods to solve the
estimation problem are explained. This is followed by a detailed
description of the particle-filter methodology applied for water
demand-state estimation in WDS. Two case studies are then used
to evaluate the model. Finally, conclusions and suggestions for
future work are given.
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State Estimation Problem and Its Conceptual
Solution

The problem of state estimation involves finding a target state
vector ½x�k that evolves according to a discrete-time stochastic
model (Ristic et al. 2004)

½x�k ¼ fk−1ð½x�k−1; υk−1Þ ð1Þ
where k = index of discrete time steps; fk−1 = known, possibly
nonlinear function of the previous state; and υ = process noise
sequence. The value of ½x�k can be found from measurements zk,
which are related to ½x�k via the following measurement equation:

zk ¼ hkð½x�k;wkÞ ð2Þ
where h = known implicit or explicit, possibly nonlinear function;
and w = measurement noise sequence. The noise terms υk and wk
are usually assumed to be white noise and independent.

From statistical and probabilistic perspectives, the state model
can be represented by a probability density function (PDF). The
state estimation problem, therefore, becomes a process of recur-
sively quantifying some degree of belief in the state xk given the
measurement series Zk (zi; i ¼ 1; : : : ; k) up to time k. This process
can be obtained by two stages: prediction and correction/update.
The prediction stage involves applying the system model to predict
the prior PDF of the state

pðxkjZk−1Þ ¼
Z

pðxkjxk−1Þpðxk−1jZk−1Þdxk−1 ð3Þ

where pðxkjxk−1Þ = probabilistic model of the state model, or the
transitional probability density function, which is defined by the
system equation Eq. (1) with the known statistics of υk−1; and
pðxk−1jZk−1Þ = PDF of the model at time k − 1, which is supposed
to be known.

The correction/update stage implements Bayes’ rule to compute
the posterior probability density of the state model when the meas-
urement zk becomes available

pðxkjZkÞ ¼
pðzkjxkÞpðxkjZk−1ÞR
pðzkjxkÞpðxkjZk−1Þdxk

ð4Þ

where pðzkjxkÞ = likelihood function, defined by the measurement
equation [Eq. (2)] with the known statistics of wk.

According to Ristic et al. (2004), the recursive propagation of
the posterior PDF shown in Eqs. (3) and (4) is only a conceptual
solution that cannot be analytically solved. The solution requires
the storage of a fully non-Gaussian PDF, corresponding to an infini-
tive dimensional vector. Because the true solution is too complex
and almost impossible to compute, an implementation of approxi-
mation techniques or suboptimal Bayesian algorithms has been
developed. The following section introduces an approximation
technique, namely the particle filter, to solve the aforementioned
state estimation problem.

Particle Filters

Over the last decade, particle filters have been successfully applied
to the state and parameter estimation of complex system models
in various environmental engineering fields, such as hydrology
(Moradkhani et al. 2005; Weerts and El Serafy 2006), hydraulic
(Hutton et al. 2012a), and geoscience (van Leeuwen 2010). Unlike
the Kalman filter (for linear problems), extended Kalman filter
(which requires a linearization of the nonlinear problems), or the

unscented Kalman filter (which uses a small number of determin-
istically chosen samples), the particle filter can use a large number
of Monte Carlo samples to estimate fully nonlinear, possibly non-
Gaussian target states. The key concept of a particle filter is to
approximate the posterior PDF of states, defined in Eq. (4), by an
ensemble of samples (Np), each of which contains an associated
weight ðwi

kÞ, and to compute estimates based on these samples and
weights

pðxkjZkÞ ≈
XNP

i¼1

wi
kδðxk − xikÞ ð5Þ

wi
k ¼ wi

k−1
pðzkjxikÞpðxikjxik−1Þ

pðxikjxik−1; zkÞ
ð6Þ

where δ = Dirac delta function; i = particle index; and
pðxikjxik−1; zkÞ = importance density function. In order to sim-
plify the weight update of the particle, the importance density
function is usually chosen as the transitional density function,
pðxikjxik−1; zkÞ ¼ pðxikjxik−1Þ, which yields with scaling

wi
k ¼

pðzkjxikÞPNP
i¼1 pðzkjxikÞ

ð7Þ

These equations form the basis of most particle filters. However,
it has been shown by Doucet et al. (2000) that the variance of the
weights will increase over time if the particle-filtering process is
limited at executing only these equations. Because the particles
drift away from the truth as well as obtain negligible weights
(Moradkhani et al. 2005), the model will fail to estimate the real
states of the system. To avoid this problem, a resampling process,
which replaces samples with low importance weights with samples
having high importance weights, is added to the procedure of
particle-filter models. In this paper, the systematic resampling
method, also called stochastic universal resampling, introduced by
Kitagawa (1996), was selected for the resampling procedure of the
particle-filter model. A comprehensive explanation of the system-
atic resampling and a full review of particle-filtering methods have
been provided by van Leeuwen (2009). In addition, an improved
resampling method that integrates the evolutionary scheme from
genetic algorithms into the resampling process is also proposed to
improve the efficiency of the particle-filter model.

Particle Filters Applied for Water Demand State
Estimation in WDS

In this paper, the predictor-corrector approach implemented by a
particle-filter model for the estimation of water demands in real-
time is proposed, namely the DMFLive model. The demand-
prediction submodel presented by van Zyl et al. (2008) has been
applied to predict the water demand multipliers (DMF) in a
WDS. The hydraulic EPANET toolkit, which solves the hydrau-
lic equations, was used to compute the model equivalent of the
measurement data (i.e., nodal pressures, flow rates at measurement
locations, or final tank levels at the end of each time step). These
computed values then were integrated with the corresponding
field measurements in order to correct/update the particle weights.
Particles were, thereafter, resampled (with either SR or SRGA)
and subsequently used as input for the prediction model. Simulta-
neously, the estimated demand multipliers were computed and
selected for uncertainty quantification. The uncertainties of the
demand multipliers caused by the errors from measurement devices

© ASCE 04017065-3 J. Water Resour. Plann. Manage.
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were computed using the first-order approximation formula. The
flowchart of the DMFLive model is shown in Fig. 1.

Initialization of Particles

The DMFLive model starts with a creation of an ensemble of the
particles (Np). The particles are the demand residuals, driven by the
demand prediction model to predict the demand multipliers. In ad-
dition, each particle is assigned an initial weight equal to 1=Np.

Demand Prediction Submodel

The initial particles (for the first iteration) or the particles after re-
sampling (from the second iteration onwards) are transferred to the
demand prediction submodel. Demand residual information carried
by the particles is used to track the states and predict the demand
multipliers via the following equations (van Zyl et al. 2008):

ln xjk ¼
Xm
i¼1

ϕj
i ln x

j
k−i þ ln υjk ð8Þ

where xjk = demand residual state at time-step k of the jth DMF;
i = lag counter; m = number of autocorrelation lags [for the state
estimation problem, m ¼ 1 as referred to Eq. (1)]; ϕi = autoregres-
sion coefficient for lag i; and υk (0, σh) = white noise with mean
zero and standard deviation σh.

The jth DMF is calculated

DMFjk ¼ Cj
kx

j
k ð9Þ

where Cj
k = value at time k of a typical diurnal demand pattern of

the jth DMF. The C value can be identified based on meter infor-
mation of different water users [e.g., as discussed by Beal and
Stewart (2014)].

Real-Time Hydraulic Data

In practice, hydraulic data can be captured in real-time via the
SCADA system or sensor devices. For the DMFLive model, two
types of real-time hydraulic data are required: (1) tank levels and
pump and valve statuses; and (2) nodal heads and pipe flow
rates at measurement locations. Tank levels and pump and valve
statuses are used as boundary conditions for the hydraulic sim-
ulation of the water network model whereas the observations at

measurement locations are used to correct/update the weight of
the particles.

In order to validate the performance of the proposed model as
well as its practical applicability to real WDS networks, all case
studies in this paper were assumed to have pressure measurements
only. The input data sets to evaluate the DMFLive model were syn-
thetically generated based on deterministic models, where the water
network parameters are fully known: (1) known demand patterns
were assigned to nodal demands; (2) EPANET was run to record
tank levels and pump statuses and pressures at selected measure-
ment locations; and (3) to introduce the measurement errors, a nor-
mal distributed random error in an allowable range (�Δmeas) was
added to each nodal pressure.

Simulator

The hydraulic behavior of the water distribution network at each
time step was simulated using an EPANET steady-state simulation.
The inputs were the predicted DMFs, tank levels, and pump and
valve statuses. The water network characteristics such as pipe
lengths, diameters, roughness coefficients, node elevations, pump
curves, etc., were assumed to be known and constant. The outputs
from the EPANET hydraulic solver are the model equivalent of the
observations, i.e., simulated nodal heads and pipe flow rates at
measurement locations.

Corrector

The weights of the particles were corrected/updated by associating
the simulated heads and flows with the actual observations via
Eq. (7) where the likelihood function was assumed to be Gaussian,
as follows:

pðzkjxikÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πjRjp ef−ð1=2Þ½zk−hðxikÞ�T ½R�−1½zk−hðxikÞ�g ð10Þ

where hðxikÞ = model equivalent of the observations zk (simulated
nodal heads and flow rates); and [R] = covariance matrix of the
observation errors, which in general is caused by errors from two
main sources: forward model error and measurement device error.
The forward model error

Δtrue ¼ ½Z�true − hðxtrueÞ ð11Þ

Fig. 1. Process of particle-filter model for real-time demand estimation in WDS
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is the difference between the true observation vector, ½Z�true, and the
corresponding vector output from the hydraulic simulation model
EPANET using the true state xtrue. The true observation vector is a
theoretical vector that represents observations measured by perfect
measurement devices. It is linked to the actual measured values via
the following expression:

Z ¼ ½Z�true þΔmeas ð12Þ

The observation error covariance matrix, therefore, can be esti-
mated as ½R� ¼ Rtrue þ Rmeas, where Rtrue and Rmeas denote the
covariance of the forward model error and covariance of measure-
ment error, respectively [Waller (2013) has provided a detailed
explanation and calculation of the observation error covariance
matrix]. To produce good estimates of the model state in real case
studies, the error covariance matrix must be well understood and
properly calibrated. As previously mentioned, the measured data
in all case studies were synthetically generated from the EPANET
model based on true demand patterns. The forward model error,
therefore, equals zero. The covariance matrix [R], therefore, is the
diagonal matrix where the diagonal elements are the variances of
the measurement errors, because observations are independently
measured at different locations of the network by different meas-
urement devices. The measurement errors with specified ranges
were assumed to be known so that the covariance matrix [R] could
be identified.

Resampling

Resampling was applied to create new ensembles of particles from
the posterior PDF of the previous step. In this paper, two alterna-
tives of resampling were tested: SR and SRGA.

The SR algorithm generates a random number us from the uni-
form density U½0,1=Np�, and consequently creates Np ordered
numbers (Hol et al. 2006)

ui ¼ i − 1

NP
þ usði ¼ 1; : : : ;NPÞ ð13Þ

New particles are then selected that satisfy Eq. (14)

xinew ¼ x½F−1ðuiÞ� ð14Þ

where F−1 = generalized inverse of the cumulative probability dis-
tribution of the normalized particle weights.

To reduce the convergence problem of the particles (i.e., all the
particle weights are equal to zero) when applying the model for
large networks with multiple demand patterns, the SRGA method
was also applied. Three GA operators of selection, crossover, and
mutation are responsible for modifying the predicted demands be-
fore computing the weight of a particle by Eq. (10). In the selection
step, particles are compared with each other through tournament
selection, and the best particles are selected as parents. Parent par-
ticles are then paired and go through crossover and mutation to
generate offspring solutions. Details of GA can have been given
by Nicklow et al. (2010); here, it is important to know that new
parameters need to be introduced: the probability of crossover Pc,
probability of mutation Pm, and number of generations Ngen.

Demand Multiplier Outputs and Uncertainty
Quantification

The estimate of the state xk was obtained by taking the mean of the
particle-filter sample set (Salmond and Gordon 2005)

x̂k ≈ 1

Np

XNp

i¼1

xi�k ð15Þ

where xi�k = state updated based on the posterior analysis of the
model weights.

For particle-filter models, the uncertainty of the model output
can be computed by taking the variance of the samples

varðxkÞ ≈ 1

Np

XNp

i¼1

ðxi�k − x̂kÞðxi�k − x̂kÞT ð16Þ

For the demand multiplier estimation problem, a small change
in the demand multiplier can cause a large change in nodal de-
mands (for nodes with large base demands) and consequently result
in large variations of nodal pressures, especially at nodes that are
sensitive to nodal demands. Most of the demand forecasting models
are required to capture both peak-demand hours and off-peak de-
mand hours, with a demand multiplier factor that can vary from 0
to 4 (Chin et al 2000). The weight of the particles via Eq. (10) can,
therefore, easily approach zero, which leads to either particle de-
generacy or particle nonconvergence. Using a larger number of par-
ticles can prevent this problem; however, if the dimension of the
state vector increases, the required number of particles increases
exponentially. One way to solve these issues is to incorporate the
covariance of the forecasting nodal heads/pipe flow rates into the
likelihood function

pðzkjxikÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πj½R��jp ef−ð1=2Þ½zk−hðxikÞ�T ½R��−1½zk−hðxikÞ�g ð17Þ

where ½R�� ¼ Rþ Σ, Σ = covariance matrix of the forecast nodal
heads or pipe flow rates, computed based on the forecast demands.
This covariance matrix can be estimated by running the demand
forecasting model multiple times to obtain the range of forecast
demand multipliers, then applying these values into the hydraulic
model to compute the variance of simulated nodal heads and pipe
flow rates at measurement locations.

Although the method can ensure some of the particles always
contain weights to avoid particle nonconvergence and degeneracy,
this would increase the noise of the output model. The variance of
the model output (i.e., uncertainty of the model output) is required
to be computed by a different method instead of using Eq. (16).

Another way to overcome the convergence and degeneracy is-
sues is to integrate the GA operators into the resampling process,
as mentioned in the previous sections. The integrated GA approach
can prevent the model from experiencing these problems by ex-
ploring the state-space region and selecting the best particles (in-
cluding the replication of good solutions). However, it might lead
to another problem for the particle filter, referred to as particle
impoverishment. The distribution of the state model, because of
the particle impoverishment, is poorly represented by only one or
a few particles, which significantly reduces the variance of the
model state.

To ensure reliable outputs from the particle-filter model, it is
proposed to approximate the uncertainty of the model state by an
independent method, such as the first-order approximation (FOA)
method adopted from Piller (1995). This also has the advantage
of significantly decreasing the computational time, which will be
shown in the case studies. The model outputs, therefore, were the
estimate of the demand multipliers computed by Eq. (15) and the
confidence intervals computed by FOA method. For example,
the 95% confidence interval of the estimated demand multiplier
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(i.e., range in which the true demand multipliers are expected to be
95% of the time) can be obtained by the following expression:

kΔDMFkk ≤ 1.96ð½W�1=2½J�Þ†

jΔDMFjkj ≤ 1.96
Xm
j¼1

jSijj; with S ¼ ð½W�1=2½J�Þ† ð18Þ

where [J] = Jacobian matrix of flows and heads with respect to the
water nodal demand at time k; [W] = weight matrix where the
diagonal elements are the reciprocals of the variances of measure-
ment errors (½W� ¼ R−1); and superscript † = pseudoinverse oper-
ator. The derivation of Eq. (18) is explained in detail in the
Appendix.

By considering the Jacobian (sensitivity) matrix, the uncertainty
of the output model from FOA method can provide meaningful
information about the sensitivity of the pressure with respect to the
change in the nodal demand. This information can be used to guide
where to place measurement stations. However, the method re-
quires calculation of the sensitivity matrix, which may be time con-
suming when applied to large and complex networks.

Summary of Assumptions and Input Requirements
for the DMFLive Model

Several assumptions have been made in this paper: (1) the model of
the water distribution network perfectly represented the real system
with known network characteristics (e.g., pipe roughness coeffi-
cients, lengths, and diameters, etc.), and only demand multipliers
are required to be estimated; and (2) typical demand patterns for
different homogeneous demand groups in WDS were known. The
homogeneous demand groups can be identified based on a multi-
criteria demand-zones clustering algorithm presented by Preis et al.
(2010). There is uncertainty of the model outputs associated with
demand groupings, but this is not considered here. Therefore, addi-
tional assumptions included (3) the source of uncertainty was only
from the errors from measurement devices; (4) the errors of the
measurement devices were assumed to be known and to follow
a Gaussian distribution; and (5) the observation data for the online
(near-real-time) estimation model were available every 10, 15 min,
1 h, or larger time steps. The influence of slow transients (mass
oscillations) were, therefore, ignored in this context.

The inputs required for the DMFLive model consist of the num-
ber of particles, the inputs for the demand prediction submodel,
inputs for the hydraulic simulation model (EPANET), input for the
correction step, and the parameters for the integrated GA operators
(Pc, Pm, and Ngen). The prediction submodel requires the data
of typical demand patterns, autoregression coefficient (ϕi), and
variance of noise of demand residuals (σ2

h). These parameters are
calibrated independently based on historical demand data for spe-
cific networks, for example ϕi ¼ 0.7 and σ2

h ¼ 0.132, as in van Zyl
et al. (2008). The EPANET model requires the known data of tank
levels and pump and valve statuses. The correction step requires the
observation data at measurement sites. The particle-filter model as-
sociated with the GA process can only be applied to networks with
multiple demand patterns (e.g., second case study in this paper).
A two-point crossover operator with the probability of crossover
Pc ¼ 0.7, bitwise mutation with the probability of Pm ¼ 1=NDM
(NDM is the number of demand patterns in the network; NDM ¼
5, corresponding with Pm ¼ 0.2 for the second case study), and
number of generations NGen ¼ 50 were selected for the GA
process.

Case Study 1

The first case study used to evaluate the model is shown in Fig. 2.
The network has 9 nodes (8 nodes with demand), 12 pipes, 1 tank,
and 1 reservoir. The network characteristics can be found from the
EPANET example, namely the Net1 network. Three pressure mea-
surements (with a precision of Δmeas ¼ �0.2 m, consistent with a
standard deviation of σmeas ¼ 0.1 for the measurement error at 95%
confidence interval) were assumed to be placed at three random
locations (Nodes 13, 22, and 31). All nodal demands were assumed
to follow a single demand pattern that varies every 15 min [repre-
sented by the continuous line in Fig. 2(b)]. The demand pattern is a
random daily demand pattern (from a yearly demand pattern) for
100 households obtained from the behavioural end-use stochastic
simulator (BESS) model (Thyer et al. 2011). The DMFLive model
was required to track this demand pattern using the three pressure
measurements, which were also obtained every 15 min.

In this case study, the default demand pattern given in the Net1
example [represented by the dashed line in Fig. 2(b)] was selected
as the typical demand pattern. Different values of the autoregres-
sion coefficient (ϕ) as well as variance of noise (σ2

h) were applied
for the demand prediction submodel.

(a) (b)

Fig. 2. (a) Case Study 1 network; (b) typical and actual demand patterns for Case Study 1 network
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The accuracy of the demand estimates from the DMFLive
model were evaluated in terms of the coefficient of determination
(R2) and root-mean squared error (RMSE). For a number of
particles Np ¼ 100, the results of the demand estimates from the
DMFLive model are presented in Table 1.

The DMFLive model performed very well when the autore-
gression coefficient was selected in the range of 0.3 ≤ ϕ ≤ 0.9 and
the noise variance was selected in the range of 0.25 ≤ σ2

h < 0.64.
Due to the large difference between the typical demand value and

actual demand value at each time step [Fig. 2(b)], the selection
of small values of the autoregression coefficient and noise vari-
ance resulted in relatively poorer performance of the model
(e.g., R2 ¼ 0.465 and RMSE ¼ 0.198 for ϕ ¼ 0.3 and σ2

h ¼
0.04). The best output of the DMFLive model was obtained at
ϕ ¼ 0.7 and σ2

h ¼ 0.25, with R2 ¼ 0.988 and RMSE ¼ 0.028,
respectively.

For this best estimated demand pattern, the confidence intervals
and the scattergram between actual demand multipliers and esti-
mated demand multipliers are plotted in Fig. 3(a).

In Fig. 3(a), the estimated demand pattern yields a very good
match with the actual demand pattern during the time period (24 h,
corresponding to 96 time steps). The actual demand pattern is
entirely covered by the range of the 95% confidence intervals cal-
culated from FOA method. This confidence interval range, which
is expected to bracket the true demand multipliers in 95% of the
cases, represents the uncertainty magnitude of the estimated de-
mand due to the error from measurement devices.

The model was also run with the number of particles Np ¼ 100

and Np ¼ 20 to provide a comparison between the FOA method
[i.e., Eq. (18)] and the posterior analysis [i.e., Eq. (16)] for uncer-
tainty quantification, as shown in Figs. 3(b–d). Figs. 3(a–c)
show the uncertainty quantified by the FOA method whereas
Figs. 3(b and d) shown the uncertainty quantified by the variance
of particles. For Np ¼ 100 particles, the 95% confidence intervals
from both methods are comparable to each other, which demon-
strates that the FOA method can provide reliable results compared
with the variance of the particle-filter samples.

Table 1. Coefficient of Determination (R2) and RMSE of Demand
Estimates Corresponding to Different Parameter Values of the Demand
Prediction Model for Case Study 1

Number
Autoregression
coefficient (ϕ)

Variance of
demand residual (σ2

h) R2 RMSE

1 0.3 0.04 0.465 0.198
2 0.25 0.986 0.030
3 0.64 0.983 0.033
4 0.04 0.528 0.189
5 0.5 0.25 0.986 0.030
6 0.64 0.987 0.029
7 0.04 0.982 0.033
8 0.7 0.25 0.988 0.028
9 0.64 0.986 0.031
10 0.04 0.987 0.029
11 0.9 0.25 0.986 0.031
12 0.64 0.985 0.031

Note: Bold = best estimated result.

(a) (b)

(c) (d)

Fig. 3. Estimated demand pattern and confidence intervals: (a and c) uncertainty quantification based on first-order approximation method [Eq. (18)]
for NP ¼ 100 and NP ¼ 20; (b and d) posterior analysis for uncertainty quantification based on variance of the particle samples [Eq. (16)] for
NP ¼ 100 and NP ¼ 20
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A good estimate of the demand multipliers (RMSE ¼ 0.047)
is obtained by the DMFLive model even when the number of
particles is reduced by a factor of five (Np ¼ 20), as seen in
Figs. 3(c and d). The uncertainty boundary calculated by the FOA
method in Fig. 3(c) has a similar range to the case with NP ¼ 100
particles and covers most of the actual values. On the other hand,
the uncertainty bounds calculated by Eq. (16) in Fig. 3(d) are
collapsed into single value at some time steps because of an in-
sufficient number of the particles. Application of Eq. (16) for un-
certainty quantification, therefore, requires an in-depth evaluation
of the number of particles in the model if it is selected for the
uncertainty quantification.

The range of demand multipliers predicted in time according to
the evolution of the particles is presented in Fig. 4(a). The predicted
values range from DMFmin ¼ 0.1 to DMFmax ¼ 7.0, indicating that
the demand prediction submodel can predict a large range of de-
mand multipliers, and cover the range 0 ≤ DMF ≤ 4 suggested
by Chin et al. (2000). Fig. 4(b) plots the scattergram of the ac-
tual demand multipliers versus the predicted demand multipliers
(i.e., mean of the prediction) and actual demand multipliers versus
estimated demand multipliers. The scattergram shows a constant
and strong correlation between actual demand multipliers and esti-
mated demand multipliers over time with R2 being close to unity.
Due to the large difference between the typical demand pattern and
actual demand pattern, the forecasting model does not provide a
good prediction, resulting in weak and skewed correlation between
the actual values and predicted values. Despite this, the DMFLive
model is still capable of providing very good estimates of the de-
mand multipliers.

Effects of Tank-Level Update on the Estimation

In extended-period simulations of most hydraulic solvers (includ-
ing EPANET), the nodal demands are considered to be constant
during the time step. The levels of the tanks in the network at the
end of the time step are consequently computed based on this
assumption and are used as the initial tank level for the next step.
Due to continuously unpredictable change in the water demand in
practice, the actual tank level at the end of the time step is usually
different to the tank level computed by the model. As a result, the
estimated total volume of water used during the time step is also
different from the actual volume of water used in practice. This
issue can be overcome by minimizing the difference between actual
tank levels at the beginning of the time step and the final estimated

tank level at the end of the previous step. The demand estimation
model, however, will be delayed until the information of the tank
level at the beginning of the next time step becomes available. In
other words, the model outputs will be the estimates of the demand
multiplier at the previous time step.

In order to evaluate the effect of including tank-level informa-
tion at the end of every time step, an additional test was conducted.
Instead of assuming that the observations are available at every
15 min, in this test it was assumed that the data could be obtained
every hour, and the model is required to estimate the demand pat-
tern at each hour time step (whereas the actual demand pattern is
varied every 15 min).

Fig. 5 plots the two estimated demand patterns with and without
tank-level information (herein referred to as DMF-WTLive and
DMFLive); the DMF-WTLive model is the modified version of
DMFLive model in which the final-tank level information is taken
into account.

It can be seen that the estimates for both cases are matched with
the actual demand pattern at every hour time step. The inclusion
of tank information only causes a slight difference between two
estimated demand patterns at some of the time steps. The root-mean
squared errors between estimated demand multipliers and actual
demand multipliers at every hour step indicate that the DMFLive
model obtained slightly better results than the DMF-WTLive model
(RMSE ¼ 0.046 compared with RMSE ¼ 0.080, respectively).
However, the total estimated water usages in Table 2 indicate that
the DMF-WTLive model is more accurate in predicting the volume
of water delivered to users.

The total estimated water usage during the 24-h simulation
period from the DMFLive model was 5,942.43 m3=day, which
was 46.81 m3=day (or 0.78%) less than the actual water usage.
On the other hand, total estimated water usage from DMF-WTLive
model was 6,007.31 m3=day, only 18.07 m3=day (or 0.30%) more
than the actual value. Therefore, if the estimation can be delayed
one time step, the final tank-level information should be included in
the model to improve the accuracy of the estimated total volume of
water used.

Case Study 2

In order to evaluate the performance of the proposed model in large
networks that contain more than one demand pattern, the C-Town
network from Ostfeld et al. (2011) was selected as the second

(a) (b)

Fig. 4. (a) Prediction range of demand multipliers during simulation period; (b) predicted demand multipliers and estimated demand multipliers
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case study. The network consists of 429 pipes, 1 reservoir, 7 tanks,
5 pump stations (with a total of 11 pumps), 4 PRV valves, and
388 nodes (334 nodes with demand), which are divided into five
district demand areas. Each district demand area follows a differ-
ent hourly demand pattern. Because the data of the demand pat-
terns are available for 7 days, the first 24 h of these demand patterns
were assumed to be the typical demand patterns for the demand
prediction submodel. The performance of the particle-filter model
was evaluated by estimating the remaining 6-day hourly demand
patterns.

It was assumed that there are 14 pressure measurement sites
(from P1 to P14) that are randomly located at 14 places. These
pressure measurements, again, were assumed to have a measure-
ment error of Δmeas ¼ �0.2 m. The inputs for the real-time de-
mand estimation model were, therefore, the pressures at these
locations, tank levels of seven tanks, and pump statuses of 11
pumps at each hour time step. The topology and measurement
locations of the C-Town network are shown in Fig. 6. Five
different demand prediction submodels were used to predict the
five demand patterns. The parameters of the five demand prediction
submodels were assumed to have the same values of ϕ ¼ 0.7 for the
autoregression coefficients and σ2

h ¼ 0.16 for the variances of
noise.

The standard particle-filter model (i.e., using systematic resam-
pling), herein referred as the DMFLive-I model, provides good
results only if NP ≥ 25,000 particles. The estimates of five different
demand patterns for 6 days (from 25 to 168 h) are shown in Fig. 7.
It is seen that the estimated demand patterns closely match the
actual demand patterns, especially for DMF 2 (RMSE ¼ 0.021),
DMF 3 (RMSE ¼ 0.024), DMF 1 (RMSE ¼ 0.029), and DMF 4
(RMSE ¼ 0.036). The estimated demand pattern DMF 5 is less
accurate, with RMSE ¼ 0.061.

Fig. 7 also plots the 95% confidence intervals for calculated
by the FOA formula. The intervals for the estimated DMF 1,
DMF 2, and DMF 3 [Figs. 7(a–c)] are narrow, and they cover
almost the entire set of the actual demand multiplier values. The
actual values of DMF 4 are also within the confidence interval of
estimated DMF 4 [Fig. 7(d)] most of the time. However, because
of the locations of the measurements (P7 and P9 in Fig. 6), the
confidence interval of estimated DMF 4 pattern is relatively large
compared with the others. The effect of measurement locations on
the confidence intervals of the estimates will be discussed later in
the paper. In Fig. 7(e), approximately 37% of the actual demand
values of the demand pattern DMF 5 are outside the 95% confi-
dence intervals, which is caused by the relatively poor estimates
for DMF 5.

Fig. 8 displays the scattergrams and coefficients of determina-
tion of the five predicted demand patterns, as well as the estimated
demand patterns versus their actual values. The predicted DMFs in
this case show an average correlation to the actual DMFs with the
R2 ranging from 0.69 to 0.74, whereas the estimated DMFs are
strongly correlated to the actual ones, with all R2 values being close
to unity. The estimation for these five DMFs are also reliable during
the simulation period (6 days), because the spreads of the scattered
dots are close to bisector lines.

Improving DMFLive Model Performance by SRGA and
Modified Likelihood Function

The DMFLive-I model can only perform well with a large number
of particles (NP ≥ 25,000). Smaller numbers of particles result in
weak estimates of the DMFs resulting from particle collapse at
some steps. Because increasing the number of demand patterns re-
quires an exponentially increasing number of particles, it is neces-
sary to improve the efficiency of the particle-filter model so that it
can be applied to complex systems.

Two methods have been investigated, as mentioned previously:
• Incorporating the variance of the forecasting nodal heads into

the likelihood function. The weights of particles in the model,
referred to as the DMFLive-II model, are then calculated by the
modified likelihood function [Eq. (17)]; and

• Integration of a GA process into the systematic resampling of
the model, herein referred to as the DMFLive-III model.
Table 3 presents results (in terms of the RMSE of each de-

mand pattern) of running these models with NP ¼ 1,000 and NP ¼
5,000 for DMFLive-I and DMFLive-II, and with NGA

P ¼ 20 and

Fig. 5. Estimated demand patterns with and without tank level updated

Table 2. Actual and Estimated Total Volume of Water Usage during
Calculated Period

Case
Total

(m3=day)
Difference
(m3=day)

Percentage
difference

Actual daily water usage 5,989.25 — —
Estimated water usage
with DMFLive

5,942.43 46.81 0.78

Estimated water usage
with DMF-WTLive

6,007.31 18.07 0.30
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NGA
P ¼ 100 for DMFLive-III. It may be seen that for both NP

values, the DMFLive-I gives very poor estimates of the DMFs.
On the other hand, the DMFLive-II model only requires NP ¼
1,000 (corresponding to 1.43 × 105 evaluations for 143 h) to
provide fairly good results, whereas the DMFLive-III performs
well when NGA

P ¼ 100. The results of DMFLive-II (NP ¼ 5,000)
and DMFLive-III ðNGA

P ¼ 100Þ give similar results to those of
DMFLive-I running at NP ¼ 25,000 (corresponding to total eval-
uations of 3.575 × 106). This means the computation can be re-
duced by approximately a factor of 5.

Fig. 9 shows the DMF 1 uncertainty ranges from 25 to 49 h
of the three models, DMFLive-I, DMFLive-II, and DMFLive-III,
computed by FOA method and by variance of the particles
[Eq. (16)]. As can be seen from Figs. 9(a and c), because of particle
impoverishment, the uncertainty computed by particle variance,
represented by the dashed lines, is merged into a single line at al-
most all time steps. The uncertainty in Fig. 9(b) computed by this
method is wide due to the incorporation of the forecasting nodal
heads into the likelihood function. On the other hand, the uncer-
tainties by the FOA method, which are directly computed from

the sensitivity matrix and measurement errors, show consistent
ranges in both cases. Given good estimates of the demand multi-
pliers [as in Figs. 9(b and c)] these ranges can cover the actual
values most of the time.

Effect of the Locations of Measurements on the
Quantification of Demand Uncertainty

As discussed in a number of studies, such as those by Piller (1995)
and Do et al. (2016), the locations of the measurements have a
strong impact on the results of the demand estimation models.
Furthermore, the selection of measurement locations also affects
the confidence intervals of the estimation outputs. From the math-
ematical point of view, the uncertainty of estimated demands
depends on the sensitivity of the flows/heads at measurement lo-
cations in relation to the change in the water nodal demands. This
sensitivity is represented by the sensitivity matrix [J] [Eq. (18)],
which is, in this case study, the Jacobian matrix of the heads with
respect to the demand multipliers. The sensitivity of the heads
with respect to the change of the demand multipliers depends

Fig. 6. Case Study 2 network (C-town network)
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on two factors: (1) position of the nodes in the network; and (2) base
demand at the nodes. In fact, the nodes close to fixed-head nodes
(tanks or reservoirs) are less sensitive than the ones far from the
fixed-head nodes. This is because a change in nodal demand will
result in a smaller change in the pressures of the closer nodes than
the farther nodes. In a similar way, small base demands in the same
pattern will result in small friction losses and consequently small

changes in pressures. Therefore, nodes selected in these regions
may cause large uncertainty in demand multiplier estimation.
The sensitivity matrix takes into account these two factors. Small
values in the sensitivity matrix values mean that the nodes are less
sensitive to the demands and the estimation might have large un-
certainty. Therefore, the uncertainty of the estimated DMFs can be
reduced by selecting the more sensitive locations in the network.

(a)

(b)

(c)

(d)

(e)

Fig. 7. Five estimated demand patterns for Case Study 2 network (NP ¼ 25,000) using DMFLive-I
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An additional test was conducted to evaluate the effect of the
measurement locations on the uncertainty of the estimated demand
multipliers, for example, the uncertainty of the estimated DMF 4.
For this test, the locations of measurements P7 (with the base de-
mand of D0

7 ¼ 0.50 L=s) and P9 (D0
9 ¼ 0.59 L=s) are relocated to

P7A (D0
7A ¼ 1.33 L=s) and P9A (D0

9A ¼ 1.13 L=s). The DMFLive
model was implemented with the same conditions and the other

measurement locations were fixed at the same places as in the
original test.

Fig. 10 shows the sensitivity matrixes ½J�0 (for the original test)
and ½J�A0 (for the modified test) corresponding to a set of estimated
values DMFs ¼ ½0.46; 0.54; 0.65; 0.47; 0.62�.

It is seen that, for this network, the heads at measurement
locations are only sensitive to a change in the DMF to which they

Fig. 8. Scattergrams and coefficients of determination for five estimated demand patterns in Case Study 2 network

Table 3. Performance of DMFLive Model with SR (DMFLive-I), Modified Likelihood Function (DMFLive-II), and SRGA (DMFLive-III)

Model type
Number of
particles

Number
evaluation

RMSE

DMF1 DMF2 DMF3 DMF4 DMF5

DMFLive-I NP ¼ 1,000 1.43 × 105 0.386 0.365 0.416 0.385 0.366
NP ¼ 5,000 7.15 × 105 0.405 0.422 0.237 0.229 0.246

DMFLive-II NP ¼ 1,000 1.43 × 105 0.05 0.026 0.029 0.043 0.074
NP ¼ 5,000 7.15 × 105 0.027 0.021 0.027 0.038 0.049

DMFLive-III (NGen ¼ 50) NGA
P ¼ 20 1.08 × 105 0.107 0.067 0.068 0.086 0.19

NGA
P ¼ 100 5.43 × 105 0.03 0.025 0.023 0.032 0.05

(a) (b) (c)

Fig. 9. DMF 1 uncertainty ranges from 25 to 49 h computed by FOA method and posterior analysis: (a) DMFLive-I (NP ¼ 5,000); (b) DMFLive-II
(NP ¼ 5,000); (c) DMFLive-III (NPGA ¼ 100)
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belong. For example, the variation in the DMF 4 pattern only af-
fects the sensitivity of the heads at measurement locations P7 and
P9 (original test) and at measurement locations P7A and P9A
(modified test). The nonzero values in the sensitivity matrices,
therefore, correspond to the measurement locations. For the sensi-
tivity of the heads, the new locations P7A (∂H=∂DMF4 ¼ 5.31)
and P9A (∂H=∂DMF4 ¼ 11.76) are considerably more sensitive
than the locations P7 (∂H=∂DMF4¼ 2.59) and P9 (∂H=∂DMF4¼
2.55). As a result, the confidence intervals of the estimated DMF 4
for the modified test, as shown in Fig. 11, are much narrower than
the confidence intervals of the estimated DMF 4 for the original
test presented in Fig. 7(d). In this network case study, the demand
patterns are well geographically distributed. The heads at measure-
ment locations are, therefore, affected by independent demand pat-
terns, which results in a narrow uncertainty range for the estimate.
For nongeographically-distributed DMF networks, the sensitivity
of the heads at measurement locations are required to be accounted
and accumulated for all the related DMFs. This might cause much
larger uncertainty and likewise bring difficulty for the estima-
tion of the demand multipliers, as has been addressed by Sanz and
Pérez (2014).

The relocation of the pressure measurements also improves
the estimation of DMF 4, with a RMSE ¼ 0.028 for the modified
test, compared with a RMSE ¼ 0.036 of the original test. The
placement of the two new measurement sites also causes a slight
difference in the results of other estimated DMFs because of the
change in the particle weights. However, the results of the four

remaining DMFs are still very good and similar to the estimated
values of the original test.

To sum up, the uncertainty of estimated demand multipliers
caused by the errors of measurement devices is influenced by
the measurement locations. It is suggested to choose the locations
that are more sensitive to the demand multipliers [Do et al. (2016)
provide an example of optimal measurement location]. However,
it has also been shown that the DMFLive model can be used to
estimate demand multipliers even when the measurement devices
are located at some less-sensitive places. The uncertainty of the es-
timated demand multipliers can be used to identify which measure-
ment locations need to be improved. This is another advantage of
the DMFLive model.

Conclusions and Recommendations

Real-time demand estimation under uncertainties is exceptionally
difficult because of the unpredictable stochastic behavior of the
water demand as well as the nonlinearities of hydraulic systems.
This paper has introduced the DMFLive model framework, which
can be used to estimate the demand multipliers of a WDS in near-
real-time. A predictor-corrector approach has been adopted and
solved by a particle-filter method. A nonlinear demand prediction
model was applied to predict water demand multipliers at each time
step, and online pressure observations were used to correct the
prediction. Output uncertainty caused by the measurement errors
has also been quantified by the first-order approximation formula.

(a) (b)

Fig. 10. Sensitivity matrixes of nodal heads at measurement locations with respect to demand multipliers at t0 ¼ 0

Fig. 11. Estimated Demand Pattern 4 and its confidence interval with the relocated Measurements 7 and 9A
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The performance of the DMFLive model was evaluated by two
WDS case studies. The results showed that the nonlinear demand
prediction model combined with the particle-filter method used in
the paper are well suited for the near-real-time demand estimation
problem.

Within the first case study, the benefits of having additional in-
formation about the tank level of the next time step have been ex-
plored. If the estimation of the demand multipliers can be delayed
one time step, the tank level at the beginning of the next time step
can be used by the model to improve the estimation of the total
volume of water used. Within the second case study, three versions
of the DMFLive model were developed to be used in large net-
works with multiple demand patterns. All versions provided good
results, showing that the models are suitable for use in large net-
works. Finally, the effect of the measurement locations on the
uncertainty of the estimated demand multipliers has been explored.
Results showed that the uncertainty can be used to identify which
measurement locations need to be improved. Future work involves
considering adding additional uncertainties into the DMFLive
model. Moreover, testing the model for non-geographically-
distributed demand networks is also necessary to show its capabil-
ity when applied in practice.

Appendix. First-Order Approximation Method for
Uncertainty Quantification of Water Demand
Multipliers

The problem of demand calibration involves finding the demands
of the network hydraulic model to best fit the data set. Consider the
following nonlinear regression equation:

yMeas
i ¼ yi½x� þ εi; εi ∼ Nð0; σiÞ ð19Þ

where ½x� ¼ nd × 1 vector of parameters to calibrate (demand
multiplier factors that depend on time); yi½x� = scalar multivariate
function of predictions from the network hydraulic model, given
the parameter [x]; εi = residual between model prediction and ob-
servation, which was assumed to be Gaussian with mean of zero
and standard deviation of σi; and yMeas

i = ith measurement site in
the data set.

The demand calibration can be formulated as a box-constrained
least-squares problem that minimizes the differentiable criterion at
each time step

fðxÞ ¼ 1

2

Xm
i¼1

�
yi½x�− yMeas

i

σi

�
2

¼ 1

2

Xm
i¼1

ε2R s:t. xmin ≤ x ≤ xmax

ð20Þ
where m = number of measurement sites; εR = reduced residual,
which is the residual divided by the corresponding standard de-
viation, εR ∼ Nð0,1Þ.

The gradient of f at x0 is

∇f0 ¼ ½J�ðx0ÞT ½W�½ðyðx0Þ − yMeasÞ� ð21Þ
where [W] = weight matrix where the diagonal elements are the
reciprocals of the variances of measurement errors; and ½J�ðx0ÞT ¼
∂xyðx0ÞT = transposed Jacobian matrix of the prediction function
at x ¼ x0.

The Hessian approximation takes the simple form of the sym-
metrical, positive semidefinite matrix

H0 ¼ ½J�ðx0ÞT ½W�½J�ðx0Þ ð22Þ
It is essential for the Jacobian to be full rank of the size of x, so

that H0 is invertible and a definite matrix.

An approximation of function f to minimize Eq. (20) by a quad-
ratic function at x0 leads to the approximation of x:

x ¼ x0 − ðH0Þ−1∇f0 ð23Þ
By replacing Eqs. (21) and (22) into Eq. (23), the approximation

of x can be expressed

x ¼ x0 − ½½J�ðx0ÞT ½W�½J�ðx0Þ�−1½J�ðx0ÞT ½W�½yðx0Þ − yMeas�
Using Eq. (19)

xðεÞ ¼ x0 þ ½½J�ðx0ÞT ½W�½J�ðx0Þ�−1½J�ðx0ÞT ½W�ε ð24Þ
The influence of the measurement errors with regards to the

parameter estimates, therefore, can be obtained at the first-order
of Eq. (24):

Δx ¼ ½½J�ðx0ÞT ½W�½J�ðx0Þ�−1½J�ðx0ÞT ½W�ε
¼ ½½W�1=2½J�ðx0Þ�†½W�1=2ε ¼ ½½W�1=2½J�ðx0Þ�†εR ð25Þ

The uncertainty in term of confidence limits can be expressed as
follows:
• For 99% confidence intervals (jεij ≤ 2.58σi)

kΔxk ≤ 2.58kð½J�ðx0ÞT ½W�½J�ðx0ÞÞ−1½J�ðx0ÞT ½W�1=2k
¼ 2.58kð½W�1=2½J�ðx0ÞÞ†k

jΔxij ≤ 2.58
Xm
j¼1

jSijj; with S ¼ ð½W�1=2½J�Þ† ð26Þ

• For 95% confidence intervals (jεij ≤ 1.96σi)

kΔxk ≤ 1.96k½½W�1=2½J�ðx0Þ�†k

jΔxij ≤ 1.96
Xm
j¼1

jSijj; with S ¼ ð½W�1=2½J�Þ† ð27Þ
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(2013). “Application of formal and informal Bayesian methods for
water distribution hydraulic model calibration.” J. Water Resour. Plann.
Manage., 10.1061/(ASCE)WR.1943-5452.0000412, 04014030.

Hutton, C. J., Kapelan, Z., Vamvakeridou-Lyroudia, L., and Savić, D. A.
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Abstract 
 

Modeling of water distribution systems is fundamental for the design, analysis and operation of any water network. As with all 
hydraulic models, water demands are one of the most important input components in the model. However, estimation of the demand 
parameters is usually complicated due to the stochastic behavior of the water consumptions. Several methods have been proposed 
for estimating water demands. Most of them have been developed based on given frameworks where the number of unknown 
parameters is assumed to be equal or less than the number of measurements. The outcomes, therefore, rely on this assumption, 
which can lead to significant approximation errors in real water distribution systems. 

 The approach proposed in this paper does not require the number of known inputs to be equal to the number of variables. In 
fact, nodes in the model could each have a different demand pattern. The genetic algorithm approach adopted here shows that the 
average results of multiple GA runs can estimate the demand patterns at each node. Moreover, the model can also be used to 
estimate the flow rates and nodal heads at non-measured locations of the water network, although the accuracy of the estimation 
depends on number, type and location of the measurements. Results are shown and discussed for a literature case study tested for 
a 24-hour time period.  
 
© 2016 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Water distribution system infrastructure has been constructed and developed for hundreds of years across the world. 
Together with the population growth and urbanization, water distribution systems (WDS) have expanded, and have 
become more complex and more difficult to operate. Modeling of WDS is, therefore, becoming increasingly important 
due to the need of understanding the behavior of these systems. Various simulation software solutions have been 
developed and broadly used for the design, analysis and operation of WDS, including EPANET, CWSNET or 
HydrauliCAD. However, a new major challenge to deal with these models is the requirement for consistency between 
observed data of the real networks and simulated data from simulations models. Estimation of the model parameters, 
hence, is required so that the model is able to represent the real system.  

In WDS, estimation is a process of fitting the outputs from the computer model, usually the pressures and flow rates 
at particular locations in the network, with the field measurements as well as calculating the parameters of interest [1]. 
Various model parameters, such as pipe diameters, roughness coefficients, valve resistances, or nodal demands, are 
required to be estimated. While most of these parameters are time invariant or vary slowly, nodal demands are the 
only parameter that can cause immediate changes in the model output. Estimation of model parameters during short 
periods of time using supervisory control and data acquisition (SCADA) systems, therefore, usually focuses on the 
demand parameter. 

In the literature, the estimation of water demand has been studied by numerous researchers based on different 
methods, for example, extended Kalman filtering [2], tracking state estimation and Kalman filtering [1], Genetic 
Algorithms [3], and Particle Filtering [4]. However, these models have been developed based on given frameworks 
where the measurement locations were predetermined and the calibration parameters are grouped to be less than the 
number of measurements. The outcomes, therefore, rely on these additional assumptions, which can lead to large 
approximations in real water distribution systems. Only few papers have directly dealt with underdetermined systems 
such as a proportional demand method [5] and singular value decomposition (SVD) [6], [7]. 

This paper presents a study by [8] for the estimation of water demands in WDS over a period of 24 hours. A 
methodology is proposed to find the demand multiplier factors for an underdetermined system where the number of 
measurements is less than the number of demand parameter variables. The EPANET toolkit is used to solve the system 
of water network equations while Genetic Algorithms (GAs) are applied to find the best match between known 
measurements inputs and their estimated values. The mean values of multiple GA runs are suggested to be used as the 
best estimation of the flow rates and nodal heads as well as the estimation of the nodal demands in a system. 

 
2. Methodology 

The proposed model applies an implicit technique for the steady-state hydraulic simulation where the estimation 
process is formulated as an optimization problem. The objective function is a weighted least squares function in order 
to minimize the differences between simulated values from the model and their corresponding measured values. 

The objective function at each time step is given by: 
 

 (1) 

where HSim
i, QSim

j are the simulated nodal head and flow rate for the ith node and jth pipe, respectively; Hi
Meas, Qj

Meas are 
the measured head and flow rate at the ith node and jth pipe (in this case these values are known exactly as they have 
been generated from a forward model run by a hydraulic simulator); NH, NQ are the number of head and flow 
measurement sites in the network and wi, wj are the weighting factors applied to different terms to ensure they have 
similar magnitude. 

The decision variables for the optimization problem are the demand multiplier factors fk,t, which are used to 
calculate the nodal demands at each time step:  
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 (2) 

where D0,k is base demand at the kth node, which is calculated using quarter/annual billing information for water usage; 
and fk,t (k = 1…NDM) is the demand multiplier factor at the kth node at time step t. 

A bounded range of demand factors may apply as: 
  (3) 

where (fk
min, fk

max) are  the bounds of decision variables. 
The genetic algorithm (GA) estimation model implemented for this research has been written in C-sharp language. 

The flowchart of the algorithm is shown in Figure 1. An initial population of chromosomes is randomly generated and 
decoded into corresponding demand multiplier factor values of each chromosome. For each node of the network 
exactly one of these DMFs is assigned and EPANET is subsequently called to simulate the steady state hydraulics of 
the system. Simulated flows and heads (QSim, HSim) at the measurement locations are obtained and compared with their 
actual measured values via the calculation of the objective function of Eq.(1). The inverse of the objective function (in 
the expression of 1/(F+1) to avoid an indeterminate form when F equals to zero) is applied to define the fitness function 
for each member of the GA population. This is the measure for the quality of each member, and is used to determine 
its opportunity of survival. 

By applying GA selection, crossover and mutation, new generations that inherit features of previous generation are 
created, and the estimation process is then repeated until the stopping criteria is met. 

Fig. 1. Flowchart for GA estimation of demand multiplier factors 

It should be noted that the proposed estimation model is to be applied to cases where the number of measurements 
is less than the number of unknown variables. In other words, the estimation of the demand in water distribution 
systems is mathematically a nonlinear underdetermined problem. A local solution of the problem can be found by 
local linearization methods such as QR decomposition, SVD or using the Moore-Penrose pseudoinverse matrix in 
Newton-Raphson method. However, due to the possibility of non-uniqueness of the solutions, the results from 
mathematical methods may be either far from the actual solution or result in negative demands at some nodes. A single 
run of the GA model, therefore, might converge to any of the non-unique solutions or be trapped in a local optimal 
solution where the simulated values cannot perfectly match the measured values at measurement locations. As a result, 
it appears that a good approximation of the demand multiplier factors estimation problem can only be obtained if 
multiple runs of the GA model are implemented and then averaged. The following section shows the results of the 
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multiple runs of the proposed GA model of a WDS that has been studied by the SVD model from [6] for the same 
estimation problem. 

 

3. Case study 
The case study used to evaluate the methodology is shown in Figure 2. The network has 9 nodes, 12 pipes, one 

tank, one pump and one reservoir. The network topology and all information such as the pipe parameters, length, 
roughness and pump characteristic can be found from EPANET example [9], namely the Net1 network. 

Fig. 2. Study network for the estimation problem. 
The GA estimation model was tested for two scenarios of measurement sites according to [6]. In the first test, three 

pressure sensors are assumed to be located at nodes 3, 5 and 8. The second test assumes two flow meters are set at 
pipes 7 and 11, respectively and a pressure sensor is placed at node 4. 

 
3.1. Input for GA estimation model 

In practice, input data for the estimation process are collected from a supervisory control and data acquisition 
(SCADA) system. In this research, input data is generated using EPANET toolkit as follows: (1) known demand 
multiplier factors are assigned to nodal demands; (2) run EPANET to retrieve the corresponding “true” or “known” 
pipe flow rates and nodal heads; (3) select the flows and heads at the selected locations as input for the GA model. The 
output flows and heads for selected pipes and nodes based on the simulation of the “true” values are used as the 
measured values (HMeas, QMeas) for the estimation process. 

 
3.2. GA operators and model parameters 

For the selection of GA operators, tournament selection was chosen because of its better convergence compared to 
proportionate selection or ranking selection; two-point crossover operator with the relatively high probability of Pc = 
0.8 and the bitwise mutation with the probability of Pm = 1/str  0.13 (str is the length of the string) are chosen, which 
are suggested by a study from [10].  

The variation of the water demands at each node is presented by the range of the water demand multiplier factors. 
These values, after multiplying with their base demand, are expected to cover all the water usage throughout the day, 
including the lowest water use (possibly zero demand) and some extreme cases where the water demand is much larger 
than its average values. The range of decision variables (i.e. the demand multiplier factors), therefore, was selected to 
be from fk

min = 0.0 to fk
max

 = 4.0 which is selected based on typical values of the demand factors reported in [11].  
One of the factors that may affect the accuracy of the GA estimation model is the increment ( ) of the DMFs. The 

selection of a large increment for the decision variables leads to faster convergence of the GA model although it may 
result in a coarser approximation of the estimated demands. Alternatively, the GA model may give better results if 
selecting smaller increment steps. However, the model requires more computational effort to converge due to the 
larger search space size. In this case study, the increment step of the decision variables was selected as  = 0.05, 
corresponding to a search space size of 818 = 1.85*1015 possible solutions for the GA model. 

An integer-coding scheme was selected for the GA model. Each decision variable was coded by an integer number, 
ranging from 0 to 80 based on the choice table of the demand multiplier factors (corresponding to  = 0.05). By 
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using this coding information, the chromosome in the GA process was decoded into a set of demand multiplier factors 
that are multiplied by the base demand and can be used for the hydraulic simulation process. An example of GA model 
process for the estimation problem is shown in Figure 3. 

 
 
 
 

Fig. 3. Example of a GA process for the estimation problem 
The population size for GA model was selected as N=100. Finally, due to the non-uniqueness and the stochastic 

behavior of the problem, for each GA application, multiple runs with different seeds were implemented. The stopping 
criteria for each GA run is defined by the number of generations, which equals to Nstop = 1000 generations. 

 
4. Results and discussions 
4.1. Comparison between two scenarios of measurement sites 

A series of 100 runs (each initiated with a different random number seed) of the GA model was implemented for 
each scenario of measurement sites in a steady state simulation. The results are shown in Table 1 and Table 2. 

Table 1. Average nodal demands and nodal pressures of the GA model for Test 1 and Test 2 (shown in Figure 2) 

Node 
Nodal demands (GPM) Nodal pressure (psi) 

Actual Test 1 Test 2 
Test 1 Test 2 

%Error 
Test 1 

%Error 
Test 2 Actual Test 1 Test 2 

Test 1 Test 2 
%Error 
Test 1 

%Error 
Test 2 (100 runs averaged) (100 runs averaged) 

2 150 260.83 146.18 110.83 3.82 73.89 2.55 119.26 119.66 119.55 0.40 0.29 0.34 0.24 

3 100 114.05 135.6 14.05 35.60 14.05 35.60 118.67 118.67 118.08 0.00 0.59 0.00 0.50 

4 150 116.93 110.03 33.07 39.97 22.05 26.65 120.74 123.81 120.74 3.07 0.00 2.54 0.00 

5 100 83.9 91.35 16.10 8.65 16.10 8.65 115.86 115.86 116.51 0.00 0.65 0.00 0.56 

6 100 88.15 112.65 11.85 12.65 11.85 12.65 110.79 113.43 109.39 2.64 1.40 2.38 1.26 

7 150 237.3 135.23 87.30 14.77 58.20 9.85 117.66 119.39 118.3 1.73 0.64 1.47 0.54 

8 200 130.9 175.1 69.10 24.90 34.55 12.45 118.76 118.76 118.83 0.00 0.07 0.00 0.06 

9 150 241.7 162 91.70 12.00 61.13 8.00 117.02 120.06 117.02 3.04 0.00 2.60 0.00 

*italic - measured locations,  - absolute differences between actual values and estimated values 

Table 1 presents the average values of nodal demands and nodal pressures from 100 runs of the GA model. For the 
estimation of the nodal demands, Test 2 (2 pipe flows and 1 nodal pressure are measured) provides better results than 
Test 1 (3 nodal pressures are measured). The maximum error was found at node 3 for Test 2, of 35.6%, while for Test 
1 the maximum error occurred at node 2 with the corresponding percentage of 73.88%. Test 2 also shows the best 
estimate at node 2 with an estimated nodal demand of 146.18 GPM (the actual value is 150 GPM, corresponding with 
only 2.55% error). On the other hand, the minimum estimate error of Test 1 was found at node 6 with a proportion of 
11.85%. For the estimation of the nodal pressures, the GA model achieved very good results, with the maximum error 
less than 2.6% for all nodes in the network. 

Table 2. Average pipe flow rates of the GA model for Test 1 and Test 2 (shown in Figure 2) 

Pipe 
Flow rates (GPM) 

Actual Test 1 
(100 runs averaged) 

Test 2 
(100 runs averaged) Test 1 Test 2 

% error  
Test 1 

% error  
Test 2 

1 1866.18 1863.60 1864.32 2.58 1.86 0.14 0.10 

2 1234.21 1108.63 1244.62 125.58 10.41 10.17 0.84 

3 129.34 128.40 153.39 0.94 24.05 0.73 18.59 
4 191.16 103.23 202.67 87.93 11.51 46.00 6.02 

5 120.66 102.58 128.36 18.08 7.70 14.98 6.38 
6 40.81 29.71 55.47 11.10 14.66 27.20 35.92 

Chromosome 1 10 12 34 1 71 5 42 16 10 12 48 14 80 5 42 16

Chromosome 2 35 38 48 14 80 65 58 73 35 38 34 1 71 65 58 73

10 12 48 14 80 49 42 16 Child 1 10 12 48 14 80 49 42 16
N N N N N Y N N Decode 0.5 0.6 2.4 0.7 4 2.45 2.1 0.8
2 38 34 1 71 65 58 73 Child 2 2 38 34 1 71 65 58 73
Y N N N N N N N Decode 0.1 1.9 1.7 0.05 3.55 3.25 2.9 3.65

Mutation

Crossover
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7 766.18 509.85 766.19 256.33 0.01 33.46 0.00 

8 481.97 454.14 473.52 27.83 8.45 5.77 1.75 
9 188.70 188.69 166.30 0.01 22.40 0.01 11.87 

10 29.34 14.35 51.23 14.99 21.89 51.11 74.61 

11 140.81 113.61 140.80 27.20 0.01 19.32 0.00 

12 59.19 58.44 63.44 0.75 4.25 1.26 7.19 

*italic - measured locations,  - absolute differences between actual values and estimated values 

Table 2 presents the average values of pipe flow rates from 100 runs of the GA model. It can be seen from the table 
that Test 2 again shows better results than for Test 1. In Test 2, the estimate of the flows is relatively accurate for the 
pipe with average flows (>50GPM) and high flows (>400 GPM). Large estimate errors only occur at pipes with low 
flows (<50GPM) such as pipe 10 (74.61%) and pipe 6 (35.92%). For Test 1, relatively large estimate errors can be 
found in all ranges of flow magnitude, for example, pipe 7 (the actual value is 766.18 GPM, the estimate value is 
509.85 GPM, corresponding to an error of 33.46%), pipe 4 (the actual value is 191.16 GPM, the estimate value is 
103.23 GPM, estimated error of 46%) or pipe 10 (the actual value is 29.34 GPM, the estimate value is 14.35 GPM, 
estimated error of 51.23%). This result highlights the important role of the locations and types of the measurements 
in the demand estimation problem. 

 
4.2. Results of GA model for extended period simulation 

The GA model is tested in a 24-hour extended period simulation for Test 2 where the measurements are placed at 
pipes 7, 11 (flow measurements) and node 4 (a pressure measurement), respectively. In order to evaluate the effects 
of the number of GA runs on the model output, the results of an individual 20 GA runs and 100 GA runs are examined. 
The estimated flow rates at selected pipes and estimated demands at selected nodes are plotted in Figure 4 and Figure 
6. By increasing the number of GA runs from 20 to 100, the model provides slightly better estimates of flows (e.g. 
flow at pipe 5 – Figure 6), while giving very good approximations of the water demands at all nodes.  

Figure 5 displays the scattergrams and correlation coefficients (R2) of the average estimated flows of 100 GA runs 
versus actual flows at all pipes of the network. Similarly, Figure 7 plots the scattergrams and correlation coefficients 
of the average estimated demands of 100 GA runs versus actual demands at all nodes. It can be seen that the 
correlations are strong and for both flow estimates and demand estimates, except the flow in pipe 10 (R = 0.715) and 
the demand at node 7 (R=0.677). The strong correlation values indicate that the estimation is consistently good over 
time for the entire network. 

Fig. 4. Estimation of flow rates at pipe 2, 5, 7 and 9. 
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Fig. 5. Scattergrams and correlation coefficients between flow estimates (average of 100 GA runs) and actual flows (units for both axes are 

GPM) 
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Fig. 6. Estimation of demands at node 2, 3, 5 and 8. 
 
Fig. 7. Scattergrams and correlation coefficients between demand estimates (average of 100 GA runs) and actual demands (units for both axes 

are GPM) 
5. Conclusions 

Estimation of water demand in water distribution systems is problematical due to the limited number of 

measurement sites. In this paper, a GA model based on integer coding has been introduced for the estimation of the 
water demand multipliers for underdetermined problems in water distribution systems where the number of 
measurement sites is less than the number of unknown parameters. The results provided from the case study show that 
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multiple runs of the GA model can produce relatively good approximation of the state in a water network. Future 
research efforts will involve finding advanced methods for the estimation of the demand to reduce the computational 
time. In addition, uncertainty of the model is another consideration given the presence of errors in measurement data. 
Finally, addressing the problem of leakage in the network is also important in achieving reliable results. 
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ABSTRACT  
The issue of demand calibration and estimation under uncertainty is known to be an exceptionally 
difficult problem in water distribution system modelling. In the context of real-time event modelling, 
the stochastic behaviour of the water demands and non-geographical distribution of the demand 
patterns makes it even more complicated. 
This paper considers a predictor – corrector approach, implemented by a particle filter model, for 
solving the problem of demand multiplier factor estimation. A demand forecasting model is used to 
predict the water demand multiplier factors. The EPANET hydraulic solver is applied to simulate 
the hydraulic behaviour of a water network. Real time observations are integrated via a formulation 
of the particle filter model to correct the demand predictions. 
A water distribution network of realistic size with two configurations of demand patterns 
(geographically distributed demand patterns and non-geographically distributed demand patterns) 
are used to evaluate the particle filter model. Results show that the model is able to provide good 
estimation of the demand multiplier factors in a near real-time context if the measurement errors 
are small. Large measurement errors may result in inaccurate estimates of the demand values. 
 
Keywords: Particle filtering, real time demand estimation, water distribution systems, calibration.  

1 INTRODUCTION 

Water distribution systems (WDSs) are constructed to supply water for domestic, industrial and 
commercial consumers. The design, operation and management of these distribution systems is 
usually supported by the application of hydraulic models, which are built to replicate the behavior 
of real systems. Conventional demand driven models simulate flows and pressures of a WDS 
requiring assumptions of known demands. Sensor technology that has recently been applied in 
WDSs can assist in providing localised flow rates and pressures, which also enables new 
approaches to estimate the water consumptions within the networks in real-time or near real-time, 
for example [1], [2] and [3]. These water demand estimates can be used for developing a better 
understanding of the full range of operational states (e.g. [4]) as well as detecting abnormal events 
(e.g. [5]).  

Water demand estimation is the process of fitting the outputs from a computer model (i.e. the 
pressures and flow rates at particular locations in the network) with the field measurements. Given a 
large number of water consumers (a.k.a. nodal demands) and a limited number of measurements in 
a real network, it would be infeasible for any model to estimate all of the unknown nodal demands. 
Instead, the demand patterns, which represent groups of similar water consumers, are usually 
considered to be estimated. Different criteria can be used to categorize the water consumers into 
groups. For better management of leakage, demands are grouped into pressure zones or into district 
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metered areas (DMAs), which usually results in geographically distributed demand patterns. In 
order to capture the changing habits of different water users, demands are grouped based on types 
of customers, e.g. domestic, residential, restaurants, hospitals, parklands or industrial, etc., which 
result in non-geographically distributed demand patterns. These categorization techniques may 
introduce errors to the demand estimation results. Other sources of uncertainties such as 
measurement inaccuracy, parameter uncertainty or unaccounted hydraulic events (e.g. leakage, 
transient…) also may contribute to the errors of the estimated demand values. These issues need to 
be examined to assess whether or not integrating the sensor data to estimate water demand in near 
real-time can improve the accuracy of the hydraulic models. 

The research work presented here evaluates the outputs from the estimation model developed by 
[2]. New developments focus on the estimation of the demand multipliers of a geographically 
distributed demand pattern network as well as a non-geographically distributed demand pattern 
network, given different scenarios of measurement errors. 

2 DEMAND ESTIMATION MODEL 

Figure 1 shows the process for the estimation of water demand multipliers (DMFs) proposed by [2]. 
The model applies a predictor – corrector approach, which is implemented by a sequential Monte 
Carlo sampling technique, also known as the particle filter. The DMFs are estimated through three 
main steps: prediction, simulation and correction within a particle filter setting. 

 
Figure 1: Particle filter model for near real-time state estimation in WDS 

2.1 Predictor step 
The model starts with a creation of an ensemble of the particles (Np), at which each particle is 
assigned an initial weight equal to 1/Np. The particles are the demand residuals, which are computed 
from the demand residuals of previous steps [6]:  

ln	��� � �	

�

�


�
ln ���
� � ln ��� (1) 

where ��� is the water demand residual at time step k of the j th DMF, i is the lag counter, m is the 

number of autocorrelation lags. φi is the auto-regression coefficient for lag i and υk (0,σh) is white 
noise with mean zero and standard deviation σh.  
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Predictions of the demand multipliers based on these demand residuals, therefore, can be calculated 
via the following equation: 

����� � ������  (2) 

where ��� is the demand multiplier value of  at time k of a typical diurnal demand pattern (or a 
default demand pattern) of the jth DMF. The C value can be identified based on meter information of 
different water users (e.g. in [7]).  

2.2 Simulation 
The EPANET hydraulic solver [8] is used to simulate the hydraulic behaviour of the water 
distribution network at each time step. The inputs are the predicted DMF from the prediction phase 
and real-time hydraulic data from sensor devices (i.e. nodal heads and flow rates), which may also 
include: tank levels and pump and valve statuses. The water network characteristics such as pipe 
lengths, diameters, roughness coefficients, node elevations, pump curves, etc. are assumed to be 
known and constant. The outputs from the EPANET solver is the model equivalent of the field 
observations, i.e. the simulated nodal heads and pipe flow rates at measurement locations. 

2.3 Corrector step 
The weights of the particles are corrected/updated by associating the simulated heads and flows 
with the actual observations via Equation (3) where the conditional probability of the observations 
is assumed to be Gaussian: 

�������
 � �
1

�2�|�|  
!�"#$%�$&'%( )*

+,-.#$%�$&'%( )*/ (3) 

where �(��
 ) is the simulation model equivalent of the observations zk (nodal heads and flow rates), 
and R is the error covariance of the observations. The importance weight of each particle is then 
computed by:  

2�
 �
�(��|��
 )

∑ �(��|��
 )45

�

 (4) 

New ensembles of particles for subsequent time steps are created through a resampling process, 
which replaces samples with low importance weights by the samples with high importance weights. 
In this work, the systematic resampling algorithm is applied. The algorithm generates a random 
number us from the uniform density U[0, 1/Np], and consequently creates Np ordered numbers [9]:  

6
 � 7 − 1
9:

� 6;					(7 � 1, … ,9:) (5) 

New particles that satisfy Equation (6) are then selected: 
�>?@
 � �(���6
�) (6) 

where F-1 denotes the generalized inverse of the cumulative probability distribution of the 
normalized particle weights. 

By recursively implementing the predictor – corrector approach, the demand multiplier of each 
group of demands can be estimated. Note that at each time step, the estimates of the demand 
multipliers are obtained by taking the mean of the particle filter sample set: 
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�A� ≈ 1
9C

���
	∗
4E


�
 (7) 

where ��
	∗ is the state of the particle updated based on the posterior analysis of the model weights. 

3 CASE STUDY 
The case study used to evaluate the model is shown in Figure 2, which is the modification from an 
example of the EPANET software, namely the Net3 network. The network has 2 reservoirs, 3 tanks, 
92 nodes, 117 pipes and 2 pumps. The demands in the network are classified into four different 
demand patterns. Two configurations of the demand patterns are considered in this study. In Figure 
2.a, the demands are divided based on the topographic information, which results in a 
geographically distributed demand network. In Figure 2.b, the demands are categorized, as an 
example, based on the magnitudes of the base demands: DMF1 for nodes with base demands less 
than 10 L/s, DMF2 for nodes with base demands from 10 L/s to 20 L/s, DMF3 for nodes with base 
demands from 20 L/s to 30 L/s and DMF4 for nodes with base demands larger than 30 L/s. In this 
case, the network has non-geographically distributed demand patterns. 

It is assumed that there are 12 pressure measurement sites randomly located within the network. 
The inputs for the near real-time demand estimation model are, therefore, the pressures at these 
locations, the tank levels of the three tanks and the pump statuses at each hour time step. 

 
Figure 2. Case study network - (a) Geographically distributed demand patterns, (b) Non- 

geographically distributed demand patterns 

It is also assumed that the default patterns, which are calibrated based on historical water used data, 
of four demand groups are known. In order to evaluate the estimation results of the PF model, 
measurement data sets are synthetically generated for a period of 48 hours as follows: (1) a random 
deviation N(0, 0.15) sampled from a normal distribution is added to each default demand pattern to 
create an “actual” demand pattern; (2) EPANET is run to generate two sets of nodal pressures at 
measured locations, corresponding with two configurations of the demand patterns; (3) a random 
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error is added to each nodal pressure. Three scenarios of random errors are considered: ∆meas = 0 
(perfect measurement), ∆meas = ±0.5 m and ∆meas = ±1.0 m. 

Table 1 shows the parameters applied in the PF model. The estimation results for the geographically 
distributed demand pattern network as well as the non-geographically distributed demand pattern 
network associated with different level of measurement errors are summarised in the following 
sections. 

Table 1. Particle filter model parameters 

PF model parameters Values 

Auto regression coefficient  0.7 

Variance of noise 0.16 

Number of particles 100,000 

3.1 Perfect measurements 
The left hand side plots of Figure 3 give the default DMFs, the actual DMFs and the estimated 
DMFs for the geographically distributed and non-geographically distributed patterns over 48 hours. 
The right hand side plots of Figure 3 display the scattergrams of the default DMFs as well as the 
estimated DMFs versus their actual values. 

 
Figure 3. Outputs from the PF model when the measurements are considered error free 
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Without considering measurement errors, the PF model provides good estimates of the DMFs for 
these networks. By assimilating real-time pressure information into the estimation process, the 
default demand patterns are adjusted, approaching the actual patterns. This adjustment can be 
observed in Table 2, via the values of the coefficients of determination (R2) and mean absolute error 
(MAE) of each demand pattern. The default DMFs show an average correlation to the actual DMFs 
with (R2) ranging from 0.709 to 0.814, while the estimated DMFs for both geographically 
distributed and non-geographically distributed demand patterns are strongly correlated to the actual 
ones with all R2 values being close to unity. It is also seen that the PF model gives better estimates 
for the network with geographically distributed demand patterns than the network with non-
geographically distributed demand patterns, as the R2 values are closer to unity and the MAE values 
are smaller. 

Table 2. Comparison of the estimation derived from the PF model when the measurements are 
considered error free (R2 – Coefficient of determination, MAE – Mean absolute error) 

DMFs 
Default DMFs Geo. distributed DMFs Non-Geo. distributed DMFs 

R2 MAE R2 MAE R2 MAE 

DMF1 0.709 0.097 0.956 0.041 0.895 0.049 
DMF2 0.703 0.101 0.975 0.023 0.868 0.053 
DMF3 0.840 0.175 0.949 0.102 0.909 0.144 
DMF4 0.814 0.259 0.983 0.081 0.940 0.159 

3.2 Measurement errors 
Two levels of measurement errors including ∆meas = ±0.5 m and ∆meas = ±1.0 m for all measurements 
are considered for the second test of the PF model. The accuracy of the estimates, presented by the 
same assessment criteria (R2 and MAE), as shown in Table 3 and Table 4. 

Table 3. Comparison of the estimation from the PF model when ∆meas = ±0.5 m 

DMFs 
Geographically distributed DMFs Non-Geo. distributed DMFs 

R2 MAE R2 MAE 

DMF1 0.864 0.071 0.812 0.062 
DMF2 0.954 0.032 0.818 0.064 
DMF3 0.934 0.120 0.905 0.141 
DMF4 0.977 0.089 0.946 0.153 

It is observed that with relative small measurement errors (∆meas = ±0.5 m), the model can still 
provide reasonable estimates of the DMFs in both networks. The MEA values are smaller and R2 
values are larger for both networks (compared to the default DMFs in Table 2), which means that 
the PF model has shifted the default DMFs closer to the actual DMFs. Similar to the previous test, 
the estimation results of the PF model for the geographically distributed demand pattern network 
are more accurate than for the non-geographically distributed demand pattern network, especially 
for DMF2 and DMF4.  
The values in Table 4, on the other hand, show that with large measurement errors (∆meas = ±1.0 m) 
the PF model cannot provide good estimates of the DMFs. For the geographically distributed 
demand pattern network, the estimated DMF1 has very weak correlation with the actual DMF1. The 
estimates of DMF2 and DMF3 show an accuracy similar to the default patterns. Better estimation 
results can only be achieved in DMF4, where the demand group is connected to the others by a 
single pipe and the pressure in this region is mainly dependent on the pressure in Tank 2. 
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For the non-geographically distributed demand pattern network, the estimated DMF1, DMF2 and 
DMF3 are even more inaccurate. The estimated DMF4, which is associated with nodes with largest 
base demands in the network, is slightly improved because this demand group dominates the other 
demand groups. Due to large base demands, small changes in this pattern can cause a large change 
in the demand at these nodes, which subsequently results in a large change in the pressure at 
measured locations.  

Table 4. Comparison of the estimation from the PF model when ∆meas = ±1.0 m 

DMFs 
Geographically distributed DMFs Non-Geo. distributed DMFs 

R2 MAE R2 MAE 

DMF1 0.527 0.113 0.458 0.136 
DMF2 0.778 0.092 0.577 0.140 
DMF3 0.847 0.220 0.809 0.202 
DMF4 0.941 0.145 0.869 0.235 

The estimated DMFs derived from the PF model that considers a measurement error of ∆meas = ±1.0 
m for 48 hours are shown in Figure 4. Large errors can be seen at almost all the time steps during 
this extended period. In this case, the default demand patterns would be a better input for a 
hydraulic model and would provide a more accurate representation of the real network behaviour. 

 
Figure 4. Outputs from the PF model when the measurements error ∆meas = ±1.0 m 
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4 CONCLUSIONS 
The work in this paper has evaluated the performance of the PF model proposed by [2] for the near 
real-time estimation of water demand multipliers. Two types of networks have been studied: a 
geographically distributed demand pattern network and a non-geographically distributed demand 
pattern network. Different level of measurement errors have also been examined. Results show that 
the PF model can be used for relatively large networks with multiple demand patterns. Well 
estimated DMFs can be obtained if the measurement errors are relatively small. The model cannot 
provide good estimates if large errors are contained in the measurement data. In addition, the results 
also show that the model performs better with the geographically distributed demand pattern 
network than with the non-geographically distributed demand pattern network for all scenarios.  
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